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Preface 

In this fast-paced global economy, academia and industry must 
innovate to evolve and succeed. Today’s researchers and industry 
experts are seeking transformative technologies to meet the challenges 
of tomorrow. The cutting-edge technological advances in cybersecurity 
solutions aid in enabling the security of complex heterogeneous high-
performance computing environments. On the other hand, high-
performance computing power facilitates powerful and intelligent 
innovative models for reducing time to response to identify and resolve 
a multitude of potential, newly emerging cyberattacks. 

This book provides a collection of the current and emergent 
research innovations, practices, and applications focusing on the 
interdependence of cybersecurity and high-performance computing 
domains for discovering and resolving new emerging cyber-threats. 

In the following, we will describe the chapters contained in the 
book. 

Chapter 1, “Cybersecurity and High-Performance Computing 
Ecosystems: Opportunities and Challenges,” by Sukhija et al., focuses 
on efective cybersecurity solutions to protect current and emergent 
high-performance computing (HPC) ecosystems comprising users, 
data, infrastructure, and applications supporting scientifc research. 
Although, as we move toward the exascale future and beyond, the 
emerging superfacility frameworks are combining the experimental and 
observational facilities with high-performance computing centers, the 
new convergent computing platforms, along with a paradigm shift 
in programming applications leveraging these platforms, increasingly 
open the HPC ecosystems to a myriad of security risks. Intending to 
reduce the downtime of HPC ecosystems in the presence of unpre-
dictable loads and malicious attacks, this chapter covers cybersecurity 
challenges and solutions, which, when combined efectively, will aid in 
proactively rearchitecting the current and emergent HPC ecosystems 
comprising users, data, infrastructure, and applications to delay or 

vii 
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counteract the scale of malicious attacks and to reduce their impacts 
and consequences. 

Chapter 2, “Approaches to Working with Large-Scale Graphs for 
CyberSecurity Applications,” by Hawrylak et al., covers the graph 
techniques useful for compliance violation and cybersecurity attack 
prediction in the lens of high-performance computing. Graphs are a 
standard tool in cybersecurity evaluation and analytics. First, the au-
thors discuss the attack graphs and dependency graphs, which are two 
common approaches in cybersecurity where the analysis of the attack 
and dependency graphs describes the system’s security posture, includ-
ing the system’s attack surface. Next, the authors explain the potential 
attack scenarios that can be extracted from attack graphs. This chapter 
concludes with a survey of techniques useful for handling large-scale 
graphs, methodologies, and strategies for increasing the performance 
and ends with insights into future needs and directions in this area. 

Chapter 3, “OMNI at the Edge,” by Bautista et al., discusses the 
high-availability Operations Monitoring and Notifcation Infrastruc-
ture (OMNI) hosted at the Department of Energy’s (DOE) National 
Energy Research Scientifc Computing Center (NERSC) and its use 
of the state-of-the-art edge computing technologies for collecting, 
analyzing, and securing extremely high-volume, continuous 24 × 7 
data in near-real-time. The authors then detail how data security is 
achieved not only from each staf who owns the data, but also through 
various devices and networks. Then, the chapter highlights the internal 
and external access policies and the plan to make these data available 
to the public for crowdsourcing analysis. Furthermore, the authors 
provide use cases that demonstrate how the availability of OMNI 
data has benefted the overall NERSC data center from facilities & 
machine perspective as well as from a cybersecurity standpoint. Finally, 
an outline of ongoing and future work is given, including upgrades 
being made to the data warehouse for the upcoming Perlmutter 
supercomputer – a system that will be 3–4× the size of ours. 

Chapter 4, “Optimized Voronoi-Based Algorithms for Parallel 
Shortest Vector Computation,” by Gabriel Falcão et al., addresses 
Voronoi cell-based algorithms, solving the shortest vector problem, 
a fundamental challenge in lattice-based cryptanalysis. First, the 
chapter introduces several optimizations based on pruning to reduce 
the original algorithm’s execution time. Then, the authors illustrate 
the algorithm’s suitability for parallel execution on both CPUs and 
GPUs, where speeds up to 69× are observed. The authors then 



Preface ■ ix 

demonstrate using a pre-process sorting step, which requires storing 
the norm ordered target vectors and signifcantly more memory, where 
speedup increases to 77×. Finally, the chapter concludes by optimizing 
the algorithm that exhibits linear scalability on a CPU with up to 
28 threads and keeps scaling, at a lower rate, with simultaneous 
multithreading up to 56 threads. 

Chapter 5, “Attribute-Based Secure Keyword Search for Cloud 
Computing,” by Hui Yin et al., presents the attribute-based keyword 
search (ABKS) that provides the feasibility to simultaneously achieve 
data searching and fne-grained access control over encrypted data, 
which is applied to the cloud computing environment characterized by 
data storage and sharing. In this chapter, the authors frst introduce 
the fundamental techniques for achieving the ABKS scheme, such as 
the necessary components used in the attributed-based encryption. 
Then, by several existing ABKS schemes, the authors describe how 
to design a practical and efcient ABKS construction in the cloud 
computing environment. Further, the authors show some interesting 
experimental results to explain the key factors afecting the search 
complexity in ABKS schemes and present some ideas to design an 
efcient and high-performance ABKS scheme. 

Chapter 6, “Understanding Cybersecurity Risk in FMI Using 
HPC,” by Gurdip Kaur et al., examines the importance of the fnancial 
market infrastructure and elaborates its essential components used to 
handle fnancial transactions and their security. The chapter explores 
high-performance computing (HPC) and its integration to FMIs to 
transform the fnancial industry by speeding up fnancial activities 
in the business and reducing fraudulent transactions. Moreover, the 
authors provide a descriptive and visual mapping of fnancial risks with 
identifed cybersecurity issues. The chapter concludes by detailing the 
cybersecurity risks faced by FMIs with comprehensive details on risk 
assessment, analysis, monitoring, reporting, and mitigation. 

Chapter 7, “Live Migration in HPC,” by Anil Kumar Gupta 
et al., presents the basics of live migration and its needs, applications, 
security aspects, and role in HPC (high-performance computing) and 
then proceeds with discussing two of the live migration approaches – 
live virtual machine (VM) migration and live container migration. 
Next, the authors discuss the challenges in this approach and then 
review the security aspects. The authors detail the second approach, 
live container migration, followed by understanding the performance 
measures and issues and comparative analysis of the two methods. 
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Moreover, the authors cover two case studies, checkpointing and
restoring in “CRIU” and “OpenVZ” for container live migration.
Finally, the authors compare live migration in virtual machines
with live container migration concerning various attributes such as
performance, challenges, and security. The chapter underlines the role
of live migration in high-performance computing, discusses security
breaches and possible threats, and concludes by suggesting various
approaches to overcoming the same.

Chapter 8, “Security-Aware Real-Time Transmission for Automo-
tive CAN-FD Networks,” by Ruiqi Lu et al., covers high-performance
embedded computing systems that are widely used in intelligent vehi-
cles, providing the possibility of secure and real-time communication
for automotive networks. The chapter first provides the preliminaries of
automotive CAN-FD networks, including the differences between CAN-
FD and CAN, their security vulnerabilities, and the corresponding
classification of cyberattacks. Then, security-aware real-time CAN-FD
transmission methods are summarized based on the three elements
of security, such as confidentiality-aware real-time transmission,
integrity-aware real-time transmission, and availability-aware real-
time transmission. Finally, this chapter discusses the future trends
of security-aware real-time CAN-FD transmission methods, including
intrusion detection accuracy and response time, attack analysis and
cybersecurity evaluation, and security-aware methods and resource
consumption.

Chapter 9, “OntoEnricher: A Deep Learning Approach for Ontology
Enrichment from Unstructured Text,” by Lalit Mohan S. et al.,
introduces the need for sequential deep learning architectures that
traverse through dependency paths in text and extract embedded
vulnerabilities, threats, controls, products, and other security-related
concepts and instances from learned path representations. The authors
then detail the proposed approach, OntoEnricher, a supervised
sequential deep learning model that factors context from grammatical
and linguistic information encoded in the dependency paths of
a sentence and then utilizes sequential neural networks, such as
bidirectional long short-term memory (LSTM), to traverse (forward
and backward directions) dependency paths and learn relevant path
representations that constitute relations. Then the authors explain the
implementation of the proposed OntoEnricher, where the bidirectional
LSTMs are trained on a large DBpedia dataset and Wikipedia corpus
of 2.8 GB along with Universal Sentence Encoder, which is deployed to
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enrich ISO 2700-based information security ontology. The chapter then
describes training the model and testing a high-performance computing
(HPC) environment to handle Wiki text dimensionality. Finally, the
chapter concludes by detailing the experimental results and the test
accuracy of the approach when tested with knocked-out concepts from
ontology and web page instances to validate the robustness.

Chapter 10, “Intelligent Connected Vehicles,” by Wufei Wu et
al., presents the characteristics of intelligent connected vehicles and
current in-vehicle network architecture. The authors start by showing
the attack model and vulnerabilities of the existing in-vehicle network
(IVN). Then the state-of-the-art countermeasures of cybersecurity
enhancement for IVNs are introduced. Finally, at the end of the chap-
ter, a discussion is given based on next-generation in-vehicle network
architecture with security mechanisms and future research directions.

Chapter 11, “Toward Robust Deep Learning Systems against
Deepfake for Digital Forensics,” by Hongmei Chi and Mingming Peng,
investigates the interactions between the development of deepfake
techniques and detection of them in digital forensics. The authors
first describe the structure and the associated software pertinent to
the generative adversarial network (GAN) algorithms. The authors
then discuss how to train fairness in deep learning (DL) algorithms
to identify the typical features of all the popular GAN algorithms
and how smartphones app can help in deepfake detection. Finally, the
chapter concludes by detailing an innovative application tool that any
digital professional can learn to adopt techniques to detect deepfake
development.

Chapter 12, “Monitoring HPC Systems against Compromised
SSH,” by Lev Lafayette, focuses on compromising Secure Shell, which
is a very well-established and well-developed cryptographic network
protocol and a suite of utilities in the world of high-performance
computing. The chapter starts with the description of the security
breach in European HPC centers in 2020 that led the authors to
exploring the possibilities of how to engage in policies, user education,
and developing monitoring systems to protect against a similar instance
in their environment with the knowledge that is transferable to others.
Next, the authors detail a two-stage approach adopted by the HPC
team at the University of Melbourne for dealing with the potential of
compromised SSH keys, consisting of policy-based user education and
monitoring. Finally, the chapter concludes by discussing the possibility
for further and broader use of key-based SSH for enhanced security.
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Overall, this book represents a substantial research contribution 
to the state-of-the-art solutions for addressing the threats to conf-
dentiality, integrity, and availability (CIA triad) in high-performance 
computing (HPC) environments. Moreover, in addition to focusing on 
securing HPC environments, this book covers the groundbreaking and 
emergent solutions that utilize the power of the HPC environments 
to study and understand the emergent, multifaceted, anomalous, and 
malicious characteristics. As a result, the editors are confdent that 
this book will help university students, researchers, and professionals 
understand how high-performance computing research fts broader 
cybersecurity objectives and vice versa. 



Editors 

Kuan-Ching Li is a Distinguished Professor in the Department 
of Computer Science and Information Engineering at Providence 
University, Taiwan, where he also serves as the Director of the High-
Performance Computing and Networking Center. He has published 
more than 320 scientifc papers and articles and is a co-author or 
co-editor of more than 30 books published by leading publishers. In 
addition, he is the Editor-in-Chief of Connection Science (Taylor & 
Francis) and serves as an associate editor for several leading journals, 
and is also actively involved in various capacities in the organization 
of several national and international conferences in several countries. 
He is a Fellow of IET and a Senior Member of the IEEE. Professor Li’s 
research interests include parallel and distributed computing, big data, 
and emerging technologies. 

Nitin Sukhija is an associate professor in the Department of 
Computer Science and the Director of Center for Cybersecurity and 
Advanced Computing (C2AC) at SRU. He received his doctorate 
in Computer Science from Mississippi State University majoring in 
High Performance Computing in 2015. His areas of expertise are 
high-performance computing, dynamic load balancing, performance 
modeling, prediction and evaluation, robustness and resilience analysis, 
cybersecurity, and big data analytics. Dr. Sukhija received his MBA 
degree in Information Systems from San Diego State University (2009) 
and MS degree in Computer Science majoring in Computing from 
National University, San Diego (2010). Dr. Sukhija has been involved 
in the research and management of various projects pertaining to the 
HPC and cybersecurity challenges in industry and academia for over 
two decades. Dr. Sukhija’s research is recognized by publications in 
high-impact peer-reviewed IEEE and ACM conferences, journals, and 
book chapters. Dr. Sukhija is a recipient of research, career awards and 
fellowships. He is currently serving as an organizing committee member 
and reviewer for many esteemed conferences. He is currently serving 

xiii 



xiv ■ Editors 

as the co-chair for the ACM SIGHPC Education Chapter workshop 
committee and has been active in the planning and participation in 
Workshops series at the SC, ISC, and other conferences. 

Elizabeth Bautista is the manager for the Operations Technology 
Group (OTG) at Lawrence Berkeley National Lab’s National Energy 
Research Scientifc Computing (NERSC) Center (http://www.nersc. 
gov). The group of Site Reliability Engineers ensures 24 × 7 
accessibility, reliability, and security of NERSC’s high-performance 
systems, data storage systems, and the facility environment. Bautista’s 
Data Team manages a 125 TB Elastic/VictoriaMetrics-based data 
warehouse infrastructure that collects at a rate of 25,000–400,000 data 
points/second depending on the source. The types of datasets range 
from the facility environment (power, temperature, and humidity) 
to storage I/O to system logs of the HPC systems and support 
services. The analysis of the real-time data provides alerts to manage 
the facility, and the archived data are correlated to provide business 
decisions and future trends. Bautista supports programs that seek to 
involve minorities and women in STEM and advocates that the next 
generation of professionals has practical hands-on training as part of 
their education. In her career, she has served as a member of the Lab’s 
Computing Science Diversity Group, is a member of Women Scientists 
and Engineers, was a delegate in the Council of University of California 
Staf Assemblies (CUCSA), a staf advocate group, she champions 
issues of retention and diversity, and is the founder of Filipinas in 
Computing, a community in the Grace Hopper Conference. Bautista 
was named one of the 100 most infuential Filipina Women Globally in 
2015. She has a BS in Computer Information Systems and an MBA. 
in Technical Management, both from Golden Gate University. 

Jean-Luc Gaudiot received the Diplôme d’Ingenieur from the Ecole 
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2 ■ Cybersecurity and High-Performance Computing Environments 

1.1 INTRODUCTION 

Today, high-performance computing (HPC) ecosystems have become 
central in bolstering research and innovation in diverse domains 
and in reinforcing world economies on the competitive international 
arena. In the past decade, the rapid proliferation of processing 
technologies for HPC has facilitated the convergence of artifcial 
intelligence, machine learning, data analytics, big data and the HPC 
domain platforms to solve complex computationally intensive and data-
intensive applications in various scientifc and non-scientifc felds. 
The technologies combined with the workforce facilitating complex 
computational competences formulate an HPC ecosystem [1]. 

The complex infrastructure comprising increasingly evolving and 
highly unpredictable heterogeneous computing systems (currently 
operating at petafop capacity and planned for exafop performance 
by year 2021) forms the most important and fundamental component 
of the HPC ecosystem [2]. The main challenge here is not only to 
acquire these high-end computing infrastructures, but also to retain the 
cutting edge by continuously updating the existing infrastructures with 
newer hardware and software to realize the increasing needs of solving 
complex problems in diverse disciplines. The applications representing 
simulations of complex systems behavior or software enabling system 
operations are another key component of HPC ecosystem [3]. Scientists, 
researchers and users are interested in scientifc fdelity, in insight 
analyses and in visualizations of the simulations of the implementation 
of various numerical models corresponding to numerous complex 
phenomena pertaining to various scientifc felds. Another important 
element of the HPC ecosystem is data. With information growth 
exceeding Moore’s law, the traditional data processing applications and 
platforms are inadequate to handle the increasing amounts of generated 
data. The data storage, curation, sharing, analysis, visualization and 
privacy along with scalability of computing performance are some of 
the signifcant challenges witnessed in the era of big data. Lastly, 
the workforce highly trained and experienced in HPC skills is the 
crucial part of the HPC ecosystem [4]. As we move toward exascale 
future and beyond, the emerging superfacility frameworks combining 
the experimental and observational facilities with HPC centers, and 
the new convergent computing platforms along with a paradigm shift 
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in programming applications leveraging these platforms increasingly 
open the HPC ecosystems to a myriad of security risks [5]. 

This book chapter covers signifcant cybersecurity solutions for 
protecting the current and emergent HPC ecosystems comprising users, 
data, infrastructure and applications supporting scientifc research. 

1.2 THE VITAL IMPORTANCE OF SECURING 
HIGH-PERFORMANCE COMPUTING (HPC) ECOSYSTEMS 

As high-performance computing (HPC) ecosystems have evolved to 
become more and more powerful, so has their potential to do harm. 
Couple the advancement in cyberinfrastructures with the increasing 
number of domains in which HPC systems are used in that involve 
sensitive data and you have a recipe for disaster if one of these systems 
is compromised [6]. So not only would an attacker be able to harness the 
computational power of the machines to perform malicious activities, 
but also be able to have access to potentially confdential data. In 
today’s age, data mean power, and so even non-confdential could hold 
some value to an attacker. Researchers working on a compromised 
system could have their research stolen or tampered with, causing them 
to lose potentially years worth of work. It is therefore imperative that 
HPC systems, and the application code running on them, be built with 
security in mind. Security is an oft overlooked component of building 
scientifc code for a variety of reasons [7]. Many researchers simply 
do not have awareness of the potential risks of building an insecure 
system or assume that the system they are using is secure enough and 
they therefore do not need to worry about securing their applications. 
Other times, security is ignored for the sake of speed or convenience, 
since baking in security to their application code introduces some 
amount of overhead and requires extra planning and code [8]. None 
of these are valid reasons in today’s world; threats are everywhere, 
and HPC systems are a major target of bad actors. There needs to 
be a continuing focus on training researchers in providing security 
measures within their application code, rather than depending upon 
infrastructure security. 

One such thing HPC users have to be aware of when building their 
applications is communication within the cluster with respect to their 
application, and communication with the outside world. Generally, 
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users have access to unprivileged ports on the system, to do things like 
interacting with streaming data that may be on an outside network. If 
an application does not ensure that these communications are secure 
and encrypted, it opens the door to attacks. Such attacks on HPC 
applications and computing systems could not only damage the system 
and application performance, but also lead to the damage in the 
reputation of the resource and the reputation of the security providers 
or data centers, which could lead to fnancial and more productivity 
losses in the long run [9]. The attacks can lead to the leakage of data 
from a HPC system or from user account to another, which could be 
devastating as it contains a lot of sensitive scientifc data and results. 
Moreover, attacks such as distributed denial-of-service (DDoS) attacks 
[10] send out a large volume of packets, which if successfully delivered 
could make the HPC systems unavailable and impact the performance 
of the entire network. It could take down the system until the attack is 
completed, which could disrupt all the jobs executing on the computing 
systems [11]. Improper access control or some other security failure may 
allow some users to gain undesired access to sensitive information or 
give them the ability to execute or alter someone’s code, which could 
lead to loss of information or a full system shutdown. Having access 
to sensitive data could also lead to gaining access to diferent systems 
using social engineering techniques or leakage of protected data [12]. 
There exist many mechanisms to avoid data leaks. One mechanism to 
avoid the leaks in sensitive data is DLP (data loss prevention/data 
leakage prevention) that aids in checking and controlling the fow of 
sensitive data and in reporting the leakage when detected. Moreover, 
more stringent access controls employing the use of encryption and 
decryption for data transfer and storage can be deployed in addition 
to other security mechanisms [13]. 

One of the recent data breaches was encountered by Facebook, 
where the personal data of 533 million Facebook users were compro-
mised due to a bug in Facebook systems [14,15]. Moreover, recently 
attackers have been successful in attacking many supercomputing 
facilities, which include ARCHER, TAURUS and Hawk, due to which 
the attacked facilities went of-line [16]. One of the factors leading to the 
attack was compromised credentials, such as username and passwords 
for accessing these resources. Many attackers try to acquire sensitive 
information such as username and passwords of the employees working 
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at these facilities through social engineering as around two-third of 
people use the same password across multiple accounts. One other type 
of attack that is becoming more common during COVID-19 pandemic 
is the ransomware attacks, which are mainly carried out by a phishing 
attack in the form of an e-mail with a malicious attachment [17]. Once 
the user/staf of the HPC facility clicks on the attachment, it allows the 
ransomware to execute on the user’s system or user’s network. Once the 
ransomware is in the network or in the system, it might attack the main 
database fles (MDF), secondary database fles (NDF), transaction log 
fles (LDF) and the backup fles (BAK and TRN). This would lead the 
data servers toward an inoperable state because the SQL server service 
cannot open the master.mdf fles. 

Due to the increase in the cryptocurrency prices, adversaries 
are attacking HPC systems and trying to compromise the systems 
in order to gain remote access and use machines’ resources and 
processing power to perform cryptomining [18]. Once the attackers gain 
access, they perform malicious cryptomining by installing software, also 
known as cryptojacking, in which they use the system’s resources to 
mine for cryptocurrency or steal from crypto wallets. Many national 
laboratories have also been working on mechanisms to defend their 
HPC systems against misuse of computing cycles for cryptomining 
[19]. The Idaho National Laboratory have designed and implemented 
a machine translation-based cryptocurrency mining malware detector, 
which uses deep learning mechanism to accurately analyze and detect 
such malicious mining activities [20]. 

With the emergence in the complexity of the HPC ecosystems, 
there is a need for researching, developing, analyzing, adapting and 
integrating cutting-edge cybersecurity solutions, thus enabling security, 
privacy and performance of applications and workfows executing in 
HPC ecosystems. 

1.3 SECURITY FOR SUPERCOMPUTING INFRASTRUCTURE 

The HPC ecosystem is a complex network of interconnected systems. 
Supercomputing systems promising to deliver exascale computing 
performance formulate the central pillar of the HPC ecosystem. The 
HPC ecosystem comprises of various supercomputers with diferent 
tiers of computing power, and each of the tiers is designed and 
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modifed based on the complexity and type of applications that will be 
executed on these supercomputers. For so many years, the performance 
efciency and efectiveness of supercomputers have been some of the 
most important aspects studied and researched for a supercomputer. 
However, recently, with increases in malicious actors, the robustness 
and security of the supercomputers against the unintended events 
and targeted attack has become an extremely important aspect. 
Supercomputing infrastructures are considered critical infrastructures 
as they have a direct impact on research and an indirect impact on 
the economy if they are compromised. In May 2020, when most of 
the supercomputers in the Europe were expected to execute the HPC 
workloads that gave us a hope in fnding a cure in the fght against the 
Coronavirus (COVID-19) research and other important researches, the 
computing systems were forced to shut down in order to investigate 
a cryptocurrency mining hack on them [16], thus necessitating the 
vital role of security in supercomputing environments. The following 
sections investigate some of the in-built security features provided by 
HPC vendors such as Cray and Intel, which help the computing systems 
to defend themselves from security attacks. 

1.3.1 Software Security 

Most of the modern supercomputers in the TOP500 list use Linux 
operating system, given its open-source system and high customiz-
ability. Each vendor that manufactures its own supercomputers has 
made its own specifc changes to the Linux derivative they employ 
with no industry standards in place as each hardware design requires 
changes to optimize the operating system due to diferences in hardware 
architectures [21]. The Linux open-source operating system accounts 
for the largest share of the supercomputer’s operating systems. Due to 
the increased demand for supercomputers, the Linux operating system 
capabilities and vulnerabilities are on sharp increase. In year 2018, Red 
Hat, Inc. products reported more vulnerabilities than the Microsoft 
products [22]. In 2020, the Red Hat Enterprise Linux (RHEL) became 
the operating system backbone of the four world’s top 10 fastest 
supercomputers and of top three supercomputers [23,24]. Some of the 
built-in security capabilities enabled by RHEL are as follows [25]: 

1. Security-Enhanced Linux (SELinux): a Linux kernel security 
module comprising a set of kernel modifcations and user 
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space tools supporting access control security policies, such as 
mandatory access control (MAC). The MAC controls enable the 
confnement of user programs and system services and lead to 
the privilege limitations, thus aiding in reducing or eliminating 
the ability of these programs and daemons to be compromised in 
case of security breach. 

2. System Security Services Daemon (SSSD): implements a set of 
services for central management of identity and authentication 
and allows users to still identify when there is interruption in 
connecting with the server. 

3. Backup Passphrases for Encrypted Storage Devices: aids in 
avoiding unauthorized access of data by encrypting the data on 
the storage devices. 

4. SVirt: improves hypervisor security by controlled sharing and vir-
tual machine isolation and thus aids in preventing unauthorized 
access in a virtualized environment. 

5. Enterprise Security Client (ESC): provides management of smart 
cards by facilitating connections between users (and their tokens), 
the Token Processing System and certifcate authority. The smart 
cards or security tokens store user certifcates that are employed 
by the client authentication and single sign-on access applications 
[26]. 

1.3.2 Hardware Security 

Hardware security is a vital part in fully securing your HPC 
environment. Like software, there are several hardware attacks that 
need to be defended to maintain the full efciency of the system. As 
each vendor that manufactures its own supercomputer has made its 
own specifc changes in terms of the software they use, it’s the same in 
terms of hardware. We’ll take example of two of the top known vendors 
manufacturing supercomputers, which are CRAY and IBM, and discuss 
some of their in-built hardware security features [27]. Cray uses Intel 
Xeon Processors that have the following built-in security features: 

1. Intel Trusted Execution Technology: a set of hardware-based 
extensions that enable the security capabilities such as protection 
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environment aiding in the execution of applications with their 
own space shielding data and processes. 

2. Intel Run Sure Technology: a resilient technology that en-
compasses processor, frmware and software layers to facilitate 
detection and recovery in state of faults with minimum 
interruption, thus maximizing resiliency and uptime of servers, 
especially while executing mission-critical workloads. 

3. Mode-Based Execution Control (MBE): enables reliable verifca-
tion and integrity of kernel-level code by the hypervisor and thus 
acts as a mechanism for shielding against malware attacks in a 
virtualized environment [28]. 

Some of the other Intel security features also include: Integrated 
Cray Hardware Supervisory System (HSS) and full ECC protection 
of all packet trafc in the Aries network. In comparison, IBM uses 
POWER9 processors that are designed to facilitate defense-in-depth 
security approach and provide layers of security protection, including 
hardware security, frmware security, hypervisor security and operating 
system security [29]. Moreover, POWER9 systems also employ a suite 
of cybersecurity tools for IBM Power Systems, IBM PowerSC. The 
POWER9 systems enable two key security features: Secure Boot and 
Trusted Boot, which aid in ensuring the integrity of server and in 
mitigating the boot code cyberattack: 1) Secure Boot, also known 
as Verifed Boot, checks the integrity of OS kernels and performance 
verifcation and halts the boot in the event of validation failure. There 
are a series of kernel verifcation keys which are provided by the OS 
provider so that the system administrator can check the kernel against 
the original kernel signature. This helps in preventing unvetted kernels 
or modifed kernel images from booting. 2) Trusted Boot creates a 
cryptographic hash of a kernel image that encompasses the recording 
of executable code as the system boots and thus can be used to retrieve 
the recordings via remote attestation and to aid in the assessment and 
verifcation of frmware and target operating system [30]. 

In addition to in-built hardware and software security for HPC 
infrastructures, there have been extensive eforts in the development 
of defensive technologies, such as smarter intrusion detection devices, 
and sensors to achieve robustness and security against the unintended 
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events and targeted attacks. The research in the domain of intrusion 
detection and identifcation is signifcant, while the research in 
intrusion response system is still progressing. For example, the multi-
agent intrusion detection system (MAIDS) utilizes colored Petri 
nets and comprises three components: (1) data collection agents for 
gathering and converting logs and system events data; (2) agents 
for monitoring and classifying real-time system events; and (3) the 
machine learning agents for providing predictive rules that are learned 
by processing data from logs and system events. Herein, the machine 
learning agents enable adjusting the underlying Petri nets to refect the 
evolution of the system [31,32]. 

Many diferent cybersecurity applications also employ hidden 
Markov chains. A model for detecting brute-force SSH attacks by 
analyzing network fow data was implemented and developed by 
Sperotto et al. [33]. Herein, the developed model illustrated how hidden 
Markov chains could be utilized to model the network fow and be 
integrated with an intrusion detection system (IDS). 

The Zeek, formerly known as Bro, is an open-source software 
framework and one of the most popular network intrusion detection 
systems (IDSs). Zeek utilizes passive monitoring of the network links 
where the intruder’s trafc transits to detect network intruders in 
real time, thus aiding in detecting behavioral anomalies for achieving 
cybersecurity. Zeek IDS performs two tasks for real-time network trafc 
analysis: (1) converting network data into high-level events and (2) 
utilizing a script interpreter which is a programming language that 
interacts with the high-level events and aids in the translation of events 
in terms of network security [34]. Snort is a traditional open-source 
intrusion detection/prevention tool for performing real-time network 
analysis of the system. Snort facilitates snifer mode, packet logger 
mode and full network intrusion detection system mode as user options; 
however, it lacks the capability of scripts such as Zeek that allows for 
highly automated workfows [35]. 

The intrusion response systems (IRSs) are systems that are devel-
oped for selecting an appropriate response to detected intrusion and 
can be divided into two broad categories: (1) static system that focuses 
on mapping a response to a specifc type of attack and (2) dynamic 
system that enables the selection of the most efective countermeasure 
among the multiple countermeasures depending on multiple criteria. 
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The authors in Ref. [36] introduce a network model for choosing the 
response action with the ability to avert certain threats and to minimize 
the overall impact on the system and users, whereas the ADEPTS [37] 
maximizes the availability of the system at the expense of the features 
compromised by the attack that are isolated from the rest of the system, 
thus aiding in restricting the efect of the intrusion to a subset of the 
services. The authors in Ref. [38] propose an IRS that utilizes the 
stochastic nature of the detections conducted by the IDS and triggers 
the response action when the confdence level of the detected attack 
reaches a specifed threshold. 

1.4 APPLICATIONS SECURITY 

Traditionally, HPC systems were deployed and employed for dedicated 
users to conduct research and development in specifc domains with 
security being not a signifcant issue. However, with the advent of the 
shared HPC systems and emerging HPC-as-a-service concept, where 
the system is shared among multiple users, the security of HPC systems 
and applications executing on the systems has evolved as a challenging 
problem [39]. 

Even though the shared HPC systems are lucrative due to 
accessibility and cost-efectiveness, the shared nature of these HPC 
systems renders extreme difculty in enforcing security requirements 
for application execution and data processing on these shared systems. 
Sandboxing and discretionary access control [40] are used for con-
trolling remote connections and for protecting shared clusters against 
malicious activities [41]. The authors in [42] present two solutions 
based on National Security Agency’s (NSA) Security-Enhanced Linux 
(SELinux) to enable security in a shared HPC cluster. The frst solution 
employs chroot to confne the user [43]. However, the frst approach 
prevents the user from easily sharing data. The second solution relies 
on two SSH server ports and facilitates user to share data. 

Traditionally, virtualization technologies have been employed to 
fulfll the goal of protecting applications and their data from other users 
and potentially malicious adversaries. However, Linux cgroups followed 
by Linux container technology has gained momentum for usage in HPC 
environments. Given the container technology’s ability to partition 
computing system resources with practically no overhead, the container 
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technology has emerged as a dominant solution for deploying and 
executing distributed applications and is being adopted by data centers 
ranging from small to large scale and to public clouds where attaining 
maximum system utilization is the objective [44,45]. The container 
enables microservice architecture and the seamless deployment of an 
application across various computing environments by bundling the 
application’s code with dependencies, confguration fles and other 
libraries required for the application to execute. Even though container 
technology was not initially used with HPC, the emergence of enterprise 
HPC workloads and open-source projects such as Singularity [46], 
Charliecloud [47], Shifter [48] and Podman [49] has catalyzed the 
adoption of container technologies in HPC environments. Moreover, 
the recent Kubernetes technology aids in container orchestration, 
resource utilization, load balancing, automated operation tasks and 
application deployments, scalability of services, applications and 
clusters, self-healing, auto-replication and auto-placement, declarative 
confguration, and abstraction of infrastructure, thus enabling dynamic 
orchestration, portability and scalability for rapidly allocating and 
deallocating computational resources to HPC workloads [50]. 

The co-integration of containers with HPC not only facilitates the 
scalability, portability and reproducibility to scientifc community, but 
also results in a myriad of the security and usability challenges. The 
containerized applications are distributed in nature; thus, investigating 
the vulnerabilities, misconfguration or risk impact in containers 
becomes extremely difcult. Thus, containerization of HPC requires 
new approaches to compliance and security over traditional security 
model. One of the major security concerns is that the containers 
are inherently lacking isolation from the host operating system and 
thus depend signifcantly on their underlying host OS kernel for: (1) 
security policies; (2) resource isolation; (3) provisioning control; and 
(4) user communications. Therefore, any vulnerability involving host 
OS kernel can lead to severe security risks to all containers. Moreover, 
given that containers are also not isolated from one another, a security 
faw in one single container can potentially lead to compromising 
all other containers. Furthermore, container confguration, fawed 
base images and their short life cycles can lead to increase in 
vulnerabilities and in monitoring challenges. The authors in Ref. [44] 
list various vulnerabilities and solutions that can aid in achieving 
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container security. Lastly, increasing security in container can lead 
to performance degradation and comes at the cost of increased 
deployment time and decreased application performance. 

Monitoring the system for abnormal user behavior is a key 
component in securing HPC systems. The most common attack vector 
is the insider attack, where either a user goes rogue or an attacker steals 
an authentic user’s log-in information. Some of the main challenges 
when designing an HPC-specifc monitoring are scalability, overhead 
and extensibility [51]. These are important features to consider when 
using or designing HPC system monitoring software. Scalability is 
necessary to expand the monitoring system as the system evolves, 
gaining new nodes. Overhead needs to be kept to a minimum; 
otherwise, the system performance is impacted, decreasing the amount 
of work that can be performed. Without the ability to be extensible, 
a system cannot incorporate new forms of monitoring as they are 
developed. Also, as the system evolves, there may be new and diferent 
types of actions and data that need to be monitored. 

One of the most essential parts of running an HPC system is 
monitoring its nodes, network and overall system so that the system ad-
ministrator can make informed decisions. Some tools are preferred over 
others. When it comes to network monitoring, some of the preferred 
tools are Munin [52], which mainly intensifes on plug-and-play capabil-
ity, and Zabbix [53], which is mainly preferred due to its very interactive 
graphical user interface. There are also other tools such as collectd 
[54], which is preferred for reviewing performance analysis and capacity 
planning, and tools such as Nagios XI [55] and Grafana, which have a 
user-friendly and easily customizable dashboard for easy review of the 
monitoring statistics by the team. Other tools used include Ganglia 
[56], which among all of the other tools is mostly used by HPC institu-
tions due to its large community support, and XALT [57], which is pre-
ferred due to its usefulness and compatibility to other system logs. The 
following section discusses some of the notable HPC monitoring tools. 

XALT tool is employed by supercomputing staf for managing 
Linux-based clusters and supercomputers at many institutions includ-
ing TACC (Texas Advanced Computing center) for job monitoring 
and collecting accurate and continuous job level and link time data 
about the libraries and executables. XALT is mainly used for collecting 
link time and run time data using the LD_PRELOAD environment 
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variable. It determines the details of each parallel job which includes 
all information from dependencies to MPI tasks to the environment 
in which the job executes. XALT is extremely efective because of its 
usefulness and compatibility to other system logs. Ganglia is another 
tool employed for monitoring scalable clusters and grids in real time. 
This tool was an open source and started at University of California, 
Berkeley. Ganglia works by providing performance metrics of large 
supercomputers which have hundreds of nodes and helps them to 
monitor each of them. It uses Gmond and Gmetad, of which Gmetad is 
ran only on the main node and Gmond is ran on all the other compute 
nodes, which then collect all the node-specifc data about performance, 
CPU, memory, network trafc and other processes. Later, the data 
are used for monitoring the system, which also aids in security. Some 
of the reasons why Ganglia is preferred over other monitoring tools 
for HPC systems are its ability to scale and its fexible design which 
helps in preventing node failure on very large systems. collectd is a 
Unix-based tool for collecting, storing and transferring the performance 
metrics of various systems and applications running on HPC systems. 
collectd monitors the whole system and collects data about the CPU, 
external devices and log fles, which are made available to the system 
administrator for analyzing the data and detecting any bottlenecks. 
Some of the reasons why collectd is preferred over other tools are 
its large number of available plug-ins, portability and performance. 
The National Energy Research Scientifc Computing Center (NERSC) 
at Lawrence Berkeley National Laboratory uses collectd for data 
collection process. Another open-source monitoring tool used by many 
HPC systems to monitor their overall system is Zabbix. Zabbix utilizes 
both agent-based and agentless monitoring and aids in monitoring 
the network utilization of the system, its CPU load and memory 
consumption. Once all the data are collected, Zabbix sends out all the 
information over the network or it could also be displayed on the Zabbix 
graphical user interface (GUI). One of the main features of Zabbix is 
that the rules could be modifed and its fexible e-mail mechanism 
could be used to notify about any event that is considered essential 
by the system administrator. Zabbix is preferred over other tools due 
to its powerful API, which is used for data extraction, user-friendly 
GUI and its fexible, yet powerful alerting mechanism for sending out 
alerts. Munin is also an open-source client/server architecture tool 
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used for monitoring, which focuses mainly on monitoring the network 
and its infrastructure of large HPC systems. Munin tool facilitates a 
unique way of displaying all the information about the systems using 
graphs through a web-based graphical user interface and has a large 
number of plug-ins available to use. nVision developed by Axence 
facilitates features such as failure detection, port mapping and network 
analyses and is used for the management of entire IT infrastructure. 
Nagios XI is another tool mainly used for monitoring large HPC 
systems which have hundreds of compute nodes in place. Some of 
the features that Nagios XI facilitates are its ability to integrate 
with many applications through API which could be both in-house 
and external, its alerting mechanism and its user-friendly dashboard. 
Grafana is a data analytic and monitoring tool used for monitoring and 
displaying interactive visualization of the collected data through a user-
friendly dashboard. Grafana works by developing a connection with the 
data source that enables analyzing everything including the network 
and system performance, and displaying monitored information in the 
form of graphs. Some of the main reasons why Grafana is preferred 
over other tools are its unique approach of unifying existing data, 
its powerful alerting mechanism which could also be customized and 
its fexible and versatile dashboard which can be designed according 
to the teams. 

1.5 DATA SECURITY IN HPC ECOSYSTEMS 

In the 21st century, data security is a very vital part of HPC ecosystems 
as sensitive data should be protected at all times from falling into the 
wrong hands. In recent years, companies have been focusing more on 
securing data to ensure data privacy and making sure that companies 
don’t lose their value over data breaches to ensure that they still 
hold reputation in the global competitive market. If data are not 
protected, then it could lead to social, legal or employability risks 
for the person. Moreover, misuse, modifcation or deletion of sensitive 
data by any unauthorized user can permanently damage business 
or in extreme cases afect the security. Data security is responsible 
for protecting sensitive information, which includes all data such as 
personal information, protected health information (PHI), education 
records, customer information and other confdential information. 
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There exist several frameworks for enabling the security of sensitive 
data processing on shared HPC systems. The services for sensitive 
data (TSD) from the University of Oslo are an integrated platform for 
collecting, storing, analyzing and sharing sensitive data, where access 
to the project-dedicated resources is provided via remote connection to 
virtual machines [58]. While working with traditional high-performance 
clusters, we only have two protection states when encryption tools 
are applied for protecting data, which are as follows: The data are 
encrypted or not usable by the user, or the data are decrypted that are 
usable by the end user. However, employing this traditional approach 
does not really help us now, and using encryption now in HPC 
settings requires serious changes to the HPC operational and execution 
environment. 

Recently, Lawrence Livermore National Laboratory (LLNL) has 
developed a new cybersecurity tool called HPCrypt data protection 
system for secure data processing on high-end computing systems 
and is used to implement data encryption in HPC environments. The 
tool developed was designed in a way to have negligible efect on 
the traditional high-performance operation and execution environment 
and can be managed locally [59]. Furthermore, the HPCrypt system 
protects against information domain leaks, scales well with large data 
and enables simultaneous execution of both encrypted and unencrypted 
jobs on the cluster. The most important feature which attracted the 
use of this tool is that there is no need to make any changes for the 
tool to be used with the traditional HPC environment. The secure data 
processing tool has some of the following features: 

1. The tool does not only protect the system against information 
breach between information domains, but is also scalable to 
sizable datasets. 

2. If any user with authorized access reads or writes any sensitive or 
protected data, then the data are logged and auditable. Moreover, 
the logs also illustrate the source on all produced output. 

3. All the trusted components are always identifed and are also 
tracked on their authentication on what information they are 
accessing. 

4. Any request is explicitly verifed to ensure that it is not accessed 
by any unauthorized users. 
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5. Users owning the data and users who would like to use data are 
explicitly identifed with clear set enforceable policy with revoke 
or access at any time in the future. 

Industries such as banking, fnance, government, education and 
insurance would extremely beneft from the HPCrypt software. The 
software does not only protect and log storage, but can also be 
used by the HPC cluster to transport and process sensitive data, 
including HIPAA, critical infrastructure information and FISMA. 
One other solution that also does not require modifcation to the 
existing HPC infrastructure and aids in enabling security for data 
processing on shared HPC systems is a platform as a service, the 
ODISSEI Secure Supercomputer (OSSC). The OSSC is a customizable 
virtualized solution that employs Private Cloud on a Compute Cluster 
(PCOCC) for automated provisioning and SLURM to insure strict 
security requirements [58]. The OSSC platform encompasses work, 
data, management and compute environments where each research 
project executes in an isolated virtual environment. 

The cluster interconnects are devices which are used to connect 
two nodes together, so that they can communicate with each other. 
Two of the most commonly used network connections that are used 
in the TOP500 supercomputers are Ethernet and InfniBand [60]. One 
of the main reasons for choosing InfniBand over any other cluster 
interconnect is because the architecture of InfniBand has features that 
allow better isolation and security for the system. 

As per recent trends, Mellanox’s InfniBand is preferred over 
Ethernet in many industries and is growing rapidly. Much like the 
Ethernet, InfniBand is also a layer 2 protocol and has all the security 
mechanisms facilitated by the Ethernet [61]. For example, if we choose 
to run SSH over InfniBand rather than Ethernet, we would have all 
the inherent security capabilities such as protection against MITM and 
high-grade encryption that SSH would have on Ethernet. Mellanox 
Technologies have few security-related features, which are common and 
could be found in all kinds of devices made by Mellanox Technologies. 
Some of the important security features that are inbuilt in Mellanox 
Technologies director-grade switches are RADIUS authentication, SSH 
support, ability to administratively turn of ports, and more. If a 
node is compromised, then it won’t be able to break in and afect 
other nodes as InfniBand switch ports are not addressable. One of 
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the major faws in using Ethernet is that it gets afected if there is a 
standard layer 2 attack like the SYN food denial-of-service attacks, but 
InfniBand won’t be afected by these kinds of attacks because it has 
a diferent handshaking process and the hardware on the receiver side 
would auto-discard SYN food packets. The partitioning mechanism is 
used by InfniBand for achieving security and better isolation of the 
system. The reason why partitioning is so much efective is because 
it’s well defned and a part of fabric management called Subnet 
Management controls it centrally, and no single node has the ability 
to determine its own partition. Due to this feature, organizations 
which use InfniBand eliminate potential hacking and security holes 
which could be possible in standard networks via compromised 
servers. 

One of the other features in InfniBand that aids in eliminating 
the necessity for encryption mechanism within the fabric is unicast 
and multicast forwarding. (If the trafc is not destined to the host, 
then the host can’t listen to it.) The two transport mechanism types 
which are defned by InfniBand to secure against unauthorized access 
and session hijacking are Reliable Transport (RC, RD) and Unreliable 
Transport (UD). The other mechanism that InfniBand implements 
for avoiding unnecessary copies and reducing latency is remote direct 
memory access (RDMA). There are many layer 2 attacks and holes 
that InfniBand handles better than Ethernet [62]. Some of them are 
as follows citemellano: 

1. MAC Flooding Attack: A switch is sent an enormous amount of 
frames which contain diferent MAC addresses with an intention 
to consume all the memory space. This denial-of-service attack 
does not afect InfniBand as the tables are defned explicitly, 
and there is no learn process like Ethernet and there is a linear 
forwarding table. 

2. VLAN Hopping: The attack is done by using Spanning Tree 
Protocol; thus, this attack cannot afect InfniBand as there is 
no Spanning Tree Protocol. 

Given the static forwarding tables are employed in InfniBand switches, 
the famous Kevin Mitnick Attack requiring LID impersonation would 
not be possible in InfniBand. 
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1.6 USER-SPECIFIC CYBERSECURITY 

Securing an HPC system is both similar to and diferent from securing 
other systems due to the nature of the system. HPC systems typically 
have many users, some of which may not actually be a part of the 
organization that maintains the systems. While it is not a wholly 
diferent challenge than securing other large systems, HPC systems 
need unique methods of user access control. However, since HPC 
systems are made up of an interconnected set of nodes, there have 
to be methods for authenticating and allowing users access to the 
other nodes securely. Another challenge with securing HPC systems is 
communicating between nodes securely [63]. If a malicious user gains 
access to the system, it might become possible for them to peer into 
other users’ tasks and steal valuable information. While there is a fair 
amount of research into securing HPC systems, there are still many 
challenges that have yet to be overcome. 

One aspect to consider when discussing HPC security is user access. 
User access control is an important security feature of any system, 
including HPC systems [1]. The goals of user access control are twofold 
in an HPC system: to control access to system resources (CPU time, 
RAM, etc.) and to control access to data stored within the system. 
Both of these aspects are vital considering that HPC system resources 
are fnite and that applications running on the system may involve 
sensitive, possibly confdential, data. HPC systems are gaining traction 
in the health domain feld being used to analyze large datasets and have 
a need to secure data access [64]. There exist many diferent forms 
of authentication for validating a user’s right to access a particular 
system or resource. Kerberos and munge are popular protocols used 
to authenticate users on a network and HPC systems [65]. Munge 
[66] is an authentication system that came about from the need to 
authenticate users on HPC clusters. Munge allows for jobs to be 
forwarded to compute on a cluster by ensuring the validity of local 
UIDs and GIDs. Kerberos provides a robust security mechanism for 
authenticating users on a network by making a client prove to a verifer 
server that the client is indeed the declared user through the use of 
shared encryption keys. The caveat with these methods is that users 
have to keep their log-in information secure, meaning that they must 
have secure passwords and that they have to keep them secret. 



Cybersecurity and HPC Ecosystems ■ 19 

There exist many more advanced methods of authentication that 
need to be incorporated into the system. Biometrics and smart cards 
are examples that are often implemented in order to provide a more 
secure access method [67]. Biometrics have the advantage of being both 
physically secure and unique from person to person. Since biometrics 
use a physical part of a person’s body, it cannot easily be replicated 
or stolen, whereas smart cards can be stolen or lent out by other 
people. Combining the traditional username–password log-in scheme 
with biometrics and/or smart cards adds an extra level of security 
to the system. The most important thing to consider when using 
biometrics and smart cards as an authentication method is that the 
storage and transmission of the data must be secured; otherwise, the 
system is open to attack. 

Every organization today is connected to the Internet to leverage a 
level of competitive advantage. As such, it is standard best practice to 
have a cybersecurity policy in place. They can be as simple as a set of 
rules governing behaviors such as how employees log in, what they are 
allowed to do, which sites they can access or how they store data. For 
a data center, are these rules any diferent? We will examine some best 
practices that include physical redundancy as well as software strategies 
that can be used as a basis for a cybersecurity policy [68–70]. 

1.6.1 Policies 

At a minimum, the following policies should be documented and 
understood by all users of the facilities: 

1. Acceptable Use: how the access and data are appropriately used, 
including awareness training to all users. 

2. A Password Policy: how long, how complicated, lockouts and how 
often to change. 

3. Backups: who is responsible, the user, the organization, how often 
and long the data are kept. 

4. Network Access: who can access, how the users are vetted. 

5. Remote Access: through secure shell or through VPN. 

6. Guest Access: who, how to access, how users are vetted, who is 
users sponsor. 
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7. Physical Security: minimum policy on securing hardware such as 
screen lockouts, physical locks on desks and server room access. 

Additional policies that should be considered should involve the 
following: 

1. Confdentiality of data. 

2. How the diferent types of data are classifed. 

3. Data retention. 

4. Methods of implementation – policy acknowledgement forms, 
security incident reports and account setup requests. 

5. User training. 

Regardless of what policies are in place, they should be a refection 
of the organization’s security strategy whose goals are realistic and 
attainable. They should be a living document and constantly consulted 
through management decisions, creating new regulations and reducing 
various risks. Further, the policies should not inhibit the mission of 
the organization; rather, it should allow the organization to meet their 
required regulations. 

Beyond policies, the best practices that are recommended to 
implement are mentioned below: 

1. Physical Security: If you cannot touch it, then you cannot hack it. 
Access to the data center needs constant auditing. Expired access 
should be eliminated as soon as possible. The devices themselves 
should have some redundancy or have a hardware spare policy 
that can immediately replace a compromised hardware. 

2. Patching and antivirus are a must and have to be kept up to date; 
this includes updating obsolete hardware, or hardware whose 
drivers are no longer secure. 

3. Firewalls and monitoring trafc are a mandate. 

4. Confguration File Protocols: backups, who can edit, how are they 
installed (confguration manager, Ansible). 
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5. Encryption, secure fle transfers through e-mail, storage or 
transport. 

6. Disaster recovery process is also required. 

There are countless other policies and implementations that should be 
considered; however, the best cybersecurity policy is the one that does 
not hinder the mission of the organization or the work of the user. 

1.7 DISCUSSION AND SUMMARY 

The recently changing landscape of scientifc workfows in HPC 
ecosystems has led to the increasing volumes of datasets that are 
surpassing local and network capabilities, especially those coming from 
experimental facilities. The analysis and computation of these data 
becomes a challenge due to the inability to install a capable HPC 
system in every facility that produces these data; thus, a new model for 
data generation, data transfer and data computation is needed for the 
next-generation paradigm. The vision is to have a networked series 
of facilities consisting of the experimental facility, a computational 
facility, a data storage facility and the software and application 
expertise to enable this new paradigm and new modes of exploration. 
Just as an HPC computational facility like National Energy Research 
Scientifc Computing Center (NERSC) computing facility at Lawrence 
Berkeley National Laboratory transforms and accelerates science, so 
shall a superfacility enable more advanced scientifc discoveries through 
sharing of the datasets and through correlation of the data [71,72]. 
There is need for the integration of multiple types of facilities through 
a wide area network with the speeds necessary to perform this 
process in near-real time. The new model/paradigm of superfacility 
involves generation of data from sensors in real time, with local data 
processing or fltering, movement of data to a storage facility, analysis 
and modeling to a computational facility, availability of data in real 
time for access and visualization for on-site researchers and remote 
users. To successfully execute this model, there needs to be a unifed 
computational architecture throughout the workfow, predictable and 
programmable wide area network, and workfow for seamless data 
movement and analysis to provide a productive environment for the 
researchers. 
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One of the major challenges for the superfacility paradigm is to 
deploy a computational architecture that is applicable to multiple 
disciplines, where some codes use GPU and some employ CPU, and 
more importantly, this computing ecosystem can be unifed across 
disciplines with a security model that works for all. Given the 
hardware and software needs are diferent between computation and 
a data-intensive workload, multiple types of systems are deployed 
for diferent uses such as simulation, data analysis, computation and 
visualization. For instance, NERSC computing facility has employed 
various computing systems over the years, such as Hopper and Edison 
Computing systems for computation, simulation and modeling and 
Carver along with Genepool and PDSF systems for data analysis. 
Second, for a superfacility, the deployment of a predictable and 
programmable network environment to support scientifc applications 
and workfows is extremely difcult. The Science DMZ [73] creates 
a latency-free network path between experimental facilities and 
the computation and storage facilities across a wide area network. 
Moreover, there is a requirement of dedicated high-performance data 
transfer nodes (DTNs), which cost $80M+ funding to implement this 
design pattern in universities, and the network speeds are not as 
predictable. However, a superfacility workfow requires a predictable 
data movement. Moreover, research is being conducted to transition 
from control from hardware specs, such as routers and switches across 
the WAN, to using software-defned networking (SDN) [74]. However, 
this limits how applications and networks interact, thus creating 
challenges for automation, orchestration and optimization. There is 
also a need for the support of workfows that allow seamless data 
movement from experiment to analysis and data storage/curation. 
However, this requires authentication services that are standard across 
the workfow and through multiple facilities, and user access to all 
areas of the workfow. Furthermore, the capabilities may not be the 
same across facilities such that if one facility employs burst bufer that 
allows data movement and management through memory and storage, 
hierarchy does not assure that other facilities deploy the same, nor 
is user access the same in all facilities such that if one facility uses 
multi-factor authentication (MFA), then others use the same. 

The rapid advancement and introduction of new processing 
technologies for HPC ecosystem has facilitated the convergence of 
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artifcial intelligence (AI) and machine learning (ML), data analytics 
and big data, and the high-performance computing (HPC) domain 
platforms and has led to a myriad of security risks. There have 
been a signifcant research and research eforts over the last few 
decades in developing and implementing solutions to achieving cyber-
resilience in HPC environments. However, in addition to the current 
state-of-the-art security solutions for developing cyberattack-tolerant 
and survivable systems, there still exist signifcant challenges in 
protecting the HPC ecosystems comprising user, data, applications 
and cyberinfrastructure. With the goal of reducing the downtime of 
HPC ecosystems in the presence of unpredictable loads and malicious 
attacks, this chapter covers cybersecurity challenges and solutions, 
which when combined efectively will aid in proactively rearchitecting 
the current and emergent HPC ecosystems comprising users, data, 
infrastructure and applications to delay or counteract scale of malicious 
attacks and to reduce their impacts and consequences. 
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[22] Petra Rebrošova. Gathering vulnerability information published by 
software manufacturers. 

[23] Open source and collaboration propel RHEL to the top of the top500, 
2018. https://www.redhat.com/en/blog/year-review-2018-product-
security-risk-report. 

[24] A year in review: 2018 product security risk report. https://www. 
redhat.com/en/blog/year-review-2018-product-security-risk-report. 

[25] Product documentation for Red Hat Enterprise Linux 7. https:// 
access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7. 

[26] Edita Bajramovic and Andreas Lainer. Forensic-related application 
security controls for RHEL in critical infrastructure. In: M. Eibl & M. 
Gaedke (eds.) INFORMATIK 2017, Gesellschaft fur Informatik: Bonn, 
2017. 

[27] Hari Tadepalli. Intel® QuickAssist technology with Intel® key protection 
technology in Intel server platforms based on Intel® Xeon® processor 
scalable family, 2017. 

[28] Data center security technology. https://www.intel.com/content/www/ 
us/en/architecture-and-technology/trusted-infrastructure-
overview.html. 

[29] Nicole Schwartz Nett, Ronald X. Arroyo, Thoi Nguyen, Benjamin 
W. Mashak, Ruby M. Zgabay, Hoa Nguyen, Christopher W. Mann, 

https://insidehpc.com
https://insidehpc.com
https://insidehpc.com
https://etc.g2xchange.com
https://etc.g2xchange.com
https://www.redhat.com
https://www.redhat.com
https://www.redhat.com
https://www.redhat.com
https://access.redhat.com
https://access.redhat.com
https://www.intel.com
https://www.intel.com
https://www.intel.com


26 ■ Cybersecurity and High-Performance Computing Environments 

Erich J. Hauptli, Stephen P. Mroz, and William J. Anderl. IBM power9 
systems designed for commercial, cognitive, and cloud. IBM Journal of 
Research and Development, 62(4/5):7–1, 2018. 

[30] Robert Willburn. Remote memory monitoring for malware in a Talos II 
architecture. In International Conference on Cyber Warfare and Security, 
pp. 486–XV. Academic Conferences International Limited, 2021. 

[31] Guy Helmer, Johnny S.K. Wong, Vasant Honavar, and Les Miller. 
Automated discovery of concise predictive rules for intrusion detection. 
Journal of Systems and Software, 60(3):165–175, 2002. 

[32] Guy Helmer, Johnny S.K. Wong, Vasant Honavar, Les Miller, and Yanxin 
Wang. Lightweight agents for intrusion detection. Journal of systems and 
Software, 67(2):109–122, 2003. 

[33] Anna Sperotto, Ramin Sadre, Pieter-Tjerk de Boer, and Aiko Pras. 
Hidden Markov model modeling of ssh brute-force attacks. In Interna-
tional Workshop on Distributed Systems: Operations and Management, 
pp. 164–176. Springer, 2009. 

[34] Vern Paxson, Scott Campbell, Jason Lee, et al. Bro intrusion detection 
system. Technical report, Lawrence Berkeley National Laboratory, 2006. 

[35] Martin Roesch et al. Snort: Lightweight intrusion detection for networks. 
Lisa, 99:229–238, 1999. 

[36] Thomas Toth and Christopher Kruegel. Evaluating the impact of 
automated intrusion response mechanisms. In Proceedings of 18th Annual 
Computer Security Applications Conference, 2002, Las Vegas, NV, pages 
301–310. IEEE, 2002. 

[37] Bingrui Foo, Yu-Sung Wu, Yu-Chun Mao, Saurabh Bagchi, and Eugene 
Spaford. ADEPTS: adaptive intrusion response using attack graphs in an 
e-commerce environment. In Proceedings of International Conference on 
Dependable Systems and Networks, 2005 (DSN 2005), Yokohama, Japan, 
pp. 508–517. IEEE, 2005. 

[38] Natalia Stakhanova, Samik Basu, and Johnny Wong. A cost-sensitive 
model for preemptive intrusion response systems. In AINA, vol. 7, 
pp. 428–435, 2007. 

[39] Mathieu Blanc, Jeremy Brifaut, Thibault Coullet, Maxime Fonda, and 
Christian Toinard. Protection of a shared HPC cluster. In 2010 Fourth 
International Conference on Emerging Security Information, Systems 
and Technologies, Venice, Italy, pp 273–279. IEEE, 2010. 

[40] Poul-Henning Kamp and Robert NM Watson. Jails: Confning the 
omnipotent root. In Proceedings of the 2nd International SANE 
Conference, 43:116, 2000. 



Cybersecurity and HPC Ecosystems ■ 27 

[41] Mathieu Blanc, Jeremy Brifaut, Damien Gros, and Christian Toinard. 
Piga-hips: Protection of a shared HPC cluster. International Journal on 
Advances in Security, 4:44–53, 2011. 

[42] Z Clife Schreuders, Tanya McGill, and Christian Payne. Empowering end 
users to confne their own applications: The results of a usability study 
comparing SELinux, AppArmor, and FBAC-LSM. ACM Transactions on 
Information and System Security (TISSEC), 14(2):1–28, 2011. 

[43] Stephen Smalley, Chris Vance, and Wayne Salamon. Implementing 
selinux as a linux security module. NAI Labs Report, 1(43):139, 2001. 

[44] Sari Sultan, Imtiaz Ahmad, and Tassos Dimitriou. Container security: 
Issues, challenges, and the road ahead. IEEE Access, 7:52976–52996, 
2019. 

[45] Nitin Sukhija and Elizabeth Bautista. Towards a framework for 
monitoring and analyzing high performance computing environ-
ments using kubernetes and prometheus. In 2019 IEEE Smart-
World, Ubiquitous Intelligence & Computing, Advanced & Trusted 
Computing, Scalable Computing & Communications, Cloud & Big 
Data Computing, Internet of People and Smart City Innovation 
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 257– 
262. IEEE, 2019. 

[46] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. Singularity: 
Scientifc containers for mobility of compute. PLoS One, 12(5):e0177459, 
2017. 

[47] Reid Priedhorsky and Tim Randles. Charliecloud: Unprivileged con-
tainers for user-defned software stacks in HPC. In Proceedings of the 
International Conference for High Performance Computing, Networking, 
Storage and Analysis, pp. 1–10, 2017. 

[48] Lisa Gerhardt, Wahid Bhimji, Shane Canon, Markus Fasel, Doug 
Jacobsen, Mustafa Mustafa, Jef Porter, and Vakho Tsulaia. Shifter: 
Containers for HPC. In Journal of physics: Conference Series, vol. 898, 
pp. 082021. IOP Publishing, 2017. 

[49] Holger Gantikow, Stefen Walter, and Christoph Reich. Rootless 
containers with podman for HPC. In International Conference on High 
Performance Computing, pp. 343–354. Springer, 2020. 

[50] Md Shazibul Islam Shamim, Farzana Ahamed Bhuiyan, and Akond 
Rahman. Xi commandments of kubernetes security: A systematization of 
knowledge related to kubernetes security practices. In 2020 IEEE Secure 
Development (SecDev), pp. 58–64. IEEE, 2020. 

[51] Nitin Sukhija, Elizabeth Bautista, Owen James, Daniel Gens, Siqi 
Deng, Yulok Lam, Tony Quan, and Basil Lalli. Event management 

http://Charliecloud:Unprivilegedcon-tainersforuser-definedsoftwarestacksinHPC.In
http://Charliecloud:Unprivilegedcon-tainersforuser-definedsoftwarestacksinHPC.In
http://ContainersforHPC.In
http://containerswithpodmanforHPC.In


28 ■ Cybersecurity and High-Performance Computing Environments 

and monitoring framework for HPC environments using servicenow and 
prometheus. In Proceedings of the 12th International Conference on 
Management of Digital EcoSystems, pp. 149–156, 2020. 

[52] Munin monitoring. https://munin-monitoring.org/. 
[53] Zabbix monitoring. https://www.zabbix.com/. 
[54] The system statistics collection daemon. https://collectd.org/. 
[55] Nagios-network, server, and log monitoring software. https://www. 

nagios.com/. 
[56] Ganglia monitoring system. http://ganglia.sourceforge.net/. 
[57] Xalt monitoring system. https://xalt.readthedocs.io/. 
[58] Michel Scheerman, Narges Zarrabi, Martijn Kruiten, Maxime Moge, 

Lykle Voort, Annette Langedijk, Ruurd Schoonhoven, and Tom Emery. 
Secure platform for processing sensitive data on shared HPC systems. 
arXiv preprint arXiv:2103.14679, 2021. 

[59] Hpcrypt data protection system. https://ipo.llnl.gov/technologies/it-
and-communications/processing-protected-data-high-performance-
computing-clusters. 

[60] Brett M. Bode, Jason J. Hill, and Troy R. Benjegerdes. Cluster 
interconnect overview. In Proceedings of USENIX 2004 Annual Technical 
Conference, FREENIX Track, pp. 217–223, 2004. 

[61] Daryl Schmitt, Scott Graham, Patrick Sweeney, and Robert Mills. 
Vulnerability assessment of infniband networking. In International 
Conference on Critical Infrastructure Protection, pp. 179–205. Springer, 
2019. 

[62] Kyle D. Hintze. Infniband network monitoring: Challenges and possibil-
ities. 2021. 

[63] Zhengping Luo, Zhe Qu, Tung Nguyen, Hui Zeng, and Zhuo Lu. Security 
of HPC systems: From a log-analyzing perspective. EAI Endorsed 
Transactions on Security and Safety, 6(21):e5, 2019. 

[64] Khalil Alsulbi, Maher Khemakhem, Abdullah Basuhail, Fathy Eassa, Ka-
mal Mansur Jambi, and Khalid Almarhabi. Big data security and privacy: 
A taxonomy with some HPC and blockchain perspectives. International 
Journal of Computer Science & Network Security, 21(7):43–55, 2021. 

[65] Steven P. Miller, B Cliford Neuman, Jefrey I. Schiller, and Jermoe H. 
Saltzer. Kerberos authentication and authorization system. In In Project 
Athena Technical Plan. Citeseer: Princeton, NJ, 1988. 

[66] Chris Dunlap. Munge uid n grid emporium. Technical report, Lawrence 
Livermore National Lab.(LLNL), Livermore, CA (United States), 2004. 

https://munin-monitoring.org
https://www.zabbix.com
https://collectd.org
https://www.nagios.com
https://www.nagios.com
http://ganglia.sourceforge.net
https://xalt.readthedocs.io
https://ipo.llnl.gov
https://ipo.llnl.gov
https://ipo.llnl.gov


Cybersecurity and HPC Ecosystems ■ 29 

[67] Yanrong Lu, Lixiang Li, Haipeng Peng, and Yixian Yang. A bio-
metrics and smart cards-based authentication scheme for multi-server 
environments. Security and Communication Networks, 8(17):3219–3228, 
2015. 

[68] Rudi Eigenmann and Barry I. Schneider. National strategic computing 
initiative. Computing in Science & Engineering, 20(5):5–7, 2018. 

¨ [69] Per Oster. The European Grid Initiative and the HPC ecosystem. High 
Speed and Large Scale Scientifc Computing, 18:451, 2009. 

[70] Arun Kumar Singh and Samidha Dwivedi Sharma. High performance 
computing (HPC) data center for information as a service (IAAS) security 
checklist: Cloud data governance. Webology, 16(2):83–96, 2019. 

[71] Bjoern Enders, Debbie Bard, Cory Snavely, Lisa Gerhardt, Jason Lee, 
Becci Totzke, Katie Antypas, Suren Byna, Ravi Cheema, Shreyas Cholia, 
et al. Cross-facility science with the superfacility project at lbnl. In 2020 
IEEE/ACM 2nd Annual Workshop on Extreme-scale Experiment-in-the-
Loop Computing (XLOOP), pp. 1–7. IEEE, 2020. 

[72] Katie Antypas, Shane Canon, Eli Dart, Kjiersten Fagnan, Lisa Gerhardt, 
Doug Jacobsen, Glenn K Lockwood, Inder Monga, Peter Nugent, Lavanya 
Ramakrishnan, et al. Superfacility: The convergence of data, compute, 
networking, analytics and software. In Surya Kalidindi, Sergei V Kalinin, 
Turab Lookman (eds.) Handbook on Big Data and Machine Learning in 
the Physical Sciences: Volume 2. Advanced Analysis Solutions for Leading 
Experimental Techniques, pp. 361–386. World Scientifc: Singapore, 2020. 

