

Cybersecurity and
High-Performance

Computing Environments

https://taylorandfrancis.com

Cybersecurity and
High-Performance

Computing Environments

Integrated Innovations, Practices, and Applications

Edited by

Kuan-Ching Li
Nitin Sukhija

Elizabeth Bautista
Jean-Luc Gaudiot

First Edition published 2022

by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press

4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2022 selection and editorial matter, Kuan-Ching Li, Nitin Sukhija, Elizabeth Bautista,

and Jean-Luc Gaudiot; individual chapters, the contributors

Reasonable efforts have been made to publish reliable data and information, but the

author and publisher cannot assume responsibility for the validity of all materials or the
consequences of their use. The authors and publishers have attempted to trace the copyright

holders of all material reproduced in this publication and apologize to copyright holders if

permission to publish in this form has not been obtained. If any copyright material has not
been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,

reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other

means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission

from the publishers.

For permission to photocopy or use material electronically from this work, access

www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please

contact mpkbookspermissions@tandf.co.uk.

Trademark notice: Product or corporate names may be trademarks or registered trademarks

and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data
Names: Li, Kuan-Ching, editor. | Sukhija, Nitin, editor. |
Bautista, Elizabeth (Computer scientist), editor. | Gaudiot, Jean-Luc, editor.
Title: Cybersecurity and high-performance computing environments :
integrated innovations, practices, and applications / edited by

Kuan-Ching Li, Nitin Sukhija, Elizabeth Bautista, Jean-Luc Gaudiot.
Description: First edition. | Boca Raton, FL : CRC Press, 2022. |
Includes bibliographical references and index.

Identifiers: LCCN 2021049599 | ISBN 9780367711504 (hbk) |
ISBN 9780367740368 (pbk) | ISBN 9781003155799 (ebk)
Subjects: LCSH: High performance computing. | Computer security–Data

processing. | High performance computing–Security measures.
Classification: LCC QA76.88 .C93 2022 | DDC 004.1/1–dc23/eng/20211213
LC record available at https://lccn.loc.gov/2021049599

ISBN: 978-0-367-71150-4 (hbk)

ISBN: 978-0-367-74036-8 (pbk)
ISBN: 978-1-003-15579-9 (ebk)

DOI: 10.1201/9781003155799

Typeset in Minion
by codeMantra

http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://lccn.loc.gov
https://doi.org/10.1201/9781003155799

Contents

PREFACE vii
EDITORS xiii
CONTRIBUTORS xvii

Chapter 1 ■ Cybersecurity and High-Performance Computing
Ecosystems: Opportunities and Challenges 1

Nitin Sukhija, Elizabeth Bautista, and Kunj Champaneri

Chapter 2 ■ Approaches to Working with Large-Scale Graphs
for Cybersecurity Applications 31

Noah L. Schrick, Ming Li, John Hale, and Peter J. Hawrylak

Chapter 3 ■ OMNI at the Edge 63
Elizabeth Bautista, Nitin Sukhija, Melissa Romanus,

Thomas Davis, and Cary Whitney

Chapter 4 ■ Optimized Voronoi-Based Algorithms for Parallel
Shortest Vector Computation 85
Artur Mariano, Filipe Cabeleira, Lúıs Paulo Santos,

and Gabriel Falcão

Chapter 5 ■ Attribute-Based Secure Keyword Search for
Cloud Computing 123

Hui Yin, Yu Zhang, Fangmin Li, and Keqin Li

Chapter 6 ■ Understanding Cybersecurity Risk in FMI Using
HPC 151

Gurdip Kaur, Ziba Habibi Lashkari, and Arash Habibi Lashkari

v

vi ■ Contents

Chapter 7 ■ Live Migration in HPC 191
Anil Kumar Gupta, Amarjeet Sharma, Aditi Pandey, Kaustubh Patil,

and Sanskar Sharma

Chapter 8 ■ Security-Aware Real-Time Transmission for
Automotive CAN-FD Networks 229
Ruiqi Lu, Guoqi Xie, Junqiang Jiang, Renfa Li, and Keqin Li

Chapter 9 ■ OntoEnricher: A Deep Learning Approach for
Ontology Enrichment from Unstructured Text 261
Lalit Mohan Sanagavarapu, Vivek Iyer, and Y. Raghu Reddy

Chapter 10 ■ Intelligent Connected Vehicles 285
Wufei Wu, Ryo Kurachi, Gang Zeng, Yuhao Wang,

Hiroaki Takada, and Keqin Li

Chapter 11 ■ Toward Robust Deep Learning Systems against
Deepfake for Digital Forensics 309
Hongmei Chi and Mingming Peng

Chapter 12 ■ Monitoring HPC Systems against Compromised
SSH 333
Lev Lafayette, Narendra Chinnam, and Timothy Rice

Index 355

Preface

In this fast-paced global economy, academia and industry must
innovate to evolve and succeed. Today’s researchers and industry
experts are seeking transformative technologies to meet the challenges
of tomorrow. The cutting-edge technological advances in cybersecurity
solutions aid in enabling the security of complex heterogeneous high-
performance computing environments. On the other hand, high-
performance computing power facilitates powerful and intelligent
innovative models for reducing time to response to identify and resolve
a multitude of potential, newly emerging cyberattacks.

This book provides a collection of the current and emergent
research innovations, practices, and applications focusing on the
interdependence of cybersecurity and high-performance computing
domains for discovering and resolving new emerging cyber-threats.

In the following, we will describe the chapters contained in the
book.

Chapter 1, “Cybersecurity and High-Performance Computing
Ecosystems: Opportunities and Challenges,” by Sukhija et al., focuses
on efective cybersecurity solutions to protect current and emergent
high-performance computing (HPC) ecosystems comprising users,
data, infrastructure, and applications supporting scientifc research.
Although, as we move toward the exascale future and beyond, the
emerging superfacility frameworks are combining the experimental and
observational facilities with high-performance computing centers, the
new convergent computing platforms, along with a paradigm shift
in programming applications leveraging these platforms, increasingly
open the HPC ecosystems to a myriad of security risks. Intending to
reduce the downtime of HPC ecosystems in the presence of unpre-
dictable loads and malicious attacks, this chapter covers cybersecurity
challenges and solutions, which, when combined efectively, will aid in
proactively rearchitecting the current and emergent HPC ecosystems
comprising users, data, infrastructure, and applications to delay or

vii

viii ■ Preface

counteract the scale of malicious attacks and to reduce their impacts
and consequences.

Chapter 2, “Approaches to Working with Large-Scale Graphs for
CyberSecurity Applications,” by Hawrylak et al., covers the graph
techniques useful for compliance violation and cybersecurity attack
prediction in the lens of high-performance computing. Graphs are a
standard tool in cybersecurity evaluation and analytics. First, the au-
thors discuss the attack graphs and dependency graphs, which are two
common approaches in cybersecurity where the analysis of the attack
and dependency graphs describes the system’s security posture, includ-
ing the system’s attack surface. Next, the authors explain the potential
attack scenarios that can be extracted from attack graphs. This chapter
concludes with a survey of techniques useful for handling large-scale
graphs, methodologies, and strategies for increasing the performance
and ends with insights into future needs and directions in this area.

Chapter 3, “OMNI at the Edge,” by Bautista et al., discusses the
high-availability Operations Monitoring and Notifcation Infrastruc-
ture (OMNI) hosted at the Department of Energy’s (DOE) National
Energy Research Scientifc Computing Center (NERSC) and its use
of the state-of-the-art edge computing technologies for collecting,
analyzing, and securing extremely high-volume, continuous 24 × 7
data in near-real-time. The authors then detail how data security is
achieved not only from each staf who owns the data, but also through
various devices and networks. Then, the chapter highlights the internal
and external access policies and the plan to make these data available
to the public for crowdsourcing analysis. Furthermore, the authors
provide use cases that demonstrate how the availability of OMNI
data has benefted the overall NERSC data center from facilities &
machine perspective as well as from a cybersecurity standpoint. Finally,
an outline of ongoing and future work is given, including upgrades
being made to the data warehouse for the upcoming Perlmutter
supercomputer – a system that will be 3–4× the size of ours.

Chapter 4, “Optimized Voronoi-Based Algorithms for Parallel
Shortest Vector Computation,” by Gabriel Falcão et al., addresses
Voronoi cell-based algorithms, solving the shortest vector problem,
a fundamental challenge in lattice-based cryptanalysis. First, the
chapter introduces several optimizations based on pruning to reduce
the original algorithm’s execution time. Then, the authors illustrate
the algorithm’s suitability for parallel execution on both CPUs and
GPUs, where speeds up to 69× are observed. The authors then

Preface ■ ix

demonstrate using a pre-process sorting step, which requires storing
the norm ordered target vectors and signifcantly more memory, where
speedup increases to 77×. Finally, the chapter concludes by optimizing
the algorithm that exhibits linear scalability on a CPU with up to
28 threads and keeps scaling, at a lower rate, with simultaneous
multithreading up to 56 threads.

Chapter 5, “Attribute-Based Secure Keyword Search for Cloud
Computing,” by Hui Yin et al., presents the attribute-based keyword
search (ABKS) that provides the feasibility to simultaneously achieve
data searching and fne-grained access control over encrypted data,
which is applied to the cloud computing environment characterized by
data storage and sharing. In this chapter, the authors frst introduce
the fundamental techniques for achieving the ABKS scheme, such as
the necessary components used in the attributed-based encryption.
Then, by several existing ABKS schemes, the authors describe how
to design a practical and efcient ABKS construction in the cloud
computing environment. Further, the authors show some interesting
experimental results to explain the key factors afecting the search
complexity in ABKS schemes and present some ideas to design an
efcient and high-performance ABKS scheme.

Chapter 6, “Understanding Cybersecurity Risk in FMI Using
HPC,” by Gurdip Kaur et al., examines the importance of the fnancial
market infrastructure and elaborates its essential components used to
handle fnancial transactions and their security. The chapter explores
high-performance computing (HPC) and its integration to FMIs to
transform the fnancial industry by speeding up fnancial activities
in the business and reducing fraudulent transactions. Moreover, the
authors provide a descriptive and visual mapping of fnancial risks with
identifed cybersecurity issues. The chapter concludes by detailing the
cybersecurity risks faced by FMIs with comprehensive details on risk
assessment, analysis, monitoring, reporting, and mitigation.

Chapter 7, “Live Migration in HPC,” by Anil Kumar Gupta
et al., presents the basics of live migration and its needs, applications,
security aspects, and role in HPC (high-performance computing) and
then proceeds with discussing two of the live migration approaches –
live virtual machine (VM) migration and live container migration.
Next, the authors discuss the challenges in this approach and then
review the security aspects. The authors detail the second approach,
live container migration, followed by understanding the performance
measures and issues and comparative analysis of the two methods.

x ■ Preface

Moreover, the authors cover two case studies, checkpointing and
restoring in “CRIU” and “OpenVZ” for container live migration.
Finally, the authors compare live migration in virtual machines
with live container migration concerning various attributes such as
performance, challenges, and security. The chapter underlines the role
of live migration in high-performance computing, discusses security
breaches and possible threats, and concludes by suggesting various
approaches to overcoming the same.

Chapter 8, “Security-Aware Real-Time Transmission for Automo-
tive CAN-FD Networks,” by Ruiqi Lu et al., covers high-performance
embedded computing systems that are widely used in intelligent vehi-
cles, providing the possibility of secure and real-time communication
for automotive networks. The chapter first provides the preliminaries of
automotive CAN-FD networks, including the differences between CAN-
FD and CAN, their security vulnerabilities, and the corresponding
classification of cyberattacks. Then, security-aware real-time CAN-FD
transmission methods are summarized based on the three elements
of security, such as confidentiality-aware real-time transmission,
integrity-aware real-time transmission, and availability-aware real-
time transmission. Finally, this chapter discusses the future trends
of security-aware real-time CAN-FD transmission methods, including
intrusion detection accuracy and response time, attack analysis and
cybersecurity evaluation, and security-aware methods and resource
consumption.

Chapter 9, “OntoEnricher: A Deep Learning Approach for Ontology
Enrichment from Unstructured Text,” by Lalit Mohan S. et al.,
introduces the need for sequential deep learning architectures that
traverse through dependency paths in text and extract embedded
vulnerabilities, threats, controls, products, and other security-related
concepts and instances from learned path representations. The authors
then detail the proposed approach, OntoEnricher, a supervised
sequential deep learning model that factors context from grammatical
and linguistic information encoded in the dependency paths of
a sentence and then utilizes sequential neural networks, such as
bidirectional long short-term memory (LSTM), to traverse (forward
and backward directions) dependency paths and learn relevant path
representations that constitute relations. Then the authors explain the
implementation of the proposed OntoEnricher, where the bidirectional
LSTMs are trained on a large DBpedia dataset and Wikipedia corpus
of 2.8 GB along with Universal Sentence Encoder, which is deployed to

Preface ■ xi

enrich ISO 2700-based information security ontology. The chapter then
describes training the model and testing a high-performance computing
(HPC) environment to handle Wiki text dimensionality. Finally, the
chapter concludes by detailing the experimental results and the test
accuracy of the approach when tested with knocked-out concepts from
ontology and web page instances to validate the robustness.

Chapter 10, “Intelligent Connected Vehicles,” by Wufei Wu et
al., presents the characteristics of intelligent connected vehicles and
current in-vehicle network architecture. The authors start by showing
the attack model and vulnerabilities of the existing in-vehicle network
(IVN). Then the state-of-the-art countermeasures of cybersecurity
enhancement for IVNs are introduced. Finally, at the end of the chap-
ter, a discussion is given based on next-generation in-vehicle network
architecture with security mechanisms and future research directions.

Chapter 11, “Toward Robust Deep Learning Systems against
Deepfake for Digital Forensics,” by Hongmei Chi and Mingming Peng,
investigates the interactions between the development of deepfake
techniques and detection of them in digital forensics. The authors
first describe the structure and the associated software pertinent to
the generative adversarial network (GAN) algorithms. The authors
then discuss how to train fairness in deep learning (DL) algorithms
to identify the typical features of all the popular GAN algorithms
and how smartphones app can help in deepfake detection. Finally, the
chapter concludes by detailing an innovative application tool that any
digital professional can learn to adopt techniques to detect deepfake
development.

Chapter 12, “Monitoring HPC Systems against Compromised
SSH,” by Lev Lafayette, focuses on compromising Secure Shell, which
is a very well-established and well-developed cryptographic network
protocol and a suite of utilities in the world of high-performance
computing. The chapter starts with the description of the security
breach in European HPC centers in 2020 that led the authors to
exploring the possibilities of how to engage in policies, user education,
and developing monitoring systems to protect against a similar instance
in their environment with the knowledge that is transferable to others.
Next, the authors detail a two-stage approach adopted by the HPC
team at the University of Melbourne for dealing with the potential of
compromised SSH keys, consisting of policy-based user education and
monitoring. Finally, the chapter concludes by discussing the possibility
for further and broader use of key-based SSH for enhanced security.

xii ■ Preface

Overall, this book represents a substantial research contribution
to the state-of-the-art solutions for addressing the threats to conf-
dentiality, integrity, and availability (CIA triad) in high-performance
computing (HPC) environments. Moreover, in addition to focusing on
securing HPC environments, this book covers the groundbreaking and
emergent solutions that utilize the power of the HPC environments
to study and understand the emergent, multifaceted, anomalous, and
malicious characteristics. As a result, the editors are confdent that
this book will help university students, researchers, and professionals
understand how high-performance computing research fts broader
cybersecurity objectives and vice versa.

Editors

Kuan-Ching Li is a Distinguished Professor in the Department
of Computer Science and Information Engineering at Providence
University, Taiwan, where he also serves as the Director of the High-
Performance Computing and Networking Center. He has published
more than 320 scientifc papers and articles and is a co-author or
co-editor of more than 30 books published by leading publishers. In
addition, he is the Editor-in-Chief of Connection Science (Taylor &
Francis) and serves as an associate editor for several leading journals,
and is also actively involved in various capacities in the organization
of several national and international conferences in several countries.
He is a Fellow of IET and a Senior Member of the IEEE. Professor Li’s
research interests include parallel and distributed computing, big data,
and emerging technologies.

Nitin Sukhija is an associate professor in the Department of
Computer Science and the Director of Center for Cybersecurity and
Advanced Computing (C2AC) at SRU. He received his doctorate
in Computer Science from Mississippi State University majoring in
High Performance Computing in 2015. His areas of expertise are
high-performance computing, dynamic load balancing, performance
modeling, prediction and evaluation, robustness and resilience analysis,
cybersecurity, and big data analytics. Dr. Sukhija received his MBA
degree in Information Systems from San Diego State University (2009)
and MS degree in Computer Science majoring in Computing from
National University, San Diego (2010). Dr. Sukhija has been involved
in the research and management of various projects pertaining to the
HPC and cybersecurity challenges in industry and academia for over
two decades. Dr. Sukhija’s research is recognized by publications in
high-impact peer-reviewed IEEE and ACM conferences, journals, and
book chapters. Dr. Sukhija is a recipient of research, career awards and
fellowships. He is currently serving as an organizing committee member
and reviewer for many esteemed conferences. He is currently serving

xiii

xiv ■ Editors

as the co-chair for the ACM SIGHPC Education Chapter workshop
committee and has been active in the planning and participation in
Workshops series at the SC, ISC, and other conferences.

Elizabeth Bautista is the manager for the Operations Technology
Group (OTG) at Lawrence Berkeley National Lab’s National Energy
Research Scientifc Computing (NERSC) Center (http://www.nersc.
gov). The group of Site Reliability Engineers ensures 24 × 7
accessibility, reliability, and security of NERSC’s high-performance
systems, data storage systems, and the facility environment. Bautista’s
Data Team manages a 125 TB Elastic/VictoriaMetrics-based data
warehouse infrastructure that collects at a rate of 25,000–400,000 data
points/second depending on the source. The types of datasets range
from the facility environment (power, temperature, and humidity)
to storage I/O to system logs of the HPC systems and support
services. The analysis of the real-time data provides alerts to manage
the facility, and the archived data are correlated to provide business
decisions and future trends. Bautista supports programs that seek to
involve minorities and women in STEM and advocates that the next
generation of professionals has practical hands-on training as part of
their education. In her career, she has served as a member of the Lab’s
Computing Science Diversity Group, is a member of Women Scientists
and Engineers, was a delegate in the Council of University of California
Staf Assemblies (CUCSA), a staf advocate group, she champions
issues of retention and diversity, and is the founder of Filipinas in
Computing, a community in the Grace Hopper Conference. Bautista
was named one of the 100 most infuential Filipina Women Globally in
2015. She has a BS in Computer Information Systems and an MBA.
in Technical Management, both from Golden Gate University.

Jean-Luc Gaudiot received the Diplôme d’Ingenieur from the Ecole
Superieure d’Ingenieurs en Electronique et Electrotechnique, Paris,
France, in 1976, and the M.S. and Ph.D. degrees in Computer
Science from UCLA in 1977 and 1982, respectively. He is currently
a Distinguished Professor in the Department of Electrical Engineering
and Computer Science at UC Irvine. Prior to joining UCI in 2002, he
was Professor of Electrical Engineering at the University of Southern
California since 1982. His research interests include multithreaded

http://www.nersc.gov
http://www.nersc.gov

Editors ■ xv

architectures, fault-tolerant multiprocessors, and the implementation
of reconfgurable architectures. He has published over 250 journal and
conference papers. His research has been sponsored by NSF, DoE, and
DARPA, as well as a number of industrial companies. He has served
the community in various positions and was the President of the IEEE
Computer Society in 2017.

https://taylorandfrancis.com

Contributors

Filipe Cabeleira

Department of Electrical and
Computer Engineering

University of Coimbra & Instituto de
Telecomunicações

Coimbra, Portugal

Kunj Champaneri

Department of Computer Science
Slippery Rock University of

Pennsylvania

Slippery Rock, Pennsylvania

Hongmei Chi

Florida A&M University

Tallahassee, Florida

Narendra Chinnam

University of Melbourne

Melbourne, Australia

Thomas Davis
National Energy Research Scientific

Computing Center
Lawrence Berkeley National

Laboratory

Berkeley, California

Gabriel Falcão
Department of Electrical and

Computer Engineering
University of Coimbra & Instituto de

Telecomunicações

Coimbra, Portugal

Anil Kumar Gupta

Centre for Development of Advanced
Computing (CDAC)

Pune, India

John Hale
Tandy School of Computer Science
The University of Tulsa

Tulsa, USA

Peter J. Hawrylak

Tandy School of Computer Science
The University of Tulsa

Tulsa, USA

Vivek Iyer

Software Engineering Research
Centre

IIIT Hyderabad

Hyderabad, India

Junqiang Jiang

School of Information Science and
Engineering

Hunan Institute of Science and
Technology

Yueyang, China

Gurdip Kaur

Canadian Institute for Cybersecurity
(CIC)

University of New Brunswick (UNB)

Fredericton, Canada

xvii

xviii ■ Contributors

Ryo Kurachi

Graduate School of Informatics
Nagoya University

Nagoya, Japan

Lev Lafayette

University of Melbourne

Melbourne, Australia

Arash Habibi Lashkari
Canadian Institute for Cybersecurity

(CIC)
University of New Brunswick (UNB)

Fredericton, Canada

Ziba Habibi Lashkari
School of Computer Engineering
Universidad Politécnica de Madrid

Madrid, Spain

Fangmin Li

College of Computer Engineering
and Applied Mathematics

Changsha University

Changsha, China

Keqin Li

Department of Computer Science
State University of New York

New York, USA

Ming Li

Tandy School of Computer Science
The University of Tulsa

Tulsa, USA

Renfa Li
College of Computer Science and

Electronic Engineering
Hunan University

Changsha, China

Ruiqi Lu

College of Computer Science and
Electronic Engineering

Hunan University

Changsha, China

Artur Mariano
Department of Informatics
INESC TEC & Universidade do

Minho

Braga, Portugal

Aditi Pandey

MIT Academy of Engineering

Pune, India

Kaustubh Patil

MIT Academy of Engineering

Pune, India

Mingming Peng

Florida A&M University

Tallahassee, Florida

Y. Raghu Reddy

Software Engineering Research
Centre

IIIT Hyderabad

Hyderabad, India

Timothy Rice

University of Melbourne

Melbourne, Australia

Melissa Romanus
National Energy Research Scientific

Computing Center
Lawrence Berkeley National

Laboratory

Berkeley, California

Contributors ■ xix

Lalit Mohan Sanagavarapu

Software Engineering Research
Centre

IIIT Hyderabad

Hyderabad, India

Lúıs Paulo Santos
Department of Informatics
INESC TEC & Universidade do

Minho

Braga, Portugal

Noah L. Schrick
Tandy School of Computer Science
The University of Tulsa

Tulsa, USA

Amarjeet Sharma

Centre for Development of Advanced
Computing (CDAC)

Pune, India

Sanskar Sharma

MIT Academy of Engineering

Pune, India

Hiroaki Takada
Graduate School of Informatics
Nagoya University

Nagoya, Japan

Yuhao Wang

School of Information Engineering
Nanchang University

Nanchang, China

Cary Whitney

National Energy Research Scientific
Computing Center

Lawrence Berkeley National
Laboratory

Berkeley, California

Wufei Wu
School of Information Engineering
Nanchang University

Nanchang, China

Guoqi Xie

College of Computer Science and
Electronic Engineering

Hunan University

Changsha, China

Hui Yin
College of Computer Engineering

and Applied Mathematics
Changsha University

Changsha, China

Gang Zeng

Graduate School of Engineering
Nagoya University

Nagoya, Japan

Yu Zhang

College of Computer Engineering
and Applied Mathematics

Changsha University

Changsha, China

https://taylorandfrancis.com

C H A P T E R 1

Cybersecurity and
High-Performance
Computing Ecosystems
Opportunities and Challenges

Nitin Sukhija
Slippery Rock University of Pennsylvania

Elizabeth Bautista
Lawrence Berkeley National Laboratory

Kunj Champaneri
Slippery Rock University of Pennsylvania

CONTENTS

1.1 Introduction . 2
1.2 The Vital Importance of Securing High-Performance

Computing (HPC) Ecosystems . 3
1.3 Security for Supercomputing Infrastructure 5

1.3.1 Software Security . 6
1.3.2 Hardware Security . 7

1.4 Applications Security . 10
1.5 Data Security in HPC Ecosystems . 14
1.6 User-Specifc Cybersecurity . 18

1.6.1 Policies . 19
1.7 Discussion and Summary . 21
References . 23

DOI: 10.1201/9781003155799-1 1

https://doi.org/10.1201/9781003155799-1

2 ■ Cybersecurity and High-Performance Computing Environments

1.1 INTRODUCTION

Today, high-performance computing (HPC) ecosystems have become
central in bolstering research and innovation in diverse domains
and in reinforcing world economies on the competitive international
arena. In the past decade, the rapid proliferation of processing
technologies for HPC has facilitated the convergence of artifcial
intelligence, machine learning, data analytics, big data and the HPC
domain platforms to solve complex computationally intensive and data-
intensive applications in various scientifc and non-scientifc felds.
The technologies combined with the workforce facilitating complex
computational competences formulate an HPC ecosystem [1].

The complex infrastructure comprising increasingly evolving and
highly unpredictable heterogeneous computing systems (currently
operating at petafop capacity and planned for exafop performance
by year 2021) forms the most important and fundamental component
of the HPC ecosystem [2]. The main challenge here is not only to
acquire these high-end computing infrastructures, but also to retain the
cutting edge by continuously updating the existing infrastructures with
newer hardware and software to realize the increasing needs of solving
complex problems in diverse disciplines. The applications representing
simulations of complex systems behavior or software enabling system
operations are another key component of HPC ecosystem [3]. Scientists,
researchers and users are interested in scientifc fdelity, in insight
analyses and in visualizations of the simulations of the implementation
of various numerical models corresponding to numerous complex
phenomena pertaining to various scientifc felds. Another important
element of the HPC ecosystem is data. With information growth
exceeding Moore’s law, the traditional data processing applications and
platforms are inadequate to handle the increasing amounts of generated
data. The data storage, curation, sharing, analysis, visualization and
privacy along with scalability of computing performance are some of
the signifcant challenges witnessed in the era of big data. Lastly,
the workforce highly trained and experienced in HPC skills is the
crucial part of the HPC ecosystem [4]. As we move toward exascale
future and beyond, the emerging superfacility frameworks combining
the experimental and observational facilities with HPC centers, and
the new convergent computing platforms along with a paradigm shift

Cybersecurity and HPC Ecosystems ■ 3

in programming applications leveraging these platforms increasingly
open the HPC ecosystems to a myriad of security risks [5].

This book chapter covers signifcant cybersecurity solutions for
protecting the current and emergent HPC ecosystems comprising users,
data, infrastructure and applications supporting scientifc research.

1.2 THE VITAL IMPORTANCE OF SECURING
HIGH-PERFORMANCE COMPUTING (HPC) ECOSYSTEMS

As high-performance computing (HPC) ecosystems have evolved to
become more and more powerful, so has their potential to do harm.
Couple the advancement in cyberinfrastructures with the increasing
number of domains in which HPC systems are used in that involve
sensitive data and you have a recipe for disaster if one of these systems
is compromised [6]. So not only would an attacker be able to harness the
computational power of the machines to perform malicious activities,
but also be able to have access to potentially confdential data. In
today’s age, data mean power, and so even non-confdential could hold
some value to an attacker. Researchers working on a compromised
system could have their research stolen or tampered with, causing them
to lose potentially years worth of work. It is therefore imperative that
HPC systems, and the application code running on them, be built with
security in mind. Security is an oft overlooked component of building
scientifc code for a variety of reasons [7]. Many researchers simply
do not have awareness of the potential risks of building an insecure
system or assume that the system they are using is secure enough and
they therefore do not need to worry about securing their applications.
Other times, security is ignored for the sake of speed or convenience,
since baking in security to their application code introduces some
amount of overhead and requires extra planning and code [8]. None
of these are valid reasons in today’s world; threats are everywhere,
and HPC systems are a major target of bad actors. There needs to
be a continuing focus on training researchers in providing security
measures within their application code, rather than depending upon
infrastructure security.

One such thing HPC users have to be aware of when building their
applications is communication within the cluster with respect to their
application, and communication with the outside world. Generally,

4 ■ Cybersecurity and High-Performance Computing Environments

users have access to unprivileged ports on the system, to do things like
interacting with streaming data that may be on an outside network. If
an application does not ensure that these communications are secure
and encrypted, it opens the door to attacks. Such attacks on HPC
applications and computing systems could not only damage the system
and application performance, but also lead to the damage in the
reputation of the resource and the reputation of the security providers
or data centers, which could lead to fnancial and more productivity
losses in the long run [9]. The attacks can lead to the leakage of data
from a HPC system or from user account to another, which could be
devastating as it contains a lot of sensitive scientifc data and results.
Moreover, attacks such as distributed denial-of-service (DDoS) attacks
[10] send out a large volume of packets, which if successfully delivered
could make the HPC systems unavailable and impact the performance
of the entire network. It could take down the system until the attack is
completed, which could disrupt all the jobs executing on the computing
systems [11]. Improper access control or some other security failure may
allow some users to gain undesired access to sensitive information or
give them the ability to execute or alter someone’s code, which could
lead to loss of information or a full system shutdown. Having access
to sensitive data could also lead to gaining access to diferent systems
using social engineering techniques or leakage of protected data [12].
There exist many mechanisms to avoid data leaks. One mechanism to
avoid the leaks in sensitive data is DLP (data loss prevention/data
leakage prevention) that aids in checking and controlling the fow of
sensitive data and in reporting the leakage when detected. Moreover,
more stringent access controls employing the use of encryption and
decryption for data transfer and storage can be deployed in addition
to other security mechanisms [13].

One of the recent data breaches was encountered by Facebook,
where the personal data of 533 million Facebook users were compro-
mised due to a bug in Facebook systems [14,15]. Moreover, recently
attackers have been successful in attacking many supercomputing
facilities, which include ARCHER, TAURUS and Hawk, due to which
the attacked facilities went of-line [16]. One of the factors leading to the
attack was compromised credentials, such as username and passwords
for accessing these resources. Many attackers try to acquire sensitive
information such as username and passwords of the employees working

Cybersecurity and HPC Ecosystems ■ 5

at these facilities through social engineering as around two-third of
people use the same password across multiple accounts. One other type
of attack that is becoming more common during COVID-19 pandemic
is the ransomware attacks, which are mainly carried out by a phishing
attack in the form of an e-mail with a malicious attachment [17]. Once
the user/staf of the HPC facility clicks on the attachment, it allows the
ransomware to execute on the user’s system or user’s network. Once the
ransomware is in the network or in the system, it might attack the main
database fles (MDF), secondary database fles (NDF), transaction log
fles (LDF) and the backup fles (BAK and TRN). This would lead the
data servers toward an inoperable state because the SQL server service
cannot open the master.mdf fles.

Due to the increase in the cryptocurrency prices, adversaries
are attacking HPC systems and trying to compromise the systems
in order to gain remote access and use machines’ resources and
processing power to perform cryptomining [18]. Once the attackers gain
access, they perform malicious cryptomining by installing software, also
known as cryptojacking, in which they use the system’s resources to
mine for cryptocurrency or steal from crypto wallets. Many national
laboratories have also been working on mechanisms to defend their
HPC systems against misuse of computing cycles for cryptomining
[19]. The Idaho National Laboratory have designed and implemented
a machine translation-based cryptocurrency mining malware detector,
which uses deep learning mechanism to accurately analyze and detect
such malicious mining activities [20].

With the emergence in the complexity of the HPC ecosystems,
there is a need for researching, developing, analyzing, adapting and
integrating cutting-edge cybersecurity solutions, thus enabling security,
privacy and performance of applications and workfows executing in
HPC ecosystems.

1.3 SECURITY FOR SUPERCOMPUTING INFRASTRUCTURE

The HPC ecosystem is a complex network of interconnected systems.
Supercomputing systems promising to deliver exascale computing
performance formulate the central pillar of the HPC ecosystem. The
HPC ecosystem comprises of various supercomputers with diferent
tiers of computing power, and each of the tiers is designed and

6 ■ Cybersecurity and High-Performance Computing Environments

modifed based on the complexity and type of applications that will be
executed on these supercomputers. For so many years, the performance
efciency and efectiveness of supercomputers have been some of the
most important aspects studied and researched for a supercomputer.
However, recently, with increases in malicious actors, the robustness
and security of the supercomputers against the unintended events
and targeted attack has become an extremely important aspect.
Supercomputing infrastructures are considered critical infrastructures
as they have a direct impact on research and an indirect impact on
the economy if they are compromised. In May 2020, when most of
the supercomputers in the Europe were expected to execute the HPC
workloads that gave us a hope in fnding a cure in the fght against the
Coronavirus (COVID-19) research and other important researches, the
computing systems were forced to shut down in order to investigate
a cryptocurrency mining hack on them [16], thus necessitating the
vital role of security in supercomputing environments. The following
sections investigate some of the in-built security features provided by
HPC vendors such as Cray and Intel, which help the computing systems
to defend themselves from security attacks.

1.3.1 Software Security

Most of the modern supercomputers in the TOP500 list use Linux
operating system, given its open-source system and high customiz-
ability. Each vendor that manufactures its own supercomputers has
made its own specifc changes to the Linux derivative they employ
with no industry standards in place as each hardware design requires
changes to optimize the operating system due to diferences in hardware
architectures [21]. The Linux open-source operating system accounts
for the largest share of the supercomputer’s operating systems. Due to
the increased demand for supercomputers, the Linux operating system
capabilities and vulnerabilities are on sharp increase. In year 2018, Red
Hat, Inc. products reported more vulnerabilities than the Microsoft
products [22]. In 2020, the Red Hat Enterprise Linux (RHEL) became
the operating system backbone of the four world’s top 10 fastest
supercomputers and of top three supercomputers [23,24]. Some of the
built-in security capabilities enabled by RHEL are as follows [25]:

1. Security-Enhanced Linux (SELinux): a Linux kernel security
module comprising a set of kernel modifcations and user

Cybersecurity and HPC Ecosystems ■ 7

space tools supporting access control security policies, such as
mandatory access control (MAC). The MAC controls enable the
confnement of user programs and system services and lead to
the privilege limitations, thus aiding in reducing or eliminating
the ability of these programs and daemons to be compromised in
case of security breach.

2. System Security Services Daemon (SSSD): implements a set of
services for central management of identity and authentication
and allows users to still identify when there is interruption in
connecting with the server.

3. Backup Passphrases for Encrypted Storage Devices: aids in
avoiding unauthorized access of data by encrypting the data on
the storage devices.

4. SVirt: improves hypervisor security by controlled sharing and vir-
tual machine isolation and thus aids in preventing unauthorized
access in a virtualized environment.

5. Enterprise Security Client (ESC): provides management of smart
cards by facilitating connections between users (and their tokens),
the Token Processing System and certifcate authority. The smart
cards or security tokens store user certifcates that are employed
by the client authentication and single sign-on access applications
[26].

1.3.2 Hardware Security

Hardware security is a vital part in fully securing your HPC
environment. Like software, there are several hardware attacks that
need to be defended to maintain the full efciency of the system. As
each vendor that manufactures its own supercomputer has made its
own specifc changes in terms of the software they use, it’s the same in
terms of hardware. We’ll take example of two of the top known vendors
manufacturing supercomputers, which are CRAY and IBM, and discuss
some of their in-built hardware security features [27]. Cray uses Intel
Xeon Processors that have the following built-in security features:

1. Intel Trusted Execution Technology: a set of hardware-based
extensions that enable the security capabilities such as protection

8 ■ Cybersecurity and High-Performance Computing Environments

environment aiding in the execution of applications with their
own space shielding data and processes.

2. Intel Run Sure Technology: a resilient technology that en-
compasses processor, frmware and software layers to facilitate
detection and recovery in state of faults with minimum
interruption, thus maximizing resiliency and uptime of servers,
especially while executing mission-critical workloads.

3. Mode-Based Execution Control (MBE): enables reliable verifca-
tion and integrity of kernel-level code by the hypervisor and thus
acts as a mechanism for shielding against malware attacks in a
virtualized environment [28].

Some of the other Intel security features also include: Integrated
Cray Hardware Supervisory System (HSS) and full ECC protection
of all packet trafc in the Aries network. In comparison, IBM uses
POWER9 processors that are designed to facilitate defense-in-depth
security approach and provide layers of security protection, including
hardware security, frmware security, hypervisor security and operating
system security [29]. Moreover, POWER9 systems also employ a suite
of cybersecurity tools for IBM Power Systems, IBM PowerSC. The
POWER9 systems enable two key security features: Secure Boot and
Trusted Boot, which aid in ensuring the integrity of server and in
mitigating the boot code cyberattack: 1) Secure Boot, also known
as Verifed Boot, checks the integrity of OS kernels and performance
verifcation and halts the boot in the event of validation failure. There
are a series of kernel verifcation keys which are provided by the OS
provider so that the system administrator can check the kernel against
the original kernel signature. This helps in preventing unvetted kernels
or modifed kernel images from booting. 2) Trusted Boot creates a
cryptographic hash of a kernel image that encompasses the recording
of executable code as the system boots and thus can be used to retrieve
the recordings via remote attestation and to aid in the assessment and
verifcation of frmware and target operating system [30].

In addition to in-built hardware and software security for HPC
infrastructures, there have been extensive eforts in the development
of defensive technologies, such as smarter intrusion detection devices,
and sensors to achieve robustness and security against the unintended

Cybersecurity and HPC Ecosystems ■ 9

events and targeted attacks. The research in the domain of intrusion
detection and identifcation is signifcant, while the research in
intrusion response system is still progressing. For example, the multi-
agent intrusion detection system (MAIDS) utilizes colored Petri
nets and comprises three components: (1) data collection agents for
gathering and converting logs and system events data; (2) agents
for monitoring and classifying real-time system events; and (3) the
machine learning agents for providing predictive rules that are learned
by processing data from logs and system events. Herein, the machine
learning agents enable adjusting the underlying Petri nets to refect the
evolution of the system [31,32].

Many diferent cybersecurity applications also employ hidden
Markov chains. A model for detecting brute-force SSH attacks by
analyzing network fow data was implemented and developed by
Sperotto et al. [33]. Herein, the developed model illustrated how hidden
Markov chains could be utilized to model the network fow and be
integrated with an intrusion detection system (IDS).

The Zeek, formerly known as Bro, is an open-source software
framework and one of the most popular network intrusion detection
systems (IDSs). Zeek utilizes passive monitoring of the network links
where the intruder’s trafc transits to detect network intruders in
real time, thus aiding in detecting behavioral anomalies for achieving
cybersecurity. Zeek IDS performs two tasks for real-time network trafc
analysis: (1) converting network data into high-level events and (2)
utilizing a script interpreter which is a programming language that
interacts with the high-level events and aids in the translation of events
in terms of network security [34]. Snort is a traditional open-source
intrusion detection/prevention tool for performing real-time network
analysis of the system. Snort facilitates snifer mode, packet logger
mode and full network intrusion detection system mode as user options;
however, it lacks the capability of scripts such as Zeek that allows for
highly automated workfows [35].

The intrusion response systems (IRSs) are systems that are devel-
oped for selecting an appropriate response to detected intrusion and
can be divided into two broad categories: (1) static system that focuses
on mapping a response to a specifc type of attack and (2) dynamic
system that enables the selection of the most efective countermeasure
among the multiple countermeasures depending on multiple criteria.

10 ■ Cybersecurity and High-Performance Computing Environments

The authors in Ref. [36] introduce a network model for choosing the
response action with the ability to avert certain threats and to minimize
the overall impact on the system and users, whereas the ADEPTS [37]
maximizes the availability of the system at the expense of the features
compromised by the attack that are isolated from the rest of the system,
thus aiding in restricting the efect of the intrusion to a subset of the
services. The authors in Ref. [38] propose an IRS that utilizes the
stochastic nature of the detections conducted by the IDS and triggers
the response action when the confdence level of the detected attack
reaches a specifed threshold.

1.4 APPLICATIONS SECURITY

Traditionally, HPC systems were deployed and employed for dedicated
users to conduct research and development in specifc domains with
security being not a signifcant issue. However, with the advent of the
shared HPC systems and emerging HPC-as-a-service concept, where
the system is shared among multiple users, the security of HPC systems
and applications executing on the systems has evolved as a challenging
problem [39].

Even though the shared HPC systems are lucrative due to
accessibility and cost-efectiveness, the shared nature of these HPC
systems renders extreme difculty in enforcing security requirements
for application execution and data processing on these shared systems.
Sandboxing and discretionary access control [40] are used for con-
trolling remote connections and for protecting shared clusters against
malicious activities [41]. The authors in [42] present two solutions
based on National Security Agency’s (NSA) Security-Enhanced Linux
(SELinux) to enable security in a shared HPC cluster. The frst solution
employs chroot to confne the user [43]. However, the frst approach
prevents the user from easily sharing data. The second solution relies
on two SSH server ports and facilitates user to share data.

Traditionally, virtualization technologies have been employed to
fulfll the goal of protecting applications and their data from other users
and potentially malicious adversaries. However, Linux cgroups followed
by Linux container technology has gained momentum for usage in HPC
environments. Given the container technology’s ability to partition
computing system resources with practically no overhead, the container

Cybersecurity and HPC Ecosystems ■ 11

technology has emerged as a dominant solution for deploying and
executing distributed applications and is being adopted by data centers
ranging from small to large scale and to public clouds where attaining
maximum system utilization is the objective [44,45]. The container
enables microservice architecture and the seamless deployment of an
application across various computing environments by bundling the
application’s code with dependencies, confguration fles and other
libraries required for the application to execute. Even though container
technology was not initially used with HPC, the emergence of enterprise
HPC workloads and open-source projects such as Singularity [46],
Charliecloud [47], Shifter [48] and Podman [49] has catalyzed the
adoption of container technologies in HPC environments. Moreover,
the recent Kubernetes technology aids in container orchestration,
resource utilization, load balancing, automated operation tasks and
application deployments, scalability of services, applications and
clusters, self-healing, auto-replication and auto-placement, declarative
confguration, and abstraction of infrastructure, thus enabling dynamic
orchestration, portability and scalability for rapidly allocating and
deallocating computational resources to HPC workloads [50].

The co-integration of containers with HPC not only facilitates the
scalability, portability and reproducibility to scientifc community, but
also results in a myriad of the security and usability challenges. The
containerized applications are distributed in nature; thus, investigating
the vulnerabilities, misconfguration or risk impact in containers
becomes extremely difcult. Thus, containerization of HPC requires
new approaches to compliance and security over traditional security
model. One of the major security concerns is that the containers
are inherently lacking isolation from the host operating system and
thus depend signifcantly on their underlying host OS kernel for: (1)
security policies; (2) resource isolation; (3) provisioning control; and
(4) user communications. Therefore, any vulnerability involving host
OS kernel can lead to severe security risks to all containers. Moreover,
given that containers are also not isolated from one another, a security
faw in one single container can potentially lead to compromising
all other containers. Furthermore, container confguration, fawed
base images and their short life cycles can lead to increase in
vulnerabilities and in monitoring challenges. The authors in Ref. [44]
list various vulnerabilities and solutions that can aid in achieving

12 ■ Cybersecurity and High-Performance Computing Environments

container security. Lastly, increasing security in container can lead
to performance degradation and comes at the cost of increased
deployment time and decreased application performance.

Monitoring the system for abnormal user behavior is a key
component in securing HPC systems. The most common attack vector
is the insider attack, where either a user goes rogue or an attacker steals
an authentic user’s log-in information. Some of the main challenges
when designing an HPC-specifc monitoring are scalability, overhead
and extensibility [51]. These are important features to consider when
using or designing HPC system monitoring software. Scalability is
necessary to expand the monitoring system as the system evolves,
gaining new nodes. Overhead needs to be kept to a minimum;
otherwise, the system performance is impacted, decreasing the amount
of work that can be performed. Without the ability to be extensible,
a system cannot incorporate new forms of monitoring as they are
developed. Also, as the system evolves, there may be new and diferent
types of actions and data that need to be monitored.

One of the most essential parts of running an HPC system is
monitoring its nodes, network and overall system so that the system ad-
ministrator can make informed decisions. Some tools are preferred over
others. When it comes to network monitoring, some of the preferred
tools are Munin [52], which mainly intensifes on plug-and-play capabil-
ity, and Zabbix [53], which is mainly preferred due to its very interactive
graphical user interface. There are also other tools such as collectd
[54], which is preferred for reviewing performance analysis and capacity
planning, and tools such as Nagios XI [55] and Grafana, which have a
user-friendly and easily customizable dashboard for easy review of the
monitoring statistics by the team. Other tools used include Ganglia
[56], which among all of the other tools is mostly used by HPC institu-
tions due to its large community support, and XALT [57], which is pre-
ferred due to its usefulness and compatibility to other system logs. The
following section discusses some of the notable HPC monitoring tools.

XALT tool is employed by supercomputing staf for managing
Linux-based clusters and supercomputers at many institutions includ-
ing TACC (Texas Advanced Computing center) for job monitoring
and collecting accurate and continuous job level and link time data
about the libraries and executables. XALT is mainly used for collecting
link time and run time data using the LD_PRELOAD environment

Cybersecurity and HPC Ecosystems ■ 13

variable. It determines the details of each parallel job which includes
all information from dependencies to MPI tasks to the environment
in which the job executes. XALT is extremely efective because of its
usefulness and compatibility to other system logs. Ganglia is another
tool employed for monitoring scalable clusters and grids in real time.
This tool was an open source and started at University of California,
Berkeley. Ganglia works by providing performance metrics of large
supercomputers which have hundreds of nodes and helps them to
monitor each of them. It uses Gmond and Gmetad, of which Gmetad is
ran only on the main node and Gmond is ran on all the other compute
nodes, which then collect all the node-specifc data about performance,
CPU, memory, network trafc and other processes. Later, the data
are used for monitoring the system, which also aids in security. Some
of the reasons why Ganglia is preferred over other monitoring tools
for HPC systems are its ability to scale and its fexible design which
helps in preventing node failure on very large systems. collectd is a
Unix-based tool for collecting, storing and transferring the performance
metrics of various systems and applications running on HPC systems.
collectd monitors the whole system and collects data about the CPU,
external devices and log fles, which are made available to the system
administrator for analyzing the data and detecting any bottlenecks.
Some of the reasons why collectd is preferred over other tools are
its large number of available plug-ins, portability and performance.
The National Energy Research Scientifc Computing Center (NERSC)
at Lawrence Berkeley National Laboratory uses collectd for data
collection process. Another open-source monitoring tool used by many
HPC systems to monitor their overall system is Zabbix. Zabbix utilizes
both agent-based and agentless monitoring and aids in monitoring
the network utilization of the system, its CPU load and memory
consumption. Once all the data are collected, Zabbix sends out all the
information over the network or it could also be displayed on the Zabbix
graphical user interface (GUI). One of the main features of Zabbix is
that the rules could be modifed and its fexible e-mail mechanism
could be used to notify about any event that is considered essential
by the system administrator. Zabbix is preferred over other tools due
to its powerful API, which is used for data extraction, user-friendly
GUI and its fexible, yet powerful alerting mechanism for sending out
alerts. Munin is also an open-source client/server architecture tool

14 ■ Cybersecurity and High-Performance Computing Environments

used for monitoring, which focuses mainly on monitoring the network
and its infrastructure of large HPC systems. Munin tool facilitates a
unique way of displaying all the information about the systems using
graphs through a web-based graphical user interface and has a large
number of plug-ins available to use. nVision developed by Axence
facilitates features such as failure detection, port mapping and network
analyses and is used for the management of entire IT infrastructure.
Nagios XI is another tool mainly used for monitoring large HPC
systems which have hundreds of compute nodes in place. Some of
the features that Nagios XI facilitates are its ability to integrate
with many applications through API which could be both in-house
and external, its alerting mechanism and its user-friendly dashboard.
Grafana is a data analytic and monitoring tool used for monitoring and
displaying interactive visualization of the collected data through a user-
friendly dashboard. Grafana works by developing a connection with the
data source that enables analyzing everything including the network
and system performance, and displaying monitored information in the
form of graphs. Some of the main reasons why Grafana is preferred
over other tools are its unique approach of unifying existing data,
its powerful alerting mechanism which could also be customized and
its fexible and versatile dashboard which can be designed according
to the teams.

1.5 DATA SECURITY IN HPC ECOSYSTEMS

In the 21st century, data security is a very vital part of HPC ecosystems
as sensitive data should be protected at all times from falling into the
wrong hands. In recent years, companies have been focusing more on
securing data to ensure data privacy and making sure that companies
don’t lose their value over data breaches to ensure that they still
hold reputation in the global competitive market. If data are not
protected, then it could lead to social, legal or employability risks
for the person. Moreover, misuse, modifcation or deletion of sensitive
data by any unauthorized user can permanently damage business
or in extreme cases afect the security. Data security is responsible
for protecting sensitive information, which includes all data such as
personal information, protected health information (PHI), education
records, customer information and other confdential information.

Cybersecurity and HPC Ecosystems ■ 15

There exist several frameworks for enabling the security of sensitive
data processing on shared HPC systems. The services for sensitive
data (TSD) from the University of Oslo are an integrated platform for
collecting, storing, analyzing and sharing sensitive data, where access
to the project-dedicated resources is provided via remote connection to
virtual machines [58]. While working with traditional high-performance
clusters, we only have two protection states when encryption tools
are applied for protecting data, which are as follows: The data are
encrypted or not usable by the user, or the data are decrypted that are
usable by the end user. However, employing this traditional approach
does not really help us now, and using encryption now in HPC
settings requires serious changes to the HPC operational and execution
environment.

Recently, Lawrence Livermore National Laboratory (LLNL) has
developed a new cybersecurity tool called HPCrypt data protection
system for secure data processing on high-end computing systems
and is used to implement data encryption in HPC environments. The
tool developed was designed in a way to have negligible efect on
the traditional high-performance operation and execution environment
and can be managed locally [59]. Furthermore, the HPCrypt system
protects against information domain leaks, scales well with large data
and enables simultaneous execution of both encrypted and unencrypted
jobs on the cluster. The most important feature which attracted the
use of this tool is that there is no need to make any changes for the
tool to be used with the traditional HPC environment. The secure data
processing tool has some of the following features:

1. The tool does not only protect the system against information
breach between information domains, but is also scalable to
sizable datasets.

2. If any user with authorized access reads or writes any sensitive or
protected data, then the data are logged and auditable. Moreover,
the logs also illustrate the source on all produced output.

3. All the trusted components are always identifed and are also
tracked on their authentication on what information they are
accessing.

4. Any request is explicitly verifed to ensure that it is not accessed
by any unauthorized users.

16 ■ Cybersecurity and High-Performance Computing Environments

5. Users owning the data and users who would like to use data are
explicitly identifed with clear set enforceable policy with revoke
or access at any time in the future.

Industries such as banking, fnance, government, education and
insurance would extremely beneft from the HPCrypt software. The
software does not only protect and log storage, but can also be
used by the HPC cluster to transport and process sensitive data,
including HIPAA, critical infrastructure information and FISMA.
One other solution that also does not require modifcation to the
existing HPC infrastructure and aids in enabling security for data
processing on shared HPC systems is a platform as a service, the
ODISSEI Secure Supercomputer (OSSC). The OSSC is a customizable
virtualized solution that employs Private Cloud on a Compute Cluster
(PCOCC) for automated provisioning and SLURM to insure strict
security requirements [58]. The OSSC platform encompasses work,
data, management and compute environments where each research
project executes in an isolated virtual environment.

The cluster interconnects are devices which are used to connect
two nodes together, so that they can communicate with each other.
Two of the most commonly used network connections that are used
in the TOP500 supercomputers are Ethernet and InfniBand [60]. One
of the main reasons for choosing InfniBand over any other cluster
interconnect is because the architecture of InfniBand has features that
allow better isolation and security for the system.

As per recent trends, Mellanox’s InfniBand is preferred over
Ethernet in many industries and is growing rapidly. Much like the
Ethernet, InfniBand is also a layer 2 protocol and has all the security
mechanisms facilitated by the Ethernet [61]. For example, if we choose
to run SSH over InfniBand rather than Ethernet, we would have all
the inherent security capabilities such as protection against MITM and
high-grade encryption that SSH would have on Ethernet. Mellanox
Technologies have few security-related features, which are common and
could be found in all kinds of devices made by Mellanox Technologies.
Some of the important security features that are inbuilt in Mellanox
Technologies director-grade switches are RADIUS authentication, SSH
support, ability to administratively turn of ports, and more. If a
node is compromised, then it won’t be able to break in and afect
other nodes as InfniBand switch ports are not addressable. One of

Cybersecurity and HPC Ecosystems ■ 17

the major faws in using Ethernet is that it gets afected if there is a
standard layer 2 attack like the SYN food denial-of-service attacks, but
InfniBand won’t be afected by these kinds of attacks because it has
a diferent handshaking process and the hardware on the receiver side
would auto-discard SYN food packets. The partitioning mechanism is
used by InfniBand for achieving security and better isolation of the
system. The reason why partitioning is so much efective is because
it’s well defned and a part of fabric management called Subnet
Management controls it centrally, and no single node has the ability
to determine its own partition. Due to this feature, organizations
which use InfniBand eliminate potential hacking and security holes
which could be possible in standard networks via compromised
servers.

One of the other features in InfniBand that aids in eliminating
the necessity for encryption mechanism within the fabric is unicast
and multicast forwarding. (If the trafc is not destined to the host,
then the host can’t listen to it.) The two transport mechanism types
which are defned by InfniBand to secure against unauthorized access
and session hijacking are Reliable Transport (RC, RD) and Unreliable
Transport (UD). The other mechanism that InfniBand implements
for avoiding unnecessary copies and reducing latency is remote direct
memory access (RDMA). There are many layer 2 attacks and holes
that InfniBand handles better than Ethernet [62]. Some of them are
as follows citemellano:

1. MAC Flooding Attack: A switch is sent an enormous amount of
frames which contain diferent MAC addresses with an intention
to consume all the memory space. This denial-of-service attack
does not afect InfniBand as the tables are defned explicitly,
and there is no learn process like Ethernet and there is a linear
forwarding table.

2. VLAN Hopping: The attack is done by using Spanning Tree
Protocol; thus, this attack cannot afect InfniBand as there is
no Spanning Tree Protocol.

Given the static forwarding tables are employed in InfniBand switches,
the famous Kevin Mitnick Attack requiring LID impersonation would
not be possible in InfniBand.

18 ■ Cybersecurity and High-Performance Computing Environments

1.6 USER-SPECIFIC CYBERSECURITY

Securing an HPC system is both similar to and diferent from securing
other systems due to the nature of the system. HPC systems typically
have many users, some of which may not actually be a part of the
organization that maintains the systems. While it is not a wholly
diferent challenge than securing other large systems, HPC systems
need unique methods of user access control. However, since HPC
systems are made up of an interconnected set of nodes, there have
to be methods for authenticating and allowing users access to the
other nodes securely. Another challenge with securing HPC systems is
communicating between nodes securely [63]. If a malicious user gains
access to the system, it might become possible for them to peer into
other users’ tasks and steal valuable information. While there is a fair
amount of research into securing HPC systems, there are still many
challenges that have yet to be overcome.

One aspect to consider when discussing HPC security is user access.
User access control is an important security feature of any system,
including HPC systems [1]. The goals of user access control are twofold
in an HPC system: to control access to system resources (CPU time,
RAM, etc.) and to control access to data stored within the system.
Both of these aspects are vital considering that HPC system resources
are fnite and that applications running on the system may involve
sensitive, possibly confdential, data. HPC systems are gaining traction
in the health domain feld being used to analyze large datasets and have
a need to secure data access [64]. There exist many diferent forms
of authentication for validating a user’s right to access a particular
system or resource. Kerberos and munge are popular protocols used
to authenticate users on a network and HPC systems [65]. Munge
[66] is an authentication system that came about from the need to
authenticate users on HPC clusters. Munge allows for jobs to be
forwarded to compute on a cluster by ensuring the validity of local
UIDs and GIDs. Kerberos provides a robust security mechanism for
authenticating users on a network by making a client prove to a verifer
server that the client is indeed the declared user through the use of
shared encryption keys. The caveat with these methods is that users
have to keep their log-in information secure, meaning that they must
have secure passwords and that they have to keep them secret.

Cybersecurity and HPC Ecosystems ■ 19

There exist many more advanced methods of authentication that
need to be incorporated into the system. Biometrics and smart cards
are examples that are often implemented in order to provide a more
secure access method [67]. Biometrics have the advantage of being both
physically secure and unique from person to person. Since biometrics
use a physical part of a person’s body, it cannot easily be replicated
or stolen, whereas smart cards can be stolen or lent out by other
people. Combining the traditional username–password log-in scheme
with biometrics and/or smart cards adds an extra level of security
to the system. The most important thing to consider when using
biometrics and smart cards as an authentication method is that the
storage and transmission of the data must be secured; otherwise, the
system is open to attack.

Every organization today is connected to the Internet to leverage a
level of competitive advantage. As such, it is standard best practice to
have a cybersecurity policy in place. They can be as simple as a set of
rules governing behaviors such as how employees log in, what they are
allowed to do, which sites they can access or how they store data. For
a data center, are these rules any diferent? We will examine some best
practices that include physical redundancy as well as software strategies
that can be used as a basis for a cybersecurity policy [68–70].

1.6.1 Policies

At a minimum, the following policies should be documented and
understood by all users of the facilities:

1. Acceptable Use: how the access and data are appropriately used,
including awareness training to all users.

2. A Password Policy: how long, how complicated, lockouts and how
often to change.

3. Backups: who is responsible, the user, the organization, how often
and long the data are kept.

4. Network Access: who can access, how the users are vetted.

5. Remote Access: through secure shell or through VPN.

6. Guest Access: who, how to access, how users are vetted, who is
users sponsor.

20 ■ Cybersecurity and High-Performance Computing Environments

7. Physical Security: minimum policy on securing hardware such as
screen lockouts, physical locks on desks and server room access.

Additional policies that should be considered should involve the
following:

1. Confdentiality of data.

2. How the diferent types of data are classifed.

3. Data retention.

4. Methods of implementation – policy acknowledgement forms,
security incident reports and account setup requests.

5. User training.

Regardless of what policies are in place, they should be a refection
of the organization’s security strategy whose goals are realistic and
attainable. They should be a living document and constantly consulted
through management decisions, creating new regulations and reducing
various risks. Further, the policies should not inhibit the mission of
the organization; rather, it should allow the organization to meet their
required regulations.

Beyond policies, the best practices that are recommended to
implement are mentioned below:

1. Physical Security: If you cannot touch it, then you cannot hack it.
Access to the data center needs constant auditing. Expired access
should be eliminated as soon as possible. The devices themselves
should have some redundancy or have a hardware spare policy
that can immediately replace a compromised hardware.

2. Patching and antivirus are a must and have to be kept up to date;
this includes updating obsolete hardware, or hardware whose
drivers are no longer secure.

3. Firewalls and monitoring trafc are a mandate.

4. Confguration File Protocols: backups, who can edit, how are they
installed (confguration manager, Ansible).

Cybersecurity and HPC Ecosystems ■ 21

5. Encryption, secure fle transfers through e-mail, storage or
transport.

6. Disaster recovery process is also required.

There are countless other policies and implementations that should be
considered; however, the best cybersecurity policy is the one that does
not hinder the mission of the organization or the work of the user.

1.7 DISCUSSION AND SUMMARY

The recently changing landscape of scientifc workfows in HPC
ecosystems has led to the increasing volumes of datasets that are
surpassing local and network capabilities, especially those coming from
experimental facilities. The analysis and computation of these data
becomes a challenge due to the inability to install a capable HPC
system in every facility that produces these data; thus, a new model for
data generation, data transfer and data computation is needed for the
next-generation paradigm. The vision is to have a networked series
of facilities consisting of the experimental facility, a computational
facility, a data storage facility and the software and application
expertise to enable this new paradigm and new modes of exploration.
Just as an HPC computational facility like National Energy Research
Scientifc Computing Center (NERSC) computing facility at Lawrence
Berkeley National Laboratory transforms and accelerates science, so
shall a superfacility enable more advanced scientifc discoveries through
sharing of the datasets and through correlation of the data [71,72].
There is need for the integration of multiple types of facilities through
a wide area network with the speeds necessary to perform this
process in near-real time. The new model/paradigm of superfacility
involves generation of data from sensors in real time, with local data
processing or fltering, movement of data to a storage facility, analysis
and modeling to a computational facility, availability of data in real
time for access and visualization for on-site researchers and remote
users. To successfully execute this model, there needs to be a unifed
computational architecture throughout the workfow, predictable and
programmable wide area network, and workfow for seamless data
movement and analysis to provide a productive environment for the
researchers.

22 ■ Cybersecurity and High-Performance Computing Environments

One of the major challenges for the superfacility paradigm is to
deploy a computational architecture that is applicable to multiple
disciplines, where some codes use GPU and some employ CPU, and
more importantly, this computing ecosystem can be unifed across
disciplines with a security model that works for all. Given the
hardware and software needs are diferent between computation and
a data-intensive workload, multiple types of systems are deployed
for diferent uses such as simulation, data analysis, computation and
visualization. For instance, NERSC computing facility has employed
various computing systems over the years, such as Hopper and Edison
Computing systems for computation, simulation and modeling and
Carver along with Genepool and PDSF systems for data analysis.
Second, for a superfacility, the deployment of a predictable and
programmable network environment to support scientifc applications
and workfows is extremely difcult. The Science DMZ [73] creates
a latency-free network path between experimental facilities and
the computation and storage facilities across a wide area network.
Moreover, there is a requirement of dedicated high-performance data
transfer nodes (DTNs), which cost $80M+ funding to implement this
design pattern in universities, and the network speeds are not as
predictable. However, a superfacility workfow requires a predictable
data movement. Moreover, research is being conducted to transition
from control from hardware specs, such as routers and switches across
the WAN, to using software-defned networking (SDN) [74]. However,
this limits how applications and networks interact, thus creating
challenges for automation, orchestration and optimization. There is
also a need for the support of workfows that allow seamless data
movement from experiment to analysis and data storage/curation.
However, this requires authentication services that are standard across
the workfow and through multiple facilities, and user access to all
areas of the workfow. Furthermore, the capabilities may not be the
same across facilities such that if one facility employs burst bufer that
allows data movement and management through memory and storage,
hierarchy does not assure that other facilities deploy the same, nor
is user access the same in all facilities such that if one facility uses
multi-factor authentication (MFA), then others use the same.

The rapid advancement and introduction of new processing
technologies for HPC ecosystem has facilitated the convergence of

Cybersecurity and HPC Ecosystems ■ 23

artifcial intelligence (AI) and machine learning (ML), data analytics
and big data, and the high-performance computing (HPC) domain
platforms and has led to a myriad of security risks. There have
been a signifcant research and research eforts over the last few
decades in developing and implementing solutions to achieving cyber-
resilience in HPC environments. However, in addition to the current
state-of-the-art security solutions for developing cyberattack-tolerant
and survivable systems, there still exist signifcant challenges in
protecting the HPC ecosystems comprising user, data, applications
and cyberinfrastructure. With the goal of reducing the downtime of
HPC ecosystems in the presence of unpredictable loads and malicious
attacks, this chapter covers cybersecurity challenges and solutions,
which when combined efectively will aid in proactively rearchitecting
the current and emergent HPC ecosystems comprising users, data,
infrastructure and applications to delay or counteract scale of malicious
attacks and to reduce their impacts and consequences.

REFERENCES

[1] Ramesh Bulusu, Pallav Jain, Pravin Pawar, Mohammed Afzal, and
Sanjay Wandhekar. Addressing security aspects for HPC infrastructure.
In 2018 International Conference on Information and Computer
Technologies (ICICT), DeKalb, IL, pp. 27–30. IEEE, 2018.

[2] Paul Messina. The exascale computing project. Computing in Science &
Engineering, 19(3):63–67, 2017.

[3] Lucio Grandinetti, Seyedeh Leili Mirtaheri, and Reza Shahbazian. Big
Data and HPC: Ecosystem and Convergence, volume 33. IOS Press, 2018.

[4] Giovanni Ponti, Filippo Palombi, Dante Abate, Fiorenzo Ambrosino,
Giuseppe Aprea, Tiziano Bastianelli, Francesco Beone, Riccardo Bertini,
Giovanni Bracco, Marco Caporicci, et al. The role of medium size facilities
in the HPC ecosystem: the case of the new CRESCO4 cluster integrated
in the ENEAGRID infrastructure. In 2014 International Conference on
High Performance Computing & Simulation (HPCS), Bologna, Italy, pp.
1030–1033. IEEE, 2014.

[5] Alejandro Rico, Jose A. Joao, Chris Adeniyi-Jones, and Eric Van Hens-
bergen. Arm HPC ecosystem and the reemergence of vectors. In
Proceedings of the Computing Frontiers Conference, Siena, Italy, pp.
329–334, 2017.

24 ■ Cybersecurity and High-Performance Computing Environments

[6] Sean Peisert. Security in high-performance computing environments.
Communications of the ACM, 60(9):72–80, 2017.

[7] Andrew Prout, William Arcand, David Bestor, Bill Bergeron, Chansup
Byun, Vijay Gadepally, Matthew Hubbell, Michael Houle, Michael Jones,
Peter Michaleas, et al. Enhancing HPC security with a user-based
frewall. In 2016 IEEE High Performance Extreme Computing Conference
(HPEC), Waltham, MA, pp. 1–4. IEEE, 2016.

[8] Geng Hong, Zhemin Yang, Sen Yang, Lei Zhang, Yuhong Nan, Zhibo
Zhang, Min Yang, Yuan Zhang, Zhiyun Qian, and Haixin Duan. How
you get shot in the back: A systematical study about cryptojacking in
the real world. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, Toronto, ON, pp. 1701–1713,
2018.

ˇ[9] Dejan Jelovac, Cedomir Ljubojevic, and Ljubomir Ljubojevic. HPC
in business: The impact of corporate digital responsibility on building
digital trust and responsible corporate digital governance. Digital Policy,
Regulation and Governance, 2021.

[10] Vinayaka Jyothi, Xueyang Wang, Sateesh K. Addepalli, and Ramesh
Karri. Brain: Behavior based adaptive intrusion detection in networks:
Using hardware performance counters to detect ddos attacks. In
2016 29th International Conference on VLSI Design and 2016 15th
International Conference on Embedded Systems (VLSID), Kolkata, India,
pp. 587–588. IEEE, 2016.

[11] Alex Malin and Graham Van Heule. Continuous monitoring and cyber
security for high performance computing. In Proceedings of the First
Workshop on Changing Landscapes in HPC Security, New York, pp. 9–14,
2013.

[12] Mathieu Blanc and Jean-Franc Lalande. Improving mandatory access
control for HPC clusters. Future Generation Computer Systems,
29(3):876–885, 2013.

[13] Pengfei Zou, Ang Li, Kevin Barker, and Rong Ge. Detecting anomalous
computation with RNNs on GPU-accelerated HPC machines. In 49th
International Conference on Parallel Processing-ICPP, pp. 1–11, 2020.

[14] What really caused Facebook’s 500m-user data leak? https://www.wired.
com/story/facebook-data-leak-500-million-users-phone-numbers.

[15] Liyuan Liu, Meng Han, Yan Wang, and Yiyun Zhou. Understanding data
breach: A visualization aspect. In International Conference on Wireless
Algorithms, Systems, and Applications, pp. 883–892. Springer, 2018.

[16] Attacks knock supercomputing sites ofine. https://duo.com/decipher/
attacks-knock-supercomputing-sites-ofine.

https://www.wired.com
https://www.wired.com
https://duo.com
https://duo.com

Cybersecurity and HPC Ecosystems ■ 25

[17] Bander Ali Saleh Al-rimy, Mohd Aizaini Maarof, and Syed Zain-
udeen Mohd Shaid. Ransomware threat success factors, taxonomy,
and countermeasures: A survey and research directions. Computers &
Security, 74:144–166, 2018.

[18] Fending of bitcoin mining HPC thieves. https://insidehpc.com/2021/
02/fending-of-bitcoin-mining-hpc-thieves-idaho-national-labs-
cryptojacking-detector/.

[19] Lexie J. Byrd, Curtis Smith, Ross Kunz, Nancy Lybeck, Ronald Boring,
Humberto Garcia, Victor Walker, Katya LeBlanc, Vivek Agarwal, Ahmad
Al Rashdan, et al. Big data, machine learning, artifcial intelligence
[powerpoint]. Technical report, Idaho National Lab.(INL), Idaho Falls,
ID (United States), 2020.

[20] Doe idaho national lab creates technology to detect cryptocurrency
mining malware. https://etc.g2xchange.com/statics/doe-idaho-national-
lab-creates-technology-to-detect-cryptocurrency-mining-malware/.

[21] Jaehyun Song, Minwoo Ahn, Gyusun Lee, Euiseong Seo, and Jinkyu
Jeong. A performance-stable NUMA management scheme for Linux-
based HPC systems. IEEE Access, 9:52987–53002, 2021.

[22] Petra Rebrošova. Gathering vulnerability information published by
software manufacturers.

[23] Open source and collaboration propel RHEL to the top of the top500,
2018. https://www.redhat.com/en/blog/year-review-2018-product-
security-risk-report.

[24] A year in review: 2018 product security risk report. https://www.
redhat.com/en/blog/year-review-2018-product-security-risk-report.

[25] Product documentation for Red Hat Enterprise Linux 7. https://
access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7.

[26] Edita Bajramovic and Andreas Lainer. Forensic-related application
security controls for RHEL in critical infrastructure. In: M. Eibl & M.
Gaedke (eds.) INFORMATIK 2017, Gesellschaft fur Informatik: Bonn,
2017.

[27] Hari Tadepalli. Intel® QuickAssist technology with Intel® key protection
technology in Intel server platforms based on Intel® Xeon® processor
scalable family, 2017.

[28] Data center security technology. https://www.intel.com/content/www/
us/en/architecture-and-technology/trusted-infrastructure-
overview.html.

[29] Nicole Schwartz Nett, Ronald X. Arroyo, Thoi Nguyen, Benjamin
W. Mashak, Ruby M. Zgabay, Hoa Nguyen, Christopher W. Mann,

https://insidehpc.com
https://insidehpc.com
https://insidehpc.com
https://etc.g2xchange.com
https://etc.g2xchange.com
https://www.redhat.com
https://www.redhat.com
https://www.redhat.com
https://www.redhat.com
https://access.redhat.com
https://access.redhat.com
https://www.intel.com
https://www.intel.com
https://www.intel.com

26 ■ Cybersecurity and High-Performance Computing Environments

Erich J. Hauptli, Stephen P. Mroz, and William J. Anderl. IBM power9
systems designed for commercial, cognitive, and cloud. IBM Journal of
Research and Development, 62(4/5):7–1, 2018.

[30] Robert Willburn. Remote memory monitoring for malware in a Talos II
architecture. In International Conference on Cyber Warfare and Security,
pp. 486–XV. Academic Conferences International Limited, 2021.

[31] Guy Helmer, Johnny S.K. Wong, Vasant Honavar, and Les Miller.
Automated discovery of concise predictive rules for intrusion detection.
Journal of Systems and Software, 60(3):165–175, 2002.

[32] Guy Helmer, Johnny S.K. Wong, Vasant Honavar, Les Miller, and Yanxin
Wang. Lightweight agents for intrusion detection. Journal of systems and
Software, 67(2):109–122, 2003.

[33] Anna Sperotto, Ramin Sadre, Pieter-Tjerk de Boer, and Aiko Pras.
Hidden Markov model modeling of ssh brute-force attacks. In Interna-
tional Workshop on Distributed Systems: Operations and Management,
pp. 164–176. Springer, 2009.

[34] Vern Paxson, Scott Campbell, Jason Lee, et al. Bro intrusion detection
system. Technical report, Lawrence Berkeley National Laboratory, 2006.

[35] Martin Roesch et al. Snort: Lightweight intrusion detection for networks.
Lisa, 99:229–238, 1999.

[36] Thomas Toth and Christopher Kruegel. Evaluating the impact of
automated intrusion response mechanisms. In Proceedings of 18th Annual
Computer Security Applications Conference, 2002, Las Vegas, NV, pages
301–310. IEEE, 2002.

[37] Bingrui Foo, Yu-Sung Wu, Yu-Chun Mao, Saurabh Bagchi, and Eugene
Spaford. ADEPTS: adaptive intrusion response using attack graphs in an
e-commerce environment. In Proceedings of International Conference on
Dependable Systems and Networks, 2005 (DSN 2005), Yokohama, Japan,
pp. 508–517. IEEE, 2005.

[38] Natalia Stakhanova, Samik Basu, and Johnny Wong. A cost-sensitive
model for preemptive intrusion response systems. In AINA, vol. 7,
pp. 428–435, 2007.

[39] Mathieu Blanc, Jeremy Brifaut, Thibault Coullet, Maxime Fonda, and
Christian Toinard. Protection of a shared HPC cluster. In 2010 Fourth
International Conference on Emerging Security Information, Systems
and Technologies, Venice, Italy, pp 273–279. IEEE, 2010.

[40] Poul-Henning Kamp and Robert NM Watson. Jails: Confning the
omnipotent root. In Proceedings of the 2nd International SANE
Conference, 43:116, 2000.

Cybersecurity and HPC Ecosystems ■ 27

[41] Mathieu Blanc, Jeremy Brifaut, Damien Gros, and Christian Toinard.
Piga-hips: Protection of a shared HPC cluster. International Journal on
Advances in Security, 4:44–53, 2011.

[42] Z Clife Schreuders, Tanya McGill, and Christian Payne. Empowering end
users to confne their own applications: The results of a usability study
comparing SELinux, AppArmor, and FBAC-LSM. ACM Transactions on
Information and System Security (TISSEC), 14(2):1–28, 2011.

[43] Stephen Smalley, Chris Vance, and Wayne Salamon. Implementing
selinux as a linux security module. NAI Labs Report, 1(43):139, 2001.

[44] Sari Sultan, Imtiaz Ahmad, and Tassos Dimitriou. Container security:
Issues, challenges, and the road ahead. IEEE Access, 7:52976–52996,
2019.

[45] Nitin Sukhija and Elizabeth Bautista. Towards a framework for
monitoring and analyzing high performance computing environ-
ments using kubernetes and prometheus. In 2019 IEEE Smart-
World, Ubiquitous Intelligence & Computing, Advanced & Trusted
Computing, Scalable Computing & Communications, Cloud & Big
Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 257–
262. IEEE, 2019.

[46] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. Singularity:
Scientifc containers for mobility of compute. PLoS One, 12(5):e0177459,
2017.

[47] Reid Priedhorsky and Tim Randles. Charliecloud: Unprivileged con-
tainers for user-defned software stacks in HPC. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–10, 2017.

[48] Lisa Gerhardt, Wahid Bhimji, Shane Canon, Markus Fasel, Doug
Jacobsen, Mustafa Mustafa, Jef Porter, and Vakho Tsulaia. Shifter:
Containers for HPC. In Journal of physics: Conference Series, vol. 898,
pp. 082021. IOP Publishing, 2017.

[49] Holger Gantikow, Stefen Walter, and Christoph Reich. Rootless
containers with podman for HPC. In International Conference on High
Performance Computing, pp. 343–354. Springer, 2020.

[50] Md Shazibul Islam Shamim, Farzana Ahamed Bhuiyan, and Akond
Rahman. Xi commandments of kubernetes security: A systematization of
knowledge related to kubernetes security practices. In 2020 IEEE Secure
Development (SecDev), pp. 58–64. IEEE, 2020.

[51] Nitin Sukhija, Elizabeth Bautista, Owen James, Daniel Gens, Siqi
Deng, Yulok Lam, Tony Quan, and Basil Lalli. Event management

http://Charliecloud:Unprivilegedcon-tainersforuser-definedsoftwarestacksinHPC.In
http://Charliecloud:Unprivilegedcon-tainersforuser-definedsoftwarestacksinHPC.In
http://ContainersforHPC.In
http://containerswithpodmanforHPC.In

28 ■ Cybersecurity and High-Performance Computing Environments

and monitoring framework for HPC environments using servicenow and
prometheus. In Proceedings of the 12th International Conference on
Management of Digital EcoSystems, pp. 149–156, 2020.

[52] Munin monitoring. https://munin-monitoring.org/.
[53] Zabbix monitoring. https://www.zabbix.com/.
[54] The system statistics collection daemon. https://collectd.org/.
[55] Nagios-network, server, and log monitoring software. https://www.

nagios.com/.
[56] Ganglia monitoring system. http://ganglia.sourceforge.net/.
[57] Xalt monitoring system. https://xalt.readthedocs.io/.
[58] Michel Scheerman, Narges Zarrabi, Martijn Kruiten, Maxime Moge,

Lykle Voort, Annette Langedijk, Ruurd Schoonhoven, and Tom Emery.
Secure platform for processing sensitive data on shared HPC systems.
arXiv preprint arXiv:2103.14679, 2021.

[59] Hpcrypt data protection system. https://ipo.llnl.gov/technologies/it-
and-communications/processing-protected-data-high-performance-
computing-clusters.

[60] Brett M. Bode, Jason J. Hill, and Troy R. Benjegerdes. Cluster
interconnect overview. In Proceedings of USENIX 2004 Annual Technical
Conference, FREENIX Track, pp. 217–223, 2004.

[61] Daryl Schmitt, Scott Graham, Patrick Sweeney, and Robert Mills.
Vulnerability assessment of infniband networking. In International
Conference on Critical Infrastructure Protection, pp. 179–205. Springer,
2019.

[62] Kyle D. Hintze. Infniband network monitoring: Challenges and possibil-
ities. 2021.

[63] Zhengping Luo, Zhe Qu, Tung Nguyen, Hui Zeng, and Zhuo Lu. Security
of HPC systems: From a log-analyzing perspective. EAI Endorsed
Transactions on Security and Safety, 6(21):e5, 2019.

[64] Khalil Alsulbi, Maher Khemakhem, Abdullah Basuhail, Fathy Eassa, Ka-
mal Mansur Jambi, and Khalid Almarhabi. Big data security and privacy:
A taxonomy with some HPC and blockchain perspectives. International
Journal of Computer Science & Network Security, 21(7):43–55, 2021.

[65] Steven P. Miller, B Cliford Neuman, Jefrey I. Schiller, and Jermoe H.
Saltzer. Kerberos authentication and authorization system. In In Project
Athena Technical Plan. Citeseer: Princeton, NJ, 1988.

[66] Chris Dunlap. Munge uid n grid emporium. Technical report, Lawrence
Livermore National Lab.(LLNL), Livermore, CA (United States), 2004.

https://munin-monitoring.org
https://www.zabbix.com
https://collectd.org
https://www.nagios.com
https://www.nagios.com
http://ganglia.sourceforge.net
https://xalt.readthedocs.io
https://ipo.llnl.gov
https://ipo.llnl.gov
https://ipo.llnl.gov

Cybersecurity and HPC Ecosystems ■ 29

[67] Yanrong Lu, Lixiang Li, Haipeng Peng, and Yixian Yang. A bio-
metrics and smart cards-based authentication scheme for multi-server
environments. Security and Communication Networks, 8(17):3219–3228,
2015.

[68] Rudi Eigenmann and Barry I. Schneider. National strategic computing
initiative. Computing in Science & Engineering, 20(5):5–7, 2018.

¨ [69] Per Oster. The European Grid Initiative and the HPC ecosystem. High
Speed and Large Scale Scientifc Computing, 18:451, 2009.

[70] Arun Kumar Singh and Samidha Dwivedi Sharma. High performance
computing (HPC) data center for information as a service (IAAS) security
checklist: Cloud data governance. Webology, 16(2):83–96, 2019.

[71] Bjoern Enders, Debbie Bard, Cory Snavely, Lisa Gerhardt, Jason Lee,
Becci Totzke, Katie Antypas, Suren Byna, Ravi Cheema, Shreyas Cholia,
et al. Cross-facility science with the superfacility project at lbnl. In 2020
IEEE/ACM 2nd Annual Workshop on Extreme-scale Experiment-in-the-
Loop Computing (XLOOP), pp. 1–7. IEEE, 2020.

[72] Katie Antypas, Shane Canon, Eli Dart, Kjiersten Fagnan, Lisa Gerhardt,
Doug Jacobsen, Glenn K Lockwood, Inder Monga, Peter Nugent, Lavanya
Ramakrishnan, et al. Superfacility: The convergence of data, compute,
networking, analytics and software. In Surya Kalidindi, Sergei V Kalinin,
Turab Lookman (eds.) Handbook on Big Data and Machine Learning in
the Physical Sciences: Volume 2. Advanced Analysis Solutions for Leading
Experimental Techniques, pp. 361–386. World Scientifc: Singapore, 2020.

[73] Eli Dart, Lauren Rotman, Brian Tierney, Mary Hester, and Jason
Zurawski. The science dmz: A network design pattern for data-intensive
science. Scientifc Programming, 22(2):173–185, 2014.

[74] Keith Kirkpatrick. Software-defned networking. Communications of the
ACM, 56(9):16–19, 2013.

https://taylorandfrancis.com

C H A P T E R 2

Approaches to Working
with Large-Scale Graphs
for Cybersecurity
Applications
Noah L. Schrick, Ming Li, John Hale,
and Peter J. Hawrylak
The University of Tulsa

CONTENTS

2.1 Introduction . 32
2.2 Generation . 34

2.2.1 Generation Introduction . 34
2.2.2 Algorithm Walk-Throughs . 34

2.2.2.1 Introduction . 34
2.2.2.2 Attack Graphs . 35
2.2.2.3 Attack Dependency Graphs 37
2.2.2.4 Combination of Attack Graphs and

Attack Dependency Graphs 39
2.2.2.5 Compliance Graphs . 39

2.2.3 Parallel Generation Algorithms . 41
2.2.4 Additional Architectural and Hardware Techniques 42

2.2.4.1 Prefetching . 42
2.2.4.2 Accelerators . 42
2.2.4.3 Better Data Structures 43
2.2.4.4 Useful Libraries . 45

2.2.5 Deploying to High-Performance Computing
Clusters . 47

DOI: 10.1201/9781003155799-2 31

https://doi.org/10.1201/9781003155799-2

32 ■ Cybersecurity and High-Performance Computing Environments

2.2.5.1 Base Approach: General Parallelized
Programming . 47

2.2.5.2 Programming Model Optimizations 48
2.3 Analysis . 50

2.3.1 Introduction . 50
2.3.2 Markov Process Model . 50
2.3.3 Shortest Path . 51

2.3.3.1 Dijkstra’s Algorithm . 51
2.3.3.2 Bellman–Ford Algorithm 52
2.3.3.3 Parallel APSP . 52

2.3.4 Minimization . 52
2.3.5 Criticality . 53
2.3.6 Semi-Metricity . 54

2.4 Conclusions and Future Work . 55
References . 56

2.1 INTRODUCTION

The cybersecurity landscape is ever-evolving, with no dull moments.
The authors of [1] discuss that difculties lie in the fact that both
diversity and intensity of new cybersecurity threats require quick and
efective countermeasure implementations. As the authors of [2] further
describe, the number of exposed records in the frst half of 2019 alone
reached 4.1 billion, with reported breaches up by 54% compared to the
year prior. The continuous increase in cybersecurity risks necessitates
the need for countermeasures that eliminate and prevent threats from
occurring, rather than solely focusing on detection. To add to the
difculties, as the authors of [3–5] discuss, the rise of Internet of things
(IoT) and cyber-physical systems adds to the complexity of a system.
Not only do cybersecurity considerations need to be made, but safety
regulation compliance, maintenance compliance, and other regulatory
compliance need to be ensured.

To approach a solution to determining countermeasures, modeling
systems with graphs can yield promising results. When representing
a system through graphs, an exhaustive approach can be taken.
Beginning with all initial system qualities present, cybersecurity

Large-Scale Graphs for Cybersecurity ■ 33

attacks (such as those found in the National Vulnerability Database,
for example) can be tested against the system. If an attack is able
to be used against a system, the system qualities will change and be
captured in a new graph node. This type of graphical approach is now
commonly called an attack graph [6–8]. Likewise, representing all of a
system’s initial qualities and examining the ways it is or can fall out
of compliance is called a compliance graph [3]. Using this approach, a
system can be rigorously examined to determine all ways that attacks
or compliance violations can exist in a system, both in present time and
in the future. This will allow cybersecurity professionals to correct the
weak spots in systems, eliminate attack vectors, and identify ways to
avoid falling out of compliance. However, there are a few drawbacks to
this approach. With the number of items in the National Vulnerability
Database, the amount of custom zero-day checking, along with the
number of assets (access points, frewalls, printers, workstations, etc.),
exhaustively representing all possible states of a system leads to
incredibly large graphs [8]. These large-scale graphs are a common
issue for other problem spaces as well. Social networks, bioinformatics,
and neural networks can produce graphs with millions of vertices and
billions of edges [9]. Due to the incredibly large size of these graphs,
they can seldom be contained within a single system’s memory. In
addition, the computation power required to generate and analyze
these graphs in a reasonable time makes sequential and single-system
approaches infeasible. With the cybersecurity landscape constantly
changing, these graphs will need to be regenerated and reanalyzed to
stay current and correct. New vulnerabilities, new assets in a system,
or new countermeasures render a previously generated graph outdated,
and a new one will need to be procured.

Targeting high-performance computing (HPC) resources is a
necessity for approaching this problem. Leveraging the increased
amount of memory and the greater computing power is invaluable for
reducing the time required to generate and analyze these graphs. This
chapter will present graph techniques useful for compliance violation
and cybersecurity attack prediction in the lens of HPC. This chapter
presents a survey of techniques that are useful for handling large-scale
graphs, methodologies, and techniques for increasing performance, and
concludes with insights into future needs and directions in this area.

