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I N T R O D U C T I O N  

 

My Approach to 
Teaching Regression and 

Statistics 

I love statistics and analyzing data! I also love talking and writing 

about it. I was a researcher at a major university. Then, I spent over a 

decade working at a major statistical software company. During my 

time at the statistical software company, I learned how to present sta-

tistics in a manner that makes it more intuitive. I want you to under-

stand the essential concepts, practices, and knowledge for regression 

analysis so you can analyze your data confidently. That’s the goal of 

my book. 

 

In this book, you’ll learn many facets of regression analysis including 

the following: 

 

• How regression works and when to use it. 

• Selecting the correct type of regression analysis. 

• Specifying the best model. 

• Interpreting the results. 

• Assessing the fit of the model. 
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• Generating predictions and evaluating their precision. 

• Checking the assumptions.  

• Examples of different types of regression analyses. 

I’ll help you intuitively understand regression analysis by focusing on 

concepts and graphs rather than equations and formulas. I use regular, 

everyday language so you can grasp the fundamentals of regression 

analysis at a deeper level. I’ll provide practical tips for performing 

your analysis. You will learn how to interpret the results while being 

confident that you’re conducting the analysis correctly. You’ll be able 

to trust your results because you’ll know that you’re performing re-

gression properly and know how to detect and correct problems. 

 

Regardless of your background, I will take you through how to per-

form regression analysis. Students, career changers, and even current 

analysts looking to take your skills to the next level, this book has ab-

solutely everything you need to know for regression analysis.  

 

I've literally received thousands of requests from aspiring data scien-

tists for guidance in performing regression analysis. This book is my 

answer - years of knowledge and thousands of hours of hard work dis-

tilled into a thorough, practical guide for performing regression anal-

ysis. 

 

You’ll notice that there are not many equations in this book. After all, 

you should let your statistical software handle the calculations so you 

don’t get bogged down in the calculations and can instead focus on 

understanding your results. Instead, I focus on the concepts and prac-

tices that you’ll need to know to perform the analysis and interpret 

the results correctly. I’ll use more graphs than equations! 

 

Don’t get me wrong. Equations are important. Equations are the 

framework that makes the magic, but the truly fascinating aspects are 

what it all means. I want you to learn the true essence of regression 

analysis. If you need the equations, you’ll find them in most textbooks.  
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Please note that throughout this book I use Minitab statistical soft-

ware. However, this book is not about teaching particular software but 

rather how to perform regression analysis. All common statistical 

software packages should be able to perform the analyses that I show. 

There is nothing in here that is unique to Minitab. 
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C H A P T E R  1  

 

Correlation and an 
Introduction to 

Regression 

Before we tackle regression analysis, we need to understand correla-

tion. In fact, I’ve described regression analysis as taking correlation to 

the next level! Many of the practices and concepts surrounding corre-

lation also apply to regression analysis. It’s also a simpler analysis that 

is a more familiar subject for many. Bear with me because the corre-

lation topics in this section apply to regression analysis as well. It’s a 

great place to start! 

 

A correlation between variables indicates that as one variable changes 

in value, the other variable tends to change in a specific direction. Un-

derstanding that relationship is useful because we can use the value of 

one variable to predict the value of the other variable. For example, 

height and weight are correlated—as height increases, weight also 

tends to increase. Consequently, if we observe an individual who is 

unusually tall, we can predict that his weight is also above the average. 

In statistics, correlation is a quantitative assessment that measures 

both the direction and the strength of this tendency to vary together. 
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There are different types of correlation that you can use for different 

kinds of data. In this chapter, I cover the most common type of corre-

lation—Pearson’s correlation coefficient. 

 

Before we get into the numbers, let’s graph some data first so we can 

understand the concept behind what we are measuring. 

Graph Your Data to Find Correlations 

Scatterplots are a great way to check quickly for relationships be-

tween pairs of continuous data. The scatterplot below displays the 

height and weight of pre-teenage girls. Each dot on the graph repre-

sents an individual girl and her combination of height and weight. 

These data are real data that I collected during an experiment. We’ll 

return to this dataset multiple times throughout this book. Here is the 

CSV dataset if you want to try it yourself: HeightWeight. 

 

 

At a glance, you can see that there is a relationship between height and 

weight. As height increases, weight also tends to increase. However, 

it’s not a perfect relationship. If you look at a specific height, say 1.5 

meters, you can see that there is a range of weights associated with it. 

You can also find short people who weigh more than taller people. 

https://statisticsbyjim.com/wp-content/uploads/2019/01/HeightWeight.csv
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However, the general tendency that height and weight increase to-

gether is unquestionably present. 

 

Pearson’s correlation takes all of the data points on this graph and rep-

resents them with a single summary statistic. In this case, the statisti-

cal output below indicates that the correlation is 0.705. 

 

What do the correlation and p-value mean? We’ll interpret the output 

soon. First, let’s look at a range of possible correlation values so we 

can understand how our height and weight example fits in. 

Interpret the Pearson’s Correlation Coefficient 

Pearson’s correlation coefficient is represented by the Greek letter 

rho (ρ) for the population parameter and r for a sample statistic. This 

coefficient is a single number that measures both the strength and di-

rection of the linear relationship between two continuous variables. 

Values can range from -1 to +1. 

 

• Strength: The greater the absolute value of the coefficient, the 

stronger the relationship.  

o The extreme values of -1 and 1 indicate a perfectly linear 

relationship where a change in one variable is accompa-

nied by a perfectly consistent change in the other. For 

these relationships, all of the data points fall on a line. In 

practice, you won’t see either type of perfect relationship. 

o A coefficient of zero represents no linear relationship. As 

one variable increases, there is no tendency in the other 

variable to either increase or decrease. 

o When the value is in-between 0 and +1/-1, there is a rela-

tionship, but the points don’t all fall on a line. As r 
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approaches -1 or 1, the strength of the relationship in-

creases and the data points tend to fall closer to a line. 

• Direction: The coefficient sign represents the direction of the re-

lationship.  

o Positive coefficients indicate that when the value of one 

variable increases, the value of the other variable also 

tends to increase. Positive relationships produce an up-

ward slope on a scatterplot. 

o Negative coefficients represent cases when the value of 

one variable increases, the value of the other variable 

tends to decrease. Negative relationships produce a 

downward slope. 

Examples of Positive and Negative Correlations 

An example of a positive correlation is the relationship between the 

speed of a wind turbine and the amount of energy it produces. As the 

turbine speed increases, electricity production also increases. 

 

An example of a negative correlation is the relationship between out-

door temperature and heating costs. As the temperature increases, 

heating costs decrease. 

Graphs for Different Correlations 

Graphs always help bring concepts to life. The scatterplots below rep-

resent a spectrum of different relationships. I’ve held the horizontal 

and vertical scales of the scatterplots constant to allow for valid com-

parisons between them. 
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Correlation = +1: A perfect positive relationship. 

 

 

Correlation = 0.8: A fairly strong positive relationship. 

 
 

Correlation = 0.6: A moderate positive relationship. 
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Correlation = 0: No relationship. As one value increases, there is no 

tendency for the other value to change in a specific direction. 

 
 

Correlation = -1: A perfect negative relationship. 

 

 
Correlation = -0.8: A fairly strong negative relationship. 
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Correlation = -0.6: A moderate negative relationship. 

 

Discussion about the Correlation Scatterplots 

For the scatterplots above, I created one positive relationship between 

the variables and one negative relationship between the variables. 

Then, I varied only the amount of dispersion between the data points 

and the line that defines the relationship. That process illustrates how 

correlation measures the strength of the relationship. The stronger 

the relationship, the closer the data points fall to the line. I didn’t in-

clude plots for weaker correlations that are closer to zero than 0.6 and 

-0.6 because they start to look like blobs of dots and it’s hard to see 

the relationship. 

 

A common misinterpretation is that a negative correlation coefficient 

indicates there is no relationship between a pair of variables. After all, 

a negative correlation sounds suspiciously like no relationship. How-

ever, the scatterplots for the negative correlations display real rela-

tionships. For negative relationships, high values of one variable are 

associated with low values of another variable. For example, there is 

a negative correlation between school absences and grades. As the 

number of absences increases, the grades decrease. 

 

Earlier I mentioned how crucial it is to graph your data to understand 

them better. However, a quantitative assessment of the relationship 

does have an advantage. Graphs are a great way to visualize the data, 

but the scaling can exaggerate or weaken the appearance of a 
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relationship. Additionally, the automatic scaling in most statistical 

software tends to make all data look similar. 

 

Fortunately, Pearson’s correlation coefficient is unaffected by scaling 

issues. Consequently, a statistical assessment is better for determining 

the precise strength of the relationship. 

 

Graphs and the relevant statistical measures often work better in tan-

dem. 

Pearson’s Correlation Measures Linear Relationships 

Pearson’s correlation measures only linear relationships. Conse-

quently, if your data contain a curvilinear relationship, the correlation 

coefficient will not detect it. For example, the correlation for the data 

in the scatterplot below is zero. However, there is a relationship be-

tween the two variables—it’s just not linear. 

 
This example illustrates another reason to graph your data! Just be-

cause the coefficient is near zero, it doesn’t necessarily indicate that 

there is no relationship. 
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Hypothesis Test for Correlations 

Correlations have a hypothesis test. As with any hypothesis test, this 

test takes sample data and evaluates two mutually exclusive state-

ments about the population from which the sample was drawn. For 

Pearson correlations, the two hypotheses are the following: 

 

• Null hypothesis: There is no linear relationship between the 

two variables. ρ = 0. 

• Alternative hypothesis: There is a linear relationship be-

tween the two variables. ρ ≠ 0. 

 

A correlation of zero indicates that no linear relationship exists. If 

your p-value is less than your significance level, the sample contains 

sufficient evidence to reject the null hypothesis and conclude that the 

correlation does not equal zero. In other words, the sample data sup-

port the notion that the relationship exists in the population. 

Interpreting our Height and Weight Example 

Now that we have seen a range of positive and negative relationships, 

let’s see how our correlation of 0.705 fits in. We know that it’s a pos-

itive relationship. As height increases, weight tends to increase. Re-

garding the strength of the relationship, the graph shows that it’s not 

a very strong relationship where the data points tightly hug a line. 

However, it’s not an entirely amorphous blob with a very low corre-

lation. It’s somewhere in between. That description matches our mod-

erate correlation of 0.705. 

 

For the hypothesis test, our p-value equals 0.000. This p-value is less 

than any reasonable significance level. Consequently, we can reject 

the null hypothesis and conclude that the relationship is statistically 

significant. The sample data provide sufficient evidence to conclude 

that the relationship between height and weight exists in the popula-

tion of preteen girls. 
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Correlation Does Not Imply Causation 

I’m sure you’ve heard this expression before, and it is a crucial warn-

ing. Correlation between two variables indicates that changes in one 

variable are associated with changes in the other variable. However, 

correlation does not mean that the changes in one variable actually 

cause the changes in the other variable. 

 

Sometimes it is clear that there is a causal relationship. For the height 

and weight data, it makes sense that adding more vertical structure to 

a body causes the total mass to increase. Or, increasing the wattage of 

lightbulbs causes the light output to increase. 

 

However, in other cases, a causal relationship is not possible. For ex-

ample, ice cream sales and shark attacks are positively correlated. 

Clearly, selling more ice cream does not cause shark attacks (or vice 

versa). Instead, a third variable, outdoor temperatures, causes changes 

in the other two variables. Higher temperatures increase both sales of 

ice cream and the number of swimmers in the ocean, which creates 

the apparent relationship between ice cream sales and shark attacks. 

 

In statistics, you typically need to perform a randomized, controlled 

experiment to determine that a relationship is causal rather than 

merely correlation. 

How Strong of a Correlation is Considered Good? 

What is a good correlation? How high should it be? These are com-

monly asked questions. I have seen several schemes that attempt to 

classify correlations as strong, medium, and weak. 

 

However, there is only one correct answer. The correlation coeffi-

cient should accurately reflect the strength of the relationship. Take a 

look at the correlation between the height and weight data, 0.705. It’s 

not a very strong relationship, but it accurately represents our data. 
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An accurate representation is the best-case scenario for using a statis-

tic to describe an entire dataset. 

 

The strength of any relationship naturally depends on the specific pair 

of variables. Some research questions involve weaker relationships 

than other subject areas. Case in point, humans are hard to predict. 

Studies that assess relationships involving human behavior tend to 

have correlations weaker than +/- 0.6. 

 

However, if you analyze two variables in a physical process, and have 

very precise measurements, you might expect correlations near +1 or 

-1. There is no one-size fits all best answer for how strong a relation-

ship should be. The correct correlation value depends on your study 

area. We run into this same issue in regression analysis.  

Common Themes with Regression 

Understanding correlation is a good place to start learning regression. 

In fact, there are several themes that I touch upon in this section that 

show up throughout this book. 

 

For instance, analysts naturally want to fit models that explain more 

and more of the variability in the data. And, they come up with classi-

fication schemes for how well the model fits the data. However, there 

is a natural amount of variability that the model can’t explain just as 

there was in the height and weight correlation example. Regression 

models can be forced to go past this natural boundary, but bad things 

happen. Throughout this book, be aware of the tension between trying 

to explain as much variability as possible and ensuring that you don’t 

go too far. This issue pops up multiple times! 

 

Additionally, for regression analysis, you’ll need to use statistical 

measures in conjunction with graphs just like we did with correlation. 

This combination provides you the best understanding of your data 

and the analytical results.  
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Regression Takes Correlation to the Next Level 

Wouldn’t it be nice if instead of just describing the strength of the 

relationship between height and weight, we could define the relation-

ship itself using an equation? Regression analysis does just that by 

finding the line and corresponding equation that provides the best fit 

to our dataset. We can use that equation to understand how much 

weight increases with each additional unit of height and to make pre-

dictions for specific heights.  

 

Regression analysis allows us to expand on correlation in other ways. 

If we have more variables that explain changes in weight, we can in-

clude them in the model and potentially improve our predictions. 

And, if the relationship is curved, we can still fit a regression model to 

the data. 

 

Additionally, a form of the Pearson correlation coefficient shows up 

in regression analysis. R-squared is a primary measure of how well a 

regression model fits the data. This statistic represents the percentage 

of variation in one variable that other variables explain. For a pair of 

variables, R-squared is simply the square of the Pearson’s correlation 

coefficient. For example, squaring the height-weight correlation coef-

ficient of 0.705 produces an R-squared of 0.497, or 49.7%. In other 

words, height explains about half the variability of weight in preteen 

girls. 

 

But we’re getting ahead of ourselves. I’ll cover R-squared in much 

more detail in both chapters 2 and 4. 

Fundamental Terms and Goals of Regression 

The first questions you have are probably: When should I use regres-

sion analysis? And, why? Let’s dig right into these questions! In this 

section, I explain the capabilities of regression analysis, the types of 

relationships it can assess, how it controls the variables, and generally 
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why I love it! You’ll learn when you should consider using regression 

analysis. 

 

As a statistician, I should probably tell you that I love all statistical 

analyses equally—like parents with their kids. But, shhh, I have secret! 

Regression analysis is my favorite because it provides tremendous 

flexibility and it is useful in so many different circumstances.  

 

You might run across unfamiliar terms. Don’t worry. I’ll cover all of 

them throughout this book! The upcoming section provides a preview 

for things you’ll learn later in the book. For now, let’s define several 

basics—the fundamental types of variables that you’ll include in your 

regression analysis and your primary goals for using regression analy-

sis. 

Dependent Variables 

The dependent variable is a variable that you want to explain or pre-

dict using the model. The values of this variable depend on other vari-

ables. It’s also known as the response variable, outcome variable, and 

it is commonly denoted using a Y. Traditionally, analysts graph de-

pendent variables and the vertical, or Y, axis. 

Independent Variables 

Independent variables are the variables that you include in the model 

to explain or predict changes in the dependent variable. In controlled 

experiments, independent variables are systematically set and 

changed by the researchers. However, in observational studies, values 

of the independent variables are not set by researchers but rather ob-

served. These variables are also known as predictor variables, input 

variables, and are commonly denoted using Xs. On graphs, analysts 

place independent variables on the horizontal, or X, axis. 

Simple versus Multiple Regression 

When you include one independent variable in the model, you are 

performing simple regression. For more than one independent 
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variable, it is multiple regression. Despite the different names, it’s re-

ally the same analysis with the same interpretations and assumptions. 

Goals of Regression Analysis 

Regression analysis mathematically describes the relationships be-

tween independent variables and a dependent variable. Use regres-

sion for two primary goals: 

 

• To understand the relationships between these variables. 

How do changes in the independent variables relate to 

changes in the dependent variable? 

• To predict the dependent variable by entering values for the 

independent variables into the regression equation. 

Example of a Regression Analysis 

Suppose a researcher studies the relationship between wattage and 

the output from a light bulb. In this study, light output is the depend-

ent variable because it depends on the wattage. Wattage is the inde-

pendent variable. 

 

After performing the regression analysis, the researcher will under-

stand the nature of the relationship between these two variables. Is 

this relationship statistically significant? What effect does wattage 

have on light output? For a given wattage, how much light output does 

the model predict? 

 

Specifically, the regression equation describes the mean change in 

light output for every increase of one watt. P-values indicate whether 

the relationship is statistically significant. And, the researcher can en-

ter wattage values into the equation to predict light output. 

Regression Analyzes a Wide Variety of Relation-
ships 

Use regression analysis to describe the relationships between a set of 

independent variables and the dependent variable. Regression 
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analysis produces a regression equation where the coefficients repre-

sent the relationship between each independent variable and the de-

pendent variable. You can also use the equation to make predictions. 

 

Regression analysis can handle many things. For example, you can use 

regression analysis to do the following: 

 

• Model multiple independent variables 

• Include continuous and categorical variables 

• Model linear and curvilinear relationships 

• Assess interaction terms to determine whether the effect of 

one independent variable depends on the value of another 

variable 

These capabilities are all cool, but they don’t include an almost magi-

cal ability. Regression analysis can unscramble very intricate prob-

lems where the variables are entangled like spaghetti. For example, 

imagine you’re a researcher studying any of the following: 

 

• Do socio-economic status and race affect educational achieve-

ment? 

• Do education and IQ affect earnings? 

• Do exercise habits and diet effect weight? 

• Are drinking coffee and smoking cigarettes related to mortal-

ity risk? 

• Does a particular exercise intervention have an impact on 

bone density that is a distinct effect from other physical ac-

tivities? 

More on the last two examples later! 

 

All these research questions have entwined independent variables 

that can influence the dependent variables. How do you untangle a 

web of related variables? Which variables are statistically significant 

and what role does each one play? Regression comes to the rescue be-

cause you can use it for all of these scenarios! 

http://statisticsbyjim.com/glossary/regression-coefficient/
http://statisticsbyjim.com/glossary/effect/
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Using Regression to Control Independent Variables 

As I mentioned, regression analysis describes how the changes in each 

independent variable are related to changes in the dependent variable. 

Crucially, regression also statistically controls every variable in your 

model. 

What does controlling for a variable mean? 

Typically, research studies need to isolate the role of each variable 

they are assessing. For example, I participated in an exercise interven-

tion study where our goal was to determine whether the exercise in-

tervention increased the subjects’ bone mineral density. We needed 

to isolate the role of the exercise intervention from everything else 

that can impact bone mineral density, which ranges from diet to other 

physical activity. 

 

Regression analysis does this by estimating the effect that changing 

one independent variable has on the dependent variable while holding 

all the other independent variables constant. This process allows you 

to understand the role of each independent variable without worrying 

about the other variables in the model. Again, you want to isolate the 

effect of each variable. 

How do you control the other variables in regression? 

A beautiful aspect of regression analysis is that you hold the other in-

dependent variables constant by merely including them in your 

model! Let’s look at this in action with an example. 

 

A recent study analyzed the effect of coffee consumption on mortal-

ity. The first results indicated that higher coffee intake is related to a 

higher risk of death. However, coffee drinkers frequently smoke, and 

the researchers did not include smoking in their initial model. After 

they included smoking in the model, the regression results indicated 

that coffee intake lowers the risk of mortality while smoking increases 

it. This model isolates the role of each variable while holding the other 
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variable constant. You can assess the effect of coffee intake while con-

trolling for smoking. Conveniently, you’re also controlling for coffee 

intake when looking at the effect of smoking. 

 

Note that the study also illustrates how excluding a relevant variable 

can produce misleading results. Omitting an important variable causes 

it to be uncontrolled, and it can bias the results for the variables that 

you do include in the model. In the example above, the first model 

without smoking could not control for this important variable, which 

forced the model to include the effect of smoking in another variable 

(coffee consumption). 

 

This warning is particularly applicable for observational studies where 

the effects of omitted variables might be unbalanced. On the other 

hand, the randomization process in a true experiment tends to distrib-

ute the effects of these variables equally, which lessens omitted vari-

able bias. You’ll learn about this form of bias in detail in chapter 7. 

An Introduction to Regression Output 

It’s time to get our feet wet and interpret regression output. The best 

way to understand the value of regression analysis is to see an exam-

ple. In Chapter 3, I cover all of these statistics in much greater detail. 

For now, you just need to understand the type of information that re-

gression analysis provides. 

 

P-values and coefficients are they key regression output. Collectively, 

these statistics indicate whether the variables are statistically signifi-

cant and describe the relationships between the independent varia-

bles and the dependent variable.  

 

Low p-values (typically < 0.05) indicate that the independent variable 

is statistically significant. Regression analysis is a form of inferential 

statistics. Consequently, the p-values help determine whether the re-

lationships that you observe in your sample also exist in the larger 

population.  
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The coefficients for the independent variables represent the average 

change in the dependent variable given a one-unit change in the inde-

pendent variable (IV) while controlling the other IVs. 

 

For instance, if your dependent variable is income and your independ-

ent variables include IQ and education (among other relevant varia-

bles), you might see output like this: 

 

 

The low p-values indicate that both education and IQ are statistically 

significant. The coefficient for IQ (4.796) indicates that each addi-

tional IQ point increases your income by an average of approximately 

$4.80 while controlling everything else in the model. Furthermore, 

the education coefficient (24.215) indicates that an additional year of 

education increases average earnings by $24.22 while holding the 

other variables constant. 

 

Using regression analysis gives you the ability to separate the effects 

of complicated research questions. You can disentangle the spaghetti 

noodles by modeling and controlling all relevant variables, and then 

assess the role that each one plays. 

 

We’ll cover how to interpret regression analysis in much more detail 

in later chapters! 

Review and Next Steps 

In this chapter, we covered correlation between variables because it’s 

such a good lead-in for regression. Correlation provides you with a 
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look at some of the fundamental issues we’ll address in regression 

analysis itself—different types of trends in the data and the variability 

around those trends. 

 

Then, you learned about regression’s fundamental goals, its capabili-

ties, and why you’d use it for your study. You can use regression mod-

els to describe the relationship between each independent variable 

and the dependent variable. You can also enter values into the regres-

sion equation to predict the mean of the dependent variable. We even 

took a quick peek at some example regression output and interpreted 

it. 

 

Finally, we saw how regression analysis controls, or holds constant, 

all the variables you include in the model. This feature allows you to 

isolate the role of each independent variable. 

 

This chapter serves as an introduction to all the above. We’ll revisit 

all these concepts throughout this book. Next, you’ll learn how least 

squares regression fits the best line through a dataset. 
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C H A P T E R  2  

 

Regression Basics and 
How it Works 

There are many different types of regression analysis procedures. 

This book focuses on linear regression analysis, specifically ordinary 

least squares (OLS). Analysts use this type most frequently. Typically, 

they’ll look towards least squares regression first, and then use other 

types only when there are issues that prevent them from using OLS.  

 

Even when you need to use a different variety of regression, under-

standing linear regression is crucial. Much of the knowledge about fit-

ting models, interpreting the results, and checking assumptions for 

linear models that you will learn throughout this book also apply in 

some fashion to other types of regression analysis. In short, this book 

provides a broad foundation on the core type of regression, and it’s 

also informative about using more specialized types of regression. 

 

In later chapters, we’ll cover possible reasons for using other kinds of 

regression analysis. I’ll ensure that you know when you should con-

sider a specialized type of analysis, and give you pointers about which 

alternatives to consider for various issues.  
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We’ll start by covering some basic data requirements. Don’t confuse 

these with the analysis assumptions. I discuss those in chapter 9. 

These data requirements help ensure that you are putting good data 

into the analysis. You know that old expression, “garbage in, garbage 

out?” Let’s avoid that! 

 

Data Considerations for OLS 

To help ensure that your results are valid for OLS linear regression, 

consider the following principles while collecting data, performing 

the analysis, and interpreting the results.  

 

The independent variables can be either continuous or categorical. 

 

• Continuous variables can take on almost any numeric value 

and can be meaningfully divided into smaller increments, in-

cluding fractional and decimal values. You often measure a 

continuous variable on a scale. For example, when you meas-

ure height, weight, and temperature, you have continuous 

data. 

• Categorical variables have values that you can put into a 

countable number of distinct groups based on a characteristic. 

Categorical variables are also called qualitative variables or at-

tribute variables. For example, college major is a categorical 

variable that can have values such as psychology, political sci-

ence, engineering, biology, etc. 

The dependent variable should be continuous. If it’s not continuous, 

you will most likely need to use a different type of regression analysis 

(chapter 12) because your model is unlikely to satisfy the OLS as-

sumptions and can produce results that you can’t trust. 

 

Use best practices while collecting your data. The following are some 

points to consider: 
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• Confirm that the data represent your population of interest.  

• Collect a sufficient amount of data that allows you to fit a 

model which is appropriately complex for the subject area 

(chapter 8) and provides the necessary precision for the co-

efficients and predictions (chapters 3 and 10).  

• Measure all variables with the highest accuracy and precision 

possible.  

• Record data in the order you collect it. This process helps you 

assess an assumption about correlations between adjacent re-

siduals (chapter 9). 

Now, let’s see how OLS regression goes beyond correlation and pro-

duces an equation for the line that best fits a dataset. 

How OLS Fits the Best Line 

Regression explains the variation in the dependent variable using var-

iation in the independent variables. In other words, it predicts the de-

pendent variable for a given set of independent variables.  

 

Let’s start with some basic terms that I’ll use throughout this book. 

While I strive to explain regression analysis in an intuitive manner 

using everyday English, I do use proper statistical terminology. Doing 

so will help you if you’re following along with a college statistics 

course or need to communicate with professionals about your model. 

Observed and Fitted Values 

Observed values of the dependent variable are the values of the de-

pendent variable that you record during your study or experiment 

along with the values of the independent variables. These values are 

denoted using Y. 

 

Fitted values are the values that the model predicts for the dependent 

variable using the independent variables. If you input values for the 

independent variables into the regression equation, you obtain the fit-

ted value. Predicted values and fitted values are synonyms.  



J im Fros t  

36 

An observed value is one that exists in the real world while your 

model generates the fitted/predicted value for that observation. 

Standard notation uses to denote fitted values, which you pro-

nounce as Y-hat. In general, hatted values indicate they are a model’s 

estimate for the corresponding non-hatted values.  

Residuals: Difference between Observed and Fitted Values 

Regression analysis predicts the dependent variable. For every ob-

served value of the dependent variable, the regression model calcu-

lates a corresponding fitted value. To understand how well your 

model fits the data, you need to assess the differences between the 

observed values and the fitted values. These differences represent the 

error in the model. No model is perfect. The observed and fitted val-

ues will never exactly match. However, models can be good enough 

to be useful.  

 

This difference is known as a residual, and you’ll be learning a lot 

about them in this book. A residual is the distance between an ob-

served value and the corresponding fitted value. To calculate the dif-

ference mathematically, it’s simple subtraction:  

 

Residual = Observed value – Fitted value.  

 

Graphically, residuals are the vertical distances between the observed 

values and the fitted values. On the graph, the line represents the fit-

ted values from the regression model. We call this line . . . the fitted 

line! The lines that connect the data points to the fitted line represent 

the residuals. 
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The length of the line is the value of the residual. The equation below 

shows how to calculate the residuals, or error, for the ith observation: 

 

 
 

It makes sense, right? You want to minimize the distance between the 

observed values and the fitted values. For a good model, the residuals 

should be relatively small and unbiased. In statistics, bias indicates 

that estimates are systematically too high or too low. 

 

If the residuals become too large or biased, the model is no longer use-

ful. Consequently, these differences play a vital role during both the 

model estimation process and later when you assess the quality of the 

model. 

Using the Sum of the Squared Errors (SSE) to Find the Best 
Line 

Let’s go back to the height and weight dataset for which we calculated 

the correlation.  
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The goal of regression analysis is to draw a line through these data 

points that minimizes the overall distance of the points from the line. 

How would you draw the best fitting straight line through this cloud 

of points?  

 

You could draw many different potential lines. Some observations will 

fit the model better or worse than other points, and that will vary 

based on the line that you draw. Which measure would you use to 

quantify how well the line fits all of the data points? Using what you 

learned above, you know that you want to minimize the residuals. 

And, it should be a measure that factors in the difference for all of the 

points. We need a summary statistic for the entire dataset. 

 

Perhaps the average distance or residual value? If your model has 

many residuals with values near +10 and -10, that averages to approx-

imately zero distance. However, another model with many residuals 

near +1 and -1 also averages out to be nearly zero. Obviously, you’d 

prefer the model with smaller distances. Unfortunately, using the av-

erage residual doesn’t distinguish between these models. 
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You can’t merely sum the residuals because the positive and negative 

values will cancel each other out even when they tend to be relatively 

large. Instead, OLS regression squares those residuals so they’re al-

ways positive. In this manner, the process can add them up without 

canceling each other out. 

 

This process produces squared errors (residuals). First, we obtain the 

residuals between the observed and fitted values using simple subtrac-

tion, and then we just square them. Simple! A data point with a resid-

ual of 3 will have a squared error of 9. A residual of -4 produces a 

squared error of 16. 

 

Then, the ordinary least squares procedure sums these squared errors, 

as shown in the equation below: 

 

 
 

OLS draws the line that minimizes the sum of squared errors (SSE). 

Hopefully, you’re gaining an appreciation for why the procedure is 

named ordinary least squares! 

 

SSE is a measure of variability. As the points spread out further from 

the fitted line, SSE increases. Because the calculations use squared dif-

ferences, the variance is in squared units rather the original units of 

the data. While higher values indicate greater variability, there is no 

intuitive interpretation of specific values. However, for a given data 

set, smaller SSE values signal that the observations fall closer to the 

fitted values. OLS minimizes this value, which means you’re getting 

the best possible line. 

 

In textbooks, you’ll find equations for how OLS derives the line that 

minimizes SSE. Statistical software packages use these equations to 

solve for the solution directly. However, I’m not going to cover those 

equations. Instead, it’s crucial for you to understand the concepts of 
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residuals and how the procedure minimizes the SSE. If you were to 

draw any line other than the one that OLS produces, the SSE would 

increase—which indicates that the distances between the observed 

and fitted values are growing, and the model is not as good. 

Implications of Minimizing SSE 

OLS minimizes the SSE. This fact has several important implications. 

 

First, because OLS calculates squared errors using residuals, the model 

fitting process ultimately ties back to the residuals very strongly. Re-

siduals are the underlying foundation for how least squares regression 

fits the model. Consequently, understanding the properties of the re-

siduals for your model is vital. They play an enormous role in deter-

mining whether your model is good or not. You’ll hear so much about 

them throughout this book. In fact, chapter 9 focuses on them. So, I 

won’t say much more here. For now, just know that you want rela-

tively small and unbiased residuals (positive and negative are equally 

likely) that don’t display patterns when you graph them. 

 

Second, the fact that the OLS procedure squares the residuals has sig-

nificant ramifications. It makes the model susceptible to outliers and 

unusual observations. To understand why, consider the following set 

of residuals: {1 2 3}. Imagine most of your residuals are in this range. 

These residuals produce the following squared errors: {1 4 9}. Now, 

imagine that one observation has a residual of 6, which yields a 

squared error of 36. Compare the magnitude of most squared errors 

(1 – 9) to that of the unusual observation (36).  

 

To minimize the squared errors, OLS factors in that unusual observa-

tion much more heavily than the other data points. The result is that 

an individual outlier can exert a strong influence over the entire 

model and, by itself, dramatically change the results. Chapter 9 dis-

cusses this problem in greater detail and how to detect and resolve it. 

For now, be aware that OLS is susceptible to outliers! 
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Other Types of Sums of Squares 

You learned about the error sum of squares above, but there are sev-

eral different types of sums of squares in OLS. We won’t focus on the 

others as much as the SSE, but you should understand what they meas-

ure and how they’re related: 

 

Sums of Squares Measures Calculation 

Sum of Squared  

Errors (SSE) 

Overall variability of 

the distance be-

tween the data 

points and fitted val-

ues. 

Sum of squared resid-

uals. 

 

Regression Sum 

of Squares (RSS) 

The amount of addi-

tional variability 

your model explains 

compared to a model 

that contains no var-

iables and uses only 

the mean to predict 

the dependent varia-

ble. 

Sum of the squared 

distances between the 

fitted values and the 

mean of the depend-

ent variable (y-bar).  

 

Total Sum of 

Squares (TSS) 

Overall variability of 

the dependent varia-

ble around its mean. 

Sum of the squared 

distances between the 

observed values and 

the mean of the de-

pendent variable. 
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These three sums of squares have the following mathematical rela-

tionship: 

 

RSS + SSE = TSS 

 

Understanding this relationship is fairly straight forward.  

 

• RSS represents the variability that your model explains. 

Higher is usually good. 

• SSE represents the variability that your model does not ex-

plain. Smaller is usually good. 

• TSS represents the variability inherent in your dependent 

variable. 

 

Or, Explained Variability + Unexplained Variability = Total Variability 

 

For the same dataset, as you fit better models, RSS increases and SSE 

decreases by an exactly corresponding amount. RSS cannot be greater 

than TSS while SSE cannot be less than zero. 

 

Additionally, if you take RSS / TSS, you’ll obtain the percentage of the 

variability of the dependent variable around its mean that your model 

explains. This statistic is R-squared!  

 

Based on the mathematical relationship shown above, you know that 

R-squared can range from 0 – 100%. Zero indicates that the model ac-

counts for none of the variability in the dependent variable around its 

mean. 100% signifies that the model explains all of that variability. 

 

Keep in mind that these sums of squares all measure variability. You 

might hear about models and variables accounting for variability, and 

that harkens back to these measures of variability. 

 

We’ll talk about R-squared in much greater detail in chapter 4, which 

helps you determine how well your model fits the data. However, in 
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that chapter, I discuss it more from the conceptual standpoint and 

what it means for your model. I also focus on various problems with 

R-squared and alternative measures that address these problems. For 

now, my goal is for you to understand the mathematical derivation of 

this useful statistic. 

 

Note: Some texts use RSS to refer to residual sums of squares (which 

we’re calling SSE) rather than regression sums of squares. Be aware of 

this potentially confusing use of terminology! 

Displaying a Regression Model on a Fitted Line Plot 

Let’s again return to our height and weight data. I’ll fit the ordinary 

least squares model and display it in a fitted line plot. You can use this 

model to estimate the effect of height on weight. You can also enter 

height values to predict the corresponding weight. Here is the CSV 

dataset: HeightWeight. 

 

 
 

This graph shows all the observations together with a line that repre-

sents the fitted relationship. As is traditional, the Y-axis displays the 

dependent variable, which is weight. The X-axis shows the independ-

ent variable, which is height. The line is the fitted line. If you enter the 

https://statisticsbyjim.com/wp-content/uploads/2019/01/HeightWeight.csv
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full range of height values that are on the X-axis into the regression 

equation that the chart displays, you will obtain the line shown on the 

graph. This line produces a smaller SSE than any other line you can 

draw through these observations.  

 

Visually, we see that that the fitted line has a positive slope that cor-

responds to the positive correlation we obtained earlier. The line fol-

lows the data points, which indicates that the model fits the data. The 

slope of the line equals the coefficient that I circled. This coefficient 

indicates how much mean weight tends to increase as we increase 

height. We can also enter a height value into the equation and obtain 

a prediction for the mean weight. 

 

Each point on the fitted line represents the mean weight for a given 

height. However, like any mean, there is variability around the mean. 

Notice how there is a spread of data points around the line. You can 

assess this variability by picking a spot on the line and observing the 

range of data points above and below that point. Finally, the vertical 

distance between each data point and the line is the residual for that 

observation.  

Importance of Staying Close to Your Data 

It’s easy to get lost in the large volume of statistical output that regres-

sion produces. All of the numerical statistical measures can cause you 

to lose touch with your data. However, ensuring that your model ad-

equately represents the data, and determining what the results mean, 

requires that you stay close to the data. Graphs can help you meet this 

challenge! 

 

I love using fitted line plots to illustrate regression concepts. In my 

mission to make regression analysis ideas more intuitive, fitted line 

plots are one of my primary tools. I’ll summarize the concepts that 

fitted line plots illustrate below, but I’ll come back to each one later in 

the book to explore them in more detail. 
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Fitted line plots are great for showing the following: 

 

• The regression coefficient in the equation corresponds to the 

slope of the line. What does it mean? 

• For different models, the data points vary around the line to a 

greater or lesser extent, which reflects the precision of the 

predictions and goodness-of-fit statistics, like R-squared. 

We’ll explore this in more detail because the implications of 

this precision are often forgotten. How precise are your 

model’s predictions? 

• Does the fitted line fit curvature that is present in the data? 

For now, we’re fitting a straight line, but that might not always 

be the case! Fitted line plots make curvature unmistakable. 

As fantastic as fitted line plots are, they can only show simple regres-

sion models, which contain only one independent variable. Fitted line 

plots use two axes—one for the dependent variable and the other for 

the independent variable. Consequently, fitted line plots are great for 

displaying simple regression models on a screen or printed on paper. 

However, each additional independent variable requires another axis 

or physical dimension. With two independent variables, we can use a 

3D representation for it. Although, that’s beyond my abilities for this 

book. With three independent variables, we’d need a four-dimen-

sional plot. That’s not going to happen! 

 

If you have a simple regression model, I highly recommend creating a 

fitted line plot for it and assessing the bullet points above. You’ll ob-

tain an excellent overview of how your model fits the data because 

they’re graphed together. However, for multiple regression, we can’t 

use fitted line plots to obtain that overview. For those cases, I’ll show 

you other methods throughout this book for answering those ques-

tions. Sometimes these methods will be statistical measures, but 

whenever possible I’ll show you special types of graphs because they 

bring it to life. These graphical tools include main effects plots, inter-

action plots, and various residual plots. 
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Review and Next Steps 

In this chapter, I explained how learning about ordinary least squares 

linear regression provides an excellent foundation for learning about 

regression analysis. Not only is it the most frequently used type of re-

gression, but your knowledge of OLS will help inform your usage of 

other types of regression. I showed you some foundational data con-

siderations to keep in mind so you can avoid the problem of “garbage 

in, garbage out!” 

 

You learned the basics of how OLS minimizes the sums of squared 

errors (SSE) to produce the best fitting line for your dataset. And, how 

SSE fits it in with two other sums of squares, regression sums of 

squares (RSS) and total sums of squares (TSS). In the process, you 

even got a sneak peek at R-squared (RSS / TSS)! 

 

Then, we explored the height-weight regression model using a fitted 

line plot. 

 

From here, we’ll move on to learning how to interpret the different 

types of effects for continuous and categorical independent variables, 

the constant, what statistical significance indicates in this context, and 

determining significance. 
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Interpreting Main 
Effects and Significance  

One of the primary goals of a regression model is to describe the rela-

tionships in your data. What are the effects your independent varia-

bles have on the dependent variable? In this chapter and several more 

later in the book, you’ll learn how to interpret different types of rela-

tionships and determine whether they are statistically significant. This 

process involves assessing the regression coefficients and p-values. 

 

Regression analysis is like other inferential methodologies. Our goal is 

to draw a random sample from a population and use it to estimate the 

properties of that population. The coefficients in a regression equa-

tion are estimates of the relationships, or effects, that exist in the en-

tire population. In other words, the coefficients are sample estimates 

of the population parameters. We’ll never know the actual population 

parameters because it’s infeasible to measure an entire population. 

However, inferential procedures estimate these parameters along 

with a margin of error, which enables the analysis to determine statis-

tical significance. 
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We want these coefficient estimates to be the best possible estimates 

of the real population values. What properties do the best estimates 

have? 

 

Suppose you request an estimate—say for the cost of a service that you 

are considering. How would you define a reasonable estimate? 

 

The estimates should tend to be right on target. They should not be 

systematically too high or too low. In other words, they should be un-

biased or correct on average. 

 

Recognizing that estimates are almost never exactly correct, you want 

to minimize the discrepancy between the estimated value and actual 

value. Large differences are bad! 

 

Small errors that are unbiased are exactly what we need for our coef-

ficient estimates! 

 

When your regression model satisfies the OLS assumptions, which 

chapter 9 covers, the procedure generates unbiased coefficient esti-

mates that tend to be relatively close to the actual population values 

(minimum variance). When you violate the assumptions, your results 

might not be trustworthy. 

Regression Notation 

Before we move on, let’s briefly cover some standard regression no-

tation for ordinary least squares regression. The following notation 

applies to regression models for entire populations with k independ-

ent variables. You can think of these as the ideal models that you’d 

obtain if you could measure an entire population. 
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In this notation,  

 

• Y represents the dependent variable. 

• The betas (β) represent the true population parameters. β0 is 

the constant while the other betas are for the independent 

variables. 

• X’s are the independent variables. 

• Epsilon (ε) represents the error, which is the left-over portion 

of variability that the model can’t explain. 

 

However, you’ll never work with an entire population. Instead, you’ll 

use samples to estimate the population parameters. The notation for a 

regression model based on a sample is the following: 

 

 
In this notation, the hats represent sample estimates of the population 

values. 

 

• Y-hat represents the fitted value for the dependent variable. 

When you enter values for the independent variables into a 

regression equation, you obtain the fitted value of the depend-

ent variable. 

• The beta-hats represent the estimates of population parame-

ters. These estimates are the regression coefficients that ap-

pear in your output.  

• Epsilon-hat represents the estimate of the error, which we call 

residuals. 

Fitting Models is an Iterative Process 

It was difficult determining the order of the chapters that discuss how 

to interpret the regression results, how to specify the model, and how 

to check the assumptions. An interactive process interconnects these 

chapters. You can use the regression output to help you specify the 

correct model. Assessing the assumptions can also help you specify 



J im Fros t  

50 

the right model. Furthermore, if your model doesn’t satisfy the as-

sumptions, you can’t trust the results. Finally, the various statistics in 

the output can help you determine how well the model fits the data. 

 

Because these issues are so closely related, it’s hard to determine 

which to discuss first! Ultimately, I’m going with this order: 

 

• Interpreting regression statistics (Chapters 3 – 6). 

• Specifying the model (Chapters 7 – 8). 

• Checking the assumptions (Chapter 9). 

 

It makes sense to talk about the interpretation of various regression 

statistics first because they play such an essential role in specifying 

the model. Otherwise, I’d be talking about these statistics that 

wouldn’t mean anything to you! 

 

However, keep in mind that the entire process is iterative. You’ll spec-

ify a model, look at your statistical results, check the assumptions, and 

then change the model accordingly. Importantly, don’t trust your sta-

tistical results before checking the assumptions. Assumption viola-

tions can produce untrustworthy results! 

Three Types of Effects in Regression Models 

In this chapter, you’ll learn about coefficients and p-values for main 

effects that follow a straight line and for categorical variables. These 

are the basic relationships in linear regression. In later chapters, we’ll 

cover more complex relationships that you can model. 

  

Throughout this book, I’ll cover the following three types of effects 

that you can model using regression analysis:  

 

• Main effects: The relationship between an independent vari-

able and the dependent variable does not depend on the value 

of other variables in the model. (This chapter.) 
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• Curvilinear effects: The relationship between an independ-

ent variable and the dependent variable changes based on the 

value of that independent variable itself. Instead of following 

a straight line on a graph, these relationships follow curves. 

• Interaction effects: The relationship between an independ-

ent variable and the dependent variable does depend on the 

values of at least one other independent variable in the model. 