[73] Eli Dart, Lauren Rotman, Brian Tierney, Mary Hester, and Jason 
Zurawski. The science dmz: A network design pattern for data-intensive 
science. Scientifc Programming, 22(2):173–185, 2014. 

[74] Keith Kirkpatrick. Software-defned networking. Communications of the 
ACM, 56(9):16–19, 2013. 



https://taylorandfrancis.com


C H A P T E R 2 

Approaches to Working
with Large-Scale Graphs 
for Cybersecurity
Applications 
Noah L. Schrick, Ming Li, John Hale, 
and Peter J. Hawrylak 
The University of Tulsa 

CONTENTS 

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
2.2 Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

2.2.1 Generation Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
2.2.2 Algorithm Walk-Throughs . . . . . . . . . . . . . . . . . . . . . . . . . 34 

2.2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
2.2.2.2 Attack Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
2.2.2.3 Attack Dependency Graphs . . . . . . . . . . . . . 37 
2.2.2.4 Combination of Attack Graphs and 

Attack Dependency Graphs . . . . . . . . . . . . . 39 
2.2.2.5 Compliance Graphs . . . . . . . . . . . . . . . . . . . . . . 39 

2.2.3 Parallel Generation Algorithms . . . . . . . . . . . . . . . . . . . . 41 
2.2.4 Additional Architectural and Hardware Techniques 42 

2.2.4.1 Prefetching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
2.2.4.2 Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
2.2.4.3 Better Data Structures . . . . . . . . . . . . . . . . . . 43 
2.2.4.4 Useful Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

2.2.5 Deploying to High-Performance Computing 
Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 

DOI: 10.1201/9781003155799-2 31 

https://doi.org/10.1201/9781003155799-2


32 ■ Cybersecurity and High-Performance Computing Environments 

2.2.5.1 Base Approach: General Parallelized 
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 

2.2.5.2 Programming Model Optimizations . . . . . 48 
2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 
2.3.2 Markov Process Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 
2.3.3 Shortest Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 

2.3.3.1 Dijkstra’s Algorithm . . . . . . . . . . . . . . . . . . . . . 51 
2.3.3.2 Bellman–Ford Algorithm . . . . . . . . . . . . . . . . 52 
2.3.3.3 Parallel APSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 

2.3.4 Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 
2.3.5 Criticality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 
2.3.6 Semi-Metricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 

2.4 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

2.1 INTRODUCTION 

The cybersecurity landscape is ever-evolving, with no dull moments. 
The authors of [1] discuss that difculties lie in the fact that both 
diversity and intensity of new cybersecurity threats require quick and 
efective countermeasure implementations. As the authors of [2] further 
describe, the number of exposed records in the frst half of 2019 alone 
reached 4.1 billion, with reported breaches up by 54% compared to the 
year prior. The continuous increase in cybersecurity risks necessitates 
the need for countermeasures that eliminate and prevent threats from 
occurring, rather than solely focusing on detection. To add to the 
difculties, as the authors of [3–5] discuss, the rise of Internet of things 
(IoT) and cyber-physical systems adds to the complexity of a system. 
Not only do cybersecurity considerations need to be made, but safety 
regulation compliance, maintenance compliance, and other regulatory 
compliance need to be ensured. 

To approach a solution to determining countermeasures, modeling 
systems with graphs can yield promising results. When representing 
a system through graphs, an exhaustive approach can be taken. 
Beginning with all initial system qualities present, cybersecurity 
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attacks (such as those found in the National Vulnerability Database, 
for example) can be tested against the system. If an attack is able 
to be used against a system, the system qualities will change and be 
captured in a new graph node. This type of graphical approach is now 
commonly called an attack graph [6–8]. Likewise, representing all of a 
system’s initial qualities and examining the ways it is or can fall out 
of compliance is called a compliance graph [3]. Using this approach, a 
system can be rigorously examined to determine all ways that attacks 
or compliance violations can exist in a system, both in present time and 
in the future. This will allow cybersecurity professionals to correct the 
weak spots in systems, eliminate attack vectors, and identify ways to 
avoid falling out of compliance. However, there are a few drawbacks to 
this approach. With the number of items in the National Vulnerability 
Database, the amount of custom zero-day checking, along with the 
number of assets (access points, frewalls, printers, workstations, etc.), 
exhaustively representing all possible states of a system leads to 
incredibly large graphs [8]. These large-scale graphs are a common 
issue for other problem spaces as well. Social networks, bioinformatics, 
and neural networks can produce graphs with millions of vertices and 
billions of edges [9]. Due to the incredibly large size of these graphs, 
they can seldom be contained within a single system’s memory. In 
addition, the computation power required to generate and analyze 
these graphs in a reasonable time makes sequential and single-system 
approaches infeasible. With the cybersecurity landscape constantly 
changing, these graphs will need to be regenerated and reanalyzed to 
stay current and correct. New vulnerabilities, new assets in a system, 
or new countermeasures render a previously generated graph outdated, 
and a new one will need to be procured. 

Targeting high-performance computing (HPC) resources is a 
necessity for approaching this problem. Leveraging the increased 
amount of memory and the greater computing power is invaluable for 
reducing the time required to generate and analyze these graphs. This 
chapter will present graph techniques useful for compliance violation 
and cybersecurity attack prediction in the lens of HPC. This chapter 
presents a survey of techniques that are useful for handling large-scale 
graphs, methodologies, and techniques for increasing performance, and 
concludes with insights into future needs and directions in this area. 
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2.2 GENERATION 

2.2.1 Generation Introduction 

In practice, graph computations and generations do not reach full 
theoretical computing performance; they often achieve only a very low 
percentage [10]. Graph processing performance relies less on processor 
speed, and more on the computer’s ability to access memory in a 
timely fashion, the complexity of data dependency, and the coarseness 
of parallelism [9–11]. Typically, graphs have relatively poor efciency 
in terms of memory. The most apparent inefciency is due to their 
large memory footprints [9]. Not only does the number of nodes 
and edges in a graph consume memory, but considering the data 
stored at each node is important to visualize the constraints on low-
memory systems [10]. In addition, as opposed to data structures such 
as arrays, which can be optimized to better utilize spatial locality for 
increased cache performance, the underlying graph data structures can 
contain additional challenges in terms of locality [11]. These issues are 
exacerbated from the memory latency evident in the processor–memory 
gap [10,11]. This section will focus on the techniques leveraged by HPC 
clusters to increase the performance of graph generation. 

2.2.2 Algorithm Walk-Throughs 

2.2.2.1 Introduction 

Beginning in 1998, researchers and cybersecurity experts began on a 
means to model a network of systems to perform vulnerability analysis. 
This initial work later became known as an early-day attack graph in 
the form of an attack tree. In comparison with today’s representation 
of attack graphs, there were a few diferences. As suggested by the 
name, these initial models were similar to trees, rather than graphs 
[6–8]. There were a few hindrances in these early models that led to 
the expansion of the representation of modern attack graphs. These 
hindrances were primarily in that the attack trees’ sole focus was 
for analyzing individual vulnerabilities on single machines; they did 
not allow for modeling of interconnected systems that is widespread 
today. As a result, later work was conducted that led to the current 
interpretation of attack graphs to allow modeling of entire networks 
comprised of interconnected systems. 
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Attack graphs have a few diferent models. The authors in [12] 
and [13] utilize a model where the nodes represent attacks and the 
edges represent the conditional relationship between two attacks [14]. 
Another model presented in [15] and [16] utilizes a modeling system 
based on Bayesian networks, with each node representing a host in 
the network and edges representing vulnerabilities that can be used 
to reach other hosts in the network. This allows the visualization of 
both reachability and vulnerabilities’ conditional relationships [14]. 
Each model has its unique advantages and disadvantages, and each 
shifts its focus to emphasize diferent areas of the network’s security. 
Irrespective of the model’s intricacies, attack graphs’ primary focus is 
for modeling a network to identify vulnerable positions. As a result 
of increased system connectivity, the state space modeled by attack 
graphs grows at a rapid rate, leading to massive generation processes 
that can no longer be feasibly run on single systems or with serial 
implementations on very high performance single-computer systems 
[8,14,17,18]. Thus, a parallel or distributed approach to generation of 
these structures is required. The following subsections focus on the 
algorithmic approaches to working with attack graphs on a small scale, 
followed by the approaches necessary for working with larger systems 
that can be done on HPC clusters. 

2.2.2.2 Attack Graphs 

There are two key components when considering attack graph 
generation. The frst is ensuring that the resulting attack graph is 
exhaustive – that all attack possibilities and appropriate states are 
properly represented and accounted for, including any permutations. 
The second is that it is succinct – that the model only includes states 
that an attacker can use to reach a goal state [12]. Later work, such as 
that seen in Ref. [8], indicates that using the formal logic approach 
to generation seen in Ref. [12] can aid in ensuring correctness by 
using a model checker against the resulting attack graph model [8]. 
Using the formal logic generation method typically results in less 
errors that can occur in complex network environments, and can 
lead to easier analysis [8]. However, the authors in Ref. [8] do draw 
concerns with the exhaustiveness of the tool, in that because of the 
duplication and permutation checking, a network with ten hosts and 
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fve vulnerabilities resulted in a graph with 10 million edges. While 
such an analysis provides a complete picture of the overall security 
posture, the huge number of edges is a scalability problem as the 
system size increases. Typical systems often have dozens or hundreds 
of hosts/nodes. However, the generation of attack vectors that map 
to the system is straightforward and can be generated by walking the 
attack graph for this representation. 

The original algorithm presented by Ref. [12] proceeds by frst 
checking a set of states deemed unsafe that put the network in a 
compromised or unsafe position. This is conducted in the model 
checking by using a set of states, a transition relation between 
states, the initial network states, state labeling, and a safety property. 
After the model checking, the transition relation is limited to only 
states in the unsafe set of states. Using Boolean representation and 
formal logic, resulting unsafe states and their transitions from initial 
states can be generated. As Ref. [8] states, encoding the entire network 
state leads to an exponential number of possible states during the 
model checking phase, even though not all states are reachable. 

As a means of improving scalability, Ref. [8] presents an alternative 
representation called a logical attack graph. Due to the aforementioned 
reasons, namely the state space explosion, their representation desired 
to stay with a logical approach to generation. Rather than each 
statement encoding the entire network, each node would be a portion 
of the network represented as a logical statement. This approach was 
able to reduce the generation to quadratic time. Further, the number 
of nodes in the resulting logical attack graph is O(N 2), where N 
is the number of nodes in the system [8]. This addressed the state 
space problem; however, it requires more analysis to identify actionable 
attack vectors for the particular system compared to the attack graph 
representation. 

Later work, such as that presented in Ref. [18], represents nodes 
as network states – a description of assets (network systems) and 
the facts that describe them. Facts can either be qualities (such as 
frmware or OS versions), or topologies (relational information to other 
assets). The algorithms for such a representation work by expanding 
each unexplored node. The initial network states are added into a 
queue, with each state from the queue being checked against an exploit 
list to see if factual information in a network state can be altered. 
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If so, a new network state is created and added to the unexplored 
queue. This process is continued until no further unexplored states 
exist in the queue. Similar work shown in Ref. [14] illustrates the 
algorithm using a hash table. For determining the time complexity 
of this generation algorithm, |Qd| represents the total number of states 
and Ne represents the number of exploits. In this implementation 
of attack graph generation, each state must be checked against the 
number of applicable exploits and their facts. As a result, the time 
complexity is: 

O (|Qd| Ne) (2.1) 

Summarizing the performances of these approaches, the original 
algorithm presented in Ref. [12] with exponential time, the algorithm 
presented in Ref. [8] with quadratic time, and the serial algorithm 
present in Ref. [14], illustrates that efciency improvements can be 
obtained by refning the information one is interested in. However, as 
Refs. [14,17,18] state, these improvements, while important, still do not 
sufciently allow for an efcient or scalable representation of enterprise 
networks consisting of thousands of hosts. As Ref. [17] describes, this 
is even more evident when considering the size of the National Vul-
nerability Database, Common Weakness Enumeration database, and 
the number of ports a system could have opened. Thus, the resulting 
graphs will be very large for the typical system and both the time to 
generate the graph and its resulting size are important considerations. 
Both aspects make this a good problem for HPC systems. 

2.2.2.3 Attack Dependency Graphs 

Attack graphs are a useful tool in demonstrating possible attack vectors 
that can put a network in a compromised position. However, there are 
instances where their capabilities fall short. For example, vulnerabilities 
can oftentimes rely upon the presence of other vulnerabilities, or even 
have an increase in criticality or importance based on the combination 
of multiple vulnerabilities that have been exploited at the same 
time [19,20]. With attack graphs, one vulnerability may rank low on 
criticality: It may exist and is seemingly non-threatening, but another 
vulnerability may capitalize on the frst vulnerability to pose a much 
larger threat. Attack dependency graphs aim to identify these exploit 
and vulnerability dependencies in a network. 
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When considering the dependencies in a network, it is useful to 
distinguish between the types of dependence. The authors in Ref. 
[21] present and defne three types: redundancy dependence, graceful 
degradation dependency, and strict dependence. Redundancy refers 
to an asset that depends on multiple other resources that have 
redundancy. Graceful degradation dependency is a dependence where 
an asset can continue its operation if its dependence fails, but at limited 
performance or security. Strict dependence is a dependency where if an 
asset’s dependence fails, then so does the asset. 

Original attack graph models tended to revolve around the concept 
of state transition graphs. Each node in this model represented a 
possible attack state, comprised of propagated attack events from 
parent nodes, system qualities, and related network qualities. The 
edges connecting the nodes represented the probabilities of a successful 
attack [22]. Recent models have shifted their focus to revolve around 
the concept of these attack dependency graphs. In this model, nodes 
are expanded into two categories – nodes consisting of preconditions 
or postconditions (“condition nodes”), and nodes consisting of attacks 
(“attack nodes”). The attack nodes are equivalent to the edge 
representation of the original model. Edges for the attack dependency 
graph represent the dependency of nodes [14,22]. Using the attack 
dependency graphs eliminates the redundancy of the stateful model, 
which allows the graphs to be generated more efciently and results in 
graphs of smaller size. 

In addition to just checking exploit or vulnerability dependence, at-
tack dependency graphs can be extended to also consider dependencies 
in services and applications [21]. Due to the rapid growth of networks, 
the amount of applications or services being ran or hosted in a network 
has also increased. As a result, attackers have new attack vectors 
they can attempt to capitalize on by exploiting vulnerabilities in the 
application dependencies, where threats can more easily propagate 
throughout the network. A tool called NSDMiner presented in Ref. 
[23] attempts to automatically discover these dependencies in a way 
that is simplifed, is less cluttered, and reports less false negatives. 

Prior to attack dependency graphs, analysts had to either manually 
check for dependencies, or specify automated operations to check 
[19]. By using an attack dependency graph, not only is the resulting 
graph of smaller size, but tools such as those presented in Refs. 
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[19,20,23] can perform the visualizations and dependency checking
automatically.

2.2.2.4 Combination of Attack Graphs and Attack Dependency Graphs

The representation of the state transition graphs in attack graphs and
the representation of dependencies between nodes in attack dependency
graphs are both popular models with active work being pursued in both
areas. In Ref. [21], the authors suggest a new approach – combining
the two representations to make a unified framework.

A shortcoming of analyzing attack graphs on their own is that
oftentimes, it is hard to identify how widespread an attack may be.
While an attack graph can identify the ways a system can be put
in a compromised position, or the criticality of affecting a singular
asset, it may not illustrate the effect of the system in its entirety [21].
For instance, if an attack can cause a system component with a strict
dependence to fail, the attack graph may not be able to identify the
resulting asset that will also fail.

On the other hand, attack dependency graphs on their own
can lead to the prioritization of remediation procedures in a way
that is not optimal. For example, Vulnerabilities A and B could be
present in a network, and Vulnerability B depends on Vulnerability
A being exploited. Using an attack dependency graph analysis, it
may suggest prioritizing Vulnerability B remediation, since that has a
greater interdependence with Vulnerability A. However, from an attack
graph perspective, there is a different state transition from the state
containing Vulnerability A that leads to more system compromises,
and with larger impacts than the transition to a state containing
Vulnerability B [21].

To combine the two graph approaches together, the authors of Ref.
[21] suggest an impact assessment graph, which considers the analysis
of both graphs and weights their decision processes in a way that
balances immediate or ongoing attacks with future attacks.

2.2.2.5 Compliance Graphs

Attack graphs and attack dependency graphs are useful tools to deter-
mine the ways in which a system is in, or may be put into, a vulnerable
state. Another useful tool that can be utilized is compliance graphs.
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As opposed to looking through the broader lens of cybersecurity as a 
whole, compliance graphs can be used for determining the compliance 
status of cyber-physical systems [3]. Instead of processing through the 
system state space by determining applicable exploits or vulnerabilities, 
compliance graphs determine applicable compliance violations. These 
compliance requirements have a broad range and can include safety 
regulations, maintenance compliance, or other regulatory compliance. 
By setting the compliance parameters to check for, compliance graphs 
can be used in a similar fashion to attack and attack dependency 
graphs. Not only can the current state of the system be checked, but 
possible future system states can be analyzed to determine appropriate 
steps that need to be taken for preventative measures [3]. 

As the authors of [3–5] discuss, the rise of cyber-physical systems 
in areas such as critical infrastructure and IoT brings new difculties 
to consider for protecting systems. Not only are there the typical 
cybersecurity considerations, but these systems also have to be 
concerned with compliance regulations to ensure that the equipment is 
safe, is undamaged and remains undamaged, and is stable. In addition, 
the place of operation and whom the equipment is used for may bring 
about additional compliance guidelines that may need to be followed, 
such as SOX, HIPAA, the European Union’s GDPR, and/or OECD for 
international usage [4,5]. Managing all aspects of compliance regulation 
can be time-consuming and complex, but the fnes, legal sanctions, 
mandatory shutdowns, and other costs of compliance violation are 
compelling reasons to mitigate or prevent the risk of a system falling 
out of compliance. 

The compliance graphs can be described similarly to that of the 
more recent attack graph representations. Nodes represent the system 
state, and edges represent changes to a state through an insertion, 
modifcation, or deletion of a quality or topology. Like attack graphs, 
qualities in the scope of compliance graphs describe an asset through 
facts. Topologies are slightly diferent; instead of showing a connection 
of assets through their digital means like that of attack graphs, 
topologies in compliance graphs need to be expanded because of 
the cyber-physical nature of the systems. As a result, topologies not 
only include the network connections of components, but also include 
connections of sensors or other equipment [3]. 
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Like attack and attack dependency graphs, compliance graphs 
also sufer from state space explosion. The number of compliance 
regulations that can or need to be checked can get large very quickly. 
In critical infrastructure areas, the number of assets that need to be 
checked can also be very large, leading to the same challenge of handling 
these large-scale graphs that cannot be efectively managed on serial 
workstations. This is another challenge that has appealing solutions in 
the HPC space. 

2.2.3 Parallel Generation Algorithms 

Regardless of attack graph model, a main challenge of attack graph 
generation is in the state space explosion [14]. In other words, when 
generating an attack graph consisting of a large number of nodes and 
with a high depth (the number of exploits executed or changes to the 
system state carried out), the number of states drastically increases 
[14,18]. An approach to parallelizing the generation is described in Ref. 
[14]. A frst-in–frst-out (FIFO) queue is utilized to store the initial 
state as a frontier, and a hash table is utilized to hold the exploits 
and relevant network information. Using OpenMP parallel for loops 
and a dynamic schedule, each thread can work on a local frontier. 
The local frontier is a subset of the global frontier. Each thread will 
take portions of the global frontier and work on that subset called a 
local frontier. When an applicable exploit is identifed, a new state is 
needed to be created and added to the frontier. To accomplish this, an 
OpenMP critical section is used. Using a critical section allows for an 
atomic write to the global frontier, so there is no risk of collisions, race 
conditions, or stale data being used. Using this parallelized approach, 
a new runtime complexity can be identifed as: 

O (|Qd| Ne/n + k1|Qd|) (2.2) 

where |Qd| represents the total number of states, N e represents the 
number of exploits, n is the number of threads, and k1 is a constant. 
Running in an equal environment with N e set to 7, Qd to 25,354, and n 
to 24 hardware threads, the parallel attack graph generation presented 
in Ref. [14] provides a 10× speedup over the serial algorithm discussed 
in a previous section. 
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2.2.4 Additional Architectural and Hardware Techniques 
2.2.4.1 Prefetching 

Analyzing the cache miss rates on graph generation illustrates a miss 
rate that is higher in comparison with other workloads, due to the 
aforementioned memory inefciencies. Utilizing hardware or software 
prefetching so that the system can better predict future memory 
accesses typically yields better performance for common use cases. 
For graphs, however, using prefetching still results in high miss rates. 
Since the underlying graph structures and algorithmic approaches are 
traditionally non-sequential, and access patterns are data dependent, 
the prefetcher is not able to adequately gain sufcient information to 
have an increased prediction rate [11]. 

To combat this performance difculty, the authors of Ref. [11] 
continue to state that programmers can explicitly tune prefetching 
to have better results. In most cases, the graph generation algorithm 
is known in advance. By knowing the graph generation algorithm, 
programmers can confgure the hardware prefetcher to follow the 
traversal order pattern. For instance, for breadth-frst search (BFS), 
the traversal order pattern is typically the same: Process each node 
at level order. Confguring the prefetcher to access future items in the 
breadth traversal path leads to increased performance of over 2× for 
BFS by reducing the number of cache misses and thereby limiting the 
time stalled while waiting for main memory access [11]. 

2.2.4.2 Accelerators 

While the graph generation process may be parallelized, the underlying 
atomic functions are largely serial [24]. When it comes to shared 
vertices and data conficts, there can be slowdowns while waiting 
for the atomic functions to process [21,24]. This can be incredibly 
problematic for graphs with many high-degree vertices. To alleviate 
these slowdowns, techniques exist for using an accelerator that 
capitalizes on the incremental patterns of atomic functions and merges 
the results in parallel rather than computing them all atomically 
[24]. The parallel implementation presented in [24] continues by 
utilizing this merging strategy so that the accelerator can then utilize 
pipeline stages where the vertex updates can be processed in parallel 
dynamically. 
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Due to the memory difculties, additional work has been done to 
leverage feld-programmable gate arrays (FPGAs) for graph generation 
in the HPC space [9,25]. Coupled with their fexibility and energy 
efciency, FPGAs have many potential benefts. To reduce memory 
strain, the traditional FPGA approach utilizes the on-chip block RAM 
(BRAM) to store graph information [9,25]. Depending on the size 
of the graph, the BRAM can store various portions of attack graph 
information to enhance performance. Depending on the size of the 
exploit list, the list can be stored here to avoid pulling it from main 
memory, or from taking cache space that could be better used for 
explicit prefetching. If a parallel approach is used that targets the 
FPGA, the local frontier could also possibly be stored in the BRAM 
depending on its size. This approach, however, is limited in its usability. 
For small graphs, the performance is magnitudes better. But this 
performance increase is not scalable, as the BRAM available on-chip is 
relatively small compared to typical graph sizes and is thus unable to 
hold the large graphs that are typically required to address problems 
that require HPC clusters [9]. 

An alternative to the BRAM approach is through leveraging the 
stacked DRAM technology of hybrid memory cubes (HMCs) [9]. An 
HMC is optimized for parallel access (more ranks; smaller page size) 
and has full-duplex links at speeds of almost 20× that of DDR4. The 
authors in Ref. [9] drew comparisons of an FPGA-HMC approach 
versus a Xeon E5 CPU. Both used parallelization, but since the FPGA-
HMC approach had a substantially lower memory access time, the 
results obtained showed that this approach yielded a 3x performance 
improvement over the Xeon E5 CPU. 

2.2.4.3 Better Data Structures 

Defning and generating graphs revolve around the underlying data 
structure representation. Most commonly, graph data are represented 
in the form of an edge list, with each edge symbolizing a connection 
between nodes [26]. However, as the authors of [26] discuss, many 
of the typical graph algorithms process graphs through neighboring 
nodes. For instance, breadth-frst and depth-frst searches, as well as 
shortest-path algorithms process graphs through neighboring nodes. As 
a method to improve the performance of node exploration algorithms, 
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adjacency lists can be used. Adjacency lists are per node and list 
the nodes that are neighbors. Node exploration algorithms can then 
use adjacency lists to quickly identify neighboring nodes, rather than 
computing nodes through an edge list. Historically, adjacency matrices 
have been used, as seen in works such as [27,28]. The authors of [26] 
describe that this is infeasible for today’s large graphs, since the space 
requirement for representing all nodes in a matrix will be cumbersome 
and the processing time is slower. Property maps have also been used 
for graph representation. Property maps are defned as objects with 
keys and values that are mapped together. These can be used to map 
vertices that allow for simplistic lookups [29]. 

With large graphs and the need for parallelization, there has been 
a push for higher-performing graph algorithms. With some graphs 
having upward of billions of edges and billions of vertices, it is not 
possible to contain all of a graph’s representation in a system’s memory 
[30]. Due to this increased requirement, it is preferable to distribute 
a graph representation among systems [26,30,31]. Partitioning a 
graph representation has various approaches. As the authors of [31] 
discuss, partitioning can be conducted by assigning vertices to workers 
where each contains its own copy of lists. This is defned as a 
distributed adjacency list [32]. Distributed property maps can also be 
used, with the mapped values distributed across systems or nodes. 
Synchronization and communication can be used for value retrievals 
and updates [33]. 

Using distributed data structures does not come without a 
cost. As the authors of [30,31,34,35] discuss, communication costs 
begin bringing in additional overheads that damper performance. 
To account for communication costs, previous works have presented 
compression techniques. However, the authors of [31] and [35] describe 
that compression for large graphs has additional penalties, as now 
decompression and compression costs are incurred, and compression 
ratios may be low. Both [31] and [35] present techniques for achieving 
high compression ratios and low costs. Other works present alternative 
solutions for increasing distributed structure performance. 

Regardless of costs, sequential data structures or data structures 
typically used for small graphs are not advisable. They are not scalable 
and leave performance gains unrealized for large-scale graph processing. 
For handling large graphs, better data structures are a necessity. Graph 
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type plays a role in what data structures should be used; there is no
data structure that will have optimal performance for every graph.
Analyzing graph processing and tailoring their representations will
yield far better results than taking naive approaches.

2.2.4.4 Useful Libraries

A number of libraries exist with routines for processing and analyzing
graphs. These include Boost, Parallel Boost, and ParMETIS.

2.2.4.4.1 Boost Graph Library Boost Graph Library (BGL) is aimed
as a “generic interface”, utilizing generic underlying algorithms that
provide abstraction from the graph’s structure. BGL is intended to
work with any other graph library or graph algorithm. Through BGL’s
generic programming, graph components such as edges or vertices
can quickly and easily be represented by abstract classes, such as an
adjacency_list class, which implements iterator functions for accessing
or updating class members. Rather than individually creating all of the
classes and functions, and tailoring them to each graph structure and
implementation, Boost can provide all of the necessary information
while remaining abstract, making it flexible to support a number of
different types of graphs [36]. Boost also contains generic interfaces
for representations such as property maps [29]. Instead of manually
creating the mapping for vertices or edges, it can be implemented
through Boost. The same exists for graph algorithms such as breadth-
first or depth-first searches: Boost has these readily available to allow
for simplistic incorporation into any graph structure. None of these
classes or methods are strict on the underlying graph representation.
These will be able to function properly for all representations, allowing
for highly specific or customized graphs to benefit from typical
algorithms without the need to recreate them all [37].

A notable feature of BGL is that custom graphs relying on novel
or nontraditional data structures can be converted to work with BGL
to take advantage of generic template functions such as breadth-first
searches. This is a documented feature of BGL with a dedicated
support page to assist in the conversion. The conversion avoids the
overhead of new class creation or data copying by providing a wrapper
to overload global functions [38]. When working with large attack
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graphs, keeping generation and analysis time at a minimum is ideal
due to the state space explosion. For custom graphs that do not use
BGL, classes would need to be created that handle all basic functions.
For generation, these functions could be for creating new nodes or
adding edges, which would be called a very high number of times. For
analysis, these functions could be for performing searches or identifying
the shortest paths. Creating extra custom classes for each of these
can create overhead that slows the generation process. By using BGL
to abstract the custom graph and provide generic functions with fast
runtimes, the generation process can be sped up.

2.2.4.4.2 Parallel Boost Graph Library The Parallel Boost Graph
Library (Parallel BGL) is an extension of the BGL. This library is
intended to provide the benefits of BGL for parallel and distributed
computing and to leverage both coarse-grained and fine-grained par-
allelism on graph structures while remaining generic. Coarse-grained
parallelism refers to conducting parallelism on large chunks of data,
whereas fine-grained parallelism refers to conducting parallelism on
small pieces of data. As mentioned in previous subsections, generating
graphs is difficult due to the irregularity involved. As a result, leverag-
ing coarse-grained parallelism during the generation process is difficult,
since predicting patterns or exploiting locality is extremely unlikely.
However, it can be useful during the analysis process. Following
procedures similar to that done by the authors in Refs. [39–41], sections
of the generated graph can be grouped together, and coarse-grained
parallelism can be conducted on the larger sections. Due to the unpre-
dictable nature of the generation process, fine-grained parallelism must
be used. This typically suffers from a larger overhead in comparison
with coarse-grained parallelism, since atomicity must be present at each
vertex. Leveraging Parallel BGL’s capabilities, both of these parallel
techniques can be used relatively easily and relatively quickly due
to their generic nature. Parallel BGL also includes data structures
such as distributed adjacency lists, distributed queues, and distributed
property maps. These distributed data structures allow for simple
implementations on HPC systems. Other notable features of Parallel
BGL are its interoperability with MPI, Graphviz, and METIS [37].

2.2.4.4.3 ParMETIS ParMETIS is the parallelized library of
METIS. METIS is a library aimed to assist with partitioning,
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repartitioning, and refining graph-related problem spaces. ParMETIS
functions in the same manner, but is parallelized and based on MPI.
It includes additional functionality for assisting with sparse matrices
by computing fill-reducing orderings. One main appealing feature of
ParMETIS is in its partitioning. Partitioning the graph is useful, as it
will reveal concurrency, help identify proper load balancing, and allow
for an efficient way to map computation to a parallel platform [42].
While this does not help with the generation process, partitioning the
graph prior to analysis and then feeding the partitioned graph into an
analysis tool can aid in reducing the analysis runtime. In addition, since
ParMETIS is based on MPI, it is able to be performed on a HPC cluster
to partition very large graphs as a preprocessing step. ParMETIS has
benefits in that its processing time for its tasks is extraordinarily low,
reordering million-row matrices in seconds and bisection of circuits
with 100,000 vertices in minutes on Pentium processors. hMETIS is an
extension library that allows compatibility for hypergraphs [43].

2.2.5 Deploying to High-Performance Computing Clusters

The previous subsections laid the groundwork for presenting the
algorithms and showing general speedup techniques. This subsection
focuses on appealing methods for deploying the generation process,
specifically to HPC clusters.

2.2.5.1 Base Approach: General Parallelized Programming

One approach to handling the high generation time required for large
attack graphs is to parallelize the generation across all or some of a
HPC cluster. As opposed to traditional workstations which may have
a limited number of cores, a well-designed parallel approach would
be able to leverage the high number of cores and high amounts of
RAM in a HPC cluster [44]. This is the approach seen by the authors
of [14], as described in Section 2.2.3. Because of the increase in the
popularity of distributed and heterogeneous clusters, message-passing
interface (MPI) is a good candidate as a basis for parallelization [44].
To handle the distributed memory design of these systems, MPI is able
to utilize its messaging technique to instruct the dispersed nodes on
their tasks.

At a high level, there are some difficulties with using MPI alone.
As the authors of [45] discuss, MPI can oftentimes result in a large
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restructuring of source code. This is because the data distribution
and process synchronization need to be explicitly controlled by the
programmer and cannot be done automatically. When wanting to
target a wide variety of clusters for benchmarking, testing, or imple-
mentation, or if updates to a code base were conducted, restructuring
the code repeatedly could be time-consuming. As a result, combining
MPI with another API such as OpenMP or OpenCL could utilize the
strengths of MPI, while allowing an abstracted form of parallelism
at the node level through the API [45]. On the other hand, as the
authors of [45] continue, using an API such as OpenMP on its own will
not suffice for distributed systems. OpenMP is targeted more so for
shared memory systems, and fine-tuning the parallelism is difficult. As
the authors of [46] describe, properly partitioning data has additional
difficulties of its own, since it is an NP-complete problem. Coordinating
data distribution through MPI messages can alleviate this, as it can
periodically synchronize nodes and attempt to balance the load.

2.2.5.2 Programming Model Optimizations

2.2.5.2.1 Vertex Centric To approach the aforementioned challenges
of processing large-scale graphs, the authors in Ref. [47] present a
programming model called Pregel, a vertex-centric paradigm. At the
time of writing of [48], this was one of the most popular programming
models, and as the authors of [49] show, the vertex-centric model is
used in systems such as Giraph, GraphLab, MapReduce, and Blogel.

The premise of the vertex-centric model is to use a vertex as the unit
of parallelization to leverage fine-grained parallelism. During periods
between global synchronization points (called supersteps), vertices are
able to alter their local state, modify their edges, send messages, or
change the graph topology. For the messaging, each vertex utilizes
message passing to communicate with other vertices in regard to
its updates, where the message is received at the beginning of the
next superstep. The vertex-centric algorithm continues until no vertex
changes [47].

Pregel contains optimization techniques that can be implemented
on a per-problem basis. These include optimizations that can alleviate
messaging overhead. The communication overhead of vertex-centric
systems can be quite large and is a main disadvantage of this
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programming model. The amount of communication required for
many vertices to effectively message all appropriate vertices, along
with the synchronization, can be substantial [47,50]. Other vertex-
centric systems also have their own sets of optimizations. An early
disadvantage of Pregel, especially in the context of large-scale graphs,
is that the computation state resides in RAM. However, later updates
to Pregel have worked to push data to disks [47]. Using this on a
HPC resource generally provides more available RAM for holding
the computation state, but holding the entirety of large graphs is
unlikely.

Attack graphs are most useful when they are exhaustive. As a
result, the overall topology of the attack graph will not change during
generation, nor will subsections of the graph be combined. Using a
vertex-centric programming model in terms of leveraging the topology
mutate function may not be beneficial from a performance standpoint,
due to the frequent interactions between subgraphs resulting from
expansion of each vertex and the associated messages that must be
passed as a result.

2.2.5.2.2 Subgraph Centric To mitigate the high communication
overhead of the vertex-centric programming model, a subgraph-centric
programming model can be used [48,50]. In this model, subgraphs
are used as the unit of parallelization, rather than vertices. This
reduces the level of fine-grained parallelism in the problem space
and is able to limit the amount of communication overhead [48].
Rather than messages being passed between all vertices, messages
are passed between subgraphs. Boundary points within the attack
graph can be identified and used as places to break off a subgraph
and hopefully reduce the number of messages sent between subgraphs.
In the subgraph-centric model, two distinct subcategories are derived:
partition centric and neighborhood centric [48].

For the partition-centric model, partitions are the unit of parel-
lelization [48]. As the authors of [48] state, the subgraph has vertices
of two types: internal and boundary. Boundary vertices must have a
transfer to communicate messages, whereas internal vertices are imme-
diately able to exchange information. Due to the immediate exchange
of information in the internal vertices, the communication overhead can
be reduced. For the neighborhood-centric model, subgraphs are able to
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be customized [48]. Rather than partitions being the default unit of 
parallelization, the subgraphs can be explicitly confgured. 

2.3 ANALYSIS 

2.3.1 Introduction 

Analyses of attack graphs, compliance graphs, and attack dependency 
graphs are important to resolve potential issues in a network. However, 
quantifying probabilities of compliance violations or attacks, as well as 
damages from their occurrences is a challenge for accurate analysis 
[51–53]. In terms of quantifying compliance violations, damages can 
be identifed in regulatory penalties, legal sanctions, and removal of 
systems from an active network [3]. Damages from attacks can be 
identifed in terms of direct losses (data theft and damage) and indirect 
losses (other losses and opportunity costs). The next difculty for anal-
ysis is the technique used. This section will focus on the methods and 
quantifcation schemes used for the analysis of the generated graphs. 

2.3.2 Markov Process Model 

After the generation of an attack graph, it is desirable to model an 
attacker’s standpoint to analyze strategies or approaches that may be 
taken to put the network in a vulnerable state. Likewise for compliance 
graphs, it is desirable to model probable ways for a system to fall out 
of compliance. By understanding the common or likely violations that 
can occur, a team can work on building countermeasures. The goal 
of a Markov process model is to convert the generated graph into a 
Markov process, to use as the baseline for probabilistic predictions. The 
computation has been shown to be parallelizable and can be performed 
with a CPU and an Intel Phi Coprocessor simultaneously [51]. The 
work in Ref. [51] leveraged the Intel Phi’s ability to perform matrix 
multiplication more efciently than a standard CPU. The additional 
capabilities of the Intel Phi with respect to decisions and branches 
support the inclusion of more robust analysis and decisions about 
future courses of action natively on the Intel Phi compared to a 
standard graphics processing unit (GPU). 

Leveraging the Markov process model as a defender can yield 
benefcial results. First, it can raise awareness to weak points in 
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the system, which can then be fagged for additional monitoring, 
strengthened, or hardened against attacks. Second, it can illustrate 
methods for implementing a trapping state or regression state to 
thwart potential attackers. Identity of such states in the system is 
important because the number which can be efectively deployed may 
be limited. Third, by computing the total expected reward, it is possible 
to quantify the security measures in place and the potential difculties 
of putting the network in a compromised position [51,54]. 

2.3.3 Shortest Path 

When quantifying the possibility of a system compromise, there are 
a few considerations to take into account. Namely, these are the 
degree of harm that can be caused by a vulnerability, the presence 
and efectiveness of intrusion detection systems, the capability of an 
attacker, and the attack path. One method of analysis is focusing on 
the attack path [12]. While being a less sophisticated approach when 
compared to the Markov process model, determining the shortest path 
to an attacker’s potential goal state can reveal diferent stances an 
attacker may take [55]. The shortest path also identifes the fewest 
actions that must occur to compromise the system, each of which could 
be caused by a single attacker or by a combination of attackers, each 
leaving the system in a more compromised state than it was previously. 
This type of analysis can be useful for revealing pass-the-hash attacks 
[56]. As the authors of [57] describe, pass-the-hash attacks steal hashed 
credentials, rather than the plaintext. The hashed credentials can then 
be passed to single sign-on services to attempt to comprise the system. 
If the compromise was successful, an attacker could then attempt 
to escalate privileges by capturing a more privileged user within the 
shared infrastructure environment. If an attacker was able to capture 
a user with enough privileges, the attacker could then commit more 
dangerous attacks on critical systems. Three common shortest-path 
algorithms are discussed below. 

2.3.3.1 Dijkstra’s Algorithm 

Dijkstra’s algorithm works by starting at a given node and works 
through a given graph, keeping record of known shortest distances from 
each node to the start node. However, since the shortest distance is 
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calculated by adding the path from each node, the weights on the graph 
edges must be positive. Advantages of Dijkstra’s algorithm lie in its ease 
of use and execution [58]. Disadvantages lie in its time complexity of 
O(n2), where n is the number of vertices, inefciencies, and restriction 
to positive edge weights [59]. Inefciencies in Dijkstra’s algorithm are 
in its memory consumption. For the algorithm, the entire graph is used 
as an input. In the case of these large-scale graphs that can be terabytes 
in size, memory cannot hold the entirety of the graph [50]. As a result, 
it is unlikely that Dijkstra’s algorithm can be used for analyzing these 
graphs in their entirety. 

2.3.3.2 Bellman–Ford Algorithm 

An alternate approach to computing the shortest path from a given 
node to all other nodes in the graph is the Bellman–Ford algorithm. 
This is a bottom-up approach, retrieving the shortest paths of nodes 
with lower degree frst. As opposed to Dijkstra’s algorithm, Bellman– 
Ford is able to function with negative edge weights. However, the 
Bellman–Ford algorithm runs at a much higher time complexity of 
O(nm), where n is the number of vertices and m is the number of 
edges. In practice, the number of edges is much larger than the number 
of vertices [59]. 

2.3.3.3 Parallel APSP 

As a result of the disadvantages and costs incurred by Dijkstra’s 
and Bellman–Ford algorithms, further research has been conducted 
to identify better shortest-path techniques [59]. Parallelizing all-
pairs shortest paths (APSP) has been performed at various degrees. 
The more promising trend revolves around a bucket sort approach, 
where a number of buckets are initialized, with their bucket number 
representing the number of degrees a vertex has [58]. The problem 
is then parallelized by having threads fll buckets accordingly. Race 
conditions from simultaneous bucket updates are avoided by the use 
of locks. Improvements to this approach are described in [58] through 
the use of intelligent ordering mechanisms. 

2.3.4 Minimization 

After the generation of attack graphs, it is possible to visualize possible 
attack vectors an adversary could take. Using Markov process models, 
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it is also possible to decide upon optimal trapping states or regression 
states to increase a defensive position. However, there is a gap in 
knowing how an adversary could attack a system, and the ideal way 
to thwart the said attack. One analysis technique is through using 
minimization. Using minimization can aid in attack prevention in the 
two ways discussed below. 

Minimization can be employed to determine if a given security 
countermeasure increases the security of a network [53]. Given a 
security countermeasure and the generated attack graph, if it prevents 
a transition from one graph state to another, remove the connecting 
edge. After repeating for all possible edge removals, if the number of 
attacker goal states has decreased, then the security countermeasure 
does increase the security of a network. If the number of goal states 
remains the same, then the security countermeasure is not sufcient 
enough to increase the security of the network. This process can 
be repeated with a set of countermeasures, to determine if sets of 
countermeasures will remove attacker goal states. 

Another technique for minimization analysis is fnding the smallest 
subset of security countermeasures that produces a desired network 
security threshold [53]. To do so, the minimum set of attacks that 
can be prevented to make the network secure must be determined. 
However, the authors of [53] discuss that determining this is an NP-
complete problem. This becomes incredibly infeasible especially with 
large graphs with high numbers of possible attack vectors. But, if the 
minimum set of attacks was known, then a set of countermeasures could 
be looped through to identify the smallest number that would prevent 
all of the attacks in the minimum set. 

2.3.5 Criticality 

Determining a compliance violation or attack vector possibility is 
useful, but often it does not diferentiate between the types of threats. 
There are a lot of factors to consider when handling possible threats, 
such as the possibility of occurrence, the attacker’s competency, and the 
repercussions from a successful attack. As an alternative (or additional) 
approach to Markov process models, the authors of [60] present a seven-
stage security evaluation. This evaluation will result in security levels 
of green, yellow, orange, or red to indicate the severity or criticality of 
an event. 
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The authors in Ref. [60] describe the seven stages as a qualitative 
means of describing the network security level. Stage 1 is for 
determining the criticality level of hosts. This is conducted by 
processing through all of the hosts and assigning a level in terms of 
high, medium, or low criticality. Stage 2 describes the severity of attacks 
using the Common Vulnerability Scoring System. Stage 3 makes use 
of the frst two stages to determine the damage level of an attack. 
Stage 4 determines the damage level of threats. Stage 5 determines the 
access complexity for threats and attacks. Stage 6 utilizes the previous 
stage’s access complexity to determine the likelihood of a threat 
realization. Lastly, stage 7 evaluates the network security from the 
likelihood of an attack and the damages caused. Using such a system 
can identify areas that require higher prioritization over others, as well 
as provide a demonstrative means to aid in pushing for appropriate 
countermeasures. 

2.3.6 Semi-Metricity 

One way to enhance the performance of graph analysis is to utilize 
what is known as the metric backbone [48,61]. The metric backbone, 
as the authors of [61] go on to discuss, is the minimum subgraph 
of a larger graph, which also still maintains the shortest paths. The 
metric backbone is used for weighted graphs, so incorporating this 
in conjunction with Markov process model and shortest-path analysis 
techniques could prove promising for handling the large-scale graphs. 
By using the metric backbone rather than the entire generated graph, 
other analysis techniques could be leveraged. The advantage of this is 
that the analysis conducted on the metric backbone will be exact, or 
be a good approximation of the analysis that would be conducted on 
the entirety of the original graph [48,61]. 

For obtaining the metric backbone, the all-pairs shortest paths 
problem must frst be solved [61]. As discussed in a previous section, 
there has been promising work in parallelizing this problem [59]. 
Typically, as the authors of [59] state, computing the all-pairs shortest 
paths problem can incur high runtimes of its own. However, by using 
the approach presented by the authors of [59], and leveraging a HPC 
cluster for the parallelization, the metric backbone can potentially be 
obtained in a very reasonable amount of time. 
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2.4 CONCLUSIONS AND FUTURE WORK 

Utilizing graphs is a promising method for approaching cybersecurity 
problems. The usage of attack graphs and attack dependency 
graphs can illustrate potential system vulnerabilities and the ways 
an adversary can compromise a system. Both of these graph 
techniques can display diferent types of information, allowing for 
cybersecurity professionals to tailor which data to examine and identify 
countermeasures most suitable for systems. Combining both attack 
graphs and attack dependency graphs can prove even more benefcial, 
allowing for more data to be examined simultaneously. Compliance 
graphs are another useful technique that is particularly helpful for 
industries needing to conform to multiple standards or compliance 
regulations. Compliance graphs are also worthwhile for examining 
cyber-physical systems that are increasingly more common. 

However, processing and analyzing these graphs is a problem 
that sequential or single-system machines are unable to handle. With 
billions of vertices and edges needing more system resources, along 
with high computation time, high-performance computing systems are 
valuable candidates to utilize these graphs. Combined with parallelism, 
hardware techniques, better data structures, tailoring programming 
models, using libraries, or limiting the analysis scope, these graph 
techniques are more accessible, as is analysis of these graphs. 

The landscape for future work in this area is plentiful. Improve-
ments to graph representation have fertile ground, where various 
authors have laid the groundwork for a multitude of new techniques. 
Implementations and improvements of a unifed attack and attack de-
pendency graphs could prove to have promising results as well. Analysis 
techniques are broad, and all have potential areas of improvement. 
Markov process models are difcult to solve, but can lead to key 
insight into system countermeasures. In addition to HPC clusters, 
utilizing accelerators or learning techniques can simplify solutions. 
Minimization analysis is highly useful for cybersecurity professionals, 
since budgetary limits, time constraints, and inter-system compatibility 
prevent the implementation of all possible countermeasures. This is 
an NP-complete problem, so solution approaches or new estimation 
algorithms can provide many benefts for professionals to incorporate 
this type of analysis in their defense arsenal. Examining the usage and 
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performance of a metric backbone for analysis technique is also likely 
promising. 

Overall, graph techniques are extraordinarily useful for cybersecu-
rity purposes. While difcult due to scalability and long computation 
times, high-performance computing and innovative processing tech-
niques can reduce the typical overhead that is associated with these 
tools on single-system machines. 
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3.1 INTRODUCTION 

The growing scale of high-performance computing (HPC) systems and 
their support infrastructure coupled with the proliferation of sensors 
and system monitoring software has led to a deluge of operational data 
in modern HPC data centers [1]. At NERSC, these operational data 
are collected from thousands of sources in the data center ranging from 
environmental control systems to single-node memory usage and stored 
into a single data warehouse, the Operations Monitoring and Notifca-
tion Infrastructure (OMNI). Storing these data into OMNI allows us to 
analyze and correlate for systems monitoring and research purposes in a 
more efcient way; however, there are many challenges associated with 
gathering complex time series data from so many heterogeneous sources 
in near-real time, such as latency, bandwidth, privacy, infrastructure, or 
availability. Further, we need to ensure the security of the data between 
internal staf: Groups should not be able to access data of other groups 
and provide a secure framework to those who are from external sources 
and want to perform research on our data. 

Within the OMNI system, challenges associated with aggregating 
all data sources into a standalone data warehouse are mitigated using 
edge computing technologies. For example, data preparation of high-
volume, high-velocity metrics from HPC systems is performed at 
containerized gateway nodes at the local edge before being forwarded 
to OMNI. These nodes also ofer local bufering of data in the event 
that data transfer to OMNI is unavailable due to network outages or 
if the data warehouse has been compromised by hardware failure or 
cyberthreat. We also have to ensure that from a cybersecurity aspect, 
that data that go through one device to another or move from one 
internal network to another are securely transported to OMNI. 

In this chapter, we will discuss the NERSC high-performance 
computing data center and using edge computing services to securely 
send data to OMNI from heterogeneous sources. We will then detail 
the high-availability OMNI infrastructure and its use of state-of-the-
art edge computing technologies for collecting, analyzing, and securing 
extremely high-volume, continuous 24 × 7 data in near-real time. We 
will also discuss the cybersecurity aspects of how we keep these data 
secure not only from each staf who owns the data, but also through 
various devices and networks. We will discuss internal and external 
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access policies put in place and the plan to make these data available 
for the public for crowdsourcing analysis. We will then provide use cases 
that demonstrate how the availability of OMNI data has benefted the 
overall NERSC data center, from a facilities and machine perspective 
as well as from a cybersecurity standpoint. Finally, we will outline the 
ongoing and future work, including upgrades being made to the data 
warehouse for the upcoming Perlmutter supercomputer – a system that 
will be 3–4× the size of our current HPE/Cray Cori system. 

3.2 BACKGROUND 

NERSC is the mission scientifc computational facility for the Ofce 
of Science in the U.S. Department of Energy (DOE) and has operated 
many HPC systems since its inception at Lawrence Livermore National 
Laboratory in 1974. Sixteen NERSC systems have appeared on the 
TOP500 [2] list of fastest computing systems in the world. NERSC’s 
mission is to provide HPC and compute resources to science users 
at high availability with high utilization of the machines in order to 
further the scientifc research supported by the DOE Ofce of Science. 
The current NERSC HPC data center is located at Shyh Wang Hall. 

The building is a 140,000-gross-square-foot (GSF) facility that 
houses both the data center and ofce spaces for Berkeley Lab 
Computing Sciences division employees spanning NERSC, the Scien-
tifc Computing Division who manages the Energy Sciences Network 
(ESnet), and the Computational Research Division (CRD). Shyh Wang 
Hall comprises four foors – two ofce foors (28,000 square feet each), 
one machine room foor (20,000 square feet with room to expand up 
to 28,000 square feet), and one mechanical level. It is outftted with 
a seismic subfoor and is a LEED®-certifed Gold facility, averaging a 
monthly Level 2 Power Usage Efectiveness (PUE) ratio of 1.07 over the 
past year. A Level 2 PUE is defned to be measured from the power 
distribution unit (PDU) outputs in terms of equipment and utility 
inputs in terms of facility and is collected at an interval of hourly and 
daily. Shyh Wang Hall has recently completed upgrading its power 
capacity and facility capabilities from 12.5 to 25 MW (megawatts) to 
prepare for the installation of the next HPC system, Perlmutter [10,11]. 

The challenges of properly managing the operational data at the 
scale of HPC data centers are complex given their distributed nature 
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and, when considering latency, cybersecurity, workfows, and volume 
requirements, can compound existing issues. Changes in the compute 
environment can occur at nano- and microsecond scales. Therefore, 
we have to consider how to transmit and store data, at what point 
should the data be processed or encrypted, and how workfows should 
be coordinated as data are transferred across devices and networks. 
Further, from a business perspective, how much time in terms of stafng 
will this take and at what costs? 

What types of data are considered operational data? Examples 
include time series data from the environment (e.g., temperature, 
power, humidity levels, and particle levels), monitoring data (e.g., 
network speeds, latency, packet loss, utilization, or those that monitor 
the flesystem for disk write speeds, I/O, and CRC errors), and event 
data (e.g., system logs, console logs, hardware failure events, and 
power events, essentially anything that has a start and end time). The 
reporting rate of these data often depends on several factors, including 
individual properties of the sensor or machine, the size of the data, 
whether or not continuous monitoring is necessary, and how quickly it 
is needed for analysis. Some systems do not report data by default and 
must be instrumented by system administrators. 

In designing OMNI, we wanted the computation to occur as close 
to the source as possible. This minimizes overall latency for real-time 
analysis and archiving results. Figure 3.1 illustrates the overall data 
pipeline of the OMNI system for the Perlmutter HPC system; data 
from the HPC system along with multiple other sources provide data 
from Prometheus end points or a telemetry API. Data are transformed 
at this edge and can either go to Elasticsearch or VictoriaMetrics where 
they can be queried by Grafana or Kibana, two visualization tools, or 
can go to vmagent that handles sending the information to various 
areas for alerting. In this case, data are ready to be analyzed in real 
time by operations staf who manage the data center and need to know 
the immediate health of every system within their responsibilities. 
At the same time, a second stream of these data is sent directly to 
Elasticsearch and VictoriaMetrics for online archiving. 

OMNI’s overall design also considers where we will implement 
the appropriate cybersecurity practices. Within the OMNI network, 
operations staf have control over the types of protocols implemented. 
Outside of OMNI, however, protocols may change without their 
knowledge or control; therefore, it is policy to require anyone wanting 
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Figure 3.1 Monitoring data pipeline for the Perlmutter HPC system to 
OMNI. 

to transmit data to OMNI to use the proper security protocols 
such as transport layer security (TLS) and anyone logging into the 
infrastructure to use a modifed version of secure sockets shell (SSH) 
that allows the NERSC cybersecurity team to record and analyze 
the content of interactive SSH sessions. A multi-factor authentication 
(MFA) token is also required for logging in externally through a 
gateway. Further, non-secure protocols have been isolated externally 
and from each other. For example, the onewire devices (measures 
temperature and humidity on racks) are on a diferent network than the 
power distribution units (PDUs) or the Modbus protocol-based devices. 

For daily operational considerations, such as when a user needs to 
see their data, or how workfows are coordinated, being highly available 
is crucial. When the team designed OMNI, it was meant for the system 
to continue collecting data as long as the facility has power. It is the frst 
system to come up after stable power is confrmed and the last system 
to be turned of during a facility power maintenance. However, OMNI’s 
main purpose was to be a data archiver and a real-time data provider. 
Operations staf would need an immediate analysis of the data in real 
time to monitor the health of the facility and its assets. OMNI is also 
the mechanism to store data in one location to correlate multiple data 
sources for decision making. As such, the data have been separated so 
that the source and types of data are processed diferently and more 
efciently. For example, slower and older data sources such as Modbus 
or onewire are processed and routed to Elasticsearch. Any data that 
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have enhancements attached to them such as IP address and hostname 
or are text based also go to Elasticsearch. Newer, faster, and denser 
data sources, as well as any data that cannot be converted are ingested 
and routed to VictoriaMetrics. 

Data in Elasticsearch or VictoriaMetrics are stored for immediate 
online access and queried through Grafana and Kibana. Datasets have 
diferent lifetimes within the immediate storage areas. VictoriaMetrics 
has more efcient compression rates so that data can be accessible 
online for a longer time frame. OMNI is confgured with separate virtual 
machine (VM) clusters that hold diferent datasets. For example, node 
performance metrics may be online for 6 months, but power data can 
be kept for 5 years depending on the user’s required indexing rate. 
Determining how long a user needs to have immediate access to their 
data helps to streamline their workfow. In the above examples, the 
user of power data wants to analyze multiple years of data; however, 
he does not need them to be that dense. Power data are currently 
collected one data point per 5 to 30 seconds, depending on the device. 
These are very dense data and immediately stored in archival storage, 
the high-performance storage system (HPSS), so that the team can 
continue to have access to the original raw data. However, for the user’s 
needs and immediate analysis, the data are frst processed by indexing 
diferent datasets that have data points every hour for one user and 
every 30 minutes for another user. With the new indexes, each user 
can immediately analyze historical data based on his needs without 
processing the dataset frst or waiting for the processing to occur before 
visualizing them in Grafana or Kibana. 

In designing OMNI, a big consideration is cost and where to invest 
our yearly budget. As such, the decision made is to use open-source 
software, a 3-year cycle of hardware refresh, and in-house staf who 
can manage the cluster. In terms of storage, the team leveraged HPSS 
as their archival needs. This helps mitigate costs for online, immediate 
storage that is kept on fast disks, while the older or raw data can be 
stored in the long-term storage. 

3.3 OMNI ARCHITECTURE AND TECHNOLOGIES 

OMNI is a fexible big data solution to collect, manage, and analyze 
data related to monitoring of extreme-scale computing systems [5]. 
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This infrastructure facilitates a single location for storing the hetero-
geneous datasets and is comprised of two highly scalable, fast, and 
efcient time series databases: Elasticsearch [6] for logs, data requiring 
strings, and small, low-volume metric sets and VictoriaMetrics [4] for 
capturing high-volume metric sets from Prometheus [7]. Examples of 
operational data include time series data from the environment (e.g., 
temperature, power, humidity levels, and particle levels), monitoring 
data (e.g., network speeds, latency, packet loss, utilization, or those 
that monitor the flesystem for disk write speeds, I/O, and CRC errors), 
and event data (e.g., system logs, console logs, hardware failure events, 
and power events, essentially anything that has a start and end time). 
The network backbone of OMNI has recently been upgraded from 
a static network to a software-defned, reconfgurable network with 
spine–leaf topology. 

3.3.1 OMNI k3s Architecture 

The primary architecture of the newly upgraded OMNI system is 
built on k3s, a lightweight Kubernetes distribution [3]. As shown in 
Figure 3.2, OMNI consists of multiple k3s clusters, each of which is self-
contained with master and worker nodes and its own control plane. In 
OMNI, a k3s cluster can consist of several diferent types of bare-metal 
hardware as well as virtual machines. Virtual machines are utilized 
for etcd/master/control plane pods. Every cluster consists of the 
same monitoring infrastructure; this monitoring infrastructure consists 
of a VictoriaMetrics operator (vm-operator); kube-event; kube-state-
metrics; Loki/Promtail; Prometheus node exporter; for nodes with 
IPMI, a Prometheus IPMI exporter; and for nodes with SATA/NVME 
drives, a Prometheus smartctl exporter. In addition, OMNI utilizes 
kubernetes-mixin, a set of Grafana dashboards and Prometheus alerts 
for Kubernetes, in order to oversee the cluster visually using our 
on-prem Grafana deployment. 

The vm-operator is used to manage a VictoriaMetrics agent 
(vmagent) instance on each k3s cluster. The vmagent, a core 
component of VictoriaMetrics, is used to quickly and efciently scrape 
metrics from Prometheus-compatible exporters in VictoriaMetrics. It 
can perform operations such as reading Prometheus confgurations and 
relabeling of data before writing into the VictoriaMetrics backend. 
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Figure 3.2 OMNI k3s self-contained clusters. 

In the event that the remote VictoriaMetrics backend is unreachable, 
it can bufer collected metrics at the source and then send them when 
the backend can be reached again. 

The omni-core-k3s cluster in Figure 3.2 is used to manage the core 
services of the OMNI nodes and switches, while omni-k3s handles all 
of the Modbus and Rancher gateway nodes. In the future, the Redis 
database as well as the core Grafana services will be managed from this 
cluster. Vmetric-k3s is a cluster dedicated to VictoriaMetrics, running 
several separate VictoriaMetrics clusters within it (vmclusters), as 
follows: (1) omni-vmetric for Prometheus metrics; (2) cori-sedc-vmetric 
for collecting Cray HPC System Environmental Data metrics from 
the NERSC Cori machine; (3) cori-vmetric for collecting Prometheus 
node exporter information, data from the lightweight distributed 
management system (LDMS), and snmp data from nodes on Cori; 
and (4) crt-vmetric for collecting facilities information about building 
power, temperatures, and BACnet data – BAC: Building Automation 
and Control. 

A core tenet of the OMNI system is to be highly available and 
accessible 24 × 7. The use of multiple small clusters via Kubernetes 
gives greater fexibility and stability to the system; i.e., you can 
take down a small cluster, work on it, and bring it back without 
impacting the rest of OMNI. It also helps to focus and distribute 
the workloads, allowing for less bottlenecks and fner-grained tuning 
of Kubernetes infrastructures to meet the specifc demands of the 
workloads it is servicing. This is especially important with the 
upcoming Perlmutter supercomputer, as the volume and velocity of 
metrics will be exponentially greater than those of the current NERSC 
system, Cori. Using Ansible to map a k3s cluster to an oVirt data 
center/cluster allows for easy creation and deployment of new clusters 
to the system, as OMNI continues to grow and expand. 
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Another important aspect of separating workloads across multiple 
clusters is that it lends itself to an additional layer of cybersecurity via 
access control. First, user access to each cluster can be granted on an 
individual or group level. Clusters involved in backend services have 
no need to be accessed by end users, and thus, restricting them from 
even accessing that cluster makes it less likely that they are able to 
compromise the system. Even within a k3s cluster, user access may be 
further restricted; i.e., the cluster administrator can control what users 
may access which parts of the cluster. In addition to user access control, 
each cluster may have a unique set of hosts (bare metal or virtual) and 
sensors that are allowed to access it or that are contained within it. If 
a host machine becomes compromised, it would potentially only afect 
the specifc k3s clusters that it is interacting with. If for any reason the 
master node of one the k3s clusters were to be compromised due to a 
cyberattack, the attacker would not be able to access and do harm to 
all of the OMNI system; instead, it would be contained to the services 
and virtual hosts within that specifc cluster as well as the hosts or 
sensors that it communicates with. 

3.3.2 Use of Edge Computing in OMNI 

The deployment of gateway and other “local edge” nodes as container-
ized k3s pods allows us to monitor all computing nodes, services, and 
applications related to the OMNI architecture. In OMNI, data from 
sensors and metrics from machines can be considered the extreme edge 
of the network. Data from the HPC systems – containing thousands of 
metrics per second – are prepared and sent to OMNI via containerized 
gateway nodes located at the local edge. These gateway nodes utilize 
k3s, a lightweight Kubernetes distribution [3] , and agents of Victoria-
Metrics [4]. Deployment via k3s allows OMNI to scale and reconfgure 
itself to meet the increased demands or in the events of faults or failures. 
It also provides a means of monitoring the health of the OMNI network. 

Other uses of edge computing in OMNI include performing data 
processing at the edge, e.g., on an unused compute node where it 
is generated or at the gateway node where it is prepped, and then 
storing the computational results into OMNI. Oftentimes, this allows 
high-volume metrics to be fattened or downsampled, resulting in less 
network trafc as well as lower latency queries when querying OMNI 
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data for monitoring purposes on the other end. In some instances, 
the nature of the data sent to OMNI is sensitive, e.g., system log 
(syslog) information from the HPC systems, and requires scrubbing 
and encryption before they can be sent across the network and stored 
into the more widely available data warehouse. Pre-processing sensitive 
data where they are generated and encrypting them for transfer over 
the network provides an important level of cybersecurity that ensures 
non-privileged users do not have access to passwords or information 
that could reveal vendor-specifc details of the HPC machines or make 
them vulnerable to cyberattacks. 

3.3.3 Securing Small Devices at the Edge 

From a cybersecurity point of view, edge computing can be more 
vulnerable depending on its location in the infrastructure. In OMNI’s 
case, there are small sensors such as onewire devices or older devices 
that use Modbus that collect and process data such as temperatures, 
humidity, and power, from UPS, various panels, and substations. These 
devices can be very small and unable to hold the software required 
to secure the device using current security policies. They can also be 
limited in protocols, so it can be a challenge to monitor trafc through 
them. Further, communicating with these devices can be slow and use 
older protocols. In designing where in the infrastructure these type of 
devices should be placed, there are two situations to consider. 

The frst scenario to consider is should these devices be placed in 
a wired or wireless network? The wireless infrastructure is controlled 
by the Lab, and the process automatically chooses an access point 
that is the strongest and closest to the device attempting to get an 
Internet Protocol (IP) address. Placing any of these devices on a 
wireless network has a risk that the strongest access point could be the 
public one. This particular network is usually hazardous and prone to 
attacks, the type of attacks that can potentially render a small device 
useless. As a result, the devices are installed via a wired, internal, 
isolated network. Nothing from the outside can reach them, and data 
can only be transmitted to the edge service and then to OMNI. 

A second scenario is that these devices may not have the most up-
to-date transmission speeds. In one situation, a series of sensors did not 
have the technology to support a virtual machine or the speed of the 
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network card. It isn’t that it was an old device. In standard construction 
of a building, while these devices are available, the industry just found 
no need to have them be up to date. They used protocols that were 
available many years ago, and it continued to work in many instances. 
However, in a state-of-the-art data center, it was inadequate and there 
are no replacements in existence. As much as the team wanted to secure 
these devices in a VM and make them useful, it was not possible, 
so instead, they used a small node, added it to the network, and 
installed the Modbus collectors on the node. The device connected 
to the node took advantage of the more up-to-date hardware and was 
able to transmit its data at the speed of the existing network. 

3.3.4 Function as a Service at the Edge 

To provide smaller devices with an edge computing service and security, 
the team implemented Function as a Service (FaaS) ofered on a virtual 
machine (VM) after the device(s) and is the frst spot accessed by the 
data before OMNI. On this VM, a user can authenticate and query 
what the data are (which are read from the OMNI backend like elastic) 
without letting them actually perform operations on the elastic cluster 
itself. While most users of OMNI are NERSC staf, there are users 
who are vetted, are collaborators, are afliates, etc. These special users 
are not necessarily external staf, but they are outside the NERSC 
organization. The team has provided another layer of security for these 
users, especially if they are accessing data from the small devices. 

Once authenticated, users are able to perform calculations, run 
applications, and view the devices without additional infrastruc-
ture using FaaS. The software we used can be downloaded from 
https://fnproject.io. It provides users simpler access to these data 
because the API is defned with data specifcations, not just access 
specifcations. For the user, it means the data sources can change, but 
the software to process the data does not. For the administrators, they 
do not need to defne how the data are stored in OMNI, as they are 
already processed prior to writing to OMNI. They can also add devices 
as needed and still route the data through FaaS. Having this static 
software insulates users from change. 