34 ■ Cybersecurity and High-Performance Computing Environments

2.2 GENERATION

2.2.1 Generation Introduction

In practice, graph computations and generations do not reach full
theoretical computing performance; they often achieve only a very low
percentage [10]. Graph processing performance relies less on processor
speed, and more on the computer’s ability to access memory in a
timely fashion, the complexity of data dependency, and the coarseness
of parallelism [9–11]. Typically, graphs have relatively poor efciency
in terms of memory. The most apparent inefciency is due to their
large memory footprints [9]. Not only does the number of nodes
and edges in a graph consume memory, but considering the data
stored at each node is important to visualize the constraints on low-
memory systems [10]. In addition, as opposed to data structures such
as arrays, which can be optimized to better utilize spatial locality for
increased cache performance, the underlying graph data structures can
contain additional challenges in terms of locality [11]. These issues are
exacerbated from the memory latency evident in the processor–memory
gap [10,11]. This section will focus on the techniques leveraged by HPC
clusters to increase the performance of graph generation.

2.2.2 Algorithm Walk-Throughs

2.2.2.1 Introduction

Beginning in 1998, researchers and cybersecurity experts began on a
means to model a network of systems to perform vulnerability analysis.
This initial work later became known as an early-day attack graph in
the form of an attack tree. In comparison with today’s representation
of attack graphs, there were a few diferences. As suggested by the
name, these initial models were similar to trees, rather than graphs
[6–8]. There were a few hindrances in these early models that led to
the expansion of the representation of modern attack graphs. These
hindrances were primarily in that the attack trees’ sole focus was
for analyzing individual vulnerabilities on single machines; they did
not allow for modeling of interconnected systems that is widespread
today. As a result, later work was conducted that led to the current
interpretation of attack graphs to allow modeling of entire networks
comprised of interconnected systems.

Large-Scale Graphs for Cybersecurity ■ 35

Attack graphs have a few diferent models. The authors in [12]
and [13] utilize a model where the nodes represent attacks and the
edges represent the conditional relationship between two attacks [14].
Another model presented in [15] and [16] utilizes a modeling system
based on Bayesian networks, with each node representing a host in
the network and edges representing vulnerabilities that can be used
to reach other hosts in the network. This allows the visualization of
both reachability and vulnerabilities’ conditional relationships [14].
Each model has its unique advantages and disadvantages, and each
shifts its focus to emphasize diferent areas of the network’s security.
Irrespective of the model’s intricacies, attack graphs’ primary focus is
for modeling a network to identify vulnerable positions. As a result
of increased system connectivity, the state space modeled by attack
graphs grows at a rapid rate, leading to massive generation processes
that can no longer be feasibly run on single systems or with serial
implementations on very high performance single-computer systems
[8,14,17,18]. Thus, a parallel or distributed approach to generation of
these structures is required. The following subsections focus on the
algorithmic approaches to working with attack graphs on a small scale,
followed by the approaches necessary for working with larger systems
that can be done on HPC clusters.

2.2.2.2 Attack Graphs

There are two key components when considering attack graph
generation. The frst is ensuring that the resulting attack graph is
exhaustive – that all attack possibilities and appropriate states are
properly represented and accounted for, including any permutations.
The second is that it is succinct – that the model only includes states
that an attacker can use to reach a goal state [12]. Later work, such as
that seen in Ref. [8], indicates that using the formal logic approach
to generation seen in Ref. [12] can aid in ensuring correctness by
using a model checker against the resulting attack graph model [8].
Using the formal logic generation method typically results in less
errors that can occur in complex network environments, and can
lead to easier analysis [8]. However, the authors in Ref. [8] do draw
concerns with the exhaustiveness of the tool, in that because of the
duplication and permutation checking, a network with ten hosts and

36 ■ Cybersecurity and High-Performance Computing Environments

fve vulnerabilities resulted in a graph with 10 million edges. While
such an analysis provides a complete picture of the overall security
posture, the huge number of edges is a scalability problem as the
system size increases. Typical systems often have dozens or hundreds
of hosts/nodes. However, the generation of attack vectors that map
to the system is straightforward and can be generated by walking the
attack graph for this representation.

The original algorithm presented by Ref. [12] proceeds by frst
checking a set of states deemed unsafe that put the network in a
compromised or unsafe position. This is conducted in the model
checking by using a set of states, a transition relation between
states, the initial network states, state labeling, and a safety property.
After the model checking, the transition relation is limited to only
states in the unsafe set of states. Using Boolean representation and
formal logic, resulting unsafe states and their transitions from initial
states can be generated. As Ref. [8] states, encoding the entire network
state leads to an exponential number of possible states during the
model checking phase, even though not all states are reachable.

As a means of improving scalability, Ref. [8] presents an alternative
representation called a logical attack graph. Due to the aforementioned
reasons, namely the state space explosion, their representation desired
to stay with a logical approach to generation. Rather than each
statement encoding the entire network, each node would be a portion
of the network represented as a logical statement. This approach was
able to reduce the generation to quadratic time. Further, the number
of nodes in the resulting logical attack graph is O(N 2), where N
is the number of nodes in the system [8]. This addressed the state
space problem; however, it requires more analysis to identify actionable
attack vectors for the particular system compared to the attack graph
representation.

Later work, such as that presented in Ref. [18], represents nodes
as network states – a description of assets (network systems) and
the facts that describe them. Facts can either be qualities (such as
frmware or OS versions), or topologies (relational information to other
assets). The algorithms for such a representation work by expanding
each unexplored node. The initial network states are added into a
queue, with each state from the queue being checked against an exploit
list to see if factual information in a network state can be altered.

Large-Scale Graphs for Cybersecurity ■ 37

If so, a new network state is created and added to the unexplored
queue. This process is continued until no further unexplored states
exist in the queue. Similar work shown in Ref. [14] illustrates the
algorithm using a hash table. For determining the time complexity
of this generation algorithm, |Qd| represents the total number of states
and Ne represents the number of exploits. In this implementation
of attack graph generation, each state must be checked against the
number of applicable exploits and their facts. As a result, the time
complexity is:

O (|Qd| Ne) (2.1)

Summarizing the performances of these approaches, the original
algorithm presented in Ref. [12] with exponential time, the algorithm
presented in Ref. [8] with quadratic time, and the serial algorithm
present in Ref. [14], illustrates that efciency improvements can be
obtained by refning the information one is interested in. However, as
Refs. [14,17,18] state, these improvements, while important, still do not
sufciently allow for an efcient or scalable representation of enterprise
networks consisting of thousands of hosts. As Ref. [17] describes, this
is even more evident when considering the size of the National Vul-
nerability Database, Common Weakness Enumeration database, and
the number of ports a system could have opened. Thus, the resulting
graphs will be very large for the typical system and both the time to
generate the graph and its resulting size are important considerations.
Both aspects make this a good problem for HPC systems.

2.2.2.3 Attack Dependency Graphs

Attack graphs are a useful tool in demonstrating possible attack vectors
that can put a network in a compromised position. However, there are
instances where their capabilities fall short. For example, vulnerabilities
can oftentimes rely upon the presence of other vulnerabilities, or even
have an increase in criticality or importance based on the combination
of multiple vulnerabilities that have been exploited at the same
time [19,20]. With attack graphs, one vulnerability may rank low on
criticality: It may exist and is seemingly non-threatening, but another
vulnerability may capitalize on the frst vulnerability to pose a much
larger threat. Attack dependency graphs aim to identify these exploit
and vulnerability dependencies in a network.

38 ■ Cybersecurity and High-Performance Computing Environments

When considering the dependencies in a network, it is useful to
distinguish between the types of dependence. The authors in Ref.
[21] present and defne three types: redundancy dependence, graceful
degradation dependency, and strict dependence. Redundancy refers
to an asset that depends on multiple other resources that have
redundancy. Graceful degradation dependency is a dependence where
an asset can continue its operation if its dependence fails, but at limited
performance or security. Strict dependence is a dependency where if an
asset’s dependence fails, then so does the asset.

Original attack graph models tended to revolve around the concept
of state transition graphs. Each node in this model represented a
possible attack state, comprised of propagated attack events from
parent nodes, system qualities, and related network qualities. The
edges connecting the nodes represented the probabilities of a successful
attack [22]. Recent models have shifted their focus to revolve around
the concept of these attack dependency graphs. In this model, nodes
are expanded into two categories – nodes consisting of preconditions
or postconditions (“condition nodes”), and nodes consisting of attacks
(“attack nodes”). The attack nodes are equivalent to the edge
representation of the original model. Edges for the attack dependency
graph represent the dependency of nodes [14,22]. Using the attack
dependency graphs eliminates the redundancy of the stateful model,
which allows the graphs to be generated more efciently and results in
graphs of smaller size.

In addition to just checking exploit or vulnerability dependence, at-
tack dependency graphs can be extended to also consider dependencies
in services and applications [21]. Due to the rapid growth of networks,
the amount of applications or services being ran or hosted in a network
has also increased. As a result, attackers have new attack vectors
they can attempt to capitalize on by exploiting vulnerabilities in the
application dependencies, where threats can more easily propagate
throughout the network. A tool called NSDMiner presented in Ref.
[23] attempts to automatically discover these dependencies in a way
that is simplifed, is less cluttered, and reports less false negatives.

Prior to attack dependency graphs, analysts had to either manually
check for dependencies, or specify automated operations to check
[19]. By using an attack dependency graph, not only is the resulting
graph of smaller size, but tools such as those presented in Refs.

Large-Scale Graphs for Cybersecurity ■ 39

[19,20,23] can perform the visualizations and dependency checking
automatically.

2.2.2.4 Combination of Attack Graphs and Attack Dependency Graphs

The representation of the state transition graphs in attack graphs and
the representation of dependencies between nodes in attack dependency
graphs are both popular models with active work being pursued in both
areas. In Ref. [21], the authors suggest a new approach – combining
the two representations to make a unified framework.

A shortcoming of analyzing attack graphs on their own is that
oftentimes, it is hard to identify how widespread an attack may be.
While an attack graph can identify the ways a system can be put
in a compromised position, or the criticality of affecting a singular
asset, it may not illustrate the effect of the system in its entirety [21].
For instance, if an attack can cause a system component with a strict
dependence to fail, the attack graph may not be able to identify the
resulting asset that will also fail.

On the other hand, attack dependency graphs on their own
can lead to the prioritization of remediation procedures in a way
that is not optimal. For example, Vulnerabilities A and B could be
present in a network, and Vulnerability B depends on Vulnerability
A being exploited. Using an attack dependency graph analysis, it
may suggest prioritizing Vulnerability B remediation, since that has a
greater interdependence with Vulnerability A. However, from an attack
graph perspective, there is a different state transition from the state
containing Vulnerability A that leads to more system compromises,
and with larger impacts than the transition to a state containing
Vulnerability B [21].

To combine the two graph approaches together, the authors of Ref.
[21] suggest an impact assessment graph, which considers the analysis
of both graphs and weights their decision processes in a way that
balances immediate or ongoing attacks with future attacks.

2.2.2.5 Compliance Graphs

Attack graphs and attack dependency graphs are useful tools to deter-
mine the ways in which a system is in, or may be put into, a vulnerable
state. Another useful tool that can be utilized is compliance graphs.

40 ■ Cybersecurity and High-Performance Computing Environments

As opposed to looking through the broader lens of cybersecurity as a
whole, compliance graphs can be used for determining the compliance
status of cyber-physical systems [3]. Instead of processing through the
system state space by determining applicable exploits or vulnerabilities,
compliance graphs determine applicable compliance violations. These
compliance requirements have a broad range and can include safety
regulations, maintenance compliance, or other regulatory compliance.
By setting the compliance parameters to check for, compliance graphs
can be used in a similar fashion to attack and attack dependency
graphs. Not only can the current state of the system be checked, but
possible future system states can be analyzed to determine appropriate
steps that need to be taken for preventative measures [3].

As the authors of [3–5] discuss, the rise of cyber-physical systems
in areas such as critical infrastructure and IoT brings new difculties
to consider for protecting systems. Not only are there the typical
cybersecurity considerations, but these systems also have to be
concerned with compliance regulations to ensure that the equipment is
safe, is undamaged and remains undamaged, and is stable. In addition,
the place of operation and whom the equipment is used for may bring
about additional compliance guidelines that may need to be followed,
such as SOX, HIPAA, the European Union’s GDPR, and/or OECD for
international usage [4,5]. Managing all aspects of compliance regulation
can be time-consuming and complex, but the fnes, legal sanctions,
mandatory shutdowns, and other costs of compliance violation are
compelling reasons to mitigate or prevent the risk of a system falling
out of compliance.

The compliance graphs can be described similarly to that of the
more recent attack graph representations. Nodes represent the system
state, and edges represent changes to a state through an insertion,
modifcation, or deletion of a quality or topology. Like attack graphs,
qualities in the scope of compliance graphs describe an asset through
facts. Topologies are slightly diferent; instead of showing a connection
of assets through their digital means like that of attack graphs,
topologies in compliance graphs need to be expanded because of
the cyber-physical nature of the systems. As a result, topologies not
only include the network connections of components, but also include
connections of sensors or other equipment [3].

Large-Scale Graphs for Cybersecurity ■ 41

Like attack and attack dependency graphs, compliance graphs
also sufer from state space explosion. The number of compliance
regulations that can or need to be checked can get large very quickly.
In critical infrastructure areas, the number of assets that need to be
checked can also be very large, leading to the same challenge of handling
these large-scale graphs that cannot be efectively managed on serial
workstations. This is another challenge that has appealing solutions in
the HPC space.

2.2.3 Parallel Generation Algorithms

Regardless of attack graph model, a main challenge of attack graph
generation is in the state space explosion [14]. In other words, when
generating an attack graph consisting of a large number of nodes and
with a high depth (the number of exploits executed or changes to the
system state carried out), the number of states drastically increases
[14,18]. An approach to parallelizing the generation is described in Ref.
[14]. A frst-in–frst-out (FIFO) queue is utilized to store the initial
state as a frontier, and a hash table is utilized to hold the exploits
and relevant network information. Using OpenMP parallel for loops
and a dynamic schedule, each thread can work on a local frontier.
The local frontier is a subset of the global frontier. Each thread will
take portions of the global frontier and work on that subset called a
local frontier. When an applicable exploit is identifed, a new state is
needed to be created and added to the frontier. To accomplish this, an
OpenMP critical section is used. Using a critical section allows for an
atomic write to the global frontier, so there is no risk of collisions, race
conditions, or stale data being used. Using this parallelized approach,
a new runtime complexity can be identifed as:

O (|Qd| Ne/n + k1|Qd|) (2.2)

where |Qd| represents the total number of states, N e represents the
number of exploits, n is the number of threads, and k1 is a constant.
Running in an equal environment with N e set to 7, Qd to 25,354, and n
to 24 hardware threads, the parallel attack graph generation presented
in Ref. [14] provides a 10× speedup over the serial algorithm discussed
in a previous section.

42 ■ Cybersecurity and High-Performance Computing Environments

2.2.4 Additional Architectural and Hardware Techniques
2.2.4.1 Prefetching

Analyzing the cache miss rates on graph generation illustrates a miss
rate that is higher in comparison with other workloads, due to the
aforementioned memory inefciencies. Utilizing hardware or software
prefetching so that the system can better predict future memory
accesses typically yields better performance for common use cases.
For graphs, however, using prefetching still results in high miss rates.
Since the underlying graph structures and algorithmic approaches are
traditionally non-sequential, and access patterns are data dependent,
the prefetcher is not able to adequately gain sufcient information to
have an increased prediction rate [11].

To combat this performance difculty, the authors of Ref. [11]
continue to state that programmers can explicitly tune prefetching
to have better results. In most cases, the graph generation algorithm
is known in advance. By knowing the graph generation algorithm,
programmers can confgure the hardware prefetcher to follow the
traversal order pattern. For instance, for breadth-frst search (BFS),
the traversal order pattern is typically the same: Process each node
at level order. Confguring the prefetcher to access future items in the
breadth traversal path leads to increased performance of over 2× for
BFS by reducing the number of cache misses and thereby limiting the
time stalled while waiting for main memory access [11].

2.2.4.2 Accelerators

While the graph generation process may be parallelized, the underlying
atomic functions are largely serial [24]. When it comes to shared
vertices and data conficts, there can be slowdowns while waiting
for the atomic functions to process [21,24]. This can be incredibly
problematic for graphs with many high-degree vertices. To alleviate
these slowdowns, techniques exist for using an accelerator that
capitalizes on the incremental patterns of atomic functions and merges
the results in parallel rather than computing them all atomically
[24]. The parallel implementation presented in [24] continues by
utilizing this merging strategy so that the accelerator can then utilize
pipeline stages where the vertex updates can be processed in parallel
dynamically.

Large-Scale Graphs for Cybersecurity ■ 43

Due to the memory difculties, additional work has been done to
leverage feld-programmable gate arrays (FPGAs) for graph generation
in the HPC space [9,25]. Coupled with their fexibility and energy
efciency, FPGAs have many potential benefts. To reduce memory
strain, the traditional FPGA approach utilizes the on-chip block RAM
(BRAM) to store graph information [9,25]. Depending on the size
of the graph, the BRAM can store various portions of attack graph
information to enhance performance. Depending on the size of the
exploit list, the list can be stored here to avoid pulling it from main
memory, or from taking cache space that could be better used for
explicit prefetching. If a parallel approach is used that targets the
FPGA, the local frontier could also possibly be stored in the BRAM
depending on its size. This approach, however, is limited in its usability.
For small graphs, the performance is magnitudes better. But this
performance increase is not scalable, as the BRAM available on-chip is
relatively small compared to typical graph sizes and is thus unable to
hold the large graphs that are typically required to address problems
that require HPC clusters [9].

An alternative to the BRAM approach is through leveraging the
stacked DRAM technology of hybrid memory cubes (HMCs) [9]. An
HMC is optimized for parallel access (more ranks; smaller page size)
and has full-duplex links at speeds of almost 20× that of DDR4. The
authors in Ref. [9] drew comparisons of an FPGA-HMC approach
versus a Xeon E5 CPU. Both used parallelization, but since the FPGA-
HMC approach had a substantially lower memory access time, the
results obtained showed that this approach yielded a 3x performance
improvement over the Xeon E5 CPU.

2.2.4.3 Better Data Structures

Defning and generating graphs revolve around the underlying data
structure representation. Most commonly, graph data are represented
in the form of an edge list, with each edge symbolizing a connection
between nodes [26]. However, as the authors of [26] discuss, many
of the typical graph algorithms process graphs through neighboring
nodes. For instance, breadth-frst and depth-frst searches, as well as
shortest-path algorithms process graphs through neighboring nodes. As
a method to improve the performance of node exploration algorithms,

44 ■ Cybersecurity and High-Performance Computing Environments

adjacency lists can be used. Adjacency lists are per node and list
the nodes that are neighbors. Node exploration algorithms can then
use adjacency lists to quickly identify neighboring nodes, rather than
computing nodes through an edge list. Historically, adjacency matrices
have been used, as seen in works such as [27,28]. The authors of [26]
describe that this is infeasible for today’s large graphs, since the space
requirement for representing all nodes in a matrix will be cumbersome
and the processing time is slower. Property maps have also been used
for graph representation. Property maps are defned as objects with
keys and values that are mapped together. These can be used to map
vertices that allow for simplistic lookups [29].

With large graphs and the need for parallelization, there has been
a push for higher-performing graph algorithms. With some graphs
having upward of billions of edges and billions of vertices, it is not
possible to contain all of a graph’s representation in a system’s memory
[30]. Due to this increased requirement, it is preferable to distribute
a graph representation among systems [26,30,31]. Partitioning a
graph representation has various approaches. As the authors of [31]
discuss, partitioning can be conducted by assigning vertices to workers
where each contains its own copy of lists. This is defned as a
distributed adjacency list [32]. Distributed property maps can also be
used, with the mapped values distributed across systems or nodes.
Synchronization and communication can be used for value retrievals
and updates [33].

Using distributed data structures does not come without a
cost. As the authors of [30,31,34,35] discuss, communication costs
begin bringing in additional overheads that damper performance.
To account for communication costs, previous works have presented
compression techniques. However, the authors of [31] and [35] describe
that compression for large graphs has additional penalties, as now
decompression and compression costs are incurred, and compression
ratios may be low. Both [31] and [35] present techniques for achieving
high compression ratios and low costs. Other works present alternative
solutions for increasing distributed structure performance.

Regardless of costs, sequential data structures or data structures
typically used for small graphs are not advisable. They are not scalable
and leave performance gains unrealized for large-scale graph processing.
For handling large graphs, better data structures are a necessity. Graph

Large-Scale Graphs for Cybersecurity ■ 45

type plays a role in what data structures should be used; there is no
data structure that will have optimal performance for every graph.
Analyzing graph processing and tailoring their representations will
yield far better results than taking naive approaches.

2.2.4.4 Useful Libraries

A number of libraries exist with routines for processing and analyzing
graphs. These include Boost, Parallel Boost, and ParMETIS.

2.2.4.4.1 Boost Graph Library Boost Graph Library (BGL) is aimed
as a “generic interface”, utilizing generic underlying algorithms that
provide abstraction from the graph’s structure. BGL is intended to
work with any other graph library or graph algorithm. Through BGL’s
generic programming, graph components such as edges or vertices
can quickly and easily be represented by abstract classes, such as an
adjacency_list class, which implements iterator functions for accessing
or updating class members. Rather than individually creating all of the
classes and functions, and tailoring them to each graph structure and
implementation, Boost can provide all of the necessary information
while remaining abstract, making it flexible to support a number of
different types of graphs [36]. Boost also contains generic interfaces
for representations such as property maps [29]. Instead of manually
creating the mapping for vertices or edges, it can be implemented
through Boost. The same exists for graph algorithms such as breadth-
first or depth-first searches: Boost has these readily available to allow
for simplistic incorporation into any graph structure. None of these
classes or methods are strict on the underlying graph representation.
These will be able to function properly for all representations, allowing
for highly specific or customized graphs to benefit from typical
algorithms without the need to recreate them all [37].

A notable feature of BGL is that custom graphs relying on novel
or nontraditional data structures can be converted to work with BGL
to take advantage of generic template functions such as breadth-first
searches. This is a documented feature of BGL with a dedicated
support page to assist in the conversion. The conversion avoids the
overhead of new class creation or data copying by providing a wrapper
to overload global functions [38]. When working with large attack

46 ■ Cybersecurity and High-Performance Computing Environments

graphs, keeping generation and analysis time at a minimum is ideal
due to the state space explosion. For custom graphs that do not use
BGL, classes would need to be created that handle all basic functions.
For generation, these functions could be for creating new nodes or
adding edges, which would be called a very high number of times. For
analysis, these functions could be for performing searches or identifying
the shortest paths. Creating extra custom classes for each of these
can create overhead that slows the generation process. By using BGL
to abstract the custom graph and provide generic functions with fast
runtimes, the generation process can be sped up.

2.2.4.4.2 Parallel Boost Graph Library The Parallel Boost Graph
Library (Parallel BGL) is an extension of the BGL. This library is
intended to provide the benefits of BGL for parallel and distributed
computing and to leverage both coarse-grained and fine-grained par-
allelism on graph structures while remaining generic. Coarse-grained
parallelism refers to conducting parallelism on large chunks of data,
whereas fine-grained parallelism refers to conducting parallelism on
small pieces of data. As mentioned in previous subsections, generating
graphs is difficult due to the irregularity involved. As a result, leverag-
ing coarse-grained parallelism during the generation process is difficult,
since predicting patterns or exploiting locality is extremely unlikely.
However, it can be useful during the analysis process. Following
procedures similar to that done by the authors in Refs. [39–41], sections
of the generated graph can be grouped together, and coarse-grained
parallelism can be conducted on the larger sections. Due to the unpre-
dictable nature of the generation process, fine-grained parallelism must
be used. This typically suffers from a larger overhead in comparison
with coarse-grained parallelism, since atomicity must be present at each
vertex. Leveraging Parallel BGL’s capabilities, both of these parallel
techniques can be used relatively easily and relatively quickly due
to their generic nature. Parallel BGL also includes data structures
such as distributed adjacency lists, distributed queues, and distributed
property maps. These distributed data structures allow for simple
implementations on HPC systems. Other notable features of Parallel
BGL are its interoperability with MPI, Graphviz, and METIS [37].

2.2.4.4.3 ParMETIS ParMETIS is the parallelized library of
METIS. METIS is a library aimed to assist with partitioning,

Large-Scale Graphs for Cybersecurity ■ 47

repartitioning, and refining graph-related problem spaces. ParMETIS
functions in the same manner, but is parallelized and based on MPI.
It includes additional functionality for assisting with sparse matrices
by computing fill-reducing orderings. One main appealing feature of
ParMETIS is in its partitioning. Partitioning the graph is useful, as it
will reveal concurrency, help identify proper load balancing, and allow
for an efficient way to map computation to a parallel platform [42].
While this does not help with the generation process, partitioning the
graph prior to analysis and then feeding the partitioned graph into an
analysis tool can aid in reducing the analysis runtime. In addition, since
ParMETIS is based on MPI, it is able to be performed on a HPC cluster
to partition very large graphs as a preprocessing step. ParMETIS has
benefits in that its processing time for its tasks is extraordinarily low,
reordering million-row matrices in seconds and bisection of circuits
with 100,000 vertices in minutes on Pentium processors. hMETIS is an
extension library that allows compatibility for hypergraphs [43].

2.2.5 Deploying to High-Performance Computing Clusters

The previous subsections laid the groundwork for presenting the
algorithms and showing general speedup techniques. This subsection
focuses on appealing methods for deploying the generation process,
specifically to HPC clusters.

2.2.5.1 Base Approach: General Parallelized Programming

One approach to handling the high generation time required for large
attack graphs is to parallelize the generation across all or some of a
HPC cluster. As opposed to traditional workstations which may have
a limited number of cores, a well-designed parallel approach would
be able to leverage the high number of cores and high amounts of
RAM in a HPC cluster [44]. This is the approach seen by the authors
of [14], as described in Section 2.2.3. Because of the increase in the
popularity of distributed and heterogeneous clusters, message-passing
interface (MPI) is a good candidate as a basis for parallelization [44].
To handle the distributed memory design of these systems, MPI is able
to utilize its messaging technique to instruct the dispersed nodes on
their tasks.

At a high level, there are some difficulties with using MPI alone.
As the authors of [45] discuss, MPI can oftentimes result in a large

48 ■ Cybersecurity and High-Performance Computing Environments

restructuring of source code. This is because the data distribution
and process synchronization need to be explicitly controlled by the
programmer and cannot be done automatically. When wanting to
target a wide variety of clusters for benchmarking, testing, or imple-
mentation, or if updates to a code base were conducted, restructuring
the code repeatedly could be time-consuming. As a result, combining
MPI with another API such as OpenMP or OpenCL could utilize the
strengths of MPI, while allowing an abstracted form of parallelism
at the node level through the API [45]. On the other hand, as the
authors of [45] continue, using an API such as OpenMP on its own will
not suffice for distributed systems. OpenMP is targeted more so for
shared memory systems, and fine-tuning the parallelism is difficult. As
the authors of [46] describe, properly partitioning data has additional
difficulties of its own, since it is an NP-complete problem. Coordinating
data distribution through MPI messages can alleviate this, as it can
periodically synchronize nodes and attempt to balance the load.

2.2.5.2 Programming Model Optimizations

2.2.5.2.1 Vertex Centric To approach the aforementioned challenges
of processing large-scale graphs, the authors in Ref. [47] present a
programming model called Pregel, a vertex-centric paradigm. At the
time of writing of [48], this was one of the most popular programming
models, and as the authors of [49] show, the vertex-centric model is
used in systems such as Giraph, GraphLab, MapReduce, and Blogel.

The premise of the vertex-centric model is to use a vertex as the unit
of parallelization to leverage fine-grained parallelism. During periods
between global synchronization points (called supersteps), vertices are
able to alter their local state, modify their edges, send messages, or
change the graph topology. For the messaging, each vertex utilizes
message passing to communicate with other vertices in regard to
its updates, where the message is received at the beginning of the
next superstep. The vertex-centric algorithm continues until no vertex
changes [47].

Pregel contains optimization techniques that can be implemented
on a per-problem basis. These include optimizations that can alleviate
messaging overhead. The communication overhead of vertex-centric
systems can be quite large and is a main disadvantage of this

Large-Scale Graphs for Cybersecurity ■ 49

programming model. The amount of communication required for
many vertices to effectively message all appropriate vertices, along
with the synchronization, can be substantial [47,50]. Other vertex-
centric systems also have their own sets of optimizations. An early
disadvantage of Pregel, especially in the context of large-scale graphs,
is that the computation state resides in RAM. However, later updates
to Pregel have worked to push data to disks [47]. Using this on a
HPC resource generally provides more available RAM for holding
the computation state, but holding the entirety of large graphs is
unlikely.

Attack graphs are most useful when they are exhaustive. As a
result, the overall topology of the attack graph will not change during
generation, nor will subsections of the graph be combined. Using a
vertex-centric programming model in terms of leveraging the topology
mutate function may not be beneficial from a performance standpoint,
due to the frequent interactions between subgraphs resulting from
expansion of each vertex and the associated messages that must be
passed as a result.

2.2.5.2.2 Subgraph Centric To mitigate the high communication
overhead of the vertex-centric programming model, a subgraph-centric
programming model can be used [48,50]. In this model, subgraphs
are used as the unit of parallelization, rather than vertices. This
reduces the level of fine-grained parallelism in the problem space
and is able to limit the amount of communication overhead [48].
Rather than messages being passed between all vertices, messages
are passed between subgraphs. Boundary points within the attack
graph can be identified and used as places to break off a subgraph
and hopefully reduce the number of messages sent between subgraphs.
In the subgraph-centric model, two distinct subcategories are derived:
partition centric and neighborhood centric [48].

For the partition-centric model, partitions are the unit of parel-
lelization [48]. As the authors of [48] state, the subgraph has vertices
of two types: internal and boundary. Boundary vertices must have a
transfer to communicate messages, whereas internal vertices are imme-
diately able to exchange information. Due to the immediate exchange
of information in the internal vertices, the communication overhead can
be reduced. For the neighborhood-centric model, subgraphs are able to

50 ■ Cybersecurity and High-Performance Computing Environments

be customized [48]. Rather than partitions being the default unit of
parallelization, the subgraphs can be explicitly confgured.

2.3 ANALYSIS

2.3.1 Introduction

Analyses of attack graphs, compliance graphs, and attack dependency
graphs are important to resolve potential issues in a network. However,
quantifying probabilities of compliance violations or attacks, as well as
damages from their occurrences is a challenge for accurate analysis
[51–53]. In terms of quantifying compliance violations, damages can
be identifed in regulatory penalties, legal sanctions, and removal of
systems from an active network [3]. Damages from attacks can be
identifed in terms of direct losses (data theft and damage) and indirect
losses (other losses and opportunity costs). The next difculty for anal-
ysis is the technique used. This section will focus on the methods and
quantifcation schemes used for the analysis of the generated graphs.

2.3.2 Markov Process Model

After the generation of an attack graph, it is desirable to model an
attacker’s standpoint to analyze strategies or approaches that may be
taken to put the network in a vulnerable state. Likewise for compliance
graphs, it is desirable to model probable ways for a system to fall out
of compliance. By understanding the common or likely violations that
can occur, a team can work on building countermeasures. The goal
of a Markov process model is to convert the generated graph into a
Markov process, to use as the baseline for probabilistic predictions. The
computation has been shown to be parallelizable and can be performed
with a CPU and an Intel Phi Coprocessor simultaneously [51]. The
work in Ref. [51] leveraged the Intel Phi’s ability to perform matrix
multiplication more efciently than a standard CPU. The additional
capabilities of the Intel Phi with respect to decisions and branches
support the inclusion of more robust analysis and decisions about
future courses of action natively on the Intel Phi compared to a
standard graphics processing unit (GPU).

Leveraging the Markov process model as a defender can yield
benefcial results. First, it can raise awareness to weak points in

Large-Scale Graphs for Cybersecurity ■ 51

the system, which can then be fagged for additional monitoring,
strengthened, or hardened against attacks. Second, it can illustrate
methods for implementing a trapping state or regression state to
thwart potential attackers. Identity of such states in the system is
important because the number which can be efectively deployed may
be limited. Third, by computing the total expected reward, it is possible
to quantify the security measures in place and the potential difculties
of putting the network in a compromised position [51,54].

2.3.3 Shortest Path

When quantifying the possibility of a system compromise, there are
a few considerations to take into account. Namely, these are the
degree of harm that can be caused by a vulnerability, the presence
and efectiveness of intrusion detection systems, the capability of an
attacker, and the attack path. One method of analysis is focusing on
the attack path [12]. While being a less sophisticated approach when
compared to the Markov process model, determining the shortest path
to an attacker’s potential goal state can reveal diferent stances an
attacker may take [55]. The shortest path also identifes the fewest
actions that must occur to compromise the system, each of which could
be caused by a single attacker or by a combination of attackers, each
leaving the system in a more compromised state than it was previously.
This type of analysis can be useful for revealing pass-the-hash attacks
[56]. As the authors of [57] describe, pass-the-hash attacks steal hashed
credentials, rather than the plaintext. The hashed credentials can then
be passed to single sign-on services to attempt to comprise the system.
If the compromise was successful, an attacker could then attempt
to escalate privileges by capturing a more privileged user within the
shared infrastructure environment. If an attacker was able to capture
a user with enough privileges, the attacker could then commit more
dangerous attacks on critical systems. Three common shortest-path
algorithms are discussed below.

2.3.3.1 Dijkstra’s Algorithm

Dijkstra’s algorithm works by starting at a given node and works
through a given graph, keeping record of known shortest distances from
each node to the start node. However, since the shortest distance is

52 ■ Cybersecurity and High-Performance Computing Environments

calculated by adding the path from each node, the weights on the graph
edges must be positive. Advantages of Dijkstra’s algorithm lie in its ease
of use and execution [58]. Disadvantages lie in its time complexity of
O(n2), where n is the number of vertices, inefciencies, and restriction
to positive edge weights [59]. Inefciencies in Dijkstra’s algorithm are
in its memory consumption. For the algorithm, the entire graph is used
as an input. In the case of these large-scale graphs that can be terabytes
in size, memory cannot hold the entirety of the graph [50]. As a result,
it is unlikely that Dijkstra’s algorithm can be used for analyzing these
graphs in their entirety.

2.3.3.2 Bellman–Ford Algorithm

An alternate approach to computing the shortest path from a given
node to all other nodes in the graph is the Bellman–Ford algorithm.
This is a bottom-up approach, retrieving the shortest paths of nodes
with lower degree frst. As opposed to Dijkstra’s algorithm, Bellman–
Ford is able to function with negative edge weights. However, the
Bellman–Ford algorithm runs at a much higher time complexity of
O(nm), where n is the number of vertices and m is the number of
edges. In practice, the number of edges is much larger than the number
of vertices [59].

2.3.3.3 Parallel APSP

As a result of the disadvantages and costs incurred by Dijkstra’s
and Bellman–Ford algorithms, further research has been conducted
to identify better shortest-path techniques [59]. Parallelizing all-
pairs shortest paths (APSP) has been performed at various degrees.
The more promising trend revolves around a bucket sort approach,
where a number of buckets are initialized, with their bucket number
representing the number of degrees a vertex has [58]. The problem
is then parallelized by having threads fll buckets accordingly. Race
conditions from simultaneous bucket updates are avoided by the use
of locks. Improvements to this approach are described in [58] through
the use of intelligent ordering mechanisms.

2.3.4 Minimization

After the generation of attack graphs, it is possible to visualize possible
attack vectors an adversary could take. Using Markov process models,

Large-Scale Graphs for Cybersecurity ■ 53

it is also possible to decide upon optimal trapping states or regression
states to increase a defensive position. However, there is a gap in
knowing how an adversary could attack a system, and the ideal way
to thwart the said attack. One analysis technique is through using
minimization. Using minimization can aid in attack prevention in the
two ways discussed below.

Minimization can be employed to determine if a given security
countermeasure increases the security of a network [53]. Given a
security countermeasure and the generated attack graph, if it prevents
a transition from one graph state to another, remove the connecting
edge. After repeating for all possible edge removals, if the number of
attacker goal states has decreased, then the security countermeasure
does increase the security of a network. If the number of goal states
remains the same, then the security countermeasure is not sufcient
enough to increase the security of the network. This process can
be repeated with a set of countermeasures, to determine if sets of
countermeasures will remove attacker goal states.

Another technique for minimization analysis is fnding the smallest
subset of security countermeasures that produces a desired network
security threshold [53]. To do so, the minimum set of attacks that
can be prevented to make the network secure must be determined.
However, the authors of [53] discuss that determining this is an NP-
complete problem. This becomes incredibly infeasible especially with
large graphs with high numbers of possible attack vectors. But, if the
minimum set of attacks was known, then a set of countermeasures could
be looped through to identify the smallest number that would prevent
all of the attacks in the minimum set.

2.3.5 Criticality

Determining a compliance violation or attack vector possibility is
useful, but often it does not diferentiate between the types of threats.
There are a lot of factors to consider when handling possible threats,
such as the possibility of occurrence, the attacker’s competency, and the
repercussions from a successful attack. As an alternative (or additional)
approach to Markov process models, the authors of [60] present a seven-
stage security evaluation. This evaluation will result in security levels
of green, yellow, orange, or red to indicate the severity or criticality of
an event.

54 ■ Cybersecurity and High-Performance Computing Environments

The authors in Ref. [60] describe the seven stages as a qualitative
means of describing the network security level. Stage 1 is for
determining the criticality level of hosts. This is conducted by
processing through all of the hosts and assigning a level in terms of
high, medium, or low criticality. Stage 2 describes the severity of attacks
using the Common Vulnerability Scoring System. Stage 3 makes use
of the frst two stages to determine the damage level of an attack.
Stage 4 determines the damage level of threats. Stage 5 determines the
access complexity for threats and attacks. Stage 6 utilizes the previous
stage’s access complexity to determine the likelihood of a threat
realization. Lastly, stage 7 evaluates the network security from the
likelihood of an attack and the damages caused. Using such a system
can identify areas that require higher prioritization over others, as well
as provide a demonstrative means to aid in pushing for appropriate
countermeasures.

2.3.6 Semi-Metricity

One way to enhance the performance of graph analysis is to utilize
what is known as the metric backbone [48,61]. The metric backbone,
as the authors of [61] go on to discuss, is the minimum subgraph
of a larger graph, which also still maintains the shortest paths. The
metric backbone is used for weighted graphs, so incorporating this
in conjunction with Markov process model and shortest-path analysis
techniques could prove promising for handling the large-scale graphs.
By using the metric backbone rather than the entire generated graph,
other analysis techniques could be leveraged. The advantage of this is
that the analysis conducted on the metric backbone will be exact, or
be a good approximation of the analysis that would be conducted on
the entirety of the original graph [48,61].

For obtaining the metric backbone, the all-pairs shortest paths
problem must frst be solved [61]. As discussed in a previous section,
there has been promising work in parallelizing this problem [59].
Typically, as the authors of [59] state, computing the all-pairs shortest
paths problem can incur high runtimes of its own. However, by using
the approach presented by the authors of [59], and leveraging a HPC
cluster for the parallelization, the metric backbone can potentially be
obtained in a very reasonable amount of time.

Large-Scale Graphs for Cybersecurity ■ 55

2.4 CONCLUSIONS AND FUTURE WORK

Utilizing graphs is a promising method for approaching cybersecurity
problems. The usage of attack graphs and attack dependency
graphs can illustrate potential system vulnerabilities and the ways
an adversary can compromise a system. Both of these graph
techniques can display diferent types of information, allowing for
cybersecurity professionals to tailor which data to examine and identify
countermeasures most suitable for systems. Combining both attack
graphs and attack dependency graphs can prove even more benefcial,
allowing for more data to be examined simultaneously. Compliance
graphs are another useful technique that is particularly helpful for
industries needing to conform to multiple standards or compliance
regulations. Compliance graphs are also worthwhile for examining
cyber-physical systems that are increasingly more common.

However, processing and analyzing these graphs is a problem
that sequential or single-system machines are unable to handle. With
billions of vertices and edges needing more system resources, along
with high computation time, high-performance computing systems are
valuable candidates to utilize these graphs. Combined with parallelism,
hardware techniques, better data structures, tailoring programming
models, using libraries, or limiting the analysis scope, these graph
techniques are more accessible, as is analysis of these graphs.

The landscape for future work in this area is plentiful. Improve-
ments to graph representation have fertile ground, where various
authors have laid the groundwork for a multitude of new techniques.
Implementations and improvements of a unifed attack and attack de-
pendency graphs could prove to have promising results as well. Analysis
techniques are broad, and all have potential areas of improvement.
Markov process models are difcult to solve, but can lead to key
insight into system countermeasures. In addition to HPC clusters,
utilizing accelerators or learning techniques can simplify solutions.
Minimization analysis is highly useful for cybersecurity professionals,
since budgetary limits, time constraints, and inter-system compatibility
prevent the implementation of all possible countermeasures. This is
an NP-complete problem, so solution approaches or new estimation
algorithms can provide many benefts for professionals to incorporate
this type of analysis in their defense arsenal. Examining the usage and

56 ■ Cybersecurity and High-Performance Computing Environments

performance of a metric backbone for analysis technique is also likely
promising.

Overall, graph techniques are extraordinarily useful for cybersecu-
rity purposes. While difcult due to scalability and long computation
times, high-performance computing and innovative processing tech-
niques can reduce the typical overhead that is associated with these
tools on single-system machines.

REFERENCES

[1] Y. Yanakiev and T. Tagarev, “Governance model of a cybersecu-
rity network: Best practices in the academic literature,” in Comp-
SysTech ’20: Proceedings of the 21st International Conference on
Computer Systems and Technologies ’20, June 2020, pp. 27–34, doi:
10.1145/3407982.3407992.

[2] O. B. Fredj, A. Mihoub, M. Krichen, O. Cheikhrouhou, and A. Derhab,
“Cyber security attack prediction: A deep learning approach,” in SIN
2020: 13th International Conference on Security of Information and
Networks, November 2020, pp. 1–6, doi: 10.1145/3433174.3433614.

[3] J. Hale, P. Hawrylak, and M. Papa, “Compliance method for a cyber-
physical system.” U.S. Patent Number 9,471,789, Oct. 18, 2016.

[4] N. Baloyi and P. Kotze, “Guidelines for data privacy compliance: A
focus on cyberphysical systems and internet of things,” Presented at the
SAICSIT, Skukuza South Africa, 2019, doi: 10.1145/3351108.3351143.

[5] E. Allman, “Complying with compliance: Blowing it of is not an option,”
ACM Queue, vol. 4, no. 7, pp. 18–21, 2006.

[6] C. Phillips and L. P. Swiler, “A graph-based system for network-
vulnerability analysis,” Proceedings of the New Security Paradigms
Workshop, vol. Part F1292, pp. 71–79, 1998, doi: 10.1145/310889.310919.

[7] B. Schneier, “Modeling security threats,” Dr. Dobb’s Journal, vol. 24, no.
12, 1999.

[8] X. Ou, W. F. Boyer, and M. A. Mcqueen, “A scalable approach to attack
graph generation,” pp. 336–345, 2006.

[9] J. Zhang, S. Khoram, and J. Li, “Boosting the performance of FPGA-
based graph processor using hybrid memory cube: A case for breadth
frst search,” FPGA 2017- Proceedings of 2017 ACMSIGDA International
Symposium of Field-Program. Gate Arrays, pp. 207–216, 2017, doi:
10.1145/3020078.3021737.

https://doi.org/10.1145/3407982.3407992
https://doi.org/10.1145/3407982.3407992
https://doi.org/10.1145/3433174.3433614
https://doi.org/10.1145/3351108.3351143
https://doi.org/10.1145/310889.310919
https://doi.org/10.1145/3020078.3021737
https://doi.org/10.1145/3020078.3021737

Large-Scale Graphs for Cybersecurity ■ 57

[10] J. Berry and B. Hendrickson, “Graph analysis with high perfor-
mance computing,” Computing in Science & Engineering, 2007, doi:
10.1109/MCSE.2008.56.

[11] S. Ainsworth and T. M. Jones, “Graph prefetching using data structure
knowledge,” Proceedings of International Conference on Supercomputer,
vol. 01–03-June, 2016, doi: 10.1145/2925426.2926254.

[12] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing, “Automated
generation and analysis of attack graphs,” Proceeding 2002 IEEE
Symposium on Security and Privacy, Berkeley, CA, pp. 254–265, 2002.

[13] N. Ghosh and S. K. Ghosh, “A planner-based approach to generate and
analyze minimal attack graph,” Applied Intelligence, vol. 36, no. 2, pp.
369–390, 2012, doi: 10.1007/s10489-010-0266-8.

[14] M. Li, P. Hawrylak, and J. Hale, “Concurrency strategies for attack
graph generation,” Proceedings of 2019 2nd International Conference on
Conference on Data Intelligence and Security, ICDIS 2019, pp. 174–179,
2019, doi: 10.1109/ICDIS.2019.00033.

[15] N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic security risk
management using Bayesian attack graphs,” IEEE Transactions on
Dependable and Secure Computing, vol. 9, no. 1, pp. 61–74, 2012, doi:
10.1109/TDSC.2011.34.

[16] L. Muñoz-Gonzalez, D. Sgandurra, A. Paudice, and E. C. Lupu,
“Efcient attack graph analysis through approximate inference,” ACM
Transactions on Privacy and Security, vol. 20, no. 3, 2017, doi:
10.1145/3105760.

[17] K. Kaynar and F. Sivrikaya, “Distributed attack graph generation,”
IEEE Transactions on Dependable and Secure Computing, vol. 13, no.
5, pp. 519–532, 2016, doi: 10.1109/TDSC.2015.2423682.

[18] K. Cook, T. Shaw, J. Hale, and P. Hawrylak, “Scalable attack graph
generation,” Proceedings of 11th Annual Cyber and Information Security
Research Conference, CISRC 2016, 2016, doi: 10.1145/2897795.2897821.

[19] S. Jajodia, S. Noel, and B. O’Berry, Topological Analysis of Network
Attack Vulnerability, vol. 5. New York: Springer-Verlag, 2005.

[20] S. Noel and S. Jajodia, “Managing attack graph complexity through
visual hierarchical aggregation,” in Proceedings of the 2004 ACM
Workshop on Visualization and Data Mining for Computer Secu-
rity - VizSEC/DMSEC ’04, New York, 2004, pp. 109–109, doi:
10.1145/1029208.1029225.

[21] M. Albanese and S. Jajodia, “A graphical model to assess the impact of
multi-step attacks,” The Journal of Defense Modeling and Simulation,
vol. 15, no. 1, pp. 79–93, 2018, doi: 10.1177/1548512917706043.

https://doi.org/10.1109/MCSE.2008.56
https://doi.org/10.1109/MCSE.2008.56
https://doi.org/10.1145/2925426.2926254
https://doi.org/10.1007/s10489-010-0266-8
https://doi.org/10.1109/TDSC.2011.34
https://doi.org/10.1109/TDSC.2011.34
https://doi.org/10.1145/3105760
https://doi.org/10.1145/3105760
https://doi.org/10.1109/TDSC.2015.2423682
https://doi.org/10.1145/2897795.2897821
https://doi.org/10.1145/1029208.1029225
https://doi.org/10.1145/1029208.1029225
https://doi.org/10.1177/1548512917706043
https://doi.org/10.1109/ICDIS.2019.00033

58 ■ Cybersecurity and High-Performance Computing Environments

[22] G. Louthan, P. Hardwicke, P. Hawrylak, and J. Hale, “Toward
hybrid attack dependency graphs,” International Conference Proceedings
Series - ACM, 2011, doi: 10.1145/2179298.2179368.

[23] A. Natarajan, Peng Ning, Yao Liu, S. Jajodia, and S. E. Hutchinson,
“NSDMiner: Automated discovery of network service dependencies,” in
2012 Proceedings IEEE INFOCOM, March 2012, pp. 2507–2515, doi:
10.1109/INFCOM.2012.6195642.

[24] P. Yao, L. Zheng, X. Liao, H. Jin, and B. He, “An efcient
graph accelerator with parallel data confict management,” PACT ’10:
International Conference on Parallel Architectures and Compilation
Techniques, 2018, doi: 10.1145/3243176.3243201.

[25] G. Dai, Y. Chi, Y. Wang, and H. Yang, “FPGP: Graph processing
framework on FPGA: A case study of breadth-frst search,” FPGA 2016-
Proceedings of 2016 ACMSIGDA International Symposium on Field-
Program. Gate Arrays, pp. 105–110, 2016, doi: 10.1145/2847263.2847339.

[26] S. Arifuzzaman and M. Khan, “Fast parallel conversion of edge list to
adjacency list for large-scale graphs,” in HPC ’15: Proceedings of the
Symposium on High Performance Computing, San Diego, CA, April 2015,
pp. 17–24.

[27] N. Alon, R. Yuster, and U. Zwick, “Finding and counting given length
cycles,” Algorithmica, vol. 17, pp. 209–223, 1997.

[28] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic
progressions,” in Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, New York, NY, 1987, pp. 1–6.

[29] “Property Maps | The Boost Graph Library | InformIT.” https://www.
informit.com/articles/article.aspx?p=25777&seqNum=6 (accessed Apr.
11, 2021).

[30] X. Yu et al., “The construction of large graph data structures in a scalable
distributed message system,” in HPCCT 2018: Proceedings of the 2018
2nd High Performance Computing and Cluster Technologies Conference,
June 2018, pp. 6–10, doi: 10.1145/3234664.3234682.

[31] P. Liakos, K. Papakonstantinopoulou, and A. Delis, “Memory-optimized
distributed graph processing through novel compression techniques,” in
CIKM ’16: Proceedings of the 25th ACM International Conference on
Information and Knowledge Management, October 2016, pp. 2317–2322,
doi: 10.1145/2983323.2983687.

[32] “Parallel BGL Distributed Adjacency List -1.73.0.” https://www.boost.
org/doc/libs/1_73_0/libs/graph_parallel/doc/html/distributed_
adjacency_list.html (accessed April 11, 2021).

https://www.informit.com
https://www.informit.com
https://www.boost.org
https://www.boost.org
https://www.boost.org
https://doi.org/10.1145/2179298.2179368
https://doi.org/10.1109/INFCOM.2012.6195642
https://doi.org/10.1109/INFCOM.2012.6195642
https://doi.org/10.1145/3243176.3243201
https://doi.org/10.1145/2847263.2847339
https://doi.org/10.1145/3234664.3234682
https://doi.org/10.1145/2983323.2983687

Large-Scale Graphs for Cybersecurity ■ 59

[33] “Parallel BGL Distributed Property Map -1.64.0.” https://www.boost.
org/doc/libs/1_64_0/libs/graph_parallel/doc/html/distributed_
property_map.html (accessed April 11, 2021).

[34] M. Besta, D. Stanojevic, T. Zivic, J. Singh, M. Hoerold, and T. Hoefer,
“Log(graph): A near-optimal high-performance graph representation,” in
PACT ’18: Proceedings of the 27th International Conference on Parallel
Architectures and Compilation Techniques, New York, NY, November
2018, pp. 1–13.

[35] J. Balaji and R. Sunderraman, “Graph topology abstraction for
distributed path queries,” in HPGP ’16: Proceedings of the ACM
Workshop on High Performance Graph Processing, May 2016, pp. 27–34,
doi: 10.1145/2915516.2915520.

[36] “An Overview of the Parallel Boost Graph Library -1.75.0.”
[37] “The Boost Graph Library -1.75.0.”
[38] “Boost Graph Library: Converting Existing Graphs to BGL -1.75.0.”
[39] J. Yan, G. Tan, and N. Sun, “Exploiting fne-grained parallelism in graph

traversal algorithms via lock virtualization on multi-core architecture,”
The Journal of Supercomputing, vol. 69, no. 3, pp. 1462–1490, September
2014, doi: 10.1007/s11227-014-1239-1.

[40] N. Edmonds, J. Willcock, A. Lumsdaine, and T. Hoefer, “Design of a
large-scale hybrid-parallel graph library,” International Conference on
High Performance Computing Symposium, Goa, 2010.

[41] N. Edmonds, “Active messages as a spanning model for parallel graph
computation,” 2013.

[42] “Graph Partitioning | Our Pattern Language.”
[43] “ParMETIS - Parallel Graph Partitioning and Fill-reducing Matrix

Ordering | Karypis Lab.”
[44] P. Pacheco, An Introduction to Parallel Programming, Amsterdam,

Netherlands: Elsevier, 2011.
[45] G. Jost and H. Jin, “Comparing the OpenMP, MPI, and Hybrid

Programming Paradigms on an SMP Cluster,” p. 10.
[46] N. Doekemeijer, “A survey of parallel graph processing frameworks,”

p. 30.
[47] G. Malewicz et al., “Pregel: A system for large-scale graph processing,”

June 2010, p. 11, doi: 10.1145/1807167.1807184.
[48] V. Kalavri, “Performance optimization techniques and tools for dis-

tributed graph processing,” PhD, KTH Royal Institute of Technology,
Stockholm, Sweden, 2016.

https://www.boost.org
https://www.boost.org
https://www.boost.org
https://doi.org/10.1145/2915516.2915520
https://doi.org/10.1007/s11227-014-1239-1
https://doi.org/10.1145/1807167.1807184

60 ■ Cybersecurity and High-Performance Computing Environments

[49] K. Ammar and T. Ozsu, “Experimental analysis of distributed graph
systems,” Proceedings of VLDB Endowment, vol. 11, no. 10, June 2018,
doi: 10.14778/3231751.3231764.

[50] R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex: A
survey of vertex-centric frameworks for large-scale distributed graph
processing,” ACM Computing Surveys, vol. 48, no. 2, 2015, doi:
10.1145/2818185.

[51] K. Zeng, “Cyber attack analysis based on Markov process model,” 2017.
[52] S. Abraham and S. Nair, “Predictive cyber security analytics framework :

A non-homogenous Markov model for security quantifcation,” pp. 195–
209, January 2014, doi: 10.5121/csit.2014.41316.

[53] S. Jha, O. Sheyner, and J. Wing, “Two formal analyses of attack graphs,”
Proceedings of Computer Security Foundations Workshop, vol. 2002-
January, pp. 49–63, 2002, doi: 10.1109/CSFW.2002.1021806.

[54] B. Chen, Y. Liu, S. Li, and X. Gao, “Attack intent analysis method based
on attack path graph,” The ACM International Conference Proceeding
Series, pp. 97–102, 2019, doi: 10.1145/3371676.3371680.

[55] L. P. Swiler, C. Phillips, D. Ellis, and S. Chakerian, “Computer-attack
graph generation tool,” in Proceedings DARPA Information Survivability
Conference and Exposition II. DISCEX’01, Anaheim, CA, 2001, vol. 2,
pp. 307–321, doi: 10.1109/DISCEX.2001.932182.

[56] E. Hogan, J. R. Johnson, and M. Halappanavar, “Graph coarsening
for path fnding in cybersecurity graphs,” The ACM International
Conference Proceeding Series, 2013, doi: 10.1145/2459976.2459984.

[57] D. Dimov and Y. Tzonev, “Pass-the-hash: One of the most prevalent yet
underrated attacks for credentials theft and reuse,” in 18th International
Conference on Computer Systems and Technologies, 2017, pp. 149–154,
doi: 10.1145/3134302.3134338.

[58] Z. Ruifang, J. Tianyi, and Z. Haitao, “Application of improved Dijkstra
algorithm in two-dimensional path planning problem,” The ACM
International Conference Proceeding Series, pp. 211–215, 2019, doi:
10.1145/3378065.3378106.

[59] J. W. Kim, H. Choi, and S. H. Bae, “Efcient parallel all-pairs shortest
paths algorithm for complex graph analysis,” The ACM International
Conference Proceeding Series, 2018, doi: 10.1145/3229710.3229730.

https://doi.org/10.14778/3231751.3231764
https://doi.org/10.5121/csit.2014.41316
https://doi.org/10.1145/2818185
https://doi.org/10.1145/2818185
https://doi.org/10.1145/3371676.3371680
https://doi.org/10.1109/DISCEX.2001.932182
https://doi.org/10.1145/2459976.2459984
https://doi.org/10.1145/3378065.3378106
https://doi.org/10.1145/3378065.3378106
https://doi.org/10.1145/3134302.3134338
https://doi.org/10.1145/3229710.3229730
https://doi.org/10.1109/CSFW.2002.1021806

Large-Scale Graphs for Cybersecurity ■ 61

[60] I. Kotenko and M. Stepashkin, “Attack graph based evaluation of network
security,” Lecture Notes in Computer Science Subseries Lecture Notes
in Artifcial Intelligence and Lecture Notes in Bioinformatics, vol. 4237
LNCS, pp. 216–227, 2006, doi: 10.1007/11909033_20.

[61] V. Kalavri, T. Simas, and D. Logothetis, “The shortest path is not always
a straight line: Leveraging semi-metricity in graph analysis,” Proceedings
of VLDB Endowment, vol. 9, no. 9, 2016, doi: 10.14778/2947618.2947623.

https://doi.org/10.1007/11909033_20
https://doi.org/10.14778/2947618.2947623

https://taylorandfrancis.com

C H A P T E R 3

OMNI at the Edge
Elizabeth Bautista
Lawrence Berkeley National Laboratory

Nitin Sukhija
Slippery Rock University of Pennsylvania

Melissa Romanus, Thomas Davis, and Cary Whitney
Lawrence Berkeley National Laboratory

CONTENTS

3.1 Introduction . 64
3.2 Background . 65
3.3 OMNI Architecture and Technologies . 68

3.3.1 OMNI k3s Architecture . 69
3.3.2 Use of Edge Computing in OMNI 71
3.3.3 Securing Small Devices at the Edge 72
3.3.4 Function as a Service at the Edge 73
3.3.5 Analysis at the Edge for Diagnostic and

Troubleshooting Issues . 76
3.4 Case Study of Benefts of OMNI Data to NERSC Data

Center . 77
3.4.1 $2M Mechanical Substation Cost Savings 77
3.4.2 Perlmutter Power Upgrade from 12.5 to 25.0 MW 79
3.4.3 Edge Service to Mitigate California’s Public

Safety Power Shutdown (PSPS) 81
3.5 Ongoing and Future Work . 82
References . 83

DOI: 10.1201/9781003155799-3 63

https://doi.org/10.1201/9781003155799-3

64 ■ Cybersecurity and High-Performance Computing Environments

3.1 INTRODUCTION

The growing scale of high-performance computing (HPC) systems and
their support infrastructure coupled with the proliferation of sensors
and system monitoring software has led to a deluge of operational data
in modern HPC data centers [1]. At NERSC, these operational data
are collected from thousands of sources in the data center ranging from
environmental control systems to single-node memory usage and stored
into a single data warehouse, the Operations Monitoring and Notifca-
tion Infrastructure (OMNI). Storing these data into OMNI allows us to
analyze and correlate for systems monitoring and research purposes in a
more efcient way; however, there are many challenges associated with
gathering complex time series data from so many heterogeneous sources
in near-real time, such as latency, bandwidth, privacy, infrastructure, or
availability. Further, we need to ensure the security of the data between
internal staf: Groups should not be able to access data of other groups
and provide a secure framework to those who are from external sources
and want to perform research on our data.

Within the OMNI system, challenges associated with aggregating
all data sources into a standalone data warehouse are mitigated using
edge computing technologies. For example, data preparation of high-
volume, high-velocity metrics from HPC systems is performed at
containerized gateway nodes at the local edge before being forwarded
to OMNI. These nodes also ofer local bufering of data in the event
that data transfer to OMNI is unavailable due to network outages or
if the data warehouse has been compromised by hardware failure or
cyberthreat. We also have to ensure that from a cybersecurity aspect,
that data that go through one device to another or move from one
internal network to another are securely transported to OMNI.

In this chapter, we will discuss the NERSC high-performance
computing data center and using edge computing services to securely
send data to OMNI from heterogeneous sources. We will then detail
the high-availability OMNI infrastructure and its use of state-of-the-
art edge computing technologies for collecting, analyzing, and securing
extremely high-volume, continuous 24 × 7 data in near-real time. We
will also discuss the cybersecurity aspects of how we keep these data
secure not only from each staf who owns the data, but also through
various devices and networks. We will discuss internal and external

OMNI at the Edge ■ 65

access policies put in place and the plan to make these data available
for the public for crowdsourcing analysis. We will then provide use cases
that demonstrate how the availability of OMNI data has benefted the
overall NERSC data center, from a facilities and machine perspective
as well as from a cybersecurity standpoint. Finally, we will outline the
ongoing and future work, including upgrades being made to the data
warehouse for the upcoming Perlmutter supercomputer – a system that
will be 3–4× the size of our current HPE/Cray Cori system.

3.2 BACKGROUND

NERSC is the mission scientifc computational facility for the Ofce
of Science in the U.S. Department of Energy (DOE) and has operated
many HPC systems since its inception at Lawrence Livermore National
Laboratory in 1974. Sixteen NERSC systems have appeared on the
TOP500 [2] list of fastest computing systems in the world. NERSC’s
mission is to provide HPC and compute resources to science users
at high availability with high utilization of the machines in order to
further the scientifc research supported by the DOE Ofce of Science.
The current NERSC HPC data center is located at Shyh Wang Hall.

The building is a 140,000-gross-square-foot (GSF) facility that
houses both the data center and ofce spaces for Berkeley Lab
Computing Sciences division employees spanning NERSC, the Scien-
tifc Computing Division who manages the Energy Sciences Network
(ESnet), and the Computational Research Division (CRD). Shyh Wang
Hall comprises four foors – two ofce foors (28,000 square feet each),
one machine room foor (20,000 square feet with room to expand up
to 28,000 square feet), and one mechanical level. It is outftted with
a seismic subfoor and is a LEED®-certifed Gold facility, averaging a
monthly Level 2 Power Usage Efectiveness (PUE) ratio of 1.07 over the
past year. A Level 2 PUE is defned to be measured from the power
distribution unit (PDU) outputs in terms of equipment and utility
inputs in terms of facility and is collected at an interval of hourly and
daily. Shyh Wang Hall has recently completed upgrading its power
capacity and facility capabilities from 12.5 to 25 MW (megawatts) to
prepare for the installation of the next HPC system, Perlmutter [10,11].

The challenges of properly managing the operational data at the
scale of HPC data centers are complex given their distributed nature

66 ■ Cybersecurity and High-Performance Computing Environments

and, when considering latency, cybersecurity, workfows, and volume
requirements, can compound existing issues. Changes in the compute
environment can occur at nano- and microsecond scales. Therefore,
we have to consider how to transmit and store data, at what point
should the data be processed or encrypted, and how workfows should
be coordinated as data are transferred across devices and networks.
Further, from a business perspective, how much time in terms of stafng
will this take and at what costs?

What types of data are considered operational data? Examples
include time series data from the environment (e.g., temperature,
power, humidity levels, and particle levels), monitoring data (e.g.,
network speeds, latency, packet loss, utilization, or those that monitor
the flesystem for disk write speeds, I/O, and CRC errors), and event
data (e.g., system logs, console logs, hardware failure events, and
power events, essentially anything that has a start and end time). The
reporting rate of these data often depends on several factors, including
individual properties of the sensor or machine, the size of the data,
whether or not continuous monitoring is necessary, and how quickly it
is needed for analysis. Some systems do not report data by default and
must be instrumented by system administrators.

In designing OMNI, we wanted the computation to occur as close
to the source as possible. This minimizes overall latency for real-time
analysis and archiving results. Figure 3.1 illustrates the overall data
pipeline of the OMNI system for the Perlmutter HPC system; data
from the HPC system along with multiple other sources provide data
from Prometheus end points or a telemetry API. Data are transformed
at this edge and can either go to Elasticsearch or VictoriaMetrics where
they can be queried by Grafana or Kibana, two visualization tools, or
can go to vmagent that handles sending the information to various
areas for alerting. In this case, data are ready to be analyzed in real
time by operations staf who manage the data center and need to know
the immediate health of every system within their responsibilities.
At the same time, a second stream of these data is sent directly to
Elasticsearch and VictoriaMetrics for online archiving.

OMNI’s overall design also considers where we will implement
the appropriate cybersecurity practices. Within the OMNI network,
operations staf have control over the types of protocols implemented.
Outside of OMNI, however, protocols may change without their
knowledge or control; therefore, it is policy to require anyone wanting

OMNI at the Edge ■ 67

Figure 3.1 Monitoring data pipeline for the Perlmutter HPC system to
OMNI.

to transmit data to OMNI to use the proper security protocols
such as transport layer security (TLS) and anyone logging into the
infrastructure to use a modifed version of secure sockets shell (SSH)
that allows the NERSC cybersecurity team to record and analyze
the content of interactive SSH sessions. A multi-factor authentication
(MFA) token is also required for logging in externally through a
gateway. Further, non-secure protocols have been isolated externally
and from each other. For example, the onewire devices (measures
temperature and humidity on racks) are on a diferent network than the
power distribution units (PDUs) or the Modbus protocol-based devices.

For daily operational considerations, such as when a user needs to
see their data, or how workfows are coordinated, being highly available
is crucial. When the team designed OMNI, it was meant for the system
to continue collecting data as long as the facility has power. It is the frst
system to come up after stable power is confrmed and the last system
to be turned of during a facility power maintenance. However, OMNI’s
main purpose was to be a data archiver and a real-time data provider.
Operations staf would need an immediate analysis of the data in real
time to monitor the health of the facility and its assets. OMNI is also
the mechanism to store data in one location to correlate multiple data
sources for decision making. As such, the data have been separated so
that the source and types of data are processed diferently and more
efciently. For example, slower and older data sources such as Modbus
or onewire are processed and routed to Elasticsearch. Any data that

68 ■ Cybersecurity and High-Performance Computing Environments

have enhancements attached to them such as IP address and hostname
or are text based also go to Elasticsearch. Newer, faster, and denser
data sources, as well as any data that cannot be converted are ingested
and routed to VictoriaMetrics.

Data in Elasticsearch or VictoriaMetrics are stored for immediate
online access and queried through Grafana and Kibana. Datasets have
diferent lifetimes within the immediate storage areas. VictoriaMetrics
has more efcient compression rates so that data can be accessible
online for a longer time frame. OMNI is confgured with separate virtual
machine (VM) clusters that hold diferent datasets. For example, node
performance metrics may be online for 6 months, but power data can
be kept for 5 years depending on the user’s required indexing rate.
Determining how long a user needs to have immediate access to their
data helps to streamline their workfow. In the above examples, the
user of power data wants to analyze multiple years of data; however,
he does not need them to be that dense. Power data are currently
collected one data point per 5 to 30 seconds, depending on the device.
These are very dense data and immediately stored in archival storage,
the high-performance storage system (HPSS), so that the team can
continue to have access to the original raw data. However, for the user’s
needs and immediate analysis, the data are frst processed by indexing
diferent datasets that have data points every hour for one user and
every 30 minutes for another user. With the new indexes, each user
can immediately analyze historical data based on his needs without
processing the dataset frst or waiting for the processing to occur before
visualizing them in Grafana or Kibana.

In designing OMNI, a big consideration is cost and where to invest
our yearly budget. As such, the decision made is to use open-source
software, a 3-year cycle of hardware refresh, and in-house staf who
can manage the cluster. In terms of storage, the team leveraged HPSS
as their archival needs. This helps mitigate costs for online, immediate
storage that is kept on fast disks, while the older or raw data can be
stored in the long-term storage.

3.3 OMNI ARCHITECTURE AND TECHNOLOGIES

OMNI is a fexible big data solution to collect, manage, and analyze
data related to monitoring of extreme-scale computing systems [5].

OMNI at the Edge ■ 69

This infrastructure facilitates a single location for storing the hetero-
geneous datasets and is comprised of two highly scalable, fast, and
efcient time series databases: Elasticsearch [6] for logs, data requiring
strings, and small, low-volume metric sets and VictoriaMetrics [4] for
capturing high-volume metric sets from Prometheus [7]. Examples of
operational data include time series data from the environment (e.g.,
temperature, power, humidity levels, and particle levels), monitoring
data (e.g., network speeds, latency, packet loss, utilization, or those
that monitor the flesystem for disk write speeds, I/O, and CRC errors),
and event data (e.g., system logs, console logs, hardware failure events,
and power events, essentially anything that has a start and end time).
The network backbone of OMNI has recently been upgraded from
a static network to a software-defned, reconfgurable network with
spine–leaf topology.

3.3.1 OMNI k3s Architecture

The primary architecture of the newly upgraded OMNI system is
built on k3s, a lightweight Kubernetes distribution [3]. As shown in
Figure 3.2, OMNI consists of multiple k3s clusters, each of which is self-
contained with master and worker nodes and its own control plane. In
OMNI, a k3s cluster can consist of several diferent types of bare-metal
hardware as well as virtual machines. Virtual machines are utilized
for etcd/master/control plane pods. Every cluster consists of the
same monitoring infrastructure; this monitoring infrastructure consists
of a VictoriaMetrics operator (vm-operator); kube-event; kube-state-
metrics; Loki/Promtail; Prometheus node exporter; for nodes with
IPMI, a Prometheus IPMI exporter; and for nodes with SATA/NVME
drives, a Prometheus smartctl exporter. In addition, OMNI utilizes
kubernetes-mixin, a set of Grafana dashboards and Prometheus alerts
for Kubernetes, in order to oversee the cluster visually using our
on-prem Grafana deployment.

The vm-operator is used to manage a VictoriaMetrics agent
(vmagent) instance on each k3s cluster. The vmagent, a core
component of VictoriaMetrics, is used to quickly and efciently scrape
metrics from Prometheus-compatible exporters in VictoriaMetrics. It
can perform operations such as reading Prometheus confgurations and
relabeling of data before writing into the VictoriaMetrics backend.

70 ■ Cybersecurity and High-Performance Computing Environments

Figure 3.2 OMNI k3s self-contained clusters.

In the event that the remote VictoriaMetrics backend is unreachable,
it can bufer collected metrics at the source and then send them when
the backend can be reached again.

The omni-core-k3s cluster in Figure 3.2 is used to manage the core
services of the OMNI nodes and switches, while omni-k3s handles all
of the Modbus and Rancher gateway nodes. In the future, the Redis
database as well as the core Grafana services will be managed from this
cluster. Vmetric-k3s is a cluster dedicated to VictoriaMetrics, running
several separate VictoriaMetrics clusters within it (vmclusters), as
follows: (1) omni-vmetric for Prometheus metrics; (2) cori-sedc-vmetric
for collecting Cray HPC System Environmental Data metrics from
the NERSC Cori machine; (3) cori-vmetric for collecting Prometheus
node exporter information, data from the lightweight distributed
management system (LDMS), and snmp data from nodes on Cori;
and (4) crt-vmetric for collecting facilities information about building
power, temperatures, and BACnet data – BAC: Building Automation
and Control.

A core tenet of the OMNI system is to be highly available and
accessible 24 × 7. The use of multiple small clusters via Kubernetes
gives greater fexibility and stability to the system; i.e., you can
take down a small cluster, work on it, and bring it back without
impacting the rest of OMNI. It also helps to focus and distribute
the workloads, allowing for less bottlenecks and fner-grained tuning
of Kubernetes infrastructures to meet the specifc demands of the
workloads it is servicing. This is especially important with the
upcoming Perlmutter supercomputer, as the volume and velocity of
metrics will be exponentially greater than those of the current NERSC
system, Cori. Using Ansible to map a k3s cluster to an oVirt data
center/cluster allows for easy creation and deployment of new clusters
to the system, as OMNI continues to grow and expand.

OMNI at the Edge ■ 71

Another important aspect of separating workloads across multiple
clusters is that it lends itself to an additional layer of cybersecurity via
access control. First, user access to each cluster can be granted on an
individual or group level. Clusters involved in backend services have
no need to be accessed by end users, and thus, restricting them from
even accessing that cluster makes it less likely that they are able to
compromise the system. Even within a k3s cluster, user access may be
further restricted; i.e., the cluster administrator can control what users
may access which parts of the cluster. In addition to user access control,
each cluster may have a unique set of hosts (bare metal or virtual) and
sensors that are allowed to access it or that are contained within it. If
a host machine becomes compromised, it would potentially only afect
the specifc k3s clusters that it is interacting with. If for any reason the
master node of one the k3s clusters were to be compromised due to a
cyberattack, the attacker would not be able to access and do harm to
all of the OMNI system; instead, it would be contained to the services
and virtual hosts within that specifc cluster as well as the hosts or
sensors that it communicates with.

3.3.2 Use of Edge Computing in OMNI

The deployment of gateway and other “local edge” nodes as container-
ized k3s pods allows us to monitor all computing nodes, services, and
applications related to the OMNI architecture. In OMNI, data from
sensors and metrics from machines can be considered the extreme edge
of the network. Data from the HPC systems – containing thousands of
metrics per second – are prepared and sent to OMNI via containerized
gateway nodes located at the local edge. These gateway nodes utilize
k3s, a lightweight Kubernetes distribution [3] , and agents of Victoria-
Metrics [4]. Deployment via k3s allows OMNI to scale and reconfgure
itself to meet the increased demands or in the events of faults or failures.
It also provides a means of monitoring the health of the OMNI network.

Other uses of edge computing in OMNI include performing data
processing at the edge, e.g., on an unused compute node where it
is generated or at the gateway node where it is prepped, and then
storing the computational results into OMNI. Oftentimes, this allows
high-volume metrics to be fattened or downsampled, resulting in less
network trafc as well as lower latency queries when querying OMNI

72 ■ Cybersecurity and High-Performance Computing Environments

data for monitoring purposes on the other end. In some instances,
the nature of the data sent to OMNI is sensitive, e.g., system log
(syslog) information from the HPC systems, and requires scrubbing
and encryption before they can be sent across the network and stored
into the more widely available data warehouse. Pre-processing sensitive
data where they are generated and encrypting them for transfer over
the network provides an important level of cybersecurity that ensures
non-privileged users do not have access to passwords or information
that could reveal vendor-specifc details of the HPC machines or make
them vulnerable to cyberattacks.

3.3.3 Securing Small Devices at the Edge

From a cybersecurity point of view, edge computing can be more
vulnerable depending on its location in the infrastructure. In OMNI’s
case, there are small sensors such as onewire devices or older devices
that use Modbus that collect and process data such as temperatures,
humidity, and power, from UPS, various panels, and substations. These
devices can be very small and unable to hold the software required
to secure the device using current security policies. They can also be
limited in protocols, so it can be a challenge to monitor trafc through
them. Further, communicating with these devices can be slow and use
older protocols. In designing where in the infrastructure these type of
devices should be placed, there are two situations to consider.

The frst scenario to consider is should these devices be placed in
a wired or wireless network? The wireless infrastructure is controlled
by the Lab, and the process automatically chooses an access point
that is the strongest and closest to the device attempting to get an
Internet Protocol (IP) address. Placing any of these devices on a
wireless network has a risk that the strongest access point could be the
public one. This particular network is usually hazardous and prone to
attacks, the type of attacks that can potentially render a small device
useless. As a result, the devices are installed via a wired, internal,
isolated network. Nothing from the outside can reach them, and data
can only be transmitted to the edge service and then to OMNI.

A second scenario is that these devices may not have the most up-
to-date transmission speeds. In one situation, a series of sensors did not
have the technology to support a virtual machine or the speed of the

OMNI at the Edge ■ 73

network card. It isn’t that it was an old device. In standard construction
of a building, while these devices are available, the industry just found
no need to have them be up to date. They used protocols that were
available many years ago, and it continued to work in many instances.
However, in a state-of-the-art data center, it was inadequate and there
are no replacements in existence. As much as the team wanted to secure
these devices in a VM and make them useful, it was not possible,
so instead, they used a small node, added it to the network, and
installed the Modbus collectors on the node. The device connected
to the node took advantage of the more up-to-date hardware and was
able to transmit its data at the speed of the existing network.

3.3.4 Function as a Service at the Edge

To provide smaller devices with an edge computing service and security,
the team implemented Function as a Service (FaaS) ofered on a virtual
machine (VM) after the device(s) and is the frst spot accessed by the
data before OMNI. On this VM, a user can authenticate and query
what the data are (which are read from the OMNI backend like elastic)
without letting them actually perform operations on the elastic cluster
itself. While most users of OMNI are NERSC staf, there are users
who are vetted, are collaborators, are afliates, etc. These special users
are not necessarily external staf, but they are outside the NERSC
organization. The team has provided another layer of security for these
users, especially if they are accessing data from the small devices.

Once authenticated, users are able to perform calculations, run
applications, and view the devices without additional infrastruc-
ture using FaaS. The software we used can be downloaded from
https://fnproject.io. It provides users simpler access to these data
because the API is defned with data specifcations, not just access
specifcations. For the user, it means the data sources can change, but
the software to process the data does not. For the administrators, they
do not need to defne how the data are stored in OMNI, as they are
already processed prior to writing to OMNI. They can also add devices
as needed and still route the data through FaaS. Having this static
software insulates users from change.

FaaS was originally implemented for a group of users in the
Energy Technologies Division (ETD), to aggregate and compute the

https://fnproject.io

74 ■ Cybersecurity and High-Performance Computing Environments

Figure 3.3 Graph samples produced by Grafana to calculate power
utilization efciency with diferent requirements. The top graph shows
a moving average in 5-minute intervals with 30-minute samples. The
second graph shows a PUE calculation of 5-minute intervals.

power utilization efciency of the facility (Figure 3.3). In 2018, ETD
transitioned to software called SkySpark [9] from SkyFoundry [8]. No
longer needed for analysis or the calculation of PUE, FaaS was still
needed to aggregate data from multiple sources in the building into
a platform that automates the calculation and data analysis. Data
included those from facilities, the HPC systems, rack-level IT systems,
and cooling and performance data from the building management
system (BMS). SkySpark also detects anomalies in the operation and
allows ETD to optimize controls of the facility directly via the BMS
(Figure 3.4). For the preparation of Perlmutter, SkySpark will use the
data to predict and optimize control sequences prior to its installation
and even through additional power expansion of the facility [13].

Water usage efciency (WUE) monitoring has also leveraged
FaaS. As with the calculation of PUE, FaaS aggregates data from
various sources, with the bulk of additional data from the Building
Automation and Control Network (BACnet), devices that feed data
into the BMS system (Figure 3.5). Developed under the auspices of
the American Society of Heating, Refrigerating and Air-Conditioning

OMNI at the Edge ■ 75

Figure 3.4 PUE monitoring scatter plot produced by SkySpark. Each dot
is a 15-minute calculated event. Light Grey is the baseline period, and
Dark Grey the selected monitoring period. Black is the 95th percentile
indicator for the baseline scatter. The x -axis is the overall average wet-
bulb temperature. The wet-bulb temperature is the lowest temperature
to which air can be cooled by the evaporation of water into the air at
a constant pressure. This graph is telling us that during March 2021,
our PUE compared with baseline, with only 30 or so 15-minute periods
above the target PUE of 1.1.

Engineers (ASHRAE), this is another standard protocol whose data
are transformed and aggregated through FaaS to create various reports
like the one above. Prior to feeding these data into SkySpark, an edge
service processes all the data by converting them to a standard format,
or by performing calculations to clean up the data that could be in
diferent metrics, or by performing some analysis should some of the
data not be in the same time frame. For example, various devices on
the BACnet may not be able to transmit at the same speeds as all the
other devices; therefore, data reach the edge service at diferent times.
The process ensures that all the data for a time space are available. If
OMNI expects 15 minutes of data, the edge service waits until all of
the data are within the same 15-minute time stamp before processing
and sending along to OMNI or SkySpark.

The edge service provided by FaaS has been advantageous in being
able to calculate PUE and WUE in smaller increments. For PUE, most

76 ■ Cybersecurity and High-Performance Computing Environments

Figure 3.5 Water usage efciency graph produced by SkySpark. Each
dot is a 15-minute calculated event. Light Grey is the baseline period,
and Dark Grey the selected monitoring period. Black is the 95th
percentile indicator for the baseline scatter. WUE measures the rate
of water evaporation versus electrical energy consumed, resulting in a
measure of L/kWh. Regional weather heavily determines WUE results,
so each location will have a diferent good versus wasteful performance
threshold. NERSC is still in the phase of gathering data to determine
a stable baseline and performance target. In the future, NERSC would
like to be able to calculate this as efciently as PUE.

facilities calculate it as an annual average. NERSC is able to confdently
calculate PUE in 15-minute increments when needed. Although
calculation of WUE is fairly new, results are promising and will help in
managing the cooling system even more to create additional efciencies.

3.3.5 Analysis at the Edge for Diagnostic and Troubleshooting Issues

While most of the data in OMNI are considered non-critical, that is,
once they are gone beyond real time, they are considered archived and
access to the data is not immediately available. Most teams either use
data in real time, or can wait for archived data to be accessible, usually
on a business day.

However, there is a class of data used by the NERSC networking
team that is considered critical data; when they need access to the data,

OMNI at the Edge ■ 77

Figure 3.6 24 × 7 Pipeline of networking services at the edge and fow
into OMNI.

it is critical that they do so immediately. Although these situations are
rare, the design of OMNI has taken this requirement into account prior
to accepting the archiving of these data. The team has leveraged the
capability of sending multiple streams of data into diferent storage
areas and provided a means of access and analysis on a 24 × 7 basis
regardless of interruption in the facility. Using another edge service, as
long as these devices are up and running, the critical data are collected
and are accessible even if the OMNI itself becomes unavailable.

To mitigate the networking team’s workfow, an edge service to
function as an archiver and a point of analysis for troubleshooting
is placed outside of the OMNI to process all the data coming from
various devices. In addition, a separate log archiver is outside the OMNI
network and has a service-level agreement with another group backup
service. The network team can always access the data through the edge
service; however, if the facility and OMNI become unavailable, they can
also access the interface on the log archiver (Figure 3.6).

3.4 CASE STUDY OF BENEFITS OF OMNI DATA TO NERSC
DATA CENTER

3.4.1 $2M Mechanical Substation Cost Savings

In preparation for the delivery of Perlmutter, NERSC leveraged the
operational data analytics capabilities of OMNI to make the business

78 ■ Cybersecurity and High-Performance Computing Environments

decisions around the expansion of the electrical supply needs. The
Lab facilities expected that the existing loads on the mechanical and
electrical systems would not be able to support the additional power
capacity of Perlmutter. They calculated the theoretical peak load of
all the components working at full load. Using this method, they
recommended adding a second mechanical systems electrical substation
to support Perlmutter and its associated systems.

A caveat to the Lab Facilities Master Specifcation, however,
permits a secondary calculation method for mechanical load planning,
if at least one full year of operational power metering data are available.
At this point, OMNI archives contained more than the needed data;
however, analysis needed to be completed quickly, within a few days;
otherwise, the project plan was to move on to purchase an electrical
substation which had a 120-day lead time. There was no time to restore
the very dense multiple year data from the archives and also analyze
them.

OMNI online data for power consumption were re-indexed for
several users, and one dataset satisfed the requirements of the Lab
Facilities Master Specifcation for calculation. Since more than 1 year
of data are accessible online, they were able to use this dataset. Its
subsequent analysis demonstrated that the current operational power
draw did not exceed 60% of the total power rating of the existing
substation. Incorporating the expected power draw of Perlmutter, there
is more than enough power in the existing substation to support the
addition of the new system. See Figure 3.7, top grey line.

Before making a decision, a further study analyzed the number of
expected peak cooling hours under warm conditions and how much
cooling needs to happen during warmer days. The concern was how
much cooling would push the mechanical power demand above the 1
MW maximum rating of the current substation. The data showed that
in the mild Berkeley climate, there were very few days annually where
the maximum substation rating would be stressed, and certainly not
reach its full capacity. See Figure 3.7, bottom grey line.

The elimination of an electrical substation is a bold step for
the large Perlmutter project planning in terms of power capacity
and cost. Ultimately, this process demonstrated the usefulness of
operational data analytics (ODA) and enabled the Lab facilities and
NERSC management to confdently decide to forego a new mechanical
substation, thereby saving the project $2 million.

OMNI at the Edge ■ 79

Figure 3.7 The total power load from the compute substations,
(illustrated by top grey line ranging from 0 MW to 7 MW), is mostly
stable relative to the mechanical substation, (illustrated by bottom
grey line ranging from 0 MW to 1 MW).

3.4.2 Perlmutter Power Upgrade from 12.5 to 25.0 MW

When NERSC moved to Shyh Wang Hall in 2015, the construction of
the building was supervised by the Lab’s facilities. Soon after the frst
HPC system was installed and ran the frst large job, there were power
issues that shut down the system. It was fortunate that OMNI was up
and running for several months and an early edge service correlated
data from PDUs, power breakers, the UPS, and the system itself.
The analysis determined that the power panels themselves were not
confgured to the needs of an HPC system.

As with a standard building, facilities confgured the panels to the
specifcations of what normal equipment would be used in a building,
not a data center. Normal ofce systems, even a cluster, have known
power requirements and documented fuctuations. An HPC system has
very high and very low fuctuations, the power draw being very high
when a job runs and uses up to 99% of the system or very low if it
is running only small jobs on single nodes. In this case, the system
completed a very large job, drawing very high power, and when the
job was completed and exited the nodes, the power dropped to a very
low level for a few seconds as the system prepared the nodes to accept
the next set of jobs. This huge power drop caused the power panel

80 ■ Cybersecurity and High-Performance Computing Environments

to trip, thus shutting down the system. The subsequent correction
to replace the power panels and confgure them correctly took
˜6 weeks.