 

Additionally, for main effects and interaction effects, the interpreta-

tion differs for continuous versus categorical variables. On the other 

hand, curved relationships can exist only for continuous data. 

 

I’ll also cover the constant, which really isn’t an effect, but it almost 

always appears in your statistical output. 

Main Effects of Continuous Variables 

Main effects for continuous variables that follow a straight line are the 

bread and butter of regression results. For this type of effect, you 

simply include the continuous variable in your model. They’re the 

most common type of relationship you’ll see in regression models. 

 

What does a straight-line main effect for continuous variables repre-

sent?  

 

Suppose you include A and B in your model as independent variables, 

they’re both statistically significant, and the model provides a good fit 

for your data. In this scenario, you can conclude that the effect of var-

iable A on the dependent variable does not change based on the value 

of B, and that A’s effect is consistent throughout the range of values 

for A. The same interpretation applies to the effect of variable B—it 

does not depend on A, and it remains consistent. 

 

Coefficients and p-values in regression analysis work together to tell 

you which relationships in your model are statistically significant and 

the nature of those relationships. The coefficients represent a 
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variable’s effect and describe the magnitude and direction of the rela-

tionship between each independent variable and the dependent vari-

able. Coefficients are the numbers in the regression equation that 

multiply the values of the variables. The p-values for the coefficients 

indicate whether these relationships are statistically significant. 

 

The sign of a regression coefficient tells you whether there is a posi-

tive or negative correlation between each independent variable the 

dependent variable. A positive coefficient indicates that as the value 

of the independent variable increases, the mean of the dependent var-

iable also tends to increase. A negative coefficient suggests that as the 

independent variable increases, the dependent variable tends to de-

crease. 

 

The coefficient value signifies how much the mean of the dependent 

variable changes given a one-unit shift in the independent variable 

while holding other variables in the model constant. This property of 

holding the other variables constant is crucial because it allows you to 

assess the effect of each variable in isolation from the others. 

Graphical Representation of Regression Coefficients 

A simple way to grasp regression coefficients and how they relate to 

the data is to display them on a fitted line plot. Towards this end, we’ll 

revisit the height-weight dataset. The fitted line plot illustrates this by 

graphing data points along with the relationship between a person’s 

height (IV) and weight (DV). The numeric output and the graph dis-

play information from the same model. Here is the CSV dataset: 

HeightWeight. 

 

 

https://statisticsbyjim.com/wp-content/uploads/2019/01/HeightWeight.csv
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The height coefficient in the regression equation is 106.5. This coeffi-

cient represents the mean increase of weight in kilograms for every 

additional one meter in height. This study sampled preteen girls in the 

United States. Consequently, if a preteen girl’s height increases by 1 

meter, the average weight increases by 106.5 kilograms. 

 

The regression line on the graph visually displays the same infor-

mation. If you move to the right along the x-axis by one meter, the 

line increases by 106.5 kilograms. Keep in mind that it is only safe to 

interpret regression results within the observation space of your data. 

And, we wouldn’t want to apply the model outside the target popula-

tion of preteen girls. We don’t know the nature of the relationship 

between the variables outside the range of our dataset. It might 

change. 

 

In this case, the height and weight data were collected from middle-

school girls and range from approximately 1.3 m to 1.7 m. Conse-

quently, we can’t shift along the line by a full meter for these data. 

 

Let’s suppose that the regression line was flat, which corresponds to a 

coefficient of zero. For this scenario, the mean weight wouldn’t 
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change no matter how far along the line you move. A change in height 

does not correlate to a change in weight when the coefficient is near 

zero. That’s why a near zero coefficient suggests there is no effect—

and, as you’ll learn, has a high (insignificant) p-value to go along with 

it. 

 

The plot really brings this to life. However, two-dimensional plots can 

display only results from simple regression—one predictor and the re-

sponse. For multiple linear regression, the interpretation remains the 

same—the coefficients represent mean change in the dependent vari-

able for a one-unit increase in the independent variable. 

Confidence Intervals for Regression Parameters 

From basic statistics, you might remember the difference between a 

point estimate for a population parameter and a confidence interval. 

If you collect a random sample and calculate the mean, the sample 

mean is the point estimate for the population mean. You’ll never know 

the exact value of the population parameter because you’ll only ever 

be working with samples. Furthermore, thanks to random sampling 

error, your sample estimate will not equal the parameter exactly. Un-

fortunately, the point estimate doesn’t indicate how far from the pop-

ulation parameter it is likely to be. 

 

Fortunately, you can calculate confidence intervals for population pa-

rameters. A confidence interval is derived from a sample and provides 

a range of values that likely contains the unknown value of a popula-

tion parameter. For example, a confidence interval of [9 11] indicates 

that the population mean is likely to be between 9 and 11. Different 

random samples drawn from the same population are liable to pro-

duce slightly different intervals. If you draw many random samples 

and calculate a confidence interval for each sample, a specific propor-

tion of the ranges contains the population parameter. That percentage 

is the confidence level. 
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For example, a 95% confidence level suggests that if you draw 20 ran-

dom samples from the same population, you’d expect 19 of the confi-

dence intervals to include the population value, as shown below.  

 

 
 

The confidence interval procedure provides meaningful estimates be-

cause it produces ranges that usually contain the parameter. You can 

also see how far your point estimate is likely to be from the parameter 

value. 

 

In the regression context, remember that we’re using our sample to 

calculate the regression coefficients (β-hats), which are the point es-

timates of the population parameters (βs). Our sample’s estimate of 

the height coefficient is 106.5. However, if we collect multiple ran-

dom samples from the same population, each sample will produce its 

own estimate for the height coefficient. And, we don’t know the real 

value.  

 

How close to the actual population value is our estimate likely to be? 

To answer this question, have your software calculate the confidence 

intervals for the regression coefficients. Below is the confidence in-

terval output for the height and weight model. 
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We can be 95% confident that the actual population value for the 

height coefficient is between 83.5 and 129.5. 

 

When a CI excludes zero, the results are statistically significant. A 95% 

confidence interval will always agree with a hypothesis test that uses 

a significance level of 0.05. In the output above, the CI excludes zero, 

which corresponds to the p-value (0.000) that is less than the signifi-

cance level (o.05). I’ll cover p-values, and the importance of the value 

zero soon! 

 

The width of a confidence interval reveals the precision of the esti-

mate. Narrower ranges suggest a more precise estimate. In future 

chapters, when we get into specifying the model and various difficul-

ties, I’ll refer to situations, such as overfitting and multicollinearity, 

that decrease the precision of your model’s estimates. You can evalu-

ate this precision by assessing these confidence intervals. For exam-

ple, if you add more variables to the model and these confidence 

intervals become wider, you know there is a problem because the ad-

ditional variables reduce the model’s precision. 

Example Regression Model with Two Linear Main Effects 

Let’s interpret the results for the following multiple regression exam-

ple:  

 

Air Conditioning Costs$ = 2 * Temperature C – 1.5 * Insulation CM 

 

In this model, we are using the temperature in Celsius and Insulation 

thickness in centimeters, our two independent variables, to explain 

air conditioning costs in dollars (dependent variable). 
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The coefficient sign for Temperature is positive, which indicates a 

positive relationship between Temperature and Costs. As the temper-

ature increases, so does air condition costs. More specifically, the co-

efficient value of 2 indicates that for every 1 C increase, the average 

value of the air conditioning costs increases by two dollars.  

 

On the other hand, the negative coefficient for insulation represents a 

negative relationship between insulation and air conditioning costs. 

As insulation thickness increases, air conditioning costs decrease. For 

every 1 CM increase, air condition costs drop by $1.50. 

 

Additionally, these are both main effects, which indicates that if you 

change the value of, say, insulation, the relationship between temper-

ature and air condition costs remains the same. And, these are linear 

effects. For every 1 C increase in temperature, air condition costs will 

always increase by $2. It doesn’t matter if temperature increases from 

20 to 21 C or from 30 to 31 C. That extra degree costs you $2!  

 

However, you can’t extend that interpretation outside the range of 

your data. If you only measured up to 30 C, you can’t assume that the 

same relationship holds true at 35 C. 

Interpreting P-Values for Continuous Independent Variables 

As I mentioned, regression analysis is a form of inferential statistics 

where you use a sample to draw conclusions about an entire popula-

tion. Sample error can produce apparent effects in the sample that 

don’t exist in the population. P-values and significance levels help you 

determine whether the relationships that you observe in your sample 

also exist in the larger population. 

 

The p-value for each independent variable tests the null hypothesis 

that the variable has no relationship with the dependent variable. If 

there is no relationship, there is no association between the changes 

in the independent variable and the shifts in the dependent variable. 

Mathematically, a coefficient of zero represents no effect. 
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Consequently, the hypothesis test assesses whether your sample pro-

vides enough evidence to conclude that the population value for the 

coefficient does not equal zero.  

 

The hypotheses for the independent variables are the following: 

 

• Null hypothesis: The coefficient for the independent variable 

equals zero (no relationship). 

• Alternative hypothesis: The coefficient for the independent 

variable does not equal zero. 

 

If the p-value for a variable is less than your significance level, your 

sample data provide enough evidence to reject the null hypothesis for 

the entire population. Your data favor the hypothesis that there is a 

non-zero correlation. Changes in the independent variable are associ-

ated with changes in the response at the population level. This varia-

ble is statistically significant and probably a worthwhile addition to 

your regression model. Significance levels of 0.05 are the most com-

mon value. 

 

On the other hand, a p-value that is greater than the significance level 

indicates that there is insufficient evidence in your sample to con-

clude that the coefficient doesn’t equal zero. 

 

The regression output example below shows that the South and North 

predictor variables are statistically significant because their p-values 

equal 0.000. On the other hand, East is not statistically significant be-

cause its p-value (0.092) is greater than the usual significance level of 

0.05. 
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Analysts use coefficient p-values as one factor in deciding whether to 

include variables in the final model. For the results above, we would 

consider removing East. Keeping variables that are not statistically 

significant can introduce more error into the model. Statisticians refer 

to the process of choosing which variables to include in the model as 

model specification. Chapter 7 discusses model specification in detail. 

 

Regression analysis is all about determining how changes in the inde-

pendent variables correlate with changes in the dependent variable. 

Coefficients tell you about these changes and p-values indicate 

whether these coefficients are significantly different from zero. 

Recoding Continuous Independent Variables 

The examples above use the raw values of the independent variables 

to fit the model. For instance, the height and weight model uses the 

actual height and weight values for each subject. Using the raw values 

is often appropriate, and it allows for the most natural interpretation 

of the results. Most of the examples in this book use raw values.  

 

However, analysts sometimes recode their data to obtain valuable 

benefits. Recoding involves taking the original values and mathemat-

ically converting them to other values. While these recoding methods 

cause you to interpret some of the results differently, the p-values and 

goodness-of-fit measures all remain the same when you fit the same 

model. 

 

In this section, I discuss standardization and centering, which are two 

common coding methods. 

Standardizing the Continuous Variables 

Standardizing your continuous data can be helpful in some circum-

stances. To standardize a variable, you take each observed value for a 

variable, subtract the variable’s mean, and then divide by the varia-

ble’s standard deviation. When you standardize a variable, the coded 

value denotes where the observation falls in the distribution of values 
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by indicating the number of standard deviations above or below the 

variable’s mean. The sign indicates whether the observation is above 

or below the mean, and the number indicates the number of standard 

deviations. 

 

Suppose we have a length measurement, and the mean length is 10 

and the standard deviation is 3.  

 

Let’s standardize the value of three length observations to show how 

this works: (raw value – variable mean) / variable standard deviation. 

 

• 16: (16 – 10) / 3 = 2 

• 10: (10 – 10) / 3 = 0 

• 7: (7 – 10) / 3 = -1 

 

The first observation has a raw length value of 16, which is recoded to 

a standardized value of 2. This value indicates that the observation has 

a length that is 2 standard deviations above the mean length.  

 

The second observation has an uncoded value of 10 and a standard-

ized value of 0. Standardized values of zero indicate that the original 

value is precisely equal to the mean. Values relatively close to zero are 

close to the mean. Higher absolute values indicate that observations 

are further away. 

 

The third raw value is 7, which is recoded to a standardized value of -

1. This observation is one standard deviation below the mean. 

 

Fortunately, with modern statistical software, you don’t need to re-

code the variables yourself. Usually, you choose an option for stand-

ardized coefficients and the software recodes the variables behind the 

scenes, fits the model using the standardized variables, and displays 

the standardized coefficients. 
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Interpreting Standardized Coefficients 

When you fit the model using the standardized independent variables, 

the coefficients are now standardized coefficients. Note: For some 

reason, SPSS refers to standardized coefficients as Beta. 

 

Standardized coefficients signify the mean change of the dependent 

variable given a one standard deviation increase in an independent 

variable. Let’s go back to this example from before but let’s have the 

software calculate standardized coefficients: 

 

Air Conditioning Costs$ = 3 * Temperature C – 4 * Insulation CM 

 

The standardized coefficient for Temperature (3) indicates that for 

every one standard deviation increase in the temperature, mean air 

conditioning costs increase by $3. And, for insulation, every one 

standard deviation increase in thickness reduces costs by $4. 

Why Obtain Standardized Coefficients? 

Standardization puts all of the variables on the same scale so you can 

compare the magnitude of the results. In the example above, temper-

ature and insulation thickness are completely different types of vari-

ables. Which one has a larger effect? You cannot use regular 

coefficients to make this determination because they’re using entirely 

different units (Celsius vs. centimeters). However, standardization 

puts them all on a consistent scale, which allows you to compare the 

standardized coefficients.  

 

For the air conditioning example, the absolute values of the standard-

ized coefficients indicate that for an increase of one standard devia-

tion, insulation thickness (-4) affects costs more than temperature 

(3). I write more about this aspect in chapter 11. 

 

Standardizing the values of your continuous variables can also make 

them easier to understand in some cases. Temperature in Celsius and 

thickness in centimeters are both concrete, easy to understand 
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measurements. However, some variables might have meaningless 

units and can be difficult to understand.  

 

Imagine you’re working with a psychological scale for anxiety that ex-

tends from 12 to 48. What does a one-unit increase represent? What’s 

considered a substantial change using these meaningless units? You 

can’t answer either of these questions without understanding the full 

distribution of scores. Using standardized values and standardized co-

efficients removes the meaningless units and allows you to compare 

scores to the entire distribution of scores. 

Centering Your Continuous Variables 

The method of centering variables is related to standardization. This 

method just subtracts the mean, but it does not divide by the standard 

deviation. Unlike standardization, centering does not change the in-

terpretation of the coefficients. However, it produces a potentially 

useful change in interpreting the constant, which I discuss later in the 

chapter. It also helps reduce a type of multicollinearity, as I show in 

chapter 9. So, we’ll come back to centering later on. 

 

Let’s move away from continuous variables and talk about categorical 

independent variables! 

Main Effects of Categorical Variables 

Categorical variables, also known as nominal variables, have values 

that you can put into a countable number of distinct groups based on 

a characteristic. For categorical variables, you have the variable name 

and the levels of that variable. The following table shows examples of 

several categorical variables and their levels. 
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Variable College Major Genre Gender 

Level Psychology Science Fiction Male 

Level Political Science Drama Female 

Level Engineering Comedy  

Level Statistics   

 

With continuous variables, you can plot them on a scatterplot and see 

how one variable changes as you increase the value of the other vari-

able. However, with categorical variables, you’re dealing with groups 

in your data that you cannot incrementally increase. Consequently, 

you interpret categorical variables differently in regression analysis. 

The levels of categorical variables represent groups in your data, and 

you can plot them using a boxplot, as shown below. Regression anal-

ysis estimates the mean differences between these groups and deter-

mines whether they are statistically significant.  

 

These effects are main effects, which indicates that the effect sizes do 

not change based on the values of the other variables in the model. 

 

 
 

Including categorical variables in a regression model allows you to de-

termine whether the differences in this type of graph are statistically 
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significant while controlling for other variables in the model. Later in 

this section, we’ll analyze the data that this boxplot represents to de-

termine whether the differences between the mean incomes of these 

groups are statistically significant. 

Coding Categorical Variables 

Statistical software can’t take a categorical variable and directly ana-

lyze it. Instead, it converts categorical variables into indicator varia-

bles using a (0, 1) coding scheme. Indicator variables, also known as 

dummy variables, are columns of 1s and 0s that indicate the presence 

or absence of a characteristic. A 1 indicates the presence of a feature 

while a 0 represents its absence. The number of indicator variables 

depends on the number of categorical levels. To show you how this 

works, I’ll start with gender. 

 

Gender Male Female 

Male 1 0 

Female 0 1 

Female 0 1 

Male 1 0 

 

In the table, the Gender column represents the categorical data that 

you enter into the worksheet. The value depends on the gender of the 

subject for which the row corresponds. The Male and Female columns 

are the indicator variables based on the Gender column. The Male col-

umn contains 1s for observations that correspond to males and 0s for 

non-males. The opposite pattern applies to the Female column. 

 

Notice how these two columns supply completely redundant infor-

mation? One column predicts the other column perfectly. Statisticians 

refer to this as perfect multicollinearity, which creates an error if you 

include both in a regression model. For a categorical variable, you 

must omit one of the underlying indicator variables from the model, 

which becomes the reference level.  

 



Regress ion  Analys is :  An Intu it ive  Gu ide  

65 

Let’s look at College Major, which has three levels in our example. 

 

College Major Psychology Political Science Statistics 

Statistics 0 0 1 

Psychology 1 0 0 

Statistics 0 0 1 

Political Science 0 1 0 

Psychology 1 0 0 

 

In this table, College Major is the categorical variable, and the other 

columns are the indicator variables. Each cell in an indicator variable 

column contains 1s only when that property is present and a 0 other-

wise. For each row, there must be a single value of 1, and all the other 

values are 0s. In other words, the groups are mutually exclusive. Each 

subject can belong to one, and only one, of the groups. For example, 

the first row corresponds to a subject who is majoring in Statistics. 

Consequently, only the Statistics column contains a 1, and the other 

columns all contain 0s. 

 

As with Gender, if you include all the indicator variables, you are sup-

plying redundant information, and the software can’t perform the 

analysis. If you look at any three columns, you can always figure out 

the value of the fourth column. Suppose we exclude the Psychology 

column. In the first row, we see the 1 under statistics, so we know that 

Psychology must be zero. In the second row, Political Science, Engi-

neering, and Statistics all have 0s. Consequently, Psychology must 

have a 1. Again, we’ll have to remove one indicator variable to per-

form the analysis. That column becomes the reference level. 

 

For all categorical variables, you must always remove one level from 

the analysis and use it as the reference level—which we’ll discuss in 

detail later. 
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As you can see, when you remove one indicator variable from the 

model, you’re altering the data that the software uses during the 

model fitting process. Consequently, the coefficients and p-values can 

change. However, using a different reference level does not change 

the overall story and overall statistical significance.  

 

If your variable has a natural baseline level, or a logical category for 

comparison, using that level as the reference level will make the in-

terpretation more natural. Statistical software usually chooses a refer-

ence level for you. If you want to use a particular reference level, you 

might need to tell the software which one to use. 

 

With modern software, this coding process occurs behind the scenes, 

so don’t worry about doing this manually. At most, you’ll need to spec-

ify a reference level. However, I remember the “old days” when I had 

to create the indicator variables myself! While you won’t have to cre-

ate these variables, it’s instructive to know how it works so you un-

derstand:  

 

• The requirement for having a reference level. 

• How including one categorical variable in your datasheet typ-

ically brings multiple indicator variables into the model. 

Interpreting the Results for Categorical Variables 

Statistical software typically performs several tests on categorical var-

iables. Because one categorical variable often represents multiple in-

dicator variables, the software performs an F-test on that group of 

indicator variables. Unlike t-tests, F-tests can evaluate multiple model 

terms simultaneously, which allows them to compare the fits of dif-

ferent linear models. In this situation, an F-test compares the fit of the 

model with the set of indicator variables that corresponds to a cate-

gorical variable to a model without that set of indicator variables. The 

hypotheses for this F-test are the following: 
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• Null: The model with the categorical variable does not im-

prove the fit of the model compared to the model without the 

categorical variable. 

• Alternative: The model with the categorical variable fits the 

data better than the model without the categorical data. 

 

If your p-value is less than the significance level, you can reject the 

null hypothesis and conclude that the categorical variable taken as a 

whole improves the fit of the model. 

 

Next, the analysis compares each factor level to the reference level 

using t-tests. While the F-test tells you about the categorical variable 

as a whole, t-tests allow you to explore the differences between the 

group means and the reference level. The coefficients represent the 

difference between each level mean and the reference level mean. Use 

the p-value to determines whether that difference is statistically sig-

nificant.  

 

The hypotheses for these t-tests are the following: 

 

• Null: The difference between the level mean and reference 

level mean equals zero. 

• Alternative: The difference between the level mean and ref-

erence level mean does not equal zero. 

 

Consequently, if your p-value is less than your significance level, you 

can reject the null hypothesis and conclude that the level mean is sig-

nificantly different from the reference level mean. Because these are 

main effects, the sizes of the effects do not change based on the values 

of other variables in the model. 

 

Let’s take a look at some output and interpret the results! 
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Example of a Model with a Categorical Variable 

Imagine that we want to determine whether college major relates to 

income. In this example, we’ll include College Major as a categorical 

variable that has three levels: Statistics, Psychology, and Political Sci-

ence. The previous boxplot displays the data for these groups. The 

analysis will determine whether the mean differences between groups 

in that graph are statistically significant. If you want to try this your-

self, download the CSV data file: CategoricalExample. 

 

Additionally, we’ll include years of experience as a continuous varia-

ble. By adding this variable, we can control for differences in the years 

of experience that might exist between groups. If the subjects in one 

major have more years of experience by chance, the mean of that 

group will appear to be higher, but it would be due to more experience 

rather than the major itself. However, by including experience, the 

model controls for that possibility. In other words, we’ll learn about 

income differences by major while holding experience constant.  

 

Finally, imagine that we’re studying this research question from the 

perspective of a statistics department. Consequently, we’ll use Statis-

tics as the reference level so we can see how the other majors compare 

to the Statistics major.  

 

The first output for the analysis that we’ll look at is the ANOVA table. 

Here we find the overall significance of the variables. 

 

 
The continuous variable of years of experience variable is statistically 

significant. However, let’s focus on the categorical variable of Major, 

https://statisticsbyjim.com/wp-content/uploads/2019/01/Categorical_Example.csv


Regress ion  Analys is :  An Intu it ive  Gu ide  

69 

which I circled. You can see this variable uses 2 degrees of freedom 

unlike Experience, which uses only 1. Remember, Major has three lev-

els and we excluded Statistics from the model to use it as the reference 

level. Consequently, the model includes two indicator variables to 

represent the entire categorical variable of Major, which explains why 

it uses two degrees of freedom. If your categorical variable has many 

levels, it will use many degrees of freedom, which can be problematic 

when your sample size is small. You’ll learn more about this problem 

of overfitting in a later chapter.  

 

Looking at the circled F-test result in the previous output, we see that 

Major is statistically significant overall. It improves the fit of the 

model. 

 

Next, let’s explore differences in mean income by major by assessing 

the coefficients. 

 

 
 

I’ve circled the output that relates to Major. Because Statistics is the 

reference level that we excluded from the analysis, the table does not 

display it. The coefficients for Political Science and Psychology indi-

cate how the mean incomes of these majors compare to the mean in-

come of the Statistics major. The negative coefficients indicate that 

these majors have lower mean incomes than Statistics. From the coef-

ficients, we learn the following: 
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• The mean income for Political Science majors is $27,195 LESS 

than the mean income for Statistics majors. 

• The mean income for Psychology majors is $5,368 LESS than 

the mean income for Statistics majors. 

 

Next, look at the p-values for the t-tests. These p-values determine 

whether the mean differences are statistically significant. The political 

science coefficient is statistically significant. Consequently, we can re-

ject the null hypothesis that the mean difference is zero. We’re reject-

ing the notion that the coefficient can plausibly equal zero even while 

incorporating a margin of error to account for random sample error. 

We have sufficient evidence to conclude that these two means are dif-

ferent. 

 

On the other hand, the difference between mean incomes for Psychol-

ogy and Statistics is not statistically significant. We have insufficient 

evidence to conclude that these means are different. In other words, 

the observed difference of -$5368 might represent random error. If 

we were to collect another random sample and perform the analysis 

again, this difference might vanish. 

 

If we fit the model using a different reference level, the overall signif-

icance of Major in the ANOVA table will remain the same as will the 

goodness-of-fit measures, like R-squared. On the other hand, the com-

parisons between specific levels will change because we’d be compar-

ing the majors to a different reference level. For example, if Political 

Science is the reference level, both Psychology and Statistics have 

mean incomes that are significantly higher than it. However, the over-

all picture remains the same. Use the reference level that makes the 

most intuitive sense for your research question. 

 

A quick word about Experience. As you learned in the continuous var-

iable section, here’s how to interpret its positive coefficient. For each 

one-year increase in experience, mean income increases by an aver-

age of $5085 while holding Major constant. Conversely, the estimates 
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for Major holds constant the years of experience. That’s extremely 

helpful for isolating the effect of each variable. 

 

Now, we’ll look at a different way of representing the results in the 

regression equation when you have categorical variables. As you’ve 

seen above, membership in different majors relates to different aver-

age incomes. For example, Political Science majors have a lower aver-

age income than Statistics majors. This average difference is an 

unchanging -$27,195. Because that amount does not change, we can 

subtract it from the constant in the regression equation and create an 

equation for political science specifically.  

 

More generally, indicator variables will shift the regression line up and 

down the y-axis for specific groups by the value of the coefficient for 

the corresponding indicator variable. Consequently, you can obtain 

separate equations for each categorical level with different constants, 

as shown below. 

 

 
 

The differences between the constants correspond to the coefficients 

for Psychology and Political Science. 

Controlling for other Variables 

At this point, I’m hoping that the importance of a particular aspect of 

regression analysis is becoming more evident—the ability to hold con-

stant other variables by including them in the model. In the example 

above, you saw how including years of experience allows us to isolate 

the role of college major by accounting for experience.  
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Now, image your goal is to determine whether males and females are 

paid differently. Suppose you include gender in the income model and 

it indicates that the average income for men is significantly higher 

than the average for women. Arguments might be made that males 

tend to be in higher paying majors more frequently, have more years 

of experience, are older, and so on. However, if you include these 

other variables in the model and the male average continues to be sig-

nificantly higher, you can conclude that women earn lower average 

incomes than men while holding constant these other variables. 

 

That’s powerful stuff! 

Blurring the Continuous and Categorical Line 

You might think that the question of whether a variable is continuous 

or categorical is like being pregnant. You're either pregnant or you're 

not. There's no grey area. However, for the question about continuous 

or categorical, there can be ambiguity. In some cases, you have some 

discretion about whether to include a variable as one type or the 

other.  

 

Over the years, I’ve been asked about this issue many times. It is con-

fusing. This uncertainty tends to occur in two broad types of scenar-

ios. 

 

In the first scenario, at least one of your independent variables is a 

count variable or an ordinal variable. These types of variables are dis-

crete, but they do contain information about order, scale, or magni-

tude. These variables share properties of both categorical variables 

and continuous variables but aren't quite either one. 

 

• Count variables are non-negative integers. Examples include 

the number of defects, days in the hospital, and number of 

treatment sessions.  

• Ordinal variables have at least three categories, and the cate-

gories have a natural order. The categories are ranked, but the 
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differences between ranks may not be equal. For example, 

first, second, and third in a race are ordinal data. The differ-

ence in time between first and second place might not be the 

same the difference between second and third place.  

 

In the second scenario, you have a continuous variable, but it uses 

only a limited number of discrete values chosen by the experimenters. 

For example, researchers bake cakes at temperatures of 325, 375, and 

425 degrees for a study. Or, in a longitudinal study, observations occur 

at specific intervals: 1 month, 2 months, 3 months, etc. 

 

Determining how to include these variables in the model depends on 

both the nature of your data and the purpose of your study. 

The Case for Including It as a Continuous Variable 

When the variable in question has many levels, it might be best to in-

clude it as a continuous variable. Your software will estimate a line 

that fits the relationship between the independent and dependent var-

iable. In this case, you can fit it as a linear function or model curvature 

that is present. At a bare minimum, your variable must have at least 

three values to fit a straight line. However, it's hard to determine 

whether there is a linear trend with only three values. And, fitting 

curved relationships requires more values.  

 

If your study wants to determine how changes in the independent var-

iable relate to changes in the dependent variable, including the varia-

ble as a continuous independent variable allows you to estimate that 

type of relationship. 

The Case for Including It as a Continuous Variable 

On the other hand, with fewer levels, you might include it as a cate-

gorical variable and have the analysis treat each value as a group. In 

this case, the procedure estimates a fitted mean for each group and 

does not consider the order of values. As the number of values in-

creases, it becomes increasingly unwieldy comparing all the 
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differences between means. Additionally, recall from the section 

about coding categorical variables that you'll use many degrees of 

freedom when a categorical variable has many levels. This issue can 

be problematic, particularly when you have a small sample size. 

 

If your study wants to assess group means and differences between 

means, including the variable in question as a categorical variable al-

lows you to answer these questions. 

 

You probably noticed that I haven’t discuss the constant in detail. 

That’s next! 

Constant (Y Intercept) 

The constant term in regression analysis is the value at which the re-

gression line crosses the y-axis. The constant is also known as the y-

intercept. That sounds simple enough, right? Mathematically, the re-

gression constant really is that simple. However, the difficulties begin 

when you try to interpret the meaning of the y-intercept in your re-

gression output. 

 

 
 

Why is it difficult to interpret the constant term? Because, the y-in-

tercept is almost always meaningless! Surprisingly, while the constant 
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doesn’t usually have a meaning, it is almost always vital to include it 

in your regression models! 

The Definition of the Constant is Correct but Misleading 

The constant is often defined as the mean of the dependent varia-

ble when you set all of the independent variables in your model to 

zero. In a purely mathematical sense, this definition is correct. Unfor-

tunately, it’s frequently impossible to set all variables to zero because 

this combination can be an impossible or irrational arrangement. 

 

Using the same height-weight dataset as before, the graph below dis-

plays the regression model that assesses the relationship between 

those variables. For this section, I modified the y-axis scale to illus-

trate the y-intercept, but the overall results haven’t changed. 

 

 
 

If you extend the regression line downwards until you reach the point 

where it crosses the y-axis, you’ll find that the y-intercept value is 

negative! 

 

In fact, the regression equation shows us that the negative intercept is 

-114.3. Using the traditional definition for the regression constant, if 
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height is zero, the expected mean weight is -114.3 kilograms! Huh? 

Neither a zero height nor a negative weight makes any sense at all! 

The negative y-intercept for this regression model has no real mean-

ing, and you should not try attributing one to it. 

 

You think that is a head scratcher? Try imagining a regression analysis 

with multiple independent variables. The more variables you have, 

the less likely it is that each and every one of them can equal zero 

simultaneously. 

 

If the independent variables can’t all equal zero, or you get an impos-

sible negative y-intercept, don’t interpret the value of the y-intercept! 

The Y-Intercept Might Be Outside of the Observed Data 

I’ll stipulate that, in a few cases, it is possible for all independent vari-

ables to equal zero simultaneously. However, to have any chance of 

interpreting the constant, this all zero data point must be within the 

observation space of your dataset. 

 

As a general statistical guideline, never make a prediction for a point 

that is outside the range of observed values that you used to fit the 

regression model. The relationship between the variables can change 

as you move outside the observed region—but you don’t know 

whether it actually changes because you don’t have that data! 

 

This guideline comes into play here because the constant predicts the 

dependent variable for a particular point. If your data don’t include 

the all-zero data point, don’t believe the y-intercept. 

 

I’ll use the height and weight regression example again to show you 

how this works. This model estimates its parameters using data from 

middle school girls whose heights and weights fall within a certain 

range. We should not trust this estimated relationship for values that 

fall outside the observed range. Fortunately, for this example, we can 

deduce that the relationship does change by using common sense. 
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The red circle on the graph represents the mean height and weight for 

a newborn baby. This height isn’t exactly zero, but it is as close as pos-

sible. By looking at the chart, it is evident that the actual relationship 

must change over the extended range! 

 

The observed relationship is locally linear, but it must curve as it de-

creases below the observed values. Don’t predict outside the range of 

your data! This principle is an additional reason why the y-intercept 

might not be interpretable. 

The Constant Absorbs the Bias for the Regression Model 

Now, let’s assume that all of the independent variables in your model 

can reasonably equal zero and you specifically collect data in that area. 

You should be good to interpret the constant, right? Unfortunately, 

the y-intercept might still be garbage! 

 

A portion of the estimation process for the y-intercept is based on the 

exclusion of relevant variables from the regression model. When you 

leave relevant variables out, this can produce bias in the model. Bias 

exists if the residuals have an overall positive or negative mean. In 

other words, the model tends to make predictions that are 
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systematically too high or too low. The constant term prevents this 

overall bias by forcing the residual mean to equal zero. 

 

Imagine that you can move the regression line up or down to the point 

where the residual mean equals zero. For example, if the regression 

produces residuals with a positive average, just move the line up until 

the mean equals zero. This process is how the constant ensures that 

the regression model satisfies the critical assumption that the residual 

average equals zero. However, this process does not focus on produc-

ing a y-intercept that is meaningful for your study area. Instead, it fo-

cuses entirely on providing that mean of zero. 

 

The constant ensures the residuals don’t have an overall bias, but that 

might make it meaningless. 

Generally, It Is Essential to Include the Constant in a Regres-
sion Model 

The reason directly above explains why you should almost always 

have the constant in your regression model—it forces the residuals to 

have that crucial zero mean. 

 

Furthermore, if you don’t include the constant in your regression 

model, you are actually setting the constant to equal zero. This action 

forces the regression line to go through the origin. In other words, a 

model that doesn’t include the constant requires all of the independ-

ent variables and the dependent variable to equal zero simultaneously. 

 

If this isn’t correct for your study area, your regression model will ex-

hibit bias without the constant. To illustrate this, I’ll use the height and 

weight example again, but this time I won’t include the constant. Be-

low, there is only a height coefficient but no constant. 
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Now, I’ll draw a green line based on this equation on the previous 

graph. This comparison allows us to assess the regression model when 

we include and exclude the constant. 

 

 
 

Clearly, the green line does not fit the data at all. Its slope is nowhere 

close to being correct, and its fitted values are biased. 

 

When it comes to using and interpreting the constant in a regression 

model, you should almost always include the constant in your regres-

sion model even though it is almost never worth interpreting. Statis-

tical software includes the constant in the model by default. Do not 

change this default unless you have very concrete reasons for doing 

so. 



J im Fros t  

80 

The key benefit of regression analysis is determining how changes in 

the independent variables are associated with shifts in the dependent 

variable. Don’t think about the y-intercept too much! 

Interpreting the Constant When You Center All the Continuous 
Independent Variables 

Previously, you saw a bunch of reasons for why you usually should 

not interpret the constant. However, there is one approach that can 

bypass most, but not all, of the problems I describe above.  

 

If you center all of your continuous independent variables, the con-

stant can be meaningful. From earlier in this chapter, recall that cen-

tering your variables involves subtracting the mean of each variable 

from all the values for that variable. Using this approach, zero values 

for a variable now signify the mean of that variable.  

 

If your model contains only continuous independent variables and 

you center them, the constant represents the average value of the de-

pendent variable when all the continuous variables are at their means. 

This information can be useful. Remember that centering the varia-

bles does not change the regression coefficients, so you can continue 

to interpret them in the usual manner. 

 

Below, I refit the height and weight model, but I’ll center height on its 

mean. 
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The constant indicates that the mean weight is 46.33 kg at the mean 

height of 1.5 M. The regression coefficient, its p-value, and the various 

goodness-of-fit statistics do not change. 

 

This method avoids many of the problems I described above. Zero 

should be a meaningful value and be within the range of the observa-

tions for all independent variables. 

 

However, centering does not eliminate the fact that the constant ab-

sorbs the bias of missing independent variables. The estimation pro-

cess is still going to “float” the regression line up or down so that the 

mean of the residuals equals zero. Consequently, the value of the con-

stant might not be unbiased. It’s hard to know how this factor affects 

a particular model, but it’s something to consider. 

 

If your model contains continuous and categorical independent vari-

ables, you’ll need to adjust your interpretation of the constant slightly. 

Recall that OLS includes categorical variables in the model by using a 

set of indicator variables. When an observation is at the reference 

level, all of the indicator variables in the model equal zero. 
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Consequently, when the model includes categorical variables, the 

constant represents the mean of the dependent variable when: 

 

• All of the continuous variables are at their means, and 

• All of the categorical variables are at their reference levels. 

 

Typically, centering refers to the practice of subtracting the mean 

from each variable. However, you can subtract other values. If an-

other value is more meaningful to your study than the mean, you can 

subtract that value instead. Just ensure that it is within the range of 

the data. Suppose a height of 1.25 M is relevant to our study for some 

reason. If we subtract the value of 1.25 from all heights and fit the 

model, the constant represents the mean weight for heights of 1.25 

meters.  

Review and Next Steps 

We explored the basics features of linear regression models. You 

learned how to interpret the coefficients for the main effects of both 

continuous and categorical variables along with the constant. To-

gether, these parameter estimates form a regression equation. Cru-

cially, you learned how to use p-values to determine whether model 

terms are statistically significant, and what that means. 

 

In the next two chapters, we’ll explore other types of effects that you 

can model using regression. First, we look at curvature that can be 

present in the data. So far, we’ve assessed only data that follow a 

straight line.  

 

Then, we’ll explore interactions where the effect of one variable de-

pends on the value of another variable.  

 

Both curvature and interactions require that you include special terms 

in your model and change the way you interpret the results. 
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C H A P T E R  4  

 

Fitting Curvature 

In regression analysis, curve fitting is the process of specifying the 

model that provides the best fit to the specific curves in your dataset. 

Curved relationships between variables are not as straightforward to 

fit and interpret as linear relationships. 

 

As you saw in the previous chapter, when you increase the independ-

ent variable by one-unit for a linear effect, the mean of the dependent 

variable always changes by a fixed amount that equals the coefficient 

value. This relationship holds true regardless of where you are in the 

observation space. 

 

Unfortunately, the real world isn’t always nice and neat like that. 

Sometimes your data have curved relationships between variables. In 

a curved relationship, the change in the dependent variable associated 

with a one-unit shift in the independent variable varies based on 

where you start on the regression line. In other words, the effect of 

the independent variable is not a constant value. 

 

A quick note about terminology in this chapter. Nonlinear has a very 

specialized meaning in statistics. Not just any curvature is nonlinear. 

In fact, linear models can fit curvature. Consequently, I’ll use the term 

curvilinear to described curved relationships in general because 
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nonlinear is often incorrect statistically. Don’t worry, I’ll define linear 

and nonlinear in the context of regression models in this chapter. 

 

Next up, I’ll show you an example of curvature so you can see how it 

differs from the straight-line relationships you saw earlier. Then, I’ll 

explain a variety of methods you can use to fit curves in your data and 

show you how to determine whether you’re adequately fitting the cur-

vature. 

Example Curvature 

Linear relationships are relatively straightforward to understand. As 

you saw in the previous chapter, the mean change in the dependent 

variable remains constant throughout the regression line. Now, let’s 

move on to interpreting the coefficients for a curvilinear relationship, 

where the effect depends on your location on the curve. Unfortu-

nately, the interpretation of the coefficients for a curvilinear relation-

ship is less intuitive than linear relationships. 

 

This example uses a quadratic (squared) term to model curvature in 

the data set. This is one of multiple methods that you’ll learn about. 

You can see that the p-values are statistically significant for both the 

linear and quadratic terms. But what the heck do the coefficients 

mean? We cannot interpret them the same way that we do for 

straight-line relationships. 

 

The regression output below displays the coefficients for a curvilinear 

relationship. 
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Graphing the Data for Regression with Polynomial Terms 

Graphing the data really helps you visualize the curvature and under-

stand the regression model. You could enter various values for the in-

dependent variable into the equation and see how the mean value of 

the dependent variable changes. Or, just graph it and see it in action! 

 

 
 

The chart displays the relationship between machine setting and en-

ergy consumption. Notice how the effect of machine setting on mean 

energy usage depends on where you are on the fitted curve. On the x-

axis, if you begin with a setting of 12 and increase it by 1, energy con-

sumption decreases. On the other hand, if you start at 25 and increase 

the setting by 1, energy consumption increases. Near 20 and con-

sumption doesn’t change much. 

 

Regression analysis that uses polynomials to model curvature can 

make interpreting the results trickier. Unlike a linear relationship, the 

effect of the independent variable changes based on its value. Looking 

at the coefficients won’t make the picture any clearer. Instead, graph 

the data to truly understand the relationship. Expert knowledge of the 

study area can also help you make sense of the results. 
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Graph Curvature with Main Effects Plots 

In the example above, we can graph the curved relationship on a fitted 

line plot because there is only one independent variable. However, 

what can you do if your model contains two or more independent var-

iables? Let me introduce you to main effects plots! 

 

You can use main effect plots with linear terms, but I find they’re even 

more valuable when you need to understand curvilinear relationships. 

Its value lies in the fact that it can graph isolated main effects on a two-

dimensional plot even when your model has more than one independ-

ent variable.  

 

Let’s see this in action. If you want to try this yourself, use the follow-

ing CSV dataset: Hardness. Suppose we have a regression model that 

includes two independent variables and obtain the following regres-

sion equation: 

 

 
 

In this model, we’re using temperature and pressure to predict the 

hardness of a product. Temperature is a linear term. From the previ-

ous chapter, you know that for every one-degree increase in temper-

ature, stiffness increases by 0.759 units of hardness.  

 

Pressure also relates to hardness, but it includes a polynomial term in 

the portion I circled. How do you interpret this relationship? Because 

we have two independent variables, we can’t graph it using a fitted 

line plot. The equation has a squared term, like the machine setting 

example. So, we can guess that density has either a U or inverted U-

shaped relationship with temperature. The positive coefficient indi-

cates it is in fact U-shaped. 

 

https://statisticsbyjim.com/wp-content/uploads/2019/02/Hardness.csv


Regress ion  Analys is :  An Intu it ive  Gu ide  

87 

You could enter different pressure values into the equation over and 

over to get an idea of how it affects hardness. Or, simply create a main 

effects plot! To calculate the pressure curve below, the plot’s algo-

rithm enters the mean temperature into the equation for the Temp 

term, and then it cycles through the range of pressure values to calcu-

late the corresponding hardness values. It follows the same process to 

draw the temperature line.  

 

 
 

At a glance, you can see the curvilinear nature of the relationship be-

tween density and stiffness. Also, notice the linear relationship be-

tween temperature and stiffness, which is consistent with its positive, 

linear coefficient of 0.759.  

 

When there is no relationship between two variables, the plot displays 

horizontal lines that represents coefficients with values of zero. How-

ever, random sampling error can produce apparent relationships in 

these graphs when two variables are not related. Consequently, while 

you can use main effects plots to display relationships, use the p-val-

ues in the statistical output to verify that they are statistically signifi-

cant. 
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When we get to interaction effects in the next chapter, you’ll learn 

about interaction plots, which are similar to these plots. 

Why You Need to Fit Curves in a Regression Model 

The fitted line plot below illustrates the problem of using a linear re-

lationship to fit a curved relationship. The R-squared is high, but the 

model is clearly inadequate. The fitted line does not represent the data 

because the model is systematically incorrect. You must specify a 

model that fits the curve! We’ll come back to these data and try vari-

ous ways to fit the curve.  

 

 
 

When you have one independent variable, using a fitted line plot both 

to see curvature in the data and determining whether your model fits 

the curvature is easy. With multiple regression, main effects plots dis-

play how your model fits the curvature. However, these plots don’t 

indicate how well your model fits the curvature. For multiple regres-

sion, residual plots are a crucial indicator of whether your model ade-

quately fits curved relationships. 
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If you see a pattern in the residual plots, your model doesn’t provide 

an adequate fit for the data. A common reason is that your model in-

correctly models the curvature. Plotting the residuals by each of your 

independent variables can help you identify curved relationships that 

you need to model. We’ll come back to this method in chapter 9. 