FaaS was originally implemented for a group of users in the 
Energy Technologies Division (ETD), to aggregate and compute the 

https://fnproject.io
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Figure 3.3 Graph samples produced by Grafana to calculate power 
utilization efciency with diferent requirements. The top graph shows 
a moving average in 5-minute intervals with 30-minute samples. The 
second graph shows a PUE calculation of 5-minute intervals. 

power utilization efciency of the facility (Figure 3.3). In 2018, ETD 
transitioned to software called SkySpark [9] from SkyFoundry [8]. No 
longer needed for analysis or the calculation of PUE, FaaS was still 
needed to aggregate data from multiple sources in the building into 
a platform that automates the calculation and data analysis. Data 
included those from facilities, the HPC systems, rack-level IT systems, 
and cooling and performance data from the building management 
system (BMS). SkySpark also detects anomalies in the operation and 
allows ETD to optimize controls of the facility directly via the BMS 
(Figure 3.4). For the preparation of Perlmutter, SkySpark will use the 
data to predict and optimize control sequences prior to its installation 
and even through additional power expansion of the facility [13]. 

Water usage efciency (WUE) monitoring has also leveraged 
FaaS. As with the calculation of PUE, FaaS aggregates data from 
various sources, with the bulk of additional data from the Building 
Automation and Control Network (BACnet), devices that feed data 
into the BMS system (Figure 3.5). Developed under the auspices of 
the American Society of Heating, Refrigerating and Air-Conditioning 
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Figure 3.4 PUE monitoring scatter plot produced by SkySpark. Each dot 
is a 15-minute calculated event. Light Grey is the baseline period, and 
Dark Grey the selected monitoring period. Black is the 95th percentile 
indicator for the baseline scatter. The x -axis is the overall average wet-
bulb temperature. The wet-bulb temperature is the lowest temperature 
to which air can be cooled by the evaporation of water into the air at 
a constant pressure. This graph is telling us that during March 2021, 
our PUE compared with baseline, with only 30 or so 15-minute periods 
above the target PUE of 1.1. 

Engineers (ASHRAE), this is another standard protocol whose data 
are transformed and aggregated through FaaS to create various reports 
like the one above. Prior to feeding these data into SkySpark, an edge 
service processes all the data by converting them to a standard format, 
or by performing calculations to clean up the data that could be in 
diferent metrics, or by performing some analysis should some of the 
data not be in the same time frame. For example, various devices on 
the BACnet may not be able to transmit at the same speeds as all the 
other devices; therefore, data reach the edge service at diferent times. 
The process ensures that all the data for a time space are available. If 
OMNI expects 15 minutes of data, the edge service waits until all of 
the data are within the same 15-minute time stamp before processing 
and sending along to OMNI or SkySpark. 

The edge service provided by FaaS has been advantageous in being 
able to calculate PUE and WUE in smaller increments. For PUE, most 



76 ■ Cybersecurity and High-Performance Computing Environments 

Figure 3.5 Water usage efciency graph produced by SkySpark. Each 
dot is a 15-minute calculated event. Light Grey is the baseline period, 
and Dark Grey the selected monitoring period. Black is the 95th 
percentile indicator for the baseline scatter. WUE measures the rate 
of water evaporation versus electrical energy consumed, resulting in a 
measure of L/kWh. Regional weather heavily determines WUE results, 
so each location will have a diferent good versus wasteful performance 
threshold. NERSC is still in the phase of gathering data to determine 
a stable baseline and performance target. In the future, NERSC would 
like to be able to calculate this as efciently as PUE. 

facilities calculate it as an annual average. NERSC is able to confdently 
calculate PUE in 15-minute increments when needed. Although 
calculation of WUE is fairly new, results are promising and will help in 
managing the cooling system even more to create additional efciencies. 

3.3.5 Analysis at the Edge for Diagnostic and Troubleshooting Issues 

While most of the data in OMNI are considered non-critical, that is, 
once they are gone beyond real time, they are considered archived and 
access to the data is not immediately available. Most teams either use 
data in real time, or can wait for archived data to be accessible, usually 
on a business day. 

However, there is a class of data used by the NERSC networking 
team that is considered critical data; when they need access to the data, 
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Figure 3.6 24 × 7 Pipeline of networking services at the edge and fow 
into OMNI. 

it is critical that they do so immediately. Although these situations are 
rare, the design of OMNI has taken this requirement into account prior 
to accepting the archiving of these data. The team has leveraged the 
capability of sending multiple streams of data into diferent storage 
areas and provided a means of access and analysis on a 24 × 7 basis 
regardless of interruption in the facility. Using another edge service, as 
long as these devices are up and running, the critical data are collected 
and are accessible even if the OMNI itself becomes unavailable. 

To mitigate the networking team’s workfow, an edge service to 
function as an archiver and a point of analysis for troubleshooting 
is placed outside of the OMNI to process all the data coming from 
various devices. In addition, a separate log archiver is outside the OMNI 
network and has a service-level agreement with another group backup 
service. The network team can always access the data through the edge 
service; however, if the facility and OMNI become unavailable, they can 
also access the interface on the log archiver (Figure 3.6). 

3.4 CASE STUDY OF BENEFITS OF OMNI DATA TO NERSC 
DATA CENTER 

3.4.1 $2M Mechanical Substation Cost Savings 

In preparation for the delivery of Perlmutter, NERSC leveraged the 
operational data analytics capabilities of OMNI to make the business 
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decisions around the expansion of the electrical supply needs. The 
Lab facilities expected that the existing loads on the mechanical and 
electrical systems would not be able to support the additional power 
capacity of Perlmutter. They calculated the theoretical peak load of 
all the components working at full load. Using this method, they 
recommended adding a second mechanical systems electrical substation 
to support Perlmutter and its associated systems. 

A caveat to the Lab Facilities Master Specifcation, however, 
permits a secondary calculation method for mechanical load planning, 
if at least one full year of operational power metering data are available. 
At this point, OMNI archives contained more than the needed data; 
however, analysis needed to be completed quickly, within a few days; 
otherwise, the project plan was to move on to purchase an electrical 
substation which had a 120-day lead time. There was no time to restore 
the very dense multiple year data from the archives and also analyze 
them. 

OMNI online data for power consumption were re-indexed for 
several users, and one dataset satisfed the requirements of the Lab 
Facilities Master Specifcation for calculation. Since more than 1 year 
of data are accessible online, they were able to use this dataset. Its 
subsequent analysis demonstrated that the current operational power 
draw did not exceed 60% of the total power rating of the existing 
substation. Incorporating the expected power draw of Perlmutter, there 
is more than enough power in the existing substation to support the 
addition of the new system. See Figure 3.7, top grey line. 

Before making a decision, a further study analyzed the number of 
expected peak cooling hours under warm conditions and how much 
cooling needs to happen during warmer days. The concern was how 
much cooling would push the mechanical power demand above the 1 
MW maximum rating of the current substation. The data showed that 
in the mild Berkeley climate, there were very few days annually where 
the maximum substation rating would be stressed, and certainly not 
reach its full capacity. See Figure 3.7, bottom grey line. 

The elimination of an electrical substation is a bold step for 
the large Perlmutter project planning in terms of power capacity 
and cost. Ultimately, this process demonstrated the usefulness of 
operational data analytics (ODA) and enabled the Lab facilities and 
NERSC management to confdently decide to forego a new mechanical 
substation, thereby saving the project $2 million. 
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Figure 3.7 The total power load from the compute substations, 
(illustrated by top grey line ranging from 0 MW to 7 MW), is mostly 
stable relative to the mechanical substation, (illustrated by bottom 
grey line ranging from 0 MW to 1 MW). 

3.4.2 Perlmutter Power Upgrade from 12.5 to 25.0 MW 

When NERSC moved to Shyh Wang Hall in 2015, the construction of 
the building was supervised by the Lab’s facilities. Soon after the frst 
HPC system was installed and ran the frst large job, there were power 
issues that shut down the system. It was fortunate that OMNI was up 
and running for several months and an early edge service correlated 
data from PDUs, power breakers, the UPS, and the system itself. 
The analysis determined that the power panels themselves were not 
confgured to the needs of an HPC system. 

As with a standard building, facilities confgured the panels to the 
specifcations of what normal equipment would be used in a building, 
not a data center. Normal ofce systems, even a cluster, have known 
power requirements and documented fuctuations. An HPC system has 
very high and very low fuctuations, the power draw being very high 
when a job runs and uses up to 99% of the system or very low if it 
is running only small jobs on single nodes. In this case, the system 
completed a very large job, drawing very high power, and when the 
job was completed and exited the nodes, the power dropped to a very 
low level for a few seconds as the system prepared the nodes to accept 
the next set of jobs. This huge power drop caused the power panel 
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to trip, thus shutting down the system. The subsequent correction 
to replace the power panels and confgure them correctly took 
˜6 weeks. 

The 100% power upgrade to the NERSC Shyh Wang Hall facility 
has presented a number of challenges in scaling to a more powerful 
system. The new HPE/Cray Perlmutter system will deliver 3–4× the 
performance of the current NERSC Cori system. However, the HPC 
footprint for the incoming system is actually smaller than that for 
Cori. Previously, next-generation systems would have an HPC footprint 
that was roughly equal to or slightly larger than their predecessors, 
which made it relatively straightforward to add larger wire feeds during 
a facility upgrade. Perlmutter and other emerging HPC systems in 
the USA are starting to exhibit the opposite behavior; that is, they 
have a smaller HPC footprint than their predecessors. In the case 
of NERSC, the smaller footprint has been leveraged to gain a much 
more powerful system to ft the larger space it would have previously 
taken [12]. 

With the smaller HPC footprint, the power feeds and panels are 
still of the same size and require more of it. Understanding the lessons 
learned from when the facility ran its frst job, NERSC needed to ensure 
that future systems will not have the same power issues. As new panels 
are installed during the power upgrade, it was a requirement to test 
its power output such that it can withstand the fuctuations of usage 
from larger to smaller jobs. 

Collecting fne-grained power data and being able to test and 
validate new panel confgurations is paramount to both ensuring that 
there will be no surges or unsafe anomalies present when the new 
machine is installed, and providing key insights and lessons learned 
for future upgrades and new HPC systems. 

As the upgrade progressed, engineers were able to test each panel 
that was confgured and brought online. FaaS was able to calculate 
and show power fuctuations as small as seconds. Incorrect variances, 
faulty equipment, or data transfer speeds were able to be analyzed 
in real time as each panel was commissioned and marked ready. By 
testing the panels now, NERSC can predict the type of system they can 
purchase in the future and provide any power limitations to the vendor. 
They can also be confdent that the facility can safely run the future 
systems. 
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3.4.3 Edge Service to Mitigate California’s Public
Safety Power Shutdown (PSPS) 

In November 2018, NERSC and the Bay Area were afected by smoke 
that drifted to the area from the Camp Fire wildfre in Butte County, 
more than 90 miles away. The resulting air quality was very unhealthy 
for more than 2 weeks in Berkeley. To prepare for the 2019 California 
fre season, the primary power supplier, Pacifc Gas & Electric (PG&E), 
decided to implement power shutdowns during occurrences of hot and 
windy weather to help prevent wildfres. PG&E shut down power to 
areas that were dry and mountainous or areas with many power cables. 
Because power is on a grid, large areas can be impacted, and the Lab 
would be impacted. 

The Lab experienced its frst mandatory shutdown in October 
2019. Management was provided with at least a 24-hour notice of an 
impending shutdown, but only a 6-hour notice of PG&E turning of 
power at the substation. The 6-hour window is barely enough to cleanly 
shut down a facility as complex as NERSC. In spite of this situation, 
NERSC attempted to continue to provide services to their users. At 
minimum, management wanted to provide the users a way to log on 
and submit their jobs. 

Edge services were key to ensuring there was enough power to keep 
the facility’s infrastructure and key services running: active disk, log-
in nodes, network switches, the cybersecurity infrastructure, OMNI, 
and minimal cooling even though HPC systems were powered of; it 
was still necessary to monitor the facility. As previously stated, the 
facility ecosystem is dependent on external cooling; air from outside is 
brought into the facility to help keep it cool. The key to maintaining 
the facility is cooling, not power. If the climate outside is warmer than 
usual, warmer air is brought into the facility, which will impact the 
systems. 

During this type of an event, specifc edge services were used to 
flter out any HPC system-related data that will most likely be an 
error because the system will be down and to process data only related 
to cooling power, network and everything related to facility, such as 
the UPS and generator. With temperatures possibly rising one degree 
each minute in racks or the particle count increasing rapidly if there is 
a fre, it is important to have enough time and warning for systems to 
be shut down as cleanly as possible (Figure 3.8). 
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Figure 3.8 The three panels above show data points being monitored 
during PSPS. Panels 1 and 2 show the load on the UPS at that moment, 
and since the generator is not active, it has no load. Panel 3 shows the 
row and rack temperature fuctuations for Row C1 and Row D1. 

3.5 ONGOING AND FUTURE WORK 

Ongoing upgrades to the OMNI infrastructure include support for the 
increased size and scale of metrics that will be coming from the new 
Perlmutter system. This involves working with our existing metric sets 
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on Cori and on the early-stage Perlmutter test system to understand 
key characteristics of the in-transit data. At this point, staf calculate 
that the additional data coming in from Perlmutter could be as much 
as 400 g/day per index and the current online storage needs to grow to 
accommodate this. Depending on the type of data received, more edge 
services can be installed to assist in the processing or analysis of data 
for real-time analysis. 

OMNI’s hardware replacement strategy is to upgrade one-third of 
the existing hardware each year. With the supply chain challenges 
resulting from the pandemic, parts may not be as available and can 
impact the timing of when upgrades need to be done or when new 
services can be installed. 

Future work involves investigating a framework for alerting at 
the edge, allowing machines to self-alert and take mitigative actions 
based on their localized data in the event of loss of connectivity to or 
reliability of OMNI. 

Additional future work makes OMNI available to external to DOE 
collaboration users. The team is investigating using blockchain to 
secure a front-end graphical interface to allow users to request a dataset 
for analysis. 
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4.1 INTRODUCTION

Since the mid-1990s, the cryptography community has been studying
alternatives to classical cryptosystems such as RSA and ElGamal,
as these were shown to be vulnerable in the presence of quantum
computers. These cryptosystems were based on the premise that the
factorization of large numbers exhibits an exponential time complexity.
Shor’s algorithm [1–3] has shown that this class of problems can
be solved in polynomial time on a quantum machine. Therefore,
eavesdroppers with access to a sufficiently large quantum machine can
hack the systems and access communications.

Many cryptosystems have been proposed since the rise of this so-
called post-quantum era. Most of these cryptosystems are designed
under the premise (or belief, in most cases) that even if adversaries
had access to large-scale quantum computers, they cannot be
broken. Lattice-based cryptosystems are a very prominent type of
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post-quantum cryptosystems. They support advanced cryptographic 
primitives such as fully homomorphic encryption,1 and they are 
relatively efcient in practice, easy to implement and, of course, 
believed to be safe against quantum adversaries [3,5]. 
Cryptosystems base their security on hard math problems, which 

are typically easy to solve for the users of the system, but hard to 
solve for external entities. The underlying idea is that the fundamental 
problems underpinning the security of lattice-based cryptosystems, 
such as the shortest vector problem (SVP), the closest vector problem 
(CVP) and derivatives of these, cannot be solved (exponentially) faster 
with quantum computers, when compared to conventional computers. 
Due to the connection between the problems and the security of the 
corresponding cryptosystems, the algorithms that solve these problems 
are commonly referred to as attacks. 
Lattices are discrete subgroups of the n-dimensional Euclidean 

space Rn , with a strong periodicity property.2 A lattice L generated 
by a basis B, a set of linearly independent vectors b1, ..., bm in Rn , is 
denoted by: ( )

mX 
L(B) = x ∈ Rn : x = uibi, u ∈ Zm , (4.1) 

i=1 

where m ≤ n is the rank of the lattice. When m = n, the lattice is said 
to be of full rank. When n is at least 2, each lattice has infnitely many 
diferent bases. 
Note that, although there are non-integer lattices, lattice-based 

cryptography commonly uses integer lattices in practice: Solving lattice 
problems on integer lattices is still hard, and integer lattices are 
easier to handle computationally (e.g., there are no precision/numerical 
problems). As an example, Figure 4.1 shows a lattice in R2 , where the 
basis is B = {b1, b2}. The vector b3 shown in the picture is a linear 
combination of the basis vectors. This linear combination also shows 
that b1 can be made shorter (in terms of Euclidean norm, which is 
the default meaning of shortness in the context of this book chapter) 
at the cost of b2, given that b3 is smaller than b1. This process, 
of making lattice vectors (bases) shorter by adding/subtracting other 
lattice vectors, is often referred to as vector (basis) reduction and is 
widely used in various lattice algorithms. 
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Figure 4.1 Example of a lattice in R2 and its basis (b1,b2). 

Given that the security of lattice-based cryptosystems is based on 
problems such as the SVP, CVP and approximated versions of these, 
they have been widely studied over the last decade. In particular, 
many parallel, highly efcient versions of algorithms that solve these 
problems have been devised and put to the test, to assess their real 
hardness. Also, cryptosystems have certain parameters, such as the 
key size, that have to be determined based on the algorithms’ practical 
potential/performance. Setting these parameters too high would lead 
to inefcient/slow cryptosystems, but setting them too low leads to 
insecure systems. As such, a “sweet spot” has to be found in this trade-
of, so that systems are simultaneously efcient and secure. This can 
only happen when the best attacks are implemented on the highest-end 
computer architectures. This is also part of the work that we conduct 
and analyze in this very same manuscript. 
The SVP has extensively been studied during the last decades, 

and two main families of SVP-solvers have emerged. As this research 
progressed, they evolved to become the standard algorithms in this 
context. The frst family is the set of sieving algorithms, which 
repeatedly sieve a list of vectors until the shortest vector is very 
likely to be arrived at. The second most relevant family of algorithms 
is the family of enumeration algorithms. These enumerate all the 
possible vectors within a given search radius around the origin, and 
therefore, the shortest vector of the lattice is the shortest in that set 



Voronoi-Based Algorithms for SVP ■ 89 

of enumerated vectors. Other than these two SVP algorithm families, 
many are often mentioned and studied, but to a much smaller extent. 
Some of those families include random sampling and Voronoi cell-
based SVP-solvers. The span of research around SVP algorithms is 
quite extensive and impractical to cover in this manuscript. To better 
grasp the history and evolution of this feld, we refer the reader to 
[4,5,8–10]. 
In this text, we select one type of attack – SVP algorithms based 

on the Voronoi cell of a lattice – that has often been mentioned in 
the literature [11–13], but rarely studied or published about. In fact, 
it is often said that this algorithm becomes impractical (mainly due to 
memory issues) somewhere in dimensions 14–20, but this support was 
never evidently backed up by tests. Plus, other classes of SVP-solvers, 
such as enumeration and sieving, have been the subject of intense 
and ongoing investigation and optimization through the past decade 
(e.g., [14–17]). But Voronoi cell-based SVP-solvers, to the best of our 
knowledge, have not been optimized since their frst publication [13], 
back in 2002. Voronoi cell-based algorithms are, however, of interest to 
study. First, they are asymptotically very appealing, which means that 
if the lattice dimension is high enough, they should be competitive with 
other classes of SVP-solvers. Second, there is a big room for practical 
improvement in Voronoi cell-based algorithms, which could perhaps 
lead to tractable implementations for high-dimensional lattices. In 
Ref. [18], we presented parallel versions, including a heterogeneous 
CPU+GPU implementation, of the original algorithm. In this work, 
we take a frst step toward optimizing the original algorithm, thereby 
reducing the associated computational workload, and further propose 
parallel implementations of the optimized algorithm. 
Contributions. In this manuscript, we propose various improvements 
for Voronoi cell-based algorithms, in the context of the SVP, and 
we show that the improved algorithm is still suitable for parallel 
execution. 
We have been able to show that this algorithm can be optimized 

by using several norm-based optimizations. In particular, we show 
that computations that are, with high probability, irrelevant in the 
context of the SVP can be pruned. By considering previous states 
of the algorithm, namely the norm of the shortest known solution 
vector, the algorithm’s workload can be dramatically reduced. Further 
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workload reduction can be achieved if the target vectors are sorted ac-
cording to their Euclidean norm prior to the evaluation of the solution 
vector. 
We present a parallel version of the optimized Voronoi cell-based 

algorithm for the SVP. It is optimized to achieve the shortest vector 
faster and performs very well on architectures with multiple cores. This 
version was able to attain linear speedups on CPUs, in our experiments, 
compared to the baseline, original Voronoi cell-based SVP-solver. Due 
to the lack of support for efcient global synchronization among 
threads on GPUs, we cannot present a scalable implementation 
of the optimized algorithm in these devices. Similar to [18], we 
show that the non-optimized algorithm is highly suited for these 
architectures and competitive with the non-optimized multi-core CPU 
version. 
The meaning of our work is twofold: First, we show that Voronoi 

cell-based algorithms can be made more practical than previously 
reported. Such practicality is achieved by introducing the above-
mentioned norm-based optimizations, which are possible given that 
the goal is to solve the SVP. This should help to shed further light on 
this class of algorithms. Second, we show that the optimized algorithm 
is suited for parallelization, which makes it appealing for parameter 
selection in lattice-based cryptosystems. 

Roadmap. The remainder of this chapter is organized as follows: 
Section 4.2 presents Voronoi cell-based algorithms including the 
algorithm exploited in the context of this text. Section 4.3 introduces 
the experimental setup. Section 4.4 presents an analysis performed on 
the algorithm, which serves as the motivation for our optimizations, 
presented in Section 4.5. Section 4.6 describes our parallel imple-
mentations, both on CPUs and GPUs, as well as their performance 
results. Section 4.8 concludes the chapter and points out future lines 
of work. 

4.2 SVP-SOLVERS BASED ON VORONOI CELLS 

In this section, we briefy explain a Voronoi cell-based algorithm by 
[11], which can be used to solve the SVP, and the algorithm we used 
in this work, called “Relevant Vectors”, presented by [13]. 
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4.2.1 Voronoi Cell-Based Algorithm by Micciancio et al. 

This algorithm, presented in Ref. [11], describes a deterministic 
approach to solving the SVP (and other related problems), using the 
Voronoi cell V of a lattice as a way to arrive at the shortest vector of 
the lattice. 
The algorithm works by rank reduction; i.e., the solution in a given 

dimension k requires the computation of some procedures in dimension 
k −1. Micciancio et al. show that the computation of the n-dimensional 
Voronoi cell of the lattice can be done by a series of CVP calls for the n-
dimensional lattice, V(Ln) = k ·CVP(Ln), for a given number k of calls 
(for more details we refer the reader to [11]). Furthermore, they also 
show that the CVP solution of an n-dimensional lattice can be obtained 
by a series of CVP computations on the associated (n − 1)-dimensional 
lattice, i.e., CVP(Ln) = k · CVP(Ln−1). 
Therefore, the Voronoi cell of a lattice in dimension n can be 

computed iteratively, starting on dimension 1 and working up toward 
dimension n. The solution of the SVP is the shortest non-zero vector 
s ∈ L, which, within the Voronoi cell context, is given by its shortest 
vector. More precisely, the solution for the SVP in this case is given 
by the double of the shortest vector of the Voronoi cell, as the frontier 
of the latter is, by defnition, the midpoint between 0 and the vectors 
that are closest to 0. 
As for the implementation of this algorithm, we start with reducing 

the basis and initializing the list of Voronoi relevant vectors with the 
frst vector of the reduced basis. With this lower-dimension list, we 
iterate upward to dimension n, by generating a list of the so-called 
target vectors. For each of these, a CVP function is computed, so that 
we end up with the Voronoi cell vectors, which is refned so that it 
only contains the relevant vectors. The relevant vectors, which form 
the minimum set of vectors that describe the Voronoi cell of a lattice, 
are shown in Figure 4.2, for a given two-dimensional lattice. 
The algorithm’s time asymptotic complexity is O(22n), while its 

space complexity is O(2n), n being the lattice dimension. To fully 
comprehend this algorithm and its nuances, we refer the reader to [11], 
as we do not describe it with full details given that this algorithm is 
not used in this work. 
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Figure 4.2 Example of a Voronoi cell in R2 and its relevant vectors (v1 
to v6). 

4.2.2 Relevant Vectors by Agrell et al. 

The algorithm used (a Voronoi cell-based algorithm called “Relevant 
vectors”) was presented in Ref. [13]. That paper also described several 
algorithms to determine the solution to the SVP, CVP, and other 
related problems, and the algorithm used is shown in Algorithm 4.1. 

Function AllClosestPoints 
Input: Matrix M, matrix H, matrix Q, vector s 
Output: List of vectors X 

Compute x = sQT ; 
U = Decode(H, x); 
Compute γ as the lowest value ||uM − s|| for all u ∈ U; 
Compute X as all {uM : u ∈ U, ||uM − s|| = γ} 
return X 

Algorithmically, “Relevant vectors” can be described by four 
distinct steps. First, it starts by generating the needed target vectors, 
that are later on used by a CVP-solver, in order to compute the Voronoi 
relevant vectors of the lattice. Second, the coordinate system of the 
data that feeds the CVP-solver is modifed (i.e., the lattice basis and 
the target vectors). Details on the rationale behind these steps can 
be found in Ref. [13]. The third step is then to run an enumeration 
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Algorithm 4.1: RelevantVectors 
Input: Basis matrix B 
Output: Relevant Vectors N 

M = Reduce(B); /* for example, using the LLL 
algorithm */ 
[Q, R] = QR decomposition of M; 
G = RT ; 
H = G−1; 
N = ∅; 
forall vectors s ∈M do 

X = AllClosestPoints(M, H, Q, s); 
if |X| = 2 thenS 

N = N {2x − 2s : x ∈ X}; 

return N 

CVP-solver on each of the generated target vectors, a process we refer 
to as “decoding”. This solver computes a set of vectors, which are then 
converted to the original coordinate system, thus resulting in the fnal 
list of candidate Voronoi relevant vectors. From these, only the valid 
vectors (in fact, Voronoi relevant vectors) are kept. 
In terms of implementation, the CVP-solver that “decodes” target 

vectors is based on the Schnorr–Euchner method [19], which is an 
enumeration method to compute the SVP and the CVP. This is 
called “enumeration” because the algorithm enumerates all the possible 
solutions within a given radius. For more details on this algorithm, we 
refer the reader to papers on enumeration algorithms [13,17,19]. 
To increase performance, it is desirable to reduce the input lattice 

basis. This can be achieved, e.g., using the LLL algorithm (cf. [20]). 
Additionally, this enumeration-based CVP-solver function requires the 
input lattice basis to be in a lower-triangular form. When this is not the 
case, we must transform the basis to this form, while also transforming 
the input (target) vector(s) as well. This can be done with, e.g., a QR 
decomposition, in the form M = QR, where R is an n × n upper-
triangular matrix and Q is an m × n orthonormal matrix. As we deal 
with full-rank lattices, efectively we end up with Rn×n and Qn×n, 
as m = n and n is the lattice dimension. We call the QR method on 
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the lattice basis (M in the decomposition), yielding R, which we must 
transpose, i.e., RT , to obtain the desired lower-triangular matrix.3 

The other resulting matrix (Q) is used to transform the target 
vector into the coordinate system of the lattice basis when in the lower-
triangular form. Note that when the QR decomposition is used, it is 
also needed to transform the output of the decode function back into 
the original form (i.e., the original coordinate system). 
Once the basis is in the desired format, we generate the list M that 

contains each of the si target vectors, i = 1, ..., (2n − 1) (in practice, 
Steps 1 and 2 of the mathematical description above can be done 
together), as shown in Equation 4.2, iteratively. n o 

defM(M) = s = zM : z ∈ {0, 1/2}n − {0} (4.2) 

Afterward, the CVP-solver is executed on these inputs, yielding a list 
of vectors U, that are processed according to Equation 4.3, resulting 
in the list of vectors X. n o 

γ = min ||uM − s|| for all u ∈ U n o (4.3) 
X = uM : u ∈ U, ||uM − s|| = γ 

The computation of list X does not always result in a valid output. 
This only happens when the list contains 2 vectors and 2 vectors only 
(they are symmetric to each other, thus having the same norm), which 
are added to the list of Voronoi relevant vectors N. Similar to the 
algorithm in 4.2.1, the solution to the SVP is given by the shortest of 
the Voronoi relevant vectors. 

4.3 EXPERIMENTAL SETUP 

Table 4.1 presents the details of the CPU-based computing system 
used to assess the proposed parallel algorithm. The clock frequency 
in parentheses shown in the table pertains to the maximum frequency 
of the CPU, which is achieved using the Turbo Boost Technology. L1 
cache values are split between instruction cache (i) and data cache (d). 
System A runs CentOS x86_64 with kernel version 2.6. The code has 
been compiled with g++ 7.2.0 with the -O3 optimization fag, as it 
delivered the best throughput performance. 
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TABLE 4.1 CPU-Based Computing System 

System A 
Sockets 2 
CPU Intel Xeon E5-2660v4 
Clock frequency 2.0 GHz (3.2 GHz) 
Cores per socket 14 
SMT Yes (w/ HT, 28 threads) 
L1 Cache 448 kB i + 448 kB d 
L2 Cache 3.5 MB 
L3 Cache 35 MB 
RAM 128 GB 
SMT stands for simultaneous multithreading and HT 
stands for hyper-threading. 

TABLE 4.2 Machine for GPU Tests Performed in This Work 

System B 
CPU Intel core i3 6100 
Clock frequency 3.70 GHz 
Cores 2 
SMT Yes (w/ HT, 4 threads) 
L1 Cache 32 kB i + 32 kB d 
L2 Cache 256 kB 
L3 Cache 3 MB 
RAM 8 GB 
GPU NVIDIA GeForce 1060 GTX 
GPU Clock rate 1,759 MHz 
GPU RAM 6 GB 
SMT stands for simultaneous multithreading and HT stands 
for hyper-threading. 

The tests conducted in a GPU used System B, specifed in Table 4.2, 
which runs Ubuntu 16.04 x86_64 with kernel version 4.13. CUDA 
code was compiled with NVIDIA CUDA Compiler 9.1 using the 
-O3 optimization fag and the -arch=sm_61 -lcudadevrt -rdc=true 
fags. The GPUs have compute capability 6.1 and allow for dynamic 
parallelism (a kernel launch within another kernel). The CPU code on 
this machine was compiled with g++ 5.4.0. 
The lattice bases used in all tests were generated with the SVP chal-

lenge4 generator software, compiled using NTL, version 9.3. The lattice 
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bases generated using this tool are random (Goldstein–Mayer) lattices, 
which have no specifc characteristic to be exploited [21]. Additionally, 
these lattice bases are reduced using the LLL algorithm before the main 
loop of the algorithm (cf. Algorithm 4.1). Unless specifed otherwise, 
the tests presented in this work are conducted with seeds 0 through 
999. They represent a total of 1,000 bases, up until dimension 10; 100 
bases for dimensions 11–15; and 10 bases for dimension 16 or higher. 
We present the arithmetic average of all tested bases (with diferent 
seeds). We have turned of Turbo Boost, in order to have a better sense 
of the scalability of the algorithm, and the results obtained were fairly 
consistent. Executing the algorithm for more seeds would not impact 
the average execution time. In this context, we refer to “a test” as the 
execution of the program across all the seeds. Also, our tests were only 
conducted in these (small) dimensions, as the memory requirements 
of the algorithm grow exponentially. While individually they run rela-
tively fast, performing 1000 runs per dimension would be impractical. 

4.4 ALGORITHM ANALYSIS 

From Equation 4.2 (cf. Section 4.2.2), we see that the computation 
of the Voronoi cell of a lattice involves the execution of the 
AllClosestPoints function, for each of the (2n − 1) vectors that make 
up the set M. However, in practice, most of these calculations are 
unnecessary if our purpose is to fnd the solution to the SVP. As such, 
we describe a series of tests that we conducted, which lay the foundation 
of the proposed optimizations. For these tests, we used Machine A. 

4.4.1 Correlation between the Norm of Target
Vectors and Solution Vectors 

We posed the hypothesis of a possible correlation between the norm 
of the target vectors and the norm of their respective solution vector, 
a test we started out with. The motivation to test out this possible 
correlation stems from the fact that, intuitively, the computation of 
a target vector with smaller Euclidean norm (i.e., shorter) would also 
result in a shorter solution vector. If this correlation held, then we 
could potentially exclude several target vectors, by only decoding a 
few small subset of these vectors, given that our purpose is to arrive 
at the shortest vector. 
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We investigated this (possibly strong) correlation by testing out 
several lattice bases, for dimensions 4–8, using diferent seeds. To this 
end, we sampled some lattice bases in certain lattice dimensions and 
studied the correlation, generalizing it to higher dimensions (note that 
the correlation cannot be known as target vectors are generated). Due 
to the impossibility of presenting all the data, we showed three diferent 
correlations, for dimension 4 (seed 960), dimension 5 (seed 0) and 
dimension 8 (seed 456). These are representative of the full spectrum 
of the obtained results. 
The scatter plots in Figure 4.3 show that our thesis holds true, 

as we can observe a moderately strong correlation in the terms we 
pointed out. The actual correlation depends upon the used lattice basis 
(i.e., dimension and seed). For instance, some bases showed an almost 
perfect/linear correlation (such as in dimension 4, seed 960), while 
others continued to show a correlation, although not as evident as the 
remaining lattices. These results show the best (Figure 4.3(a)), average 
(Figure 4.3(b)) and worst (Figure 4.3(c)) scenarios for all the lattices 
we tested out, thus giving us the confdence to afrm that a correlation 
holds. 
Note that when the correlation is not as strong (for instance, in 

Figure 4.3(c)), it does continue to hold for the shorter target vectors. In 
other words, although there are large target vectors that result in large 
solution vectors, it generally holds true that many small target vectors 
result in small solution vectors, thus supporting the proposed thesis. 
Given these data, we can conclude that, in general, as a correlation 

applies, meaning that a shorter target vector yields a shorter solution 
vector, then the shortest of the target vectors should, in general, 
result in the solution to the SVP. The correlation may become looser 
as we increase the lattice dimension, but it seems to continue to 
hold for the smaller target vectors (cf. the leftmost vectors in Figure 
4.3(c)), and we take advantage of that fact, as we show in the next 
section. This correlation is actually the basis of some of the algorithmic 
improvements we show in Section 4.5. 

4.4.2 Percentage of Target Vectors That Generate the Shortest Vector 

From the previous results, we posed the hypothesis of whether we 
should only decode a small percentage of target vectors; these would 
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Figure 4.3 (a) Correlation for the basis in dimension 4 (seed 960). 
(b) Correlation for the basis in dimension 5 (seed 0). (c) Correlation for 
the basis in dimension 8 (seed 456). Correlation between the norm of 
the target vectors and the norm of their respective solution vector, for 
three dimensions and seeds. We omitted both axes values as they are 
irrelevant for correlation purposes and added considerable complexity 
to the fgures, thus making it difcult to read them. 

necessarily contain the shortest solution vector (and, as a result, the 
solution for the SVP). However, note that this is only true when the 
target vectors are sorted by increasing norm. 
Also, in general, the percentage of these target vectors should be 

larger as the correlation gets weaker (i.e., we would need to pick more 
target vectors as the correlation gets weaker for that specifc basis). 
However, note that even if the correlation for a specifc basis is of in 
general, but holds true for the frst shortest target vectors, then we 
would also need to decode a very small percentage of target vectors. 
In fact, as shown in Figure 4.3, even in the worst case of our tests, 
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TABLE 4.3 Position of the Target Vectors That Originate 
the Shortest Vector for the Bases That Failed 

#Incorrect 
Dimension Position(s) % 

Solutions 
4 0 — — 
5 0 — — 
6 1 21 33.33 
7 0 — — 
8 1 77 30.2 
9 3 146, 260, 92 50.88 
10 3 204, 200, 85 19.94 
11 0 — — 
12 0 — — 
13 1 252 3.08 
14 2 1246, 12865 78.53 

4228, 911, 14181, 
15 5 43.28

3495, 13599 
16 1 2205 3.36 
17 0 — — 
18 0 — — 
19 1 3010 0.57 
20 2 11328, 856105 81.64 

there is a correlation for the shortest target vectors, which supports 
our rationale. 
To test this second hypothesis, we generated all target vectors, 

chose the smallest, and decoded it (i.e., computed its solution vector). 
We observed that the solution vector of the frst target vector was 
always also the solution to the SVP, except for a handful of bases, 
which are shown in Table 4.3 (check the position column, which shows 
the position of the shortest vector when the frst vector is not the 
shortest). This means that the shortest target vector does not yield 
the shortest solution vector (and the shortest vector of the lattice) in 
<0.27% of the bases we tested. 
The percentage shown in the table regards the worst verifed case of 

target vectors that need to be decoded so that we arrive at the optimal 
solution. However, note that these percentages may seem very high as 
we are testing very low dimensions. Moreover, the maximum percentage 
of target vectors we need to decode is highly dependent on the lattice 



100 ■ Cybersecurity and High-Performance Computing Environments 

basis we test. For instance, decoding 0.57% of the target vectors in 
dimension 19 would sufce to arrive at the shortest vector, while in 
dimension 20, one specifc basis required as much as 81.64% of the 
target vectors. That said, there should be no clear trend in this regard. 
As a result, we can afrm that, in general, sorting the target vectors 

by increasing norm will, very likely, lead us to fnd the shortest vector 
faster than randomly decoding target vectors as we generate them. This 
motivates a series of optimizations, which we explore in Section 4.5. 

4.5 ALGORITHMIC OPTIMIZATIONS 

In the following, we show a series of optimizations that are based on the 
previous analysis of the algorithm. In order to test lattices with such an 
execution time that allowed us to see the efects of the optimizations we 
implemented, we decided to use Machine A, as specifed in Section 4.3, 
and g++ with the O0 optimization fag. If we were to use Machine 
B and the O3 optimization fag, some tests would run too fast, thus 
making it impossible to infer proper conclusions (increasing the lattice 
dimension would quickly lead us to hit the memory wall and impede 
proper testing). 

4.5.1 Pruned Decoding 

Many of our optimizations stem from the fact that there is a relatively 
strong correlation between the norm of the target vectors and the 
solution yielded by the decoding process, as shown in Section 4.4. 
Therefore, we employ a key idea: We can flter out (or “prune”) some 
of the target vectors, along with the decoding process, if their norm “is 
big”. In particular, we should – with some confdence degree – be able 
to prune out target vectors that have a norm larger than the shortest 
norm (for any target vector) found at any given instant. In theory, we 
could also use the norm of the solution vectors (and, in particular, the 
norm of the shortest solution vectors found up until a certain execution 
point of the algorithm) to prune out some of the target vectors. Note, 
however, that this may introduce some uncertainty as a bigger target 
vector than the shortest (solution) vector found at any point of the 
algorithm may actually generate an even shorter solution vector. This 
is because target vectors may yield, throughout the decoding process, 
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shorter solution vectors. Note that we have not studied this angle in our
correlation analysis, presented in Section 4.4; this is merely an intuitive
hypothetical relation that should work well in practice.

In fact, in our experiments, this has proven to be a very effective
optimization, almost without compromising the solution. In other
words, even with this optimization – which we generally call pruning
as we prune the set of target vectors to test – we achieved the shortest
vector of the lattice in almost 99.999% of the experiments we carried
out in this section.

If we regard the target vectors – which are to be decoded – as a
set, we can employ our optimization in the form of pruning. This may
have several variants, but during our experiments, we found out that
two forms are particularly effective.

4.5.1.1 Simple Pruning

The first – and simplest – form of pruning we have employed is based
on discarding target vectors whose norm is larger than the norm of
the shortest (solution) vector found so far. We call this optimization
“simple pruning”. We do this by keeping a record of the shortest
(solution) vector found throughout the execution. This optimization
has resulted in significant speedups, as shown in Figure 4.4(a). The
speedup of simple pruning also increased with the lattice dimension.

We note that although, in theory, this optimization may result in
a compromised solution (because we may filter out the target vector
that results in the shortest vector, as mentioned before), in practice, it
barely happens (in our experiments, it failed for 11 bases out of 7550).
We tested this optimization for one thousand seeds of each dimension.
The result was always coherent with that of a deterministic SVP-solver,
thereby showing that simple pruning did not compromise the result in
practice. We also expect this to be the case for the vast majority of
lattices in higher dimensions.

4.5.1.2 Gaussian Pruning

The Gaussian heuristic, presented in Equation 4.4, is a popular
heuristic in the context of SVP-solvers. This heuristic estimates the
length of the shortest vector of the lattice. It serves as the reference
in the SVP challenge,5 which accepts entries of vectors whose norm is
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Figure 4.4 Original algorithm and pruned versions, from lattice 
dimension 10 to lattice dimension 20, on Machine A. (a) Original 
algorithm and the simple pruning version. (b) Original algorithm and 
the Gaussian pruning version (added margin of 15.5%). (c) Original 
algorithm and the Gaussian pruning version (added margin of 0.0%). 

at most 5% larger than the Gaussian heuristic. In this work, we refer 
to this delta, i.e., the amount added to the Gaussian heuristic, as the 
“added margin”, in Equation 4.4 as α. 

Γ(n/2 + 1)1/n 
α · √ · (det L)1/n (4.4)

π 
Γ(x) = (x − 1)!, x ∈ Z+ (4.5) 

As we observed a relatively strong correlation between the norm of 
the target vectors and the resulting solution vectors, together with 
the good results of simple pruning, we decided to test a pruned version 
based on the Gaussian heuristic (which we call Gaussian pruning). This 
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reasoning is based on the fact that, in theory, if simple pruning works 
well, a pruning based on the Gaussian heuristic should also work well. 
This is due to two main ideas. First, there is a connection (although 
obviously not linear; otherwise, the shortest target vector would always 
result in the shortest solution vector) between the norms of the target 
vector and the solution vector, as we can infer from the results in 
Section 4.4.2. Second, given this connection, applying the Gaussian 
pruning to the target vectors would indirectly allow us to reduce the set 
of target vectors that are likely to generate the shorter solution vectors. 
Given that these connections are not linear, although improbable, the 
algorithm may fail to fnd the shortest vector if Gaussian pruning is 
applied. In fact, following the same rationale, we can say that this is 
true for both simple and Gaussian pruning. 
We tested Gaussian pruning with several error margins, for lattices 

in dimensions 10–20, testing 500 seeds from dimensions 11–15 and 50 
seeds for dimensions 16–20 (due to time constraints). As Figure 4.4(b) 
shows, Gaussian pruning also works very well in practice, achieving 
speedup factors of as much as 51.26×. Again, we also expect the trend 
to continue as we increase the lattice dimension. 
In our experiments, Gaussian pruning only yields an invalid solu-

tion, with an added margin of 15.5%, in 11 bases out of 7550. That is, in 
7539 lattice instances, the algorithm always found the shortest vector. 
We tested the added margin of the Gaussian pruning extensively. 

We started by using an added margin of 0% and the algorithm only 
failed to fnd the shortest vectors in 24 lattice bases (out of 7550). 
Therefore, in the vast majority of the lattice bases, the Gaussian 
pruning without an added margin works very well. However, to be 
comparable with the baseline – the reference algorithm – we needed to 
include an added margin that ensures the shortest vector is found. 
We selected an added margin of 15.5% for the experiments which 

output the same number of wrong results (11 out of 7550) as the 
simple pruning, thus allowing us to compare both versions in terms 
of execution time. We note that although this added margin always 
resulted in an optimal solution, that may not be the case for all lattices 
in all dimensions, in which case we need to update the added margin 
accordingly. 
Yet, we tested the performance of the Gaussian heuristic for various 

added margins. Not surprisingly, no added margin (i.e., Gaussian 
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Figure 4.5 Original algorithm and the Gaussian (added margin of 
15.5%), by both orders, combined and isolated, from lattice dimension 
10 to lattice dimension 20, on Machine A. 

pruning with no added margin) showed to attain the best performance, 
which we depict in Figure 4.4(c). Note that running Gaussian pruning 
without any added margin only failed in 24 out of 7550 lattice bases. 
This indicates that there may be potential on a Gaussian pruned 

version which works without added margin but resorts to another 
mechanism to detect over-pruning, i.e., discarding the target vectors 
that would lead to better solution vectors. Due to time limitations, we 
pushed this problem to future work. 

4.5.1.3 Combined Pruning 

Given the results of the two previous forms of pruning, we decided to 
combine them, i.e., executing them one after the other. Figure 4.5 shows 
the performance of a combination of simple and Gaussian pruning, 
in both orders, against the performance of the individual pruning 
optimizations and the baseline. 
As the fgure shows, the combination of simple pruning with 

Gaussian pruning (with an added margin of 15.5%) does not deliver 
a speedup. Nevertheless, we were able to obtain a performance 
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improvement in a large number of cases we conducted when refning 
some parameters (as these setups were overall less efcient than those 
in the fgure and thus not very relevant, we refrained from showing 
them). We obtain a speedup of as much as 68.88× when compared to 
the baseline. This version also fails in only 12 bases (one more than 
simple or Gaussian pruning) out of all the 7550 instances tested. 

4.5.2 Increasing Norm Sort 

Given the efectiveness of the pruning optimizations, we decided to 
design a way so that shorter target vectors are executed frst. To this 
end, we sort all target vectors by increasing norm before the actual 
execution of the algorithm, a process we refer to as “pre-sorting”. This 
is also motivated by the results we arrived at in Section 4.4.2. From 
those results, we can conclude that executing the shorter target vectors 
frst will lead us to shorter solutions frst, thus increasing the pruning 
extent. Furthermore, as we will show throughout this text, memory 
usage is a problem in Voronoi cell algorithms, and this optimization 
can theoretically improve this, as there is a much smaller set of target 
vectors to be decoded. 
In theory, this enhances pruning as the number of pruned target 

vectors will be larger – with simple pruning or combined pruning 
(but not with Gaussian pruning) – if they are sorted (it does nothing 
if no pruning is applied, as all target vectors are executed either 
way). In particular, we know for a fact that the additional pruning 
is “safe” in the sense that it does not decrease the likelihood of solving 
the SVP. 
We call this “safety” as, by pre-sorting the target vectors, we are 

prioritizing shorter target vectors that, as we see in Figure 4.3, lead to 
shorter solution vectors in general. As such, we are efectively pruning 
out larger target vectors that would not lead to the solution to the 
SVP either way (with a high probability). In fact, they could have 
been decoded if pre-sorting was not used and they were some of the 
frst target vectors in line of execution. Therefore, the solution provided 
by these larger target vectors would eventually be superseded by the 
solution vectors of smaller target vectors. 
To implement this optimization, we have to re-arrange the 

computation of the algorithm, namely by generating the target vectors 
upfront (in contrast to calculating them on the fy – iteration by 
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iteration – as it happens in the original algorithm), so that we can
sort them (by increasing norm). We have implemented both the merge
sort [22] and the quicksort [23] algorithms and compared them against
std::sort, the C++ standard sorting library. The latter, std::sort,
performed better than the former, and therefore, we have performed the
rest of the tests with this implementation (the GNU Compiler Suite
also provides a parallel OpenMP version of the std::sort algorithm,
which is useful for higher dimensions).

Given that we want to sort the target vectors (which are stored in a
matrix, in a row-wise manner), we have to compute an auxiliary vector
with the norm of each target vector. This is obviously not required,
but it does avoid computing the norm of a target vector each time it
is needed. With the std::sort implementation, given the nature of the
library function, we store the norm of each vector in a “struct”, where
each element holds one target vector and its norm; in this case, the
sorting procedure is done by simply swapping the memory pointers to
the elements, instead of actually having to move the data around.

The performance results for combined pruning with pre-sorting
are shown in Figure 4.6. As the figure shows, we obtain a speedup
of as much as 76.59x by pre-sorting the target vectors in terms of
increasing norm (which compares to 68.88x without sorting). As it
happens without pre-sorting, the order by which the pruning techniques
are applied with pre-sorting has very little significance in the execution
time of the algorithm.

Evidently, it would be a very strong optimization if we were able to
find a method to stop the algorithm once the shortest vector is reached,
which is a common problem for many SVP-solvers. Nevertheless, we
were still unable to come up with rules to stop the algorithm briefly
after the shortest vector is found, as it happens with other SVP-
solvers, such as sieving [24,25]. However, we push this problem to
future work.

4.6 PARALLEL IMPLEMENTATIONS FOR CPUs AND GPUs

In this section, we present both CPU- and GPU-parallel versions of the
RelevantVectors algorithm, the algorithm that served as the basis of
this work. In theory, this algorithm is embarrassingly parallel, as there
are no dependencies between iterations; i.e., we can execute several
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Figure 4.6 Original algorithm and the Gaussian (added margin of 15.5%) 
and combined pruning, by both orders, with pre-sorting, from lattice 
dimension 10 to lattice dimension 20, on Machine A. 

Decodes concurrently. We used OpenMP for the parallel CPU version 
and CUDA for the GPU version. 

4.6.1 CPU 

The OpenMP compiler directives were applied to the main loop of the 
algorithm Line 6 in Algorithm 4.1, where the generation of the target 
vectors takes place, followed by the decoding of the mentioned vectors. 
As this process is independent between iterations, and there are no 
subsequent data races, threads can run concurrently. 
On top of parallelizing the algorithm, we have employed 

other optimizations to the algorithm, regarding general memory 
usage/consumption and memory access. 
First, the result of decoding a target vector, if valid, yields two 

solution vectors. As such, if we were to store every result of every 
decode, a matrix of dimension 2(2n − 1) × n would be required, for an 
n-dimensional lattice. This is impractical, as the memory requirement 
for this matrix grows exponentially with the lattice dimension. To 
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solve this issue, instead of storing every solution vector, we only store 
the shortest vector found at the end of each decode procedure. This 
decreases the size of the matrix used to store the solution vector to 1×n 
(or 2 × n if we were to store both results of each decode). It requires 
the use of a critical region so that threads cannot simultaneously 
access these variables, which would lead to data races and a potentially 
incorrect result. 
Second, originally the matrices were implemented as an array of 

arrays; while this provides a very natural indexing notation, it is 
not very efcient from a memory standpoint. Not only it requires 
several memory allocations (and deallocations) for each matrix, but 
also there is no guarantee that the required memory is allocated 
continuously in RAM. Therefore, the implementation of matrices was 
changed (from an array of arrays) to a single, large vector. This 
increases indexing computation slightly, but improves memory locality 
considerably. 
Algorithm 4.2 shows the pseudo-code of the OpenMP-based parallel 

version of the RelevantVectors algorithm. 

Algorithm 4.2: Parallel RelevantVectors 
Input: Basis matrix B 
Output: Relevant Vectors N 

M = Reduce(B); /* for example, using the LLL 
algorithm */ 
[Q, R] = QR decomposition of M; 
G = RT ; 

G−1H = ; 
N = ∅; 
min_norm = ∞; 
#pragma omp parallel for 
forall vectors s ∈M do 

X = AllClosestPoints(M, H, Q, s); 
#pragma omp critical 
if ||2x − 2s|| < min_norm then 
min_norm = ||2x − 2s||; 
N = {2x − 2s : x ∈ X}; 

return N 
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4.6.1.1 Original Version (No Pruning and No Pre-Sorting) 

We frst parallelized the original version of the algorithm (i.e., without 
pruning and without pre-sorting). Given that the execution time of 
each iteration is diferent (as decoding diferent target vectors may 
be faster or slower), there may be work imbalance among threads. 
In preliminary tests, we tested the OpenMP static scheduler, but 
the results were not, unsurprisingly, optimal. For that reason, the 
experiments we report were conducted with the OpenMP dynamic 
scheduler, which assigns work to threads as they complete the previous 
tasks, thus balancing out the workload. Although this strategy does not 
guarantee perfect load balancing, it usually minimizes the imbalance 
substantially (usually at the cost of a given overhead, which may be 
smaller or bigger depending on circumstances). As such, we still expect 
some threads to fnish ahead of others. 
Figure 4.7 shows the execution time of the algorithm, on Machine 

A, for lattices in dimensions 16–20, and 1–56 threads. For readability 
purposes, we display the speedups in Table 4.4. 
We achieved higher speedups for higher lattice dimensions, due 

to lower thread creation latency and improved the overall workload 

Figure 4.7 Execution time for the parallel algorithm, on lattices in 
dimensions 16–20, using 1–56 threads on Machine A. 
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TABLE 4.4 Speedups on Machine A, Parallel Non-Pruned 
Implementation Running with 1–56 Threads, in Comparison with 
the Parallel Non-Pruned Version Running with a Single Thread 

Dimension 16 17 18 19 20 
2 Threads 1.772 1.917 1.915 1.914 1.961 
4 Threads 3.556 3.833 3.824 3.815 3.933 
8 Threads 7.072 7.615 7.642 7.604 7.849 
16 Threads 12.990 14.830 14.890 15.170 15.190 
28 Threads 20.910 24.820 24.020 24.660 25.370 
56 Threads 22.210 31.190 31.140 33.600 33.440 

TABLE 4.5 Speedups of the Parallel Implementation for Gaussian 
and Simple Pruning, on Machine A 

Dimension 25 26 27 28 29 
2 Threads 1.681 1.810 1.766 1.800 1.763 
4 Threads 3.322 3.514 3.419 3.667 3.581 
8 Threads 6.297 6.694 6.916 7.254 7.128 
16 Threads 7.085 8.856 11.412 6.706 6.040 
28 Threads 5.986 9.732 9.464 19.870 11.850 
56 Threads 10.630 12.050 11.220 18.020 16.190 

distribution. This is particularly important because we aim at using 
our implementation in large dimensions – as large as possible. 
We also developed a parallel version of the optimized version, with 

pre-sorting both turned on and of, with OpenMP. As we have seen, 
the order of the optimizations was not relevant for performance, so 
we only used one order. We also parallelized the generation of target 
vectors, as they can be executed independently (both with and without 
pre-sorting). 

4.6.1.2 Pruned Version without Sorting 

As shown in Figure 4.8, the parallel combined pruning version also 
scales well (cf. Table 4.5 for readability purposes). Nevertheless, scal-
ability is overall a little lower than the non-optimized implementation 
due to the critical section necessary for the optimizations of this 
particular version (note the contention for more than eight threads 
in Figure 4.8). 
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Figure 4.8 Execution time for the combined Gaussian + simple pruned 
version of the algorithm, on dimensions 25–29, using 1–56 threads on 
Machine A. 

As mentioned in Section 4.5.1.2, there is the possibility that 
the chosen added margin may fail for some lattice bases that were 
not tested before, as it is impossible to know upfront which added 
margin guarantees the optimal solution. The number of bases that the 
algorithm did not return the optimal solution was still residual. We 
also note that arriving at a short vector, as opposed to the shortest 
vector, is still important, especially in the context of a relaxed version 
of the SVP, usually referred to as α-SVP. In this work, we will not 
expand on this topic, even though we note that short vectors are still 
an important result in this context. 

4.6.1.3 Pruned Version with Sorting 

Regarding the optimized version with the pre-sorting phase, in this 
setup, we need to generate all target vectors upfront, and sort them, 
before the algorithm actually computes the SVP. This uses up more 
memory than the original algorithm, as we will show next. 
As mentioned in Section 4.5.2, the GNU Compiler Suite already 

implements an OpenMP version of the std::sort algorithm, which we 
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Figure 4.9 Execution time for the combined Gaussian + simple pruned 
version of the algorithm, with pre-sorting, for dimensions 20–29, using 
28 and 56 threads on Machine A. 

used in the sorting phase. This way, the procedure is entirely parallel, 
including the generation and sorting of the target vectors, except for 
the synchronization among all the threads (implemented with a critical 
section) to update the shortest norm found, should they fnd one. 
Figure 4.9 shows the execution time up to dimension 29, which is 

the highest lattice dimension we can test with 128 GB of RAM. In 
dimension 29, using pre-sorting results in a speedup of almost 30% 
(for 28 threads) and 40% (for 56 threads), compared to the non-
sorted version. With 56 threads, using pre-sorting is also faster than 
the non-sorting version for dimension 28, by approximately 26%. Until 
dimension 28 (for 56 threads) and dimension 29 (for 28 threads), the 
non-sorting version is faster, given that the time to generate all target 
vectors, store/read them from memory and sort them is higher than 
the gain throughout the algorithm. 
It is worth noting that this version requires more memory than the 

previous ones. In the pruned version without pre-sorting, target vectors 
are decoded and generated one by one (and the algorithm should stop 
long before all target vectors are explored, per our optimizations). In 
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Figure 4.10 The calculated memory usage required by our combined 
pruning implementation (essentially for the target vector-matrix), both 
with and without pre-sorting. The number of threads does not make a 
diference. 

this version, all target vectors are generated (in order to be sorted) up-
front, which consumes more memory than in the non-sorted version. In 
essence, the pre-sorting creates a trade-of between memory and execu-
tion time (because the solution is achieved faster). The execution time 
to sort the vectors upfront was never relevant in our tests (i.e., even 
with the sorting phase, the fnal time to solution was always lower). 
Regarding memory, we should note that in the parallel versions, the 

memory required increases exponentially with the lattice dimension (as 
per the original algorithm), but also linearly with the number of threads 
being used. This happens because each iteration (and thus each thread) 
requires its own auxiliary structures for the correct working of the 
decode function. These matrices are initially allocated with a certain 
number of rows (the number of columns is equal to the dimension of 
the problem) and, when needed, are extended via reallocation. 
Figure 4.10 shows the (calculated) memory usage of the implemen-

tation in the worst-case scenario for a given dimension (i.e., the largest 
size measured among all bases in a given dimension), both when sorting 
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TABLE 4.6 Estimated Memory 
Usage of the Combined Pruning 
Implementation for Dimensions 
20–80, with Pre-Sorting 

Estimated 
Dimension 

memory usage 
20 83.89 MB 
30 128.85 GB 
40 175.92 TB 
50 225.18 PB 
60 276.70 EB 
70 330.57 ZB 
80 386.86 YB 

is used and when it is not. As Machine A has 128 GB of RAM memory, 
we were able to test the optimized version with pre-sorting up until 
dimension 29. Running dimension 30 would require around 137 GB of 
memory available. 
Table 4.6 shows the estimated memory usage of the combined 

pruning implementation with pre-sorting, for dimensions 20–80 in 
increments of 10, using 28 threads. 

4.6.2 GPU 

As mentioned at the beginning of Section 4.6, we also present a 
parallel version for GPUs, in CUDA, similar to [18]. Due to the 
inefciency of software-based critical sections in CUDA, we were forced 
to employ a larger matrix to hold all solution vectors, similar to the 
original algorithm. Should we be able to implement an efcient critical 
section, threads would be able to compare the solution vector they 
arrive at, against the shortest one found so far, without the need 
to store the larger ones. This same reason prevented implementing a 
CUDA version of the pruning optimization. The results are, therefore, 
presented for the non-optimized algorithm. In this version, we calculate 
the target vectors on the fy, as in the non-pruned and pruned 
versions without pre-sorting (and in contrast to our CPU version with 
pre-sorting). 
Our CUDA implementation contains a single kernel. We set up 

the kernel so that each thread decodes a single target vector unless 
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Figure 4.11 Execution time for dimensions 10–20, for the non-pruned 
CPU algorithm (1/56 threads on Machine A) and the parallel GPU 
non-pruned algorithm (on Machine B). Note: The CPU execution times 
are those of Section 4.6.1 for the non-pruned algorithm. 

the available memory is not enough (note that each thread allocates 
memory for auxiliary structures). For instance, running dimension 20 
on our GPU implies that each thread will decode more than one vector. 
The frst step of the kernel is to generate the target vectors, decode 
them and store the solution vectors in the fnal matrix (list of vectors), 
similar to the CPU version. In the meantime, the result of the decode 
function is checked; if the test holds, the vector is stored in the fnal 
matrix; otherwise, the thread dies (until dimension 19) or proceeds to 
the following iteration (in dimension 20). 
Until dimension 19, we set the number of threads equal to the target 

vectors (in practice, we set the number of blocks and threads per block). 
We set 128 threads per block, so the number of blocks changes based 
on the number of target vectors. As we said, each thread is responsible 
for generating and decoding a single target vector. 
Figure 4.11 shows the execution time of our CUDA implementation, 

running with as many threads as target vectors (except for dimension 
20, where that number is halved), for several lattice dimensions. 
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The fgure also includes the execution time of our CPU version 
of the non-optimized algorithm, both with 1 and 56 threads. Up 
until dimension 13, the GPU implementation is slower than the CPU 
implementation, as the penalty for transferring memory (matrices M, 
H, Q and N) over the PCI Express bus to the GPU only becomes 
diluted/clouded for bigger dimensions and the launch time of the 
GPU kernel (not excluded in the results) is also diluted for bigger 
dimensions. 
The GPU implementation is almost 15× times faster than the 

sequential version and about 2,34× slower than the CPU running 
with 56 threads. As we can see in the fgure, the diference between 
both implementations gets smaller with the lattice dimension, which is 
expected due to the penalty of memory transfer and GPU initialization. 
Thus, we expect this GPU version to beat the CPU version with 56 
threads, for a sufciently large lattice dimension (which we cannot test 
due to memory limitations). 

4.7 DISCUSSION 

There are two diferent angles of our research that deserve comments. 
First is the algorithmic optimizations that we propose, which greatly 
improve the algorithm. The idea of speeding up SVP-solvers by 
empirical observations on vectors is not new, e.g., [26], but it was never 
applied to Voronoi cell-based algorithms, to our best knowledge. The 
study of the correlation between the norm of target vectors and their 
solution is, to our knowledge, unprecedented. The “simple” and the 
Gaussian pruning is motivated by some optimizations implemented in 
other SVP-solvers (for instance, the simple pruning is used in sieving 
algorithms, while Gaussian pruning is used in enumeration algorithms 
as a way to defne a radius for a search space or prune the enumeration 
tree [27]). 
Objectively, these optimizations greatly improve the algorithm, and 

sorting target vectors is another great optimization as it decreases time 
to solution even further. The sorting procedure is also very efcient and 
can be done in parallel; therefore, we see no concerns regarding adding 
this pre-processing to the overall algorithmic routines. 
A second angle for discussion is the performance of our parallel 

versions, both for CPUs and for GPUs. Although not all of our 
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CPU implementations scale linearly, they do scale fairly well. We are 
confdent that, if further developments are made to the algorithm, 
these implementations could be used for high lattice dimensions. 
The GPU implementation, on the other hand, has to be revisited in 
order to integrate the proposed pruning optimizations. GPUs currently 
lack efcient synchronization mechanisms. This prevents sharing of 
information (such as the current pruning norm) among threads 
while still maintaining scalability. An interesting line of research in 
this context should be to rewrite the algorithm diferently so that 
synchronization could either be avoided or be made parallel. 

4.8 CONCLUSIONS 

Attacks to post-quantum lattice-based cryptosystems require solving 
the computationally hard shortest vector problem (SVP). Diferent 
families of SVP-solvers have been suggested over the last two decades, 
including Voronoi cell-based algorithms. Proposed back in 2002 by 
Agrell et al., this family of algorithms has not been optimized 
since, under the claim that its memory complexity (exponential 
with the number of dimensions) renders it unpractical even for 
low dimensions. However, Voronoi cell-based algorithms exhibit a 
number of characteristics that justify a thorough study of their 
practicality when a few optimizations are employed. In particular, 
their time complexity is asymptotically very interesting, which could 
allow them to become competitive with other SVP-solvers if the 
memory barrier can be overcome. Indeed, there is plenty of room 
for practical optimizations, which can eventually lead to tractable 
implementations for high-dimensional lattices, unleashing their true 
potential. 
This work addressed the reduction in the execution time of the 

Voronoi cell-based “Relevant Vectors” algorithm, by tackling two 
diferent axes: (1) algorithmically reducing the number of operations 
required to reach a solution to the SVP and (2) parallelizing it for both 
GPUs and multi-core CPUs. 
In order to reduce the workload, we hypothesized that there 

is a correlation between the norm size of the target vectors and 
the solution vectors. This correlation was demonstrated to hold, 
which allowed us to propose pruning target vectors based on the 
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length of the shortest solution vector observed this far and/or the 
Gaussian heuristic. Also, we have shown that pre-sorting the target 
vectors by increasing norm allows for a more efective pruning 
(by reordering computations), accelerating our optimized version 
further, notwithstanding the additional sorting time. Altogether, our 
optimizations improved the throughput performance approximately 
77× compared to the baseline implementation. Adding sorting on top 
of pruning provided an additional speedup of as much as 40% up to 
dimension 29, but we estimate that it would be considerably superior, 
should we be able to test higher dimensions. 
The main drawback with sorting is that it currently requires storing 

all target vectors, which results in a huge memory consumption. 
Naturally, we could ignore/cut of a substantial percentage (e.g., 
70%) of the largest target vectors right in the pre-processing stage, 
signifcantly reducing memory usage. However, we have not done so 
yet as we would like to look for a cutof formula that translates 
to an approximated likelihood of still fnding the shortest vector 
(which would be a very interesting result in the context of the 
approximate SVP). We note the potential of this idea, given that 
Voronoi is not tractable in practice solely because target vectors 
become a bottleneck memory-wise. 
Additionally, we have shown that the algorithm and our optimiza-

tions are well suited for multi-core CPU machines, as we devised 
and implemented a scalable parallel version. We also optimized the 
algorithm’s memory map and found that dynamic scheduling is 
mandatory since decoding time varies for diferent target vectors. Our 
implementation scales linearly on multi-core CPUs up to 28 threads 
and can even take advantage of SMT, although the beneft is reduced 
given that the problem is compute-bound. We found no reason why 
similar scalability will not hold for higher thread counts. 
We also implemented the original algorithm on a GPU, using 

the CUDA framework. The optimized pruning algorithm could not 
be tested, since it would require recurrent use of critical sections, 
currently not efciently supported by CUDA. Therefore, we could not 
use pruning to reduce the workload and had to store all computed 
solution vectors, further increasing memory consumption. Although 
our GPU version was never faster than our 56-thread CPU version, 
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we observed that the gap between the CPU and the GPU generally 
decreases with lattice dimension. This is a very promising result, 
hinting that the GPU could become faster for higher lattice dimensions. 
Also the CPU/GPU memory transfer penalty will be diluted for such 
higher dimensions, further contributing to the GPU advantage. In the 
future, we expect to develop better data structures for the GPU and 
optimize the CUDA code, such that experiments with higher lattice 
dimensions become feasible. 
This chapter represents a step forward on making Voronoi cell-

based SVP-solvers practical. It has shown that there is plenty of 
room for algorithmic optimizations, namely workload reduction by 
pruning large target vectors. It has also demonstrated that multi-core 
CPU parallel solutions scale and are efcient. GPU solutions show a 
promising trend as the lattice dimensionality increases, but further 
support is required for synchronization primitives enabling efcient 
critical regions controlled access. The exponential space complexity of 
Voronoi cell-based algorithms remains a challenge that has not been 
directly addressed in this chapter. Educated discarding of a percentage 
of the largest target vectors on the sorting stage could represent a frst 
step on the right direction, reducing the constants associated with this 
complexity. 