The 100% power upgrade to the NERSC Shyh Wang Hall facility
has presented a number of challenges in scaling to a more powerful
system. The new HPE/Cray Perlmutter system will deliver 3–4× the
performance of the current NERSC Cori system. However, the HPC
footprint for the incoming system is actually smaller than that for
Cori. Previously, next-generation systems would have an HPC footprint
that was roughly equal to or slightly larger than their predecessors,
which made it relatively straightforward to add larger wire feeds during
a facility upgrade. Perlmutter and other emerging HPC systems in
the USA are starting to exhibit the opposite behavior; that is, they
have a smaller HPC footprint than their predecessors. In the case
of NERSC, the smaller footprint has been leveraged to gain a much
more powerful system to ft the larger space it would have previously
taken [12].

With the smaller HPC footprint, the power feeds and panels are
still of the same size and require more of it. Understanding the lessons
learned from when the facility ran its frst job, NERSC needed to ensure
that future systems will not have the same power issues. As new panels
are installed during the power upgrade, it was a requirement to test
its power output such that it can withstand the fuctuations of usage
from larger to smaller jobs.

Collecting fne-grained power data and being able to test and
validate new panel confgurations is paramount to both ensuring that
there will be no surges or unsafe anomalies present when the new
machine is installed, and providing key insights and lessons learned
for future upgrades and new HPC systems.

As the upgrade progressed, engineers were able to test each panel
that was confgured and brought online. FaaS was able to calculate
and show power fuctuations as small as seconds. Incorrect variances,
faulty equipment, or data transfer speeds were able to be analyzed
in real time as each panel was commissioned and marked ready. By
testing the panels now, NERSC can predict the type of system they can
purchase in the future and provide any power limitations to the vendor.
They can also be confdent that the facility can safely run the future
systems.

OMNI at the Edge ■ 81

3.4.3 Edge Service to Mitigate California’s Public
Safety Power Shutdown (PSPS)

In November 2018, NERSC and the Bay Area were afected by smoke
that drifted to the area from the Camp Fire wildfre in Butte County,
more than 90 miles away. The resulting air quality was very unhealthy
for more than 2 weeks in Berkeley. To prepare for the 2019 California
fre season, the primary power supplier, Pacifc Gas & Electric (PG&E),
decided to implement power shutdowns during occurrences of hot and
windy weather to help prevent wildfres. PG&E shut down power to
areas that were dry and mountainous or areas with many power cables.
Because power is on a grid, large areas can be impacted, and the Lab
would be impacted.

The Lab experienced its frst mandatory shutdown in October
2019. Management was provided with at least a 24-hour notice of an
impending shutdown, but only a 6-hour notice of PG&E turning of
power at the substation. The 6-hour window is barely enough to cleanly
shut down a facility as complex as NERSC. In spite of this situation,
NERSC attempted to continue to provide services to their users. At
minimum, management wanted to provide the users a way to log on
and submit their jobs.

Edge services were key to ensuring there was enough power to keep
the facility’s infrastructure and key services running: active disk, log-
in nodes, network switches, the cybersecurity infrastructure, OMNI,
and minimal cooling even though HPC systems were powered of; it
was still necessary to monitor the facility. As previously stated, the
facility ecosystem is dependent on external cooling; air from outside is
brought into the facility to help keep it cool. The key to maintaining
the facility is cooling, not power. If the climate outside is warmer than
usual, warmer air is brought into the facility, which will impact the
systems.

During this type of an event, specifc edge services were used to
flter out any HPC system-related data that will most likely be an
error because the system will be down and to process data only related
to cooling power, network and everything related to facility, such as
the UPS and generator. With temperatures possibly rising one degree
each minute in racks or the particle count increasing rapidly if there is
a fre, it is important to have enough time and warning for systems to
be shut down as cleanly as possible (Figure 3.8).

82 ■ Cybersecurity and High-Performance Computing Environments

Figure 3.8 The three panels above show data points being monitored
during PSPS. Panels 1 and 2 show the load on the UPS at that moment,
and since the generator is not active, it has no load. Panel 3 shows the
row and rack temperature fuctuations for Row C1 and Row D1.

3.5 ONGOING AND FUTURE WORK

Ongoing upgrades to the OMNI infrastructure include support for the
increased size and scale of metrics that will be coming from the new
Perlmutter system. This involves working with our existing metric sets

OMNI at the Edge ■ 83

on Cori and on the early-stage Perlmutter test system to understand
key characteristics of the in-transit data. At this point, staf calculate
that the additional data coming in from Perlmutter could be as much
as 400 g/day per index and the current online storage needs to grow to
accommodate this. Depending on the type of data received, more edge
services can be installed to assist in the processing or analysis of data
for real-time analysis.

OMNI’s hardware replacement strategy is to upgrade one-third of
the existing hardware each year. With the supply chain challenges
resulting from the pandemic, parts may not be as available and can
impact the timing of when upgrades need to be done or when new
services can be installed.

Future work involves investigating a framework for alerting at
the edge, allowing machines to self-alert and take mitigative actions
based on their localized data in the event of loss of connectivity to or
reliability of OMNI.

Additional future work makes OMNI available to external to DOE
collaboration users. The team is investigating using blockchain to
secure a front-end graphical interface to allow users to request a dataset
for analysis.

REFERENCES

[1] M. Ott, et al., “Global experiences with HPC operational data
measurement, collection and analysis,” in 2020 IEEE International
Conference on Cluster Computing (CLUSTER), Kobe, Japan, 2020,
pp. 499–508. doi: 10.1109/CLUSTER49012.2020.00071.

[2] TOP500. https://www.top500.org/. Accessed 10 March 2021.

[3] k3s. “Lightweight Kubernetes”, https://k3s.io/. Accessed 10 Mar. 2021.

[4] Victoria Metrics. https://victoriametrics.com/. Accessed 10 Mar. 2021.

[5] Bautista, E., Romanus, M., Davis, T., Whitney, C., & Kubaska, T.
(August 2019). Collecting, monitoring, and analyzing facility and systems
data at the national energy research scientifc computing center. In
Proceedings of the 48th International Conference on Parallel Processing:
Workshops, Kyoto, Japan, (pp. 1–9).

[6] Elastic. https://www.elastic.co/. Accessed 10 March 2021.

[7] Prometheus: Monitoring System and Time Series Database. https://
prometheus.io/. Accessed 10 March 2021.

https://www.top500.org
https://k3s.io
https://victoriametrics.com
https://www.elastic.co
https://prometheus.io
https://prometheus.io
https://doi.org/10.1109/CLUSTER49012.2020.00071

84 ■ Cybersecurity and High-Performance Computing Environments

[8] SkyFoundry. https://skyfoundry.com/. Accessed 25 March 2021.
[9] SkySpark. http://energy.ubc.ca/projects/skyspark/. Accessed 28 April

2021.
[10] Bautista, E., Davis, T., Whitney, C., Big data behind big data, Chapter

8, in: Conquering Big Data with High Performance Computing, R. Arora
(Ed.), 1st Edition. Berlin, Heidelberg: Springer, 2018.

[11] https://cs.lbl.gov/news-media/news/2020/less-is-more-lbnl-breaks-new-
ground-in-data-center-optimization/.

[12] https://www.nersc.gov/assets/Uploads/2018NERSCAnnualReport.pdf.
[13] https://www.kw-engineering.com/portfolio_page/data-center-energy-

efciency-nersc-lbl-supercomputer/.

https://skyfoundry.com
http://energy.ubc.ca
https://cs.lbl.gov
https://cs.lbl.gov
https://www.nersc.gov
https://www.kw-engineering.com
https://www.kw-engineering.com

C H A P T E R 4

Optimized
Voronoi-Based
Algorithms for Parallel
Shortest Vector
Computation
Artur Mariano

INESC TEC & Universidade do Minho

Filipe Cabeleira

University of Coimbra & Instituto de Telecomunicações

Lúıs Paulo Santos

INESC TEC & Universidade do Minho

Gabriel Falcão

University of Coimbra & Instituto de Telecomunicações

CONTENTS

4.1 Introduction . 86

4.2 SVP-Solvers Based on Voronoi Cells . 90

4.2.1 Voronoi Cell-Based Algorithm by
Micciancio et al. 91

4.2.2 Relevant Vectors by Agrell et al. 92

4.3 Experimental Setup . 94

4.4 Algorithm Analysis . 96

4.4.1 Correlation between the Norm of Target Vectors
and Solution Vectors . 96

DOI: 10.1201/9781003155799-4 85

https://doi.org/10.1201/9781003155799-4

86 ■ Cybersecurity and High-Performance Computing Environments

4.4.2 Percentage of Target Vectors That Generate the
Shortest Vector . 97

4.5 Algorithmic Optimizations . 100
4.5.1 Pruned Decoding . 100

4.5.1.1 Simple Pruning . 101
4.5.1.2 Gaussian Pruning . 101
4.5.1.3 Combined Pruning . 104

4.5.2 Increasing Norm Sort . 105
4.6 Parallel Implementations for CPUs and GPUs 106

4.6.1 CPU . 107
4.6.1.1 Original Version (No Pruning and No

Pre-Sorting) . 109
4.6.1.2 Pruned Version without Sorting 110
4.6.1.3 Pruned Version with Sorting 111

4.6.2 GPU . 114
4.7 Discussion . 116
4.8 Conclusions . 117

4.8.1 Open Problems . 119
Acknowledgments . 120
Notes . 120
References . 120

4.1 INTRODUCTION

Since the mid-1990s, the cryptography community has been studying
alternatives to classical cryptosystems such as RSA and ElGamal,
as these were shown to be vulnerable in the presence of quantum
computers. These cryptosystems were based on the premise that the
factorization of large numbers exhibits an exponential time complexity.
Shor’s algorithm [1–3] has shown that this class of problems can
be solved in polynomial time on a quantum machine. Therefore,
eavesdroppers with access to a sufficiently large quantum machine can
hack the systems and access communications.

Many cryptosystems have been proposed since the rise of this so-
called post-quantum era. Most of these cryptosystems are designed
under the premise (or belief, in most cases) that even if adversaries
had access to large-scale quantum computers, they cannot be
broken. Lattice-based cryptosystems are a very prominent type of

Voronoi-Based Algorithms for SVP ■ 87

post-quantum cryptosystems. They support advanced cryptographic
primitives such as fully homomorphic encryption,1 and they are
relatively efcient in practice, easy to implement and, of course,
believed to be safe against quantum adversaries [3,5].
Cryptosystems base their security on hard math problems, which

are typically easy to solve for the users of the system, but hard to
solve for external entities. The underlying idea is that the fundamental
problems underpinning the security of lattice-based cryptosystems,
such as the shortest vector problem (SVP), the closest vector problem
(CVP) and derivatives of these, cannot be solved (exponentially) faster
with quantum computers, when compared to conventional computers.
Due to the connection between the problems and the security of the
corresponding cryptosystems, the algorithms that solve these problems
are commonly referred to as attacks.
Lattices are discrete subgroups of the n-dimensional Euclidean

space Rn , with a strong periodicity property.2 A lattice L generated
by a basis B, a set of linearly independent vectors b1, ..., bm in Rn , is
denoted by: ()

mX
L(B) = x ∈ Rn : x = uibi, u ∈ Zm , (4.1)

i=1

where m ≤ n is the rank of the lattice. When m = n, the lattice is said
to be of full rank. When n is at least 2, each lattice has infnitely many
diferent bases.
Note that, although there are non-integer lattices, lattice-based

cryptography commonly uses integer lattices in practice: Solving lattice
problems on integer lattices is still hard, and integer lattices are
easier to handle computationally (e.g., there are no precision/numerical
problems). As an example, Figure 4.1 shows a lattice in R2 , where the
basis is B = {b1, b2}. The vector b3 shown in the picture is a linear
combination of the basis vectors. This linear combination also shows
that b1 can be made shorter (in terms of Euclidean norm, which is
the default meaning of shortness in the context of this book chapter)
at the cost of b2, given that b3 is smaller than b1. This process,
of making lattice vectors (bases) shorter by adding/subtracting other
lattice vectors, is often referred to as vector (basis) reduction and is
widely used in various lattice algorithms.

88 ■ Cybersecurity and High-Performance Computing Environments

Figure 4.1 Example of a lattice in R2 and its basis (b1,b2).

Given that the security of lattice-based cryptosystems is based on
problems such as the SVP, CVP and approximated versions of these,
they have been widely studied over the last decade. In particular,
many parallel, highly efcient versions of algorithms that solve these
problems have been devised and put to the test, to assess their real
hardness. Also, cryptosystems have certain parameters, such as the
key size, that have to be determined based on the algorithms’ practical
potential/performance. Setting these parameters too high would lead
to inefcient/slow cryptosystems, but setting them too low leads to
insecure systems. As such, a “sweet spot” has to be found in this trade-
of, so that systems are simultaneously efcient and secure. This can
only happen when the best attacks are implemented on the highest-end
computer architectures. This is also part of the work that we conduct
and analyze in this very same manuscript.
The SVP has extensively been studied during the last decades,

and two main families of SVP-solvers have emerged. As this research
progressed, they evolved to become the standard algorithms in this
context. The frst family is the set of sieving algorithms, which
repeatedly sieve a list of vectors until the shortest vector is very
likely to be arrived at. The second most relevant family of algorithms
is the family of enumeration algorithms. These enumerate all the
possible vectors within a given search radius around the origin, and
therefore, the shortest vector of the lattice is the shortest in that set

Voronoi-Based Algorithms for SVP ■ 89

of enumerated vectors. Other than these two SVP algorithm families,
many are often mentioned and studied, but to a much smaller extent.
Some of those families include random sampling and Voronoi cell-
based SVP-solvers. The span of research around SVP algorithms is
quite extensive and impractical to cover in this manuscript. To better
grasp the history and evolution of this feld, we refer the reader to
[4,5,8–10].
In this text, we select one type of attack – SVP algorithms based

on the Voronoi cell of a lattice – that has often been mentioned in
the literature [11–13], but rarely studied or published about. In fact,
it is often said that this algorithm becomes impractical (mainly due to
memory issues) somewhere in dimensions 14–20, but this support was
never evidently backed up by tests. Plus, other classes of SVP-solvers,
such as enumeration and sieving, have been the subject of intense
and ongoing investigation and optimization through the past decade
(e.g., [14–17]). But Voronoi cell-based SVP-solvers, to the best of our
knowledge, have not been optimized since their frst publication [13],
back in 2002. Voronoi cell-based algorithms are, however, of interest to
study. First, they are asymptotically very appealing, which means that
if the lattice dimension is high enough, they should be competitive with
other classes of SVP-solvers. Second, there is a big room for practical
improvement in Voronoi cell-based algorithms, which could perhaps
lead to tractable implementations for high-dimensional lattices. In
Ref. [18], we presented parallel versions, including a heterogeneous
CPU+GPU implementation, of the original algorithm. In this work,
we take a frst step toward optimizing the original algorithm, thereby
reducing the associated computational workload, and further propose
parallel implementations of the optimized algorithm.
Contributions. In this manuscript, we propose various improvements
for Voronoi cell-based algorithms, in the context of the SVP, and
we show that the improved algorithm is still suitable for parallel
execution.
We have been able to show that this algorithm can be optimized

by using several norm-based optimizations. In particular, we show
that computations that are, with high probability, irrelevant in the
context of the SVP can be pruned. By considering previous states
of the algorithm, namely the norm of the shortest known solution
vector, the algorithm’s workload can be dramatically reduced. Further

90 ■ Cybersecurity and High-Performance Computing Environments

workload reduction can be achieved if the target vectors are sorted ac-
cording to their Euclidean norm prior to the evaluation of the solution
vector.
We present a parallel version of the optimized Voronoi cell-based

algorithm for the SVP. It is optimized to achieve the shortest vector
faster and performs very well on architectures with multiple cores. This
version was able to attain linear speedups on CPUs, in our experiments,
compared to the baseline, original Voronoi cell-based SVP-solver. Due
to the lack of support for efcient global synchronization among
threads on GPUs, we cannot present a scalable implementation
of the optimized algorithm in these devices. Similar to [18], we
show that the non-optimized algorithm is highly suited for these
architectures and competitive with the non-optimized multi-core CPU
version.
The meaning of our work is twofold: First, we show that Voronoi

cell-based algorithms can be made more practical than previously
reported. Such practicality is achieved by introducing the above-
mentioned norm-based optimizations, which are possible given that
the goal is to solve the SVP. This should help to shed further light on
this class of algorithms. Second, we show that the optimized algorithm
is suited for parallelization, which makes it appealing for parameter
selection in lattice-based cryptosystems.

Roadmap. The remainder of this chapter is organized as follows:
Section 4.2 presents Voronoi cell-based algorithms including the
algorithm exploited in the context of this text. Section 4.3 introduces
the experimental setup. Section 4.4 presents an analysis performed on
the algorithm, which serves as the motivation for our optimizations,
presented in Section 4.5. Section 4.6 describes our parallel imple-
mentations, both on CPUs and GPUs, as well as their performance
results. Section 4.8 concludes the chapter and points out future lines
of work.

4.2 SVP-SOLVERS BASED ON VORONOI CELLS

In this section, we briefy explain a Voronoi cell-based algorithm by
[11], which can be used to solve the SVP, and the algorithm we used
in this work, called “Relevant Vectors”, presented by [13].

Voronoi-Based Algorithms for SVP ■ 91

4.2.1 Voronoi Cell-Based Algorithm by Micciancio et al.

This algorithm, presented in Ref. [11], describes a deterministic
approach to solving the SVP (and other related problems), using the
Voronoi cell V of a lattice as a way to arrive at the shortest vector of
the lattice.
The algorithm works by rank reduction; i.e., the solution in a given

dimension k requires the computation of some procedures in dimension
k −1. Micciancio et al. show that the computation of the n-dimensional
Voronoi cell of the lattice can be done by a series of CVP calls for the n-
dimensional lattice, V(Ln) = k ·CVP(Ln), for a given number k of calls
(for more details we refer the reader to [11]). Furthermore, they also
show that the CVP solution of an n-dimensional lattice can be obtained
by a series of CVP computations on the associated (n − 1)-dimensional
lattice, i.e., CVP(Ln) = k · CVP(Ln−1).
Therefore, the Voronoi cell of a lattice in dimension n can be

computed iteratively, starting on dimension 1 and working up toward
dimension n. The solution of the SVP is the shortest non-zero vector
s ∈ L, which, within the Voronoi cell context, is given by its shortest
vector. More precisely, the solution for the SVP in this case is given
by the double of the shortest vector of the Voronoi cell, as the frontier
of the latter is, by defnition, the midpoint between 0 and the vectors
that are closest to 0.
As for the implementation of this algorithm, we start with reducing

the basis and initializing the list of Voronoi relevant vectors with the
frst vector of the reduced basis. With this lower-dimension list, we
iterate upward to dimension n, by generating a list of the so-called
target vectors. For each of these, a CVP function is computed, so that
we end up with the Voronoi cell vectors, which is refned so that it
only contains the relevant vectors. The relevant vectors, which form
the minimum set of vectors that describe the Voronoi cell of a lattice,
are shown in Figure 4.2, for a given two-dimensional lattice.
The algorithm’s time asymptotic complexity is O(22n), while its

space complexity is O(2n), n being the lattice dimension. To fully
comprehend this algorithm and its nuances, we refer the reader to [11],
as we do not describe it with full details given that this algorithm is
not used in this work.

92 ■ Cybersecurity and High-Performance Computing Environments

Figure 4.2 Example of a Voronoi cell in R2 and its relevant vectors (v1
to v6).

4.2.2 Relevant Vectors by Agrell et al.

The algorithm used (a Voronoi cell-based algorithm called “Relevant
vectors”) was presented in Ref. [13]. That paper also described several
algorithms to determine the solution to the SVP, CVP, and other
related problems, and the algorithm used is shown in Algorithm 4.1.

Function AllClosestPoints
Input: Matrix M, matrix H, matrix Q, vector s
Output: List of vectors X

Compute x = sQT ;
U = Decode(H, x);
Compute γ as the lowest value ||uM − s|| for all u ∈ U;
Compute X as all {uM : u ∈ U, ||uM − s|| = γ}
return X

Algorithmically, “Relevant vectors” can be described by four
distinct steps. First, it starts by generating the needed target vectors,
that are later on used by a CVP-solver, in order to compute the Voronoi
relevant vectors of the lattice. Second, the coordinate system of the
data that feeds the CVP-solver is modifed (i.e., the lattice basis and
the target vectors). Details on the rationale behind these steps can
be found in Ref. [13]. The third step is then to run an enumeration

Voronoi-Based Algorithms for SVP ■ 93

Algorithm 4.1: RelevantVectors
Input: Basis matrix B
Output: Relevant Vectors N

M = Reduce(B); /* for example, using the LLL
algorithm */
[Q, R] = QR decomposition of M;
G = RT ;
H = G−1;
N = ∅;
forall vectors s ∈M do

X = AllClosestPoints(M, H, Q, s);
if |X| = 2 thenS

N = N {2x − 2s : x ∈ X};

return N

CVP-solver on each of the generated target vectors, a process we refer
to as “decoding”. This solver computes a set of vectors, which are then
converted to the original coordinate system, thus resulting in the fnal
list of candidate Voronoi relevant vectors. From these, only the valid
vectors (in fact, Voronoi relevant vectors) are kept.
In terms of implementation, the CVP-solver that “decodes” target

vectors is based on the Schnorr–Euchner method [19], which is an
enumeration method to compute the SVP and the CVP. This is
called “enumeration” because the algorithm enumerates all the possible
solutions within a given radius. For more details on this algorithm, we
refer the reader to papers on enumeration algorithms [13,17,19].
To increase performance, it is desirable to reduce the input lattice

basis. This can be achieved, e.g., using the LLL algorithm (cf. [20]).
Additionally, this enumeration-based CVP-solver function requires the
input lattice basis to be in a lower-triangular form. When this is not the
case, we must transform the basis to this form, while also transforming
the input (target) vector(s) as well. This can be done with, e.g., a QR
decomposition, in the form M = QR, where R is an n × n upper-
triangular matrix and Q is an m × n orthonormal matrix. As we deal
with full-rank lattices, efectively we end up with Rn×n and Qn×n,
as m = n and n is the lattice dimension. We call the QR method on

94 ■ Cybersecurity and High-Performance Computing Environments

the lattice basis (M in the decomposition), yielding R, which we must
transpose, i.e., RT , to obtain the desired lower-triangular matrix.3

The other resulting matrix (Q) is used to transform the target
vector into the coordinate system of the lattice basis when in the lower-
triangular form. Note that when the QR decomposition is used, it is
also needed to transform the output of the decode function back into
the original form (i.e., the original coordinate system).
Once the basis is in the desired format, we generate the list M that

contains each of the si target vectors, i = 1, ..., (2n − 1) (in practice,
Steps 1 and 2 of the mathematical description above can be done
together), as shown in Equation 4.2, iteratively. n o

defM(M) = s = zM : z ∈ {0, 1/2}n − {0} (4.2)

Afterward, the CVP-solver is executed on these inputs, yielding a list
of vectors U, that are processed according to Equation 4.3, resulting
in the list of vectors X. n o

γ = min ||uM − s|| for all u ∈ U n o (4.3)
X = uM : u ∈ U, ||uM − s|| = γ

The computation of list X does not always result in a valid output.
This only happens when the list contains 2 vectors and 2 vectors only
(they are symmetric to each other, thus having the same norm), which
are added to the list of Voronoi relevant vectors N. Similar to the
algorithm in 4.2.1, the solution to the SVP is given by the shortest of
the Voronoi relevant vectors.

4.3 EXPERIMENTAL SETUP

Table 4.1 presents the details of the CPU-based computing system
used to assess the proposed parallel algorithm. The clock frequency
in parentheses shown in the table pertains to the maximum frequency
of the CPU, which is achieved using the Turbo Boost Technology. L1
cache values are split between instruction cache (i) and data cache (d).
System A runs CentOS x86_64 with kernel version 2.6. The code has
been compiled with g++ 7.2.0 with the -O3 optimization fag, as it
delivered the best throughput performance.

Voronoi-Based Algorithms for SVP ■ 95

TABLE 4.1 CPU-Based Computing System

System A
Sockets 2
CPU Intel Xeon E5-2660v4
Clock frequency 2.0 GHz (3.2 GHz)
Cores per socket 14
SMT Yes (w/ HT, 28 threads)
L1 Cache 448 kB i + 448 kB d
L2 Cache 3.5 MB
L3 Cache 35 MB
RAM 128 GB
SMT stands for simultaneous multithreading and HT
stands for hyper-threading.

TABLE 4.2 Machine for GPU Tests Performed in This Work

System B
CPU Intel core i3 6100
Clock frequency 3.70 GHz
Cores 2
SMT Yes (w/ HT, 4 threads)
L1 Cache 32 kB i + 32 kB d
L2 Cache 256 kB
L3 Cache 3 MB
RAM 8 GB
GPU NVIDIA GeForce 1060 GTX
GPU Clock rate 1,759 MHz
GPU RAM 6 GB
SMT stands for simultaneous multithreading and HT stands
for hyper-threading.

The tests conducted in a GPU used System B, specifed in Table 4.2,
which runs Ubuntu 16.04 x86_64 with kernel version 4.13. CUDA
code was compiled with NVIDIA CUDA Compiler 9.1 using the
-O3 optimization fag and the -arch=sm_61 -lcudadevrt -rdc=true
fags. The GPUs have compute capability 6.1 and allow for dynamic
parallelism (a kernel launch within another kernel). The CPU code on
this machine was compiled with g++ 5.4.0.
The lattice bases used in all tests were generated with the SVP chal-

lenge4 generator software, compiled using NTL, version 9.3. The lattice

96 ■ Cybersecurity and High-Performance Computing Environments

bases generated using this tool are random (Goldstein–Mayer) lattices,
which have no specifc characteristic to be exploited [21]. Additionally,
these lattice bases are reduced using the LLL algorithm before the main
loop of the algorithm (cf. Algorithm 4.1). Unless specifed otherwise,
the tests presented in this work are conducted with seeds 0 through
999. They represent a total of 1,000 bases, up until dimension 10; 100
bases for dimensions 11–15; and 10 bases for dimension 16 or higher.
We present the arithmetic average of all tested bases (with diferent
seeds). We have turned of Turbo Boost, in order to have a better sense
of the scalability of the algorithm, and the results obtained were fairly
consistent. Executing the algorithm for more seeds would not impact
the average execution time. In this context, we refer to “a test” as the
execution of the program across all the seeds. Also, our tests were only
conducted in these (small) dimensions, as the memory requirements
of the algorithm grow exponentially. While individually they run rela-
tively fast, performing 1000 runs per dimension would be impractical.

4.4 ALGORITHM ANALYSIS

From Equation 4.2 (cf. Section 4.2.2), we see that the computation
of the Voronoi cell of a lattice involves the execution of the
AllClosestPoints function, for each of the (2n − 1) vectors that make
up the set M. However, in practice, most of these calculations are
unnecessary if our purpose is to fnd the solution to the SVP. As such,
we describe a series of tests that we conducted, which lay the foundation
of the proposed optimizations. For these tests, we used Machine A.

4.4.1 Correlation between the Norm of Target
Vectors and Solution Vectors

We posed the hypothesis of a possible correlation between the norm
of the target vectors and the norm of their respective solution vector,
a test we started out with. The motivation to test out this possible
correlation stems from the fact that, intuitively, the computation of
a target vector with smaller Euclidean norm (i.e., shorter) would also
result in a shorter solution vector. If this correlation held, then we
could potentially exclude several target vectors, by only decoding a
few small subset of these vectors, given that our purpose is to arrive
at the shortest vector.

Voronoi-Based Algorithms for SVP ■ 97

We investigated this (possibly strong) correlation by testing out
several lattice bases, for dimensions 4–8, using diferent seeds. To this
end, we sampled some lattice bases in certain lattice dimensions and
studied the correlation, generalizing it to higher dimensions (note that
the correlation cannot be known as target vectors are generated). Due
to the impossibility of presenting all the data, we showed three diferent
correlations, for dimension 4 (seed 960), dimension 5 (seed 0) and
dimension 8 (seed 456). These are representative of the full spectrum
of the obtained results.
The scatter plots in Figure 4.3 show that our thesis holds true,

as we can observe a moderately strong correlation in the terms we
pointed out. The actual correlation depends upon the used lattice basis
(i.e., dimension and seed). For instance, some bases showed an almost
perfect/linear correlation (such as in dimension 4, seed 960), while
others continued to show a correlation, although not as evident as the
remaining lattices. These results show the best (Figure 4.3(a)), average
(Figure 4.3(b)) and worst (Figure 4.3(c)) scenarios for all the lattices
we tested out, thus giving us the confdence to afrm that a correlation
holds.
Note that when the correlation is not as strong (for instance, in

Figure 4.3(c)), it does continue to hold for the shorter target vectors. In
other words, although there are large target vectors that result in large
solution vectors, it generally holds true that many small target vectors
result in small solution vectors, thus supporting the proposed thesis.
Given these data, we can conclude that, in general, as a correlation

applies, meaning that a shorter target vector yields a shorter solution
vector, then the shortest of the target vectors should, in general,
result in the solution to the SVP. The correlation may become looser
as we increase the lattice dimension, but it seems to continue to
hold for the smaller target vectors (cf. the leftmost vectors in Figure
4.3(c)), and we take advantage of that fact, as we show in the next
section. This correlation is actually the basis of some of the algorithmic
improvements we show in Section 4.5.

4.4.2 Percentage of Target Vectors That Generate the Shortest Vector

From the previous results, we posed the hypothesis of whether we
should only decode a small percentage of target vectors; these would

98 ■ Cybersecurity and High-Performance Computing Environments

Figure 4.3 (a) Correlation for the basis in dimension 4 (seed 960).
(b) Correlation for the basis in dimension 5 (seed 0). (c) Correlation for
the basis in dimension 8 (seed 456). Correlation between the norm of
the target vectors and the norm of their respective solution vector, for
three dimensions and seeds. We omitted both axes values as they are
irrelevant for correlation purposes and added considerable complexity
to the fgures, thus making it difcult to read them.

necessarily contain the shortest solution vector (and, as a result, the
solution for the SVP). However, note that this is only true when the
target vectors are sorted by increasing norm.
Also, in general, the percentage of these target vectors should be

larger as the correlation gets weaker (i.e., we would need to pick more
target vectors as the correlation gets weaker for that specifc basis).
However, note that even if the correlation for a specifc basis is of in
general, but holds true for the frst shortest target vectors, then we
would also need to decode a very small percentage of target vectors.
In fact, as shown in Figure 4.3, even in the worst case of our tests,

Voronoi-Based Algorithms for SVP ■ 99

TABLE 4.3 Position of the Target Vectors That Originate
the Shortest Vector for the Bases That Failed

#Incorrect
Dimension Position(s) %

Solutions
4 0 — —
5 0 — —
6 1 21 33.33
7 0 — —
8 1 77 30.2
9 3 146, 260, 92 50.88
10 3 204, 200, 85 19.94
11 0 — —
12 0 — —
13 1 252 3.08
14 2 1246, 12865 78.53

4228, 911, 14181,
15 5 43.28

3495, 13599
16 1 2205 3.36
17 0 — —
18 0 — —
19 1 3010 0.57
20 2 11328, 856105 81.64

there is a correlation for the shortest target vectors, which supports
our rationale.
To test this second hypothesis, we generated all target vectors,

chose the smallest, and decoded it (i.e., computed its solution vector).
We observed that the solution vector of the frst target vector was
always also the solution to the SVP, except for a handful of bases,
which are shown in Table 4.3 (check the position column, which shows
the position of the shortest vector when the frst vector is not the
shortest). This means that the shortest target vector does not yield
the shortest solution vector (and the shortest vector of the lattice) in
<0.27% of the bases we tested.
The percentage shown in the table regards the worst verifed case of

target vectors that need to be decoded so that we arrive at the optimal
solution. However, note that these percentages may seem very high as
we are testing very low dimensions. Moreover, the maximum percentage
of target vectors we need to decode is highly dependent on the lattice

100 ■ Cybersecurity and High-Performance Computing Environments

basis we test. For instance, decoding 0.57% of the target vectors in
dimension 19 would sufce to arrive at the shortest vector, while in
dimension 20, one specifc basis required as much as 81.64% of the
target vectors. That said, there should be no clear trend in this regard.
As a result, we can afrm that, in general, sorting the target vectors

by increasing norm will, very likely, lead us to fnd the shortest vector
faster than randomly decoding target vectors as we generate them. This
motivates a series of optimizations, which we explore in Section 4.5.

4.5 ALGORITHMIC OPTIMIZATIONS

In the following, we show a series of optimizations that are based on the
previous analysis of the algorithm. In order to test lattices with such an
execution time that allowed us to see the efects of the optimizations we
implemented, we decided to use Machine A, as specifed in Section 4.3,
and g++ with the O0 optimization fag. If we were to use Machine
B and the O3 optimization fag, some tests would run too fast, thus
making it impossible to infer proper conclusions (increasing the lattice
dimension would quickly lead us to hit the memory wall and impede
proper testing).

4.5.1 Pruned Decoding

Many of our optimizations stem from the fact that there is a relatively
strong correlation between the norm of the target vectors and the
solution yielded by the decoding process, as shown in Section 4.4.
Therefore, we employ a key idea: We can flter out (or “prune”) some
of the target vectors, along with the decoding process, if their norm “is
big”. In particular, we should – with some confdence degree – be able
to prune out target vectors that have a norm larger than the shortest
norm (for any target vector) found at any given instant. In theory, we
could also use the norm of the solution vectors (and, in particular, the
norm of the shortest solution vectors found up until a certain execution
point of the algorithm) to prune out some of the target vectors. Note,
however, that this may introduce some uncertainty as a bigger target
vector than the shortest (solution) vector found at any point of the
algorithm may actually generate an even shorter solution vector. This
is because target vectors may yield, throughout the decoding process,

Voronoi-Based Algorithms for SVP ■ 101

shorter solution vectors. Note that we have not studied this angle in our
correlation analysis, presented in Section 4.4; this is merely an intuitive
hypothetical relation that should work well in practice.

In fact, in our experiments, this has proven to be a very effective
optimization, almost without compromising the solution. In other
words, even with this optimization – which we generally call pruning
as we prune the set of target vectors to test – we achieved the shortest
vector of the lattice in almost 99.999% of the experiments we carried
out in this section.

If we regard the target vectors – which are to be decoded – as a
set, we can employ our optimization in the form of pruning. This may
have several variants, but during our experiments, we found out that
two forms are particularly effective.

4.5.1.1 Simple Pruning

The first – and simplest – form of pruning we have employed is based
on discarding target vectors whose norm is larger than the norm of
the shortest (solution) vector found so far. We call this optimization
“simple pruning”. We do this by keeping a record of the shortest
(solution) vector found throughout the execution. This optimization
has resulted in significant speedups, as shown in Figure 4.4(a). The
speedup of simple pruning also increased with the lattice dimension.

We note that although, in theory, this optimization may result in
a compromised solution (because we may filter out the target vector
that results in the shortest vector, as mentioned before), in practice, it
barely happens (in our experiments, it failed for 11 bases out of 7550).
We tested this optimization for one thousand seeds of each dimension.
The result was always coherent with that of a deterministic SVP-solver,
thereby showing that simple pruning did not compromise the result in
practice. We also expect this to be the case for the vast majority of
lattices in higher dimensions.

4.5.1.2 Gaussian Pruning

The Gaussian heuristic, presented in Equation 4.4, is a popular
heuristic in the context of SVP-solvers. This heuristic estimates the
length of the shortest vector of the lattice. It serves as the reference
in the SVP challenge,5 which accepts entries of vectors whose norm is

102 ■ Cybersecurity and High-Performance Computing Environments

Figure 4.4 Original algorithm and pruned versions, from lattice
dimension 10 to lattice dimension 20, on Machine A. (a) Original
algorithm and the simple pruning version. (b) Original algorithm and
the Gaussian pruning version (added margin of 15.5%). (c) Original
algorithm and the Gaussian pruning version (added margin of 0.0%).

at most 5% larger than the Gaussian heuristic. In this work, we refer
to this delta, i.e., the amount added to the Gaussian heuristic, as the
“added margin”, in Equation 4.4 as α.

Γ(n/2 + 1)1/n
α · √ · (det L)1/n (4.4)

π
Γ(x) = (x − 1)!, x ∈ Z+ (4.5)

As we observed a relatively strong correlation between the norm of
the target vectors and the resulting solution vectors, together with
the good results of simple pruning, we decided to test a pruned version
based on the Gaussian heuristic (which we call Gaussian pruning). This

Voronoi-Based Algorithms for SVP ■ 103

reasoning is based on the fact that, in theory, if simple pruning works
well, a pruning based on the Gaussian heuristic should also work well.
This is due to two main ideas. First, there is a connection (although
obviously not linear; otherwise, the shortest target vector would always
result in the shortest solution vector) between the norms of the target
vector and the solution vector, as we can infer from the results in
Section 4.4.2. Second, given this connection, applying the Gaussian
pruning to the target vectors would indirectly allow us to reduce the set
of target vectors that are likely to generate the shorter solution vectors.
Given that these connections are not linear, although improbable, the
algorithm may fail to fnd the shortest vector if Gaussian pruning is
applied. In fact, following the same rationale, we can say that this is
true for both simple and Gaussian pruning.
We tested Gaussian pruning with several error margins, for lattices

in dimensions 10–20, testing 500 seeds from dimensions 11–15 and 50
seeds for dimensions 16–20 (due to time constraints). As Figure 4.4(b)
shows, Gaussian pruning also works very well in practice, achieving
speedup factors of as much as 51.26×. Again, we also expect the trend
to continue as we increase the lattice dimension.
In our experiments, Gaussian pruning only yields an invalid solu-

tion, with an added margin of 15.5%, in 11 bases out of 7550. That is, in
7539 lattice instances, the algorithm always found the shortest vector.
We tested the added margin of the Gaussian pruning extensively.

We started by using an added margin of 0% and the algorithm only
failed to fnd the shortest vectors in 24 lattice bases (out of 7550).
Therefore, in the vast majority of the lattice bases, the Gaussian
pruning without an added margin works very well. However, to be
comparable with the baseline – the reference algorithm – we needed to
include an added margin that ensures the shortest vector is found.
We selected an added margin of 15.5% for the experiments which

output the same number of wrong results (11 out of 7550) as the
simple pruning, thus allowing us to compare both versions in terms
of execution time. We note that although this added margin always
resulted in an optimal solution, that may not be the case for all lattices
in all dimensions, in which case we need to update the added margin
accordingly.
Yet, we tested the performance of the Gaussian heuristic for various

added margins. Not surprisingly, no added margin (i.e., Gaussian

104 ■ Cybersecurity and High-Performance Computing Environments

Figure 4.5 Original algorithm and the Gaussian (added margin of
15.5%), by both orders, combined and isolated, from lattice dimension
10 to lattice dimension 20, on Machine A.

pruning with no added margin) showed to attain the best performance,
which we depict in Figure 4.4(c). Note that running Gaussian pruning
without any added margin only failed in 24 out of 7550 lattice bases.
This indicates that there may be potential on a Gaussian pruned

version which works without added margin but resorts to another
mechanism to detect over-pruning, i.e., discarding the target vectors
that would lead to better solution vectors. Due to time limitations, we
pushed this problem to future work.

4.5.1.3 Combined Pruning

Given the results of the two previous forms of pruning, we decided to
combine them, i.e., executing them one after the other. Figure 4.5 shows
the performance of a combination of simple and Gaussian pruning,
in both orders, against the performance of the individual pruning
optimizations and the baseline.
As the fgure shows, the combination of simple pruning with

Gaussian pruning (with an added margin of 15.5%) does not deliver
a speedup. Nevertheless, we were able to obtain a performance

Voronoi-Based Algorithms for SVP ■ 105

improvement in a large number of cases we conducted when refning
some parameters (as these setups were overall less efcient than those
in the fgure and thus not very relevant, we refrained from showing
them). We obtain a speedup of as much as 68.88× when compared to
the baseline. This version also fails in only 12 bases (one more than
simple or Gaussian pruning) out of all the 7550 instances tested.

4.5.2 Increasing Norm Sort

Given the efectiveness of the pruning optimizations, we decided to
design a way so that shorter target vectors are executed frst. To this
end, we sort all target vectors by increasing norm before the actual
execution of the algorithm, a process we refer to as “pre-sorting”. This
is also motivated by the results we arrived at in Section 4.4.2. From
those results, we can conclude that executing the shorter target vectors
frst will lead us to shorter solutions frst, thus increasing the pruning
extent. Furthermore, as we will show throughout this text, memory
usage is a problem in Voronoi cell algorithms, and this optimization
can theoretically improve this, as there is a much smaller set of target
vectors to be decoded.
In theory, this enhances pruning as the number of pruned target

vectors will be larger – with simple pruning or combined pruning
(but not with Gaussian pruning) – if they are sorted (it does nothing
if no pruning is applied, as all target vectors are executed either
way). In particular, we know for a fact that the additional pruning
is “safe” in the sense that it does not decrease the likelihood of solving
the SVP.
We call this “safety” as, by pre-sorting the target vectors, we are

prioritizing shorter target vectors that, as we see in Figure 4.3, lead to
shorter solution vectors in general. As such, we are efectively pruning
out larger target vectors that would not lead to the solution to the
SVP either way (with a high probability). In fact, they could have
been decoded if pre-sorting was not used and they were some of the
frst target vectors in line of execution. Therefore, the solution provided
by these larger target vectors would eventually be superseded by the
solution vectors of smaller target vectors.
To implement this optimization, we have to re-arrange the

computation of the algorithm, namely by generating the target vectors
upfront (in contrast to calculating them on the fy – iteration by

106 ■ Cybersecurity and High-Performance Computing Environments

iteration – as it happens in the original algorithm), so that we can
sort them (by increasing norm). We have implemented both the merge
sort [22] and the quicksort [23] algorithms and compared them against
std::sort, the C++ standard sorting library. The latter, std::sort,
performed better than the former, and therefore, we have performed the
rest of the tests with this implementation (the GNU Compiler Suite
also provides a parallel OpenMP version of the std::sort algorithm,
which is useful for higher dimensions).

Given that we want to sort the target vectors (which are stored in a
matrix, in a row-wise manner), we have to compute an auxiliary vector
with the norm of each target vector. This is obviously not required,
but it does avoid computing the norm of a target vector each time it
is needed. With the std::sort implementation, given the nature of the
library function, we store the norm of each vector in a “struct”, where
each element holds one target vector and its norm; in this case, the
sorting procedure is done by simply swapping the memory pointers to
the elements, instead of actually having to move the data around.

The performance results for combined pruning with pre-sorting
are shown in Figure 4.6. As the figure shows, we obtain a speedup
of as much as 76.59x by pre-sorting the target vectors in terms of
increasing norm (which compares to 68.88x without sorting). As it
happens without pre-sorting, the order by which the pruning techniques
are applied with pre-sorting has very little significance in the execution
time of the algorithm.

Evidently, it would be a very strong optimization if we were able to
find a method to stop the algorithm once the shortest vector is reached,
which is a common problem for many SVP-solvers. Nevertheless, we
were still unable to come up with rules to stop the algorithm briefly
after the shortest vector is found, as it happens with other SVP-
solvers, such as sieving [24,25]. However, we push this problem to
future work.

4.6 PARALLEL IMPLEMENTATIONS FOR CPUs AND GPUs

In this section, we present both CPU- and GPU-parallel versions of the
RelevantVectors algorithm, the algorithm that served as the basis of
this work. In theory, this algorithm is embarrassingly parallel, as there
are no dependencies between iterations; i.e., we can execute several

Voronoi-Based Algorithms for SVP ■ 107

Figure 4.6 Original algorithm and the Gaussian (added margin of 15.5%)
and combined pruning, by both orders, with pre-sorting, from lattice
dimension 10 to lattice dimension 20, on Machine A.

Decodes concurrently. We used OpenMP for the parallel CPU version
and CUDA for the GPU version.

4.6.1 CPU

The OpenMP compiler directives were applied to the main loop of the
algorithm Line 6 in Algorithm 4.1, where the generation of the target
vectors takes place, followed by the decoding of the mentioned vectors.
As this process is independent between iterations, and there are no
subsequent data races, threads can run concurrently.
On top of parallelizing the algorithm, we have employed

other optimizations to the algorithm, regarding general memory
usage/consumption and memory access.
First, the result of decoding a target vector, if valid, yields two

solution vectors. As such, if we were to store every result of every
decode, a matrix of dimension 2(2n − 1) × n would be required, for an
n-dimensional lattice. This is impractical, as the memory requirement
for this matrix grows exponentially with the lattice dimension. To

108 ■ Cybersecurity and High-Performance Computing Environments

solve this issue, instead of storing every solution vector, we only store
the shortest vector found at the end of each decode procedure. This
decreases the size of the matrix used to store the solution vector to 1×n
(or 2 × n if we were to store both results of each decode). It requires
the use of a critical region so that threads cannot simultaneously
access these variables, which would lead to data races and a potentially
incorrect result.
Second, originally the matrices were implemented as an array of

arrays; while this provides a very natural indexing notation, it is
not very efcient from a memory standpoint. Not only it requires
several memory allocations (and deallocations) for each matrix, but
also there is no guarantee that the required memory is allocated
continuously in RAM. Therefore, the implementation of matrices was
changed (from an array of arrays) to a single, large vector. This
increases indexing computation slightly, but improves memory locality
considerably.
Algorithm 4.2 shows the pseudo-code of the OpenMP-based parallel

version of the RelevantVectors algorithm.

Algorithm 4.2: Parallel RelevantVectors
Input: Basis matrix B
Output: Relevant Vectors N

M = Reduce(B); /* for example, using the LLL
algorithm */
[Q, R] = QR decomposition of M;
G = RT ;

G−1H = ;
N = ∅;
min_norm = ∞;
#pragma omp parallel for
forall vectors s ∈M do

X = AllClosestPoints(M, H, Q, s);
#pragma omp critical
if ||2x − 2s|| < min_norm then
min_norm = ||2x − 2s||;
N = {2x − 2s : x ∈ X};

return N

Voronoi-Based Algorithms for SVP ■ 109

4.6.1.1 Original Version (No Pruning and No Pre-Sorting)

We frst parallelized the original version of the algorithm (i.e., without
pruning and without pre-sorting). Given that the execution time of
each iteration is diferent (as decoding diferent target vectors may
be faster or slower), there may be work imbalance among threads.
In preliminary tests, we tested the OpenMP static scheduler, but
the results were not, unsurprisingly, optimal. For that reason, the
experiments we report were conducted with the OpenMP dynamic
scheduler, which assigns work to threads as they complete the previous
tasks, thus balancing out the workload. Although this strategy does not
guarantee perfect load balancing, it usually minimizes the imbalance
substantially (usually at the cost of a given overhead, which may be
smaller or bigger depending on circumstances). As such, we still expect
some threads to fnish ahead of others.
Figure 4.7 shows the execution time of the algorithm, on Machine

A, for lattices in dimensions 16–20, and 1–56 threads. For readability
purposes, we display the speedups in Table 4.4.
We achieved higher speedups for higher lattice dimensions, due

to lower thread creation latency and improved the overall workload

Figure 4.7 Execution time for the parallel algorithm, on lattices in
dimensions 16–20, using 1–56 threads on Machine A.

110 ■ Cybersecurity and High-Performance Computing Environments

TABLE 4.4 Speedups on Machine A, Parallel Non-Pruned
Implementation Running with 1–56 Threads, in Comparison with
the Parallel Non-Pruned Version Running with a Single Thread

Dimension 16 17 18 19 20
2 Threads 1.772 1.917 1.915 1.914 1.961
4 Threads 3.556 3.833 3.824 3.815 3.933
8 Threads 7.072 7.615 7.642 7.604 7.849
16 Threads 12.990 14.830 14.890 15.170 15.190
28 Threads 20.910 24.820 24.020 24.660 25.370
56 Threads 22.210 31.190 31.140 33.600 33.440

TABLE 4.5 Speedups of the Parallel Implementation for Gaussian
and Simple Pruning, on Machine A

Dimension 25 26 27 28 29
2 Threads 1.681 1.810 1.766 1.800 1.763
4 Threads 3.322 3.514 3.419 3.667 3.581
8 Threads 6.297 6.694 6.916 7.254 7.128
16 Threads 7.085 8.856 11.412 6.706 6.040
28 Threads 5.986 9.732 9.464 19.870 11.850
56 Threads 10.630 12.050 11.220 18.020 16.190

distribution. This is particularly important because we aim at using
our implementation in large dimensions – as large as possible.
We also developed a parallel version of the optimized version, with

pre-sorting both turned on and of, with OpenMP. As we have seen,
the order of the optimizations was not relevant for performance, so
we only used one order. We also parallelized the generation of target
vectors, as they can be executed independently (both with and without
pre-sorting).

4.6.1.2 Pruned Version without Sorting

As shown in Figure 4.8, the parallel combined pruning version also
scales well (cf. Table 4.5 for readability purposes). Nevertheless, scal-
ability is overall a little lower than the non-optimized implementation
due to the critical section necessary for the optimizations of this
particular version (note the contention for more than eight threads
in Figure 4.8).

Voronoi-Based Algorithms for SVP ■ 111

Figure 4.8 Execution time for the combined Gaussian + simple pruned
version of the algorithm, on dimensions 25–29, using 1–56 threads on
Machine A.

As mentioned in Section 4.5.1.2, there is the possibility that
the chosen added margin may fail for some lattice bases that were
not tested before, as it is impossible to know upfront which added
margin guarantees the optimal solution. The number of bases that the
algorithm did not return the optimal solution was still residual. We
also note that arriving at a short vector, as opposed to the shortest
vector, is still important, especially in the context of a relaxed version
of the SVP, usually referred to as α-SVP. In this work, we will not
expand on this topic, even though we note that short vectors are still
an important result in this context.

4.6.1.3 Pruned Version with Sorting

Regarding the optimized version with the pre-sorting phase, in this
setup, we need to generate all target vectors upfront, and sort them,
before the algorithm actually computes the SVP. This uses up more
memory than the original algorithm, as we will show next.
As mentioned in Section 4.5.2, the GNU Compiler Suite already

implements an OpenMP version of the std::sort algorithm, which we

112 ■ Cybersecurity and High-Performance Computing Environments

Figure 4.9 Execution time for the combined Gaussian + simple pruned
version of the algorithm, with pre-sorting, for dimensions 20–29, using
28 and 56 threads on Machine A.

used in the sorting phase. This way, the procedure is entirely parallel,
including the generation and sorting of the target vectors, except for
the synchronization among all the threads (implemented with a critical
section) to update the shortest norm found, should they fnd one.
Figure 4.9 shows the execution time up to dimension 29, which is

the highest lattice dimension we can test with 128 GB of RAM. In
dimension 29, using pre-sorting results in a speedup of almost 30%
(for 28 threads) and 40% (for 56 threads), compared to the non-
sorted version. With 56 threads, using pre-sorting is also faster than
the non-sorting version for dimension 28, by approximately 26%. Until
dimension 28 (for 56 threads) and dimension 29 (for 28 threads), the
non-sorting version is faster, given that the time to generate all target
vectors, store/read them from memory and sort them is higher than
the gain throughout the algorithm.
It is worth noting that this version requires more memory than the

previous ones. In the pruned version without pre-sorting, target vectors
are decoded and generated one by one (and the algorithm should stop
long before all target vectors are explored, per our optimizations). In

Voronoi-Based Algorithms for SVP ■ 113

Figure 4.10 The calculated memory usage required by our combined
pruning implementation (essentially for the target vector-matrix), both
with and without pre-sorting. The number of threads does not make a
diference.

this version, all target vectors are generated (in order to be sorted) up-
front, which consumes more memory than in the non-sorted version. In
essence, the pre-sorting creates a trade-of between memory and execu-
tion time (because the solution is achieved faster). The execution time
to sort the vectors upfront was never relevant in our tests (i.e., even
with the sorting phase, the fnal time to solution was always lower).
Regarding memory, we should note that in the parallel versions, the

memory required increases exponentially with the lattice dimension (as
per the original algorithm), but also linearly with the number of threads
being used. This happens because each iteration (and thus each thread)
requires its own auxiliary structures for the correct working of the
decode function. These matrices are initially allocated with a certain
number of rows (the number of columns is equal to the dimension of
the problem) and, when needed, are extended via reallocation.
Figure 4.10 shows the (calculated) memory usage of the implemen-

tation in the worst-case scenario for a given dimension (i.e., the largest
size measured among all bases in a given dimension), both when sorting

114 ■ Cybersecurity and High-Performance Computing Environments

TABLE 4.6 Estimated Memory
Usage of the Combined Pruning
Implementation for Dimensions
20–80, with Pre-Sorting

Estimated
Dimension

memory usage
20 83.89 MB
30 128.85 GB
40 175.92 TB
50 225.18 PB
60 276.70 EB
70 330.57 ZB
80 386.86 YB

is used and when it is not. As Machine A has 128 GB of RAM memory,
we were able to test the optimized version with pre-sorting up until
dimension 29. Running dimension 30 would require around 137 GB of
memory available.
Table 4.6 shows the estimated memory usage of the combined

pruning implementation with pre-sorting, for dimensions 20–80 in
increments of 10, using 28 threads.

4.6.2 GPU

As mentioned at the beginning of Section 4.6, we also present a
parallel version for GPUs, in CUDA, similar to [18]. Due to the
inefciency of software-based critical sections in CUDA, we were forced
to employ a larger matrix to hold all solution vectors, similar to the
original algorithm. Should we be able to implement an efcient critical
section, threads would be able to compare the solution vector they
arrive at, against the shortest one found so far, without the need
to store the larger ones. This same reason prevented implementing a
CUDA version of the pruning optimization. The results are, therefore,
presented for the non-optimized algorithm. In this version, we calculate
the target vectors on the fy, as in the non-pruned and pruned
versions without pre-sorting (and in contrast to our CPU version with
pre-sorting).
Our CUDA implementation contains a single kernel. We set up

the kernel so that each thread decodes a single target vector unless

Voronoi-Based Algorithms for SVP ■ 115

Figure 4.11 Execution time for dimensions 10–20, for the non-pruned
CPU algorithm (1/56 threads on Machine A) and the parallel GPU
non-pruned algorithm (on Machine B). Note: The CPU execution times
are those of Section 4.6.1 for the non-pruned algorithm.

the available memory is not enough (note that each thread allocates
memory for auxiliary structures). For instance, running dimension 20
on our GPU implies that each thread will decode more than one vector.
The frst step of the kernel is to generate the target vectors, decode
them and store the solution vectors in the fnal matrix (list of vectors),
similar to the CPU version. In the meantime, the result of the decode
function is checked; if the test holds, the vector is stored in the fnal
matrix; otherwise, the thread dies (until dimension 19) or proceeds to
the following iteration (in dimension 20).
Until dimension 19, we set the number of threads equal to the target

vectors (in practice, we set the number of blocks and threads per block).
We set 128 threads per block, so the number of blocks changes based
on the number of target vectors. As we said, each thread is responsible
for generating and decoding a single target vector.
Figure 4.11 shows the execution time of our CUDA implementation,

running with as many threads as target vectors (except for dimension
20, where that number is halved), for several lattice dimensions.

116 ■ Cybersecurity and High-Performance Computing Environments

The fgure also includes the execution time of our CPU version
of the non-optimized algorithm, both with 1 and 56 threads. Up
until dimension 13, the GPU implementation is slower than the CPU
implementation, as the penalty for transferring memory (matrices M,
H, Q and N) over the PCI Express bus to the GPU only becomes
diluted/clouded for bigger dimensions and the launch time of the
GPU kernel (not excluded in the results) is also diluted for bigger
dimensions.
The GPU implementation is almost 15× times faster than the

sequential version and about 2,34× slower than the CPU running
with 56 threads. As we can see in the fgure, the diference between
both implementations gets smaller with the lattice dimension, which is
expected due to the penalty of memory transfer and GPU initialization.
Thus, we expect this GPU version to beat the CPU version with 56
threads, for a sufciently large lattice dimension (which we cannot test
due to memory limitations).

4.7 DISCUSSION

There are two diferent angles of our research that deserve comments.
First is the algorithmic optimizations that we propose, which greatly
improve the algorithm. The idea of speeding up SVP-solvers by
empirical observations on vectors is not new, e.g., [26], but it was never
applied to Voronoi cell-based algorithms, to our best knowledge. The
study of the correlation between the norm of target vectors and their
solution is, to our knowledge, unprecedented. The “simple” and the
Gaussian pruning is motivated by some optimizations implemented in
other SVP-solvers (for instance, the simple pruning is used in sieving
algorithms, while Gaussian pruning is used in enumeration algorithms
as a way to defne a radius for a search space or prune the enumeration
tree [27]).
Objectively, these optimizations greatly improve the algorithm, and

sorting target vectors is another great optimization as it decreases time
to solution even further. The sorting procedure is also very efcient and
can be done in parallel; therefore, we see no concerns regarding adding
this pre-processing to the overall algorithmic routines.
A second angle for discussion is the performance of our parallel

versions, both for CPUs and for GPUs. Although not all of our

Voronoi-Based Algorithms for SVP ■ 117

CPU implementations scale linearly, they do scale fairly well. We are
confdent that, if further developments are made to the algorithm,
these implementations could be used for high lattice dimensions.
The GPU implementation, on the other hand, has to be revisited in
order to integrate the proposed pruning optimizations. GPUs currently
lack efcient synchronization mechanisms. This prevents sharing of
information (such as the current pruning norm) among threads
while still maintaining scalability. An interesting line of research in
this context should be to rewrite the algorithm diferently so that
synchronization could either be avoided or be made parallel.

4.8 CONCLUSIONS

Attacks to post-quantum lattice-based cryptosystems require solving
the computationally hard shortest vector problem (SVP). Diferent
families of SVP-solvers have been suggested over the last two decades,
including Voronoi cell-based algorithms. Proposed back in 2002 by
Agrell et al., this family of algorithms has not been optimized
since, under the claim that its memory complexity (exponential
with the number of dimensions) renders it unpractical even for
low dimensions. However, Voronoi cell-based algorithms exhibit a
number of characteristics that justify a thorough study of their
practicality when a few optimizations are employed. In particular,
their time complexity is asymptotically very interesting, which could
allow them to become competitive with other SVP-solvers if the
memory barrier can be overcome. Indeed, there is plenty of room
for practical optimizations, which can eventually lead to tractable
implementations for high-dimensional lattices, unleashing their true
potential.
This work addressed the reduction in the execution time of the

Voronoi cell-based “Relevant Vectors” algorithm, by tackling two
diferent axes: (1) algorithmically reducing the number of operations
required to reach a solution to the SVP and (2) parallelizing it for both
GPUs and multi-core CPUs.
In order to reduce the workload, we hypothesized that there

is a correlation between the norm size of the target vectors and
the solution vectors. This correlation was demonstrated to hold,
which allowed us to propose pruning target vectors based on the

118 ■ Cybersecurity and High-Performance Computing Environments

length of the shortest solution vector observed this far and/or the
Gaussian heuristic. Also, we have shown that pre-sorting the target
vectors by increasing norm allows for a more efective pruning
(by reordering computations), accelerating our optimized version
further, notwithstanding the additional sorting time. Altogether, our
optimizations improved the throughput performance approximately
77× compared to the baseline implementation. Adding sorting on top
of pruning provided an additional speedup of as much as 40% up to
dimension 29, but we estimate that it would be considerably superior,
should we be able to test higher dimensions.
The main drawback with sorting is that it currently requires storing

all target vectors, which results in a huge memory consumption.
Naturally, we could ignore/cut of a substantial percentage (e.g.,
70%) of the largest target vectors right in the pre-processing stage,
signifcantly reducing memory usage. However, we have not done so
yet as we would like to look for a cutof formula that translates
to an approximated likelihood of still fnding the shortest vector
(which would be a very interesting result in the context of the
approximate SVP). We note the potential of this idea, given that
Voronoi is not tractable in practice solely because target vectors
become a bottleneck memory-wise.
Additionally, we have shown that the algorithm and our optimiza-

tions are well suited for multi-core CPU machines, as we devised
and implemented a scalable parallel version. We also optimized the
algorithm’s memory map and found that dynamic scheduling is
mandatory since decoding time varies for diferent target vectors. Our
implementation scales linearly on multi-core CPUs up to 28 threads
and can even take advantage of SMT, although the beneft is reduced
given that the problem is compute-bound. We found no reason why
similar scalability will not hold for higher thread counts.
We also implemented the original algorithm on a GPU, using

the CUDA framework. The optimized pruning algorithm could not
be tested, since it would require recurrent use of critical sections,
currently not efciently supported by CUDA. Therefore, we could not
use pruning to reduce the workload and had to store all computed
solution vectors, further increasing memory consumption. Although
our GPU version was never faster than our 56-thread CPU version,

Voronoi-Based Algorithms for SVP ■ 119

we observed that the gap between the CPU and the GPU generally
decreases with lattice dimension. This is a very promising result,
hinting that the GPU could become faster for higher lattice dimensions.
Also the CPU/GPU memory transfer penalty will be diluted for such
higher dimensions, further contributing to the GPU advantage. In the
future, we expect to develop better data structures for the GPU and
optimize the CUDA code, such that experiments with higher lattice
dimensions become feasible.
This chapter represents a step forward on making Voronoi cell-

based SVP-solvers practical. It has shown that there is plenty of
room for algorithmic optimizations, namely workload reduction by
pruning large target vectors. It has also demonstrated that multi-core
CPU parallel solutions scale and are efcient. GPU solutions show a
promising trend as the lattice dimensionality increases, but further
support is required for synchronization primitives enabling efcient
critical regions controlled access. The exponential space complexity of
Voronoi cell-based algorithms remains a challenge that has not been
directly addressed in this chapter. Educated discarding of a percentage
of the largest target vectors on the sorting stage could represent a frst
step on the right direction, reducing the constants associated with this
complexity.

4.8.1 Open Problems

This work leads to many lines of future work. In particular, we think
that it would be interesting to:

• Find a stopping criterion so that our optimized algorithm stops
shortly after the solution is found.

• Reduce the memory requirements of our GPU implementation
by developing new data structures.

• Optimize our GPU implementation further, to take full advantage
of the architecture.

• Implement a heterogeneous version of our algorithm.

• Reduce the parallel CPU version memory requirements, by using
only a small part of the Voronoi cell.

120 ■ Cybersecurity and High-Performance Computing Environments

ACKNOWLEDGMENTS

This work was fnanced by national funds from INESC TEC and the
Portuguese funding agency, Fundação para a Ciência e a Tecnologia,
within project UIDB/50014/2020. This work was also fnancially
supported by Instituto de Telecomunicações and Fundação para
a Ciência e a Tecnologia under project UIDB/50008/2020. Artur
Mariano was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – Projektnummer 382285730.

NOTES
1 A cryptosystem that supports fully homomorphic encryption can implement

any operation on encrypted data, without decrypting data, which is
particularly useful when, e.g., outsourcing sensitive computations on private
data to a cloud server. The reader is referred to the survey [4] for a practical
perspective of fully homomorphic encryption.

2 We refer the reader to papers [6,7] to learn more about lattices, especially
in the context of lattice-based cryptography.

3 The diagonal elements of this matrix must be positive.
4 https://www.latticechallenge.org/svp-challenge/
5 https://www.latticechallenge.org/svp-challenge/

REFERENCES

[1] Peter Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Journal of
Computing, 26(5):1484–1509, 1997.

[2] Peter Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In Proceedings of the 35th Annual Symposium on
Foundations of Computer Science SFCS’94, pp. 124–134, Washington,
DC, 1994. IEEE Computer Society.

[3] Daniel Bernstein, Johannes Buchmann, and Erik Dahmen, editors. Post-
Quantum Cryptography. Cham: Springer, 2009.

[4] Paulo Martins, Artur Mariano, and Leonel Sousa. A survey on fully
homomorphic encryption: an engineering perspective. ACM Computing
Surveys, 50:1–33, 2017.

[5] Daniele Micciancio and Oded Regev. Post-Quantum Cryptography,
Chapter Lattice-Based Cryptography, pp. 147–191.

[6] Oded Regev. Lattice-Based Cryptography, pp. 131–141. Berlin
Heidelberg: Springer, 2006. Berlin, Heidelberg: Springer, 2009.

https://www.latticechallenge.org
https://www.latticechallenge.org

Voronoi-Based Algorithms for SVP ■ 121

[7] Phong Nguyen and Jacques Stern. The two faces of lattices in cryptology.
In International Cryptography and Lattices Conference. Springer, Berlin,
Heidelberg, pp. 146–180, 2001.

[8] Artur Mariano, Thijs Laarhoven, Fabio Correia, Manuel Rodrigues, and
Gabriel Falcão. A practical view of the state-of-the-art of lattice-based
cryptanalysis. IEEE Access, 5:24184–24202, 2017.

[9] Artur Mariano. High performance algorithms for lattice-based crypt-
analysis. PhD thesis, Technische Universität Darmstadt, Darmstadt,
Germany, 2016.

[10] Joop van de Pol. Lattice-based cryptography. Master’s thesis, Technische
Universiteit Eindhoven, The Netherlands, 2011.

[11] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single
exponential time algorithm for most lattice problems based on Voronoi
cell computations. In STOC’10: Proceedings of the Forty-Second ACM
Symposium on Theory of Computing, Cambridge MA, pp. 351–358, 2010.

[12] Fabio Correia. Assessing the hardness of SVP algorithms in the presence
of CPUs and GPUs. Master’s thesis, University of Minho, Braga,
Portugal, 2014.

[13] Erik Agrell, Thomas Eriksson, Alexander Vardy, and Kenneth Zeger.
Closest point search in lattices. IEEE Transactions on Information
Theory, 48(8):2201–2214, 2002.

[14] Thijs Laarhoven. Evolutionary techniques in lattice sieving algorithms.
CoRR, abs/1907.04629, 2019.

[15] Martin R. Albrecht, Leo Ducas, Gottfried Herold, Elena Kirshanova,
Eamonn W. Postlethwaite, and Marc Stevens. The general sieve kernel
and new records in lattice reduction. In Yuval Ishai and Vincent Rijmen,
editors, Advances in Cryptology – EUROCRYPT 2019, pp. 717–746,
Cham: Springer International Publishing, 2019.

[16] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular
locality-sensitive hashing. In CRYPTO, pp. 3–22, 2015.

[17] Nicolas Gama, Phong Nguyen, and Oded Regev. Lattice enumeration
using extreme pruning. In EUROCRYPT, pp. 257–278, 2010.

[18] Gabriel Falcao, Filipe Cabeleira, Artur Mariano, and Lúȷs Paulo Santos.
Heterogeneous implementation of a voronoi cell-based svp solver. IEEE
Access, 7:127012–127023, 2019.

[19] Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction:
Improved practical algorithms and solving subset sum problems.
Mathematical Programming, 66(2–3):181–199, 1994.

122 ■ Cybersecurity and High-Performance Computing Environments

[20] Arjen Lenstra, Hendrik Willem Lenstra, and Laszlo Lovasz. Factoring
polynomials with rational coefcients. Mathematische Annalen, 261:515–
534, 1982.

[21] Daniel Goldstein and Andrew Mayer. On the equidistribution of Hecke
points. Forum Mathematicum, 15:165–189, 2003.

[22] Donald Knuth. The Art of Computer Programming, volume 3, Sorting
and searching. Boston, MA: Addison-Wesley, 1998.

[23] Charles Hoare. Algorithm 64: Quicksort. Communications of ACM,
4(7):321, 1961.

[24] Phong Nguyen and Thomas Vidick. Sieve algorithms for the shortest
vector problem are practical. Journal of Mathematical Cryptology,
2(2):181–207, 2008.

[25] Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time
algorithms for the Shortest Vector Problem. In Proceedings of the twenty-
frst annual ACM-SIAM symposium on Discrete Algorithms (SODA),
Society for Industrial and Applied Mathematics, Philadelphia, PA, pp.
1468–1480, 2010.

¨ [26] Robert Fitzpatrick, Christian Bischof, Johannes Buchmann, Ozgür
Dagdelen, Florian Göpfert, Artur Mariano, and Bo-Yin Yang. Tuning
GaussSieve for speed. In International Conference on Cryptology
and Information Security in Latin America (LATINCRYPT), Springer,
Cham, pp. 288–305, 2014.

[27] Nicolas Gama, Phong Q. Nguyên, and Oded Regev. Lattice enumeration
using extreme pruning. In EUROCRYPT, Monaco and Nice, French
Riviera, pp. 257–278, 2010.

C H A P T E R 5

Attribute-Based Secure
Keyword Search for
Cloud Computing
Hui Yin, Yu Zhang, and Fangmin Li
Changsha University

Keqin Li
State University of New York

CONTENTS

5.1 Introduction . 124
5.2 Key Techniques in ABKS . 125

5.2.1 Attribute-Based Encryption . 125
5.2.1.1 Preliminaries in ABE . 127
5.2.1.2 A CP-ABE Construction 129

5.2.2 Searchable Encryption . 132
5.2.2.1 SE in the Private-Key Setting 133
5.2.2.2 SE in the Public-Key Setting 134

5.3 ABKS Construction . 136
5.3.1 System Model and Threat Model 137

5.3.1.1 System Model . 137
5.3.1.2 Threat Model . 138

5.3.2 Basic Algorithm . 139
5.3.2.1 Algorithm Defnition . 139
5.3.2.2 Algorithm Implementation 140

5.3.3 Search Privilege Revocation . 143
5.3.3.1 Coarse-Grained Revocation 143
5.3.3.2 Fine-Grained Revocation 144

5.4 Experimental Result Analysis . 147
5.5 Conclusions and Future Directions . 148
References . 149

DOI: 10.1201/9781003155799-5 123

https://doi.org/10.1201/9781003155799-5

124 ■ Cybersecurity and High-Performance Computing Environments

5.1 INTRODUCTION

Cloud computing is an overwhelming technology that indicates IT
feld is developing toward the trend of intensifcation, scale, and
specialization. In the cloud computing paradigm, the IT facilities
are pooled as the confgurable resources, including computing power,
storage, network, and services. The end-users are able to fexibly
and dynamically request those resources by the on-demand network
access with low expenditures anytime and anywhere. Compared to
the traditional IT infrastructure, the enormous advantages such as
elastic resource confguration, quick deployment, and cost saving have
attracted more and more enterprises and individual users to migrating
their applications and data to the cloud center. However, the security of
cloud computing is always a controversial issue as outsourcing data to
remote cloud servers also means that data owners no more possess the
control power on the outsourced data [1]. The data stored on the cloud
platform face a dual threat from the cloud server itself and external
attackers. Encryption is an efective way to guarantee the security of
the outsourced data [2]. However, traditional block cipher techniques
make original plaintext unavailable due to the introduction of random
keys. It is critical for cloud applications, as the cloud computing is
characterized by not only massive data storage, but also efcient data
processing. If the encrypted data are not able to be processed and oper-
ated on the cloud platform, it will greatly thwart the wide adoption of
cloud computing. For example, in order to save IT infrastructure cost,
a hospital would like to store their electronic medical records (EMRs)
to the cloud platform in the form of the ciphertext, as EMRs contain
a huge amount of confdential, sensitive information that patients are
reluctant to publish, such as medical history. If in the cloud center these
data cannot work just like their plaintext, the hospital may give up the
cloud computing. Because encrypted EMRs have to be downloaded and
decrypted when performing one search or diagnosis task, it is obviously
not the original intention of using the cloud computing.
To address this problem, a long line of research has been made

to realize operations directly over ciphertext, among which searchable
encryption techniques are a recently vibrant research feld, aiming
at guaranteeing both confdentiality and searchability over encrypted
data. Song et al. frst introduced the idea of searchable encryption

Secure ABKS for Cloud Computing ■ 125

and, in Ref. [3], proposed a practical construction that supports
data searching on ciphertext through the specifed query trapdoor
(encrypted query keywords). According to the adoptions of diferent
encryption mechanisms, searchable encryption can be divided into sym-
metric (private-key) searchable encryption (SSE) [4,5] and public-key
encryption with keyword search (PEKS) [6]. Recently, with the rapid
development and increasing popularity of cloud computing, from the
point of practicability, searchable encryption has been extended to solve
how to achieve efcient and functionally rich search over encrypted
cloud data [7–9]. These techniques promote the practical application
of searchable encryption in the cloud computing environment.
While those schemes provide a powerful capacity to perform the

keyword search over encrypted data, they have a lack of the data
access control. In the data-shared cloud environment, performing access
control over outsourced data can efectively prevent data from being
illegally accessed by unauthorized entities. The practical requirement
reclaims a new research topic, called attribute-based keyword search.
The attribute-based keyword secure search schemes [10–12] are able to
achieve fne-grained access control and private search over encrypted
data simultaneously by taking full advantage of searchable encryption
and attribute-based encryption (ABE) [13], which is very applicable
to the cloud computing environment. In this chapter, we frst briefy
introduce the key techniques to achieve ABKS scheme, such as
necessary components used in the attribute-based encryption. Then, by
several existing ABKS schemes, we describe how to design a practical
and efcient ABKS construction in the cloud computing environment
(by combining the attribute-based encryption primitive and searchable
encryption primitive as well as some other key techniques). Further,
we show some interesting experiment results to explain the key factors
afecting the search complexity in ABKS schemes and present some
ideas to design a truly practical and high-performance ABKS scheme.
Also, we present future directions in this research feld.

5.2 KEY TECHNIQUES IN ABKS

5.2.1 Attribute-Based Encryption

ABE allows one to enforce fexible and fne-grained data access control
in the Internet or open distributed computing environment, meanwhile

126 ■ Cybersecurity and High-Performance Computing Environments

guaranteeing data confdentiality via cryptographic means. Due to the
dramatic reduction in the cost of network bandwidth and sending nodes
operation in data sharing, ABE has a broad prospect of application
in the area of fne-grained access control. The frst ABE scheme was
proposed by Sahai and Water in [13], referred to as fuzzy identity-based
encryption (FIBE). In FIBE, one encrypts a message to the ciphertext
associating a set of attributes ω and an authority generates a private
key by embedding a set of attributes ω ′ into the private key. When
decrypting, if and only if |ω ∩ ω ′ | ≥ d, the private key can work on the
ciphertext, where d is a threshold value. The faw of this scheme is that
the expressivity of the access policy is defcient and infexible due to the
only adoption of the intersection operation between two attribute sets
to enforce the decryption control. This feature was greatly improved by
using an access tree to express the access control policy. Depending on
where the access tree is in the ciphertext or in the private key, the sub-
sequently proposed ABE schemes can be generally classifed into two
categories: key-policy ABE (KP-ABE) [14] and ciphertext-policy ABE
(CP-ABE) [15]. In KP-ABE, an authority specifes an access tree to
generate a private key and an encrypter encrypts a message associating
a set of attributes. When decrypting, if and only if the attribute set in
the ciphertext component satisfes the access tree in the key component,
the key can recover the message. We give an example of KP-ABE as
shown in Figure 5.1. Obviously, the data user is able to successfully
decrypt the encrypted outsourced fles, since the attribute set in cipher-
text satisfes the access tree in the key, which can recover the plaintext.
Compared with KP-ABE, in the CP-ABE schemes [15], the cipher-

text is associated with an access tree and a set of attributes is embedded

Figure 5.1 KP-ABE.

Secure ABKS for Cloud Computing ■ 127

Figure 5.2 CP-ABE.

into the private key. When decrypting, if and only if the attribute
set in the key satisfies the access tree in the ciphertext, the private
key can recover the encrypted message. We give an example as shown
in Figure 5.2. Obviously, the data user can successfully decrypt the
encrypted outsourced files, since the attribute set in the key satisfies the
access tree in the ciphertext, which can be decrypted by using the key.

5.2.1.1 Preliminaries in ABE

Next, we introduce some important background knowledge used for
the attribute-based encryption. These techniques are also necessities
for designing the attribute-based keyword search schemes.

5.2.1.1.1 Bilinear Map We use notations G1 and G2 to denote two
multiplicative cyclic groups with the prime order q. Let g be a generator
of G1. A bilinear map e : G1 ×G1 → G2 follows the properties:

1. Efficiently computational: For all x, y ∈ G1, e(x, y) ∈ G2 can be
efficiently computed in the polynomial time.

2. Bilinear: For all x, y ∈ G1 and a, b ∈ Z∗
q , e(x

a, yb) = e(x, y)ab

holds.

3. Non-degenerate: e(g, g) ̸= 1, g is a generator of G1.

5.2.1.1.2 Access Tree In ABE, an access tree is widely used to
describe an access structure due to its flexible and rich expressivity.

128 ■ Cybersecurity and High-Performance Computing Environments

Given an access tree T , a non-leaf node in T is a threshold gate of ”m
of n”, where m is a threshold value and n is the number of children
of the node. More specifically, for any node x ∈ T , let kx and numx

be threshold value and the number of children of x. If x is a non-leaf
node, kx = 1 means x is an OR gate, kx = numx indicates it is an
AND gate, and 1 < kx < numx represents x is a threshold gate. If x is
a leaf node, then kx = 1 and numx = 0. For ease of description, several
notations are defined as follows.

1. parent(x): the parent of node x.

2. index(x): x is a child of its parent node; index(x) denotes the
index number of x. The index number of the leftmost child node
is set to be 1, and correspondingly, the index number of the
rightmost child node is set to be num.

3. attr(x): x is a leaf node; attr(x) denotes an attribute associated
with x.

Here, we see an example, as shown in Figure 5.3. According to our
definition, we have numR = 3, numN1 = 2, numN2 = 2, numN3 = 3,
kR = 3, kN1

= 2, kN2
= 1, kN3

= 2, parent(A) = N1, index(A) = 1,
index(B) = 2, index(C) = 1, index(G) = 3. The nodes R and N1 are
AND gates, N2 is an OR gate, and N3 is a threshold gate; nodes A−G
are leaf nodes. Also, nodes R, N1, and N2 can be presented as 3 of 3,
2 of 2, and 1 of 2 threshold gate, respectively.

Figure 5.3 Access tree.

Secure ABKS for Cloud Computing ■ 129

5.2.1.1.3 Satisfying an access tree Let A be a set of attributes and
T be an access tree with root r. For a subtree Tx of T rooted at the
node x, we define {

Tx(A) = 1 If A satisfies Tx

Tx(A) = 0 Otherwise.
(5.1)

We can compute Tx(A) by following recursive algorithm. If x is a non-
leaf node, evaluate Tx′(A) for all children x′ of node x. If at least
kx children return 1, then Tx(A) returns 1. If x is a leaf node, if
attr(x) ∈ A, then Tx(A) returns 1. Thus, if A satisfies T , then Tr(A) =
1; otherwise, Tr(A) = 0. For example, the attribute sets {A,B,C,E,G}
and {A,B,D, F,G} satisfy the access tree, but {A,C,E}, {A,B,E, F},
and {A,B,C,E} do not satisfy it. For simplicity, here we use the same
notations to denote the leaf nodes and their associated attributes.

5.2.1.1.4 Access Structure Let {P1, P2, ..., Pn} be a set of parties. A
collection A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C: If B ∈ A and B ⊆ C,
then C ∈ A. An access structure is a collection A of non-empty subsets
of {P1, P2, ..., Pn}, i.e., A ⊆ 2{P1,P2,...,Pn} \{∅}. The sets in A are called
the authorized sets, and the sets not in A are called the unauthorized
sets.

In the attribute-based encryption system, we use the attributes to
represent the role of the parties. Thus, A is an access policy usually
expressed by an access tree, organized by different attributes from the
authorized sets of attributes.

5.2.1.2 A CP-ABE Construction

Now, we state the construction of the famous ABE scheme proposed in
[15], which is a CP-ABE scheme and composed of four polynomial-time
algorithms: Setup, Encrypt, KeyGen, and Decrypt. The following are
several important tools used to implement those algorithms.

A bilinear map is denoted as e : G1 × G1 → G2 with the
three aforementioned properties, where G1 and G2 are two cyclic
multiplicative groups with large prime order q. A cryptography hash
function H : {0, 1}∗ → G1 converting a bit string into a group element
in G1. The Lagrange coefficient is as follows:

∆i,S(x) =
∏

j∈S,j ̸=i

x− j

i− j
, (5.2)

where S denotes a set of elements in Z∗
q and i, j ∈ Z∗

q .

130 ■ Cybersecurity and High-Performance Computing Environments

5.2.1.2.1 Setup The algorithm sets up the system running en-
vironment. It first generates two groups G1,G2 of prime order q
and establishes the bilinear computation environment. Let g be the
generator of G1. Next, it chooses elements α, β from Z∗

q at random and
calculates h = gβ, e(g, g)α. Finally, the algorithm creates the public
key to be PK = {G1, g, h = gβ, e(g, g)α} and the master key to be
MK={β, gα}.

5.2.1.2.2 Encrypt(PK,M,T) On inputting the public key PK, a
message M, and an access tree T, the algorithm outputs the ciphertext
CT of the message M. First, for each node x in Tw, it generates a
polynomial qx. Starting from the root node R, these polynomials are
generated in a top-down manner. Specifically, for each polynomial qx
of x, it sets the degree dx of polynomial qx to be dx = kx − 1, where
kx is the threshold value of the node x. Then, for the root node R, it
chooses a random element s ∈ Z∗

q and sets qR(0) = s and sets dR other
points of qR randomly to completely define it. For any other node x
in Tw, it sets qx(0) = qp(x)(index(x)) and chooses dx other points to
completely define qx. Let Y be the set of leaf nodes in tree Tw; finally,
the algorithm outputs CT as:

CT = (T, C̃ = Me(g, g)αs, C = hs,

∀y ∈ Y : Cy = gqy(0), C ′
y = H2(attr(y))

qy(0)) (5.3)

5.2.1.2.3 KeyGen(MK,S) On inputting the master key MK and a
set S of attributes, the algorithm outputs private key SK. Specifically,
it first chooses an element r ∈ Z∗

q at random and calculates D =

(gαgr)1/β, and then chooses an element ra ∈ Z∗
q at random for each

attribute a ∈ S and computes Da = H(a)ra , D′
a = gra . The private

key can be written as

SK =(D = g
α+r
β ,∀a ∈ S,Da = H(a)ra , D′

a = gra) (5.4)

5.2.1.2.4 Decrypt(CT,SK) On inputting the ciphertext CT and
the private key SK, the algorithm decrypts CT and outputs the
original message M if decryption succeeds; otherwise, it outputs ⊥.
The decryption process is as follows.

Secure ABKS for Cloud Computing ■ 131

Let x be a node from Tw.

1. For each leaf node x, let a = attr(x) denote the attribute
associated with x, if a ∈ S, then compute:

r qx(0))e(Da, Cx) e(g · H(a)ra , g
Fx = =

(0)))e(D′ , C ′) e(gra , (H(a)qx
a x

qxe(gr, g (0)) · e(H(a), g)ra ·qx(0)
=

(0)e(H(a), g)ra ·qx

= e(g, g)rqx(0) (5.5)

If a ∈/ S, it defnes Fx = ⊥.

2. For each non-leaf node x, if there exists an arbitrary kx-sized set
of child nodes z, denoted by Sx, we defne Fz ̸= ⊥; if no such
set exists, then this means that the node is not satisfed by the
attribute set S and defne Fx = ⊥. If Fz ̸= ⊥, the algorithm
further calculates using Lagrange interpolation:

Y (0)∆i,S ′
Fx = Fz x

z∈SxY
(0))∆i,S ′ (0)

x= (e(g, g)r·qz

z∈SxY
(0)(e(g, g)r·qparent(z)(index(z)))∆i,S ′ = x

z∈SxY
(i)·∆i,S ′

x= e(g, g)r·qx (0)

z∈Sx

= e(g, g)r·qx(0) (5.6)

where i = index(z), S ′ = (∀z ∈ Sx : index(z)), and ∆i,Sx
′ is thex

Lagrange coefcient.

3. For the root node R of the access tree T , if FR = ⊥, then
this means that T is not satisfed by the attribute set S;
otherwise, according to the recursive calculation, we have FR =
e(g, g)r·qR(0) = e(g, g)rs .

132 ■ Cybersecurity and High-Performance Computing Environments

4. If S satisfes T , the algorithm recovers the message M by
computing � � � �

α+r α+r
hs βs e , g β e g , g β

e(C, D)
= =

FR e(g, g)rs e(g, g)rs

s α s se (g , g · gr) e (g , gα) e (g , gr)
= =

e(g, g)rs e(g, g)rs

= e(g, g)αs

eC
= Me(g, g)αs/e(g, g)αs = M (5.7)

e(C, D)/FR

5.2.2 Searchable Encryption

Searchable encryption (SE) is an attractive cryptographic primitive
as it enables a keyword-based search over encrypted data just like
the information retrieval in the plaintext data. Figure 5.4 depicts a
standard system model of SE. The model consists of three entities and
demonstrates the following application scenario: Data owners encrypt
data and build the secure index for ensuring the confdentiality and
searchability. Encrypted data and secure index are uploaded to a
remote server. After search authorization via secure communication
channels, a data user is allowed to submit encrypted query keywords
to the server to request goal data. Upon receiving the encrypted query

Figure 5.4 The system model of SE.