 

In others cases, you might need to depend on subject-area knowledge 

to fit the curve. Previous experience or research can tell you that the 

effect of one variable on another varies based on the value of the in-

dependent variable. Perhaps there’s a limit, threshold, or point of di-

minishing returns where the relationship changes? 

 

TIP: When you start working with your dataset, the best way to de-

termine whether the relationships between variables are curved is to 

graph them in a scatterplot. Additionally, the curve that the plot dis-

plays often helps you determine how to model it. 

 

The majority of this book focuses on ordinary least squares regression, 

which is a type of linear model. However, linear models can fit curves. 

I know, statistics isn’t known for terminology that makes sense!  

 

Nonlinear regression is a type of analysis that can fit more types of 

curves. Consequently, I will show you methods for fitting curves using 

both linear and nonlinear regression. Nonlinear regression functions 

very differently than linear regression. For this book, I’m just showing 

you enough about nonlinear regression so you know when to use it. 

You’re just dipping your toe in it.  

 

Despite the limitations on the types of curves that linear models can 

fit, I’m always surprised at how often they adequately fit the curva-

ture! 

Difference between Linear and Nonlinear Models 

The difference between linear and nonlinear regression models isn’t 

as straightforward as it sounds. Over the years, I’ve seen a lot of 
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confusion over this issue. You’d think that linear equations produce 

straight lines and nonlinear equations model curvature. Unfortu-

nately, that’s not correct. Just because you’re fitting a curve, it doesn’t 

necessarily mean you’re using nonlinear regression. Both types of 

models can fit curves to your data—so that’s not the defining charac-

teristic. In this section, I’ll teach you how to identify linear and non-

linear regression models. 

 

The difference between nonlinear and linear is the “non.” OK, that 

sounds like a joke, but, honestly, that’s the easiest way to understand 

the difference. First, I’ll define what linear regression is, and then eve-

rything else must be nonlinear regression. I’ll include examples of 

both linear and nonlinear regression models. 

Linear Regression Equations 

A linear regression model follows a very particular form. In statistics, 

a regression model is linear when all terms in the model are one of the 

following: 

 

• The constant 

• A parameter multiplied by an independent variable (IV) 

 

Then, you build the equation by only adding the terms together. These 

rules limit the form to just one type: 

 

Dependent variable = constant + parameter * IV + … + parameter * IV 

 

 
 

Statisticians say that this type of regression equation is linear in the 

parameters. However, it is possible to model curvature with this type 

of model. While the function must be linear in the parameters, you 

can raise an independent variable by an exponent to fit a curve. For 

example, if you square an independent variable, the model can follow 

a U-shaped curve, as you saw in the preceding section. 
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While the independent variable is squared, the model is still linear in 

the parameters. Linear models can also contain log terms and inverse 

terms to follow different kinds of curves and yet continue to be linear 

in the parameters. 

 

The regression example below models the relationship between body 

mass index (BMI) and body fat percent. Later in this book, I use this 

model to show how to make predictions with regression analysis. It is 

a linear model that uses a quadratic (squared) term to model the 

curved relationship. 

 

 

Nonlinear Regression Equations 

I showed how linear regression models have one basic configuration. 

Now, we’ll focus on the “non” in nonlinear! If a regression equation 

doesn’t follow the rules for a linear model, then it must be a nonlinear 

model. It’s that simple! A nonlinear model is literally not linear. 
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The added flexibility opens the door to a huge number of possible 

forms. Consequently, nonlinear regression can fit an enormous vari-

ety of curves. However, because there are so many candidates, you 

may need to conduct some research to determine which functional 

form provides the best fit for your data. 

 

Below, I present a handful of examples that illustrate the diversity of 

nonlinear regression models. Keep in mind that each function can fit 

a variety of shapes, and there are many nonlinear functions. Also, no-

tice how nonlinear regression equations are not comprised of only ad-

dition and multiplication! Thetas are the parameters, and Xs are the 

independent variables. 

 

Example Nonlinear equations 

Power 

 

 
 

Weibull growth 
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Fourier 

 

 
 

The defining characteristic for both types of models is the functional 

form. If you can focus on the form that represents a linear model, it’s 

easy enough to remember that anything else must be a nonlinear. 

Finding the Best Way to Model Curvature 

Let’s go back to the example data I showed you at the begging of this 

chapter. We’ll go over various linear models and a nonlinear model to 

highlight the different options. I’ll also show you how to determine 

which model provides the best fit. 
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To compare curve fitting methods, I’ll fit models to the curve in the 

fitted line plot above because it is not an easy fit. Let’s assume that 

these data are from a physical process with very precise measure-

ments. We need to produce accurate predictions of the output for any 

specified input. You can download the CSV dataset for these exam-

ples: CurveFittingExample. 

 

To determine which method fits this curve the best, we’ll use a com-

bination of graphs and goodness-of-fit statistics. The two statistics 

we’ll use are R-squared and the standard error of the regression (S). I 

covered the basics of R-squared in chapter 2. We’ll go over both sta-

tistics, and more, in chapter 6, which is all about goodness-of-fit. For 

now, keep in mind that higher R-squared values and lower S values 

are often better. 

Curve Fitting using Polynomial Terms in Linear Regression 

The most common method to fit a curvilinear relationship is to in-

clude polynomial terms in a linear model. If you’re unsure where to 

start for your dataset, polynomials are a great place! Polynomial terms 

are independent variables that you raise to a power, such as squared 

https://statisticsbyjim.com/wp-content/uploads/2017/04/CurveFittingExample.csv
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or cubed terms. You saw two models with polynomial terms at the 

beginning of this chapter. 

 

To determine the correct polynomial term to include, simply count 

the number of bends in the line. Take the number of bends in your 

curve and add one for the model order that you need. For example, 

quadratic terms model one bend while cubic terms model two. In 

practice, cubic terms are very rare, and I’ve never seen quartic terms 

or higher.  

 

Tip: If you include a polynomial term in your model, you should cen-

ter your continuous independent variables to reduce the multicollin-

earity that it produces. Chapter 9 illustrates this problem and solution. 

 

Linear 

 
Quadratic 

 
Cubic 
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Our data has one bend. Let’s fit a linear model with a quadratic term. 

 

 
 

The R-squared has notably increased from 84% to 99%, but the regres-

sion line doesn’t quite fit correctly. The fitted line systematically 

over- and under-predicts the data at different points along the curve. 

The high R-squared reinforces a point I make in chapter 6 about inter-

preting R-squared. High R-squared values don’t always represent 

good models and that you need to check the residual plots! 

 

While a polynomial didn’t work for this model, it’s the most common 

method and works for a surprising number of datasets. Polynomials 

are usually the place to start. Then consider other methods only when 

polynomials don’t fit the data. 

 

Let’s try other models. 

Curve Fitting using Reciprocal Terms in Linear Regression 

When your dependent variable descends to a floor or ascends to a 

ceiling (i.e., approaches an asymptote), you can try using a reciprocal 

of an independent variable (1/X). Use a reciprocal term when the ef-

fect of an independent variable decreases as its value increases. To use 
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this method, you need to create a new column in your dataset and use 

it in the analysis. 

 

 
 

The value of this term decreases as the independent variable (X) in-

creases because it is in the denominator. In other words, as X in-

creases, the effect of this term decreases and the slope flattens. X 

cannot equal zero for this type of model because you can’t divide by 

zero. 

 

For our data, the increases in Output flatten out as the Input increases. 

There appears to be an asymptote near 20. Let’s try fitting the curve 

using a reciprocal term. In the data set, I created a column for 1/Input 

(InvInput). I fit a model with a linear reciprocal term (top) and an-

other with a quadratic reciprocal term (bottom). 
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For our example dataset, the quadratic reciprocal model provides a 

much better fit to the curvature. The plots change the x-axis scale to 

1/Input, which makes it difficult to see the natural curve in the data. 

To show the natural scale of the data, I created the scatterplot below 

using the regression equations. Clearly, the green data points are 

closer to the inverse quadratic line. 
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On the fitted line plots, the quadratic reciprocal model has a higher R-

squared value (good) and a lower S-value (good) than the quadratic 

model. It also doesn’t display biased fitted values. This model provides 

the best fit to the data so far! 

Curve Fitting with Log Functions in Linear Regression 

A log transformation allows linear models to fit curves that are other-

wise possible only with nonlinear regression. 

 

For instance, you can express the nonlinear function: 

 

Y=eB0X1
B1X2

B2 

 

In the linear form: 

 

Ln Y = B0 + B1lnX1 + B2lnX2 

 

Your model can take logs on both sides of the equation, which is the 

double-log form shown above. Or, you can use a semi-log form, which 

is where you take the log of only one side. If you take logs on the in-

dependent variable side of the model, it can be for all or a subset of 

the variables. 

 

Using log transformations is a powerful method to fit curves. There 

are too many possibilities to cover them all. Choosing between a dou-

ble-log and a semi-log model depends on your data and subject area. 

If you use this approach, you’ll need to do some investigation. 

 

Let’s apply this to our example curve. A semi-log model can fit curves 

that flatten as the independent variable increases. Let’s see how a 

semi-log model fits our data! 

 

In the fitted line plot below, I transformed the independent variable. 
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Like the first quadratic model we fit, the semi-log model provides a 

biased fit to the data points. Additionally, the S and R-squared values 

are very similar to that model. The model with the quadratic recipro-

cal term continues to provide the best fit. 

 

So far, we’ve performed curve fitting using only linear models. Let’s 

switch gears and try a nonlinear regression model. 

Curve Fitting with Nonlinear Regression 

Now, we’ll take a brief foray into nonlinear regression. If you need to 

perform nonlinear regression to fit your data, you’ll probably need to 

do some more research. This section shows you its potential.  

 

As you fit regression models, you might need to make a choice be-

tween linear and nonlinear regression models. While both types of 

models can fit curvature, nonlinear regression is much more flexible 

in the shapes of the curves that it can fit. After all, the sky is the limit 

when it comes to the possible forms of nonlinear models.  

 

The general guideline is to use linear regression first to determine 

whether it can fit the particular type of curve in your data. If you can’t 
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obtain an adequate fit using one of the methods in linear regression, 

that’s when you might need to choose nonlinear regression. 

 

Linear regression is easier to use, simpler to interpret, and you obtain 

more statistics that help you assess the model. While linear regression 

can model curves, it is relatively restricted in the shapes of the curves 

that it can fit. Sometimes it can’t fit the specific curve in your data. 

 

Nonlinear regression can fit many more types of curves, but it can re-

quire more effort both to find the best fit and to interpret the role of 

the independent variables. Additionally, R-squared is not valid for 

nonlinear regression, and it is impossible to calculate p-values for the 

parameter estimates. 

 

Nonlinear regression is a very powerful alternative to linear regres-

sion. It provides more flexibility in fitting curves because you can 

choose from a broad range of nonlinear functions. In fact, there are so 

many possible functions that the trick becomes finding the function 

that best fits the particular curve in your data. 

 

Most statistical software packages that perform nonlinear regression 

have a catalog of nonlinear functions. You can use that to help pick 

the function. Further, because nonlinear regression uses an iterative 

algorithm to find the best solution, you might need to provide the 

starting values for all of the parameters in the function. 

 

Our data approaches an asymptote, which helps use choose the non-

linear function from the catalog below. 
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The diagram in the catalog helps us determine the starting values. 

Theta1 is the asymptote. For our data, that’s near 20. Based on the 

shape of our curve, Theta2 and Theta3 must be both greater than 0. 
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Consequently, I’ll use the following starting values for the parameters: 

• Theta1: 20 

• Theta2: 1 

• Theta3: 1 

 

The fitted line plot below displays the nonlinear regression model. 

 

 
 

The nonlinear model provides an excellent, unbiased fit to the data. 

Let’s compare models and determine which one fits our curve the 

best. 

Comparing the Curve-Fitting Effectiveness of the Different 
Models 

R-squared is not valid for nonlinear regression. So, you can’t use that 

statistic to assess the goodness-of-fit for this model. However, the 

standard error of the regression (S) is valid for both linear and non-

linear models and serves as great way to compare fits between these 

types of models. A small standard error of the regression indicates 

that the data points are closer to the fitted values. 
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Model R-squared S Unbiased 

Reciprocal  

Quadratic 
99.9 0.134828 Yes 

Nonlinear N/A 0.179746 Yes 

Quadratic 99.0 0.518387 No 

Semi-Log 98.6 0.565293 No 

Reciprocal  

Linear 
90.4 1.49655 No 

Linear 84.0 1.93253 No 

 

We have two models at the top that are equally good at producing ac-

curate and unbiased predictions. These two models are the linear 

model that uses the quadratic reciprocal term and the nonlinear 

model. 

 

The standard error of the regression for the nonlinear model 

(0.179746) is almost as low the S for the reciprocal model (0.134828). 

The difference between them is so small that you can use either. How-

ever, with the linear model, you also obtain p-values for the independ-

ent variables (not shown) and R-squared. 

 

For reporting purposes, these extra statistics can be handy. However, 

if the nonlinear model had provided a much better fit, we’d want to 

go with it even without those statistics.  

Closing Thoughts 

You can use various methods that collectively provide great flexibility 

to fit most any type of curve. Further, identifying the best model in-

volves assessing only a few statistics and the residual plots. 

 

Setting up your study and collecting the data is a time intensive pro-

cess. It’s definitely worth the effort to find the model that provides 

the best fit. 
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Any time you are specifying a model, you need to let subject-area 

knowledge and theory guide you. Additionally, some study areas 

might have standard practices and functions for modeling the data. 

 

Here’s one final caution. You’d like a great fit, but you don’t want to 

overfit your regression model. An overfit model is too complex, it be-

gins to model the random error, and it falsely inflates the R-squared. 

In chapter 6, I’ll show you some tools that can help you detect and 

avoid this problem. 

Another Curve Fitting Example 

Let’s go through one more example using both linear and nonlinear 

regression. As usual, our goal is to develop an unbiased model. These 

data are freely available from the NIST and pertain to the relationship 

between density and electron mobility. Download the CSV data file to 

try it yourself: ElectronMobility. 

Linear model 

First, I’ll attempt to fit the curve using a linear model. Because there 

is only one independent variable, I can use a fitted line plot. In this 

model, I use a cubed term to fit the curvature because there are two 

bends. 

 

https://statisticsbyjim.com/wp-content/uploads/2017/08/ElectronMobility.csv
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The fitted relationship in the graph follows the data fairly close and 

produces a high R-squared of 98.5%. Those sound great, but look more 

closely and you’ll notice that various places along the regression line 

consistently under and over-predict the observed values. This model 

is biased, and it again illustrates a point that I make in the chapter 



Regress ion  Analys is :  An Intu it ive  Gu ide  

107 

about goodness-of-fit. By themselves, high R-squared values don’t 

necessarily indicate that you have a good model. 

 

Because we have only one independent variable, we can plot the rela-

tionship on the fitted line plot. However, when you have more than 

one independent variable, you can’t use a fitted line plot and you’ll 

need to rely on residual plots to check the regression assumptions. For 

our data, the residual plots display the nonrandom patterns very 

clearly. You want to see random residuals. 

 

Our linear regression model can’t adequately fit the curve in the data. 

There’s nothing more we can do with linear regression. Consequently, 

it’s time to try nonlinear regression. 

Example of a nonlinear regression model 

Now, let’s fit the same data but using nonlinear regression. As I men-

tioned earlier, nonlinear regression can be harder to perform. The fact 

that you can fit nonlinear models with virtually an infinite number of 

functional forms is both its strength and downside. 

 

The main positive is that nonlinear regression provides the most flex-

ible curve-fitting functionality. The downside is that it can take con-

siderable effort to choose the nonlinear function that creates the best 

fit for the particular shape of the curve. Unlike linear regression, you 

also need to supply starting values for the nonlinear algorithm. Some 

datasets can require substantial effort to find acceptable starting val-

ues. For instance, some starting values can cause the algorithm to fail 

to converge on a solution or to converge on an incorrect solution. It’s 

for these reasons that I always recommend fitting linear models first. 

 

Our example dataset is one that the NIST uses to illustrate a hard-to-

fit nonlinear relationship. So, it’s no surprise that the linear model was 

insufficient. Because this section focuses on the basics of choosing be-

tween linear and nonlinear models, I’m not going to cover how the 

researchers chose the optimal functional form of the nonlinear model. 
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Instead, I’ll jump to the solution and not show all the work to get there, 

much like a cooking show! I want you to see how the following non-

linear model compares to the linear model based on the best solution. 

 

For our data, a rational function provides the best nonlinear fit. A ra-

tional function is the ratio of two polynomial functions. For electron 

mobility, the model is: 

 

Y = (B1 + B2*x + B3*x^2 + B4*x^3) / (1 + B5*x + B6*x^2 + B7*x^3) 
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The equation for the nonlinear regression analysis is too long for the 

fitted line plot: 

 

Electron Mobility = (1288.14 + 1491.08 * Density Ln + 583.238 * Den-

sity Ln^2 + 75.4167 * Density Ln^3) / (1 + 0.966295 * Density Ln + 

0.397973 * Density Ln^2 + 0.0497273 * Density Ln^3) 

Comparing the Regression Models and Making a Choice 

In the fitted line plot, the nonlinear relationship follows the data al-

most exactly. The residual plot displays the randomness that we want 

to see for an unbiased model. R-squared does not appear because it is 

invalid for nonlinear regression. However, we can compare the stand-

ard error of the regression (S) for the two models. You want S to be 

smaller because it indicates that the data points are closer to the fitted 

line. For the linear model, S is 72.5 while for the nonlinear model it is 
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13.7. The nonlinear model provides a better fit because it is both un-

biased and produces smaller residuals. 

 

Nonlinear regression is a powerful alternative to linear regression but 

there are a few drawbacks. Fortunately, it’s not difficult to try linear 

regression first. 

Review and Next Steps 

Curvature happens when the effect of an independent variable varies 

based on its own value. It’s easiest to detect curved relationships by 

plotting your data on scatterplots. You can try a variety of methods to 

fit curvature, including the following: 

 

• Polynomials in linear regression. 

• Inverses in linear regression. 

• Logs in linear regression. 

• Nonlinear regression. 

 

Use main effects plots to see how your model fits the curvature. Use 

fitted line plots, residual plots, and goodness-of-fit statistics, such as 

R-squared and S, to determine how well it fits the data. Collectively, 

these tools help you decide which approach is best for your data.  

 

Don’t rely solely on the goodness-of-fit statistics because even an ex-

cellent value doesn’t necessarily mean that you fit the curvature ade-

quately. Use statistical measures in conjunction with graphs! 

 

Next, I’ll cover interaction effects, which occur when the effect of one 

independent variable depends on the value of a different independent 

variable.
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C H A P T E R  5  

 

Interaction Effects 

Interaction effects occur when the effect of one variable depends on 

the value of another variable. In this chapter, I explain interaction ef-

fects, how to interpret them in statistical designs, and the problems 

you will face if you don’t include them in your model. 

 

In any study, whether it’s a taste test or a manufacturing process, 

many variables can affect the outcome. Changing these variables can 

affect the outcome directly. For instance, changing the food condi-

ment in a taste test can affect the overall enjoyment. In this manner, 

analysts use models to assess the relationship between each independ-

ent variable and the dependent variable. This kind of an effect is called 

a main effect. Main effects do not depend on the value of other varia-

bles in the model. Throughout chapters 3 and 4, we assessed main ef-

fect, both linear and curvilinear. However, it can be a mistake to assess 

only main effects. 

 

In more complex study areas, the independent variables might inter-

act with each other. Interaction effects indicate that a third variable 

influences the relationship between an independent and dependent 

variable. This type of effect makes the model more complex, but if the 
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real world behaves this way, it is critical to incorporate it in your 

model. For example, the relationship between condiments and enjoy-

ment probably depends on the type of food—as we’ll see! 

Example with Categorical Independent Variables 

I think of interaction effects as an “it depends” effect. You’ll see why! 

Let’s start with an intuitive example to help you understand these ef-

fects conceptually. 

 

Imagine that we are conducting a taste test to determine which food 

condiment produces the highest enjoyment. We’ll perform a regres-

sion analysis where our dependent variable is Enjoyment. Our two in-

dependent variables are both categorical variables: Food and 

Condiment. 

 

Our model with the interaction term is: 

 

Satisfaction = Food Condiment Food*Condiment 

 

The Food*Condiment is the interaction term in the model. Behind the 

scenes, your statistical software multiples the two variables to calcu-

late the value for the interaction term. 

 

To keep things simple, we’ll include only two foods (ice cream and 

hot dogs) and two condiments (chocolate sauce and mustard) in our 

analysis. 

 

Given the specifics of the example, an interaction effect would not be 

surprising. If someone asks you, “Do you prefer ketchup or chocolate 

sauce on your food?” Undoubtedly, you will respond, “It depends on 

the type of food!” That’s the “it depends” nature of an interaction ef-

fect. You cannot answer the question without knowing more infor-

mation about the other variable in the interaction term—which is the 

type of food in our example! 
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That’s the concept. Now, I’ll show you how to include an interaction 

term in your model and how to interpret the results. 

How to Interpret Interaction Effects 

Let’s perform our analysis. Download the CSV data file to try it your-

self: Interactions_Categorical. 

 

Enjoyment is the dependent variable while Food and Condiment are 

the independent variables. The p-values in the output below tell us 

that the interaction effect (Food*Condiment) is statistically signifi-

cant. Consequently, we know that the satisfaction you derive from the 

condiment depends on the type of food. In other words, the relation-

ship between Condiment and Enjoyment changes based on the value 

of Food.  

 

Statistically, it’s just as valid to state that the relationship between 

Food and Enjoyment changes based on the value of Condiment. While 

both ways of describing the two-way interaction between Food and 

Condiment are correct, sometimes one is more appropriate given the 

subject area. For our study, it’s more natural to start with the food and 

then determine which condiment maximizes are enjoyment. We 

don’t usually start with a condiment in mind and then pick the food! 

 

 

https://statisticsbyjim.com/wp-content/uploads/2017/10/Interactions_Categorical.csv
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But, how do we interpret the interaction effect and truly understand 

what the data are saying? The best way to understand these effects is 

with a special type of graph—an interaction plot. This type of plot dis-

plays the fitted values of the dependent variable on the y-axis while 

the x-axis shows the values of the first independent variable. Mean-

while, the various lines represent values of the second independent 

variable. 

 

On an interaction plot, parallel lines indicate that there is no interac-

tion effect while different slopes suggest that one might be present. 

Below is the plot for Food*Condiment. 
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The crossed lines on the graph suggest that there is an interaction ef-

fect, which the significant p-value for the Food*Condiment term con-

firms. The graph shows that enjoyment levels are higher for chocolate 

sauce when the food is ice cream. Conversely, satisfaction levels are 

higher for mustard when the food is a hot dog. If you put mustard on 

ice cream or chocolate sauce on hot dogs, you won’t be happy! 

 

Which condiment is best? It depends on the type of food, and we’ve 

used statistics to demonstrate this effect. 

Overlooking Interaction Effects is Dangerous! 

When you have statistically significant interaction effects, you can’t 

interpret the main effects without considering the interactions. In the 

previous example, you can’t answer the question about which condi-

ment is better without knowing the type of food. Again, “it depends.” 

 

Suppose we want to maximize satisfaction by choosing the best food 

and the best condiment. However, imagine that we forgot to include 

the interaction effect and assessed only the main effects. We’ll make 

our decision based on the main effects plots below. 
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Based on these plots, we’d choose hot dogs with chocolate sauce be-

cause they each produce higher enjoyment. That’s not a good choice 

despite what the main effects show! When you have statistically sig-

nificant interactions, you cannot interpret the main effect without 

considering the interaction effects. 

 

Given the intentionally intuitive nature of our silly example, the con-

sequence of disregarding the interaction effect is evident at a passing 

glance. However, that is not always the case, as you’ll see in the next 

example. 

Example with Continuous Independent Variables 

For our next example, we’ll assess continuous independent variables 

in a regression model for a manufacturing process. The independent 

variables (processing time, temperature, and pressure) affect the de-

pendent variable (product strength). Here’s the CSV data file if you 

want to try it yourself: Interactions_Continuous. 

 

Tip: If you include an interaction term in your model for continuous 

variables, you should center these variables to reduce the multicollin-

earity that it produces. Chapter 9 illustrates this problem and solution. 

 

In the regression model, I’ll include temperature*pressure as an inter-

action effect. The results are below. 

 

https://statisticsbyjim.com/wp-content/uploads/2017/10/Interactions_Continuous.csv
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The output indicates that the interaction term is statistically signifi-

cant. But, how do you interpret the interaction coefficient in the re-

gression equation? You could try entering values into the regression 

equation and piece things together. However, it is much easier to use 

interaction plots! 

 

 
In the graph above, the variables are continuous rather than categori-

cal. To produce the plot, the statistical software chooses a high value 

and a low value for pressure, which are displayed in the legend, and 

enters them into the regression equation along with the range of val-

ues for temperature. 

 

As you can see, the relationship between temperature and strength 

changes direction based on the pressure. For high pressures, there is 

a positive relationship between temperature and strength while for 

low pressures it is a negative relationship. By including the interaction 

term in the model, you can capture relationships that change based on 

the value of another variable. 
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If you want to maximize product strength and someone asks you if the 

process should use a high or low temperature, you’d have to respond, 

“It depends.” In this case, it depends on the pressure. You cannot an-

swer the question about temperature without knowing the pressure 

value. 

Important Considerations for Interaction Effects 

While the plots help you interpret the interaction effects, use a hy-

pothesis test to determine whether the effect is statistically signifi-

cant. Plots can display non-parallel lines that represent random 

sample error rather than an actual effect. P-values and hypothesis tests 

help you sort out the real effects from the noise. For the two examples 

we assessed, I showed you how the p-values for the interaction terms 

are statistically significant. 

 

The examples in this chapter are two-way interactions because there 

are two independent variables in each term (Food*Condiment and 

Temperature*Pressure). It’s equally valid to interpret these effects in 

two ways. For example, the relationship between: 

 

• Satisfaction and Condiment depends on Food. 

• Satisfaction and Food depends on Condiment. 

You can have higher-order interactions. For example, a three-way in-

teraction has three variables in the term, such as Food*Condiment*X. 

In this case, the relationship between Satisfaction and Condiment de-

pends on both Food and X. However, this type of effect is challenging 

to interpret. In practice, analysts use them infrequently. However, in 

some models, they might be necessary to provide an adequate fit. 

 

Finally, when you have interaction effects that are statistically signif-

icant, do not attempt to interpret the main effects without considering 

the interaction effects. As the examples show, you will draw the 

wrong the conclusions! 
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Common Questions about Interaction Effects 

Over the years, I’ve been asked many questions about interaction ef-

fects—more about this topic than most. They can be confusing! To fin-

ish this chapter, I’ll address some of the common questions and 

concerns. 

Interaction effects versus correlation between independent 
variables 

A common misconception is that an interaction effect indicates that 

the independent variables themselves are correlated. That’s not nec-

essarily true. An interaction effect refers to the relationship between 

each independent variable and the dependent variable. Specifically, 

an interaction effect indicates that the relationship between an inde-

pendent variable and the dependent variable changes based on the 

value of at least one other independent variable. Those independent 

variables don’t need to be correlated for that effect to occur. 

 

Correlated independent variables is another phenomenon, which is 

called multicollinearity. We’ll cover that issue in Chapter 9. 

Combinations of significant and insignificant main effects and 
interaction effects 

A common concern occurs while interpreting significant interaction 

effects when the main effects are not significant. Is that even a valid 

condition? More generally, how do you interpret the possible combi-

nations of significant/insignificant main effects and significant/insig-

nificant interaction effects? 

 

To understand the answer, let’s refresh our memories about each type 

of effect. 

 

• Main effect: The portion of an independent variable’s effect 

on the dependent variable that does not depend on the values 

of the other variables in the model. 
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• Interaction effect. The portion of an independent variable’s 

effect that does depend on the value of at least one other in-

dependent variable in the model. 

 

Furthermore: 

 

The total effect of an independent variable = main effect + interaction 

effect 

 

When either type of effect is not statistically significant, you have in-

sufficient evidence to conclude that the effect is different from zero. 

When an effect is not significant, you can zero it out of the above 

equation. 

 

Let’s go through the possibilities! I’ll use a model that includes A and 

B as main effects, and A*B as the interaction effect. 

 

Main effects are significant, but the interaction effect is not signifi-

cant. In this model, the total effect of A and the total effect of B are 

contained in the main effects only because the interaction effect is not 

significant. In others words, all of A’s effect is due to the value of A 

and not influenced by B at all. Conversely, all of B’s effect is due to the 

value of B and not influenced by A at all.  

 

Main effects are significant, and the interaction effect is significant. 

In this model, the total effect for A and the total effect of B include 

both main effects and interaction effects. In other words, a portion of 

A’s effect does not depend on the value of B while another portion of 

A’s effect does depend on B. You need to sum the main effect and 

interaction effect to understand the total effect for either independent 

variable. For example, the total effect of A = A + A*B and B = B + A*B. 

 

Only the interaction effect is significant. In this model, the total ef-

fect of A and the total effect of B both entirely depend on the value of 

the other variable. Neither variable has a portion of its full effect that 
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is independent of the other variable. In other words, the total effect 

for either variable is A*B. Yes, this situation is completely okay! 

When an interaction effect is significant but an underlying 
main effect is not significant, do you remove the main effect 
from the model? 

The general rule is to include independent variables as main effects in 

the model, regardless of their significance, when a statistically signifi-

cant interaction term contains those variables. This practice allows 

the model to estimate the interaction effect better. 

 

For example, suppose that A*B is statistically significant but A and/or 

B is not significant. In this situation, statisticians typically include both 

A and B in the model regardless of their statistical significance. 

The coefficient sign for an interaction term isn’t what I ex-
pected.  

I’ve been asked multiple times about this issue. This answer gets a lit-

tle technical, but it’s all based on things that we’ve covered already. 

The reality is that the coefficient sign for an interaction term really 

doesn’t mean much by itself. After all, the effect of a two-way inter-

action term is the product of three values—the values of the two var-

iables in the interaction and the coefficient of the interaction term. 

Depending on the combination of positive and negative values, a neg-

ative coefficient can represent a positive effect (i.e., if the product of 

the variable values is negative). Additionally, while the interaction ef-

fect might have, say, a negative sign, the total effect of the main effect 

and interaction effect might be positive. The interaction effect might 

make it a little less positive than it would’ve been otherwise.  

 

Additionally, realize that there is a bit of arbitrariness in the coeffi-

cient sign and value for the interaction effect of categorical variables. 

As discussed in Chapter 3, linear models create indicator variables (0s 

and 1s) to represent the levels of the categorical variable. Then, the 

model leaves out the indicator variable for a reference level to avoid 
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perfect multicollinearity. Suppose you have group A and group B. If 

the model includes the indicator variable for group A, then 1 repre-

sents group A, and 0 represents not group A. Or, if the model contains 

the indicator variable for group B, then 1 represents group B and 0 

represents not group B. If you have only two groups A and B, then the 

1s and 0s are entirely flipped depending on which indicator variable 

the model includes.  

 

You can include either indicator variable, and the overall results 

would be the same. However, the coefficient value will change, and 

possibly the sign! Changing the reference level affects the output, but 

the overall interpretation/significance of the results remains the 

same. 

 

Finally, it’s hard to gain much meaning from an interaction coefficient 

by itself for all the reasons above. However, you can see the effect of 

this term in the interaction plot. As long as the interaction plot makes 

sense theoretically, I wouldn’t worry much about the specific sign or 

value of the coefficient. I’d only be concerned if the interaction plots 

didn’t make sense for your subject area. 

Different statistical software packages estimate different in-
teraction effects for the same dataset.  

I’ve heard that my Minitab output for interaction effects often doesn’t 

match the output from other statistical software. And, SPSS and Stata 

often don’t agree on interaction effects. The reason harkens back to 

the arbitrariness in the coefficients that I mention above. These dif-

ferences occur because the various software packages use different 

default reference levels when coding the categorical variables. While 

this can change the coefficients, the p-values and data will tell the 

same overall story. If you want the output to match between software 

packages, ensure that they use the same reference levels for your cat-

egorical variables. 
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The lines in my interaction plot don’t cross even though the in-
teraction effect is statistically significant? 

Many readers have mentioned that they’ve learned that interaction 

effects are significant when the lines cross. However, their interaction 

plots don’t display crossed lines for a significant interaction term. 

 

Technically, the hypotheses for the interaction term are the following: 

 

• Null: The slopes of the different lines are equal. 

• Alternative: The slopes of the lines are not equal. 

 

When you have a significant interaction term, you reject the null hy-

pothesis. You have sufficient evidence to conclude that the slopes of 

the lines are not all equal. If the slopes are not equal, the lines must 

cross at some point. However, that point might not fall within the 

range of your data that the interaction plot represents.  

The lines in my interaction plot appear to have different 
slopes, but the interaction term is not significant. 

Whether you’re assessing differences between means or interaction 

effects, you might see patterns in your sample data that are just flukes 

based on the luck of the draw rather than representing a real relation-

ship. Hypothesis tests play a critical role in separating the signal (real 

effects in the population) from the noise (random sampling error). 

This protective function helps prevent you from mistaking random 

error for a real effect.  

 

On interaction plots, random error in your sample can produce lines 

that appear to have different slopes. However, if the interaction term 

is not statistically significant, your sample provides insufficient evi-

dence for concluding that it represents a real effect at the population 

level. In other words, you might be looking at noise in the sample. 
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Review and Next Steps 

Over the previous three chapters, we’ve covered various types of re-

lationships between the variables in your model.  

 

We’ve looked at main effects for both continuous and categorical var-

iables. For continuous variables, we also looked at both linear and cur-

vilinear relationships. For main effects, the relationship between an 

independent and dependent variable does not depend on the value of 

another variable. 

 

We also looked at interaction effects for both categorical and contin-

uous variables. These relationships do depend on the value of other 

variables in the model. And, when you have significant interaction ef-

fects, it’s dangerous interpreting main effects without considering the 

interaction effect. You don’t want to put chocolate sauce on your hot 

dogs! 

 

You also learned how independent variables can have a portion of 

their total effects as main effects and interaction effects. 

 

Now you know how to model and interpret these types of relation-

ships. That’s great. However, if the model doesn’t fit the data, you’re 

barking up the wrong tree! The next chapter shifts gears and covers 

statistical measures of how well your model fits the data.
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C H A P T E R  6  

 

Goodness-of-Fit 

In this chapter, you will learn about several goodness-of-fit statistics. 

These measures compare the observed values to the values that the 

model expects. Smaller discrepancies between the observed and ex-

pected values represent a better fit. We’ll cover R-squared, adjusted 

R-squared, predicted R-squared, the standard error of the regression, 

and the overall F-test of significance. 

 

However, the caveat that applies to coefficients and p-values also ap-

plies to these measures. You can’t trust them or reliably interpret 

them until you verify that the residual plots look good! 

Assessing the Goodness-of-Fit 

First, a quick review of material in chapter 2. Residuals are the dis-

tance between the observed value and the fitted value. 
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Linear regression identifies the equation that produces the smallest 

difference between all of the observed values and their fitted values. 

To be precise, linear regression finds the smallest sum of squared re-

siduals that is possible for the dataset. 

 

Statisticians say that a regression model fits the data well when the 

differences between the observations and the predicted values are 

small and unbiased. Unbiased in this context means that the fitted val-

ues are not systematically too high or too low anywhere in the obser-

vation space. 

 

However, before assessing numeric measures of goodness-of-fit, like 

R-squared, you should evaluate the residual plots. Residual plots can 

expose a biased model far more effectively than numeric output by 

displaying problematic patterns in the residuals. If your model is bi-

ased, you cannot trust the results. If your residual plots look good, go 

ahead and assess your R-squared and other statistics. Chapter 9 covers 

residual plots. 

R-squared 

After fitting a linear regression model, you need to determine how 

well the model fits the data. Does it do a good job of explaining 

changes in the dependent variable? There are a several key goodness-

of-fit statistics for regression analysis. First, we’ll examine R-squared 
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(R2 ), highlight some of its limitations, and discover some surprises. 

For instance, small R-squared values are not always a problem, and 

high R-squared values are not necessarily good! 

 

R-squared evaluates the scatter of the data points around the fitted 

regression line. It is also called the coefficient of determination, or the 

coefficient of multiple determination for multiple regression. For the 

same data set, higher R-squared values represent smaller differences 

between the observed data and the fitted values. 

 

R-squared is the percentage of the dependent variable variation that a 

linear model explains. 

 

 
 

R-squared is always between 0 and 100%: 

 

o 0% represents a model that does not explain any of the varia-

tion in the response variable around its mean. The mean of 

the dependent variable predicts the dependent variable as 

well as the regression model. 

o 100% represents a model that explains all of the variation in 

the response variable around its mean. 

 

Usually, the larger the R2, the better the regression model fits your 

observations. However, this guideline has important caveats that I’ll 

discuss in upcoming sections. 

Visual Representation of R-squared 

To visually demonstrate how R-squared values represent the scatter 

around the regression line, you can plot the observations with the fit-

ted line that represents the regression equation. Think back to the cor-

relation graphs. Like the correlation coefficient, R-squared measures 

the strength of the relationship between the set of independent 
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variables and the dependent variables. Stronger relationships indicate 

lower scatter.  

 

Unlike a correlation coefficient, R-squared does not indicate the di-

rection of the relationship. To make that determination, check the re-

gression coefficients. 

 

 

 
Both graphs use the same scale so you can compare the scatter. The R-

squared for the regression model on the top is 15%, and for the model 

on the bottom it is 85%. When a regression model accounts for more 

of the variance, the data points are closer to the regression line. For 

an R2 of 100%, the fitted values equal the data values and, conse-

quently, all of the observations fall exactly on the regression line. 
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However, in practice, you’ll never see a regression model with an R2 

of 100%. 

R-squared has Limitations 

You cannot use R-squared to determine whether the coefficient esti-

mates and predictions are biased, which is why you must assess the 

residual plots. 

 

R-squared does not indicate if a regression model provides an ade-

quate fit to your data. A good model can have a low R2 value. On the 

other hand, a biased model can have a high R2 value! 

Are Low R-squared Values Always a Problem? 

No! Regression models with low R-squared values can be perfectly 

good models for several reasons. 

 

Some fields of study have an inherently greater amount of unexplain-

able variation. In these areas, your R2 values are bound to be lower. 

For example, studies that try to explain human behavior generally 

have R2 values less than 50%. People are just harder to predict than 

things like physical processes. 

 

Fortunately, if you have a low R-squared value but the independent 

variables are statistically significant, you can still draw important con-

clusions about the relationships between the variables. Statistically 

significant coefficients continue to represent the mean change in the 

dependent variable given a one-unit shift in the independent varia-

ble. Clearly, being able to draw conclusions like this is vital. In a nut-

shell, if your primary goal is to understand the nature of the 

relationships in your data, a low R-squared is probably not a problem! 

I explain this benign aspect of low R-squared values in chapter 11. 

 

There is a scenario where small R-squared values can cause problems. 

If you need to generate predictions that are relatively precise (narrow 

prediction intervals), a low R2 can be a show stopper. 
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How high does R-squared need to be for the model produce useful 

predictions? That depends on the precision that you require and the 

amount of variation present in your data. A high R2 is necessary for 

precise predictions, but it is not sufficient by itself, as we’ll uncover in 

the next section. 

Are High R-squared Values Always Great? 

No! A regression model with a high R-squared value can have a mul-

titude of problems. You probably expect that a high R2 indicates a 

good model but examine the following graphs. The fitted line plot 

models the association between electron mobility and density. 
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The data in the fitted line plot follow a very low noise relationship, 

and the R-squared is 98.5%, which seems fantastic. However, the re-

gression line consistently under and over-predicts the data along the 

curve, which is bias. The Residuals versus Fits plot emphasizes this 

unwanted pattern. An unbiased model has residuals that are randomly 

scattered around zero. Non-random residual patterns indicate a bad 

fit despite a high R2. Always check your residual plots! 

 

This type of specification bias occurs when your linear model is un-

derspecified. In other words, it is missing significant independent var-

iables, polynomial terms, and interaction terms. To produce random 

residuals, try adding terms to the model or fitting a nonlinear model.  

 

A variety of other circumstances can artificially inflate your R2. These 

reasons include overfitting the model and data mining. Either of these 

can produce a model that looks like it provides an excellent fit to the 

data but the results can be entirely deceptive. 

 

An overfit model is one where the model fits the random quirks of the 

sample. Data mining can take advantage of chance correlations. In 
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either case, you can obtain a model with a high R2 even for entirely 

random data! Chapter 8 covers these two potential problems.  

R-squared Is Not Always Straightforward 

At first glance, R-squared seems like an easy to understand statistic 

that indicates how well a regression model fits a data set. However, it 

doesn’t tell us the entire story. To get the full picture, you must con-

sider R2 values in combination with residual plots, other statistics, and 

in-depth knowledge of the subject area. 

 

I’ll continue to explore the limitations of R2 in the next section and 

examine two other types of R2: adjusted R-squared and predicted R-

squared. These two statistics address particular problems with R-

squared. They provide extra information by which you can assess 

your regression model’s goodness-of-fit. 

Adjusted R-Squared and Predicted R-Squared  

R-squared tends to reward you for including too many independent 

variables in a regression model, and it doesn’t provide any incentive 

to stop adding more. Adjusted R-squared and predicted R-squared use 

different approaches to help you fight that impulse to add too many. 

The protection that adjusted R-squared and predicted R-squared pro-

vide is critical because too many terms in a model can produce results 

that you can’t trust. These statistics help you include the correct num-

ber of independent variables in your regression model. 
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Does this graph display an actual relationship or is it an overfit model? 

This section shows you how to make this determination. 

 

Multiple regression analysis can seduce you! Yep, you read it here 

first. It’s an incredibly tempting statistical analysis that practically 

begs you to include additional independent variables in your model. 

Every time you add a variable, the R-squared increases, which tempts 

you to add more. Some of the independent variables will be statisti-

cally significant. Perhaps there is an actual relationship? Or, is it just a 

chance correlation? 

 

You just pop the variables into the model as they occur to you or just 

because the data are readily available. Higher-order polynomials 

curve your regression line any which way you want. But, are you fit-

ting real relationships or just playing connect the dots? Meanwhile, 

the R-squared increases, mischievously convincing you to include yet 

more variables! 

 

In the section about interpreting R-squared, I show how evaluating 

how well a linear regression model fits the data is not as intuitive as 

you may think. Now, I’ll explore reasons why you need to use adjusted 

R-squared and predicted R-squared to help you specify a good regres-

sion model! 
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Some Problems with R-squared 

Previously, I demonstrated that you cannot use R-squared to conclude 

whether your model is biased. To check for this bias, you need 

to check your residual plots. Unfortunately, there are yet more prob-

lems with R-squared that we need to address. 

 

Problem 1: R-squared increases every time you add an independent 

variable to the model. The R-squared never decreases, not even when 

it’s just a chance correlation between variables. A regression model 

that contains more independent variables than another model can 

look like it provides a better fit merely because it contains more vari-

ables. 

 

Problem 2: When a model contains an excessive number of independ-

ent variables and polynomial terms, it becomes overly customized to 

fit the peculiarities and random noise in your sample rather than re-

flecting the entire population. Statisticians call this overfitting the 

model, and it produces deceptively high R-squared values and a de-

creased capability for precise predictions. 

 

Fortunately for us, adjusted R-squared and predicted R-squared ad-

dress both of these problems. 

What Is Adjusted R-squared? 

Use adjusted R-squared to compare the goodness-of-fit for regression 

models that contain differing numbers of independent variables. 

 

Let’s say you are comparing a model with five independent variables 

to a model with one variable and the five variable model has a higher 

R-squared. Is the model with five variables actually a better model, or 

does it just have more variables? To determine this, just compare the 

adjusted R-squared values! 

 

The adjusted R-squared adjusts for the number of terms in the model. 