4.8.1 Open Problems 

This work leads to many lines of future work. In particular, we think 
that it would be interesting to: 

• Find a stopping criterion so that our optimized algorithm stops 
shortly after the solution is found. 

• Reduce the memory requirements of our GPU implementation 
by developing new data structures. 

• Optimize our GPU implementation further, to take full advantage 
of the architecture. 

• Implement a heterogeneous version of our algorithm. 

• Reduce the parallel CPU version memory requirements, by using 
only a small part of the Voronoi cell. 
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NOTES 
1 A cryptosystem that supports fully homomorphic encryption can implement 

any operation on encrypted data, without decrypting data, which is 
particularly useful when, e.g., outsourcing sensitive computations on private 
data to a cloud server. The reader is referred to the survey [4] for a practical 
perspective of fully homomorphic encryption. 

2 We refer the reader to papers [6,7] to learn more about lattices, especially 
in the context of lattice-based cryptography. 

3 The diagonal elements of this matrix must be positive. 
4 https://www.latticechallenge.org/svp-challenge/ 
5 https://www.latticechallenge.org/svp-challenge/ 
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5.1 INTRODUCTION 

Cloud computing is an overwhelming technology that indicates IT 
feld is developing toward the trend of intensifcation, scale, and 
specialization. In the cloud computing paradigm, the IT facilities 
are pooled as the confgurable resources, including computing power, 
storage, network, and services. The end-users are able to fexibly 
and dynamically request those resources by the on-demand network 
access with low expenditures anytime and anywhere. Compared to 
the traditional IT infrastructure, the enormous advantages such as 
elastic resource confguration, quick deployment, and cost saving have 
attracted more and more enterprises and individual users to migrating 
their applications and data to the cloud center. However, the security of 
cloud computing is always a controversial issue as outsourcing data to 
remote cloud servers also means that data owners no more possess the 
control power on the outsourced data [1]. The data stored on the cloud 
platform face a dual threat from the cloud server itself and external 
attackers. Encryption is an efective way to guarantee the security of 
the outsourced data [2]. However, traditional block cipher techniques 
make original plaintext unavailable due to the introduction of random 
keys. It is critical for cloud applications, as the cloud computing is 
characterized by not only massive data storage, but also efcient data 
processing. If the encrypted data are not able to be processed and oper-
ated on the cloud platform, it will greatly thwart the wide adoption of 
cloud computing. For example, in order to save IT infrastructure cost, 
a hospital would like to store their electronic medical records (EMRs) 
to the cloud platform in the form of the ciphertext, as EMRs contain 
a huge amount of confdential, sensitive information that patients are 
reluctant to publish, such as medical history. If in the cloud center these 
data cannot work just like their plaintext, the hospital may give up the 
cloud computing. Because encrypted EMRs have to be downloaded and 
decrypted when performing one search or diagnosis task, it is obviously 
not the original intention of using the cloud computing. 
To address this problem, a long line of research has been made 

to realize operations directly over ciphertext, among which searchable 
encryption techniques are a recently vibrant research feld, aiming 
at guaranteeing both confdentiality and searchability over encrypted 
data. Song et al. frst introduced the idea of searchable encryption 
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and, in Ref. [3], proposed a practical construction that supports 
data searching on ciphertext through the specifed query trapdoor 
(encrypted query keywords). According to the adoptions of diferent 
encryption mechanisms, searchable encryption can be divided into sym-
metric (private-key) searchable encryption (SSE) [4,5] and public-key 
encryption with keyword search (PEKS) [6]. Recently, with the rapid 
development and increasing popularity of cloud computing, from the 
point of practicability, searchable encryption has been extended to solve 
how to achieve efcient and functionally rich search over encrypted 
cloud data [7–9]. These techniques promote the practical application 
of searchable encryption in the cloud computing environment. 
While those schemes provide a powerful capacity to perform the 

keyword search over encrypted data, they have a lack of the data 
access control. In the data-shared cloud environment, performing access 
control over outsourced data can efectively prevent data from being 
illegally accessed by unauthorized entities. The practical requirement 
reclaims a new research topic, called attribute-based keyword search. 
The attribute-based keyword secure search schemes [10–12] are able to 
achieve fne-grained access control and private search over encrypted 
data simultaneously by taking full advantage of searchable encryption 
and attribute-based encryption (ABE) [13], which is very applicable 
to the cloud computing environment. In this chapter, we frst briefy 
introduce the key techniques to achieve ABKS scheme, such as 
necessary components used in the attribute-based encryption. Then, by 
several existing ABKS schemes, we describe how to design a practical 
and efcient ABKS construction in the cloud computing environment 
(by combining the attribute-based encryption primitive and searchable 
encryption primitive as well as some other key techniques). Further, 
we show some interesting experiment results to explain the key factors 
afecting the search complexity in ABKS schemes and present some 
ideas to design a truly practical and high-performance ABKS scheme. 
Also, we present future directions in this research feld. 

5.2 KEY TECHNIQUES IN ABKS 

5.2.1 Attribute-Based Encryption 

ABE allows one to enforce fexible and fne-grained data access control 
in the Internet or open distributed computing environment, meanwhile 
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guaranteeing data confdentiality via cryptographic means. Due to the 
dramatic reduction in the cost of network bandwidth and sending nodes 
operation in data sharing, ABE has a broad prospect of application 
in the area of fne-grained access control. The frst ABE scheme was 
proposed by Sahai and Water in [13], referred to as fuzzy identity-based 
encryption (FIBE). In FIBE, one encrypts a message to the ciphertext 
associating a set of attributes ω and an authority generates a private 
key by embedding a set of attributes ω ′ into the private key. When 
decrypting, if and only if |ω ∩ ω ′ | ≥ d, the private key can work on the 
ciphertext, where d is a threshold value. The faw of this scheme is that 
the expressivity of the access policy is defcient and infexible due to the 
only adoption of the intersection operation between two attribute sets 
to enforce the decryption control. This feature was greatly improved by 
using an access tree to express the access control policy. Depending on 
where the access tree is in the ciphertext or in the private key, the sub-
sequently proposed ABE schemes can be generally classifed into two 
categories: key-policy ABE (KP-ABE) [14] and ciphertext-policy ABE 
(CP-ABE) [15]. In KP-ABE, an authority specifes an access tree to 
generate a private key and an encrypter encrypts a message associating 
a set of attributes. When decrypting, if and only if the attribute set in 
the ciphertext component satisfes the access tree in the key component, 
the key can recover the message. We give an example of KP-ABE as 
shown in Figure 5.1. Obviously, the data user is able to successfully 
decrypt the encrypted outsourced fles, since the attribute set in cipher-
text satisfes the access tree in the key, which can recover the plaintext. 
Compared with KP-ABE, in the CP-ABE schemes [15], the cipher-

text is associated with an access tree and a set of attributes is embedded 

Figure 5.1 KP-ABE. 
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Figure 5.2 CP-ABE.

into the private key. When decrypting, if and only if the attribute
set in the key satisfies the access tree in the ciphertext, the private
key can recover the encrypted message. We give an example as shown
in Figure 5.2. Obviously, the data user can successfully decrypt the
encrypted outsourced files, since the attribute set in the key satisfies the
access tree in the ciphertext, which can be decrypted by using the key.

5.2.1.1 Preliminaries in ABE

Next, we introduce some important background knowledge used for
the attribute-based encryption. These techniques are also necessities
for designing the attribute-based keyword search schemes.

5.2.1.1.1 Bilinear Map We use notations G1 and G2 to denote two
multiplicative cyclic groups with the prime order q. Let g be a generator
of G1. A bilinear map e : G1 ×G1 → G2 follows the properties:

1. Efficiently computational: For all x, y ∈ G1, e(x, y) ∈ G2 can be
efficiently computed in the polynomial time.

2. Bilinear: For all x, y ∈ G1 and a, b ∈ Z∗
q , e(x

a, yb) = e(x, y)ab

holds.

3. Non-degenerate: e(g, g) ̸= 1, g is a generator of G1.

5.2.1.1.2 Access Tree In ABE, an access tree is widely used to
describe an access structure due to its flexible and rich expressivity.
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Given an access tree T , a non-leaf node in T is a threshold gate of ”m
of n”, where m is a threshold value and n is the number of children
of the node. More specifically, for any node x ∈ T , let kx and numx

be threshold value and the number of children of x. If x is a non-leaf
node, kx = 1 means x is an OR gate, kx = numx indicates it is an
AND gate, and 1 < kx < numx represents x is a threshold gate. If x is
a leaf node, then kx = 1 and numx = 0. For ease of description, several
notations are defined as follows.

1. parent(x): the parent of node x.

2. index(x): x is a child of its parent node; index(x) denotes the
index number of x. The index number of the leftmost child node
is set to be 1, and correspondingly, the index number of the
rightmost child node is set to be num.

3. attr(x): x is a leaf node; attr(x) denotes an attribute associated
with x.

Here, we see an example, as shown in Figure 5.3. According to our
definition, we have numR = 3, numN1 = 2, numN2 = 2, numN3 = 3,
kR = 3, kN1

= 2, kN2
= 1, kN3

= 2, parent(A) = N1, index(A) = 1,
index(B) = 2, index(C) = 1, index(G) = 3. The nodes R and N1 are
AND gates, N2 is an OR gate, and N3 is a threshold gate; nodes A−G
are leaf nodes. Also, nodes R, N1, and N2 can be presented as 3 of 3,
2 of 2, and 1 of 2 threshold gate, respectively.

Figure 5.3 Access tree.
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5.2.1.1.3 Satisfying an access tree Let A be a set of attributes and
T be an access tree with root r. For a subtree Tx of T rooted at the
node x, we define {

Tx(A) = 1 If A satisfies Tx

Tx(A) = 0 Otherwise.
(5.1)

We can compute Tx(A) by following recursive algorithm. If x is a non-
leaf node, evaluate Tx′(A) for all children x′ of node x. If at least
kx children return 1, then Tx(A) returns 1. If x is a leaf node, if
attr(x) ∈ A, then Tx(A) returns 1. Thus, if A satisfies T , then Tr(A) =
1; otherwise, Tr(A) = 0. For example, the attribute sets {A,B,C,E,G}
and {A,B,D, F,G} satisfy the access tree, but {A,C,E}, {A,B,E, F},
and {A,B,C,E} do not satisfy it. For simplicity, here we use the same
notations to denote the leaf nodes and their associated attributes.

5.2.1.1.4 Access Structure Let {P1, P2, ..., Pn} be a set of parties. A
collection A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C: If B ∈ A and B ⊆ C,
then C ∈ A. An access structure is a collection A of non-empty subsets
of {P1, P2, ..., Pn}, i.e., A ⊆ 2{P1,P2,...,Pn} \{∅}. The sets in A are called
the authorized sets, and the sets not in A are called the unauthorized
sets.

In the attribute-based encryption system, we use the attributes to
represent the role of the parties. Thus, A is an access policy usually
expressed by an access tree, organized by different attributes from the
authorized sets of attributes.

5.2.1.2 A CP-ABE Construction

Now, we state the construction of the famous ABE scheme proposed in
[15], which is a CP-ABE scheme and composed of four polynomial-time
algorithms: Setup, Encrypt, KeyGen, and Decrypt. The following are
several important tools used to implement those algorithms.

A bilinear map is denoted as e : G1 × G1 → G2 with the
three aforementioned properties, where G1 and G2 are two cyclic
multiplicative groups with large prime order q. A cryptography hash
function H : {0, 1}∗ → G1 converting a bit string into a group element
in G1. The Lagrange coefficient is as follows:

∆i,S(x) =
∏

j∈S,j ̸=i

x− j

i− j
, (5.2)

where S denotes a set of elements in Z∗
q and i, j ∈ Z∗

q .
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5.2.1.2.1 Setup The algorithm sets up the system running en-
vironment. It first generates two groups G1,G2 of prime order q
and establishes the bilinear computation environment. Let g be the
generator of G1. Next, it chooses elements α, β from Z∗

q at random and
calculates h = gβ, e(g, g)α. Finally, the algorithm creates the public
key to be PK = {G1, g, h = gβ, e(g, g)α} and the master key to be
MK={β, gα}.

5.2.1.2.2 Encrypt(PK,M,T ) On inputting the public key PK, a
message M, and an access tree T, the algorithm outputs the ciphertext
CT of the message M. First, for each node x in Tw, it generates a
polynomial qx. Starting from the root node R, these polynomials are
generated in a top-down manner. Specifically, for each polynomial qx
of x, it sets the degree dx of polynomial qx to be dx = kx − 1, where
kx is the threshold value of the node x. Then, for the root node R, it
chooses a random element s ∈ Z∗

q and sets qR(0) = s and sets dR other
points of qR randomly to completely define it. For any other node x
in Tw, it sets qx(0) = qp(x)(index(x)) and chooses dx other points to
completely define qx. Let Y be the set of leaf nodes in tree Tw; finally,
the algorithm outputs CT as:

CT = (T, C̃ = Me(g, g)αs, C = hs,

∀y ∈ Y : Cy = gqy(0), C ′
y = H2(attr(y))

qy(0)) (5.3)

5.2.1.2.3 KeyGen(MK,S ) On inputting the master key MK and a
set S of attributes, the algorithm outputs private key SK. Specifically,
it first chooses an element r ∈ Z∗

q at random and calculates D =

(gαgr)1/β, and then chooses an element ra ∈ Z∗
q at random for each

attribute a ∈ S and computes Da = H(a)ra , D′
a = gra . The private

key can be written as

SK =(D = g
α+r
β ,∀a ∈ S,Da = H(a)ra , D′

a = gra) (5.4)

5.2.1.2.4 Decrypt(CT,SK) On inputting the ciphertext CT and
the private key SK, the algorithm decrypts CT and outputs the
original message M if decryption succeeds; otherwise, it outputs ⊥.
The decryption process is as follows.
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Let x be a node from Tw. 

1. For each leaf node x, let a = attr(x) denote the attribute 
associated with x, if a ∈ S, then compute: 

r qx(0))e(Da, Cx) e(g · H(a)ra , g 
Fx = = 

(0)))e(D′ , C ′ ) e(gra , (H(a)qx 
a x 

qxe(gr, g (0)) · e(H(a), g)ra ·qx(0) 
= 

(0)e(H(a), g)ra ·qx 

= e(g, g)rqx(0) (5.5) 

If a ∈/ S, it defnes Fx = ⊥. 

2. For each non-leaf node x, if there exists an arbitrary kx-sized set 
of child nodes z, denoted by Sx, we defne Fz ̸= ⊥; if no such 
set exists, then this means that the node is not satisfed by the 
attribute set S and defne Fx = ⊥. If Fz ̸= ⊥, the algorithm 
further calculates using Lagrange interpolation: 

Y (0)∆i,S ′ 
Fx = Fz x 

z∈SxY 
(0))∆i,S ′ (0) 

x= (e(g, g)r·qz 

z∈SxY 
(0)(e(g, g)r·qparent(z)(index(z)))∆i,S ′ = x 

z∈SxY 
(i)·∆i,S ′ 

x= e(g, g)r·qx (0) 

z∈Sx 

= e(g, g)r·qx(0) (5.6) 

where i = index(z), S ′ = (∀z ∈ Sx : index(z)), and ∆i,Sx 
′ is thex 

Lagrange coefcient. 

3. For the root node R of the access tree T , if FR = ⊥, then 
this means that T is not satisfed by the attribute set S; 
otherwise, according to the recursive calculation, we have FR = 
e(g, g)r·qR(0) = e(g, g)rs . 
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4. If S satisfes T , the algorithm recovers the message M by 
computing � � � � 

α+r α+r 
hs βs e , g β e g , g β 

e(C, D) 
= = 

FR e(g, g)rs e(g, g)rs 

s α s se (g , g · gr) e (g , gα) e (g , gr) 
= = 

e(g, g)rs e(g, g)rs 

= e(g, g)αs 

eC 
= Me(g, g)αs/e(g, g)αs = M (5.7) 

e(C, D)/FR 

5.2.2 Searchable Encryption 

Searchable encryption (SE) is an attractive cryptographic primitive 
as it enables a keyword-based search over encrypted data just like 
the information retrieval in the plaintext data. Figure 5.4 depicts a 
standard system model of SE. The model consists of three entities and 
demonstrates the following application scenario: Data owners encrypt 
data and build the secure index for ensuring the confdentiality and 
searchability. Encrypted data and secure index are uploaded to a 
remote server. After search authorization via secure communication 
channels, a data user is allowed to submit encrypted query keywords 
to the server to request goal data. Upon receiving the encrypted query 

Figure 5.4 The system model of SE. 



Secure ABKS for Cloud Computing ■ 133 

keywords, the server carries out a private search on secure index and 
returns all search results to the data user. Of course, the data user 
may also be the data owner. In this case, the search authorization can 
obviously be unnecessary. 
Song et al. [3] designed the frst practical searchable encryption 

construction in the private-key setting. In this scheme, a special three-
layer encryption is used to encrypt each keyword of a document and 
linearly scan each encrypted keyword using the encrypted query to 
achieve private search, which leads to the linear search complexity. In 
order to achieve sub-linear search complexity, Curtmola et al. [4] con-
structed a searchable encryption construction based on an encrypted 
inverted index structure that the search time is only related to the 
number of data fles containing the query. Kamara et al. [16] introduced 
the dynamic SE and discussed the problem of how to dynamically 
add and delete data fles with low computation and communication 
cost and small leakage. On the other hand, to prevent the unreliable 
server from tampering search results (maliciously modify or even 
delete search results), verifable SE was introduced by Kurosawa and 
Ohtaki [17]. Combining blockchain, Ref. [18] proposed the decentralized 
SE, which can guarantee that the server always returns the correct 
and complete search results. Recently, with the rapid development 
and increasing popularity of cloud computing, from the point of 
practicability, searchable encryption has been extended to solve how 
to achieve efcient and functionally rich search over encrypted cloud 
data [7–9,19]. They focus on how to achieve over encrypted data multi-
keyword ranked search, fuzzy search, personalized search, etc. These 
schemes above are realized in the private-key environment, i.e., SSE. 
Boneh et al. [6] proposed the frst public-key encryption with keyword 
search technique. Later, PEKS schemes supporting conjunctive and 
range search were also studied in [20–22]. 
Next, we present how to construct a searchable encryption scheme 

in the private-key environment and in the public-key environment, 
respectively. Here, we only provide a basic implementation skeleton 
and the details can be found in [4,16,22]. 

5.2.2.1 SE in the Private-Key Setting 

We frst introduce the basic cryptographic primitives and defnitions 
used to construct the SE scheme in the private-key setting. 
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5.2.2.1.1 Cryptographic Primitives Let SKE = (Gen, Enc, Dec) be a
private-key encryption scheme, in which Gen is a probabilistic algorithm
that returns a secret key K on inputting a security parameter; Enc
is a probabilistic algorithm that encrypts a message m under a key
K and outputs a ciphertext c; Den is a deterministic algorithm that
decrypts the ciphertext c using a K that was exactly used to produce
c and returns m. A pseudo-random function F is computationally
efficient function. It takes a key K and a bit string of arbitrary
length as input and outputs a random string of fixed length, which
is undistinguishable from the output of a real random function by any
probabilistic polynomial-time adversary.

5.2.2.1.2 Definitions We write x
$← X to represent an element x

being sampled uniformly from a set X. The output x of an algorithm
F is denoted by x← F . The notation a||b refers to the concatenation of
two strings a and b. Let a := b be an assignment operation. We use DB
and EDB to denote a set of documents and its ciphertext version. Each
document is identified by notation id. W is defined to be a keyword
dictionary, and w ∈W denotes a keyword. We write DB(w) to represent
the documents containing the keyword w. We need a list data structure
L, and each element in L is a label–data pair (l, d). One can invoke
method add to insert (l, d) into L. In addition, we define an algorithm
Get(L, l), which indicates from L taking the label–data pair (l, d).

5.2.2.1.3 Basic Implementation Now, we give a basic implementa-
tion skeleton of SE scheme in the private-key setting, as shown in
Figure 5.5. There are two key algorithms, i.e., SetUp and Search. The
data owner runs SetUp to encrypt plaintext documents and construct
a secure searchable index. Search algorithm consists of two sub-
algorithm. On the one hand, on inputting a search keyword w and
key K, the data user invokes this algorithm to generate a query token.
Upon receiving the query token, the server is responsible for performing
search over EDB on behalf of the data user and returns search results
to the data user.

5.2.2.2 SE in the Public-Key Setting

We first introduce several cryptographic tools used to construct
the SE scheme in the public-key setting and then describe a basic
implementation skeleton.
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SetUp(DB)
Data owner:
1. Compute K

$← {0, 1}λ and generate an empty List L
2. For each keyword w ∈W :
(1) Compute K1 ← F (K,w||1) and K1 ← F (K,w||2)
(2) Define a counter and initialize c := 0
(3) For each id ∈ DB(w):

1) Compute l← F (K1, c) and d← Enc(K2, id) and c := c+1
2) Add (l, d) to L by algorithm add

3. Send the key K to the data user and output the encrypted DB

as EDB

Search(K,w, EDB)
Data user: On input (K,w)
1. Compute K1 ← F (K,w||1) and K1 ← F (K,w||2)
2. Send (K1,K2) to the server.

Server: On input EDB, message (K1,K2)
1. Generate an empty list R
2. For c = 0 until Get returns ⊥
(1) d← Get(EDB, F (K1, c); id← Dec(K2, d)
(2) Add id to R by algorithm add

3. Return R to the data user

Figure 5.5 The implementation skeleton of SE in the private-key setting

5.2.2.2.1 Cryptographic Tools Let G1 and G2 be two multiplicative
groups of prime order q. Specify a bilinear map e : G1×G1 → G2 with
three important properties defined in Section 5.2. We in addition need
two hash functions H1 : {0, 1}∗ → G1 and H2 : G2 → {0, 1}log q.

5.2.2.2.2 Basic Implementation Now, we give a basic implementa-
tion skeleton of SE scheme in the public-key setting, as shown in Figure
5.6. Compared with SE in the private-key setting, the data owner uses
the public key to encrypt index keyword in Enc algorithm and the data
user uses private key to encrypt query keyword in Search algorithm.
Because H2(e(q̃, g

r)) = H2(e(H1(Q)α, gr)) = H2(e(H1(Q), g)αr) and
H2(t) = H2(e(H1(w), h

r)) = H2(e(H1(w), g)
αr), if w = Q, we have
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KeyGen(1λ) 
Data user: 
1. Pick a random element α ∈ Z∗ 

q 
2. Find a generator g of G1 
3. Output public key pub = [g, h = gα] and private key priv = α 

Enc(pub, w) 
Data owner: 
1. Pick a random element r ∈ Z∗ 

q 
r , hr2. Compute g , t = e(H1(w), hr), and H2(t) 
′ 3. Output w s ciphertext we = [gr, H2(t)] 

Search(priv, Q, we) 
Data user: On input (priv, q), where Q is a query keyword. 

′ 1. Output q s ciphertext qe = H1(Q)α 

Server: On input (w,e qe) 
1. Check if H2(e(e r)) = H2(t)q, g 
2. If so, output “yes”; otherwise, output “no”. 

Figure 5.6 The implementation skeleton of SE in the public-key setting. 

H2(e(e r)) = H2(t). The derivation shows that the Search algorithmq, g 
is correct. 

5.3 ABKS CONSTRUCTION 

The attribute-based keyword search (ABKS) technique by taking 
full advantage of the searchable encryption and the attribute-based 
encryption is able to simultaneously achieve fne-grained access control 
and private data searching over ciphertext, which is very applicable to 
the cloud computing environment. Like ABE schemes, ABKS can also 
be divided into two categories: CP-ABKS [10–12] and KP-ABKS [23]. 
In CP-ABKS, a data owner embeds the access policy into the secure 
searchable index and issues the private key to a data user according 
to the attribute information of the data user. By using the private 
key, the data user can encrypt the search query to generate legal 
query trapdoor. On the contrary, in KP-ABKS, the access policy is 
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embedded into the private key and a set of attributes is specifed in 
the secure searchable index. In this section, we frst introduce a CP-
ABKS construction and then discuss how to perform search privilege 
revocation dynamically with a low cost. 

5.3.1 System Model and Threat Model 

First of all, we give the system model and the threat model in a CP-
ABKS scheme. 

5.3.1.1 System Model 

As shown in Figure 5.7, the system model of a CP-ABKS for cloud 
computing involves three entities. They are the cloud server, the data 
owner, and the data users. This system model describes the following 
application scenario: The data owner intends to outsource his data 
to the remote cloud platform for enjoying low-cost data storage and 
processing. For confdentiality guaranteeing, before uploading the data, 
the data owner employs a semantically secure encryption scheme such 
as AES to encrypt the data and a CP-ABE to build searchable secure 
index for data access control. Via secure communication channels, the 
data owner sends some secret information to a data user, by which 
the data user can generate a legal query trapdoor he wants to search. 

Figure 5.7 The system model of CP-ABKS for cloud computing. 
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The cloud server stores the encrypted data and index and, upon
receiving a query trapdoor, performs the search over encrypted data
on behalf of the data user. In a CP-ABKS scheme, if and only if a data
user has access to a certain index and his submitted trapdoor matches
the index, a successful search will complete.

5.3.1.2 Threat Model

The threat model of a CP-ABKS for cloud computing is generally
modeled as “honest-but-curious” passive adversary. In this model,
the cloud server provider promises that it would comply with the
service and security contracts for maintaining company reputations.
However, we cannot rule out the possibility that it may try to infer or
steal information from outsourced data. This assumption is reasonable,
since the cloud server is usually operated by a third-party commercial
company, which is outside of the trusted domain of the data providers.
In other words, the data owner cannot absolutely give assurance that
the remote cloud server does not access the outsourced data. On the
other hand, this threat model assumes that the data owner and the data
users are fully trusted. Moreover, a data user does not leak the secret
information such as private key to others such that the unauthorized
data access will never occur. In addition, to secure the key distribution,
there exist secure communication channels between the data owner and
the data users.

5.3.1.2.1 Adaptively Chosen Keyword Attack Game In general, the
formal security proof of a CP-ABKS scheme relies on a game between a
challenger B and an adversary A, called the adaptively chosen keyword
attack game, which is described below.

Setup. B initializes running environment and sends public
parameters to the adversary A.

Phase 1. A adaptively requests search trapdoor TA(w) for any
keyword w for polynomially many times from B with the attribute sets
S1, ..., Sq.

Challenge. A defines a challenge access tree T∗ such that none
of the attribute sets S1, ..., Sq from Phase 1 satisfy T∗. A submits two
keywords w0, w1 and T∗ to B. B flips a random binary coin b ∈ {0, 1}
and encrypts wb with T∗ as Iwb

, which is sent to A.
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Phase 2. A continues to query the search trapdoor TA(w) for
chosen keyword w (including w0 and w1) with the attribute set Sqw

from B. The only restriction is that if the attribute set Sqw in TA(w)
satisfies T∗, then w ̸= w0, w1 (in other words, if w = w0 or w = w1,
then Sqw0

or Sqw1
does not satisfy T∗).

Guess. Finally, A outputs a guess b′ of b.

The advantage that a probabilistic polynomial-time adversary A
wins the above game is defined as Adv = Pr[b′ = b]− 1

2 .

5.3.2 Basic Algorithm

5.3.2.1 Algorithm Definition

A CP-ABKS scheme consists of five polynomial-time algorithms:
Setup, Keygen, Enc, Trap, and Search.

1. Setup(1λ) → (PK,MSK). The algorithm generates system
public parameter and system master key. On inputting a security
parameter λ, it outputs the system public parameters PK and
the master private key MSK.

2. KeyGen(PK,MSK, Su)→ Ku. The algorithm generates a private
key for a data user u. On inputting PK, MSK, and u′s attribute
set Su, it outputs the private key Ku.

3. Enc(PK, w, Tw) → Iw. The algorithm encrypts an index
keyword. On inputting PK, an index keyword w, and a specified
access tree Tw, it outputs w’s ciphertext Iw.

4. Trap(PK,Ku, q) → Tu. The algorithm encrypts a search query
for data user u. On inputting PK, a search query q, and Ku, it
outputs search trapdoor Tu(q).

5. Search(PK, Iw, Tu(q)) → True. The algorithm performs the
search over the encrypted data index. On inputting PK, Iw,
and Tu(q), it outputs True if Su satisfies Tw in Iw and w = q,
simultaneously; otherwise, it outputs False.

5.3.2.1.1 Correctness We say a CP-ABKS scheme is correct if
given Setup(1λ) → (PK,MSK), Keygen(PK,MSK, Su) → Ku,
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Enc(PK, w, Tw) → Iw, and Trap(PK,Ku, q) → Tu, then
Search(PK, Iw, Tu(q)) always returns 1.

5.3.2.2 Algorithm Implementation

Here, we introduce a concrete construction of a CP-ABKS scheme
by implementing the five polynomial-time algorithms defined above:
Setup, KeyGen, Enc, Trap, and Search. In the system model of CP-
ABKS for cloud computing, the data owner runs the three algorithms
Setup, KeyGen, and Enc; the data user runs the Trap algorithm; and
the cloud server runs the Search algorithm.

5.3.2.2.1 Setup Let e : G1 × G1 → G2 be a bilinear map with
the three aforementioned properties, where G1 and G2 are two cyclic
multiplicative groups with large prime order q. g is a generator of group
G1. We define two one-way hash functionsH1 : {0, 1}∗ → Z∗

q converting
a bit string into an element in Z∗

q and H2 : {0, 1}∗ → G1 converting
a bit string to an element in G1. Further, the Lagrange coefficient is
defined as shown in Equation (5.2). On inputting a security parameter
λ, the algorithm chooses two random elements α, β from Z∗

q and
outputs PK = {G1,G2, H1, H2, e(g, g)

α, h = gβ} and MSK = {β, gα}.

5.3.2.2.2 KeyGen Suppose that there is a data user u with an
attribute set S. The algorithm takes as input PK, MSK, and S, and
outputs the private key Ku for u as follows:

Ku = (G1 = g
α
β , G2 = g

1
β

∀a ∈ S,Ga = H2(a)
ra , G′

a = gra) (5.8)

where ra is randomly chosen from group Z∗
q for each attribute a ∈ S.

5.3.2.2.3 Enc The algorithm takes as input the master key MSK
and an index keyword, and outputs the ciphertext of the index keyword.
Specifically, the algorithm takes the following two steps to encrypt an
index keyword w.

1. It defines an access tree Tw and, for each node x in Tw,
generates a polynomial qx. Starting from the root node R, these
polynomials are generated in a top-down manner. Specifically,
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for each polynomial qx of x, it sets the degree dx of qx to
be dx = kx − 1, where kx is the threshold value of the node
x. Then, for the root node R, it chooses a random element
s ∈ Z∗

q and sets qR(0) = s and sets dR other points of qR
randomly to completely define it. For any other node x in Tw,
it sets qx(0) = qp(x)(index(x)) and chooses dx other points to
completely define qx.

2. Let Y be the set of leaf nodes in Tw, and w is encrypted under
MSK as follows:

Iw = (Tw, Ĩ ′w = e(g, g)αsH1(w), Ĩ ′′w = hsH1(w),

∀y ∈ Y : Iy = gqy(0), I ′y = H2(attr(y))
qy(0)) (5.9)

5.3.2.2.4 Trap Assume a data user u with private key Ku wishes
to search data files containing search query Q; the algorithm takes as
input PK, q, and Ku, and outputs q′s ciphertext by doing the following
three steps.

1. It chooses a random element r from group Z∗
q and computes λ1 =

r ·H1(Q), λ2 = gλ1 = grH1(Q), T1 = G1(G2)
r = g

α
β · g

r
β = g

α+r
β .

2. For each a ∈ S, it computes Ta = λ2Ga = grH1(Q)H2(a)
ra .

3. The algorithm encrypts the query keyword Q as

Tu(q) =(T1 = g
α+r
β ,

∀a ∈ S : Ta = grH1(Q)H2(a)
ra , T ′

a = G′
a = gra) (5.10)

5.3.2.2.5 Search Given the query trapdoor Tu(Q) and an encrypted
index keyword Iw, the algorithm can be regarded as two sub-
procedures. The first sub-procedure is that the cloud server performs
an access privilege match between the attribute set S in Tu(Q) and
the access tree Tw in Iw. If S satisfies the access tree Tw, then this
indicates u has the search privilege to Iw. The algorithm continues to
run the second sub-procedure to judge whether the search query Q is
equal to w in a secret manner. In the whole search process, the cloud
server cannot obtain any plaintext information about the search query
and the index keywords.
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The detailed process can be described as follows. 
Let x be a node from Tw. 

1. For each leaf node x, let a = attr(x) denote the attribute 
associated with x; if a ∈ S, then compute: 

rH1(Q) (0))e(Ta, Ix) e(g · H2(a)ra , gqx 

Fx = = ′ ′ (0))e(T , I ) e(gra , H2(a)qx 
a x 
rH1(Q) qx(0)) · e(H2(a), g)ra ·qx(0)e(g , g 

= 
(0)e(H2(a), g)ra ·qx 

= e(g, g)rH1(Q)qx(0) (5.11) 

If a ∈/ S, we defne Fx = ⊥. 

2. For each non-leaf node x, if there exists an arbitrary kx-sized set 
of child nodes z, denoted by Sx, we defne Fz ̸= ⊥; if no such 
set exists, then this means that the node is not satisfed by the 
attribute set S and defne Fx = ⊥. If Fz ̸= ⊥, the algorithm 
further calculates using Lagrange interpolation: Y (0)∆i,S ′ 

Fx = Fz x 

z∈SxY 
(0))∆i,S ′ (0) 

x= (e(g, g)rH1(Q)·qz 

z∈SxY 
(0)(e(g, g)rH1(Q)·qparent(z)(index(z)))∆i,S ′ = x 

z∈SxY 
rH1(Q)·qx(i)·∆i,S ′ (0) 

x= e(g, g) 
z∈Sx 

= e(g, g)rH1(Q)·qx(0) (5.12) 

where i = index(z), S ′ = (∀z ∈ Sx : index(z)), and ∆i,Sx 
′ is thex 

Lagrange coefcient. 

3. For the root node R of Tw, after fnishing the above recursive 
operations, if FR = ⊥, then this indicates T is not satisfed by S 
and the Search will terminate in advance; otherwise, we can get 

FR = e(g, g)rH1(Q)·qR(0) = e(g, g)rH1 (Q)s 
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Next, the second sub-procedure is performed to check whether the 
search query Q is equal to w by verifying: 

′′ e(Ie , T1)′ wIe = (5.13)w FR 

If Equation (5.13) returns true, we have w = Q by the following 
derivation: 

α+r α+r′′ e(hsH1(w) βsH1(w)β βe(Ie , T1) , g ) e(g , g )w = = 
FR e(g, g)rH1(Q)s e(g, g)rH1(Q)s 

sH1(w) sH1 (w) sH1(w)e(g , gα+r) e(g , gα)e(g , gr) 
= = 

e(g, g)rH1(Q)s e(g, g)rH1(Q)s 

e(g, g)αsH1 (w)e(g, g)rH1(w)s 
= 

e(g, g)rH1(Q)s 

If the search query Q is identical to w (i.e., H1(Q) = H1(w)), then we 
can further get: 

′′ e(Ie , T1) e(g, g)αsH1(w)e(g, g)rH1(w)s 
w = 
FR e(g, g)rH1 (Q)s 

= e(g, g)αsH1(w) e′ = Iw 

5.3.3 Search Privilege Revocation 

The cloud computing is a dynamic and open environment. Therefore, 
dynamically and fexibly revoking a data user’s search privilege is a 
signifcant property in an ABKS scheme. We introduce two approaches 
to explain in ABKS how to revoke a data user’s search privilege with a 
low computation and communication overhead. The two approaches 
achieve search privilege revocation from diferent grains. The frst 
approach is to revoke the whole user (in a coarse-grained manner), 
and the second is to revoke certain attributes of a data user (in a 
fne-grained manner). 

5.3.3.1 Coarse-Grained Revocation 

The coarse-grained revocation indicates revoking a data user’s whole 
search privilege, which means the data user no more has the ability to 
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generate a legal query trapdoor. Without the legal query trapdoor, he
cannot retrieve the data from the cloud server; i.e., the search privilege
has been invoked.

Here, we introduce a coarse-grained search privilege revocation
approach based on symmetric key sharing and dynamic update. Given
the traditional symmetric encryption scheme SE=(Gen, Enc, Dec)
(such as AES), the cloud server runs algorithm SE.Gen to generate
a key k, which is shared between the cloud server and data users.
After a data user generates the query trapdoor Tu(Q), Tu(Q) is re-
encrypted using algorithm SE.Enc under the shared key k as Tu(Q)′ =
SE.Enc(g

α+r
β ||{∀a ∈ S : grH1(q)H2(a)

ra , gra}), where || denotes the
concatenation of two strings. Obviously, before performing search
algorithm, the cloud server can recover Tu(Q) by encrypting SE.Dec(k,
Tu(Q)′). When the system needs to revoke an authorized data user,
it asks the cloud server to update key k to k′ and distributes it to
unrevoked data users via secure channels. As a result, the revoked data
user cannot generate a valid trapdoor component without the updated
key k′. To guarantee the user experience, when a worker is revoked,
the cloud server will send a notification to the revoked data user.

5.3.3.2 Fine-Grained Revocation

The fine-grained revocation means revoking certain attributes from a
data user, which only incurs the degradation of the data user’s search
privilege. After certain attributes have been revoked from a data user,
the data user may still hold search privilege for some index keywords,
as long as the remaining attributes satisfy the access policies embedded
in the index keywords.

Here, we introduce a fine-grained search privilege revocation
approach based on the re-encryption idea.

5.3.3.2.1 Index keyword re-encryption Let A be the attribute uni-
verse in the system and, for any an attribute a ∈ A, define an attribute
key Ka to generate an attribute key universe, denoted by AK = {∀a ∈
A : Ka}, which is shared between the cloud server, the data owner, and
data users. When receiving the encrypted index keyword Iw from the
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data owner, the cloud server uses AK to re-encrypt Iw as follows:

I∗w = (Tw, Ĩ
′
w = e(g, g)αsH1(w), Ĩ ′′w = hsH1(w),

∀y ∈ Y ∧ ∀Kattr(y) ∈ AK : Iy = gqy(0),

I ′y = (H2(attr(y))
qy(0))Kattr(y)) (5.14)

5.3.3.2.2 Private key re-encryption When a data user u receives the
private key Ku from the data owner, the data user re-encrypts it. To
achieve this re-encryption, based on S and AK, the data user first
generates an attribute key subset as AK = {Ka|a ∈ S,Ka ∈ AK},
where S denotes u′s attribute set, which has been embedded into the
private key Ku. Then, u employs the attribute key subset AK to re-
encrypt the Ku as follows:

K′
u = (G1 = g

α
β , G2 = g

1
β ,

∀a ∈ S ∧ ∀Ka ∈ AK : Ga = H2(a)
ra ,

G′
a = (gra)

1
Ka ) (5.15)

5.3.3.2.3 Query trapdoor re-encryption When a data user u gen-
erates the query trapdoor Tu(Q) of query keyword Q, the data user
further re-encrypts Tu(Q) using K′

u as:

Tu(q)′ = (T1 = g
α+r
β ,

∀a ∈ S ∧ ∀Ka ∈ AK : Ta = grH1(Q)H2(a)
ra ,

T ′
a = G′

a = (gra)
1

Ka ), (5.16)

which will be submitted to the cloud server.
Note that the re-encryption operations mentioned above have no

influence on the search algorithm; interested readers can verify the
conclusion by substituting those re-encryption ciphertext components
into the Search algorithm.

Now, we explain how to perform the fine-grained attribute
revocation operations based on an attribute revocation protocol among
the cloud server, the data owner, and the data users. Assume that an
attribute a will be revoked from a data user u by the system, the
attribute revocation protocol works as follows.



146 ■ Cybersecurity and High-Performance Computing Environments 

1. Data Owner. For the attribute a, the data owner frst generates 
a new attribute key K ′ and updates AK by computing AK :=aS ′ (AK − {Ka}) {K ′ } and then sends K to the cloud server anda a 
data users who have been assigned the attribute a except u. 

′ 2. Cloud Server. Upon receiving the K , the cloud server frsta S 
updates AK by computing AK := (AK − {Ka}) {K ′ }. Then,a 
for each encrypted index keyword w, if existing one leaf node in 
the access tree Tw associates with the attribute a, then the cloud 

′ ′ aserver updates the value I of I∗ as (I )K ′ 
for the attribute aa w a 

and keeps other leaf nodes unchanged. The new I∗ is denoted asw 
follows (assume that the lead node x in Tw associates with the 
attribute a, i.e., a = attr(x)): 

I ∗ e′ e′′ = hsH1 (w)= (Tw, I = e(g, g)αsH1(w), I ,w w w 
qx ′ (0))Kattr(x)Kattr(x)Ix = g (0), I = (H2(attr(x))qx 

′ 

x 
(5.17) 

qy (0)= g ,∀y ∈ Y ∧ ∀Kattr(y) ∈ AK \ {x} : Iy 
′ (0))Kattr(y) )I = (H2(attr(y))qy 
y 

3. Data Users. When a data user u’ who has been assigned the 
′ attribute a receives the updated attribute key K from the dataa 

owner, he frst updates his attribute key subset AK by computing S 
AK := (AK−{Ka}) {K ′ } and then updates the previous G ′ asa a 

1 

(G ′ )Ka 
′ and keeps the other attribute keys unchanged. The newa 

G∗ is denoted by: ′ u 

aT ′ ′ t = (G1 = g 
α
β , G2 = g β 

1 
, Ga = H2(a)ra , G ′ = (g ra )Ka 

1 
K ′ 

u a 

∀b ∈ S ∧ ∀Kb ∈ AK \ {a}, Gb = H2(b)rb , G ′ = (g rb )K 
1 
b )b 
(5.18) 

Revoking certain attributes from a data user incurs that the data 
user’s attribute set no more satisfes the access policy associated with 
an index keyword. This is because the original attribute keys of the 
revoked attributes have been updated after running the attribute 
revocation protocol. These updated attribute keys are unknown to the 
data user. Without the newly updated attribute keys, the data user 
cannot recover the information FR for the root node R in the access 
tree in the Search algorithm. 
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5.4 EXPERIMENTAL RESULT ANALYSIS 

The search performance is of paramount importance in practice for a 
search system, which directly afects user experiences. In this section, 
we analyze the practicality of the ABKS scheme by a group of search 
cost evaluation experiments over a real data set. The experiments were 
conducted in Java platform, and the confguration of the search server 
is an Ubuntu 16.04 system with 3.60 GHZ Inter Core i7-7700 CPU and 
16GB memory. In these experiments, we mainly consider the search 
performance trend afected by the size of data fles and index keywords 
and ignore the number of attributes and set it to be a constant. 
Figure 5.8 shows the time cost of search for diferent numbers of 

encrypted index keywords when fxing the size of data fles to be 4000. 
We can observe that the search complexity of the ABKS scheme is 
proportional to the number of the encrypted index keywords. The more 
the index keywords are, the more time would be spent on search over 
encrypted index keywords. This is because the linear scanning on the 
index keywords causes the time-consuming pairing and exponentiation 
operations to be linear with the number of index keywords. We can see 
that when the number of index keywords is 800, the average time of 
search is about 50s. Such a search efciency is obviously impractical in 
real applications, especially in the big data environments. Therefore, we 
can say that the current ABKS researches are more of theoretic interest. 

(a) (b)

Figure 5.8 Search performance evaluation. 
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On the other hand, our experimental results also shows the time cost of 
search for diferent numbers of encrypted data fles when fxing the size 
index keywords to be 800. We can observe that the size of data fles has 
little infuence on the search overhead, since the keyword-based index 
structure is widely used in the ABKS schemes, not the fle-level index. 

5.5 CONCLUSIONS AND FUTURE DIRECTIONS 

The ABKS techniques provide a feasibility that simultaneously 
achieves searching and fne-grained access control over encrypted 
data, which are very applied to the cloud computing environment 
characterized by data storage and sharing. In this chapter, we frst 
introduce the key techniques to achieve an ABKS technique and then 
we give an ABKS construction and discuss how to revoke a data user’s 
search privilege in the coarse-grained and fne-grained manners. Finally, 
we run the CP-ABKS scheme present in Section 5.3.2 over a real data 
set and evaluate the average search complexity of this scheme. From the 
experimental results, we can see that existing ABKS schemes are not 
suitable to use in the real data set due to the high search complexity. 
How to eliminate the gap is still an important research topic. 
Based on the literature review, we present the future research 

directions for the ABKS technique as follows. 

1. Search Complexity Optimization. At present, in the existing 
ABKS schemes, the reason for high search overhead is that 
the time-consuming pairing and exponentiation operations are 
linear in the number of encrypted index keywords. Designing the 
encrypted index structure and search algorithm with constant 
or no pairing and exponentiation operations is the key point to 
improve the search overhead of ABKS schemes. 

2. Dynamic ABKS Technique. As far as we know, there are no 
dynamic ABKS schemes in the existing literature. A dynamic 
ABKS technique will provide the ability to dynamically add or 
delete the data fles from the server side with a strong security 
guarantee and a low computation and communication overhead. 
The feature is attractive, especially in the open and elastic cloud 
computing environment, since it will facilitate the data owner to 
dynamically update their cloud data. 
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6.1 INTRODUCTION 

Financial market infrastructure (FMI) serves as the backbone of 
fnancial markets. It allows fnancial transactions to take place between 
people, fnancial institutions, and businesses in a cheaper and more 
efcient manner. It is the key component between fnancial institutions 
that exchange payments, securities, and derivatives. It allows customers 
and fnancial frms to purchase goods and services safely. It strengthens 
fnancial stability and economic growth by recording, clearing, and 
settling monetary and other fnancial transactions. 

Simple examples of FMI include depositing salary into an 
employee’s account, taking cash from an ATM machine, and paying 
for online purchases. It is estimated that payments worth 360 billion 
pounds take place every day in the UK through FMIs [1]. FMIs 
also play some other important functions such as transferring shares 
between traders and stock market, helping banks to borrow money 
from other banks and fnancial institutions in the market, and lending 
and borrowing loans to buy houses and invest in business. 

FMIs can be a source of liquidity risk and credit losses, if not 
managed properly [2]. In addition, FMIs are prone to general business 
risk and fnancial, legal, operational, and systemic risks. All these risks 
pose threat to the security of data and systems in FMIs. Consequently, 
adequate supervision of FMIs is necessary for the proper functioning 
of the fnancial institutions [3]. 

Since FMIs undergo millions of fnancial transactions every day, 
it is important that these transactions are processed at a much faster 
and accurate rate. This brings high-performance computing (HPC) into 
picture. HPC enables distributed parallel computing of huge amounts 
of data. It allows organizations, especially FMIs, to derive signifcant 
and meaningful value from unusable information [4]. It possesses high 
computational ability not only to process fnancial transactions at a 
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higher speed, but also to identify fraudulent transactions as soon as 
they take place. 

Financial fraud is a severe threat for FMIs that can incur a 
huge number of fnancial losses. With the integration of HPC, FMIs 
can maintain a big dataset that can be used to detect suspicious 
transactions immediately by correlating meaningful information from 
data stored in a data lake. Cloud implementation of HPC plays a 
pivotal role in order to maintain the big data. According to Hyperion 
research, HPC server market grew over 15% to generate a record 
revenue of 13.7 billion dollars. It is expected to reach 44 billion dollars 
by 2023 [5]. 

HPC is transforming innovation and revenue for organizations 
across industries. With the adoption of cloud-based HPC solutions, 
fnancial institutions strive to keep pace with innovation in the market 
[6]. The continuous growth of HPC speaks high of its value to the 
scientifc community which carries a high-risk potential. This makes 
HPC a prime target of security breaches. Some popular security issues 
associated with HPC consist of confdentiality and integrity of data, 
data security, malicious insiders, and external cyber-threats [7]. 

Focusing on FMIs, cyber-threats have emerged as a persistent 
systemic risk. Its persistence makes it difcult to detect and eradicate 
completely. It is equally difcult to measure the breadth of damage 
caused by cyberattacks [8]. The primary motivation behind these 
attacks is to make money, disrupt services to cause fnancial losses, 
and steal sensitive data. 

The rest of the chapter is organized as follows: Section 6.2 
provides an overview of various components of FMIs. Section 6.3 
introduces high-performance computing. It is followed by HPC’s power 
to transform fnancial industry in Section 6.4. Section 6.5 delineates 
the association of high-performance computing with FMIs. Section 6.6 
reviews the current works on cybersecurity issues related to HPC in 
FMIs as reported in the literature. Section 6.7 introduces fnancial risks 
in FMIs and is followed by common security objectives in Section 6.8. 
Various cybersecurity issues in each component of the infrastructure 
and their mapping with common security objectives of cybersecurity 
are presented in Section 6.9. Section 6.10 brings forward cybersecurity 
risks in FMIs. Finally, Section 6.11 concludes the chapter. 
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6.2 WHAT IS FINANCIAL MARKET INFRASTRUCTURE (FMI)? 

Financial market infrastructures are defned as a multilateral system 
designed to record, clear, or settle payment systems among partici-
pating fnancial institutions. Apart from handling payment systems, 
they also include settlements, securities, derivatives, or other fnancial 
transactions [9]. The participating fnancial institutions are referred 
to as buyers and sellers. FMIs establish a set of common rules and 
procedures for participating entities that considers specialized risk 
management framework to deal with risks that may occur. It ensures 
fnancial stability and economic growth by efectively managing risks 
that may occur in the fnancial system [10]. Financial stability and 
market functioning rely on the continuity of services provided by FMIs 
[11]. A complete structure of FMI along with essential components is 
presented in Figure 6.1. 

6.2.1 Payment Systems 

A payment system is a set of rules and procedures used to transfer 
funds between participating entities. It operates based on an agreement 

Figure 6.1 Essential components of FMI. 
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between the entities and the operator. It enables lending and repayment 
of money, payments for goods and services ofered, salaries, and benefts 
for general public [11]. It is generally categorized as either a foreign ex-
change transaction, or a retail payment system. Foreign exchange (FX) 
transactions are the most liquid sector of payment systems in the fnan-
cial market. It primarily deals with international trade and investments 
through exchange rates of currencies and transfer of funds. It generates 
the largest number of payments every day. It is estimated that the daily 
turnover of the foreign exchange market is 5.3 trillion dollars. 

On the other hand, a retail payment system handles large volumes 
of low-value funds transfer in the form of cash, checks, credits, debits, 
and debit card transactions. It primarily deals with payments and 
transfers within the country. It is operated by private or public sector 
real-time gross settlement (RTGS) or deferred net settlement (DNS) 
mechanism. 

The types of payment transactions covered by payment systems 
include domestic card payments, credit transfers (Internet and mobile 
payments), direct debits, and inter-bank transactions [12]. Domestic 
card payments are used to make payments within the country. It uses 
credit or debit card issued by the bank and merchant’s registered 
account. Credit transfers works like a direct cash transfer between a 
payee and a payer. It is also called e-transfer or electronic transfer that 
makes use of Internet services and mobile payments. Credit transfer 
can be used to pay electricity and water bills, purchase and sell goods 
and services, and shop online. It provides a fast mode of payment where 
the payee does not need to wait for the payment. 

In contrast, direct debits or debit transfers begin with the delivery 
of the payment. In a debit transfer, the bank notifes if the payment 
is not successful. Thus, it works on the principle of “no news is good 
news”. Despite the popularity of credit transfers, debit transfers are 
used predominantly by many countries [13]. 

Inter-bank transactions provide great liquidity to fnancial markets. 
It describes monetary transactions between banks. For example, 
national banks seeking loan from the central bank or central banks 
seeking loan from the World Bank are classifed as inter-bank 
transactions. They also include payment transactions between two 
banks for transferring an amount from one user account registered 
with one bank to the other user account registered with another bank. 
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Inter-bank transactions can be carried out through RTGS or National 
Electronic Funds Transfer (NEFT). 

6.2.2 Central Security Depositories 

A central security depository holds a security account for fund transfer 
in either a certifcated or uncertifcated form. It plays an important role 
in ensuring the integrity of security issues. It may maintain a record 
of legal ownership for security. The functions performed by a central 
security depository may vary depending upon the jurisdiction in which 
it is operating. It is responsible for electronic accounting of assets and 
services, fund transfer, and security transfer system. It includes stock 
exchanges, over-the-counter (OTC) derivatives, equities, and money 
market instruments. 

A stock exchange is a centralized location where government 
and corporations can buy and sell equities. Equities and stocks are 
sometimes used interchangeably. It acts as an investment hub for 
two counterparties involved in an investment. The New York Stock 
Exchange (NYSE) and Nasdaq are the two most popular stock 
exchanges in the world. All the trading activities in a stock exchange 
take place through a broker. In addition to physical exchanges, 
electronic exchanges use an electronic platform to avoid a centralized 
physical location for trade. 

OTC derivatives are private fnancial contracts that are not traded 
on an asset exchange. A derivative is a security with a price that 
depends on or is derived from an underlying asset. The most common 
underlying assets include stocks, bonds, commodities, currencies, 
interest rates, and market indexes. Derivatives which can be traded 
are called exchange-traded, while non-traded derivatives are called 
OTC derivatives. An OTC derivative is a fnancial contract arranged 
between counterparties (buyer and seller) by following minimal 
regulations [14]. 

Money market instruments allocate short-term funding to fnancial 
institutions. It is a type of mutual fund that is invested in low-risk 
securities such as government securities, certifcates of deposit, and 
commercial paper. Money market instruments maintain a stable net 
asset value for a share. The value of a share may increase or decrease 
depending on the business of a frm in the market [14]. 
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6.2.3 Security Settlement Systems 

A security settlement system is a critical component of FMIs. It enables 
securities for a settlement between the trading parties. It acts as an 
intermediator between borrowers and lenders to secure the fow of funds 
and maintain their security portfolios [15]. It allows transfer of payment 
either free of cost or against a payment. When the transfer is made 
against a payment, delivery of the security is taken care of, if and 
only if payment is made. It also ensures safekeeping of securities by 
providing additional security clearing and settlement instructions. 

With the soaring cross-border trades and settlements, the integra-
tion of global markets is also increased. Like central security deposi-
tories, it also includes stock exchanges, OTC derivatives, equities, and 
money market instruments. Any lapse in security settlement system 
may result in systemic risks to securities markets. It may further cause 
liquidity or credit losses for the participating entities [15]. 

6.2.4 Central Counterparties 

A central counterparty acts as an intermediator by acting buyer to 
the seller and vice versa. It interposes itself between counterparties to 
fnancial contracts traded in the fnancial market [16]. It is used by 
derivatives exchanges, security exchanges, and trading systems. It has 
the potential to reduce risks between buyers and sellers by binding 
on them through legal procedures and imposing efective risk control 
measures. Due to this, it is feasible to reduce systemic risk as well. 

The efectiveness of risk controls is critical to minimize cash fow 
between counterparts and achieve risk reduction benefts. Central 
counterparties’ failure to control risk has the potential to disrupt not 
only the fnancial market, but the other settlement systems also. It also 
tends to enhance the liquidity of the fnancial market by supporting 
anonymous trading in some cases [16]. 

6.2.5 Trade Repositories 

A trade repository maintains a central database of transactions and 
data. It is a new component of FMIs and is gaining importance 
in the OTC derivatives market. By centralizing the transactions 
and dissemination and storage of collected data, it enhances the 
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transparency of information to relevant authorities and the public. 
An important function performed by trade repositories is to provide 
information that supports risk reduction, operational efciency, and 
cost savings for the participating entities and the market [9]. Trade 
repositories store commodities, energy, equities, interest rate, and 
credit. Since the data stored by trade repositories are used by 
several stakeholders, it is critical to maintain accuracy, reliability, and 
availability of data. Trade repositories can be characterized by the 
following benefts: 

• The centralization of data provides a transparent market 
infrastructure. 

• Timely and reliable access to data stored in trade repositories 
signifcantly improves the ability to identify the risks posed to 
the fnancial system. 

• Trade repositories provide a common platform for various 
stakeholders to support consistency of data formats and 
representations. 

• Centralized and reliable data increase its usefulness. 

The concept of FMIs was started after the fnancial crisis in 2009. G20 
leaders agreed on a stricter regulation of “over-the-counter” derivatives 
[17]. As a result, the European Union passed the European Market 
Infrastructure Regulation (“EMIR”) in 2012 [18]. The regulation was 
approved in 2015 in the form of the Financial Market Infrastructure 
Act (FMIA). FMIA entered into force on New Year of 2016. It 
includes rules and regulations for derivatives trading, operational 
functioning of FMIs, and existing market behavior rules from the Stock 
Exchange Act [19]. The FMIA is supplemented by two ordinances: 
the Federal Council’s Financial Market Infrastructure Ordinance 
(“FMIO”) and FINMA’s Financial Market Infrastructure Ordinance 
(“FMIO-FINMA”). These ordinances support rules and regulations for 
trading and post-trading (clearing, settlement, and custody) events. 

6.3 WHAT IS HIGH-PERFORMANCE COMPUTING? 

High-performance computing can be defned as “the practice of 
aggregating computing power in a way that delivers much higher 
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Figure 6.2 HPC components. 

performance than one could get out of a typical desktop computer 
or workstation in order to solve large problems in science, engineering, 
or business” [20]. 

In other words, HPC is the ability to process data and perform 
complex calculations at a much higher speed. One of the best HPC 
computers is a supercomputer that contains thousands of nodes that 
work together to complete a task. This is called parallel processing. 
HPC is the foundation to various scientifc, business, and industrial 
innovations by processing data. HPC solutions have three main 
components: (1) compute, (2) network, and (3) storage. Figure 6.2 
presents these components and their functions in a nutshell. 

To build a HPC architecture, compute servers are clustered together 
in a network. These servers run software and applications that 
perform fast computations. The cluster is networked to a data storage 
component that captures the output [21]. Putting all these components 
together allows HPC to perform diverse sets of tasks in minimal time 
period. 

Further, to achieve the best performance, all these components pace 
together. To substantiate, storage component feeds and ingests data to 
and from compute servers as fast as possible. Similarly, networking 
components support the high-speed transmission of data between 
compute servers and storage devices. If any component fails to maintain 
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Figure 6.3 Evolution of HPC [22]. 

pace with rest of the components, the HPC architecture fails to achieve 
its objective of high performance. 

Figure 6.3 shows the evolution of HPC over the years. The 
concept started in 1998 with a two-core processor that evolved to frst 
computer cluster in 2005. From then onward, HPC has revolutionized 
the computing world with high-performance supercomputers such 
as Pittsburgh, NETL, and Joule supercomputer. The most recent 
supercomputer is Joule 2.0, which contains 74,240 cores and is an 
advanced version of 2012 supercomputer with the same name having 
24,192 cores. 

6.4 HOW HPC COULD TRANSFORM THE FINANCIAL 
INDUSTRY 

HPC possesses the potential to provide a deep insight into fnancial 
market predictions, especially in the FMIs [23]. The trend commenced 
in 2,000 with the launch of the frst supercomputer that was installed in 
Wall Street. This installation accelerated the investment in applications 
such as fraud detection, derivative pricing, and econometrics. The 
computational sector is equipped with high-frequency trading and zero 
latency. HPC also supports facilities to compute risk and safeguard the 
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financial system [24]. These characteristics could help in transforming
the financial industry.

According to the statistics published by the Intersect360 Research
[25], financial services gained biggest profits in 2017 by integrating
HPC. The total revenue for HPC market was 35.4 billion dollars in
2017. It was attributed to commercial vertical markets. The report
also predicted a 6.9% compound annual growth rate (CAGR) for HPC
from 2017 to 2022.

HPC’s ability to perform high-quality quantitative analysis has
been recognized as a key factor for banks, brokers, funds, and
participating entities in FMIs. These analyses help financial industry
to speed up their activities and prediction of share prices in stock
exchanges [26]. HPC also enables businesses to use new innovations
such as Internet of things (IoT) and artificial intelligence (AI).
Interwinding AI with HPC facilitates financial industry to scale to
accommodate increasing workloads [27].

6.5 HPC IN FMIs

Financial services around the globe are adopting HPC to reduce the
risk of a global pandemic and beat the market [23]. According to a
survey conducted by Intersect360 Research, financial industry is the
largest commercial market for HPC solutions [28]. The importance of
HPC in finance is attributed to the insights provided by HPC. These
insights help investment firms to predict the stock market trends within
a fraction of second. Banking is one of the largest FinTech (financial
technology) sectors that use HPC to detect frauds and reduce lending
risks. Figure 6.4 presents the activities performed by HPC in financial
services industry.

• Customer Engagement: HPC facilitates drafting customer-
oriented, personalized marketing strategies. Many FinTech insti-
tutions use chatbots and voice recognition technologies to interact
with customers. These technologies effectively understand the
needs of customers and automate quality assurance monitoring
[29]. All this is possible due to the depth of user profiling
done by HPC. HPC does not only have advantages for financial
institutions, but for customers also. From the customers’
perspective, they can make more money by utilizing stock
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Figure 6.4 HPC in fnancial services. 

market predictions made by HPC. Furthermore, it ensures that 
customers are satisfed with banking services that verify credit 
card details and bank accounts for any purchase and activity 
performed by the customers. 

• Credit Risk Assessment: HPC is used in combination with 
artifcial intelligence to speed up risk assessment of load 
applications received by retail banking institutions. It helps make 
informed risk decisions to reduce losses associated with loans. 
The fnancial sector, especially the FMI, is known for its fast-
computing needs for monetary transactions, payment systems, 
trade activities, and security of central settlement systems. All 
these needs vary for every type of fnancial frm and depends 
on its market value. Financial institutions such as banks use 
HPC for real-time risk management, as they handle thousands 
of customers every moment. 

• Fraud Detection: Fraudulent transactions have become an 
inseparable part of fnancial institutions. It is the prime need of 
the hour to detect such transactions to keep the business going. 
HPC-driven solutions are helping banks and payment systems 
to detect suspicious and potentially fraudulent transactions as 
they are taking place. For example, Mastercard leverages HPC 
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systems to process large number of transactions to immediately
identify and combat fraudulent transactions.

• Cybersecurity: HPC can detect cybercrimes for the millions
of financial transactions taking place in the shortest time
span. Financial services industry is prone to internal and
external cyber-threats. Internal cyber-threats come in the form of
malicious insiders determined to take revenge and cause harm to
the employer. On the other hand, external threats include denial-
of-service (DoS) attacks, distributed denial-of-service (DDoS)
attacks, malware, and phishing attempts to disrupt services.
Overall, the entire financial sector is dependent on HPC to
perform high-intensity quantitative analyses to tackle the internal
and external threats and protect sensitive information and
systems [30].

• Regulatory Compliance: FinTech industry has witnessed several
national and international regulations in the recent years. HPC-
driven artificial intelligence solutions can automate the process
of identifying, collating, and analyzing data from different
components to follow regulatory compliance.

On the onset, HPC offers several benefits to financial institutions.
However, it comes with certain security issues and challenges. The
availability of HPC devices is the key to reap the benefits provided
by it. If the device is down, every second is counted as catastrophic for
time-based financial transactions. For example, a downtime for a stock
market or investment firm can cost millions of dollars to the traders.
HPC devices need to handle extreme work pressure, and it is not that
easy to deploy, manage, and scale. The next section focuses on the
security issues related to HPC in FMIs.

6.6 CURRENT WORKS ON CYBERSECURITY ISSUES RELATED
TO HPC IN FMIs

HPC facilitates financial institutions to reduce financial risks by
predicting market trends in advance. It provides several benefits that
help the financial market flourish. However, there are some important
security issues in HPC related to financial services industry. This
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section reviews the related works on cybersecurity issues related to 
HPC when integrated with FMIs, as reported by researchers. 

One of the most important cybersecurity issues in HPC is the theft 
or misuse of HPC resources by unauthorized personnel. Malicious users 
gain unauthorized access to HPC resources that can shut down the crit-
ical devices to disrupt services, steal data, and launch further attacks. 
Dozens of HPC facilities used for COVID-19 research in Germany, 
the UK, and Switzerland were forcefully shut down by cyberattackers. 
Furthermore, the scalability of consequences in bringing down the HPC 
device can cost heavily to the business as HPC devices perform millions 
of computations every second. Security breaches involving computer 
malware such as Trojans and worms steal data from HPC nodes to 
impact confdentiality, integrity, and availability of data [31]. 

Like data theft, data modifcation is a serious threat that can 
result in loss of data integrity and pose risk to applications. Tampered 
data could impact critical data processing facilities and regulatory 
compliance used by essential services. Integrity and availability issues 
are caused by malicious insiders who misuse computing cycles, 
especially in bitcoin transactions. Although HPC provides protection 
against internal and external threats, the menace is never-ending. 
New tidal waves of changing regulations for national and international 
business practices are a continuous challenge for HPC [31]. 

Cybersecurity threats disrupt businesses and hence fnancial 
stability, especially in FMIs [32]. FMI serves as the backbone of 
fnancial markets [33]. It is also one of the popular targets of 
cyberattacks that have the potential to cause systemic risks in FMIs 
[34]. According to Li and Perez-Saiz [35], Canadian FMIs are exposed 
to credit risks and there are large diferences in the level of systemic 
risks among participants. FMIs comprise essential components for 
processing FinTech transactions. Since large amounts of money is 
involved, these components are prone to several cybersecurity threats, 
including fraudulent transactions [9]. As the number of payment 
systems increases, the risk of fraud grows with the number of payment 
systems in the market [36]. 