Secure ABKS for Cloud Computing ■ 133

keywords, the server carries out a private search on secure index and
returns all search results to the data user. Of course, the data user
may also be the data owner. In this case, the search authorization can
obviously be unnecessary.
Song et al. [3] designed the frst practical searchable encryption

construction in the private-key setting. In this scheme, a special three-
layer encryption is used to encrypt each keyword of a document and
linearly scan each encrypted keyword using the encrypted query to
achieve private search, which leads to the linear search complexity. In
order to achieve sub-linear search complexity, Curtmola et al. [4] con-
structed a searchable encryption construction based on an encrypted
inverted index structure that the search time is only related to the
number of data fles containing the query. Kamara et al. [16] introduced
the dynamic SE and discussed the problem of how to dynamically
add and delete data fles with low computation and communication
cost and small leakage. On the other hand, to prevent the unreliable
server from tampering search results (maliciously modify or even
delete search results), verifable SE was introduced by Kurosawa and
Ohtaki [17]. Combining blockchain, Ref. [18] proposed the decentralized
SE, which can guarantee that the server always returns the correct
and complete search results. Recently, with the rapid development
and increasing popularity of cloud computing, from the point of
practicability, searchable encryption has been extended to solve how
to achieve efcient and functionally rich search over encrypted cloud
data [7–9,19]. They focus on how to achieve over encrypted data multi-
keyword ranked search, fuzzy search, personalized search, etc. These
schemes above are realized in the private-key environment, i.e., SSE.
Boneh et al. [6] proposed the frst public-key encryption with keyword
search technique. Later, PEKS schemes supporting conjunctive and
range search were also studied in [20–22].
Next, we present how to construct a searchable encryption scheme

in the private-key environment and in the public-key environment,
respectively. Here, we only provide a basic implementation skeleton
and the details can be found in [4,16,22].

5.2.2.1 SE in the Private-Key Setting

We frst introduce the basic cryptographic primitives and defnitions
used to construct the SE scheme in the private-key setting.

134 ■ Cybersecurity and High-Performance Computing Environments

5.2.2.1.1 Cryptographic Primitives Let SKE = (Gen, Enc, Dec) be a
private-key encryption scheme, in which Gen is a probabilistic algorithm
that returns a secret key K on inputting a security parameter; Enc
is a probabilistic algorithm that encrypts a message m under a key
K and outputs a ciphertext c; Den is a deterministic algorithm that
decrypts the ciphertext c using a K that was exactly used to produce
c and returns m. A pseudo-random function F is computationally
efficient function. It takes a key K and a bit string of arbitrary
length as input and outputs a random string of fixed length, which
is undistinguishable from the output of a real random function by any
probabilistic polynomial-time adversary.

5.2.2.1.2 Definitions We write x
$← X to represent an element x

being sampled uniformly from a set X. The output x of an algorithm
F is denoted by x← F . The notation a||b refers to the concatenation of
two strings a and b. Let a := b be an assignment operation. We use DB
and EDB to denote a set of documents and its ciphertext version. Each
document is identified by notation id. W is defined to be a keyword
dictionary, and w ∈W denotes a keyword. We write DB(w) to represent
the documents containing the keyword w. We need a list data structure
L, and each element in L is a label–data pair (l, d). One can invoke
method add to insert (l, d) into L. In addition, we define an algorithm
Get(L, l), which indicates from L taking the label–data pair (l, d).

5.2.2.1.3 Basic Implementation Now, we give a basic implementa-
tion skeleton of SE scheme in the private-key setting, as shown in
Figure 5.5. There are two key algorithms, i.e., SetUp and Search. The
data owner runs SetUp to encrypt plaintext documents and construct
a secure searchable index. Search algorithm consists of two sub-
algorithm. On the one hand, on inputting a search keyword w and
key K, the data user invokes this algorithm to generate a query token.
Upon receiving the query token, the server is responsible for performing
search over EDB on behalf of the data user and returns search results
to the data user.

5.2.2.2 SE in the Public-Key Setting

We first introduce several cryptographic tools used to construct
the SE scheme in the public-key setting and then describe a basic
implementation skeleton.

Secure ABKS for Cloud Computing ■ 135

SetUp(DB)
Data owner:
1. Compute K

$← {0, 1}λ and generate an empty List L
2. For each keyword w ∈W :
(1) Compute K1 ← F (K,w||1) and K1 ← F (K,w||2)
(2) Define a counter and initialize c := 0
(3) For each id ∈ DB(w):

1) Compute l← F (K1, c) and d← Enc(K2, id) and c := c+1
2) Add (l, d) to L by algorithm add

3. Send the key K to the data user and output the encrypted DB

as EDB

Search(K,w, EDB)
Data user: On input (K,w)
1. Compute K1 ← F (K,w||1) and K1 ← F (K,w||2)
2. Send (K1,K2) to the server.

Server: On input EDB, message (K1,K2)
1. Generate an empty list R
2. For c = 0 until Get returns ⊥
(1) d← Get(EDB, F (K1, c); id← Dec(K2, d)
(2) Add id to R by algorithm add

3. Return R to the data user

Figure 5.5 The implementation skeleton of SE in the private-key setting

5.2.2.2.1 Cryptographic Tools Let G1 and G2 be two multiplicative
groups of prime order q. Specify a bilinear map e : G1×G1 → G2 with
three important properties defined in Section 5.2. We in addition need
two hash functions H1 : {0, 1}∗ → G1 and H2 : G2 → {0, 1}log q.

5.2.2.2.2 Basic Implementation Now, we give a basic implementa-
tion skeleton of SE scheme in the public-key setting, as shown in Figure
5.6. Compared with SE in the private-key setting, the data owner uses
the public key to encrypt index keyword in Enc algorithm and the data
user uses private key to encrypt query keyword in Search algorithm.
Because H2(e(q̃, g

r)) = H2(e(H1(Q)α, gr)) = H2(e(H1(Q), g)αr) and
H2(t) = H2(e(H1(w), h

r)) = H2(e(H1(w), g)
αr), if w = Q, we have

136 ■ Cybersecurity and High-Performance Computing Environments

KeyGen(1λ)
Data user:
1. Pick a random element α ∈ Z∗

q
2. Find a generator g of G1
3. Output public key pub = [g, h = gα] and private key priv = α

Enc(pub, w)
Data owner:
1. Pick a random element r ∈ Z∗

q
r , hr2. Compute g , t = e(H1(w), hr), and H2(t)
′ 3. Output w s ciphertext we = [gr, H2(t)]

Search(priv, Q, we)
Data user: On input (priv, q), where Q is a query keyword.

′ 1. Output q s ciphertext qe = H1(Q)α

Server: On input (w,e qe)
1. Check if H2(e(e r)) = H2(t)q, g
2. If so, output “yes”; otherwise, output “no”.

Figure 5.6 The implementation skeleton of SE in the public-key setting.

H2(e(e r)) = H2(t). The derivation shows that the Search algorithmq, g
is correct.

5.3 ABKS CONSTRUCTION

The attribute-based keyword search (ABKS) technique by taking
full advantage of the searchable encryption and the attribute-based
encryption is able to simultaneously achieve fne-grained access control
and private data searching over ciphertext, which is very applicable to
the cloud computing environment. Like ABE schemes, ABKS can also
be divided into two categories: CP-ABKS [10–12] and KP-ABKS [23].
In CP-ABKS, a data owner embeds the access policy into the secure
searchable index and issues the private key to a data user according
to the attribute information of the data user. By using the private
key, the data user can encrypt the search query to generate legal
query trapdoor. On the contrary, in KP-ABKS, the access policy is

Secure ABKS for Cloud Computing ■ 137

embedded into the private key and a set of attributes is specifed in
the secure searchable index. In this section, we frst introduce a CP-
ABKS construction and then discuss how to perform search privilege
revocation dynamically with a low cost.

5.3.1 System Model and Threat Model

First of all, we give the system model and the threat model in a CP-
ABKS scheme.

5.3.1.1 System Model

As shown in Figure 5.7, the system model of a CP-ABKS for cloud
computing involves three entities. They are the cloud server, the data
owner, and the data users. This system model describes the following
application scenario: The data owner intends to outsource his data
to the remote cloud platform for enjoying low-cost data storage and
processing. For confdentiality guaranteeing, before uploading the data,
the data owner employs a semantically secure encryption scheme such
as AES to encrypt the data and a CP-ABE to build searchable secure
index for data access control. Via secure communication channels, the
data owner sends some secret information to a data user, by which
the data user can generate a legal query trapdoor he wants to search.

Figure 5.7 The system model of CP-ABKS for cloud computing.

138 ■ Cybersecurity and High-Performance Computing Environments

The cloud server stores the encrypted data and index and, upon
receiving a query trapdoor, performs the search over encrypted data
on behalf of the data user. In a CP-ABKS scheme, if and only if a data
user has access to a certain index and his submitted trapdoor matches
the index, a successful search will complete.

5.3.1.2 Threat Model

The threat model of a CP-ABKS for cloud computing is generally
modeled as “honest-but-curious” passive adversary. In this model,
the cloud server provider promises that it would comply with the
service and security contracts for maintaining company reputations.
However, we cannot rule out the possibility that it may try to infer or
steal information from outsourced data. This assumption is reasonable,
since the cloud server is usually operated by a third-party commercial
company, which is outside of the trusted domain of the data providers.
In other words, the data owner cannot absolutely give assurance that
the remote cloud server does not access the outsourced data. On the
other hand, this threat model assumes that the data owner and the data
users are fully trusted. Moreover, a data user does not leak the secret
information such as private key to others such that the unauthorized
data access will never occur. In addition, to secure the key distribution,
there exist secure communication channels between the data owner and
the data users.

5.3.1.2.1 Adaptively Chosen Keyword Attack Game In general, the
formal security proof of a CP-ABKS scheme relies on a game between a
challenger B and an adversary A, called the adaptively chosen keyword
attack game, which is described below.

Setup. B initializes running environment and sends public
parameters to the adversary A.

Phase 1. A adaptively requests search trapdoor TA(w) for any
keyword w for polynomially many times from B with the attribute sets
S1, ..., Sq.

Challenge. A defines a challenge access tree T∗ such that none
of the attribute sets S1, ..., Sq from Phase 1 satisfy T∗. A submits two
keywords w0, w1 and T∗ to B. B flips a random binary coin b ∈ {0, 1}
and encrypts wb with T∗ as Iwb

, which is sent to A.

Secure ABKS for Cloud Computing ■ 139

Phase 2. A continues to query the search trapdoor TA(w) for
chosen keyword w (including w0 and w1) with the attribute set Sqw

from B. The only restriction is that if the attribute set Sqw in TA(w)
satisfies T∗, then w ̸= w0, w1 (in other words, if w = w0 or w = w1,
then Sqw0

or Sqw1
does not satisfy T∗).

Guess. Finally, A outputs a guess b′ of b.

The advantage that a probabilistic polynomial-time adversary A
wins the above game is defined as Adv = Pr[b′ = b]− 1

2 .

5.3.2 Basic Algorithm

5.3.2.1 Algorithm Definition

A CP-ABKS scheme consists of five polynomial-time algorithms:
Setup, Keygen, Enc, Trap, and Search.

1. Setup(1λ) → (PK,MSK). The algorithm generates system
public parameter and system master key. On inputting a security
parameter λ, it outputs the system public parameters PK and
the master private key MSK.

2. KeyGen(PK,MSK, Su)→ Ku. The algorithm generates a private
key for a data user u. On inputting PK, MSK, and u′s attribute
set Su, it outputs the private key Ku.

3. Enc(PK, w, Tw) → Iw. The algorithm encrypts an index
keyword. On inputting PK, an index keyword w, and a specified
access tree Tw, it outputs w’s ciphertext Iw.

4. Trap(PK,Ku, q) → Tu. The algorithm encrypts a search query
for data user u. On inputting PK, a search query q, and Ku, it
outputs search trapdoor Tu(q).

5. Search(PK, Iw, Tu(q)) → True. The algorithm performs the
search over the encrypted data index. On inputting PK, Iw,
and Tu(q), it outputs True if Su satisfies Tw in Iw and w = q,
simultaneously; otherwise, it outputs False.

5.3.2.1.1 Correctness We say a CP-ABKS scheme is correct if
given Setup(1λ) → (PK,MSK), Keygen(PK,MSK, Su) → Ku,

140 ■ Cybersecurity and High-Performance Computing Environments

Enc(PK, w, Tw) → Iw, and Trap(PK,Ku, q) → Tu, then
Search(PK, Iw, Tu(q)) always returns 1.

5.3.2.2 Algorithm Implementation

Here, we introduce a concrete construction of a CP-ABKS scheme
by implementing the five polynomial-time algorithms defined above:
Setup, KeyGen, Enc, Trap, and Search. In the system model of CP-
ABKS for cloud computing, the data owner runs the three algorithms
Setup, KeyGen, and Enc; the data user runs the Trap algorithm; and
the cloud server runs the Search algorithm.

5.3.2.2.1 Setup Let e : G1 × G1 → G2 be a bilinear map with
the three aforementioned properties, where G1 and G2 are two cyclic
multiplicative groups with large prime order q. g is a generator of group
G1. We define two one-way hash functionsH1 : {0, 1}∗ → Z∗

q converting
a bit string into an element in Z∗

q and H2 : {0, 1}∗ → G1 converting
a bit string to an element in G1. Further, the Lagrange coefficient is
defined as shown in Equation (5.2). On inputting a security parameter
λ, the algorithm chooses two random elements α, β from Z∗

q and
outputs PK = {G1,G2, H1, H2, e(g, g)

α, h = gβ} and MSK = {β, gα}.

5.3.2.2.2 KeyGen Suppose that there is a data user u with an
attribute set S. The algorithm takes as input PK, MSK, and S, and
outputs the private key Ku for u as follows:

Ku = (G1 = g
α
β , G2 = g

1
β

∀a ∈ S,Ga = H2(a)
ra , G′

a = gra) (5.8)

where ra is randomly chosen from group Z∗
q for each attribute a ∈ S.

5.3.2.2.3 Enc The algorithm takes as input the master key MSK
and an index keyword, and outputs the ciphertext of the index keyword.
Specifically, the algorithm takes the following two steps to encrypt an
index keyword w.

1. It defines an access tree Tw and, for each node x in Tw,
generates a polynomial qx. Starting from the root node R, these
polynomials are generated in a top-down manner. Specifically,

Secure ABKS for Cloud Computing ■ 141

for each polynomial qx of x, it sets the degree dx of qx to
be dx = kx − 1, where kx is the threshold value of the node
x. Then, for the root node R, it chooses a random element
s ∈ Z∗

q and sets qR(0) = s and sets dR other points of qR
randomly to completely define it. For any other node x in Tw,
it sets qx(0) = qp(x)(index(x)) and chooses dx other points to
completely define qx.

2. Let Y be the set of leaf nodes in Tw, and w is encrypted under
MSK as follows:

Iw = (Tw, Ĩ ′w = e(g, g)αsH1(w), Ĩ ′′w = hsH1(w),

∀y ∈ Y : Iy = gqy(0), I ′y = H2(attr(y))
qy(0)) (5.9)

5.3.2.2.4 Trap Assume a data user u with private key Ku wishes
to search data files containing search query Q; the algorithm takes as
input PK, q, and Ku, and outputs q′s ciphertext by doing the following
three steps.

1. It chooses a random element r from group Z∗
q and computes λ1 =

r ·H1(Q), λ2 = gλ1 = grH1(Q), T1 = G1(G2)
r = g

α
β · g

r
β = g

α+r
β .

2. For each a ∈ S, it computes Ta = λ2Ga = grH1(Q)H2(a)
ra .

3. The algorithm encrypts the query keyword Q as

Tu(q) =(T1 = g
α+r
β ,

∀a ∈ S : Ta = grH1(Q)H2(a)
ra , T ′

a = G′
a = gra) (5.10)

5.3.2.2.5 Search Given the query trapdoor Tu(Q) and an encrypted
index keyword Iw, the algorithm can be regarded as two sub-
procedures. The first sub-procedure is that the cloud server performs
an access privilege match between the attribute set S in Tu(Q) and
the access tree Tw in Iw. If S satisfies the access tree Tw, then this
indicates u has the search privilege to Iw. The algorithm continues to
run the second sub-procedure to judge whether the search query Q is
equal to w in a secret manner. In the whole search process, the cloud
server cannot obtain any plaintext information about the search query
and the index keywords.

142 ■ Cybersecurity and High-Performance Computing Environments

The detailed process can be described as follows.
Let x be a node from Tw.

1. For each leaf node x, let a = attr(x) denote the attribute
associated with x; if a ∈ S, then compute:

rH1(Q) (0))e(Ta, Ix) e(g · H2(a)ra , gqx

Fx = = ′ ′ (0))e(T , I) e(gra , H2(a)qx
a x
rH1(Q) qx(0)) · e(H2(a), g)ra ·qx(0)e(g , g

=
(0)e(H2(a), g)ra ·qx

= e(g, g)rH1(Q)qx(0) (5.11)

If a ∈/ S, we defne Fx = ⊥.

2. For each non-leaf node x, if there exists an arbitrary kx-sized set
of child nodes z, denoted by Sx, we defne Fz ̸= ⊥; if no such
set exists, then this means that the node is not satisfed by the
attribute set S and defne Fx = ⊥. If Fz ̸= ⊥, the algorithm
further calculates using Lagrange interpolation: Y (0)∆i,S ′

Fx = Fz x

z∈SxY
(0))∆i,S ′ (0)

x= (e(g, g)rH1(Q)·qz

z∈SxY
(0)(e(g, g)rH1(Q)·qparent(z)(index(z)))∆i,S ′ = x

z∈SxY
rH1(Q)·qx(i)·∆i,S ′ (0)

x= e(g, g)
z∈Sx

= e(g, g)rH1(Q)·qx(0) (5.12)

where i = index(z), S ′ = (∀z ∈ Sx : index(z)), and ∆i,Sx
′ is thex

Lagrange coefcient.

3. For the root node R of Tw, after fnishing the above recursive
operations, if FR = ⊥, then this indicates T is not satisfed by S
and the Search will terminate in advance; otherwise, we can get

FR = e(g, g)rH1(Q)·qR(0) = e(g, g)rH1 (Q)s

Secure ABKS for Cloud Computing ■ 143

Next, the second sub-procedure is performed to check whether the
search query Q is equal to w by verifying:

′′ e(Ie , T1)′ wIe = (5.13)w FR

If Equation (5.13) returns true, we have w = Q by the following
derivation:

α+r α+r′′ e(hsH1(w) βsH1(w)β βe(Ie , T1) , g) e(g , g)w = =
FR e(g, g)rH1(Q)s e(g, g)rH1(Q)s

sH1(w) sH1 (w) sH1(w)e(g , gα+r) e(g , gα)e(g , gr)
= =

e(g, g)rH1(Q)s e(g, g)rH1(Q)s

e(g, g)αsH1 (w)e(g, g)rH1(w)s
=

e(g, g)rH1(Q)s

If the search query Q is identical to w (i.e., H1(Q) = H1(w)), then we
can further get:

′′ e(Ie , T1) e(g, g)αsH1(w)e(g, g)rH1(w)s
w =
FR e(g, g)rH1 (Q)s

= e(g, g)αsH1(w) e′ = Iw

5.3.3 Search Privilege Revocation

The cloud computing is a dynamic and open environment. Therefore,
dynamically and fexibly revoking a data user’s search privilege is a
signifcant property in an ABKS scheme. We introduce two approaches
to explain in ABKS how to revoke a data user’s search privilege with a
low computation and communication overhead. The two approaches
achieve search privilege revocation from diferent grains. The frst
approach is to revoke the whole user (in a coarse-grained manner),
and the second is to revoke certain attributes of a data user (in a
fne-grained manner).

5.3.3.1 Coarse-Grained Revocation

The coarse-grained revocation indicates revoking a data user’s whole
search privilege, which means the data user no more has the ability to

144 ■ Cybersecurity and High-Performance Computing Environments

generate a legal query trapdoor. Without the legal query trapdoor, he
cannot retrieve the data from the cloud server; i.e., the search privilege
has been invoked.

Here, we introduce a coarse-grained search privilege revocation
approach based on symmetric key sharing and dynamic update. Given
the traditional symmetric encryption scheme SE=(Gen, Enc, Dec)
(such as AES), the cloud server runs algorithm SE.Gen to generate
a key k, which is shared between the cloud server and data users.
After a data user generates the query trapdoor Tu(Q), Tu(Q) is re-
encrypted using algorithm SE.Enc under the shared key k as Tu(Q)′ =
SE.Enc(g

α+r
β ||{∀a ∈ S : grH1(q)H2(a)

ra , gra}), where || denotes the
concatenation of two strings. Obviously, before performing search
algorithm, the cloud server can recover Tu(Q) by encrypting SE.Dec(k,
Tu(Q)′). When the system needs to revoke an authorized data user,
it asks the cloud server to update key k to k′ and distributes it to
unrevoked data users via secure channels. As a result, the revoked data
user cannot generate a valid trapdoor component without the updated
key k′. To guarantee the user experience, when a worker is revoked,
the cloud server will send a notification to the revoked data user.

5.3.3.2 Fine-Grained Revocation

The fine-grained revocation means revoking certain attributes from a
data user, which only incurs the degradation of the data user’s search
privilege. After certain attributes have been revoked from a data user,
the data user may still hold search privilege for some index keywords,
as long as the remaining attributes satisfy the access policies embedded
in the index keywords.

Here, we introduce a fine-grained search privilege revocation
approach based on the re-encryption idea.

5.3.3.2.1 Index keyword re-encryption Let A be the attribute uni-
verse in the system and, for any an attribute a ∈ A, define an attribute
key Ka to generate an attribute key universe, denoted by AK = {∀a ∈
A : Ka}, which is shared between the cloud server, the data owner, and
data users. When receiving the encrypted index keyword Iw from the

Secure ABKS for Cloud Computing ■ 145

data owner, the cloud server uses AK to re-encrypt Iw as follows:

I∗w = (Tw, Ĩ
′
w = e(g, g)αsH1(w), Ĩ ′′w = hsH1(w),

∀y ∈ Y ∧ ∀Kattr(y) ∈ AK : Iy = gqy(0),

I ′y = (H2(attr(y))
qy(0))Kattr(y)) (5.14)

5.3.3.2.2 Private key re-encryption When a data user u receives the
private key Ku from the data owner, the data user re-encrypts it. To
achieve this re-encryption, based on S and AK, the data user first
generates an attribute key subset as AK = {Ka|a ∈ S,Ka ∈ AK},
where S denotes u′s attribute set, which has been embedded into the
private key Ku. Then, u employs the attribute key subset AK to re-
encrypt the Ku as follows:

K′
u = (G1 = g

α
β , G2 = g

1
β ,

∀a ∈ S ∧ ∀Ka ∈ AK : Ga = H2(a)
ra ,

G′
a = (gra)

1
Ka) (5.15)

5.3.3.2.3 Query trapdoor re-encryption When a data user u gen-
erates the query trapdoor Tu(Q) of query keyword Q, the data user
further re-encrypts Tu(Q) using K′

u as:

Tu(q)′ = (T1 = g
α+r
β ,

∀a ∈ S ∧ ∀Ka ∈ AK : Ta = grH1(Q)H2(a)
ra ,

T ′
a = G′

a = (gra)
1

Ka), (5.16)

which will be submitted to the cloud server.
Note that the re-encryption operations mentioned above have no

influence on the search algorithm; interested readers can verify the
conclusion by substituting those re-encryption ciphertext components
into the Search algorithm.

Now, we explain how to perform the fine-grained attribute
revocation operations based on an attribute revocation protocol among
the cloud server, the data owner, and the data users. Assume that an
attribute a will be revoked from a data user u by the system, the
attribute revocation protocol works as follows.

146 ■ Cybersecurity and High-Performance Computing Environments

1. Data Owner. For the attribute a, the data owner frst generates
a new attribute key K ′ and updates AK by computing AK :=aS ′ (AK − {Ka}) {K ′ } and then sends K to the cloud server anda a
data users who have been assigned the attribute a except u.

′ 2. Cloud Server. Upon receiving the K , the cloud server frsta S
updates AK by computing AK := (AK − {Ka}) {K ′ }. Then,a
for each encrypted index keyword w, if existing one leaf node in
the access tree Tw associates with the attribute a, then the cloud

′ ′ aserver updates the value I of I∗ as (I)K ′
for the attribute aa w a

and keeps other leaf nodes unchanged. The new I∗ is denoted asw
follows (assume that the lead node x in Tw associates with the
attribute a, i.e., a = attr(x)):

I ∗ e′ e′′ = hsH1 (w)= (Tw, I = e(g, g)αsH1(w), I ,w w w
qx ′ (0))Kattr(x)Kattr(x)Ix = g (0), I = (H2(attr(x))qx

′

x
(5.17)

qy (0)= g ,∀y ∈ Y ∧ ∀Kattr(y) ∈ AK \ {x} : Iy
′ (0))Kattr(y))I = (H2(attr(y))qy
y

3. Data Users. When a data user u’ who has been assigned the
′ attribute a receives the updated attribute key K from the dataa

owner, he frst updates his attribute key subset AK by computing S
AK := (AK−{Ka}) {K ′ } and then updates the previous G ′ asa a

1

(G ′)Ka
′ and keeps the other attribute keys unchanged. The newa

G∗ is denoted by: ′ u

aT ′ ′ t = (G1 = g
α
β , G2 = g β

1
, Ga = H2(a)ra , G ′ = (g ra)Ka

1
K ′

u a

∀b ∈ S ∧ ∀Kb ∈ AK \ {a}, Gb = H2(b)rb , G ′ = (g rb)K
1
b)b
(5.18)

Revoking certain attributes from a data user incurs that the data
user’s attribute set no more satisfes the access policy associated with
an index keyword. This is because the original attribute keys of the
revoked attributes have been updated after running the attribute
revocation protocol. These updated attribute keys are unknown to the
data user. Without the newly updated attribute keys, the data user
cannot recover the information FR for the root node R in the access
tree in the Search algorithm.

Secure ABKS for Cloud Computing ■ 147

5.4 EXPERIMENTAL RESULT ANALYSIS

The search performance is of paramount importance in practice for a
search system, which directly afects user experiences. In this section,
we analyze the practicality of the ABKS scheme by a group of search
cost evaluation experiments over a real data set. The experiments were
conducted in Java platform, and the confguration of the search server
is an Ubuntu 16.04 system with 3.60 GHZ Inter Core i7-7700 CPU and
16GB memory. In these experiments, we mainly consider the search
performance trend afected by the size of data fles and index keywords
and ignore the number of attributes and set it to be a constant.
Figure 5.8 shows the time cost of search for diferent numbers of

encrypted index keywords when fxing the size of data fles to be 4000.
We can observe that the search complexity of the ABKS scheme is
proportional to the number of the encrypted index keywords. The more
the index keywords are, the more time would be spent on search over
encrypted index keywords. This is because the linear scanning on the
index keywords causes the time-consuming pairing and exponentiation
operations to be linear with the number of index keywords. We can see
that when the number of index keywords is 800, the average time of
search is about 50s. Such a search efciency is obviously impractical in
real applications, especially in the big data environments. Therefore, we
can say that the current ABKS researches are more of theoretic interest.

(a) (b)

Figure 5.8 Search performance evaluation.

148 ■ Cybersecurity and High-Performance Computing Environments

On the other hand, our experimental results also shows the time cost of
search for diferent numbers of encrypted data fles when fxing the size
index keywords to be 800. We can observe that the size of data fles has
little infuence on the search overhead, since the keyword-based index
structure is widely used in the ABKS schemes, not the fle-level index.

5.5 CONCLUSIONS AND FUTURE DIRECTIONS

The ABKS techniques provide a feasibility that simultaneously
achieves searching and fne-grained access control over encrypted
data, which are very applied to the cloud computing environment
characterized by data storage and sharing. In this chapter, we frst
introduce the key techniques to achieve an ABKS technique and then
we give an ABKS construction and discuss how to revoke a data user’s
search privilege in the coarse-grained and fne-grained manners. Finally,
we run the CP-ABKS scheme present in Section 5.3.2 over a real data
set and evaluate the average search complexity of this scheme. From the
experimental results, we can see that existing ABKS schemes are not
suitable to use in the real data set due to the high search complexity.
How to eliminate the gap is still an important research topic.
Based on the literature review, we present the future research

directions for the ABKS technique as follows.

1. Search Complexity Optimization. At present, in the existing
ABKS schemes, the reason for high search overhead is that
the time-consuming pairing and exponentiation operations are
linear in the number of encrypted index keywords. Designing the
encrypted index structure and search algorithm with constant
or no pairing and exponentiation operations is the key point to
improve the search overhead of ABKS schemes.

2. Dynamic ABKS Technique. As far as we know, there are no
dynamic ABKS schemes in the existing literature. A dynamic
ABKS technique will provide the ability to dynamically add or
delete the data fles from the server side with a strong security
guarantee and a low computation and communication overhead.
The feature is attractive, especially in the open and elastic cloud
computing environment, since it will facilitate the data owner to
dynamically update their cloud data.

Secure ABKS for Cloud Computing ■ 149

REFERENCES
[1] K. Ren, C. Wang, and Q. Wang. Security challenges for the public cloud.

IEEE Internet Computing, 16(1):69–73, 2012.
[2] S. Kamara and K. Lauter. Cryptographic cloud storage. In Springer

RLCPS, Berlin/Heidelberg, January 2010.
[3] D. Song, D. Wagner, and A. Perrig. Practical techniques for searches on

encrypted data. In IEEE Symposium on Security and Privacy, vol. 8, pp.
44–55, Berkeley, CA, 2000.

[4] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable
symmetric encryption: improved defnitions and efcient constructions.
In ACM CCS, vol. 19, pp. 79–88, Alexandria, VA, 2006.

[5] S. Sun, X. Yuan, J. K. Liu, and R. Steinfeld. Practical backward-secure
searchable encryption from symmetric puncturable encryption. In ACM
Conference on Computer and Communications Security, pp. 763–780,
Toronto, ON, 2018.

[6] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public-
key encryption with keyword search. In EUROCRYPR, pp. 506–522,
Berlin/Heidelberg, 2004.

[7] Z. Fu, X. Sun, Q. Liu, L. Zhou, and J. Shu. Achieving efcient cloud
search services: Multi-keyword ranked search over encrypted cloud data
supporting parallel computing. IEICE Transactions on Communications,
E98-B(1):190–200, 2015.

[8] W. Zhang, S. Xiao, Y. Lin, J. Wu, and S. Zhou. Privacy preserving ranked
multi-keyword search for multiple data owners in cloud computing. IEEE
Transactions on Computers, 65(5):1566–1577, 2016.

[9] Z. Fu, X. Wu, Q. Wang, and K. Ren. Enabling central keyword-
based semantic extension search over encrypted outsourced data. IEEE
Transactions on Information Forensics and Security, 12(12):2986–2997,
2017.

[10] W. Sun, S. Yu, W. Lou, Y. T. Hou, and H. Li. Protecting your right:
Attribute-based keyword search with fne-grained owner-enforced search
authorization in the cloud. In IEEE INFOCOM, pp. 226–234, Toronto,
ON, 2014.

[11] J. Li, X. Lin, Y. Zhang, and J. Han. Ksf-oabe: Outsourced attribute-
based encryption with keyword search function for cloud storage. IEEE
Transactions on Services computing, 10(5):715–725, 2016.

[12] Y. Miao, J. Ma, X. Liu, X. Li, Z. Liu, and H. Li. Practical attribute-based
multi-keyword search scheme in mobile crowdsourcing. IEEE Internet of
Things Journal, 5(4):3008–3018, 2018.

150 ■ Cybersecurity and High-Performance Computing Environments

[13] A. Sahai and B. Waters. Fuzzy identity-base encryption. In
EUROCRYPT, pp. 457–473, Berlin/Heidelberg, 2005.

[14] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based
encryption for fne-grained access control of encryption data. In ACM
Conference on Computer and Communications Security, pp. 89–98,
Alexandria, VA, 2006.

[15] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-
based encryption. In IEEE Symposium on Security and Privacy, pp.
321–334, Berkeley, CA, 2007.

[16] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable
symmeteric encryption. In ACM Conference on Computer and
Communications Security, pp. 965–976, Raleigh, NC, 2012.

[17] K. Kurosawa and Y. Ohtaki. Uc-secure searchable symmetric encryption.
In Financial Cryptography and Data Security, pp. 285–298. Springer
Berlin Heidelberg, 2012.

[18] Y. Zhang, R. H. Deng, J. Shu, K Yang, and D. Zheng. Tkse: Trustworthy
keyword search over encrypted data with two-side verifability via
blockchain. IEEE Access, 6:31077–31087, 2018.

[19] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou. Privacy-preserving multi-
keyword ranked search over encrypted cloud data. IEEE Transactions
on Parallel and Distributed Systems, 25(1):222–233, 2014.

[20] P. Golle, J. Staddon, and B. Waters. Secure conjunctive keyword search
over encrypted data. In Springer ACNS, pp. 31–45, Berlin/Heidelberg,
2004.

[21] D. Boneh and B. Waters. Conjunctive, subset, and range queries on
encrypted data. In Springer TCC, pp. 535–554, Berlin/Heidelberg, 2007.

[22] H. Yin, Z. Qin, J. Zhang, L. Ou, F. Li, and K. Li. Secure conjunctive
multi-keyword ranked search over encrypted cloud data for multiple data
owners. Future Generation Computer Systems, 100:689–700, 2019.

[23] H. Zhu, L. Wangand, H. Ahmad, and X. Niu. Key-policy attribute-
based encryption with equality test in cloud computing. IEEE Access,
5(1):20428–20439, 2018.

C H A P T E R 6

Understanding
Cybersecurity Risk in
FMI Using HPC
Gurdip Kaur
University of New Brunswick (UNB)

Ziba Habibi Lashkari
Universidad Politécnica de Madrid

Arash Habibi Lashkari
University of New Brunswick (UNB)

CONTENTS

6.1 Introduction . 152
6.2 What Is Financial Market Infrastructure (FMI)? 154

6.2.1 Payment Systems . 154
6.2.2 Central Security Depositories . 156
6.2.3 Security Settlement Systems . 157
6.2.4 Central Counterparties . 157
6.2.5 Trade Repositories . 157

6.3 What Is High-Performance Computing? 158
6.4 How HPC Could Transform the Financial Industry 160
6.5 HPC in FMIs . 161
6.6 Current Works on Cybersecurity Issues Related to HPC

in FMIs . 163
6.7 Financial Risks in FMIs . 165
6.8 Common Security Objectives . 169
6.9 Cybersecurity Issues and Financial Risks in FMIs 170
6.10 Cybersecurity Risks in FMIs . 176

6.10.1 Cybersecurity Risks . 176
6.10.2 Risk Assessment . 178

DOI: 10.1201/9781003155799-6 151

https://doi.org/10.1201/9781003155799-6

152 ■ Cybersecurity and High-Performance Computing Environments

6.10.3 Risk Analysis . 180
6.10.4 Risk Monitoring, Reporting, and Mitigation 181

6.11 Conclusions . 184
References . 185

6.1 INTRODUCTION

Financial market infrastructure (FMI) serves as the backbone of
fnancial markets. It allows fnancial transactions to take place between
people, fnancial institutions, and businesses in a cheaper and more
efcient manner. It is the key component between fnancial institutions
that exchange payments, securities, and derivatives. It allows customers
and fnancial frms to purchase goods and services safely. It strengthens
fnancial stability and economic growth by recording, clearing, and
settling monetary and other fnancial transactions.

Simple examples of FMI include depositing salary into an
employee’s account, taking cash from an ATM machine, and paying
for online purchases. It is estimated that payments worth 360 billion
pounds take place every day in the UK through FMIs [1]. FMIs
also play some other important functions such as transferring shares
between traders and stock market, helping banks to borrow money
from other banks and fnancial institutions in the market, and lending
and borrowing loans to buy houses and invest in business.

FMIs can be a source of liquidity risk and credit losses, if not
managed properly [2]. In addition, FMIs are prone to general business
risk and fnancial, legal, operational, and systemic risks. All these risks
pose threat to the security of data and systems in FMIs. Consequently,
adequate supervision of FMIs is necessary for the proper functioning
of the fnancial institutions [3].

Since FMIs undergo millions of fnancial transactions every day,
it is important that these transactions are processed at a much faster
and accurate rate. This brings high-performance computing (HPC) into
picture. HPC enables distributed parallel computing of huge amounts
of data. It allows organizations, especially FMIs, to derive signifcant
and meaningful value from unusable information [4]. It possesses high
computational ability not only to process fnancial transactions at a

HPC and Cybersecurity Risks in FMIs ■ 153

higher speed, but also to identify fraudulent transactions as soon as
they take place.

Financial fraud is a severe threat for FMIs that can incur a
huge number of fnancial losses. With the integration of HPC, FMIs
can maintain a big dataset that can be used to detect suspicious
transactions immediately by correlating meaningful information from
data stored in a data lake. Cloud implementation of HPC plays a
pivotal role in order to maintain the big data. According to Hyperion
research, HPC server market grew over 15% to generate a record
revenue of 13.7 billion dollars. It is expected to reach 44 billion dollars
by 2023 [5].

HPC is transforming innovation and revenue for organizations
across industries. With the adoption of cloud-based HPC solutions,
fnancial institutions strive to keep pace with innovation in the market
[6]. The continuous growth of HPC speaks high of its value to the
scientifc community which carries a high-risk potential. This makes
HPC a prime target of security breaches. Some popular security issues
associated with HPC consist of confdentiality and integrity of data,
data security, malicious insiders, and external cyber-threats [7].

Focusing on FMIs, cyber-threats have emerged as a persistent
systemic risk. Its persistence makes it difcult to detect and eradicate
completely. It is equally difcult to measure the breadth of damage
caused by cyberattacks [8]. The primary motivation behind these
attacks is to make money, disrupt services to cause fnancial losses,
and steal sensitive data.

The rest of the chapter is organized as follows: Section 6.2
provides an overview of various components of FMIs. Section 6.3
introduces high-performance computing. It is followed by HPC’s power
to transform fnancial industry in Section 6.4. Section 6.5 delineates
the association of high-performance computing with FMIs. Section 6.6
reviews the current works on cybersecurity issues related to HPC in
FMIs as reported in the literature. Section 6.7 introduces fnancial risks
in FMIs and is followed by common security objectives in Section 6.8.
Various cybersecurity issues in each component of the infrastructure
and their mapping with common security objectives of cybersecurity
are presented in Section 6.9. Section 6.10 brings forward cybersecurity
risks in FMIs. Finally, Section 6.11 concludes the chapter.

154 ■ Cybersecurity and High-Performance Computing Environments

6.2 WHAT IS FINANCIAL MARKET INFRASTRUCTURE (FMI)?

Financial market infrastructures are defned as a multilateral system
designed to record, clear, or settle payment systems among partici-
pating fnancial institutions. Apart from handling payment systems,
they also include settlements, securities, derivatives, or other fnancial
transactions [9]. The participating fnancial institutions are referred
to as buyers and sellers. FMIs establish a set of common rules and
procedures for participating entities that considers specialized risk
management framework to deal with risks that may occur. It ensures
fnancial stability and economic growth by efectively managing risks
that may occur in the fnancial system [10]. Financial stability and
market functioning rely on the continuity of services provided by FMIs
[11]. A complete structure of FMI along with essential components is
presented in Figure 6.1.

6.2.1 Payment Systems

A payment system is a set of rules and procedures used to transfer
funds between participating entities. It operates based on an agreement

Figure 6.1 Essential components of FMI.

HPC and Cybersecurity Risks in FMIs ■ 155

between the entities and the operator. It enables lending and repayment
of money, payments for goods and services ofered, salaries, and benefts
for general public [11]. It is generally categorized as either a foreign ex-
change transaction, or a retail payment system. Foreign exchange (FX)
transactions are the most liquid sector of payment systems in the fnan-
cial market. It primarily deals with international trade and investments
through exchange rates of currencies and transfer of funds. It generates
the largest number of payments every day. It is estimated that the daily
turnover of the foreign exchange market is 5.3 trillion dollars.

On the other hand, a retail payment system handles large volumes
of low-value funds transfer in the form of cash, checks, credits, debits,
and debit card transactions. It primarily deals with payments and
transfers within the country. It is operated by private or public sector
real-time gross settlement (RTGS) or deferred net settlement (DNS)
mechanism.

The types of payment transactions covered by payment systems
include domestic card payments, credit transfers (Internet and mobile
payments), direct debits, and inter-bank transactions [12]. Domestic
card payments are used to make payments within the country. It uses
credit or debit card issued by the bank and merchant’s registered
account. Credit transfers works like a direct cash transfer between a
payee and a payer. It is also called e-transfer or electronic transfer that
makes use of Internet services and mobile payments. Credit transfer
can be used to pay electricity and water bills, purchase and sell goods
and services, and shop online. It provides a fast mode of payment where
the payee does not need to wait for the payment.

In contrast, direct debits or debit transfers begin with the delivery
of the payment. In a debit transfer, the bank notifes if the payment
is not successful. Thus, it works on the principle of “no news is good
news”. Despite the popularity of credit transfers, debit transfers are
used predominantly by many countries [13].

Inter-bank transactions provide great liquidity to fnancial markets.
It describes monetary transactions between banks. For example,
national banks seeking loan from the central bank or central banks
seeking loan from the World Bank are classifed as inter-bank
transactions. They also include payment transactions between two
banks for transferring an amount from one user account registered
with one bank to the other user account registered with another bank.

156 ■ Cybersecurity and High-Performance Computing Environments

Inter-bank transactions can be carried out through RTGS or National
Electronic Funds Transfer (NEFT).

6.2.2 Central Security Depositories

A central security depository holds a security account for fund transfer
in either a certifcated or uncertifcated form. It plays an important role
in ensuring the integrity of security issues. It may maintain a record
of legal ownership for security. The functions performed by a central
security depository may vary depending upon the jurisdiction in which
it is operating. It is responsible for electronic accounting of assets and
services, fund transfer, and security transfer system. It includes stock
exchanges, over-the-counter (OTC) derivatives, equities, and money
market instruments.

A stock exchange is a centralized location where government
and corporations can buy and sell equities. Equities and stocks are
sometimes used interchangeably. It acts as an investment hub for
two counterparties involved in an investment. The New York Stock
Exchange (NYSE) and Nasdaq are the two most popular stock
exchanges in the world. All the trading activities in a stock exchange
take place through a broker. In addition to physical exchanges,
electronic exchanges use an electronic platform to avoid a centralized
physical location for trade.

OTC derivatives are private fnancial contracts that are not traded
on an asset exchange. A derivative is a security with a price that
depends on or is derived from an underlying asset. The most common
underlying assets include stocks, bonds, commodities, currencies,
interest rates, and market indexes. Derivatives which can be traded
are called exchange-traded, while non-traded derivatives are called
OTC derivatives. An OTC derivative is a fnancial contract arranged
between counterparties (buyer and seller) by following minimal
regulations [14].

Money market instruments allocate short-term funding to fnancial
institutions. It is a type of mutual fund that is invested in low-risk
securities such as government securities, certifcates of deposit, and
commercial paper. Money market instruments maintain a stable net
asset value for a share. The value of a share may increase or decrease
depending on the business of a frm in the market [14].

HPC and Cybersecurity Risks in FMIs ■ 157

6.2.3 Security Settlement Systems

A security settlement system is a critical component of FMIs. It enables
securities for a settlement between the trading parties. It acts as an
intermediator between borrowers and lenders to secure the fow of funds
and maintain their security portfolios [15]. It allows transfer of payment
either free of cost or against a payment. When the transfer is made
against a payment, delivery of the security is taken care of, if and
only if payment is made. It also ensures safekeeping of securities by
providing additional security clearing and settlement instructions.

With the soaring cross-border trades and settlements, the integra-
tion of global markets is also increased. Like central security deposi-
tories, it also includes stock exchanges, OTC derivatives, equities, and
money market instruments. Any lapse in security settlement system
may result in systemic risks to securities markets. It may further cause
liquidity or credit losses for the participating entities [15].

6.2.4 Central Counterparties

A central counterparty acts as an intermediator by acting buyer to
the seller and vice versa. It interposes itself between counterparties to
fnancial contracts traded in the fnancial market [16]. It is used by
derivatives exchanges, security exchanges, and trading systems. It has
the potential to reduce risks between buyers and sellers by binding
on them through legal procedures and imposing efective risk control
measures. Due to this, it is feasible to reduce systemic risk as well.

The efectiveness of risk controls is critical to minimize cash fow
between counterparts and achieve risk reduction benefts. Central
counterparties’ failure to control risk has the potential to disrupt not
only the fnancial market, but the other settlement systems also. It also
tends to enhance the liquidity of the fnancial market by supporting
anonymous trading in some cases [16].

6.2.5 Trade Repositories

A trade repository maintains a central database of transactions and
data. It is a new component of FMIs and is gaining importance
in the OTC derivatives market. By centralizing the transactions
and dissemination and storage of collected data, it enhances the

158 ■ Cybersecurity and High-Performance Computing Environments

transparency of information to relevant authorities and the public.
An important function performed by trade repositories is to provide
information that supports risk reduction, operational efciency, and
cost savings for the participating entities and the market [9]. Trade
repositories store commodities, energy, equities, interest rate, and
credit. Since the data stored by trade repositories are used by
several stakeholders, it is critical to maintain accuracy, reliability, and
availability of data. Trade repositories can be characterized by the
following benefts:

• The centralization of data provides a transparent market
infrastructure.

• Timely and reliable access to data stored in trade repositories
signifcantly improves the ability to identify the risks posed to
the fnancial system.

• Trade repositories provide a common platform for various
stakeholders to support consistency of data formats and
representations.

• Centralized and reliable data increase its usefulness.

The concept of FMIs was started after the fnancial crisis in 2009. G20
leaders agreed on a stricter regulation of “over-the-counter” derivatives
[17]. As a result, the European Union passed the European Market
Infrastructure Regulation (“EMIR”) in 2012 [18]. The regulation was
approved in 2015 in the form of the Financial Market Infrastructure
Act (FMIA). FMIA entered into force on New Year of 2016. It
includes rules and regulations for derivatives trading, operational
functioning of FMIs, and existing market behavior rules from the Stock
Exchange Act [19]. The FMIA is supplemented by two ordinances:
the Federal Council’s Financial Market Infrastructure Ordinance
(“FMIO”) and FINMA’s Financial Market Infrastructure Ordinance
(“FMIO-FINMA”). These ordinances support rules and regulations for
trading and post-trading (clearing, settlement, and custody) events.

6.3 WHAT IS HIGH-PERFORMANCE COMPUTING?

High-performance computing can be defned as “the practice of
aggregating computing power in a way that delivers much higher

HPC and Cybersecurity Risks in FMIs ■ 159

Figure 6.2 HPC components.

performance than one could get out of a typical desktop computer
or workstation in order to solve large problems in science, engineering,
or business” [20].

In other words, HPC is the ability to process data and perform
complex calculations at a much higher speed. One of the best HPC
computers is a supercomputer that contains thousands of nodes that
work together to complete a task. This is called parallel processing.
HPC is the foundation to various scientifc, business, and industrial
innovations by processing data. HPC solutions have three main
components: (1) compute, (2) network, and (3) storage. Figure 6.2
presents these components and their functions in a nutshell.

To build a HPC architecture, compute servers are clustered together
in a network. These servers run software and applications that
perform fast computations. The cluster is networked to a data storage
component that captures the output [21]. Putting all these components
together allows HPC to perform diverse sets of tasks in minimal time
period.

Further, to achieve the best performance, all these components pace
together. To substantiate, storage component feeds and ingests data to
and from compute servers as fast as possible. Similarly, networking
components support the high-speed transmission of data between
compute servers and storage devices. If any component fails to maintain

160 ■ Cybersecurity and High-Performance Computing Environments

Figure 6.3 Evolution of HPC [22].

pace with rest of the components, the HPC architecture fails to achieve
its objective of high performance.

Figure 6.3 shows the evolution of HPC over the years. The
concept started in 1998 with a two-core processor that evolved to frst
computer cluster in 2005. From then onward, HPC has revolutionized
the computing world with high-performance supercomputers such
as Pittsburgh, NETL, and Joule supercomputer. The most recent
supercomputer is Joule 2.0, which contains 74,240 cores and is an
advanced version of 2012 supercomputer with the same name having
24,192 cores.

6.4 HOW HPC COULD TRANSFORM THE FINANCIAL
INDUSTRY

HPC possesses the potential to provide a deep insight into fnancial
market predictions, especially in the FMIs [23]. The trend commenced
in 2,000 with the launch of the frst supercomputer that was installed in
Wall Street. This installation accelerated the investment in applications
such as fraud detection, derivative pricing, and econometrics. The
computational sector is equipped with high-frequency trading and zero
latency. HPC also supports facilities to compute risk and safeguard the

HPC and Cybersecurity Risks in FMIs ■ 161

financial system [24]. These characteristics could help in transforming
the financial industry.

According to the statistics published by the Intersect360 Research
[25], financial services gained biggest profits in 2017 by integrating
HPC. The total revenue for HPC market was 35.4 billion dollars in
2017. It was attributed to commercial vertical markets. The report
also predicted a 6.9% compound annual growth rate (CAGR) for HPC
from 2017 to 2022.

HPC’s ability to perform high-quality quantitative analysis has
been recognized as a key factor for banks, brokers, funds, and
participating entities in FMIs. These analyses help financial industry
to speed up their activities and prediction of share prices in stock
exchanges [26]. HPC also enables businesses to use new innovations
such as Internet of things (IoT) and artificial intelligence (AI).
Interwinding AI with HPC facilitates financial industry to scale to
accommodate increasing workloads [27].

6.5 HPC IN FMIs

Financial services around the globe are adopting HPC to reduce the
risk of a global pandemic and beat the market [23]. According to a
survey conducted by Intersect360 Research, financial industry is the
largest commercial market for HPC solutions [28]. The importance of
HPC in finance is attributed to the insights provided by HPC. These
insights help investment firms to predict the stock market trends within
a fraction of second. Banking is one of the largest FinTech (financial
technology) sectors that use HPC to detect frauds and reduce lending
risks. Figure 6.4 presents the activities performed by HPC in financial
services industry.

• Customer Engagement: HPC facilitates drafting customer-
oriented, personalized marketing strategies. Many FinTech insti-
tutions use chatbots and voice recognition technologies to interact
with customers. These technologies effectively understand the
needs of customers and automate quality assurance monitoring
[29]. All this is possible due to the depth of user profiling
done by HPC. HPC does not only have advantages for financial
institutions, but for customers also. From the customers’
perspective, they can make more money by utilizing stock

162 ■ Cybersecurity and High-Performance Computing Environments

Figure 6.4 HPC in fnancial services.

market predictions made by HPC. Furthermore, it ensures that
customers are satisfed with banking services that verify credit
card details and bank accounts for any purchase and activity
performed by the customers.

• Credit Risk Assessment: HPC is used in combination with
artifcial intelligence to speed up risk assessment of load
applications received by retail banking institutions. It helps make
informed risk decisions to reduce losses associated with loans.
The fnancial sector, especially the FMI, is known for its fast-
computing needs for monetary transactions, payment systems,
trade activities, and security of central settlement systems. All
these needs vary for every type of fnancial frm and depends
on its market value. Financial institutions such as banks use
HPC for real-time risk management, as they handle thousands
of customers every moment.

• Fraud Detection: Fraudulent transactions have become an
inseparable part of fnancial institutions. It is the prime need of
the hour to detect such transactions to keep the business going.
HPC-driven solutions are helping banks and payment systems
to detect suspicious and potentially fraudulent transactions as
they are taking place. For example, Mastercard leverages HPC

HPC and Cybersecurity Risks in FMIs ■ 163

systems to process large number of transactions to immediately
identify and combat fraudulent transactions.

• Cybersecurity: HPC can detect cybercrimes for the millions
of financial transactions taking place in the shortest time
span. Financial services industry is prone to internal and
external cyber-threats. Internal cyber-threats come in the form of
malicious insiders determined to take revenge and cause harm to
the employer. On the other hand, external threats include denial-
of-service (DoS) attacks, distributed denial-of-service (DDoS)
attacks, malware, and phishing attempts to disrupt services.
Overall, the entire financial sector is dependent on HPC to
perform high-intensity quantitative analyses to tackle the internal
and external threats and protect sensitive information and
systems [30].

• Regulatory Compliance: FinTech industry has witnessed several
national and international regulations in the recent years. HPC-
driven artificial intelligence solutions can automate the process
of identifying, collating, and analyzing data from different
components to follow regulatory compliance.

On the onset, HPC offers several benefits to financial institutions.
However, it comes with certain security issues and challenges. The
availability of HPC devices is the key to reap the benefits provided
by it. If the device is down, every second is counted as catastrophic for
time-based financial transactions. For example, a downtime for a stock
market or investment firm can cost millions of dollars to the traders.
HPC devices need to handle extreme work pressure, and it is not that
easy to deploy, manage, and scale. The next section focuses on the
security issues related to HPC in FMIs.

6.6 CURRENT WORKS ON CYBERSECURITY ISSUES RELATED
TO HPC IN FMIs

HPC facilitates financial institutions to reduce financial risks by
predicting market trends in advance. It provides several benefits that
help the financial market flourish. However, there are some important
security issues in HPC related to financial services industry. This

164 ■ Cybersecurity and High-Performance Computing Environments

section reviews the related works on cybersecurity issues related to
HPC when integrated with FMIs, as reported by researchers.

One of the most important cybersecurity issues in HPC is the theft
or misuse of HPC resources by unauthorized personnel. Malicious users
gain unauthorized access to HPC resources that can shut down the crit-
ical devices to disrupt services, steal data, and launch further attacks.
Dozens of HPC facilities used for COVID-19 research in Germany,
the UK, and Switzerland were forcefully shut down by cyberattackers.
Furthermore, the scalability of consequences in bringing down the HPC
device can cost heavily to the business as HPC devices perform millions
of computations every second. Security breaches involving computer
malware such as Trojans and worms steal data from HPC nodes to
impact confdentiality, integrity, and availability of data [31].

Like data theft, data modifcation is a serious threat that can
result in loss of data integrity and pose risk to applications. Tampered
data could impact critical data processing facilities and regulatory
compliance used by essential services. Integrity and availability issues
are caused by malicious insiders who misuse computing cycles,
especially in bitcoin transactions. Although HPC provides protection
against internal and external threats, the menace is never-ending.
New tidal waves of changing regulations for national and international
business practices are a continuous challenge for HPC [31].

Cybersecurity threats disrupt businesses and hence fnancial
stability, especially in FMIs [32]. FMI serves as the backbone of
fnancial markets [33]. It is also one of the popular targets of
cyberattacks that have the potential to cause systemic risks in FMIs
[34]. According to Li and Perez-Saiz [35], Canadian FMIs are exposed
to credit risks and there are large diferences in the level of systemic
risks among participants. FMIs comprise essential components for
processing FinTech transactions. Since large amounts of money is
involved, these components are prone to several cybersecurity threats,
including fraudulent transactions [9]. As the number of payment
systems increases, the risk of fraud grows with the number of payment
systems in the market [36].

Cyber-threats have emerged as a growing systemic risk to FMIs over
the years. The reasons for this surge can be attributed to technological
innovations, degree of inter-dependency between various components
of fnancial markets, and diversifed motivations of cyberattackers [36].
Cybercriminals are motivated by fnancial gain to cause fnancial

HPC and Cybersecurity Risks in FMIs ■ 165

instability. One of the major challenges in making FMIs cyber-resilient
is to manage their complexities and inter-dependencies [37]. Cyber-
attacks pose unique challenges to FMI’s operational risk management
framework.

Although the development of mobile payment systems provides a
convenient payment infrastructure compatible with traditional pay-
ment services, security of sensitive user information is a key challenge.
Security of payment systems in FMI ensures that information about
payment systems is not exposed to unauthorized third parties. Other
security challenges for payment systems include mutual authentication,
authorization, integrity, privacy, atomicity, and availability [38]. These
security challenges pose security risks, threats, financial privacy issues,
and other emerging issues in FinTech [39].

The technological transformations focus on the use of hard
information and help financial markets grow, increase competition, and
reduce frictions between lenders and borrowers. However, these changes
bring some policy-related challenges to the traditional business models
[40]. Financial systems are more reliant on hard information and,
hence, prone to more financial and cyber-risks. These changes push
authorities to strengthen FMIs to support cross-border transactions
[41]. Table 6.1 summarizes the cybersecurity issues related to HPC in
FMIs as reported by researchers.

To summarize, internal and external threats and cyberattacks/
cyber-risks are the most discussed cybersecurity issues by the
researchers. In addition, theft, misuse of resources, confidentiality, in-
tegrity, availability, cyber-fraud, authentication, authorization, privacy,
atomicity, and security breach are some other issues discussed briefly.
However, it does not mean that the less discussed issues are not of much
importance. The losses caused by these less discussed issues can be
much more disastrous compared to the most discussed issues. Based on
this analysis, this chapter focuses on bringing forward the less discussed
cybersecurity issues by mapping FMI risks with the security issues.

6.7 FINANCIAL RISKS IN FMIs

FMI handles enormous financial transactions dealing with huge
amounts of money. Although it provides an effective risk management
component to secure the transactions by using a central security
repository, there are certain key financial risks faced by FMIs. These

TA
BL

E
6.

1
S
u
m
m
a
ry

 o
f C

y
b
er
se
cu

ri
ty

 I
ss
u
es

 R
el
a
te
d

 t
o

 H
P
C

 in
 F

M
Is

Is
su

e
/
W

o
rk

[9
]

[3
1
]

[3
2
]

[3
4
]

[3
6
]

[3
7
]

[3
8
]

[3
9
]

[4
0
]

[4
1
]

T
h
ef
t

X

M
is
u
se

 o
f r

es
ou

rc
es

X

D
a
ta

 t
h
ef
t

X

C
on

f
d
en
ti
al
it
y

X

In
te
gr
it
y

X

X

A
va
il
ab

il
it
y

X

X

In
te
rn
al

 a
n
d

 e
x
te
rn
a
l t

h
re
at
s

X

X

X

X

C
y
b
er
-f
ra
u
d

X

X

C
y
b
er
-a
tt
ac
k
s/
cy
b
er
-r
is
k
s

X

X

X

X

A
u
th
en
ti
ca
ti
on

X

A
u
th
or
iz
at
io
n

X

P
ri
va
cy

X

A
to
m
ic
it
y

X

S
ec
u
ri
ty

 b
re
ac
h

X

166 ■ Cybersecurity and High-Performance Computing Environments

HPC and Cybersecurity Risks in FMIs ■ 167

non-security risks are the outcome of centralized activities that create
dependencies among fnancial institutions. This section instigates these
non-security fnancial risks and their subcategories.

Systemic Risks: Systemic risks are the results of inter-dependencies
among participating banks and inability of banks to meet their
obligations and perform as expected. This may have an adverse
efect on FMIs. Systemic risks can lead to reversed transactions or
deliveries, delayed settlements, and disruption of services in fnancial
systems. Furthermore, if one participating entity depends on other
entities for payments, clearance, and settlements, it will spread
the disruptions more quickly to reach out the broader economy.
Systemic risks are prominent in payment systems of FMIs. Inter-
dependencies can be grouped into three broad categories: system-based,
institution-based, and environmental dependencies [42]. In system-
based dependencies, FMIs are directly linked. They can be vertical
(inter-dependence between diferent essential components of FMIs,
such as between a payment system and trade repository) and horizontal
(inter-dependence within the same component, such as within two
payment systems). In institution-based inter-dependencies, FMIs are
indirectly linked by a fnancial institution. Finally, environmental
dependencies include broad factors such as physical infrastructure
and network providers. Figure 6.5 shows schematic interconnections
between diferent categories of inter-dependencies.

Legal Risks: Financial transactions between diferent countries are
liable to legal terms and regulations. Legal risks arise if an application is
unlawful, involves diferent law bodies, and involves delays in recovering
fnancial assets. Diferent bodies of law are applicable not only to

Figure 6.5 Categories of inter-dependence. (BIS 2008.)

168 ■ Cybersecurity and High-Performance Computing Environments

international transactions, but to diferent jurisdictions also. Legal risks
afect the central counterparties of FMIs the most.

Credit Risks: Credit risks may occur due to several reasons such
as unsettled transactions between entities, inability of a participating
entity to meet fnancial obligations within stipulated time, and failure
of settlement banks itself. FMIs may face replacement cost risk due to
unsettled transactions with an entity. As a result, FMIs need to replace
the original transaction at the current market price. Credit risks are
prevalent in security settlement systems of FMIs [43].

Liquidity Risks: Liquidity risks are related to the possession of
insufcient funds to complete a transaction by the participating
entities. Other types of liquidity risk can be seller not receiving funds
and buyer not receiving product on time. Failure of settlement banks
is also treated as a liquidity risk in FMIs. Liquidity risks have the
potential to cause systemic risks. They are mostly found in central
counterparties and security settlement systems of FMIs.

General Business Risks: General business risks are related to
operational and administration activities performed by FMIs. These
risks include fnancial losses due to increased debts and falling growth,
resulting in an imbalanced revenue and cost curve. Severe fnancial
losses may result in reputation loss, losses in other operations, poor
execution strategy, and other business factors. Failure to manage
business risks can lead to operational and legal risks. General business
risks can occur in any essential component of FMIs.

Custody and Investment Risks: FMIs face a lot of custody risks
including losses due to assets held in custody, fnancial fraud, poor
administration, inadequate record-keeping, and negligence. Investment
risks comprise losses due to investing their own resources in market,
credit, or liquidity risks. These risks are also responsible for the
safety and reliability of FMI’s risk management systems. Custody
and investment risks target central security depositories, central
counterparties, security settlement systems, and trade repositories of
FMIs.

Operational Risks: As evident from the name itself, operational
risks are caused by irresponsible data and fnance handling habits.
Some common causes of operational risks include erroneous human
transactions, data losses, information leakage, and defciency in the
information system. The erroneous operations may lead to internal

HPC and Cybersecurity Risks in FMIs ■ 169

and external threats to data security, failure of management systems
that rely on information, fraudulent transactions, and incomplete
settlements. Operational risks afect the trade repositories of FMIs.

6.8 COMMON SECURITY OBJECTIVES

To understand the security issues that can arise in FMI components
owing to the fnancial risks faced by them, it is mandatory to be aware
of the CIAAA principle of cybersecurity that ensures confdentiality
(C), integrity (I), availability (A), accountability (A), and authenticity
(A) of data for any organization. The level of importance varies for
every organization depending upon its security goals and requirements.
Figure 6.6 presents the CIAAA principle for data security.

Confdentiality: It refers to the protection of secret data, objects,
or resources. The goal of confdentiality is to prevent or minimize
unauthorized access to data. It ensures that only authorized users
can access data and resources. Simply put, confdentiality ensures
protection of data from unauthorized access, use, or disclosure while
in storage, process, or transit. Several cyberattacks focus on violating
confdentiality.

Integrity: It ensures the correctness and reliability of data. It pre-
vents unauthorized users from modifying data. Proper implementation
of integrity means authorized changes are allowed on sensitive data.

Figure 6.6 CIAAA principle.

170 ■ Cybersecurity and High-Performance Computing Environments

Integrity loss may result from human errors such as when an authorized
user makes an unintentional change to data.

Availability: It refers to timely and uninterrupted access to
authorized objects, data, or resources. Some of the pertinent threats to
availability of data include system failures, power loss, software errors,
and environmental issues (natural calamities). In addition to that,
sometimes, the accidental deletion of files, over-utilizing a resource,
or mislabeling a classified object can also result in unavailability of
data.

Accountability: It is referred to as the responsibility of a person
to protect an asset, material, or key information. The person is held
accountable for safeguarding the equipment in his custody. If a data
breach, loss, or misuse of that equipment takes place, that person is held
accountable for it. Accountability is an essential part of a cybersecurity
plan. For example, let us assume that an organization has a policy that
lists legitimate software or applications that the employees can install
on their computers. If an employee installs software or applications
not listed in the policy, the IT administrator is held accountable for
not verifying the software or applications downloaded and installed on
computer systems owned by the organization.

Authenticity: It is the validation of messages transmitted between
a sender and receiver. It ensures that an authenticated sender
originates from a message, the message is authenticated, and only
an authentic receiver can receive the message. It helps to prevent an
unauthorized person from sending or receiving a message. In technical
terms, this principle prevents an impersonator from intercepting
transmission. It requires users to establish their identities before getting
involved in communication. Once the sender and receiver confirm
their identities, they can access the system to communicate with
each other. Authenticity is established by using usernames, passwords,
smart cards, biometrics, e-mails, and tokens.

6.9 CYBERSECURITY ISSUES AND FINANCIAL RISKS IN FMIs

This section puts forward security issues faced by FMIs by mapping
financial risks faced by FMIs with the security objectives to identify
data security issues in FMIs.

HPC and Cybersecurity Risks in FMIs ■ 171

1. Systemic Risks:

• Inter-Dependency among Participating Entities: Systemic
risks bring down the entire enterprise. When participating
entities are dependent on each other for completing
transactions, it poses an accountability issue in case the
transaction is not completed due to any reason.

2. Custody and Investment Risks:

• Loss of Assets Held by Custodian: From the data security
point of view, assets in FMIs include data and information
related to clients, participating entities, buyers, sellers,
monetary transactions, and third-party entities involved.
The loss of any of these assets can cause issues with
confdentiality, authenticity, and availability of data.

• Fraud: Financial fraud in FMIs refers to illegitimate
monetary transactions that can cause harm to the business.
The participating entities (buyers and sellers) may not
possess legitimate sources to prove their identity. This type
of risk can be mapped with authenticity and integrity issues
in the CIAAA principle.

• Poor Administration: Management is responsible for ad-
ministering fnancial settlements and exchanges between
entities. It is held responsible for poor administration which
can be mapped with accountability issues in the CIAAA
principle.

• Inadequate Record-Keeping: Inadequate record-keeping
may result in incomplete information or data classifcation.
Data classifcation is the process of labeling data based
on their sensitivity. Data may be classifed as public,
confdential, private, and restricted. Inadequate record-
keeping poses confdentiality and integrity issues to data
security.

• Negligence: Negligence is somehow related to data handling,
data classifcation, and record-keeping. Therefore, it can be
mapped with authenticity and integrity issues in the CIAAA
principle.

172 ■ Cybersecurity and High-Performance Computing Environments

• Investing Own Resources to Market: Investing own resources
to market is highly vulnerable and poses accountability issue
as the owner is solely responsible for any fnancial losses.

• Credit or Liquidity Risks: Credit or liquidity risks explained
below pose all security issues in the CIAAA principle.

3. Liquidity Risks:

• Insufcient Funds: Insufcient funds may result in incom-
plete transactions, which poses the availability issue in the
CIAAA principle.

• Seller Does not Receive Funds: Any type of unavailability of
data or funds in a settlement or transaction is treated as an
availability issue in the CIAAA principle. Further, there are
issues with its confdentiality as the originality of the funds
may not be certain. It means that funds can be tampered
within transit.

• Buyer Does not Receive Product: A product is an
OTC derivative contract that is exchanged between the
participating entities. Like a seller not receiving funds, any
type of unavailability of data or funds in a settlement or
transaction is treated as an availability issue in the CIAAA
principle.

• Failure of Settlement Banks: Failure of settlement banks is a
high-level liquidity risk. It can result in disruption of services
for an unspecifed time. A person from the management is
also held responsible for this failure. Therefore, this risk can
be mapped with availability and accountability issues in the
CIAAA principle.

4. Credit Risks:

• Replacement Cost Risks: Replacement cost risks occur in
case of failure of a transaction and the responsible entity
returns the cost of the failed transaction. This type of risk
can be mapped with authenticity and confdentiality issues
in the CIAAA principle.

HPC and Cybersecurity Risks in FMIs ■ 173

• Unsettled Transactions: It is the root cause of replacement
cost risks and can be mapped with confdentiality and
integrity issues in the CIAAA principle.

• Failure of Settlement Banks: Failure of settlement banks is a
high-level credit risk. It can result in disruption of services
for an unspecifed time. This type of risk can be mapped
with availability and accountability issues in the CIAAA
principle.

5. Legal Risks:

• Diferent Law Bodies: FMI business with participating
entities that belong to two diferent jurisdictions or legal
regulations can be mapped with accountability issue in
the CIAAA principle because law bodies are to be held
accountable for fnancial transactions.

• Cross-Border Transactions: International fnancial business
transactions pose risk to confdentiality and integrity of
information in addition to accountability issue in the
CIAAA principle.

• Delay in Recovery of Financial Assets: Any type of
unavailability issue is treated as an availability issue in the
CIAAA principle. Moreover, delays in recovery may cause
authenticity issues also.

6. Operational Risks:

• Data Loss: Data loss indicates incorrect data which can be
attributed to integrity issue in the CIAAA principle.

• Leakage: Just like data loss, information leakage is also
attributed to integrity issue in the CIAAA principle.

• Defciency in Information System: Information systems are
responsible for handling data, entities, and transfer of
transactions by using a central repository. Defciency in
information systems may result in integrity issue in the
CIAAA principle.

• Insufcient Capacity: This type of risk can be mapped with
availability and integrity issues in the CIAAA principle as
insufcient capacity may lead to loss of data.

174 ■ Cybersecurity and High-Performance Computing Environments

• Internal and External Threats: Cyber-threats have the
potential to exploit vulnerabilities in the software systems,
especially central repositories used to store sensitive data.
Internal and external threats cause harm to confdentiality,
integrity, and availability of data.

• Management Failure: Management is responsible for overall
administration such as taking decisions, handling settlement
issues, transfer of money, and transfer of other miscellaneous
information. Management failure can be mapped with
accountability issues in the CIAAA principle.

• Human Errors: Humans are prone to errors and can be held
responsible for the type of data or assets they are managing.
It can be mapped with accountability issues in the CIAAA
principle.

• Fraud: Financial fraud in FMIs refers to illegitimate
monetary transactions that can cause harm to the business.
The participating entities (buyers and sellers) may not
possess legitimate sources to prove their identity. This type
of risk can be mapped with authenticity and integrity issues
in the CIAAA principle.

• Incomplete Settlement: Incomplete settlement can be
mapped with authenticity and confdentiality issues in the
CIAAA principle.

Figure 6.7 presents an overview of the mapping of diferent categories
of fnancial risks with security objectives to summarize security issues
in FMIs.

The following observations are drawn from Figure 6.7:

• As per the current works discussed in Section 6.6, confdentiality,
integrity, availability, accountability, and authenticity are less
discussed cybersecurity issues in FMIs. However, a quantitative
analysis of Figure 6.5 reveals that these issues are equally
important. Integrity is the most common security issue in FMI
risks. It is followed by availability, accountability, confdentiality,
and authenticity.

HPC and Cybersecurity Risks in FMIs ■ 175

Figure 6.7 Security issues identifed in FMI risks.

• Integrity, accountability, and authenticity equally impact most of
the custody and investment risks.

• Availability is the only issue that impacts all types of liquidity
risks.

• Integrity impacts most types of the operational risks.

176 ■ Cybersecurity and High-Performance Computing Environments

6.10 CYBERSECURITY RISKS IN FMIs

After identifying cybersecurity issues in FMIs, this section introduces
cybersecurity risks faced by FMIs, assessment, analysis, monitoring,
reporting, and mitigation of these risks. FinTech has improved its
products and services with time, but the risks still exist. This is the
primary reason why FinTech institutions perform risk management
tasks to protect personally identifiable information (PII). There are
several cyber-risks faced by FinTech industry, especially FMIs.

6.10.1 Cybersecurity Risks

According to a BIS Bulletin report in 2021 [44], the finance sector is the
worst affected sector by cyber-events during the rise of the COVID-19
pandemic. The number of cyberattacks increased from fewer than 5,000
per week in February 2020 to more than 200,000 per week in April 2020.
Furthermore, one-fifth of the financial firms reported that their network
operation activities were interrupted during the pandemic. The report
further indicates that the financial sector’s cyber-risk is small but is
growing relative to operational risk. In another survey conducted by the
Financial Services Information Sharing and Analysis Center (FS-ISAC)
among financial institutions [45], there is a substantial rise in phishing,
suspicious scanning, and malicious activity against web pages. The
most common cyber-risks faced by FMIs include cyberattacks, risks to
third-party vendors, data breaches, money laundering, digital identity
risks, and cloud-based cybersecurity risks.

Cyber-Attacks: With the digital transformation comes the menace
of cyberattacks that attempt to disrupt financial transactions, breach
sensitive information, perform credit card fraud, and carry out
fraudulent money transfers. Some of the most threatening cyberattacks
experienced by FinTech have affected economic infrastructures,
especially FMIs. As reported by Carnegie Endowment for International
Peace [46], data breach, malware, and distributed denial-of-service
(DDoS) attacks are the most common cyberattacks that resulted in sig-
nificant financial losses for various financial institutions. Nonetheless,
the list of individual security risks is never-ending. FinTech institutions
are reluctant to report and admit being targeted by cyberattacks most
of the times to protect their loss of reputation among competitors.

HPC and Cybersecurity Risks in FMIs ■ 177

Figure 6.8 Timeline of prominent categories of cyberattacks on FinTech
across the globe.

Figure 6.8 presents a glimpse of reported cyberattacks on FinTech that
resulted in signifcant fnancial losses to fnancial institutions.

Evidently, payment systems including banks, stock exchanges, and
other fnancial frms are the primary targets of cyberattacks. Even
the major FinTech institutions sufer the menacing cyberattacks over
the years. These statistics reveal that cyberattacks are one of the
biggest challenges that FinTech is facing in the past couple of years.
Advanced persistent threats intend to steal sensitive and valuable data
from fnancial industries [47]. It is the most critical threat to fnancial
stability, especially the FMIs that provide the fundamental support for
payment systems, security of transactions, and agreements between the
involved parties.

Data Breaches: FinTech is experiencing unprecedented changes.
Two key issues that challenge FinTech are risk management, and secu-
rity and privacy [48]. There are several fnancial and operational risks
to FinTech start-ups. Depending on the size of FinTech and the special-
ization of fnancial activities performed by it, the tendency of risk man-
agement varies for every fnancial institution. The security and privacy
of a consumer’s sensitive information are pertinent. For FinTech appli-
cations, stolen and compromised mobile devices are one of the critical

178 ■ Cybersecurity and High-Performance Computing Environments

issues. FinTech companies need to develop appropriate measures to
protect sensitive information from data breaches. Figure 6.6 highlights
several data breaches reported by FinTech institutions.

Risks to Third-Party Vendors: Data breaches are difcult to prevent
when third-party vendors are involved. If the services are not provided
by a trusted third party, business is at risk. In FMIs, participating
counterparties, security settlements, and payment institutions (banks,
stock exchanges, foreign exchanges, etc.) act as vendors. Untrusted
third-party vendors also pose risk to reputation. Eliminating third-
party cyber-risks is the key element of every fnancial institution’s risk
management protocol.

Money Laundering: Money laundering or cyber-frauds are very
common cyber-risks to FMIs. Cryptocurrency is frequently used in
cross-border fnancial transactions owing to its ease of use. It does
not need to be exchanged. The risk associated with cryptocurrency
transactions is that it is not governed by any regulatory compliance
or authority. This makes it vulnerable to cyber-risks as attackers can
launder it through legitimate fnancial institutions, especially in FMIs.

Digital Identity Risk: Digital transformation brings the risk of
stolen digital identity. Attackers can steal username and password
of legitimate users to masquerade as legitimate users and make
illegitimate fnancial transactions. Credentials can be stolen by
launching malware attacks on target institutions.

Cloud-Based Risks: With the introduction of HPC in FMIs, cloud-
based FinTech transactions have gained importance. Cloud-based
storage services are considered secure until adequate protocols are used.
If cloud-based risks are not managed properly, misuse of HPC resources
and data theft become prevalent.

6.10.2 Risk Assessment

Risk management is a cyclic process that commences with assessing
risks. Figure 6.9 presents the risk management process and its diferent
phases.

The objective of the risk assessment is to identify and measure the
risks in order to obtain accurate and relevant information to assist
the decision-making process. It is imperative to assess risks due to
possible threats that may have adverse efects on the information

HPC and Cybersecurity Risks in FMIs ■ 179

Figure 6.9 Risk management cycle.

system. These threats attack the vulnerabilities by virtue of which the
successful attacks result in fnancial losses. Risk assessment identifes
all the vulnerabilities and potential threats that can exploit those
vulnerabilities in the system. For computing the risk assessment, a
vulnerability is defned as the probability of a successful attack, while
a threat is treated as the intention to cause harm or exercise the
vulnerability in the FinTech industry. Whenever a threat exploits a
vulnerability, it has some consequences, which represent the negative
impact as a result of exploiting vulnerability. All these defnitions are
derived from the International Organization for Standardization and
the International Electrotechnical Commission (ISO/IEC) 27000 series
standards and National Institute of Standards and Technology (NIST)
guidelines [49].

To substantiate, a cybercrime gang named “OldGremlin” targeted
a Russian bank with a ransomware attack in 2020. The gang used
spear phishing e-mails to enter the bank’s network and then encrypted
its data. The gang demanded a ransom of around USD 50,000 to
provide the decryption key [46]. In this incident, ransomware is the

180 ■ Cybersecurity and High-Performance Computing Environments

cyberattack (threat), spear phishing is the method of reaching the
network and executing remote code (vulnerability) which was later
used to encrypt data, and the encrypted data act as the consequence
of this attack. All such vulnerabilities that are exercised by threats and
their consequences are added to assess risk.

Risk assessment can be performed in a qualitative and quantitative
manner. Qualitative risk assessment is subjective in nature and assigns
intangible values to the losses. Qualitative methods use various levels
of appraisement according to expert decisions. On the other hand,
quantitative risk assessment measures losses in numbers and assigns
monetary value to it. It also assigns severity value to losses (low,
medium, and high). It makes use of matrices, numerical values, and
mathematical formulae to compute loss due to risk. A combination of
qualitative and quantitative assessment is also used and is called hybrid
risk assessment.

The primary challenge in FinTech risk assessment is the unavail-
ability of historical data related to cyber-threats. Since every fnancial
institution has a market value and reputation among competitors, it
does not want to reveal to the world at frst that it became a victim of
a cyberattack. If some fnancial institutions accept being a target, they
do not share the cyberattack data due to several reasons, including
sensitivity of customer fnancial data, legal policies, compliance with
fnancial standards, and reputation.

6.10.3 Risk Analysis

Risk analysis is a three-step procedure that (1) identifes critical
resources, (2) determines threats that can exploit the vulnerabilities
to put the resources at stake, and (3) evaluates risk by assigning a
rating to them. This section addresses the step-by-step procedure used
to analyze risks and puts forward the existing risk analysis strategies
for FinTech.

Risk analysis measures the likelihood of occurrence of all threats
and vulnerabilities, and the magnitude of the impact of all risks on
the FinTech industry. A qualitative risk analysis performs subjective
analysis in which risk matrix is created as per NIST guidelines as
shown in Table 6.2 [49]. Risk matrix maps the likelihood of threats and
vulnerabilities to the magnitude of impact to determine an overall risk

HPC and Cybersecurity Risks in FMIs ■ 181

TABLE 6.2 Sample Risk Matrix

Likelihood Impact
Low Medium High

High Low Medium High
Medium Low Medium Medium
Low Low Low Low

rating. On the other hand, a quantitative risk analysis is objective in
nature and follows the scientifc and data-intensive approach to analyze
the impact of risks in terms of cost, time, and critical infrastructure
consumption.

Based on the exemplary risk matrix, if the likelihood of occurrence
of a threat is high, and the magnitude of the impact is low, then the
risk level is considered low. Similarly, if both the likelihood and impact
are high, then the risk level is high. The risk matrix facilitates the
upper management to prioritize risks and take the appropriate actions
based on the level of risk.

6.10.4 Risk Monitoring, Reporting, and Mitigation

Monitoring cybersecurity risks is important to collect cyber-data for
future risk analyses. There are certain standard risk policies and
guidelines for efective risk monitoring and reporting.

• Organizational Policies: At the beginners’ level, every organi-
zation has its own risk monitoring policy which is designed
by the upper management and followed by the middle-
level management. This policy covers several basic rules and
regulations related to cyber-risks that the employees must abide
by. The depth of rules and safety measures to protect sensitive in-
formation depends on several crucial factors such as organization
size, budget, importance of fnancial data, risk acceptance level,
and exposure to vulnerabilities. Organizational policies such as
strong passwords, knowledge of social engineering, trained staf,
and confdentiality of sensitive fnancial data are some of the
fundamental practices that need to be followed to reduce cyber-
risks. Some organizations might prefer to avoid or accept the
risk, while others may prefer to mitigate it. The analogy of

182 ■ Cybersecurity and High-Performance Computing Environments

implementing cybersecurity risk monitoring and review policy
varies for every FinTech industry.

• Risk Guidelines: Apart from organizational policies, FinTech
frms also prepare risk guidelines that defne the extent to which
a risk can be tolerated and what actions are required in case that
risk exceeds a certain threshold value.

• International Cybersecurity Risk Management Standards: To
monitor cyber-thefts, the fnancial sector must stringently
implement cybersecurity risk management standards released by
international organizations such as NIST and ISO/IEC.

There are four ways to address a cyber-risk as part of the mitigation
policy [50–52]:

• Risk acceptance is the strategy adopted by a fnancial organiza-
tion to accept risk after understanding its consequences for the
business.

• Risk avoidance is used to avoid altogether the activities posing a
minor risk to a business.

• Risk transfer is a two-step policy in which some part of the risk
is accepted in the frst step and the rest is transferred to another
party in the second step.

• Risk mitigation is the procedure to control the risk and its
consequences to reduce it, that is below the threshold value of
risk acceptance to business.

Handling risks in the fnancial sector involves using a combination of
all these ways; that is, some risks are avoided, some are transferred,
some are mitigated, and the rest are accepted.

Risk mitigation is a plan that comprises preparing a new cyberse-
curity policy (in case it is not available) or updating an existing policy
document to reduce the negative impact of risk. Since every country
and each company in a country has diferent cybersecurity risk chal-
lenges, the policy to mitigate risks also varies depending on the type of
company and its requirements for cybersecurity defense. The impact of
risk is a weighted factor associated with each vulnerability based on the

HPC and Cybersecurity Risks in FMIs ■ 183

severity of that vulnerability. The mitigation strategies aim to accept,
avoid, transfer, share, or mitigate the risk depending on the scope of
risk response decisions delegated by the organizational management.

In order to compute the impact and fnd the severity of the
vulnerability, the Common Vulnerability Scoring System (CVSS)
provides a variety of measures for scoring each vulnerability. CVSS
assigns a score to vulnerabilities to prioritize them and execute the
mitigation policy to alleviate them. Once the impact is computed, the
vulnerabilities are prioritized to perform response actions according
to mitigation policies. CVSS score is represented by a CVSS vector
containing several parameter–value pairs separated by a forward slash,
and each parameter and value are separated by a colon.

For example, WannaCry vulnerability (vulnerability identifer:
CVE-2017-0144 [53]) is identifed by the CVSS vector AV:N/AC:H/
PR:N/UI:N/S:U/C:H/I:H/A:H, where AV represents the attack vector
(N – network); AC is the attack complexity (H – high); PR means
the privilege required (N – none); UI is the user interaction (N –
none); S represents the scope (U – unchanged); and C (H – high),
I (H – high), and A (H – high) denote confdentiality, integrity, and
availability impact, respectively. The values of these parameters for
this example are specifed in the brackets.

CVSS v3.1 calculator computes the base score of this vulnerability
by using the following equations:

Impact Sub Score (ISS) = 1 − [(1 − C) ∗ (1 − I) ∗ (1 − A)] 6.42 ∗ ISS, If scope is unchanged (6.1)
= 7.52 ∗ (ISS − 0.029) If scope is changes−3.25 ∗ (ISS − 0.02),

Exploitability (Exp) = 8.22 ∗ AV ∗ AC ∗ PR ∗ UI (6.2)

Base score = 0& if impact ≤ 0
Roundup If scope is unchanged(min[(impact + Exp), 10]),

=
Roundup If scope is changed(min[1.08 × (impact + Exp), 10]),

(6.3)

https://min[1.08

184 ■ Cybersecurity and High-Performance Computing Environments

The metric values of all the variables in the equation are available at
[54]. For this example, we compute the CVSS score as follows:

ISS = 1 − [(1 − 0.56) ∗ (1 − 0.56) ∗ (1 − 0.56)] = 0.914816 (6.4)
Impact = 6.42 ∗ 0.914816 = 5.87311872 (6.5)
Exp = 8.22 ∗ 0.85 ∗ 0.44 ∗ 0.85 ∗ 0.85 = 2.2211673 (6.6)
Base score = Roundup (min [(5.87311872 + 2.2211673) , 10]) = 8.1

(6.7)

Finally, the outcomes of a risk mitigation plan and lessons learned from
mitigating risks are repeatedly fed into the risk analysis phase to tackle
future vulnerabilities.

Efective risk management on various levels is crucial to ensure
that cybersecurity investments are commensurate with the underlying
risk. As with other fnancial risks, frms must decide how to manage
their exposure to cyber-threats. The risk identifed, analyzed, and
evaluated in the risk assessment needs to be actively managed,
including reducing, transferring, and avoiding risk.

Indeed, FinTech risk management represents a central point
of interest for regulatory authorities and require research and
development of novel measurements. Across the world, there is a strong
need to improve the FinTech sector’s competitiveness, introducing a
risk management framework that can supervise FinTech innovations
without stifing their economic potential. A structure that can help
both FinTech and supervisors: on the one hand, FinTech frms need
advice on how to identify opportunities for innovation procurement
such as in advanced regulatory technology (RegTech) solutions. On
the other hand, the supervisory bodies’ ability to monitor innovative
fnancial products proposed by FinTech is limited, and advanced
supervisory technology (SupTech) solutions are required. A crucial
step in transforming compliance and supervision is to develop uniform
and technology-driven risk management tools, which could reduce the
barriers between FinTech and supervisors [55].