Importantly, its value increases only when the new term improves the 
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model fit more than expected by chance alone. The adjusted R-

squared value actually decreases when the term doesn’t improve the 

model fit by a sufficient amount. 

 

The example below shows how the adjusted R-squared increases up 

to a point and then decreases. On the other hand, R-squared blithely 

increases with each and every additional independent variable. 

 

 
In this example, the researchers might want to include only three in-

dependent variables in their regression model. While explaining R-

squared, I showed how an under-specified model (too few terms) can 

produce biased estimates.  

 

However, an overspecified model (too many terms) can reduce the 

model’s precision. In other words, when you include too many inde-

pendent variables, both the coefficient estimates and predicted values 

can have larger margins of error around them—check those confi-

dence intervals for the coefficients (chapter 3) and prediction inter-

vals (chapter 10)! That’s why you don’t want to include too many 

terms in the regression model! 

What Is the Predicted R-squared? 

Use predicted R-squared to determine how well a regression model 

makes predictions. This statistic helps you identify cases where the 

model provides a good fit for the existing data but isn’t as good at mak-

ing predictions. However, even if you aren’t using your model to make 

predictions, predicted R-squared still offers valuable insights about 

your model. 
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Statistical software calculates predicted R-squared using the following 

procedure: 

 

• It removes a data point from the dataset. 

• Calculates the regression equation. 

• Evaluates how well the model predicts the missing obser-

vation. 

• And, repeats this for all data points in the dataset. 

• Predicted R-squared is a summary statistic of how well 

the model predicted all of the observations when each 

one was removed from the dataset for an iteration of the 

above process. 

 

Predicted R-squared helps you determine whether you are overfitting 

a regression model. Again, an overfit model includes an excessive 

number of terms, and it begins to fit the random noise in your sample. 

 

By its very definition, it is not possible to predict random noise. Con-

sequently, if your model fits a lot of random noise, the predicted R-

squared value must fall. A predicted R-squared that is distinctly 

smaller than R-squared is a warning sign that you are overfitting the 

model. Try reducing the number of terms. 

 

If I had to name my favorite flavor of R-squared, it would be predicted 

R-squared! 

Example of an Overfit Model and Predicted R-squared 

You can try this example using this CSV data file: PresidentRanking. 

 

These data come from an analysis I performed that assessed the rela-

tionship between the highest approval rating that a U.S. President 

achieved and their rank by historians. I found no correlation between 

these variables, as shown in the fitted line plot. It’s nearly a perfect 

example of no relationship because it is a flat line with an R-squared 

of 0.7%! 

https://statisticsbyjim.com/wp-content/uploads/2017/04/PresidentRanking.csv
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Now, imagine that we are chasing a high R-squared and we fit the 

model using a cubic term that provides an S-shape. 
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Amazing! R-squared and adjusted R-squared look great! The coeffi-

cients are statistically significant because their p-values are all less 

than 0.05. I didn’t show the residual plots, but they look good as well. 

 

Hold on a moment! We’re just twisting the regression line to force it 

to connect the dots rather than finding an actual relationship. We 

overfit the model, and the predicted R-squared of 0% gives this away. 

 

If the predicted R-squared is small compared to R-squared, you might 

be over-fitting the model even if the independent variables are statis-

tically significant. 

A Caution about Chasing a High R-squared 

All study areas involve a certain amount of variability that you can’t 

explain. If you chase a high R-squared by including an excessive num-

ber of variables, you force the model to explain the unexplainable, 

which is not good. While this approach can obtain higher R-squared 

values, it comes at the cost of misleading regression coefficients, p-

values, R-squared, and imprecise predictions. 

 

This problem is known as overfitting and it occurs when your model 

is too complex and begins to model the random noise. I’ll cover this 

cover this problem in Chapter 8. 
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Adjusted R-squared and predicted R-square help you resist the urge 

to add too many independent variables to your model. 

 

• Adjusted R-square compares models with different numbers 

of variables. 

• Predicted R-square can guard against models that are too 

complicated. 

 

Remember, the great power that comes with multiple regression anal-

ysis requires your restraint to use it wisely! 

 

Now we’ll move on to the standard error of the regression, which is a 

different type of goodness-of-fit measure. 

Standard Error of the Regression vs. R-squared 

The standard error of the regression (S) and R-squared are two key 

goodness-of-fit measures for regression analysis. While R-squared is 

the most well-known amongst the goodness-of-fit statistics, I think it 

is a bit over-hyped. 

 

In this section, we’ll compare these two statistics and work through a 

regression example to help make the comparison. I think you’ll see 

that the oft overlooked standard error of the regression can tell you 

things that the high and mighty R-squared simply can’t. At the very 

least, you’ll find that the standard error of the regression is a great tool 

to add to your statistical toolkit! 
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As R-squared increases and S decreases, the data points move closer 

to the line 

 

You can find the standard error of the regression, also known as the 

standard error of the estimate, near R-squared in the goodness-of-fit 

section of most statistical output. Both of these measures give you a 

numeric assessment of how well a model fits the sample data. How-

ever, there are differences between the two statistics. 

 

• The standard error of the regression provides the absolute 

measure of the typical distance that the data points fall from 

the regression line. S is in the units of the dependent variable. 

• R-squared provides the relative measure of the percentage of 

the dependent variable variance that the model explains. R-

squared can range from 0 to 100%. 

 

An analogy makes the difference very clear. Suppose we’re talking 

about how fast a car is traveling. 

 

R-squared is equivalent to saying that the car went 80% faster. That 

sounds a lot faster! However, it makes a huge difference whether the 

initial speed was 20 MPH or 90 MPH. The increased velocity based on 

the percentage can be either 16 MPH or 72 MPH, respectively. One is 

lame, and the other is very impressive. If you need to know exactly 

how much faster, the relative measure just isn’t going to tell you. 
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The standard error of the regression is equivalent to telling you di-

rectly how many MPH faster the car is traveling. The car went 72 MPH 

faster. Now that’s impressive! 

 

Let’s move on to how we can use these two goodness-of-fits measures 

in regression analysis. 

Standard Error of the Regression and R-squared in Practice 

In my view, the standard error of the regression has several ad-

vantages. S tells you straight up how precise the model’s predictions 

are using the units of the dependent variable. This statistic indicates 

how far the data points are from the regression line on average. You 

want lower values of S because it signifies that the distances between 

the data points and the fitted values are smaller. S is also valid for both 

linear and nonlinear regression models. This fact is convenient if you 

need to compare the fit between both types of models. 

 

For R-squared, you want the regression model to explain higher per-

centages of the variance. Higher R-squared values indicate that the 

data points are closer to the fitted values. While higher R-squared val-

ues are good, they don’t tell you how far the data points are from the 

regression line. Additionally, R-squared is valid for only linear mod-

els. You can’t use R-squared to compare a linear model to a nonlinear 

model. 

 

Note: Linear models can use polynomials to model curvature. I’m us-

ing the term linear to refer to models that are linear in the parameters.  
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Example Regression Model: BMI and Body Fat Percentage 

 
 

This regression model describes the relationship between body mass 

index (BMI) and body fat percentage in middle school girls. It’s a lin-

ear model that uses a polynomial term to model the curvature. The 

fitted line plot indicates that the standard error of the regression is 

3.53399% body fat. The interpretation of this S is that the standard 

distance between the observations and the regression line is 3.5% 

body fat. (Note: S is a percentage in this example only because the 

original data are in percentages. S is always in the same units as the 

original dependent variable.) 

 

S measures the precision of the model’s predictions. Consequently, we 

can use S to obtain a rough estimate of the 95% prediction interval. 

About 95% of the data points are within a range that extends from +/- 

2 * standard error of the regression from the fitted line. 

 

For the regression example, approximately 95% of the data points lie 

between the regression line and +/- 7% body fat. 

 

The R-squared is 76.1%.  
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I Often Prefer the Standard Error of the Regression 

R-squared is a percentage, which seems easy to understand. However, 

I often appreciate the standard error of the regression a bit more. I 

value the concrete insight provided by using the original units of the 

dependent variable. If I’m using the regression model to produce pre-

dictions, S tells me at a glance if the model is sufficiently precise. 

 

On the other hand, R-squared doesn’t have any units, and it feels more 

ambiguous than S. If all we know is that R-squared is 76.1%, we don’t 

know how wrong the model is on average. You do need a high R-

squared to produce precise predictions, but you don’t know how high 

it must be exactly. It’s impossible to use R-squared to evaluate the pre-

cision of the predictions. 

 

To demonstrate this, we’ll look at the regression example. Let’s as-

sume that our predictions must be within +/- 5% of the actual values 

to be useful. If we know only that R-squared is 76.1%, can we deter-

mine whether our model is sufficiently precise? No, you can’t tell us-

ing R-squared. 

 

However, you can use the standard error of the regression. For our 

model to have the required precision, S must be less than 2.5% because 

2.5 * 2 = 5. In an instant, we know that our S (~3.5) is too large. We 

need a more precise model. Thanks S! 

 

While I really like the standard error of the regression, you can, of 

course, consider both goodness-of-fit measures simultaneously. This 

is the statistical equivalent of having your caking and eating it! 

 

We’ll switch gears again and look at yet another statistic that assesses 

the fit of the model. 
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The F-test of Overall Significance 

The F-test of overall significance indicates whether your linear regres-

sion model provides a better fit to the data than a model that contains 

no independent variables. In this section, you will learn how the F-

test of overall significance fits in with R-squared. R-squared tells you 

how well your model fits the data, and the F-test is related to it. 

 

An F-test is a type of statistical test that is very flexible. You can use 

them in a wide variety of settings. F-tests can evaluate multiple model 

terms simultaneously, which allows them to compare the fits of dif-

ferent linear models. In contrast, t-tests can evaluate just one term at 

a time. 

 

To calculate the F-test of overall significance, your statistical software 

includes the proper terms in the two models that it compares. The 

overall F-test compares the model that you specify to the model with 

no independent variables, which is also known as an intercept-only 

model. 

 

The F-test for overall significance has the following two hypotheses: 

 

• The null hypothesis states that the model with no independ-

ent variables fits the data as well as your model. 

• The alternative hypothesis says that your model fits the data 

better than the intercept-only model. 

 

In statistical output, you can find the overall F-test in the ANOVA ta-

ble, as shown below. 
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Compare the p-value for the F-test to your significance level. If the p-

value is less than the significance level, your sample data provide suf-

ficient evidence to conclude that your regression model fits the data 

better than the model with no independent variables. 

 

This finding is good news because it means that the independent var-

iables in your model improve the fit! 

 

Generally speaking, if none of your independent variables are statisti-

cally significant, the overall F-test is also not statistically significant. 

Occasionally, the t-tests for coefficients and the overall F-test can pro-

duce conflicting results. This disagreement can occur because the F-

test of overall significance assesses all of the coefficients jointly 

whereas the t-test for each coefficient examines them individually. 

For example, the overall F-test can find that the coefficients are sig-

nificant jointly while the t-tests can fail to find significance individually. 

 

These conflicting test results can be hard to understand, but think 

about it this way. The F-test sums the predictive power of all inde-

pendent variables and determines that it is unlikely that all of the co-

efficients equal zero. However, it’s possible that each variable isn’t 

predictive enough on its own to be statistically significant. In other 

words, your sample provides sufficient evidence to conclude that 

your model is significant, but not enough to conclude that any indi-

vidual variable is significant. 



J im Fros t  

146 

Additional Ways to Interpret the F-test of Overall Significance 

If you have a statistically significant overall F-test, you can draw sev-

eral other conclusions. 

 

For the model with no independent variables, the intercept-only 

model, all of the model’s predictions equal the mean of the dependent 

variable. Consequently, if the overall F-test is statistically significant, 

your model’s predictions are an improvement over using the mean. 

 

R-squared measures the strength of the relationship between your 

model and the dependent variable. However, it is not a formal test for 

the relationship. The F-test of overall significance is the hypothesis 

test for this relationship. If the overall F-test is significant, you can 

conclude that R-squared does not equal zero, and the correlation be-

tween the model and dependent variable is statistically significant. On 

the other hand, if the overall F-test is not significant, your sample does 

not provide strong enough evidence for concluding that R-squared is 

greater than zero in the population.  

 

It’s fabulous if your regression model is statistically significant! How-

ever, remember the lessons from the R-squared section, the numbers 

tell an incomplete story. Check your residual plots to determine 

whether the results are trustworthy!  

Review and Next Steps 

In this chapter, we revisited R-squared. While it appears to be a 

straight-forward goodness-of-fit measure, it’s not entirely intuitive. 

Low R-squared values are not inherently bad, and high R-squared val-

ues are not intrinsically good. You also learned how R-squared and 

chasing a high R-squared have problems. R-squared can entice you to 

add too many variables to the model. If you go past the natural amount 

of explainable variability, you can’t trust the results. Fortunately, ad-

justed R-squared and predicted R-squared can help you avoid these 

problems. 
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I also covered the standard error of the regression (S), which is a sta-

tistic that I particularly like. It represents how wrong your model is 

typically using the natural units of the dependent variable. 

 

Finally, you learned how the overall F-test is a hypothesis test that 

determines whether the set of variables in your model provides a sig-

nificantly better fit compared to a model that contains no independent 

variables. It’s also a hypothesis test that determines whether popula-

tion R-squared is greater than zero. 

 

Up to this point, you’ve learned how regression can help you, how it 

fits the best line, how to interpret a variety of effects, how to fit curves 

in your data, and how to use several statistical measures to determine 

how well your model fits the data. Now, we can move on to the pro-

cess of deciding which independent variables to include in your 

model. As I mentioned previously, model specification is an iterative 

process. You’ll use the statistics we’ve covered, along with the resid-

ual plots that we’ll cover later, to help you specify the correct model, 

assess it, and make changes.
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C H A P T E R  7  

 

Specify Your Model 

Model specification is the process of determining which independent 

variables belong in the model and whether modeling curvature and 

interaction effects are appropriate. Which independent variables do 

you include and exclude from a regression equation? 

 

How do you choose the best regression model? The world is compli-

cated and trying to explain it with a small sample doesn’t help. In this 

chapter, I’ll show you how to select the correct model. I’ll cover sta-

tistical methods, difficulties that can arise, and provide practical sug-

gestions for selecting your model. Often, the variable selection 

process is a mixture of statistics, theory, and practical knowledge. 

 

The need for model selection often begins when a researcher wants 

to mathematically define the relationship between independent vari-

ables and the dependent variable. Typically, investigators measure 

many variables but include only some in the model. Analysts try to 

exclude independent variables that are not related and include only 

those that have an actual relationship with the dependent variable. 

During the specification process, the analysts typically try different 

combinations of variables and various forms of the model. For 
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example, they can try different terms that explain interactions be-

tween variables and curvature in the data. 

 

The analysts need to reach a Goldilocks balance by including the cor-

rect number of independent variables in the regression equation. 

 

o Too few: Underspecified models tend to be biased. 

o Too many: Overspecified models tend to be less precise. 

o Just right: Models with the correct terms are not biased and 

are the most precise. 

 

If your study wants to test a particular relationship, your regres-

sion equation should contain any independent variables that you are 

explicitly testing along with other variables that affect the dependent 

variable. This process allows your regression model to assess your 

study’s research questions while controlling for other variables that 

can influence the dependent variable. 

 

For example, I was on a research project that wanted to determine 

whether a particular exercise intervention increased bone mineral 

density in preteen girls as a way to reduce their risk of osteoporosis 

later in life. My regression model for this study included the exercise 

intervention along with other independent variables that influence 

bone density. These additional variables include general activity lev-

els, nutrition, and various health and body measurements. This model 

could estimate the effect of the intervention while controlling for the 

other relevant variables. 

The Importance of Graphing Your Data 

When you start working with a dataset to build a regression model, 

the first thing you should do is graph your data. At a glance, you’ll 

learn a lot about your data and the relationships between variables. 

For regression analysis, where most data are continuous, scatterplots 

are crucial. Scatterplots will show you whether there are positive or 

negative relationships and if they are linear or curvilinear. When 
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some relationships are curved, the shape of the curve in the scatter-

plot might provide ideas about how to model it. You can also calculate 

the correlations between the candidate independent variables and the 

dependent variable. Significant correlations suggest that you should 

consider including those variables in the model. 

 

Personally, I prefer using scatterplots over correlations. Remember 

the U-shaped scatterplot in chapter 1 that had a correlation near zero? 

If you went by that correlation alone, you might not consider includ-

ing that variable in the model. However, using the scatterplot, you’d 

realize there is a relationship between those two variables, and that 

you need to include a polynomial term to model the curvature! I’ll say 

this over and over, graphs bring your data to life in ways that numbers 

don’t. Statistics are best when you can combine graphs and numeric 

statistical measures to paint the full picture.  

 

You can include categorical variables in scatterplots to determine 

whether those variables play a role. Alternatively, you can graph your 

dependent variable by groups using boxplots or individual value plots. 

I presented an example boxplot in chapter 3 and showed how you can 

test that relationship by including a categorical variable in the model. 

 

If you’re working on a multiple regression model, you can use a scat-

terplot matrix to display numerous relationships at the same time.  

 

In the matrix plot below, the analysts are considering using the body 

measurements of bears to predict their weights. Weight is the depend-

ent variable while the other measurements are the independent vari-

ables. The idea behind the study is that it might be easier to estimate 

the bears’ weights by using body measurements rather than actually 

weighing the bear! 
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The scatterplot matrix shows how each body measurement variable 

relates to weight. Notice how the relationships between the potential 

independent variables and the dependent variable are all positive. 

That makes sense because a larger bear should be more massive. Ad-

ditionally, the two head measurements appear to have a curvilinear 

relationship with weight.  

 

I included the bear’s gender as a grouping variable. If the scatterplots 

had shown a shift in weights based on gender, it would have suggested 

including Gender in the model as a categorical variable. However, as 

the graphs show, there is no shift in weights by gender. The two gen-

ders follow the same relationship. 

 

These four independent variables are good candidates for inclusion in 

the model. The analysts will likely need to fit the curvature for several 

variables.  

Statistical Methods for Model Specification 

You can use statistical assessments during the model specification 

process. Various metrics and algorithms can help you determine 



J im Fros t  

152 

which independent variables to include in your regression equation. 

Let’s review some standard approaches to model selection, but please 

refer to the previous chapters for more details about the statistics. 

Adjusted R-squared and Predicted R-squared 

Typically, you want to select models that have larger adjusted and pre-

dicted R-squared values. These statistics can help you avoid the fun-

damental problem with regular R-squared—it always increases when 

you add an independent variable. This property tempts you into spec-

ifying a model that is too complex, which can produce misleading re-

sults. 

 

• Adjusted R-squared increases only when a new variable im-

proves the model by more than chance. Low-quality variables 

can cause it to decrease. 

• Predicted R-squared is a cross-validation method that can also 

decrease. Cross-validation partitions your data to determine 

whether the model is generalizable outside of your dataset. 

Mallows' Cp 

Mallows’ Cp helps you choose between multiple regression models by 

striking a balance between precision and bias. You want to include a 

sufficient number of independent variables to eliminate bias but not 

too many to reduce precision. This balance changes with the number 

of independent variables in the model. Mallows' Cp compares the pre-

cision and bias of the full model to models with a subset of the predic-

tors. Typically, you want Mallows' Cp to be small and close to the 

number of variables in the model plus the constant. A Mallows' Cp 

value that meets these criteria suggests that the coefficient estimates 

are both relatively precise (small variance) and unbiased. Biased mod-

els have larger values of Mallows' Cp. We'll revisit Mallows' Cp in the 

context of stepwise and best subsets regression. 
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P-values for the independent variables 

In regression, p-values less than the significance level indicate that the 

term is statistically significant. When a variable is not significant, con-

sider removing it from the model. “Reducing the model” is the process 

of including all candidate variables in the model, and then repeatedly 

removing the single term with the highest non-significant p-value un-

til your model contains only significant terms. 

Stepwise regression and Best subsets regression 

These two automated model selection procedures are algorithms that 

pick the variables to include in your regression equation. These auto-

mated methods can be helpful when you have many independent var-

iables, and you need some help in the investigative stages of the 

variable selection process. These procedures can provide the Mal-

lows’ Cp statistic, which helps you balance the tradeoff between pre-

cision and bias. You’ll learn about these selection procedures later in 

this chapter. 

Real World Complications 

The good news is that there are statistical methods that can help you 

with model specification. Unfortunately, there are a variety of com-

plications that can arise. Fear not! I’ll provide some practical advice! I 

cover many of these issues in other chapters as indicated. 

 

• Your best model is only as good as the data you collect. Spec-

ification of the correct model depends on you measuring the 

proper variables. In fact, when you omit important variables 

from the model, the estimates for the variables that you in-

clude can be biased. This condition is known as omitted vari-

able bias, which I cover in the next section. 

• The sample you collect can be unusual, either by luck or meth-

odology. False discoveries and false negatives are inevitable 

when you work with samples. 
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• Multicollinearity occurs when independent variables in a re-

gression equation are correlated. When multicollinearity is 

present, small changes in the equation can produce dramatic 

changes in coefficients and p-values. It can also reduce statis-

tical significance in variables that are relevant. For these rea-

sons, multicollinearity makes model selection challenging. 

(Chapter 8). 

• If you fit many models during the model selection process, 

you will find variables that appear to be statistically signifi-

cant, but they are correlated only by chance. This problem oc-

curs because all hypothesis tests have a false discovery rate. 

This type of data mining can make even random data appear 

to have significant relationships! I show you how this happens 

in Chapter 7! 

• P-values, adjusted R-squared, predicted R-squared, and Mal-

lows’ Cp can point to different regression equations. Some-

times there is not a clear answer. 

• Stepwise regression and best subsets regression are auto-

mated model selection procedures that can help you in the 

early stages of model specification. However, studies show 

that these tools can get close to the right answer but they usu-

ally don’t specify the correct model. You’ll learn how these 

methods work later in this chapter. 

Practical Recommendations 

Regression model specification is as much a science as it is an art. Sta-

tistical methods can help, but, ultimately, you’ll need to place a high 

weight on theory and other considerations. I’ll cover these topics in 

greater detail later in the book, but here’s an overview of the issues at 

hand. 

Theory 

The best practice is to review the literature to develop a theoretical 

understanding of the relevant independent variables, their relation-

ships with the dependent variable, and the expected coefficient signs 
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and effect magnitudes before you begin collecting data. Building your 

knowledge helps you collect the correct data in the first place and it 

helps you specify the best regression equation without resorting to 

data mining. 

 

Specification should not be based only on statistical measures. In fact, 

the foundation of your model selection process should depend largely 

on theoretical concerns. Be sure to determine whether your statistical 

results match theory and, if necessary, make adjustments. For exam-

ple, if theory suggests that an independent variable is important, you 

might include it in the regression equation even when its p-value is 

not significant. If a coefficient sign is the opposite of theory, investi-

gate and either modify the model or explain the inconsistency. 

Simplicity 

Analysts often think that complex problems require complicated re-

gression equations. However, studies reveal that simplification usu-

ally produces more precise models. When you have several models 

with similar predictive power, choose the simplest because it is the 

most likely to be the best model. (Zellner, Keuzenkamp, & McAleer, 

2009) 

 

Start simple and then add complexity only when it is actually needed. 

As you make a model more complex, it becomes more likely that you 

are tailoring it to fit the quirks in your particular dataset rather than 

actual relationships in the population. This overfitting reduces gener-

alizability and can produce results that you can’t trust. 

 

To avoid overly complex models, don’t chase a high R-squared mind-

lessly. Confirm that additional complexity aligns with theory and pro-

duces narrower confidence intervals for the coefficients and 

narrower prediction intervals. Check other measures, such as pre-

dicted R-squared, which can alert you to overfitting. 
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Residual Plots 

During the specification process, check the residual plots. Residuals 

plots are an easy way to avoid biased models and can help you make 

adjustments. For instance, residual plots display patterns when an un-

derspecified regression equation is biased, which can indicate the 

need to model curvature. The simplest model that creates random re-

siduals is a great contender for being reasonably precise and unbiased. 

 

Ultimately, statistical measures can’t tell you which regression equa-

tion is best. They just don’t understand the fundamentals of the sub-

ject-area. Your expertise is always a vital part of the model 

specification process!  

 

In short, we want simple models that you choose based on theory. It’s 

tempting to try many combinations of variables to find the best model, 

but that’s not the best approach. In chapter 8, you’ll learn how using a 

shotgun, data dredging approach can cause problems! 

Omitted Variable Bias 

The previous section primarily focuses on determining which varia-

bles you should include in your model. Now, I’m going to flip that on 

its head and show you how to determine which variables you should 

not exclude. Yeah, I know, after processing that double-negative, it 

sounds exactly the same. It’s definitely related, but it’s critical to un-

derstand the consequences of omitting an important variable from the 

model. That’s the focus of this section.  

 

Omitted variable bias occurs when a regression model leaves out rel-

evant independent variables, which are known as confounding varia-

bles. This condition forces the model to attribute the effects of 

omitted variables to variables that are in the model, which biases the 

coefficient estimates. 
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This problem occurs because your linear regression model is specified 

incorrectly—either because the confounding variables are unknown 

or because the data do not exist. If this bias affects your model, it is a 

severe condition because you can’t trust your results. 

 

In this section, you’ll learn about this type of bias, how it occurs, and 

how to detect and correct it. 

What Are the Effects of Omitted Variable Bias? 

Omitting confounding variables from your regression model can bias 

the coefficient estimates. What does that mean exactly? When you’re 

assessing the regression coefficients in the statistical output, this bias 

can produce the following problems: 

 

• Overestimate the strength of an effect. 

• Underestimate the strength of an effect. 

• Change the sign of an effect. 

• Mask an effect that actually exists. 

 

You don’t want any of these problems to affect your regression re-

sults! 
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Synonyms for Confounding Variables and Omitted Variable 
Bias 

In the context of regression analysis, there are various synonyms for 

omitted variables and the bias they can cause. Analysts often refer to 

omitted variables that cause bias as confounding variables, confound-

ers, and lurking variables. These are important variables that the sta-

tistical model does not include and, therefore, cannot control. 

Additionally, they call the bias itself omitted variable bias, spurious 

effects, and spurious relationships. I’ll use these terms interchangea-

bly. 

What Conditions Cause Omitted Variable Bias? 

How does this bias occur? How can variables you leave out of the 

model affect the variables that you include in the model? At first 

glance, this problem might not make sense. 

 

For omitted variable bias to occur, the following two conditions must 

exist: 

 

• The omitted variable must correlate with the dependent var-

iable. 

• The omitted variable must correlate with at least one inde-

pendent variable that is in the regression model. 

 

The diagram below illustrates these two conditions. There must be 

non-zero correlations (r) on all three sides of the triangle. 
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This correlation structure causes confounding variables that are not 

in the model to bias the estimates that appear in your regression re-

sults. For example, in the previous diagram, removing either X varia-

ble from the model will bias the other X variable. 

 

The amount of bias depends on the strength of these correlations. 

Strong correlations produce greater bias. If the relationships are weak, 

the bias might not be severe. And, if the omitted variable is not corre-

lated with another independent variable at all, excluding it does not 

produce bias. 

 

Finally, if you’re performing a randomized experiment, omitted vari-

able bias is less likely to be a problem. Randomized studies minimize 

the effects of confounding variables by equally distributing them 

across the treatment groups. Omitted variable bias tends to occur in 

observational studies. 

 

I’ll explain how confounding variables can bias the results using two 

approaches. First, I’ll work through an example and describe how the 

omitted variable forces the model to attribute the effects of the ex-

cluded variable to the one in the model. Then, I’ll go into a more sta-

tistical explanation that details the correlation structure, residuals, 

and an assumption violation. Explaining confounding variables using 

both approaches will give you a solid grasp of how the bias occurs. 

Practical Example of How Confounding Variables Can Produce 
Bias 

I used to work in a biomechanics lab. One study assessed the effects 

of physical activity on bone density. We measured various character-

istics including the subjects’ activity levels, their weights, and bone 

densities among many others. Theories about how our bodies build 

bone suggest that there should be a positive correlation between ac-

tivity level and bone density. In other words, higher activity produces 

greater bone density. 
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Early in the study, I wanted to validate our initial data quickly by using 

simple regression analysis to determine whether there is a relation-

ship between activity and bone density. If our data were valid, there 

should be a positive relationship. To my great surprise, there was no 

relationship at all! 

 

What was happening? The theory is well established in the field. 

Maybe our data was messed up somehow? Long story short, thanks to 

a confounding variable, the model was exhibiting omitted variable 

bias. 

 

To perform the quick assessment, I included activity level as the only 

independent variable, but it turns out there is another variable that 

correlates with both activity and bone density—the subject’s weight. 

 

After including weight in the regression model, along with activity, 

the results indicated that both activity and weight are statistically sig-

nificant and have positive correlations with bone density. The dia-

gram below shows the signs of the correlations between the variables. 

 

 

How the Omitted Confounding Variable Hid the Relationship 

Right away we see that these conditions can produce omitted variable 

bias because all three sides of the triangle have non-zero correlations. 

Let’s find out how leaving weight out of the model masked the rela-

tionship between activity and bone density. 

 



Regress ion  Analys is :  An Intu it ive  Gu ide  

161 

Subjects who are more active tend to have higher bone density. Addi-

tionally, subjects who weigh more also tend to have higher bone den-

sity. However, there is a negative correlation between activity and 

weight. More active subjects tend to weigh less. 

 

This correlation structure produces two opposing effects of activity. 

More active subjects get a bone density boost. However, they also 

tend to weigh less, which reduces bone density. 

 

When I fit a regression model with only activity, the model had to 

attribute both opposing effects to activity alone. Hence, the zero cor-

relation. However, when I fit the model with both activity and weight, 

it could assign the opposing effects to each variable separately. 

 

For this example, when I omitted weight from the model, it produced 

a negative bias because the model underestimated the effect of activ-

ity. The results said there is no correlation when there is, in fact, a 

positive correlation. 

Correlations, Residuals, and OLS Assumptions 

Now, let’s look at this from another angle that involves the residuals 

and an assumption. When you satisfy the ordinary least squares (OLS) 

assumptions, the Gauss-Markov theorem states that your estimates 

will be unbiased and have minimum variance. We’ll cover all of these 

topics in more detail in Chapter 8.  

 

Omitted variable bias occurs because the residuals violate one of the 

assumptions. To see how this works, you need to follow a chain of 

events. 

 

Suppose you have a regression model with two significant independ-

ent variables, X1 and X2. These independent variables correlate with 

each other and the dependent variable—which are the requirements 

for omitted variable bias. 
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Now, imagine that we take variable X2 out of the model. It is the con-

founding variable. Here’s what happens: 

 

1. The model fits the data less well because we’ve removed a sig-

nificant explanatory variable. Consequently, the gap between 

the observed values and the fitted values increases. These 

gaps are the residuals. 

2. The degree to which each residual increases depends on the 

relationship between X2 and the dependent variable. Conse-

quently, the residuals correlate with X2. 

3. X1 correlates with X2, and X2 correlates with the residuals. 

Ergo, variable X1 correlates with the residuals. 

4. Hence, this condition violates the ordinary least squares as-

sumption that independent variables in the model do not cor-

relate with the residuals. Violations of this assumption 

produce biased estimates. 

 

This explanation serves a purpose soon! 

 

The important takeaway here is that leaving out an important variable 

not only reduces the goodness-of-fit (larger residuals), but it can also 

bias the coefficient estimates. 

Predicting the Direction of Omitted Variable Bias 

We can use correlation structures, like the one in the example, to pre-

dict the direction of bias that occurs when the model omits a con-

founding variable. The direction depends on both the correlation 

between the included and omitted independent variables and the cor-

relation between the included independent variable and the depend-

ent variable. The table below summarizes these relationships and the 

direction of bias. 
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 Included & Omitted:  

Negative Correlation 

Included & Omitted:  

Positive Correlation 

Included and 

Dependent:  

Negative Corre-

lation 

Positive bias:  

Coefficient is overes-

timated. 

Negative bias:  

Coefficient is under-

estimated. 

Included and 

Dependent: 

Positive Correla-

tion 

Negative bias:  

Coefficient is under-

estimated. 

Positive bias:  

Coefficient is overes-

timated. 

 

Let’s apply this table to the bone density example. The included (Ac-

tivity) and omitted confounding variable (Weight) have a negative 

correlation, so we need to use the middle column. The included vari-

able (Weight) and the dependent variable (Bone Density) have a pos-

itive relationship, which corresponds to the bottom row. At the 

intersection of the middle column and bottom row, the table indicates 

that we can expect a negative bias, which matches our results. 

 

Suppose we hadn’t collected weight and were unable to include it in 

the model. In that case, we can use this table, along with the hypothe-

sized relationships, to predict the direction of the omitted variable 

bias. However, because I had collected the weight data, I was able to 

include Weight in the model and observe how it removed the bias. 

How to Detect Omitted Variable Bias and Identify Confounding 
Variables 

You saw one method of detecting omitted variable bias in this section. 

If you include different combinations of independent variables in the 

model, and you see the coefficients changing, you’re watching omitted 

variable bias in action! 

 

In the previous example, I started with a regression model that has 

activity as the lone independent variable and bone density as the 
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dependent variable. After adding weight to the model, the correlation 

changed from zero to positive. 

 

However, if we don’t have the data, it can be harder to detect omitted 

variable bias. If my study hadn’t collected the weight data, the answer 

would not be as clear. 

 

I presented a clue earlier in this section. We know that for omitted 

variable bias to exist, an independent variable must correlate with the 

residuals. Consequently, we can plot the residuals by the variables in 

our model. If we see a relationship in the plot, rather than random 

scatter, it both tells us that there is a problem and points us towards 

the solution. We know which independent variable correlates with 

the confounding variable. That knowledge might help you track down 

the problem. 

 

Another step is to carefully consider theory and other studies. Ask 

yourself several questions: 

 

Do the coefficient estimates match the theoretical signs and magni-

tudes? If not, you need to investigate. That was my first tip-off! 

 

Can you think of confounding variables that you didn’t measure that 

are likely to correlate with both the dependent variable and at least 

one independent variable? Reviewing the literature, consulting ex-

perts, and brainstorming sessions can shed light on this possibility. 

Obstacles to Correcting Omitted Variable Bias 

Again, you’ve already seen the best correction possible—including the 

variable in the model! Including confounding variables in a regression 

model allows the analysis to control for them and prevent the spuri-

ous effects that the omitted variables would have caused otherwise. 

Theoretically, you should include all independent variables that have 

a relationship with the dependent variable. That’s easier said than 

done because this approach produces real-world problems. 
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For starters, you might need to collect data on many more character-

istics than is feasible. Additionally, some of these characteristics might 

be very difficult or even impossible to measure. Suppose you fit a 

model for salary that includes experience and education. Ability might 

also be a significant variable, but one that is much harder to measure 

in some fields. 

 

Furthermore, as you include more variables in the model, the number 

of observations must increase to avoid overfitting the model, which 

can also produce unreliable results. Measuring more characteristics 

and gathering a larger sample size can be an expensive proposition! 

 

Because the bias occurs when the confounding variables correlate 

with independent variables, including these confounders invariably 

introduces multicollinearity into your model. Multicollinearity causes 

its own problems including unstable coefficient estimates, lower sta-

tistical power, and less precise estimates. 

 

It’s important to note a tradeoff that might occur between precision 

and bias. As you include the formerly omitted variables, you lessen 

the bias, but the increased multicollinearity can potentially reduce the 

precision of the estimates. 

 

It’s a balancing act! Let’s get into some practical recommendations. 

Recommendations for Addressing Confounding Variables and 
Omitted Variable Bias 

Before you begin your study, arm yourself with all the possible back-

ground information you can gather. Research the study area, review 

the literature, and consult with experts. This process enables you to 

identify and measure the crucial variables that you should include in 

your model. It helps you avoid the problem in the first place. Just im-

agine if you collect all your data and then realize that you didn’t meas-

ure a critical variable. That’s an expensive mistake! 
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After the analysis, this background information can help you identify 

potential bias, and, if necessary, track down the solution. 

 

Check those residual plots! Sometimes you might not be sure whether 

bias exists, but the plots can clearly display the hallmarks of confound-

ing variables. 

 

Recognize that omitted variable bias lessens as the degree of correla-

tions decrease. It might not always be a significant problem. Under-

standing the relationships between the variables helps you make this 

determination. 

 

Remember that a tradeoff between bias and the precision of the esti-

mates might occur. As you add confounding variables to reduce the 

bias, keep an eye on the precision of the estimates. To track the preci-

sion, check the confidence intervals of the coefficient estimates. If the 

intervals become wider, the estimates are less precise. In the end, you 

might accept a little bias if it significantly improves precision. 

What to Do When Including Confounding Variables is Impossi-
ble 

If you absolutely cannot include an important variable and it causes 

omitted variable bias, consider using a proxy variable. Typically, 

proxy variables are easy to measure, and analysts use them instead of 

variables that are either impossible or difficult to measure. The proxy 

variable can be a characteristic that is not of any great importance it-

self, but has a good correlation with the confounding variable. These 

variables allow you to include some of the information in your model 

that would not otherwise be possible, and, thereby, reduce omitted 

variable bias. For example, if it is crucial to include historical climate 

data in your model, but those data do not exist, you might include tree 

ring widths instead. 

 

Finally, if you can’t correct omitted variable bias using any method, 

you can at least predict the direction of bias for your estimates. After 
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identifying confounding variable candidates, you can estimate their 

theoretical correlations with the relevant variables and predict the di-

rection of the bias—as we did with the bone density example. 

 

If you aren’t careful, the hidden hazards of confounding variables and 

omitted variable bias can completely flip the results of your regression 

analysis! It’s easy to get stuck on determining which of your set of 

candidate variables to include that you forget to consider which vari-

ables you might be excluding without even realizing it! 

Automated Variable Selection Procedures 

Previously, we went through both the art and science of specifying 

your model. How to decide which variables to include or exclude, and 

how to help ensure you weren’t leaving out any important variables. 

While I strongly recommend using theory and knowledge to guide 

you, there are automated procedures that can help you identify can-

didate variables early in the process. I’m not a big fan of these auto-

mated procedures because they use only statistical measures and no 

subject-area knowledge. However, most statistical software includes 

these analyses. You should know how they work and their limitations. 

 

Automatic variable selection procedures are algorithms that pick the 

variables to include in your regression model. Stepwise regression and 

Best Subsets regression are two of the more common variable selec-

tion methods. Let’s see how well they work and determine whether 

one provides better results. 

 

These automatic procedures can help when you have many independ-

ent variables, and you need assistance in the investigative stages of the 

variable selection process. You could specify many models with dif-

ferent combinations of independent variables, or you can have your 

statistical software do this for you. 

 

These procedures are especially useful when theory and experience 

provide only a vague sense of which variables you should include in 
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the model. However, if theory and expertise are strong guides, it’s 

generally better to follow them than to use an automated procedure. 

Additionally, if you use one of these procedures, you should consider 

it as only the first step of the model selection process. 

 

Here are my objectives for this section. I will: 

 

• Show how stepwise regression and best subsets regression 

work differently. 

• Use both procedures on one example dataset to compare their 

results. 

• Explore whether one procedure is better. 

• Examine the factors that affect a method’s ability to choose 

the correct model. 

How Stepwise Regression Works 

As the name stepwise regression suggests, this procedure selects var-

iables in a step-by-step manner. This procedure begins with a set of 

candidate independent variables and then adds or removes independ-

ent variables one at a time using the variable’s statistical significance. 

Stepwise either adds the most significant variable or removes the least 

significant variable. It does not consider all possible models, and it 

produces a single regression model when the algorithm ends. 

 

Typically, you can control the specifics of the stepwise procedure. For 

example, you can specify whether it can only add variables, only re-

move variables, or both. You can also set the significance level for in-

cluding and excluding the independent variables. 

How Best Subsets Regression Works 

Best subsets regression is also known as “all possible regressions” and 

“all possible models.” Again, the name of the procedure indicates how 

it works. Unlike stepwise, best subsets regression fits all possible mod-

els based on the independent variables that you specify. 
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The number of models that this procedure fits multiplies quickly. If 

you have 10 independent variables, it fits 1024 models. However, if 

you have 20 variables, it fits 1,048,576 models! Best subsets regression 

fits 2P models, where P is the number of predictors in the dataset. 

 

After fitting all of the models, best subsets regression then displays 

the best fitting models with one independent variable, two variables, 

three variables, and so on. Usually, either adjusted R-squared or Mal-

lows Cp is the criterion for picking the best fitting models for this pro-

cess. 

 

The result is a display of the besting fit models of different sizes up to 

the full model. You need to compare the models to determine which 

one is the best. In some cases, it is not clear which model is the best, 

and you’ll need to use your judgment. 

Comparing Stepwise to Best Subsets Regression 

While both automatic variable selection procedures assess the full set 

of candidate independent variables that you specify, the end results 

can be different. Stepwise regression does not fit all models but in-

stead assesses the statistical significance of the variables one at a time 

and arrives at a single model. Best subsets regression fits all possible 

models and displays some of the best candidates based on adjusted R-

squared or Mallows’ Cp. 

 

The single model that stepwise regression produces can be simpler for 

the analyst. However, best subsets regression presents more infor-

mation that is potentially valuable. 

 

Enough talk about how these procedures work. Let’s see them in ac-

tion! 

Using Stepwise and Best Subsets on the Same Dataset 

Our example scenario models a manufacturing process. We’ll deter-

mine whether the production conditions are related to the strength of 
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a product. If you want to try this yourself, you can download the CSV 

data file: ProductStrength. 

 

For both variable selection procedures, we’ll use the same independ-

ent and dependent variables. 

 

• Dependent variable:  Strength 

• Independent variables: Temperature, Pressure, Rate,  

Concentration, Time 

Example of Stepwise Regression 

Let’s use stepwise regression to pick the variables for our model. I’ll 

use the stepwise method that allows the procedure to both add and 

remove independent variables as needed. The output below shows the 

steps up to the fourth and final step. 

 

 
 

For our example data, the stepwise procedure added a variable in each 

step. The process stopped when there were no variables it could add 

or remove from the model. The final column displays the model that 

the procedure produced. 

The four independent variables in our model are Concentration, Rate, 

Pressure, and Temperature. This model has an R-squared of 89.09% 

and the highest adjusted R-squared. You also want Mallows’ Cp to be 

close to the number of independent variables plus the constant. 

https://statisticsbyjim.com/wp-content/uploads/2017/05/ProductStrength.csv
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Mallows’ Cp for the final model is closer to the ideal value than the 

other models. It all looks good! 

Example of Best Subsets Regression 

Next, I’ll perform best subsets regression on the same dataset. 

 

The best subsets procedure fits all possible models using our five in-

dependent variables. That means it fit 25 = 32 models. Each horizontal 

line represents a different model. By default, this statistical software 

package displays the top two models for each number of independent 

variables that are in the model. X’s indicate the independent variables 

that are in each model. 

 

Below are the results. 

 
We’re looking for a model that has a high adjusted R-squared, a small 

standard error of the regression, and a Mallows’ Cp close to the num-

ber of variables plus constant. 
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The model I circled is the one that the stepwise method produced. 

Based on the goodness-of-fit measures, this model appears to be a 

good candidate. However, the best subsets regression results provide 

a larger context that might help us make a choice using our subject-

area knowledge and goals. 

Using Best Subsets Regression in conjunction with Our Re-
quirements 

We might have specific priorities that affect our choice for the best 

model. 

 

For instance, if our top priorities are to simplify and reduce the costs 

of data collection, we might be interested in the models with fewer 

independent variables that fit the data nearly as well. The first model 

listed with three variables has an adjusted R-squared that is only 1.4 

percentage points less than the circled model. In fact, the best two-

variable model is not far behind. 

 

On the other hand, if using the model to make accurate predictions is 

our top priority, we might be tempted to use the model with all five 

independent variables. Almost all of the goodness-of-fit measures are 

marginally better for the full model compared to the best model with 

four variables. However, the predicted R-squared peaks with a model 

that has only two variables. 

 

Often, predicted R-squared starts to decline when the model becomes 

too complex and begins to fit the noise in the data. Sometimes simpler 

models can produce more precise predictions. For the most predictive 

model, we might use the best two-variable model because it has the 

highest predicted R-squared. 