Cyber-threats have emerged as a growing systemic risk to FMIs over 
the years. The reasons for this surge can be attributed to technological 
innovations, degree of inter-dependency between various components 
of fnancial markets, and diversifed motivations of cyberattackers [36]. 
Cybercriminals are motivated by fnancial gain to cause fnancial 
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instability. One of the major challenges in making FMIs cyber-resilient
is to manage their complexities and inter-dependencies [37]. Cyber-
attacks pose unique challenges to FMI’s operational risk management
framework.

Although the development of mobile payment systems provides a
convenient payment infrastructure compatible with traditional pay-
ment services, security of sensitive user information is a key challenge.
Security of payment systems in FMI ensures that information about
payment systems is not exposed to unauthorized third parties. Other
security challenges for payment systems include mutual authentication,
authorization, integrity, privacy, atomicity, and availability [38]. These
security challenges pose security risks, threats, financial privacy issues,
and other emerging issues in FinTech [39].

The technological transformations focus on the use of hard
information and help financial markets grow, increase competition, and
reduce frictions between lenders and borrowers. However, these changes
bring some policy-related challenges to the traditional business models
[40]. Financial systems are more reliant on hard information and,
hence, prone to more financial and cyber-risks. These changes push
authorities to strengthen FMIs to support cross-border transactions
[41]. Table 6.1 summarizes the cybersecurity issues related to HPC in
FMIs as reported by researchers.

To summarize, internal and external threats and cyberattacks/
cyber-risks are the most discussed cybersecurity issues by the
researchers. In addition, theft, misuse of resources, confidentiality, in-
tegrity, availability, cyber-fraud, authentication, authorization, privacy,
atomicity, and security breach are some other issues discussed briefly.
However, it does not mean that the less discussed issues are not of much
importance. The losses caused by these less discussed issues can be
much more disastrous compared to the most discussed issues. Based on
this analysis, this chapter focuses on bringing forward the less discussed
cybersecurity issues by mapping FMI risks with the security issues.

6.7 FINANCIAL RISKS IN FMIs

FMI handles enormous financial transactions dealing with huge
amounts of money. Although it provides an effective risk management
component to secure the transactions by using a central security
repository, there are certain key financial risks faced by FMIs. These
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non-security risks are the outcome of centralized activities that create 
dependencies among fnancial institutions. This section instigates these 
non-security fnancial risks and their subcategories. 

Systemic Risks: Systemic risks are the results of inter-dependencies 
among participating banks and inability of banks to meet their 
obligations and perform as expected. This may have an adverse 
efect on FMIs. Systemic risks can lead to reversed transactions or 
deliveries, delayed settlements, and disruption of services in fnancial 
systems. Furthermore, if one participating entity depends on other 
entities for payments, clearance, and settlements, it will spread 
the disruptions more quickly to reach out the broader economy. 
Systemic risks are prominent in payment systems of FMIs. Inter-
dependencies can be grouped into three broad categories: system-based, 
institution-based, and environmental dependencies [42]. In system-
based dependencies, FMIs are directly linked. They can be vertical 
(inter-dependence between diferent essential components of FMIs, 
such as between a payment system and trade repository) and horizontal 
(inter-dependence within the same component, such as within two 
payment systems). In institution-based inter-dependencies, FMIs are 
indirectly linked by a fnancial institution. Finally, environmental 
dependencies include broad factors such as physical infrastructure 
and network providers. Figure 6.5 shows schematic interconnections 
between diferent categories of inter-dependencies. 

Legal Risks: Financial transactions between diferent countries are 
liable to legal terms and regulations. Legal risks arise if an application is 
unlawful, involves diferent law bodies, and involves delays in recovering 
fnancial assets. Diferent bodies of law are applicable not only to 

Figure 6.5 Categories of inter-dependence. (BIS 2008.) 
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international transactions, but to diferent jurisdictions also. Legal risks 
afect the central counterparties of FMIs the most. 

Credit Risks: Credit risks may occur due to several reasons such 
as unsettled transactions between entities, inability of a participating 
entity to meet fnancial obligations within stipulated time, and failure 
of settlement banks itself. FMIs may face replacement cost risk due to 
unsettled transactions with an entity. As a result, FMIs need to replace 
the original transaction at the current market price. Credit risks are 
prevalent in security settlement systems of FMIs [43]. 

Liquidity Risks: Liquidity risks are related to the possession of 
insufcient funds to complete a transaction by the participating 
entities. Other types of liquidity risk can be seller not receiving funds 
and buyer not receiving product on time. Failure of settlement banks 
is also treated as a liquidity risk in FMIs. Liquidity risks have the 
potential to cause systemic risks. They are mostly found in central 
counterparties and security settlement systems of FMIs. 

General Business Risks: General business risks are related to 
operational and administration activities performed by FMIs. These 
risks include fnancial losses due to increased debts and falling growth, 
resulting in an imbalanced revenue and cost curve. Severe fnancial 
losses may result in reputation loss, losses in other operations, poor 
execution strategy, and other business factors. Failure to manage 
business risks can lead to operational and legal risks. General business 
risks can occur in any essential component of FMIs. 

Custody and Investment Risks: FMIs face a lot of custody risks 
including losses due to assets held in custody, fnancial fraud, poor 
administration, inadequate record-keeping, and negligence. Investment 
risks comprise losses due to investing their own resources in market, 
credit, or liquidity risks. These risks are also responsible for the 
safety and reliability of FMI’s risk management systems. Custody 
and investment risks target central security depositories, central 
counterparties, security settlement systems, and trade repositories of 
FMIs. 

Operational Risks: As evident from the name itself, operational 
risks are caused by irresponsible data and fnance handling habits. 
Some common causes of operational risks include erroneous human 
transactions, data losses, information leakage, and defciency in the 
information system. The erroneous operations may lead to internal 
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and external threats to data security, failure of management systems 
that rely on information, fraudulent transactions, and incomplete 
settlements. Operational risks afect the trade repositories of FMIs. 

6.8 COMMON SECURITY OBJECTIVES 

To understand the security issues that can arise in FMI components 
owing to the fnancial risks faced by them, it is mandatory to be aware 
of the CIAAA principle of cybersecurity that ensures confdentiality 
(C), integrity (I), availability (A), accountability (A), and authenticity 
(A) of data for any organization. The level of importance varies for 
every organization depending upon its security goals and requirements. 
Figure 6.6 presents the CIAAA principle for data security. 

Confdentiality: It refers to the protection of secret data, objects, 
or resources. The goal of confdentiality is to prevent or minimize 
unauthorized access to data. It ensures that only authorized users 
can access data and resources. Simply put, confdentiality ensures 
protection of data from unauthorized access, use, or disclosure while 
in storage, process, or transit. Several cyberattacks focus on violating 
confdentiality. 

Integrity: It ensures the correctness and reliability of data. It pre-
vents unauthorized users from modifying data. Proper implementation 
of integrity means authorized changes are allowed on sensitive data. 

Figure 6.6 CIAAA principle. 
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Integrity loss may result from human errors such as when an authorized
user makes an unintentional change to data.

Availability: It refers to timely and uninterrupted access to
authorized objects, data, or resources. Some of the pertinent threats to
availability of data include system failures, power loss, software errors,
and environmental issues (natural calamities). In addition to that,
sometimes, the accidental deletion of files, over-utilizing a resource,
or mislabeling a classified object can also result in unavailability of
data.

Accountability: It is referred to as the responsibility of a person
to protect an asset, material, or key information. The person is held
accountable for safeguarding the equipment in his custody. If a data
breach, loss, or misuse of that equipment takes place, that person is held
accountable for it. Accountability is an essential part of a cybersecurity
plan. For example, let us assume that an organization has a policy that
lists legitimate software or applications that the employees can install
on their computers. If an employee installs software or applications
not listed in the policy, the IT administrator is held accountable for
not verifying the software or applications downloaded and installed on
computer systems owned by the organization.

Authenticity: It is the validation of messages transmitted between
a sender and receiver. It ensures that an authenticated sender
originates from a message, the message is authenticated, and only
an authentic receiver can receive the message. It helps to prevent an
unauthorized person from sending or receiving a message. In technical
terms, this principle prevents an impersonator from intercepting
transmission. It requires users to establish their identities before getting
involved in communication. Once the sender and receiver confirm
their identities, they can access the system to communicate with
each other. Authenticity is established by using usernames, passwords,
smart cards, biometrics, e-mails, and tokens.

6.9 CYBERSECURITY ISSUES AND FINANCIAL RISKS IN FMIs

This section puts forward security issues faced by FMIs by mapping
financial risks faced by FMIs with the security objectives to identify
data security issues in FMIs.
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1. Systemic Risks: 

• Inter-Dependency among Participating Entities: Systemic 
risks bring down the entire enterprise. When participating 
entities are dependent on each other for completing 
transactions, it poses an accountability issue in case the 
transaction is not completed due to any reason. 

2. Custody and Investment Risks: 

• Loss of Assets Held by Custodian: From the data security 
point of view, assets in FMIs include data and information 
related to clients, participating entities, buyers, sellers, 
monetary transactions, and third-party entities involved. 
The loss of any of these assets can cause issues with 
confdentiality, authenticity, and availability of data. 

• Fraud: Financial fraud in FMIs refers to illegitimate 
monetary transactions that can cause harm to the business. 
The participating entities (buyers and sellers) may not 
possess legitimate sources to prove their identity. This type 
of risk can be mapped with authenticity and integrity issues 
in the CIAAA principle. 

• Poor Administration: Management is responsible for ad-
ministering fnancial settlements and exchanges between 
entities. It is held responsible for poor administration which 
can be mapped with accountability issues in the CIAAA 
principle. 

• Inadequate Record-Keeping: Inadequate record-keeping 
may result in incomplete information or data classifcation. 
Data classifcation is the process of labeling data based 
on their sensitivity. Data may be classifed as public, 
confdential, private, and restricted. Inadequate record-
keeping poses confdentiality and integrity issues to data 
security. 

• Negligence: Negligence is somehow related to data handling, 
data classifcation, and record-keeping. Therefore, it can be 
mapped with authenticity and integrity issues in the CIAAA 
principle. 
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• Investing Own Resources to Market: Investing own resources 
to market is highly vulnerable and poses accountability issue 
as the owner is solely responsible for any fnancial losses. 

• Credit or Liquidity Risks: Credit or liquidity risks explained 
below pose all security issues in the CIAAA principle. 

3. Liquidity Risks: 

• Insufcient Funds: Insufcient funds may result in incom-
plete transactions, which poses the availability issue in the 
CIAAA principle. 

• Seller Does not Receive Funds: Any type of unavailability of 
data or funds in a settlement or transaction is treated as an 
availability issue in the CIAAA principle. Further, there are 
issues with its confdentiality as the originality of the funds 
may not be certain. It means that funds can be tampered 
within transit. 

• Buyer Does not Receive Product: A product is an 
OTC derivative contract that is exchanged between the 
participating entities. Like a seller not receiving funds, any 
type of unavailability of data or funds in a settlement or 
transaction is treated as an availability issue in the CIAAA 
principle. 

• Failure of Settlement Banks: Failure of settlement banks is a 
high-level liquidity risk. It can result in disruption of services 
for an unspecifed time. A person from the management is 
also held responsible for this failure. Therefore, this risk can 
be mapped with availability and accountability issues in the 
CIAAA principle. 

4. Credit Risks: 

• Replacement Cost Risks: Replacement cost risks occur in 
case of failure of a transaction and the responsible entity 
returns the cost of the failed transaction. This type of risk 
can be mapped with authenticity and confdentiality issues 
in the CIAAA principle. 



HPC and Cybersecurity Risks in FMIs ■ 173 

• Unsettled Transactions: It is the root cause of replacement 
cost risks and can be mapped with confdentiality and 
integrity issues in the CIAAA principle. 

• Failure of Settlement Banks: Failure of settlement banks is a 
high-level credit risk. It can result in disruption of services 
for an unspecifed time. This type of risk can be mapped 
with availability and accountability issues in the CIAAA 
principle. 

5. Legal Risks: 

• Diferent Law Bodies: FMI business with participating 
entities that belong to two diferent jurisdictions or legal 
regulations can be mapped with accountability issue in 
the CIAAA principle because law bodies are to be held 
accountable for fnancial transactions. 

• Cross-Border Transactions: International fnancial business 
transactions pose risk to confdentiality and integrity of 
information in addition to accountability issue in the 
CIAAA principle. 

• Delay in Recovery of Financial Assets: Any type of 
unavailability issue is treated as an availability issue in the 
CIAAA principle. Moreover, delays in recovery may cause 
authenticity issues also. 

6. Operational Risks: 

• Data Loss: Data loss indicates incorrect data which can be 
attributed to integrity issue in the CIAAA principle. 

• Leakage: Just like data loss, information leakage is also 
attributed to integrity issue in the CIAAA principle. 

• Defciency in Information System: Information systems are 
responsible for handling data, entities, and transfer of 
transactions by using a central repository. Defciency in 
information systems may result in integrity issue in the 
CIAAA principle. 

• Insufcient Capacity: This type of risk can be mapped with 
availability and integrity issues in the CIAAA principle as 
insufcient capacity may lead to loss of data. 
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• Internal and External Threats: Cyber-threats have the 
potential to exploit vulnerabilities in the software systems, 
especially central repositories used to store sensitive data. 
Internal and external threats cause harm to confdentiality, 
integrity, and availability of data. 

• Management Failure: Management is responsible for overall 
administration such as taking decisions, handling settlement 
issues, transfer of money, and transfer of other miscellaneous 
information. Management failure can be mapped with 
accountability issues in the CIAAA principle. 

• Human Errors: Humans are prone to errors and can be held 
responsible for the type of data or assets they are managing. 
It can be mapped with accountability issues in the CIAAA 
principle. 

• Fraud: Financial fraud in FMIs refers to illegitimate 
monetary transactions that can cause harm to the business. 
The participating entities (buyers and sellers) may not 
possess legitimate sources to prove their identity. This type 
of risk can be mapped with authenticity and integrity issues 
in the CIAAA principle. 

• Incomplete Settlement: Incomplete settlement can be 
mapped with authenticity and confdentiality issues in the 
CIAAA principle. 

Figure 6.7 presents an overview of the mapping of diferent categories 
of fnancial risks with security objectives to summarize security issues 
in FMIs. 

The following observations are drawn from Figure 6.7: 

• As per the current works discussed in Section 6.6, confdentiality, 
integrity, availability, accountability, and authenticity are less 
discussed cybersecurity issues in FMIs. However, a quantitative 
analysis of Figure 6.5 reveals that these issues are equally 
important. Integrity is the most common security issue in FMI 
risks. It is followed by availability, accountability, confdentiality, 
and authenticity. 
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Figure 6.7 Security issues identifed in FMI risks. 

• Integrity, accountability, and authenticity equally impact most of 
the custody and investment risks. 

• Availability is the only issue that impacts all types of liquidity 
risks. 

• Integrity impacts most types of the operational risks. 
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6.10 CYBERSECURITY RISKS IN FMIs

After identifying cybersecurity issues in FMIs, this section introduces
cybersecurity risks faced by FMIs, assessment, analysis, monitoring,
reporting, and mitigation of these risks. FinTech has improved its
products and services with time, but the risks still exist. This is the
primary reason why FinTech institutions perform risk management
tasks to protect personally identifiable information (PII). There are
several cyber-risks faced by FinTech industry, especially FMIs.

6.10.1 Cybersecurity Risks

According to a BIS Bulletin report in 2021 [44], the finance sector is the
worst affected sector by cyber-events during the rise of the COVID-19
pandemic. The number of cyberattacks increased from fewer than 5,000
per week in February 2020 to more than 200,000 per week in April 2020.
Furthermore, one-fifth of the financial firms reported that their network
operation activities were interrupted during the pandemic. The report
further indicates that the financial sector’s cyber-risk is small but is
growing relative to operational risk. In another survey conducted by the
Financial Services Information Sharing and Analysis Center (FS-ISAC)
among financial institutions [45], there is a substantial rise in phishing,
suspicious scanning, and malicious activity against web pages. The
most common cyber-risks faced by FMIs include cyberattacks, risks to
third-party vendors, data breaches, money laundering, digital identity
risks, and cloud-based cybersecurity risks.

Cyber-Attacks: With the digital transformation comes the menace
of cyberattacks that attempt to disrupt financial transactions, breach
sensitive information, perform credit card fraud, and carry out
fraudulent money transfers. Some of the most threatening cyberattacks
experienced by FinTech have affected economic infrastructures,
especially FMIs. As reported by Carnegie Endowment for International
Peace [46], data breach, malware, and distributed denial-of-service
(DDoS) attacks are the most common cyberattacks that resulted in sig-
nificant financial losses for various financial institutions. Nonetheless,
the list of individual security risks is never-ending. FinTech institutions
are reluctant to report and admit being targeted by cyberattacks most
of the times to protect their loss of reputation among competitors.
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Figure 6.8 Timeline of prominent categories of cyberattacks on FinTech 
across the globe. 

Figure 6.8 presents a glimpse of reported cyberattacks on FinTech that 
resulted in signifcant fnancial losses to fnancial institutions. 

Evidently, payment systems including banks, stock exchanges, and 
other fnancial frms are the primary targets of cyberattacks. Even 
the major FinTech institutions sufer the menacing cyberattacks over 
the years. These statistics reveal that cyberattacks are one of the 
biggest challenges that FinTech is facing in the past couple of years. 
Advanced persistent threats intend to steal sensitive and valuable data 
from fnancial industries [47]. It is the most critical threat to fnancial 
stability, especially the FMIs that provide the fundamental support for 
payment systems, security of transactions, and agreements between the 
involved parties. 

Data Breaches: FinTech is experiencing unprecedented changes. 
Two key issues that challenge FinTech are risk management, and secu-
rity and privacy [48]. There are several fnancial and operational risks 
to FinTech start-ups. Depending on the size of FinTech and the special-
ization of fnancial activities performed by it, the tendency of risk man-
agement varies for every fnancial institution. The security and privacy 
of a consumer’s sensitive information are pertinent. For FinTech appli-
cations, stolen and compromised mobile devices are one of the critical 
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issues. FinTech companies need to develop appropriate measures to 
protect sensitive information from data breaches. Figure 6.6 highlights 
several data breaches reported by FinTech institutions. 

Risks to Third-Party Vendors: Data breaches are difcult to prevent 
when third-party vendors are involved. If the services are not provided 
by a trusted third party, business is at risk. In FMIs, participating 
counterparties, security settlements, and payment institutions (banks, 
stock exchanges, foreign exchanges, etc.) act as vendors. Untrusted 
third-party vendors also pose risk to reputation. Eliminating third-
party cyber-risks is the key element of every fnancial institution’s risk 
management protocol. 

Money Laundering: Money laundering or cyber-frauds are very 
common cyber-risks to FMIs. Cryptocurrency is frequently used in 
cross-border fnancial transactions owing to its ease of use. It does 
not need to be exchanged. The risk associated with cryptocurrency 
transactions is that it is not governed by any regulatory compliance 
or authority. This makes it vulnerable to cyber-risks as attackers can 
launder it through legitimate fnancial institutions, especially in FMIs. 

Digital Identity Risk: Digital transformation brings the risk of 
stolen digital identity. Attackers can steal username and password 
of legitimate users to masquerade as legitimate users and make 
illegitimate fnancial transactions. Credentials can be stolen by 
launching malware attacks on target institutions. 

Cloud-Based Risks: With the introduction of HPC in FMIs, cloud-
based FinTech transactions have gained importance. Cloud-based 
storage services are considered secure until adequate protocols are used. 
If cloud-based risks are not managed properly, misuse of HPC resources 
and data theft become prevalent. 

6.10.2 Risk Assessment 

Risk management is a cyclic process that commences with assessing 
risks. Figure 6.9 presents the risk management process and its diferent 
phases. 

The objective of the risk assessment is to identify and measure the 
risks in order to obtain accurate and relevant information to assist 
the decision-making process. It is imperative to assess risks due to 
possible threats that may have adverse efects on the information 
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Figure 6.9 Risk management cycle. 

system. These threats attack the vulnerabilities by virtue of which the 
successful attacks result in fnancial losses. Risk assessment identifes 
all the vulnerabilities and potential threats that can exploit those 
vulnerabilities in the system. For computing the risk assessment, a 
vulnerability is defned as the probability of a successful attack, while 
a threat is treated as the intention to cause harm or exercise the 
vulnerability in the FinTech industry. Whenever a threat exploits a 
vulnerability, it has some consequences, which represent the negative 
impact as a result of exploiting vulnerability. All these defnitions are 
derived from the International Organization for Standardization and 
the International Electrotechnical Commission (ISO/IEC) 27000 series 
standards and National Institute of Standards and Technology (NIST) 
guidelines [49]. 

To substantiate, a cybercrime gang named “OldGremlin” targeted 
a Russian bank with a ransomware attack in 2020. The gang used 
spear phishing e-mails to enter the bank’s network and then encrypted 
its data. The gang demanded a ransom of around USD 50,000 to 
provide the decryption key [46]. In this incident, ransomware is the 
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cyberattack (threat), spear phishing is the method of reaching the 
network and executing remote code (vulnerability) which was later 
used to encrypt data, and the encrypted data act as the consequence 
of this attack. All such vulnerabilities that are exercised by threats and 
their consequences are added to assess risk. 

Risk assessment can be performed in a qualitative and quantitative 
manner. Qualitative risk assessment is subjective in nature and assigns 
intangible values to the losses. Qualitative methods use various levels 
of appraisement according to expert decisions. On the other hand, 
quantitative risk assessment measures losses in numbers and assigns 
monetary value to it. It also assigns severity value to losses (low, 
medium, and high). It makes use of matrices, numerical values, and 
mathematical formulae to compute loss due to risk. A combination of 
qualitative and quantitative assessment is also used and is called hybrid 
risk assessment. 

The primary challenge in FinTech risk assessment is the unavail-
ability of historical data related to cyber-threats. Since every fnancial 
institution has a market value and reputation among competitors, it 
does not want to reveal to the world at frst that it became a victim of 
a cyberattack. If some fnancial institutions accept being a target, they 
do not share the cyberattack data due to several reasons, including 
sensitivity of customer fnancial data, legal policies, compliance with 
fnancial standards, and reputation. 

6.10.3 Risk Analysis 

Risk analysis is a three-step procedure that (1) identifes critical 
resources, (2) determines threats that can exploit the vulnerabilities 
to put the resources at stake, and (3) evaluates risk by assigning a 
rating to them. This section addresses the step-by-step procedure used 
to analyze risks and puts forward the existing risk analysis strategies 
for FinTech. 

Risk analysis measures the likelihood of occurrence of all threats 
and vulnerabilities, and the magnitude of the impact of all risks on 
the FinTech industry. A qualitative risk analysis performs subjective 
analysis in which risk matrix is created as per NIST guidelines as 
shown in Table 6.2 [49]. Risk matrix maps the likelihood of threats and 
vulnerabilities to the magnitude of impact to determine an overall risk 
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TABLE 6.2 Sample Risk Matrix 

Likelihood Impact 
Low Medium High 

High Low Medium High 
Medium Low Medium Medium 
Low Low Low Low 

rating. On the other hand, a quantitative risk analysis is objective in 
nature and follows the scientifc and data-intensive approach to analyze 
the impact of risks in terms of cost, time, and critical infrastructure 
consumption. 

Based on the exemplary risk matrix, if the likelihood of occurrence 
of a threat is high, and the magnitude of the impact is low, then the 
risk level is considered low. Similarly, if both the likelihood and impact 
are high, then the risk level is high. The risk matrix facilitates the 
upper management to prioritize risks and take the appropriate actions 
based on the level of risk. 

6.10.4 Risk Monitoring, Reporting, and Mitigation 

Monitoring cybersecurity risks is important to collect cyber-data for 
future risk analyses. There are certain standard risk policies and 
guidelines for efective risk monitoring and reporting. 

• Organizational Policies: At the beginners’ level, every organi-
zation has its own risk monitoring policy which is designed 
by the upper management and followed by the middle-
level management. This policy covers several basic rules and 
regulations related to cyber-risks that the employees must abide 
by. The depth of rules and safety measures to protect sensitive in-
formation depends on several crucial factors such as organization 
size, budget, importance of fnancial data, risk acceptance level, 
and exposure to vulnerabilities. Organizational policies such as 
strong passwords, knowledge of social engineering, trained staf, 
and confdentiality of sensitive fnancial data are some of the 
fundamental practices that need to be followed to reduce cyber-
risks. Some organizations might prefer to avoid or accept the 
risk, while others may prefer to mitigate it. The analogy of 



182 ■ Cybersecurity and High-Performance Computing Environments 

implementing cybersecurity risk monitoring and review policy 
varies for every FinTech industry. 

• Risk Guidelines: Apart from organizational policies, FinTech 
frms also prepare risk guidelines that defne the extent to which 
a risk can be tolerated and what actions are required in case that 
risk exceeds a certain threshold value. 

• International Cybersecurity Risk Management Standards: To 
monitor cyber-thefts, the fnancial sector must stringently 
implement cybersecurity risk management standards released by 
international organizations such as NIST and ISO/IEC. 

There are four ways to address a cyber-risk as part of the mitigation 
policy [50–52]: 

• Risk acceptance is the strategy adopted by a fnancial organiza-
tion to accept risk after understanding its consequences for the 
business. 

• Risk avoidance is used to avoid altogether the activities posing a 
minor risk to a business. 

• Risk transfer is a two-step policy in which some part of the risk 
is accepted in the frst step and the rest is transferred to another 
party in the second step. 

• Risk mitigation is the procedure to control the risk and its 
consequences to reduce it, that is below the threshold value of 
risk acceptance to business. 

Handling risks in the fnancial sector involves using a combination of 
all these ways; that is, some risks are avoided, some are transferred, 
some are mitigated, and the rest are accepted. 

Risk mitigation is a plan that comprises preparing a new cyberse-
curity policy (in case it is not available) or updating an existing policy 
document to reduce the negative impact of risk. Since every country 
and each company in a country has diferent cybersecurity risk chal-
lenges, the policy to mitigate risks also varies depending on the type of 
company and its requirements for cybersecurity defense. The impact of 
risk is a weighted factor associated with each vulnerability based on the 
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severity of that vulnerability. The mitigation strategies aim to accept, 
avoid, transfer, share, or mitigate the risk depending on the scope of 
risk response decisions delegated by the organizational management. 

In order to compute the impact and fnd the severity of the 
vulnerability, the Common Vulnerability Scoring System (CVSS) 
provides a variety of measures for scoring each vulnerability. CVSS 
assigns a score to vulnerabilities to prioritize them and execute the 
mitigation policy to alleviate them. Once the impact is computed, the 
vulnerabilities are prioritized to perform response actions according 
to mitigation policies. CVSS score is represented by a CVSS vector 
containing several parameter–value pairs separated by a forward slash, 
and each parameter and value are separated by a colon. 

For example, WannaCry vulnerability (vulnerability identifer: 
CVE-2017-0144 [53] ) is identifed by the CVSS vector AV:N/AC:H/ 
PR:N/UI:N/S:U/C:H/I:H/A:H, where AV represents the attack vector 
(N – network); AC is the attack complexity (H – high); PR means 
the privilege required (N – none); UI is the user interaction (N – 
none); S represents the scope (U – unchanged); and C (H – high), 
I (H – high), and A (H – high) denote confdentiality, integrity, and 
availability impact, respectively. The values of these parameters for 
this example are specifed in the brackets. 

CVSS v3.1 calculator computes the base score of this vulnerability 
by using the following equations: 

Impact Sub Score (ISS) = 1 − [(1 − C) ∗ (1 − I) ∗ (1 − A)] 6.42 ∗ ISS, If scope is unchanged (6.1) 
= 7.52 ∗ (ISS − 0.029) If scope is changes−3.25 ∗ (ISS − 0.02), 

Exploitability (Exp) = 8.22 ∗ AV ∗ AC ∗ PR ∗ UI (6.2) 

Base score = 0& if impact ≤ 0 
Roundup If scope is unchanged(min[(impact + Exp), 10]), 

= 
Roundup If scope is changed(min[1.08 × (impact + Exp), 10]), 

(6.3) 

https://min[1.08
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The metric values of all the variables in the equation are available at 
[54]. For this example, we compute the CVSS score as follows: 

ISS = 1 − [(1 − 0.56) ∗ (1 − 0.56) ∗ (1 − 0.56)] = 0.914816 (6.4) 
Impact = 6.42 ∗ 0.914816 = 5.87311872 (6.5) 
Exp = 8.22 ∗ 0.85 ∗ 0.44 ∗ 0.85 ∗ 0.85 = 2.2211673 (6.6) 
Base score = Roundup (min [(5.87311872 + 2.2211673) , 10]) = 8.1 

(6.7) 

Finally, the outcomes of a risk mitigation plan and lessons learned from 
mitigating risks are repeatedly fed into the risk analysis phase to tackle 
future vulnerabilities. 

Efective risk management on various levels is crucial to ensure 
that cybersecurity investments are commensurate with the underlying 
risk. As with other fnancial risks, frms must decide how to manage 
their exposure to cyber-threats. The risk identifed, analyzed, and 
evaluated in the risk assessment needs to be actively managed, 
including reducing, transferring, and avoiding risk. 

Indeed, FinTech risk management represents a central point 
of interest for regulatory authorities and require research and 
development of novel measurements. Across the world, there is a strong 
need to improve the FinTech sector’s competitiveness, introducing a 
risk management framework that can supervise FinTech innovations 
without stifing their economic potential. A structure that can help 
both FinTech and supervisors: on the one hand, FinTech frms need 
advice on how to identify opportunities for innovation procurement 
such as in advanced regulatory technology (RegTech) solutions. On 
the other hand, the supervisory bodies’ ability to monitor innovative 
fnancial products proposed by FinTech is limited, and advanced 
supervisory technology (SupTech) solutions are required. A crucial 
step in transforming compliance and supervision is to develop uniform 
and technology-driven risk management tools, which could reduce the 
barriers between FinTech and supervisors [55]. 

6.11 CONCLUSIONS 

Financial market infrastructures refer to critical fnancial institutions 
that are involved in clearing, settlement, and recording of monetary 
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transactions in the form of payments, securities, custody activities, 
and trading. There are fve essential components of FMIs, including 
payment systems, central security depositories, security settlement 
systems, central counterparties, and trade repositories. Secure and 
fast monetary transactions help in economic growth of the global 
fnancial industry. This can be achieved by integrating HPC with 
FMIs. The participating entities can be exposed to several types 
of fnancial risks such as systemic, legal, credit, liquidity, custody 
and investment, and operational risks. These risks can further lead 
to cybersecurity issues that can be exploited to cause cybersecurity 
risks to FMIs. Furthermore, HPC also comes equipped with certain 
cybersecurity issues. To understand these cyber-issues, the fnancial 
risks are associated with security objectives such as confdentiality, 
integrity, availability, accountability, and authenticity. This chapter 
mapped various types of fnancial risks with cybersecurity objectives 
to identify cybersecurity issues in FMIs. It further presented diverse 
cyberattacks launched against fnancial institutions, especially FMIs, 
with an objective to steal sensitive information, disrupt essential 
services, modify information, and make money. These cyberattacks 
instigate cyber-risks that can be catastrophic for the fnancial industry. 
Therefore, it is pertinent to assess, analyze, monitor, report, and 
mitigate cybersecurity risks in FMIs to maintain fnancial stability 
and improve economic growth of the fnancial market. Finally, the 
chapter detailed cyber-risk mitigation processes by taking WannaCry 
ransomware as an example to remedy cybersecurity risks in FMIs. 
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[33] Shaofang Li, and Matej Marinč, Economies of scale and scope in fnancial 
market infrastructures, Journal of International Financial Markets, 
Institutions & Money, Vol. 53, pp. 17–49, 2018. 

[34] Emanuel Kopp, Lincoln Kafenberger, and Christopher Wilson, Cyber 
risk, market failures, and fnancial stability, International Monetary Fund 
working paper, pp. 1–36, 2017. 

[35] Fuchun Li, and Hector Perez-Saiz, Measuring systemic risk across 
fnancial market infrastructures, Journal of Financial Stability, Vol. 34, 
pp. 1–11, 2018. 

[36] Bruce Nikkel, Fintech forensics: Criminal investigation and digital 
evidence in fnancial technologies, Forensic Science International: Digital 
Investigation, Vol. 33, pp. 1–7, 2020. 

[37] Bank for International Settlements, Cyber resilience in fnancial market 
infrastructures, pp. 1–19, 2014. 

[38] Jungho Kang, Mobile payment in Fintech environment: Trends, security 
challenges, and services, Human-centric Computing and Information 
Sciences, Vol. 8(32), pp. 1–16, 2018. 

[39] Sobia Mehrban, Muhammad Waqas Nadeem, Muzammil Hussain, 
Mohammad Masroor Ahmed, Owais Hakeem, Shazia Saqib, Miss Laiha 
Binti Mat Kiah, Fakhar Abbas, Mujtaba Hassan, and Muhammad Adnan 
Khan, Towards secure FinTech: A survey, taxonomy, and open research 
challenges, IEEE Access, Vol. 8, pp. 23391–23406, 2020. 

[40] Keke Gai, Meikang Qiu, and Xiaotong Sun, A survey on FinTech, Journal 
of Network and Computer Applications, Vol. 103, pp. 262–273, 2018. 

[41] Arnoud Boot, Peter Hofmann, Luc Laeven, and Lev Ratnovski, FinTech: 
What’s old, what’s new? Journal of Financial Stability, Vol. 53, pp. 1–37, 
2021. 

https://www.hpcwire.com
https://www.hpcwire.com
https://www.hpcwire.com
https://www.therealizationgroup.com
https://www.therealizationgroup.com
https://www.therealizationgroup.com
https://www.nist.gov
https://www.nist.gov
https://www.nist.gov


HPC and Cybersecurity Risks in FMIs ■ 189 

[42] Bank for International Settlements. The interdependencies of payment 
and settlement systems, https://www.bis.org/cpmi/publ/d84.pdf, pp. 1– 
83, 2008. 

[43] Financial Market Infrastructure Risk, Current report of the fnancial 
market infrastructure risk task force, New York, pp. 1–19, 2007. 

[44] Covid-19 and cyber risk in the fnancial sector, BIS Bulletin, No. 37, 
2021, https://www.bis.org/publ/bisbull37.pdf. 

[45] Financial Services Information Sharing and Analysis Center (FS-ISAC) 
(2020): COVID-19 efects on cybersecurity survey, July, 2020. 

[46] Timeline of Cyber Incidents Involving Financial Institutions, 2020. 
https://carnegieendowment.org/specialprojects/protectingfnancial 
stability/timeline. 

[47] Wiem Tounsi, and Helmi Rais, A survey on technical threat intelligence 
in the age of sophisticated cyberattacks, Computers & Security, Vol. 72, 
pp. 212–233, 2018. 

[48] In Lee, and Yong Jae Shin, Fintech: Ecosystem, business models, 
investment decisions, and challenges, Business Horizons, Vol. 61, Number 
1, pp. 35–46, 2018. 

[49] Guide for Conducting Risk Assessments, NIST special publication 800-30 
revision 1, pp. 1–95, 2012. 

[50] Shon Harris, and Fernando Maymi, CISSP All-in-One Exam Guide, 8th 
edition. New York: McGraw-Hill, 2018. 

[51] Douglas Landoll, The Security Risk Assessment Handbook: A Complete 
Guide for Performing Security Risk Assessments, 2nd edition, Boca 
Raton, FL: Auerbach Publications, 2006. 

[52] Evan Wheeler, Security Risk Management: Building an Information 
Security Risk Management Program from the Ground Up. Waltham: 
Syngress, 2011. 

[53] CVE-2017–0144 Detail, https://nvd.nist.gov/vuln/detail/cve-2017-0144. 
[54] Common vulnerability scoring system version 3.1: Specifcation docu-

ment, https://www.frst.org/cvss/specifcation-document. 
[55] Paolo Giudici, Fintech risk management: A research challenge for 

artifcial intelligence in fnance, Frontiers in Artifcial Intelligence, Vol. 1, 
pp. 1, 2018. 

https://www.bis.org
https://www.bis.org
https://carnegieendowment.org
https://nvd.nist.gov
https://www.first.org
https://carnegieendowment.org


https://taylorandfrancis.com


C H A P T E R 7 

Live Migration in HPC 
Anil Kumar Gupta and Amarjeet Sharma 
Centre for Development of Advanced Computing (CDAC) 

Aditi Pandey, Kaustubh Patil, and Sanskar Sharma 
MIT Academy of Engineering 

CONTENTS 

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 
7.1.1 Introduction to Live Migration . . . . . . . . . . . . . . . . . . . . 192 

7.1.1.1 Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 
7.1.1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 
7.1.1.3 Efciency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 
7.1.1.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 

7.1.2 Introduction to Cloud Computing . . . . . . . . . . . . . . . . . 194 
7.2 Live Migration in VM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 

7.2.1 Live VM Migration Techniques in Cloud . . . . . . . . . . 196 
7.2.1.1 Post-Copy Approach . . . . . . . . . . . . . . . . . . . . . 197 
7.2.1.2 Pre-Copy Approach . . . . . . . . . . . . . . . . . . . . . . 200 

7.2.2 Research Challenges in VM Migration . . . . . . . . . . . . 202 
7.2.3 Security in Live VM Migration . . . . . . . . . . . . . . . . . . . . 203 

7.3 Live Container Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 
7.3.1 Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 

7.3.1.1 Memory Migration . . . . . . . . . . . . . . . . . . . . . . . 207 
7.3.1.2 Network Migration . . . . . . . . . . . . . . . . . . . . . . . 208 

7.3.2 Type of Migration to Manage Cache Transfers . . . . 208 
7.3.2.1 Suspend/Resume Migration . . . . . . . . . . . . . 208 
7.3.2.2 Record–Replay Migration . . . . . . . . . . . . . . . . 209 

7.3.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 
7.3.3.1 Checkpointing and Restoring in CRIU . . 210 
7.3.3.2 Checkpointing and Restoring in 

OpenVZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 
7.3.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 

DOI: 10.1201/9781003155799-7 191 

https://doi.org/10.1201/9781003155799-7


192 ■ Cybersecurity and High-Performance Computing Environments 

7.3.5 Comparing VMs vs. Containers via 
High-Availability/Fault Tolerance (HA/FT) 
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 
7.3.5.1 HA in Hypervisor-Based Platforms . . . . . . 214 
7.3.5.2 HA in Container-Based Platforms . . . . . . . 217 
7.3.5.3 Clustering Eforts for Containers . . . . . . . . 220 

7.4 Attacks on Live Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 
7.4.1 Improper Access Control Policies . . . . . . . . . . . . . . . . . . 220 
7.4.2 Unprotected Transmission Channel . . . . . . . . . . . . . . . . 222 
7.4.3 Loopholes in Migration Module . . . . . . . . . . . . . . . . . . . . 222 

7.5 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 
7.5.1 Isolating the Migration Trafc . . . . . . . . . . . . . . . . . . . . . 223 
7.5.2 Network Security Engine-Hypervisor (NSE-H) . . . . 224 

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 

7.1 INTRODUCTION 

7.1.1 Introduction to Live Migration 

The live migration technique is a very trending topic in today’s era in 
connection with the virtualization technology in development, which 
is widely used in diferent computing environments from the single-
processor computers to the large cloud solutions and data centres 
at present. Live migration means the process of transferring a 
running virtual machine/application among varying physical machines, 
but without disconnecting the application or the client. Storage, 
memory, and network connectivity of the VM are transferred from 
the original guest machine to the destination. It is also referred as low-
latency migration that does not disrupt the TCP connections to the 
direct-access device being migrated. 

The main goal of a VM live migration is to enable maintenance 
or upgrades to be executed on a VM without letting any of the 
virtual machine’s user experience downtime during the migration. Live 
migrations are also known as seamless live migrations where there’s no 
apparent downtime to the end user during the migration process. 
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7.1.1.1 Needs 

Migration of VM is acquiring more importance in today’s world, 
for improving the utilization of resources, load balancing the processing 
nodes, isolating the applications, and tolerating the faults in virtual 
machines to increase the portability of nodes and to rise the efciency 
of the physical server. Live migration enables administrators to 
easily add, on the fy, new hosts to a Hyper-V cluster and also 
allows to instantly increase resources required by VM workloads. Live 
migration can also be used to enable administrators to access various 
service hosts during the normal business hours and without afecting 
business-related services and applications. 

7.1.1.2 Applications 

There are various applications of live migration. Live migration allows 
users to keep their instances running during regular infrastructure 
upgrades and maintenance, and hardware failures, such as memory, 
network, and power grid maintenance in the data centres, and the 
failure of CPU, NIC, disks, power, and so on. Updates related to 
security need to respond quickly along with system confguration 
changes, including the change in the size of the host root partition, 
for the storage of packages and host image. 

7.1.1.3 Efficiency 

Live migration has proved to be more efcient than ofine migration 
in terms of maintenance, reachability, load balancing, and ofoading. 
There might be several servers in the network experiencing heavy load 
due to their position in a dense area or because of the service type they 
run. In this scenario, it is benefcial to distribute the load among other 
servers in the network via live migration of VMs. 

The performance of migration process depends on many other 
factors, such as the size of workload it serves, the memory allocated to 
the VM, and the transmission rate at which the migration is occurring. 
The time taken by the migration process degrades the network 
performance. Transferred VMs increase the latency factor, leading 
to more imposed link delay and network performance degradation. 
Overhead cost of live migration is considerable, but in total, it results 
as a disadvantage. 
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7.1.1.4 Security 

Live migration is a quite peculiar and unique idea, and aspects 
related to its security are not fully discovered. The prevalence of cloud 
computing has gained the attention of many hackers and their attacks. 
These attacks may vary from man-in-the-middle (MITM) attacks to 
denial-of-service (DoS) attacks. Bandwidth stealing, falsely advertising, 
passive snooping, and active manipulation are some of the active and 
passive attacks possible while migration is under process. 

To address the above issues, we use various cryptographic 
algorithms that help in encryption and decryption of data, thereby 
detecting and preventing such attacks. Also, certain steps must 
be considered at both ends when migration is initiated, such as 
authenticity of person initiating migration, stepwise entities security 
perseverance, and confdentiality of migration information. 

7.1.2 Introduction to Cloud Computing 

“Cloud computing is the on-demand availability of computer system 
resources, especially data storage (cloud storage) and computing 
power, without direct active management by the user”, as written 
on Wikipedia. 

Cloud computing is maybe the foremost most famboyant tech-
nological innovation of the 21st century. It is rising as an important 
paradigm shift; however, computing demands will be met in future. It is 
remodelling the role of IT in business in recent years. As virtualization, 
that is a crucial technology part in cloud computing and has become 
more and more crucial in many actions of the IT feld, as services and 
applications are always running on virtual machines, and in order to 
assure a maximum of availability and a satisfying quality of service 
(QoS) to shoppers/clients and users, the idea of virtual machines live 
migration proves to be extraordinarily important, given its utility and 
edges. Cloud computing is not just simply meant for a few organizations 
and specifc businesses; it’s additionally helpful for a normal person 
as well. It permits one to run software programs without installing 
them on his computers; it permits him to store and modify/access 
his multimedia or transmission content via the Internet; it permits 
him to introduce, develop, and check programs while not essentially 
having servers; and what not. Cloud computing is a 21st century 
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marvel that holds its importance in almost every feld you’ll be able to 
think about. 

Cloud computing is predicted to get rid of the software piracy 
forever. Software piracy is not a healthy habit for the economic 
development of the country. And this will be removed or stopped 
solely by software frms, publishers, and distributors by using and 
implementing cloud computing within the business system. The simple 
methodology they will use is to prevent selling the software online for 
downloading and ofine for selling. Instead, charge it on a monthly or 
yearly basis. The adoption of cloud computing infrastructure will also 
cut back the cost of conducting business. Now frms/companies can 
store, back up the data or information, and launch a personal cloud 
network by using the existing infrastructure of cloud computing at a 
lower cost. They don’t need to get any physical parts to manage and 
store information or data. 

The growing age of cloud computing permits us to access and 
share computing and storage resources over the Internet. Conversely, 
the infrastructure cost of the cloud reaches an improbable limit. 
Therefore, virtualization concept is applied in cloud computing systems 
to assist users and owners to gain higher usage and economical and 
efcient management of the cloud with the least possible cost. And 
live migration of VMs further helps us to better use the cloud resources 
with their benefts mentioned previously. 

There are numerous examples that how technology has modifed 
our lives to be easier, quick, and comforting. And cloud computing 
is the next massive thing in information technology that will make 
life even easier than it is currently. That’s why we have a tendency 
to use machines to make life easier. In the end, change is always 
challenging for everyone. Similarly, it’s challenging to go from an in-
house network to virtual personal or cloud networks, particularly when 
in-house information or data security and user piracy are the biggest 
considerations. 

7.2 LIVE MIGRATION IN VM 

“A virtual machine is a virtual representation, or emulation, of a 
physical computer”, by IBM, is the ofcial defnition of the virtual 
machine. Various systems available in the market help in performing 



196 ■ Cybersecurity and High-Performance Computing Environments 

virtualization tasks. That is, they can help in running multiple virtual 
machines on the same system in parallel. To name a few, there are 
VirtualBox, KVM, and Microsoft Hyper-V. As discussed previously, 
cloud computing associated with various features such as networking 
tools, storage spaces, server, and applications can undoubtedly increase 
the efciency and play a key role in high-performance computing by 
taking a step towards virtualization. Virtualization comes bearing gifts 
such as resource utilization, reliability, portability, application security 
by application isolation, and hence improved synchronization and resis-
tance to fault tolerance. As virtualization allows multiple VMs to run 
concurrently, it also provides the service of live migration of VM from 
one node to another node in a cluster of nodes. As it gives isolation, 
it hence provides a clean separation between hardware and software. 
Technically, there are two types of migrations in VM: One is live migra-
tion and the other is cold migration. Let’s discuss how one diferentiates 
from the other: In cold migration, the machine loses its state and hence 
becomes noticeable like an interrupt from users’ point of view, while in 
live migration, on the other hand, the state of the VM is preserved and 
the migrating process is not noticeable from the user’s perspective. 

Here’s where live migration in VM comes in handy: 

1. Load Balancing: This prevents a server from overloading or 
overheating by migration of their workloads to other servers. 

2. Server Consolidation: These are conditions where servers that 
need maintenance can be brought down by migrating their works 
to other servers. 

3. Energy Distribution Control: As the workload is balanced, for 
efcient utilization of energy the servers that are currently not in 
use can be shut down to save energy and thus guarantee green 
cloud services. 

7.2.1 Live VM Migration Techniques in Cloud 

A cloud administrator migrates applications so that the load can be 
balanced among the clusters to increase efciency. Hence, live migration 
turns out to be a very important facility for management purposes. To 
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perform live migration, the current state of the VM such as the CPU 
states and memory pages must be migrated to the destination where 
it can then be resumed. 

Along with being able to migrate our VM, it’s also needed to be 
ensured that the VM live migration process occurs efciently. For this, 
we have diferent performance metrics that can help us to compare 
diferent techniques and adopt the one that suits our application more. 
For this, we have some defned key metrics that help in understanding 
the performance of a VM migration technique. These are as follows [1]: 

1. Preparation Time: The time when the migration is initiated and 
pages are transferred to the destination VM. 

2. Downtime: The time during which the machine’s runtime is 
stopped. 

3. Resume Time: The time between the start of execution of VM at 
destination and the end of migration is called resume time. 

4. Pages Transferred: The total number of pages transferred from 
source to destination including the duplicated. 

5. Total Migration Time: The total time between the start of 
migration from source from preparation till the end of migration 
by transfer of the last page at the destination. 

6. Application Degradation: The degradation of the performance of 
the applications within VM during migration. 

After knowing the various performance metrics, it is now time to 
discuss several live VM migration approaches. We have mainly two 
approaches used in VM live migration: post-copy memory migration 
and pre-copy memory migration. Let us discuss these live migration 
approaches one by one. 

7.2.1.1 Post-Copy Approach 

In the post-copy approach, the VM at the sending node is halted until 
the required minimal CPU states are migrated to destination node, and 
once transferred, the VM is resumed and the remaining memory pages 
are sent over the network to the destination. The post-copy approach 
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is a combination of four prime modules that include demand paging, 
active pushing, pre-paging, and dynamic self-ballooning that jointly 
make the post-copy approaches more methodical. 

Let’s have a quick review of each of the modules: 

1. Post-Copy Using Demand Paging: In this type of technique, 
once the VM launches at the target, the page is requested for 
every memory access fault occurred. However, a disadvantage 
associated with this method is that requesting for the page at 
each fault causes the VM to slow down and also leaves long-term 
dependencies unfetched. Hence, we use other approaches along 
with demand paging so as to lessen the network latency issue [1]. 

2. Post-Copy Using Active Pushing: Using active pushing, the pages 
are pre-emptively transmitted to the destination VM and any 
future page faults that occur are serviced separately by sending 
the requested page using demand paging. Along with this, to 
prevent sending of the same page multiple times, it makes sure 
that the page which is serviced separately is not sent again with 
active pushing [1]. 

3. Post-Copying Using Pre-paging: Pre-paging technique aims at 
minimizing the page faults arising at the destination VM by 
anticipating the possible page references that can be made in 
future by analysing the sequence of memory access made. By 
minimizing the page faults and indirectly minimizing the page 
requests made, it makes the system more efcient. 

Pre-paging strategy is imposed using the bubbling algorithm. 
The diferent strategies are: 

(a) Bubbling with a Single Pivot: In this type of strategy, a 
particular page is selected as pivot. Around this pivot, active 
pushing of the page that is located close to it is done at 
each iteration. As this strategy involves expanding the reach 
around a point similar to a bubble, therefore it is known 
as bubbling. Whenever a page fault arises and is requested 
by the destination, the pivot is now shifted to this new 
requested page in the memory and the selection of next 
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pages to be pushed is done that according to this newly 
selected pivot. 

(b) Bubbling with Multiple Pivots: As the term itself implies, 
this approach utilizes multiple pivots instead of a single 
pivot. It is quite usual that multiple processes can run at 
a time and hence concurrently memory access at diferent 
locations is possible. Hence, in this context, having multiple 
pivots helps us to capture the locality of reference across 
multiple processes and helps in appropriate paging so as to 
decrease the number of subsequent page faults. Here, similar 
to the previous approach bubbling strategy is employed, 
however in this at once multiple pivots are expanded and all 
the memory pages which are symmetrically located around 
it are pushed one by one. Deciding an appropriate limit on 
the number of pivots is important as because having too 
many pivots can afect the system performance. Once we 
decide with the upper limit for the number of pivots for any 
subsequent page fault, the least recently used policy can be 
used to replace a pivot with the new pivot as the demanded 
page. 

Along with the pivot selection, determining the direction 
of bubble expansion is essential in both single- and multiple-
pivot approaches and, in this case, the bidirectional expansion 
has been proved to be benefcial as compared to forward or 
backward unidirectional expansions. While expansion of the 
bubble continues, this approach also ensures that a given page 
has not been transmitted previously by a previous pivot or by 
either of the neighbouring pivots, thereby reducing waste work 
and maintaining coherency [1]. 

4. Dynamic Self-Ballooning: The source virtual machine can have 
a huge amount of free unallocated pages, and migrating all of 
these to destination can be a waste of network as well as of the 
CPU resources, making the overall migration process inefcient 
by increasing the total migration time. To overcome this problem, 
we have a technique called ballooning that helps in resizing the 
allocated memory of a VM. To implement this, a balloon driver 
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resides in the guest kernel. The task of this balloon driver is either 
to retrieve the least important pages from the kernel and send 
them to hypervisor (infating the balloon), or to request some 
pages from hypervisor and return them to the kernel (defating 
the balloon). In this way, any VM to be migrated can be defated 
and any destination VM that requires more memory can be 
infated. This type of ballooning occurs at every iteration and 
is known as dynamic self-ballooning. This way the dynamic self-
ballooning approach helps to reduce the number of free pages, 
thereby making our migration process more efcient. Dynamic 
self-ballooning reacts dynamically to each invocation by infating 
when memory is needed and by defating when memory can be 
released or transferred. Hence, by determining the ideal interval 
of ballooning, we can optimize the overall performance of our 
process [1]. 

7.2.1.2 Pre-Copy Approach 

In the pre-copy approach, all the memory pages are migrated to the 
destination while the VM is still executing at source. And if memory 
change or overwrite occurs, then those modifed pages or the dirtied 
pages are retransmitted to the destination. Until the application’s 
writable working set becomes small or reaches to maximum limit of 
iterations, the VM is halted and all the remaining dirty pages and CPU 
state are then transferred. Pre-copy approach method tries to decrease 
the downtime of the source machine while increasing the migration 
time. 

Numerous techniques have been developed under the pre-copy 
approach. Below are few of those techniques: 

1. Improved Pre-Copy Approach: Among the several improved pre-
copy approaches, this one includes keeping the track of the 
commonly updated pages with the help of bitmaps such as 
TO_SEND which marks the memory pages that have been 
dirtied in previous iteration and need not be transferred in this 
particular iteration, TO_SKIP which records the pages that can 
be skipped over, and TO_FIX which tracks the pages that need 
to be sent at last. Along with this, it includes another bitmask 
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TO_SEND_LAST that marks the pages which are updated 
frequently and are to be sent at last. Such kind of method reduces 
the pages to be transferred and hence lowers the migration 
time. However, this has higher downtime in comparison with the 
traditional pre-copy approach [2]. 

2. Two-Phase Strategy: Basically, in one-phase strategy, the page is 
sent once it is dirtied in the prior iterations. On the other hand, 
in the case of two-phase strategy, the scheduler holds a bit more 
patience. It sees if the current page is not being dirtied for two 
consecutive iterations and then only it sends that particular page. 
This approach tries to decrease the unnecessary retransmitting 
of a page to decrease the amount of memory being transferred. 
However, it has a bounding condition according to which if the 
number of iterations performed are less or the number of dirty 
pages are less then it tries to remain in the one-phase strategy 
and if either of these conditions are not followed, then it shifts to 
two-phase strategy [3]. 

3. Pre-Copy Using Memory Compression: The given technique aims 
at reducing both the migration time and downtime. It follows a 
memory compression-based technique to compress the memory 
pages with the aid of a characteristic-based compression (CBC) 
algorithm and then transfer the pages, helping to reduce the 
migration time. However, the compression ratio, i.e. the amount 
by which a given memory should be compressed, needs to be 
chosen wisely as compressing the data requires an additional 
overhead of time, and hence, choosing the best compression ratio 
that maintains a balance between compression overhead and 
memory migration time is necessary [4]. 

4. Combined Checkpoint–Restore/Trace–Replay Technique: This 
method makes use of checkpoint–restore and trace–replay 
methods to maintain synchronization between the source and the 
destination. The CR and TR helps provide a syncing mechanism 
by sending the log fles of the source to the destination to 
emulate the working state at destination. While the log fles are 
being executed at destination, the CPU scheduler adjusts the log 
generation rate. This way it helps to reduce the downtime and 
has an acceptable total migration time [5]. 
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5. Integrated Replication with Scheduling: It proposes the archi-
tecture required to overcome the challenges of VM migration 
over WAN. In this, it replicates a VM image over diferent cloud 
sites and then chooses a copy of the image as the primary copy 
and propagates the additional changes over it. The replication 
strategy of VM is factored on the basis of the de-duplication 
techniques that try to reduce the migration latencies over 
WAN [6]. 

6. Delta Compression Technique for Large VMs: This pre-copy 
approach uses compression techniques to compress the memory 
page before transmitting so that the required time to transmit 
pages reduces. It aims at increasing the network throughput for 
shortening migration downtime rather than reducing dirtying 
rate, which degrades the performance of the VM. It uses an 
XOR binary run-length encoding compression technique for 
faster compression of the pages, thereby increasing the migration 
throughput [7]. 

7. Optimized Pre-Copy Live Migration: This optimized version 
of iterative pre-copy approach is aimed at meeting a faster 
optimal convergence point. Convergence point is the state in 
migration when the live migration is stopped and fnally stop 
and copy migration is used. The algorithm helps in deciding the 
convergence points by analysing the memory access patterns. It 
monitors the number of page changes per constant time interval 
and then uses linear regression to estimate the pages to be sent to 
determine the same page sampling interval at each iteration [8]. 

7.2.2 Research Challenges in VM Migration 

Despite various developments, there are still some challenges in the 
feld of VM migration: 

i. Reducing Both Downtime and Migration Time: Any of the 
approaches discussed is able to improvise either of the aspects, 
but not both, and hence to increase the overall efciency, there 
is still the need to fnd a better approach. 
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ii. VM Dependencies Are not Considered: The current methods do 
not focus on the inter-VM dependencies and do not take into the 
account the underlying topology being used. 

iii. Migration at Low Bandwidth over WAN: The task of migrating 
a large-sized VM at a high latency and low bandwidth over WAN 
at diferent geographical locations is not time efcient. 

iv. VMs with High Workload: When VMs are performing some 
computation- and memory-intensive tasks, then the migration 
speeds become quite low. 

v. Security in Live VM Migration: This is ensuring the security of 
VM at the same time not compromising on the performance. 

vi. Address Wrapping: Address wrapping from source to destination 
VM is quite intricate. 

7.2.3 Security in Live VM Migration 

Security is an essential factor to be taken care of while considering 
VM live migration. Live migrations can be quite susceptible to foreign 
attacks. Any third person in the same subnet can easily capture the 
migrating packets, and even direct attacks on the host VM are possible, 
which makes it lose its confdentiality, hence becoming a major concern. 
For this, there is the requirement of security systems to prevent these 
issues and here are some of the security approaches in live migration 
of VM: 

1) Security in Live VM Migration with IPsec Tunnelling: Here, 
the use of a secured channel through which the VM can be 
migrated is emphasized. With the help of IPsec tunnel, a secured 
channel can be established through which every packet that is 
transferred through the network would be encrypted and then 
sent. Due to this process, we have an overhead in execution time. 
However, this comes with a beneft of security of the system. To 
reduce the migration time, memory pages can be compressed and 
then sent to reduce the total migration time. One can think of 
encrypting the entire VM and then send it; however, it increases 
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the migration cost considerably and hence it’s not one of the best 
methods to choose for security [9]. 

2) Security in Live VM Migration with IPsec Tunnelling and Onion 
Routing Algorithm: The given method can be supposed as an 
upgraded approach over the VM migration with IPsec tunnelling. 
The additional security feature it incorporates is the use of TOR 
onion routing that helps in protecting the data by maintaining 
anonymity of the migration transactions [10]. 

3) Role-Based Mechanism for Secure Migration: This mechanism 
is based on identifying the valid role of any user/machine, and 
the migration is proceeded if and only if the given constraints are 
satisfed. It’s a hardware- and software-based solution for creating 
a secure mechanism. The architecture consists of following 
features: 

• Attestation Service: This feature helps the source VM 
hypervisor to cryptographically introduce itself to the desti-
nation VM hypervisor by communicating what application 
is running inside it and thereby helping the destination to 
identify trusted applications for further communication. 

• Seal Storage: TPM (Trusted Platform Module) is respon-
sible for encrypting data for attestation service. It also 
includes the hash along with the encrypted data. The TPM 
only allows the OS with the same hash to unseal it, thereby 
maintaining protection of the data. 

• Policy Service: Policy service defnes and manages the role-
based policies for migration-related decisions such as who 
has the authority to migrate VM or at which hosts the 
migration is allowed. 

• Migration Service: Migration service is responsible for all the 
migration-related tasks. It initiates the attestation requests 
to the destination to check if it meets all the security 
requirements after which only the migration can take place. 

• Secure Hypervisor: This helps to protect the process of guest 
OS by runtime memory management. It provides the service 
of encrypting and storing keys and data and also provides 
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with remote attestation ability to ensure the trustworthy 
environment is invoked [11]. 

4) Lightweight Authentication Framework for Securing VM Mi-
gration: Most of the VM migration securing mechanisms are 
not suitable for voluminous message transfer. Prior methods 
involving encrypting and decrypting the message or source and 
host authentication mechanism can increase the transmission 
delay. This given approach illustrates the use of lightweight 
authentication framework in a data centre network. It includes 
three modules: authentication, migration management, and 
migration analysis and monitoring. 

• Authentication: Before participating in migration, authenti-
cation protocols such as Dife–Hellman and IKE can be used 
for data centre authentication. Authentication frameworks 
consist of a lightweight handshake mechanism using the 
Dife–Hellman method between a physical machine and the 
data centre, which is done with the help of a pair of keys – 
private and public keys – of the corresponding machine. 

• Migration Management: Migration management consists of 
two sections – data encryption and decryption and host-to-
host protection. The data encryption and decryption part 
is carried out using cryptography techniques such as RSA, 
AES, and DES, whereas host-to-host protection is provided 
by IPsec tunnelling. 

• Migration Analysis and Monitoring: Data centre will act 
as a monitor for migration analysis and monitoring. The 
data centre will be equipped with IDS (intrusion detection 
system) to detect any suspicious and malicious activity, 
and if a potential threat is recorded, then in that case, it 
communicates a protected server for patch [12]. 

7.3 LIVE CONTAINER MIGRATION 

Stepping one level up towards the process of live migration! The use 
of containers. The underlying processes of VM migration of having the 
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image of OS processed frst and then applying that instant make the 
process less portable and more redundant. 

Containers similar to virtual machines provide the virtual en-
vironment that encases all the required dependencies required for 
any application to run on it. However, containers do not require 
the extra bulky OS; instead, they are just wrappers that directly 
request the kernel for accessing the resources. Application and process 
isolation are provided with the use of Linux resource isolation features 
such as control groups and namespaces that allow processes to work 
independently. Hence, not having the overhead of an extra hypervisor 
or OS makes containers a very lightweight and portable migration 
option as compared to virtual machines. Let’s completely understand 
the process of live container migration. 

7.3.1 Migration 

The process of moving a container which might have an application, a 
program, or a website running in it from one server to another sever 
is called live container migration. Migration can help in creating 
in a sense of security in the context of fault tolerance while running 
the application as when a system failure occurs the container can be 
painlessly migrated to another host. Apart from fault tolerance, this 
technique can also provide services such as load balancing, scaling the 
applications and reallocating the resources accordingly, and tackling 
hardware failures. Similar to virtual machines, the live container 
migration also includes three main classes, which include 

1) Memory migration 

2) Process migration 

3) Disk migration 

Considering this technique to be used in high-performance computing, 
it is expected that the migration process performs with zero downtime. 
For all the applications running in the container and the container 
itself, it should appear that the container is in the same location even 
during migration. Although we have a high expectation, we assume 
there would be a slender decrement in the performance during the 
migration process, still making sure the overall efect is quite proftable. 
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In the following, we will discuss diferent migration and replication 
procedures. Preferably, it is assumed that during the process of mi-
gration there is transfer of the complete state of the original container 
that is the state of disk, memory, and network connections [13]. 

7.3.1.1 Memory Migration 

Memory Migration can again be divided into two types: 

1) Post-copy 

2) Pre-copy. 

Post-copy: The memory migration via post-copy approach takes place 
such that the memory is transferred after the state of the process is 
transferred to the target location. 

Steps to accomplish the post-copy migration are the following: 

1) Stop the running container at the source. 

2) Send the register state, process state, and devices’ states to the 
target location. 

3) Resume the container that reached the destination without 
memory. 

4) When the container is trying to run when it tries to access the 
memory that is not present, the required memory is transferred 
to the target location via the page fault mechanism. 

Pre-copy: The memory migration via pre-copy approach takes place 
such that the memory is transferred on a continuous repeat frst; after 
that, the state of the process is transferred to the target location. 

Steps to accomplish the pre-copy migration are as follows: 

1) The container at the source continues to run; during this time, 
the memory pages are transferred to the destination. 

2) The memory transfer here is a repetitive process; in order to 
maintain consistency, only the pages last modifed are copied to 
the destination. 
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3) Then the container at the source is stopped and then the register 
state, process state, and the devices’ states are transferred to the 
target location. 

4) Finally, the destination container is started. 

Similar to post-copy, pre-copy follows similar steps, with the only 
diference of the transferring memory step ahead in one and later in 
the other [13]. 

7.3.1.2 Network Migration 

With memory and CPU states, there should also be migration of the 
network connection states that is by preserving the open connections 
that the application in the container was using. These states can 
be achieved by retaining the original IP address, if the migration is 
happening on the same LAN. Otherwise, an ARP protocol can be 
generated to broadcast the destination address. But in the case where 
migration is happening over a large network such as WAN, then the 
existing technologies such as virtual private network (VPN), tunnelling, 
and DNS can be used. 

7.3.2 Type of Migration to Manage Cache Transfers 

7.3.2.1 Suspend/Resume Migration 

In order to achieve mobility in a secured manner, the strategy of 
suspend/resume migration is used. In this technique, the container is 
transferred in an inactive mode to the target location. The underlying 
processes that take place in the container migration are listed as 
follows: 

• The network connections are disconnected at the sources and 
then reconnected at the target host. 

• Then the processor state, register state, and devices’ states are 
sent to destination host. 

• Then the images, local persistent state, and ongoing network 
connections are migrated; also, the support for disconnected 
operation is ofered. 



Live Migration in HPC ■ 209 

• Then apply delta disk operations to optimize the migration 
process of disk. 

Delta Disk Operations: The disk migration process can be enhanced 
with the delta abstraction. The methodology of this notion is that the 
write operation in the source is seized and various deltas are created. 
Here deltas are the communication units containing information such as 
written data, size of the data, and location on the disk. The frst step 
of the process is keeping track of the stored data and locating data 
blocks that have changed due to recent updates, i.e. the last write. 
The latest updated data are then sent to the target host via WAN 
or LAN. Another recognizable feature of suspend/resume technique is 
the disconnected operations. In this type of operation, the clients have 
access to critical data during the unfortunate event of failures of data 
repository through the use of contents of the cache. The updates in the 
cache can be transferred when disconnection ends. 

7.3.2.2 Record–Replay Migration 

The technique of record–replay is majorly used for recovering the 
states. The methodology used to implement this technique is as follows: 

1) Find the last checkpointed state. 

2) From the logs obtained, repeat the events to get the desired 
results. 