6.11 CONCLUSIONS

Financial market infrastructures refer to critical fnancial institutions
that are involved in clearing, settlement, and recording of monetary

HPC and Cybersecurity Risks in FMIs ■ 185

transactions in the form of payments, securities, custody activities,
and trading. There are fve essential components of FMIs, including
payment systems, central security depositories, security settlement
systems, central counterparties, and trade repositories. Secure and
fast monetary transactions help in economic growth of the global
fnancial industry. This can be achieved by integrating HPC with
FMIs. The participating entities can be exposed to several types
of fnancial risks such as systemic, legal, credit, liquidity, custody
and investment, and operational risks. These risks can further lead
to cybersecurity issues that can be exploited to cause cybersecurity
risks to FMIs. Furthermore, HPC also comes equipped with certain
cybersecurity issues. To understand these cyber-issues, the fnancial
risks are associated with security objectives such as confdentiality,
integrity, availability, accountability, and authenticity. This chapter
mapped various types of fnancial risks with cybersecurity objectives
to identify cybersecurity issues in FMIs. It further presented diverse
cyberattacks launched against fnancial institutions, especially FMIs,
with an objective to steal sensitive information, disrupt essential
services, modify information, and make money. These cyberattacks
instigate cyber-risks that can be catastrophic for the fnancial industry.
Therefore, it is pertinent to assess, analyze, monitor, report, and
mitigate cybersecurity risks in FMIs to maintain fnancial stability
and improve economic growth of the fnancial market. Finally, the
chapter detailed cyber-risk mitigation processes by taking WannaCry
ransomware as an example to remedy cybersecurity risks in FMIs.

REFERENCES
[1] Financial market infrastructures – what happens when you pay?

https://www.bankofengland.co.uk/knowledgebank/fnancial-market-
infrastructures-what-happens-when-you-pay.

[2] Bank for International Settlements, Guidance on cyber resilience for
fnancial market infrastructures, pp. 1–32, 2016.

[3] Serafn Martinez-Jaramillo, Jose Luis Molina-Borboa, and Bernardo
Bravo-Benitez, The role of fnancial market infrastructures in fnancial
stability: An overview, analyzing the economics of fnancial market
infrastructures, pp. 21, 2016.

[4] How zero trust privilege addresses fve high-performance computing secu-
rity risks, https://www.somerfordassociates.com/wp-content/uploads/

https://www.bankofengland.co.uk
https://www.bankofengland.co.uk
https://www.somerfordassociates.com

186 ■ Cybersecurity and High-Performance Computing Environments

2020/01/how-zero-trust-privilege-addresses-fve-high-performance-
computing-security-risks.pdf.

[5] HPC market fve-year forecast bumps up to $44 billion worldwide,
https://insidehpc.com/2019/06/hpc-market-fve-year-forecast-bumps-
up-to-44-billion-worldwide/#:∼:text=HPC%20Market%20Five%2DYear
%20Forecast%20bumps%20up%20to%20%2444%20Billion%20Worldwide,
-June%2017%2C%202019&text=At%20ISC%202019%20in%20Frankfurt,
35%20billion)%20for%20that%20year.

[6] Challenging the barriers to high performance computing in the cloud,
https://d1.awsstatic.com/HPC2019/Challenging-Barriers-to-HPC-in-
the-cloud-Oct2019.pdf.

[7] Karthik Paladugu and Sumanth Mukka, Systematic literature review and
survey on high performance computing in cloud, Master’s Thesis, School
of Computing, Blekinge Institute of Technology, Sweden, 2012.

[8] Cyber Resilience for Financial Market Infrastructures, Financial
inclusion global initiative, The World Bank, https://pubdocs.worldbank.
org/en/189821576699037673/FIGI-ECB-OperationalCyber-FinalWeb-
12-13.pdf, 2019.

[9] Bank for International Settlements, Principles for fnancial market
infrastructures, Consultative report, pp. 1–148, 2011.

[10] Nephil Matangi Maskay, Analytical framework in assessing systemic
fnancial market infrastructure: Interdependence of fnancial market
infrastructure and the need for a broader risk perspective, The South
East Asian Central Banks (SEACEN), Research and Training Centre,
Malaysia, pp. 1–370, 2014.

[11] Oversight Framework for Financial Market Infrastructures (FMIs) and
Retail Payment Systems (RPSs), Reserve Bank of India, Version 2.0, pp.
1–77, 2020.

[12] Supervision and Systemic Risk Management of Financial Market Infras-
tructures – Technical Note, International Monetary Fund, Washington,
D.C., pp. 1–37, 2016.

[13] Payment Systems, Monetary Policy, and the role of the Central Bank,
International Monetary Fund, https://asean.elibrary.imf.org/doc/
IMF071/05174-9781557756268/05174-9781557756268/Other_formats/
Source_PDF/05174-9781455246670.pdf, pp. 1–273, 1998.

[14] Financial Market Infrastructure & Reform, Federal Reserve Bank
of New York, https://www.newyorkfed.org/fnancial-services-and-
infrastructure/fnancial-market-infrastructure-and-reform.

https://insidehpc.com
https://insidehpc.com
https://d1.awsstatic.com
https://d1.awsstatic.com
https://pubdocs.worldbank.org
https://pubdocs.worldbank.org
https://pubdocs.worldbank.org
https://asean.elibrary.imf.org
https://asean.elibrary.imf.org
https://www.newyorkfed.org
https://www.newyorkfed.org
https://www.somerfordassociates.com
https://www.somerfordassociates.com
https://insidehpc.com
https://insidehpc.com
https://insidehpc.com
https://asean.elibrary.imf.org

HPC and Cybersecurity Risks in FMIs ■ 187

[15] Bank for International Settlements, Recommendations for securities
settlement systems, https://www.bis.org/cpmi/publ/d46.pdf, pp. 1–55,
2001.

[16] Bank for International Settlements, Recommendations for Central
Counterparties, Consultative Report, https://www.bis.org/cpmi/publ/
d61.pdf, pp. 1–55, 2004.

[17] Financial Market Infrastructure Act (FMIA), Swiss Derivative Regula-
tion, https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/
fnancial-services/ch-en-fs-fmia-brochure.pdf, pp. 1–16.

[18] Regulation (EU) No 648/2012 of the European parliament and of the
Council of 4 July 2012 on OTC derivatives, central counterparties and
trade repositories (“EMIR”).

[19] Public Law 111-203- Dodd-Frank Wall Street Reform and Consumer Pro-
tection Act, https://www.govinfo.gov/app/details/PLAW-111publ203.

[20] What is High Performance Computing? https://insidehpc.com/hpc-
basic-training/what-is-hpc/.

[21] What is High-Performance Computing? https://www.netapp.com/data-
storage/high-performance-computing/what-is-hpc/.

[22] History of HPC, https://hpc.netl.doe.gov/about/history-of-hpc/.

[23] Julie Fagan, Why HPC is important to the fnancial services industry,
https://blog.netapp.com/why-hpc-is-important-to-fnancial-services-
industry/.

[24] Addison Snell, HPC and AI at the Forefront of Finance, Inter-
sect360 Research, https://www.hpcwire.com/2018/09/26/hpc-and-ai-at-
the-forefront-of-fnance/, 2018.

[25] Worldwide High Performance Computing 2017 Total Market Model
and 2018–2022 Forecast: Vertical Markets, https://intersect360.world
securesystems.com/reports/worldwide-high-performance-computing-
2017-total-market-model-and-2018-2022-forecast-vertical-market.

[26] HPC strategies for fnancial services: The playing feld widens, https://
www.therealizationgroup.com/portfolio/hpc-strategies-for-fnancial-
services-the-playing-feld-widens/.

[27] Libby Plummer, How Combining AI with High Performance Computing
(HPC) Could Transform the Finance Industry, https://www.intel.ca/
content/www/ca/en/fnancial-services-it/article/ai-hpc-banking.html.

[28] Intersect360 Research White Paper: AI and the new HPC: Revolutioniz-
ing Finance, Dell Technologies and Intel Corp., 2019.

https://www.bis.org
https://www.bis.org
https://www.bis.org
https://www2.deloitte.com
https://www2.deloitte.com
https://www.govinfo.gov
https://insidehpc.com
https://insidehpc.com
https://www.netapp.com
https://www.netapp.com
https://hpc.netl.doe.gov
https://blog.netapp.com
https://blog.netapp.com
https://www.hpcwire.com
https://www.hpcwire.com
https://intersect360.world
http://securesystems.com
https://www.therealizationgroup.com
https://www.therealizationgroup.com
https://www.therealizationgroup.com
https://www.intel.ca
https://www.intel.ca
http://securesystems.com

188 ■ Cybersecurity and High-Performance Computing Environments

[29] Cashing in on HPC and AI in the Financial Services Industry, https://
www.hpcwire.com/2019/05/13/cashing-in-on-hpc-and-ai-in-the-
fnancial-services-industry/, 2019.

[30] HPC strategies for fnancial services: The playing feld widens, https://
www.therealizationgroup.com/portfolio/hpc-strategies-for-fnancial-
services-the-playing-feld-widens/.

[31] An action plan for high performance computing security, https://www.
nist.gov/system/fles/documents/2018/03/15/working_draft_
actionplanhpc.pdf, 2016.

[32] Ron J. Berndsen, Carlos León, and Luc Renneboog, Financial stability
in networks of fnancial institutions and market infrastructures, Journal
of Financial Stability, Vol. 35, pp. 120–135, 2018.

[33] Shaofang Li, and Matej Marinč, Economies of scale and scope in fnancial
market infrastructures, Journal of International Financial Markets,
Institutions & Money, Vol. 53, pp. 17–49, 2018.

[34] Emanuel Kopp, Lincoln Kafenberger, and Christopher Wilson, Cyber
risk, market failures, and fnancial stability, International Monetary Fund
working paper, pp. 1–36, 2017.

[35] Fuchun Li, and Hector Perez-Saiz, Measuring systemic risk across
fnancial market infrastructures, Journal of Financial Stability, Vol. 34,
pp. 1–11, 2018.

[36] Bruce Nikkel, Fintech forensics: Criminal investigation and digital
evidence in fnancial technologies, Forensic Science International: Digital
Investigation, Vol. 33, pp. 1–7, 2020.

[37] Bank for International Settlements, Cyber resilience in fnancial market
infrastructures, pp. 1–19, 2014.

[38] Jungho Kang, Mobile payment in Fintech environment: Trends, security
challenges, and services, Human-centric Computing and Information
Sciences, Vol. 8(32), pp. 1–16, 2018.

[39] Sobia Mehrban, Muhammad Waqas Nadeem, Muzammil Hussain,
Mohammad Masroor Ahmed, Owais Hakeem, Shazia Saqib, Miss Laiha
Binti Mat Kiah, Fakhar Abbas, Mujtaba Hassan, and Muhammad Adnan
Khan, Towards secure FinTech: A survey, taxonomy, and open research
challenges, IEEE Access, Vol. 8, pp. 23391–23406, 2020.

[40] Keke Gai, Meikang Qiu, and Xiaotong Sun, A survey on FinTech, Journal
of Network and Computer Applications, Vol. 103, pp. 262–273, 2018.

[41] Arnoud Boot, Peter Hofmann, Luc Laeven, and Lev Ratnovski, FinTech:
What’s old, what’s new? Journal of Financial Stability, Vol. 53, pp. 1–37,
2021.

https://www.hpcwire.com
https://www.hpcwire.com
https://www.hpcwire.com
https://www.therealizationgroup.com
https://www.therealizationgroup.com
https://www.therealizationgroup.com
https://www.nist.gov
https://www.nist.gov
https://www.nist.gov

HPC and Cybersecurity Risks in FMIs ■ 189

[42] Bank for International Settlements. The interdependencies of payment
and settlement systems, https://www.bis.org/cpmi/publ/d84.pdf, pp. 1–
83, 2008.

[43] Financial Market Infrastructure Risk, Current report of the fnancial
market infrastructure risk task force, New York, pp. 1–19, 2007.

[44] Covid-19 and cyber risk in the fnancial sector, BIS Bulletin, No. 37,
2021, https://www.bis.org/publ/bisbull37.pdf.

[45] Financial Services Information Sharing and Analysis Center (FS-ISAC)
(2020): COVID-19 efects on cybersecurity survey, July, 2020.

[46] Timeline of Cyber Incidents Involving Financial Institutions, 2020.
https://carnegieendowment.org/specialprojects/protectingfnancial
stability/timeline.

[47] Wiem Tounsi, and Helmi Rais, A survey on technical threat intelligence
in the age of sophisticated cyberattacks, Computers & Security, Vol. 72,
pp. 212–233, 2018.

[48] In Lee, and Yong Jae Shin, Fintech: Ecosystem, business models,
investment decisions, and challenges, Business Horizons, Vol. 61, Number
1, pp. 35–46, 2018.

[49] Guide for Conducting Risk Assessments, NIST special publication 800-30
revision 1, pp. 1–95, 2012.

[50] Shon Harris, and Fernando Maymi, CISSP All-in-One Exam Guide, 8th
edition. New York: McGraw-Hill, 2018.

[51] Douglas Landoll, The Security Risk Assessment Handbook: A Complete
Guide for Performing Security Risk Assessments, 2nd edition, Boca
Raton, FL: Auerbach Publications, 2006.

[52] Evan Wheeler, Security Risk Management: Building an Information
Security Risk Management Program from the Ground Up. Waltham:
Syngress, 2011.

[53] CVE-2017–0144 Detail, https://nvd.nist.gov/vuln/detail/cve-2017-0144.
[54] Common vulnerability scoring system version 3.1: Specifcation docu-

ment, https://www.frst.org/cvss/specifcation-document.
[55] Paolo Giudici, Fintech risk management: A research challenge for

artifcial intelligence in fnance, Frontiers in Artifcial Intelligence, Vol. 1,
pp. 1, 2018.

https://www.bis.org
https://www.bis.org
https://carnegieendowment.org
https://nvd.nist.gov
https://www.first.org
https://carnegieendowment.org

https://taylorandfrancis.com

C H A P T E R 7

Live Migration in HPC
Anil Kumar Gupta and Amarjeet Sharma
Centre for Development of Advanced Computing (CDAC)

Aditi Pandey, Kaustubh Patil, and Sanskar Sharma
MIT Academy of Engineering

CONTENTS

7.1 Introduction . 192
7.1.1 Introduction to Live Migration . 192

7.1.1.1 Needs . 193
7.1.1.2 Applications . 193
7.1.1.3 Efciency . 193
7.1.1.4 Security . 194

7.1.2 Introduction to Cloud Computing 194
7.2 Live Migration in VM . 195

7.2.1 Live VM Migration Techniques in Cloud 196
7.2.1.1 Post-Copy Approach . 197
7.2.1.2 Pre-Copy Approach . 200

7.2.2 Research Challenges in VM Migration 202
7.2.3 Security in Live VM Migration . 203

7.3 Live Container Migration . 205
7.3.1 Migration . 206

7.3.1.1 Memory Migration . 207
7.3.1.2 Network Migration . 208

7.3.2 Type of Migration to Manage Cache Transfers 208
7.3.2.1 Suspend/Resume Migration 208
7.3.2.2 Record–Replay Migration 209

7.3.3 Case Study . 210
7.3.3.1 Checkpointing and Restoring in CRIU . . 210
7.3.3.2 Checkpointing and Restoring in

OpenVZ . 211
7.3.4 Performance . 212

DOI: 10.1201/9781003155799-7 191

https://doi.org/10.1201/9781003155799-7

192 ■ Cybersecurity and High-Performance Computing Environments

7.3.5 Comparing VMs vs. Containers via
High-Availability/Fault Tolerance (HA/FT)
Solutions . 213
7.3.5.1 HA in Hypervisor-Based Platforms 214
7.3.5.2 HA in Container-Based Platforms 217
7.3.5.3 Clustering Eforts for Containers 220

7.4 Attacks on Live Migration . 220
7.4.1 Improper Access Control Policies 220
7.4.2 Unprotected Transmission Channel 222
7.4.3 Loopholes in Migration Module . 222

7.5 Approaches . 223
7.5.1 Isolating the Migration Trafc . 223
7.5.2 Network Security Engine-Hypervisor (NSE-H) 224

7.6 Summary . 225
References . 226

7.1 INTRODUCTION

7.1.1 Introduction to Live Migration

The live migration technique is a very trending topic in today’s era in
connection with the virtualization technology in development, which
is widely used in diferent computing environments from the single-
processor computers to the large cloud solutions and data centres
at present. Live migration means the process of transferring a
running virtual machine/application among varying physical machines,
but without disconnecting the application or the client. Storage,
memory, and network connectivity of the VM are transferred from
the original guest machine to the destination. It is also referred as low-
latency migration that does not disrupt the TCP connections to the
direct-access device being migrated.

The main goal of a VM live migration is to enable maintenance
or upgrades to be executed on a VM without letting any of the
virtual machine’s user experience downtime during the migration. Live
migrations are also known as seamless live migrations where there’s no
apparent downtime to the end user during the migration process.

Live Migration in HPC ■ 193

7.1.1.1 Needs

Migration of VM is acquiring more importance in today’s world,
for improving the utilization of resources, load balancing the processing
nodes, isolating the applications, and tolerating the faults in virtual
machines to increase the portability of nodes and to rise the efciency
of the physical server. Live migration enables administrators to
easily add, on the fy, new hosts to a Hyper-V cluster and also
allows to instantly increase resources required by VM workloads. Live
migration can also be used to enable administrators to access various
service hosts during the normal business hours and without afecting
business-related services and applications.

7.1.1.2 Applications

There are various applications of live migration. Live migration allows
users to keep their instances running during regular infrastructure
upgrades and maintenance, and hardware failures, such as memory,
network, and power grid maintenance in the data centres, and the
failure of CPU, NIC, disks, power, and so on. Updates related to
security need to respond quickly along with system confguration
changes, including the change in the size of the host root partition,
for the storage of packages and host image.

7.1.1.3 Efficiency

Live migration has proved to be more efcient than ofine migration
in terms of maintenance, reachability, load balancing, and ofoading.
There might be several servers in the network experiencing heavy load
due to their position in a dense area or because of the service type they
run. In this scenario, it is benefcial to distribute the load among other
servers in the network via live migration of VMs.

The performance of migration process depends on many other
factors, such as the size of workload it serves, the memory allocated to
the VM, and the transmission rate at which the migration is occurring.
The time taken by the migration process degrades the network
performance. Transferred VMs increase the latency factor, leading
to more imposed link delay and network performance degradation.
Overhead cost of live migration is considerable, but in total, it results
as a disadvantage.

194 ■ Cybersecurity and High-Performance Computing Environments

7.1.1.4 Security

Live migration is a quite peculiar and unique idea, and aspects
related to its security are not fully discovered. The prevalence of cloud
computing has gained the attention of many hackers and their attacks.
These attacks may vary from man-in-the-middle (MITM) attacks to
denial-of-service (DoS) attacks. Bandwidth stealing, falsely advertising,
passive snooping, and active manipulation are some of the active and
passive attacks possible while migration is under process.

To address the above issues, we use various cryptographic
algorithms that help in encryption and decryption of data, thereby
detecting and preventing such attacks. Also, certain steps must
be considered at both ends when migration is initiated, such as
authenticity of person initiating migration, stepwise entities security
perseverance, and confdentiality of migration information.

7.1.2 Introduction to Cloud Computing

“Cloud computing is the on-demand availability of computer system
resources, especially data storage (cloud storage) and computing
power, without direct active management by the user”, as written
on Wikipedia.

Cloud computing is maybe the foremost most famboyant tech-
nological innovation of the 21st century. It is rising as an important
paradigm shift; however, computing demands will be met in future. It is
remodelling the role of IT in business in recent years. As virtualization,
that is a crucial technology part in cloud computing and has become
more and more crucial in many actions of the IT feld, as services and
applications are always running on virtual machines, and in order to
assure a maximum of availability and a satisfying quality of service
(QoS) to shoppers/clients and users, the idea of virtual machines live
migration proves to be extraordinarily important, given its utility and
edges. Cloud computing is not just simply meant for a few organizations
and specifc businesses; it’s additionally helpful for a normal person
as well. It permits one to run software programs without installing
them on his computers; it permits him to store and modify/access
his multimedia or transmission content via the Internet; it permits
him to introduce, develop, and check programs while not essentially
having servers; and what not. Cloud computing is a 21st century

Live Migration in HPC ■ 195

marvel that holds its importance in almost every feld you’ll be able to
think about.

Cloud computing is predicted to get rid of the software piracy
forever. Software piracy is not a healthy habit for the economic
development of the country. And this will be removed or stopped
solely by software frms, publishers, and distributors by using and
implementing cloud computing within the business system. The simple
methodology they will use is to prevent selling the software online for
downloading and ofine for selling. Instead, charge it on a monthly or
yearly basis. The adoption of cloud computing infrastructure will also
cut back the cost of conducting business. Now frms/companies can
store, back up the data or information, and launch a personal cloud
network by using the existing infrastructure of cloud computing at a
lower cost. They don’t need to get any physical parts to manage and
store information or data.

The growing age of cloud computing permits us to access and
share computing and storage resources over the Internet. Conversely,
the infrastructure cost of the cloud reaches an improbable limit.
Therefore, virtualization concept is applied in cloud computing systems
to assist users and owners to gain higher usage and economical and
efcient management of the cloud with the least possible cost. And
live migration of VMs further helps us to better use the cloud resources
with their benefts mentioned previously.

There are numerous examples that how technology has modifed
our lives to be easier, quick, and comforting. And cloud computing
is the next massive thing in information technology that will make
life even easier than it is currently. That’s why we have a tendency
to use machines to make life easier. In the end, change is always
challenging for everyone. Similarly, it’s challenging to go from an in-
house network to virtual personal or cloud networks, particularly when
in-house information or data security and user piracy are the biggest
considerations.

7.2 LIVE MIGRATION IN VM

“A virtual machine is a virtual representation, or emulation, of a
physical computer”, by IBM, is the ofcial defnition of the virtual
machine. Various systems available in the market help in performing

196 ■ Cybersecurity and High-Performance Computing Environments

virtualization tasks. That is, they can help in running multiple virtual
machines on the same system in parallel. To name a few, there are
VirtualBox, KVM, and Microsoft Hyper-V. As discussed previously,
cloud computing associated with various features such as networking
tools, storage spaces, server, and applications can undoubtedly increase
the efciency and play a key role in high-performance computing by
taking a step towards virtualization. Virtualization comes bearing gifts
such as resource utilization, reliability, portability, application security
by application isolation, and hence improved synchronization and resis-
tance to fault tolerance. As virtualization allows multiple VMs to run
concurrently, it also provides the service of live migration of VM from
one node to another node in a cluster of nodes. As it gives isolation,
it hence provides a clean separation between hardware and software.
Technically, there are two types of migrations in VM: One is live migra-
tion and the other is cold migration. Let’s discuss how one diferentiates
from the other: In cold migration, the machine loses its state and hence
becomes noticeable like an interrupt from users’ point of view, while in
live migration, on the other hand, the state of the VM is preserved and
the migrating process is not noticeable from the user’s perspective.

Here’s where live migration in VM comes in handy:

1. Load Balancing: This prevents a server from overloading or
overheating by migration of their workloads to other servers.

2. Server Consolidation: These are conditions where servers that
need maintenance can be brought down by migrating their works
to other servers.

3. Energy Distribution Control: As the workload is balanced, for
efcient utilization of energy the servers that are currently not in
use can be shut down to save energy and thus guarantee green
cloud services.

7.2.1 Live VM Migration Techniques in Cloud

A cloud administrator migrates applications so that the load can be
balanced among the clusters to increase efciency. Hence, live migration
turns out to be a very important facility for management purposes. To

Live Migration in HPC ■ 197

perform live migration, the current state of the VM such as the CPU
states and memory pages must be migrated to the destination where
it can then be resumed.

Along with being able to migrate our VM, it’s also needed to be
ensured that the VM live migration process occurs efciently. For this,
we have diferent performance metrics that can help us to compare
diferent techniques and adopt the one that suits our application more.
For this, we have some defned key metrics that help in understanding
the performance of a VM migration technique. These are as follows [1]:

1. Preparation Time: The time when the migration is initiated and
pages are transferred to the destination VM.

2. Downtime: The time during which the machine’s runtime is
stopped.

3. Resume Time: The time between the start of execution of VM at
destination and the end of migration is called resume time.

4. Pages Transferred: The total number of pages transferred from
source to destination including the duplicated.

5. Total Migration Time: The total time between the start of
migration from source from preparation till the end of migration
by transfer of the last page at the destination.

6. Application Degradation: The degradation of the performance of
the applications within VM during migration.

After knowing the various performance metrics, it is now time to
discuss several live VM migration approaches. We have mainly two
approaches used in VM live migration: post-copy memory migration
and pre-copy memory migration. Let us discuss these live migration
approaches one by one.

7.2.1.1 Post-Copy Approach

In the post-copy approach, the VM at the sending node is halted until
the required minimal CPU states are migrated to destination node, and
once transferred, the VM is resumed and the remaining memory pages
are sent over the network to the destination. The post-copy approach

198 ■ Cybersecurity and High-Performance Computing Environments

is a combination of four prime modules that include demand paging,
active pushing, pre-paging, and dynamic self-ballooning that jointly
make the post-copy approaches more methodical.

Let’s have a quick review of each of the modules:

1. Post-Copy Using Demand Paging: In this type of technique,
once the VM launches at the target, the page is requested for
every memory access fault occurred. However, a disadvantage
associated with this method is that requesting for the page at
each fault causes the VM to slow down and also leaves long-term
dependencies unfetched. Hence, we use other approaches along
with demand paging so as to lessen the network latency issue [1].

2. Post-Copy Using Active Pushing: Using active pushing, the pages
are pre-emptively transmitted to the destination VM and any
future page faults that occur are serviced separately by sending
the requested page using demand paging. Along with this, to
prevent sending of the same page multiple times, it makes sure
that the page which is serviced separately is not sent again with
active pushing [1].

3. Post-Copying Using Pre-paging: Pre-paging technique aims at
minimizing the page faults arising at the destination VM by
anticipating the possible page references that can be made in
future by analysing the sequence of memory access made. By
minimizing the page faults and indirectly minimizing the page
requests made, it makes the system more efcient.

Pre-paging strategy is imposed using the bubbling algorithm.
The diferent strategies are:

(a) Bubbling with a Single Pivot: In this type of strategy, a
particular page is selected as pivot. Around this pivot, active
pushing of the page that is located close to it is done at
each iteration. As this strategy involves expanding the reach
around a point similar to a bubble, therefore it is known
as bubbling. Whenever a page fault arises and is requested
by the destination, the pivot is now shifted to this new
requested page in the memory and the selection of next

Live Migration in HPC ■ 199

pages to be pushed is done that according to this newly
selected pivot.

(b) Bubbling with Multiple Pivots: As the term itself implies,
this approach utilizes multiple pivots instead of a single
pivot. It is quite usual that multiple processes can run at
a time and hence concurrently memory access at diferent
locations is possible. Hence, in this context, having multiple
pivots helps us to capture the locality of reference across
multiple processes and helps in appropriate paging so as to
decrease the number of subsequent page faults. Here, similar
to the previous approach bubbling strategy is employed,
however in this at once multiple pivots are expanded and all
the memory pages which are symmetrically located around
it are pushed one by one. Deciding an appropriate limit on
the number of pivots is important as because having too
many pivots can afect the system performance. Once we
decide with the upper limit for the number of pivots for any
subsequent page fault, the least recently used policy can be
used to replace a pivot with the new pivot as the demanded
page.

Along with the pivot selection, determining the direction
of bubble expansion is essential in both single- and multiple-
pivot approaches and, in this case, the bidirectional expansion
has been proved to be benefcial as compared to forward or
backward unidirectional expansions. While expansion of the
bubble continues, this approach also ensures that a given page
has not been transmitted previously by a previous pivot or by
either of the neighbouring pivots, thereby reducing waste work
and maintaining coherency [1].

4. Dynamic Self-Ballooning: The source virtual machine can have
a huge amount of free unallocated pages, and migrating all of
these to destination can be a waste of network as well as of the
CPU resources, making the overall migration process inefcient
by increasing the total migration time. To overcome this problem,
we have a technique called ballooning that helps in resizing the
allocated memory of a VM. To implement this, a balloon driver

200 ■ Cybersecurity and High-Performance Computing Environments

resides in the guest kernel. The task of this balloon driver is either
to retrieve the least important pages from the kernel and send
them to hypervisor (infating the balloon), or to request some
pages from hypervisor and return them to the kernel (defating
the balloon). In this way, any VM to be migrated can be defated
and any destination VM that requires more memory can be
infated. This type of ballooning occurs at every iteration and
is known as dynamic self-ballooning. This way the dynamic self-
ballooning approach helps to reduce the number of free pages,
thereby making our migration process more efcient. Dynamic
self-ballooning reacts dynamically to each invocation by infating
when memory is needed and by defating when memory can be
released or transferred. Hence, by determining the ideal interval
of ballooning, we can optimize the overall performance of our
process [1].

7.2.1.2 Pre-Copy Approach

In the pre-copy approach, all the memory pages are migrated to the
destination while the VM is still executing at source. And if memory
change or overwrite occurs, then those modifed pages or the dirtied
pages are retransmitted to the destination. Until the application’s
writable working set becomes small or reaches to maximum limit of
iterations, the VM is halted and all the remaining dirty pages and CPU
state are then transferred. Pre-copy approach method tries to decrease
the downtime of the source machine while increasing the migration
time.

Numerous techniques have been developed under the pre-copy
approach. Below are few of those techniques:

1. Improved Pre-Copy Approach: Among the several improved pre-
copy approaches, this one includes keeping the track of the
commonly updated pages with the help of bitmaps such as
TO_SEND which marks the memory pages that have been
dirtied in previous iteration and need not be transferred in this
particular iteration, TO_SKIP which records the pages that can
be skipped over, and TO_FIX which tracks the pages that need
to be sent at last. Along with this, it includes another bitmask

Live Migration in HPC ■ 201

TO_SEND_LAST that marks the pages which are updated
frequently and are to be sent at last. Such kind of method reduces
the pages to be transferred and hence lowers the migration
time. However, this has higher downtime in comparison with the
traditional pre-copy approach [2].

2. Two-Phase Strategy: Basically, in one-phase strategy, the page is
sent once it is dirtied in the prior iterations. On the other hand,
in the case of two-phase strategy, the scheduler holds a bit more
patience. It sees if the current page is not being dirtied for two
consecutive iterations and then only it sends that particular page.
This approach tries to decrease the unnecessary retransmitting
of a page to decrease the amount of memory being transferred.
However, it has a bounding condition according to which if the
number of iterations performed are less or the number of dirty
pages are less then it tries to remain in the one-phase strategy
and if either of these conditions are not followed, then it shifts to
two-phase strategy [3].

3. Pre-Copy Using Memory Compression: The given technique aims
at reducing both the migration time and downtime. It follows a
memory compression-based technique to compress the memory
pages with the aid of a characteristic-based compression (CBC)
algorithm and then transfer the pages, helping to reduce the
migration time. However, the compression ratio, i.e. the amount
by which a given memory should be compressed, needs to be
chosen wisely as compressing the data requires an additional
overhead of time, and hence, choosing the best compression ratio
that maintains a balance between compression overhead and
memory migration time is necessary [4].

4. Combined Checkpoint–Restore/Trace–Replay Technique: This
method makes use of checkpoint–restore and trace–replay
methods to maintain synchronization between the source and the
destination. The CR and TR helps provide a syncing mechanism
by sending the log fles of the source to the destination to
emulate the working state at destination. While the log fles are
being executed at destination, the CPU scheduler adjusts the log
generation rate. This way it helps to reduce the downtime and
has an acceptable total migration time [5].

202 ■ Cybersecurity and High-Performance Computing Environments

5. Integrated Replication with Scheduling: It proposes the archi-
tecture required to overcome the challenges of VM migration
over WAN. In this, it replicates a VM image over diferent cloud
sites and then chooses a copy of the image as the primary copy
and propagates the additional changes over it. The replication
strategy of VM is factored on the basis of the de-duplication
techniques that try to reduce the migration latencies over
WAN [6].

6. Delta Compression Technique for Large VMs: This pre-copy
approach uses compression techniques to compress the memory
page before transmitting so that the required time to transmit
pages reduces. It aims at increasing the network throughput for
shortening migration downtime rather than reducing dirtying
rate, which degrades the performance of the VM. It uses an
XOR binary run-length encoding compression technique for
faster compression of the pages, thereby increasing the migration
throughput [7].

7. Optimized Pre-Copy Live Migration: This optimized version
of iterative pre-copy approach is aimed at meeting a faster
optimal convergence point. Convergence point is the state in
migration when the live migration is stopped and fnally stop
and copy migration is used. The algorithm helps in deciding the
convergence points by analysing the memory access patterns. It
monitors the number of page changes per constant time interval
and then uses linear regression to estimate the pages to be sent to
determine the same page sampling interval at each iteration [8].

7.2.2 Research Challenges in VM Migration

Despite various developments, there are still some challenges in the
feld of VM migration:

i. Reducing Both Downtime and Migration Time: Any of the
approaches discussed is able to improvise either of the aspects,
but not both, and hence to increase the overall efciency, there
is still the need to fnd a better approach.

Live Migration in HPC ■ 203

ii. VM Dependencies Are not Considered: The current methods do
not focus on the inter-VM dependencies and do not take into the
account the underlying topology being used.

iii. Migration at Low Bandwidth over WAN: The task of migrating
a large-sized VM at a high latency and low bandwidth over WAN
at diferent geographical locations is not time efcient.

iv. VMs with High Workload: When VMs are performing some
computation- and memory-intensive tasks, then the migration
speeds become quite low.

v. Security in Live VM Migration: This is ensuring the security of
VM at the same time not compromising on the performance.

vi. Address Wrapping: Address wrapping from source to destination
VM is quite intricate.

7.2.3 Security in Live VM Migration

Security is an essential factor to be taken care of while considering
VM live migration. Live migrations can be quite susceptible to foreign
attacks. Any third person in the same subnet can easily capture the
migrating packets, and even direct attacks on the host VM are possible,
which makes it lose its confdentiality, hence becoming a major concern.
For this, there is the requirement of security systems to prevent these
issues and here are some of the security approaches in live migration
of VM:

1) Security in Live VM Migration with IPsec Tunnelling: Here,
the use of a secured channel through which the VM can be
migrated is emphasized. With the help of IPsec tunnel, a secured
channel can be established through which every packet that is
transferred through the network would be encrypted and then
sent. Due to this process, we have an overhead in execution time.
However, this comes with a beneft of security of the system. To
reduce the migration time, memory pages can be compressed and
then sent to reduce the total migration time. One can think of
encrypting the entire VM and then send it; however, it increases

204 ■ Cybersecurity and High-Performance Computing Environments

the migration cost considerably and hence it’s not one of the best
methods to choose for security [9].

2) Security in Live VM Migration with IPsec Tunnelling and Onion
Routing Algorithm: The given method can be supposed as an
upgraded approach over the VM migration with IPsec tunnelling.
The additional security feature it incorporates is the use of TOR
onion routing that helps in protecting the data by maintaining
anonymity of the migration transactions [10].

3) Role-Based Mechanism for Secure Migration: This mechanism
is based on identifying the valid role of any user/machine, and
the migration is proceeded if and only if the given constraints are
satisfed. It’s a hardware- and software-based solution for creating
a secure mechanism. The architecture consists of following
features:

• Attestation Service: This feature helps the source VM
hypervisor to cryptographically introduce itself to the desti-
nation VM hypervisor by communicating what application
is running inside it and thereby helping the destination to
identify trusted applications for further communication.

• Seal Storage: TPM (Trusted Platform Module) is respon-
sible for encrypting data for attestation service. It also
includes the hash along with the encrypted data. The TPM
only allows the OS with the same hash to unseal it, thereby
maintaining protection of the data.

• Policy Service: Policy service defnes and manages the role-
based policies for migration-related decisions such as who
has the authority to migrate VM or at which hosts the
migration is allowed.

• Migration Service: Migration service is responsible for all the
migration-related tasks. It initiates the attestation requests
to the destination to check if it meets all the security
requirements after which only the migration can take place.

• Secure Hypervisor: This helps to protect the process of guest
OS by runtime memory management. It provides the service
of encrypting and storing keys and data and also provides

Live Migration in HPC ■ 205

with remote attestation ability to ensure the trustworthy
environment is invoked [11].

4) Lightweight Authentication Framework for Securing VM Mi-
gration: Most of the VM migration securing mechanisms are
not suitable for voluminous message transfer. Prior methods
involving encrypting and decrypting the message or source and
host authentication mechanism can increase the transmission
delay. This given approach illustrates the use of lightweight
authentication framework in a data centre network. It includes
three modules: authentication, migration management, and
migration analysis and monitoring.

• Authentication: Before participating in migration, authenti-
cation protocols such as Dife–Hellman and IKE can be used
for data centre authentication. Authentication frameworks
consist of a lightweight handshake mechanism using the
Dife–Hellman method between a physical machine and the
data centre, which is done with the help of a pair of keys –
private and public keys – of the corresponding machine.

• Migration Management: Migration management consists of
two sections – data encryption and decryption and host-to-
host protection. The data encryption and decryption part
is carried out using cryptography techniques such as RSA,
AES, and DES, whereas host-to-host protection is provided
by IPsec tunnelling.

• Migration Analysis and Monitoring: Data centre will act
as a monitor for migration analysis and monitoring. The
data centre will be equipped with IDS (intrusion detection
system) to detect any suspicious and malicious activity,
and if a potential threat is recorded, then in that case, it
communicates a protected server for patch [12].

7.3 LIVE CONTAINER MIGRATION

Stepping one level up towards the process of live migration! The use
of containers. The underlying processes of VM migration of having the

206 ■ Cybersecurity and High-Performance Computing Environments

image of OS processed frst and then applying that instant make the
process less portable and more redundant.

Containers similar to virtual machines provide the virtual en-
vironment that encases all the required dependencies required for
any application to run on it. However, containers do not require
the extra bulky OS; instead, they are just wrappers that directly
request the kernel for accessing the resources. Application and process
isolation are provided with the use of Linux resource isolation features
such as control groups and namespaces that allow processes to work
independently. Hence, not having the overhead of an extra hypervisor
or OS makes containers a very lightweight and portable migration
option as compared to virtual machines. Let’s completely understand
the process of live container migration.

7.3.1 Migration

The process of moving a container which might have an application, a
program, or a website running in it from one server to another sever
is called live container migration. Migration can help in creating
in a sense of security in the context of fault tolerance while running
the application as when a system failure occurs the container can be
painlessly migrated to another host. Apart from fault tolerance, this
technique can also provide services such as load balancing, scaling the
applications and reallocating the resources accordingly, and tackling
hardware failures. Similar to virtual machines, the live container
migration also includes three main classes, which include

1) Memory migration

2) Process migration

3) Disk migration

Considering this technique to be used in high-performance computing,
it is expected that the migration process performs with zero downtime.
For all the applications running in the container and the container
itself, it should appear that the container is in the same location even
during migration. Although we have a high expectation, we assume
there would be a slender decrement in the performance during the
migration process, still making sure the overall efect is quite proftable.

Live Migration in HPC ■ 207

In the following, we will discuss diferent migration and replication
procedures. Preferably, it is assumed that during the process of mi-
gration there is transfer of the complete state of the original container
that is the state of disk, memory, and network connections [13].

7.3.1.1 Memory Migration

Memory Migration can again be divided into two types:

1) Post-copy

2) Pre-copy.

Post-copy: The memory migration via post-copy approach takes place
such that the memory is transferred after the state of the process is
transferred to the target location.

Steps to accomplish the post-copy migration are the following:

1) Stop the running container at the source.

2) Send the register state, process state, and devices’ states to the
target location.

3) Resume the container that reached the destination without
memory.

4) When the container is trying to run when it tries to access the
memory that is not present, the required memory is transferred
to the target location via the page fault mechanism.

Pre-copy: The memory migration via pre-copy approach takes place
such that the memory is transferred on a continuous repeat frst; after
that, the state of the process is transferred to the target location.

Steps to accomplish the pre-copy migration are as follows:

1) The container at the source continues to run; during this time,
the memory pages are transferred to the destination.

2) The memory transfer here is a repetitive process; in order to
maintain consistency, only the pages last modifed are copied to
the destination.

208 ■ Cybersecurity and High-Performance Computing Environments

3) Then the container at the source is stopped and then the register
state, process state, and the devices’ states are transferred to the
target location.

4) Finally, the destination container is started.

Similar to post-copy, pre-copy follows similar steps, with the only
diference of the transferring memory step ahead in one and later in
the other [13].

7.3.1.2 Network Migration

With memory and CPU states, there should also be migration of the
network connection states that is by preserving the open connections
that the application in the container was using. These states can
be achieved by retaining the original IP address, if the migration is
happening on the same LAN. Otherwise, an ARP protocol can be
generated to broadcast the destination address. But in the case where
migration is happening over a large network such as WAN, then the
existing technologies such as virtual private network (VPN), tunnelling,
and DNS can be used.

7.3.2 Type of Migration to Manage Cache Transfers

7.3.2.1 Suspend/Resume Migration

In order to achieve mobility in a secured manner, the strategy of
suspend/resume migration is used. In this technique, the container is
transferred in an inactive mode to the target location. The underlying
processes that take place in the container migration are listed as
follows:

• The network connections are disconnected at the sources and
then reconnected at the target host.

• Then the processor state, register state, and devices’ states are
sent to destination host.

• Then the images, local persistent state, and ongoing network
connections are migrated; also, the support for disconnected
operation is ofered.

Live Migration in HPC ■ 209

• Then apply delta disk operations to optimize the migration
process of disk.

Delta Disk Operations: The disk migration process can be enhanced
with the delta abstraction. The methodology of this notion is that the
write operation in the source is seized and various deltas are created.
Here deltas are the communication units containing information such as
written data, size of the data, and location on the disk. The frst step
of the process is keeping track of the stored data and locating data
blocks that have changed due to recent updates, i.e. the last write.
The latest updated data are then sent to the target host via WAN
or LAN. Another recognizable feature of suspend/resume technique is
the disconnected operations. In this type of operation, the clients have
access to critical data during the unfortunate event of failures of data
repository through the use of contents of the cache. The updates in the
cache can be transferred when disconnection ends.

7.3.2.2 Record–Replay Migration

The technique of record–replay is majorly used for recovering the
states. The methodology used to implement this technique is as follows:

1) Find the last checkpointed state.

2) From the logs obtained, repeat the events to get the desired
results.

Events: The events mentioned in the above technique can be cate-
gorized into deterministic and non-deterministic. In non-deterministic
events, replaying is needed, which requires logging that could in
turn afect the computation. However, deterministic events are the
regular events such as memory, branching instruction, and arithmetic
instructions, and the outcome of these events can be deterministic.
Non-deterministic events are the interrupts that are caused by the
input devices such as keyboard and mouse, and network and clock
outcome cannot be determined when the process is repeated. This
non-deterministic event can be further categorized into two classes as
external input and time. The time events are the exact point during
the execution when the event would occur, and the external input is
data from other devices or human input requirements.

210 ■ Cybersecurity and High-Performance Computing Environments

For replaying of a container, the non-deterministic events that help
in the computation are needed to be logged. As deterministic events
can be determined, they are not logged and can be computed during
replay. Finally, putting all things together that is replaying the non-
deterministic events from the log and computing deterministic events
can get the container to the desired state. However, the record–replay
technique should try to minimize the challenges such as maximizing
trace completeness, reducing log fle size, and trying to avoid low
performance due to large overhead [13].

7.3.3 Case Study

7.3.3.1 Checkpointing and Restoring in CRIU

The essential phases in the process of live migration are checkpointing
and restoring. This can be achieved using open-source project CRIU
and P.Haul in OpenVZ. The CRIU here is a low-level technique that
manages the saving and restoring of the checkpointed state. Similarly, it
can perform the memory pre-copy or post-copy accordingly. Moreover,
when P.Haul is implemented on top of CRIU, it helps in managing
all checkpointing and restoring procedures and deals with fle systems
simultaneously.

• Checkpoint: During the checkpointing process, the CRIU freezes
the container to ensure consistency and also dumps the process
memory state. Hence, the checkpoint time includes the time
taken to collect the process tree, and then freezing it, and
then collecting the process resources which include memory
mappings, timers, fle descriptors, and threads, and then fnally
writing the resources in dump fles over the network to a
remote page-server (the target location). From experimental
evaluations, the checkpoint time for the MySQL container at
stages with diferent numbers of records is diferent, resulting
in a linear increase in the pagemap dump fle size from 100 to
250 MB. Hence, the checkpoint time increases linearly with the
size of the application’s memory state. In the microservice-type
architecture, the expected memory usage of individual containers
is <1 GB, which limits the checkpoint time to be <2 seconds.

Live Migration in HPC ■ 211

• Restore: During the restoring process, the CRIU reads the
fles that were dump during checkpointing, resolves the shared
resources, forks the process tree, and restores the process’
resources. From experimental evaluations, the restore time for the
MySQL container is ≈ 0.7−0.8 seconds for <250 MB dump size.
Hence, the total expected application downtime is between 2 and
3 seconds. With the recent incorporation in CRIU’s incremental
memory, checkpointing capabilities should help in lowering the
application downtime.

As future work, there is a scope to evaluate this optimization and also
to instrument CRIU to measure both the checkpoint and restore times
at a per-resource requirement, so that we can prioritize and optimize
for the individual resources [14].

7.3.3.2 Checkpointing and Restoring in OpenVZ

OpenVZ also uses checkpointing and restoring methodology in order
to achieve live migration. During the checkpointing process, the state
of the running container is checkpointed and then restored later on
the same or diferent system (target location). The whole process
of checkpointing and restoring is transparent for the applications
and the network connections. The container has the capability to
reboot independently, given that it is provided with the required IP
addresses, users, root accesses, memory, processes, and flesystem. As
the container is an isolated entity, all the inter-process communications
and the parent–child relationships are within container boundaries.
Hence, it becomes very handy when the complete state is to be saved
in a disk fle. As we know, the process of saving the complete state of
a container is known as checkpointing. The saved disk fle is used to
restart the container. The frst step of checkpointing and the last step
of restarting are freezing the process. It helps to maintain consistency
in the process and also reconstructing a frozen process is efortless. This
freezing is achieved by sending a TIF FREEZE signal to all the process
threads. In this, all the dependencies should be saved, which include
identifers, process hierarchy, and shared resources such as the opened
fles and the shared objects. Finally, these states should be restored
when restarting is required at the target host. The network should be
disabled by dropping all incoming packets, but at the same time, should

212 ■ Cybersecurity and High-Performance Computing Environments

be preserved. Resources are restored from the process states, and this
facilitates a special function called hook, which is added on top of each
process stack during the restarting. The process then frst runs hook
on restart and thus restores all of its resources. Simultaneously, for the
init process of container, this hook restores networking state, which
includes the interfaces, iptables, route tables, IPC objects, and mount
points, and starts the process tree construction [14].

7.3.4 Performance

The Voyager is a novel flesystem-agnostic and vendor-agnostic
migration service that provides consistency in full-system migration.
The Voyager combines CRIU-based memory migration together with
the data federation capabilities of union mounts, which in turn helps
in the minimization of the migration downtime. In Voyager, once a
container is resumed at the target, it is provided with immediate
access to its respective data storage with the help of Voyager’s data
federation layer. This layer incurs performance overhead, which is
measured using YCSB for diferent types of workload profles, including
inserts, updates, reads, and scans. For each profle, in the YCSB’s
load stage, we insert 1 M records to a database table, and in the run
stage, we perform 1M record operations of respective types. The records
were accessed using the Zipfan distribution for the popularity-based
long-tail access patterns. For each workload profle, average application
throughput (operations/sec) is measured every 10 seconds.

Each experiment was performed via two application states:

1) Baseline: The application state at the source host before it is
migrated.

2) Federation: The application state after it is migrated to the
destination host, also having access to data through the
federation layer.

For common application read/write workload, the patterns observed
are with 0%–3% overhead in steady state. The performance impact on
the individual workload profles is as follows:

The initial low throughput is attributed to the cache warming
phase, and then in the steady-state phase it is observed to have

Live Migration in HPC ■ 213

relatively stable performance. Every read operation via the federation
layer makes the data access over NFS at the source. As a result,
in the federation state, the read throughput drops by 20% during
cache warming and by 1% in steady state. Unlike reads where a
Zipfan pattern accesses popular records frequently, this workload
accesses records in order, starting at a randomly chosen record key,
and generates more unique read requests. Thus, even in steady state,
we record a performance overhead of 10% for read accesses over NFS.

Updates: In federation state, an update is essentially a CoW
operation; that is, a fle is read from source over NFS, copied at the
target, and then updated locally. MySQL stores its InnoDB tables and
indexes in separate.ibd data fles. Thus, during the federation state
when a record is updated, the respective index and tablespace fle
is CoW’ed at the target host. Then, every subsequent update to the
records is completed locally. Conclusively, it is observed that there is
almost 75% performance overhead at the start and, in steady state, the
update performance is on a par with baseline.

Inserts: In federation state, each write operation that results in
the creation of new fles is performed locally. Thus, we observe similar
performance for baseline and federation state. The size of the table
slows down the insertion of indexes by log N, assuming B-tree indexes;
thus, a steady performance drop is observed for both states.

Read/Update/Insert: In this profle, the IO workload is split into
60:20:20 for read:update:insert. Finally, it observes 65% performance
overhead at the start attributed to fle-copy during updates and NFS
access for reads, and 3% overhead in steady state [14].

7.3.5 Comparing VMs vs. Containers via High-Availability/Fault
Tolerance (HA/FT) Solutions

In the wake of digitalization, optimization in virtualization technologies
in the past decades has led to their widespread acceptance and
a growing trend towards hosting workload in virtualized platforms.
Although the virtualization technology promises a reduction in the
cost and complexity through various abstractions of physical resources,
they also raise questions on the availability of applications hosted
on the virtualized platforms. Virtualization retailers propose diferent
HA/FT solutions to their customers. Among these solutions, the HA is

214 ■ Cybersecurity and High-Performance Computing Environments

implemented by forming multiple levels of fault tolerance capabilities.
A standard HA solution consists of a collection of loosely coupled
servers that are self-contained and continuously monitored with the
heartbeat methodology. In the event of host failure, VMs or containers
can failover from one server to others. To guarantee service continuity,
a secondary replica is required to be tightly coupled and reliable with
the primary replica such that in case of failure, the replica is always
ready to take over without service interruption and data loss.

The HA/FT solutions may be significantly different at the time
of implementation; they share the same principle, which is duplicating
critical components through redundancy in an attempt to remove single
points of failure.

7.3.5.1 HA in Hypervisor-Based Platforms

7.3.5.1.1 HA Solutions HA features are provided by three main
vendors: VMware, Citrix XenServer, and Marathon everRun MX.
It has been observed that most of the retailers such as Microsoft
Azure, Red Hat HP Serviceguard, and Enterprise Linux OpenStack
Platform in the market provide integrated HA using failover clustering
strategies that are discussed further in this chapter. VM live migration
is supported by VMware and XenServer through vMotion and
XenMotion, respectively. Still, CPU compatibility is required to make
sure that the VM can perform normally on the target system after
migration. The CPUs on the source and destination systems are
expected to provide the same set of configurations to the VM so that
the applications running on the VM do not crash. Simultaneously,
checkpoint–restore is also supported by all of them, assisting in the
capability of VM snapshotting [15].

7.3.5.1.2 FT: Checkpointing vs. Record-and-Replay Unlike HA that
can be achieved by standard failover clustering, FT is a more
complex procedure to be achieved in virtualized platforms as efficiently
synchronizing a secondary VM with a primary VM is a complex task.
This problem can be solved by two main strategies. One of them is
record-and-replay, which basically records all input data in the source
VM, sends them over a corresponding link to the secondary replica,
and then replays them in the replica on the destination location.
Implementing this strategy for a uniprocessor VM is comparatively

Live Migration in HPC ■ 215

pretty straightforward as all instructions executed by the vCPU in
the source VM are replayed deterministically on the vCPU in the
destination VM. However, the question of performance in the current
CPU architectures is still a concern because modern CPU architectures
usually consist of multiple processors and provide techniques such as
branch speculation, prediction, and out-of-order execution, introducing
non-deterministic behaviour across program executions. This non-
determinacy increases the difficulty level of synchronizing a replica with
a primary execution. Because of this reason, VMware that applies this
strategy can currently only provide FT for uniprocessor VMs. This
problem is known as symmetric multiprocessing fault tolerance (SMP
FT). Intel argued that the problem of an efficient record-and-replay
system targeting must be provided by the hardware support. Then
Marathon everRun MX announced that they have found a solution
to this problem. An alternative strategy, that is checkpointing the
state of the VM after the inputs are provided, sends it to the clone
and keeps the clone VM frequently synchronized with the original
VM. Unlike record-and-replay, checkpointing has its upper hand in
its simplicity and SMP support. But still its performance mainly
depends on the checkpointing rate and the amount of data that need
to be checkpointed and transferred to the clone side. While Marathon
everRun MX provides all HA/FT features, it only supports Microsoft
Windows as the guest OS, creating a monopoly in the market [15].

7.3.5.1.3 HA in VMware The VMware platform makes use of
the VMware Distributed Resource Scheduler (DRS), VMware HA,
VMware FT, and vMotion for achieving virtual environment high
availability. VMware HA is also constructed on failover clustering
strategy. All the VM disk images are needed to be present on the
shared storage. The HA agents that are installed on all ESXi hosts
are in charge of maintaining heartbeats between hosts in the cluster,
that is heartbeats between applications and the vCenter server, and
the heartbeats between VMs and the vCenter server.

VMware HA protects against three types of failures, which include
ESXi host failure, that the heartbeat signal is no longer transmitted
from the host, and the failure of the guest OS. For the first two,
VMware HA restarts the VMs on remaining surviving hosts. In case of
the third type of failure, the heartbeat signal is sent between the VM

216 ■ Cybersecurity and High-Performance Computing Environments

and the vCenter server. But in the third problem, VM fails or the guest
OS within the VM freezes, the VM tools installed inside the VM also
freezes, and this makes the vCenter sever unable to send the heartbeat
signals. In order to solve this problem, the vCenter server resets the
VM on the same host [15].

The failure on application level is identified by checking the
heartbeat between the application and the vCenter server. So at the
time of application failure, the vCenter server simply restarts not
just the application, but the entire VM on the same host followed
by the application that failed previously. For planed or predictable
scenarios such as host maintenance or upgradation, HA for VMs can
be achieved through live migration by vMotion. For migration of
restarting strategies, the decision of the new location for a VM is
made by VMware DRS according to information such as the resource
consumption of a VM over time, state of hosts in the cluster, and
anti-affinity rules.

If VMs are in the powered off state, then they can coexist on the
same system. But when anyone of the VM is powered on, the host-level
anti-affinity check is performed and the other VM has to be started on
a different host according to the results obtained. With the initiation
of vLockStep, the hypervisor on the two hosts coordinates a system of
heartbeat signals and mutual monitoring. In case of failure on either
host, the other host can take over and continue running the protected
VM seamlessly through transparent failover.

However, as we previously discussed, VMware has FT capabilities
based on the current implementation, but only a single logical processor
on the VM is supported. So in order to protect multiprocessor VMs,
VMware is developing a new protocol known as the SMP FT protocol,
with a huge network requirement of at least 10 GB link. This increase
in bandwidth is not only used for synchronization of multiple vCPUs,
but also to eliminate the requirement on shared storage between
the primary and secondary VMs. However, the performance overhead
introduced by SMP FT is very large.

7.3.5.1.4 HA in XenServer Platform The XenServer platform also
offers HA protection for VMs similar to VMware, but it can only
handle failures on host level. XenServer can be accompanied with third-
party products such as HA-Lizard to deliver HA capabilities to address

Live Migration in HPC ■ 217

failures on VM level and application level. Also, the support for FT is
not available in the XenServer platform. One potential way to integrate
FT in XenServer is to enable Remus, which has been a part of XEN
hypervisor.

Remus uses the active–passive technique where the state of the
VM is continuously replicated from the primary host to the secondary
host. Remus also allows speculative execution to simultaneously run the
active VM slightly ahead of the replicated VM state. This in turn helps
the primary server to be productive, while synchronization with the
replicated server is performed asynchronously, which helps in improving
the performance of the primary VM. However, XEN hypervisor is with
Remus support, but still it is not included with XCP and XenServer
[15].

7.3.5.2 HA in Container-Based Platforms

As opposed to hypervisor-based virtualization, container-based virtu-
alization also known as operating system-level virtualization is not
targeted to emulate an entire hardware environment, but rather
providing the modern Linux kernel to manage isolation between
applications. With OS-level virtualization technique, multiple isolated
Linux containers can run on a single host by sharing a single kernel
instance. Each container can have its own process and network.
Systems such as LXC (Linux Containers), Docker, and OpenVZ are
few well-known implementations of containers.

In fact, a container is a set of processes usually with a storage
associated that could be completely isolated from other containers. In
order to provide the HA facilities the capability to process, checkpoint–
restore is required. There have been a large amount of techniques
devoted to targeting this challenge, including few implementations such
as BLCR, DMTCP, and ZAP. However, these systems either lack one
feature or another, or usually only support a limited set of applications,
and none of them has been a part of the mainstream Linux kernel due
to the complexity of implementations.

An additional high-level feature such as versioning and sharing on
top of LXC+ Docker is becoming a most used platform for container
hosting. For checkpointing and restarting, one can snapshot a running
container using the commit command, which saves the container’s file

218 ■ Cybersecurity and High-Performance Computing Environments

Figure 7.1 A diagram of live migration sequence in CRIU [16].

changes and settings into a new image, with no concern on the state of
the running processes. Then another container can be restarted based
on the snapshot image of the hosts. However, the state of running
processes in the previous container is not preserved.

Features of live migration and checkpoint–restore in OpenVZ are
implemented as loadable kernel modules plus a set of user space
utilities. However, the major shortcoming of OpenVZ is the lack of
official integration with upstream Linux kernel. Issues such as security
and compatibility are faced by the users when using old kernels. To
tackle this problem, a new working direction CRIU is implemented,
that is, moving most of the checkpointing complexity out of the kernel
and into the user space, thus minimizing the amount of required kernel
changes. There is no other container-based platform that supports
features of automatic state synchronization between the active and
standby, failure detection, and failover management [15].

The plus point of this implementation is that the migration process
can roll back to source and resume the container on the source when
there is a failure in the synchronization of file system or in case of
network disconnectivity during the transfer of memory pages. The
availability mostly depends on the time consumed in Steps 3 to 5 in
Figure 7.1 [16]. These include three optimizations: file system changes
tracking, lazy migration, and iterative migration, and are implemented
to reduce the service downtime.

Live Migration in HPC ■ 219

7.3.5.2.1 File System Changes Tracking The basic idea here is to
reduce the time for file system synchronization in Step 4 in Figure
7.1. This can be achieved by tracking the file system changes and
continuously synchronizing the changes only. The current optimization
in CRIU is implemented on a block device similar to Linux loop device,
but specifically designed for containers known as ploop. The important
feature of ploop is that it has a write tracker, which helps the kernel
to memorize a list of modified data blocks. This list formed enables us
to efficiently migrate a ploop device to destination host, with minimal
container downtime. In the vzmigrate utility, the user space support is
implemented in the ploop copy tool.

7.3.5.2.2 Lazy Migration Mainly lazy migration is to only migrate
a minor subset of memory pages to the target host, then resume the
container on the target, and finally pull the remaining pages from the
source on demand. With the help of lazy migration, the container can
be resumed at the target location without waiting for entire memory
copy from the source. On the event of page fault, the container sends
a request to the page-in swap device that then redirects the request to
the page-out daemon that resides on the source to pull in the missing
page. Accordingly, the requested page is transferred and loaded into the
memory on the target host. Then finally whenever the container is idle
for a certain time, a last swap-out action is applied and all remaining
pages are transferred from the source to the target location.

The main setback of lazy migration is that neither the source nor
the target holds an integral state of the container, meaning that the
source and the destination as well as the network connection in between
must be reliable until the full migration process is completed. However,
the container restored on the target location can be malfunctioning
due to incomplete pulling of memory pages in case of network failure
between the source and the destination. Also, rollback is inapplicable
under such scenarios [15].

7.3.5.2.3 Iterative Migration Another optimization technique is to
perform memory pages transfer and file system synchronization prior to
freezing the container; this helps to reduce the amount of data needed
to mitigate after the freeze of the container. Still as the pages are being
dirtied and file systems might also be dynamically changing during the

220 ■ Cybersecurity and High-Performance Computing Environments

data transfer, this process needs to be executed iteratively. Hence, in
this strategy, the fle system is needed to be iteratively synchronized,
along with the dirtied memory pages transfer in each iteration.

7.3.5.3 Clustering Efforts for Containers

The power of Linux containers can be fully explored when there is a
complete orchestration of them in a well-synchronized manner. These
are known as clustering of the containers. As their individual working
becomes insignifcant, a collective functionality to build services with
multiple building blocks is required. In order to achieve this, various
eforts to build cluster-level management for containers are going on.
Docker Swarm is a well-known Docker-native clustering system that
aims at creating a cluster of Docker hosts as a single virtual host.
Kubernetes is another signifcant clustering solution to containers, in
which tightly coupled containers are grouped into pods and the loosely
coupled cooperating pods are organized into key/value pair labels.
These labels are considered metadata describing the semantic structure
of the service composed by multiple pods. Kubernetes works on the
notion of a Replication Controller in which a pre-defned number of
replicas of a given pod is always running; this helps in providing fault
tolerance. In case of a failure of a pod, it can be restarted on another
healthy host.

7.4 ATTACKS ON LIVE MIGRATION

Based on the various researches conducted on the attacks on the live
migration strategies, a few categories are identifed on the basis of the
causes that let the attack happen. The categories of attacks are as
follows:

1) The improper access control policies.

2) The unprotected transmission channel.

3) The loopholes in the migration module.

7.4.1 Improper Access Control Policies

Unsuited or inapt access control policies give access to an unauthorized
user to start, transfer, and terminate a virtual machine by themselves

Live Migration in HPC ■ 221

with concern of the governing host. This policy provides access to
hypervisor, governs the isolation between VMs on the same machine
and the resource sharing among them, etc. Lack of security can help a
malicious attacker to perform the following attacks:

1) Denial-of-Service Attack: This unauthorized attacker can start a
large number of outgoing transfers onto a virtualized host server.
This results in the overloading of the target server, decreasing
its performance or at worst establishing havoc in the service it
provides. As the VM is providing its services, it is possible for an
unauthorized attacker to make the VM to migrate from server to
server that reduces the performance of service provided by it.

2) Internal Attacks: This can be the result of an unauthorized
attacker transferring VM with malicious code in it to the main
target hypervisor. This provides a platform for malicious VM
to perform numerous internal attacks on the target system that
might also include the control over the target hypervisor and then
fnally the other guest VMs.

3) Guest VM Attack: In this, the attacker sends a request for
an incoming migration of a VM; during the mitigation of this
request, the attacker gains control over the migrated VM and
then performs an attack by executing a malicious code on it or
crashing it or in many other ways.

4) False Resource Sharing: An attacker system can pass wrong
reports of the available resources, infuencing other VMs to
migrate to this unauthorized VM.

5) Inter-VM Attack: The VMs running on the same machine can
communicate with each other. If a policy for communication
between VMs is not defned, then an unauthorized VM can attack
other VMs running on the same machine.

Solution: To block these attackers from performing the above activities,
appropriate access control policies (acls) must be defned. Access
control policies defne perfect rules guiding who can migrate out a
VM, who can request to migrate in a VM, who can suspend a VM,
whether a user can terminate VM, and more similar decisions. And
these acls must frst be authenticated and should provide opposition

222 ■ Cybersecurity and High-Performance Computing Environments

to tampering. The Xen provides sHype with the mandatory access
control for Xen, whereas the guidelines for the confguration of sHype
are given in Xen user manual. Moreover, acls can also be accompanied
with a frewall to check that migration is from authorized source and to
authorized destination systems. This frewall rule will be very helpful in
checking each packet for allowed and rejected source, destination, and
protocol, and accordingly, the specifed actions are taken. These actions
include accepting the packet, forwarding the packet, or rejecting the
packet [17].

7.4.2 Unprotected Transmission Channel

The endangered and exposed transmission channel is the result of
the improper migration protocol. The migration protocol does not
encrypt the data during their migration over the network, which results
in making the data susceptible to active and passive attacks. An
attacker can gain access to the transmission channel using known
methodologies such as DNS poisoning, ARP/DHCP poisoning, and
IP/route hijacking to perform passive or active attacks. Passive
attacks include eavesdropping of messages for sensitive data, such
as the passwords and keys, and then capturing the authenticated
packets and replying them later. Active attacks are more dangerous
comparatively. This may include manipulating authentication services
such as /bin/login, pam, and sshd; manipulating kernel memory such
as slip root kits into kernel memory; etc.

Solution: One simple solution is to assign a VM or group of VMs to a
VLAN so that the VLAN isolates migration trafc from other network
trafc and provides a secure transmission channel for migration of data.
Other solutions include encryption of the data to provide anonymity
such that integrity can be maintained using digital signatures, MAC,
and checksums [17].

7.4.3 Loopholes in Migration Module

Vulnerabilities in migration include heap overfow, stack overfow, and
integer overfow. Such vulnerabilities become an advantage point for
an attacker to inject malicious code or even freeze the process. The
virtualization software can be huge and complex with a large number
of LOC. Xen hypervisor has about 200 K LOC and XEN emulator has

Live Migration in HPC ■ 223

about 600 K LOC and the host almost include 1,000 LOC. With such
a large code, lots of bugs tend to exist. Bug reports such as those listed
in the NIST’s National Vulnerability Database show how hard it is to
ship a bug-free hypervisor code. A malicious user can take advantage
of these bugs to attack the virtualization software. Exploiting such
an attack gives the attacker the ability to get unauthorized access to
the other virtual machines and therefore breach system’s integrity, and
also the availability of the other virtual machine’s code or data. The
virtualization software migration code must be structured such as to
remove such vulnerabilities.

Solution: The release of new virtualization software includes patch
of such types of vulnerabilities. Hence, the system must be updated
with the recent releases and patches to be protected from attacks via
the migration module. Moreover, secure programming methods must
be used. The following section projects more light on the details of
some major approaches to secure live migration [17].

7.5 APPROACHES

7.5.1 Isolating the Migration Traffic

For secure live migration against all such attacks, it is important to
assign a small group of VMs or even a single VM to its own host-
based virtual LAN (VLAN). The VLAN isolates migration trafc from
other network trafc and thus provides a secure transmission channel
for migration process. A major drawback of the VLAN-based security
approach is the growth in complexity and administrative costs as the
number of VMs grows. The main complexity lies in constructing such
a network and also maintaining VLANs for each VM, simultaneously
synchronizing VLANs confguration on virtual and physical switches,
with troubleshooting and fx confguration errors, and also managing
the growth and complexity of acls as the number of VMs increases,
ensure compatibility between physical network and virtual network
security policies is in all a very complicated problem. Moreover, with
migration, the things become more complicated because then there is
the VM continuously needed to be moved between the hosts and virtual
switches. Hence, using VLAN because it has no trafc monitoring and
fltering mechanism; thus, inter-VM communication within the VLAN
remains invisible [17].

224 ■ Cybersecurity and High-Performance Computing Environments

7.5.2 Network Security Engine-Hypervisor (NSE-H)

NSE-H is based on hypervisors that are included with the network
security engines to prevent intrusions occurring in a virtual network.
NSE includes intelligent packet processing capability, intrusion de-
tection systems, frewall, and intrusion prevention system to provide
security to a virtualized environment. The NSE frewall works in the
state-full procedure, thus manage to maintain security context for each
packet and make decisions in the context of security and packet content.
There are two modules in the NSE frewall: CTM (connection tracking
module) and PMM (policy matching module). The CTM keeps track
of transport layer connection status using a database similar to the
hash table. When a packet arrives, it looks up the database based
on packet header; if a match is found with the existing connection,
then the packet is accepted; otherwise, the packet is forwarded to
PMM for further instruction to be processed on whether to accept
the package or not. This PMM stores a set of packet fltering policies
defned by the administrator; these fltering policies are basically a set
of rules which consist of sequence of descriptors that are matched with
packet content; and accordingly, the actions are taken. The problem
with live migration implementation is that it only encapsulates the
VM execution context for transmission and not the security context
which results the destination VM to be rejected because of the
missing or not matching which is the required security procedure.
The solution to this problem is to include security context (SC) along
with VM execution context in the migration data, thus making use
of the components of architecture such as VMMA, SCMA, LMC,
NSE, and hypervisor core. To transmit the VM encapsulated states to
the target hypervisor, the virtual machine migration agent (VMMA)
interacts with the destination hypervisor’s VMMA. Security context
migration agent (SCMA) encapsulates and sends VM-related security
context set through a dedicated channel such that the live migration
coordinator (LMC) collaborates with the destination hypervisor’s LMC
and schedules the two agents to perform migration tasks in parallel.

Live migration extends the four phases of live migration implementa-
tion which are as follows:

1) Preparation: The LMC on source informs the destination
LMC to start reserving resources. Thus, VMMA and SCMA

Live Migration in HPC ■ 225

both reserve the required resources and get prepared for
migration.

2) Iterative Synchronization: The VMMA on source iteratively
transfers the execution context of VM to be migrated to the
destination. Similarly, the SCMA transfers the security context
of VM to be migrated.

3) Final Synchronization: This phase is concerned with the transfer
of the recently written pages to migrated VM after the frst phase
of synchronization. Both the execution context and the security
context are transferred by VMMA and SCMA, respectively. The
migrated VM is then suspended on the source hypervisor, and
the VM-related network is redirected to target server through
unsolicited ARP replay adverting. The VMMA and SCMA copy
the execution instructions and security set.

4) Resumption: The migrated VM is restarted form the point
it was frozen on the target hypervisor, and the VM instance
of the source is discarded. In this way, the above discussed
approach makes it possible for traditional security approaches
such as frewall and IDS to be efective in the context of live
migration [17].

7.6 SUMMARY

In the wake of digitalization, the need for high efciency and high
availability in all aspects increases. This makes any application or
a program lengthy. Hence, it rises the need for fault tolerance, load
balancing, and also the urgency to take care of the applications
during a blackout. In this chapter, we’ve learnt the basics of Live
Migration and its needs, applications, security aspects, and role in
HPC (High-Performance Computing). It also highlights one of
the most famboyant technologies – “Cloud Computing” – and its
importance in context with live migration and its various techniques.

This chapter basically covers two approaches: “Live Migration
with Virtual Machine” and “Live Container Migration”.
This chapter introduces live migration in virtual machines and its
performance metrics, followed by covering two general techniques used
for virtual machine live migration, namely Post-Copy Approach and

226 ■ Cybersecurity and High-Performance Computing Environments

Pre-Copy Approach. It also includes the research challenges faced
while implementing the VM live migration and also addresses the cost
and performance vs energy requirements for the same. The second half
of the chapter explains the container live migration and its types in
order to manage cache transfers. This chapter covers two case studies:
Checkpointing and Restoring in “CRIU” and “OpenVZ” for
container live migration.

It also compares live migration in virtual machines with live
container migration with respect to various attributes such as
performance, challenges, and security. This chapter not only underlines
the role of live migration in high-performance computing, but also
discusses security breaches and possible threats to it, and it concludes
with suggesting various approaches to overcoming the same.

REFERENCES
[1] M.R. Hines, U. Deshpande, and K. Gopalan (2009). Post-copy live

migration of virtual machines. SIGOPS Oper. Syst. Rev. 43(3), 14–26.
doi: 10.1145/1618525.1618528.

[2] F. Ma, F. Liu, and Z. Liu (2010). Live virtual machine migration
based on improved pre-copy approach. In 2010 IEEE International
Conference on Software Engineering and Service Sciences, pp. 230–233.
doi: 10.1109/ICSESS.2010.5552416.

[3] C.-C. Lin, Y.-C. Huang, and Z. Dejian (2012). A two phase iterative pre-
copy strategy for live migration of virtual machines. In Proceedings of
ICCM, Taiwan, pp. 29–34.

[4] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan (2009). Live virtual machine
migration with adaptive memory compression. In Proceedings of Cluster
Computing and Workshop, China, pp. 1–10.

[5] W. Liu and T. Fan, et al. (2011). The live migration of virtual machine
based on recovering system and CPU scheduling. In Proceedings of
ITAIC, China, pp. 1088–1096.

[6] S. Bose, S. Brock, R. Skeoch, S. Nisaruddin, and S. Rao (2011).
Optimizing live migration of virtual machines across wide area
networks using integrated replication and scheduling. 2011 IEEE
International Systems Conference, Montreal, QC, Canada. doi:
10.1109/SYSCON.2011.5929040.

[7] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth (2011). Evaluation of
delta compression techniques for efcient live migration of large virtual
machines. SIGPLAN Not, 46(7), 111–120. doi: 10.1145/2007477.1952698.

https://doi.org/10.1145/1618525.1618528
https://doi.org/10.1109/ICSESS.2010.5552416
https://doi.org/10.1109/SYSCON.2011.5929040
https://doi.org/10.1145/2007477.1952698
https://doi.org/10.1109/SYSCON.2011.5929040

Live Migration in HPC ■ 227

[8] K.Z. Ibrahim, S. Hofmeyr, C. Iancu, and E. Roman (2011). Optimized
pre-copy live migration for memory intensive applications. In Proceedings
of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis (SC’11). Association for Com-
puting Machinery, New York, Article 40, pp. 1–11. doi: 10.1145/
2063384.2063437.

[9] A. Tamrakar (2014). Security in live migration of virtual machine with
automated load balancing, International Journal of Engineering Research
& Technology (IJERT), December 2014, ISSN: 2278–0181.

[10] G. Naravanan and K. Saravanan (2018). Securing VM migration through
IPSec tunneling and onion routing algorithm. 2018 Second International
Conference on Intelligent Computing and Control Systems (ICICCS), pp.
364–370. doi: 10.1109/ICCONS.2018.8663094.

[11] W. Wang, Y. Zhang, B. Lin & X. Wu, and K. Miao (2010). Secured and
reliable VM migration in personal cloud. 2nd International Conference
on Computer Engineering and Technology (ICCET), pp. V1–705. doi:
10.1109/ICCET.2010.5485376.

[12] S.K. Majhi and S. Dhal (2016). An authentication framework for
securing virtual machine migration. In 2016 International Conference on
Advances in Computing, Communications and Informatics (ICACCI),
Jaipur, India, pp. 1283–1286. IEEE.

[13] W. Li and A. Kanso (2015). Comparing containers versus virtual
machines for achieving high availability. 2015 IEEE International Con-
ference on Cloud Engineering, pp. 353–358. doi: 10.1109/IC2E.2015.79.

[14] S. Nadgowda, S. Suneja, N. Bila, and C. Isci (2017). Voyager: Complete
container state migration. 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS), pp. 2137–2142. doi:
10.1109/ICDCS.2017.91.

[15] D. Kapil, E.S. Pilli, and R. C. Joshi (2013). Live virtual machine
migration techniques: Survey and research challenges. 2013 3rd IEEE
International Advance Computing Conference (IACC), pp. 963–969. doi:
10.1109/IAdCC.2013.6514357.

[16] L. Helali and M.N. Omri (2021). A survey of data center consolidation
in cloud computing systems. Computer Science Review, 39. doi:
10.1016/j.cosrev.2021.100366.

[17] A. Strunk (2012). Costs of virtual machine live migration: A survey.
2012 IEEE Eighth World Congress on Services, pp. 323–329. doi:
10.1109/SERVICES.2012.23.

https://doi.org/10.1145/2063384.2063437
https://doi.org/10.1145/2063384.2063437
https://doi.org/10.1109/ICCONS.2018.8663094
https://doi.org/10.1109/ICCET.2010.5485376
https://doi.org/10.1109/ICCET.2010.5485376
https://doi.org/10.1109/ICDCS.2017.91
https://doi.org/10.1109/ICDCS.2017.91
https://doi.org/10.1109/IAdCC.2013.6514357
https://doi.org/10.1109/IAdCC.2013.6514357
https://doi.org/10.1016/j.cosrev.2021.100366
https://doi.org/10.1016/j.cosrev.2021.100366
https://doi.org/10.1109/SERVICES.2012.23
https://doi.org/10.1109/SERVICES.2012.23
https://doi.org/10.1109/IC2E.2015.79

https://taylorandfrancis.com

C H A P T E R 8

Security-Aware
Real-Time Transmission
for Automotive CAN-FD
Networks
Ruiqi Lu and Guoqi Xie
Hunan University

Junqiang Jiang
Hunan Institute of Science and Technology

Renfa Li
Hunan University

Keqin Li
State University of New York

CONTENTS

8.1 Introduction . 230
8.1.1 Background and Motivation . 230
8.1.2 Contributions and Outline . 232

8.2 Automotive CAN-FD Networks Preliminaries 234
8.2.1 Diferences between CAN-FD and CAN 235
8.2.2 Security Vulnerabilities in CAN-FD 237
8.2.3 Automotive Cyber-Attack Model 239

8.3 Automotive CAN-FD Security-Aware Real-Time
Transmission Methods . 242
8.3.1 Automotive CAN-FD Security-Aware Real-Time

Transmission Constraints . 242
8.3.2 Confdentiality-Aware Real-Time Transmission . . . 243

DOI: 10.1201/9781003155799-8 229

https://doi.org/10.1201/9781003155799-8

230 ■ Cybersecurity and High-Performance Computing Environments

8.3.2.1 Symmetric-Key Cryptography 243
8.3.2.2 Asymmetric-Key Cryptography 244
8.3.2.3 Key Distribution . 245
8.3.2.4 Hardware Security Module 247

8.3.3 Integrity-Aware Real-Time Transmission 248
8.3.3.1 Hash-Based Message Authentication

Code . 249
8.3.3.2 Cipher-Based Message Authentication

Codes . 250
8.3.3.3 Digital Signature . 250

8.3.4 Availability-Aware Real-Time Transmission 251
8.3.4.1 Authentication and Authorization 252
8.3.4.2 Obfuscating Priority Assignment 253
8.3.4.3 Intrusion Detection . 253

8.4 Future Trends . 256
8.5 Conclusions . 256
References . 257

8.1 INTRODUCTION

8.1.1 Background and Motivation

The rapid advancement and introduction of new processing tech-
nologies for computing have facilitated the development of high-
performance embedded computing systems, which are widely applied
in critical scenarios such as mobile communication devices, smart
health care, and intelligent vehicles. High-performance embedded
computing systems consist of various physical devices and advanced
communication technologies. Notonly do they complete a large number
of computations, but they also have to coordinate hardware and
software in real time in terms of security, low overhead requirements,
etc. High-performance embedded systems are all over people’s lives
and are integral parts of modern life. In diferent application felds,
high-performance embedded systems have diferent characteristics.
Figure 8.1 shows the classifcation of high-performance embedded
systems by application areas, such as industrial control, consumer
electronics, wireless sensors, and network/communication. In this
chapter, we focus on intelligent vehicles in industrial control in terms
of real-time and security-aware issues.

Automotive CAN-FD Networks ■ 231

Wireless Sensors

Application: RFID, smart dust

Requirements: low consumption, low resource

Network/ Communication

Application: wireless base stations

Requirements: high performance, high reliability

Consumer Electronics

Application: smartphone, smart TV

Requirements: user experience sense

Industrial Control

Application: intelligent vehicles, smart meters.

Requirements: real time, security, reliability.

High-Performance Embedded Computing Systems

Figure 8.1 Classifcation of high-performance embedded systems by
application areas.

Modern intelligent vehicles not only facilitate people’s travel, but
also give a comfortable and pleasant experience on the road. While
intelligent vehicles bring these conveniences to people, they also raise
various security issues for automotive networks. With the development
of modern communication and networking technologies (e.g., 4G/5G),
and the increase in external interfaces (e.g., OBD, Bluetooth, and
WiFi), automotive networks sufer from various cyberattacks (e.g.,
DoS attack, injection attack, and masquerade attack). Attackers could
intrude internal systems and maliciously steal internal confdential
communication information. For example, Charlie Miller and Chris
Valasek have spent months successfully hacking the automotive
systems of the Toyota Prius and Ford Impala by the OBD interface,
allowing the hacked vehicle to slam the brakes or change direction
beyond the driver’s control in 2015 [1]; Samy Kamkar adopted OwnStar
to intrude GM OnStar’s mobile app RemoteLink, successfully accessing
the driver’s authentication information and remotely controlling the
vehicle’s ignition and unlocking functions in 2015 [2]; in 2017, Jay Turla
launched an open-source cyberattack project against Mazda Motors,
which allows anyone to execute malware code on Mazda cars using
a USB fash when the vehicle is in device mode or the engine is
running [3]. These attacks seriously threaten the security of automotive
networks, thereby afecting the safety of vehicles and humans. There
are some automotive networks for automotive communications, such

232 ■ Cybersecurity and High-Performance Computing Environments

as controller area network (CAN), Time-Sensitive Networking (TSN),
FlexRay, and Media Oriented Systems Transport (MOST). CAN,
which is a serial, synchronous, non-preemptive, and half-duplex bus, is
widely used in automotive networks. CAN is primarily used for commu-
nication and control between electronic control units (ECUs) of safety-
critical functions (e.g., brake, throttle, and engine control). However,
CAN lacks any security-aware methods, making it vulnerable to mali-
cious attacks, which could result in a huge loss of economy. Moreover,
the low payload (up to 8 bytes) and low bandwidth (up to 1 Mbps)
characteristics make CAN difcult to deploy security-aware methods.

In addition, a large number of automated driving applications such
as adaptive cruise control (ACC), automated parking system (APS),
and advanced driver-assistance system (ADAS) are being added to
intelligent vehicles. As a result, the number of automated driving
technologies and ECUs continues to increase, which generates a huge
amount of dependent messages in automotive networks. The high
data volume brings a great challenge to the real-time requirement.
Therefore, the traditional CAN is not suitable for this high data
volume transmission with the real-time requirement. In 2012, CAN
Flexible Data-Rate (CAN-FD) was proposed by BOSCH to improve
the transmission rate and bandwidth of the current CAN bus. CAN-
FD combines the core features of CAN with a high bandwidth (up to
12 Mbps) and data feld length (up to 64 bytes), thereby providing
the possibility of real-time transmissions in automotive networks.
Meanwhile, these features make CAN-FD more feasible than CAN to
deploy security methods.

8.1.2 Contributions and Outline

At present, there is no investigation to classify security-aware
real-time transmission for automotive CAN-FD networks in terms
of confdentiality-aware real-time transmission methods, integrity-
aware real-time transmission methods, and availability-aware real-
time transmission methods. Figure 8.2 shows the overview of recent
advances in security-aware real-time transmission for automotive CAN-
FD networks discussed in this chapter. For security-aware real-time
transmission for automotive CAN-FD networks, this chapter provides
the following contributions:

Automotive CAN-FD Networks ■ 233

Automotive CAN-FD networks

Security-aware real-time transmission

Confidentiality-aware real-time

transmission methods

Integrity-aware real-time

transmission methods

Availability-aware real-time

transmission methods

Attacks on the

confidentiality

Attacks on

the integrity

Attacks on

the availability

Eavesdrop

Be read

Replay

Masquerade

Spoof

DoS

Cascade

Legitimate ECUs

Recent advances in

confidentiality-aware real-time

transmission measures

Recent advances in

integrity-aware

real-time transmission measures

Recent advances in

availability-aware

real-time transmission measures

Cryptography

Hardware Security Module

Key distribution

Message authentication code

Digital signature

Authentication and authorization

Obfuscation priority allocation

High-performance embedded computing systems

Counter Counter Counter

Figure 8.2 Overview of recent advances in security-aware real-time
transmission for automotive CAN-FD networks discussed in this
chapter.

234 ■ Cybersecurity and High-Performance Computing Environments

1. Preliminaries of Automotive CAN-FD Networks: This chapter
provides the preliminaries of automotive CAN-FD networks,
mainly including (1) diferences between CAN-FD and CAN, and
(2) CAN-FD networks security vulnerabilities.

2. Cyber-Attacks Model: Automotive networks lack security protec-
tion mechanisms for automotive applications, which makes them
vulnerable to malicious attacks. This chapter surveys common
and serious automotive cyberattacks that threaten the proper
functioning of vehicles. The cyberattacks mainly attack the
confdentiality, the integrity, and the availability of automotive
CAN-FD networks.

3. Security-Aware Real-Time Methods: The security-aware method
ensures the security of automotive networks. Considering that
CAN-FD does not take security into account, this chapter
surveys the security-aware methods for ensuring the security
communication in CAN-FD. These security-aware methods are
mainly investigated in the following items: (1) confdentiality-
aware real-time transmission methods, (2) integrity-aware real-
time transmission methods, and (3) availability-aware real-time
transmission methods.

4. Future Trends: This chapter introduces the future trends in
security-aware real-time methods in terms of new demands and
prospective developments. By investigating the recent progress
and presenting the future trends, we hope to provide researchers
with a systematic reference and development directions in
security-aware real-time methods.