I value this extra information that best subsets regression provides. 

While this procedure requires more knowledge and effort to sort 

through the multiple models, it helps us choose the best model based 

our specific requirements. However, this method also fits many more 

models than stepwise regression, which increases the risk of finding 
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chance correlations. You’ll learn about the perils of fitting many mod-

els and chance correlations in the next chapter! 

Assess Your Candidate Regression Models Thoroughly 

If you use stepwise regression or best subsets regression to help pick 

your model, you need to investigate the candidate models thoroughly. 

That entails fitting the candidate models the normal way and checking 

the residual plots to be sure the fit is unbiased. You also need to assess 

the signs and values of the regression coefficients to be sure that they 

make sense. These automatic model selection procedures can find 

chance correlations in the sample data and produce models that don’t 

make sense in the real world. 

 

Automatic variable selection procedures can be helpful tools, particu-

larly in the exploratory stage. However, you can’t expect an auto-

mated algorithm to understand the subject area better than you! Be 

aware of the following potential problems. 

 

• These procedures can sift through many different models and 

find correlations that exist by chance in the sample. Assess 

the results critically and use your expertise to determine 

whether they make sense. 

• These procedures cannot take real-world knowledge into ac-

count. The model might not be correct in a practical sense. 

• Stepwise regression does not always choose the model with 

the largest R-squared value. 

 

We saw how stepwise and best subsets regression compare. At this 

point, there is a logical question. Does one of these procedures work 

better? Read on! 

Stepwise versus Best Subsets 

Which automatic variable selection procedure works better? And, 

how well does it work? Olejnik, Mills, and Keselman performed a sim-

ulation study to compare how frequently stepwise regression and best 
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subsets regression choose the correct model. The results of their study 

are instructive both in how well the procedures work but also by iden-

tifying issues that reduce the ability to fit the correct model. The chal-

lenges that make choosing the correct model more difficult for the 

automated procedures will also affect your ability to fit the best model 

using statistical measures. Consequently, even if you don’t use these 

automated procedures, the results of the study are worth considering. 

(Olejnik, Mills, & Keselman, 2000) 

 

The authors include 32 conditions in their study that differ by the 

number of candidate variables, number of correct variables, sample 

size, and amount of multicollinearity. For each state, a computer gen-

erated 1000 datasets. The authors analyzed each dataset using both 

stepwise and best subsets regression. For best subsets regression, they 

compared the effectiveness of using the lowest Mallows’ Cp to using 

the highest adjusted R-squared. 

 

Drum roll, please! 

 

The winner is … stepwise regression! 

 

Although, it is a very close competition. Overall, stepwise regression 

is better than best subsets regression using the lowest Mallows’ Cp by 

less than 3%. Best subsets regression using the highest adjusted R-

squared approach is the clear loser here. 

 

However, there is a big warning to reveal. 

 

Stepwise regression does not usually pick the correct model! 

How Accurate is Stepwise Regression? 

Let’s take a closer look at the results. I’m going to cover only the step-

wise results. However, best subsets regression using the lowest Mal-

lows’ Cp follows the same patterns and is virtually tied. 
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First, here are definitions for terms in this study. 

 

• Authentic variables are the independent variables that truly 

have a relationship with the dependent variable. 

• Noise variables are independent variables that do not have an 

actual relationship with the dependent variable. 

• The correct model includes all of the authentic variables and 

excludes all of the noise variables. 

 

Let’s explore the accuracy of stepwise regression in picking the cor-

rect model, and the conditions that affect its accuracy. 

When stepwise regression is most accurate 

Let’s start by looking at the best-case scenario for the stepwise proce-

dure. In the study, this procedure is most capable when there are four 

candidate variables, three of the variables are authentic, there is no 

multicollinearity, and there is an extra-large sample size of 500 obser-

vations. This sample size is larger than the number of observations 

that most studies will collect when they are considering only four can-

didate variables. 

 

In this scenario, stepwise regression chooses the correct model 84% 

of the time. The bad news is that this scenario is not realistic for most 

studies, and the accuracy drops from here. 

The role of the number of candidate variables and authentic 
variables in stepwise regression accuracy 

The study assesses conditions with either 4 or 8 independent variables 

(IVs) that are candidates. When there are more variables to evaluate, 

it is harder for stepwise regression to identify the correct model. This 

pattern also applies to the number authentic independent variables. 

 

The table below illustrates this pattern for scenarios with no multicol-

linearity and a good sample size (100-120). The percentage correct 

decreases as the number of candidate variables and authentic 
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variables increase. Notice how most scenarios produce the correct 

model less than half the time! 

 

 Candidate IVs  Authentic IVs  % Correct model 

4 1 62.7 

 2 54.3 

 3 34.4 

8 2 31.3 

 4 12.7 

 6 1.1 

The role of multicollinearity in stepwise regression accuracy 

The study also assesses the role that multicollinearity plays in the ca-

pability of stepwise regression to choose the correct model. When in-

dependent variables are correlated, it’s harder to isolate the individual 

effect of each variable. This difficulty occurs regardless whether it is 

a human or computer algorithm trying to identify the correct model. 

 

The table below illustrates how the percentage correct varies by the 

amount of correlation and the number of variables. The results are 

based on a good sample size (100-120). As the correlation increases, 

the percentage correct decreases.  
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Candidate IVs Authentic IVs Correlation % Correct model 

4 2 0.0 54.3 

  0.2 43.1 

  0.6 15.7 

8 4 0.0 12.7 

  0.2 1.0 

  0.6 0.4 

The role of sample size in stepwise regression accuracy 

The study assesses two sample sizes to determine how it affects the 

ability of stepwise regression to choose the correct model. The 

smaller sample size is based on the number of observations necessary 

to obtain 0.80 statistical power, which is between 100-120 observa-

tions. This approach is consistent with best practices, and I’ve referred 

to this size as a “good sample size” previously. 

 

The study also uses a very large sample size, which is five times the 

size of the good sample size. 

 

The table below shows that a very large sample size improves the ca-

pability of stepwise regression to choose the correct model. Collecting 

a very large sample size might be more expensive, but it dramatically 

improves the variable selection process.  
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Candidate 

IVs 

Authentic 

IVs 

 Correlation   %Correct   

Good sample 

size 

 %Correct 

Very large 

sample 

 4  2  0.0  54.3  72.1 

   0.2  43.1  72.9 

   0.6  15.7  69.2 

 8  4  0.0  12.7  53.9 

   0.2  1.0  39.5 

   0.6  0.4  1.8 

Closing Thoughts on Choosing the Correct Model 

Stepwise regression and best subsets regression don’t usually pick the 

correct model. This finding is true with the relatively low number of 

candidate independent variables that the simulation study assesses. In 

actual studies, it would be not surprising if the researchers need to 

assess many more variables, which would further reduce the percent-

age. In fact, unlike the simulation study, you can’t even be sure that 

you are assessing all of the authentic variables in a real-world experi-

ment! 

 

Given these findings, you might be asking, “are stepwise regres-

sion and best subsets regression (using the lowest Mallows’ Cp) useful 

tools?” 

 

I think they provide value during the very early, investigative stages 

of a study, particularly when theory doesn’t provide much guidance. 

However, you must rigorously assess the candidate models to see 

if they make sense. Further, it is crucial to understand that stepwise 
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regression usually only gets you closer to the correct model, but not 

all of the way there. 

 

In that sense, I think stepwise regression provides some benefits. It 

can help you get to the right ballpark and provide a glimpse of the 

relationships in your data. 

 

However, reality is complicated, and we are trying to model it with a 

sample. Choosing the correct model can be difficult even when re-

searchers are armed with extensive subject-area knowledge. It is un-

reasonable to expect an automatic variable selection procedure to 

figure it out for you. Stepwise regression follows simple rules to pick 

the variables and it does not know anything about the study area. 

 

It’s up to you to go from the rough notion to the correct model. To do 

this, use your expertise, theory, and common sense rather than de-

pending only on simple variable selection rules.  

Review and Next Steps 

When you’re specifying a regression, there are many statistical and 

theoretical considerations. It vital to do your background research in 

advance to help you go down the right path. After all, if you acci-

dentally fail to measure an important variable, it can potentially inval-

idate your results. It’s a matter of balancing theory, knowledge, and 

statistics. Finally, there are automated tools that can help you with this 

process, but they’re not perfect.
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Problematic Methods of 
Specifying Your Model 

So far, we’ve looked at approaches you should follow for specifying 

the correct model. Specifically, I shared guidelines for determining 

which variables to include as well as methods to help ensure that you 

don’t accidentally exclude confounding variables. We’ve also looked 

at how you need to be on guard against adding too many variables and 

going beyond the natural limit of the variability you can explain about 

the outcome variable. Overall, the process requires a combination of 

theory and statistical measures.  

 

Next, we’ll move on to two broad model specification approaches that 

violate these guidelines in one way or the other. I want to show you 

what can go wrong when you don’t apply subject-area expertise and 

critical thinking.  

 

The first problematic approach is data dredging, which is when you 

examine many variables, combinations of variables, and different 

types of effects to see what sticks statistically. This approach focuses 

on analyzing many model terms and using statistical measures alone 

to choose the model at the expense of using subject-area knowledge.  
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The second issue is overfitting your model. This problem occurs when 

your model is too complicated. It begins to fit the random noise in 

your sample rather than relationships between variables that actually 

exist in the population. 

Using Data Dredging and Significance 

Data mining and regression seem to go together naturally. Earlier, I’ve 

described regression as a seductive analysis because it is so tempting 

and so easy to add more variables in the pursuit of a larger R-squared. 

Data mining is the opposite of the theory-based approach I discussed 

previously. Now, I’ll illustrate the problems that data mining creates 

so you know why you should avoid them! 

 

To do this, I’ll show how data mining with regression analysis can take 

randomly generated data and produce a misleading model that ap-

pears to have significant variables and a good R-squared. Then, I’ll ex-

plain how data mining creates these deceptive results and how to 

avoid them. 

 

When you think of data mining, you tend to think of big data. How-

ever, it can occur on the scale of a smaller research study. In this con-

text, it’s often referred to as data dredging or a fishing expedition. 

However, data mining problems can be more pronounced when 

you’re using smaller data sets. That’s the context that I’m writing 

about. 

 

Data dredging is the process of exploring a data set and allowing the 

patterns in the sample to suggest the correct model rather than being 

guided by theory. This process is easy because you can quickly test 

numerous combinations of independent variables to uncover statisti-

cally significant relationships. In fact, automated model building pro-

cedures, such as stepwise and best subsets regression, can fit 

thousands of models quickly. You can continue adding statistically 

significant variables as you find them, and R-squared always increases. 
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Over the years, I’ve heard numerous comments about how it makes 

sense to look at many different variables, their interactions, and poly-

nomials in all sorts of combinations. After all, if you end up with a 

model that is full of statistically significant variables, a high R-squared, 

and good-looking residual plots, what can possibly be wrong? I’ve lit-

erally been asked many times, “What could possibly be wrong?!” 

That’s exactly what I’m going to show you! 

Regression Example that Illustrates the Problems of Data Min-
ing 

The first thing I want to show is the severity of the problems. That 

way, if you use this approach, you understand the potential problems. 

Luckily, it’s easy to demonstrate because data mining can find statis-

tically significant correlations in data that are randomly generated. 

Data mining can take a set of randomly generated independent varia-

bles and use them to explain the majority of the variation in a ran-

domly generated dependent variable. That’s random data “explaining” 

other random data! 

 

For this demonstration, I’ve created 101 columns of data, and each 

one contains 30 rows of entirely random data. The first column (C1) 

will be the dependent variable, and the other 100 columns are poten-

tial independent variables. I’ll use stepwise regression to pick the 

model. Here is the CSV data file: Random_data. 

 

This scenario forces the procedure to dredge through 100 models just 

to pick the first variable, and then repeat that for the next variables. 

That’s a lot of models to fit! We’ll talk more about that later because 

it’s a defining characteristic of data dredging. 

Using Stepwise Regression on Random Data 

Initially, the stepwise procedure adds 28 independent variables to the 

model, which explains 100% of the variance! Because we have a sam-

ple size of only 30, we’re obviously overfitting the model. Overfitting 

https://statisticsbyjim.com/wp-content/uploads/2017/06/Random_data.csv
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a model is a different issue that also inflates R-squared. We’ll get to 

overfitting shortly! 

 

In this section, I want to address only the problems related to data 

mining, so I’ll reduce the number of independent variables to avoid an 

overfit model. A good rule of thumb is to include a maximum of one 

variable for every 10 observations. With 30 observations, I’ll include 

only the first three variables that stepwise regression picks: C35, C27, 

and C87. The stepwise regression output for the first three variables 

is below. 

 
 

In step three, the coefficient P values are all statistically significant. 

The R-squared of 61.38% can be considered either strong or moderate 

depending on the field of study. However, for random data, it’s unbe-

lievable—literally! In actual research, you’re likely to have some real 

effects mixed in, which can produce an even higher R-squared value. 

 

Neither the adjusted R-squared nor the predicted R-squared indicate 

any problems. In fact, all three R-squared values increase with each 

additional term. That’s what you want to see. The residual plots look 

good (not shown). 

 

Just to be sure, let’s graph the relationship between an independent 

variable (C35) and the dependent variable (C1). We’ll see if it looks 

like a real relationship. Seeing is believing! 
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This plot looks good. The graph shows that as C35 increases, the de-

pendent variable (C1) tends to decrease, which is consistent with the 

negative coefficient in the output. The data sure look like they follow 

a real relationship. If we didn’t know that the data are random, we’d 

think it’s a great model! 

Lessons Learned from the Data Mining Example 

The example above shows how data mining symptoms can be hard to 

detect. There are no visible signs of problems even though all of the 

results are deceptive. The statistical output and chart look great. Un-

fortunately, these results don’t reflect actual relationships but instead 

represent chance correlations that are guaranteed to occur with 

enough opportunities. 

 

In the introduction, I asked, “What can possibly be wrong?” Now you 

know—everything can be wrong! The regression model suggests that 

random data can explain other random data, which is impossible. If 

you didn’t already know that there are no actual relationships be-

tween these variables, these results would lead you to completely in-

accurate conclusions. Additionally, the capability of this model to 

predict new observations is zero despite the predicted R-squared. 
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The problems are real. Now, let’s move on to explaining how they 

happen and how to avoid them. 

How Data Mining Causes these Problems 

For all hypothesis tests, including tests for regression coefficients, 

there is always the chance of rejecting a null hypothesis that is actually 

true (Type I error). This error rate equals your significance level, 

which is often 5%. In other words, in cases where the null hypothesis 

is correct, you’ll have false positives 5% of the time. 

 

A false positive in this context indicates that you have a statistically 

significant P value, but no effect or relationship exists in the popula-

tion. These false positives occur due to chance patterns in the sample 

data that are not present in the population. The more hypothesis tests 

you perform, the greater your probability of encountering false posi-

tives. 

 

Let’s apply these concepts to data mining with regression analysis. 

When you fit many models with different combinations of variables, 

you are performing many hypothesis tests. In fact, if you use an auto-

mated procedure like stepwise or best subsets regression, you are per-

forming hundreds if not thousands of hypothesis tests on the same 

data. 

 

With a large number of tests, you will inevitably find variables that 

appear to be significant but are actually false positives. If you are 

guided mainly by statistical significance, you’ll keep these variables in 

the model, and it will fill up with false positives. 

 

That’s precisely what occurred in our example. We had 100 candidate 

independent variables and stepwise regression scoured through hun-

dreds of potential models to find the chance correlations. As you saw, 

there are not necessarily any visible problems in the models you fit 

using data dredging techniques. It’s the process of fitting many differ-

ent possible models that creates the problems. Consequently, you 
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need to be conscious of how many model combinations you fit to ar-

rive at your final model.  

 

Next, I’ll explain how you can specify your model without using data 

mining and avoid these problems. 

Let Theory Guide You and Avoid Data Mining 

Don’t get me wrong. Data mining can help build a regression model in 

the exploratory stage, particularly when there isn’t much theory to 

guide you. However, if you use data mining as the primary way to 

specify your model, you are likely to experience some problems.  

 

If you use data mining, perform a confirmation study using a new da-

taset to verify the initial results. Otherwise, you might face costly con-

sequences. Imagine if we had made decisions based on the example 

model! However, if we collected another dataset, we would not have 

gotten the same results. Random chance that produces apparent rela-

tionships in one sample is not going to repeat itself the same way in 

the next sample. 

 

Instead of data mining, use theory to guide you while fitting models 

and evaluating results. I know I have mentioned this several times be-

fore. But, it’s true. The more you can use theory, the better your re-

sults. This approach reduces the number of models that you need to 

fit. Additionally, you can evaluate the model’s properties using sub-

ject-area considerations. 

 

This method requires that you review the subject-area literature and 

similar studies. 

 

The advance research allows you to: 

 

• Collect the correct data in the first place. 

• Specify a good model without data mining. 

• Compare your results to theory. 
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In conclusion, you want to develop knowledge that can guide you ra-

ther than relying on automated procedures to build your model. After 

all, it’s unreasonable to expect simple algorithms based on statistical 

significance to model the complex world better than a subject-area 

expert. Use your smarts before brute force! 

 

I know, I’m sounding like a broken record, but using theory when pos-

sible is that important. 

 

Now, let’s move to the problems of overfitting your model. 

Overfitting Regression Models 

Overfitting a model is a condition where a statistical model begins to 

describe the random error in the data rather than the relationships 

between variables. This problem occurs when the model is too com-

plex. In regression analysis, overfitting can produce misleading R-

squared values, regression coefficients, and p-values. 

 

Overfit regression models have too many terms for the number of ob-

servations. When this occurs, the regression coefficients represent 

the noise rather than the genuine relationships in the population. 

 

That’s problematic by itself. However, there is another problem. Each 

sample has its own unique quirks. Consequently, a regression model 

that becomes tailor-made to fit the random quirks of one sample is 

unlikely to fit the random quirks of another sample. Thus, overfitting 

a regression model reduces its generalizability outside the original da-

taset. 

 

Taking the above in combination, an overfit regression model de-

scribes the noise, and it’s not applicable outside the sample. That’s not 

very helpful, right? I’d really like these problems to sink in because 

overfitting often occurs when analysts chase a high R-squared. In fact, 

inflated R-squared values are a symptom of overfit models! Despite the 
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misleading results, it can be difficult for analysts to give up that nice 

high R-squared value. 

 

When choosing a regression model, our goal is to approximate the 

true model for the whole population. If we accomplish this goal, our 

model should fit most random samples drawn from that population. 

In other words, our results are more generalizable—we can expect 

that the model will fit other samples. 

Graphical Illustration of Overfitting Regression Models 

The image below illustrates an overfit model. The green line repre-

sents the true relationship between the variables. The random error 

inherent in the data causes the data points to fall randomly around the 

green fit line. The red line represents an overfit model. This model is 

too complex, and it attempts to explain the random error present in 

the data. 

 
The example above is very clear. However, it’s not always that obvi-

ous. Below, the fitted line plot shows an overfit model. In the graph, it 

appears that the model explains a good proportion of the dependent 

variable variance. Unfortunately, this is an overfit model, and I’ll show 

you how to detect it shortly. 
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How Overfitting a Model Causes these Problems 

Let’s go back to the basics of inferential statistics to understand how 

overfitting models causes problems. You use inferential statistics to 

draw conclusions about a population from a random sample. Sample 

size is an important consideration that limits the quantity and quality 

of the conclusions you can draw about a population. The more you 

need to learn, the larger the sample must be. 

 

This concept is fairly intuitive. Suppose we have a total sample size of 

20 and we need to estimate one population mean using a 1-sample t-

test. We’ll probably obtain a good estimate. However, if we want to 

use a 2-sample t-test to estimate the means of two populations, it’s not 

as good because we have only ten observations to estimate each mean. 

If we want to estimate three or more means using one-way ANOVA, 

it becomes pretty bad. 

 

As the number of observations per estimate decreases (20, 10, 6.7, 

etc.), the estimates become more erratic. Furthermore, a new sample 

is unlikely to replicate the inconsistent estimates produced by the 

smaller sample sizes. 
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In short, the quality of the estimates deteriorates as you draw more 

conclusions from a sample. This idea is directly related to the degrees 

of freedom in the analysis.  

Applying These Concepts to Overfitting Regression Models 

Overfitting a regression model is similar to the example above. The 

problems occur when you try to estimate too many parameters from 

the sample. Each term in the model forces the regression analysis to 

estimate a parameter using a fixed sample size. Therefore, the size of 

your sample restricts the number of terms that you can safely add to 

the model before you obtain erratic estimates. 

 

Similar to the example with the means, you need a sufficient number 

of observations for each term in the regression model to help ensure 

trustworthy results. Statisticians have conducted simulation studies 

which indicate you should have at least 10-15 observations for each 

term in a linear model. The number of terms in a model is the sum of 

all the independent variables, their interactions, and polynomial 

terms to model curvature. (Babyak, 2004) 

 

For instance, if the regression model has two independent variables 

and their interaction term, you have three terms and need 30-45 ob-

servations. Although, if the model has multicollinearity or if the effect 

size is small, you might require more observations. 

 

To obtain reliable results, you need a sample size that is large enough 

to handle the model complexity that your study requires. If your study 

calls for a complex model, you must collect a relatively large sample 

size. If the sample is too small, you can’t dependably fit a model that 

approaches the true model for your independent variable. In that case, 

the results can be misleading. 

How to Detect Overfit Models 

As I discussed earlier, generalizability suffers in an overfit model. 

Consequently, you can detect overfitting by determining whether 
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your model fits new data as well as it fits the data used to estimate the 

model. In statistics, we call this cross-validation, and it often involves 

partitioning your data. 

 

However, for linear regression, there is an excellent accelerated cross-

validation method called predicted R-squared, which I covered back 

in chapter 6. This method doesn’t require you to collect a separate 

sample or partition your data, and you can obtain the cross-validated 

results as you fit the model. Statistical software calculates predicted 

R-squared using the following automated procedure: 

 

• It removes a data point from the dataset. 

• Calculates the regression equation. 

• Evaluates how well the model predicts the missing observa-

tion. 

• And, repeats this for all data points in the dataset. 

 

Predicted R-squared has several cool features. First, you can just in-

clude it in the output as you fit the model without any extra steps on 

your part. Second, it’s easy to interpret. You simply compare pre-

dicted R-squared to the regular R-squared and see if there is a big dif-

ference. 

 

If there is a large discrepancy between the two values, your model 

doesn’t predict new observations as well as it fits the original dataset. 

The results are not generalizable, and there’s a good chance you’re 

overfitting the model. 

 

For the fitted line plot above, the model produces a predicted R-

squared (as shown in chapter 6) of 0%, which reveals the overfitting.  

How to Avoid Overfitting Models 

To avoid overfitting a regression model, you should draw a random 

sample that is large enough to handle all of the terms that you expect 

to include in your model. This process requires that you investigate 
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similar studies before you collect data. The goal is to identify relevant 

variables and terms that you are likely to include in your own model. 

After you get a sense of the typical complexity of models in your study 

area, you’ll be able to estimate a good sample size. 

 

Again, this advance planning is yet another example of how subject-

area research helps you out! 

Review and Next Steps 

Over the past two chapters, I’ve shown you some suitable methods for 

specifying the model, and others that you should avoid! The problem-

atic processes in this chapter were the following: 

 

• Data dredging: Trying many different models and seeing 

what sticks by focusing on statistical significance. 

• Overfitting: Fitting a model that is too complex given the 

sample size by including too many independent variables, 

polynomials, and interaction terms. 

 

Both of these problems can produce misleading coefficients and in-

flated R-squared values. 

 

Planning can help you avoid these problems by identifying the varia-

bles you will likely need to include in the model. This process helps 

you plan your data collection plan, sample size requirement, and 

model fitting process. Never underestimate the value of using your 

subject-area knowledge during this process. Your expertise helps you 

fit the correct model without data dredging and aids in the detection 

of coefficients that don’t match theory, which can be a sign of various 

problems. Statistical measures can help you decide which variables to 

include, but they shouldn’t be the sole deciding factor. 

 

Next, we’re going tackle the assumptions behind regression analysis. 

The basis behind these assumptions frequently relates to the charac-

teristics of the residuals. The overarching goal of the next chapter is 
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that if your model violates any of these assumptions, you might not be 

able to trust any of the statistical measures that we’ve covered thus 

far! But, don’t worry, I’ll show you how to detect and, if necessary, 

correct problems.



 

  195 

C H A P T E R  9  

 

Checking Assumptions 
and Fixing Problems 

Regression is a potent analysis that can analyze multiple variables sim-

ultaneously to answer complex research questions. However, like 

other statistical procedures, regression analysis has assumptions that 

you need to meet, or the results can be unreliable. In this chapter, 

you’ll learn about the assumptions for ordinary least squares regres-

sion, how to check them, and how to correct problems. This 

knowledge will give you confidence in the results that you obtain. 

 

As I’ve indicated earlier, I’ve struggled to decide where to place this 

chapter. You can’t trust any of the statistical measures that we have 

covered until you specify a model that satisfies the assumptions. How-

ever, this chapter didn’t seem to fit earlier because it assumes that you 

already know the previous information.  

 

Always keep in mind that regression is an iterative process. Specify a 

model, take a peek at the statistical output, but then quickly check the 

residual plots before you get too invested in interpreting the results 

for a model that might have an obvious assumption violation. 
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Ordinary Least Squares (OLS) is the most common estimation method 

for linear models—and that’s true for a good reason. The Gauss-Mar-

kov theorem states that OLS produces estimates that are better than 

estimates from all other linear model estimation methods when the 

assumptions hold true. In technical terms, when your OLS regression 

model satisfies the assumptions, the procedure generates unbiased co-

efficient estimates that tend to be relatively close to the true popula-

tion values (minimum variance).  

 

While proving the theorem goes beyond the scope of this book, it’s 

nice knowing that OLS can provide the best estimates! Statisticians 

have proven it mathematically.  

 

Let’s dive into residuals, the theory behind them, and some examples. 

We covered the residuals and how OLS minimizes the sum of the 

squared residuals (SSE) in chapter 2. Now, we’ll explore them in more 

depth. In regression, you verify the assumptions primarily by as-

sessing the residual plots. Then, we’ll go over the assumptions them-

selves and how to identify and correct potential problems. 

Check Your Residual Plots! 

After reading about the necessity of checking your residual plots 

throughout this book, you’re finally going to learn all about them! 

 

Residual plots display the residual values on the y-axis and fitted val-

ues, time-order, or another variable, on the x-axis. After you fit a re-

gression model, it is crucial to check the residual plots. If your plots 

display patterns rather randomness, you can’t trust the regression co-

efficients and other numeric results. In this section, I explain the con-

ceptual reasons why residual plots help ensure that your regression 

model is valid. I’ll also show you what to look for and how to fix the 

problems. 

 

First, let’s go over a couple of basics. 
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There are two fundamental parts to regression models, the determin-

istic and random components. If your model is not random where it 

supposed to be random, it has problems, and this is where residual 

plots come in. 

 

The essential parts of a regression model: 

 

Dependent Variable = (Constant +Independent Variables) + Error 

 

Or: 

 

Dependent Variable = Deterministic + Stochastic 

Deterministic Component 

The deterministic component is the portion of the variation in the de-

pendent variable that the independent variables explain. In other 

words, the mean of the dependent variable is a function of the inde-

pendent variables. In a regression model, all of the explanatory power 

should reside here. 

Stochastic Error 

Stochastic just means unpredictable. In statistics, the error is the dif-

ference between the expected value and the observed value. Let’s put 

these terms together—the gap between the expected and observed 

values must not be predictable. Or, no explanatory power should be 

in the error. If you can use the error to make predictions about the 

response, your model has a problem. This issue is where residual plots 

play a role. 

 

The theory here is that the deterministic component of a regression 

model does such a great job of explaining the dependent variable that 

it leaves only the intrinsically inexplicable portion of your study area 

for the error. If you can identify non-randomness in the error term, 

your independent variables are not explaining everything that they 

can. 
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Many of the ordinary least squares assumptions describe properties of 

the error term. Unfortunately, the error term is a population value 

that we’ll never know. Instead, we’ll use the next best thing that is 

available—the residuals. Residuals are the sample estimate of the error 

for each observation. The residuals estimate the true error in the same 

manner that regression coefficients estimate the true population co-

efficients. When it comes to checking OLS assumptions, assessing the 

residuals is crucial! 

 

Don’t worry. This is actually easy to understand. It just means that you 

should not be able to see patterns in the residual plots! 

How to Check Residual Plots 

When looking at residual plots, you simply want to determine 

whether the residuals are consistent with random error. I’ll use an 

analogy of rolling a die. You shouldn’t be able to use one roll to predict 

the outcome of the next roll because it is supposed to be random. So, 

if you record a series of tosses, you should see only random results. If 

you start to see patterns, you know something is wrong with your 

model of how the die works. You think it’s random, but it’s not. If you 

were a gambler, you’d use this information to adjust how you play to 

match the actual die outcomes better. 

 

You can apply this idea to regression models too. If you look at a series 

of errors, it should look random. If there are patterns in the errors, 

you can use one error to predict another. As with the die analogy, if 

there are patterns in the residuals, you need to adjust your model. But, 

don’t fret, this just means you can improve the fit of the model by 

moving this predictability over to the deterministic side of things (i.e., 

your independent variables). 

 

How do you determine whether the residuals are random in regres-

sion analysis? It’s pretty simple, just check that they are randomly 

scattered around zero for the entire range of fitted values. Being cen-

tered on zero indicates that the model’s predictions tend to be on 
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target rather than systematically too high or low. The hypothesis tests 

in regression assume that the residuals follow a normal distribution 

and that the degree of scattering is the same for all fitted values. 

 

Residuals should look like this. 

 

 

How to Fix Problematic Residual Plots 

The residual plot below clearly has a pattern! In this case, it indicates 

that the model is not fitting curvature that is present in the data. 
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For the above model, if you know the fitted value, you can use it to 

predict the residual. For instance, fitted values near 5 and 10 tend to 

have positive residuals. Fitted values near 7 tend to have negative val-

ues. If they were truly random, you wouldn’t be able to make these 

predictions. 

 

This residual plot indicates that the independent variables do not cap-

ture the entire deterministic component. Some of the explanatory in-

formation has leaked over to the supposedly random error. There are 

a variety of reasons why a model can have this problem. The possibil-

ities include a missing: 

 

• Independent variable. 

• Polynomial term to model a curve (See plot above).  

• Interaction term. 

• Time-order effect. 

 

To fix the problem, you need to identify the missing information, var-

iable, or higher-order term and include it in the model. There is no 

one-size fits all solution. You’ll need to assess the residual plots, apply 



Regress ion  Analys is :  An Intu it ive  Gu ide  

201 

subject-area knowledge, and try modifying the model. Identifying the 

resolution requires subject-area knowledge and research. The solu-

tion is very particular to your research. After you correct the problem 

and refit the model, the residuals should look nice and random! 

Residual Plots are Easy! 

Hopefully, you see that checking your residuals plots is a crucial but 

simple thing to do. You need random residuals. Your independent var-

iables should describe the relationship so thoroughly that only ran-

dom error remains. Non-random patterns in your residuals signify 

that your variables are missing something. 

 

Importantly, appreciate that if you do see unwanted patterns in your 

residual plots, it actually represents a chance to improve your model 

because there is something more that it can explain. Furthermore, the 

pattern can help you identify the problem and solution. That’s all 

good! 

 

Now we’ll systematically go into more depth about the assumptions 

themselves and how to check them using residual plots (mainly). 

The Seven Classical OLS Assumptions 

When seven classical OLS assumptions hold true, the procedure pro-

duces the best estimates. However, when your model does not satisfy 

some of these assumptions, you might need to employ remedial 

measures or use other estimation methods to improve the results. 

 

The first six assumptions are mandatory to produce the best estimates. 

Even though the quality of the estimates does not depend on the sev-

enth assumption, analysts often evaluate it for other important rea-

sons that I’ll cover. 
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OLS Assumption 1: The correctly specified regression model is 
linear in the coefficients and the error term 

This assumption addresses the following two properties of the model: 

 

• The linear functional form of the model.  

• The accuracy in which it describes the real relationships of 

the subject matter. 

 

In statistics, a regression model is linear when all terms in the model 

are either the constant or a parameter multiplied by an independent 

variable. You build the model equation only by adding the terms to-

gether. These rules constrain the model to one type: 

 

 
 

In the equation, the betas (βs) are the parameters that OLS estimates. 

Epsilon (ε) is the random error. 

 

As I explained earlier, the defining characteristic of linear regression 

is this functional form of the parameters rather than the ability to 

model curvature. Linear models can model curvature by including 

nonlinear variables such as polynomials and transforming exponential 

functions. 

 

To satisfy this assumption, the correctly specified model must fit the 

linear pattern. We covered this assumption in the curve fitting in 

Chapter 4. If you can’t adequately model the curvature using a linear 

model, you will likely need to use a different type of regression, such 

as nonlinear regression or a generalized linear model. 

 

In addition to following the linear function form, your model should 

accurately describe the real relationships among variables. It should 

include all relevant independent variables, fit curvature that is pre-

sent, and include the appropriate interaction effects. In short, your 

model needs to portray the subject matter accurately. If the model is 
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not an accurate representation, statisticians call it a model specifica-

tion error. 

 

For example, a specification error occurs when you omit an essential 

variable, fail to fit the curvature, or exclude appropriate interaction 

terms among other possibilities. In other words, when your model 

doesn’t accurately depict reality using a linear model, it violates the 

first OLS assumption.  

 

Specification errors often cause failures in some of the other assump-

tions. For example, in chapter 7, we saw how omitting a confounding 

variable violates assumption #3, which can bias the coefficient esti-

mates. Additionally, normally distributed residuals (#7) can be diffi-

cult to obtain if you exclude an important variable or incorrectly fit 

curvature.  

 

As we go through the remaining six assumptions, keep in mind that 

violations of those assumptions might actually represent a specifica-

tion error. The first and simplest solutions I’d try are adding variables, 

using a different technique to model the curvature, and adding inter-

action terms.  

 

If you exhaust the more straightforward approaches, you might need 

to try more complex solutions. These other solutions include data 

transformations and using a different type of regression analysis alto-

gether. Later in this chapter, you’ll learn about data transformations, 

and I cover alternative regression methods at the end of the book—

although you learned a little about nonlinear regression in chapter 4. 

OLS Assumption 2: The error term has a population mean of 
zero 

The error term accounts for the variation in the dependent variable 

that the independent variables do not explain. Random chance should 

determine the values of the error term. For your model to be unbiased, 

the average value of the error term must equal zero. 
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After all, if the average error is +7, this non-zero error indicates that 

our model systematically underpredicts the observed values. Statisti-

cians refer to systematic error like this as bias, and it signifies that our 

model is inadequate because it is not correct on average. 

 

Stated another way, we want the expected value of the error to equal 

zero. If the expected value is +7 rather than zero, part of the error 

term is predictable, and we should add that information to the regres-

sion model itself. We want only random error left for the error term. 

 

You don’t need to worry about this assumption when you include the 

constant in your regression model because it forces the mean of the 

residuals to equal zero. For more information about this assumption, 

read the section about the regression constant in Chapter 3. 

OLS Assumption 3: All independent variables are uncorrelated 
with the error term 

If an independent variable is correlated with the error term, we can 

use the independent variable to predict the error term, which violates 

the notion that the error term represents unpredictable random error. 

We need to find a way to incorporate that information into the regres-

sion model itself. 

 

This assumption is also referred to as exogeneity. Conversely, when 

this type of correlation exists, which violates the assumption, there is 

endogeneity. Violations of this assumption can occur because there is 

simultaneity between the independent and dependent variables, 

omitted variable bias, incorrectly modeled curvature, or measure-

ment error in the independent variables.  

 

Violating this assumption biases the coefficient estimate. To under-

stand why this bias occurs, keep in mind that the error term always 

explains some of the variability in the dependent variable. However, 

when an independent variable is correlated with the error term, OLS 
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incorrectly attributes some of the variance that the error term actually 

explains to the independent variable instead. 

 

To check this assumption, graph the residuals by each independent 

variable. The graph should display that nice randomness I showed ear-

lier. If there is a pattern, your model has a problem. You’ll need to 

investigate to determine the cause. At least you’ll know which variable 

is associated with the violation!  

 

The residual plot below shows an example where Energy Consump-

tion (the independent variable) correlates with the residuals because 

the model doesn’t adequately fit curvature in the data. For this exam-

ple, we need to include a squared term Energy Consumption to fix the 

problem. 

 

 
 

In Chapter 7, I explained how confounding variables are problematic 

because they violate this assumption. Read that chapter for more ideas 

about how to address this problem. 
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OLS Assumption 4: Observations of the error term are uncorre-
lated with each other 

One observation of the error term should not predict the next obser-

vation. For instance, if the error for one observation is positive and 

that systematically increases the probability that the following error 

is positive, that is a positive correlation. If the subsequent error is 

more likely to have the opposite sign, that is a negative correlation. 

This problem is known both as serial correlation and autocorrelation. 

Serial correlation is most likely to occur in time series models. 

 

For example, if sales are unexpectedly high on one day, then they are 

likely to be higher than average on the next day. This isn’t an unrea-

sonable expectation for some subject areas, such inflation rates, GDP, 

unemployment, and so on. 

 

Assess this assumption by graphing the residuals in the order that the 

data were collected. You want to see randomness in the plot. In the 

graph for a sales model, there appears to be a cyclical pattern with a 

positive correlation. 
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As I’ve explained, if you have information that allows you to predict 

the error term for an observation, you must incorporate that infor-

mation into the model itself. To resolve this issue, you might need to 

add an independent variable to the model that captures this infor-

mation. Analysts commonly use distributed lag models, which use 

both current values of the dependent variable and past values of inde-

pendent variables. 

 

For the sales model above, we need to add variables that explains the 

cyclical pattern.  

 

Using regression analysis to analyze time ordered data is possible, but 

it has a number of unique challenges, which go beyond the scope of 

this introductory book. You can also try fitting a time series model 

rather than a regression model. 

 

Serial correlation reduces the precision of OLS estimates. 

OLS Assumption 5: The error term has a constant variance (no 
heteroscedasticity) 

The variance of the errors should be consistent for all observations. 

In other words, the variance does not change for each observation or 

for a range of observations. This preferred condition is known as ho-

moscedasticity (same scatter). If the variance changes, we refer to 

that as heteroscedasticity (different scatter). 

 

The easiest way to check this assumption is to create a residuals versus 

fitted values plot. On this type of graph, heteroscedasticity appears as 

a cone shape where the spread of the residuals increases in one direc-

tion. In the graph below, the spread of the residuals increases as the 

fitted values increase. 
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Heteroscedasticity reduces the precision of the estimates in OLS lin-

ear regression. I’ll cover heteroscedasticity and potential solutions in 

more detail in the next section. 

 

Note: When assumption 4 (no autocorrelation) and 5 (homoscedas-

ticity) are both true, statisticians say that the error term is independ-

ent and identically distributed (IID) and refer to them as spherical 

errors. 

OLS Assumption 6: No independent variable is a perfect linear 
function of other explanatory variables 

Perfect correlation occurs when two variables have a Pearson’s corre-

lation coefficient of +1 or -1. When one of the variables changes, the 

other variable also changes by a completely fixed proportion. The two 

variables move in unison. 

 

Perfect correlation suggests that two variables are different forms of 

the same variable. For example, games won and games lost have a per-

fect negative correlation (-1). The temperature in Fahrenheit and Cel-

sius have a perfect positive correlation (+1). 
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Ordinary least squares cannot distinguish one variable from the other 

when they are perfectly correlated. If you specify a model that con-

tains independent variables with perfect correlation, your statistical 

software can’t fit the model, and it will display an error message. You 

must remove one of the variables from the model to proceed. 

 

Perfect correlation is a show stopper. However, your statistical soft-

ware can fit OLS regression models with imperfect but strong rela-

tionships between the independent variables. If these correlations are 

high enough, they can cause problems. Statisticians refer to this con-

dition as multicollinearity, and it reduces the precision of the esti-

mates in OLS linear regression. 

 

You’ll learn more about multicollinearity later in this chapter. 

OLS Assumption 7: The error term is normally distributed (op-
tional) 

OLS does not require that the error term follows a normal distribution 

to produce unbiased estimates with the minimum variance. However, 

satisfying this assumption allows you to perform statistical hypothesis 

testing and generate reliable confidence intervals and prediction in-

tervals. 

 

The easiest way to determine whether the residuals follow a normal 

distribution is to assess a normal probability plot. If the residuals fol-

low the straight line on this type of graph, they are normally distrib-

uted. They look good on the plot below! 
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If you need to obtain p-values for the coefficient estimates and the 

overall test of significance, check this assumption! 

 

I’m often asked whether OLS assumes that the variables themselves 

are normally distributed. No, it does not. This assumption refers to the 

residuals and not the distribution of the variables. In fact, the depend-

ent variable I use for the model in Chapter 10 is moderately skewed, 

yet the residuals follow a normal distribution. These residuals are 

shown in the normal probability plot above. However, if the depend-

ent variable is very non-normal, it might be more difficult for the re-

siduals to satisfy this assumption. In this case, using a data 

transformation can help. 

Why You Should Care About the Classical OLS Assumptions 

In a nutshell, your linear model should produce residuals that have a 

mean of zero, have a constant variance, and are not correlated with 

themselves or other variables. The residual plots should not display 

any patterns. 
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If these assumptions hold true, the OLS procedure creates the best 

possible estimates. In statistics, estimators that produce unbiased es-

timates that have the smallest variance are referred to as being “effi-

cient.” Efficiency is a statistical concept that compares the quality of 

the estimates calculated by different procedures while holding the 

sample size constant. OLS is the most efficient linear regression esti-

mator when the assumptions hold true. 

 

Another benefit of satisfying these assumptions is that as the sample 

size increases to infinity, the coefficient estimates converge on the ac-

tual population parameters. 

 

If your error term also follows the normal distribution, you can safely 

use hypothesis testing to determine whether the independent varia-

bles and the entire model are statistically significant. You can also pro-

duce reliable confidence intervals and prediction intervals. 

 

Knowing that you’re maximizing the value of your data by using the 

most efficient methodology to obtain the best possible esti-

mates should set your mind at ease. It’s worthwhile checking these 

OLS assumptions! The best way to assess them is by using residual 

plots.  

Next Steps 

Now, we’ll look into heteroscedasticity and multicollinearity in more 

detail and explore solutions. 

Heteroscedasticity 

Heteroscedasticity means unequal scatter. In regression analysis, we 

talk about heteroscedasticity in the context of the residuals or error 

term. Specifically, heteroscedasticity is a systematic change in the 

spread of the residuals over the range of measured values. Heterosce-

dasticity is a problem because ordinary least squares (OLS) regression 

assumes that all residuals are drawn from a population that has a con-

stant variance (homoscedasticity). 
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To satisfy the regression assumptions and be able to trust the results, 

the residuals should have a constant variance. In this section, I show 

you how to identify heteroscedasticity, explain what produces it, the 

problems it causes, and work through an example to show you several 

solutions. 

How to Identify Heteroscedasticity with Residual Plots 

Let’s start with how you detect heteroscedasticity because that is easy. 

 

Heteroscedasticity produces a distinctive fan or cone shape in resid-

ual plots. To check for heteroscedasticity, you need to assess the re-

siduals by fitted value plots specifically. Typically, the telltale pattern 

for heteroscedasticity is that as the fitted values increases, the vari-

ance of the residuals also increases. 

 

You can see an example of this cone shaped pattern in the residuals 

by fitted value plot below. Note how the vertical range of the residuals 

increases as the fitted values increases. Later in this section, we’ll re-

turn to the model that produces this plot when we try to fix the prob-

lem and produce homoscedasticity. 
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What Causes Heteroscedasticity? 

Heteroscedasticity, also spelled heteroskedasticity, occurs more often 

in datasets that have a large range between the largest and smallest 

observed values. While there are numerous reasons why heterosce-

dasticity can exist, a common explanation is that the error variance 

changes proportionally with a factor. This factor might be a variable 

in the model. 