Events: The events mentioned in the above technique can be cate-
gorized into deterministic and non-deterministic. In non-deterministic 
events, replaying is needed, which requires logging that could in 
turn afect the computation. However, deterministic events are the 
regular events such as memory, branching instruction, and arithmetic 
instructions, and the outcome of these events can be deterministic. 
Non-deterministic events are the interrupts that are caused by the 
input devices such as keyboard and mouse, and network and clock 
outcome cannot be determined when the process is repeated. This 
non-deterministic event can be further categorized into two classes as 
external input and time. The time events are the exact point during 
the execution when the event would occur, and the external input is 
data from other devices or human input requirements. 
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For replaying of a container, the non-deterministic events that help 
in the computation are needed to be logged. As deterministic events 
can be determined, they are not logged and can be computed during 
replay. Finally, putting all things together that is replaying the non-
deterministic events from the log and computing deterministic events 
can get the container to the desired state. However, the record–replay 
technique should try to minimize the challenges such as maximizing 
trace completeness, reducing log fle size, and trying to avoid low 
performance due to large overhead [13]. 

7.3.3 Case Study 

7.3.3.1 Checkpointing and Restoring in CRIU 

The essential phases in the process of live migration are checkpointing 
and restoring. This can be achieved using open-source project CRIU 
and P.Haul in OpenVZ. The CRIU here is a low-level technique that 
manages the saving and restoring of the checkpointed state. Similarly, it 
can perform the memory pre-copy or post-copy accordingly. Moreover, 
when P.Haul is implemented on top of CRIU, it helps in managing 
all checkpointing and restoring procedures and deals with fle systems 
simultaneously. 

• Checkpoint: During the checkpointing process, the CRIU freezes 
the container to ensure consistency and also dumps the process 
memory state. Hence, the checkpoint time includes the time 
taken to collect the process tree, and then freezing it, and 
then collecting the process resources which include memory 
mappings, timers, fle descriptors, and threads, and then fnally 
writing the resources in dump fles over the network to a 
remote page-server (the target location). From experimental 
evaluations, the checkpoint time for the MySQL container at 
stages with diferent numbers of records is diferent, resulting 
in a linear increase in the pagemap dump fle size from 100 to 
250 MB. Hence, the checkpoint time increases linearly with the 
size of the application’s memory state. In the microservice-type 
architecture, the expected memory usage of individual containers 
is <1 GB, which limits the checkpoint time to be <2 seconds. 
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• Restore: During the restoring process, the CRIU reads the 
fles that were dump during checkpointing, resolves the shared 
resources, forks the process tree, and restores the process’ 
resources. From experimental evaluations, the restore time for the 
MySQL container is ≈ 0.7−0.8 seconds for <250 MB dump size. 
Hence, the total expected application downtime is between 2 and 
3 seconds. With the recent incorporation in CRIU’s incremental 
memory, checkpointing capabilities should help in lowering the 
application downtime. 

As future work, there is a scope to evaluate this optimization and also 
to instrument CRIU to measure both the checkpoint and restore times 
at a per-resource requirement, so that we can prioritize and optimize 
for the individual resources [14]. 

7.3.3.2 Checkpointing and Restoring in OpenVZ 

OpenVZ also uses checkpointing and restoring methodology in order 
to achieve live migration. During the checkpointing process, the state 
of the running container is checkpointed and then restored later on 
the same or diferent system (target location). The whole process 
of checkpointing and restoring is transparent for the applications 
and the network connections. The container has the capability to 
reboot independently, given that it is provided with the required IP 
addresses, users, root accesses, memory, processes, and flesystem. As 
the container is an isolated entity, all the inter-process communications 
and the parent–child relationships are within container boundaries. 
Hence, it becomes very handy when the complete state is to be saved 
in a disk fle. As we know, the process of saving the complete state of 
a container is known as checkpointing. The saved disk fle is used to 
restart the container. The frst step of checkpointing and the last step 
of restarting are freezing the process. It helps to maintain consistency 
in the process and also reconstructing a frozen process is efortless. This 
freezing is achieved by sending a TIF FREEZE signal to all the process 
threads. In this, all the dependencies should be saved, which include 
identifers, process hierarchy, and shared resources such as the opened 
fles and the shared objects. Finally, these states should be restored 
when restarting is required at the target host. The network should be 
disabled by dropping all incoming packets, but at the same time, should 
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be preserved. Resources are restored from the process states, and this 
facilitates a special function called hook, which is added on top of each 
process stack during the restarting. The process then frst runs hook 
on restart and thus restores all of its resources. Simultaneously, for the 
init process of container, this hook restores networking state, which 
includes the interfaces, iptables, route tables, IPC objects, and mount 
points, and starts the process tree construction [14]. 

7.3.4 Performance 

The Voyager is a novel flesystem-agnostic and vendor-agnostic 
migration service that provides consistency in full-system migration. 
The Voyager combines CRIU-based memory migration together with 
the data federation capabilities of union mounts, which in turn helps 
in the minimization of the migration downtime. In Voyager, once a 
container is resumed at the target, it is provided with immediate 
access to its respective data storage with the help of Voyager’s data 
federation layer. This layer incurs performance overhead, which is 
measured using YCSB for diferent types of workload profles, including 
inserts, updates, reads, and scans. For each profle, in the YCSB’s 
load stage, we insert 1 M records to a database table, and in the run 
stage, we perform 1M record operations of respective types. The records 
were accessed using the Zipfan distribution for the popularity-based 
long-tail access patterns. For each workload profle, average application 
throughput (operations/sec) is measured every 10 seconds. 

Each experiment was performed via two application states: 

1) Baseline: The application state at the source host before it is 
migrated. 

2) Federation: The application state after it is migrated to the 
destination host, also having access to data through the 
federation layer. 

For common application read/write workload, the patterns observed 
are with 0%–3% overhead in steady state. The performance impact on 
the individual workload profles is as follows: 

The initial low throughput is attributed to the cache warming 
phase, and then in the steady-state phase it is observed to have 
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relatively stable performance. Every read operation via the federation 
layer makes the data access over NFS at the source. As a result, 
in the federation state, the read throughput drops by 20% during 
cache warming and by 1% in steady state. Unlike reads where a 
Zipfan pattern accesses popular records frequently, this workload 
accesses records in order, starting at a randomly chosen record key, 
and generates more unique read requests. Thus, even in steady state, 
we record a performance overhead of 10% for read accesses over NFS. 

Updates: In federation state, an update is essentially a CoW 
operation; that is, a fle is read from source over NFS, copied at the 
target, and then updated locally. MySQL stores its InnoDB tables and 
indexes in separate.ibd data fles. Thus, during the federation state 
when a record is updated, the respective index and tablespace fle 
is CoW’ed at the target host. Then, every subsequent update to the 
records is completed locally. Conclusively, it is observed that there is 
almost 75% performance overhead at the start and, in steady state, the 
update performance is on a par with baseline. 

Inserts: In federation state, each write operation that results in 
the creation of new fles is performed locally. Thus, we observe similar 
performance for baseline and federation state. The size of the table 
slows down the insertion of indexes by log N, assuming B-tree indexes; 
thus, a steady performance drop is observed for both states. 

Read/Update/Insert: In this profle, the IO workload is split into 
60:20:20 for read:update:insert. Finally, it observes 65% performance 
overhead at the start attributed to fle-copy during updates and NFS 
access for reads, and 3% overhead in steady state [14]. 

7.3.5 Comparing VMs vs. Containers via High-Availability/Fault
Tolerance (HA/FT) Solutions 

In the wake of digitalization, optimization in virtualization technologies 
in the past decades has led to their widespread acceptance and 
a growing trend towards hosting workload in virtualized platforms. 
Although the virtualization technology promises a reduction in the 
cost and complexity through various abstractions of physical resources, 
they also raise questions on the availability of applications hosted 
on the virtualized platforms. Virtualization retailers propose diferent 
HA/FT solutions to their customers. Among these solutions, the HA is 
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implemented by forming multiple levels of fault tolerance capabilities.
A standard HA solution consists of a collection of loosely coupled
servers that are self-contained and continuously monitored with the
heartbeat methodology. In the event of host failure, VMs or containers
can failover from one server to others. To guarantee service continuity,
a secondary replica is required to be tightly coupled and reliable with
the primary replica such that in case of failure, the replica is always
ready to take over without service interruption and data loss.

The HA/FT solutions may be significantly different at the time
of implementation; they share the same principle, which is duplicating
critical components through redundancy in an attempt to remove single
points of failure.

7.3.5.1 HA in Hypervisor-Based Platforms

7.3.5.1.1 HA Solutions HA features are provided by three main
vendors: VMware, Citrix XenServer, and Marathon everRun MX.
It has been observed that most of the retailers such as Microsoft
Azure, Red Hat HP Serviceguard, and Enterprise Linux OpenStack
Platform in the market provide integrated HA using failover clustering
strategies that are discussed further in this chapter. VM live migration
is supported by VMware and XenServer through vMotion and
XenMotion, respectively. Still, CPU compatibility is required to make
sure that the VM can perform normally on the target system after
migration. The CPUs on the source and destination systems are
expected to provide the same set of configurations to the VM so that
the applications running on the VM do not crash. Simultaneously,
checkpoint–restore is also supported by all of them, assisting in the
capability of VM snapshotting [15].

7.3.5.1.2 FT: Checkpointing vs. Record-and-Replay Unlike HA that
can be achieved by standard failover clustering, FT is a more
complex procedure to be achieved in virtualized platforms as efficiently
synchronizing a secondary VM with a primary VM is a complex task.
This problem can be solved by two main strategies. One of them is
record-and-replay, which basically records all input data in the source
VM, sends them over a corresponding link to the secondary replica,
and then replays them in the replica on the destination location.
Implementing this strategy for a uniprocessor VM is comparatively
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pretty straightforward as all instructions executed by the vCPU in
the source VM are replayed deterministically on the vCPU in the
destination VM. However, the question of performance in the current
CPU architectures is still a concern because modern CPU architectures
usually consist of multiple processors and provide techniques such as
branch speculation, prediction, and out-of-order execution, introducing
non-deterministic behaviour across program executions. This non-
determinacy increases the difficulty level of synchronizing a replica with
a primary execution. Because of this reason, VMware that applies this
strategy can currently only provide FT for uniprocessor VMs. This
problem is known as symmetric multiprocessing fault tolerance (SMP
FT). Intel argued that the problem of an efficient record-and-replay
system targeting must be provided by the hardware support. Then
Marathon everRun MX announced that they have found a solution
to this problem. An alternative strategy, that is checkpointing the
state of the VM after the inputs are provided, sends it to the clone
and keeps the clone VM frequently synchronized with the original
VM. Unlike record-and-replay, checkpointing has its upper hand in
its simplicity and SMP support. But still its performance mainly
depends on the checkpointing rate and the amount of data that need
to be checkpointed and transferred to the clone side. While Marathon
everRun MX provides all HA/FT features, it only supports Microsoft
Windows as the guest OS, creating a monopoly in the market [15].

7.3.5.1.3 HA in VMware The VMware platform makes use of
the VMware Distributed Resource Scheduler (DRS), VMware HA,
VMware FT, and vMotion for achieving virtual environment high
availability. VMware HA is also constructed on failover clustering
strategy. All the VM disk images are needed to be present on the
shared storage. The HA agents that are installed on all ESXi hosts
are in charge of maintaining heartbeats between hosts in the cluster,
that is heartbeats between applications and the vCenter server, and
the heartbeats between VMs and the vCenter server.

VMware HA protects against three types of failures, which include
ESXi host failure, that the heartbeat signal is no longer transmitted
from the host, and the failure of the guest OS. For the first two,
VMware HA restarts the VMs on remaining surviving hosts. In case of
the third type of failure, the heartbeat signal is sent between the VM
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and the vCenter server. But in the third problem, VM fails or the guest
OS within the VM freezes, the VM tools installed inside the VM also
freezes, and this makes the vCenter sever unable to send the heartbeat
signals. In order to solve this problem, the vCenter server resets the
VM on the same host [15].

The failure on application level is identified by checking the
heartbeat between the application and the vCenter server. So at the
time of application failure, the vCenter server simply restarts not
just the application, but the entire VM on the same host followed
by the application that failed previously. For planed or predictable
scenarios such as host maintenance or upgradation, HA for VMs can
be achieved through live migration by vMotion. For migration of
restarting strategies, the decision of the new location for a VM is
made by VMware DRS according to information such as the resource
consumption of a VM over time, state of hosts in the cluster, and
anti-affinity rules.

If VMs are in the powered off state, then they can coexist on the
same system. But when anyone of the VM is powered on, the host-level
anti-affinity check is performed and the other VM has to be started on
a different host according to the results obtained. With the initiation
of vLockStep, the hypervisor on the two hosts coordinates a system of
heartbeat signals and mutual monitoring. In case of failure on either
host, the other host can take over and continue running the protected
VM seamlessly through transparent failover.

However, as we previously discussed, VMware has FT capabilities
based on the current implementation, but only a single logical processor
on the VM is supported. So in order to protect multiprocessor VMs,
VMware is developing a new protocol known as the SMP FT protocol,
with a huge network requirement of at least 10 GB link. This increase
in bandwidth is not only used for synchronization of multiple vCPUs,
but also to eliminate the requirement on shared storage between
the primary and secondary VMs. However, the performance overhead
introduced by SMP FT is very large.

7.3.5.1.4 HA in XenServer Platform The XenServer platform also
offers HA protection for VMs similar to VMware, but it can only
handle failures on host level. XenServer can be accompanied with third-
party products such as HA-Lizard to deliver HA capabilities to address
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failures on VM level and application level. Also, the support for FT is
not available in the XenServer platform. One potential way to integrate
FT in XenServer is to enable Remus, which has been a part of XEN
hypervisor.

Remus uses the active–passive technique where the state of the
VM is continuously replicated from the primary host to the secondary
host. Remus also allows speculative execution to simultaneously run the
active VM slightly ahead of the replicated VM state. This in turn helps
the primary server to be productive, while synchronization with the
replicated server is performed asynchronously, which helps in improving
the performance of the primary VM. However, XEN hypervisor is with
Remus support, but still it is not included with XCP and XenServer
[15].

7.3.5.2 HA in Container-Based Platforms

As opposed to hypervisor-based virtualization, container-based virtu-
alization also known as operating system-level virtualization is not
targeted to emulate an entire hardware environment, but rather
providing the modern Linux kernel to manage isolation between
applications. With OS-level virtualization technique, multiple isolated
Linux containers can run on a single host by sharing a single kernel
instance. Each container can have its own process and network.
Systems such as LXC (Linux Containers), Docker, and OpenVZ are
few well-known implementations of containers.

In fact, a container is a set of processes usually with a storage
associated that could be completely isolated from other containers. In
order to provide the HA facilities the capability to process, checkpoint–
restore is required. There have been a large amount of techniques
devoted to targeting this challenge, including few implementations such
as BLCR, DMTCP, and ZAP. However, these systems either lack one
feature or another, or usually only support a limited set of applications,
and none of them has been a part of the mainstream Linux kernel due
to the complexity of implementations.

An additional high-level feature such as versioning and sharing on
top of LXC+ Docker is becoming a most used platform for container
hosting. For checkpointing and restarting, one can snapshot a running
container using the commit command, which saves the container’s file
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Figure 7.1 A diagram of live migration sequence in CRIU [16].

changes and settings into a new image, with no concern on the state of
the running processes. Then another container can be restarted based
on the snapshot image of the hosts. However, the state of running
processes in the previous container is not preserved.

Features of live migration and checkpoint–restore in OpenVZ are
implemented as loadable kernel modules plus a set of user space
utilities. However, the major shortcoming of OpenVZ is the lack of
official integration with upstream Linux kernel. Issues such as security
and compatibility are faced by the users when using old kernels. To
tackle this problem, a new working direction CRIU is implemented,
that is, moving most of the checkpointing complexity out of the kernel
and into the user space, thus minimizing the amount of required kernel
changes. There is no other container-based platform that supports
features of automatic state synchronization between the active and
standby, failure detection, and failover management [15].

The plus point of this implementation is that the migration process
can roll back to source and resume the container on the source when
there is a failure in the synchronization of file system or in case of
network disconnectivity during the transfer of memory pages. The
availability mostly depends on the time consumed in Steps 3 to 5 in
Figure 7.1 [16]. These include three optimizations: file system changes
tracking, lazy migration, and iterative migration, and are implemented
to reduce the service downtime.
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7.3.5.2.1 File System Changes Tracking The basic idea here is to
reduce the time for file system synchronization in Step 4 in Figure
7.1. This can be achieved by tracking the file system changes and
continuously synchronizing the changes only. The current optimization
in CRIU is implemented on a block device similar to Linux loop device,
but specifically designed for containers known as ploop. The important
feature of ploop is that it has a write tracker, which helps the kernel
to memorize a list of modified data blocks. This list formed enables us
to efficiently migrate a ploop device to destination host, with minimal
container downtime. In the vzmigrate utility, the user space support is
implemented in the ploop copy tool.

7.3.5.2.2 Lazy Migration Mainly lazy migration is to only migrate
a minor subset of memory pages to the target host, then resume the
container on the target, and finally pull the remaining pages from the
source on demand. With the help of lazy migration, the container can
be resumed at the target location without waiting for entire memory
copy from the source. On the event of page fault, the container sends
a request to the page-in swap device that then redirects the request to
the page-out daemon that resides on the source to pull in the missing
page. Accordingly, the requested page is transferred and loaded into the
memory on the target host. Then finally whenever the container is idle
for a certain time, a last swap-out action is applied and all remaining
pages are transferred from the source to the target location.

The main setback of lazy migration is that neither the source nor
the target holds an integral state of the container, meaning that the
source and the destination as well as the network connection in between
must be reliable until the full migration process is completed. However,
the container restored on the target location can be malfunctioning
due to incomplete pulling of memory pages in case of network failure
between the source and the destination. Also, rollback is inapplicable
under such scenarios [15].

7.3.5.2.3 Iterative Migration Another optimization technique is to
perform memory pages transfer and file system synchronization prior to
freezing the container; this helps to reduce the amount of data needed
to mitigate after the freeze of the container. Still as the pages are being
dirtied and file systems might also be dynamically changing during the
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data transfer, this process needs to be executed iteratively. Hence, in 
this strategy, the fle system is needed to be iteratively synchronized, 
along with the dirtied memory pages transfer in each iteration. 

7.3.5.3 Clustering Efforts for Containers 

The power of Linux containers can be fully explored when there is a 
complete orchestration of them in a well-synchronized manner. These 
are known as clustering of the containers. As their individual working 
becomes insignifcant, a collective functionality to build services with 
multiple building blocks is required. In order to achieve this, various 
eforts to build cluster-level management for containers are going on. 
Docker Swarm is a well-known Docker-native clustering system that 
aims at creating a cluster of Docker hosts as a single virtual host. 
Kubernetes is another signifcant clustering solution to containers, in 
which tightly coupled containers are grouped into pods and the loosely 
coupled cooperating pods are organized into key/value pair labels. 
These labels are considered metadata describing the semantic structure 
of the service composed by multiple pods. Kubernetes works on the 
notion of a Replication Controller in which a pre-defned number of 
replicas of a given pod is always running; this helps in providing fault 
tolerance. In case of a failure of a pod, it can be restarted on another 
healthy host. 

7.4 ATTACKS ON LIVE MIGRATION 

Based on the various researches conducted on the attacks on the live 
migration strategies, a few categories are identifed on the basis of the 
causes that let the attack happen. The categories of attacks are as 
follows: 

1) The improper access control policies. 

2) The unprotected transmission channel. 

3) The loopholes in the migration module. 

7.4.1 Improper Access Control Policies 

Unsuited or inapt access control policies give access to an unauthorized 
user to start, transfer, and terminate a virtual machine by themselves 
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with concern of the governing host. This policy provides access to 
hypervisor, governs the isolation between VMs on the same machine 
and the resource sharing among them, etc. Lack of security can help a 
malicious attacker to perform the following attacks: 

1) Denial-of-Service Attack: This unauthorized attacker can start a 
large number of outgoing transfers onto a virtualized host server. 
This results in the overloading of the target server, decreasing 
its performance or at worst establishing havoc in the service it 
provides. As the VM is providing its services, it is possible for an 
unauthorized attacker to make the VM to migrate from server to 
server that reduces the performance of service provided by it. 

2) Internal Attacks: This can be the result of an unauthorized 
attacker transferring VM with malicious code in it to the main 
target hypervisor. This provides a platform for malicious VM 
to perform numerous internal attacks on the target system that 
might also include the control over the target hypervisor and then 
fnally the other guest VMs. 

3) Guest VM Attack: In this, the attacker sends a request for 
an incoming migration of a VM; during the mitigation of this 
request, the attacker gains control over the migrated VM and 
then performs an attack by executing a malicious code on it or 
crashing it or in many other ways. 

4) False Resource Sharing: An attacker system can pass wrong 
reports of the available resources, infuencing other VMs to 
migrate to this unauthorized VM. 

5) Inter-VM Attack: The VMs running on the same machine can 
communicate with each other. If a policy for communication 
between VMs is not defned, then an unauthorized VM can attack 
other VMs running on the same machine. 

Solution: To block these attackers from performing the above activities, 
appropriate access control policies (acls) must be defned. Access 
control policies defne perfect rules guiding who can migrate out a 
VM, who can request to migrate in a VM, who can suspend a VM, 
whether a user can terminate VM, and more similar decisions. And 
these acls must frst be authenticated and should provide opposition 
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to tampering. The Xen provides sHype with the mandatory access 
control for Xen, whereas the guidelines for the confguration of sHype 
are given in Xen user manual. Moreover, acls can also be accompanied 
with a frewall to check that migration is from authorized source and to 
authorized destination systems. This frewall rule will be very helpful in 
checking each packet for allowed and rejected source, destination, and 
protocol, and accordingly, the specifed actions are taken. These actions 
include accepting the packet, forwarding the packet, or rejecting the 
packet [17]. 

7.4.2 Unprotected Transmission Channel 

The endangered and exposed transmission channel is the result of 
the improper migration protocol. The migration protocol does not 
encrypt the data during their migration over the network, which results 
in making the data susceptible to active and passive attacks. An 
attacker can gain access to the transmission channel using known 
methodologies such as DNS poisoning, ARP/DHCP poisoning, and 
IP/route hijacking to perform passive or active attacks. Passive 
attacks include eavesdropping of messages for sensitive data, such 
as the passwords and keys, and then capturing the authenticated 
packets and replying them later. Active attacks are more dangerous 
comparatively. This may include manipulating authentication services 
such as /bin/login, pam, and sshd; manipulating kernel memory such 
as slip root kits into kernel memory; etc. 

Solution: One simple solution is to assign a VM or group of VMs to a 
VLAN so that the VLAN isolates migration trafc from other network 
trafc and provides a secure transmission channel for migration of data. 
Other solutions include encryption of the data to provide anonymity 
such that integrity can be maintained using digital signatures, MAC, 
and checksums [17]. 

7.4.3 Loopholes in Migration Module 

Vulnerabilities in migration include heap overfow, stack overfow, and 
integer overfow. Such vulnerabilities become an advantage point for 
an attacker to inject malicious code or even freeze the process. The 
virtualization software can be huge and complex with a large number 
of LOC. Xen hypervisor has about 200 K LOC and XEN emulator has 
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about 600 K LOC and the host almost include 1,000 LOC. With such 
a large code, lots of bugs tend to exist. Bug reports such as those listed 
in the NIST’s National Vulnerability Database show how hard it is to 
ship a bug-free hypervisor code. A malicious user can take advantage 
of these bugs to attack the virtualization software. Exploiting such 
an attack gives the attacker the ability to get unauthorized access to 
the other virtual machines and therefore breach system’s integrity, and 
also the availability of the other virtual machine’s code or data. The 
virtualization software migration code must be structured such as to 
remove such vulnerabilities. 

Solution: The release of new virtualization software includes patch 
of such types of vulnerabilities. Hence, the system must be updated 
with the recent releases and patches to be protected from attacks via 
the migration module. Moreover, secure programming methods must 
be used. The following section projects more light on the details of 
some major approaches to secure live migration [17]. 

7.5 APPROACHES 

7.5.1 Isolating the Migration Traffic 

For secure live migration against all such attacks, it is important to 
assign a small group of VMs or even a single VM to its own host-
based virtual LAN (VLAN). The VLAN isolates migration trafc from 
other network trafc and thus provides a secure transmission channel 
for migration process. A major drawback of the VLAN-based security 
approach is the growth in complexity and administrative costs as the 
number of VMs grows. The main complexity lies in constructing such 
a network and also maintaining VLANs for each VM, simultaneously 
synchronizing VLANs confguration on virtual and physical switches, 
with troubleshooting and fx confguration errors, and also managing 
the growth and complexity of acls as the number of VMs increases, 
ensure compatibility between physical network and virtual network 
security policies is in all a very complicated problem. Moreover, with 
migration, the things become more complicated because then there is 
the VM continuously needed to be moved between the hosts and virtual 
switches. Hence, using VLAN because it has no trafc monitoring and 
fltering mechanism; thus, inter-VM communication within the VLAN 
remains invisible [17]. 
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7.5.2 Network Security Engine-Hypervisor (NSE-H) 

NSE-H is based on hypervisors that are included with the network 
security engines to prevent intrusions occurring in a virtual network. 
NSE includes intelligent packet processing capability, intrusion de-
tection systems, frewall, and intrusion prevention system to provide 
security to a virtualized environment. The NSE frewall works in the 
state-full procedure, thus manage to maintain security context for each 
packet and make decisions in the context of security and packet content. 
There are two modules in the NSE frewall: CTM (connection tracking 
module) and PMM (policy matching module). The CTM keeps track 
of transport layer connection status using a database similar to the 
hash table. When a packet arrives, it looks up the database based 
on packet header; if a match is found with the existing connection, 
then the packet is accepted; otherwise, the packet is forwarded to 
PMM for further instruction to be processed on whether to accept 
the package or not. This PMM stores a set of packet fltering policies 
defned by the administrator; these fltering policies are basically a set 
of rules which consist of sequence of descriptors that are matched with 
packet content; and accordingly, the actions are taken. The problem 
with live migration implementation is that it only encapsulates the 
VM execution context for transmission and not the security context 
which results the destination VM to be rejected because of the 
missing or not matching which is the required security procedure. 
The solution to this problem is to include security context (SC) along 
with VM execution context in the migration data, thus making use 
of the components of architecture such as VMMA, SCMA, LMC, 
NSE, and hypervisor core. To transmit the VM encapsulated states to 
the target hypervisor, the virtual machine migration agent (VMMA) 
interacts with the destination hypervisor’s VMMA. Security context 
migration agent (SCMA) encapsulates and sends VM-related security 
context set through a dedicated channel such that the live migration 
coordinator (LMC) collaborates with the destination hypervisor’s LMC 
and schedules the two agents to perform migration tasks in parallel. 

Live migration extends the four phases of live migration implementa-
tion which are as follows: 

1) Preparation: The LMC on source informs the destination 
LMC to start reserving resources. Thus, VMMA and SCMA 
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both reserve the required resources and get prepared for 
migration. 

2) Iterative Synchronization: The VMMA on source iteratively 
transfers the execution context of VM to be migrated to the 
destination. Similarly, the SCMA transfers the security context 
of VM to be migrated. 

3) Final Synchronization: This phase is concerned with the transfer 
of the recently written pages to migrated VM after the frst phase 
of synchronization. Both the execution context and the security 
context are transferred by VMMA and SCMA, respectively. The 
migrated VM is then suspended on the source hypervisor, and 
the VM-related network is redirected to target server through 
unsolicited ARP replay adverting. The VMMA and SCMA copy 
the execution instructions and security set. 

4) Resumption: The migrated VM is restarted form the point 
it was frozen on the target hypervisor, and the VM instance 
of the source is discarded. In this way, the above discussed 
approach makes it possible for traditional security approaches 
such as frewall and IDS to be efective in the context of live 
migration [17]. 

7.6 SUMMARY 

In the wake of digitalization, the need for high efciency and high 
availability in all aspects increases. This makes any application or 
a program lengthy. Hence, it rises the need for fault tolerance, load 
balancing, and also the urgency to take care of the applications 
during a blackout. In this chapter, we’ve learnt the basics of Live 
Migration and its needs, applications, security aspects, and role in 
HPC (High-Performance Computing). It also highlights one of 
the most famboyant technologies – “Cloud Computing” – and its 
importance in context with live migration and its various techniques. 

This chapter basically covers two approaches: “Live Migration 
with Virtual Machine” and “Live Container Migration”. 
This chapter introduces live migration in virtual machines and its 
performance metrics, followed by covering two general techniques used 
for virtual machine live migration, namely Post-Copy Approach and 
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Pre-Copy Approach. It also includes the research challenges faced 
while implementing the VM live migration and also addresses the cost 
and performance vs energy requirements for the same. The second half 
of the chapter explains the container live migration and its types in 
order to manage cache transfers. This chapter covers two case studies: 
Checkpointing and Restoring in “CRIU” and “OpenVZ” for 
container live migration. 

It also compares live migration in virtual machines with live 
container migration with respect to various attributes such as 
performance, challenges, and security. This chapter not only underlines 
the role of live migration in high-performance computing, but also 
discusses security breaches and possible threats to it, and it concludes 
with suggesting various approaches to overcoming the same. 
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8.1 INTRODUCTION 

8.1.1 Background and Motivation 

The rapid advancement and introduction of new processing tech-
nologies for computing have facilitated the development of high-
performance embedded computing systems, which are widely applied 
in critical scenarios such as mobile communication devices, smart 
health care, and intelligent vehicles. High-performance embedded 
computing systems consist of various physical devices and advanced 
communication technologies. Notonly do they complete a large number 
of computations, but they also have to coordinate hardware and 
software in real time in terms of security, low overhead requirements, 
etc. High-performance embedded systems are all over people’s lives 
and are integral parts of modern life. In diferent application felds, 
high-performance embedded systems have diferent characteristics. 
Figure 8.1 shows the classifcation of high-performance embedded 
systems by application areas, such as industrial control, consumer 
electronics, wireless sensors, and network/communication. In this 
chapter, we focus on intelligent vehicles in industrial control in terms 
of real-time and security-aware issues. 
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Wireless Sensors

Application: RFID, smart dust

Requirements: low consumption, low resource

Network/ Communication

Application: wireless base stations  

Requirements: high performance, high reliability

Consumer Electronics

Application: smartphone, smart TV

Requirements: user experience sense

Industrial Control

Application: intelligent vehicles, smart meters.

Requirements: real time, security, reliability.

High-Performance Embedded Computing Systems

Figure 8.1 Classifcation of high-performance embedded systems by 
application areas. 

Modern intelligent vehicles not only facilitate people’s travel, but 
also give a comfortable and pleasant experience on the road. While 
intelligent vehicles bring these conveniences to people, they also raise 
various security issues for automotive networks. With the development 
of modern communication and networking technologies (e.g., 4G/5G), 
and the increase in external interfaces (e.g., OBD, Bluetooth, and 
WiFi), automotive networks sufer from various cyberattacks (e.g., 
DoS attack, injection attack, and masquerade attack). Attackers could 
intrude internal systems and maliciously steal internal confdential 
communication information. For example, Charlie Miller and Chris 
Valasek have spent months successfully hacking the automotive 
systems of the Toyota Prius and Ford Impala by the OBD interface, 
allowing the hacked vehicle to slam the brakes or change direction 
beyond the driver’s control in 2015 [1]; Samy Kamkar adopted OwnStar 
to intrude GM OnStar’s mobile app RemoteLink, successfully accessing 
the driver’s authentication information and remotely controlling the 
vehicle’s ignition and unlocking functions in 2015 [2]; in 2017, Jay Turla 
launched an open-source cyberattack project against Mazda Motors, 
which allows anyone to execute malware code on Mazda cars using 
a USB fash when the vehicle is in device mode or the engine is 
running [3]. These attacks seriously threaten the security of automotive 
networks, thereby afecting the safety of vehicles and humans. There 
are some automotive networks for automotive communications, such 
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as controller area network (CAN), Time-Sensitive Networking (TSN), 
FlexRay, and Media Oriented Systems Transport (MOST). CAN, 
which is a serial, synchronous, non-preemptive, and half-duplex bus, is 
widely used in automotive networks. CAN is primarily used for commu-
nication and control between electronic control units (ECUs) of safety-
critical functions (e.g., brake, throttle, and engine control). However, 
CAN lacks any security-aware methods, making it vulnerable to mali-
cious attacks, which could result in a huge loss of economy. Moreover, 
the low payload (up to 8 bytes) and low bandwidth (up to 1 Mbps) 
characteristics make CAN difcult to deploy security-aware methods. 

In addition, a large number of automated driving applications such 
as adaptive cruise control (ACC), automated parking system (APS), 
and advanced driver-assistance system (ADAS) are being added to 
intelligent vehicles. As a result, the number of automated driving 
technologies and ECUs continues to increase, which generates a huge 
amount of dependent messages in automotive networks. The high 
data volume brings a great challenge to the real-time requirement. 
Therefore, the traditional CAN is not suitable for this high data 
volume transmission with the real-time requirement. In 2012, CAN 
Flexible Data-Rate (CAN-FD) was proposed by BOSCH to improve 
the transmission rate and bandwidth of the current CAN bus. CAN-
FD combines the core features of CAN with a high bandwidth (up to 
12 Mbps) and data feld length (up to 64 bytes), thereby providing 
the possibility of real-time transmissions in automotive networks. 
Meanwhile, these features make CAN-FD more feasible than CAN to 
deploy security methods. 

8.1.2 Contributions and Outline 

At present, there is no investigation to classify security-aware 
real-time transmission for automotive CAN-FD networks in terms 
of confdentiality-aware real-time transmission methods, integrity-
aware real-time transmission methods, and availability-aware real-
time transmission methods. Figure 8.2 shows the overview of recent 
advances in security-aware real-time transmission for automotive CAN-
FD networks discussed in this chapter. For security-aware real-time 
transmission for automotive CAN-FD networks, this chapter provides 
the following contributions: 
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Figure 8.2 Overview of recent advances in security-aware real-time 
transmission for automotive CAN-FD networks discussed in this 
chapter. 
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1. Preliminaries of Automotive CAN-FD Networks: This chapter 
provides the preliminaries of automotive CAN-FD networks, 
mainly including (1) diferences between CAN-FD and CAN, and 
(2) CAN-FD networks security vulnerabilities. 

2. Cyber-Attacks Model: Automotive networks lack security protec-
tion mechanisms for automotive applications, which makes them 
vulnerable to malicious attacks. This chapter surveys common 
and serious automotive cyberattacks that threaten the proper 
functioning of vehicles. The cyberattacks mainly attack the 
confdentiality, the integrity, and the availability of automotive 
CAN-FD networks. 

3. Security-Aware Real-Time Methods: The security-aware method 
ensures the security of automotive networks. Considering that 
CAN-FD does not take security into account, this chapter 
surveys the security-aware methods for ensuring the security 
communication in CAN-FD. These security-aware methods are 
mainly investigated in the following items: (1) confdentiality-
aware real-time transmission methods, (2) integrity-aware real-
time transmission methods, and (3) availability-aware real-time 
transmission methods. 

4. Future Trends: This chapter introduces the future trends in 
security-aware real-time methods in terms of new demands and 
prospective developments. By investigating the recent progress 
and presenting the future trends, we hope to provide researchers 
with a systematic reference and development directions in 
security-aware real-time methods. 

8.2 AUTOMOTIVE CAN-FD NETWORKS PRELIMINARIES 

To facilitate the understanding of security-aware real-time transmission 
for automotive CAN-FD networks, this section provides a basic 
introduction to automotive CAN-FD networks preliminaries. We frst 
introduce the diferences between CAN-FD and CAN. Then, we 
investigate the security vulnerabilities in CAN-FD. Finally, we survey 
the automotive cyberattacks, which mainly attack the confdentiality, 
the integrity, and the availability of automotive CAN-FD networks 
based on the security vulnerabilities of CAN-FD. 
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8.2.1 Differences between CAN-FD and CAN 

With the rapid development of automotive electronics and the demand 
for high bandwidth, CAN-FD was proposed by Bosch in 2012 
and was ofcially approved by the International Organization for 
Standardization (ISO) in ISO 11898-1 in 2015. CAN-FD, with the 
advantages of high bandwidth and long data length, inherits the main 
characteristics of the traditional CAN. CAN-FD adopts two-wire serial 
communication protocol and is based on non-destructive arbitration 
technology, distributed real-time control, reliable error handling, and 
detection mechanism. It is fully compatible with CAN and can be used 
on the same physical connections due to a less modifed physical layer. 
Based on these features and advantages, CAN-FD is regarded as the 
next generation of mainstream automotive bus system. Considering 
that CAN-FD is an upgraded version of CAN, we frst introduce the 
data frame format of CAN and CAN-FD, and then we present the 
obvious advantages of the CAN-FD networks compared with CAN. 

In CAN and CAN-FD networks, diferent nodes adopt data frames 
for communication. The diferent messages are encoded according to 
the message ID. Nodes can receive data frames according to their 
needs (message ID) and flter the messages they are not interested 
in. According to the number of identifer bits, CAN data frames can 
be divided into standard frames and extended frames. The former uses 
11-bit identifers, and the latter uses 29-bit identifers. According to the 
length of the data feld, CAN data frames can be divided into CAN 
Classical and CAN-FD. The maximum data load of CAN Classical 
is 8 bytes, and the maximum data load of CAN-FD is 64 bytes. 
The comparison between CAN-FD and CAN data frame formats is 
illustrated in Figure 8.3. In CAN standard frames, 11-bit identifers 
are used. The value of the identifer can range from 0x000 to 0x7FF, so 
a total of 2048 message types can be encoded. In the data frame, the 
IDE bit identifes the standard frame or the extended frame. When the 
IDE is 0, it means that the data frame is the standard frame, and when 
the IDE is 1, it means that the data frame is the extended frame. FDF 
identifes CAN Classical or CAN-FD. When FDF is 0, it means CAN 
Classical. When FDF is 1, it means CAN-FD. DLC identifes the length 
of the data feld. The content of the CRC feld is to perform CRC check 
on the data frame. In CAN Classical, DLC ranges from 0 to 8, so the 
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Figure 8.3 Comparison between CAN-FD and CAN data frames. 

data feld length of CAN Classical can range from 0 bytes to 8 bytes. 
CAN Classical uses 15-bit CRC for CRC check. In CAN-FD, FDF is 1. 
The length of CAN-FD data feld can be 8, 12, 16, 20, 24, 32, 48, and 
64 bytes according to the value of DLC. When the length of the data 
feld does not exceed 16 bytes, a 17-bit CRC check code is used. When 
the data feld length is between 20 bytes and 64 bytes, a 21-bit CRC 
check code is used. When IDE is 1, it means that the data frame is 
an extended frame. The extended frame uses a 29-bit identifer, with a 
value range from 0x00000000 to 0x1FFFFFFFF, which can represent 
229 diferent message types, about 530 million. 

Based on the diferences between CAN and CANFD data frames, 
we summarize the obvious advantages of CAN-FD networks as follows. 

1. CAN-FD Improves Frame Structure: CAN-FD adds three new 
control bits: EDL (extended data length: 0 denotes CAN frame 
and 1 denotes CAN-FD frame), BRS (bit rate switch: 1 denotes 
convertible data-phase rate and 0 denotes non-convertible 
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data-phase rate), and ESI (error status indicator: 1 denotes error 
passive and 0 denotes error active). 

2. CAN-FD Has a Flexible Transmission Rate: CAN-FD adopts two 
kinds of bit rates: The data rate of data transmission phase (from 
BRS to ACK) is up to 12 Mbps and the data rate of arbitration 
and ACK phase is up to 1 Mbps; however, the bit rates of CAN 
are up to 1 Mbps in data transmission phase, arbitration phase, 
and ACK phase. 

3. CAN-FD Has Longer Data Fields Than CAN: Compared to the 
traditional CAN data felds of 8 bytes, CAN-FD has greatly 
expanded the data feld length, whose maximum data feld length 
can reach 64 bytes. When the data length code (DLC) of CAN-FD 
is less than or equal to 8, it is consistent with the original CAN 
bus; when it is greater than 8, it is non-linear growth. This greatly 
increases the valid message in the data frame, which means that 
CAN-FD has a higher payload for transmission than CAN. 

4. CAN-FD Optimizes Checksum Fields: In addition to adding stuf 
bits from SOF to the data feld, CAN-FD also adds stuf bits in 
CRC with a higher frequency. The CRC feld always starts with a 
stuf bit complementary to its predecessor. After every four bits, 
a stuf bit is inserted complementary to the predecessor. If the 
stuf bit is not complementary to the previous bit, an error will 
be reported for processing when format checking is performed. 

8.2.2 Security Vulnerabilities in CAN-FD 

CAN-FD initially works in an isolated environment and lacks 
cybersecurity-aware mechanisms. However, with the development of 
intelligent vehicles, CAN-FD, which carries the key function of 
controlling vehicle safety, is becoming the target of cyberattacks. The 
main security vulnerabilities of CAN-FD networks are listed as follows: 

1. Physical Structure Characteristics: The physical layer of CAN-
FD networks is twisted-pair cables, which lack abnormal access 
detection and can be easily accessed illegally by malicious 
attackers. Therefore, these physical structure characteristics 
cannot guarantee the availability and integrity of automotive 
CAN-FD networks. 
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2. Broadcast: CAN-FD messages are broadcast messages, which can 
be received by all the ECUs in CAN-FD bus because CAN-FD 
is not segmented. As a message-oriented protocol, CAN-FD does 
not defne any felds specifying information related to the sending 
or receiving ECUs. For a CAN-FD message, the receiving ECU 
only checks the identifer of the message to decide whether it 
should be received or discarded. In this way, attackers can attach 
a compromised ECU and easily eavesdrop and read the content of 
the CAN-FD messages. The broadcast mechanism makes CAN-
FD networks a challenge to guarantee the confdentiality of CAN-
FD messages. 

3. No Message Encryption: The CAN-FD protocol does not 
introduce any encryption mechanism in communication; that 
is, messages are transmitted in plaintext in the CAN-FD bus. 
Any node connected to the CAN-FD (including compromised 
node) can read the message directly, making the CAN-FD 
messages vulnerable to eavesdropping attacks, thus afecting the 
confdentiality of the automotive network. 

4. Arbitration Field Mechanism: Arbitration feld mechanism of 
CAN-FD is based on the priority of the identifer. When the bus 
is free, all ECUs can send messages. Conficts can occur when 
multiple ECUs try to send messages at the same time. CAN-FD 
protocol provides an arbitration feld mechanism to determine 
which ECU access CAN-FD. The message with the lowest ID 
(i.e., the frame with the highest priority) wins arbitration and 
accesses the CAN-FD bus. The ECU that fails arbitration will 
try to send the message again when the CAN-FD bus is free 
again. However, if a malicious node sends a message with the 
highest priority continuously to CAN-FD, the CAN-FD bus will 
be collapsed and other ECUs will not be able to communicate 
with each other, thus enabling denial-of-service (DoS) attacks. 
Therefore, the arbitration rule makes it difcult for CAN-FD to 
guarantee the availability of CAN-FD messages. 

5. No authentication: CAN-FD messages transmitted between 
ECUs in CAN-FD have no authentication mechanism as they 
are just identifed and fltered by message ID. There is no feld 
in CAN-FD message identifying the sending ECU. CAN-FD 
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only provides CRC for message integrity and error verifcation. 
Therefore, in the absence of security methods, any malicious node 
in the CAN-FD bus can easily perform DoS, replay, forgery, 
and other attacks since the receiving ECU cannot verify the 
origin of the messages. Therefore, no authentication mechanism 
makes it impossible for CAN-FD to ensure the integrity and the 
availability of CAN-FD messages. 

6. No Freshness: The frame structures of CAN-FD messages have no 
time stamp or random number. A malicious attacker can perform 
a replay attack to control the behavior of the vehicle. 

8.2.3 Automotive Cyber-Attack Model 

Initially, automobiles were relatively isolated electro-mechanical sys-
tems that did not need to interact with the outside world, so CAN-
FD was originally designed without any security mechanisms in mind. 
However, with the increment in interconnections of sensors, actuators, 
and devices, various communication technologies and interfaces are 
embedded in modern vehicles, opening a door to a wide variety of 
cyberattacks. As a result, the vehicle is no longer considered to be a 
closed system. 

Koscher et al. [4] frst assessed the cybersecurity analysis of 
automotive safety-critical CAN networks based on real vehicle 
platforms, demonstrating the vulnerability of automotive networks in 
the face of malicious attacks. In particular, CAN-FD is an upgraded 
version of CAN and inherits the core features of CAN; thus, the 
cybersecurity analysis of CAN is similar to the cybersecurity analysis 
of CAN-FD. In addition, Ref. [4] analyzed the inherent weaknesses 
of the CAN protocol, including broadcast characteristics, inability to 
resist DoS attacks, lack of message authentication mechanisms, and 
weak access control. By exploiting these protocol faws, an attacker can 
launch targeted snifng detection or obfuscation attacks to compromise 
ECUs in the CAN bus. 

In general, confdentiality, integrity, and availability are the three 
elements of security [5]. When it comes to message transmission in 
automotive CAN-FD networks, confdentiality represents the security 
of CAN-FD message from being read by malicious attackers; integrity 
represents the security of CAN-FD message from being created 
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Figure 8.4 Security principles of confdentiality, integrity, and availabil-
ity of messages in automotive CAN-FD networks. (a) Message is sent 
from the sender to the receiver without being attacked. (b) Message 
is read by an attacker when it is sent from the sender to the receiver, 
and this attack afected the confdentiality of the message. (c) Message 
is tampered with by an attacker when it is sent from the sender to 
the receiver, and this attack afected the integrity of the message. (d) 
Message is removed by the attacker when it is sent from the sender to 
the receiver, i.e., the normal message could not be sent to the receiver 
from the sender. 

or modifed by malicious attackers; and availability represents the 
security of CAN-FD message from being removed and interrupted 
by malicious attackers [5]. Figure 8.4 shows the security principles of 
the confdentiality, the integrity, and the availability of messages in 
automotive CAN-FD networks. 

We focus on the three elements of security to introduce the 
cyberattack models on automotive CAN-FD networks, namely attacks 
on the confdentiality, attacks on the integrity, and attacks on the 
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TABLE 8.1 Automotive Cyber-Attack Model Based on Confdentiality, Integrity, 
and Availability 

Security 
Elements 

Confdentiality 

Integrity 

Availability 

CAN-FD Vulnerabilities 
Broadcast 
Unencrypted [6] 

CRC [6] 
No authentication [6,7] 

Arbitration feld [11] 
No ECU authentication [10] 
Intrusion detection [12] 

Attacks 
Eavesdrop 
Be read 
Replay [6,9] 
Masquerade [7] 
Tamper [10] 
Spoof [9] 
DoS [11] 
Cascade [13] 
Legitimate ECUs [10] 

availability. Table 8.1 shows the automotive cyberattack model based 
on the confdentiality, the integrity, and the availability. 

Attacks on the Confdentiality: When a message broadcasts in 
CAN-FD without encryption, CAN-FD cannot ensure only legitimate 
ECU receives the message, thereby providing the potential of 
eavesdropping for malicious attackers. In this way, the message could 
be read by attackers, thus attacking the confdentiality of the CAN-FD 
message [6]. 

Attacks on the Integrity: As CAN-FD lacks a message authen-
tication mechanism, the receiving ECU can only identify CAN-FD 
messages based on the message ID, which paves the way for an attacker 
to masquerade as the sending ECU and send messages in the CAN-FD 
networks. The current CAN-FD just relies on a CRC to guarantee 
transmission error detection; thus, it cannot prevent replay attacks 
[7,8]. In this way, the message is created or modifed by attackers, thus 
attacking the integrity of the CAN-FD message. 

Attacks on the Availability: When two nodes (ECUs) in the CAN-
FD bus have messages to send at the same time, the arbitration 
mechanism of CAN-FD allows the message with high priority to be 
transmitted, while the message with low priority must wait for the 
next idle state. Therefore, a malicious attacker can easily use messages 
with high priority to launch DoS attacks. In this way, the message is 
removed and interrupted by attackers, thus attacking the availability 
of the CAN-FD message. 
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8.3 AUTOMOTIVE CAN-FD SECURITY-AWARE REAL-TIME 
TRANSMISSION METHODS 

Based on the analysis and discussion of the cybersecurity attack models 
of automotive CAN-FD networks in the previous section, we will 
focus on automotive CAN-FD security-aware real-time transmission in 
this section. We frst survey the constraints of automotive CAN-FD 
security-aware real-time transmission. Then, we research security-
aware real-time transmission methods, namely confdentiality-aware 
real-time transmission methods, integrity-aware real-time transmission 
methods, and availability-aware real-time transmission methods. 

8.3.1 Automotive CAN-FD Security-Aware Real-Time
Transmission Constraints 

Although the concepts and methods of security on the Internet 
can be applied in automotive networks, their physical environments 
are diferent from computers. When designing security methods for 
automotive networks, we need to consider the characteristics of 
vehicles. Constraints of automotive CAN-FD security-aware real-time 
transmission are listed below. 

Software and Hardware Architecture: The automotive architecture 
consists of a large number of heterogeneous and complex software 
and hardware components, whose communication is based on diferent 
network protocols such as CAN, CAN-FD, and MOST. This 
heterogeneous and complex architecture not only adds uncertainty 
elements in functional safety and cybersecurity of vehicles, but also 
makes it difcult to perform security-aware testing and verifcation. 

Real-Time Sensitivity and Resource Limitations: Compared with 
commercial computers, computing resources in a vehicle have many 
limitations such as storage and communication bandwidth, which 
directly afect the deployment and implementation of security-aware 
methods. Implementing complex security methods could take a long 
time. In addition, the critical functions and applications of the vehicle 
are real-time sensitive, and these functions and applications must be 
completed within a specifc time to ensure the safety of the vehicles 
and passengers. Therefore, real-time sensitivity and hardware resource 
limitations make a secure real-time transmission difcult. For example, 
simple cryptography requires less time to execute, but it is not 
secure enough; however, complex cryptography consumes signifcant 
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computing resources and time overhead, but it is more secure than the 
simple one. 

Lifecycle and Compatibility: The automotive lifecycle is typical 
about 20 years, which is longer than the computer lifecycle. Additional 
security methods inside the vehicle should be easily updated rather 
than outright obsolete during the lifecycle. In addition, this security 
equipment should be able to withstand the physical conditions inside 
the vehicle, such as shock, high temperature, and humidity. Meanwhile, 
the security methods should not only be of low cost and can be installed 
at a low cost, but also be compatible with the internal protocols and 
external resources of vehicles. 

8.3.2 Confidentiality-Aware Real-Time Transmission 

The messages transmitted in CAN-FD are broadcast without any 
encryption mechanism to all the ECUs connected to the CAN-FD 
bus as mentioned before. There is no proper way of authenticating 
the sending ECU of a message. Cryptographic algorithms are 
widely used in automotive CAN-FD networks to provide secure 
communication channels while enhancing message confdentiality and 
ECU authentication and preventing messages from being read by ECUs 
that do not possess the appropriate keys. Cryptographic algorithms are 
usually distinguished as symmetric-key and asymmetric-key algorithms 
(also called public-key cryptography). These two types are explained 
and depicted in Figure 8.5. 

8.3.2.1 Symmetric-Key Cryptography 

Symmetric-key cryptography, which is a predistribution key cryptogra-
phy, is usually used to encrypt messages in automotive CAN-FD net-
works. In the symmetric-key cryptography, the symmetric key is shared 
among all communication participants. Each participant encrypts or 
decrypts the message based on the same symmetric key. Symmetric-key 
cryptography can be implemented with few resources. It is widely used 
as a core part of many encryption protocols due to its high efciency. 
To maintain the confdentiality of the communication, the symmetric 
key must be obtained and stored in a secure manner by communication 
participants. When the communication node changes, the predistribu-
tion manner requires the new communication node to be predistributed 
with the key again. This leads to increased coupling between nodes 
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Figure 8.5 Comparison of symmetric-key cryptography and asymmetric-

key cryptography. 

in the system. Secure storage imposes requirements on the storage 
capacity of the node. Common symmetric-key algorithms include Data 
Encryption Standard (DES), 3DES, Advanced Encryption Standard 
(AES), International Data Encryption Algorithm (IDEA), RC5, and 
RC6. In [14], RC6 was adopted as symmetric-key cryptography for 
the sending and the receiving ECU to encrypt and decrypt CAN-
FD messages. Considering that symmetric-key cryptography requires 
additional computing overhead, the authors frst adopted the pre-
allocation method to pre-allocate a reasonable encryption level for 
CAN-FD messages, which is to select a suitable encryption level while 
meeting the real-time requirements; then, they selected the maximum 
number of rounds to improve the encryption strength on the premise 
of ensuring real-time requirement. In this way, it’s efective to enhance 
the confdentiality by protecting against eavesdropping attacks, while 
guaranteeing real-time requirements of CAN-FD message transmission. 

8.3.2.2 Asymmetric-Key Cryptography 

In asymmetric-key cryptography, each communication participant has 
two unique keys: One is a private key, which is to be kept secret, and 
the other is a public key, which is public to all the communication 
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participants. These keys are mathematically related that a message 
encrypted with one key can only be decrypted with the other key. 
If a participant knows one of the keys, the participant does not 
calculate the private key based on the public key. Therefore, even if the 
asymmetric-key algorithm discloses the public key, it does not afect 
the confdentiality of the private key. Asymmetric keys can be used to 
authenticate the identity of communication participants. The sender 
encrypts a message with its private key, and the receiver can verify 
the sender’s identity with the sender’s public key, but this method 
also requires distributing public keys in advance; that is, the keys are 
exchanged in a predistribution scheme. It has the same drawback as 
symmetric-key cryptography, i.e., the increased coupling between nodes 
in the system. At the same time, the storage requirements are higher 
than those of symmetric keys, as the length of asymmetric keys is often 
larger than that of symmetric keys. The computational complexity of 
asymmetric-key cryptography is also higher than that of symmetric-key 
cryptography. In addition, digital certifcates can be used to distribute 
asymmetric keys, which can avoid increasing the coupling among 
participants. Instead of storing the public keys of other participants, 
each participant only needs to hold a public key certifcate signed by 
a trusted authority (e.g., the vehicle manufacturer), and the authenti-
cation and session key generation among participants can be achieved. 
However, this method also has some drawbacks. Asymmetric-key 
cryptography tends to be more complex and have longer computation 
time than symmetric-key cryptography, making it difcult to meet the 
real-time requirements of automotive networks. Common asymmetric-
key cryptography includes RSA, ElGamal encryption algorithm, and 
elliptic-curve cryptography (ECC). For example, Ref. [15] implemented 
key exchange and encrypt engine in hardware with ECC as asymmetric-
key cryptography. In Ref. [10], asymmetric algorithms are used in ECU 
authentication for the session key distribution, while symmetric keys 
are used in stream authorization for session communication. 

8.3.2.3 Key Distribution 

Cryptographic algorithms are public, and the security of the algorithms 
depends on the security protection of the keys; thus, key management 
is critical for cryptographic algorithms. The key management includes 
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key generation, key distribution, key injection, key authentication, 
and key use. For secure automotive transmission, an ECU usually 
contains multiple keys, such as a key for encryption, a key for 
MAC/HASH, and a key for signature. In addition, an ECU may be 
involved in more than one communication; thus, there are various keys 
in an ECU. Therefore, key distribution is particularly important in 
secure automotive transmission. Security mechanisms are needed in 
the key distribution. In addition, symmetric keys are also used for key 
distribution with additional mechanisms, such as time stamp, random 
numbers, and counters [9,10]. One of the most widely used methods of 
key distribution is key distribution center (KDC), which is a trusted 
institution to temporarily assign a session key (used only once) to 
users who need to communicate secretly. Figure 8.6 illustrates the KDC 
working process. There are two keys in the KDC. key1 is the session 
key for ECU1 and ECU2, and key2 is the session key for ECU2 and 
ECU3. When KDC receives a request from EUC1 to communicate with 
EUC2 (or when EUC2 requests to communicate with EUC1), KDC 
would distribute the session key key1 to ECU1 and ECU2. When KDC 
receives a request from EUC2 to communicate with EUC3 (or when 
EUC3 requests to communicate with EUC2), KDC would distribute the 
session key key1 to ECU2 and ECU3. In [6], the authors developed a 
practical architecture for CAN-FD networks. This architecture adopts 
key Management to enhance the confdentiality and the integrity 
of CAN-FD networks. Key Management has two properties, which 
are key freshness, and forward and backward secrecy. Forward and 
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backward secrecy means that the architecture uses an authentication 
session key and an encryption session key to ofer authentication and 
confdentiality for CAN-FD messages, respectively. Specifcally, the two 
keys are diferent for each CAN-FD message. Key freshness means that 
the seeds used for session keys generation are constantly updated to 
ensure the freshness of the generated keys, thereby countering replay 
attacks. Furthermore, this architecture can also enhance the integrity 
of CAN-FD messages due to authentication session keys and key 
freshness. In [9], the authors implemented a key security mechanism 
for CAN/CAN-FD messages authentication to counter spoofng attack 
and replay attack, thereby enhancing the confdentiality and the 
integrity of transmission. The key security mechanism includes an 
AUTOSAR-compliant key management architecture that includes a 
baseline session key distribution protocol (SKDC) and a secret-sharing-
based protocol (SSKT). This architecture reduces the storage for 
predistribution message and distinguishes sessions. SSKT reduces the 
overall protocol runtime and improves the efciency of computation 
and communication, but it increases the memory footprint of the ECU. 

8.3.2.4 Hardware Security Module 

Consider that the automotive system is a resource- and time-sensitive 
system and that strong encryption and decryption could consume a 
large number of computational resources and time. This issue can be 
addressed by deploying a hardware module called hardware security 
module (HSM) [16] at ECU to reduce ECU resource consumption 
and time overhead while ensuring secure communication. HSM is 
conceived by EVITA, and it is used for secure key generation, storage, 
and management, as well as hardware cryptography acceleration in 
various key scenarios. For example, some kinds of HSM have already 
supported ECC with shorter keys and possessing the same level of 
security as ECC without deploying HSM. Schweppe et al. [17] deployed 
the HSM on each ECU to speed up encryption while providing a 
secure environment for key storage. Ref. [18] integrated HSM into 
automotive existing infrastructure to accelerate the encryption process 
and establish symmetric-key cryptography-based trust between ECUs. 
There are many benefts of using hardware encryption, such as fast 
encryption, no additional overhead for the chip responsible for the main 
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function, minimal impact on the performance of the original network, 
and no changes to the logic between the nodes that communicate with 
each other. The disadvantages of the hardware encryption module are 
obvious. Its installation requires changing the hardware structure of 
the network nodes. In particular, long-term experiments are required 
before installing hardware security modules; otherwise, many unknown 
problems will be introduced in automotive networks. In addition, 
the cost of upgrading hardware is great. The automotive industry is 
relatively strict and conservative, so the implementation of hardware 
encryption is slow and not easily accepted. Moreover, it is not very 
realistic for OEMs to recall and modify hardware for models that are 
already on the market. Ref. [19] displayed a CAN encryption design 
architecture to enhance the confdentiality and the integrity of CAN-
FD messages, and this architecture was tested and verifed on a Xilinx 
FPGA chip using Verilog HDL. The design adopted the symmetric-
key cryptography AES-128 algorithm to enhance the confdentiality 
of CAN-FD messages and the HMAC algorithm SHA-1 to enhance 
the integrity and ensure the authentication of CAN-FD messages. To 
reduce the extra time overhead caused by cryptographic operations 
in automotive networks, lightweight hardware acceleration is usually 
adopted in automotive networks, such as using programmable logic 
devices for AES and ECC [20]. Ref. [21] implemented a trimmed version 
of hash with feld-programmable gate arrays (FPGAs). 

8.3.3 Integrity-Aware Real-Time Transmission 

Integrity checks of messages transmitted in automotive networks 
are one of the key factors to ensure the security of automotive 
networks. CRC is adopted by CAN-FD to check if messages have been 
modifed or transmitted incorrectly; this mechanism can detect message 
transmission faults, such as loss, repetition, delay, and incorrect 
sequence [52]. However, CRC is inefcient in preventing from modifying 
correct messages and masquerade attacks, as it is an easy way for 
a fake message to spoof the right CRC. Therefore, it is essential to 
adopt message authentication mechanisms to ensure the integrity of 
messages. Message authentication code (MAC) and digital signature 
are two common types of methods for message authentication. Digital 
signatures are usually more than 40 bytes in length, while MACs can 
be as long or as short as desired. 
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8.3.3.1 Hash-Based Message Authentication Code 

Hash-based message authentication code (HMAC), which was created 
by Krawezyk, Bellare, and Canetti in 1996, is widely used in automotive 
networks for message authentication to enhance the integrity of CAN-
FD transmission [6]. Figure 8.7 illustrates the process of attaching 
an HMAC into a CAN-FD message. HMAC added in the data feld 
of a message would occupy the position of the message and reduce 
the message length. HMAC inputs would increase the bus load rate 
and the message transmission delay as more frames could be used 
to transmit messages. The length of HMAC inputs and the type of 
HAMC algorithms both afect the transmission delay. The longer the 
size of the inputs of HMAC, the longer the computation time [23]. MD5 
takes less time than SHA256 for computation [24]. Ref. [7] adopted a 
pre-shared secret key to populate messages by MAC in the sending 
ECU and the receiving ECU to enhance the integrity of the CAN-FD 
messages. If there is a message that needs to be transmitted from one 
ECU to another ECU in CAN-FD, the sending ECU frst uses a MAC 
algorithm to calculate the MAC value of the message and then attach 
the MAC value to the end of this message. Then, the sender sends 
the new message to the receiver. After receiving the new message, the 
receiver splits it into two parts (the original message and the MAC 
value), calculates the MAC value by MAC algorithm with the pre-
shared secret key, and obtains a new MAC value; if the new MAC 
value is equal to the MAC value calculated by the sender, it shows 
that the message is not tampered with and is transmitted in CAN-
FD securely. However, the added MAC to counter tampering attacks 
increases the processing and transmission delay of CAN-FD messages, 
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which afects the guarantee of real-time performance. To solve this 
problem, the authors quickly found the lower bound of the application 
by prefx and sufx pruning and then increased the MAC by round 
accumulation to extend the lower bound, while still guaranteeing the 
real-time performance. 

8.3.3.2 Cipher-Based Message Authentication Codes 

Cipher-based message authentication code (CMAC), which is another 
type of MAC, is generally used as a signature of a message. Consider 
that the calculation result of CMAC-128 is 128 bits, which is the 
same size as the AES key. We can calculate multiple 128-bit outputs 
by CMAC-128 with a 128-bit AES key. These outputs can be used 
as diferent keys when we need multiple keys involved in a module. 
However, it takes a long time for CMAC to calculate. Hardware-
based acceleration is used to reduce the calculated delay of CMAC. 
What’s more, consider that AES has the restriction of delay < 2µ per 
block based on the SHE specifcation [24,25]. NXP MPC5748G uses 
internal core HSMv2 to perform and accelerate AES-128. When the 
block number is 32 or more, the calculated delay of AES can meet the 
SHE specifcation and real-time requirement restriction of automotive 
networks. The payload size of AES-128 is 16 bytes, which is larger 
than the data feld of CAN (8 bytes). If the length of MAC is not 
truncated, it cannot be used in CAN. But it can be used in CAN-
FD because its data feld is up to 64 bytes as mentioned before. Park 
et al. [26] adopted CMACs to enhance the integrity of the message of 
gateway systems with security features and used HSM in the MCU 
to quickly generate and validate CMAC. Zalman et al. contributed 
a reliable, secure, and low-delay solution for automotive networks by 
using CMAC and combining CRC [27]. 

8.3.3.3 Digital Signature 

Digital signature is one of the security mechanisms for message 
authentication as MAC. Digital signature is a security method to 
achieve signature, authenticate data authenticity, and assure integrity. 
It has the property of non-repudiation because it is a valid proof of the 
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TABLE 8.2 Comparison between Digital Signature and MAC 

Features Digital Signature MAC 
Message authentication Yes Yes 
Non-repudiation Yes No 
Cryptography Asymmetric key Symmetric key 
Execution time Long Short 

CAN-FD, FlexRay, CAN, CAN-FD, Applicability 
Ethernet FlexRay, Ethernet 

authenticity of the message sender, while MAC does not have this prop-
erty. The digital signature is based on asymmetric-key cryptography, 
and it is also known as a public-key digital signature. Considering that 
asymmetric-key cryptography is a computationally expensive task, the 
digital signature can be used in Ethernet, FlexRay, and CAN-FD. If 
a digital signature is used in CAN, it will increase the bus load rate 
and data frames. MAC is based on symmetric-key cryptography, which 
needs low computation efort. Therefore, it is suitable to use in CAN, 
Ethernet, FlexRay, and CAN-FD. The digital signature is signed by a 
private key and verifed by a public key. The public key only needs to be 
generated once to be verifed by all communication participants because 
the public key can be known by anyone. However, in the symmetric 
way of MAC, the shared key between each two communication entities 
must be diferent. In addition, the digital signature can also be used to 
prevent malicious software download and update, while guaranteeing 
the integrity, authentication of origin, and non-repudiation. For secure 
software downloading, Kocher employed a digital signature to ensure 
secure software download in the SDR functioning [28,29]. For secure 
software updates, the security level of over-the-air (OTA) is much 
higher than that of the onboard networks. Digital signature is necessary 
for OTA in terms of the communication process (security protocols [30] 
and security architectures), downloaded frmware, and related update 
repository [31]. Table 8.2 concludes the diferences between digital 
signature and MAC. 

8.3.4 Availability-Aware Real-Time Transmission 

As described in the previous section, arbitration rules are originally 
designed to avoid message blocking on the automotive bus, but these 
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rules increase the potential malicious attacks, which continuously 
send high-priority messages in CAN-FD, thereby preventing legitimate 
message transmission in CAN-FD, i.e., DoS attacks. Therefore, it 
seriously afects the availability of automotive CAN-FD networks. 