8.2 AUTOMOTIVE CAN-FD NETWORKS PRELIMINARIES

To facilitate the understanding of security-aware real-time transmission
for automotive CAN-FD networks, this section provides a basic
introduction to automotive CAN-FD networks preliminaries. We frst
introduce the diferences between CAN-FD and CAN. Then, we
investigate the security vulnerabilities in CAN-FD. Finally, we survey
the automotive cyberattacks, which mainly attack the confdentiality,
the integrity, and the availability of automotive CAN-FD networks
based on the security vulnerabilities of CAN-FD.

Automotive CAN-FD Networks ■ 235

8.2.1 Differences between CAN-FD and CAN

With the rapid development of automotive electronics and the demand
for high bandwidth, CAN-FD was proposed by Bosch in 2012
and was ofcially approved by the International Organization for
Standardization (ISO) in ISO 11898-1 in 2015. CAN-FD, with the
advantages of high bandwidth and long data length, inherits the main
characteristics of the traditional CAN. CAN-FD adopts two-wire serial
communication protocol and is based on non-destructive arbitration
technology, distributed real-time control, reliable error handling, and
detection mechanism. It is fully compatible with CAN and can be used
on the same physical connections due to a less modifed physical layer.
Based on these features and advantages, CAN-FD is regarded as the
next generation of mainstream automotive bus system. Considering
that CAN-FD is an upgraded version of CAN, we frst introduce the
data frame format of CAN and CAN-FD, and then we present the
obvious advantages of the CAN-FD networks compared with CAN.

In CAN and CAN-FD networks, diferent nodes adopt data frames
for communication. The diferent messages are encoded according to
the message ID. Nodes can receive data frames according to their
needs (message ID) and flter the messages they are not interested
in. According to the number of identifer bits, CAN data frames can
be divided into standard frames and extended frames. The former uses
11-bit identifers, and the latter uses 29-bit identifers. According to the
length of the data feld, CAN data frames can be divided into CAN
Classical and CAN-FD. The maximum data load of CAN Classical
is 8 bytes, and the maximum data load of CAN-FD is 64 bytes.
The comparison between CAN-FD and CAN data frame formats is
illustrated in Figure 8.3. In CAN standard frames, 11-bit identifers
are used. The value of the identifer can range from 0x000 to 0x7FF, so
a total of 2048 message types can be encoded. In the data frame, the
IDE bit identifes the standard frame or the extended frame. When the
IDE is 0, it means that the data frame is the standard frame, and when
the IDE is 1, it means that the data frame is the extended frame. FDF
identifes CAN Classical or CAN-FD. When FDF is 0, it means CAN
Classical. When FDF is 1, it means CAN-FD. DLC identifes the length
of the data feld. The content of the CRC feld is to perform CRC check
on the data frame. In CAN Classical, DLC ranges from 0 to 8, so the

236 ■ Cybersecurity and High-Performance Computing Environments

S

O

F

ID0

...

ID10

R

T

R

I

D

E

F

D

F

DLC

(bit 0

…
bit 3)

Data Field

(payload up

to 8 bytes)

CRC

(bit 0

…
bit 14)

D

E

L

A

C

K

D

E

L

EOF

I

N

T

Arbitration

Field

Control

Field
Data Field CRC Field

ACK

Field

S

O

F

ID0

...

ID10

E

D

L

I

D

E

r

0
DLC

Data Field

(payload up

to 64 bytes)

CRC

(17 bits

or

21 bits)

D

E

L

A

C

K

D

E

L

EOF

I

N

T

R

1

B

R

S

E

S

I

Arbitration

Field
Control

Field
Data Field CRC Field

ACK

Field

(a)

(b)

CAN-FD Arbitration Phase CAN-FD Date Phase CAN-FD Arbitration Phase

Figure 8.3 Comparison between CAN-FD and CAN data frames.

data feld length of CAN Classical can range from 0 bytes to 8 bytes.
CAN Classical uses 15-bit CRC for CRC check. In CAN-FD, FDF is 1.
The length of CAN-FD data feld can be 8, 12, 16, 20, 24, 32, 48, and
64 bytes according to the value of DLC. When the length of the data
feld does not exceed 16 bytes, a 17-bit CRC check code is used. When
the data feld length is between 20 bytes and 64 bytes, a 21-bit CRC
check code is used. When IDE is 1, it means that the data frame is
an extended frame. The extended frame uses a 29-bit identifer, with a
value range from 0x00000000 to 0x1FFFFFFFF, which can represent
229 diferent message types, about 530 million.

Based on the diferences between CAN and CANFD data frames,
we summarize the obvious advantages of CAN-FD networks as follows.

1. CAN-FD Improves Frame Structure: CAN-FD adds three new
control bits: EDL (extended data length: 0 denotes CAN frame
and 1 denotes CAN-FD frame), BRS (bit rate switch: 1 denotes
convertible data-phase rate and 0 denotes non-convertible

Automotive CAN-FD Networks ■ 237

data-phase rate), and ESI (error status indicator: 1 denotes error
passive and 0 denotes error active).

2. CAN-FD Has a Flexible Transmission Rate: CAN-FD adopts two
kinds of bit rates: The data rate of data transmission phase (from
BRS to ACK) is up to 12 Mbps and the data rate of arbitration
and ACK phase is up to 1 Mbps; however, the bit rates of CAN
are up to 1 Mbps in data transmission phase, arbitration phase,
and ACK phase.

3. CAN-FD Has Longer Data Fields Than CAN: Compared to the
traditional CAN data felds of 8 bytes, CAN-FD has greatly
expanded the data feld length, whose maximum data feld length
can reach 64 bytes. When the data length code (DLC) of CAN-FD
is less than or equal to 8, it is consistent with the original CAN
bus; when it is greater than 8, it is non-linear growth. This greatly
increases the valid message in the data frame, which means that
CAN-FD has a higher payload for transmission than CAN.

4. CAN-FD Optimizes Checksum Fields: In addition to adding stuf
bits from SOF to the data feld, CAN-FD also adds stuf bits in
CRC with a higher frequency. The CRC feld always starts with a
stuf bit complementary to its predecessor. After every four bits,
a stuf bit is inserted complementary to the predecessor. If the
stuf bit is not complementary to the previous bit, an error will
be reported for processing when format checking is performed.

8.2.2 Security Vulnerabilities in CAN-FD

CAN-FD initially works in an isolated environment and lacks
cybersecurity-aware mechanisms. However, with the development of
intelligent vehicles, CAN-FD, which carries the key function of
controlling vehicle safety, is becoming the target of cyberattacks. The
main security vulnerabilities of CAN-FD networks are listed as follows:

1. Physical Structure Characteristics: The physical layer of CAN-
FD networks is twisted-pair cables, which lack abnormal access
detection and can be easily accessed illegally by malicious
attackers. Therefore, these physical structure characteristics
cannot guarantee the availability and integrity of automotive
CAN-FD networks.

238 ■ Cybersecurity and High-Performance Computing Environments

2. Broadcast: CAN-FD messages are broadcast messages, which can
be received by all the ECUs in CAN-FD bus because CAN-FD
is not segmented. As a message-oriented protocol, CAN-FD does
not defne any felds specifying information related to the sending
or receiving ECUs. For a CAN-FD message, the receiving ECU
only checks the identifer of the message to decide whether it
should be received or discarded. In this way, attackers can attach
a compromised ECU and easily eavesdrop and read the content of
the CAN-FD messages. The broadcast mechanism makes CAN-
FD networks a challenge to guarantee the confdentiality of CAN-
FD messages.

3. No Message Encryption: The CAN-FD protocol does not
introduce any encryption mechanism in communication; that
is, messages are transmitted in plaintext in the CAN-FD bus.
Any node connected to the CAN-FD (including compromised
node) can read the message directly, making the CAN-FD
messages vulnerable to eavesdropping attacks, thus afecting the
confdentiality of the automotive network.

4. Arbitration Field Mechanism: Arbitration feld mechanism of
CAN-FD is based on the priority of the identifer. When the bus
is free, all ECUs can send messages. Conficts can occur when
multiple ECUs try to send messages at the same time. CAN-FD
protocol provides an arbitration feld mechanism to determine
which ECU access CAN-FD. The message with the lowest ID
(i.e., the frame with the highest priority) wins arbitration and
accesses the CAN-FD bus. The ECU that fails arbitration will
try to send the message again when the CAN-FD bus is free
again. However, if a malicious node sends a message with the
highest priority continuously to CAN-FD, the CAN-FD bus will
be collapsed and other ECUs will not be able to communicate
with each other, thus enabling denial-of-service (DoS) attacks.
Therefore, the arbitration rule makes it difcult for CAN-FD to
guarantee the availability of CAN-FD messages.

5. No authentication: CAN-FD messages transmitted between
ECUs in CAN-FD have no authentication mechanism as they
are just identifed and fltered by message ID. There is no feld
in CAN-FD message identifying the sending ECU. CAN-FD

Automotive CAN-FD Networks ■ 239

only provides CRC for message integrity and error verifcation.
Therefore, in the absence of security methods, any malicious node
in the CAN-FD bus can easily perform DoS, replay, forgery,
and other attacks since the receiving ECU cannot verify the
origin of the messages. Therefore, no authentication mechanism
makes it impossible for CAN-FD to ensure the integrity and the
availability of CAN-FD messages.

6. No Freshness: The frame structures of CAN-FD messages have no
time stamp or random number. A malicious attacker can perform
a replay attack to control the behavior of the vehicle.

8.2.3 Automotive Cyber-Attack Model

Initially, automobiles were relatively isolated electro-mechanical sys-
tems that did not need to interact with the outside world, so CAN-
FD was originally designed without any security mechanisms in mind.
However, with the increment in interconnections of sensors, actuators,
and devices, various communication technologies and interfaces are
embedded in modern vehicles, opening a door to a wide variety of
cyberattacks. As a result, the vehicle is no longer considered to be a
closed system.

Koscher et al. [4] frst assessed the cybersecurity analysis of
automotive safety-critical CAN networks based on real vehicle
platforms, demonstrating the vulnerability of automotive networks in
the face of malicious attacks. In particular, CAN-FD is an upgraded
version of CAN and inherits the core features of CAN; thus, the
cybersecurity analysis of CAN is similar to the cybersecurity analysis
of CAN-FD. In addition, Ref. [4] analyzed the inherent weaknesses
of the CAN protocol, including broadcast characteristics, inability to
resist DoS attacks, lack of message authentication mechanisms, and
weak access control. By exploiting these protocol faws, an attacker can
launch targeted snifng detection or obfuscation attacks to compromise
ECUs in the CAN bus.

In general, confdentiality, integrity, and availability are the three
elements of security [5]. When it comes to message transmission in
automotive CAN-FD networks, confdentiality represents the security
of CAN-FD message from being read by malicious attackers; integrity
represents the security of CAN-FD message from being created

240 ■ Cybersecurity and High-Performance Computing Environments

Sender ReceiverMessage Sender ReceiverMessage

Read

Sender ReceiverMessage1

Alter

Sender Receiver

Remove

(a) Normal situation (b) Attacker on the confidentiality

(c) Attacker on the integrity (d) Attacker on the availability

Attacker

Figure 8.4 Security principles of confdentiality, integrity, and availabil-
ity of messages in automotive CAN-FD networks. (a) Message is sent
from the sender to the receiver without being attacked. (b) Message
is read by an attacker when it is sent from the sender to the receiver,
and this attack afected the confdentiality of the message. (c) Message
is tampered with by an attacker when it is sent from the sender to
the receiver, and this attack afected the integrity of the message. (d)
Message is removed by the attacker when it is sent from the sender to
the receiver, i.e., the normal message could not be sent to the receiver
from the sender.

or modifed by malicious attackers; and availability represents the
security of CAN-FD message from being removed and interrupted
by malicious attackers [5]. Figure 8.4 shows the security principles of
the confdentiality, the integrity, and the availability of messages in
automotive CAN-FD networks.

We focus on the three elements of security to introduce the
cyberattack models on automotive CAN-FD networks, namely attacks
on the confdentiality, attacks on the integrity, and attacks on the

Automotive CAN-FD Networks ■ 241

TABLE 8.1 Automotive Cyber-Attack Model Based on Confdentiality, Integrity,
and Availability

Security
Elements

Confdentiality

Integrity

Availability

CAN-FD Vulnerabilities
Broadcast
Unencrypted [6]

CRC [6]
No authentication [6,7]

Arbitration feld [11]
No ECU authentication [10]
Intrusion detection [12]

Attacks
Eavesdrop
Be read
Replay [6,9]
Masquerade [7]
Tamper [10]
Spoof [9]
DoS [11]
Cascade [13]
Legitimate ECUs [10]

availability. Table 8.1 shows the automotive cyberattack model based
on the confdentiality, the integrity, and the availability.

Attacks on the Confdentiality: When a message broadcasts in
CAN-FD without encryption, CAN-FD cannot ensure only legitimate
ECU receives the message, thereby providing the potential of
eavesdropping for malicious attackers. In this way, the message could
be read by attackers, thus attacking the confdentiality of the CAN-FD
message [6].

Attacks on the Integrity: As CAN-FD lacks a message authen-
tication mechanism, the receiving ECU can only identify CAN-FD
messages based on the message ID, which paves the way for an attacker
to masquerade as the sending ECU and send messages in the CAN-FD
networks. The current CAN-FD just relies on a CRC to guarantee
transmission error detection; thus, it cannot prevent replay attacks
[7,8]. In this way, the message is created or modifed by attackers, thus
attacking the integrity of the CAN-FD message.

Attacks on the Availability: When two nodes (ECUs) in the CAN-
FD bus have messages to send at the same time, the arbitration
mechanism of CAN-FD allows the message with high priority to be
transmitted, while the message with low priority must wait for the
next idle state. Therefore, a malicious attacker can easily use messages
with high priority to launch DoS attacks. In this way, the message is
removed and interrupted by attackers, thus attacking the availability
of the CAN-FD message.

242 ■ Cybersecurity and High-Performance Computing Environments

8.3 AUTOMOTIVE CAN-FD SECURITY-AWARE REAL-TIME
TRANSMISSION METHODS

Based on the analysis and discussion of the cybersecurity attack models
of automotive CAN-FD networks in the previous section, we will
focus on automotive CAN-FD security-aware real-time transmission in
this section. We frst survey the constraints of automotive CAN-FD
security-aware real-time transmission. Then, we research security-
aware real-time transmission methods, namely confdentiality-aware
real-time transmission methods, integrity-aware real-time transmission
methods, and availability-aware real-time transmission methods.

8.3.1 Automotive CAN-FD Security-Aware Real-Time
Transmission Constraints

Although the concepts and methods of security on the Internet
can be applied in automotive networks, their physical environments
are diferent from computers. When designing security methods for
automotive networks, we need to consider the characteristics of
vehicles. Constraints of automotive CAN-FD security-aware real-time
transmission are listed below.

Software and Hardware Architecture: The automotive architecture
consists of a large number of heterogeneous and complex software
and hardware components, whose communication is based on diferent
network protocols such as CAN, CAN-FD, and MOST. This
heterogeneous and complex architecture not only adds uncertainty
elements in functional safety and cybersecurity of vehicles, but also
makes it difcult to perform security-aware testing and verifcation.

Real-Time Sensitivity and Resource Limitations: Compared with
commercial computers, computing resources in a vehicle have many
limitations such as storage and communication bandwidth, which
directly afect the deployment and implementation of security-aware
methods. Implementing complex security methods could take a long
time. In addition, the critical functions and applications of the vehicle
are real-time sensitive, and these functions and applications must be
completed within a specifc time to ensure the safety of the vehicles
and passengers. Therefore, real-time sensitivity and hardware resource
limitations make a secure real-time transmission difcult. For example,
simple cryptography requires less time to execute, but it is not
secure enough; however, complex cryptography consumes signifcant

Automotive CAN-FD Networks ■ 243

computing resources and time overhead, but it is more secure than the
simple one.

Lifecycle and Compatibility: The automotive lifecycle is typical
about 20 years, which is longer than the computer lifecycle. Additional
security methods inside the vehicle should be easily updated rather
than outright obsolete during the lifecycle. In addition, this security
equipment should be able to withstand the physical conditions inside
the vehicle, such as shock, high temperature, and humidity. Meanwhile,
the security methods should not only be of low cost and can be installed
at a low cost, but also be compatible with the internal protocols and
external resources of vehicles.

8.3.2 Confidentiality-Aware Real-Time Transmission

The messages transmitted in CAN-FD are broadcast without any
encryption mechanism to all the ECUs connected to the CAN-FD
bus as mentioned before. There is no proper way of authenticating
the sending ECU of a message. Cryptographic algorithms are
widely used in automotive CAN-FD networks to provide secure
communication channels while enhancing message confdentiality and
ECU authentication and preventing messages from being read by ECUs
that do not possess the appropriate keys. Cryptographic algorithms are
usually distinguished as symmetric-key and asymmetric-key algorithms
(also called public-key cryptography). These two types are explained
and depicted in Figure 8.5.

8.3.2.1 Symmetric-Key Cryptography

Symmetric-key cryptography, which is a predistribution key cryptogra-
phy, is usually used to encrypt messages in automotive CAN-FD net-
works. In the symmetric-key cryptography, the symmetric key is shared
among all communication participants. Each participant encrypts or
decrypts the message based on the same symmetric key. Symmetric-key
cryptography can be implemented with few resources. It is widely used
as a core part of many encryption protocols due to its high efciency.
To maintain the confdentiality of the communication, the symmetric
key must be obtained and stored in a secure manner by communication
participants. When the communication node changes, the predistribu-
tion manner requires the new communication node to be predistributed
with the key again. This leads to increased coupling between nodes

244 ■ Cybersecurity and High-Performance Computing Environments

Plaintext

Encryption

Ciphertext

Decryption

Plaintext

Symmetric key Symmetric key

Plaintext

Encryption

Ciphertext

Decryption

Plaintext

Public key Private key

(a)

(b)

Plaintext

Signing

Ciphertext

Verification

Plaintext

Public keyPrivate key

Figure 8.5 Comparison of symmetric-key cryptography and asymmetric-

key cryptography.

in the system. Secure storage imposes requirements on the storage
capacity of the node. Common symmetric-key algorithms include Data
Encryption Standard (DES), 3DES, Advanced Encryption Standard
(AES), International Data Encryption Algorithm (IDEA), RC5, and
RC6. In [14], RC6 was adopted as symmetric-key cryptography for
the sending and the receiving ECU to encrypt and decrypt CAN-
FD messages. Considering that symmetric-key cryptography requires
additional computing overhead, the authors frst adopted the pre-
allocation method to pre-allocate a reasonable encryption level for
CAN-FD messages, which is to select a suitable encryption level while
meeting the real-time requirements; then, they selected the maximum
number of rounds to improve the encryption strength on the premise
of ensuring real-time requirement. In this way, it’s efective to enhance
the confdentiality by protecting against eavesdropping attacks, while
guaranteeing real-time requirements of CAN-FD message transmission.

8.3.2.2 Asymmetric-Key Cryptography

In asymmetric-key cryptography, each communication participant has
two unique keys: One is a private key, which is to be kept secret, and
the other is a public key, which is public to all the communication

Automotive CAN-FD Networks ■ 245

participants. These keys are mathematically related that a message
encrypted with one key can only be decrypted with the other key.
If a participant knows one of the keys, the participant does not
calculate the private key based on the public key. Therefore, even if the
asymmetric-key algorithm discloses the public key, it does not afect
the confdentiality of the private key. Asymmetric keys can be used to
authenticate the identity of communication participants. The sender
encrypts a message with its private key, and the receiver can verify
the sender’s identity with the sender’s public key, but this method
also requires distributing public keys in advance; that is, the keys are
exchanged in a predistribution scheme. It has the same drawback as
symmetric-key cryptography, i.e., the increased coupling between nodes
in the system. At the same time, the storage requirements are higher
than those of symmetric keys, as the length of asymmetric keys is often
larger than that of symmetric keys. The computational complexity of
asymmetric-key cryptography is also higher than that of symmetric-key
cryptography. In addition, digital certifcates can be used to distribute
asymmetric keys, which can avoid increasing the coupling among
participants. Instead of storing the public keys of other participants,
each participant only needs to hold a public key certifcate signed by
a trusted authority (e.g., the vehicle manufacturer), and the authenti-
cation and session key generation among participants can be achieved.
However, this method also has some drawbacks. Asymmetric-key
cryptography tends to be more complex and have longer computation
time than symmetric-key cryptography, making it difcult to meet the
real-time requirements of automotive networks. Common asymmetric-
key cryptography includes RSA, ElGamal encryption algorithm, and
elliptic-curve cryptography (ECC). For example, Ref. [15] implemented
key exchange and encrypt engine in hardware with ECC as asymmetric-
key cryptography. In Ref. [10], asymmetric algorithms are used in ECU
authentication for the session key distribution, while symmetric keys
are used in stream authorization for session communication.

8.3.2.3 Key Distribution

Cryptographic algorithms are public, and the security of the algorithms
depends on the security protection of the keys; thus, key management
is critical for cryptographic algorithms. The key management includes

246 ■ Cybersecurity and High-Performance Computing Environments

ECU1 ECU2

ECU3KDC

{key1, key2}

{key1} {key1, key2}Encrypted

by key1

Encrypted

by key2

{ key2}

key1

key2

key1 key2

Figure 8.6 KDC working process.

key generation, key distribution, key injection, key authentication,
and key use. For secure automotive transmission, an ECU usually
contains multiple keys, such as a key for encryption, a key for
MAC/HASH, and a key for signature. In addition, an ECU may be
involved in more than one communication; thus, there are various keys
in an ECU. Therefore, key distribution is particularly important in
secure automotive transmission. Security mechanisms are needed in
the key distribution. In addition, symmetric keys are also used for key
distribution with additional mechanisms, such as time stamp, random
numbers, and counters [9,10]. One of the most widely used methods of
key distribution is key distribution center (KDC), which is a trusted
institution to temporarily assign a session key (used only once) to
users who need to communicate secretly. Figure 8.6 illustrates the KDC
working process. There are two keys in the KDC. key1 is the session
key for ECU1 and ECU2, and key2 is the session key for ECU2 and
ECU3. When KDC receives a request from EUC1 to communicate with
EUC2 (or when EUC2 requests to communicate with EUC1), KDC
would distribute the session key key1 to ECU1 and ECU2. When KDC
receives a request from EUC2 to communicate with EUC3 (or when
EUC3 requests to communicate with EUC2), KDC would distribute the
session key key1 to ECU2 and ECU3. In [6], the authors developed a
practical architecture for CAN-FD networks. This architecture adopts
key Management to enhance the confdentiality and the integrity
of CAN-FD networks. Key Management has two properties, which
are key freshness, and forward and backward secrecy. Forward and

Automotive CAN-FD Networks ■ 247

backward secrecy means that the architecture uses an authentication
session key and an encryption session key to ofer authentication and
confdentiality for CAN-FD messages, respectively. Specifcally, the two
keys are diferent for each CAN-FD message. Key freshness means that
the seeds used for session keys generation are constantly updated to
ensure the freshness of the generated keys, thereby countering replay
attacks. Furthermore, this architecture can also enhance the integrity
of CAN-FD messages due to authentication session keys and key
freshness. In [9], the authors implemented a key security mechanism
for CAN/CAN-FD messages authentication to counter spoofng attack
and replay attack, thereby enhancing the confdentiality and the
integrity of transmission. The key security mechanism includes an
AUTOSAR-compliant key management architecture that includes a
baseline session key distribution protocol (SKDC) and a secret-sharing-
based protocol (SSKT). This architecture reduces the storage for
predistribution message and distinguishes sessions. SSKT reduces the
overall protocol runtime and improves the efciency of computation
and communication, but it increases the memory footprint of the ECU.

8.3.2.4 Hardware Security Module

Consider that the automotive system is a resource- and time-sensitive
system and that strong encryption and decryption could consume a
large number of computational resources and time. This issue can be
addressed by deploying a hardware module called hardware security
module (HSM) [16] at ECU to reduce ECU resource consumption
and time overhead while ensuring secure communication. HSM is
conceived by EVITA, and it is used for secure key generation, storage,
and management, as well as hardware cryptography acceleration in
various key scenarios. For example, some kinds of HSM have already
supported ECC with shorter keys and possessing the same level of
security as ECC without deploying HSM. Schweppe et al. [17] deployed
the HSM on each ECU to speed up encryption while providing a
secure environment for key storage. Ref. [18] integrated HSM into
automotive existing infrastructure to accelerate the encryption process
and establish symmetric-key cryptography-based trust between ECUs.
There are many benefts of using hardware encryption, such as fast
encryption, no additional overhead for the chip responsible for the main

248 ■ Cybersecurity and High-Performance Computing Environments

function, minimal impact on the performance of the original network,
and no changes to the logic between the nodes that communicate with
each other. The disadvantages of the hardware encryption module are
obvious. Its installation requires changing the hardware structure of
the network nodes. In particular, long-term experiments are required
before installing hardware security modules; otherwise, many unknown
problems will be introduced in automotive networks. In addition,
the cost of upgrading hardware is great. The automotive industry is
relatively strict and conservative, so the implementation of hardware
encryption is slow and not easily accepted. Moreover, it is not very
realistic for OEMs to recall and modify hardware for models that are
already on the market. Ref. [19] displayed a CAN encryption design
architecture to enhance the confdentiality and the integrity of CAN-
FD messages, and this architecture was tested and verifed on a Xilinx
FPGA chip using Verilog HDL. The design adopted the symmetric-
key cryptography AES-128 algorithm to enhance the confdentiality
of CAN-FD messages and the HMAC algorithm SHA-1 to enhance
the integrity and ensure the authentication of CAN-FD messages. To
reduce the extra time overhead caused by cryptographic operations
in automotive networks, lightweight hardware acceleration is usually
adopted in automotive networks, such as using programmable logic
devices for AES and ECC [20]. Ref. [21] implemented a trimmed version
of hash with feld-programmable gate arrays (FPGAs).

8.3.3 Integrity-Aware Real-Time Transmission

Integrity checks of messages transmitted in automotive networks
are one of the key factors to ensure the security of automotive
networks. CRC is adopted by CAN-FD to check if messages have been
modifed or transmitted incorrectly; this mechanism can detect message
transmission faults, such as loss, repetition, delay, and incorrect
sequence [52]. However, CRC is inefcient in preventing from modifying
correct messages and masquerade attacks, as it is an easy way for
a fake message to spoof the right CRC. Therefore, it is essential to
adopt message authentication mechanisms to ensure the integrity of
messages. Message authentication code (MAC) and digital signature
are two common types of methods for message authentication. Digital
signatures are usually more than 40 bytes in length, while MACs can
be as long or as short as desired.

Automotive CAN-FD Networks ■ 249

=?

Message

MAC*

HMAC

Algorithm

MAC

Message MAC

Message

MAC

HMAC

Algorithm

CAN-FD bus

ECU1 ECU2

Figure 8.7 Process of attaching HMAC into CAN-FD message.

8.3.3.1 Hash-Based Message Authentication Code

Hash-based message authentication code (HMAC), which was created
by Krawezyk, Bellare, and Canetti in 1996, is widely used in automotive
networks for message authentication to enhance the integrity of CAN-
FD transmission [6]. Figure 8.7 illustrates the process of attaching
an HMAC into a CAN-FD message. HMAC added in the data feld
of a message would occupy the position of the message and reduce
the message length. HMAC inputs would increase the bus load rate
and the message transmission delay as more frames could be used
to transmit messages. The length of HMAC inputs and the type of
HAMC algorithms both afect the transmission delay. The longer the
size of the inputs of HMAC, the longer the computation time [23]. MD5
takes less time than SHA256 for computation [24]. Ref. [7] adopted a
pre-shared secret key to populate messages by MAC in the sending
ECU and the receiving ECU to enhance the integrity of the CAN-FD
messages. If there is a message that needs to be transmitted from one
ECU to another ECU in CAN-FD, the sending ECU frst uses a MAC
algorithm to calculate the MAC value of the message and then attach
the MAC value to the end of this message. Then, the sender sends
the new message to the receiver. After receiving the new message, the
receiver splits it into two parts (the original message and the MAC
value), calculates the MAC value by MAC algorithm with the pre-
shared secret key, and obtains a new MAC value; if the new MAC
value is equal to the MAC value calculated by the sender, it shows
that the message is not tampered with and is transmitted in CAN-
FD securely. However, the added MAC to counter tampering attacks
increases the processing and transmission delay of CAN-FD messages,

250 ■ Cybersecurity and High-Performance Computing Environments

which afects the guarantee of real-time performance. To solve this
problem, the authors quickly found the lower bound of the application
by prefx and sufx pruning and then increased the MAC by round
accumulation to extend the lower bound, while still guaranteeing the
real-time performance.

8.3.3.2 Cipher-Based Message Authentication Codes

Cipher-based message authentication code (CMAC), which is another
type of MAC, is generally used as a signature of a message. Consider
that the calculation result of CMAC-128 is 128 bits, which is the
same size as the AES key. We can calculate multiple 128-bit outputs
by CMAC-128 with a 128-bit AES key. These outputs can be used
as diferent keys when we need multiple keys involved in a module.
However, it takes a long time for CMAC to calculate. Hardware-
based acceleration is used to reduce the calculated delay of CMAC.
What’s more, consider that AES has the restriction of delay < 2µ per
block based on the SHE specifcation [24,25]. NXP MPC5748G uses
internal core HSMv2 to perform and accelerate AES-128. When the
block number is 32 or more, the calculated delay of AES can meet the
SHE specifcation and real-time requirement restriction of automotive
networks. The payload size of AES-128 is 16 bytes, which is larger
than the data feld of CAN (8 bytes). If the length of MAC is not
truncated, it cannot be used in CAN. But it can be used in CAN-
FD because its data feld is up to 64 bytes as mentioned before. Park
et al. [26] adopted CMACs to enhance the integrity of the message of
gateway systems with security features and used HSM in the MCU
to quickly generate and validate CMAC. Zalman et al. contributed
a reliable, secure, and low-delay solution for automotive networks by
using CMAC and combining CRC [27].

8.3.3.3 Digital Signature

Digital signature is one of the security mechanisms for message
authentication as MAC. Digital signature is a security method to
achieve signature, authenticate data authenticity, and assure integrity.
It has the property of non-repudiation because it is a valid proof of the

Automotive CAN-FD Networks ■ 251

TABLE 8.2 Comparison between Digital Signature and MAC

Features Digital Signature MAC
Message authentication Yes Yes
Non-repudiation Yes No
Cryptography Asymmetric key Symmetric key
Execution time Long Short

CAN-FD, FlexRay, CAN, CAN-FD, Applicability
Ethernet FlexRay, Ethernet

authenticity of the message sender, while MAC does not have this prop-
erty. The digital signature is based on asymmetric-key cryptography,
and it is also known as a public-key digital signature. Considering that
asymmetric-key cryptography is a computationally expensive task, the
digital signature can be used in Ethernet, FlexRay, and CAN-FD. If
a digital signature is used in CAN, it will increase the bus load rate
and data frames. MAC is based on symmetric-key cryptography, which
needs low computation efort. Therefore, it is suitable to use in CAN,
Ethernet, FlexRay, and CAN-FD. The digital signature is signed by a
private key and verifed by a public key. The public key only needs to be
generated once to be verifed by all communication participants because
the public key can be known by anyone. However, in the symmetric
way of MAC, the shared key between each two communication entities
must be diferent. In addition, the digital signature can also be used to
prevent malicious software download and update, while guaranteeing
the integrity, authentication of origin, and non-repudiation. For secure
software downloading, Kocher employed a digital signature to ensure
secure software download in the SDR functioning [28,29]. For secure
software updates, the security level of over-the-air (OTA) is much
higher than that of the onboard networks. Digital signature is necessary
for OTA in terms of the communication process (security protocols [30]
and security architectures), downloaded frmware, and related update
repository [31]. Table 8.2 concludes the diferences between digital
signature and MAC.

8.3.4 Availability-Aware Real-Time Transmission

As described in the previous section, arbitration rules are originally
designed to avoid message blocking on the automotive bus, but these

252 ■ Cybersecurity and High-Performance Computing Environments

rules increase the potential malicious attacks, which continuously
send high-priority messages in CAN-FD, thereby preventing legitimate
message transmission in CAN-FD, i.e., DoS attacks. Therefore, it
seriously afects the availability of automotive CAN-FD networks.

8.3.4.1 Authentication and Authorization

Mundhenk et al. [10] presented a Lightweight Authentication for
Secure Automotive Networks (LASAN) that is a full lifecycle secure
framework. LASAN divides the security operations into two processes:
ECU authentication and stream authorization, which are based on
two types of security operations. ECU authentication is based on
asymmetric-key cryptography, which requires a larger amount of
computation. But asymmetric operations (ECU authentication) are
performed only when the car is not in use to avoid afecting the
real-time performance of the vehicle. Stream authorization is based
on symmetric-key cryptography, which can be executed quickly on
resource-limited ECUs. The required security level is achieved by
a rational allocation of symmetric and asymmetric operations while
ensuring real-time performance. In addition, Ref. [10] demonstrated
how LASAN enables the protection of the entire lifecycle of a
vehicle, including the production, maintenance, and software update
phases of the vehicle. LASAN ensures that only legitimate ECUs can
participate in the communication and that only valid message streams
can be transmitted, which enhances the availability of automotive
networks. Meanwhile, the rational use of cryptography also guarantees
real-time requirement of automotive networks. To implement key
distribution and management, Woo et al. [32] proposed a complete
set of authentication protocols suitable for automotive networks. These
protocols include the Initial Session Key Distribution Protocol (ISDP),
Data Frame Transfer Protocol (DFP), session key update protocol
(SKUP), and Vehicle-to-External Device Connection Protocol (VCP).
Palaniswamy et al. [33] analyzed the security of these protocols and
designed the Remote Frame Transfer Protocol (RTRP) for the security
vulnerabilities caused by insecure remote frames. In addition, a new
session key update protocol (NSKUP) is introduced to enhance the
security of key updates when the vehicle is connected to an external
device.

Automotive CAN-FD Networks ■ 253

8.3.4.2 Obfuscating Priority Assignment

In addition, the availability of automotive networks is closely related
to the automotive industry. Taking the current actual automotive
industry mass production model, for example, millions of cars produced
in this mass production model adopt the same message execution
stream for an automotive application. If the message execution stream
of one car is cracked by attackers, other cars that also adopt this
stream are then exposed to cascade attacks. In 2015, Jeep and BMW
were both forced to recall 2.2 and 1.4 million vehicles of cascade
attacks, respectively, due to a cascading exposure from an information
security vulnerability in one vehicle [34]. To enhance the availability by
protecting against cascading attacks, Ref. [35] exploited an obfuscating
priority assignment method to generate diferent message executions
of the same application in millions of vehicles (more than 10 million
available real-time obfuscated message streams), while still ensuring
the functional integrity and real-time constraints of the application.
The authors quickly generate valid streams by message swapping to
avoid obtaining all streams in advance and adopt afx matching (prefx,
midfx, and sufx matching) technique to obtain as many available
streams as possible. In this way, these available message streams ensure
the timing relationships between messages and guarantee the real-time
performance of the application.

8.3.4.3 Intrusion Detection

Intrusion detection (ID) is a simple and efcient security-aware method
that can monitor the data fow transmitted in the in-vehicle networks
in real time. Intrusion detection can detect anomalies and report
network attacks when the vehicle is running. Compared with security-
aware methods based on cryptographic methods, intrusion detection
methods are based on the observation and analysis of network trafc
to achieve anomalous behavior. It does not interfere with the existing
data fow and does not encroach on the limited message load and
bandwidth resources (e.g., CAN). The attack detection patterns of
intrusion detection are diverse, such as intrusion detection method
based on message timing information, intrusion detection method
based on message data values, and intrusion detection method based on
message physical layer characteristics. Hoppe et al. [36] frst introduced

254 ■ Cybersecurity and High-Performance Computing Environments

the concept of intrusion detection systems to automotive networks.
The authors created the detection methods based on the features
of increased CAN message frequency, observation of physical layer
electrical communication characteristics, and misuse of CAN message
IDs. Larson et al. [37] extracted security specifcations based on
the requirement of in-vehicle networks communication protocol to
describe the normal behavior patterns of the vehicle. When the current
behavior pattern of the vehicle system is not consistent with the
desired behavior, it would indicate that the vehicle system is under
attack.

Intrusion detection is often adopted in the CAN bus because it does
not add additional data frames to CAN. Nowadays, it is also used in
CAN-FD networks to counter potential cyberattacks in vehicles. In Ref.
[38], an anomaly intrusion detection based on a support vector machine
was exploited for automotive CAN-FD networks. Under the Common
Intrusion Detection Framework (CIDF), anomaly intrusion detection
adopts message identifers, periods, and data feld data as intrusion
detection features. The authors use the binary classifcation property
and small sample feature of the support vector machine algorithm to
achieve the identifcation of intrusion message in the CAN-FD networks
environment. The simulation experimental results show that the ofered
method has a high correct rate of intrusion detection and can be used
for both periodic and non-periodic messages. To enhance the security
of automotive CAN-FD networks, a novel intrusion detection method
based on network topology verifcation was proposed in Ref. [12]. This
method can reliably detect XIDs through a simple random walk-based
network topology and follow-on verifcation. When intrusion attacks
are detected by the method, secure modes would be activated to
further protect the network from attacks. These intrusion detection
approaches efectively enhance the availability of CAN-FD networks
while ensuring real-time requirement because they do not afect CAN-
FD messages and do not occupy the limited bus load and bandwidth
resources.

Table 8.3 summarizes the above security-aware real-time methods
based on confdentiality-aware real-time methods, integrity-aware real-
time methods, and availability-aware real-time methods.

TA
BL

E
8.

3
S
ec
u
ri
ty
-A

w
a
re

 R
ea
l-
T
im

e
M
et
h
o
d
s
o
f C

A
N
-F

D
 N

et
w
o
rk
s

R
e
fe
re

n
c
e
s

S
e
c
u
ri
ty

 M
e
th

o
d
s

A
tt
a
ck

 M
o
d
e
l

S
e
c
u
ri
ty

 E
le
m
e
n
ts

A
sy
m
m
et
ri
c-
ke
y

 c
ry
p
to
gr
ap

h
y

E
av
es
d
ro
p

[1
9]

C
on

f
d
en
ti
a
li
ty

H
a
rd
w
ar
e
se
cu
ri
ty

 m
o
d
u
le

B
e
re
ad

E
av
es
d
ro
p

[1
5]

A
sy
m
m
et
ri
c-
k
ey

 c
ry
p
to
gr
ap

h
y

C
on

f
d
en
ti
a
li
ty

B
e
re
ad

H
M
A
C

D
oS

[5
]

A
sy
m
m
et
ri
c-
ke
y

 c
ry
p
to
gr
ap

h
y

A
va
il
ab

il
it
y

L
eg
it
im

at
e
E
C
U

S
y
m
m
et
ri
c-
ke
y

 c
ry
p
to
gr
ap

h
y

S
p
o
of

[2
6]

C
M
A
C

In
te
gr
it
y

M
as
q
u
er
ad

e

A
E
S
-1
28

R
ep
la
y

C
on

f
d
en
ti
a
li
ty

[6
]

H
M
A
C

S
p
o
of

In
te
gr
it
y

S
H
A
25
6

D
oS

[3
2]

K
ey

 d
is
tr
ib
u
ti
on

A
va
il
ab

il
it
y

L
eg
it
im

at
e
E
C
U

K
ey

 d
is
tr
ib
u
ti
on

S
p
o
of

C
on

f
d
en
ti
al
it
y

[9
]

S
y
m
m
et
ri
c-
ke
y

 c
ry
p
to
gr
ap

h
y

R
ep
la
y

In
te
gr
it
y

[3
5]

O
b
fu
sc
at
in
g
p
ri
or
it
y

 a
ss
ig
n
m
en
t

C
as
ca
d
e

A
va
il
ab

il
it
y

[1
4]

R
C
6

E
av
es
d
ro
p

C
on

f
d
en
ti
a
li
ty

[7
]

H
M
A
C

M
as
q
u
er
ad

e
In
te
gr
it
y

[3
8]

In
tr
u
si
on

 d
et
ec
ti
on

L
eg
it
im

at
e
m
es
sa
ge
s

A
va
il
ab

il
it
y

[1
2]

In
tr
u
si
on

 d
et
ec
ti
on

L
eg
it
im

at
e
m
es
sa
ge
s

A
va
il
ab

il
it
y

Automotive CAN-FD Networks ■ 255

256 ■ Cybersecurity and High-Performance Computing Environments

8.4 FUTURE TRENDS

People’s increasing requirements for automotive safety, comfort, and
convenience have accelerated the rapid development of intelligent
automotive. The continuous changes in the new generation of auto-
motive networks have made cybersecurity a challenge. Cybersecurity
has attracted widespread attention from industry and academia.
Combining the development trend of the modern vehicle and the
current latest research security-aware methods described before, this
chapter presents the future research felds below.

Intrusion Detection Accuracy and Response Time: In terms of the
serious functional safety threats brought by the untimely detection of
malicious attacks on vehicle networks, intrusion detection technology
has become an important security-aware method for vehicles. There-
fore, it is an urgent issue to improve intrusion detection accuracy,
reducing false-positive rate, shortening detection response time, and
improving system robustness for intrusion detection technologies.

Attack Analysis and Cybersecurity Evaluation: Attack analysis is
the basis of automotive cybersecurity research. Security vulnerabilities
and security requirements can be found by the comprehensive attack
analysis.

Security-Aware Methods and Resource Consumption: Given the
limited communication and computational resources of the vehicle, it
makes functional security and information security compete in design.

8.5 CONCLUSIONS

As an indispensable part of people’s lives, the intelligent vehicle not
only brings convenience to people’s travel, but also brings more and
more serious cyber-threats to automotive networks. This chapter frst
provides the preliminaries of automotive CAN-FD networks, including
the diferences between CAN-FD and CAN as well as their security
vulnerabilities and the corresponding classifcation of cyberattacks.
Then, security-aware real-time CAN-FD transmission methods are
summarized based on the three elements of security such as
confdentiality-aware real-time transmission, integrity-aware real-time
transmission, and availability-aware real-time transmission. Finally,
this chapter discusses the further trends of security-aware real-time

Automotive CAN-FD Networks ■ 257

CAN-FD transmission methods, including intrusion detection accuracy
and response time, attack analysis and cybersecurity evaluation, and
security-aware methods and resource consumption. Cryptographic
algorithms are primarily used to ensure confdentiality-aware transmis-
sion, and HSM and key distribution are used to assist the cryptographic
algorithm by providing fast and secure cryptographic operations. MAC
and digital signatures are used to ensure integrity-aware transmission.
Authentication and authorization framework and obfuscation priority
assignment are used to ensure availability-aware transmission. How-
ever, when implementing these security-aware methods, we need to
consider the actual vehicle requirements, such as network latency,
real-time performance, bus load factor, algorithm complexity (cryptog-
raphy, MAC, and digital signatures), key management (cryptography),
and implementation cost. We hope this chapter can help researchers to
understand and grasp the status and research of automotive CAN-FD
networks quickly and comprehensively and give reference directions for
automotive CAN-FD networks-related research in the future.

REFERENCES

[1] Charlie Miller and Chris Valasek. Adventures in automotive networks
and control units. Def Con, 21(260-264):15–31, 2013.

[2] Kamkar Samy. OwnStar—hacking cars with OnStar to locate, unlock
and remote start vehicles. https://www. youtube. com/watch. 2015.

[3] Some mazda models can be hacked with a fash drive, 2017.

[4] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel,
Tadayoshi Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor,
Danny Anderson, Hovav Shacham, et al. Experimental security analysis
of a modern automobile. In The Ethics of Information Technologies, pp.
119–134. Routledge, 2020.

[5] Philipp Mundhenk, Andrew Paverd, Artur Mrowca, Sebastian Steinhorst,
Martin Lukasiewycz, Suhaib A Fahmy, and Samarjit Chakraborty.
Security in automotive networks: Lightweight authentication and
authorization. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 22(2):1–27, 2017.

[6] Samuel Woo, Hyo Jin Jo, In Seok Kim, and Dong Hoon Lee. A
practical security architecture for in-vehicle can-fd. IEEE Transactions
on Intelligent Transportation Systems, 17(8):2248–2261, 2016.

https://www.youtube.com

258 ■ Cybersecurity and High-Performance Computing Environments

[7] Guoqi Xie, Laurence T. Yang, Wei Wu, Xiangzhen Xiao, and Renfa
Li. Security enhancement for real-time parallel in-vehicle applications
by CAN FD message authentication. IEEE Transactions on Intelligent
Transportation Systems, pp. 1–12, 2020.

[8] Yong Xie, Gang Zeng, Ryo Kurachi, Hiroaki Takada, and Guoqi Xie.
Security/timing-aware design space exploration of can fd for automotive
cyber-physical systems. IEEE Transactions on Industrial Informatics,
15(2):1094–1104, 2018.

[9] Yang Xiao, Shanghao Shi, Ning Zhang, Wenjing Lou, and Y. Thomas
Hou. Session key distribution made practical for can and can-fd message
authentication. pp. 681–693. Association for Computing Machinery, 2020.

[10] Philipp Mundhenk, Andrew Paverd, Artur Mrowca, Sebastian Steinhorst,
Martin Lukasiewycz, Suhaib A. Fahmy, and Samarjit Chakraborty.
Security in automotive networks: Lightweight authentication and
authorization. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 22(2):1–27, 2017.

[11] Luiz Quintino and Alexei Machado Machado. Protection against attack
dos in can and can-fd vehicle networks. In Anais do XXXV Simpósio
Brasileiro de Redes de Computadores e Sistemas Distribúıdos. SBC, 2017.

[12] Tianqi Yu and Xianbin Wang. Topology verifcation enabled intrusion
detection for in-vehicle can-fd networks. IEEE Communications Letters,
24(1):227–230, 2020.

[13] Guoqi Xie, Renfa Li, and Shiyan Hu. Security-aware obfuscated
priority assignment for can fd messages in real-time parallel automotive
applications. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 39(12):4413–4425, Dec. 2020.

[14] Guoqi Xie, Kehua Yang, Haibo Luo, Renfa Li, and Shiyan Hu Reliability
and confdentiality co-verifcation for parallel applications in distributed
systems. IEEE Transactions on Parallel and Distributed Systems,
32(6):1353–1368, 2021.

[15] Bogdan Groza and Pal-Stefan Murvay. Identity-based key exchange on
in-vehicle networks: CAN-FD & FlexRay. Sensors, 19(22), 2019.

[16] Marko Wolf and Timo Gendrullis. Design, implementation, and
evaluation of a vehicular hardware security module. In International
Conference on Information Security and Cryptology, pp. 302–318.
Springer, 2011.

[17] Hendrik Schweppe,Yves Roudier, Benjamin Weyl, Ludovic Apvrille, and
Dirk Scheuermann Car2x communication: Securing the last meter -
a cost-efective approach for ensuring trust in car2x applications using

Automotive CAN-FD Networks ■ 259

in-vehicle symmetric cryptography. In 2011 IEEE Vehicular Technology
Conference (VTC Fall), pp. 1–5, 2011. San Francisco, CA, USA.

[18] Marco Steger, Carlo Alberto Boano, Thomas Niedermayr, Michael
Karner, Joachim Hillebrand, Kay Roemer, and Werner Rom. An efcient
and secure automotive wireless software update framework. In IEEE
Transactions on Industrial Informatics, 14(5): 2181–2193, 2017.

[19] Tri P Doan and Subramaniam Ganesan. CAN crypto FPGA chip to
secure data transmitted through CAN FD bus using AES-128 and SHA-
1 algorithms with a symmetric key. Technical report, SAE Technical
Paper, 2017.

[20] Feng Luo and Shuo Hou. Cyberattacks and countermeasures for
intelligent and connected vehicles. SAE International Journal of
Passenger Cars-Electronic and Electrical Systems, 12:55–66, 2019.

[21] Sigrid Gürgens and Daniel Zelle. A hardware based solution for freshness
of secure onboard communication in vehicles. In Computer Security,
pp. 53–68. Springer, 2018.

[22] ISO. Road vehicles – Functional safety– Part 6: Product Development at
the Software Level, 2011.

[23] Bogdan Groza, Stefan Murvay, Anthony Van Herrewege, and Ingrid
Verbauwhede. Libra-can: A lightweight broadcast authentication
protocol for controller area networks. In International Conference on
Cryptology and Network Security, pp. 185–200. Springer, 2012.

[24] Qiang Hu and Feng Luo. Review of secure communication approaches
for in-vehicle network. International Journal of Automotive Technology,
19(5):879–894, 2018.

[25] R Escherich, I Ledendecker, C Schmal, B Kuhls, C Grothe, and
F Scharberth. She–secure hardware extension–functional specifcation
version 1.1. Hersteller Initiative Software (HIS) AK Security, 2009.

[26] Jin Seo Park, Dae Hyun Kim, and Il Hong Suh. Design and
implementation of security function according to routing method in
automotive gateway. International Journal of Automotive Technology,
22(1):19–25, 2021.

[27] Rafael Zalman and Albrecht Mayer. A secure but still safe and low cost
automotive communication technique. In Proceedings of the 51st Annual
Design Automation Conference, pp. 1–5, 2014.

[28] Didier Bourse, Markus Dillinger, Tim Farnham, Raquel Navarro, Nikolas
Olaziregi, and Thomas Wiebke. SDR equipment in future mobile
networks. In IST Summit, pp. 189–193, 2002.

260 ■ Cybersecurity and High-Performance Computing Environments

[29] V. Jeyalakshmi and G. Vijayakumari. Secured reconfgurable software
defned radio using ota software download. International Journal of
Advanced Networking and Applications, 3(4):1276, 2012.

[30] Benjamin Weyl, Marko Wolf, Frank Zweers, Timo Gendrullis, M. Sabir
Idrees, Y. Roudier, H. Schweppe, H. Platzdasch, R. El Khayari,
O. Henniger, et al. Secure on-board architecture specifcation. Evita
Deliverable D, 3:2, 2010.

[31] Trishank Karthik, Akan Brown, Sebastien Awwad, Damon McCoy,
Russ Bielawski, Cameron Mott, Sam Lauzon, André Weimerskirch, and
Justin Cappos. Uptane: Securing software updates for automobiles. In
International Conference on Embedded Security in Car, pp. 1–11, 2016.
Escar, Europe.

[32] Samuel Woo, Hyo Jin Jo, and Dong Hoon Lee. A practical wireless attack
on the connected car and security protocol for in-vehicle can. IEEE
Transactions on Intelligent Transportation Systems, 16(2):993–1006,
2014.

[33] Basker Palaniswamy, Seyit Camtepe, Ernest Foo, and Josef Pieprzyk.
An efcient authentication scheme for intra-vehicular controller area
network. IEEE Transactions on Information Forensics and Security,
15:3107–3122, 2020.

[34] Fiat chrysler to recall 1.4 million vehicles following remote hack, 2015.
[35] Guoqi Xie, Renfa Li, and Shiyan Hu. Security-aware obfuscated

priority assignment for can fd messages in real-time parallel automotive
applications. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 39(12):4413–4425, 2020.

[36] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. Security threats
to automotive can networks-practical examples and selected short-
term countermeasures. In SAFECOMP: International Conference on
Computer Safety, Reliability, and Security, pp. 235–248. Springer, 2008.

[37] Ulf E Larson, Dennis K Nilsson, and Erland Jonsson. An approach
to specifcation-based attack detection for in-vehicle networks. In
2008 IEEE Intelligent Vehicles Symposium, pp. 220–225. IEEE, 2008.
Eindhoven, Netherlands.

[38] Vinayak Tanksale. Intrusion detection for controller area network using
support vector machines. 2019 IEEE 16th International Conference on
Mobile Ad Hoc and Sensor Systems Workshops (MASSW). IEEE, 2019.
Monterey, CA, USA.

C H A P T E R 9

OntoEnricher
A Deep Learning Approach for
Ontology Enrichment from
Unstructured Text

Lalit Mohan Sanagavarapu, Vivek Iyer,
and Y. Raghu Reddy
IIIT Hyderabad

CONTENTS

9.1 Introduction . 261
9.2 Related Work . 265
9.3 Ontology Enrichment Approach . 266

9.3.1 Stage 1: Creation of Dataset . 267
9.3.2 Stage 2: Creation of Corpus . 269
9.3.3 Stage 3: Training OntoEnricher 270
9.3.4 Stage 4: Testing OntoEnricher . 272
9.3.5 Example . 272

9.4 Experimental Settings and Results . 274
9.5 Conclusion and Future Work . 277
Notes . 281
References . 281

9.1 INTRODUCTION

In recent times, there is an exponential increase in the number of
content providers and content consumers on the internet due to
various reasons like improved digital literacy, afordable devices, better
network, etc. Further, the number of internet-connected devices per

DOI: 10.1201/9781003155799-9 261

https://doi.org/10.1201/9781003155799-9

262 ■ Cybersecurity and High-Performance Computing Environments

Figure 9.1 Changing Attack Surface.

person is expected to increase even more with adoption of emerging
technologies such as Internet of Things and 5G. This change in users
and usage is leading to an increase in data breaches1 . In many cases,
realization of an impact happens long after the attack. Figure 9.1 shows
changing attack surface for organizations with remote work force and
connected devices.

Typically, organizations invest in security tools and infrastructure
that are based on rules, statistical models and machine learning (ML)
techniques to identify and mitigate the risks arising from the threats.
Firewalls, intrusion detection and prevention systems, authentication
and authorization mechanisms to data and servers, encryption layers,
anti-virus software, endpoint controls and permissions are some of
the tools and processes are used to protect Information Technology
(IT) systems. Apart from these controls and processes, IT systems are
regularly patched to mitigate the risks.

In addition, organizations purchase threat intelligence feeds to
continuously monitor IT infrastructure for anomaly detection. The
subscription fee of threat intelligence feeds from service providers
is expensive and to a large extent, it contains threat intelligence
that is already available in public forums. Public forums such as
blogs, discussion forums, government sites, social media channels
including Twitter and others contain unstructured threat intelligence
on vulnerabilities, attacks, and controls. Tech-savvy internet users
interested in information security access public forums, search, and
browse on security products, their confgurations, reviews, vulnerabil-
ities and other related content for awareness and to protect IT assets.

OntoEnricher ■ 263

In recent years, organization’s information security infrastructure
use Structured Threat Information eXchange (STIX)/Trusted Au-
tomated Exchange of Intelligence Information (TAXII) knowledge
representation from OASIS2 to represent observable objects and their
properties in the cyber domain. However, automated processing of
unstructured text to generate STIX format is a formidable challenge
[35]. Interestingly, there are transformations available to convert
from XML based STIX format to ontological ‘OWL’ or ‘RDF’
formats, which in part, has infuenced OASIS to adopt ontology for
representations.

Evidently, the research to use unstructured security related content
to enrich ontologies is gaining ground to mitigate risks related
to zero-day attacks, malware characterization, digital forensics and
incidence response and management [1,12,35]. Security ontologies are
used to analyze vulnerabilities and model attacks [9,12,15,39]. The
concepts, relationships and instances of security ontologies are used
to validate level of defence-in-depth to protect IT assets, map security
product features to controls which leads to assurance of the security
infrastructure. The constraints and properties of ontologies allow root
cause analysis of attacks. Additionally, given that security-related data
is in structured, semi-structured or unstructured forms, unifying them
with ontologies aids in situational awareness and readiness to defend
an attack [35].

Traditionally, domain experts constructed and maintained on-
tologies. Given the extent of efort and cost involved, access to
domain content and ability to process text with advanced natural
language processing (NLP) techniques and ML models on powerful
IT infrastructure opens up research opportunities to construct
and manage ontologies. The information security ontologies can
be constructed or enriched from unstructured text available on
public forums, vulnerability databases such as National Vulnerability
Database (NVD)3 and other information security processing systems
[2,31] sources. Also, standards and guidelines from ISO/IEC [13], NIST
from US, ENISA from European Nation, Cloud Security Alliance
(CSA) and others to protect confdentiality, integrity and availability
of IT assets, contain embedded concepts. The ISO 27001:2015 [9]
based security ontologies that encompass most of these guidelines are
being extensively explored for protection, auditing and compliance

264 ■ Cybersecurity and High-Performance Computing Environments

checking. Hence, enrichment of ISO 27001 based ontology provides
wider acceptance, easier management and interoperability.

In this work, we propose to enrich a widely accepted information
security ontology instead of constructing a new ontology from text.
This avoids inclusion of trivial concepts and relations. The success of
enrichment also enables wider acceptance and usage by domain experts.
However, the available literature on ontology enrichment from text
is based on approaches utilizing word similarity and supervised ML
models [12,32]. These ontology enrichment approaches, albeit useful to
extract word-level concepts, are limited with respect to (a) extraction
of longer concepts embedded in compound words and phrases (b)
factoring context while identifying relevant concepts and (c) extracting
and classifying instances [14].

In the proposed approach (OntoEnricher), we implemented a
supervised sequential deep learning model that: a) factors context from
grammatical and linguistic information encoded in the dependency
paths of a sentence, and then b) utilizes sequential neural networks,
such as Bidirectional Long Short Term Memory (LSTM) [34]
to traverse (forward and backward directions) dependency paths
and learn relevant path representations that constitute relations.
Bidirectional LSTM model has ability to forget unrelated stream of
data to identify related concepts that are available in the form of a
word, a phrase or a sentence in the text. In addition, we utilized pre-
trained transformer-based architecture of Universal Sentence Encoder
(USE) [4] to handle distributional representations of compound words,
phrases, and instances.

The proposed OntoEnricher is implemented on information
security ontology. As availability of information security datasets is a
concern, a semi-automatic approach with a training dataset of 97,425
related terms (hypernyms, hyponyms and instances) is extracted from
DBpedia for all concepts of a information security ontology [9]. To learn
syntactic and semantic dependency structure in sentences, a 2.6 GB
training corpus on information security is extracted from Wikipedia of
all terms in the ontology and the DBpedia dataset. The curated dataset
and corpus are used to train bidirectional LSTM model in the proposed
ontology enrichment approach. The trained model is tested to enrich
concepts, relations, and instances in information security ontology from
unstructured text on the internet. The OntoEnricher is also tested

OntoEnricher ■ 265

with 10% of training dataset, knocking out terms from ontology and
unstructured text from web pages and achieved an average accuracy of
80%, which is better than current state-of-the-art approaches. As the
text in corpus is multi-dimensional and dependency path gets generated
for very matching pair of dataset terms, we used a high performance
computing (HPC) cluster for training and testing of model faster
[19]. The code and documentation of ontology enrichment pipeline are
publicly available on GitHub for reuse and extension. The subsequent
sections includes (a) an elaboration of OntoEnricher approach along
with an example; (b) Experiment and Results; (c) Discussion and
potential future work.

9.2 RELATED WORK

This section discusses related work on enrichment of ontologies from
unstructured text as well as approaches to create and maintain
information security ontologies. The work on enrichment of knowledge
graphs (KG) from unstructured text is also discussed as it represents
knowledge and contains similarities with ontologies.

Researchers worked on knowledge acquisition from text to construct
ontologies for past couple of decades [3,20]. The last decade witnessed
signifcant progress in the feld of information extraction from web with
projects such as DBpedia, Freebase and others. The work of Mitchell et.
al [23] known as ‘NELL’ states that it is a never-ending system to learn
from web, their work bootstraps knowledge graphs on a continuous
basis. Tools such as ReVerb [8] and OLLIE [33] are based on open
information systems to extract a triple from a sentence using syntactic
and lexical patterns. Although these approaches extract triples from
unstructured text using shallow and fast models, they do not handle
ambiguity while entity mapping and do not learn expressive features
compared to deep and multi-layer models.

The ML models based on probabilistic, neural networks and others
are also explored for ontology enrichment from text [20,27,28]. In 2017,
Wang et al [37] conducted a survey on knowledge graph completion,
entity classifcation and resolution, and relation extraction. The study
classifed embedding techniques into translational distance models and
semantic matching models. The study also stated that additional infor-
mation in the form of entity types, textual descriptions, relation paths

266 ■ Cybersecurity and High-Performance Computing Environments

and logical rules strengthen the research. Deep learning models such as
CNN [5], LSTM [18,25] and variants are used to construct knowledge
graphs from text as they carry memory cells and forget gates to build
the context and reduce noise. The work of Vedula et al. [36] proposed
an approach to bootstrap newer ontologies from related domains.

Some of the recent approaches are based on Word2Vec [38] and
its variants such as Phrase2Vec or Doc2Vec that use distributional
similarities to identify concepts to enrich an ontology. However, these
approaches underperform in the extraction of concepts embedded in
words, phrases and sentences due to their inability to adequately
characterize context. Compared to Word2Vec and its variants,
Universal Sentence Encoder (USE) [4] stands promising to identify
concepts in long phrases as it encodes text into high dimensional vectors
for semantic similarity. Lately, researchers [10] are exploring USE to
produce sentence embeddings and deduce semantic closeness in queries.
Although, transformer-based models such as BERT and XLNet [7,21]
are of interest to ontology enrichment researchers, training them to a
domain is efort intensive.

The literature to enrich security ontologies from text drew attention
with OASIS’s STIX/TAXII standardization and open source threat
intelligence. Most of the current work on security ontologies from text
(construction or enrichment) are based on usage of string, substring,
pre-fx and post-fx matching of terms, Word2Vec and other basic ML
models [26,28,35]. In ontologies as well, the deep learning approaches
based on recurrent neural networks are trending because of their ability
to build the context over multiple words [11,15]. The research of
Houssem et al. [11] used LSTM for population of security ontologies.
However, the details to create corpus, handle phrases and robustness of
the approach are not elaborated, only 40 entities are used in the model.
The literature revealed that security ontologies based on ISO 27001 [9]
and MITRE Corporation’s cyber security efort [35] are most referred.

9.3 ONTOLOGY ENRICHMENT APPROACH

In the proposed approach, whenever a new concept is introduced,
current memory state of LSTMs are updated to replace old concept,
or add new concept by multiplying with forget gates as needed. The
concept in current memory are mapped to instances and relations

OntoEnricher ■ 267

Figure 9.2 Ontology Enrichment Approach.

between concepts in current state are constructed. Concepts extracted
are used to update the ontology automatically or after manual
validation by a domain expert.

The OntoEnricher enriches a seed ontology with concepts,
relations and instances extracted from unstructured text. As shown in
Figure 9.2, the ontology enrichment approach consists of four stages: (i)
DatasetCreation : creates training dataset by extracting and curating
related terms from DBpedia for all concepts in the ontology (ii)
CorpusCreation : creates domain-specifc training corpus by parsing
Wikipedia dump using various fltering measures (iii) T raining : trains
OntoEnricher for relation classifcation of term pairs using training
dataset and corpus, and (iv) T esting : tests the approach by enriching
the ontology from domain-specifc web pages.

9.3.1 Stage 1: Creation of Dataset

The information security seed ontology is based on ISO 27001 [9]. The
standard ISO 27001:2015 [13] contains 114 controls across 14 groups.
These groups are ‘Human Resources’, ‘Asset Management’, ‘Access
Control’, ‘Cryptography’, ‘Physical and environmental’, ‘Operations’,
‘Communications’, ‘System development and acquisition’, ‘Business

268 ■ Cybersecurity and High-Performance Computing Environments

Figure 9.3 Information Security Upper Ontology [9].

Continuity’, ‘Supplier relations’, ‘Information security incident man-
agement’, ‘Compliance’, ‘Security Policies’ and ‘Security organisation’.
These groups and controls are represented as 408 concepts in the
security ontology to protect assets from vulnerabilities and threats.
The upper ontology of the seed ontology is shown in Figure 9.3 and
the ontology is available on GitHub.

These 408 concepts are extracted from security ontology ‘to query
related terms, namely hypernyms and hyponyms from DBpedia. DB-
pedia contains over 5 million entities, allows querying of semantic rela-
tionships, concepts and properties encoded in the form of RDF triples.

Typically, the RDF triples (subject-verb-object) in an ontology
contain a ‘verb’ relationship between concepts. Verbs are typically
domain-specifc and unavailable in general-purpose knowledge graphs
like DBPedia. Hypernyms and hyponyms that denote ‘is-a’ relationship
between concepts, are easily available in DBPedia and widely used
in ontologies, making these relations an ideal choice to demonstrate
OntoEnricher approach. The SPARQL queries (query 9.3.1) to extract
hypernyms and hyponyms from DBpedia for concepts in information
security ontology are:

SELECT * WHERE {<http://dbpedia.org/resource/“““+ concept +
”””> <http://purl.org/linguistics/gold/hypernym> ?hypernyms}

SELECT * WHERE {?hypernyms <http://purl.org/linguistics/gold/
hypernym> <http://dbpedia.org/resource/““+ concept + ”””>}

http://dbpedia.org
http://purl.org
http://purl.org
http://purl.org
http://dbpedia.org
http://dbpedia.org

OntoEnricher ■ 269

TABLE 9.1 Composition
of the Dataset

Relationship Count
Hypernymy 2,939
Hyponymy 794
Instances 2,685
Concepts 1,187
None 4,490
Total 12,096

The extracted terms with SPARQL queries are converted to triples
of the form (a, b, label) where a denotes the ontology concept, b denotes
the DBPedia term and label determines the DBPedia relation between
a and b. This leads to a dataset of 97,425 triples. These triples are
then curated by three domain experts and authors to mark unrelated
terms as ‘none’. This includes pairs that are not related to the domain
and pairs that are not related to each other, as both these cases
are not needed for ontology enrichment. In addition, since DBPedia
often categorizes ontological instances under ‘hyponyms’, some pairs
are separately labelled as ‘instances’ if b is an instance of a or as a
‘concept’ if b denotes the concept of which a is an instance. The terms
classifed include names of experts, organizations, products and tools,
attacks, vulnerabilities, malware, virus and many others. Finally, since
the number of ‘none’ pairs (89,820) is signifcantly higher than the
number of ‘non-none’ (7,605) pairs, ‘none’ pairs are sorted in order of
increasing similarity. The frst 5% of ‘none’ pairs are fltered out, this
is experimentally determined to yield better results. Table 9.1 shows
composition of dataset after extraction, curation and fltration.

9.3.2 Stage 2: Creation of Corpus

Once the training dataset is created, a training corpus to provide
linguistic information for all terms in the dataset is extracted.
Wikipedia is used as it is moderated and structured for model training.
The DBPedia is a part of the Wikipedia project, and therefore assures
unambigous articles of all extracted dataset terms. As a frst step, all
corresponding Wikipedia articles for terms in the dataset are extracted
and added to the corpus. In addition, other articles related to the
information security ontology domain are also extracted. This is done

270 ■ Cybersecurity and High-Performance Computing Environments

by comparing Doc2Vec [17] similarity of each article with the Wikipedia
article on ‘Information Security’4 and then fltering in articles with
a similarity score higher than a certain threshold (0.27 after manual
validation). This threshold is determined to optimize classifcation
accuracy after a validation with a sample corpus. The two-step fltering
yielded a 2.6 GB size information security training corpus.

9.3.3 Stage 3: Training OntoEnricher

Training dataset and corpus are parsed to generate various dependency
paths to connect each pair of terms provided in the training dataset.
Here, ‘dependency paths’ refers to the multi-set of all paths that
connect a pair of terms in the training corpus. These paths are encoded
as a sequence of nodes, where each node is a 4-tuple of the form
(word, P OS_tag, dep_tag, dir). The P OS_tag and dep_tag denote
POS and dependency tags of the word respectively, while dir denotes
the direction of the edge connecting it to the next node in that
dependency path. The term pairs along with extracted dependency
paths between them are passed to OntoEnricher for training.

Figure 9.4 shows the architecture diagram of OntoEnricher. The
frst layer in proposed model is the embedding layer. The distributional
embeddings for the terms (words) are obtained using a pre-trained
state-of-the-art Universal Sentence Encoder (USE) [4] model. This
model is preferred over other vocabulary-based distributional models
such as Word2Vec, Glove and others as it returns distributional
embeddings for not just single words, but also compound words,
phrases and sentences. In addition, USE is pretrained on Wikipedia
along with other corpora, making it suited for this task. Apart from
pre-trained word embeddings, embeddings for POS tags, dependency
tags and direction tags are obtained from trainable embedding layers.
The node embeddings constructed from the concatenation of words,
POS, dependency, and direction tag embeddings are arranged in a
sequence to obtain path embeddings. A dropout layer is applied after
each embedding. The path embeddings for each path connecting the
term pair are then input to a bidirectional, two-layer LSTM which
trains on a sequence of linguistically and semantically encoded nodes
and learns the type of sequences that characterize a particular kind
of relation. The bidirectional LSTM allows the network to have both

OntoEnricher ■ 271

Figure 9.4 Architecture Diagram of OntoEnricher.

backward and forward information about the path embeddings at every
time step, while the two layers enable capturing of complex relations
among dependency paths.

The output of last hidden state of LSTM is taken as the path
representation. Since a pair of terms may have multiple paths between
them, a weighted sum of these path representations is taken by using
path counts as weights, to yield a fnal context vector. This context
vector encodes syntactic and linguistic information, is passed through a
dropout layer and then concatenated with distributional embeddings of
both terms in order to encode semantic information. The concatenated
vector is then passed through two Feedfoward Neural Networks with
a Rectifer Linear Unit (ReLU) layer in between, to yield fnal class

272 ■ Cybersecurity and High-Performance Computing Environments

probability vector. The class with maximum probability is output as
predicted relation between the term pair.

9.3.4 Stage 4: Testing OntoEnricher

The procedure to extract concepts and instances from (web page)
text, during testing stage is detailed here. To avoid usage of every
unstructured (web page) text to enrich an ontology, a lightweight
evaluation technique [30] that checks for sufciency of new security
terms is deployed. After passing the sufciency evaluation as a pre-
processing stage, co-reference resolution is applied and then noun
chunks are extracted from web page. A cartesian product (nC2) is
taken of extracted noun chunks to construct potential term pairs.
However, a cartesian product to OntoEnricher is computationally
expensive and also leads to error propagation. A two-stage fltering
is applied to validate (a) if noun chunks are ‘sufciently’ related to
Information Security and (b) if they are ‘sufciently’ related to each
other. Both these conditions are checked to compare distributional
similarity using USE against experimentally determined threshold
values. The sufciently similar term pairs are then input to pre-trained
model to classify the relationship. The pairs classifed as ‘None’ are
discarded and the rest are converted to RDF triples for information
security ontology enrichment.

9.3.5 Example

Figure 9.5 illustrates ontology enrichment approach with an example.
‘Real-time adaptive security’ (R-TAS) is a concept present in
information security ontology. The corresponding article in DBPedia,
‘Real-time adaptive security’ has ‘model’ as its hypernymy entry,
which is returned using a SPARQL query. The information security
corpus extracted from Wikipedia dump using Doc2Vec flter contains
multiple paired mentions of these terms, out of which one article
contains two mentions. The corpus, the aforementioned sentences, are
passed to SpaCy5 dependency parser and all corresponding dependency
paths to connect are extracted for every term pair. These dependency
paths which contain encoded linguistic information are passed to a
serialization layer that converts the dependency graph into a series of
nodes to form the input to OntoEnricher.

OntoEnricher ■ 273

Figure 9.5 An Example Illustrating Ontology Enrichment Approach.

The serialization layer reduces the word in every node in the
dependency path to its lemma, a root word to enable meaningful
training and generalization. Thus, ‘Real-time adaptive security’ is
reduced to ‘security’ and ‘is’ is reduced to ‘be’. It also converts every
node to a feature vector. The ‘Real-time adaptive security’ is converted
to a feature vector that uses ‘security’ as the word, ‘PROPN’ as POS
tag, ‘nsubj’ as dependency tag and ‘+’ denotes the direction of the
edge connecting it to the lowest common root node between the term
pair. Similarly, the next word ‘be’ is a verb and a root word of ‘is’ does
not have any direction ‘∼’. The last word of this path, ‘model’, has
‘NOUN’ as POS tag, ‘attr’ as dependency tag and ‘+’ as direction of
the arrow going away from ‘model’ to ‘is’.

The same approach is followed for second dependency path and
nodes are sequenced similarly. These two paths are then passed to
the embedding layer that calculates (i) USE embedding for word
(ii) POS tag embedding (iii) dependency tag embedding and (iv)

274 ■ Cybersecurity and High-Performance Computing Environments

direction embedding. The last 3 embeddings are trainable while
word embeddings are pre-trained using USE. These are concatenated
together to yield a node embedding. All paths (node sequences) that
connect term pair are passed as input to Bidirectional two-layer LSTM.
In this example, both the paths connecting ‘Real-Time Adaptive
Security’ and ‘model’ are input to LSTM, post which the last hidden
state is taken as path-wise contextual output. A weighted sum of
these paths is then calculated using frequency of occurrence as weights
to yield fnal context vector, this has encoded linguistic information
of paths that connect ‘R-TAS’ and ‘model’. This context vector is
concatenated with distributional embeddings of ‘Real-Time Adapative
Security’ and ‘model’. Reducing words to their root form during
serialization stage enables to construct a contextualized representation.
The characterized paths constitutes a specifc relation and the most
frequent ones, while distributional word and phrase embeddings
enable semantic relevance and specifcity at a conceptual level. This
concatenated vector denotes semantic and linguistic information that
are passed to 2 Feedforward Neural Networks with a ReLU layer in
between, yielding a fnal class probability vector as output. This class
probability vector is trained to identify relationship between ‘model’
and ‘Real-Time Adapative Security’ as hypernymy.

9.4 EXPERIMENTAL SETTINGS AND RESULTS

The experiment is conducted with two ontologies, namely the ISO
27001-based information security and Stanford pizza ontologies. While
the former is focus of this section and use case to build knowledge
base, pizza ontology is used to demonstrate generalizability of the
approach. Table 9.2 shows the composition of information security
and pizza datasets respectively. While the information security corpus
is 2.8 GB in volume, interestingly, the pizza corpus is signifcantly
smaller and only 95 MB. This can be attributed to the fact that the
pizza ontology represents a very narrow domain (‘pizza’ out of food
domain) and thus contains few relevant Wiki articles. Information
security ontology contains broader, systems-level concepts, information
about assets, controls etc. that return a variety of related articles.

The OntoEnricher is implemented using deep learning library
Pytorch with ‘0’ as random seed number for consistency in results.

OntoEnricher ■ 275

TABLE 9.2 Dataset Composition

Parameters Security Pizza
of Concepts 408 143
Dataset size 12,096 7,119
Corpus size 2.8GB 95MB

Also, various other Python libraries such as Pronto6 to extract ontology
terms, Wikiextractor7 to extract articles from Wikipedia dump, spaCy
for dependency graph extraction, and Tensorfow-Hub to load Universal
Sentence Encoder are used. The deployed HPC expedites training
and testing performance of OntoEnricher, this also aids in parallel
processing of adding or retrieving concepts, relations and instances
from ontology. The performance of OntoEnricher is evaluated on three
diverse test datasets:

1. DBPedia test dataset: This is created by randomly extracting
10% of the training dataset extracted from DBpedia. It mostly
consists of small-medium length words.

2. ‘Knocked-out’ test dataset: This is created by knocking out
concepts and relations from the seed ontology. This evaluates
the ability of OntoEnricher to identify multi-word or phrase-
level concepts, as is common in information security ontology,
and identifcation of highly-domain specifc, non-English terms
as in pizza ontology.

3. Instance dataset: This is created by extracting text from security-
domain related web pages. The top 10 vulnerability related
web pages from OWASP and product pages on ‘frewall’ are
extracted to test the model. The ability to identify concepts and
instances from web pages confrms that OntoEnricher can use
text from public forums and other unstructured data sources.
This evaluation is done without factoring sufciency requirement
[30] of new terms in text to evaluate identifcation of ontology
terms by OntoEnricher.

Table 9.3 shows optimized hyper parameters after tuning OntoEnricher.
Grid search is used to experiment with and arrive at optimal values
of various hyper parameters. It includes hidden dimensions (120,

276 ■ Cybersecurity and High-Performance Computing Environments

TABLE 9.3 Hyperparameters of the Model

Hyperparameters Security Pizza
Activation Function Log Softmax Log Softmax
Number of Layers 2 2
Hidden Dimension of LSTM 180 250
Input Dimension (2nd NN) 120 90
Embedding layer Dropout 0.35 0.35
Hidden layer Dropout 0.8 0.8
Hidden layer Dropout 0.8 0.8
Optimizer AdamW AdamW
Loss function NLL Loss NLL Loss
Epochs 200 200
Learning Rate 0.001 0.001
Weight Decay 0.001 0.001
Weight Initialization Xavier Xavier

TABLE 9.4 Security Ontology Enrichment Results

Metrics DBPedia Knocked Out Web Page
Terms 1197 5538 153
Accuracy 0.81 0.77 0.83
Precision 0.76 0.84 0.84
Recall 0.76 0.77 0.73
F1-Score 0.76 0.80 0.78

180, 200, 250, 300, 500, 900), input dimension of 2nd NN (60,
90, 120, 180, 300, 500), number of LSTM layers (1,2), activation
functions (Softmax, ReLU, LogSoftmax), loss functions (NLL Loss,
Cross Entropy loss), and learning and weight decay rates (0.001, 0.01).
The experimentation data with various embeddings, epochs, learning
rate, activation functions, hidden layers and the related results are
available as spreadsheet on GitHub.

The evaluation results of OntoEnricher on information security
and pizza ontologies are shown in Tables 9.4 and 9.6 respectively. A
competent and comparable scores on information security ontology
enrichment with all three datasets are achieved. The test results
with 10% test dataset performed better, while test results on
knockout concepts or information security related web pages are not
far apart, proving that performance did not dip in extraction of

OntoEnricher ■ 277

phrases, multi-word concepts and instances which is a key component
missing from previous ontology enrichment approaches. As input and
output format of existing approaches are diferent, only a qualitative
comparison is performed and shown in Table 9.5. Additionally, in
OntoEnricher, the number of terms and the size of the corpus used for
training and testing are much larger. It is observed that the diference
between precision and recall value is less, indicates that terms are not
skewed towards domain and establishes robustness of the proposed
OntoEnricher approach.

Interestingly, the pizza enrichment results shown in Table 9.6 are
better than security enrichment results, presumably due to domain
being narrow as mentioned earlier and concepts are easily identifable
as a consequence.

Most of the existing ontology evaluation metrics [29] are extensions
of Precision and Recall information retrieval metrics. Hence, precision
score for k documents (shown in Table 9.7) is measured to validate
consistency in ontology enrichment with web pages. The scores indicate
that the proposed approach can identify concepts for any large number
of domain documents. Figure 9.6 shows the relationship accuracy for
each of the classes. It is observable that all relationships are classifed
equally and hypernymy classifcation seems to be relatively higher.

9.5 CONCLUSION AND FUTURE WORK

The implemented information security ontology enrichment approach
is comprehensive with the ability to handle new terms, changing
domain content that includes concepts, relations and instances. Usage
of well accepted ISO 27001 based security ontology, an exhaustive
data source such as DBpedia and Wikipedia, Universal Sentence
Encoder for distributional embeddings and Bidirectional LSTM for
sequential learning makes it extensible to other domains as well.
In the implemented enrichment approach, concepts in seed ontology
can be a single or multiple words, is an improvement from state-of-
the-art. The approach also incorporated instances from unstructured
text (web pages) so that organizations or individuals have fexibility
to reason information security ontologies for mitigation strategies,
vulnerabilities assessment, attack graphs detection and many other
use cases. The enriched security ontology can also be used by search

TA
BL

E
9.

5
C
o
m
p
a
ri
so
n

 o
f O

n
to
lo
g
y

 E
n
ri
ch
m
en

t
A
p
p
ro
a
ch
es

A
p
p
ro

a
ch

R
el
at
io
n

 b
et
w
ee
n

 tw
o

n
am

ed
 en

ti
ti
es

id
en
ti
f
ed

 u
si
n
g

N
E
R

 te
ch
n
iq
u
e [
28
]

D
u
al

 It
er
at
iv
e P

at
te
rn

R
el
at
io
n

 E
x
p
an

si
on

fo
r r
el
at
io
n

ex
tr
ac
ti
on

 [1
6]

N
am

ed
 E
n
ti
ty

re
co
gn

it
io
n

 to

id
en
ti
fy

v
u
ln
er
ab

il
it
ie
s a

n
d

re
la
ti
on

s [
2
4]

D
a
ta

se
t

O
p
en

 so
u
rc
e

th
re
at

in
te
ll
ig
en
ce

S
ec
u
ri
ty

re
la
te
d

ar
ti
cl
es

 fr
om

w
eb

 p
ag
e

N
V
D
,

D
B
P
ed
ia

an

d
 o
th
er

op

en
 so

u
rc
e

th
re
at

in
te
ll
ig
en
ce

M
o
d
e
l

N
eu
ra
l

N
et
w
or
k

an

d
W
or
d
2V

ec

S
em

i-
su
p
er
v
is
ed

le
ar
n
in
g

m
o
d
el
s

S
u
p
p
or
t

V
ec
to
r

M
ac
h
in
es

E
v
a
lu
a
ti
o
n

M

e
tr
ic

96
%

 a
s

ac
cu
ra
cy

82
%

 a
s

ac
cu
ra
cy

90
%

 a
s

ac
cu
ra
cy

O
b
se

rv
a
ti
o
n

S
in
gl
e w

or
d
s a

re

on
ly

 h
an

d
le
d

 a
n
d

th
er
e i
s n

o
b
as
e

on
to
lo
gy
. E

va
lu
at
io
n

is

 p
er
fo
rm

ed
 o
n

p
re
-t
ra
in
ed

 d
at
a

N
ot

 en
ou

gh
 v
ol
u
m
e

of
 tr
ai
n
in
g
d
at
a
to

va
li
d
at
e s

ca
la
b
il
it
y

an

d
 g
en
er
al
iz
ab

il
it
y.

O
n
to
lo
gy

 a
n
d

 d
at
as
et

d
et
ai
ls

 a
re

 n
ot

av
ai
la
b
le

O
n
ly

 v
u
ln
er
ab

il
it
y

re
la
te
d

 w
or
d
s

ar
e h

an
d
le
d

 a
n
d

th
er
e i
s n

o
b
as
e

on
to
lo
gy
. E

va
lu
at
io
n

is

 p
er
fo
rm

ed
 o
n

p
re
-t
ra
in
ed

 d
at
a

278 ■ Cybersecurity and High-Performance Computing Environments

TA
BL

E
9.

5
(C

o
n
ti
n
u
ed

)
C
o
m
p
a
ri
so
n

 o
f O

n
to
lo
g
y

 E
n
ri
ch
m
en

t
A
p
p
ro
a
ch
es

A
p
p
ro

a
ch

M
al
w
ar
e t

ex
t

cl
as
si
f
ca
ti
o
n

 [2
2]

N
am

ed
 E
n
ti
ti
es

 a
re

co
n
si
d
er
ed

 a
s

co
n
ce
p
ts

 in
 se

cu
ri
ty

co
n
te
n
t [
1
1]

E
n
ti
ty

 ex
tr
ac
ti
o
n

 fr
om

D
B
P
ed
ia

 [6
]

D
a
ta

se
t

M
al
w
a
re
-

T
ex
tD

B

N
V
D
,

M
ic
ro
so
ft

B
u
ll
et
in
s

W
ik
ip
ed
ia

 a
n
d

D
B
P
ed
ia

M
o
d
e
l

C
on

vo
lu
ti
on

al

N
eu
ra
l

N
et
w
or
k

an

d
C
on

d
it
io
n
al

R
an

d
om

F
ie
ld

L
on

g
S
h
or
t

T
er
m

M
em

or
y

 a
n
d

C
on

d
it
io
n
al

R
an

d
om

F
ie
ld

S
em

an
ti
c R

ol
e

L
ab

el
er

 a
n
d

co
-r
ef
er
en
ce

re
so
lu
ti
on

E
v
a
lu
a
ti
o
n

M

e
tr
ic

25
 –

 3
6%

 a
s

ac
cu
ra
cy

96
%

 a
s

ac
cu
ra
cy

66
.3
%

 a
s F

1
sc
or
e

O
b
se

rv
a
ti
o
n

U
se
d

 G
lo
ve

 fo
r w

or
d

em

b
ed
d
in
gs

 th
at

is

 n
ot

 fu
ll
y

 co
n
te
x
t

se
n
si
ti
ve

T
h
e d

at
as
et

 w
as

si
m
il
ar

 a
n
d

 th
er
e

ar
e n

o
re
fe
re
n
ce
s t
o

h
an

d
le

 m
u
lt
i-
w
or
d

an

d
 in

st
an

ce
s

N
o
b
as
e o

n
to
lo
gy

 a
n
d

re
fe
re
n
ce
s t
o
h
an

d
le

m
u
lt
i-
w
or
d
s o

r
in
st
an

ce
s

OntoEnricher ■ 279

280 ■ Cybersecurity and High-Performance Computing Environments

TABLE 9.6 Pizza Ontology Enrichment Results

Metrics DBPedia Knocked Out Web Page
Terms 791 85 99
Accuracy 0.99 0.79 0.88
Precision 0.81 0.99 0.84
Recall 0.91 0.79 0.81
F1-Score 0.86 0.88 0.82

TABLE 9.7 Precision Scores for 20 Random
Web Pages in Information Security

Web pages P@5 P@10 P@15 P@20
Score 0.89 0.80 0.82 0.84

Figure 9.6 Accuracy on Class Identifcation in Information Security
Ontology.

engines to display relevant results, top trends in vulnerabilities, threats,
attacks and controls. The implemented OntoEnricher is trained on 408
information security ontology terms, 97,425 DBpedia terms and 2.8 GB
size Wikipedia articles with a HPC cluster. The OntoEnricher is tested
with 20 random information security related web pages extracted from
internet with an accuracy of 80% and an F1-score of 78%. While state-
of-the-art results are achieved in this work, the following activities are
being explored as future work -

• Optimize efort required to create DBPedia dataset such as
fltering out irrelevant terms.