 

In some cases, the variance increases proportionally with this factor 

but remains constant as a percentage. For instance, a 10% change in a 

number such as 100 is much smaller than a 10% change in a large num-

ber such as 100,000. In this scenario, you expect to see larger residuals 

associated with higher values. That’s why you need to be careful when 

working with wide ranges of values! 

 

Because large ranges are associated with this problem, some types of 

models are more prone to heteroscedasticity. 

Heteroscedasticity in cross-sectional studies 

Cross-sectional studies often have very small and large values and, 

thus, are more likely to have heteroscedasticity. For example, a cross-

sectional study that involves the United States can have very low val-

ues for Delaware and very high values for California. Similarly, cross-

sectional studies of incomes can have a range that extends from pov-

erty to billionaires. 

Heteroscedasticity in time-series models 

A time-series model can have heteroscedasticity if the dependent var-

iable changes significantly from the beginning to the end of the series. 

For example, if we model the sales of DVD players from their first 

sales in 2000 to the present, the number of units sold will be vastly 

different. Additionally, if you’re modeling time series data and meas-

urement error changes over time, heteroscedasticity can be present 

because regression analysis includes measurement error in the error 

term. For example, if measurement error decreases over time as better 
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methods are introduced, you’d expect the error variance to diminish 

over time as well. 

Example of heteroscedasticity 

Let’s take a look at a classic example of heteroscedasticity. If you 

model household consumption based on income, you’ll find that the 

variability in consumption increases as income increases. Lower in-

come households are less variable in absolute terms because they need 

to focus on necessities and there is less room for different spending 

habits. Higher income households can purchase a wide variety of lux-

ury items, or not, which results in a broader spread of spending habits. 

Pure versus impure heteroscedasticity 

You can categorize heteroscedasticity into two general types. 

 

• Pure heteroscedasticity refers to cases where you specify the 

correct model and yet you observe non-constant variance in 

the residual plots. 

• Impure heteroscedasticity refers to cases where you incor-

rectly specify the model, and that causes the non-constant 

variance. When you leave an important variable out of a 

model, the omitted effect is absorbed into the error term. If 

the effect of the omitted variable varies throughout the ob-

served range of data, it can produce the telltale signs of heter-

oscedasticity in the residual plots. 

 

When you observe heteroscedasticity in the residual plots, it is im-

portant to determine whether you have pure or impure heteroscedas-

ticity because the solutions are different. If you have the impure form, 

you need to identify the important variable(s) that have been left out 

of the model and refit the model with those variables. For the remain-

der of this section, I talk about the pure form of heteroscedasticity. 

 

The causes for heteroscedasticity vary widely by subject-area. If you 

detect heteroscedasticity in your model, you’ll need to use your 
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expertise to understand why it occurs. Often, the key is to identify the 

proportional factor that is associated with the changing variance. 

What Problems Does Heteroscedasticity Cause? 

As I mentioned earlier, linear regression assumes that the spread of 

the residuals is constant across the plot. Anytime that you violate an 

assumption, there is a chance that you can’t trust the statistical results. 

 

Why fix this problem? There are two big reasons why you want ho-

moscedasticity: 

 

• While heteroscedasticity does not cause bias in the coeffi-

cient estimates, it does make them less precise. Lower preci-

sion increases the likelihood that the coefficient estimates are 

further from the correct population value. 

• Heteroscedasticity tends to produce p-values that are smaller 

than they should be. This effect occurs because heteroscedas-

ticity increases the variance of the coefficient estimates but 

the OLS procedure does not detect this increase. Conse-

quently, OLS calculates the t-values and F-values using an un-

derestimated amount of variance. This problem can lead you 

to conclude that a model term is statistically significant when 

it is actually not significant. 

 

If you see the characteristic fan shape in your residual plots, what 

should you do? Read on! 

How to Fix Heteroscedasticity 

If you can figure out the reason for the heteroscedasticity, you might 

be able to correct it and improve your model. I’ll show you three com-

mon approaches for turning heteroscedasticity into homoscedasticity. 

 

To illustrate these solutions, we’ll use an example cross-sectional 

study to model the number of automobile accidents by the population 

of towns and cities. These data are fictional, but they correctly 
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illustrate the problem and how to resolve it. You can download the 

CSV data file to try it yourself: Heteroscedasticity. We’ll use Accident 

as the dependent variable and Population for the independent varia-

ble. 

 

Imagine that we just fit the model and produced the residual plots. 

Typically, you see heteroscedasticity in the residuals by fitted values 

plot that I showed earlier in this section. The fan shape in that plot 

indicates we have heteroscedasticity. 

 

Cross-sectional studies have a larger risk of residuals with non-con-

stant variance because of the larger disparity between the largest and 

smallest values. For our study, imagine the huge range of populations 

from towns to the major cities! 

 

Generally speaking, you should identify the source of the non-con-

stant variance to resolve the problem. A good place to start is a varia-

ble that has a large range. 

 

We’ve detected heteroscedasticity, now what can we do about it? 

There are various methods for resolving this issue. I’ll cover three 

methods that I list in my order of preference. My preference is based 

on minimizing the amount of data manipulation. You might need to 

try several approaches to see which one works best. These methods 

are appropriate for pure heteroscedasticity but are not necessarily 

valid for the impure form. 

Redefining the variables 

If your model is a cross-sectional model that includes large differences 

between the sizes of the observations, you can find different ways to 

specify the model that reduces the impact of the size differential. To 

do this, change the model from using the raw measure to using rates 

and per capita values. Of course, this type of model answers a slightly 

different kind of question. You’ll need to determine whether this ap-

proach is suitable for both your data and what you need to learn. 

https://statisticsbyjim.com/wp-content/uploads/2017/08/Heteroscedasticity.csv
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I prefer this method when it is appropriate because it involves the 

least amount of tinkering with the original data. You adjust only the 

specific variables that need to be changed in a manner that often 

makes sense. Indeed, this practice forces you to think about different 

ways to specify your model, which frequently improves it beyond just 

removing heteroscedasticity. 

 

For our original model, we were using population to predict the num-

ber of accidents. If you think about it, it isn’t surprising that larger cit-

ies have more accidents. That’s not particularly enlightening. 

 

However, we can change the model so that we use population to pre-

dict the accident rate. This approach discounts the impact of scale and 

gets to the underlying behavior. Let’s try this with our example data 

set. I’ll use Accident Rate as the dependent variable and Population as 

the independent variable. The residual plot is below. 

 

 
 

The residuals by fitted value plot looks better. If it weren’t for a few 

pesky values in the very high range, it would be useable. If this 
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approach had produced homoscedasticity, I would stick with this so-

lution and not use the following methods. 

Weighted least squares regression 

Weighted least squares regression is a method that assigns each data 

point a weight based on the variance of its fitted value. The idea is to 

give small weights to observations associated with higher variances to 

shrink their squared residuals. Weighted regression minimizes the 

sum of the weighted squared residuals. When you use the correct 

weights, heteroscedasticity is replaced by homoscedasticity. 

 

I prefer this approach somewhat less than redefining the variables. For 

one thing, weighted regression involves more data manipulation be-

cause it applies the weights to all variables. It’s also less intuitive. And, 

if you skip straight to this, you might miss the opportunity to specify 

a more meaningful model by redefining the variables. 

 

For our data, we know that higher populations are associated with 

higher variances. Consequently, we need to assign lower weights to 

observations of large populations. Finding the theoretically correct 

weight can be difficult. However, when you can identify a variable 

that is associated with the changing variance, a common approach is 

to use the inverse of that variable as the weight. In our case, the 

Weight column in the dataset equals 1 / Population. 

 

I’ll go back to using Accidents as the dependent variable and Popula-

tion as the independent variable. However, I’ll tell the software to per-

form weighted regression and apply the column of weights. The 

residual plot is below. For weighted regression, it is important to as-

sess the standardized residuals because only that type of residual will 

show us that weighted regression fixed the heteroscedasticity. 
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This residual plot looks great! The variance of the residuals is constant 

across the full range of fitted values. Homoscedasticity! 

Transform the dependent variable 

I always save transforming the data for the last resort because it in-

volves the most manipulation. It also makes interpreting the results 

very difficult because the original units of your data are gone. The idea 

is that you transform your original data into different values that pro-

duce good looking residuals. If nothing else works, try a transfor-

mation to produce homoscedasticity. You’ll learn more about 

transformations later in this chapter. For now, consider this a sneak 

preview! 

 

I’ll refit the original model but use a Box-Cox transformation on the 

dependent variable. 
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As you can see, the data transformation didn’t produce homoscedas-

ticity in this dataset. That’s good because I didn’t want to use this ap-

proach anyway! We’ll stick with the weighted regression model. 

 

Keep in mind that there are many different reasons for heteroscedas-

ticity. Identifying the cause and resolving the problem in order to pro-

duce homoscedasticity can require extensive subject-area knowledge. 

In most cases, remedial actions for severe heteroscedasticity are nec-

essary. However, if your primary goal is to predict the total amount of 

the dependent variable rather than estimating the specific effects of 

the independent variables, you might not need to correct non-con-

stant variance. 

Multicollinearity 

Multicollinearity occurs when independent variables in a regression 

model are correlated. This correlation is a problem because independ-

ent variables should be independent. If the degree of correlation be-

tween variables is high enough, it can cause problems when you fit the 

model and interpret the results. 
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In this section, I highlight the problems that multicollinearity can 

cause, show you how to test your model for it, and highlight some 

ways to resolve it. In some cases, multicollinearity isn’t necessarily a 

problem, and I’ll show you how to make this determination. I’ll work 

through an example dataset which contains multicollinearity to bring 

it all to life! 

Why is Multicollinearity a Potential Problem? 

A key goal of regression analysis is to isolate the relationship between 

each independent variable and the dependent variable. The interpre-

tation of a regression coefficient is that it represents the mean change 

in the dependent variable for each 1 unit change in an independent 

variable when you hold all of the other independent variables constant. 

That last portion is crucial for our discussion about multicollinearity. 

 

The idea is that you can change the value of one independent variable 

and not the others. However, when independent variables are corre-

lated, it indicates that changes in one variable are associated with 

shifts in another variable. The stronger the correlation, the more dif-

ficult it is to change one variable without changing another. It be-

comes difficult for the model to estimate the relationship between 

each independent variable and the dependent variable independently 

because the independent variables tend to change in unison. 

 

There are two basic kinds of multicollinearity: 

 

• Structural multicollinearity: This type occurs when we cre-

ate a model term using other terms. In other words, it’s a by-

product of the model that we specify rather than being 

present in the data itself. For example, if you square term X to 

model curvature, clearly there is a correlation between X and 

X2. 

• Data multicollinearity: This type of multicollinearity is pre-

sent in the data itself rather than being an artifact of our 
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model. Observational experiments are more likely to exhibit 

this kind of multicollinearity. 

What Problems Do Multicollinearity Cause? 

Multicollinearity causes the following two basic types of problems: 

 

• The coefficient estimates can swing wildly based on which 

other independent variables are in the model. The coeffi-

cients become very sensitive to small changes in the model. 

• Multicollinearity reduces the precision of the estimate coeffi-

cients, which weakens the statistical power of your regression 

model. You might not be able to trust the p-values to identify 

independent variables that are statistically significant. 

 

Imagine you fit a regression model and the coefficient values, and 

even the signs, change dramatically depending on the specific varia-

bles that you include in the model. It’s a disconcerting feeling when 

slightly different models lead to very different conclusions. You don’t 

feel like you know the actual effect of each variable! 

 

Now, throw in the fact that you can’t necessarily trust the p-values to 

select the independent variables to include in the model. This problem 

makes it difficult both to specify the correct model and to justify the 

model if many of your p-values are not statistically significant. 

 

As the severity of the multicollinearity increases so do these problem-

atic effects. However, these issues affect only those independent var-

iables that are correlated. You can have a model with severe 

multicollinearity and yet some variables in the model can be com-

pletely unaffected. 

 

The regression example with multicollinearity that I work through 

later on illustrates these problems in action. 



Regress ion  Analys is :  An Intu it ive  Gu ide  

223 

Do I Have to Fix Multicollinearity? 

Multicollinearity makes it hard to interpret your coefficients, and it 

reduces the power of your model to identify independent variables 

that are statistically significant. These are definitely serious problems. 

However, the good news is that you don’t always have to find a way 

to fix multicollinearity. 

 

The need to reduce multicollinearity depends on its severity and your 

primary goal for your regression model. Keep the following three 

points in mind: 

 

1. The severity of the problems increases with the degree of the 

multicollinearity. Therefore, if you have only moderate mul-

ticollinearity, you may not need to resolve it. 

2. Multicollinearity affects only the specific independent varia-

bles that are correlated. Therefore, if multicollinearity is not 

present for the independent variables that you are particu-

larly interested in, you may not need to resolve it. Suppose 

your model contains the experimental variables of interest 

and some control variables. If high multicollinearity exists for 

the control variables but not the experimental variables, then 

you can interpret the experimental variables without prob-

lems. 

3. Multicollinearity affects the coefficients and p-values, but it 

does not influence the predictions, precision of the predic-

tions, and the goodness-of-fit statistics. If your primary goal is 

to make predictions, and you don’t need to understand the 

role of each independent variable, you don’t need to reduce 

severe multicollinearity. 

 

Over the years, I’ve found that many people are incredulous over the 

third point, so here’s a reference! (Neter, Kutner, Nachtsheim, & Was-

serman, 1996) 
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The fact that some or all predictor variables are correlated among 
themselves does not, in general, inhibit our ability to obtain a good 
fit nor does it tend to affect inferences about mean responses or pre-
dictions of new observations. —Applied Linear Statistical Models, 
p289, 4th Edition. 

You can use the fact that multicollinearity affects p-values but not R-

squared to detect its presence. If adding a particular variable to the 

model causes R-squared to increase notably, but that variable is not 

statistically significant, you might be seeing the significance masking 

effects of multicollinearity. However, VIFs are a more direct way to 

detect multicollinearity. 

Testing for Multicollinearity with Variance Inflation Factors 
(VIFs) 

If you can identify which variables are affected by multicollinearity 

and the strength of the correlation, you’re well on your way to deter-

mining whether you need to fix it. Fortunately, there is a very simple 

test to assess multicollinearity in your regression model. The variance 

inflation factor (VIF) identifies correlation between independent var-

iables and the strength of that correlation. 

 

Statistical software calculates a VIF for each independent variable. 

VIFs start at 1 and have no upper limit. A value of 1 indicates that 

there is no correlation between this independent variable and any oth-

ers. VIFs between 1 and 5 suggest that there is a moderate correlation, 

but it is not severe enough to warrant corrective measures. VIFs 

greater than 5 represent critical levels of multicollinearity where the 

coefficients are poorly estimated, and the p-values are questionable. 

 

Use VIFs to identify correlations between variables and determine the 

strength of the relationships. Most statistical software can display 

VIFs for you. Assessing VIFs is particularly important for observa-

tional studies because these studies are more prone to having multi-

collinearity. 
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Multicollinearity Example: Predicting Bone Density in the Fe-
mur 

This regression example uses a subset of variables that I collected for 

an experiment. In this example, I’ll show you how to detect multicol-

linearity as well as illustrate its effects. I’ll also show you how to re-

move structural multicollinearity. You can download the CSV data 

file: MulticollinearityExample. 

 

I’ll use regression analysis to model the relationship between the in-

dependent variables (physical activity, body fat percentage, weight, 

and the interaction between weight and body fat) and the dependent 

variable (bone mineral density of the femoral neck). 

 

Here are the regression results: 

 

 
 

These results show that Weight, Activity, and the interaction between 

them are statistically significant. The percent body fat is not 

https://statisticsbyjim.com/wp-content/uploads/2017/04/MulticollinearityExample.csv
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statistically significant. However, the VIFs indicate that our model has 

severe multicollinearity for some of the independent variables. 

 

Notice that Activity has a VIF near 1, which shows that multicolline-

arity does not affect it and we can trust this coefficient and p-value 

with no further action. However, the coefficients and p-values for the 

other terms are suspect! 

 

Additionally, at least some of the multicollinearity in our model is the 

structural type. We’ve included the interaction term of body fat * 

weight. Clearly, there is a correlation between the interaction term 

and both of the main effect terms. The VIFs reflect these relationships. 

 

I have a neat trick to show you. There’s a method to remove this type 

of structural multicollinearity quickly and easily! 

Center the Independent Variables to Reduce Structural Multi-
collinearity 

In our model, the interaction term is at least partially responsible for 

the high VIFs. Both higher-order terms and interaction terms produce 

multicollinearity because these terms include the main effects. Cen-

tering the variables is a simple way to reduce structural multicolline-

arity. 

 

Centering the variables involves calculating the mean for each contin-

uous independent variable and then subtracting the mean from all ob-

served values of that variable. Then, use these centered variables in 

your model. Most statistical software allows you to fit your model us-

ing centered variables. 

 

There are other standardization methods, but the advantage of just 

subtracting the mean is that the interpretation of the coefficients re-

mains the same. The coefficients continue to represent the mean 

change in the dependent variable given a 1 unit change in the inde-

pendent variable. 
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In the worksheet, I’ve included the centered independent variables in 

the columns with an S added to the variable names. 

Regression with Centered Variables 

Let’s fit the same model but using the centered independent variables. 

 

 
 

The most apparent difference is that the VIFs are all down to satisfac-

tory values; they’re all less than 5. By removing the structural multi-

collinearity, we can see that there is some multicollinearity in our 

data, but it is not severe enough to warrant further corrective 

measures. 

 

Removing the structural multicollinearity produced other notable dif-

ferences in the output that we’ll investigate. 
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Comparing Regression Models to Reveal Multicollinearity Ef-
fects 

We can compare two versions of the same model, one with high mul-

ticollinearity and one without it. This comparison highlights its ef-

fects. 

 

The first independent variable we’ll look at is Activity. This variable 

was the only one to have almost no multicollinearity in the first 

model. Compare the Activity coefficients and p-values between the 

two models and you’ll see that they are the same (coefficient = 

0.000022, p-value = 0.003). This illustrates how only the variables that 

are highly correlated are affected by its problems. 

 

Let’s look at the variables that had high VIFs in the first model. The 

standard error of the coefficient measures the precision of the esti-

mates. Lower values indicate more precise estimates. The standard er-

rors in the second model are lower for both %Fat and Weight. 

Additionally, %Fat is significant in the second model even though it 

wasn’t in the first model. Not only that, but the sign for %Fat has 

changed from positive to negative! 

 

The lower precision, switched signs, and a lack of statistical signifi-

cance are typical problems associated with multicollinearity. 

 

Now, take a look at the Summary of Model tables for both models. 

You’ll notice that the standard error of the regression (S), R-squared, 

adjusted R-squared, and predicted R-squared are all identical. As I 

mentioned earlier, multicollinearity doesn’t affect the predictions or 

goodness-of-fit. If you just want to make predictions, the model with 

severe multicollinearity is just as good! 

How to Deal with Multicollinearity 

I showed how there are a variety of situations where you don’t need 

to deal with it. The multicollinearity might not be severe, it might not 

affect the variables you’re most interested in, or maybe you just need 
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to make predictions. Or, perhaps it’s just structural multicollinearity 

that you can get rid of by centering the variables. 

 

But, what if you have severe multicollinearity in your data and you 

find that you must deal with it? What do you do then? Unfortunately, 

this situation can be difficult to resolve. There are a variety of meth-

ods that you can try, but each one has some drawbacks. You’ll need to 

use your subject-area knowledge and factor in the goals of your study 

to pick the solution that provides the best mix of advantages and dis-

advantages. 

 

The potential solutions include the following: 

 

• Remove some of the highly correlated independent variables. 

• Linearly combine the independent variables, such as adding 

them together. 

• Perform an analysis designed for highly correlated variables, 

such as principal components analysis or partial least squares 

regression. 

• LASSO and Ridge regression are advanced forms of regres-

sion analysis that are beyond the scope of this book but they 

can handle multicollinearity. If you know how to perform lin-

ear least squares regression, you’ll be able to handle these 

analyses with just a little additional study. 

 

As you consider a solution, remember that all of these have down-

sides. If you can accept less precise coefficients, or a regression model 

with a high R-squared but hardly any statistically significant variables, 

then not doing anything about the multicollinearity might be the best 

solution. 

 

If you are particularly interested in the estimating the effects of your 

independent variables, I’d recommend trying LASSO or Ridge regres-

sion. These analyses allow you specify the model as you would in OLS, 

and they produce estimates for all terms in your model. The other 
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methods involve reducing your data down to fewer terms or compo-

nents, which does not allow the analyses to produce estimates for all 

your independent variables. However, be aware that LASSO and 

Ridge regression introduce a small amount of bias into the estimates 

to reduce the variance that multicollinearity inflates. 

Next Steps 

Up until now, we’ve been looking at assumptions that apply to the da-

taset and residuals as a whole. Now, we’ll shift gears and focus on iden-

tifying individual observations that can adversely affect the model. 

Unusual Observations 

In this section, I’ll cover observations that have unusual values. Un-

fortunately, an individual observation that is unusual can have a det-

rimental impact on your model. Back in chapter 2, I explained how the 

fact that OLS uses squared residual makes it susceptible to unusual 

values. This problem can affect coefficients, p-values, predicted val-

ues, and R-squared. Consequently, analysts must know how to iden-

tify these problematic observations, assess their influence, and know 

when it is appropriate to remove observations from the model fitting 

process. 

Observations in Regression 

In regression, observations are multifaceted because each one con-

tains a set of values for the dependent variable and all the independent 

variables. These values are all the properties that you measure for a 

single subject, item, transaction, etc., and then use in the regression 

model.  

 

In a datasheet, an observation is a row of data. For example, an obser-

vation might include values for bone density for the dependent varia-

ble, and activity level and weight for the independent variable. For 

this model, these three values comprise an observation.  
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Because these observations have multiple characteristics, there are 

multiple ways they can be unusual. In the set of values for an observa-

tion, an individual value, or a combination of values, can cause an ob-

servation to be unusual. Furthermore, these observations fit into the 

larger framework of the regression model. Consequently, an observa-

tion can be unusual within the context of one model but not another.  

 

Just because an observation is unusual doesn’t necessarily indicate it 

has a significant impact on the model, or that it is a problem. Those 

are separate questions. Consequently, here’s the process that we’ll use 

to assess individual observations.  

 

1. Identify unusual observations. “Unusual observations” is a 

broad term that covers several ways of being unusual.  

2. Identify influential observations. Observations can be unu-

sual, but do they have a disproportionately large impact on 

the model? If so, they are influential observations.  

3. Determine whether influential observations are detrimental. 

Unusual Observations 

The first step in our process is to identify unusual observations. There 

are two primary modes in which an observation can be unusual—out-

liers and high leverage observations. Correspondingly, there are dif-

ferent methods for detecting them.  

 

A key point to remember is that unusual observations are not inher-

ently bad. Some of them don’t have a negative impact on the model at 

all. After we identify the unusual observations, we’ll need to deter-

mine if they have a detrimental influence on the model 

 

Let’s learn how observations can be unusual and how to identify them! 

Outliers (Unusual Y-values) 

Outlier has a very specific definition in regression analysis. Outliers 

are observations that don’t fit the model well. For these observations, 
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the model’s descriptions of the relationships between the independ-

ent variables and the dependent variable do a poor job of predicting 

the observed outcome. In other words, given an observation’s set of 

values for the independent variables, unusual observations have a par-

ticularly large difference between the predicted value and the ob-

served value of the dependent variable. In other words, outliers are 

observations that have unusually large residuals. They don’t fit the 

overall pattern of the data. 

 

Using the bone density model (Bone Density = Activity + Weight), 

suppose we have observed values of A for activity level and B for 

weight. When we plug these values into the model equation, it pre-

dicts that bone density will be value C. If a subject’s measured bone 

density for that observation is not close to the fitted value of C, then 

the model fits this observation poorly. Classification as an outlier de-

pends on the magnitude of the residual.  

 

Let’s look at this in graphical form. We’ll use an example with one 

independent variable (Input) and the dependent variable (Output) so 

we can use a fitted line plot. In the graph below, you can see how most 

of the points follow the fitted line for the model. However, there is 

one point that does not fit the model.  

 

On the graph, the circled point clearly does not fit the model well. 

However, you can see that the Input value (~14) for this observation 

isn’t unusual at all because the other Input values range from 10 

through 20 on the X-axis. Also, notice how the Output value (~50) is 

similarly within the range of values on the Y-axis (10 – 60). Neither 

the Input nor the Output values themselves are unusual in this dataset. 

Instead, it’s an outlier because it doesn’t fit the model. For this obser-

vation, the model predicts an Output value of approximately 35. The 

observed value is not close to that—which produces a large residual! 

It sure looks like an outlier! 
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It’s easy identifying this outlier using a fitted line plot because we have 

only one independent variable. However, when you have more than 

one independent variable, you can’t use this plot. In that case, you can 

use residual plots, as shown below. 
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Or, use the residual values themselves. However, there is a different 

type of residual that is easier to use for identifying outliers than the 

raw residuals we assessed throughout this chapter. Consider that a re-

sidual of 10 might be considered small in one model but very large in 

another. It depends on the units of measurement, the variability in the 

data, and the overall fit of the model. How do you determine whether 

a residual of 10 is large? 

 

It’s much easier to use internally studentized residuals, also known as 

standardized residuals. Studentized (standardized) residuals take the 

raw residual value and divide it by the standard deviation of the resid-

uals. Consequently, studentized residuals tell you how many standard 

deviations the observed value falls from the fitted value. For example, 

if the raw residual is 9 and its standard deviation is 3, the standardized 

residual equals 3.  

 

When you see a studentized residual of 3, you know it’s a very large 

residual while adjusting for your specific data and model fit. 

 

Typically, a standardized residual of +/- 3, or more, is a common 

benchmark for identifying large residuals that you should investigate. 

These residuals are at least three standard deviations away from the 

predicted value. When there are no underlying problems, you’d ex-

pect approximately 1 out of every 100 observations to have standard-

ized residuals that are at least as extreme as +/- 3. High studentized 

residuals don’t necessarily indicate that there is a problem, but you 

should look into them. 

 

The statistical software that I use (Minitab), flags residuals that have 

standardized residuals that are more than +/- 2 standard deviations 

from the fitted values. It’s more cautious. Approximately 1 in 20 ob-

servations will have flagged residuals using this criterion when there 

are no underlying problems.  
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The output below corresponds to the data in the fitted line plot above. 

Observation 8 is the outlier in the plot. The output indicates that the 

raw residual (Resid) of 16.23 is 3.63 standard deviations above the 

mean residual. 

 

 
 

Keep in mind that flagged residuals are not necessarily problematic 

and it is normal to have unusual observations when there are no prob-

lems. For instance, using Minitab’s criteria, you’d expect 5% of your 

observations to have a large standardized residual when everything is 

fine. 

 

This measure helps you identify large residuals using a statistical 

measure. However, you’ll have to investigate to determine whether 

these outliers represent a problem. We’ll get to that later in this chap-

ter. 

High Leverage Observations (Unusual X-values) 

As we saw, outliers have unusual Y-values. High leverage observations 

are unusual in a different manner. These points have an unusual value 

for an independent variable, or an unusual X-value. They’re called lev-

erage points because a single observation can dramatically affect the 

model. 

 

Let’s go back to the example bone density model from the previous 

section. This model has two independent variables, activity level and 

weight. If a subject is an elite athlete, she has an activity level that is 

extremely high, much higher than the other subjects. An observation 

of this subject is a high leverage point because it has a very unusual X-

value for activity. This observation has the potential of dramatically 
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changing the model. However, having a large impact is only a possi-

bility, not a definite. 

 

Let’s take a look at this graphically. In the graph below, there is a large 

gap between the x-value. 

 

 
 

Graphs are great for detecting high leverage points. When you have 

one independent variable, you can use a fitted line plot as we did 

above. When you have more than one independent variable, you can 

plot each independent variable in its own histogram or boxplot, or use 

residual plots, to look for unusual values. The histogram and the re-

sidual plot below display the leverage point in the fitted line plot 

above. 
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As with outliers, you can use a statistical measure to identify high lev-

erage points— hii. This statistic represents the distance between each 

x-value and the mean of all x-values. These values range from 0 to 1 

and add up to the number of regression coefficients plus the constant.  
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A common guideline states that a hii value which is greater than 3 

times the average hii value represents a high leverage point that you 

should investigate. Fortunately, you don’t need to do all this math. 

Your statistical software can do it for you and flag high leverage 

points. Minitab statistical software identifies these points as shown be-

low. You just need to understand what it means—it’s an extreme x-

value. In this case, observation 8 is the leverage point that the plot 

displays. Minitab does not display the hii values by default, but that’s 

how it identifies leverage points. 

 

 
 

Remember, high leverage points are defined entirely by the values of 

the independent variables (x-values) and they only have a potential 

for dramatically impacting the model. Whether these points actually 

impact the model depends on the dependent, or Y, value that is asso-

ciated with the unusual X value. 

 

Next, we’ll determine whether unusual observations are actually in-

fluential points. 

Influential Points 

Not all unusual observations have much of an impact on the model. 

It’s up to the analyst to determine whether unusual observations ac-

tually affect the model greatly. If an observation does have that im-

pact, it is an influential point. 

 

So, how do you determine whether an unusual observation is an influ-

ential point? A simple method is to fit the model with and without the 
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unusual observations and see how the models differ. Do the coeffi-

cients, p-values, and goodness-of-fit measures change by much?  

 

Additionally, there are statistical measures that assess the impact that 

an observation has on regression models. The following are two prin-

cipal measures of an observation’s influence: 

 

• Cook's distance (D): The distance between the coefficients 

calculated with and without an observation. Higher values 

represent more influence.  

• Difference in fits (DFITS): Approximately the number of 

standard deviations that the fitted values change when an ob-

servation is removed from the dataset. Higher values repre-

sent more influence. 

 

Your software can calculate these measures for each observation in 

your dataset when you fit a model. At a glance, you can see which ob-

servations are influential points. Each measure has its own guideline 

for when an observation is an influential point.  

 

For Cook’s distance, a D between 0.5 and 1 might be influential and it 

is worth investigating. D values greater than 1, or at least notably dif-

ferent from all other values, are extremely likely to be influential. 

 

For difference in fits, influential points have DFITS values greater 

than . 

 

Where n equals the number of observations and p equals the number 

of terms including the constant. 

 

Both of these measures statistically identify influential points, but you 

should investigate them to be sure they impact the model. Fit the 

model without these points to determine how the model changes. 
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Instead of using Cook’s distance and DFITS, I’ll usually just fit the 

model with and without outliers and high leverage points to see how 

the models compare. That approach lets me assess the differences be-

tween the models rather than relying solely on the statistical measures 

of influence. If you use the statistical method for identifying influen-

tial points (Cook’s and DFITS), you’ll still need to perform that model 

comparison. 

 

You know how to identify unusual observations and how to determine 

whether they are influential points. Next, I’ll give you some guidelines 

and tips for managing these points when you find them! 

Managing Unusual Observations and Influential Points 

The process we’re following is to first identify unusual observations, 

and then determine whether they are influential points. Now, we’ll 

determine whether any of these are problematic. You might need to 

remove problematic observations from the model. This part of the 

process usually involves subject-area knowledge and double-checking 

data more than statistical measures. The statistical measures can tell 

you whether an observation is unusual and influential—but not 

whether you should remove them from the model.  

 

Let’s first look at the easy things you can check. When you have unu-

sual observations, it’s always a good idea to check for data entry errors 

and all other potential problems with the data in your datasheet. 

When you perform enough analyses, these errors will crop up at some 

point. A number might be entered incorrectly. Or the values can be 

entered on the wrong row.  

 

After you verify that the data are correct, you should determine 

whether an unusual observation is an influential point. Before you get 

too wrapped up in a hairy debate about removing an observation, de-

termine whether it’s an influential point. If an unusual observation has 

only a small impact on the model, determining whether you should 

remove it becomes much less critical. The results are substantially the 
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same either way. However, if an observation is truly unusual and in-

fluential, you’ll need to start asking other types of questions.  

 

Researchers often feel like they need to remove influential observa-

tions from the dataset. However, while that can improve the fit of the 

data, it’s not always a good idea. You’re throwing out potentially val-

uable information and, in the process, potentially biasing the results 

and inflating the appearance of the model’s explanatory power. 

 

To determine whether to remove an observation, you’ll need to assess 

if it appropriately reflects your target population, subject-area, re-

search question, and research methodology. Did anything unusual 

happen while measuring these observations, such as power failures, 

unusual experimental conditions, or anything else out of the norm? Is 

there anything substantially different about the subject being ob-

served whether it’s a person, item, or transaction? Did measurement 

error occur? 

 

For example, in the bone density study I participated in, I noticed an 

outlier in the bone density model. The model didn’t predict her bone 

density well at all. The study’s subject coordinator reminded me that 

the subject has diabetes, which affects bone health. The goal of our 

study was to model bone density in subjects with normal bone growth. 

Consequently, her data were excluded from our analyses because she 

was not a member of our target population. While we excluded her 

data, we retained her as subject because many of her classmates were 

participating in the study and we didn’t want her to feel left out! 

 

Conversely, a point can be unusual and influential, but if there’s no 

identifiable reason to exclude it, it might be best to leave it in the 

model. It might capture valuable information that is part of your study 

area. Leaving these points in can be hard, particularly when it signifi-

cantly reduces the model’s goodness-of-fit! 
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For example, I fit a model that uses historical U.S. Presidential ap-

proval ratings to predict how later historians would ultimately rank 

each President. It turns out a President’s lowest approval ratings pre-

dicts the historian ranks. However, one data point severally affects the 

model. President Truman doesn’t fit the model because he had very 

low approval ratings while he was President, but later historians give 

him a fairly good rank of #6. If I remove that single observation, the 

R-squared increases by over 30 percentage points!  

 

However, there was no justifiable reason to remove that point. While 

it was an oddball, it accurately reflects the potential surprises and un-

certainty inherent in the political system. If I remove it, the model 

makes the process appear more predictable than it actually is. Even 

though this unusual observation is influential, I left it in the model. It’s 

bad practice to remove data points simply to produce a better fitting 

model. 

 

If you decided to remove observations, be sure to document the ex-

cluded data points and explain your reasoning. Another approach is 

to fit the model with and without these observations and discuss the 

differences. Comparing models in this manner is particularly useful 

when you’re unsure about removing an observation and when there 

is substantial disagreement within a group over this question. 

Next Steps 

You’ve seen how different problems with your model can manifest 

themselves in the residuals. Next, I’ll show you a solution that can fix 

a number of these problems.  

Using Data Transformations to Fix Problems 

In this section, I focus on a potential solution for several problems in 

this chapter—data transformations. However, use this solution as the 

last resort. I’ve presented other methods for solving these problems, 

and you should try those first. If those methods don’t work, consider 

transforming your data. 
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Data transformations take the values for a continuous variable, applies 

a function to each value, and converts the entire set of values for the 

variable into a different set of numbers. Analysts transform data that 

do not satisfy the assumptions of an analysis in the hopes that the con-

verted data will meet the assumptions—such as transforming a dataset 

so it follows a normal distribution. Then, the analyst fits a model to 

the transformed data rather than the original data. There are a variety 

of transformation functions you can use, such as using the square root, 

logarithm, power, reciprocal or arcsine. The choice depends on your 

goals and the properties of the data.  

 

For example, the most common transformation is probably the natu-

ral log—which is denoted as log or ln. Here’s how it works. The natural 

log is ex, where e equals ~2.718. When transforming your data using 

the natural log, the software calculates the power by which to raise 

2.718 that produces the original value. The power becomes the trans-

formed value for that original value. Suppose the original value is 10. 

Your software calculates X in the following: 2.718^X = 10. In this case, 

X is the new data point, and it equals 2.302585093 because 

2.7182.302585093 = 10. The software repeats this process for the all the 

values of a variable.  

 

Taking the square root is another common transformation. For exam-

ple, if your original data point is 9, the square root transformed value 

is 3. 

 

In regression, you generally assess assumptions using residual plots. 

Consequently, you’ll often use transformations to make unruly resid-

ual plots behave! Consider using data transformations when your re-

sidual plots display curved patterns, nonconstant variance, or a 

nonnormal distribution. However, for reasons that I discuss later, use 

transformations as the solution of last resort. 
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As an analyst, the process starts by assessing your residual plots and 

identifying the problem in your model. After doing that, there are sev-

eral key questions you must answer. Which variables will you trans-

form? And, which transformation will you use? Answering these 

questions is trial by error to some extent. Like much of the model fit-

ting process, it is an iterative process. Try one transformation on a 

variable, fit the model, check the residual plots, and then try another 

transformation or another variable if necessary.  

Determining which Variables to Transform 

While trial and error are part of the process, understanding the prob-

lem can help you narrow down which variables to transform and 

which transformations to use. You can transform only continuous var-

iables.  

 

Only Independent variable(s): When the model doesn’t correctly fit 

the curvature, the residual plots displays curved patterns. Transform-

ing the independent variable associated with the curvature is a poten-

tial solution. To identify which independent variable to transform, 

plot the residuals by each variable and look for curved patterns. Trans-

formations of the independent variables allow you to model nonlinear 

relationships that you could not otherwise model using linear regres-

sion. I’m using “nonlinear” in the strict statistical sense rather than just 

any type of curved relationship. I showed an example of using a natu-

ral log transformation in Chapter 4. 

 

Only the dependent variable: If your residuals do not follow the nor-

mal distribution or do not have a constant variance, transforming the 

dependent variable might fix the problem. Earlier in this chapter, I 

went through an example of using a transformation to correct non-

constant variance (heteroscedasticity). Additionally, consider trans-

forming your dependent variable when it covers a broad range of val-

ues that extend over several orders of magnitude, or it follows a very 

nonnormal distribution.  
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Both the dependent and independent variables: If you have nonlin-

ear relationships along with nonnormal residuals or residuals with 

non-constant variance, you might need to transform both the depend-

ent and independent variables. In other words, there’s just a lot wrong 

with the model! In chapter 13, I discuss log-log plots and present an 

example, which transforms both the dependent and independent var-

iables. 

Determining which Transformation to Use 

Again, it might require some trial and error because the following 

guidelines don’t always produce the best result. The first step is to de-

termine what other studies have done. Perhaps other researchers have 

already found a good solution for similar data? If so, that is a good 

starting point! 

 

If your residuals are not normal or have unequal variances, try a 

power transformation of the dependent variable. These transfor-

mations involve raising your data points to a power denoted by 

lambda (λ). In other words, the transformed values equal yλ. More on 

these power transformations shortly! 

 

For unequal variances, the natural log, which is one of the power 

transformations, and the reciprocal (1/Y) are good ones to try. 

 

Fortunately, there are several tools you can use to help identify the 

best transformation. Both the Box-Cox transformation and Johnson 

transformation assess families of transformations and attempts to de-

termine the best one for your data. These tools can really help you out 

when you don’t know which transformation to use! 

Box-Cox Transformation 

The Box-Cox transformation assesses a family of power transfor-

mations on Y where the exponent lambda (λ) can range between -5 

and 5. The procedure identifies the optimal power by which to raise 
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your raw data for Y. You cannot use the Box-Cox transformation 

when your data contain zero or negative values. 

 

While lambda can be any value in the range, some values are more 

intuitive to understand, as shown in the table below. 

 

Lambda (λ) Transformation 

2 Y squared 

0.5 Square root of Y 

0 Natural log of Y 

-0.5 1 / square root Y 

-1 1 / Y 

 

Johnson Transformation 

The Johnson transformation uses a different algorithm than the Box-

Cox transformation. This transformation function selects from three 

families of functions by changing their parameters. It is a more pow-

erful transformation than the Box-Cox transformation, and it can usu-

ally find an acceptable transformation. Additionally, you can use the 

Johnson transformation when your data have zero or negative values.  

 

While this transformation is powerful, it is also less intuitive. Typi-

cally, I suggest using the Box-Cox transformation first. If that fails to 

produce a good transformation, then try the Johnson transformation. 

How to Interpret the Results for Transformed Data 

When you transform the data and fit a model, the statistical results 

apply to the transformed data rather than the original data. You de-

scribe the relationship as you would for untransformed data but in-

cluding information about the transformed variable(s).  

 

For example, if there is a positive relationship between Input and Out-

put, but you used a natural log transformation on Output, you’d state 

that there is a positive, linear relationship between Input and the 
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natural log of the Output. In other words, as Input increases, the ex-

pected natural log of the Output also increases.  

 

If you transformed both Input and Output, you state that there is a 

positive, linear relationship between the natural log of Input and the 

natural log of the Output. 

 

In that manner, some aspects of the interpretation remain similar. 

However, be aware that the coefficients, predictions, and prediction 

intervals all correspond to the transformed data. If you graph the re-

sults on a fitted line plot, the line follows the transformed data. Inter-

preting the results is less intuitive! Even the graph, which usually 

brings that data to life, won’t look anything like the real data! For an 

example, see the log-log plot in chapter 13. 

 

You can manually back transform the values (coefficients, predic-

tions, etc.) to obtain them in their natural units. Alternatively, some 

statistical software can back convert the values for you automatically. 

While this is convenient, I always find that it still requires extra work 

to understand what the relationships really look like. Plot the raw data 

in scatterplots to see the untransformed relationships. It can be eye-

opening!  

 

For example, sometimes the transformed relationships appear like 

nice, consistently tight linear fits. However, when you graph the raw 

data, it can be entirely different—such as being sharply curved with a 

dramatically varying tightness of the fit! If you need to transform your 

data, take the extra effort to gain a deep understanding of the relation-

ship in natural units. 

 

Additionally, if you transform the dependent variable, it changes the 

variance structure of the Y-variable and the residuals. Goodness-of-fit 

statistics, such as R-squared and the standard error of the regression 

(S), apply to the transformed data rather than the raw data. Addition-

ally, you can’t compare these statistics between models with 
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untransformed and transformed dependent variables. Furthermore, 

the standard error of the mean is in the units of the transformed vari-

able rather than natural units. You can’t back transform S because it is 

likely to change over the range of the fitted values. 

Use data transformation as a last resort! 

Because of these added interpretation difficulties, use transformations 

as a last resort. If your residuals have curved patterns, are nonnormal, 

or have nonconstant variance, you can use various techniques to re-

solve the problem. Methods other than data transformations are gen-

erally better because they involve specifying a better form of the 

model, such as including an important variable or fitting curvature, 

which fixes the underlying problem. Transforming the data without 

addressing underlying specification errors is akin to sweeping the 

problem beneath the carpet. The underlying problem remains even 

though the residuals look nice! 

 

Don’t get me wrong, in some cases transforming your data is the best 

option. It can help you out. However, only use it when nothing else 

works! 

Cheat Sheet for Detecting and Solving Problems 

Throughout this chapter, you’ve learned about various assumption vi-

olations and other issues that can produce results you can’t trust. 

Here’s a cheat sheet to help you navigate the numerous problems, de-

tection methods, and corrective measures!  
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OLS Potential 

Problem 

Assessment Possible solutions 

Model does not 

adequately fit 

curvature in data. 

Curved pat-

terns in resid-

uals vs 

variables plot  

Use polynomials or 

inverses to fit 

curves using OLS 

 

Use Nonlinear re-

gression to fit a 

wider variety of 

curves 

 

Data transformation 

(e.g., log) 

Heteroscedastic-

ity: Residuals do 

not have a con-

stant variance 

Fan shape in 

residuals vs 

fits plot  

Redefine IVs to fo-

cus on rates, per 

capita, etc. rather 

than raw measure  

 

Weighted least 

squares  

 

Data transformation 
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OLS Potential 

Problem 

Assessment Possible solutions 

Autocorrelation: 

Residuals are cor-

related with adja-

cent residuals 

Patterns in re-

siduals vs or-

der plot 

 

Durbin-Wat-

son statistic   

Add lag variable, 

which are past val-

ues of the IVs 

 

Add independent 

variable to include 

time information 

 

Time series analysis  

Residuals do not 

follow normal 

distribution 

Normal plot of 

residuals  

 

Histogram 

 

Normality test   

Specify correct 

model 

 

Check for outliers 

 

Use Generalized 

Linear Models 

(GLM) regression 

which allows for 

other error distribu-

tions 

 

Data transformation 

and then use OLS 
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OLS Potential 

Problem 

Assessment Possible solutions 

Individual obser-

vations that are 

unusual and 

strongly influ-

ence the model 

Residual plots  

 

Fit model with 

and without 

observations 

to observe 

how it affects 

model esti-

mates 

 

DFITS 

 

Cook's dis-

tance  

 

Leverages  

Remove unusual ob-

servations when 

they don’t reflect 

your study area. 