8.3.4.1 Authentication and Authorization 

Mundhenk et al. [10] presented a Lightweight Authentication for 
Secure Automotive Networks (LASAN) that is a full lifecycle secure 
framework. LASAN divides the security operations into two processes: 
ECU authentication and stream authorization, which are based on 
two types of security operations. ECU authentication is based on 
asymmetric-key cryptography, which requires a larger amount of 
computation. But asymmetric operations (ECU authentication) are 
performed only when the car is not in use to avoid afecting the 
real-time performance of the vehicle. Stream authorization is based 
on symmetric-key cryptography, which can be executed quickly on 
resource-limited ECUs. The required security level is achieved by 
a rational allocation of symmetric and asymmetric operations while 
ensuring real-time performance. In addition, Ref. [10] demonstrated 
how LASAN enables the protection of the entire lifecycle of a 
vehicle, including the production, maintenance, and software update 
phases of the vehicle. LASAN ensures that only legitimate ECUs can 
participate in the communication and that only valid message streams 
can be transmitted, which enhances the availability of automotive 
networks. Meanwhile, the rational use of cryptography also guarantees 
real-time requirement of automotive networks. To implement key 
distribution and management, Woo et al. [32] proposed a complete 
set of authentication protocols suitable for automotive networks. These 
protocols include the Initial Session Key Distribution Protocol (ISDP), 
Data Frame Transfer Protocol (DFP), session key update protocol 
(SKUP), and Vehicle-to-External Device Connection Protocol (VCP). 
Palaniswamy et al. [33] analyzed the security of these protocols and 
designed the Remote Frame Transfer Protocol (RTRP) for the security 
vulnerabilities caused by insecure remote frames. In addition, a new 
session key update protocol (NSKUP) is introduced to enhance the 
security of key updates when the vehicle is connected to an external 
device. 
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8.3.4.2 Obfuscating Priority Assignment 

In addition, the availability of automotive networks is closely related 
to the automotive industry. Taking the current actual automotive 
industry mass production model, for example, millions of cars produced 
in this mass production model adopt the same message execution 
stream for an automotive application. If the message execution stream 
of one car is cracked by attackers, other cars that also adopt this 
stream are then exposed to cascade attacks. In 2015, Jeep and BMW 
were both forced to recall 2.2 and 1.4 million vehicles of cascade 
attacks, respectively, due to a cascading exposure from an information 
security vulnerability in one vehicle [34]. To enhance the availability by 
protecting against cascading attacks, Ref. [35] exploited an obfuscating 
priority assignment method to generate diferent message executions 
of the same application in millions of vehicles (more than 10 million 
available real-time obfuscated message streams), while still ensuring 
the functional integrity and real-time constraints of the application. 
The authors quickly generate valid streams by message swapping to 
avoid obtaining all streams in advance and adopt afx matching (prefx, 
midfx, and sufx matching) technique to obtain as many available 
streams as possible. In this way, these available message streams ensure 
the timing relationships between messages and guarantee the real-time 
performance of the application. 

8.3.4.3 Intrusion Detection 

Intrusion detection (ID) is a simple and efcient security-aware method 
that can monitor the data fow transmitted in the in-vehicle networks 
in real time. Intrusion detection can detect anomalies and report 
network attacks when the vehicle is running. Compared with security-
aware methods based on cryptographic methods, intrusion detection 
methods are based on the observation and analysis of network trafc 
to achieve anomalous behavior. It does not interfere with the existing 
data fow and does not encroach on the limited message load and 
bandwidth resources (e.g., CAN). The attack detection patterns of 
intrusion detection are diverse, such as intrusion detection method 
based on message timing information, intrusion detection method 
based on message data values, and intrusion detection method based on 
message physical layer characteristics. Hoppe et al. [36] frst introduced 
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the concept of intrusion detection systems to automotive networks. 
The authors created the detection methods based on the features 
of increased CAN message frequency, observation of physical layer 
electrical communication characteristics, and misuse of CAN message 
IDs. Larson et al. [37] extracted security specifcations based on 
the requirement of in-vehicle networks communication protocol to 
describe the normal behavior patterns of the vehicle. When the current 
behavior pattern of the vehicle system is not consistent with the 
desired behavior, it would indicate that the vehicle system is under 
attack. 

Intrusion detection is often adopted in the CAN bus because it does 
not add additional data frames to CAN. Nowadays, it is also used in 
CAN-FD networks to counter potential cyberattacks in vehicles. In Ref. 
[38], an anomaly intrusion detection based on a support vector machine 
was exploited for automotive CAN-FD networks. Under the Common 
Intrusion Detection Framework (CIDF), anomaly intrusion detection 
adopts message identifers, periods, and data feld data as intrusion 
detection features. The authors use the binary classifcation property 
and small sample feature of the support vector machine algorithm to 
achieve the identifcation of intrusion message in the CAN-FD networks 
environment. The simulation experimental results show that the ofered 
method has a high correct rate of intrusion detection and can be used 
for both periodic and non-periodic messages. To enhance the security 
of automotive CAN-FD networks, a novel intrusion detection method 
based on network topology verifcation was proposed in Ref. [12]. This 
method can reliably detect XIDs through a simple random walk-based 
network topology and follow-on verifcation. When intrusion attacks 
are detected by the method, secure modes would be activated to 
further protect the network from attacks. These intrusion detection 
approaches efectively enhance the availability of CAN-FD networks 
while ensuring real-time requirement because they do not afect CAN-
FD messages and do not occupy the limited bus load and bandwidth 
resources. 

Table 8.3 summarizes the above security-aware real-time methods 
based on confdentiality-aware real-time methods, integrity-aware real-
time methods, and availability-aware real-time methods. 
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8.4 FUTURE TRENDS 

People’s increasing requirements for automotive safety, comfort, and 
convenience have accelerated the rapid development of intelligent 
automotive. The continuous changes in the new generation of auto-
motive networks have made cybersecurity a challenge. Cybersecurity 
has attracted widespread attention from industry and academia. 
Combining the development trend of the modern vehicle and the 
current latest research security-aware methods described before, this 
chapter presents the future research felds below. 

Intrusion Detection Accuracy and Response Time: In terms of the 
serious functional safety threats brought by the untimely detection of 
malicious attacks on vehicle networks, intrusion detection technology 
has become an important security-aware method for vehicles. There-
fore, it is an urgent issue to improve intrusion detection accuracy, 
reducing false-positive rate, shortening detection response time, and 
improving system robustness for intrusion detection technologies. 

Attack Analysis and Cybersecurity Evaluation: Attack analysis is 
the basis of automotive cybersecurity research. Security vulnerabilities 
and security requirements can be found by the comprehensive attack 
analysis. 

Security-Aware Methods and Resource Consumption: Given the 
limited communication and computational resources of the vehicle, it 
makes functional security and information security compete in design. 

8.5 CONCLUSIONS 

As an indispensable part of people’s lives, the intelligent vehicle not 
only brings convenience to people’s travel, but also brings more and 
more serious cyber-threats to automotive networks. This chapter frst 
provides the preliminaries of automotive CAN-FD networks, including 
the diferences between CAN-FD and CAN as well as their security 
vulnerabilities and the corresponding classifcation of cyberattacks. 
Then, security-aware real-time CAN-FD transmission methods are 
summarized based on the three elements of security such as 
confdentiality-aware real-time transmission, integrity-aware real-time 
transmission, and availability-aware real-time transmission. Finally, 
this chapter discusses the further trends of security-aware real-time 
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CAN-FD transmission methods, including intrusion detection accuracy 
and response time, attack analysis and cybersecurity evaluation, and 
security-aware methods and resource consumption. Cryptographic 
algorithms are primarily used to ensure confdentiality-aware transmis-
sion, and HSM and key distribution are used to assist the cryptographic 
algorithm by providing fast and secure cryptographic operations. MAC 
and digital signatures are used to ensure integrity-aware transmission. 
Authentication and authorization framework and obfuscation priority 
assignment are used to ensure availability-aware transmission. How-
ever, when implementing these security-aware methods, we need to 
consider the actual vehicle requirements, such as network latency, 
real-time performance, bus load factor, algorithm complexity (cryptog-
raphy, MAC, and digital signatures), key management (cryptography), 
and implementation cost. We hope this chapter can help researchers to 
understand and grasp the status and research of automotive CAN-FD 
networks quickly and comprehensively and give reference directions for 
automotive CAN-FD networks-related research in the future. 
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9.1 INTRODUCTION 

In recent times, there is an exponential increase in the number of 
content providers and content consumers on the internet due to 
various reasons like improved digital literacy, afordable devices, better 
network, etc. Further, the number of internet-connected devices per 
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Figure 9.1 Changing Attack Surface. 

person is expected to increase even more with adoption of emerging 
technologies such as Internet of Things and 5G. This change in users 
and usage is leading to an increase in data breaches1 . In many cases, 
realization of an impact happens long after the attack. Figure 9.1 shows 
changing attack surface for organizations with remote work force and 
connected devices. 

Typically, organizations invest in security tools and infrastructure 
that are based on rules, statistical models and machine learning (ML) 
techniques to identify and mitigate the risks arising from the threats. 
Firewalls, intrusion detection and prevention systems, authentication 
and authorization mechanisms to data and servers, encryption layers, 
anti-virus software, endpoint controls and permissions are some of 
the tools and processes are used to protect Information Technology 
(IT) systems. Apart from these controls and processes, IT systems are 
regularly patched to mitigate the risks. 

In addition, organizations purchase threat intelligence feeds to 
continuously monitor IT infrastructure for anomaly detection. The 
subscription fee of threat intelligence feeds from service providers 
is expensive and to a large extent, it contains threat intelligence 
that is already available in public forums. Public forums such as 
blogs, discussion forums, government sites, social media channels 
including Twitter and others contain unstructured threat intelligence 
on vulnerabilities, attacks, and controls. Tech-savvy internet users 
interested in information security access public forums, search, and 
browse on security products, their confgurations, reviews, vulnerabil-
ities and other related content for awareness and to protect IT assets. 
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In recent years, organization’s information security infrastructure 
use Structured Threat Information eXchange (STIX)/Trusted Au-
tomated Exchange of Intelligence Information (TAXII) knowledge 
representation from OASIS2 to represent observable objects and their 
properties in the cyber domain. However, automated processing of 
unstructured text to generate STIX format is a formidable challenge 
[35]. Interestingly, there are transformations available to convert 
from XML based STIX format to ontological ‘OWL’ or ‘RDF’ 
formats, which in part, has infuenced OASIS to adopt ontology for 
representations. 

Evidently, the research to use unstructured security related content 
to enrich ontologies is gaining ground to mitigate risks related 
to zero-day attacks, malware characterization, digital forensics and 
incidence response and management [1,12,35]. Security ontologies are 
used to analyze vulnerabilities and model attacks [9,12,15,39]. The 
concepts, relationships and instances of security ontologies are used 
to validate level of defence-in-depth to protect IT assets, map security 
product features to controls which leads to assurance of the security 
infrastructure. The constraints and properties of ontologies allow root 
cause analysis of attacks. Additionally, given that security-related data 
is in structured, semi-structured or unstructured forms, unifying them 
with ontologies aids in situational awareness and readiness to defend 
an attack [35]. 

Traditionally, domain experts constructed and maintained on-
tologies. Given the extent of efort and cost involved, access to 
domain content and ability to process text with advanced natural 
language processing (NLP) techniques and ML models on powerful 
IT infrastructure opens up research opportunities to construct 
and manage ontologies. The information security ontologies can 
be constructed or enriched from unstructured text available on 
public forums, vulnerability databases such as National Vulnerability 
Database (NVD)3 and other information security processing systems 
[2,31] sources. Also, standards and guidelines from ISO/IEC [13], NIST 
from US, ENISA from European Nation, Cloud Security Alliance 
(CSA) and others to protect confdentiality, integrity and availability 
of IT assets, contain embedded concepts. The ISO 27001:2015 [9] 
based security ontologies that encompass most of these guidelines are 
being extensively explored for protection, auditing and compliance 
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checking. Hence, enrichment of ISO 27001 based ontology provides 
wider acceptance, easier management and interoperability. 

In this work, we propose to enrich a widely accepted information 
security ontology instead of constructing a new ontology from text. 
This avoids inclusion of trivial concepts and relations. The success of 
enrichment also enables wider acceptance and usage by domain experts. 
However, the available literature on ontology enrichment from text 
is based on approaches utilizing word similarity and supervised ML 
models [12,32]. These ontology enrichment approaches, albeit useful to 
extract word-level concepts, are limited with respect to (a) extraction 
of longer concepts embedded in compound words and phrases (b) 
factoring context while identifying relevant concepts and (c) extracting 
and classifying instances [14]. 

In the proposed approach (OntoEnricher), we implemented a 
supervised sequential deep learning model that: a) factors context from 
grammatical and linguistic information encoded in the dependency 
paths of a sentence, and then b) utilizes sequential neural networks, 
such as Bidirectional Long Short Term Memory (LSTM) [34] 
to traverse (forward and backward directions) dependency paths 
and learn relevant path representations that constitute relations. 
Bidirectional LSTM model has ability to forget unrelated stream of 
data to identify related concepts that are available in the form of a 
word, a phrase or a sentence in the text. In addition, we utilized pre-
trained transformer-based architecture of Universal Sentence Encoder 
(USE) [4] to handle distributional representations of compound words, 
phrases, and instances. 

The proposed OntoEnricher is implemented on information 
security ontology. As availability of information security datasets is a 
concern, a semi-automatic approach with a training dataset of 97,425 
related terms (hypernyms, hyponyms and instances) is extracted from 
DBpedia for all concepts of a information security ontology [9]. To learn 
syntactic and semantic dependency structure in sentences, a 2.6 GB 
training corpus on information security is extracted from Wikipedia of 
all terms in the ontology and the DBpedia dataset. The curated dataset 
and corpus are used to train bidirectional LSTM model in the proposed 
ontology enrichment approach. The trained model is tested to enrich 
concepts, relations, and instances in information security ontology from 
unstructured text on the internet. The OntoEnricher is also tested 
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with 10% of training dataset, knocking out terms from ontology and 
unstructured text from web pages and achieved an average accuracy of 
80%, which is better than current state-of-the-art approaches. As the 
text in corpus is multi-dimensional and dependency path gets generated 
for very matching pair of dataset terms, we used a high performance 
computing (HPC) cluster for training and testing of model faster 
[19]. The code and documentation of ontology enrichment pipeline are 
publicly available on GitHub for reuse and extension. The subsequent 
sections includes (a) an elaboration of OntoEnricher approach along 
with an example; (b) Experiment and Results; (c) Discussion and 
potential future work. 

9.2 RELATED WORK 

This section discusses related work on enrichment of ontologies from 
unstructured text as well as approaches to create and maintain 
information security ontologies. The work on enrichment of knowledge 
graphs (KG) from unstructured text is also discussed as it represents 
knowledge and contains similarities with ontologies. 

Researchers worked on knowledge acquisition from text to construct 
ontologies for past couple of decades [3,20]. The last decade witnessed 
signifcant progress in the feld of information extraction from web with 
projects such as DBpedia, Freebase and others. The work of Mitchell et. 
al [23] known as ‘NELL’ states that it is a never-ending system to learn 
from web, their work bootstraps knowledge graphs on a continuous 
basis. Tools such as ReVerb [8] and OLLIE [33] are based on open 
information systems to extract a triple from a sentence using syntactic 
and lexical patterns. Although these approaches extract triples from 
unstructured text using shallow and fast models, they do not handle 
ambiguity while entity mapping and do not learn expressive features 
compared to deep and multi-layer models. 

The ML models based on probabilistic, neural networks and others 
are also explored for ontology enrichment from text [20,27,28]. In 2017, 
Wang et al [37] conducted a survey on knowledge graph completion, 
entity classifcation and resolution, and relation extraction. The study 
classifed embedding techniques into translational distance models and 
semantic matching models. The study also stated that additional infor-
mation in the form of entity types, textual descriptions, relation paths 
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and logical rules strengthen the research. Deep learning models such as 
CNN [5], LSTM [18,25] and variants are used to construct knowledge 
graphs from text as they carry memory cells and forget gates to build 
the context and reduce noise. The work of Vedula et al. [36] proposed 
an approach to bootstrap newer ontologies from related domains. 

Some of the recent approaches are based on Word2Vec [38] and 
its variants such as Phrase2Vec or Doc2Vec that use distributional 
similarities to identify concepts to enrich an ontology. However, these 
approaches underperform in the extraction of concepts embedded in 
words, phrases and sentences due to their inability to adequately 
characterize context. Compared to Word2Vec and its variants, 
Universal Sentence Encoder (USE) [4] stands promising to identify 
concepts in long phrases as it encodes text into high dimensional vectors 
for semantic similarity. Lately, researchers [10] are exploring USE to 
produce sentence embeddings and deduce semantic closeness in queries. 
Although, transformer-based models such as BERT and XLNet [7,21] 
are of interest to ontology enrichment researchers, training them to a 
domain is efort intensive. 

The literature to enrich security ontologies from text drew attention 
with OASIS’s STIX/TAXII standardization and open source threat 
intelligence. Most of the current work on security ontologies from text 
(construction or enrichment) are based on usage of string, substring, 
pre-fx and post-fx matching of terms, Word2Vec and other basic ML 
models [26,28,35]. In ontologies as well, the deep learning approaches 
based on recurrent neural networks are trending because of their ability 
to build the context over multiple words [11,15]. The research of 
Houssem et al. [11] used LSTM for population of security ontologies. 
However, the details to create corpus, handle phrases and robustness of 
the approach are not elaborated, only 40 entities are used in the model. 
The literature revealed that security ontologies based on ISO 27001 [9] 
and MITRE Corporation’s cyber security efort [35] are most referred. 

9.3 ONTOLOGY ENRICHMENT APPROACH 

In the proposed approach, whenever a new concept is introduced, 
current memory state of LSTMs are updated to replace old concept, 
or add new concept by multiplying with forget gates as needed. The 
concept in current memory are mapped to instances and relations 
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Figure 9.2 Ontology Enrichment Approach. 

between concepts in current state are constructed. Concepts extracted 
are used to update the ontology automatically or after manual 
validation by a domain expert. 

The OntoEnricher enriches a seed ontology with concepts, 
relations and instances extracted from unstructured text. As shown in 
Figure 9.2, the ontology enrichment approach consists of four stages: (i) 
DatasetCreation : creates training dataset by extracting and curating 
related terms from DBpedia for all concepts in the ontology (ii) 
CorpusCreation : creates domain-specifc training corpus by parsing 
Wikipedia dump using various fltering measures (iii) T raining : trains 
OntoEnricher for relation classifcation of term pairs using training 
dataset and corpus, and (iv) T esting : tests the approach by enriching 
the ontology from domain-specifc web pages. 

9.3.1 Stage 1: Creation of Dataset 

The information security seed ontology is based on ISO 27001 [9]. The 
standard ISO 27001:2015 [13] contains 114 controls across 14 groups. 
These groups are ‘Human Resources’, ‘Asset Management’, ‘Access 
Control’, ‘Cryptography’, ‘Physical and environmental’, ‘Operations’, 
‘Communications’, ‘System development and acquisition’, ‘Business 
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Figure 9.3 Information Security Upper Ontology [9]. 

Continuity’, ‘Supplier relations’, ‘Information security incident man-
agement’, ‘Compliance’, ‘Security Policies’ and ‘Security organisation’. 
These groups and controls are represented as 408 concepts in the 
security ontology to protect assets from vulnerabilities and threats. 
The upper ontology of the seed ontology is shown in Figure 9.3 and 
the ontology is available on GitHub. 

These 408 concepts are extracted from security ontology ‘to query 
related terms, namely hypernyms and hyponyms from DBpedia. DB-
pedia contains over 5 million entities, allows querying of semantic rela-
tionships, concepts and properties encoded in the form of RDF triples. 

Typically, the RDF triples (subject-verb-object) in an ontology 
contain a ‘verb’ relationship between concepts. Verbs are typically 
domain-specifc and unavailable in general-purpose knowledge graphs 
like DBPedia. Hypernyms and hyponyms that denote ‘is-a’ relationship 
between concepts, are easily available in DBPedia and widely used 
in ontologies, making these relations an ideal choice to demonstrate 
OntoEnricher approach. The SPARQL queries (query 9.3.1) to extract 
hypernyms and hyponyms from DBpedia for concepts in information 
security ontology are: 

SELECT * WHERE {<http://dbpedia.org/resource/“““+ concept + 
”””> <http://purl.org/linguistics/gold/hypernym> ?hypernyms} 

SELECT * WHERE {?hypernyms <http://purl.org/linguistics/gold/ 
hypernym> <http://dbpedia.org/resource/““+ concept + ”””>} 

http://dbpedia.org
http://purl.org
http://purl.org
http://purl.org
http://dbpedia.org
http://dbpedia.org
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TABLE 9.1 Composition 
of the Dataset 

Relationship Count 
Hypernymy 2,939 
Hyponymy 794 
Instances 2,685 
Concepts 1,187 
None 4,490 
Total 12,096 

The extracted terms with SPARQL queries are converted to triples 
of the form (a, b, label) where a denotes the ontology concept, b denotes 
the DBPedia term and label determines the DBPedia relation between 
a and b. This leads to a dataset of 97,425 triples. These triples are 
then curated by three domain experts and authors to mark unrelated 
terms as ‘none’. This includes pairs that are not related to the domain 
and pairs that are not related to each other, as both these cases 
are not needed for ontology enrichment. In addition, since DBPedia 
often categorizes ontological instances under ‘hyponyms’, some pairs 
are separately labelled as ‘instances’ if b is an instance of a or as a 
‘concept’ if b denotes the concept of which a is an instance. The terms 
classifed include names of experts, organizations, products and tools, 
attacks, vulnerabilities, malware, virus and many others. Finally, since 
the number of ‘none’ pairs (89,820) is signifcantly higher than the 
number of ‘non-none’ (7,605) pairs, ‘none’ pairs are sorted in order of 
increasing similarity. The frst 5% of ‘none’ pairs are fltered out, this 
is experimentally determined to yield better results. Table 9.1 shows 
composition of dataset after extraction, curation and fltration. 

9.3.2 Stage 2: Creation of Corpus 

Once the training dataset is created, a training corpus to provide 
linguistic information for all terms in the dataset is extracted. 
Wikipedia is used as it is moderated and structured for model training. 
The DBPedia is a part of the Wikipedia project, and therefore assures 
unambigous articles of all extracted dataset terms. As a frst step, all 
corresponding Wikipedia articles for terms in the dataset are extracted 
and added to the corpus. In addition, other articles related to the 
information security ontology domain are also extracted. This is done 
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by comparing Doc2Vec [17] similarity of each article with the Wikipedia 
article on ‘Information Security’4 and then fltering in articles with 
a similarity score higher than a certain threshold (0.27 after manual 
validation). This threshold is determined to optimize classifcation 
accuracy after a validation with a sample corpus. The two-step fltering 
yielded a 2.6 GB size information security training corpus. 

9.3.3 Stage 3: Training OntoEnricher 

Training dataset and corpus are parsed to generate various dependency 
paths to connect each pair of terms provided in the training dataset. 
Here, ‘dependency paths’ refers to the multi-set of all paths that 
connect a pair of terms in the training corpus. These paths are encoded 
as a sequence of nodes, where each node is a 4-tuple of the form 
(word, P OS_tag, dep_tag, dir). The P OS_tag and dep_tag denote 
POS and dependency tags of the word respectively, while dir denotes 
the direction of the edge connecting it to the next node in that 
dependency path. The term pairs along with extracted dependency 
paths between them are passed to OntoEnricher for training. 

Figure 9.4 shows the architecture diagram of OntoEnricher. The 
frst layer in proposed model is the embedding layer. The distributional 
embeddings for the terms (words) are obtained using a pre-trained 
state-of-the-art Universal Sentence Encoder (USE) [4] model. This 
model is preferred over other vocabulary-based distributional models 
such as Word2Vec, Glove and others as it returns distributional 
embeddings for not just single words, but also compound words, 
phrases and sentences. In addition, USE is pretrained on Wikipedia 
along with other corpora, making it suited for this task. Apart from 
pre-trained word embeddings, embeddings for POS tags, dependency 
tags and direction tags are obtained from trainable embedding layers. 
The node embeddings constructed from the concatenation of words, 
POS, dependency, and direction tag embeddings are arranged in a 
sequence to obtain path embeddings. A dropout layer is applied after 
each embedding. The path embeddings for each path connecting the 
term pair are then input to a bidirectional, two-layer LSTM which 
trains on a sequence of linguistically and semantically encoded nodes 
and learns the type of sequences that characterize a particular kind 
of relation. The bidirectional LSTM allows the network to have both 
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Figure 9.4 Architecture Diagram of OntoEnricher. 

backward and forward information about the path embeddings at every 
time step, while the two layers enable capturing of complex relations 
among dependency paths. 

The output of last hidden state of LSTM is taken as the path 
representation. Since a pair of terms may have multiple paths between 
them, a weighted sum of these path representations is taken by using 
path counts as weights, to yield a fnal context vector. This context 
vector encodes syntactic and linguistic information, is passed through a 
dropout layer and then concatenated with distributional embeddings of 
both terms in order to encode semantic information. The concatenated 
vector is then passed through two Feedfoward Neural Networks with 
a Rectifer Linear Unit (ReLU) layer in between, to yield fnal class 
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probability vector. The class with maximum probability is output as 
predicted relation between the term pair. 

9.3.4 Stage 4: Testing OntoEnricher 

The procedure to extract concepts and instances from (web page) 
text, during testing stage is detailed here. To avoid usage of every 
unstructured (web page) text to enrich an ontology, a lightweight 
evaluation technique [30] that checks for sufciency of new security 
terms is deployed. After passing the sufciency evaluation as a pre-
processing stage, co-reference resolution is applied and then noun 
chunks are extracted from web page. A cartesian product (nC2) is 
taken of extracted noun chunks to construct potential term pairs. 
However, a cartesian product to OntoEnricher is computationally 
expensive and also leads to error propagation. A two-stage fltering 
is applied to validate (a) if noun chunks are ‘sufciently’ related to 
Information Security and (b) if they are ‘sufciently’ related to each 
other. Both these conditions are checked to compare distributional 
similarity using USE against experimentally determined threshold 
values. The sufciently similar term pairs are then input to pre-trained 
model to classify the relationship. The pairs classifed as ‘None’ are 
discarded and the rest are converted to RDF triples for information 
security ontology enrichment. 

9.3.5 Example 

Figure 9.5 illustrates ontology enrichment approach with an example. 
‘Real-time adaptive security’ (R-TAS) is a concept present in 
information security ontology. The corresponding article in DBPedia, 
‘Real-time adaptive security’ has ‘model’ as its hypernymy entry, 
which is returned using a SPARQL query. The information security 
corpus extracted from Wikipedia dump using Doc2Vec flter contains 
multiple paired mentions of these terms, out of which one article 
contains two mentions. The corpus, the aforementioned sentences, are 
passed to SpaCy5 dependency parser and all corresponding dependency 
paths to connect are extracted for every term pair. These dependency 
paths which contain encoded linguistic information are passed to a 
serialization layer that converts the dependency graph into a series of 
nodes to form the input to OntoEnricher. 
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Figure 9.5 An Example Illustrating Ontology Enrichment Approach. 

The serialization layer reduces the word in every node in the 
dependency path to its lemma, a root word to enable meaningful 
training and generalization. Thus, ‘Real-time adaptive security’ is 
reduced to ‘security’ and ‘is’ is reduced to ‘be’. It also converts every 
node to a feature vector. The ‘Real-time adaptive security’ is converted 
to a feature vector that uses ‘security’ as the word, ‘PROPN’ as POS 
tag, ‘nsubj’ as dependency tag and ‘+’ denotes the direction of the 
edge connecting it to the lowest common root node between the term 
pair. Similarly, the next word ‘be’ is a verb and a root word of ‘is’ does 
not have any direction ‘∼’. The last word of this path, ‘model’, has 
‘NOUN’ as POS tag, ‘attr’ as dependency tag and ‘+’ as direction of 
the arrow going away from ‘model’ to ‘is’. 

The same approach is followed for second dependency path and 
nodes are sequenced similarly. These two paths are then passed to 
the embedding layer that calculates (i) USE embedding for word 
(ii) POS tag embedding (iii) dependency tag embedding and (iv) 
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direction embedding. The last 3 embeddings are trainable while 
word embeddings are pre-trained using USE. These are concatenated 
together to yield a node embedding. All paths (node sequences) that 
connect term pair are passed as input to Bidirectional two-layer LSTM. 
In this example, both the paths connecting ‘Real-Time Adaptive 
Security’ and ‘model’ are input to LSTM, post which the last hidden 
state is taken as path-wise contextual output. A weighted sum of 
these paths is then calculated using frequency of occurrence as weights 
to yield fnal context vector, this has encoded linguistic information 
of paths that connect ‘R-TAS’ and ‘model’. This context vector is 
concatenated with distributional embeddings of ‘Real-Time Adapative 
Security’ and ‘model’. Reducing words to their root form during 
serialization stage enables to construct a contextualized representation. 
The characterized paths constitutes a specifc relation and the most 
frequent ones, while distributional word and phrase embeddings 
enable semantic relevance and specifcity at a conceptual level. This 
concatenated vector denotes semantic and linguistic information that 
are passed to 2 Feedforward Neural Networks with a ReLU layer in 
between, yielding a fnal class probability vector as output. This class 
probability vector is trained to identify relationship between ‘model’ 
and ‘Real-Time Adapative Security’ as hypernymy. 

9.4 EXPERIMENTAL SETTINGS AND RESULTS 

The experiment is conducted with two ontologies, namely the ISO 
27001-based information security and Stanford pizza ontologies. While 
the former is focus of this section and use case to build knowledge 
base, pizza ontology is used to demonstrate generalizability of the 
approach. Table 9.2 shows the composition of information security 
and pizza datasets respectively. While the information security corpus 
is 2.8 GB in volume, interestingly, the pizza corpus is signifcantly 
smaller and only 95 MB. This can be attributed to the fact that the 
pizza ontology represents a very narrow domain (‘pizza’ out of food 
domain) and thus contains few relevant Wiki articles. Information 
security ontology contains broader, systems-level concepts, information 
about assets, controls etc. that return a variety of related articles. 

The OntoEnricher is implemented using deep learning library 
Pytorch with ‘0’ as random seed number for consistency in results. 
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TABLE 9.2 Dataset Composition 

Parameters Security Pizza 
# of Concepts 408 143 
Dataset size 12,096 7,119 
Corpus size 2.8GB 95MB 

Also, various other Python libraries such as Pronto6 to extract ontology 
terms, Wikiextractor7 to extract articles from Wikipedia dump, spaCy 
for dependency graph extraction, and Tensorfow-Hub to load Universal 
Sentence Encoder are used. The deployed HPC expedites training 
and testing performance of OntoEnricher, this also aids in parallel 
processing of adding or retrieving concepts, relations and instances 
from ontology. The performance of OntoEnricher is evaluated on three 
diverse test datasets: 

1. DBPedia test dataset: This is created by randomly extracting 
10% of the training dataset extracted from DBpedia. It mostly 
consists of small-medium length words. 

2. ‘Knocked-out’ test dataset: This is created by knocking out 
concepts and relations from the seed ontology. This evaluates 
the ability of OntoEnricher to identify multi-word or phrase-
level concepts, as is common in information security ontology, 
and identifcation of highly-domain specifc, non-English terms 
as in pizza ontology. 

3. Instance dataset: This is created by extracting text from security-
domain related web pages. The top 10 vulnerability related 
web pages from OWASP and product pages on ‘frewall’ are 
extracted to test the model. The ability to identify concepts and 
instances from web pages confrms that OntoEnricher can use 
text from public forums and other unstructured data sources. 
This evaluation is done without factoring sufciency requirement 
[30] of new terms in text to evaluate identifcation of ontology 
terms by OntoEnricher. 

Table 9.3 shows optimized hyper parameters after tuning OntoEnricher. 
Grid search is used to experiment with and arrive at optimal values 
of various hyper parameters. It includes hidden dimensions (120, 
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TABLE 9.3 Hyperparameters of the Model 

Hyperparameters Security Pizza 
Activation Function Log Softmax Log Softmax 
Number of Layers 2 2 
Hidden Dimension of LSTM 180 250 
Input Dimension (2nd NN) 120 90 
Embedding layer Dropout 0.35 0.35 
Hidden layer Dropout 0.8 0.8 
Hidden layer Dropout 0.8 0.8 
Optimizer AdamW AdamW 
Loss function NLL Loss NLL Loss 
Epochs 200 200 
Learning Rate 0.001 0.001 
Weight Decay 0.001 0.001 
Weight Initialization Xavier Xavier 

TABLE 9.4 Security Ontology Enrichment Results 

Metrics DBPedia Knocked Out Web Page 
Terms 1197 5538 153 
Accuracy 0.81 0.77 0.83 
Precision 0.76 0.84 0.84 
Recall 0.76 0.77 0.73 
F1-Score 0.76 0.80 0.78 

180, 200, 250, 300, 500, 900), input dimension of 2nd NN (60, 
90, 120, 180, 300, 500), number of LSTM layers (1,2), activation 
functions (Softmax, ReLU, LogSoftmax), loss functions (NLL Loss, 
Cross Entropy loss), and learning and weight decay rates (0.001, 0.01). 
The experimentation data with various embeddings, epochs, learning 
rate, activation functions, hidden layers and the related results are 
available as spreadsheet on GitHub. 

The evaluation results of OntoEnricher on information security 
and pizza ontologies are shown in Tables 9.4 and 9.6 respectively. A 
competent and comparable scores on information security ontology 
enrichment with all three datasets are achieved. The test results 
with 10% test dataset performed better, while test results on 
knockout concepts or information security related web pages are not 
far apart, proving that performance did not dip in extraction of 
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phrases, multi-word concepts and instances which is a key component 
missing from previous ontology enrichment approaches. As input and 
output format of existing approaches are diferent, only a qualitative 
comparison is performed and shown in Table 9.5. Additionally, in 
OntoEnricher, the number of terms and the size of the corpus used for 
training and testing are much larger. It is observed that the diference 
between precision and recall value is less, indicates that terms are not 
skewed towards domain and establishes robustness of the proposed 
OntoEnricher approach. 

Interestingly, the pizza enrichment results shown in Table 9.6 are 
better than security enrichment results, presumably due to domain 
being narrow as mentioned earlier and concepts are easily identifable 
as a consequence. 

Most of the existing ontology evaluation metrics [29] are extensions 
of Precision and Recall information retrieval metrics. Hence, precision 
score for k documents (shown in Table 9.7) is measured to validate 
consistency in ontology enrichment with web pages. The scores indicate 
that the proposed approach can identify concepts for any large number 
of domain documents. Figure 9.6 shows the relationship accuracy for 
each of the classes. It is observable that all relationships are classifed 
equally and hypernymy classifcation seems to be relatively higher. 

9.5 CONCLUSION AND FUTURE WORK 

The implemented information security ontology enrichment approach 
is comprehensive with the ability to handle new terms, changing 
domain content that includes concepts, relations and instances. Usage 
of well accepted ISO 27001 based security ontology, an exhaustive 
data source such as DBpedia and Wikipedia, Universal Sentence 
Encoder for distributional embeddings and Bidirectional LSTM for 
sequential learning makes it extensible to other domains as well. 
In the implemented enrichment approach, concepts in seed ontology 
can be a single or multiple words, is an improvement from state-of-
the-art. The approach also incorporated instances from unstructured 
text (web pages) so that organizations or individuals have fexibility 
to reason information security ontologies for mitigation strategies, 
vulnerabilities assessment, attack graphs detection and many other 
use cases. The enriched security ontology can also be used by search 
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TABLE 9.6 Pizza Ontology Enrichment Results 

Metrics DBPedia Knocked Out Web Page 
Terms 791 85 99 
Accuracy 0.99 0.79 0.88 
Precision 0.81 0.99 0.84 
Recall 0.91 0.79 0.81 
F1-Score 0.86 0.88 0.82 

TABLE 9.7 Precision Scores for 20 Random 
Web Pages in Information Security 

Web pages P@5 P@10 P@15 P@20 
Score 0.89 0.80 0.82 0.84 

Figure 9.6 Accuracy on Class Identifcation in Information Security 
Ontology. 

engines to display relevant results, top trends in vulnerabilities, threats, 
attacks and controls. The implemented OntoEnricher is trained on 408 
information security ontology terms, 97,425 DBpedia terms and 2.8 GB 
size Wikipedia articles with a HPC cluster. The OntoEnricher is tested 
with 20 random information security related web pages extracted from 
internet with an accuracy of 80% and an F1-score of 78%. While state-
of-the-art results are achieved in this work, the following activities are 
being explored as future work -

• Optimize efort required to create DBPedia dataset such as 
fltering out irrelevant terms. 
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• Test the approach with other security ontologies and extend 
training corpus beyond Wikipedia. 

• Compare results with other knowledge graph and ontology 
enrichment approaches after curation of input and output format 
of dataset and corpus. 

• While there is a need for domain experts to evaluate an enriched 
ontology, it is efort intensive and brings in other dependencies. 
A syntactic and semantic evaluation with a easily confgurable 
rules and AI models to reduce efort. 

NOTES 
1 https://digitalguardian.com/blog/history-data-breaches 
2 https://www.oasis-open.org/ 
3 https://nvd.nist.gov 
4 https://en.wikipedia.org/wiki/Information_security 
5 https://spacy.io/ 
6 https://pypi.org/project/pronto/ 
7 https://github.com/attardi/wikiextractor 
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10.1 INTRODUCTION 

With the rapid development of information and communication 
technology, more and more intelligent connected vehicles are entering 
people’s lives. While intelligent connected vehicles bring safety, 
efciency, comfort, and convenience to people’s travel, due to 
the increase in external communication interfaces and bandwidth, 
cybersecurity issues have become one of the key issues that intelligent 
networked vehicles need to solve urgently. 

10.1.1 Intelligent Connected Vehicle (ICV) 

From the perspective of the network, as a mobile terminal in the Inter-
net of vehicles architecture, the intelligent connected vehicle (ICV) is a 
heterogeneous, distributed, real-time system, as shown in Figure 10.1. 
The in-vehicle electronic control units (ECUs) are connected via a 
network bus such as controller area network (CAN), local interconnect 
network (LIN) and FlexRay. The in-vehicle information exchange 
between diferent networks is realized through gateways. The network 
architecture presents the characteristics of heterogeneous, real-time, 
safety-critical and cost-sensitive [1]. Therefore, its main features can 
be summarized as follows: 

1. Rich External Interfaces: With the development of vehicle 
wireless communication technology (V2X, vehicle to everything), 
intelligent networked vehicles have the characteristics of inter-
connection; that is, the vehicle will no longer be an independent 
electronic system, but a mobile terminal under the framework of 
Internet of vehicles. To realize the information exchange between 
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Figure 10.1 The electronic system structure of the intelligent connected 
vehicle from the network perspective. 

vehicle and X (other vehicles, road, person, cloud computing 
platform, etc.), it will be equipped with a wealth of external 
communication interfaces (Bluetooth, GPS, 4G/5G, Wi-Fi, etc.). 
At the same time, the increase in communication demand and the 
abundance of external interfaces will lead to the diversifcation 
of entry and forms of cyberattacks. 

2. A Large Amount of Real-Time Data: In-vehicle infotainment 
(IVI), electronic cockpit (e-cockpit), advanced driver-assistance 
system (ADAS), autonomous driving driven by cameras, artifcial 
intelligence (AI), and sensors (such as LiDAR and radar) will 
generate a large amount of data that require real-time trans-
mission and processing. However, the existing in-vehicle network 
protocol cannot meet its bandwidth requirements, and general-
purpose Ethernet (Ethernet) cannot provide deterministic delay 
protection. In order to meet the ever-increasing bandwidth 
requirements of automotive functions, in recent years, high-speed 
vehicle network protocols with deterministic delay characteristics 
have been developed rapidly, such as time-sensitive vehicle 
Ethernet, FlexRay [2], and Ethernet TSN [3], among which 
FlexRay is used in the drive-by-wire system to take advantage 
of its deterministic time delay. 

3. Heterogeneous Network Environment: For a long time, due to the 
balance of cost and performance, automotive electronic systems 
have been in a state of coexistence of multiple network protocols. 
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G c

Figure 10.2 Intelligent connected vehicles’ decision-making framework. 

Diferent network protocols are used in diferent functional 
domains. For example, the FlexRay [2] is used as backbone, the 
high-speed CAN [4] is used for power train and diagnosis systems, 
and the low-cost LIN [5] is used for body control. These diferent 
networks are interconnected through a gateway to build an overall 
vehicle network architecture. 

4. Lack of Cybersecurity Protection Mechanism: The traditional 
vehicle is a relatively independent and closed individual, and 
the in-vehicle network design did not consider external network 
security threats at the beginning; that is, the existing network 
protocol lacks basic security mechanisms (such as authentication, 
encryption, and message authentication). Intelligent connected 
vehicles’ decision-making framework is shown in Figure 10.2. 
From the framework, we can fnd that due to the increase in 
communication between the in-vehicle network and the external 
network, the cybersecurity threats faced by intelligent networked 
vehicles may come from various network layers. With the 
development of the intelligent networked vehicle architecture, the 
intelligent networked vehicle will be more like a mobile terminal 
node. It is urgent to carry out research on the cybersecurity 
enhancement technology of the terminal node of the ICVs to 
improve cybersecurity. 
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10.1.2 Contributions and Chapter Organization 

This chapter provides the following contributions: review of the 
cybersecurity issues in the ICV environment; evaluation of the current 
cryptographic, authentication, and intrusion detection approaches used 
for protecting ICV; and challenges and potential future research 
directions for ICV cybersecurity. The contents of this chapter are 
as follows: Section 10.2 reviews the cybersecurity issues in the ICV 
environment. Section 10.3 summarizes and compares the current major 
ICV cybersecurity enhancement countermeasures. In Section 10.4, we 
introduce the current research status of intrusion detection for IVNs. 
Section 10.5 summarizes the current trend and describes the future 
outlook of intrusion detection for IVNs. 

10.2 CYBERSECURITY ANALYSIS OF IN-VEHICLE NETWORK 

The existing in-vehicle networks such as CAN and FlexRay lack 
mechanism design at the beginning of the design, which makes the 
in-vehicle network extremely vulnerable to diferent types of attacks 
such as DoS (Denial-of-Service), fuzzing, spoofng and replay. Its 
vulnerability is mainly refected in the following three aspects. 

1) Weak Access Control: The physical layer of the in-vehicle network 
is a twisted-pair or coaxial cable, which has the characteristics of 
simple access and lack of abnormal access detection functions. It 
is easy to be accessed illegally and cannot guarantee availability 
and integrity. 

2) No Data Encryption Guarantee: The internal message transmis-
sion is only encoded according to the function, and the lack of 
encryption protection in terms of information security can easily 
lead to theft and tampering of the message, and the authenticity 
of the message cannot be guaranteed. 

3) No Message Authentication Mechanism: Messages are only 
calibrated by the message ID and used as a receiving flter, 
which is vulnerable to attacks such as DoS (denial of service), 
replay, and fuzzing. For example, the current CAN and FlexRay 
specifcations only provide cyclic redundancy check (CRC) codes 
for message integrity and error verifcation functions and lack a 
node authentication mechanism. 
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10.2.1 In-Vehicle Networks of ICV 

Moreover, the in-vehicle network has the characteristics of hetero-
geneous, distributed, safety-critical and real-time. Its heterogeneity 
not only is refected in the hardware platform, but also includes the 
heterogeneity of the network [1]. A structure diagram of an in-vehicle 
network composed of multiple functional domains interconnected 
through a gateway is shown in Figure 10.3. In order to ensure functional 
safety, intelligent networked vehicles require the vehicle network to 
prioritize deterministic delay and hard real-time performance at the 
data link layer and, at the same time, have a higher anti-interference 
ability at the physical layer. In-vehicle networks can be divided into 
two types: time-triggered (TT) and event-triggered (ET). TT refers 
to the time point as the communication trigger condition, which is 
generally realized by means of timing and time synchronization. ET 
means that the communication trigger condition is the occurrence of a 
certain event. For example, when an automobile airbag system detects 
a collision event, the ECU where the trigger sensor is located sends 
a data frame containing control parameters to detonate the airbag. 

Figure 10.3 In-vehicle network structure diagram, which is composed of 
multiple functional domains interconnected through gateways. 



C 

Intelligent Connected Vehicles ■ 291 

The current time-triggered networks in vehicle networks mainly include 
TTEthernet [6], TTP/C [7], and TTCAN [8]. The TT network has the 
characteristics of high bandwidth and deterministic transmission delay, 
which makes up for the lack of deterministic delay of the ET network. 
It can be applied to the feld of wire-controlled braking, but it also 
has high node deployment costs and relatively high system scalability. 
ET-type networks such as LIN and CAN have better performance in 
terms of fexibility, scalability and cost. 

According to the diference in bandwidth and functional domain, 
the Society of Automotive Engineers (SAE) classifes network protocols 
into four categories: A, B, C, and D. As shown in Table 10.1, diferent 
network protocols are diferent in node cost, bandwidth, minimum 
response time, and scalability, and are suitable for diferent automotive 
functional domains [9]. For example, Class A bus is generally used for 
body control, such as luggage opening and closing, window control, 
and other occasions with small data volume. As a new generation of 
in-vehicle network protocol standard, FlexRay can be used in felds that 
require high real-time and reliability of message transmission, such as 
brake-by-wire. It is worth mentioning that FlexRay is a TT and ET 
hybrid in-vehicle network. 

TABLE 10.1 Classifcation of In-Vehicle Networks 

Class Protocol 
A LIN 

B 
Low-speed CAN 

CAN2.0 
TTP/A 

High-speed CAN 
TTP/C 
CAN-FD 

FlexRay 
MOSTD 
Ethernet 

Safe-by-wire 
Byte-fight 

Domain 
Vehicle body control 
Body electronics 

non-diagnostic and 
safety-critical data 
Transmission device 

mobile device 
diagnosis 

wire control 
Power train 

chassis domain 
Multimedia 

(audio, video) 
Safety-related 
real-time and 
reliable areas 

Robustness Cost 
Low Low 

Medium Low 

High Medium 

High High 

Low High 

High High 
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10.2.2 Vulnerabilities and Cybersecurity Requirements 

The current in-vehicle network standard protocol CAN lacks message 
authentication and data encryption mechanisms at the beginning of its 
design. As more consumer electronic products can be easily accessed, 
intelligent networked vehicles make automobiles become smart mobile 
devices with wheels, and the advancement of software and data services 
has gradually become the core competitiveness of automobiles. If the 
research and deployment of in-vehicle network security enhancements 
are not carried out in time, they will sufer from various malicious 
attacks due to potential security vulnerabilities [10]. 

From the perspective of attack entry, in recent years, cybersecuiry 
threats to automobiles can be divided into three implementation 
methods: direct physical access attacks, short-range wireless attacks, 
and long-range wireless attacks. As shown in Figure 10.4, direct 
physical attacks are mainly through illegal access to CAN, OBD 
diagnostic interfaces, etc. As shown in Figure 10.5, short-range wireless 
attacks are mainly through illegal access of Bluetooth and wireless 
sensor channels, and remote attacks are mainly through Wi-Fi and 
mobile digital cellular network ports to achieve illegal access, as shown 
in Figure 10.6. 

10.2.3 Attack Model and Vulnerabilities from External Interface Layer 

Attacks from the sensing layer (physical layer). With the development 
of ICV technology, more and more smart sensors will be assembled on 

Mobile communication 

network

IVN

OBD port

Power train 

domain

Infotainment 

domain

Real-time, safety-

critical USB port

Wired connection method

Figure 10.4 Direct physical access attacks through USB, OBD-II, and 
other interfaces. 
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Non-contact connection

WiFi

IVN

Power train 

domain

Infotainment 

domain

Real-time, safety-

critical

Bluetooth channel

Figure 10.5 Short-range wireless access attacks through wireless inter-
faces such as Bluetooth and Wi-Fi. 

Mobile communication 

network

IVN

Power train 

domain
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critical

Network protocol

 conversion

Non-contact connection

Figure 10.6 Use of repeater to achieve remote intrusion and vehicle 
control. 

vehicles, such as LiDAR, millimeter-wave radar, cameras, and GPS, 
which can collect external environment perception information and 
provide the ability to perceive the environment for autonomous driving 
decision making. Therefore, attacking the vehicle through the physical 
layer will become a new threat to the security of the in-vehicle network. 
For example, in Ref. [11], Rouf et al. proposed an attack that interfered 
with the tire pressure monitoring system through a radio channel, 
causing the vehicle tire pressure monitoring system to fail. In Ref. [10], 
Tao et al. used a radio channel to achieve an attack on the keyless start 
system and illegally started the target vehicle. 

10.2.4 Attack Model and Vulnerabilities from Network Layer 

Due to the lack of data encryption and message authentication 
mechanisms in the in-vehicle network, once an attacker can access the 
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network device, the attack can be easily carried out. The attack modes 
of the data link layer include frame injection, frame forgery, frame 
snifng, pause, and DoS attacks. The availability of the network will 
be severely threatened. For example, Cho et al. implemented a DoS 
attack on the data link layer of the vehicle CAN, which led to the 
failure of the entire automotive electronic system [12]. 

10.2.5 Attack Model and Vulnerabilities from Application Layer 

In recent years, there have been many reports on exploiting vulner-
abilities in external network interfaces and equipment to implement 
remote network attacks on vehicles [13–15]. Attack entrances include 
Bluetooth, OBD-II, and Wi-Fi. At the application layer of IVN, 
attackers can conduct more targeted attacks that are not easily 
detected, such as remotely controlling or braking a vehicle [16–18]. 
Since this type of attack has no illegal access to nodes and obvious data 
frame anomalies, it is more difcult to detect. In response to this type 
of attacks, researchers mainly focus on the design of intrusion detection 
methods based on machine learning [11,19]. Currently, there are mainly 
problems such as excessive consumption of computing resources, lack 
of test data sets, and model evaluation. 

10.3 OVERVIEW OF INTELLIGENT CONNECTED VEHICLE 
CYBERSECURITY ENHANCEMENT COUNTERMEASURES 

Cybersecurity is one of the problems that ICV needs to solve urgently. 
However, due to the cost and real-time constraints of the in-vehicle 
network, automotive electronic systems are sensitive to bandwidth and 
computing resources, which results in many traditional information 
security enhancement technologies that cannot be directly applied to 
the in-vehicle network environment. In recent years, in response to 
this problem, relevant researchers have carried out a series of research 
work. As shown in Table 10.2, there are many classic methods, such 
as encryption, digital signatures, and message authentication. The 
method of data encryption can improve the integrity and correctness 
of network message transmission, but faces the problem of balancing 
security and computing resources. Message authentication can improve 
the accuracy of network message transmission, but it mainly faces 
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design constraints brought by network bandwidth. Intrusion detection 
can enhance the protection of network availability and integrity. 
The current main challenge is to improve detection accuracy and 
robustness and to reduce false alarm rate and detection response 
time. The remaining sections focus on the cybersecurity threats of in-
vehicle networks in the intelligent networked vehicle environment and 
summarize the following three technologies. 

10.3.1 Hardware Security Module 

Encryption and authentication are widely used in the security feld 
of communication channels, and this technology is also widely used 
on in-vehicle network environments (where MAC technology has been 
included in the AUTOSAR protocol specifcation). However, the 
traditional message encryption and authentication technology faces the 
problems of heterogeneous architecture, and limited bandwidth and 
computing resources on in-vehicle network environment. Therefore, in 
order to reduce the additional time overhead caused by encryption 
operations, message authentication and encryption on in-vehicle 
network usually adopt lightweight and hardware acceleration methods, 
such as the use of programmable logic device for Advanced Encryption 
Standard (AES), elliptic-curve ciphers, etc. For example, the use of pro-
grammable logic devices to implement the Advanced Encryption Stan-
dard (AES) arithmetic module to achieve the purpose of acceleration. 
In [20], Hou et al. realized elliptic curve cryptography (ECC) operation 
acceleration. In Ref.[21], Zelle et al. realized a tailored version of the 
hash algorithm through the feld programmable gate array (PFGA). In 
Ref. [22], Mertol transmitted multiple messages to one MAC, etc. 

In view of the shortage of computing resources on in-vehicle network 
environment and the additional time overhead caused by message en-
cryption for network communication, in Ref. [29], Wang et al. used the 
addition of hardware modules to solve the problem of the calculation 
time of the encryption algorithm, which efectively reduces the efect of 
message encryption on the network. The disadvantage of performance 
impact is that it will increase the cost of hardware deployment. 

In order to deal with the vulnerabilities and attack models of 
various vehicle-mounted ECUs, in Ref. [30], Siddiqui et al. proposed a 
hardware-based secure and trusted framework. In addition, a two-way 
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authentication and encryption technology based on lightweight physical 
unclonable functions is implemented on the vehicle CAN. At the 
same time, a lightweight security encryption algorithm for non-secure 
communication channels is designed. Experimental results show that 
the time overhead for sending an encrypted data frame at 1 Mbit/s 
on-board CAN is 108 µs. In Ref. [31], Gu et al. optimized information 
such as digital signatures and authentication codes through the 
optimization of the message distribution layer from the level of 
message encapsulation and scheduling, and distributed tasks to the 
vehicle ECU, thereby reducing the impact of message encryption and 
authentication on network time performance. At the same time, no 
additional hardware cost overhead is generated, and its disadvantage 
is that the network protocol is extremely complicated. 

10.3.2 Message Authentication 

In Ref. [32], Herrewege et al. proposed a variety of lightweight message 
authentication protocols for in-vehicle CAN to protect vehicles from 
camoufage attacks. In Ref. [23], Jo et al. designed a new authentication 
protocol – MAuth-CAN, which can achieve a balance between the 
network bandwidth consumption and the prevention of masquerading 
attacks without modifying the CAN hardware controller. In addition, in 
Ref. [24], Kang Ki Dong proposed a lightweight source authentication 
protocol using a one-way hash chain in CAN, which has an attack elas-
tic tree algorithm and can be deployed through ECU frmware updates. 
Analysis shows that the protocol has high security. The experimental 
platform combined with virtual ECU (implementation on CANoe) and 
FreescaleS12XF shows that the protocol has obvious advantages in 
terms of authentication time, response time, and service delay. 

The lightweight message authentication protocol design can solve 
the problem of the lack of security authentication design of the CAN 
protocol and ensure the authenticity of in-vehicle network communica-
tion. Considering the current in-vehicle network bandwidth resources 
and message response time requirements, there exist problems in the 
design of the existing message authentication protocol, and the main 
challenge lies in how to improve the security of message authentication 
while avoiding the reliability and real-time problems caused by message 
scheduling due to communication bandwidth consumption. 
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10.3.3 Intrusion Detection System (IDS) 

Intrusion detection systems have the characteristics of small bandwidth 
resources and easy deployment of existing vehicles and are more 
suitable for resource- and cost-constrained in-vehicle networks. IDS can 
be divided into host-based IDS and network-based IDS according to the 
data source. According to the detection technology, it can be divided 
into methods based on information theory and statistical analysis, 
feature observation, machine learning, etc. In the following sections, we 
will focus on the technical progress of intrusion detection technology 
for in-vehicle networks. 

10.4 STATE-OF-THE-ART IN-VEHICLE NETWORK INTRUSION 
DETECTION APPROACHES 

Compared with other cybersecurity enhancement methods such as data 
encryption and message authentication. Intrusion detection has the 
characteristics of small bandwidth resources and easy deployment of 
existing vehicles. It is more suitable for in-vehicle networks with limited 
resources and costs. According to the data source, intrusion detection 
can be divided into host-based IDS and network-based IDS. According 
to detection technology, it can be divided into methods based on 
information theory and statistical analysis, detection methods based on 
feature observation, and detection methods based on machine learning, 
as shown in Figure 10.7. This chapter mainly focuses on the realization 

Hamming

Figure 10.7 Classifcation of intrusion detection technologies for existing 
in-vehicle networks. 
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method of intrusion detection technology for in-vehicle networks. The 
following will summarize and analyze the existing research work from 
three diferent aspects. 

10.4.1 Feature-Based Observation Approaches 

Feature observation is one of the commonly used methods of intrusion 
detection and is currently widely used in the research of intrusion 
detection on in-vehicle networks [33]. Through the analysis of the in-
vehicle network architecture and network protocol, it is found that 
the network features that can be used for intrusion detection and 
observation mainly include device fngerprints (extracted by time-
domain and frequency-domain information) [34], clock ofset [35], 
message period [36], and remote frame [37]. For example, in Ref. [38], 
Zeng designed a vehicle-mounted CAN intrusion detection technology 
based on Snort rules on the basis of fully analyzing the byte- and bit-
level characteristics of the CAN network and designed and implemented 
a complete vehicle-mounted CAN intrusion detection technology. The 
validity of abnormal rule detection is verifed by experiments. 

In recent years, using the uniqueness of ECU electrical character-
istics to establish device fngerprint information has become a popular 
method for tracing the source of in-vehicle network attacks and has 
widely been used on in-vehicle network intrusion detection research. 
This method was frst proposed by Cho et al. in [39], and then in Ref. 
[40], Song et al. realized intrusion detection through the extraction 
and statistics of network signal features. In Ref. [37], Lee et al. used 
the return value delay and time interval of CAN network periodic 
messages as the source of device fngerprint information and achieved 
good detection results. In Ref. [28], Yang et al. used the RNN-LSTM 
classifer to construct the ECU fngerprint signal in the frequency 
domain. Experiments show that this method can efectively detect 
fooding attacks. In Ref. [41], Ning and Liu proposed a LOF-based 
attack detection scheme, which uses the voltage physical characteristics 
of the CAN frame to determine whether the message is sent by a 
legitimate electronic control unit (ECU). The proposed algorithm has 
low time and space complexity. Experimental data obtained under real 
in-vehicle network environment show that the recognition accuracy of 
specifc attack models can reach more than 98%. 
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Methods based on the observation of network characteristics can 
often achieve high detection accuracy for specifc attack models, 
with short response time and low network bandwidth overhead [42]. 
However, considering the characteristics of the long life cycle of 
automobiles (about 20 years) and the dynamic changes of the network 
environment, the robustness and adaptive ability of detection methods 
need to be further strengthened. 

10.4.2 Statistical Analysis-Based Approaches 

By collecting 667.3 million CAN messages and analyzing the 
information entropy, it is found that the average value of the 
information entropy in the vehicle CAN network is 11.436 [29]. When 
malicious attacks occur (such as DoS and replay), the information 
entropy of the vehicle CAN network will be signifcantly reduced. This 
feature is widely used in resource-constrained vehicle network intrusion 
detection research [43–45]. For example, in Ref. [43], Marchetti et al. 
evaluated intrusion detection algorithms for vehicle networks based 
on information theory, and their research found that using a single 
information theory model can only be efective against a single fooding 
attack in vehicle network intrusion detection and evaluation. In Ref. 
[44], Muter and Asaj used the concept of information entropy for the 
intrusion detection of vehicle-mounted network for the frst time and 
limited the evaluation range of information entropy to CAN message 
ID. Using this feature, the intrusion state can be quickly detected. 
For identifcation, it has the characteristics of short detection response 
time (the fastest intrusion attack can be found within 0.01 ms). In 
Ref. [42], Wu et al. proposed a sliding window strategy based on 
a fxed number of messages. Compared with the traditional sliding 
window strategy with a fxed time window, this scheme can efectively 
avoid the problem of the on-board CAN network. The improved 
method efectively solves the problem of information entropy jitter 
caused by periodic messages. Experiments show that this scheme can 
efectively improve the detection accuracy of intrusion detection for 
vehicle network based on information entropy in response to fooding 
and replay attacks, and the detection response time is evaluated. 

Qin et al. carried out a series of research works on vehicle network 
anomaly detection using the method of information theory. First of 
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all, in Ref. [46], their theoretical analysis and experiments proved the 
efectiveness of using information entropy to detect attacks such as 
replay and fooding on the in-vehicle CAN network. Then in Ref. [47], 
Yan improved CAN bus anomaly detection method based on Renyi 
information entropy, which efectively improved the detection accuracy, 
but is still limited to the detection of replay and fooding attack models. 
In addition, in Ref. [48], a CAN message anomaly detection method 
based on the random forest model was proposed and a large amount of 
data collected by real vehicles were used to construct the random forest 
classifcation algorithm for many adjustments. Experiments show that 
appropriate network feature parameters have a signifcant impact on 
improving the efectiveness of vehicle network anomaly detection. 

The existing research on vehicle network intrusion detection 
methods based on information theory often ignores the impact of 
vehicle network information entropy jitters caused by diferent states 
of vehicles on the detection results. The detection model has high 
detection accuracy under limited vehicle states, but the robustness to 
diferent vehicle states needs to be improved. These problems cause 
such methods to fail to meet the current Automotive Safety Integrity 
Level (ASIL) and high-level security requirements. Therefore, the 
optimization of in-vehicle network intrusion detection algorithm for 
state awareness by sensing vehicle state is worthy of future research. 

10.4.3 Artificial Intelligence-Based Approaches 

Machine learning, neural network, and other theories have also become 
popular directions for research on intrusion detection technology for 
in-vehicle networks [49–51]. For the frst time, in Ref. [25], Andreas 
et al. proposed to use an SVM with a radial basis function (RBF) 
kernel to learn baseline normal behavior and classify deviations as 
anomalies. The generated classifer is suitable for message time series. 
Later, in Ref. [26], Kang and Kang designed a vehicle network 
intrusion detection technology that uses a deep neural network (DNN). 
By training the vehicle network packet messages exchanged between 
ECUs, low-dimensional features are extracted and used to distinguish 
normal and hacker groups. In Ref. [27], the author uses the Bayesian 
network method to quickly identify malicious message attacks on the 
CAN network and uses CARLA to simulate CAN network messages in 
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Figure 10.8 Artifcial intelligence-based IDS for IVNs. 

various operating states of real cars. Its shortcoming lies in its detection 
accuracy, only 86%, which resulted in the inability to meet the func-
tional safety-critical requirements of the ISO26262 specifcation [52]. 

The experimental results of the above methods show that machine 
learning has a good efect on the intrusion detection of unknown attack 
models in the vehicle network. As shown in Figure 10.8, the artifcial 
intelligence-based IDS used for IVNs needs to process a large amount of 
data in real time, which places higher requirements on the computing 
resources and network bandwidth of the automotive electronic system. 
However, in the in-vehicle network environment, due to the limitations 
of computing, storage, and communication bandwidth, how the existing 
machine learning-based intrusion detection method can reduce the 
computational complexity and the consumption of the in-vehicle 
network communication bandwidth is a problem that needs to be 
further solved. At the same time, the intrusion detection system is 
also required to improve the detection accuracy, reduce the false alarm 
rate, and reduce the detection response time. Improving the robustness 
of the system is also the direction that the intrusion detection 
system needs to be further improved. Moreover, for Automotive 
Cyber-Physical Systems (ACPS), due to its key functional safety 
attributes, the authenticity and reliability of the network are the most 
important information security requirements. In order to solve the 
above problems, it is urgent to carry out research on intrusion detection 
model and algorithm design of in-vehicle networks. 
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10.5 SUMMARY AND FUTURE RESEARCH 

In recent years, the security of the ICV has aroused widespread 
concern in the industry and academia. One of the focuses is the 
development of anti-attack algorithms and architectures around the 
vehicle network. Combining the development trend of intelligent 
networked vehicles mentioned above and the latest research progress 
in the current in-vehicle network security, this chapter further puts 
forward some open issues in the feld of intelligent networked vehicle 
cybersecurity. Regarding the security issues of the intelligent networked 
vehicle network, some open issues and future research directions are 
summarized as follows. 

1. How to improve the accuracy of intrusion detection and reduce 
the response time? The failure to detect malicious attacks on the 
vehicle network in time brings serious functional security threats. 
Intrusion detection is used as an important means of enhancing 
the cybersecurity of intelligent networked vehicles to improve 
detection accuracy, reduce false alarm rate, shorten detection 
response time, and improve system robustness. It is one of the 
most urgent problems to be solved in the research of intrusion 
detection technology for in-vehicle network in the future. 

2. How to achieve accurate network security testing and evaluation? 
Due to the increasing complexity of heterogeneous software and 
hardware components used in intelligent networked vehicles in 
the future, new attacks against in-vehicle networks will continue 
to appear. The complexity of these new components and on-board 
systems brings more challenges to the development of efcient 
and adaptable on-board cybersecurity mechanisms, but also 
brings difculties to cybersecurity testing and verifcation; for 
example, to verify an intrusion detection model and algorithms, 
it is necessary to simulate the vehicle network information fow in 
the case of cyberattacks in the real vehicle network environment. 
The acquisition and generation of test data will further afect the 
accuracy and efect of detection. How to evaluate the security of 
the in-vehicle networks has not yet formed a unifed solution. 

3. How to deal with unknown cyberattacks on ICVs? Taking into 
account the characteristics of the long life cycle of automobiles 
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(about 20 years) and the dynamic changes of the network 
environment, there are three main problems in the existing 
research. The frst is that the detection method often corresponds 
to a specifc attack model, the second is that the robustness of 
the detection efect is not strong (there are many prerequisites, 
and the perception of the state of the vehicle is lacking), and 
the third is the lack of evaluation of the detection response time 
and functional safety. In view of the impact, considering the 
key attributes of ACPS functional safety, it is urgent to solve 
the above problems through optimization research of intrusion 
detection models and algorithms, so as to avoid serious safety 
crisis of intelligent networked vehicles caused by cybersecurity 
problems. 
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11.1 INTRODUCTION 

The past three years witnessed a fourishing development of deepfake 
technology and deepfake products. As an open-source, low-cost, high-
fun technology, deepfake closely integrates with the rapid development 
of social media and mobile economy and has quickly become a 
threat to challenge the law, personal privacy, and even national 
security. The booming of this technology has alerted law enforcement 
and practitioners. The past president of Society of Police Futurists 
International Joseph Schafer [2] has written about his concerns that it 
will profoundly implicate the policing if people could control the video 
with the help of deepfake technology. He mentioned that deepfake users 
could easily eliminate citizen’s resistance in a video of police use of 
force. He calls for attention and action on deepfake issues among the 
law enforcement “before matters escalate beyond mitigation”. 