OntoEnricher ■ 281

• Test the approach with other security ontologies and extend
training corpus beyond Wikipedia.

• Compare results with other knowledge graph and ontology
enrichment approaches after curation of input and output format
of dataset and corpus.

• While there is a need for domain experts to evaluate an enriched
ontology, it is efort intensive and brings in other dependencies.
A syntactic and semantic evaluation with a easily confgurable
rules and AI models to reduce efort.

NOTES
1 https://digitalguardian.com/blog/history-data-breaches
2 https://www.oasis-open.org/
3 https://nvd.nist.gov
4 https://en.wikipedia.org/wiki/Information_security
5 https://spacy.io/
6 https://pypi.org/project/pronto/
7 https://github.com/attardi/wikiextractor

REFERENCES
[1] Fatima N Al-Aswadi, Huah Yong Chan, and Keng Hoon Gan. Automatic

Ontology Construction from Text: a Review from Shallow to Deep
Learning Trend. Artifcial Intelligence Review, pages 1–28, 2019.

[2] AlienVault. Open Threat Intelligence, February 2021. https://otx.
alienvault.com/.

[3] Paul Buitelaar, Philipp Cimiano, and Bernardo Magnini. Ontology
Learning from Text: Methods, Evaluation and Applications, volume 123.
IOS Press, 2005.

[4] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco,
Rhomni St John, Noah Constant, Mario Guajardo-Cespedes, Steve
Yuan, Chris Tar, et al. Universal Sentence Encoder. ArXiv preprint
arXiv:1803.11175, 2018.

[5] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian
Riedel. Convolutional 2D Knowledge Graph Embeddings. In 32nd AAAI
Conference on Artifcial Intelligence, 2018.

[6] Peter Exner and Pierre Nugues. Entity Extraction: From Unstructured
Text to DBpedia RDF Triples. In Proceedings of the WoLE@ ISWC,
pages 58–69, 2012.

https://digitalguardian.com
https://www.oasis-open.org
https://nvd.nist.gov
https://en.wikipedia.org
https://spacy.io
https://pypi.org
https://github.com
https://otx.alienvault.com
https://otx.alienvault.com

282 ■ Cybersecurity and High-Performance Computing Environments

[7] Aysu Ezen-Can. A Comparison of LSTM and BERT for Small Corpus.
arXiv preprint arXiv:2009.05451, 2020.

[8] Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying
Relations for Open Information Extraction. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, pages
1535–1545. ACL, 2011.

[9] Stefan Fenz and Andreas Ekelhart. Formalizing Information Security
Knowledge. In Proceedings of the 4th International Symposium on
Information, Computer, and Communications Security. ACM, 2009.

[10] Balaji Ganesan, Riddhiman Dasgupta, Akshay Parekh, Hima Patel,
and Berthold Reinwald. A Neural Architecture for Person Ontology
Population. arXiv preprint arXiv:2001.08013, 2020.

[11] Houssem Gasmi, Jannik Laval, and Abdelaziz Bouras. Cold-start
Cybersecurity Ontology Population using Information Extraction with
LSTM. In International Conference on Cyber Security for Emerging
Technologies, pages 1–6. IEEE, 2019.

[12] Michael Iannacone, Shawn Bohn, Grant Nakamura, John Gerth, Kelly
Hufer, Robert Bridges, Erik Ferragut, and John Goodall. Developing
an Ontology for Cyber Security Knowledge Graphs. In Proceedings of the
10th Annual Cyber and Information Security Research Conference, pages
1–4, 2015.

[13] ISO/IEC 27001. Information Security Management, February 2021.
https://www.iso.org/isoiec-27001-information-security.html.

[14] Vivek Iyer, Lalit Mohan, Y Raghu Reddy, and Mehar Bhatia. A Survey
on Ontology Enrichment from Text. Proceedings of the 16th International
Conference on Natural Language Processing, 2019.

[15] Yan Jia, Yulu Qi, Huaijun Shang, Rong Jiang, and Aiping Li. A Practical
Approach to Constructing a Knowledge Graph for Cybersecurity.
Engineering, 4(1):53–60, 2018.

[16] Corinne L Jones, Robert A Bridges, Kelly MT Hufer, and John R
Goodall. Towards a Relation Extraction Framework for Cyber-security
Concepts. In Proceedings of the 10th Annual Cyber and Information
Security Research Conference, pages 1–4, 2015.

[17] Jey Han Lau and Timothy Baldwin. An Empirical Evaluation of Doc2Vec
with Practical Insights into Document Embedding Generation. arXiv
preprint arXiv:1607.05368, 2016.

[18] Diya Li, Lifu Huang, Heng Ji, and Jiawei Han. Biomedical Event
Extraction based on Knowledge-driven Tree-LSTM. In NAACL-HLT
2019: Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pages 1421–1430, 2019.

http://LSTM.In
https://www.iso.org
http://ExtractionbasedonKnowledge-drivenTree-LSTM.In

OntoEnricher ■ 283

[19] Robert Lim. Methods for Accelerating Machine Learning in High
Performance Computing. University of Oregon—Area-2019-01, 2019.

[20] Kaihong Liu, William R Hogan, and Rebecca S Crowley. Natural
Language Processing Methods and Systems for Biomedical Ontology
Learning. Journal of Biomedical Informatics, 44(1):163–179, 2011.

[21] Qi Liu, Matt J Kusner, and Phil Blunsom. A Survey on Contextual
Embeddings. arXiv preprint arXiv:2003.07278, 2020.

[22] R Manikandan, Krishna Madgula, and Snehanshu Saha. Cybersecurity
Text Analysis using Convolutional Neural Network and Conditional
Random Fields. In Proceedings of the 12th International Workshop on
Semantic Evaluation, pages 868–873, 2018.

[23] Tom Mitchell, William Cohen, Estevam Hruschka, Partha Talukdar,
Bishan Yang, Justin Betteridge, Andrew Carlson, Bhanava Dalvi, Matt
Gardner, Bryan Kisiel, et al. Never-Ending Learning. Communications
of the ACM, 61(5):103–115, 2018.

[24] Varish Mulwad, Wenjia Li, Anupam Joshi, Tim Finin, and Krish-
namurthy Viswanathan. Extracting Information about Security Vul-
nerabilities from Web Text. In Proceedings of the IEEE/WIC/ACM
International Conferences on Web Intelligence and Intelligent Agent
Technology, volume 3, pages 257–260. IEEE, 2011.

[25] Binling Nie and Shouqian Sun. Knowledge Graph Embedding via
Reasoning over Entities, Relations, and Text. Future Generation
Computer Systems, 91:426–433, 2019.

[26] Leo Obrst, Penny Chase, and Richard Markelof. Developing an Ontology
of the Cyber Security Domain. In STIDS, pages 49–56, 2012.

[27] Georgios Petasis, Vangelis Karkaletsis, Georgios Paliouras, Anastasia
Krithara, and Elias Zavitsanos. Ontology Population and Enrichment:
State of the Art. In Knowledge-driven Multimedia Information Extraction
and Ontology Evolution, pages 134–166. Springer, 2011.

[28] Aditya Pingle, Aritran Piplai, Sudip Mittal, Anupam Joshi, James
Holt, and Richard Zak. RelExt: Relation Extraction using Deep
Learning Approaches for Cybersecurity Knowledge Graph Improvement.
In Proceedings of the 2019 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, pages 879–886,
2019.

[29] Marta Sabou, Chris Wroe, Carole Goble, and Gilad Mishne. Learning
Domain Ontologies for Web Service Descriptions: An Experiment in
Bioinformatics. In Proceedings of the 14th International Conference on
World Wide Web, pages 190–198, 2005.

284 ■ Cybersecurity and High-Performance Computing Environments

[30] Lalit Sanagavarapu, Sai Gollapudi, S. Chimalakonda, Y. Reddy, and
Venkatesh Choppella. A Lightweight Approach for Evaluating Sufciency
of Ontologies. In SEKE, 2017.

[31] Lalit Mohan Sanagavarapu, Neeraj Mathur, Shriyansh Agrawal, and
Y Raghu Reddy. SIREN-Security Information Retrieval and Extraction
eNgine. In European Conference on Information Retrieval, pages 811–
814. Springer, 2018.

[32] Carla Sayan, Salim Hariri, and George L Ball. Semantic Knowledge
Architecture for Cyber Security. In Proceedings of the International
Conference on Security and Management (SAM), pages 69–76. The
Steering Committee of The World Congress in Computer Science,
Computer Engineering, and Applied Computing, 2019.

[33] Michael Schmitz, Robert Bart, Stephen Soderland, Oren Etzioni, et al.
Open Language Learning for Information Extraction. In Proceedings
of the Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pages 523–
534. Association for Computational Linguistics, 2012.

[34] M. Schuster and K. K. Paliwal. Bidirectional Recurrent Neural Networks.
IEEE Transactions on Signal Processing, 45(11):2673–2681, 1997.

[35] Zareen Syed, Ankur Padia, Tim Finin, Lisa Mathews, and Anupam Joshi.
UCO: A Unifed Cybersecurity Ontology. In Workshops at the 30th AAAI
Conference on Artifcial Intelligence, 2016.

[36] Nikhita Vedula, Pranav Maneriker, and Srinivasan Parthasarathy.
BOLT-K: Bootstrapping Ontology Learning via Transfer of Knowledge.
In The World Wide Web Conference, pages 1897–1908, 2019.

[37] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge
Graph Embedding: A Survey of Approaches and Applications. IEEE
Transactions on Knowledge and Data Engineering, 29(12):2724–2743,
2017.

[38] Gerhard Wohlgenannt and Filip Minic. Using Word2Vec to Build a
Simple Ontology Learning System. In International Semantic Web
Conference, 2016.

[39] Huangjie Zheng, Yuchen Wang, Chen Han, Fangjie Le, Ruan He, and
Jialiang Lu. Learning and Applying Ontology for Machine Learning in
Cyber Attack Detection. In 17th IEEE International Conference On
Trust, Security And Privacy In Computing And Communications/ 12th
IEEE International Conference On Big Data Science And Engineering,
pages 1309–1315, 2018.

C H A P T E R 10

Intelligent Connected
Vehicles
Wufei Wu
Nanchang University

Ryo Kurachi and Gang Zeng
Nagoya University

Yuhao Wang
Nanchang University

Hiroaki Takada
Nagoya University

Keqin Li
State University of New York

CONTENTS

10.1 Introduction . 286
10.1.1 Intelligent Connected Vehicle (ICV) 286
10.1.2 Contributions and Chapter Organization 289

10.2 Cybersecurity Analysis of In-Vehicle Network 289
10.2.1 In-Vehicle Networks of ICV . 290
10.2.2 Vulnerabilities and Cybersecurity Requirements . . 292
10.2.3 Attack Model and Vulnerabilities from External

Interface Layer . 292
10.2.4 Attack Model and Vulnerabilities from Network

Layer . 293
10.2.5 Attack Model and Vulnerabilities from

Application Layer . 294
10.3 Overview of Intelligent Connected Vehicle Cybersecurity

Enhancement Countermeasures . 294
10.3.1 Hardware Security Module . 296

DOI: 10.1201/9781003155799-10 285

https://doi.org/10.1201/9781003155799-10

286 ■ Cybersecurity and High-Performance Computing Environments

10.3.2 Message Authentication . 297
10.3.3 Intrusion Detection System (IDS) 298

10.4 State-of-the-Art In-Vehicle Network Intrusion Detection
Approaches . 298
10.4.1 Feature-Based Observation Approaches 299
10.4.2 Statistical Analysis-Based Approaches 300
10.4.3 Artifcial Intelligence-Based Approaches 301

10.5 Summary and Future Research . 303
References . 304

10.1 INTRODUCTION

With the rapid development of information and communication
technology, more and more intelligent connected vehicles are entering
people’s lives. While intelligent connected vehicles bring safety,
efciency, comfort, and convenience to people’s travel, due to
the increase in external communication interfaces and bandwidth,
cybersecurity issues have become one of the key issues that intelligent
networked vehicles need to solve urgently.

10.1.1 Intelligent Connected Vehicle (ICV)

From the perspective of the network, as a mobile terminal in the Inter-
net of vehicles architecture, the intelligent connected vehicle (ICV) is a
heterogeneous, distributed, real-time system, as shown in Figure 10.1.
The in-vehicle electronic control units (ECUs) are connected via a
network bus such as controller area network (CAN), local interconnect
network (LIN) and FlexRay. The in-vehicle information exchange
between diferent networks is realized through gateways. The network
architecture presents the characteristics of heterogeneous, real-time,
safety-critical and cost-sensitive [1]. Therefore, its main features can
be summarized as follows:

1. Rich External Interfaces: With the development of vehicle
wireless communication technology (V2X, vehicle to everything),
intelligent networked vehicles have the characteristics of inter-
connection; that is, the vehicle will no longer be an independent
electronic system, but a mobile terminal under the framework of
Internet of vehicles. To realize the information exchange between

Intelligent Connected Vehicles ■ 287

Figure 10.1 The electronic system structure of the intelligent connected
vehicle from the network perspective.

vehicle and X (other vehicles, road, person, cloud computing
platform, etc.), it will be equipped with a wealth of external
communication interfaces (Bluetooth, GPS, 4G/5G, Wi-Fi, etc.).
At the same time, the increase in communication demand and the
abundance of external interfaces will lead to the diversifcation
of entry and forms of cyberattacks.

2. A Large Amount of Real-Time Data: In-vehicle infotainment
(IVI), electronic cockpit (e-cockpit), advanced driver-assistance
system (ADAS), autonomous driving driven by cameras, artifcial
intelligence (AI), and sensors (such as LiDAR and radar) will
generate a large amount of data that require real-time trans-
mission and processing. However, the existing in-vehicle network
protocol cannot meet its bandwidth requirements, and general-
purpose Ethernet (Ethernet) cannot provide deterministic delay
protection. In order to meet the ever-increasing bandwidth
requirements of automotive functions, in recent years, high-speed
vehicle network protocols with deterministic delay characteristics
have been developed rapidly, such as time-sensitive vehicle
Ethernet, FlexRay [2], and Ethernet TSN [3], among which
FlexRay is used in the drive-by-wire system to take advantage
of its deterministic time delay.

3. Heterogeneous Network Environment: For a long time, due to the
balance of cost and performance, automotive electronic systems
have been in a state of coexistence of multiple network protocols.

288 ■ Cybersecurity and High-Performance Computing Environments

G c

Figure 10.2 Intelligent connected vehicles’ decision-making framework.

Diferent network protocols are used in diferent functional
domains. For example, the FlexRay [2] is used as backbone, the
high-speed CAN [4] is used for power train and diagnosis systems,
and the low-cost LIN [5] is used for body control. These diferent
networks are interconnected through a gateway to build an overall
vehicle network architecture.

4. Lack of Cybersecurity Protection Mechanism: The traditional
vehicle is a relatively independent and closed individual, and
the in-vehicle network design did not consider external network
security threats at the beginning; that is, the existing network
protocol lacks basic security mechanisms (such as authentication,
encryption, and message authentication). Intelligent connected
vehicles’ decision-making framework is shown in Figure 10.2.
From the framework, we can fnd that due to the increase in
communication between the in-vehicle network and the external
network, the cybersecurity threats faced by intelligent networked
vehicles may come from various network layers. With the
development of the intelligent networked vehicle architecture, the
intelligent networked vehicle will be more like a mobile terminal
node. It is urgent to carry out research on the cybersecurity
enhancement technology of the terminal node of the ICVs to
improve cybersecurity.

Intelligent Connected Vehicles ■ 289

10.1.2 Contributions and Chapter Organization

This chapter provides the following contributions: review of the
cybersecurity issues in the ICV environment; evaluation of the current
cryptographic, authentication, and intrusion detection approaches used
for protecting ICV; and challenges and potential future research
directions for ICV cybersecurity. The contents of this chapter are
as follows: Section 10.2 reviews the cybersecurity issues in the ICV
environment. Section 10.3 summarizes and compares the current major
ICV cybersecurity enhancement countermeasures. In Section 10.4, we
introduce the current research status of intrusion detection for IVNs.
Section 10.5 summarizes the current trend and describes the future
outlook of intrusion detection for IVNs.

10.2 CYBERSECURITY ANALYSIS OF IN-VEHICLE NETWORK

The existing in-vehicle networks such as CAN and FlexRay lack
mechanism design at the beginning of the design, which makes the
in-vehicle network extremely vulnerable to diferent types of attacks
such as DoS (Denial-of-Service), fuzzing, spoofng and replay. Its
vulnerability is mainly refected in the following three aspects.

1) Weak Access Control: The physical layer of the in-vehicle network
is a twisted-pair or coaxial cable, which has the characteristics of
simple access and lack of abnormal access detection functions. It
is easy to be accessed illegally and cannot guarantee availability
and integrity.

2) No Data Encryption Guarantee: The internal message transmis-
sion is only encoded according to the function, and the lack of
encryption protection in terms of information security can easily
lead to theft and tampering of the message, and the authenticity
of the message cannot be guaranteed.

3) No Message Authentication Mechanism: Messages are only
calibrated by the message ID and used as a receiving flter,
which is vulnerable to attacks such as DoS (denial of service),
replay, and fuzzing. For example, the current CAN and FlexRay
specifcations only provide cyclic redundancy check (CRC) codes
for message integrity and error verifcation functions and lack a
node authentication mechanism.

290 ■ Cybersecurity and High-Performance Computing Environments

10.2.1 In-Vehicle Networks of ICV

Moreover, the in-vehicle network has the characteristics of hetero-
geneous, distributed, safety-critical and real-time. Its heterogeneity
not only is refected in the hardware platform, but also includes the
heterogeneity of the network [1]. A structure diagram of an in-vehicle
network composed of multiple functional domains interconnected
through a gateway is shown in Figure 10.3. In order to ensure functional
safety, intelligent networked vehicles require the vehicle network to
prioritize deterministic delay and hard real-time performance at the
data link layer and, at the same time, have a higher anti-interference
ability at the physical layer. In-vehicle networks can be divided into
two types: time-triggered (TT) and event-triggered (ET). TT refers
to the time point as the communication trigger condition, which is
generally realized by means of timing and time synchronization. ET
means that the communication trigger condition is the occurrence of a
certain event. For example, when an automobile airbag system detects
a collision event, the ECU where the trigger sensor is located sends
a data frame containing control parameters to detonate the airbag.

Figure 10.3 In-vehicle network structure diagram, which is composed of
multiple functional domains interconnected through gateways.

C

Intelligent Connected Vehicles ■ 291

The current time-triggered networks in vehicle networks mainly include
TTEthernet [6], TTP/C [7], and TTCAN [8]. The TT network has the
characteristics of high bandwidth and deterministic transmission delay,
which makes up for the lack of deterministic delay of the ET network.
It can be applied to the feld of wire-controlled braking, but it also
has high node deployment costs and relatively high system scalability.
ET-type networks such as LIN and CAN have better performance in
terms of fexibility, scalability and cost.

According to the diference in bandwidth and functional domain,
the Society of Automotive Engineers (SAE) classifes network protocols
into four categories: A, B, C, and D. As shown in Table 10.1, diferent
network protocols are diferent in node cost, bandwidth, minimum
response time, and scalability, and are suitable for diferent automotive
functional domains [9]. For example, Class A bus is generally used for
body control, such as luggage opening and closing, window control,
and other occasions with small data volume. As a new generation of
in-vehicle network protocol standard, FlexRay can be used in felds that
require high real-time and reliability of message transmission, such as
brake-by-wire. It is worth mentioning that FlexRay is a TT and ET
hybrid in-vehicle network.

TABLE 10.1 Classifcation of In-Vehicle Networks

Class Protocol
A LIN

B
Low-speed CAN

CAN2.0
TTP/A

High-speed CAN
TTP/C
CAN-FD

FlexRay
MOSTD
Ethernet

Safe-by-wire
Byte-fight

Domain
Vehicle body control
Body electronics

non-diagnostic and
safety-critical data
Transmission device

mobile device
diagnosis

wire control
Power train

chassis domain
Multimedia

(audio, video)
Safety-related
real-time and
reliable areas

Robustness Cost
Low Low

Medium Low

High Medium

High High

Low High

High High

292 ■ Cybersecurity and High-Performance Computing Environments

10.2.2 Vulnerabilities and Cybersecurity Requirements

The current in-vehicle network standard protocol CAN lacks message
authentication and data encryption mechanisms at the beginning of its
design. As more consumer electronic products can be easily accessed,
intelligent networked vehicles make automobiles become smart mobile
devices with wheels, and the advancement of software and data services
has gradually become the core competitiveness of automobiles. If the
research and deployment of in-vehicle network security enhancements
are not carried out in time, they will sufer from various malicious
attacks due to potential security vulnerabilities [10].

From the perspective of attack entry, in recent years, cybersecuiry
threats to automobiles can be divided into three implementation
methods: direct physical access attacks, short-range wireless attacks,
and long-range wireless attacks. As shown in Figure 10.4, direct
physical attacks are mainly through illegal access to CAN, OBD
diagnostic interfaces, etc. As shown in Figure 10.5, short-range wireless
attacks are mainly through illegal access of Bluetooth and wireless
sensor channels, and remote attacks are mainly through Wi-Fi and
mobile digital cellular network ports to achieve illegal access, as shown
in Figure 10.6.

10.2.3 Attack Model and Vulnerabilities from External Interface Layer

Attacks from the sensing layer (physical layer). With the development
of ICV technology, more and more smart sensors will be assembled on

Mobile communication

network

IVN

OBD port

Power train

domain

Infotainment

domain

Real-time, safety-

critical USB port

Wired connection method

Figure 10.4 Direct physical access attacks through USB, OBD-II, and
other interfaces.

Intelligent Connected Vehicles ■ 293

Non-contact connection

WiFi

IVN

Power train

domain

Infotainment

domain

Real-time, safety-

critical

Bluetooth channel

Figure 10.5 Short-range wireless access attacks through wireless inter-
faces such as Bluetooth and Wi-Fi.

Mobile communication

network

IVN

Power train

domain

Infotainment

domain

Real-time, safety-

critical

Network protocol

 conversion

Non-contact connection

Figure 10.6 Use of repeater to achieve remote intrusion and vehicle
control.

vehicles, such as LiDAR, millimeter-wave radar, cameras, and GPS,
which can collect external environment perception information and
provide the ability to perceive the environment for autonomous driving
decision making. Therefore, attacking the vehicle through the physical
layer will become a new threat to the security of the in-vehicle network.
For example, in Ref. [11], Rouf et al. proposed an attack that interfered
with the tire pressure monitoring system through a radio channel,
causing the vehicle tire pressure monitoring system to fail. In Ref. [10],
Tao et al. used a radio channel to achieve an attack on the keyless start
system and illegally started the target vehicle.

10.2.4 Attack Model and Vulnerabilities from Network Layer

Due to the lack of data encryption and message authentication
mechanisms in the in-vehicle network, once an attacker can access the

294 ■ Cybersecurity and High-Performance Computing Environments

network device, the attack can be easily carried out. The attack modes
of the data link layer include frame injection, frame forgery, frame
snifng, pause, and DoS attacks. The availability of the network will
be severely threatened. For example, Cho et al. implemented a DoS
attack on the data link layer of the vehicle CAN, which led to the
failure of the entire automotive electronic system [12].

10.2.5 Attack Model and Vulnerabilities from Application Layer

In recent years, there have been many reports on exploiting vulner-
abilities in external network interfaces and equipment to implement
remote network attacks on vehicles [13–15]. Attack entrances include
Bluetooth, OBD-II, and Wi-Fi. At the application layer of IVN,
attackers can conduct more targeted attacks that are not easily
detected, such as remotely controlling or braking a vehicle [16–18].
Since this type of attack has no illegal access to nodes and obvious data
frame anomalies, it is more difcult to detect. In response to this type
of attacks, researchers mainly focus on the design of intrusion detection
methods based on machine learning [11,19]. Currently, there are mainly
problems such as excessive consumption of computing resources, lack
of test data sets, and model evaluation.

10.3 OVERVIEW OF INTELLIGENT CONNECTED VEHICLE
CYBERSECURITY ENHANCEMENT COUNTERMEASURES

Cybersecurity is one of the problems that ICV needs to solve urgently.
However, due to the cost and real-time constraints of the in-vehicle
network, automotive electronic systems are sensitive to bandwidth and
computing resources, which results in many traditional information
security enhancement technologies that cannot be directly applied to
the in-vehicle network environment. In recent years, in response to
this problem, relevant researchers have carried out a series of research
work. As shown in Table 10.2, there are many classic methods, such
as encryption, digital signatures, and message authentication. The
method of data encryption can improve the integrity and correctness
of network message transmission, but faces the problem of balancing
security and computing resources. Message authentication can improve
the accuracy of network message transmission, but it mainly faces

TA
BL

E
10

.2

C
o
m
p
a
ri
so
n

 a
n
d

 A
n
a
ly
si
s
o
f I

n
-V

eh
ic
le

 N
et
w
o
rk

 S
ec
u
ri
ty

 E
n
h
a
n
ce
m
en

t
T
ec
h
n
o
lo
g
ie
s

T
e
ch

n
o
lo
g
y

N
e
tw

o
rk

 L
a
y
e
r

D
at
a
en
cr
y
p
ti
on

D
a
ta

 li
n
k

 la
ye
r

M
A
C

P
h
y
si
ca
l l
ay
er
, d

at
a
li
n
k

 la
ye
r

P
h
y
si
ca
l l
ay
er

ID

S

D
at
a
li
n
k

 la
ye
r

A
p
p
li
ca
ti
o
n

 la
y
er

R
e
p
re

se
n
ta

ti
v
e

 L
it
e
ra

tu
re

a
n
d

 T
e
ch

n
o
lo
g
y

L
ig
h
tw

ei
gh

t
A
E
S

 [2
0]

H
ar
d
w
ar
e
ca
rt
og
ra
p
h
ic

ac
ce
le
ra
ti
on

 m
o
d
u
le

 [2
1]

M
A
C

 d
ec
om

p
os
it
io
n

tr
an

sm
is
si
on

 [2
2]

T
E
S
L
A

 [1
7]

M
A
u
th
-C

A
N

 [2
3]

O
n
e-
w
ay

 h
as
h

 li
n
ke
d

 li
st

 [2
4]

O
n
e-
cl
as
s
S
V
M

 [2
5]

D
ee
p

 n
eu
ra
l n

et
w
or
k

 [2
6]

B
ay
es
ia
n

 n
et
w
or
k

 [2
7]

R
N
N
-L
S
T
M

 [2
8]

C
IA

S
ec
u
ri
ty

In
te
gr
it
y

C
or
re
ct
n
es
s

C
or
re
ct
n
es
s

A
va
il
ab

il
it
y

C
om

p
le
te
n
es
s

Intelligent Connected Vehicles ■ 295

296 ■ Cybersecurity and High-Performance Computing Environments

design constraints brought by network bandwidth. Intrusion detection
can enhance the protection of network availability and integrity.
The current main challenge is to improve detection accuracy and
robustness and to reduce false alarm rate and detection response
time. The remaining sections focus on the cybersecurity threats of in-
vehicle networks in the intelligent networked vehicle environment and
summarize the following three technologies.

10.3.1 Hardware Security Module

Encryption and authentication are widely used in the security feld
of communication channels, and this technology is also widely used
on in-vehicle network environments (where MAC technology has been
included in the AUTOSAR protocol specifcation). However, the
traditional message encryption and authentication technology faces the
problems of heterogeneous architecture, and limited bandwidth and
computing resources on in-vehicle network environment. Therefore, in
order to reduce the additional time overhead caused by encryption
operations, message authentication and encryption on in-vehicle
network usually adopt lightweight and hardware acceleration methods,
such as the use of programmable logic device for Advanced Encryption
Standard (AES), elliptic-curve ciphers, etc. For example, the use of pro-
grammable logic devices to implement the Advanced Encryption Stan-
dard (AES) arithmetic module to achieve the purpose of acceleration.
In [20], Hou et al. realized elliptic curve cryptography (ECC) operation
acceleration. In Ref.[21], Zelle et al. realized a tailored version of the
hash algorithm through the feld programmable gate array (PFGA). In
Ref. [22], Mertol transmitted multiple messages to one MAC, etc.

In view of the shortage of computing resources on in-vehicle network
environment and the additional time overhead caused by message en-
cryption for network communication, in Ref. [29], Wang et al. used the
addition of hardware modules to solve the problem of the calculation
time of the encryption algorithm, which efectively reduces the efect of
message encryption on the network. The disadvantage of performance
impact is that it will increase the cost of hardware deployment.

In order to deal with the vulnerabilities and attack models of
various vehicle-mounted ECUs, in Ref. [30], Siddiqui et al. proposed a
hardware-based secure and trusted framework. In addition, a two-way

Intelligent Connected Vehicles ■ 297

authentication and encryption technology based on lightweight physical
unclonable functions is implemented on the vehicle CAN. At the
same time, a lightweight security encryption algorithm for non-secure
communication channels is designed. Experimental results show that
the time overhead for sending an encrypted data frame at 1 Mbit/s
on-board CAN is 108 µs. In Ref. [31], Gu et al. optimized information
such as digital signatures and authentication codes through the
optimization of the message distribution layer from the level of
message encapsulation and scheduling, and distributed tasks to the
vehicle ECU, thereby reducing the impact of message encryption and
authentication on network time performance. At the same time, no
additional hardware cost overhead is generated, and its disadvantage
is that the network protocol is extremely complicated.

10.3.2 Message Authentication

In Ref. [32], Herrewege et al. proposed a variety of lightweight message
authentication protocols for in-vehicle CAN to protect vehicles from
camoufage attacks. In Ref. [23], Jo et al. designed a new authentication
protocol – MAuth-CAN, which can achieve a balance between the
network bandwidth consumption and the prevention of masquerading
attacks without modifying the CAN hardware controller. In addition, in
Ref. [24], Kang Ki Dong proposed a lightweight source authentication
protocol using a one-way hash chain in CAN, which has an attack elas-
tic tree algorithm and can be deployed through ECU frmware updates.
Analysis shows that the protocol has high security. The experimental
platform combined with virtual ECU (implementation on CANoe) and
FreescaleS12XF shows that the protocol has obvious advantages in
terms of authentication time, response time, and service delay.

The lightweight message authentication protocol design can solve
the problem of the lack of security authentication design of the CAN
protocol and ensure the authenticity of in-vehicle network communica-
tion. Considering the current in-vehicle network bandwidth resources
and message response time requirements, there exist problems in the
design of the existing message authentication protocol, and the main
challenge lies in how to improve the security of message authentication
while avoiding the reliability and real-time problems caused by message
scheduling due to communication bandwidth consumption.

298 ■ Cybersecurity and High-Performance Computing Environments

10.3.3 Intrusion Detection System (IDS)

Intrusion detection systems have the characteristics of small bandwidth
resources and easy deployment of existing vehicles and are more
suitable for resource- and cost-constrained in-vehicle networks. IDS can
be divided into host-based IDS and network-based IDS according to the
data source. According to the detection technology, it can be divided
into methods based on information theory and statistical analysis,
feature observation, machine learning, etc. In the following sections, we
will focus on the technical progress of intrusion detection technology
for in-vehicle networks.

10.4 STATE-OF-THE-ART IN-VEHICLE NETWORK INTRUSION
DETECTION APPROACHES

Compared with other cybersecurity enhancement methods such as data
encryption and message authentication. Intrusion detection has the
characteristics of small bandwidth resources and easy deployment of
existing vehicles. It is more suitable for in-vehicle networks with limited
resources and costs. According to the data source, intrusion detection
can be divided into host-based IDS and network-based IDS. According
to detection technology, it can be divided into methods based on
information theory and statistical analysis, detection methods based on
feature observation, and detection methods based on machine learning,
as shown in Figure 10.7. This chapter mainly focuses on the realization

Hamming

Figure 10.7 Classifcation of intrusion detection technologies for existing
in-vehicle networks.

Intelligent Connected Vehicles ■ 299

method of intrusion detection technology for in-vehicle networks. The
following will summarize and analyze the existing research work from
three diferent aspects.

10.4.1 Feature-Based Observation Approaches

Feature observation is one of the commonly used methods of intrusion
detection and is currently widely used in the research of intrusion
detection on in-vehicle networks [33]. Through the analysis of the in-
vehicle network architecture and network protocol, it is found that
the network features that can be used for intrusion detection and
observation mainly include device fngerprints (extracted by time-
domain and frequency-domain information) [34], clock ofset [35],
message period [36], and remote frame [37]. For example, in Ref. [38],
Zeng designed a vehicle-mounted CAN intrusion detection technology
based on Snort rules on the basis of fully analyzing the byte- and bit-
level characteristics of the CAN network and designed and implemented
a complete vehicle-mounted CAN intrusion detection technology. The
validity of abnormal rule detection is verifed by experiments.

In recent years, using the uniqueness of ECU electrical character-
istics to establish device fngerprint information has become a popular
method for tracing the source of in-vehicle network attacks and has
widely been used on in-vehicle network intrusion detection research.
This method was frst proposed by Cho et al. in [39], and then in Ref.
[40], Song et al. realized intrusion detection through the extraction
and statistics of network signal features. In Ref. [37], Lee et al. used
the return value delay and time interval of CAN network periodic
messages as the source of device fngerprint information and achieved
good detection results. In Ref. [28], Yang et al. used the RNN-LSTM
classifer to construct the ECU fngerprint signal in the frequency
domain. Experiments show that this method can efectively detect
fooding attacks. In Ref. [41], Ning and Liu proposed a LOF-based
attack detection scheme, which uses the voltage physical characteristics
of the CAN frame to determine whether the message is sent by a
legitimate electronic control unit (ECU). The proposed algorithm has
low time and space complexity. Experimental data obtained under real
in-vehicle network environment show that the recognition accuracy of
specifc attack models can reach more than 98%.

300 ■ Cybersecurity and High-Performance Computing Environments

Methods based on the observation of network characteristics can
often achieve high detection accuracy for specifc attack models,
with short response time and low network bandwidth overhead [42].
However, considering the characteristics of the long life cycle of
automobiles (about 20 years) and the dynamic changes of the network
environment, the robustness and adaptive ability of detection methods
need to be further strengthened.

10.4.2 Statistical Analysis-Based Approaches

By collecting 667.3 million CAN messages and analyzing the
information entropy, it is found that the average value of the
information entropy in the vehicle CAN network is 11.436 [29]. When
malicious attacks occur (such as DoS and replay), the information
entropy of the vehicle CAN network will be signifcantly reduced. This
feature is widely used in resource-constrained vehicle network intrusion
detection research [43–45]. For example, in Ref. [43], Marchetti et al.
evaluated intrusion detection algorithms for vehicle networks based
on information theory, and their research found that using a single
information theory model can only be efective against a single fooding
attack in vehicle network intrusion detection and evaluation. In Ref.
[44], Muter and Asaj used the concept of information entropy for the
intrusion detection of vehicle-mounted network for the frst time and
limited the evaluation range of information entropy to CAN message
ID. Using this feature, the intrusion state can be quickly detected.
For identifcation, it has the characteristics of short detection response
time (the fastest intrusion attack can be found within 0.01 ms). In
Ref. [42], Wu et al. proposed a sliding window strategy based on
a fxed number of messages. Compared with the traditional sliding
window strategy with a fxed time window, this scheme can efectively
avoid the problem of the on-board CAN network. The improved
method efectively solves the problem of information entropy jitter
caused by periodic messages. Experiments show that this scheme can
efectively improve the detection accuracy of intrusion detection for
vehicle network based on information entropy in response to fooding
and replay attacks, and the detection response time is evaluated.

Qin et al. carried out a series of research works on vehicle network
anomaly detection using the method of information theory. First of

Intelligent Connected Vehicles ■ 301

all, in Ref. [46], their theoretical analysis and experiments proved the
efectiveness of using information entropy to detect attacks such as
replay and fooding on the in-vehicle CAN network. Then in Ref. [47],
Yan improved CAN bus anomaly detection method based on Renyi
information entropy, which efectively improved the detection accuracy,
but is still limited to the detection of replay and fooding attack models.
In addition, in Ref. [48], a CAN message anomaly detection method
based on the random forest model was proposed and a large amount of
data collected by real vehicles were used to construct the random forest
classifcation algorithm for many adjustments. Experiments show that
appropriate network feature parameters have a signifcant impact on
improving the efectiveness of vehicle network anomaly detection.

The existing research on vehicle network intrusion detection
methods based on information theory often ignores the impact of
vehicle network information entropy jitters caused by diferent states
of vehicles on the detection results. The detection model has high
detection accuracy under limited vehicle states, but the robustness to
diferent vehicle states needs to be improved. These problems cause
such methods to fail to meet the current Automotive Safety Integrity
Level (ASIL) and high-level security requirements. Therefore, the
optimization of in-vehicle network intrusion detection algorithm for
state awareness by sensing vehicle state is worthy of future research.

10.4.3 Artificial Intelligence-Based Approaches

Machine learning, neural network, and other theories have also become
popular directions for research on intrusion detection technology for
in-vehicle networks [49–51]. For the frst time, in Ref. [25], Andreas
et al. proposed to use an SVM with a radial basis function (RBF)
kernel to learn baseline normal behavior and classify deviations as
anomalies. The generated classifer is suitable for message time series.
Later, in Ref. [26], Kang and Kang designed a vehicle network
intrusion detection technology that uses a deep neural network (DNN).
By training the vehicle network packet messages exchanged between
ECUs, low-dimensional features are extracted and used to distinguish
normal and hacker groups. In Ref. [27], the author uses the Bayesian
network method to quickly identify malicious message attacks on the
CAN network and uses CARLA to simulate CAN network messages in

302 ■ Cybersecurity and High-Performance Computing Environments

Figure 10.8 Artifcial intelligence-based IDS for IVNs.

various operating states of real cars. Its shortcoming lies in its detection
accuracy, only 86%, which resulted in the inability to meet the func-
tional safety-critical requirements of the ISO26262 specifcation [52].

The experimental results of the above methods show that machine
learning has a good efect on the intrusion detection of unknown attack
models in the vehicle network. As shown in Figure 10.8, the artifcial
intelligence-based IDS used for IVNs needs to process a large amount of
data in real time, which places higher requirements on the computing
resources and network bandwidth of the automotive electronic system.
However, in the in-vehicle network environment, due to the limitations
of computing, storage, and communication bandwidth, how the existing
machine learning-based intrusion detection method can reduce the
computational complexity and the consumption of the in-vehicle
network communication bandwidth is a problem that needs to be
further solved. At the same time, the intrusion detection system is
also required to improve the detection accuracy, reduce the false alarm
rate, and reduce the detection response time. Improving the robustness
of the system is also the direction that the intrusion detection
system needs to be further improved. Moreover, for Automotive
Cyber-Physical Systems (ACPS), due to its key functional safety
attributes, the authenticity and reliability of the network are the most
important information security requirements. In order to solve the
above problems, it is urgent to carry out research on intrusion detection
model and algorithm design of in-vehicle networks.

Intelligent Connected Vehicles ■ 303

10.5 SUMMARY AND FUTURE RESEARCH

In recent years, the security of the ICV has aroused widespread
concern in the industry and academia. One of the focuses is the
development of anti-attack algorithms and architectures around the
vehicle network. Combining the development trend of intelligent
networked vehicles mentioned above and the latest research progress
in the current in-vehicle network security, this chapter further puts
forward some open issues in the feld of intelligent networked vehicle
cybersecurity. Regarding the security issues of the intelligent networked
vehicle network, some open issues and future research directions are
summarized as follows.

1. How to improve the accuracy of intrusion detection and reduce
the response time? The failure to detect malicious attacks on the
vehicle network in time brings serious functional security threats.
Intrusion detection is used as an important means of enhancing
the cybersecurity of intelligent networked vehicles to improve
detection accuracy, reduce false alarm rate, shorten detection
response time, and improve system robustness. It is one of the
most urgent problems to be solved in the research of intrusion
detection technology for in-vehicle network in the future.

2. How to achieve accurate network security testing and evaluation?
Due to the increasing complexity of heterogeneous software and
hardware components used in intelligent networked vehicles in
the future, new attacks against in-vehicle networks will continue
to appear. The complexity of these new components and on-board
systems brings more challenges to the development of efcient
and adaptable on-board cybersecurity mechanisms, but also
brings difculties to cybersecurity testing and verifcation; for
example, to verify an intrusion detection model and algorithms,
it is necessary to simulate the vehicle network information fow in
the case of cyberattacks in the real vehicle network environment.
The acquisition and generation of test data will further afect the
accuracy and efect of detection. How to evaluate the security of
the in-vehicle networks has not yet formed a unifed solution.

3. How to deal with unknown cyberattacks on ICVs? Taking into
account the characteristics of the long life cycle of automobiles

304 ■ Cybersecurity and High-Performance Computing Environments

(about 20 years) and the dynamic changes of the network
environment, there are three main problems in the existing
research. The frst is that the detection method often corresponds
to a specifc attack model, the second is that the robustness of
the detection efect is not strong (there are many prerequisites,
and the perception of the state of the vehicle is lacking), and
the third is the lack of evaluation of the detection response time
and functional safety. In view of the impact, considering the
key attributes of ACPS functional safety, it is urgent to solve
the above problems through optimization research of intrusion
detection models and algorithms, so as to avoid serious safety
crisis of intelligent networked vehicles caused by cybersecurity
problems.

REFERENCES

[1] Wufei Wu. Research on intrusion detection and cybersecurity enhance-
ment design for new in-vehicle network environment. PhD thesis, Hunan
University, 2018.

[2] Robert Shaw and Brendan Jackman. An introduction to fexray as an
industrial network. In 2008 IEEE International Symposium on Industrial
Electronics, pp. 1849–1854, Cambridge, 2008.

[3] Lin Zhao, Feng He, Ershuai Li, and Jun Lu. Comparison of time sensitive
networking (TSN) and ttethernet. In 2018 IEEE/AIAA 37th Digital
Avionics Systems Conference (DASC), pp. 1–7, London, 2018.

[4] Bosch. Can specifcations. 1991.

[5] AUTOSAR. Specifcation of lin interface. 2017.12.

[6] Miladin Sandic, Bogdan Pavkovic, and Nikola Teslic. Ttethernet mixed-
critical communication: Overview and impact of faulty switches. IEEE
Consumer Electronics Magazine, 9(4):97–103, 2020.

[7] Howard Curtis and Robert France. Time triggered protocol (ttp/c): A
safety-critical system protocol, 1999.

[8] B.T. Fijalkowski., 2011. Time Triggered Controller Area Networking.
Springer, Netherlands, 2011.

[9] Xuezhe Wei, Zhechang Sun and Juexiao Chen. Classifcation method
of networks in automotive and developing trend of corresponding main
protocols. Journal of Tongji University, 6:762–766, 2004.

Intelligent Connected Vehicles ■ 305

[10] Internet of Vehicles Network Security Committee. White paper on
Internet of vehicles network security. Internet of Vehicles Network
Security Committee, China, 2016.

[11] Ishtiaq Rouf, Rob Miller, Hossen Mustafa, Travis Taylor, Sangho
Oh, Wenyuan Xu, Marco Gruteser, Wade Trappe, and Ivan Seskar.
Security and privacy vulnerabilities of in-car wireless networks: A tire
pressure monitoring system case study. In Proceedings of Usenix Security
Symposium,pp. 323–338, Washington, DC, August 11–13, 2010.

[12] Kyong-Tak Cho and Kang G. Shin. Error handling of in-vehicle networks
makes them vulnerable. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security CCS’16,
pp. 1044–1055, New York. Association for Computing Machinery, 2016.

[13] Ian Foster, Andrew Prudhomme, Karl Koscher, and Stefan Savage.
Fast and vulnerable: A story of telematic failures. In 9th USENIX
Workshop on Ofensive Technologies (WOOT 15), Washington, DC.
USENIX Association, August 2015.

[14] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel,
Tadayoshi Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor,
Danny Anderson, Hovav Shacham, and Stefan Savage. Experimental
security analysis of a modern automobile. In 2010 IEEE Symposium on
Security and Privacy, pp. 447–462, Oakland, CA, 2010.

[15] Joey Sun, Shahrear Iqbal, Najmeh Seifollahpour Arabi, and Mohammad
Zulkernine. A classifcation of attacks to in-vehicle components (IVCS).
Vehicular Communications, 25:100253, 2020.

[16] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson,
Hovav Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska
Roesner, and Tadayoshi Kohno. Comprehensive experimental analyses
of automotive attack surfaces. In 20th USENIX Security Symposium
(USENIX Security 11), San Francisco, CA, USENIX Association, August
2011.

[17] Keen Security Lab. Car hacking research: Remote attack tesla motors,
2017.

[18] Samuel Woo, Hyojin Jo, and Dong Hoon Lee. A practical wireless attack
on the connected car and security protocol for in-vehicle can. IEEE
Transactions on Intelligent Transportation Systems, 16(2):993–1006,
2015.

[19] Adrian Taylor, Sylvain Leblanc, and Nathalie Japkowicz. Anomaly
detection in automobile control network data with long short-term
memory networks. In IEEE International Conference on Data Science
and Advanced Analytics, pp. 130–139, Montreal, QC, 2016.

306 ■ Cybersecurity and High-Performance Computing Environments

[20] Shuo Hou and Feng Luo. Cyberattacks and countermeasures for intel-
ligent and connected vehicles. Cars-Electronic and Electrical Systems,
12(1):55–66, 2019.

[21] Zelle Daniel and Gürgens Sigrid. A hardware based solution for freshness
of secure onboard communication in vehicles. In InComputer Security,
pp. 53–68, Berlin, DE. Springer, 2018.

[22] Sarp Mertol. Secure message authentication protocol for CAN. PhD
thesis, Middle East Technical University, Ankar, Turkey, 2020.

[23] Hyo Jin Jo, Jin Hyun Kim, Hyon Young Choi, Wonsuk Choi, Dong Hoon
Lee, and Insup Lee. Mauth-can Masquerade-attack-proof authentication
for in-vehicle networks. IEEE Transactions on Vehicular Technology,
69(2):2204–2218, 2020.

[24] Kang Ki Dong. A practical and lightweight source authentication protocol
using one-way hash chain in can. Master thesis, DGIST University, 2017.

[25] Andreas Theissler. Anomaly detection in recordings from in-vehicle
networks. Big Data and Applications, 3:23–29, 2014.

[26] Min-Ju Kang and Je-Won Kang. A novel intrusion detection method
using deep neural network for in-vehicle network security. In 2016 IEEE
83rd Vehicular Technology Conference (VTC Spring), pp. 1–5, Nanjing,
China, 2016.

[27] Mario Casillo, Simone Coppola, Massimo De Santo, Francesco Pascale,
and Emanuele Santonicola. Embedded intrusion detection system for
detecting attacks over can-bus. In 2019 4th International Conference on
System Reliability and Safety (ICSRS), pp. 136–141, 2019.

[28] Yun Yang, Zongtao Duan, and Mark Tehranipoor. Identify a spoofng
attack on an in-vehicle can bus based on the deep features of an ECU
fngerprint signal. Smart Cities, 3(1):17–30, 2020.

[29] Wang Eric, Xu William, Sastry Suhas, Liu Songsong, and Zeng
Kai. Hardware module-based message authentication in intra-vehicle
networks. In Proceedings of the 8th International Conference on Cyber-
Physical Systems, pp. 207–216. ACM, 2017.

[30] Ali Shuja Siddiqui, Yutian Gui, Jim Plusquellic, and Fareena Saqib.
Secure communication over canbus. In 2017 IEEE 60th International
Midwest Symposium on Circuits and Systems, pp. 1264–1267, Boston,
MA. IEEE Press, August 2017.

[31] Zonghua Gu, Gang Han, Haibo Zeng, and Qingling Zhao. Security-
aware mapping and scheduling with hardware co-processors for fexray-
based distributed embedded systems. IEEE Transactions on Parallel and
Distributed Systems, 27(10):3044–3057, 2016.

Intelligent Connected Vehicles ■ 307

[32] Anthony Van Herrewege, Dave Singelee, and Ingrid Verbauwhede.
Canauth-a simple, backward compatible broadcast authentication pro-
tocol for can bus. In ECRYPT Workshop on Lightweight Cryptography,
vol. 2011, Louvain-la-Neuve, Belgium, 2011.

[33] Wufei Wu, Renfa Li, Guoqi Xie, Jiyao An, Yang Bai, Jia Zhou, and
Keqin Li. A survey of intrusion detection for in-vehicle networks. IEEE
Transactions on Intelligent Transportation Systems, 21(3):919–933, 2020.

[34] Kyong-Tak Cho and Kang G. Shin. Fingerprinting electronic control
units for vehicle intrusion detection. In Proceedings of the 25th USENIX
Conference on Security Symposium SEC’16, pp. 911–927. USENIX
Association, Austin, TX, 2016.

[35] Subir Halder, Mauro Conti, and Sajal K. Das. Coids: A clock ofset based
intrusion detection system for controller area networks. In Proceedings
of the 21st International Conference on Distributed Computing and
Networking, ICDCN 2020, New York. Association for Computing
Machinery, 2020.

[36] Cao Yongwei. Researh and design of intrusion detection. PhD thesis,
Chongqing University of Posts and Telecommunications, 2019.

[37] Hyunsung Lee, Seong Hoon Jeong, Huy Kang Kim. OTIDS: A novel
intrusion detection system for in-vehicle network by using remote frame.
2017 15th Annual Conference on Privacy, Security and Trust (PST)
IEEE, 2018.

[38] Fan Zeng. Research and implementation of networked vehicle intrusion
detection system. PhD thesis, University of Electronic Science and
Technology of China, 2018.

[39] Kyong-Tak Cho and Kang G. Shin. Viden: Attacker identifcation on in-
vehicle networks. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, pp. 1109–1123,
Dallas, TX, October 30 to November 03, 2017.

[40] Hyun Min Song, Ha Rang Kim, and Huy Kang Kim. Intrusion detection
system based on the analysis of time intervals of can messages for
in-vehicle network. In 2016 International Conference on Information
Networking (ICOIN), pp. 63–68. IEEE, Kota Kinabalu, Malaysia, 2016.

[41] Jing Ning and Jiajia Liu. An experimental study towards attacker iden-
tifcation in automotive networks. In 2019 IEEE Global Communications
Conference (GLOBECOM), pp. 1–6, Waikoloa, HI, 2019.

[42] Wufei Wu, Yizhi Huang, Ryo Kurachi, Gang Zeng, Guoqi Xie, Renfa Li,
and Keqin Li. Sliding window optimized information entropy analysis
method for intrusion detection on in-vehicle networks. IEEE Access,
6:45233–45245, 2018.

308 ■ Cybersecurity and High-Performance Computing Environments

[43] Mirco Marchetti, Dario Stabili, Alessandro Guido, and Michele Cola-
janni. Evaluation of anomaly detection for in-vehicle networks through
information-theoretic algorithms. In 2016 IEEE 2nd International Forum
on Research and Technologies for Society and Industry Leveraging a
Better Tomorrow (RTSI), pp. 1–6, Bologna, Italy, 2016.

[44] Michael Müter and Naim Asaj. Entropy-based anomaly detection for in-
vehicle networks. In 2011 IEEE Intelligent Vehicles Symposium (IV), pp.
1110–1115, Baden-Baden, German, 2011.

[45] Franco van Wyk, Yiyang Wang, Anahita Khojandi, and Neda Masoud.
Real-time sensor anomaly detection and identifcation in automated
vehicles. IEEE Transactions on Intelligent Transportation Systems,
21(3):1264–1276, 2020.

[46] Yu He, Qin Hegui, Sun Minghui, yan Xin, and Wang Xuanze. On-board
can bus network security issues and anomaly detection methods. Journal
of Jilin University(Engineering and Technology Edition), 46(04):2016–
1253, 2016.

[47] Yan Xin. CAN bus anomaly detection method based on Renyi
information entropy. PhD thesis, Jilin University, 2017.

[48] Wu Lingyun, Qin Guihe, and Yu He. Anomaly detection method of
vehicle can bus based on random forest. Journal of Jilin Univer-
sity(Engineering and Technology Edition), 56(3):663–668, 2018.

[49] Yi Wang, Dan Wei Ming Chia, and Yajun Ha. Vulnerability of deep
learning model based anomaly detection in vehicle network. In 2020
IEEE 63rd International Midwest Symposium on Circuits and Systems
(MWSCAS), pp. 293–296, Springfeld, MA, 2020.

[50] Yubin Lin, Chengbin Chen, Fen Xiao, Omid Avatefpour, Khalid Alsubhi,
and Arda Yunianta. An evolutionary deep learning anomaly detection
framework for in-vehicle networks - can bus. IEEE Transactions on
Industry Applications, pp. 1–1, 2020.

[51] Zadid Khan, Mashrur Chowdhury, Mhafuzul Islam, Chin-Ya Huang, and
Mizanur Rahman. Long short-term memory neural network-based attack
detection model for in-vehicle network security. IEEE Sensors Letters,
4(6):1–4, 2020.

[52] ISO. Road vehicles-functional safety, ISO 26262. International Organiza-
tion for Standardization in ISO 26262, 2011.

C H A P T E R 11

Toward Robust Deep
Learning Systems
against Deepfake for
Digital Forensics
Hongmei Chi and Mingming Peng
Florida A&M University

CONTENTS

11.1 Introduction . 310
11.2 Background . 311
11.3 Deepfake Forensics . 312

11.3.1 Limitations in Digital Forensic Processes 315
11.3.2 Limitations in Digital Forensic Methods 315

11.3.2.1 Technical Response and Future 315
11.4 Related Work . 316

11.4.1 Detecting in Pixel Level . 316
11.4.2 Subtle Diference Collecting . 318
11.4.3 Modifying the Architecture of CNN 319
11.4.4 Obtaining Fingerprint of GANs 320
11.4.5 Deepfake Video Forensic Methods 321
11.4.6 Datasets . 321
11.4.7 Software for Deepfake Forensics 322
11.4.8 Challenges . 322

11.5 Approach to Deepfake Forensics . 323
11.5.1 Application Overview . 323
11.5.2 Application Design . 324
11.5.3 Model Training and Application Deployment 326

11.6 Conclusions and Future Work . 328
References . 329

DOI: 10.1201/9781003155799-11 309

https://doi.org/10.1201/9781003155799-11

310 ■ Cybersecurity and High-Performance Computing Environments

11.1 INTRODUCTION

The past three years witnessed a fourishing development of deepfake
technology and deepfake products. As an open-source, low-cost, high-
fun technology, deepfake closely integrates with the rapid development
of social media and mobile economy and has quickly become a
threat to challenge the law, personal privacy, and even national
security. The booming of this technology has alerted law enforcement
and practitioners. The past president of Society of Police Futurists
International Joseph Schafer [2] has written about his concerns that it
will profoundly implicate the policing if people could control the video
with the help of deepfake technology. He mentioned that deepfake users
could easily eliminate citizen’s resistance in a video of police use of
force. He calls for attention and action on deepfake issues among the
law enforcement “before matters escalate beyond mitigation”.

Deepfakes pose a potential threat to the digital forensics process
given that video/audio evidence of an individual might be legally
admissible. But in reality, the video/audio evidence might be fake. Our
law enforcement cybersecurity workforce are not prepared for those big
cybersecurity challenges yet. Students have a big learning curve for
understanding how deepfake works. Figure 11.1 shows that deepfakes
are related to computer vision, GAN, a machine learning algorithm,
and other disciplinary. Students have to be guided to master basic
concepts before they can follow how deep learning algorithms works
in deepfakes. This chapter presents an integration of deepfake leaning
modules and a set of deepfake hands-on labs into the cybersecurity
curriculum, introducing students to this area while providing them
with adequate knowledge and skills that can be used to grasp detection
algorithms.

Figure 11.1 Deepfake main components.

Robust DL Systems for Deepfake Detection ■ 311

This rest of this chapter is organized as follows: Section 11.1 intro-
duces the concept of deepfake. Section 11.2 brings the background of
deepfake technology. Section 11.3 describes how the deepfake challenges
digital forensics. Section 11.4 introduces several popular deepfake de-
tection/forensic methods with their limitations. Section 11.5 proposed
an approach for building an app to detect fake image digital evidence.
Conclusions and future work are presented in Section 11.6.

11.2 BACKGROUND

As an irresistible trend of this century, artifcial intelligence has
become an important power of technology development. It has brought
the world with wealth and opportunity, but also some new threats.
Deepfake is a rapidly evolving technology that uses machine learning
to fabricate images, audio, or video that are very difcult to be detected
by humans. The technology has wide medical and entertainment
applications. For instance, it is allowing people to get high-quality
movies and entertainment efects at a lower cost. However, it also
becomes a critical concern for individuals, celebrities, and politicians.
The U.S. House of Representatives Intelligence Committee held an
open hearing in 2019 to discuss artifcial intelligence and consider
deepfake as a threat to individuals and national security, because we
still lack reliable detection tools to identify deepfaked products. Hany
Farid, the image forensics expert who created PhotoDNA, explained,
“we’re decades away from having forensic technology that [could]
conclusively tell a real from a fake” [3].

One Dutch company, DeepTrace, has done an investigation into
deepfakes and released a report in 2019 showing that the number of
deepfake videos has doubled in the frst seven months of 2019. One
of the most famous cases that this technique may trigger happened
in Gabon 2019, and an attempted coup has sparked by a suspected
deepfake video. The president of Gabon Ali Bongo has not been seen
in public for a long time because of health problems. People in that
country were growing suspicious about the president’s well-being. On
January 1, the government released the president’s customary New
Year’s address. But the authenticity of the video has widely been
questioned. Some people observed that his eyes were barely able to
move during the video, so this video may probably be a product

312 ■ Cybersecurity and High-Performance Computing Environments

of deepfake technology, and the president could have been dead.
Others, however, believe that these weird expressions are because the
president had sufered a stroke. They consulted a digital forensics
expert; however, he said that he could not give a defnitive assessment
although he thought something was wrong [4]. The reason for this
controversy has an obvious relationship to the fow in digital forensics
study. When technical experts are unable to authenticate such digital
evidence, rumors and conficts have space to grow.

11.3 DEEPFAKE FORENSICS

As new technology in machine learning and artifcial intelligence,
deepfake relies on neural networks that analyze large sets of data
samples to learn to mimic human facial expressions, mannerisms,
voice, and infections [5]. In the process of neural network training,
programmers can fully control the shape of the network by selecting
diferent algorithms, defning how many layers, how many nodes in each
layer, and how they are connected, and giving the learning rate and the
bias. The process of training the neural network is actually the way we
calculate the loss between the value generated by the neural network
and the target, and then trying to reduce (optimize) this loss through
iterations. The global market for smart machines is expected to exceed
15 billion by 2019, with an average annual growth rate of nearly 20% [6].

Generative adversarial networks, or GANs for short, are the most
popular approach for deepfake image generation. The original GAN
was proposed by Goodfellow in 2014 [7]. In this algorithm, we will
train two models for a two-player game. The generator is responsible
for fake images generation. It will generate random or specifc images
based on algorithmic rules and input the images into the discriminator
for identifcation. While accepting the false images generated by these
generators, the discriminator also receives the real images with labels.
Then the discriminator is going to determine how similar these false
images to the real images and outputs the prediction. Until now, there
have been more than 500 variants of GAN. Unlike previous technologies
that have been used in forge video, audio, and image, deepfake has
advantages on the way of rapid popularization. First, the forgery
of video, audio, and image in the past requires diferent tools and
methods. However, if one knows the way how to produce a deepfaked

Robust DL Systems for Deepfake Detection ■ 313

image, one can understand the rest by analogy. Because they all use
similar algorithms and knowledge and tools to forgery video, audio,
and image.

At the same time, the cost for a person to manipulate deepfake
is getting lower. Most machine learning courses are freely available
online. For example, YouTube can provide free deep learning video
resources from college video courses to YouTube’s code case study.
There is also a project-learn with Google AI that can ofer a slightly
more in-depth course from Google ofered through Udacity. What’s
more, most of the algorithms and databases used for deepfake are
open source. It reduces the barrier to entry and allows more people
to develop the algorithm of deepfake. All of the listed reasons have
contributed to a wide application of this technology. Some of these
applications will have benign efects on society. And some are likely
to be used to harm the country community or individuals. Deepfake
technology can manipulate multiple types of activities on video, audio,
and images, such as prosthetic body movements, adding and removing
objects, realistic fake face photos, and face-swapping. Figure 11.2 shows
what we usually do with the deepfake technology.

Digital forensics is the study that has been used to collect criminal
analysis evidence in cyberspace. Traditionally, we defne digital foren-
sics as dealing with the use of scientifcally derived and proven methods
toward the preservation, collection, validation, identifcation, analysis,
interpretation, documentation, and presentation of digital evidence
derived from digital sources for the purpose of facilitation or furthering
the reconstruction of events found to be criminal, or helping to antici-
pate unauthorized actions shown to be disruptive to planned operations
(Digital Forensics Research Workshop). The current investigative
process of digital forensics can be divided into four stages. They are
preservation-freezing the crime scene, collection-fnding related digital
information, examination-in-depth systematic search, and analysis-
get conclusion. Figure 11.3 shows the four stages of digital forensic
processes. The evidence of criminal behavior caused by deepfake
technology should belong to the research scope of digital forensics.

As important digital evidence, images have always been considered
as a research target for digital forensics. However, existing examination
and analysis techniques and tools cannot support the identifcation of
fake images produced by deepfake algorithms.

314 ■ Cybersecurity and High-Performance Computing Environments

Figure 11.2 Deepfake technology currently enables these forms of
manipulation.

Figure 11.3 Four stages of digital forensic processes.

Robust DL Systems for Deepfake Detection ■ 315

11.3.1 Limitations in Digital Forensic Processes

Deepfake generation and deepfake forensics will always be a pair
of chasing and competing rivals. Although there exist considerable
detection/forensic methods, these methods are still not efective in
accuracy, efciency, and coverage scenario, which makes those detection
methods easily destroyable by the rapid upgrading of GAN algorithm.
So, we still lack reliable tools for deepfake forensics.

The premise behind the current digital forensics process is that all
the images are obtained from the real world. The purpose of forensics
is to fnd evidence that criminals modifed those images. However,
detecting if the images are generated from a deepfake model, is not
required in any of the digital forensic stages.

11.3.2 Limitations in Digital Forensic Methods

Existing examination and analysis techniques and tools cannot
support the identifcation of fake images produced by deepfake
algorithms. Those methods used for digital forensics are search,
event reconstruction, and time analysis. In searching, we use manual
browsing or automated searches to collect information. The method
of reconstructing past events: such as analysis log, system, and fle
attribute analysis, is necessary to any digital forensic analysis. The
time analysis is to focus on time stamp of any fle. It is using time-
bounding and dynamic time analysis to verify the authenticity of time
stamp. However, the human face image created by deepfake model is
a virtual character rather than a partially modifed image based on
a real person picture. These methods cannot be applied to deepfake
detection. In terms of image acquisition, the methods and tools for
image acquisition are mainly designed for physical equipment such as
the camera. For example, by tracking the design and manufacturing
features on each lens, we can fnd the modifcations. By capturing the
sensor pattern noise of images, we can correlate it with the RPNU of
each device. However, all these methods cannot be used to detect the
fake image generated from a training model.

11.3.2.1 Technical Response and Future

The academic and business communities are gradually becoming aware
of the shortage of deepfake detection. They are encouraging people to

316 ■ Cybersecurity and High-Performance Computing Environments

understand deepfake and explore related detection methods through
various competitions.

One of the famous competitions is the “deepfake detection
challenge”, which is founded by Amazon, Microsoft, Facebook, and
Partnership on AI. The reward of this challenge is as high as 1 million
dollar. The committee is composed of professors in universities such
as Cornell University, University of Maryland, and UC Berkeley as
committee members and public media, such as the New York Times
and XPRIZE. In addition, the Pentagon was taking action to contain
damages that arise from this technology. In 2018, a program called
MediFor was invested by the DARPA. The program aims to develop
technologies to assess the integrity of images and videos.

11.4 RELATED WORK

The boom of GAN algorithms has brought a lot of problems in
detecting fake images generated from GAN. However, researchers have
also proposed a variety of detection methods for detecting deepfake
images generated from GAN. Generally speaking, we can divide the
ideas of their detection methods into four categories.

11.4.1 Detecting in Pixel Level

These methods are inspired by the traditional image digital forensics
thought, trying to fnd the statistical diference on RGB channels
between the real images and fake images.

Manjunath et al. [8] proposed a method to detect fake images
generated from the GAN algorithm by using co-occurrence matrices.
This detection method was inherited from the steganalysis, which
studies fnding digital information hidden in an image, in the
traditional image digital forensics. They frst compute pixel co-
occurrence matrices on the three-color channels and then pass it to
a convolutional neural network (CNN) to train a model. By studying
the residuals of the high-pass-fltered images and then extracting co-
occurrence matrices on these residuals, they can create a feature
vector to detect the images generated from the GAN model. In
summary, the key point of their method is looking for the statistical
deviations between the real images and the fake images. By the way,

Robust DL Systems for Deepfake Detection ■ 317

the co-occurrence matrix is also widely used in the recommendation
system. They validated their method by using two datasets – StarGAN
and CycleGAN, and both of the results show good accuracy.

McCloskey and Albright [9] noticed two diferences between the
images generated by the GAN generator and those taken from the
camera. First, the weights bias of multi-channel internal representation
in the generator is diferent from the analogous spectral sensitivities in
a camera for the generator didn’t need to count photons. Therefore,
the generator allows negative weights, which the camera never allows.
What’s more, the spectral response functions in a real camera have
limited overlap. However, the generator has no limitation on this. In
addition, images taken from a camera usually have saturation or under-
exposure regions. However, the GAN images do not have these regions
for the normalizations applied in the generator. This fnding suggests a
straightforward GAN images forensics method. And their experiments
also proved their forensics method based on detecting over-exposed
pixel frequencies to be very efective.

Li et al. [10] observed that compared to the real images, the
deepfake image is more diferentiable in chrominance components.
First, the disparities between deepfake images and real images show
deepfake images are diferent from the real ones when considering red,
green, and blue components together. Besides, deepfake images are
diferent from real images, especially in the chrominance components
of color spaces, for example, HSV and YCbCr. Base on the observation,
they proposed a detection method that captures features on color
images and used statistics to detect the deepfake images and then
to evaluate their solution in three detection scenarios: sample-aware,
model-aware, and model-unaware. The experimental results show that
the proposed features equipped with a binary classifer can efectively
diferentiate between deepfake images and real images when DNG
samples or generative models are available.

Zhao et al. [11] observed that deepfake images are blended by
patches from multiple sources with distinct source features (in-camera
features and forgery features), and these cues are still preserved after
being stitched into deepfake images. So they proposed a patch-wise
consistency learning branch and built an inconsistency image generator
to provide the pixel-level annotations to the model to compute a
pair-wise similarity between patches from diferent sources.

318 ■ Cybersecurity and High-Performance Computing Environments

11.4.2 Subtle Difference Collecting

Zhang et al. [12] proposed the frst method of swapped image detection.
And they believe this method can directly be used to enhance the
security of some existing systems as an authenticity predictor. In their
research, they created a dataset with labels on each image to achieve
automated face-swapping among a batch of images. Then they are
compressing the features of BoW by select numbers of visual words.
They used four classifers (SWM-linear, RF, SVM-RBF, and MLP) to
classify the images and record their performance. The results show that
this set of BoW feature representations used to describe face features
and distinguishable information performs well on diferent classifers.

Another solution for detecting forgery in face images is to identify
the location of the blending boundary. This solution called Face X-
ray was proposed by Li et al. [13]. Li believes that the acquisition
process of an image will give each image distinctive marks. Those
marks showed a consistent pattern in an image. But the consistency
will be destroyed by the face-swapping. These inconsistencies can
be considered as a boundary and be detected by their model. Huh
et al. [14] proposed a self-supervised method for detecting deepfake
images. Their method addresses the problem that detectors usually
lack sufcient amounts of deepfake data for training. By using the vast
and previously underutilized WXIF metadata building model, they are
trying to fnd out whether diferent parts of an image are produced
by a single imaging pipeline. This model is designed to work in an
unsupervised regime, and to fag the “out of ordinary” information.
Their experiment shows this method works well in localizing the spliced
regions and classifes the spliced image from the authentic image even
if the model didn’t train with the examples of deepfake images.

Hsu et al. [15] proposed a common fake feature network (CFFN) to
distinguish between the deepfake images. They believe the traditional
classifer layer on CNN, such as softmax layer, has to rely on the
previous layer to feed features, and those features are high-level
features. However, the fake features of a fake image can exist not
only in the high-level features, but also in the middle-level features.
Hence, they design a new CNN structure and capture features from
both high-level and middle-level. In this model, they have several dense
blocks to capture the representative features of the fake image. In their
experiment, they create a training dataset that includes fve popular

Robust DL Systems for Deepfake Detection ■ 319

GAN images to train their model. And use the course-level structure
to connect the trained CNN to the last convolutional layer of their
detector, so the middle-level features captured by the CNN can be
used to detect the fake images.

11.4.3 Modifying the Architecture of CNN

Mo et al. [16] found out in GAN algorithms that both the generator
and discriminator need to rely on the convolutional neural network
(CNN) model to produce deepfake images. And the previous research
reveals that the main diference between fake and real images would be
refected in the residual domain. Therefore, they speculate that they
can detect deepfake images by modifying the architecture of the CNN
model. In their experiment, they modify the number of layers and
activation function and make a high-pass flter for the input images,
successfully identifying fake face images with high visual quality from
real ones. This method also proves that the statistical artifacts in GAN
images can serve as evidence for fake images. Dang et al. [17] proposed
a new detection model called CGFace, which is also a model based
on CNN. In their fve-layer classifer, they input a 64*64 grayscale
image and capture the hidden features by using 3 pooling layers,
2 full connection layers, and one fatten layer. Then they test their
model by replacing diferent loss functions and add dropout layers in
their model. They fnally found that when the softmax was replaced
with AdaBoost classifer, the model was shown to perform well on
the imbalanced scenario of the dataset. And they test their model
with diferent datasets generated from GAN. The test result shows
high accuracy. Marra et al. [18] also gave their deepfake image forensic
solution based on the CNN architecture. They focus on image-to-image
translation GAN detection and test several diferent detection methods
proposed by the researchers. They create three diferent scenarios to
test 7 diferent GAN detectors in their experiment. The results show
a detector called XceptionNet is the most robust one and behave well
even with training–test mismatching. It adopts fully separable flters,
and in each layer of this model, it takes 1D depth-wise and 2D point-
wise convolution to flter the 3D input feature, which reduced the
learning parameters and gave resources to learning the others. Their
research also reveals the fact that the compression performed upon

320 ■ Cybersecurity and High-Performance Computing Environments

image uploading, which is widely used in Twitter and other social
networks, can impair the performance of detectors.

11.4.4 Obtaining Fingerprint of GANs

When detecting digital images generated by traditional devices,
researchers usually use a method to detect image fngerprints. This
is because diferent cameras will print diferent PRNU patterns on
the photos due to manufacturing imperfections. This pattern can be
thought of as the unique fngerprint of an image. Although deepfake
images are produced in completely diferent ways, some researchers
insist that the models built by diferent GAN algorithms will also
leave unique fngerprints on images. Marra et al. [19] experimented
with this idea and proved that there are unique fngerprints left
on each GAN image, which can be used as forensic analysis. Some
researchers have put this theory into practice. Wang et al. [20] proposed
a detection method called FakeSpotter which spots fake face images by
monitoring neuron behaviors. In their paper, the FakeSpotter learns the
representation of face by activating neurons to capture subtle features
and monitors the layer-by-layer behaviors to fnd the fake images.
They proposed a neuron coverage criteria MNC to capture layer-
by-layer neuron activation behaviors. And diferent from the models
that rely on deep neural networks, their model uses a shallow neural
network and takes the layer-wise neuron behavior as features rather
than the output on the fnal layer. And the input of the classifer is the
general neuron behavior opposed to the traditional ad hoc raw pixels.
They test their model with four start-of-the-art GANs, including the
famous styleGAN, and the results show the model is highly efcient
and robust. Hus et al. [21] proposed a new model called DeepFD
(deep forgery discriminator). It was designed to address the issue
when the classifer cannot distinguish the images generated from a
new variant of GAN. In their solution, by introducing contrastive loss
into the neural network, they collect and put fake images generated
from 5 diferent popular GAN algorithms into their training dataset.
Then, the frst discriminator can learn the jointly discriminative feature
from the fake images and some real images. Then, they connect this
discriminator with another classifer and train a second classifer to
further distinguish the images. Their experiment showed their model

Robust DL Systems for Deepfake Detection ■ 321

has a good identifcation ability even when they test it with some fake
images that were not generated from the GAN algorithms they used for
training. For the big GAN family with over 500 variants, their solution
innovatively breaks the cycle of the detectors being useless as long as
new variants were created.

11.4.5 Deepfake Video Forensic Methods

A novel detection method of deepfake video is to use biological signals
to verify the authenticity of the video. Ciftci et al. [22] and Qi et al.
[23] used this approach that estimates biological signals in terms of
heartbeat, blood fow, or breathing. They may not be visible, but are
detectable computationally. Those signals can generate diferent noises,
which can be considered as a projection of the residuals in a known
dimension. This gives each model a unique signature to detect. So
their solutions can be used for deepfake detection and source model
prediction for any given video.

Sun et al. [24] believes that facial geometric information and its
dynamic characteristics are efcient and robust in detecting deepfake
videos in wild. As such, they proposed a lightweight and easy-to-
train model for detecting deepfake videos through temporal modeling
on precise geometric features. In order to detect the compressed
deepfake videos that are popular on social platforms, Hu et al.
[25] proposed a two-stream method. By analyzing the frame level
and temporality level of compressed deepfake videos, this method
can detect both tempered artifacts and the inconsistency between the
frames of compressed deepfake videos. Qian et al. [26] designed the
MixBlock framework to learn frequency-aware clues by using the FAD
(frequency-aware decomposition) and LFS (local frequency statistics).
Thus, the deepfake features can be obtained in the frequency domain.

11.4.6 Datasets

The quality of the datasets is important for model training. Feature
representation, reliability, and minimizing skew are three aspects of
the quality of datasets. In other words, reducing label errors, features
noise, and skewness will be greatly helpful in enhancing the model
performance. Currently, we already have some open-source datasets
with high quality, and they are very helpful for training models.

322 ■ Cybersecurity and High-Performance Computing Environments

DeeperForensics-1.0 [27]: A large-scale dataset with 60,000 videos.
The videos are all high-resolution videos with various poses, expres-
sions, and illuminations. Fake videos are generated by an end-to-end
face-swapping framework DF-VAR.

CelebFaces Attributes (CelebA) [28]: A large dataset with 202,599
face images of celebrities. Each of the images has 40 attribute
annotations.

CelebA-HQ: A high-resolution face image dataset selected from
CelebA. The scale of the dataset is 30,000, and the size of each image
is 512*512.

Flickr-Faces-HQ Dataset: A dataset crawled from Flickr. It has
70,000 high-quality PNG images. The size of each image is 1,024*1,024.
One feature of this dataset is that it varies in age, race, and image
background.

UTKFace: A large face dataset with labels. It has over 20,000
images.

Real and Fake Face Detection: A small dataset with 2,000 images.
Wider Face: A large face dataset with 32,203 images.

11.4.7 Software for Deepfake Forensics

Catching deepfakes with AI is something of a cat-and-mouse game.
A detector algorithm can be trained to spot deepfakes, but then
an algorithm that generates fakes can potentially be trained to
evade detection. There are few efective deepfake forensics tools.
DARPA currently has two programs devoted to the detection of
deep fakes: Media Forensics (MediFor) and Semantic Forensics
(SemaFor). MediFor is developing algorithms to automatically as-
sess the integrity of photos and videos and to provide analysts
with information about how counterfeit content was generated.
(https://crsreports.congress.gov/product/pdf/IF/IF11333)

11.4.8 Challenges

Although the last three years witnessed a growing research interest in
deepfake forensics [29], testing methods still cannot keep up with the
pace of technological change. The reasons are the following: Deepfake
algorithms were updated so fast that the detection methods that
addressed the weakness of these algorithms quickly became useless.

https://crsreports.congress.gov

Robust DL Systems for Deepfake Detection ■ 323

In 2018, the deepfake video showed unnatural blinking patterns, which
were easily identifed by deepfake detectors. Meanwhile, some other
deepfake models are struggling with how to produce teeth. But shortly
after those detect methods were published in public, weakness was
overcome by the improved deepfake algorithms.

Deepfake detection methods are likely to over-ft a dataset that
loses accuracy in the others. There are a lot of deepfake detection
algorithms that claim the accuracy can be as high as 97%–99%. But
this accuracy is tested in a specifc database. It is greatly reduced
when it is used to test data from other databases or images generated
by other algorithms. In other words, these models are over-ftting in
this database.

In addition, deepfake makers can develop corresponding methods
to attack a certain detection method. For example, adversarial attack
is a good solution to interfere with the detection. By adding some
subtle noise into the dataset, the image will produce changes that are
undetectable to the human eye. However, these adversarial images can
trick the detection model into giving an incorrect, but high-confdence
output [30].

11.5 APPROACH TO DEEPFAKE FORENSICS

Although the update speed of GAN algorithms is so fast, developing a
deepfake image-detecting application that can quickly identify whether
the images they upload are deepfaked is very helpful for people
who work in the digital forensics feld and ordinary users. Here we
propose an approach to building an application to quickly detect a
deepfake image. As deepfake technology is widely applied in various
mobile applications and the growth of the afordable smartphone
market makes mobile application development the most active area,
our deepfake detection application designed in this solution will serve
the users of Android mobile phones.

11.5.1 Application Overview

The application is composed of two parts: the activities on the
application used to interact with users. They will gain images from
users and return a prediction. Another part is a pre-trained model

324 ■ Cybersecurity and High-Performance Computing Environments

which can distinguish between the deepfake images and real images.
This model is trained using the most popular GAN algorithm by
far. It will be placed into the application and will communicate with
the frontend by using Android NDK. This detection model tries to
addresses the issue when the classifer cannot distinguish the images
generated from a new variant of GAN [21]. By introducing contrastive
loss into the neural network, the model going to collect and put fake
images generated from 5 diferent popular GAN algorithms into our
training dataset. Then, the frst discriminator can learn the jointly
discriminative feature from the fake images and some real images.
Then, by connecting this discriminator with another classifer, a second
classifer can be trained to further distinguish the images. When
building the training dataset, this app will include the fake images
generated by the latest styleGAN and combine them with fake images
generated by the other four GAN algorithms to improve the model’s
performance. For those who want to detect whether a local picture
or online picture is created by deepfake technology, this application
can quickly help them to analyze. When using this application, users
should install and launch this application and then click the submission
button to prompt a view for image uploading. If the application didn’t
report an error toast in the type of the image fle, a POST request
would be sent to the server from this application. On the server side, a
trained detector model will run and send a predicted result to this client
application. After receiving feedback from the server, the application
will pop up a new activity and showing the prediction to the user.
Figure 11.4 shows the use case fow of this application. Figure 1.5 shows
the diagram of the proposed application.

11.5.2 Application Design

UI Design: This application will maintain a simple UI design. The
app is composed of two activities. The main activity is used to receive
pictures uploaded by the users and send a gRPC request to the server.
The result activity is designed to show the response from the server.
It is composed of two components: a textView to show the prediction
and an imageView to show the prediction directly. Figure 11.5 shows
the UI design for this application.

Robust DL Systems for Deepfake Detection ■ 325

Figure 11.4 Use case fow of the application.

326 ■ Cybersecurity and High-Performance Computing Environments

Figure 11.5 Diagram of the proposed application.

Client–Server communication: The communication between the app
and the service is mainly done through ServerThread. We will use
a ServerThread class that is used to create a server socket with the
port of this server. Once the communication has been accepted, a new
communication thread will be started (Figure 11.6).

11.5.3 Model Training and Application Deployment

Currently, the detection model for the application will be built based
on the solution of DeepFD proposed by Hsu [21]. With a deepfake
images dataset generated by the fve popular GAN algorithms and a
real face image open-source dataset, the model can predict whether
an uploaded image is deepfake or not and by which algorithm it was
generated. Figure 11.7 shows the training process of the model. The
model communicates with app activities through the android SDK
and NDK. The other way is to deploy the model in the server, and
the user’s applications are played as a client to post requests to the
server and get responses from the server. In this paper, we will take the
second approach to deploy our detection model. Google’s TensorFlow-
serving is a high-performance open-source library for machine learning
model deployment. It can deploy a trained machine learning model

Robust DL Systems for Deepfake Detection ■ 327

Figure 11.6 UI design for this application.

Figure 11.7 The fowchart of the detector model’s training process. The
discriminator 1 (D1) is used to learn the jointly discriminative features
of the fake images dataset and real images dataset. The discriminator
2 (D2) is used to binary-classify the images.

328 ■ Cybersecurity and High-Performance Computing Environments

online and accept requests from clients by using gRPC. TensorFlow-
serving also adds support for model versioning (for model updates with
a rollback option) and multiple models [31]. In this tool, the deepfake
detection model will be deployed in the following steps: First, create the
SavedModel to export the trained model and use SignatureDef to sign
the model. It will create an identity for the model, which is required
by the TensorFlow service API. Then create a servable for the model
that can be loaded later for inference. This servable will also be fed to
a source on the TensorFlow-serving. When the client posts requests to
the server, the manager of the TensorFlow-serving will let a loader get
the source with the model by identifying the signature of this model.

11.6 CONCLUSIONS AND FUTURE WORK

In this chapter, we have investigated the interactions between the
development of deepfake techniques and detection of them in digital
forensics. We also described the structure and the associated software
that are pertinent to GAN algorithm. We believe that the proposed
approach to deepfake forensics is enhanced by the carefully targeted
category of GAN algorithms that make deepfake images/videos. This
chapter covers the concepts and technology of deepfake forensics. As
deep learning technology continues to grow and gain traction, many
IT professionals are unaware of how deepfake works, but are highly
interested in its potentiality. The aim of this chapter is to develop an
innovative application tool that any digital professional can learn to
adopt techniques to detect deepfake development.

The main issue of deepfakes is the lack of efective detection
methods [32]. As for future work, connected with GAN algorithm and
deepfake detection and develop more fast detection software for public
use, are the following:

• The continuous evaluation of the efectiveness of various deepfake
forensic tools and detecting various variants of GAN algorithm.

• The enhancement of deepfake forensics datasets available online
for academic research.

• The development of additional deepfake forensics in the areas of
IoT, health care, precision agriculture, precision fshing, public
sector, and fnance and banking [33].

Robust DL Systems for Deepfake Detection ■ 329

REFERENCES
[1] Marissa Koopman, Andrea Macarulla Rodriguez, and Zeno Geradts.

Detection of deepfake video manipulation. In The 20th Irish machine
vision and image processing conference (IMVIP), pp. 133–136, 2018.

[2] J. Schafer. Deepfakes, forensic science and police investigations, pp. 3–9,
2019. https://www.police1.com/technology/articles/deepfakes-forensic-
science-and-police-investigations-8PLOqdYGwBp5svYE/.

[3] Danielle K. Citron and Robert Chesney. Deep fakes: A looming crisis for
national security, democracy and privacy? Lawfare, 2018.

[4] Sarah Cahlan. How misinformation helped spark an attempted coup in
gabon, 2020.

[5] Mika Westerlund. The emergence of deepfake technology: A review.
Technology Innovation Management Review, 9(11), 2019.

[6] Joe Lemley, Shabab Bazrafkan, and Peter Corcoran. Deep learning for
consumer devices and services: Pushing the limits for machine learning,
artifcial intelligence, and computer vision. IEEE Consumer Electronics
Magazine, 6(2):48–56, 2017.

[7] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial networks. arXiv preprint arXiv:1406.2661, 2014.

[8] Lakshmanan Nataraj, Tajuddin Manhar Mohammed, B.S. Manjunath,
Shivkumar Chandrasekaran, Arjuna Flenner, Jawadul H. Bappy, and
Amit K. Roy-Chowdhury. Detecting gan generated fake images using
co-occurrence matrices. Electronic Imaging, 2019(5):532, 2019.

[9] Scott McCloskey and Michael Albright. Detecting gan-generated imagery
using color cues. arXiv preprint arXiv:1812.08247, 2018.

[10] Haodong Li, Bin Li, Shunquan Tan, and Jiwu Huang. Detection of deep
network generated images using disparities in color components. arXiv
preprint arXiv:1808.07276, 2018.

[11] Tianchen Zhao, Xiang Xu, Mingze Xu, Hui Ding, Yuanjun Xiong, and
Wei Xia. Learning to recognize patch-wise consistency for deepfake
detection. arXiv preprint arXiv:2012.09311, 2020.

[12] Ying Zhang, Lilei Zheng, and Vrizlynn L.L. Thing. Automated face
swapping and its detection. In 2017 IEEE 2nd International Conference
on Signal and Image Processing (ICSIP), pp. 15–19. IEEE, 2017.

[13] Lingzhi Li, Jianmin Bao, Ting Zhang, Hao Yang, Dong Chen, Fang Wen,
and Baining Guo. Face X-ray for more general face forgery detection.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5001–5010, 2020.

https://www.police1.com
https://www.police1.com

330 ■ Cybersecurity and High-Performance Computing Environments

[14] Minyoung Huh, Andrew Liu, Andrew Owens, and Alexei A. Efros.
Fighting fake news: Image splice detection via learned self-consistency. In
Proceedings of the European Conference on Computer Vision (ECCV),
pp. 101–117, 2018.