 

Or, include model 

with and without 

observations in your 

report and discuss. 

Multicollinearity: 

Independent var-

iables are corre-

lated 

Variance infla-

tion factors 

(VIF) greater 

than 5 

 

Coefficients 

with unex-

pected signs  

Remove independ-

ent variable 

 

Linear combination 

of variables 

 

Use PLS, LASSO, or 

Ridge regression  
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C H A P T E R  1 0  

 

Using Regression to 
Make Predictions 

So far, you’ve learned how to specify a regression model, check the 

residuals and assumptions, and identify and fix problems. You also 

know how to interpret the results so you can describe the relation-

ships between the independent variables and the dependent variable. 

Now, we’ll go into another use for regression analysis—making pre-

dictions. 

 

If you were able to make predictions about something important to 

you, you’d probably love that, right? It’s even better if you know that 

your predictions are sound. In this section, I show how to use regres-

sion analysis to make predictions and determine whether they are 

both unbiased and precise. 

 

You can use regression equations to make predictions. Regression 

equations are a crucial part of the statistical output after you fit a 

model. As you saw earlier, the coefficients in the equation define the 

relationship between each independent variable and the dependent 

variable. However, you can also enter values for the independent 
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variables into the equation to predict the mean value of the dependent 

variable. 

 

Unfortunately, as you’ll see, predictions are not as simple as entering 

values into an equation and obtaining a single number for the predic-

tion. You need to assess both precision and bias. 

Explanatory versus Predictive Models 

Most of this book focuses on using regression to understand and de-

scribe the relationships between each of your independent variables 

and the dependent variable from a scientific standpoint. Is there a re-

lationship between X and Y? If so, what is the nature of that relation-

ship? These are explanatory models. 

 

Explanatory model building attempts to devise a scientific explana-

tion for a phenomenon. The goal is to develop a model that contains 

scientifically essential variables that are theoretically relevant, statis-

tically significant, and to estimate their effect sizes. Additionally, stat-

isticians can use an explanatory model to test a particular hypothesis 

that a study is assessing. 

 

For example, what variables correlate to bone density? In this context, 

does an exercise intervention significantly increase bone density? If 

so, what is the average bone density increase? 

 

Predictive models try to produce the most precise and unbiased pre-

dictions possible. I’ll discuss these concepts at length in this chapter. 

For these types of models, analysts pay much less attention to the na-

ture of the relationships between the independent variables and the 

dependent variable. You only want good predictions, which changes 

how you build your model and how you assess it. 

 

With these goals in mind, including theoretically important variables 

takes a back seat. Sure, building an explanatory model and a predictive 

model will likely use a common subset of variables that do make 
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theoretical sense. However, predictive models can include variables 

that don’t make sense theoretically as long as it improves the quality 

of the predictions. These variables might include some that are not 

causally correlated with the dependent variable.  

 

For a silly example, if ice cream sales in a beach town correlate with 

shark attacks, ice cream parlors might want to include shark attacks in 

their models! 

 

Conversely, analysts don't need to include theoretically important in-

dependent variables if they don’t improve the predictions. For exam-

ple, the ratio of men to women visitors might predict the amount of 

ice cream sales. If this variable is statistically significant, but it does 

not improve the predictions, analysts can remove it from a predictive 

model.  

 

When you fit a predictive model, it frees you up a bit because you’re 

not tied down to only theoretically important variables. That can open 

up many possibilities. However, there are different constraints and 

priorities for predictive models. For instance, predictor variables 

must be measurable quickly. If you can’t measure a variable early 

enough, you can’t use it to make predictions!  

 

Typically, predictive models require data that are easy and inexpen-

sive to obtain. If you regularly predict an outcome (e.g., weekly sales), 

you don’t want the values of the predictors to be a burden to obtain 

before plugging them into the regression model! The cost and ease of 

collecting the necessary information to generate the predictions are 

often top-priorities. 

 

For example, the hypothetical predictor variable of the ratio of men 

to women visitors in the beach town might be a burden to collect. 

You’ll need to pay a researcher to regularly observe a random sample 

of visitors and calculate this ratio for each prediction. That might be a 
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problem! If there is an easier way to obtain similar information, you 

might use that instead. 

 

Finally, while chasing a high R-squared is always a temptation, it is 

even more so for predictive models. As you learned in the goodness-

of-fit chapter, a high R-squared is not always important, but it is for 

predictive models. Consequently, in predictive models, analysts often 

chase the most precise prediction but must be wary of overfitting the 

model in the process. As chapter 8 shows, overfit models explain the 

quirks of your dataset, but they don’t generalize well beyond that da-

taset. That’s a show stopper for useful predictions! 

The Regression Approach for Predictions 

Using regression to make predictions doesn’t necessarily involve pre-

dicting the future. Instead, you predict the mean of the dependent var-

iable given specific values of the dependent variable(s). For our 

example, we’ll use one independent variable to predict the dependent 

variable. I measured both of these variables at the same point in time. 

 

Psychic predictions are things that just pop into mind and are not of-

ten verified against reality. Unsurprisingly, predictions in the regres-

sion context are more rigorous. We need to collect data for relevant 

variables, formulate a model, and evaluate how well the model fits the 

data. 

 

The general procedure for using regression to make good predictions 

is the following: 

 

1. Research the subject-area so you can build on the work of oth-

ers. This research helps with the subsequent steps. 

2. Collect data for the relevant variables. 

3. Specify and assess your regression model. 

4. If you have a model that adequately fits the data, use it to 

make predictions. 
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While this process involves more work than the psychic approach, it 

provides valuable benefits. With regression, we can evaluate the bias 

and precision of our predictions: 

 

• Bias in a statistical model indicates that the predictions are 

systematically too high or too low. 

• Precision represents how close the predictions are to the ob-

served values. 

 

When we use regression to make predictions, our goal is to produce 

predictions that are both correct on average and close to the real val-

ues. In other words, we need predictions that are both unbiased and 

precise. 

Example Scenario for Regression Predictions 

We’ll use a regression model to predict body fat percentage based on 

body mass index (BMI). I collected these data for a study with 92 mid-

dle school girls. The variables we measured include height, weight, 

and body fat measured by a Hologic DXA whole-body system. I’ve 

calculated the BMI using the height and weight measurements. DXA 

measurements of body fat percentage are considered to be among the 

best. 

 

You can download the CSV data file: Predict_BMI. 

 

Why might we want to use BMI to predict body fat percentage? It’s 

more expensive to obtain your body fat percentage through a direct 

measure like DXA. If you can use your BMI to predict your body fat 

percentage, that provides valuable information more easily and 

cheaply. Let’s see if BMI can produce good predictions! 

Finding a Good Regression Model for Predictions 

We have the data. Now, we need to determine whether there is a sta-

tistically significant relationship between the variables. Relationships, 

or correlations between variables, are crucial if we want to use the 

https://statisticsbyjim.com/wp-content/uploads/2017/05/Predict_BMI.csv
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value of one variable to predict the value of another. We also need to 

evaluate the suitability of the regression model for making predic-

tions. 

 

We have only one independent variable (BMI), so we can use a fitted 

line plot to display its relationship with body fat percentage. The rela-

tionship between the variables is curvilinear. I’ll use a polynomial 

term to fit the curvature. In this case, I’ll include a quadratic (squared) 

term. The fitted line plot below suggests that this model fits the data. 

 

 
 

This curvature is readily apparent because we have only one inde-

pendent variable and we can graph the relationship. If your model has 

more than one independent variable, use separate scatterplots to dis-

play the association between each independent variable and the de-

pendent variable so you can evaluate the nature of each relationship. 

Assess the Residual Plots 

You should also assess the residual plots. If you see patterns in the 

residual plots, you know that your model is incorrect and that you 

need to reevaluate it.  
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The residual plots below also confirm the unbiased fit because the data 

points fall randomly around zero and follow a normal distribution. 

 

Interpret the Regression Output 

In the statistical output below, the p-values indicate that both the lin-

ear and squared terms are statistically significant. Based on all of this 

information, we have a model that provides a statistically significant 

and unbiased fit to these data. We have a valid regression model. 

However, there are additional issues we must consider before we can 

use this model to make predictions. 

 

 
As an aside, the curved relationship is interesting. The flattening curve 

indicates that higher BMI values are associated with smaller increases 

in body fat percentage. 
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Other Considerations for Valid Predictions 

Precision of the Predictions 

Previously, we established that our regression model provides unbi-

ased predictions of the observed values. That’s good. However, it 

doesn’t address the precision of those predictions. Precision measures 

how close the predictions are to the observed values. We want the 

predictions to be both unbiased and close to the actual values. Predic-

tions are precise when the observed values cluster close to the pre-

dicted values. 

 

Regression predictions are for the mean of the dependent variable. If 

you think of any mean, you know that there is variation around that 

mean. The same concept applies to the predicted mean of the depend-

ent variable. In the fitted line plot, the regression line is nicely in the 

center of the data points. However, there is a spread of data points 

around the line. We need to quantify that scatter to know how close 

the predictions are to the observed values. If the range is too large, the 

predictions won’t provide useful information. 

 

Later, I’ll generate predictions and show you how to assess the preci-

sion. 

 

Goodness-of-Fit Measures 

We covered various goodness-of-fit measures earlier, but now I’ll re-

visit them in the context of making predictions. 

 

Goodness-of-fit measures, like R-squared, assess the scatter of the 

data points around the fitted value. The R-squared for our model is 

76.1%, which is good but not great. For a given dataset, higher R-

squared values represent predictions that are more precise. However, 

R-squared doesn’t tell us directly how precise the predictions are in 

the units of the dependent variable. We can use the standard error of 

the regression (S) to assess the precision in this manner. The pre-

dicted value plus/minus 2*S is a quick estimate of a 95% prediction 
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interval. However, for this section, I’ll use prediction intervals to eval-

uate precision. 

 

New Observations versus Data Used to Fit the Model 

R-squared and S indicate how well the model fits the observed data. 

We need predictions for new observations that the analysis did not 

use during the model estimation process. Assessing that type of fit re-

quires a different goodness-of-fit measure, the predicted R-squared. 

 

Even when a regression model has a high R-squared value, it might not 

be able to predict new observations as well. Use predicted R-squared 

to evaluate how well your model predicts the value of new observa-

tions. Statistical software packages calculate it by sequentially remov-

ing each observation, fitting the model, and determining how well the 

model predicts the removed observations. 

 

If the predicted R-squared is much lower than the regular R-squared, 

you know that your regression model doesn’t predict new observa-

tions as well as it fits the current dataset. This situation should make 

you wary of the predictions. 

 

The statistical output below shows that the predicted R-squared 

(74.14%) is nearly equal to the regular R-squared (76.06%) for our 

model. We have reason to believe that the model predicts new obser-

vations nearly as well as it fits the dataset. 

 

 
 

Make Predictions Only Within the Range of the Data 

Regression predictions are valid only for the range of data used to es-

timate the model. The relationship between the independent variables 

and the dependent variable can change outside of that range. In other 
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words, we don’t know whether the shape of the curve changes. If it 

does, our predictions will be invalid. 

 

The graph shows that the observed BMI values range from 15-35. We 

should not make predictions outside of this range. 

 

Make Predictions Only for the Population You Sampled 

The relationships that a regression model estimates might be valid for 

only the specific population that you sampled. Our data were collected 

from middle school girls that are 12-14 years old. The relationship be-

tween BMI and body fat percentage might be different for males and 

different age groups. 

Using our Regression Model to Make Predictions 

We have a valid regression model that appears to produce unbiased 

predictions and can predict new observations nearly as well as it pre-

dicts the data used to fit the model. Let’s go ahead and use our model 

to make a prediction and assess the precision. 

 

It is possible to use the regression equation and calculate the predicted 

values ourselves. However, I’ll use statistical software to do this for 

us. Not only is this approach easier and more accurate, but I’ll also 

have it calculate the prediction intervals so we can assess the preci-

sion. 

 

I’ll use the software to predict the body fat percentage for a BMI of 18. 

The prediction output is below. 
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Interpreting the Regression Prediction Results 

The output indicates that the mean value associated with a BMI of 18 

is estimated to be ~23% body fat. Again, this mean applies to the pop-

ulation of middle school girls. Let’s assess the precision using the con-

fidence interval (CI) and the prediction interval (PI). 

 

The confidence interval of the prediction is the range that is likely to 

contain the mean body fat percentage for the population of girls with 

a BMI of 18. We can be 95% confident that this mean is between 22.1% 

and 23.9%. However, this confidence interval does not help us evalu-

ate the precision of individual predictions. 

 

A prediction interval (PI) is the range where a single new observation 

is likely to fall given specific values of the independent variables. Pre-

diction intervals factor in the variability around the mean outcome 

and represent a margin of error around the fitted value. Narrower pre-

diction intervals represent more precise predictions because they 

have a smaller margin of error. Use prediction intervals to determine 

whether the predictions are sufficiently precise to satisfy your re-

quirements. 

 

Prediction intervals have a confidence level and can be a two-sided 

range or be an upper or lower bound. Let’s see how prediction inter-

vals can help us! 
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From the output above, we can be 95% confident that an individ-

ual middle school girl with a BMI of 18 will have body fat percent-

age between 16% and 30%. 

 

The range of the prediction interval is always wider than the confi-

dence interval of the mean due to the greater uncertainty of predicting 

an individual value. 

 

Is this prediction sufficiently precise? To make this determination, 

we’ll need to use our subject-area knowledge in conjunction with any 

specific requirements we have. I’m not a medical expert, but I’d guess 

that the 14-point range of 16-30% is too imprecise to provide mean-

ingful information. If this is true, our regression model is too impre-

cise to be useful. 

Next Steps: Don’t Focus On Only the Fitted Values 

Using regression analysis to make predictions is a multi-step process. 

After collecting the data, you need to specify a valid model. The model 

must satisfy several conditions before you make predictions. Finally, 

be sure to assess the precision of the predictions. Unfortunately, it’s 

all too easy to be fooled by the apparent precision of plugging values 

into an equation and calculating an exact answer. As you saw above, 

there is a margin of error around the predictions, which you must fac-

tor into your usage of them.  

 

Let’s dig deeper into the precision of the predictions. 

The Illusion of Predictability 

As we saw in the previous section, the precision of the predictions 

refers to how close the model’s predictions are to the observed values. 

The more precise the model, the closer the data points are to the pre-

dictions. When you have an imprecise model, the observations tend 

to be further away from the predictions, thereby reducing the 
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usefulness of the predictions. If you have a model that is not suffi-

ciently precise, you risk making costly mistakes! 

 

Regression models are a critical part of predictive analytics. These 

models can help you make predictions in applied situations. By enter-

ing values into the regression equation, you can predict the average 

outcome. However, predictions are not quite this simple because you 

need to understand the precision. 

 

In this section, I present research that shows how surprisingly easy it 

is for even statistical experts to make mistakes related to misunder-

standing the precision of the predictions. The research shows that 

how you present regression results influences the probability of mak-

ing a wrong decision. I’ll show you a variety of potential solutions so 

you can avoid these traps! 

 

Emre Soyer and Robin M. Hogarth study behavioral decision-making. 

They found that experts in applied regression analysis frequently 

make incorrect decisions based on applied regression models because 

they misinterpret the prediction precision. (Soyer & Hogarth, 2012) 

 

Decision-makers can use regression equations for predictive analyt-

ics. However, predictions are not as straightforward as entering num-

bers into an equation and making a decision based on the particular 

value of the prediction. Instead, decisions based on regression predic-

tions need to incorporate the margin of error around the predicted 

value. 
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As precision increases, the data points move closer to the regression 

line. 

 

Soyer and Hogarth conclude that analysts frequently perceive the out-

comes to be more predictable than the model justifies. The apparent 

simplicity of inputting numbers into a regression equation and obtain-

ing a particular prediction frequently deceives the analysts into be-

lieving that the value is an exact estimate. It seems like the regression 

equation is giving you the correct answer exactly, but it’s not. Soyer 

and Hogarth call this phenomenon the illusion of predictability. 

 

I’ll show you this illusion in action, and then present some ways to 

mitigate its effect. 

Studying How Experts Perceive Prediction Uncertainty 

Soyer and Hogarth recruited 257 economists and asked them to assess 

regression results and use them to make a decision. Many empirical 

economic studies use regression models, so this is familiar territory 

for economists. 

 

The researchers displayed the regression output using the most com-

mon tabular format that appears in the top economic journals: de-

scriptive statistics, regression coefficients, constant, standard errors, 

R-squared, and the number of observations. Then, they asked the par-

ticipants to make a decision using the model. The participants are 
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mainly professors in applied economics and econometrics. Here’s an 

example. 

Use a Regression Model to Make a Decision 

To be sure that you have a 95% probability of obtaining a positive out-

come (Y > 0), what is the minimum value of X that you need? 

 

The regression coefficient is statistically significant at the 95% level, 

and standard errors are in parentheses. 

 

Variable Mean Std. Dev 

X 50.72 28.12 

Y 51.11 40.78 

 

X Coefficient 1.001 (0.033) 

Constant 0.32 (1.92) 

R-squared 0.50 

N 1000 

  

The Difference between Perception and Reality 

76% of the participants indicated that a very small X (X < 10) is suffi-

cient to ensure a 95% probability of a positive Y. 

 

Let’s work through their logic using the regression equation that you 

can construct from the information in the table: Y = 0.32 + 1.001X. 

 

If you enter a value of 10 in the equation for X, you obtain a predicted 

Y of 10.33. This prediction seems sufficiently above zero to virtually 

assure a positive outcome, right? The predicted value is the average 
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outcome, but it doesn’t factor in the precision of the predictions 

around the mean. 

 

When you factor in the variability around the average outcome, you 

find that the correct answer is 47! Unfortunately, only 20% of the ex-

perts gave an answer that was near the correct value even though it is 

possible to solve it mathematically using the information in the table. 

(These are experts, after all, and I wouldn’t expect most people to be 

able to solve it mathematically. I’ll cover easier methods below.) 

 

Imagine if an important decision depended on this answer? That’s 

how costly mistakes can be made! 

Low R-squared Values Should Have Warned of Low Precision 

The researchers asked the same question for a model with an R-

squared of 25%, and the results were essentially the same. No changes 

were made in their answers to address the greater uncertainty! 

 

The participants severely overestimated the precision of the regres-

sion predictions. Again, this is the illusion of predictability. It’s a psy-

chological phenomenon where the apparent exactness of the 

regression equation gives the impression that the predictions are 

more precise than they are in reality. The end result is that a majority 

of experts severely underestimated the variability, which can lead to 

expensive mistakes. If the numeric results deceive most applied re-

gression experts, imagine how common this mistake must be among 

less experienced analysts! 

 

I’ve written that a high R-squared value isn’t always critical except for 

when you require precise predictions. In the first model, the R-

squared of 50% should have set off alarm bells about imprecise pre-

dictions. Even more so for the model with an R-squared of 25%! Later 

in this section, we’ll revisit prediction intervals and see how they can 

help.  
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Graph the Model to Highlight the Variability 

In the next phase of the experiment, the researchers ask two new 

groups of experts the same questions about the same models, but they 

present the regression results differently. One group saw the results 

tables with fitted line plots, and the other group saw only the fitted 

line plots. Fitted line plots display both the data points and the fitted 

regression line. Surprisingly, the group that saw only the fitted line 

plots had the largest percentage of correct answers. 

 

The fitted line plot below is for the same R-squared = 50% model that 

produced the regression results in the tables above. 

 

 
 

By assessing the fitted line plot, only 10% answered with an X < 10 

while 66% were close to 47. Look at the graph, and it’s easy to see that 

at around 47 most of the data points are greater than zero. You can 

also understand why answers of X < 10 are way off! 

 

The graph brings the imprecision of the predictions to life. You see 

the variability of the data points around the fitted line. 
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Graphs Are One Way to Pierce the Illusion of Predictability 

I completely agree with Soyer and Hogarth’s call to change how ana-

lysts present the results for predictive analytics. I use fitted line plots 

frequently. It’s a fantastic tool that makes regression results more in-

tuitive. Seeing is believing! 

 

However, the scenario that the researchers present is especially fa-

vorable to a visual analysis. For a start, there is only one independent 

variable, which allows you to use a fitted line graph. Furthermore, 

there are many data points (N = 1000) that are evenly distributed 

throughout the full range of both variables. Collectively, this situation 

produces a clearly visible location on the graph where you are unlikely 

to obtain negative values. 

 

What do you do when you have multiple independent variables and 

can’t use a fitted line plot? What about models that have interaction 

and polynomial terms? How about cases where you don’t have such a 

large amount of nicely arranged data? For these less tidy cases, we 

must still factor in the real-world variability to understand the preci-

sion in predictive analytics. Read on! 

Display Prediction Intervals on Fitted Line Plots to Assess Pre-
cision 

I’ve created a dataset that is very similar to the data that Soyer and 

Hogarth use for their study. You can download the CSV data file to try 

this yourself: SimpleRegressionPrecision. 

 

Let’s start out with a simple case by using prediction intervals to an-

swer the same question they asked in their study. Then, we’ll look at 

several more complex cases. 

 

What is the minimum value of X that ensures a positive result (Y  > 0) 

with 95% probability? 

 

https://statisticsbyjim.com/wp-content/uploads/2017/08/SimpleRegressionPrecision.csv
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To choose the correct value, we need a 95% lower bound for the pre-

diction, which is a one-sided prediction interval with a 95% confi-

dence level. Unfortunately, the software I’m using can’t display a one-

sided prediction interval on a fitted line plot, but the lower limit of a 

two-sided 90% prediction interval is equivalent to a 95% lower bound. 

Consequently, on the fitted line plot below, we’ll use only the lower 

green line. 

 

 
 

In the plot, I placed the crosshairs over the point where the 95% lower 

bound crosses zero on the y-axis. The software displays the values for 

this point in the upper-left corner of the graph. The results tell us that 

we need an X of 47.1836 to obtain a Y greater than zero with 95% 

confidence. 

 

As I noted earlier, this dataset is particularly conducive to visual anal-

ysis. What if we have fewer data points that aren’t so consistently ar-

ranged? 

 

I randomly sampled 50 observations from the complete data set and 

created the fitted line plot below. 
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With this dataset, it’s hard to determine the answer visually. Predic-

tion intervals really shine here. Even though the sample is only 1/20th 

the size of the full dataset, the results are very close. Using the cross-

hairs again, we see that the answer is 41.7445. 

Different Example of Using Prediction Intervals 

The previous models have only one independent variable, which al-

lowed us to graph the model and the prediction intervals. If you have 

more than one independent variable, you can’t graph prediction inter-

vals, but you can still use them. 

 

We’ll use a regression model to decide how to set the pressure and 

fuel flow in our process. These variables predict the heat that the pro-

cess generates. Download the CSV data file to try it yourself: Multi-

pleRegressionPrecision. The regression output is below. 

 

https://statisticsbyjim.com/wp-content/uploads/2017/08/MultipleRegressionPrecision.csv
https://statisticsbyjim.com/wp-content/uploads/2017/08/MultipleRegressionPrecision.csv
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To prevent equipment damage, we must avoid excessive heat. We 

need to set the pressure and fuel flow so that we can be 95% confident 

that the heat will be less than 250. However, we don’t want to go too 

low because it reduces the efficiency of the system. 

 

We could plug numbers into the regression equation to find values 

that produce an average heat of 250. However, we know that there 

will be variation around this average. Consequently, we’ll need to set 

the pressure and fuel flow to produce an average that is somewhat less 

than 250. How much lower is sufficient? We’ll use prediction intervals 

to find out! 

 

Finding the correct settings to use for pressure and fuel flow requires 

subject-area knowledge to determine settings that are both feasible 

and will produce temperatures in the right ballpark. Using a combina-

tion of experience and trial and error, you want to produce results 

where the 95% upper bound is near 250. 

 

Most statistical software allows you to create prediction intervals 

based on a regression model. While the process varies by statistical 

software package, I’m using Minitab, and below I show how I enter 

the settings and the results that it calculates. It’s convenient because 
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the software calculates the mean outcome and the prediction inter-

val using the regression model that you fit. I’m entering process set-

tings of 36 for pressure and 17.5 for fuel flow. I’ve also set it so that the 

software will calculate a 95% upper bound. 

 

 

 
 

The output shows that if we set the pressure and fuel flow at 36 and 

17.5 respectively, the average temperature is 232.574 and the upper 

bound is 248.274. We can be 95% confident that the next temperature 

measurement at these settings will be below 248. That’s just what we 

need! We’re using the prediction interval to show us the precision of 

the predictions to incorporate the process’s inherent variability into 

our decision-making. 
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We can use this same procedure even when our regression model in-

cludes more independent variables, curvature, and interaction terms. 

After using regression analysis and the prediction intervals to identify 

candidate settings, perform validation runs at these settings to be sure 

that the real world behaves as your model predicts it should!
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C H A P T E R  1 1  

 

Tips, Common 
Questions, and Concerns 

Over the many years that I’ve been helping people with statistics, 

some common questions and concerns have emerged. In this chapter, 

I address some of them. Many of these topics touch on ideas that I’ve 

discussed earlier in this book but approach them from a different an-

gle. Some of these simply reinforce what I’ve written earlier. 

 

In this chapter, I’ll help you understand what an excellent regression-

based study looks like. I’ll show you how to identify the most im-

portant variables in a regression model, and explain why that isn’t as 

straightforward as you might expect. Then, I address several issues 

related to R-squared. There’s always seems to be so many questions 

about that statistic! How high does R-squared need to be? Is mine too 

high? Too low? And, what does it mean if my model has significant 

variables, but the R-squared is low? 

Five Tips to Avoid Common Problems 

Why use regression at all? What are common problems that trip up 

analysts? And, how do you differentiate a high-quality regression anal-

ysis from a less rigorous study?  
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Regression is a very powerful statistical analysis. It allows you to iso-

late and understand the effects of individual variables, model curva-

ture and interactions, and make predictions. Regression analysis 

offers high flexibility but presents a variety of potential pitfalls. Great 

power requires great responsibility! 

 

Here are five tips that will not only help you avoid common problems 

but also make the modeling process easier. I’ll show you the difference 

between the modeling process that a top analyst uses versus the pro-

cedure of a less rigorous analyst. You’ll see how these tips come up 

again and again in later chapters! 

Tip 1: Conduct A Lot of Research Before Starting 

Before you begin the regression analysis, you should review the liter-

ature to develop an understanding of the relevant variables, their re-

lationships, and the expected coefficient signs and effect magnitudes. 

Developing your knowledge base helps you gather the correct data in 

the first place, and it allows you to specify the best regression equation 

without resorting to data mining. 

 

Regrettably, large data bases stuffed with handy data combined with 

automated model building procedures have pushed analysts away 

from this knowledge-based approach. Data mining procedures 

can build a misleading model that has significant variables and a good 

R-squared using randomly generated data! 

 

The output below is a model that stepwise regression built from en-

tirely random data. In the final step, the R-squared is decently high, 

and all of the variables have very low p-values! 
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Automated model building procedures can have a place in the explor-

atory phase. However, you can’t expect them to produce the correct 

model precisely.  

Tip 2: Use a Simple Model When Possible 

It seems that complex problems should require complicated regres-

sion equations. However, studies show that simplification usually pro-

duces more precise models. How simple should the models be? In 

many cases, three independent variables are sufficient for complex 

problems. (Zellner, Keuzenkamp, & McAleer, 2009) 

 

 
This model is too complex for the data as we saw in the section about 

predicted R-squared. 

 

The tip is to start with a simple a model and then make it more com-

plicated only when it is truly needed. If you make a model more 
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complex, confirm that the confidence intervals for the coefficients 

and the prediction intervals are more precise (narrower). When you 

have several models with comparable predictive abilities, choose the 

simplest because it is likely to be the best model. Another benefit is 

that simpler models are easier to understand and explain to others! 

 

As you make a model more elaborate, the R-squared increases, but it 

becomes more likely that you are customizing it to fit the vagaries of 

your specific dataset rather than actual relationships in the popula-

tion. This overfitting reduces generalizability and produces results 

that you can’t trust. 

 

Chapter 6 shows how both adjusted R-squared and predicted R-

squared can help you include the correct number of variables and 

avoid overfitting. 

Tip 3: Correlation Does Not Imply Causation . . . Even in Re-
gression 

Correlation does not imply causation. Statistics classes have burned 

this familiar mantra into the brains of all statistics students! It seems 

simple enough. However, analysts can forget this important rule while 

performing regression analysis.  

 

As you build a model that has significant variables and a high R-

squared, it’s easy to forget that you might only be revealing correla-

tion. Causation is an entirely different matter. Typically, to establish 

causation, you need to perform a designed experiment with randomi-

zation. If you’re using regression to analyze data that weren’t collected 

in such an experiment, you can’t be certain about causation. 

Fortunately, correlation can be just fine in some cases. For instance, if 

you want to predict the outcome, you don’t always need variables that 

have causal relationships with the dependent variable. If you measure 

a variable that is related to changes in the outcome but doesn’t influ-

ence the outcome, you can still obtain good predictions. Sometimes it 

is easier to measure these proxy variables. However, if your goal is to 
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affect the outcome by setting the values of the input variables, you 

must identify variables with truly causal relationships. 

 

For example, if vitamin consumption is only correlated with im-

proved health but does not cause good health, then altering vitamin 

use won’t improve your health. There must be a causal relationship 

between two variables for changes in one to cause changes in the 

other. 

Tip 4: Include Graphs, Confidence, and Prediction Intervals in 
the Results 

This tip focuses on the fact that how you present your results can in-

fluence how people interpret them. The information can be the same, 

but the presentation style can prompt different reactions. For in-

stance, confidence intervals and statistical significance provide con-

sistent information. When a p-value is less than the 0.05 significance 

level, the corresponding 95% confidence interval will always exclude 

zero. However, the impact on the reader is very different. 

 

A study by Cumming (Cumming, 2011) finds that statistical reports 

which refer only to statistical significance bring about correct inter-

pretations only 40% of the time. When the results also include confi-

dence intervals, the percentage rises to 95%! Other research (Soyer & 

Hogarth, 2012) show dramatic increases in correct interpretations 

when you include graphs in regression analysis reports. In general, 

you want to make the statistical results as intuitively understandable 

as possible. 

Tip 5: Check Your Residual Plots! 

Residuals plots are a quick and easy way to check for problems in your 

regression model. You might not be sure whether there is a problem, 

but residual plots can make the answer clear! These graphs can also 

help you make adjustments. For instance, residual plots display pat-

terns when you fail to model curvature that is present in your data. 

We covered residual plots and other assumptions in chapter 9. 



J im Fros t  

282 

Differences Between a Top Analyst and a Less Rigorous Ana-
lyst 

Top analysts tend to do the following: 

 

• Conducts research to understand the study area before start-

ing. 

• Uses large quantities of reliable data and a few independent 

variables with well established relationships. 

• Uses sound reasoning to determine which variables to include 

in the regression model. 

• Combines different lines of research as needed. 

• Presents the results using charts, prediction intervals, and 

confidence intervals in a lucid manner that ensures the appro-

priate interpretation by others. 

 

On the other hand, a less rigorous analyst tends to do the following: 

 

• Does not do the research to understand the research area and 

similar studies. 

• Uses regression outside of designed experiments to hunt for 

causal relationships. 

• Uses data-mining to rummage for relationships because data-

bases provide a lot of convenient data. 

• Includes variables in the model based mainly on statistical sig-

nificance. 

• Uses a complicated model to increase R-squared. 

• Reports only the basic statistics of coefficients, p-values, and 

R-squared values. 

Identifying the Most Important Variables 

You’ve settled on a regression model that contains independent vari-

ables that are statistically significant. By interpreting the statistical re-

sults, you can understand how changes in the independent variables 

are related to shifts in the dependent variable. At this point, it’s natural 

to wonder, “Which independent variable is the most important?” 
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Surprisingly, determining which variable is the most important is 

more complicated than it first appears. For a start, you need to define 

what you mean by “most important.” The definition should include 

details about your subject-area and your goals for the regression 

model. So, there is no one-size fits all definition for the most im-

portant independent variable. Furthermore, the methods you use to 

collect and measure your data can affect the seeming importance of 

the independent variables. 

 

I’ll help you determine which independent variable is the most im-

portant while keeping these issues in mind. First, I’ll reveal surprising 

statistics that are not related to importance. You don’t want to get 

tripped up by them! Then, I’ll cover statistical and non-statistical ap-

proaches for identifying the most important independent variables in 

your regression model. I’ll also include an example regression model 

where we’ll try these methods out. 

Do Not Associate Regular Regression Coefficients with the Im-
portance of Independent Variables 

The regular regression coefficients that you see in your statistical out-

put describe the relationship between the independent variables and 

the dependent variable. The coefficient value represents the mean 

change of the dependent variable given a one-unit shift in an inde-

pendent variable. Consequently, you might think you can use the ab-

solute sizes of the coefficients to identify the most important variable. 

After all, a larger coefficient signifies a greater change in the mean of 

the independent variable. 

 

However, the independent variables can have dramatically different 

types of units, which make comparing the coefficients meaningless. 

For example, the meaning of a one-unit change differs considerably 

when your variables measure time, pressure, and temperature. 
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Additionally, a single type of measurement can use different units. 

For example, you can measure weight in grams and kilograms. If you 

fit two regression models using the same dataset, but use grams in one 

model and kilograms in the other, the weight coefficient changes by a 

factor of a thousand! Obviously, the importance of weight did not 

change at all even though the coefficient changed substantially. The 

model’s goodness-of-fit remains the same. 

 

Key point: Larger coefficients don’t necessarily represent more im-

portant independent variables. 

Do Not Link P-values to Importance 

You can’t use the coefficient to determine the importance of an inde-

pendent variable, but how about the variable’s p-value? Comparing p-

values seems to make sense because we use them to determine which 

variables to include in the model. Do lower p-values represent more 

important variables? 

 

Calculations for p-values include various properties of the variable, 

but importance is not one of them. A very small p-value does not in-

dicate that the variable is important in a practical sense. An independ-

ent variable can have a tiny p-value when it has a very precise 

estimate, low variability, or a large sample size. The result is that effect 

sizes that are trivial in the practical sense can still have very low p-

values. Consequently, when assessing statistical results, it’s important 

to determine whether an effect size is practically significant in addi-

tion to being statistically significant. 

 

Key point: Low p-values don’t necessarily represent independent var-

iables that are practically important. 

Do Assess These Statistics to Identify Variables that might be 
Important 

I showed how you can’t use several of the more notable statistics to 

determine which independent variables are most important in a 
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regression model. The good news is that there are several statistics 

that you can use. Unfortunately, they sometimes disagree because 

each one defines “most important” differently. 

Standardized coefficients 

As I explained previously, you can’t compare the regular regression 

coefficients because they use different scales. However, standardized 

coefficients all use the same scale, which means you can compare 

them. 

 

Statistical software calculates standardized regression coefficients by 

first standardizing the observed values of each independent variable 

and then fitting the model using the standardized independent varia-

bles. Standardization involves subtracting the variable’s mean from 

each observed value and then dividing by the variable’s standard de-

viation. 

 

Fit the regression model using the standardized independent variables 

and compare the standardized coefficients. Because they all use the 

same scale, you can compare them directly. Standardized coefficients 

signify the mean change of the dependent variable given a one stand-

ard deviation shift in an independent variable. 

 

Key point: Identify the independent variable that has the largest ab-

solute value for its standardized coefficient. 

Change in R-squared for the last variable added to the model 

Many statistical software packages include a very helpful analysis. 

They can calculate the increase in R-squared when each variable is 

added to a model that already contains all of the other variables. In 

other words, how much does the R-squared increase for each variable 

when you add it to the model last? 

 

This analysis might not sound like much, but there’s more to it than is 

readily apparent. When an independent variable is the last one 
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entered into the model, the associated change in R-squared represents 

the improvement in the goodness-of-fit that is due solely to that last 

variable after all of the other variables have been accounted for. In 

other words, it represents the unique portion of the goodness-of-fit 

that is attributable only to each independent variable. 

 

Key point: Identify the independent variable that produces the largest 

R-squared increase when it is the last variable added to the model. 

Example of Identifying the Most Important Independent Varia-
bles in a Regression Model 

The example output below shows a regression model that has three 

independent variables. You can download the CSV data file to try it 

yourself: ImportantVariables. 

 

The statistical output displays the coded coefficients, which are the 

standardized coefficients. Temperature has the standardized coeffi-

cient with the largest absolute value. This measure suggests that Tem-

perature is the most important independent variable in the regression 

model. 

 

 
The graphical output below shows the incremental impact of each in-

dependent variable. This graph displays the increase in R-squared as-

sociated with each variable when it is added to the model 

last. Temperature uniquely accounts for the largest proportion of the 

variance. For our example, both statistics suggest that Temperature is 

the most important variable in the regression model. 

 

https://statisticsbyjim.com/wp-content/uploads/2017/07/ImportantVariables.csv
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Cautions for Using Statistics to Pinpoint Important Variables 

Standardized coefficients and the change in R-squared when a varia-

ble is added to the model last can both help identify the more im-

portant independent variables in a regression model—from a purely 

statistical standpoint. Unfortunately, these statistics can’t determine 

the practical importance of the variables. For that, you’ll need to use 

your knowledge of the subject area. 

 

The manner in which you obtain and measure your sample can bias 

these statistics and throw off your assessment of importance. 

When you collect a random sample, you can expect the sample varia-

bility of the independent variable values to reflect the variability in 

the population. Consequently, the change in R-squared values and 

standardized coefficients should reflect the correct population values. 

 

However, if the sample contains a restricted range (less variability) 

for a variable, both statistics tend to underestimate the importance. 

Conversely, if the variability of the sample is greater than the 
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population variability, the statistics tend to overestimate the im-

portance of that variable. 

 

Also, consider the quality of measurements for your independent var-

iables. If the measurement precision for a particular variable is rela-

tively low, that variable can appear to be less predictive than it truly 

is. 

 

When the goal of your analysis is to change the mean of the independ-

ent variable, you must be sure that the relationships between the in-

dependent variables and the dependent variable are causal rather than 

just correlation. If these relationships are not causal, then intentional 

changes in the independent variables won’t cause the desired changes 

in the dependent variable despite any statistical measures of im-

portance. 

 

Typically, you need to perform a randomized experiment to deter-

mine whether the relationships are causal. 

Non-Statistical Issues that Help Find Important Variables 

The definition of “most important” should depend on your goals and 

the subject-area. Practical issues can influence which variable you 

consider to be the most important. 

 

For instance, when you want to affect the value of the dependent var-

iable by changing the independent variables, use your knowledge to 

identify the variables that are easiest to change. Some variables can be 

difficult, expensive, or even impossible to change. 

 

“Most important” is a subjective, context sensitive quality. Statistics 

can highlight candidate variables, but you still need to apply your sub-

ject-area expertise. 
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Comparing Regression Lines with Hypothesis Tests 

How do you compare regression lines statistically? Imagine you are 

studying the relationship between height and weight and want to de-

termine whether this relationship differs between basketball players 

and non-basketball players. You can graph the two regression lines to 

see if they look different. However, you should perform hypothesis 

tests to determine whether the visible differences are statistically sig-

nificant. 

 

In this section, I show you how to determine whether the differences 

between coefficients and constants in different regression models are 

statistically significant. It’s very easy to do and utilizes concepts we 

covered earlier in this book—indicator variables and interaction ef-

fects! 

 

Suppose we estimate the relationship between X and Y under two dif-

ferent conditions, processes, contexts, or other qualitative change. 

We want to determine whether the difference affects the relationship 

between X and Y. Fortunately, these statistical tests are easy to per-

form. 

 

For the regression examples in this section, I use an input variable and 

an output variable for a fictional process. Our goal is to determine 

whether the relationship between these two variables changes be-

tween two conditions. First, I’ll show you how to determine whether 

the constants are different. Then, we’ll assess whether the coefficients 

are different. 

Hypothesis Tests for Comparing Regression Constants 

When the constant (y intercept) differs between regression equa-

tions, the regression lines are shifted up or down on the y-axis. The 

scatterplot below shows how the output for Condition B is consist-

ently higher than Condition A for any given Input. These two models 
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have different constants. We’ll use a hypothesis test to determine 

whether this vertical shift is statistically significant. 

 

 
 

To test the difference between the constants, we need to combine the 

two datasets into one. Then, create a categorical variable that identi-

fies the condition for each observation. Our combined dataset con-

tains the three variables of Input, Condition, and Output. All we need 

to do now is to fit the model! 

 

I fit the model with Input and Condition as the independent variables 

and Output as the dependent variable. Here is the CSV data file for 

this example: TestConstants. 

Interpreting the Results 

The regression equation table displays the two constants, which differ 

by 10 units. We will determine whether this difference is statistically 

significant. 

 

https://statisticsbyjim.com/wp-content/uploads/2017/07/TestConstants.csv
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Next, check the coefficients table in the statistical output. 

 

 
 

For Input, the p-value for the coefficient is 0.000. This value indicates 

that the relationship between the two variables is statistically signifi-

cant. The positive coefficient indicates that as Input increases, so does 

Output, which matches the scatterplot above. 

 

To perform a hypothesis test on the difference between the constants, 

we need to assess the Condition variable. The Condition coefficient is 

10, which is the vertical difference between the two models. The p-

value for Condition is 0.000. This value indicates that the difference 

between the two constants is statistically significant. In other words, 

the sample evidence is strong enough to reject the null hypothesis that 

the population difference equals zero (i.e., no difference). 

 

The hypothesis test supports the conclusion that the constants are dif-

ferent. The vertical shift is statistically significant. 

Hypothesis Tests for Comparing Regression Coefficients 

Let’s move on to testing the difference between regression coeffi-

cients. When the coefficients are different, a one-unit change in an 

independent variable is related to varying changes in the mean of the 

dependent variable. 
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The scatterplot below displays two Input/Output models. It appears 

that Condition B has a steeper line than Condition A. Our goal is to 

determine whether the difference between these slopes is statistically 

significant. In other words, does Condition affect the relationship be-

tween Input and Output? 

 

 
 

Performing this hypothesis test might seem complex, but it is straight-

forward. To start, we’ll use the same approach for testing the con-

stants. We need to combine both datasets into one and create a 

categorical Condition variable. Here is the CSV data file for this exam-

ple: TestSlopes. 

 

We need to determine whether the relationship between Input and 

Output depends on Condition. In statistics, when the relationship be-

tween two variables depends on another variable, it is called an inter-

action effect. Consequently, to perform a hypothesis test on the 

difference between regression coefficients, we just need to include 

the proper interaction term in the model! In this case, we’ll include 

the interaction term for Input*Condition. 

https://statisticsbyjim.com/wp-content/uploads/2017/07/TestSlopes.csv
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I fit the regression model with Input (continuous main effect), Con-

dition (categorical main effect), and Input *Condition (interaction ef-

fect). This model produces the following results. 

Interpreting the Results 

 
 

The p-value for Input is 0.000, which indicates that the relationship 

between Input and Output is statistically significant. 

 

Next, look at Condition. This term is the main effect that tests for the 

difference between the constants. The coefficient indicates that the 

difference between the constants is -2.36, but the p-value is only 

0.093. The lack of statistical significance indicates that we can’t con-

clude the constants are different. However, we’ll leave it in the model 

because it is part of the interaction term. 

 

Now, let’s move on to the interaction term (Input*Condition). The 

coefficient of 0.469 represents the difference between the slope coef-

ficients for Condition A and Condition B. The p-value of 0.000 indi-

cates that this difference is statistically significant. We can reject the 

null hypothesis that the difference between slopes is zero. In other 

words, we can conclude that Condition affects the slope of the rela-

tionship between Input and Output. 