Deepfakes pose a potential threat to the digital forensics process 
given that video/audio evidence of an individual might be legally 
admissible. But in reality, the video/audio evidence might be fake. Our 
law enforcement cybersecurity workforce are not prepared for those big 
cybersecurity challenges yet. Students have a big learning curve for 
understanding how deepfake works. Figure 11.1 shows that deepfakes 
are related to computer vision, GAN, a machine learning algorithm, 
and other disciplinary. Students have to be guided to master basic 
concepts before they can follow how deep learning algorithms works 
in deepfakes. This chapter presents an integration of deepfake leaning 
modules and a set of deepfake hands-on labs into the cybersecurity 
curriculum, introducing students to this area while providing them 
with adequate knowledge and skills that can be used to grasp detection 
algorithms. 

Figure 11.1 Deepfake main components. 
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This rest of this chapter is organized as follows: Section 11.1 intro-
duces the concept of deepfake. Section 11.2 brings the background of 
deepfake technology. Section 11.3 describes how the deepfake challenges 
digital forensics. Section 11.4 introduces several popular deepfake de-
tection/forensic methods with their limitations. Section 11.5 proposed 
an approach for building an app to detect fake image digital evidence. 
Conclusions and future work are presented in Section 11.6. 

11.2 BACKGROUND 

As an irresistible trend of this century, artifcial intelligence has 
become an important power of technology development. It has brought 
the world with wealth and opportunity, but also some new threats. 
Deepfake is a rapidly evolving technology that uses machine learning 
to fabricate images, audio, or video that are very difcult to be detected 
by humans. The technology has wide medical and entertainment 
applications. For instance, it is allowing people to get high-quality 
movies and entertainment efects at a lower cost. However, it also 
becomes a critical concern for individuals, celebrities, and politicians. 
The U.S. House of Representatives Intelligence Committee held an 
open hearing in 2019 to discuss artifcial intelligence and consider 
deepfake as a threat to individuals and national security, because we 
still lack reliable detection tools to identify deepfaked products. Hany 
Farid, the image forensics expert who created PhotoDNA, explained, 
“we’re decades away from having forensic technology that [could] 
conclusively tell a real from a fake” [3]. 

One Dutch company, DeepTrace, has done an investigation into 
deepfakes and released a report in 2019 showing that the number of 
deepfake videos has doubled in the frst seven months of 2019. One 
of the most famous cases that this technique may trigger happened 
in Gabon 2019, and an attempted coup has sparked by a suspected 
deepfake video. The president of Gabon Ali Bongo has not been seen 
in public for a long time because of health problems. People in that 
country were growing suspicious about the president’s well-being. On 
January 1, the government released the president’s customary New 
Year’s address. But the authenticity of the video has widely been 
questioned. Some people observed that his eyes were barely able to 
move during the video, so this video may probably be a product 
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of deepfake technology, and the president could have been dead. 
Others, however, believe that these weird expressions are because the 
president had sufered a stroke. They consulted a digital forensics 
expert; however, he said that he could not give a defnitive assessment 
although he thought something was wrong [4]. The reason for this 
controversy has an obvious relationship to the fow in digital forensics 
study. When technical experts are unable to authenticate such digital 
evidence, rumors and conficts have space to grow. 

11.3 DEEPFAKE FORENSICS 

As new technology in machine learning and artifcial intelligence, 
deepfake relies on neural networks that analyze large sets of data 
samples to learn to mimic human facial expressions, mannerisms, 
voice, and infections [5]. In the process of neural network training, 
programmers can fully control the shape of the network by selecting 
diferent algorithms, defning how many layers, how many nodes in each 
layer, and how they are connected, and giving the learning rate and the 
bias. The process of training the neural network is actually the way we 
calculate the loss between the value generated by the neural network 
and the target, and then trying to reduce (optimize) this loss through 
iterations. The global market for smart machines is expected to exceed 
15 billion by 2019, with an average annual growth rate of nearly 20% [6]. 

Generative adversarial networks, or GANs for short, are the most 
popular approach for deepfake image generation. The original GAN 
was proposed by Goodfellow in 2014 [7]. In this algorithm, we will 
train two models for a two-player game. The generator is responsible 
for fake images generation. It will generate random or specifc images 
based on algorithmic rules and input the images into the discriminator 
for identifcation. While accepting the false images generated by these 
generators, the discriminator also receives the real images with labels. 
Then the discriminator is going to determine how similar these false 
images to the real images and outputs the prediction. Until now, there 
have been more than 500 variants of GAN. Unlike previous technologies 
that have been used in forge video, audio, and image, deepfake has 
advantages on the way of rapid popularization. First, the forgery 
of video, audio, and image in the past requires diferent tools and 
methods. However, if one knows the way how to produce a deepfaked 
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image, one can understand the rest by analogy. Because they all use 
similar algorithms and knowledge and tools to forgery video, audio, 
and image. 

At the same time, the cost for a person to manipulate deepfake 
is getting lower. Most machine learning courses are freely available 
online. For example, YouTube can provide free deep learning video 
resources from college video courses to YouTube’s code case study. 
There is also a project-learn with Google AI that can ofer a slightly 
more in-depth course from Google ofered through Udacity. What’s 
more, most of the algorithms and databases used for deepfake are 
open source. It reduces the barrier to entry and allows more people 
to develop the algorithm of deepfake. All of the listed reasons have 
contributed to a wide application of this technology. Some of these 
applications will have benign efects on society. And some are likely 
to be used to harm the country community or individuals. Deepfake 
technology can manipulate multiple types of activities on video, audio, 
and images, such as prosthetic body movements, adding and removing 
objects, realistic fake face photos, and face-swapping. Figure 11.2 shows 
what we usually do with the deepfake technology. 

Digital forensics is the study that has been used to collect criminal 
analysis evidence in cyberspace. Traditionally, we defne digital foren-
sics as dealing with the use of scientifcally derived and proven methods 
toward the preservation, collection, validation, identifcation, analysis, 
interpretation, documentation, and presentation of digital evidence 
derived from digital sources for the purpose of facilitation or furthering 
the reconstruction of events found to be criminal, or helping to antici-
pate unauthorized actions shown to be disruptive to planned operations 
(Digital Forensics Research Workshop). The current investigative 
process of digital forensics can be divided into four stages. They are 
preservation-freezing the crime scene, collection-fnding related digital 
information, examination-in-depth systematic search, and analysis-
get conclusion. Figure 11.3 shows the four stages of digital forensic 
processes. The evidence of criminal behavior caused by deepfake 
technology should belong to the research scope of digital forensics. 

As important digital evidence, images have always been considered 
as a research target for digital forensics. However, existing examination 
and analysis techniques and tools cannot support the identifcation of 
fake images produced by deepfake algorithms. 
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Figure 11.2 Deepfake technology currently enables these forms of 
manipulation. 

Figure 11.3 Four stages of digital forensic processes. 
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11.3.1 Limitations in Digital Forensic Processes 

Deepfake generation and deepfake forensics will always be a pair 
of chasing and competing rivals. Although there exist considerable 
detection/forensic methods, these methods are still not efective in 
accuracy, efciency, and coverage scenario, which makes those detection 
methods easily destroyable by the rapid upgrading of GAN algorithm. 
So, we still lack reliable tools for deepfake forensics. 

The premise behind the current digital forensics process is that all 
the images are obtained from the real world. The purpose of forensics 
is to fnd evidence that criminals modifed those images. However, 
detecting if the images are generated from a deepfake model, is not 
required in any of the digital forensic stages. 

11.3.2 Limitations in Digital Forensic Methods 

Existing examination and analysis techniques and tools cannot 
support the identifcation of fake images produced by deepfake 
algorithms. Those methods used for digital forensics are search, 
event reconstruction, and time analysis. In searching, we use manual 
browsing or automated searches to collect information. The method 
of reconstructing past events: such as analysis log, system, and fle 
attribute analysis, is necessary to any digital forensic analysis. The 
time analysis is to focus on time stamp of any fle. It is using time-
bounding and dynamic time analysis to verify the authenticity of time 
stamp. However, the human face image created by deepfake model is 
a virtual character rather than a partially modifed image based on 
a real person picture. These methods cannot be applied to deepfake 
detection. In terms of image acquisition, the methods and tools for 
image acquisition are mainly designed for physical equipment such as 
the camera. For example, by tracking the design and manufacturing 
features on each lens, we can fnd the modifcations. By capturing the 
sensor pattern noise of images, we can correlate it with the RPNU of 
each device. However, all these methods cannot be used to detect the 
fake image generated from a training model. 

11.3.2.1 Technical Response and Future 

The academic and business communities are gradually becoming aware 
of the shortage of deepfake detection. They are encouraging people to 
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understand deepfake and explore related detection methods through 
various competitions. 

One of the famous competitions is the “deepfake detection 
challenge”, which is founded by Amazon, Microsoft, Facebook, and 
Partnership on AI. The reward of this challenge is as high as 1 million 
dollar. The committee is composed of professors in universities such 
as Cornell University, University of Maryland, and UC Berkeley as 
committee members and public media, such as the New York Times 
and XPRIZE. In addition, the Pentagon was taking action to contain 
damages that arise from this technology. In 2018, a program called 
MediFor was invested by the DARPA. The program aims to develop 
technologies to assess the integrity of images and videos. 

11.4 RELATED WORK 

The boom of GAN algorithms has brought a lot of problems in 
detecting fake images generated from GAN. However, researchers have 
also proposed a variety of detection methods for detecting deepfake 
images generated from GAN. Generally speaking, we can divide the 
ideas of their detection methods into four categories. 

11.4.1 Detecting in Pixel Level 

These methods are inspired by the traditional image digital forensics 
thought, trying to fnd the statistical diference on RGB channels 
between the real images and fake images. 

Manjunath et al. [8] proposed a method to detect fake images 
generated from the GAN algorithm by using co-occurrence matrices. 
This detection method was inherited from the steganalysis, which 
studies fnding digital information hidden in an image, in the 
traditional image digital forensics. They frst compute pixel co-
occurrence matrices on the three-color channels and then pass it to 
a convolutional neural network (CNN) to train a model. By studying 
the residuals of the high-pass-fltered images and then extracting co-
occurrence matrices on these residuals, they can create a feature 
vector to detect the images generated from the GAN model. In 
summary, the key point of their method is looking for the statistical 
deviations between the real images and the fake images. By the way, 
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the co-occurrence matrix is also widely used in the recommendation 
system. They validated their method by using two datasets – StarGAN 
and CycleGAN, and both of the results show good accuracy. 

McCloskey and Albright [9] noticed two diferences between the 
images generated by the GAN generator and those taken from the 
camera. First, the weights bias of multi-channel internal representation 
in the generator is diferent from the analogous spectral sensitivities in 
a camera for the generator didn’t need to count photons. Therefore, 
the generator allows negative weights, which the camera never allows. 
What’s more, the spectral response functions in a real camera have 
limited overlap. However, the generator has no limitation on this. In 
addition, images taken from a camera usually have saturation or under-
exposure regions. However, the GAN images do not have these regions 
for the normalizations applied in the generator. This fnding suggests a 
straightforward GAN images forensics method. And their experiments 
also proved their forensics method based on detecting over-exposed 
pixel frequencies to be very efective. 

Li et al. [10] observed that compared to the real images, the 
deepfake image is more diferentiable in chrominance components. 
First, the disparities between deepfake images and real images show 
deepfake images are diferent from the real ones when considering red, 
green, and blue components together. Besides, deepfake images are 
diferent from real images, especially in the chrominance components 
of color spaces, for example, HSV and YCbCr. Base on the observation, 
they proposed a detection method that captures features on color 
images and used statistics to detect the deepfake images and then 
to evaluate their solution in three detection scenarios: sample-aware, 
model-aware, and model-unaware. The experimental results show that 
the proposed features equipped with a binary classifer can efectively 
diferentiate between deepfake images and real images when DNG 
samples or generative models are available. 

Zhao et al. [11] observed that deepfake images are blended by 
patches from multiple sources with distinct source features (in-camera 
features and forgery features), and these cues are still preserved after 
being stitched into deepfake images. So they proposed a patch-wise 
consistency learning branch and built an inconsistency image generator 
to provide the pixel-level annotations to the model to compute a 
pair-wise similarity between patches from diferent sources. 
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11.4.2 Subtle Difference Collecting 

Zhang et al. [12] proposed the frst method of swapped image detection. 
And they believe this method can directly be used to enhance the 
security of some existing systems as an authenticity predictor. In their 
research, they created a dataset with labels on each image to achieve 
automated face-swapping among a batch of images. Then they are 
compressing the features of BoW by select numbers of visual words. 
They used four classifers (SWM-linear, RF, SVM-RBF, and MLP) to 
classify the images and record their performance. The results show that 
this set of BoW feature representations used to describe face features 
and distinguishable information performs well on diferent classifers. 

Another solution for detecting forgery in face images is to identify 
the location of the blending boundary. This solution called Face X-
ray was proposed by Li et al. [13]. Li believes that the acquisition 
process of an image will give each image distinctive marks. Those 
marks showed a consistent pattern in an image. But the consistency 
will be destroyed by the face-swapping. These inconsistencies can 
be considered as a boundary and be detected by their model. Huh 
et al. [14] proposed a self-supervised method for detecting deepfake 
images. Their method addresses the problem that detectors usually 
lack sufcient amounts of deepfake data for training. By using the vast 
and previously underutilized WXIF metadata building model, they are 
trying to fnd out whether diferent parts of an image are produced 
by a single imaging pipeline. This model is designed to work in an 
unsupervised regime, and to fag the “out of ordinary” information. 
Their experiment shows this method works well in localizing the spliced 
regions and classifes the spliced image from the authentic image even 
if the model didn’t train with the examples of deepfake images. 

Hsu et al. [15] proposed a common fake feature network (CFFN) to 
distinguish between the deepfake images. They believe the traditional 
classifer layer on CNN, such as softmax layer, has to rely on the 
previous layer to feed features, and those features are high-level 
features. However, the fake features of a fake image can exist not 
only in the high-level features, but also in the middle-level features. 
Hence, they design a new CNN structure and capture features from 
both high-level and middle-level. In this model, they have several dense 
blocks to capture the representative features of the fake image. In their 
experiment, they create a training dataset that includes fve popular 
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GAN images to train their model. And use the course-level structure 
to connect the trained CNN to the last convolutional layer of their 
detector, so the middle-level features captured by the CNN can be 
used to detect the fake images. 

11.4.3 Modifying the Architecture of CNN 

Mo et al. [16] found out in GAN algorithms that both the generator 
and discriminator need to rely on the convolutional neural network 
(CNN) model to produce deepfake images. And the previous research 
reveals that the main diference between fake and real images would be 
refected in the residual domain. Therefore, they speculate that they 
can detect deepfake images by modifying the architecture of the CNN 
model. In their experiment, they modify the number of layers and 
activation function and make a high-pass flter for the input images, 
successfully identifying fake face images with high visual quality from 
real ones. This method also proves that the statistical artifacts in GAN 
images can serve as evidence for fake images. Dang et al. [17] proposed 
a new detection model called CGFace, which is also a model based 
on CNN. In their fve-layer classifer, they input a 64*64 grayscale 
image and capture the hidden features by using 3 pooling layers, 
2 full connection layers, and one fatten layer. Then they test their 
model by replacing diferent loss functions and add dropout layers in 
their model. They fnally found that when the softmax was replaced 
with AdaBoost classifer, the model was shown to perform well on 
the imbalanced scenario of the dataset. And they test their model 
with diferent datasets generated from GAN. The test result shows 
high accuracy. Marra et al. [18] also gave their deepfake image forensic 
solution based on the CNN architecture. They focus on image-to-image 
translation GAN detection and test several diferent detection methods 
proposed by the researchers. They create three diferent scenarios to 
test 7 diferent GAN detectors in their experiment. The results show 
a detector called XceptionNet is the most robust one and behave well 
even with training–test mismatching. It adopts fully separable flters, 
and in each layer of this model, it takes 1D depth-wise and 2D point-
wise convolution to flter the 3D input feature, which reduced the 
learning parameters and gave resources to learning the others. Their 
research also reveals the fact that the compression performed upon 
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image uploading, which is widely used in Twitter and other social 
networks, can impair the performance of detectors. 

11.4.4 Obtaining Fingerprint of GANs 

When detecting digital images generated by traditional devices, 
researchers usually use a method to detect image fngerprints. This 
is because diferent cameras will print diferent PRNU patterns on 
the photos due to manufacturing imperfections. This pattern can be 
thought of as the unique fngerprint of an image. Although deepfake 
images are produced in completely diferent ways, some researchers 
insist that the models built by diferent GAN algorithms will also 
leave unique fngerprints on images. Marra et al. [19] experimented 
with this idea and proved that there are unique fngerprints left 
on each GAN image, which can be used as forensic analysis. Some 
researchers have put this theory into practice. Wang et al. [20] proposed 
a detection method called FakeSpotter which spots fake face images by 
monitoring neuron behaviors. In their paper, the FakeSpotter learns the 
representation of face by activating neurons to capture subtle features 
and monitors the layer-by-layer behaviors to fnd the fake images. 
They proposed a neuron coverage criteria MNC to capture layer-
by-layer neuron activation behaviors. And diferent from the models 
that rely on deep neural networks, their model uses a shallow neural 
network and takes the layer-wise neuron behavior as features rather 
than the output on the fnal layer. And the input of the classifer is the 
general neuron behavior opposed to the traditional ad hoc raw pixels. 
They test their model with four start-of-the-art GANs, including the 
famous styleGAN, and the results show the model is highly efcient 
and robust. Hus et al. [21] proposed a new model called DeepFD 
(deep forgery discriminator). It was designed to address the issue 
when the classifer cannot distinguish the images generated from a 
new variant of GAN. In their solution, by introducing contrastive loss 
into the neural network, they collect and put fake images generated 
from 5 diferent popular GAN algorithms into their training dataset. 
Then, the frst discriminator can learn the jointly discriminative feature 
from the fake images and some real images. Then, they connect this 
discriminator with another classifer and train a second classifer to 
further distinguish the images. Their experiment showed their model 
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has a good identifcation ability even when they test it with some fake 
images that were not generated from the GAN algorithms they used for 
training. For the big GAN family with over 500 variants, their solution 
innovatively breaks the cycle of the detectors being useless as long as 
new variants were created. 

11.4.5 Deepfake Video Forensic Methods 

A novel detection method of deepfake video is to use biological signals 
to verify the authenticity of the video. Ciftci et al. [22] and Qi et al. 
[23] used this approach that estimates biological signals in terms of 
heartbeat, blood fow, or breathing. They may not be visible, but are 
detectable computationally. Those signals can generate diferent noises, 
which can be considered as a projection of the residuals in a known 
dimension. This gives each model a unique signature to detect. So 
their solutions can be used for deepfake detection and source model 
prediction for any given video. 

Sun et al. [24] believes that facial geometric information and its 
dynamic characteristics are efcient and robust in detecting deepfake 
videos in wild. As such, they proposed a lightweight and easy-to-
train model for detecting deepfake videos through temporal modeling 
on precise geometric features. In order to detect the compressed 
deepfake videos that are popular on social platforms, Hu et al. 
[25] proposed a two-stream method. By analyzing the frame level 
and temporality level of compressed deepfake videos, this method 
can detect both tempered artifacts and the inconsistency between the 
frames of compressed deepfake videos. Qian et al. [26] designed the 
MixBlock framework to learn frequency-aware clues by using the FAD 
(frequency-aware decomposition) and LFS (local frequency statistics). 
Thus, the deepfake features can be obtained in the frequency domain. 

11.4.6 Datasets 

The quality of the datasets is important for model training. Feature 
representation, reliability, and minimizing skew are three aspects of 
the quality of datasets. In other words, reducing label errors, features 
noise, and skewness will be greatly helpful in enhancing the model 
performance. Currently, we already have some open-source datasets 
with high quality, and they are very helpful for training models. 
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DeeperForensics-1.0 [27]: A large-scale dataset with 60,000 videos. 
The videos are all high-resolution videos with various poses, expres-
sions, and illuminations. Fake videos are generated by an end-to-end 
face-swapping framework DF-VAR. 

CelebFaces Attributes (CelebA) [28]: A large dataset with 202,599 
face images of celebrities. Each of the images has 40 attribute 
annotations. 

CelebA-HQ: A high-resolution face image dataset selected from 
CelebA. The scale of the dataset is 30,000, and the size of each image 
is 512*512. 

Flickr-Faces-HQ Dataset: A dataset crawled from Flickr. It has 
70,000 high-quality PNG images. The size of each image is 1,024*1,024. 
One feature of this dataset is that it varies in age, race, and image 
background. 

UTKFace: A large face dataset with labels. It has over 20,000 
images. 

Real and Fake Face Detection: A small dataset with 2,000 images. 
Wider Face: A large face dataset with 32,203 images. 

11.4.7 Software for Deepfake Forensics 

Catching deepfakes with AI is something of a cat-and-mouse game. 
A detector algorithm can be trained to spot deepfakes, but then 
an algorithm that generates fakes can potentially be trained to 
evade detection. There are few efective deepfake forensics tools. 
DARPA currently has two programs devoted to the detection of 
deep fakes: Media Forensics (MediFor) and Semantic Forensics 
(SemaFor). MediFor is developing algorithms to automatically as-
sess the integrity of photos and videos and to provide analysts 
with information about how counterfeit content was generated. 
(https://crsreports.congress.gov/product/pdf/IF/IF11333) 

11.4.8 Challenges 

Although the last three years witnessed a growing research interest in 
deepfake forensics [29], testing methods still cannot keep up with the 
pace of technological change. The reasons are the following: Deepfake 
algorithms were updated so fast that the detection methods that 
addressed the weakness of these algorithms quickly became useless. 

https://crsreports.congress.gov
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In 2018, the deepfake video showed unnatural blinking patterns, which 
were easily identifed by deepfake detectors. Meanwhile, some other 
deepfake models are struggling with how to produce teeth. But shortly 
after those detect methods were published in public, weakness was 
overcome by the improved deepfake algorithms. 

Deepfake detection methods are likely to over-ft a dataset that 
loses accuracy in the others. There are a lot of deepfake detection 
algorithms that claim the accuracy can be as high as 97%–99%. But 
this accuracy is tested in a specifc database. It is greatly reduced 
when it is used to test data from other databases or images generated 
by other algorithms. In other words, these models are over-ftting in 
this database. 

In addition, deepfake makers can develop corresponding methods 
to attack a certain detection method. For example, adversarial attack 
is a good solution to interfere with the detection. By adding some 
subtle noise into the dataset, the image will produce changes that are 
undetectable to the human eye. However, these adversarial images can 
trick the detection model into giving an incorrect, but high-confdence 
output [30]. 

11.5 APPROACH TO DEEPFAKE FORENSICS 

Although the update speed of GAN algorithms is so fast, developing a 
deepfake image-detecting application that can quickly identify whether 
the images they upload are deepfaked is very helpful for people 
who work in the digital forensics feld and ordinary users. Here we 
propose an approach to building an application to quickly detect a 
deepfake image. As deepfake technology is widely applied in various 
mobile applications and the growth of the afordable smartphone 
market makes mobile application development the most active area, 
our deepfake detection application designed in this solution will serve 
the users of Android mobile phones. 

11.5.1 Application Overview 

The application is composed of two parts: the activities on the 
application used to interact with users. They will gain images from 
users and return a prediction. Another part is a pre-trained model 
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which can distinguish between the deepfake images and real images. 
This model is trained using the most popular GAN algorithm by 
far. It will be placed into the application and will communicate with 
the frontend by using Android NDK. This detection model tries to 
addresses the issue when the classifer cannot distinguish the images 
generated from a new variant of GAN [21]. By introducing contrastive 
loss into the neural network, the model going to collect and put fake 
images generated from 5 diferent popular GAN algorithms into our 
training dataset. Then, the frst discriminator can learn the jointly 
discriminative feature from the fake images and some real images. 
Then, by connecting this discriminator with another classifer, a second 
classifer can be trained to further distinguish the images. When 
building the training dataset, this app will include the fake images 
generated by the latest styleGAN and combine them with fake images 
generated by the other four GAN algorithms to improve the model’s 
performance. For those who want to detect whether a local picture 
or online picture is created by deepfake technology, this application 
can quickly help them to analyze. When using this application, users 
should install and launch this application and then click the submission 
button to prompt a view for image uploading. If the application didn’t 
report an error toast in the type of the image fle, a POST request 
would be sent to the server from this application. On the server side, a 
trained detector model will run and send a predicted result to this client 
application. After receiving feedback from the server, the application 
will pop up a new activity and showing the prediction to the user. 
Figure 11.4 shows the use case fow of this application. Figure 1.5 shows 
the diagram of the proposed application. 

11.5.2 Application Design 

UI Design: This application will maintain a simple UI design. The 
app is composed of two activities. The main activity is used to receive 
pictures uploaded by the users and send a gRPC request to the server. 
The result activity is designed to show the response from the server. 
It is composed of two components: a textView to show the prediction 
and an imageView to show the prediction directly. Figure 11.5 shows 
the UI design for this application. 
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Figure 11.4 Use case fow of the application. 
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Figure 11.5 Diagram of the proposed application. 

Client–Server communication: The communication between the app 
and the service is mainly done through ServerThread. We will use 
a ServerThread class that is used to create a server socket with the 
port of this server. Once the communication has been accepted, a new 
communication thread will be started (Figure 11.6). 

11.5.3 Model Training and Application Deployment 

Currently, the detection model for the application will be built based 
on the solution of DeepFD proposed by Hsu [21]. With a deepfake 
images dataset generated by the fve popular GAN algorithms and a 
real face image open-source dataset, the model can predict whether 
an uploaded image is deepfake or not and by which algorithm it was 
generated. Figure 11.7 shows the training process of the model. The 
model communicates with app activities through the android SDK 
and NDK. The other way is to deploy the model in the server, and 
the user’s applications are played as a client to post requests to the 
server and get responses from the server. In this paper, we will take the 
second approach to deploy our detection model. Google’s TensorFlow-
serving is a high-performance open-source library for machine learning 
model deployment. It can deploy a trained machine learning model 
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Figure 11.6 UI design for this application. 

Figure 11.7 The fowchart of the detector model’s training process. The 
discriminator 1 (D1) is used to learn the jointly discriminative features 
of the fake images dataset and real images dataset. The discriminator 
2 (D2) is used to binary-classify the images. 
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online and accept requests from clients by using gRPC. TensorFlow-
serving also adds support for model versioning (for model updates with 
a rollback option) and multiple models [31]. In this tool, the deepfake 
detection model will be deployed in the following steps: First, create the 
SavedModel to export the trained model and use SignatureDef to sign 
the model. It will create an identity for the model, which is required 
by the TensorFlow service API. Then create a servable for the model 
that can be loaded later for inference. This servable will also be fed to 
a source on the TensorFlow-serving. When the client posts requests to 
the server, the manager of the TensorFlow-serving will let a loader get 
the source with the model by identifying the signature of this model. 

11.6 CONCLUSIONS AND FUTURE WORK 

In this chapter, we have investigated the interactions between the 
development of deepfake techniques and detection of them in digital 
forensics. We also described the structure and the associated software 
that are pertinent to GAN algorithm. We believe that the proposed 
approach to deepfake forensics is enhanced by the carefully targeted 
category of GAN algorithms that make deepfake images/videos. This 
chapter covers the concepts and technology of deepfake forensics. As 
deep learning technology continues to grow and gain traction, many 
IT professionals are unaware of how deepfake works, but are highly 
interested in its potentiality. The aim of this chapter is to develop an 
innovative application tool that any digital professional can learn to 
adopt techniques to detect deepfake development. 

The main issue of deepfakes is the lack of efective detection 
methods [32]. As for future work, connected with GAN algorithm and 
deepfake detection and develop more fast detection software for public 
use, are the following: 

• The continuous evaluation of the efectiveness of various deepfake 
forensic tools and detecting various variants of GAN algorithm. 

• The enhancement of deepfake forensics datasets available online 
for academic research. 

• The development of additional deepfake forensics in the areas of 
IoT, health care, precision agriculture, precision fshing, public 
sector, and fnance and banking [33]. 
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12.1 AN INTRODUCTION TO SSH IN HPC 

Internet communication occurs via the transmission of data packets. 
A packet is defned as a block of data with the necessary addressing 
information to deliver from one physical node to another, with a packet 
switching network using the addressing information to switch packets 
from one physical network to another, towards their fnal destination, 
independently of other packets. Under the TCP/IP network stack, 
data packets are encapsulated in multiple layers. An Ethernet frame 
has a header and trailer and incorporates an IP datagram. An IP 
datagram includes an IP header and incorporates a TCP segment. The 

DOI: 10.1201/9781003155799-12 333 

https://doi.org/10.1201/9781003155799-12


334 ■ Cybersecurity and High-Performance Computing Environments 

TCP segment has a TCP header and incorporates application data. 
Application data consist of an application header and user data. At 
the application layer are the protocols used by most user services, such 
as the Hypertext Transfer Protocol (HTTP), Secure Shell (SSH), File 
Transfer Protocol (FTP), and Simple Mail Transfer Protocol (SMTP). 

Of these application protocols, most transmit the data in plaintext. 
Using common packet capture and analyser programs (e.g. Wireshark, 
Kismet, Ettercap, and tcpdump), logging trafc can be intercepted, 
showing the values of various felds in the packet according to the 
appropriate specifcations. For protocols that transmit information in 
plaintext and that are used to log in to remote systems (e.g. telnet, 
rlogin, rsh, rcp, and ftp), this includes the user name and password. 
For any individual user, this should be considered a serious problem. 
For high-performance computing (HPC) systems, however, the cost 
is amplifed as such systems usually are provided for research and 
computational purposes; the account is provided on academic merit 
with social benefts gained through positive externalities, while the 
signifcant cost is borne by the provider. 

To avoid inappropriate access to HPC systems, the use of SSH is 
almost universally applied. SSH was frst introduced in 1995 by Tatu 
Ylönen at the Helsinki University of Technology in Finland. Later that 
year, the SSH-1 protocol was documented as an Internet Engineering 
Task Force (IETF) Internet Draft. In 1996, a new, major version of 
the protocol, SSH 2.0 or SSH-2, that incorporated new algorithms, but 
was incompatible with SSH-1 was missing some features and was with 
a more restrictive license. In response, the IETF formed a working 
group to standardise the protocol releasing the frst draft of the SSH-
2.0 protocol in 1997, which was eventually fully released in 2006. This 
included the Dife–Hellman algorithm for improved security in key ex-
change and strong integrity checking via message authentication codes 
and the ability to run multiple shell sessions over a single connection. 

At the same time, a number of developers led by Björn Grönvall, 
desiring a free software version, forked the original 1.2.12 release of the 
original SSH, the last version released under a free software license, 
which eventually became OpenSSH by OpenBSD developers, notably 
Markus Friedl. OpenSSH (also known as OpenBSD SSH) has become 
the single most popular SSH implementation. Acting as a suite of 
applications, OpenSSH includes scp (“secure copy”, a replacement for 
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rcp), sftp (“secure fle transfer protocol”, a replacement for ftp, allowing 
secure copying of fles between computers), ssh (secure shell, a replace-
ment for rlogin, rsh, and telnet, to allow shell access to a remote ma-
chine), ssh-add and ssh-agent (key-holding utilities that avoid the need 
to enter passphrases every time they are used), ssh-keygen (a utility to 
inspect and generate keys that are used for user and host authentica-
tion), ssh-keyscan (a utility that scans a list of hosts and collects their 
public keys), and sshd (the SSH server daemon). Unless specifed other-
wise, all further examples given in this text assume the use of OpenSSH. 

SSH provides authentication of senders and receivers with proof 
of identity of both parties with server and client authentication, 
authorisation to provide access control to accounts, and privacy of data 
and communication via strong encryption, integrity of the same ensur-
ing that they have not been altered through cryptographic integrity 
checking. Further, SSH provides for forwarding or tunnelling to encrypt 
other TCP/IP-based sessions. The security advantages of SSH are 
sufcient that there are strong arguments that computing users should 
use SSH “everywhere”. Such a proposition is no mere fancy; as an 
adaptable network protocol, SSH can be used not just for remote logins 
and operations, but also for secure mounting of remote fle systems, fle 
transfers, X11 connections, arbitrary port forwarding, UNIX-domain 
sockets, network tunnelling, web browsing, etc. Typically, of course, 
the basic means of activity is to use an ssh client to connect a known 
SSH server, either by specifying the login name as an account or with 
the −l option. The examples given here and that follow make use of 
the Spartan HPC system at the University of Melbourne. 

ssh lev@spartan.hpc.unimelb.edu.au 
ssh -l lev spartan.hpc.unimelb.edu.au 

For users that have multiple accounts, the use of an SSH confguration 
fle, located in ∼/.ssh/config, allows for the creation of aliases of user 
and host names. The fle should be readable and writable only by the 
user and not accessible by others, i.e. chmod 600. Entries in the SSH 
confg fle take the form of a stanza block entries of Host and hostname 
with subsequent SSH options such as the qualifed Hostname, the user 
name, with some globbing options (* for all, ? for a single character, 
and ! for not). An SSH confg fle can also be used by related utilities 
such as scp, sftp, and rsync. Some sample entries to an SSH confg 
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fle would include the following, in this case using the term “spartan” 
to represent the user “lev” on the host “spartan.hpc.unimelb.edu.au” 
and a timeout interval of 120 seconds after which, if no data have been 
received from the server, ssh will send a null packet through the channel 
to request a response from the server, to keep the connection alive and 
avoid a “Broken pipe” error. 

Host spartan 
Hostname spartan.hpc.unimelb.edu.au 
User lev 

Host * 
ServerAliveInterval 120 

Further, it is common to use passwordless SSH. This is easier for users 
(as they do not have to use their own memory for complex and multiple 
passphrases) and the automation of scripts (certainly signifcantly more 
preferable than including the password in the script!), and is necessary 
for some applications. Establishing passwordless SSH, *nix-like systems 
(e.g. UNIX, Linux, and MacOS X), the use of ssh-keygen is carried 
out on the client system (in this case, generating a Rivest–Shamir– 
Adleman public key algorithm public/private key pair). The new public 
key is appended on the host to the user’s authorised keys fle located 
at ∼/.ssh/authorized_keys, requiring a fnal entry of the password, 
and from that point onwards, the host will trust a system where its 
public key matches with the client’s private key. 

$ ssh-keygen -t rsa 
Generating public/private rsa key pair. 
Enter file in which to save the key 
(/home/user/.ssh/id_rsa): 
Created directory '/home/user/.ssh'. 
Enter passphrase (empty for no passphrase): 
Enter same passphrase again: 
Your identification has been saved in 
/home/user/.ssh/id_rsa. 
Your public key has been saved in 
/home/user/.ssh/id_rsa.pub. 
The key fingerprint is: 
43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8 
user@localhost 
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$ cat .ssh/id_rsa.pub | ssh username@spartan.hpc.unimelb. 
edu.au 'cat >>.ssh/authorized_keys' 

Depending on the version of SSH being used, the following might also 
be necessary: 

Put the public key in .ssh/authorized_keys2 
Change the permissions of .ssh to 700 
Change the permissions of .ssh/authorized_keys2 to 640 

For clients using Linux, MacOS X.x, or other UNIX-like systems, this 
should be sufcient. A number of users, however, use MS-Windows 
clients. In this case, the process is somewhat more complex, requiring 
several steps. The following is a recommended procedure from the 
University of Melbourne. 

1) Download additional software called PuTTYgen from https:// 
www.chiark.greenend.org.uk/∼sgtatham/putty/latest.html. 

2) Launch PuTTYgen tool up. If you are on Windows 7 or higher, 
right-click on it and select Run as Administrator. 

3) Select the parameters; the default value (SSH-2 RSA) is fne. 

4) Select Generate. 

5) Add the public key to the authorized_keys fle in ∼/.ssh on 
Spartan (create it if it doesn’t exist). Ensure there are no 
unexpected line-breaks. Make sure the permissions on the fle 
are 0644. 

chmod 644 ∼/.ssh/authorized_keys 

6) Back on PuTTYgen, save the private key and public key. Make 
sure to save public key as .txt, while private key as .ppk. 

7) Confgure PuTTY to use that newly generated key. Start PuTTY 
and go to Connection > SSH > Auth and add the location of the 
private key saved previously. 

8) Open PuTTY and log in as usual. If all the steps above have been 
followed, no password will be required. 

https://www.chiark.greenend.org.uk
https://www.chiark.greenend.org.uk
mailto:username@spartan.hpc.unimelb
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The combination of ssh, ssh confgs, and ssh key pairs allows a simple 
command ssh spartan to connect, rather than ssh lev@spartan. 
hpc.unimelb.edu.au and having to enter a passphrase. Further, the 
combination can be applied to other ssh utilities, including rsync (e.g. 
rsync -avz --update workfiles spartan:files/). 

12.2 MAN-IN-THE-MIDDLE AND OTHER ATTACKS 

It is possible, even with public key authentication, for man-in-the-
middle (MITM) attacks to occur. A sender transmitting a message 
request for a public key to a receiver can have it intercepted by the 
MITM. The MITM can capture the message, relay the request, and 
then intercept the return message from the receiver, capturing the 
receiver’s public key. The MITM can then send their key to the original 
sender, with the sender believing that it is the public key from the 
receiver. From that point onwards, any transmission that they send to 
the receiver can be decrypted by the MITM. 

Public key systems can use clients and server certifcate exchanges 
from a trusted third party, a certifcate authority (CA). As long as 
the original key to authenticate this CA has not itself the subject of 
a MITM attack, then the certifcates authenticate the connection. In 
contrast, SSH does not require trust in the third-party authority and 
does not rely on any external accreditation for authentication. Instead, 
an SSH server cannot be trusted unless the user’s client explicitly au-
thorises its public key on the initial connection. Once established, an at-
tacker simply cannot introduce another public key as belonging to that 
server. This is the SSH known-host mechanism. When an SSH client 
and server connect, the server authenticates the client and the client 
also authenticates the server’s host key, to identify itself to clients. 

$ ssh user@example.com 
Host key not found from the list of known hosts. 
Are you sure you want to continue connecting (yes/no)? 
[Assume 'yes'] 
Host 'example.com' added to the list of known hosts. 

One issue here is that the initial connection must be secure; otherwise, 
it will be subject to a MITM attack. Usually, this is accepted as a 
matter of convenience; however, the “trust the SSH connection on frst 

https://example.com
mailto:user@example.com
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use” approach is rather naive. It would be preferable for the server’s 
public host key to be installed prior to connecting for the frst time 
and a typical approach is for institutions to have pre-installed a set of 
host keys for systems under their control. Obviously, this does not help 
for systems outside the control of system administrators, in which case 
a fallback on systems like X.509 certifcates or similar. One particular 
issue is that when server authentication fails, typically a warning is 
provided to accept the new host key. Even when the SSH response 
explicitly states that MITM may be occurring, the tendency for users 
to act out convenience and accept the new host key is overwhelming. 

As an explicit example, it must be mentioned here that earlier 
versions of SSH, i.e. SSHv1, were susceptible to MITM attacks, as 
illustrated by the use of dsnif, a suite of network trafc analysis tools 
written by Dug Song, to the extent that they were able to take over 
interactive SSH sessions. This was achieved through intercepting the 
initial connection attempt and inserting an alternative public key. As 
noted, even when users do have the correct public key for comparison, 
there is a tendency to accept the alternative key without further 
consideration. Fortunately, UNIX-like SSH clients are confgurable for 
“strict” host key checking that automatically disallow any connecting 
where the host key has changed, requiring the user to manually remove 
the existing key from the known-host fle. This certainly should be part 
of any default or standard operating environment installation; however, 
it still requires the user to be aware of the potential security risk in 
removing such a key. 

A more contemporary example is SSH-MITM, which is still in 
active development and specifcally targets systems that use password 
authentication by acting as a proxy server between an SSH client 
and SSH server. Apart from collecting the plaintext user name and 
passwords, SSH-MITM can also take over existing sessions. While 
public key authentication ensures that no confdential data need to be 
sent to the remote host that could be intercepted by a MITM attack, 
SSH-MITM is able to request the agent from the client and use it for 
remote authentication. 

Thus, as an alternative to passwords, SSH keys provide the same 
access as user names and passwords and are extremely convenient; for 
example, when properly confgured, they provide scripting access to 
accounts. The previous section describes the use of SSH public–private 
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keys from an HPC user’s perspective. From a security perspective, it 
is understood, following the principles of various public key algorithms 
(e.g. Rivest–Shamir–Adleman (RSA), Elliptic Curve Digital Signature 
Algorithm (ECDSA), Digital Signature Algorithm (DSA), and Dife– 
Hellman key agreement protocol) that an SSH identity uses a pair 
of keys, one private and one public. The private key is, as the name 
implies, securely kept in individual hands. An SSH client will invoke 
it to prove a user’s identity to servers. The public key is added to the 
accounts on SSH servers. In the authentication process, the SSH client 
issues a request for authentication, the server issues a challenge, and the 
response from the client is proof of identity through the challenge and 
the private key, and comparison with the user’s public key on the server. 

Other attacks against SSH include tools such as BothanSpy and 
Gyrfalcon, originally revealed by WikiLeaks as plausible tools used by 
the US government’s Central Intelligence Agency to gather user names, 
passwords, SSH keys, and SSH key passphrases. BothanSpy targets 
the SSH client program Xshell on the Microsoft Windows operating 
system to gather user credentials for all active SSH sessions, which are 
then sent to a CIA-controlled server. In contrast, Gyrfalcon targets the 
OpenSSH client on various Linux platforms to gather user credentials 
of active SSH sessions, as well as OpenSSH session trafc. All collected 
information is stored in an encrypted fle for later collection. Both 
require prior access to the target machine. It can also be assumed that 
large enough actors with sufcient political backing have compelled 
or induced manufacturers to include data collection actions on the 
physical hardware. Discussion of protecting against such attacks is 
beyond the scope of this review. 

12.3 RECENT COMPROMISED SSH 
CREDENTIALS ON HPC SYSTEMS 

In May 2020, there was a series of cyberattacks among multiple HPC 
centres across Europe via compromised SSH credentials starting on 
May 11 at the UK’s peak academic HPC system at the University 
of Edinburgh, ARCHER, the UK National Supercomputing Service. 
A decision was made to disable access to ARCHER. Investigations 
confrmed that a number of user accounts had been afected, and as 
a result, a decision was made to disable access until the extent of the 
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issue was determined. Sysadmins warned ARCHER users that their 
SSH keys may have been compromised as a result of the apparent 
attack, issuing a recommendation to “change passwords and SSH keys 
on any other systems which you share your ARCHER credentials 
with”. 

Very shortly afterwards, it was understood that this compromise 
was afecting several supercomputers across Europe and was subject to 
an investigation by the UK’s National Cyber Security Centre (NCSC). 
In Germany, fve HPC systems were shut down on the same day across 
Baden-Württemberg, Germany, by the bwHPC, which coordinates 
HPC research projects across that state. These systems included the 
Hawk supercomputer at the High Performance Computing Center 
Stuttgart (HLRS) at the University of Stuttgart, the bwUniCluster 
2.0 and ForHLR II clusters at the Karlsruhe Institute of Technology 
(KIT), the bwForCluster JUSTUS chemistry and quantum science 
supercomputer at the Ulm University, and the bwForCluster BinAC 
bioinformatics supercomputer at the University of Tübingen. The 
following day, the Leibniz Supercomputing Center (LRZ), an institute 
under the Bavarian Academy of Sciences, closed access to its computing 
cluster, then the Julich Research Centre including the JURECA, 
JUDAC, and JUWELS HPC systems, and likewise the Taurus HPC 
system at the Technical University in Dresden, along with the Swiss 
Center of Scientifc Computations (CSCS) in Zurich, Switzerland. 
Attacks were launched from compromised networks from the University 
of Krakow, Poland; China Science and Technology Network, PR China; 
Shanghai Jiao Tong University, PR China; UCLA, the USA; and Stony 
Brook University, the USA. 

Following a rapid investigation, the security team of the European 
Grid Infrastructure Foundation noted: “A malicious group is currently 
targeting academic data centers for CPU mining purposes. The 
attacker is hopping from one victim to another using compromised SSH 
credentials” (EGI, 2020). The EGI Computer Security and Incident 
Response Team noted that the compromised hosts were turned into 
diferent roles, including XMR Monero cryptocurrency mining hosts 
(from a hidden XMR binary), XMR-proxy hosts (used for connections 
to the mining server), SOCKS proxy hosts, and SSH tunnelling hosts, 
typically to access private IP spaces. Connections to SOCKS proxy 
hosts were typically carried out by TOR or compromised hosts with 
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malicious activity carried out by a variety of techniques, including the 
rootkit Linux kernel module Diamorphine. 

The recommendations of the European Grid Infrastructure Foun-
dation involved removing the Diamorphine module, which involved 
multiple steps. The module Diamorphine starts invisible when loaded 
and requires a signal 63 to a random PID to become visible (signal 
64 makes a given user root access). Any fles or directories with the 
MAGIC_PREFIX also become invisible. Following these contents of 
cron jobs, a collection of fles required checking for the hidden XMR 
mining binary. On the network side, the existing connections (lsoft) and 
NAT confgurations (iptables) required reviewing and decompiling fles 
(ghidra), leading to a privilege escalation as the attacker moved from 
one victim to another using compromised SSH credentials. The phrase 
“compromised SSH credentials” does not imply a weakness in SSH as 
such, but rather practices around SSH key use. As explicitly stated by 
system engineers, some researchers had been using private SSH keys 
without passcodes and leaving them in their home directories. These 
would be used by users to log in from one HPC system to another, as 
it is not unusual for researchers to have accounts on multiple systems. 
It is noted that users engaging in such an approach are either unaware 
of or ignored the principles of keeping a private key private, encrypting 
private keys, or making use of an SSH agent. Access to the keys could 
be achieved through inappropriate POSIX permissions, or more usual 
methods of access (e.g. ignoring policies of sharing accounts), with 
follow-up escalations. Passphraseless SSH keys are common as they are 
the default when creating a new key with ssh-keygen and are convenient 
to use, without needing to set up an ssh agent. Passphraseless SSH is 
also ofered by default as part of many cloud oferings, as a relatively 
secure way to provide a new user with access to their virtual machines. 

12.4 SSH POLICY AND IMPLEMENTATION 

At the University of Melbourne, the HPC team took a two-stage 
approach for dealing with the potential of compromised SSH keys, 
consisting of policy-based user education and monitoring. There are 
further recommendations from the system engineers that will come 
under the section “further research”. In terms of user education, 
recommendations were provided to over three thousand users of the 
Spartan system to use SSH agent forwarding and the process involved 
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for encrypting private keys. While sub-optimal, agreement was reached 
to prohibit the storing of unencrypted private keys on the system. 
In terms of monitoring, considerations of several alternatives were 
made on how to test for encryption before settling on the ssh-keygen 
approach, which will be detailed further. It is also recognised that 
SSH agent forwarding does come with its own security risks when 
the integrity of a system is not trusted. Forwarded agent channels are 
independent of any sessions, and closing a session channel does not 
necessarily imply that forwarded connections are closed. Nevertheless, 
it is certainly preferable to having private keys on a public system. 

In terms of policy, the use of this Spartan service is governed by 
the University’s general regulations for IT resources. This includes 
responsibility for actions performed under a user ID, unless there is a 
system reason for a user ID breach. In other words, users are responsible 
for their ID security and must keep any passwords confdential and 
not disclose them. Obviously, still as a required statement, the use 
of systems is restricted by the law as a priority and with additional 
site-specifc policies. For example, there is an absolute prohibition 
on “creating, transmitting, storing, downloading or possessing illegal 
material”, but also on “the deliberate or reckless creation, transmission, 
storage, downloading, or display of any objectionable, defamatory, 
ofensive or menacing images, data or other material which may incur 
legal liability to the University, or any data capable of being resolved 
into such images or material. An exception can be made in the case 
of the appropriate use of facilities for properly supervised University 
work or study purposes, for which a prior written approval must 
be obtained”. Further, there is a prohibition on activities that place 
“an unreasonable burden” on the systems, including “cryptocurrency 
miners and similar applications”. 

In addition to these general University policies, there are specifc 
policies for the use of the Spartan system, albeit the process can 
be quite informal. Some of these act almost in an object-orientated 
manner in terms of inheritance and polymorphism. For example, the 
“unreasonable burden” clause is invoked when users try to run compute 
jobs on one of the login nodes as HPC architecture means that this 
does represent a potential bottleneck. Like other HPC centres, one 
must use SSH to access Spartan. Spartan administrators also strongly 
recommend against the storing of SSH private keys on the system and 
prohibit the storing of unencrypted private keys. 



344 ■ Cybersecurity and High-Performance Computing Environments 

As an aside on policy-driven actions, reference is made to the 
2015 report of the Computer Security Division of NIST concerning 
access management with SSH. The report correctly identifed that 
poor SSH access controls constituted a major security risk with the 
potential of enormous damage to operations, a matter which all system 
operators should already be aware of. In particular, the report argued 
that public key authentication is inherently more secure than other 
methods such as passwords, a matter which we will return to soon. 
Poorly managed SSH keys can be and have been used by attackers 
to penetrate IT infrastructure. In particular, the implementation of 
old or poorly confgured SSH systems may allow for unauthorised 
access, including improper access controls (e.g. readable directories, 
storing private keys in public accessible directories), keys that have 
been lost or leaked, unaudited user keys that can be used to create 
a “backdoor”, and most importantly, lack of knowledge and human 
errors. Institutional administrative procedures in organisations are a 
particular weakness, where the prospect for employees who have left 
the organisation or have been transferred may still have keys to systems 
that they should no longer have access to, or other unnecessary keys 
(e.g. system keys) remain on a system. A lack of key rotation was 
identifed as a basic requirement for protecting credentials, and private 
keys without passphrase protection were explicitly identifed. 

Credit is also given to NIST for their recommendations for IT 
infrastructure management, which, of course, apply to any HPC 
centre. This includes stating and implementing clear and unambiguous 
SSH key management procedures, ensuring secure implementations of 
SSH, controlling identities and authorised keys, a regular regime of 
monitoring and auditing with inventory checking, automation, and user 
education. As a simple example, there should be an explicit statement 
against the use of the dife-hellman-group1-sha1 key exchange, which 
is sufciently small to be considered breakable. An extremely tight 
coupling is required between policy and implementation, to the extent 
that the two must be considered the same. A great number of policies, 
for example, should be represented as explicit commands in the 
sshd_confg fle or equivalent, which the SSH daemon will read for 
implementation. This will include keyword–argument pairs on whether 
agent forwarding is allowed, what groups or users are allowed or denied, 
whether TCP forwarding is allowed, what ciphers are allowed, and 
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whether password authentication is allowed. Importantly, this will also 
include the location of the system’s authorized_keys fle, itself a prime 
candidate for automation through well-known provisioning tools (e.g. 
Puppet and Ansible). 

12.5 SSH USER EDUCATION 

User education of these policies by the HPC team at the University of 
Melbourne is encouraged through ofcial system documentation and 
irregular system emails and is strongly implemented in the regular 
introductory training sessions that are conducted for the HPC service, 
as well for the Research Cloud, where SSH keys are requisite for 
managing and deploying virtual machines. It is to be noted, for 
example, that it is not necessary to have a private key on Spartan and 
indeed the practice is strongly recommended against, with preference 
given to the public key exchange mechanism described previously. Users 
are alerted to the fact that when they put their private key on a shared 
system or server, it means whoever has access to that system may have 
access to the private key and therefore may be able to impersonate that 
user. Instead, there is an explicit recommendation on the use of SSH 
agent forwarding, i.e. 

$ ssh -A username@spartan.hpc.unimelb.edu.au 
[lev@spartan-login1 ~]$ ssh othersystem@example.com 

A second recommendation and part of user education is encrypting 
private keys. When keys are initially created, SSH requests the user 
whether they wish to enter a passphrase; however, this is not enforced 
and a user may establish their key without any encryption or with a 
weak and short password, rather than a passphrase with a higher level 
of entropy. Fortunately, existing private keys can be encrypted with 
the following command: 

ssh-keygen -p -f keyfile 

There is also the need for a strong recommendation to users to keep 
their SSH clients up to date with security releases. In the course of writ-
ing this document, for example, the version of the popular SSH client 
for MS-Windows systems, PuTTY, had a security faw revealed on ver-
sions less than 0.75 where remote servers could cause a denial-of-service 

mailto:othersystem@example.com
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attack, by forcing the PuTTY window to change its title at high speed, 
forcing many SetWindowTextA or SetWindowTextW calls. 

12.6 SSH MONITORING 

Following the May 2020 attacks on European HPC systems with 
compromised HPC keys, system operators at the University of 
Melbourne explored means to detect user keys with empty passwords. 
The simple version took the form of using ssh-keygen to test against an 
SSH key with a random string with the exit status determining whether 
a private key was encrypted or not. If the key was encrypted, it is almost 
certain that SSH would respond with: “incorrect passphrase supplied 
to decrypt private key”. The simple form of the script, superior to the 
initial consideration of running grep for “MII” and “ENCRYPTED” 
in the keys, was as follows: 

SSH_ASKPASS=/bin/false ssh-keygen -y -f "${filename}" 
</dev/null 2>/dev/null 

The complete version of the script will print all the unencrypted fle 
names, even if they are named diferently (i.e. other than id_rsa.pub 
and id_dsa.pub). Of course, it is quickly mentioned that if a malicious 
user has access to this script and that the permissions on the user’s SSH 
directory has not been set correctly, then they will have access to such 
encrypted keys. Quite reasonably, however, if such a directory is already 
open the opportunity for malicious use already exists. The script starts 
by passing an empty password (-P ””) to ssh-keygen because of ssh-
keygen option parsing, so that -P will only be accepted if it is coupled 
with an extra argument. If there is no extra argument, then ssh-keygen 
will bail out immediately; it won’t even try opening the key fle to check 
things out. The script takes the following form: 

#!/bin/bash 
TOPDIR=/home 
while read d; do 

if [ ! -e "$TOPDIR/$d/.ssh" ]; then 
continue; 
fi 
cd $TOPDIR/$d/.ssh; 
files="" 
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user="" 
while read file; do 

ssh-keygen -y -P "" -f $file 2>/dev/null 
>/dev/null; 

if [ $? -eq 0 ]; then 
echo "$TOPDIR/$d/.ssh/$file" 

fi 
done < <(grep -rli "begin.*private key" * 2> 
/dev/null) 

done 

It is worth noting that the script uses grep -rli to capture those 
instances when users need to switch between multiple keys and 
make use of an IdentityFile in their .ssh confg or similar. If the 
keys are in another non-standard directory other than .ssh, parsing 
the confg should also be considered to determine their location, 
certainly in preference to searching through entire/home or, worse still, 
shared project directories, recognising that it is legitimate to have 
authorized_keys or authorized_keys2 in a custom location. System 
operators must be aware that they should never underestimate the 
potential for a user to leave an unencrypted private key somewhere on 
the system that they have access to. Nevertheless, in a more sane sense, 
an entry will look similar to the following: 

IdentityFile ~/.ssh/keys/id_ed25519 
IdentitiesOnly yes 

One issue with the script is that it works mainly for rsa/dsa keys and 
will not work on newer key formats. For example, it will not determine 
whether the following key has a passphrase or not: 

-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAACmFlczI1Ni1jdHIAAAAGYmNyeXB0AAAAGA 
AAABCFnJ+yNBRw6JkUyED823GdAAAAEAAAAAEAAAAzAAAAC3NzaC1lZDI1 
NTE5AAAAIFhazP8p7JUmJrSdV34EU6vLP6LDFr6Q2Kyl6nniqHFCAAAAkB 
s6oF/4XM0yVGnEOPWqYchfn+OIanG4PPR4WiNOswdyCPtsnnVzkLnLQy+a 
QzkAbpsKbnFsR+gCj25MVRdzVedBNv11+eb8R1MPH5apsJJqRLWli4vkQ5 
O2TckdxBP8svuxSPImTL0EAtBxjdJN5ehnZ5zEmsjcr9+Y2Hq0FCkio29c 
yA2R4EvWoGubqgXrAw== 
-----END OPENSSH PRIVATE KEY-----
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A further alternative is a test making direct use of libssh headers. 
This, however, will require a version of libssh which incorporates the 
new SSH format, which is atypical for HPC systems which tend to 
have a degree of stability in the operating system level, even if they 
make use of diverse versions and compilers on the application level. 
This was discovered with a test of a local RSA key via OpenSSH 8.4 
without a passphrase. The copy of key_audit on Spartan responded 
that the key was good, but the local key_audit detects that the key 
has no passphrase locally, libssh was using 0.9.5, but on Spartan HPC, 
the system libssh was 0.7.1. As we did not want a book chapter 
entitled “How we put our HPC in the Top500 by Changing to a 
Rolling Release Distro”, alternatives were sought. Of course, invoking 
a diferent version of libssh (e.g. through an environment modules 
approach) provides an alternative solution which can be incorporated 
into a small C program (key_audit.c, compile with gcc -o key_audit 
-lssh key_audit.c), which elegantly tests validation of an empty 
passphrase against a given keyfle. At the University of Melbourne, 
we recommend the use of EasyBuild. The following is the key_audit.c 
code, plus the EasyBuild script for libssh, and the sample code for such 
an installation is preceded by the key_audit.c code. 
easyblock = 'CMakeMake' 
name = 'libssh' 
version = '0.9.0' 
homepage = 'https://www.libssh.org' 
description = """Multiplatform C library implementing the 

SSHv2 protocol on client and server side""" 
toolchain = {'name': 'GCCcore', 'version': '6.4.0'} 
toolchainopts = {'pic': True} 
source_urls = ['https://www.libssh.org/files/0.9/'] 
sources = ['%(name)s-%(version)s.tar.xz'] 
checksums = ['25303c2995e663cd169fdd902bae88106f48242d7e96 

311d74f812023482c7a5'] 
osdependencies = [('openssl-devel', 'libssl-dev', 

'libopenssl-devel')] 
builddependencies = [ 

('CMake', '3.12.1'), 
('binutils', '2.28'), 

] 

https://www.libssh.org'
https://www.libssh.org
https://name)s-%(version)s.tar.xz
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separate_build_dir = True 
sanity_check_paths = { 

'files': ['include/libssh/callbacks.h', 
'include/libssh/legacy.h', 
'include/libssh/libssh.h', 
'include/libssh/libsshpp.hpp', 
'include/libssh/server.h', 
'include/libssh/sftp.h', 
'include/libssh/ssh2.h', 
'lib/libssh.so', 
'lib/libssh.so.4', 
'lib/libssh.so.4.8.1', 
'lib/pkgconfig/libssh.pc'], 

'dirs': ['include/libssh', 'lib/pkgconfig', 
'lib/cmake/libssh'], 

} 

moduleclass = 'tools' 

It is a relatively easy process to update the version of libssh to either of 
the newer versions. The program has been released under a GPL and 
is available at: https://notabug.org/cryptarch/key_audit 

#include <stdio.h> 
#include <string.h> 
#include <libssh/libssh.h> 

const char *usage = "Usage: key_audit [-h] 
/path/to/.ssh/key"; 

int main(int argc, char **argv) { 
if(argc != 2) { 

fprintf(stderr, "%s\n", usage); 
return 1; 

} 
if(strncmp(argv[1], "-h", 4) == 0) { 

printf("%s\n", usage); 
return 0; 

} 

https://notabug.org
https://lib/pkgconfig/libssh.pc
https://lib/libssh.so
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ssh_key privkey; 
// This returns 0 if the file does not exist, which is 

okay if we regard non-existent keys as secure. 
return ssh_pki_import_privkey_file(argv[1], "", 

NULL, NULL, &privkey) ? 0 : 1; 
} 

A simple test against keys without a passphrase illustrates the use: 

$ key_audit /home/dummy/.ssh/id_ed25519 && echo good 
|| echo bad 
bad 
$ grep -rli 'begin.*private key' /home/*/.ssh/ | while 
read k; do key_audit "$k" || printf "%s\n" "$k"; done 
/home/dummy/.ssh/id_ed25519 

For monitoring, such programs are extremely efcient; a test of more 
than 3,000 user accounts takes <1.5 seconds on a contemporary system. 
Following this, the use of inotifywait can be applied so that any 
new insecure keys would be detected immediately instead of waiting 
for a cron task to initiate. The system can be further strengthened 
by using SSH key-only logins, rather than allowing for password 
authentication, or restricting password authentication to VPN logins 
only with sshd_confg and two-factor authentication. Prevention of 
shared private keys is achieved by checking for duplications in the 
authorized_keys fle. Further, with authorized_keys managed through 
a repository with version control (e.g. GitHub and GitLab), another 
layer of protection would exist to prevent multiple users to log in with 
the same key. Each key would be a separate fle named after its own 
checksum and use an AuthorizedKeysCommand directive. 

12.7 CONCLUDING REMARKS AND FURTHER RESEARCH 

The security of SSH as a public key system is well recognised by 
system operators, with few potential security risks when implemented 
properly. The greatest compromise risk, as illustrated, is primarily due 
to poor implementation by users, such as sharing passwords and login 
details, having weak passwords instead of passphrases, using password 
authentication instead of a paired-key exchange, using private keys on 
a shared and public system rather than using SSH agent forwarding, 
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and not encrypting private keys. Given the relative lack of knowledge 
of users compared to system operators, it is highly recommended that 
a two-pronged approach is used for enhanced SSH security, including 
user education and implementing processes driven by informed policy. 

The phrase “informed policy” is chosen quite deliberately. 
Managers, for example, are often even less informed than users. For 
example, one of the authors spoke of a colleague who was forced 
by their management to install a shared private key on a public 
server for reasons of convenience despite the oxymoronic situation 
of something being “shared” and “private”. Due to the imbalance in 
employment power and responsibility, the system operator grudgingly 
complied: “Technology is dominated by two types of people: those who 
understand what they do not manage and those who manage what they 
do not understand” (Archibald Putt, “Putt’s Law and the Successful 
Technocrat”, 2006). 

This harkens to an SEC Consult study of 2015 of some 4,000 
frmware images for embedded devices from some 70 manufacturers, 
which revealed over 500 keys for SSH and HTTPS, many of them 
shared between multiple devices from the same vendor or even from 
diferent ones. These thousands of images were in use of millions of 
Internet devices, including routers, modems, IP cameras, and VoIP 
phones. One wonders whether this situation occurred from a lack 
of managerial oversight, or because of it. This, of course, should be 
the subject of further research as it is well outside the scope of this 
document. However, it will make for a fascinating enquiry to determine 
to what degree those who manage IT security systems force operators, 
contrary to their expressed expert considerations, to implement 
insecure systems, even if this is limited to the HPC or SSH space. 

One related subject could also be when management assigns 
external parties to audit existing security policies, when the auditors 
themselves are not particularly well versed in the security procedures 
for HPC or SSH. In the course of this study, this was the experience 
of operators at the institution in question when a well-known 
“enterprise” auditing company recommended the use of password 
logins in preference to key exchange under the guise of security. The 
authors reiterate the well-known position that passphrase-protected 
keys are more secure than passphrases, and passphrases are more secure 
than passwords. Apart from their increased security, they also are more 
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convenient. Key-only logins is certainly an approach that HPC centres 
should seriously consider. 

Assuming that policy preference is based on informed and 
deliberated technical considerations, further research in this area 
would involve developing a university-wide API ofering public keys 
for arbitrary ssh logins for various systems on the campus, which is 
certainly preferable to the inconvenience of multi-factor authentication 
systems and, naturally enough, the block that they impose for scripted 
systems administration across multiple systems. Access to systems 
could also be implemented via a zero trust security framework (e.g. 
BeyondCorp), which would both protect systems from intruders who 
are already within a network perimeter, and provide secure access to 
users who are outside it. 

However, multi-factor authentication as it is usually understood is 
redundant if key pair authentication is in use. Where private keys exist, 
that already covers the “something you have” authorisation element, 
and needing to know the right user name to go with a given key covers 
“something you know”. If you think that “something you know” should 
be a little stronger, recall that personal identifcation numbers used 
for identifying yourself to EFTPOS or ATMs are routinely only four 
digits; the strength of the system comes from coupling the PIN with a 
physical card, just as user names are coupled with private keys in ssh 
authentication. Keys can be stored for user accounts, which are used 
for git clone actions, pull requests, etc. 

To address concerns about users sharing private keys with each 
other, it would be straightforward to use the sshd AuthorizedKeysCom-
mand confguration option to ensure uniqueness of keys. Rather than 
using an ∼/.ssh/authorized_keys fle, you could place all public keys 
in a central repository, one key per fle. Name each key after its 
own checksum to prevent duplicate keys from being added, and 
have each key owned by whoever frst added it. If anyone else 
tried to add the same key later, it would generate a collision since 
the flename would be necessarily identical, but the user would be 
diferent. Although this system could be managed manually by any 
HPC admin, it would be trivial to create a web interface, similar to 
the way keys are added in GitHub or GitLab. The user submits the 
public key via the web, and a server-side script then creates the fle 
under /etc/ssh/authorized_keys and changes the ownership to match 
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the user. The AuthorizedKeysCommand directive would then be as 
simple as: 

#! /bin/bash 
[[ $# -gt 0 ]] || exit 1 
find /etc/ssh/authorized_keys/ -type f -user "$1" 
-exec cat {} + 

Appropriate permissions and access controls on /etc/ssh/authorized_ 
keys would make the keys readable to sshd while preventing users from 
editing the flename or key contents directly. 

Of course, all of this would require implementing test cases, along 
with a substantial change in policy orientation at a large institution as 
well as the implementation of the necessary infrastructure. However, 
the overall project is founded on sound principles, and while there 
would be an initial hurdle of user education, the combination 
of convenience, reduced costs of implementation and operation, 
and increased security should make the proposal quite enticing to 
institutional IT managers who understand the concepts and value. 

Overall, SSH is a very well-established and well-developed protocol 
and suite of utilities in the world of high-performance computing, 
to the point where it is ubiquitous in such an environment, and an 
exploration of its features and history as well as basic use from a user 
perspective has been provided here. It was the particular example of a 
security breach in European HPC centres in 2020 that led the authors 
to exploring the possibilities of how to engage in policy, user education, 
and developing monitoring systems to protect against a similar instance 
in their own environment with knowledge that is transferable to others. 
In the course of developing such systems, the possibility for further and 
wider use of key-based SSH for enhanced security and convenience has 
also been raised as a future research project. It is hoped that others too 
will take up such a project with a similar orientation, harkening back to 
an initial consideration; if SSH is so good, why aren’t we using it every-
where? It would seem that only a lack of knowledge and a lack of will. 
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