[15] Chih-Chung Hsu, Yi-Xiu Zhuang, and Chia-Yen Lee. Deep fake image
detection based on pairwise learning. Applied Sciences, 10(1):370, 2020.

[16] Huaxiao Mo, Bolin Chen, and Weiqi Luo. Fake faces identifcation via
convolutional neural network. In Proceedings of the 6th ACM Workshop
on Information Hiding and Multimedia Security, pp. 43–47, 2018.

[17] Minh L. Dang, Syed Ibrahim Hassan, Suhyeon Im, Jaecheol Lee, Sujin
Lee, and Hyeonjoon Moon. Deep learning based computer generated
face identifcation using convolutional neural network. Applied Sciences,
8(12):2610, 2018.

[18] Francesco Marra, Diego Gragnaniello, Davide Cozzolino, and Luisa
Verdoliva. Detection of gan-generated fake images over social networks.
In 2018 IEEE Conference on Multimedia Information Processing and
Retrieval (MIPR), pp. 384–389. IEEE, 2018.

[19] Francesco Marra, Diego Gragnaniello, Luisa Verdoliva, and Giovanni
Poggi. Do gans leave artifcial fngerprints? In 2019 IEEE Conference on
Multimedia Information Processing and Retrieval (MIPR), pp. 506–511.
IEEE, 2019.

[20] Run Wang, Lei Ma, Felix Juefei-Xu, Xiaofei Xie, Jian Wang, and Yang
Liu. Fakespotter: A simple baseline for spotting ai-synthesized fake faces.
arXiv preprint arXiv:1909.06122, 2, 2019.

[21] Chih-Chung Hsu, Chia-Yen Lee, and Yi-Xiu Zhuang. Learning to detect
fake face images in the wild. In 2018 International Symposium on
Computer, Consumer and Control (IS3C), pp. 388–391. IEEE, 2018.

[22] Umur Aybars Ciftci, Ilke Demir, and Lijun Yin. How do the hearts of
deep fakes beat? Deep fake source detection via interpreting residuals
with biological signals. In 2020 IEEE International Joint Conference on
Biometrics (IJCB), pp. 1–10. IEEE, 2020.

[23] Hua Qi, Qing Guo, Felix Juefei-Xu, Xiaofei Xie, Lei Ma, Wei Feng, Yang
Liu, and Jianjun Zhao. Deeprhythm: Exposing deepfakes with attentional
visual heartbeat rhythms. In Proceedings of the 28th ACM International
Conference on Multimedia, pp. 4318–4327, 2020.

[24] Zekun Sun, Yujie Han, Zeyu Hua, Na Ruan, and Weijia Jia. Improving the
efciency and robustness of deepfakes detection through precise geometric
features. arXiv preprint arXiv:2104.04480, 2021.

Robust DL Systems for Deepfake Detection ■ 331

[25] Juan Hu, Xin Liao, Wei Wang, and Zheng Qin. Detecting compressed
deepfake videos in social networks using frame-temporality two-stream
convolutional network. IEEE Transactions on Circuits and Systems for
Video Technology, 2021.

[26] Yuyang Qian, Guojun Yin, Lu Sheng, Zixuan Chen, and Jing Shao.
Thinking in frequency: Face forgery detection by mining frequency-aware
clues. In European Conference on Computer Vision, pp. 86–103. Springer,
2020.

[27] Liming Jiang, Ren Li, Wayne Wu, Chen Qian, and Chen Change Loy.
Deeperforensics-1.0: A large-scale dataset for real-world face forgery
detection. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2889–2898, 2020.

[28] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale
celebfaces attributes (celeba) dataset. Retrieved August, 15(2018):11,
2018.

[29] Luca Guarnera, Oliver Giudice, Cristina Nastasi, and Sebastiano
Battiato. Preliminary forensics analysis of deepfake images. In 2020 AEIT
International Annual Conference (AEIT), pp. 1–6. IEEE, 2020.

[30] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties
of neural networks. arXiv preprint arXiv:1312.6199, 2013.

[31] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen,
Li Lao, Fangwei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan
Soyke. Tensorfow-serving: Flexible, high-performance ml serving. arXiv
preprint arXiv:1712.06139, 2017.

[32] Thanh Thi Nguyen, Cuong M. Nguyen, Dung Tien Nguyen, Duc Thanh
Nguyen, and Saeid Nahavandi. Deep learning for deepfakes creation and
detection: A survey. arXiv preprint arXiv:1909.11573, 2019.

[33] Arun Ross, Sudipta Banerjee, and Anurag Chowdhury. Security in smart
cities: A brief review of digital forensic schemes for biometric data.
Pattern Recognition Letters, 138:346–354, 2020.

https://taylorandfrancis.com

C H A P T E R 12

Monitoring HPC
Systems against
Compromised SSH
Lev Lafayette, Narendra Chinnam, and Timothy Rice
University of Melbourne

CONTENTS

12.1 An Introduction to SSH in HPC . 333
12.2 Man-in-the-Middle and Other Attacks . 338
12.3 Recent Compromised SSH Credentials

on HPC Systems . 340
12.4 SSH Policy and Implementation . 342
12.5 SSH User Education . 345
12.6 SSH Monitoring . 346
12.7 Concluding Remarks and Further Research 350
References . 353

12.1 AN INTRODUCTION TO SSH IN HPC

Internet communication occurs via the transmission of data packets.
A packet is defned as a block of data with the necessary addressing
information to deliver from one physical node to another, with a packet
switching network using the addressing information to switch packets
from one physical network to another, towards their fnal destination,
independently of other packets. Under the TCP/IP network stack,
data packets are encapsulated in multiple layers. An Ethernet frame
has a header and trailer and incorporates an IP datagram. An IP
datagram includes an IP header and incorporates a TCP segment. The

DOI: 10.1201/9781003155799-12 333

https://doi.org/10.1201/9781003155799-12

334 ■ Cybersecurity and High-Performance Computing Environments

TCP segment has a TCP header and incorporates application data.
Application data consist of an application header and user data. At
the application layer are the protocols used by most user services, such
as the Hypertext Transfer Protocol (HTTP), Secure Shell (SSH), File
Transfer Protocol (FTP), and Simple Mail Transfer Protocol (SMTP).

Of these application protocols, most transmit the data in plaintext.
Using common packet capture and analyser programs (e.g. Wireshark,
Kismet, Ettercap, and tcpdump), logging trafc can be intercepted,
showing the values of various felds in the packet according to the
appropriate specifcations. For protocols that transmit information in
plaintext and that are used to log in to remote systems (e.g. telnet,
rlogin, rsh, rcp, and ftp), this includes the user name and password.
For any individual user, this should be considered a serious problem.
For high-performance computing (HPC) systems, however, the cost
is amplifed as such systems usually are provided for research and
computational purposes; the account is provided on academic merit
with social benefts gained through positive externalities, while the
signifcant cost is borne by the provider.

To avoid inappropriate access to HPC systems, the use of SSH is
almost universally applied. SSH was frst introduced in 1995 by Tatu
Ylönen at the Helsinki University of Technology in Finland. Later that
year, the SSH-1 protocol was documented as an Internet Engineering
Task Force (IETF) Internet Draft. In 1996, a new, major version of
the protocol, SSH 2.0 or SSH-2, that incorporated new algorithms, but
was incompatible with SSH-1 was missing some features and was with
a more restrictive license. In response, the IETF formed a working
group to standardise the protocol releasing the frst draft of the SSH-
2.0 protocol in 1997, which was eventually fully released in 2006. This
included the Dife–Hellman algorithm for improved security in key ex-
change and strong integrity checking via message authentication codes
and the ability to run multiple shell sessions over a single connection.

At the same time, a number of developers led by Björn Grönvall,
desiring a free software version, forked the original 1.2.12 release of the
original SSH, the last version released under a free software license,
which eventually became OpenSSH by OpenBSD developers, notably
Markus Friedl. OpenSSH (also known as OpenBSD SSH) has become
the single most popular SSH implementation. Acting as a suite of
applications, OpenSSH includes scp (“secure copy”, a replacement for

Monitoring HPC Systems - Compromised SSH ■ 335

rcp), sftp (“secure fle transfer protocol”, a replacement for ftp, allowing
secure copying of fles between computers), ssh (secure shell, a replace-
ment for rlogin, rsh, and telnet, to allow shell access to a remote ma-
chine), ssh-add and ssh-agent (key-holding utilities that avoid the need
to enter passphrases every time they are used), ssh-keygen (a utility to
inspect and generate keys that are used for user and host authentica-
tion), ssh-keyscan (a utility that scans a list of hosts and collects their
public keys), and sshd (the SSH server daemon). Unless specifed other-
wise, all further examples given in this text assume the use of OpenSSH.

SSH provides authentication of senders and receivers with proof
of identity of both parties with server and client authentication,
authorisation to provide access control to accounts, and privacy of data
and communication via strong encryption, integrity of the same ensur-
ing that they have not been altered through cryptographic integrity
checking. Further, SSH provides for forwarding or tunnelling to encrypt
other TCP/IP-based sessions. The security advantages of SSH are
sufcient that there are strong arguments that computing users should
use SSH “everywhere”. Such a proposition is no mere fancy; as an
adaptable network protocol, SSH can be used not just for remote logins
and operations, but also for secure mounting of remote fle systems, fle
transfers, X11 connections, arbitrary port forwarding, UNIX-domain
sockets, network tunnelling, web browsing, etc. Typically, of course,
the basic means of activity is to use an ssh client to connect a known
SSH server, either by specifying the login name as an account or with
the −l option. The examples given here and that follow make use of
the Spartan HPC system at the University of Melbourne.

ssh lev@spartan.hpc.unimelb.edu.au
ssh -l lev spartan.hpc.unimelb.edu.au

For users that have multiple accounts, the use of an SSH confguration
fle, located in ∼/.ssh/config, allows for the creation of aliases of user
and host names. The fle should be readable and writable only by the
user and not accessible by others, i.e. chmod 600. Entries in the SSH
confg fle take the form of a stanza block entries of Host and hostname
with subsequent SSH options such as the qualifed Hostname, the user
name, with some globbing options (* for all, ? for a single character,
and ! for not). An SSH confg fle can also be used by related utilities
such as scp, sftp, and rsync. Some sample entries to an SSH confg

336 ■ Cybersecurity and High-Performance Computing Environments

fle would include the following, in this case using the term “spartan”
to represent the user “lev” on the host “spartan.hpc.unimelb.edu.au”
and a timeout interval of 120 seconds after which, if no data have been
received from the server, ssh will send a null packet through the channel
to request a response from the server, to keep the connection alive and
avoid a “Broken pipe” error.

Host spartan
Hostname spartan.hpc.unimelb.edu.au
User lev

Host *
ServerAliveInterval 120

Further, it is common to use passwordless SSH. This is easier for users
(as they do not have to use their own memory for complex and multiple
passphrases) and the automation of scripts (certainly signifcantly more
preferable than including the password in the script!), and is necessary
for some applications. Establishing passwordless SSH, *nix-like systems
(e.g. UNIX, Linux, and MacOS X), the use of ssh-keygen is carried
out on the client system (in this case, generating a Rivest–Shamir–
Adleman public key algorithm public/private key pair). The new public
key is appended on the host to the user’s authorised keys fle located
at ∼/.ssh/authorized_keys, requiring a fnal entry of the password,
and from that point onwards, the host will trust a system where its
public key matches with the client’s private key.

$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key
(/home/user/.ssh/id_rsa):
Created directory '/home/user/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in
/home/user/.ssh/id_rsa.
Your public key has been saved in
/home/user/.ssh/id_rsa.pub.
The key fingerprint is:
43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8
user@localhost

Monitoring HPC Systems - Compromised SSH ■ 337

$ cat .ssh/id_rsa.pub | ssh username@spartan.hpc.unimelb.
edu.au 'cat >>.ssh/authorized_keys'

Depending on the version of SSH being used, the following might also
be necessary:

Put the public key in .ssh/authorized_keys2
Change the permissions of .ssh to 700
Change the permissions of .ssh/authorized_keys2 to 640

For clients using Linux, MacOS X.x, or other UNIX-like systems, this
should be sufcient. A number of users, however, use MS-Windows
clients. In this case, the process is somewhat more complex, requiring
several steps. The following is a recommended procedure from the
University of Melbourne.

1) Download additional software called PuTTYgen from https://
www.chiark.greenend.org.uk/∼sgtatham/putty/latest.html.

2) Launch PuTTYgen tool up. If you are on Windows 7 or higher,
right-click on it and select Run as Administrator.

3) Select the parameters; the default value (SSH-2 RSA) is fne.

4) Select Generate.

5) Add the public key to the authorized_keys fle in ∼/.ssh on
Spartan (create it if it doesn’t exist). Ensure there are no
unexpected line-breaks. Make sure the permissions on the fle
are 0644.

chmod 644 ∼/.ssh/authorized_keys

6) Back on PuTTYgen, save the private key and public key. Make
sure to save public key as .txt, while private key as .ppk.

7) Confgure PuTTY to use that newly generated key. Start PuTTY
and go to Connection > SSH > Auth and add the location of the
private key saved previously.

8) Open PuTTY and log in as usual. If all the steps above have been
followed, no password will be required.

https://www.chiark.greenend.org.uk
https://www.chiark.greenend.org.uk
mailto:username@spartan.hpc.unimelb

338 ■ Cybersecurity and High-Performance Computing Environments

The combination of ssh, ssh confgs, and ssh key pairs allows a simple
command ssh spartan to connect, rather than ssh lev@spartan.
hpc.unimelb.edu.au and having to enter a passphrase. Further, the
combination can be applied to other ssh utilities, including rsync (e.g.
rsync -avz --update workfiles spartan:files/).

12.2 MAN-IN-THE-MIDDLE AND OTHER ATTACKS

It is possible, even with public key authentication, for man-in-the-
middle (MITM) attacks to occur. A sender transmitting a message
request for a public key to a receiver can have it intercepted by the
MITM. The MITM can capture the message, relay the request, and
then intercept the return message from the receiver, capturing the
receiver’s public key. The MITM can then send their key to the original
sender, with the sender believing that it is the public key from the
receiver. From that point onwards, any transmission that they send to
the receiver can be decrypted by the MITM.

Public key systems can use clients and server certifcate exchanges
from a trusted third party, a certifcate authority (CA). As long as
the original key to authenticate this CA has not itself the subject of
a MITM attack, then the certifcates authenticate the connection. In
contrast, SSH does not require trust in the third-party authority and
does not rely on any external accreditation for authentication. Instead,
an SSH server cannot be trusted unless the user’s client explicitly au-
thorises its public key on the initial connection. Once established, an at-
tacker simply cannot introduce another public key as belonging to that
server. This is the SSH known-host mechanism. When an SSH client
and server connect, the server authenticates the client and the client
also authenticates the server’s host key, to identify itself to clients.

$ ssh user@example.com
Host key not found from the list of known hosts.
Are you sure you want to continue connecting (yes/no)?
[Assume 'yes']
Host 'example.com' added to the list of known hosts.

One issue here is that the initial connection must be secure; otherwise,
it will be subject to a MITM attack. Usually, this is accepted as a
matter of convenience; however, the “trust the SSH connection on frst

https://example.com
mailto:user@example.com

Monitoring HPC Systems - Compromised SSH ■ 339

use” approach is rather naive. It would be preferable for the server’s
public host key to be installed prior to connecting for the frst time
and a typical approach is for institutions to have pre-installed a set of
host keys for systems under their control. Obviously, this does not help
for systems outside the control of system administrators, in which case
a fallback on systems like X.509 certifcates or similar. One particular
issue is that when server authentication fails, typically a warning is
provided to accept the new host key. Even when the SSH response
explicitly states that MITM may be occurring, the tendency for users
to act out convenience and accept the new host key is overwhelming.

As an explicit example, it must be mentioned here that earlier
versions of SSH, i.e. SSHv1, were susceptible to MITM attacks, as
illustrated by the use of dsnif, a suite of network trafc analysis tools
written by Dug Song, to the extent that they were able to take over
interactive SSH sessions. This was achieved through intercepting the
initial connection attempt and inserting an alternative public key. As
noted, even when users do have the correct public key for comparison,
there is a tendency to accept the alternative key without further
consideration. Fortunately, UNIX-like SSH clients are confgurable for
“strict” host key checking that automatically disallow any connecting
where the host key has changed, requiring the user to manually remove
the existing key from the known-host fle. This certainly should be part
of any default or standard operating environment installation; however,
it still requires the user to be aware of the potential security risk in
removing such a key.

A more contemporary example is SSH-MITM, which is still in
active development and specifcally targets systems that use password
authentication by acting as a proxy server between an SSH client
and SSH server. Apart from collecting the plaintext user name and
passwords, SSH-MITM can also take over existing sessions. While
public key authentication ensures that no confdential data need to be
sent to the remote host that could be intercepted by a MITM attack,
SSH-MITM is able to request the agent from the client and use it for
remote authentication.

Thus, as an alternative to passwords, SSH keys provide the same
access as user names and passwords and are extremely convenient; for
example, when properly confgured, they provide scripting access to
accounts. The previous section describes the use of SSH public–private

340 ■ Cybersecurity and High-Performance Computing Environments

keys from an HPC user’s perspective. From a security perspective, it
is understood, following the principles of various public key algorithms
(e.g. Rivest–Shamir–Adleman (RSA), Elliptic Curve Digital Signature
Algorithm (ECDSA), Digital Signature Algorithm (DSA), and Dife–
Hellman key agreement protocol) that an SSH identity uses a pair
of keys, one private and one public. The private key is, as the name
implies, securely kept in individual hands. An SSH client will invoke
it to prove a user’s identity to servers. The public key is added to the
accounts on SSH servers. In the authentication process, the SSH client
issues a request for authentication, the server issues a challenge, and the
response from the client is proof of identity through the challenge and
the private key, and comparison with the user’s public key on the server.

Other attacks against SSH include tools such as BothanSpy and
Gyrfalcon, originally revealed by WikiLeaks as plausible tools used by
the US government’s Central Intelligence Agency to gather user names,
passwords, SSH keys, and SSH key passphrases. BothanSpy targets
the SSH client program Xshell on the Microsoft Windows operating
system to gather user credentials for all active SSH sessions, which are
then sent to a CIA-controlled server. In contrast, Gyrfalcon targets the
OpenSSH client on various Linux platforms to gather user credentials
of active SSH sessions, as well as OpenSSH session trafc. All collected
information is stored in an encrypted fle for later collection. Both
require prior access to the target machine. It can also be assumed that
large enough actors with sufcient political backing have compelled
or induced manufacturers to include data collection actions on the
physical hardware. Discussion of protecting against such attacks is
beyond the scope of this review.

12.3 RECENT COMPROMISED SSH
CREDENTIALS ON HPC SYSTEMS

In May 2020, there was a series of cyberattacks among multiple HPC
centres across Europe via compromised SSH credentials starting on
May 11 at the UK’s peak academic HPC system at the University
of Edinburgh, ARCHER, the UK National Supercomputing Service.
A decision was made to disable access to ARCHER. Investigations
confrmed that a number of user accounts had been afected, and as
a result, a decision was made to disable access until the extent of the

Monitoring HPC Systems - Compromised SSH ■ 341

issue was determined. Sysadmins warned ARCHER users that their
SSH keys may have been compromised as a result of the apparent
attack, issuing a recommendation to “change passwords and SSH keys
on any other systems which you share your ARCHER credentials
with”.

Very shortly afterwards, it was understood that this compromise
was afecting several supercomputers across Europe and was subject to
an investigation by the UK’s National Cyber Security Centre (NCSC).
In Germany, fve HPC systems were shut down on the same day across
Baden-Württemberg, Germany, by the bwHPC, which coordinates
HPC research projects across that state. These systems included the
Hawk supercomputer at the High Performance Computing Center
Stuttgart (HLRS) at the University of Stuttgart, the bwUniCluster
2.0 and ForHLR II clusters at the Karlsruhe Institute of Technology
(KIT), the bwForCluster JUSTUS chemistry and quantum science
supercomputer at the Ulm University, and the bwForCluster BinAC
bioinformatics supercomputer at the University of Tübingen. The
following day, the Leibniz Supercomputing Center (LRZ), an institute
under the Bavarian Academy of Sciences, closed access to its computing
cluster, then the Julich Research Centre including the JURECA,
JUDAC, and JUWELS HPC systems, and likewise the Taurus HPC
system at the Technical University in Dresden, along with the Swiss
Center of Scientifc Computations (CSCS) in Zurich, Switzerland.
Attacks were launched from compromised networks from the University
of Krakow, Poland; China Science and Technology Network, PR China;
Shanghai Jiao Tong University, PR China; UCLA, the USA; and Stony
Brook University, the USA.

Following a rapid investigation, the security team of the European
Grid Infrastructure Foundation noted: “A malicious group is currently
targeting academic data centers for CPU mining purposes. The
attacker is hopping from one victim to another using compromised SSH
credentials” (EGI, 2020). The EGI Computer Security and Incident
Response Team noted that the compromised hosts were turned into
diferent roles, including XMR Monero cryptocurrency mining hosts
(from a hidden XMR binary), XMR-proxy hosts (used for connections
to the mining server), SOCKS proxy hosts, and SSH tunnelling hosts,
typically to access private IP spaces. Connections to SOCKS proxy
hosts were typically carried out by TOR or compromised hosts with

342 ■ Cybersecurity and High-Performance Computing Environments

malicious activity carried out by a variety of techniques, including the
rootkit Linux kernel module Diamorphine.

The recommendations of the European Grid Infrastructure Foun-
dation involved removing the Diamorphine module, which involved
multiple steps. The module Diamorphine starts invisible when loaded
and requires a signal 63 to a random PID to become visible (signal
64 makes a given user root access). Any fles or directories with the
MAGIC_PREFIX also become invisible. Following these contents of
cron jobs, a collection of fles required checking for the hidden XMR
mining binary. On the network side, the existing connections (lsoft) and
NAT confgurations (iptables) required reviewing and decompiling fles
(ghidra), leading to a privilege escalation as the attacker moved from
one victim to another using compromised SSH credentials. The phrase
“compromised SSH credentials” does not imply a weakness in SSH as
such, but rather practices around SSH key use. As explicitly stated by
system engineers, some researchers had been using private SSH keys
without passcodes and leaving them in their home directories. These
would be used by users to log in from one HPC system to another, as
it is not unusual for researchers to have accounts on multiple systems.
It is noted that users engaging in such an approach are either unaware
of or ignored the principles of keeping a private key private, encrypting
private keys, or making use of an SSH agent. Access to the keys could
be achieved through inappropriate POSIX permissions, or more usual
methods of access (e.g. ignoring policies of sharing accounts), with
follow-up escalations. Passphraseless SSH keys are common as they are
the default when creating a new key with ssh-keygen and are convenient
to use, without needing to set up an ssh agent. Passphraseless SSH is
also ofered by default as part of many cloud oferings, as a relatively
secure way to provide a new user with access to their virtual machines.

12.4 SSH POLICY AND IMPLEMENTATION

At the University of Melbourne, the HPC team took a two-stage
approach for dealing with the potential of compromised SSH keys,
consisting of policy-based user education and monitoring. There are
further recommendations from the system engineers that will come
under the section “further research”. In terms of user education,
recommendations were provided to over three thousand users of the
Spartan system to use SSH agent forwarding and the process involved

Monitoring HPC Systems - Compromised SSH ■ 343

for encrypting private keys. While sub-optimal, agreement was reached
to prohibit the storing of unencrypted private keys on the system.
In terms of monitoring, considerations of several alternatives were
made on how to test for encryption before settling on the ssh-keygen
approach, which will be detailed further. It is also recognised that
SSH agent forwarding does come with its own security risks when
the integrity of a system is not trusted. Forwarded agent channels are
independent of any sessions, and closing a session channel does not
necessarily imply that forwarded connections are closed. Nevertheless,
it is certainly preferable to having private keys on a public system.

In terms of policy, the use of this Spartan service is governed by
the University’s general regulations for IT resources. This includes
responsibility for actions performed under a user ID, unless there is a
system reason for a user ID breach. In other words, users are responsible
for their ID security and must keep any passwords confdential and
not disclose them. Obviously, still as a required statement, the use
of systems is restricted by the law as a priority and with additional
site-specifc policies. For example, there is an absolute prohibition
on “creating, transmitting, storing, downloading or possessing illegal
material”, but also on “the deliberate or reckless creation, transmission,
storage, downloading, or display of any objectionable, defamatory,
ofensive or menacing images, data or other material which may incur
legal liability to the University, or any data capable of being resolved
into such images or material. An exception can be made in the case
of the appropriate use of facilities for properly supervised University
work or study purposes, for which a prior written approval must
be obtained”. Further, there is a prohibition on activities that place
“an unreasonable burden” on the systems, including “cryptocurrency
miners and similar applications”.

In addition to these general University policies, there are specifc
policies for the use of the Spartan system, albeit the process can
be quite informal. Some of these act almost in an object-orientated
manner in terms of inheritance and polymorphism. For example, the
“unreasonable burden” clause is invoked when users try to run compute
jobs on one of the login nodes as HPC architecture means that this
does represent a potential bottleneck. Like other HPC centres, one
must use SSH to access Spartan. Spartan administrators also strongly
recommend against the storing of SSH private keys on the system and
prohibit the storing of unencrypted private keys.

344 ■ Cybersecurity and High-Performance Computing Environments

As an aside on policy-driven actions, reference is made to the
2015 report of the Computer Security Division of NIST concerning
access management with SSH. The report correctly identifed that
poor SSH access controls constituted a major security risk with the
potential of enormous damage to operations, a matter which all system
operators should already be aware of. In particular, the report argued
that public key authentication is inherently more secure than other
methods such as passwords, a matter which we will return to soon.
Poorly managed SSH keys can be and have been used by attackers
to penetrate IT infrastructure. In particular, the implementation of
old or poorly confgured SSH systems may allow for unauthorised
access, including improper access controls (e.g. readable directories,
storing private keys in public accessible directories), keys that have
been lost or leaked, unaudited user keys that can be used to create
a “backdoor”, and most importantly, lack of knowledge and human
errors. Institutional administrative procedures in organisations are a
particular weakness, where the prospect for employees who have left
the organisation or have been transferred may still have keys to systems
that they should no longer have access to, or other unnecessary keys
(e.g. system keys) remain on a system. A lack of key rotation was
identifed as a basic requirement for protecting credentials, and private
keys without passphrase protection were explicitly identifed.

Credit is also given to NIST for their recommendations for IT
infrastructure management, which, of course, apply to any HPC
centre. This includes stating and implementing clear and unambiguous
SSH key management procedures, ensuring secure implementations of
SSH, controlling identities and authorised keys, a regular regime of
monitoring and auditing with inventory checking, automation, and user
education. As a simple example, there should be an explicit statement
against the use of the dife-hellman-group1-sha1 key exchange, which
is sufciently small to be considered breakable. An extremely tight
coupling is required between policy and implementation, to the extent
that the two must be considered the same. A great number of policies,
for example, should be represented as explicit commands in the
sshd_confg fle or equivalent, which the SSH daemon will read for
implementation. This will include keyword–argument pairs on whether
agent forwarding is allowed, what groups or users are allowed or denied,
whether TCP forwarding is allowed, what ciphers are allowed, and

Monitoring HPC Systems - Compromised SSH ■ 345

whether password authentication is allowed. Importantly, this will also
include the location of the system’s authorized_keys fle, itself a prime
candidate for automation through well-known provisioning tools (e.g.
Puppet and Ansible).

12.5 SSH USER EDUCATION

User education of these policies by the HPC team at the University of
Melbourne is encouraged through ofcial system documentation and
irregular system emails and is strongly implemented in the regular
introductory training sessions that are conducted for the HPC service,
as well for the Research Cloud, where SSH keys are requisite for
managing and deploying virtual machines. It is to be noted, for
example, that it is not necessary to have a private key on Spartan and
indeed the practice is strongly recommended against, with preference
given to the public key exchange mechanism described previously. Users
are alerted to the fact that when they put their private key on a shared
system or server, it means whoever has access to that system may have
access to the private key and therefore may be able to impersonate that
user. Instead, there is an explicit recommendation on the use of SSH
agent forwarding, i.e.

$ ssh -A username@spartan.hpc.unimelb.edu.au
[lev@spartan-login1 ~]$ ssh othersystem@example.com

A second recommendation and part of user education is encrypting
private keys. When keys are initially created, SSH requests the user
whether they wish to enter a passphrase; however, this is not enforced
and a user may establish their key without any encryption or with a
weak and short password, rather than a passphrase with a higher level
of entropy. Fortunately, existing private keys can be encrypted with
the following command:

ssh-keygen -p -f keyfile

There is also the need for a strong recommendation to users to keep
their SSH clients up to date with security releases. In the course of writ-
ing this document, for example, the version of the popular SSH client
for MS-Windows systems, PuTTY, had a security faw revealed on ver-
sions less than 0.75 where remote servers could cause a denial-of-service

mailto:othersystem@example.com

346 ■ Cybersecurity and High-Performance Computing Environments

attack, by forcing the PuTTY window to change its title at high speed,
forcing many SetWindowTextA or SetWindowTextW calls.

12.6 SSH MONITORING

Following the May 2020 attacks on European HPC systems with
compromised HPC keys, system operators at the University of
Melbourne explored means to detect user keys with empty passwords.
The simple version took the form of using ssh-keygen to test against an
SSH key with a random string with the exit status determining whether
a private key was encrypted or not. If the key was encrypted, it is almost
certain that SSH would respond with: “incorrect passphrase supplied
to decrypt private key”. The simple form of the script, superior to the
initial consideration of running grep for “MII” and “ENCRYPTED”
in the keys, was as follows:

SSH_ASKPASS=/bin/false ssh-keygen -y -f "${filename}"
</dev/null 2>/dev/null

The complete version of the script will print all the unencrypted fle
names, even if they are named diferently (i.e. other than id_rsa.pub
and id_dsa.pub). Of course, it is quickly mentioned that if a malicious
user has access to this script and that the permissions on the user’s SSH
directory has not been set correctly, then they will have access to such
encrypted keys. Quite reasonably, however, if such a directory is already
open the opportunity for malicious use already exists. The script starts
by passing an empty password (-P ””) to ssh-keygen because of ssh-
keygen option parsing, so that -P will only be accepted if it is coupled
with an extra argument. If there is no extra argument, then ssh-keygen
will bail out immediately; it won’t even try opening the key fle to check
things out. The script takes the following form:

#!/bin/bash
TOPDIR=/home
while read d; do

if [! -e "$TOPDIR/$d/.ssh"]; then
continue;
fi
cd $TOPDIR/$d/.ssh;
files=""

Monitoring HPC Systems - Compromised SSH ■ 347

user=""
while read file; do

ssh-keygen -y -P "" -f $file 2>/dev/null
>/dev/null;

if [$? -eq 0]; then
echo "$TOPDIR/$d/.ssh/$file"

fi
done < <(grep -rli "begin.*private key" * 2>
/dev/null)

done

It is worth noting that the script uses grep -rli to capture those
instances when users need to switch between multiple keys and
make use of an IdentityFile in their .ssh confg or similar. If the
keys are in another non-standard directory other than .ssh, parsing
the confg should also be considered to determine their location,
certainly in preference to searching through entire/home or, worse still,
shared project directories, recognising that it is legitimate to have
authorized_keys or authorized_keys2 in a custom location. System
operators must be aware that they should never underestimate the
potential for a user to leave an unencrypted private key somewhere on
the system that they have access to. Nevertheless, in a more sane sense,
an entry will look similar to the following:

IdentityFile ~/.ssh/keys/id_ed25519
IdentitiesOnly yes

One issue with the script is that it works mainly for rsa/dsa keys and
will not work on newer key formats. For example, it will not determine
whether the following key has a passphrase or not:

-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAACmFlczI1Ni1jdHIAAAAGYmNyeXB0AAAAGA
AAABCFnJ+yNBRw6JkUyED823GdAAAAEAAAAAEAAAAzAAAAC3NzaC1lZDI1
NTE5AAAAIFhazP8p7JUmJrSdV34EU6vLP6LDFr6Q2Kyl6nniqHFCAAAAkB
s6oF/4XM0yVGnEOPWqYchfn+OIanG4PPR4WiNOswdyCPtsnnVzkLnLQy+a
QzkAbpsKbnFsR+gCj25MVRdzVedBNv11+eb8R1MPH5apsJJqRLWli4vkQ5
O2TckdxBP8svuxSPImTL0EAtBxjdJN5ehnZ5zEmsjcr9+Y2Hq0FCkio29c
yA2R4EvWoGubqgXrAw==
-----END OPENSSH PRIVATE KEY-----

348 ■ Cybersecurity and High-Performance Computing Environments

A further alternative is a test making direct use of libssh headers.
This, however, will require a version of libssh which incorporates the
new SSH format, which is atypical for HPC systems which tend to
have a degree of stability in the operating system level, even if they
make use of diverse versions and compilers on the application level.
This was discovered with a test of a local RSA key via OpenSSH 8.4
without a passphrase. The copy of key_audit on Spartan responded
that the key was good, but the local key_audit detects that the key
has no passphrase locally, libssh was using 0.9.5, but on Spartan HPC,
the system libssh was 0.7.1. As we did not want a book chapter
entitled “How we put our HPC in the Top500 by Changing to a
Rolling Release Distro”, alternatives were sought. Of course, invoking
a diferent version of libssh (e.g. through an environment modules
approach) provides an alternative solution which can be incorporated
into a small C program (key_audit.c, compile with gcc -o key_audit
-lssh key_audit.c), which elegantly tests validation of an empty
passphrase against a given keyfle. At the University of Melbourne,
we recommend the use of EasyBuild. The following is the key_audit.c
code, plus the EasyBuild script for libssh, and the sample code for such
an installation is preceded by the key_audit.c code.
easyblock = 'CMakeMake'
name = 'libssh'
version = '0.9.0'
homepage = 'https://www.libssh.org'
description = """Multiplatform C library implementing the

SSHv2 protocol on client and server side"""
toolchain = {'name': 'GCCcore', 'version': '6.4.0'}
toolchainopts = {'pic': True}
source_urls = ['https://www.libssh.org/files/0.9/']
sources = ['%(name)s-%(version)s.tar.xz']
checksums = ['25303c2995e663cd169fdd902bae88106f48242d7e96

311d74f812023482c7a5']
osdependencies = [('openssl-devel', 'libssl-dev',

'libopenssl-devel')]
builddependencies = [

('CMake', '3.12.1'),
('binutils', '2.28'),

]

https://www.libssh.org'
https://www.libssh.org
https://name)s-%(version)s.tar.xz

Monitoring HPC Systems - Compromised SSH ■ 349

separate_build_dir = True
sanity_check_paths = {

'files': ['include/libssh/callbacks.h',
'include/libssh/legacy.h',
'include/libssh/libssh.h',
'include/libssh/libsshpp.hpp',
'include/libssh/server.h',
'include/libssh/sftp.h',
'include/libssh/ssh2.h',
'lib/libssh.so',
'lib/libssh.so.4',
'lib/libssh.so.4.8.1',
'lib/pkgconfig/libssh.pc'],

'dirs': ['include/libssh', 'lib/pkgconfig',
'lib/cmake/libssh'],

}

moduleclass = 'tools'

It is a relatively easy process to update the version of libssh to either of
the newer versions. The program has been released under a GPL and
is available at: https://notabug.org/cryptarch/key_audit

#include <stdio.h>
#include <string.h>
#include <libssh/libssh.h>

const char *usage = "Usage: key_audit [-h]
/path/to/.ssh/key";

int main(int argc, char **argv) {
if(argc != 2) {

fprintf(stderr, "%s\n", usage);
return 1;

}
if(strncmp(argv[1], "-h", 4) == 0) {

printf("%s\n", usage);
return 0;

}

https://notabug.org
https://lib/pkgconfig/libssh.pc
https://lib/libssh.so

350 ■ Cybersecurity and High-Performance Computing Environments

ssh_key privkey;
// This returns 0 if the file does not exist, which is

okay if we regard non-existent keys as secure.
return ssh_pki_import_privkey_file(argv[1], "",

NULL, NULL, &privkey) ? 0 : 1;
}

A simple test against keys without a passphrase illustrates the use:

$ key_audit /home/dummy/.ssh/id_ed25519 && echo good
|| echo bad
bad
$ grep -rli 'begin.*private key' /home/*/.ssh/ | while
read k; do key_audit "$k" || printf "%s\n" "$k"; done
/home/dummy/.ssh/id_ed25519

For monitoring, such programs are extremely efcient; a test of more
than 3,000 user accounts takes <1.5 seconds on a contemporary system.
Following this, the use of inotifywait can be applied so that any
new insecure keys would be detected immediately instead of waiting
for a cron task to initiate. The system can be further strengthened
by using SSH key-only logins, rather than allowing for password
authentication, or restricting password authentication to VPN logins
only with sshd_confg and two-factor authentication. Prevention of
shared private keys is achieved by checking for duplications in the
authorized_keys fle. Further, with authorized_keys managed through
a repository with version control (e.g. GitHub and GitLab), another
layer of protection would exist to prevent multiple users to log in with
the same key. Each key would be a separate fle named after its own
checksum and use an AuthorizedKeysCommand directive.

12.7 CONCLUDING REMARKS AND FURTHER RESEARCH

The security of SSH as a public key system is well recognised by
system operators, with few potential security risks when implemented
properly. The greatest compromise risk, as illustrated, is primarily due
to poor implementation by users, such as sharing passwords and login
details, having weak passwords instead of passphrases, using password
authentication instead of a paired-key exchange, using private keys on
a shared and public system rather than using SSH agent forwarding,

Monitoring HPC Systems - Compromised SSH ■ 351

and not encrypting private keys. Given the relative lack of knowledge
of users compared to system operators, it is highly recommended that
a two-pronged approach is used for enhanced SSH security, including
user education and implementing processes driven by informed policy.

The phrase “informed policy” is chosen quite deliberately.
Managers, for example, are often even less informed than users. For
example, one of the authors spoke of a colleague who was forced
by their management to install a shared private key on a public
server for reasons of convenience despite the oxymoronic situation
of something being “shared” and “private”. Due to the imbalance in
employment power and responsibility, the system operator grudgingly
complied: “Technology is dominated by two types of people: those who
understand what they do not manage and those who manage what they
do not understand” (Archibald Putt, “Putt’s Law and the Successful
Technocrat”, 2006).

This harkens to an SEC Consult study of 2015 of some 4,000
frmware images for embedded devices from some 70 manufacturers,
which revealed over 500 keys for SSH and HTTPS, many of them
shared between multiple devices from the same vendor or even from
diferent ones. These thousands of images were in use of millions of
Internet devices, including routers, modems, IP cameras, and VoIP
phones. One wonders whether this situation occurred from a lack
of managerial oversight, or because of it. This, of course, should be
the subject of further research as it is well outside the scope of this
document. However, it will make for a fascinating enquiry to determine
to what degree those who manage IT security systems force operators,
contrary to their expressed expert considerations, to implement
insecure systems, even if this is limited to the HPC or SSH space.

One related subject could also be when management assigns
external parties to audit existing security policies, when the auditors
themselves are not particularly well versed in the security procedures
for HPC or SSH. In the course of this study, this was the experience
of operators at the institution in question when a well-known
“enterprise” auditing company recommended the use of password
logins in preference to key exchange under the guise of security. The
authors reiterate the well-known position that passphrase-protected
keys are more secure than passphrases, and passphrases are more secure
than passwords. Apart from their increased security, they also are more

352 ■ Cybersecurity and High-Performance Computing Environments

convenient. Key-only logins is certainly an approach that HPC centres
should seriously consider.

Assuming that policy preference is based on informed and
deliberated technical considerations, further research in this area
would involve developing a university-wide API ofering public keys
for arbitrary ssh logins for various systems on the campus, which is
certainly preferable to the inconvenience of multi-factor authentication
systems and, naturally enough, the block that they impose for scripted
systems administration across multiple systems. Access to systems
could also be implemented via a zero trust security framework (e.g.
BeyondCorp), which would both protect systems from intruders who
are already within a network perimeter, and provide secure access to
users who are outside it.

However, multi-factor authentication as it is usually understood is
redundant if key pair authentication is in use. Where private keys exist,
that already covers the “something you have” authorisation element,
and needing to know the right user name to go with a given key covers
“something you know”. If you think that “something you know” should
be a little stronger, recall that personal identifcation numbers used
for identifying yourself to EFTPOS or ATMs are routinely only four
digits; the strength of the system comes from coupling the PIN with a
physical card, just as user names are coupled with private keys in ssh
authentication. Keys can be stored for user accounts, which are used
for git clone actions, pull requests, etc.

To address concerns about users sharing private keys with each
other, it would be straightforward to use the sshd AuthorizedKeysCom-
mand confguration option to ensure uniqueness of keys. Rather than
using an ∼/.ssh/authorized_keys fle, you could place all public keys
in a central repository, one key per fle. Name each key after its
own checksum to prevent duplicate keys from being added, and
have each key owned by whoever frst added it. If anyone else
tried to add the same key later, it would generate a collision since
the flename would be necessarily identical, but the user would be
diferent. Although this system could be managed manually by any
HPC admin, it would be trivial to create a web interface, similar to
the way keys are added in GitHub or GitLab. The user submits the
public key via the web, and a server-side script then creates the fle
under /etc/ssh/authorized_keys and changes the ownership to match

Monitoring HPC Systems - Compromised SSH ■ 353

the user. The AuthorizedKeysCommand directive would then be as
simple as:

#! /bin/bash
[[$# -gt 0]] || exit 1
find /etc/ssh/authorized_keys/ -type f -user "$1"
-exec cat {} +

Appropriate permissions and access controls on /etc/ssh/authorized_
keys would make the keys readable to sshd while preventing users from
editing the flename or key contents directly.

Of course, all of this would require implementing test cases, along
with a substantial change in policy orientation at a large institution as
well as the implementation of the necessary infrastructure. However,
the overall project is founded on sound principles, and while there
would be an initial hurdle of user education, the combination
of convenience, reduced costs of implementation and operation,
and increased security should make the proposal quite enticing to
institutional IT managers who understand the concepts and value.

Overall, SSH is a very well-established and well-developed protocol
and suite of utilities in the world of high-performance computing,
to the point where it is ubiquitous in such an environment, and an
exploration of its features and history as well as basic use from a user
perspective has been provided here. It was the particular example of a
security breach in European HPC centres in 2020 that led the authors
to exploring the possibilities of how to engage in policy, user education,
and developing monitoring systems to protect against a similar instance
in their own environment with knowledge that is transferable to others.
In the course of developing such systems, the possibility for further and
wider use of key-based SSH for enhanced security and convenience has
also been raised as a future research project. It is hoped that others too
will take up such a project with a similar orientation, harkening back to
an initial consideration; if SSH is so good, why aren’t we using it every-
where? It would seem that only a lack of knowledge and a lack of will.

REFERENCES
[1] Central Intelligence Agency Information Operations Center, Both-

anSpy v1.0 Tool Documentation, WikiLeaks, July 6, 2017 [FP 2015].
https://wikileaks.org/vault7/#BothanSpy.

https://wikileaks.org

354 ■ Cybersecurity and High-Performance Computing Environments

[2] Central Intelligence Agency Information Operations Center, Gyr-
falcon v2.0 User’s Guide, WikiLeaks, July 6, 2017 [FP 2013].
https://wikileaks.org/vault7/#BothanSpy.

[3] Christopher R. Russel, Penetration testing with dsnif, February 18, 2001.
http://www.ouah.org/dsnifntr.htm.

[4] Computer Security Division of NIST, “Security of interactive and
automated access management using Secure Shell (SSH)”, Interagency
report 7966 (NISTIR 7966), 2015.

[5] Daniel J. Barrett, Richard E. Silverman, Robert G. Byrnes, SSH: The
Secure Shell (The Defnitive Guide), 2nd edition. Newton, MA: O’Reilly,
2005.

[6] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick
Gaudry, Matthew Green, J. Alex Halderman, Nadia Heninger, Drew
Springall, Emmanuel Thomé, Luke Valenta, Benjamin VanderSloot,
Eric Wustrow, Santiago Zanella-Béguelin, and Paul Zimmermann,
“Imperfect forward secrecy: How Dife-Hellman fails in practice”, 22nd
ACM Conference on Computer and Communications Security (CCS’15),
Denver, CO, October 2015.

[7] EGI Computer Security and Incident Response Team, Attacks on
multiple HPC sites, Incident #EGI20200421, Incident #EGI2020512,
2020. https://csirt.egi.eu/attacks-on-multiple-hpc-sites/.

[8] Joe Testa, Timothy Brush, and Manfred Kaiser et al., ssh-mitm, 17
September 2019 [FP May 16, 2017]. https://github.com/jtesta/ssh-mitm.

[9] Lev Lafayette, Greg Sauter, Linh Vu, and Bernard Meade, “Spartan:
Performance and fexibility: An HPC-cloud chimera,” Proceedings of the
OpenStack Summit, Barcelona, 2016.

[10] SEC Consult, House of keys: Industry-wide HTTPS certifcate and SSH
key reuse endangers millions of devices worldwide, November 25, 2015.

[11] Tatu Ylönen, “Announcement: SSH (Secure Shell) remote login pro-
gram.” Usenet comp.security.unix, 12 July 1995. blog.sec-consult.com/
2015/11/house-of-keys-industry-wide-https.html.

[12] Vasilios Mavroudis, Andrea Cerulli, and Petr Svenda, Dan Cvrcek,
Dusan Klinec, and George Danezis, “A touch of evil: High-assurance
cryptographic hardware from untrusted components,” Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, Fairfax, VA, 2017.

https://wikileaks.org
http://www.ouah.org
https://csirt.egi.eu
https://github.com
http://blog.sec-consult.com
http://blog.sec-consult.com

Index

Note: Bold page numbers refer to tables; italic page numbers refer to
fgures.

abnormal user behavior 12
accelerators 42
Acceptable Use, policies 19
accuracy, intrusion detection

303
active pushing technique 198
advanced computing 12
Advanced Encryption

Standard (AES) 296
advanced regulatory

technology (RegTech)
solutions 184

AES see Advanced Encryption
Standard (AES)

algorithm analysis 96
norm of target vectors

96–97, 98
solution vectors 96–97, 98
target vectors, generating

shortest vector 97–100
algorithm optimizations 100,

116
norm sort 105–106, 107
pruned decoding
combined pruning
104–105, 104

Gaussian pruning
101–104, 116

simple pruning 101, 102
algorithm walk-throughs 34–35

attack dependency graphs
37–39

attack graphs 35–37, 39
compliance graphs 39–41
hindrances 34

American Society of Heating,
Refrigerating and
Air-Conditioning
Engineers (ASHRAE)
75

anomaly detection method 301
antivirus 20
application data 334
application, deepfake forensics

design 324, 326, 325, 326
model training and

deployment 326, 327,
328

overview 323–324, 325
application layer, attack model

and vulnerabilities 294
applications security, HPC

10–14
arbitration feld mechanism

238
ARCHER 340–341
architecture 11, 21, 22; see also

individual entries
artifcial intelligence 311

355

356 ■ Index

artifcial intelligence-based
approaches 301–302,
302

attack dependency graphs
37–39

attackers, cyberattacks 231
attack graphs 33, 35–37, 39, 49
attack model 292

from application layer 294
from external interface

layer 292, 293
from network layer

293–294
attacks

denial-of-service (DoS) 194
endangered and exposed

transmission channel
222

improper access control
policies 220–222

loopholes in migration
module 222–223

man-in-the-middle
(MITM) 194

attribute-based encryption
(ABE)

A CP-ABE construction
129–132

preliminaries 127–129
searchable encryption
private-key setting
133–134

public-key setting
134–136

standard system model
132, 132

attribute-based keyword search
(ABKS)

construction
basic algorithm 139–143

coarse-grained
revocation 143–144

fne-grained revocation
144–146

system model 137,
137–138

threat model 138–139
future directions 148
result analysis 147–148

authentication
process 340
services 22

authorized_keys 350
AuthorizedKeysCommand 350,

352, 353
automated driving applications

232
automobile airbag system 290
automotive CAN-FD networks

availability-aware real-time
transmission

authentication and
authorization 252

intrusion detection
253–254, 255

obfuscating priority
assignment 253

confdentiality-aware
real-time transmission

asymmetric-key
cryptography 244–245

hardware security
module 247–248

key management
245–247, 246

symmetric-key
cryptography 243–244

types 243, 244
constraints 242–243

Index ■ 357

integrity-aware real-time
transmission

cipher-based message
authentication code
250

digital signature
250–251, 251

hash-based message
authentication code
249, 249–250

preliminaries
automotive cyberattack
model 239–241, 240,
241

CAN-FD vs. CAN
235–237, 236

security vulnerabilities
in CAN-FD 237–239

automotive cyberattack model
239–241, 240, 241

automotive electronic systems
294

automotive networks 231
availability-aware real-time

transmission
authentication and

authorization 252
intrusion detection

253–254
obfuscating priority

assignment 253

Backup Passphrases 7
Backups 19
Bayesian network method 301
Bilinear Map 127
biometrics 19
Boost Graph Library (BGL)

45–46
BothanSpy 340

boundary vertices 49
BoW feature 318
breadth-frst search (BFS) 42
broadcast 238
bwForCluster BinAC

bioinformatics
supercomputer 341

bwForCluster JUSTUS
chemistry and
quantum science
supercomputer 341

bwUniCluster 2.0 341

CAN see controller area
network (CAN)

CAN-FD networks
advantages 236–237
security vulnerabilities

237–239
CelebA-HQ 322
CelebFaces Attributes

(CelebA) 322
CGFace 319
cipher-based message

authentication code
(CMAC) 250

ciphertext-policy ABE
(CP-ABE) 126, 127

Client–Server communication
326

closest vector problem (CVP)
87, 88

cloud administrator migrates
applications 196–197

cloud computing 124–148,
194–195

attribute-based encryption
(ABE)

A CP-ABE construction
129–132

358 ■ Index

cloud computing (cont.)
preliminaries 127–129
searchable encryption
132–136

attribute-based keyword
search

construction 136–146
future directions 148
result analysis 147–148

prevalence of 194
system model 137, 137

cloud security alliance (CSA)
263

CNN see convolutional neural
network (CNN)

coarse-grained parallelism 46
cold migration 196
collectd, Unix-based tool

12, 13
combined pruning 104–105,

104
common fake feature network

(CFFN) 318
common vulnerability scoring

system (CVSS) 183
Common Weakness

Enumeration database
37

compliance graphs 33, 39–41,
55

computational facility,
HPC 21

confdentiality-aware real-time
transmission

asymmetric-key
cryptography 244–245

hardware security module
247–248

key management 245–247,
246

symmetric-key
cryptography 243–244

types 243, 244
Confguration File Protocols 20
container technology 10–11
controller area network (CAN)

286, 287, 289, 299–301
convolutional neural network

(CNN) 316, 318
architecture modifcation

of 319–320
CorpusCreation 267
CPU 107–108, 116, 118

original version 109–110,
110, 109, 111

pruned version
with sorting 111–114,
112, 113

without sorting 110–111
CPU-based computing system

94–96, 95
Cray 7, 8
CRC see cyclic redundancy

check (CRC)
creation of corpus 269–270
creation of dataset 267–269,

268, 269
credit risks

failure of settlement banks
173

replacement cost risks 172
unsettled transactions 173

criticality 53–54
cryptojacking 5
cryptomining 5
CUDA framework 95, 114–116,

118, 119
custody and investment risks

credit/liquidity risks 172
fnancial fraud 171

Index ■ 359

inadequate record-keeping
171

investing own resources to
market 172

loss of assets held by
custodian 171

negligence 171
poor administration 171

cyberattacks 231, 340
intelligent connected

vehicle 303
model 234

cybersecurity enhancement
countermeasures, ICV
294, 295, 298

hardware security module
296, 297

intrusion detection system
298

message authentication
297

cybersecurity issues
fnancial risks 170–175,

174
credit risks 172–173
custody and investment
risks 171–172

legal risks 173
liquidity risks 172
operational risks
173–174

systemic risks 171
cybersecurity landscape 32

graphs 33 (see also
large-scale graphs)

cybersecurity policy 19, 21
cyber-threats 184
cyclic redundancy check

(CRC) 289

DARPA 316, 322
data 2, 3

breaches 4
encryption 294
leaks 4
packets 333
security, HPC 14–17
structures 43–45

dataset composition 274, 275
DatasetCreation 267
datasets 321–322
data transfer nodes (DTNs) 22
DBPedia test dataset 275
DDoS see distributed

denial-of-service
(DDoS)

decision-making framework
288, 288

DeeperForensics-1.0 322
deepfake algorithms 322
“deepfake detection challenge”

316
deepfake forensics 312–314,

314
approach 323
application design 324,
326, 326, 327

application overview
323–324, 325

model training and
application
deployment 326, 327,
328

challenges of 322–323
convolutional neural

network modifcation
319–320

datasets 321–322
deepfake video forensic

methods 321

360 ■ Index

deepfake forensics (cont.)
image fngerprints

detection 320–321
limitations
in digital forensic
methods 315–316

in digital forensic
processes 315

pixel level detection
316–31

software for 322
subtle diference collecting

318–319
deepfake technology 310, 323
deepfake video forensic

methods 321
DeepFD 320, 326
deep learning algorithms 310
deep learning technology 328
DeepTrace 311
defense-in-depth security

approach 8
degradation dependency 38
delta disk operations 209
demand paging technique 198
denial-of-service attack 17, 221
deploy security-aware methods

232
detector algorithm 322
diamorphine module 342
Dife–Hellman algorithm 334
dife-hellman-group1-sha1 key

exchange 344
digital forensics 313

limitations
methods and processes
315

technical response and
future 315–316

direct physical attacks 292,
292

discretionary access control 10
distributed denial-of-service

(DDoS) 4
distributed property maps 44
DLP (data loss

prevention/data
leakage prevention) 4

dsnif 339
dynamic self-ballooning

199–200
dynamic system 9

EasyBuild 348
ECC see elliptic curve

cryptography (ECC)
ECUs see electronic control

units (ECUs)
edge computing 71–72
edge services 81–82
Elasticsearch 67–68
electronic control units

(ECUs) 286, 290, 297,
299, 301

electronic medical records
(EMRs) 124

elliptic curve cryptography
(ECC) 296

Energy Technologies Division
(ETD) 74

Enterprise Security Client
(ESC) 7

Ethernet 16, 17
ET network see event-triggered

(ET) network
European Grid Infrastructure

Foundation 341, 342
European HPC centres 353

event-triggered (ET) network
290, 291

external interface layer, attack
model and
vulnerabilities 292, 293

FaaS see Function as a Service
(FaaS)

Face X-ray 318
FakeSpotter 320
false resource sharing 221
feature-based observation

approaches 299–300
Feedforward Neural Networks

274
feld-programmable gate arrays

(FPGAs) 43
fnancial fraud 171
fnancial market infrastructure

(FMI)
central counterparty 157
central security depository

156
cybersecurity risks

176–178, 177
defnition 154
essential components 154,

154
fnancial risks 165, 167,

167–169
cybersecurity issues
170–175, 174

payment system 154–156
risk analysis 180–184
monitoring cybersecurity
risks 181–182

reporting 181–184
risk mitigation 182–184

risk management 178–180,
179

Index ■ 361

security settlement system
157

trade repository 157–158
fnancial risks 165, 167,

167–169
cybersecurity issues

170–175, 174
credit risks 172–173
custody and investment
risks 171–172

legal risks 173
liquidity risks 172
operational risks
173–174

systemic risks 171
fne-grained parallelism 46
FinTech risk management 184
frewalls 20
frst-in–frst-out (FIFO) queue

41
FlexRay 288, 289
Flickr-Faces-HQ Dataset 322
ForHLR II cluster 341
FPGA-HMC approach 43
fraud

fnancial 171
operational risks 174

FreescaleS12XF 297
Function as a Service (FaaS)

73–76

Ganglia 12, 13
GANs see generative

adversarial networks
(GANs)

Gaussian pruning 101–104
general parallelized

programming 47–48
generations 34

accelerators 42–43

362 ■ Index

generations (cont.)
algorithm walk-throughs

34–41
data structures 43–45
high-performance

computing clusters
47–50

libraries 45–47
parallel generation

algorithms 41
prefetching 42

generative adversarial networks
(GANs) 312, 316, 317,
320–321, 323, 324

generic interface 45–46
Gmetad 13
Gmond 13
GPU 114–116, 115, 116, 118,

119
tests 95–96, 95

Grafana 12, 14
graphical approach 33
graphical user interface (GUI)

13
graph processing performance

34
grep -rli 347
Guest Access 19
guest VM attack 221
GUI see graphical user

interface (GUI)
Gyrfalcon 340

hardware security 7–10, 296,
297

hardware security module
(HSM) 247–248

hash-based message
authentication code
(HMAC) 249, 249–250

Hawk supercomputer 341
heterogeneous network

environment 287–288
high-availability/fault

tolerance (HA/FT)
solutions

clustering eforts 220
container-based platforms

217–220, 218
hypervisor-based platforms
checkpointing vs.
record-and-replay
214–217

higher-performing graph
algorithms 44

high-performance computing
(HPC) 33

common security
objectives

accountability 169, 170
authenticity 169, 170
availability 169, 170
confdentiality 169, 169
integrity 169, 169–170

components 159, 159
cybersecurity issues

163–165, 166
defnition 158–159
evolution 160, 160
in FMIS
credit risk assessment
161, 162

customer engagement
161, 161–162

cybersecurity 161, 163
fraud detection 161,
162–163

regulatory compliance
161, 163

parallel processing 159

High Performance Computing
Center Stuttgart
(HLRS) 341

high-performance computing
clusters 47–50

high-performance computing
(HPC) ecosystems 2

applications security 10–14
data security in 14–17
security in 3–5
user-specifc cybersecurity

18–19
policies 19–21

high-performance computing
(HPC) systems

data centers 64
managing operational

data, challenges 65–66
overall design 66–67
secure shell in 333–338,

340–342
types of data 66
virtual machine (VM)

clusters 68
high-performance embedded

systems
classifcation 230, 231
defnition 230

high-performance storage
system (HPSS) 68

Hopper and Edison Computing
systems 22

HPC ecosystems see
high-performance
computing (HPC)
ecosystems

HPCrypt data protection
system 15, 16

Index ■ 363

ICV see Intelligent Connected
Vehicle (ICV)

Idaho National Laboratory 5
IDS see intrusion detection

system (IDS)
IETF see Internet Engineering

Task Force (IETF)
image acquisition 315
InfniBand 16, 17
information entropy 300
information security 270, 289

protection mechanism 288
information theory model 300
informed policy 351
inotifywait 350
insider attack 12
instance dataset 275
integrity-aware real-time

transmission
cipher-based message

authentication code
250

digital signature 250–251,
251

hash-based message
authentication code
249, 249–250

intelligent connected vehicle
(ICV) 286–288, 288

cybersecurity enhancement
countermeasures 294,
295, 298

hardware security
module 296, 297

intrusion detection
system 298

message authentication
297

in-vehicle network 290,
290–291, 291

364 ■ Index

intelligent connected vehicle
(ICV) (cont.)

intrusion detection
approaches 298,
298–302, 302

security analysis of
289–294, 290, 291

Intel Run Sure Technology 8
Intel Trusted Execution

Technology 7–8
Intel Xeon Processors 7
internal attacks 221
international cybersecurity risk

management
standards 182

Internet Engineering Task
Force (IETF) 334

Internet of Things (IoT) 32
inter-VM attack 221
intrusion detection (ID)

253–254, 255
intrusion detection approaches

in-vehicle network 298,
298–299

artifcial
intelligence-based
approaches 301–302,
302

feature-based
observation
approaches 299–300

statistical analysis-based
approaches 300–301

intrusion detection system
(IDS) 9, 10, 298

intrusion response systems
(IRSs) 9, 10

in-vehicle network
of intelligent connected

vehicle 290, 290–291,
291

intrusion detection
approaches 298,
298–299

artifcial
intelligence-based
approaches 301–302,
302

feature-based
observation
approaches 299–300

statistical analysis-based
approaches 300–301

security analysis of 289
attack model 292–294
intelligent connected
vehicle 290, 290–291,
291

security requirements
292

vulnerabilities 292–294
IP datagram 333
IRSs see intrusion response

systems (IRSs)

Kerberos 18
key_audit.c code 348
key-only logins 352
key-policy ABE (KP-ABE)

126, 126
‘knocked-out’ test dataset 275
k3s architecture 69–71, 70
Kubernetes technology 11

large-scale graphs 33
analyses
criticality 53–54

Index ■ 365

Markov process model
50–51

minimization 52–53, 55
semi-metricity 54
shortest-path algorithms
50–54

generations
accelerators 42–43
algorithm walk-throughs
34–41

data structures 43–45
high-performance
computing clusters
47–50

libraries 45–47
parallel generation
algorithms 41

prefetching 42
usage of 55

lattice-based cryptosystems
86–87, 88

Euclidean norm 87, 90
Lawrence Livermore National

Laboratory (LLNL) 15
LEED® 65
legal risks

cross-border transactions
173

delay in recovery 173
diferent law bodies 173

Leibniz Supercomputing
Center (LRZ) 341

libraries 45–47
libssh headers 348, 349
lightweight authentication for

secure automotive
networks (LASAN)
252

lightweight security encryption
algorithm 297

LIN see local interconnect
network (LIN)

Linux operating system 6
liquidity risks 172
live container migration

checkpointing process
210–212

defnition 206
HA/FT solutions
clustering eforts 220
container-based
platforms 217–220,
218

hypervisor-based
platforms 214–217

memory migration 207–208
network migration 208
performance 212–213
record–replay migration

209–210
restoring process 211–212
suspend/resume migration

208–209
live migration technique

applications 193
approaches
isolates migration trafc
223

network security
engine-hypervisor
224–225

attacks
endangered and exposed
transmission channel
222

improper access control
policies 220–222

loopholes in migration
module 222–223

366 ■ Index

live migration technique (cont.)
efciency 193
security 194
virtual machine
challenges 202–203
cloud administrator
migrates applications
196–197

multiple virtual
machines 196

post-copy memory
migration 197–200

pre-copy memory
migration 200–202

security 203–205
LLL algorithm 93, 96
local interconnect network

(LIN) 286
LOF-based attack detection

scheme 299
long short term memory

(LSTM) 264

MAC see mandatory access
control (MAC)

MAC Flooding Attack 17
machine learning (ML) 262,

311, 313, 326
agents 9

machine translation-based
cryptocurrency mining
malware detector 5

mandatory access control
(MAC) 7

man-in-themiddle (MITM)
attack 338–340

Markov chains 9
Markov process model 50–51
MAuth-CAN 297
Media Forensics (MediFor) 322

MediFor 316
Mellanox Technologies 16
message authentication 294,

297
message-passing interface

(MPI) 47–48
MFA see multi-factor

authentication (MFA)
Microsoft Hyper-V 196
minimization 52–53, 55
MITM attack see

man-in-themiddle
(MITM) attack

MixBlock framework 321
$2M Mechanical Substation

Cost Savings 77–78,
79

Mode-Based Execution Control
(MBE) 8

monitoring 12
SSH 343, 346–350

monitoring cybersecurity risks
international cybersecurity

risk management
standards 182

organizational policies
181–182

risk guidelines 182
Moore’s law 2
multiagent intrusion detection

system (MAIDS) 9
multi-factor authentication

(MFA) 22, 67, 352
munge 18
Munin 12–14

Nagios XI 12, 14
National Cyber Security

Centre (NCSC) 341

National Energy Research
Scientifc Computing
Center (NERSC) 13,
21–22

National Institute of Standards
and Technology
(NIST) 344

National Security Agency’s
(NSA) 10

National Vulnerability
Database 33, 37

national vulnerability database
(NVD) 263

natural language processing
(NLP) techniques 263

neighborhood-centric model
49–50

NERSC see National Energy
Research Scientifc
Computing Center
(NERSC)

NERSC high-performance
computing data center
64, 65

benefts from OMNI 77–82
FaaS 73
k3s cluster 70

Network Access 19
network layer, attack model

and vulnerabilities
293–294

network monitoring 12
network protocols 287–288
network security

engine-hypervisor
(NSE-H) 224–225

fnal synchronization 225
iterative synchronization

225
preparation 224–225

Index ■ 367

resumption 225
network security evaluation

303
network security testing 303
neural network training 312
NIST see National Institute of

Standards and
Technology (NIST)

no authentication 238–239
no data encryption guarantee

289
node exploration algorithms 44
no freshness, CAN-FD

networks 239
no message authentication

mechanism 289
no message encryption 238
nontraditional data structures

45
norm of target vectors 96–97,

98
NSDMiner 38
nVision 14

ODISSEI Secure
Supercomputer
(OSSC) 16

on-chip block RAM (BRAM)
43

OntoEnricher 267
ontology enrichment

approach 266, 267
creation of corpus
269–270

creation of dataset 268,
267–269, 269

example 273, 272–274
testing 272
training dataset
270–272, 271

368 ■ Index

ontology enrichment (cont.)
architecture diagram 270,

271
experimental settings

274–277, 278–280
future work 277, 280–281
qualitative comparison

277, 278–279
OpenMP 48

compiler 107
critical section 41

OpenSSH 334–335, 340
operational risks

data loss indicates 173
fraud 174
human errors 174
incomplete settlement 174
information systems 173
insufcient capacity 173
internal and external

threats 174
leakage 173
management failure 174

Operations Monitoring and
Notifcation
Infrastructure (OMNI)
64

benefts to NERSC data
center 77–82

data centers 64
diagnostic issues 76–77, 77
edge computing 71–72
FaaS 73–76
hardware replacement

strategy 83
infrastructure support

82–83, 82
k3s architecture 68–71, 70

managing operational
data, challenges 65–66

networking services 77, 77
overall design 66–67
securing small devices

72–73
troubleshooting 76–77, 77
types of data 66
virtual machine (VM)

clusters 68
OS kernel 11
OSSC see ODISSEI Secure

Supercomputer
(OSSC)

packet, defnition 333
Parallel Boost Graph Library

(Parallel BGL) 46
parallel generation algorithms

41
ParMETIS 46–47
partition-centric model 49–50
partitioning mechanism 17
Passphraseless SSH keys 342
passphrase-protected keys 351
Password Policy 19
patching 20
Perlmutter HPC system 66, 67
Perlmutter power upgrade

79–80
phishing attack 5
PhotoDNA 311
Physical Security 20
pixel level detection 316–317
policy-based user education

342–345
post-copy memory migration

197–200
active pushing technique

198

demand paging technique
198

dynamic self-ballooning
199–200

prime modules 198–200
power distribution units

(PDUs) 65, 67
POWER9 processors 8
power usage efectiveness

(PUE) 65, 74, 75
pre-copy memory migration

200–202
checkpoint–restore/trace–

replay technique 201
delta compression

technique 202
improved precopy

approaches 200–201
integrated replication 202
memory compression 201
optimized version 202
two-phase strategy 201

prefetching 42
Pregel 48–49
pre-paging technique

multiple pivots 199
single pivot 198–199

pre-sorting 105–106
pre-trained model 323–324
programming model

optimizations 48–50
property maps 44
pruned decoding 100–105
public key algorithms 340
public key authentication 344
public-key encryption with

keyword search
(PEKS) 125

public key systems 338, 350

Index ■ 369

Public Safety Power Shutdown
(PSPS) 81–82

PuTTYgen 337, 345, 346

radial basis function (RBF)
301

ransomware attacks 5
Real and Fake Face Detection

322
real-time adaptive security

(R-TAS) 272
real-time data 287
record–replay migration

209–210
Rectifer Linear Unit (ReLU)

layer 271
Red Hat Enterprise Linux

(RHEL) 6
Red Hat, Inc. 6
Relevant Vectors 92–94, 117
Remote Access 19
remote intrusion and vehicle

control 292, 293
Renyi information entropy 301
Research Cloud 345
resulting matrix 94
return value delay 299
RHEL see Red Hat Enterprise

Linux (RHEL)
rich external interfaces 286–287
RNN-LSTM classifer 299
robust security mechanism 18

safety 105
sandboxing 10
scalability 12
Schnorr–Euchner method 93
The Science DMZ 22

370 ■ Index

searchable encryption
private-key setting 133–134
public-key setting 134–136
standard system model

132, 132
search privilege revocation

coarse-grained revocation
143–144

fne-grained revocation
144–146

SEC Consult study of 2015 351
Secure Boot 8
secure data processing tool 15
Secure Shell (SSH)

in high-performance
computing system
333–338, 340–342

man-in-themiddle attack
338–340

monitoring 346–350
policy and implementation

342–345
user education 345–346

security analysis, in-vehicle
network 289

attack model 292–294
intelligent connected

vehicle 290, 290–291,
291

security requirements 292
vulnerabilities 292–294

security-aware real-time
methods 234

security-aware real-time
transmission

automotive CAN-FD
networks

asymmetric-key
cryptography 244–245

authentication and
authorization 252

cipher-based message
authentication code
250

constraints of 242–243
digital signature
250–251, 251

hardware security
module 247–248

hash-based message
authentication code
249, 249–250

intrusion detection
253–254, 255

key management
245–247, 246

obfuscating priority
assignment 253

symmetric-key
cryptography 243–244,
244

automotive CAN-FD
networks preliminaries

automotive cyberattack
model 239–241, 240,
241

CAN-FD vs. CAN
235–237, 236

security vulnerabilities
in CAN-FD 237–239

future 256, 274
overview 232, 233, 234

Security-Enhanced Linux
(SELinux) 6–7, 10

security, live VM migration
IPsec tunnelling 203–204
lightweight authentication

framework 205

Index ■ 371

onion routing algorithm
204

secure migration 204–205
self-supervised method 318
SELinux see

Security-Enhanced
Linux (SELinux)

Semantic Forensics (SemaFor)
322

semi-metricity 54
sensitive data processing 15
ServerThread 326
Shor’s algorithm 86
shortest path algorithms

Bellman–Ford algorithm
52

criticality 53–54
Dijkstra’s algorithm 51–52
parallel APSP 52

shortest vector problem (SVP)
87, 88, 117–118

Relevant Vectors 92–94,
117

stopping criterion 119
Voronoi cell based 89–92,

92
short-range wireless attacks

292, 293
simple pruning 101, 102
SkySpark 74, 75, 76
sliding window strategy 300
smart cards 7, 19
Snort 9, 299
social engineering techniques 4
Society of Automotive

Engineers (SAE) 291
SOCKS proxy hosts 341–342
software, deepfake forensics

322
software piracy 195

software security 6–7
solution vectors 96–97, 98
Spanning Tree Protocol 17
Spartan HPC system 335, 342,

343, 348
Spartan service 336, 343, 345
Sperotto 9
SSH confg fle 335–336
ssh-keygen approach 336, 343,

346
ssh-keygen -p -f keyfle 345–346
SSH key-only logins 350
SSH known-host mechanism

338
SSH 2.0 or SSH-2 334
SSH-1 protocol 330
state transition graphs 39
static system 9
statistical analysis-based

approaches 300–301
styleGAN 320, 324
subgraph-centric model 49
Subnet Management 17
subtle diference collecting

318–319
supercomputer 160
supercomputing facilities 4
supercomputing infrastructure

security 5–6
hardware security 7–10
software security 6–7

superfacility paradigm 22
suspend/resume migration

208–209
SVirt 7
swapped image detection 318
systemic risks,

inter-dependency 171
system operators 344, 346, 347,

350, 351

372 ■ Index

System Security Services
Daemon (SSSD) 7

Tao 293
TCP/IP network stack 333
TCP segment 334
Tech-savvy internet 262
TensorFlow-serving 326, 328
Testing 267
Texas Advanced Computing

center (TACC) 12
threat model 138–139
time analysis 315
time interval 299
time-triggered (TT) network

290, 291
training, OntoEnricher 267
Trusted Boot 8
TT network see time-triggered

(TT) network
two-stream method 321

UI Design 324, 326, 326, 327
universal sentence encoder

(USE) 264, 270
University of Melbourne 335,

337, 342, 345, 346, 348
user access control 18
user education, SSH 342,

345–346
user-specifc cybersecurity,

HPC 18–19
U.S. House of Representatives

Intelligence
Committee 311

UTKFace 322

Verifed Boot 8
vertex-centric model 48–49

VictoriaMetrics 67–70
VirtualBox 196
virtualization technologies 10
virtual machine (VM)

challenges 202–203
cloud administrator

migrates applications
196–197

clusters 68
multiple virtual machines

196
post-copy memory

migration 197–200
pre-copy memory

migration 200–202
security 203–205

VLAN Hopping 17
VM migration technique

application degradation
197

downtime 197
pages transferred 197
preparation time 197
resume time 197
total migration time 197

Voronoi cell based SVP-solvers
89–92, 92

vulnerabilities 292
from application layer 294
from external interface

layer 292, 293
from network layer

293–294

water usage efciency (WUE)
74

weak access control 289
Wider Face 322

Index ■ 373

WikiLeaks 340
Wikipedia 194
Wikipedia project 269

XALT 12, 13
XceptionNet 319
Xeon E5 CPU 43

XMR Monero cryptocurrency
341

YouTube 313

Zabbix 12, 13
Zeek 9

REQUEST A FREE TRIAL
support@taylorfrancis.com

Taylor & Francis eBooks
www.taylorfrancis.com

A single destination for eBooks from Taylor & Francis
with increased functionality and an improved user
experience to meet the needs of our customers.

90,000+ eBooks of award-winning academic content in
Humanities, Social Science, Science, Technology, Engineering,

and Medical written by a global network of editors and authors.

TAYLOR & FRANCIS EBOOKS OFFERS:

A streamlined
experience for

our library
customers

A single point
of discovery
for all of our

eBook content

Improved
search and
discovery of

content at both
book and

chapter level

mailto:support@taylorfrancis.com
http://www.taylorfrancis.com

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	PREFACE
	EDITORS
	CONTRIBUTORS
	CHAPTER 1 Cybersecurity and High-Performance Computing Ecosystems: Opportunities and Challenges
	1.1 Introduction
	1.2 The Vital Importance of Securing High-Performance Computing (HPC) Ecosystems
	1.3 Security for Supercomputing Infrastructure
	1.3.1 Software Security
	1.3.2 Hardware Security

	1.4 Applications Security
	1.5 Data Security in HPC Ecosystems
	1.6 User-Specific Cybersecurity
	1.6.1 Policies

	1.7 Discussion and Summary
	References

	CHAPTER 2 Approaches to Working with Large-Scale Graphs for Cybersecurity Applications
	2.1 Introduction
	2.2 Generation
	2.2.1 Generation Introduction
	2.2.2 Algorithm Walk-Throughs
	2.2.2.1 Introduction
	2.2.2.2 Attack Graphs
	2.2.2.3 Attack Dependency Graphs
	2.2.2.4 Combination of Attack Graphs and Attack Dependency Graphs
	2.2.2.5 Compliance Graphs

	2.2.3 Parallel Generation Algorithms
	2.2.4 Additional Architectural and Hardware Techniques
	2.2.4.1 Prefetching
	2.2.4.2 Accelerators
	2.2.4.3 Better Data Structures
	2.2.4.4 Useful Libraries

	2.2.5 Deploying to High-Performance Computing Clusters
	2.2.5.1 Base Approach: General Parallelized Programming
	2.2.5.2 Programming Model Optimizations

	2.3 Analysis
	2.3.1 Introduction
	2.3.2 Markov Process Model
	2.3.3 Shortest Path
	2.3.3.1 Dijkstra’s Algorithm
	2.3.3.2 Bellman–Ford Algorithm
	2.3.3.3 Parallel APSP

	2.3.4 Minimization
	2.3.5 Criticality
	2.3.6 Semi-Metricity

	2.4 Conclusions and Future Work
	References

	CHAPTER 3 OMNI at the Edge
	3.1 Introduction
	3.2 Background
	3.3 OMNI Architecture and Technologies
	3.3.1 OMNI k3s Architecture
	3.3.2 Use of Edge Computing in OMNI
	3.3.3 Securing Small Devices at the Edge
	3.3.4 Function as a Service at the Edge
	3.3.5 Analysis at the Edge for Diagnostic and Troubleshooting Issues

	3.4 Case Study of Benefits of OMNI Data to NERSC Data Center
	3.4.1 $2M Mechanical Substation Cost Savings
	3.4.2 Perlmutter Power Upgrade from 12.5 to 25.0 MW
	3.4.3 Edge Service to Mitigate California’s PublicSafety Power Shutdown (PSPS)

	3.5 Ongoing and Future Work
	References

	CHAPTER 4 Optimized Voronoi-Based Algorithms for Parallel Shortest Vector Computation
	4.1 Introduction
	4.2 SVP-Solvers Based on Voronoi Cells
	4.2.1 Voronoi Cell-Based Algorithm by Micciancio et al.
	4.2.2 Relevant Vectors by Agrell et al.

	4.3 Experimental Setup
	4.4 Algorithm Analysis
	4.4.1 Correlation between the Norm of Target Vectors and Solution Vectors
	4.4.2 Percentage of Target Vectors That Generate the Shortest Vector

	4.5 Algorithmic Optimizations
	4.5.1 Pruned Decoding
	4.5.1.1 Simple pruning
	4.5.1.2 Gaussian Pruning
	4.5.1.3 Combined Pruning

	4.5.2 Increasing Norm Sort

	4.6 Parallel Implementations for CPUs and GPUs
	4.6.1 CPU
	4.6.1.1 Original Version (No Pruning and No Pre-Sorting)
	4.6.1.2 Pruned Version without Sorting
	4.6.1.3 Pruned Version with Sorting

	4.6.2 GPU

	4.7 Discussion
	4.8 Conclusions
	4.8.1 Open Problems

	Acknowledgments
	Notes
	References

	CHAPTER 5 Attribute-Based Secure Keyword Search for Cloud Computing
	5.1 Introduction
	5.2 Key Techniques in ABKS
	5.2.1 Attribute-Based Encryption
	5.2.1.1 Preliminaries in ABE
	5.2.1.2 A CP-ABE Construction

	5.2.2 Searchable Encryption
	5.2.2.1 SE in the Private-Key Setting
	5.2.2.2 SE in the Public-Key Setting

	5.3 ABKS Construction
	5.3.1 System Model and Threat Model
	5.3.1.1 System Model
	5.3.1.2 Threat Model

	5.3.2 Basic Algorithm
	5.3.2.1 Algorithm Definition
	5.3.2.2 Algorithm Implementation

	5.3.3 Search Privilege Revocation
	5.3.3.1 Coarse-Grained Revocation
	5.3.3.2 Fine-Grained Revocation

	5.4 Experimental Result Analysis
	5.5 Conclusions and Future Directions
	References

	CHAPTER 6 Understanding Cybersecurity Risk in FMI Using HPC
	6.1 Introduction
	6.2 What Is Financial Market Infrastructure (FMI)?
	6.2.1 Payment Systems
	6.2.2 Central Security Depositories
	6.2.3 Security Settlement Systems
	6.2.4 Central Counterparties
	6.2.5 Trade Repositories

	6.3 What Is High-Performance Computing?
	6.4 How HPC Could Transform the Financial Industry
	6.5 HPC in FMIs
	6.6 Current Works on Cybersecurity Issues Related to HPC in FMIs
	6.7 Financial Risks in FMIs
	6.8 Common Security Objectives
	6.9 Cybersecurity Issues and Financial Risks in FMIs
	6.10 Cybersecurity Risks in FMIs
	6.10.1 Cybersecurity Risks
	6.10.2 Risk Assessment
	6.10.3 Risk Analysis
	6.10.4 Risk Monitoring, Reporting, and Mitigation

	6.11 Conclusions
	References

	CHAPTER 7 Live Migration in HPC
	7.1 Introduction
	7.1.1 Introduction to Live Migration
	7.1.1.1 Needs
	7.1.1.2 Applications
	7.1.1.3 Efficiency
	7.1.1.4 Security

	7.1.2 Introduction to Cloud Computing

	7.2 Live Migration in VM
	7.2.1 Live VM Migration Techniques in Cloud
	7.2.1.1 Post-Copy Approach
	7.2.1.2 Pre-Copy Approach

	7.2.2 Research Challenges in VM Migration
	7.2.3 Security in Live VM Migration

	7.3 Live Container Migration
	7.3.1 Migration
	7.3.1.1 Memory Migration
	7.3.1.2 Network Migration

	7.3.2 Type of Migration to Manage Cache Transfers
	7.3.2.1 Suspend/Resume Migration
	7.3.2.2 Record–Replay Migration

	7.3.3 Case Study
	7.3.3.1 Checkpointing and Restoring in CRIU
	7.3.3.2 Checkpointing and Restoring inOpenVZ

	7.3.4 Performance
	7.3.5 Comparing VMs vs. Containers via High-Availability/Fault Tolerance (HA/FT) Solutions
	7.3.5.1 HA in Hypervisor-Based Platforms
	7.3.5.2 HA in Container-Based Platforms
	7.3.5.3 Clustering Efforts for Containers

	7.4 Attacks on Live Migration
	7.4.1 Improper Access Control Policies
	7.4.2 Unprotected Transmission Channel
	7.4.3 Loopholes in Migration Module

	7.5 Approaches
	7.5.1 Isolating the Migration Traffic
	7.5.2 Network Security Engine-Hypervisor (NSE-H)

	7.6 Summary
	References

	CHAPTER 8 Security-Aware Real-Time Transmission for Automotive CAN-FD Networks
	8.1 Introduction
	8.1.1 Background and Motivation
	8.1.2 Contributions and Outline

	8.2 Automotive CAN-FD Networks Preliminaries
	8.2.1 Differences between CAN-FD and CAN
	8.2.2 Security Vulnerabilities in CAN-FD
	8.2.3 Automotive Cyber-Attack Model

	8.3 Automotive CAN-FD Security-Aware Real-Time Transmission Methods
	8.3.1 Automotive CAN-FD Security-Aware Real-Time Transmission Constraints
	8.3.2 Confidentiality-Aware Real-Time Transmission
	8.3.2.1 Symmetric-Key Cryptography
	8.3.2.2 Asymmetric-Key Cryptography
	8.3.2.3 Key Distribution
	8.3.2.4 Hardware Security Module

	8.3.3 Integrity-Aware Real-Time Transmission
	8.3.3.1 Hash-Based Message Authentication Code
	8.3.3.2 Cipher-Based Message Authentication Codes
	8.3.3.3 Digital Signature

	8.3.4 Availability-Aware Real-Time Transmission
	8.3.4.1 Authentication and Authorization
	8.3.4.2 Obfuscating Priority Assignment
	8.3.4.3 Intrusion Detection

	8.4 Future Trends
	8.5 Conclusions
	References

	CHAPTER 9 OntoEnricher: A Deep Learning Approach for Ontology Enrichment from Unstructured Text
	9.1 Introduction
	9.2 Related Work
	9.3 Ontology Enrichment Approach
	9.3.1 Stage 1: Creation of Dataset
	9.3.2 Stage 2: Creation of Corpus
	9.3.3 Stage 3: Training OntoEnricher
	9.3.4 Stage 4: Testing OntoEnricher
	9.3.5 Example

	9.4 Experimental Settings and Results
	9.5 Conclusion and Future Work
	Notes
	References

	CHAPTER 10 Intelligent Connected Vehicles
	10.1 Introduction
	10.1.1 Intelligent Connected Vehicle (ICV)
	10.1.2 Contributions and Chapter Organization

	10.2 Cybersecurity Analysis of In-Vehicle Network
	10.2.1 In-Vehicle Networks of ICV
	10.2.2 Vulnerabilities and Cybersecurity Requirements
	10.2.3 Attack Model and Vulnerabilities from External Interface Layer
	10.2.4 Attack Model and Vulnerabilities from Network Layer
	10.2.5 Attack Model and Vulnerabilities from Application Layer

	10.3 Overview of Intelligent Connected Vehicle Cybersecurity Enhancement Countermeasures
	10.3.1 Hardware Security Module
	10.3.2 Message Authentication
	10.3.3 Intrusion Detection System (IDS)

	10.4 State-of-the-Art In-Vehicle Network Intrusion Detection Approaches
	10.4.1 Feature-Based Observation Approaches
	10.4.2 Statistical Analysis-Based Approaches
	10.4.3 Artificial Intelligence-Based Approaches

	10.5 Summary and Future Research
	References

	CHAPTER 11 Toward Robust Deep Learning Systems against Deepfake for Digital Forensics
	11.1 Introduction
	11.2 Background
	11.3 Deepfake Forensics
	11.3.1 Limitations in Digital Forensic Processes
	11.3.2 Limitations in Digital Forensic Methods
	11.3.2.1 Technical Response and Future

	11.4 Related Work
	11.4.1 Detecting in Pixel Level
	11.4.2 Subtle Difference Collecting
	11.4.3 Modifying the Architecture of CNN
	11.4.4 Obtaining Fingerprint of GANs
	11.4.5 Deepfake Video Forensic Methods
	11.4.6 Datasets
	11.4.7 Software for Deepfake Forensics
	11.4.8 Challenges

	11.5 Approach to Deepfake Forensics
	11.5.1 Application Overview
	11.5.2 Application Design
	11.5.3 Model Training and Application Deployment

	11.6 Conclusions and Future Work
	References

	CHAPTER 12 Monitoring HPC Systems against Compromised SSH
	12.1 An Introduction to SSH in HPC
	12.2 Man-in-the-Middle and Other Attacks
	12.3 Recent Compromised SSH Credentials on HPC Systems
	12.4 SSH Policy and Implementation
	12.5 SSH User Education
	12.6 SSH Monitoring
	12.7 Concluding Remarks and Further Research
	References

	Index