 

The regression equation table below shows both models. Thanks to 

the hypothesis tests that we performed, we know that the constants 
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are not significantly different, but the difference between the two In-

put coefficients is statistically significant. 

 

 
 

By including a categorical variable in regression models, it’s simple to 

perform hypothesis tests to determine whether the differences be-

tween constants and coefficients are statistically significant. These 

tests are beneficial when you can see differences between models and 

you want to support your observations with p-values. 

How High Does R-squared Need to Be? 

How high does R-squared need to be in regression analysis? That 

seems to be an eternal question. 

 

Previously, I explained how to interpret R-squared. I showed how the 

interpretation of R2 is not always straightforward. A low R-squared 

isn’t always a problem, and a high R-squared doesn’t automatically in-

dicate that you have a good model. 

 

So, how high should R-squared be? The definitive answer is . . . it de-

pends. You’ll need some patience because my assertion is that this 

question is the wrong question. In this section, I reveal why it is the 

wrong question and which questions you should ask instead. 

How High Does R-squared Need to be is the Wrong Question 

How high does R-squared need to be? If you think about it, there is 

only one correct answer. R-squared should accurately reflect the per-

centage of the dependent variable variation that the linear model ex-

plains. Your R2 should not be any higher or lower than this value. 
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The correct R2 value depends on your study area. Different research 

questions have different amounts of variability that are inherently un-

explainable. Case in point, humans are hard to predict. Any study that 

attempts to predict human behavior will tend to have R-squared val-

ues less than 50%. However, if you analyze a physical process and 

have very good measurements, you might expect R-squared values 

over 90%. There is no one-size fits all best answer for how high R-

squared should be. 

 

Consequently, the answer to “how high does R-squared need to be?” 

is that it depends on the amount of variability that is actually explain-

able. Clearly, your R-squared should not be greater than the amount 

of variability that is actually explainable—which can happen in regres-

sion. To see if your R-squared is in the right ballpark, compare your R2 

to those from other studies. 

 

Chasing a high R2 value can produce an inflated value and a mislead-

ing model. Adjusted R-squared and predicted R-squared can help you 

avoid these problems. 

Define Your Objectives for the Regression Model 

When you wonder if the R-squared is high enough, it’s probably be-

cause you want to know if the regression model satisfies your objec-

tives. Given your requirements, does the model meet your needs? 

Therefore, you need to define your objectives before proceeding. 

 

To determine whether a model meets your objectives, you’ll need to 

ask different questions because R2 doesn’t address this issue. The cor-

rect questions depend on which of the following is your primary pur-

pose for the model: 

 

• Explanatory Model: Your goal is to understand the relation-

ships between the independent variables and dependent var-

iable. 
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• Predictive Model: Your goal is to obtain useful predictions for 

the dependent variable. 

R-squared and Understanding the Relationships between the 
Variables 

If your primary goal is to understand the relationships between the 

variables in your model, the answer to how high R-squared needs to 

be is very simple. For this objective, R2 is irrelevant. 

 

This statement might surprise you. However, the interpretation of the 

significant relationships in a regression model does not change regard-

less of whether your R2 is 15% or 85%! The regression coefficients de-

fine the relationship between each independent variable and the 

dependent variable. The interpretation of the coefficients doesn’t 

change based on the value of R-squared. 

 

Suppose we have a statistically significant coefficient that equals 2. 

This coefficient indicates that the mean of the dependent variable in-

creases by 2 for every one-unit increase in the independent variable 

irrespective of the R2 value. 

 

The question about how high R-squared needs to be doesn’t make 

sense in this context because it doesn’t matter. A small R2 doesn’t nul-

lify or change the interpretation of the coefficient for an independent 

variable that is statistically significant. I’ll show how this works in 

more detail later in this chapter. 

 

Instead of wondering if your R-squared value is high enough, you 

should ask the following questions to ensure that you can trust your 

results: 

 

• Do I have a sound basis for my model? 

• Can I trust my data? 

• Do the residual plots look good? 

• Do the results fit theory? 
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• How do I interpret the regression coefficients and P-values? 

R-squared and Predicting the Dependent Variable 

On the other hand, if your primary goal is to use your regression 

model to predict the value of the dependent variable, R-squared is a 

consideration. 

 

Predictions are more complex than just the single predicted value. 

Predictions include a margin of error. More precise predictions have 

a smaller amount of error. 

 

R2 is relevant in this context because it is a measure of the error. 

Lower R2 values correspond to models with more error, which in turn 

produces predictions that are less precise. In other words, if your R2 

is too low, your predictions will be too imprecise to be useful. 

A low R-squared can be an indicator of imprecision predictions. How-

ever, R2 doesn’t tell you directly whether the predictions are suffi-

ciently precise for your requirements. 

 

We need a direct measure of precision that uses the units of the de-

pendent variable. That’s why asking, “How high does R-squared need 

to be?” still is not the correct question. 

 

Instead, you should ask the questions above plus the following ques-

tion: 

 

• Are the prediction intervals precise enough for my re-

quirements? 

Using Prediction intervals to Assess Precision 

Most statistical software can calculate prediction intervals, and they 

are easy to use. 

 

A prediction interval is a range where a single new observation is 

likely to fall given values of the independent variable(s) that you 
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specify. These ranges incorporate the margin of error around the pre-

dicted value. If the prediction intervals are too wide, the predictions 

don’t provide useful information. Narrow prediction intervals repre-

sent more precise predictions. The fitted line below displays the pre-

diction intervals graphically.  

 

 
 

In chapter 10, where I discuss using regression analysis to make pre-

dictions, I present the model displayed in the graph. This model uses 

BMI to predict the percentage of body fat. The 95% prediction interval 

for a BMI of 18 is 16-30% body fat. We can be 95% confident that an 

individual with a BMI of 18 will fall within this range. 

 

At this point, you need to use client requirements, spec limits, and 

subject area knowledge to determine whether the prediction intervals 

are narrow enough to represent meaningful predictions. By assessing 

the prediction intervals, you are evaluating the precision of the model 

directly rather than relying on an arbitrary cut-off value for R-

squared. 
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R-squared Is Overrated! 

Asking “How high does R-squared need to be?” is usually not the cor-

rect question to ask. You probably want to know if the regression 

model can meet your needs. To this end, there are better questions 

that you should ask. 

 

R-squared gets all of the attention for assessing the goodness-of-fit. It 

seems like a simple statistic to interpret. However, evaluating the fit 

involves more than just this single statistic. You need to use subject 

area knowledge, residual plots, coefficients, and prediction intervals 

if you’re making predictions. 

 

However, R-squared does have some good uses. For one thing, com-

pare your R2 value to values from similar studies. If your R2 is mark-

edly higher or lower, you should investigate because there might be a 

problem. 

 

Don’t forget about the standard error of the regression (S), which is a 

different type of goodness-of-fit measure that is more useful when 

you need to make predictions. 

Five Reasons Why R-squared can be Too High 

When your regression model has a high R-squared, you assume it’s a 

good thing. You want a high R-squared, right? However, as I’ll show 

you, a high R-squared can occasionally indicate that your model has a 

problem. I’ll explain five reasons why your R-squared can be too 

high and how to determine whether one of them affects your regres-

sion model. 

 

The five reasons I go over aren’t a complete list, but they are the most 

common explanations. 
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High R-squared Values can be a Problem 

 
 

Let’s start by defining how R-squared can be too high. 

 

R-squared is the percentage of the dependent variable variation that 

the model explains. The value in your statistical output is an estimate 

of the population value that is based on your sample. Like other esti-

mates in inferential statistics, you want your R-squared estimate to be 

close to the population value. 

 

The issues I’m discussing can create situations where the R2 in your 

output is much higher than the correct value for the entire population. 

Additionally, these conditions can cause other problems, such as mis-

leading coefficients. Consequently, it is possible to have an R-squared 

value that is too high even though that sounds counter-intuitive. 

 

High R2 values are not always a problem. In fact, sometimes you can 

legitimately expect very large values. For example, if you are studying 

a physical process and have very precise and accurate measurements, 

it’s possible to obtain valid R-squared values in the high 90s. 

 

On the other hand, human behavior inherently has much more unex-

plainable variability, and this produces R2 values that are usually less 

than 50%. 90% is way too high in this context! 

 

You need to use your knowledge of the subject area to determine what 

R2 values are reasonable. Compare your study to comparable studies 

to see what values they obtained. How inherently unpredictable is 

your research question? 
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If your R-squared value is too high, consider the following potential 

explanations. To determine whether any apply to your regression 

model, use your expertise, knowledge about your sample data, and the 

details about the process you used to fit the model. 

Reason 1: R-squared is a biased estimate 

Here’s a potential surprise for you. The R-squared value in your re-

gression output has a tendency to be too high. When calculated from 

a sample, R2 is a biased estimator. In statistics, a biased estimator is 

one that is systematically higher or lower than the population value. 

R-squared estimates tend to be greater than the correct population 

value. This bias causes some researchers to avoid R2 altogether and 

use adjusted R2 instead. 

 

Think of R-squared as a defective bathroom scale that reads too high 

on average. That’s the last thing you want! Statisticians have long un-

derstood that linear regression methodology gets tripped up by 

chance correlations that are present in the sample, which causes an 

inflated R2. 

 

If you had a bathroom scale that reads too high, you’d adjust it down-

ward so that it displays the correct weight on average. Adjusted R-

squared does just that with the R2 value. Adjusted R-squared reduces 

the value of R-squared until it becomes an unbiased estimate of the 

population value. Statisticians refer to this as R-squared shrinkage. 

To determine the correct amount of shrinkage, the calculations com-

pare the sample size to the number of terms in the model. When there 

are few samples per term, the R2 bias tends to be larger and requires 

more shrinkage to correct. Conversely, models with many samples 

per term need less shrinkage. 

 

The graph below displays the amount of shrinkage required based on 

the number of samples per term. 
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I’ve also written about using adjusted R-squared in a different context. 

Adjusted R-squared allows you to compare the goodness-of-fit for 

models with different numbers of terms. 

Reason 2: Overfitting your model 

Overfitting a model is a condition where a statistical model begins to 

describe the random error in the data rather than the relationships 

between variables. This problem occurs when the model is too com-

plex. Unfortunately, one of the symptoms of an overfit model is an R-

squared value that is too high. 

While the R2 looks good, there can be serious problems with an over-

fit model. For one thing, the regression coefficients represent the 

noise rather than the genuine relationships in the population. Addi-

tionally, an overfit regression model is tailor-made to fit the random 

quirks of one sample and is unlikely to fit the random quirks of an-

other sample. Thus, overfitting a regression model reduces its gener-

alizability outside the original dataset. 

 

Adjusted R-squared isn’t designed to detect overfitting, but predicted 

R-squared can. 
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Reason 3: Data mining and chance correlations 

Data mining is the process of fitting many different models, trying 

many different independent variables, and primarily using statistical 

significance to build the final model rather than being guided by the-

ory. This process introduces a variety of problems, including mislead-

ing coefficients and an inflated R-squared value. 

 

For all hypothesis tests, including tests for regression coefficients, 

there is always the chance of rejecting a null hypothesis that is actually 

true (Type I error). This error rate equals your significance level, 

which is often 5%. 

 

Let’s apply this to regression analysis. When you fit many models, you 

are performing many hypothesis tests on all of the coefficients. In fact, 

if you use an automated model building procedure like stepwise or 

best subsets regression, you might be performing hundreds if not 

thousands of hypothesis tests on your sample. With many tests, you 

will inevitably encounter false positives. If you are guided mainly by 

statistical significance, you’ll keep these variables in the model. 

 

How serious is this problem? In chapter 8, you saw how data mining 

can produce statistically significant variables and a high R2 from data 

that are randomly generated!  

The answer lies in conducting subject-area research before you begin 

your study. This research helps you reduce the number of models you 

fit and allows you to compare your results to theory. 

Reason 4: Trends in Panel (Time Series) Data 

If you have panel data and your dependent variable and an independ-

ent variable both have trends over time, this can produce inflated R-

squared values. Try a time series analysis or include time-related in-

dependent variables in your regression model. For instance, try lag-

ging and differencing your variables. 
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Reason 5: Form of a Variable 

If you include a different form of the same variable for both the de-

pendent variable and an independent variable, you obtain an artifi-

cially inflated R-squared. 

 

For example, if the dependent variable is temperature in Celsius and 

your model contains an independent variable of temperature on a dif-

ferent scale, your R2 is nearly 100%. That’s an obvious example, but 

there are more subtle forms of it. For instance, you can expect an in-

flated R2 value if your dependent variable is poverty rate and one of 

your independent variables is income. Poverty rate is defined by in-

come. 

Interpreting Models that have Significant Variables 
but a Low R-squared 

Low R-squared values for regression models can seem like a problem, 

but that might not be the case. 

 

If your regression model contains independent variables that are sta-

tistically significant, you might expect to have a reasonably high R-

squared value. This combination of significant variables and a high R-

squared makes sense. 

 

In this situation, changes in the significant independent variables 

are correlated with shifts in the dependent variable. Correspondingly, 

the high R-squared value signifies that your model explains a good 

proportion of the variability in the dependent variable. 

 

That seems logical, right? 

 

But what if your model has independent variables that are statistically 

significant but it has a low R-squared value? This combination indi-

cates that the independent variables are correlated with the 
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dependent variable, but they do not explain much of the variability in 

the dependent variable. 

 

Over the years, I’ve had many questions about how to interpret this 

combination. Some people have wondered whether the significant 

variables are meaningful. Do these results even make sense? Yes, they 

do! 

 

In this section, I show how to interpret a model that has significant 

independent variables but a low R-squared. To do this, I’ll compare 

regression models with low and high R-squared values so you can re-

ally grasp the similarities and differences and what it all means. 

Comparing Regression Models with Low and High R-squared 
Values 

Like many concepts in statistics, it’s so much easier to understand 

this one using graphs. In fact, research finds that charts are crucial to 

convey certain information about regression models accurately. 

 

Consequently, I’ll use fitted line plots to illustrate the concepts for 

models with one independent variable. However, these interpreta-

tions remain valid for multiple regression. 

 

Let’s consider two regression models that assess the relationship be-

tween Input and Output. In both models, Input is statistically signifi-

cant. The equations for these models are below: 

 

• Output1 = 44.53 + 2.024*Input 

• Output2 = 44.86 + 2.134*Input 

 

These two regression equations are almost exactly equal. If you saw 

only the equations, you’d think the models are very similar. Now con-

sider that the R-squared for the Output1 model is 14.7% and for Out-

put2 it is 86.5%. The models aren’t as similar as they first appear. 

 



J im Fros t  

306 

Graphs can really bring the differences to life. Let’s see what these 

models and data actually look like. In the two graphs below, I made 

the scales the same to allow for valid comparisons. You can download 

the CSV data file: HighLowRsquaredData. 

 

 

 
 

Whoa! Did you expect that much of a difference? 

 

https://statisticsbyjim.com/wp-content/uploads/2017/05/HighLowRsquaredData.csv
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To understand how to interpret a regression model with significant 

independent variables but a low R-squared, we’ll compare the similar-

ities and the differences between these two models. 

Regression Model Similarities 

The models are similar in the following ways: 

 

• The equations are nearly equal: Output  =  44 +  2 * Input 

• Input is significant with a p-value < 0.001 

 

Additionally, the regression lines in both plots provide an unbiased fit 

to the upward trend in both datasets. They have the same upward 

slope of 2. 

 

Interpreting a regression coefficient that is statistically significant 

does not change based on the R-squared value. Both graphs show that 

if you move to the right on the x-axis by one unit of Input, Output 

increases on the y-axis by an average of two units. This mean change 

in output is the same for both models even though the R-squared val-

ues are different. 

 

Furthermore, if you enter the same Input value in the two equations, 

you’ll obtain approximately equal predicted values for Output. For ex-

ample, an Input of 10 produces predicted values of 66.2 and 64.8. 

These values represent the predicted mean value of the dependent 

variable. 

Regression Model Differences 

The similarities all focus around the mean—the mean change and the 

mean predicted value. However, the biggest difference between the 

two models is the variability around those means. I’d guess that the 

difference in variability is the first thing about the plots that grabbed 

your attention. 
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While the regression coefficients and predicted values focus on the 

mean, R-squared measures the scatter of the data around the regres-

sion lines. That’s why the two R-squared values are so different. For a 

given dataset, higher variability around the regression line produces a 

lower R-squared value. 

 

Take a look at the chart with the low R-squared. Even these relatively 

noisy data have a significant trend. You can see that as the Input value 

increases, the Output value also increases. This statistically significant 

relationship between the variables tells us that knowing the value of 

Input provides information about the value of Output. The difference 

between the models is the spread of the data points around the pre-

dicted mean at any given location along the regression line. 

 

Be sure to keep the low R-squared graph in mind if you need to com-

prehend a model that has significant independent variables but a low 

R-squared! 

 

While the two models produce mean predictions that are almost the 

same, the variability (i.e., the precision) around the predictions is dif-

ferent. I’ll show you how to assess precision using prediction inter-

vals. This method is particularly useful when you have more than one 

independent variable and can’t graph the models to see the spread of 

data around the regression line. 

Using Prediction Intervals to See the Variability 

A prediction interval is a range where a single new observation is 

likely to fall given values of the independent variables that you spec-

ify. Narrower prediction intervals represent more precise predictions. 

Most statistical software can calculate prediction intervals. 

 

The statistical output below displays the fitted values and prediction 

intervals that are associated with an Input value of 10 for both models. 

The first output is for the model with the low R-squared. 
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As I mentioned earlier, the mean predicted values (i.e., the fit) are 

nearly equal. However, the prediction intervals are very different be-

cause they incorporate the variability. The high variability/low R-

squared model has a prediction interval of approximately -500 to 630. 

That’s over 1100 units! 

 

On the other hand, the low variability/high R-squared model has a 

much narrower prediction interval of roughly -30 to 160, about 190 

units. 

 

After seeing the variability in the data, the differing levels of precision 

should make sense. 

Key Points about Low R-squared Values 

Let’s go over the key points. 

 

• Regression coefficients and fitted values represent means. 
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• R-squared and prediction intervals represent variability. 

• You interpret the coefficients for significant variables the 

same way regardless of the R-squared value. 

• Low R-squared values can warn of imprecise predictions. 

 

What can be done about that low R-squared value? That’s the next 

question I usually hear in this context. Often, the first thought is to 

add more variables to the model to increase R-squared. 

 

If you can find legitimate predictors, that can work in some cases. 

However, for every study area there is an inherent amount of unex-

plainable variability. For instance, studies that attempt to predict hu-

man behavior generally have R-squared values less than 50%. People 

are hard to predict. You can force a regression model to go past this 

point but it comes at the cost of misleading regression coefficients, p-

values, and R-squared. 

 

Adjusted R-squared and predicted R-squared are tools that help you 

avoid this problem. 

 

If you are mainly interested in understanding the relationships be-

tween the variables, the good news is that a low R-squared does not 

negate the importance of any significant variables. Even with a low R-

squared, statistically significant P-values continue to identify relation-

ships and coefficients have the same interpretation. Generally, you 

have no additional cause to discount these findings.
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Choosing the Correct 
Type of Regression 

Throughout this book, I’ve focused on using ordinary least squares 

linear regression. Analysts use this type most frequently and it will 

serve you well. However, there are numerous other types of regres-

sion models that you can use. This choice often depends on the kind 

of data you have for the dependent variable and the type of model that 

provides the best fit. In this chapter, I cover other types of regression 

analyses and how to decide which one is right for your data. 

 

I’ll provide an overview along with information to help you choose. I 

organize the types of regression by the different kinds of dependent 

variable. If you’re not sure which procedure to use, determine which 

type of dependent variable you have, and then focus on that section. 

This process should help narrow the choices! I’ll cover regression 

models that are appropriate for dependent variables that measure 

continuous, categorical, and count data. 

 

While these types of regression are beyond the scope of this book, I 

hope this information points you in the right direction if you need to 

use a different type of analysis. 
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Continuous Dependent Variables 

Regression analysis with a continuous dependent variable is probably 

the first type that comes to mind. While this is the primary case, you 

still need to decide which one to use. 

 

Continuous variables are a measurement on a continuous scale, such 

as weight, time, and length. 

Linear regression 

 
OLS produces the fitted line that minimizes the sum of the squared 

differences between the data points and the line. 

 

Linear regression, also known as ordinary least squares (OLS) and lin-

ear least squares, is the real workhorse of the regression world. Use 

linear regression to understand the mean change in a dependent vari-

able given a one-unit change in each independent variable. You can 

also use polynomials to model curvature and include interaction ef-

fects. Despite the term “linear model,” this type can model curvature. 
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Linear model that uses a polynomial to model curvature 

 

This analysis estimates parameters by minimizing the sum of the 

squared errors (SSE). Linear models are the most common and most 

straightforward to use. If you have a continuous dependent variable, 

linear regression is probably the first type you should consider. 

 

There are some special options available for linear regression. 

 

Fitted line plots: If you have one independent variable and the de-

pendent variable, use a fitted line plot to display the data along with 

the fitted regression line and essential regression output. These graphs 

make understanding the model more intuitive. 

 

Stepwise regression and Best subsets regression: These automated 

methods can help identify candidate variables early in the model spec-

ification process. 

Advanced types of linear regression 

OLS linear models are the oldest type of regression. It was designed 

so that statisticians can do the calculations by hand. However, OLS 

has several weaknesses, including a sensitivity to both outliers and 

multicollinearity, and it is prone to overfitting. To address these prob-

lems, statisticians have developed several advanced variants: 
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• Ridge regression allows you to analyze data even when se-

vere multicollinearity is present and helps prevent overfit-

ting. This type of model reduces the large, problematic 

variance that multicollinearity causes by introducing a slight 

bias in the estimates. The procedure trades away much of the 

variance in exchange for a little bias, which produces more 

useful coefficient estimates when multicollinearity is present. 

• Lasso regression (least absolute shrinkage and selection op-

erator) performs variable selection that aims to increase pre-

diction accuracy by identifying a simpler model. It is similar 

to Ridge regression but with variable selection. 

• Partial least squares (PLS) regression is useful when you 

have very few observations compared to the number of inde-

pendent variables or when your independent variables are 

highly correlated. PLS decreases the independent variables 

down to a smaller number of uncorrelated components, simi-

lar to Principal Components Analysis. Then, the procedure 

performs linear regression on these components rather the 

original data. PLS emphasizes developing predictive models 

and is not used for screening variables. Unlike OLS, you can 

include multiple continuous dependent variables. PLS uses 

the correlation structure to identify smaller effects and model 

multivariate patterns in the dependent variables. 

Nonlinear regression 

Nonlinear regression also requires a continuous dependent variable, 

but it provides a greater flexibility to fit curves than linear regression. 

 

Like OLS, nonlinear regression estimates the parameters by minimiz-

ing the SSE. However, nonlinear models use an iterative algorithm ra-

ther than the linear approach of solving them directly with matrix 

equations. What this means for you is that you need to worry about 

which algorithm to use, specifying good starting values, and the pos-

sibility of either not converging on a solution or converging on a local 
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minimum rather than a global minimum SSE. And, that’s in addition 

to specifying the correct functional form! 

 

 
 

Nonlinear model of electron mobility by density. 

 

Most nonlinear models have one continuous independent variable, 

but it is possible to have more than one. When you have one inde-

pendent variable, you can graph the results using a fitted line plot. 

 

My advice is to fit a model using linear regression first and then deter-

mine whether the linear model provides an adequate fit by checking 

the residual plots. If you can’t obtain a good fit using linear regression, 

then try a nonlinear model because it can fit a wider variety of curves. 

I always recommend that you try OLS first because it is easier to per-

form and interpret. 

Categorical Dependent Variables 

So far, we’ve looked at models that require a continuous dependent 

variable. Next, let’s move on to categorical independent variables. A 

categorical variable has values that you can put into a countable num-

ber of distinct groups based on a characteristic. Logistic regression 

transforms the dependent variable and then uses Maximum Likeli-

hood Estimation, rather than least squares, to estimate the parameters. 
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Logistic regression describes the relationship between a set of inde-

pendent variables and a categorical dependent variable. Choose the 

type of logistic model based on the type of categorical dependent var-

iable you have. 

Binary Logistic Regression 

Use binary logistic regression to understand how changes in the inde-

pendent variables are associated with changes in the probability of an 

event occurring. This type of model requires a binary dependent var-

iable. A binary variable has only two possible values, such as pass and 

fail. Chapter 13 contains an example of binary logistic regression. 

 

Example: Political scientists assess the odds of the incumbent U.S. 

President winning reelection based on stock market performance. 

Ordinal Logistic Regression 

Ordinal logistic regression models the relationship between a set of 

predictors and an ordinal response variable. An ordinal response has 

at least three groups which have a natural order, such as hot, medium, 

and cold. 

 

Example: Market analysts want to determine which variables influ-

ence the decision to buy large, medium, or small popcorn at the movie 

theater. 

Nominal Logistic Regression 

Nominal logistic regression models the relationship between a set of 

independent variables and a nominal dependent variable. A nominal 

variable has at least three groups which do not have a natural order, 

such as scratch, dent, and tear. 

 

Example: A quality analyst studies the variables that affect the odds 

of the type of product defects: scratches, dents, and tears. 
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Count Dependent Variables 

If your dependent variable is a count of items, events, results, or ac-

tivities, you might need to use a different type of regression model. 

Counts are nonnegative integers (0, 1, 2, etc.). Count data with higher 

means tend to be normally distributed and you can often use OLS. 

However, count data with smaller means can be skewed, and linear 

regression might have a hard time fitting these data. For these cases, 

there are several types of models you can use. 

Poisson regression 

Count data frequently follow the Poisson distribution, which makes 

Poisson Regression a good possibility. Poisson variables are a count of 

something over a constant amount of time, area, or another consistent 

length of observation. Counts are nonnegative integers. With a Pois-

son variable, you can calculate and assess a rate of occurrence. A clas-

sic example of a Poisson dataset is provided by Ladislaus Bortkiewicz, 

a Russian economist, who analyzed annual deaths caused by horse 

kicks in the Prussian Army from 1875-1984. 

 

Use Poisson regression to model how changes in the independent var-

iables are associated with changes in the counts. Poisson models are 

similar to logistic models because they use Maximum Likelihood Esti-

mation and transform the dependent variable using the natural log. 

Poisson models can be suitable for rate data, where the rate is a count 

of events divided by a measure of that unit’s exposure (a consistent 

unit of observation). For example, homicides per month. 

 

Example: An analyst uses Poisson regression to model the number of 

calls that a call center receives daily. 

Alternatives to Poisson regression for count data 

Not all count data follow the Poisson distribution because this distri-

bution has some stringent restrictions. Fortunately, there are alterna-

tive analyses you can perform when you have count data. 
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Negative binomial regression: Poisson regression assumes that the 

variance equals the mean. When the variance is greater than the mean, 

your model has overdispersion. A negative binomial model, also 

known as NB2, can be more appropriate when overdispersion is pre-

sent. 

 

Zero-inflated models: Your count data might have too many zeros to 

follow the Poisson distribution. In other words, there are more zeros 

than the Poisson regression predicts. Zero-inflated models assume 

that two separate processes work together to produce the excessive 

zeros. One process determines whether there are zero events or more 

than zero events. The other is the Poisson process that determines 

how many events occur, some of which some can be zero. An example 

makes this clearer! 

 

Suppose park rangers count the number of fish caught by each park 

visitor as they exit the park. A zero-inflated model might be appropri-

ate for this scenario because there are two processes for catching zero 

fish: 

 

• Some park visitors catch zero fish because they did not go 

fishing. 

• Other visitors went fishing, and some of these people caught 

zero fish. 

 

As you can see, there are many different types of regression analysis. 

If OLS doesn’t work for your data, there’s undoubtedly a type of re-

gression that will! Knowing how to use OLS is extremely helpful for 

using these other types of analysis.
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Examples of Other 
Types of Regression 

The last chapter contains examples of several different types of re-

gression analysis to introduce you to the potential of these analyses. 

These regression examples include the datasets so you can try them 

yourself! We’ll explore log-log plots and binary logistic regression, 

which are two of the more common alternatives to ordinary least 

squares regression.  

Using Log-Log Plots to Determine Whether Size 
Matters 

Log-log plots display data in two dimensions where both axes use log-

arithmic scales. When one variable changes as a constant power of 

another, a log-log graph shows the relationship as a straight line. In 

this section, I’ll show you why these graphs are valuable and how to 

interpret them. 
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These plots allow us both to test whether data fits a power law rela-

tionship in the form of Y = kXn and to extract both k and n. If the data 

points don’t follow a straight line, we know that X and Y do not have 

a power law relationship. Furthermore, a log-log graph displays the 

relationship Y = kXn as a straight line such that log(k) is the constant 

and n is the slope. Equivalently, the linear function is: log (Y) = log (k) 

+ log (Xk). It’s easy to see if the relationship follows a power law and 

to read k and n right off the graph! 

 

In this section, I work through two example log-log plots to see 

whether some real-world data follow a power law relationship. It’s 

also a fantastic illustration of the truth behind John Tukey’s observa-

tion that, “The best thing about being a statistician is that you get to 

play in everyone’s backyard.” I agree enthusiastically! 

 

I love reading and watching scientific material. These are the other 

backyards that Tukey mentions. My statistical knowledge often helps 

me to understand the subject matter better. In this case, I was watch-

ing and noticed what seemed to be an error in the “Size Matters” epi-

sode of the BBC program Wonders of Life. Professor Brian Cox 

presents a graph that displays the relationship between the mass of 
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mammals and their metabolic rate. And this becomes one of our ex-

ample log-log plots! 

Does the Mass of Mammals Affect Their Metabolism? 

Brian Cox is a theoretical physicist and a really smart guy. He’s also 

one of my favorite science presenters. So, I was surprised when his 

explanation of a linear regression model appeared incorrect. Below is 

a closer look at the model he presents, and his interpretation. 

 

 
 

Cox points to the straight line and says, “That implies, gram-for-gram, 

large animals use less energy than small animals . . . because the slope 

is less than one.” 

 

In linear regression, it doesn’t matter that the slope is less than 1. In-

stead, the fact that the line is straight tells us that both small and large 

mammals follow a constant relationship. If you increase mass by 1 

gram for both a small mammal and for a large mammal, metabolism 
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rises by the same average amount for both sizes. In other words, gram-

for-gram, size doesn’t seem to matter! 

 

However, I didn’t think Cox would make such a fundamental mistake, 

so I investigated. I found that biologists use log-log plots to display the 

relationship between mammal mass and their basal metabolic rate. 

The relationship appears to be a straight line, but it follows a power 

law. In the program, Cox didn’t mention that he was showing a log-log 

plot. That’s a big difference! 

 

Scientists use log-log plots for many phenomena that follow power 

laws. Systems can be complex and cover widely different scales. How-

ever, the exponent in a power law relationship remains the same at all 

scales of a system. You can use power laws to model the sizes of the 

craters on the power, word frequencies, and earthquakes. 

 

The fact that we’re looking at a log-log plot drastically changes our 

interpretation. In regression, you can use log-log plots to transform 

the data to model curvature using linear regression even when it rep-

resents a nonlinear function. Let’s analyze similar mammal data our-

selves and learn how to interpret the log-log plot. 

Example: Log-Log Plot of Mammal Mass and Basal Metabolic 
Rate 

We’ll use the PanTHERIA database to model the relationship between 

mammal mass and metabolic with a log-log plot. This dataset includes 

572 mammals that range from the masked shrew (4.2 grams) to the 

common eland (562,000 grams)—which is a much larger sample-size 

than David Cox’s dataset. Here is the CSV data file so you can try both 

log-log plot examples for yourself: Mammals. 

 

Most statistical software can create a log-log plot. Here’s what it looks 

like for the mammal dataset. 

https://statisticsbyjim.com/wp-content/uploads/2017/10/Mammals.csv
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The data clearly follow a straight line, which indicates they follow a 

power law relationship. The p-value for the slope (0.7063) is 0.000 

(not shown), indicating that it is statistically significant. The R-

squared of 94.3% is impressive, particularly when you consider that 

different researchers collected these data in various settings and in-

cluded a wide range of mammals from entirely different habits! 

 

Using the constant and slope, we can rewrite it in the power law form: 

 

Metabolic Rate = 0.5758Mass0.7063 

 

The exponent’s value is consistent with recently published estimates. 

 

When a slope on a log-log plot is between 0 and 1, it signifies that the 

nonlinear effect of the dependent variable lessens as its value in-

creases. For the mammal data, the exponent (0.7063) is in this range, 

which indicates that as mammals become more massive, the increase 

in metabolic rate slows down. In other words, gram for gram, larger 

mammals use less energy than smaller mammals. Or, a cell in a larger 
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mammal uses less energy than a cell in a smaller mammal. This inter-

pretation fits Cox’s explanation in the show. 

 

The fact that the effect of mass on metabolism decreases has signifi-

cant ramifications. If the increase in metabolic rate had remained con-

stant (linear), humans would need to consume 16,000 calories a day. 

However, mammals couldn’t grow more massive than a goat due to 

overheating problems! 

Example: Log-Log Plot of Basal Metabolic Rate and Longevity 

Let’s look at a how metabolic rate and longevity are related using a 

log-log plot. These data are in the same dataset we used for the previ-

ous example. This time we’re assessing metabolic rate per gram in-

stead of the total metabolic rate. 

 

 
 

Again, the data follow a straight line, so we know that the relationship 

follows a power law, and it is statistically significant (p = 0.000). This 

time the slope is negative which indicates that as the metabolic rate 

per gram increases, longevity decreases. The R-squared is 45.8%, 
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which is not bad because this factor is just one of many that can impact 

maximum lifespan! 

 

We can express the relationship as a power law: 

 

Longevity = 1.879MassPerGram -0.6383 

 

Like the previous log-log plot, this relationship is nonlinear. I’ll graph 

it below using the natural scale. As the metabolic rate per gram in-

creases, maximum longevity asymptotically approaches a minimum 

value of 13 months. 

 

 
 

On the graph, you can see how a one-unit increase in the slow meta-

bolic rates on the left-side of the chart produces much larger drops in 

longevity than a one-unit increase in the faster rates. 

 

These two log-log plots show that size does matter for mammals. More 

massive mammals tend to have a slower metabolism and tend to live 

longer. Without a slower metabolism, we’d live only about a year! 
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Binary Logistic Regression: Statistical Analysis of 
the Republican Establishment Split 

Note: I originally wrote this piece back in late 2014. I include it here 

to show what you can learn from binary logistic regression. Here is 

the CSV dataset for the House Republicans in 114th Congress. 

 

Back in 2014, House Speaker John Boehner resigned, and then Kevin 

McCarthy refused the position of Speaker of the House before the 

vote. The Republican’s search for a new speaker ultimately led to Paul 

Ryan. Simultaneously, the Republican Freedom Caucus was making 

the news with a potential shutdown of the government that was con-

troversial even amongst some Republicans. 

 

During the Republican Presidential nomination process, there was a 

prominent split between candidates who were pro-establishment and 

anti-establishment. Of course, the end result of the dramatic 2016 U.S. 

Presidential election was the inauguration of a complete political out-

sider. 

 

Change was in the air. Were these events related? Statistical analyses 

can help us identify the underlying variables. I’ll use binary logistic 

regression to determine whether the establishment split in the Repub-

lican nomination process is also evident in the membership of the 

Freedom Caucus. 

How Does the Freedom Caucus Fit In? 

The Freedom Caucus is a faction in the U.S. House of Representatives 

and contains about 40 Republicans. The Freedom Caucus is also 

known as the “Hell No” caucus and has been known to be disruptive. 

Depending on your political views, these disruptions are either posi-

tive or negative events! 

 

The Freedom Caucus tends to be described as very conservative. 

Based on my research, this appears to be the central property of this 

https://statisticsbyjim.com/wp-content/uploads/2019/02/114CongressRepublicans.csv
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group. However, I’ll use statistical analyses to determine whether 

Freedom Caucus membership is predicted by an anti-establishment 

outlook. 

 

If this is verified, the disruptions caused by the Freedom Caucus and 

the upheaval in the Republican nomination process are linked to the 

common theme of an anti-establishment viewpoint. Also, I want to 

statistically assess whether the choice of Paul Ryan as the Speaker of 

the House fits this pattern. 

Data for these Analyses 

The House of Representatives data come from voteview.com. This 

website analyzes the votes by House members to determine a politi-

cian’s conservativeness and establishmentarianism. I also used this 

Wikipedia article to determine which Republican members of the 

House belonged to the Freedom Caucus at that point in time. 

 

Here’s how you interpret these scores: 

 

• Conservativeness: Higher scores represent more conserva-

tive viewpoints. 

• Establishmentarianism: Higher scores represent viewpoints 

that favor the establishment. Lower scores represent anti-es-

tablishment viewpoints. 

Graphing the House Republican Data 

I’ll start by graphing the data so we can see a quick picture of the situ-

ation. In the scatterplot, the points represent Republican House mem-

bers by their two scores. More conservative members are further to 

right while those who are more against the establishment are further 

down. Freedom Caucus members are indicated with red squares. 

http://www.voteview.com/Weekly_Constant_Space_DW-NOMINATE_Scores.htm
https://en.wikipedia.org/wiki/Freedom_Caucus
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It turns out that not all politicians in the Freedom Caucus are very 

conservative. However, they are all at least halfway to the right on the 

graph. Members of the Freedom Caucus also tend to fall in the bottom 

half of the graph, which indicates a tendency towards anti-establish-

ment viewpoints. It appears that both conservativeness and anti-es-

tablishment viewpoints are factors in Freedom Caucus membership. 

Binary Logistic Regression Model of Freedom Caucus Member-
ship 

I’ll use binary logistic regression to test these two predictors statisti-

cally. The response data are binary because Freedom Caucus member-

ship can be only Yes or No. The table below tells us that in 2015 there 

were 36 Freedom Caucus members in a total of 247 House Republi-

cans. 
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This table displays the p-values for both of the predictors in our anal-

ysis. The very low p-values indicate that both predictors are statisti-

cally significant. There is sufficient evidence to conclude that changes 

in the predictors are related to changes in the probability of Freedom 

Caucus membership. In other words, both conservativeness and anti-

establishment viewpoints play a role. 

 

I did not include the interaction term because it is not statistically sig-

nificant. 

 

Unlike OLS regression, the coefficients do not have an intuitive inter-

pretation. Instead, I’ll graph them using several plots that really help 

you understand the results. 

Graphing the Results 

The table tells us that both variables are important. But, we don’t 

know the nature of the relationships between the two predictors and 

membership. The most intuitive way to understand these relation-

ships is by using several graphs. 

 

The two graphs below are based on the binary logistic regression 

model and plot the relationships using fitted values. This is important 

because regression models allow you to change the values of one pre-

dictor while holding the other predictors constant. In this manner, 

you can isolate the role of each variable in relation to the outcome. 

 

The contour plot shows the values of our two predictors and the cor-

responding fitted probabilities. The highest probabilities are in the 
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bottom-right corner. This indicates that the probability of belonging 

to the Freedom Caucus increases as the politician becomes more con-

servative and more anti-establishment. 

 

 
 

The main effects plot highlights how the regression model estimates 

each effect while holding the other predictor constant. 
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The positive relationship in the conservativeness panel shows that 

when politicians are more conservative (higher scores), they are more 

likely to belong to the Freedom Caucus. The negative relationship in 

the establishment panel indicates that when politicians have stronger 

anti-establishment opinions (lower scores), they are more likely to be 

Freedom Caucus members. 

 

Freedom Caucus membership is more complex than just particu-

larly conservative politicians. It is a combination of conservative and 

anti-establishment positions that predict membership. 

 

Here’s one more point to drive this home. Kevin McCarthy declined 

to run for Speaker and many Republicans saw Paul Ryan as a perfect 

candidate. Let’s see how these two politicians compare by looking at 

their conservativeness and establishment scores. I’ll standardize each 

variable in order to account for scale differences. Accordingly, the ta-

ble displays their z-scores. 

 

  Conservatism Establishmentarianism 

McCarthy -0.169 0.549 

Ryan 0.496 -1.180 

 

Compared to McCarthy, Ryan is moderately more conservative but he 

is notably more anti-establishment. This shows which way the politi-

cal winds are blowing! 

 

Collectively, I believe these results demonstrate a multifaceted divide 

in a changing Republican Party. This divide helps clarify why it was 

hard to maintain a unified caucus, hard to choose a Speaker, and the 

unusual nature of the Presidential election of 2016.
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I’m Jim Frost, and I have extensive experience in academic research 

and consulting projects. I’ve been the “data/stat guy” for research pro-

jects that range from osteoporosis prevention to analysis of online 

user behavior. My role has been to design the proper research settings, 

collect a large amount of valid measurements, and figure out what it 

all means. Typically, I’m the first person on the project to learn about 

new findings while interpreting the results of the statistical analysis. 

Even if the findings are not newsworthy, that thrill of discovery is an 

awesome job perk! 

 

I love statistics and analyzing data! I’ve been performing statistical 

analysis on-the-job for 20 years and helping people learn statistics for 

over ten years at a statistical software company. I love talking and 

writing about statistics. 

 

I want to help you learn statistics. But, I’m not talking about learning 

all the equations. Don’t get me wrong. Equations are necessary. Equa-

tions are the framework that makes the magic, but the truly fascinat-

ing aspects are what it all means. I want you to learn the true essence 

of statistics. I’ll help you intuitively understand statistics by focusing 

on concepts and graphs. Although, there might be a few equations! 

 

I’ve spent over a decade working at a major statistical software com-

pany. When you work on research projects, you generally use a regu-

lar group of statistical analyses. However, when you work at a 

statistical software company, you need to know of all the analyses that 

are in the software! I helped people use our software to gain insights 

and maximize the value of their own data regardless of their field. 

 

While working at the statistical software company, I learned how to 

present statistics in a manner that makes statistics more intuitive. I’ll 

be writing about my experiences and useful information about 
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statistics. However, I’ll focus on teaching the concepts in an intuitive 

way and deemphasize the formulas. After all, you use statistical soft-

ware so you don’t have to worry about the formulas and instead focus 

on understanding the results. 

 

Statistics is the field of learning from data. That’s amazing. It gets to 

the very essence of discovery. Statistics facilitates the creation of new 

knowledge. Bit by bit, we push back the frontier of what is known. 

That is what I want to teach you! My goal is to help you to see statistics 

through my eyes―as a key that can unlock discoveries that are in your 

data. 

 

The best thing about being a statistician is that you get to play in eve-

ryone’s backyard. —John Tukey 

 

I enthusiastically agree! If you have an inquisitive mind, statistical 

knowledge, and data, the potential is boundless. You can play in a 

broad range of intriguing backyards! 

 

That interface between a muddled reality and obtaining orderly, valid 

data is an exciting place. This place ties together the lofty goals of sci-

entists to the nitty-gritty nature of the real world. It’s an interaction 

that I’ve written about extensively in this book and on my blog, and I 

plan to continue to do so. It’s where the rubber meets the road. 

 

One of the coolest things about the statistical analysis is that it pro-

vides you with a toolkit for exploring the unknown. Christopher Co-

lumbus needed many tools to navigate to the New World and make 

his discoveries. Statistics are the equivalent tools for the scientific ex-

plorer because they help you navigate the sea of data that you collect. 

 

The world is becoming a progressively data-driven place, and to draw 

trustworthy conclusions, you must analyze your data properly. It’s 

surprisingly easy to make a costly mistake. Even if you’re not perform-

ing your own studies, you’ll undoubtedly see statistical analyses 
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conducted by others. Can you trust their results or do they have their 

own agenda? 

 

Just like there were many wrong ways for Columbus to use his tools, 

things can go awry with statistical analyses. I’m going to teach you 

how to use the tools correctly, to draw the proper conclusions, and to 

recognize the conclusions that should make you wary! 

 

You’ll be increasingly thankful for these tools when you see a work-

sheet filled with numbers and you’re responsible for telling everyone 

what it all means. 

 

Read more on my website: Statistics By Jim! 

http://statisticsbyjim.com/
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