

Cybernetical Intelligence

IEEE Press

445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board
Sarah Spurgeon, Editor in Chief

Jón Atli Benediktsson Behzad Razavi Jeffrey Reed
Anjan Bose Jim Lyke Diomidis Spinellis
James Duncan
Amin Moeness
Desineni Subbaram Naidu

Hai Li
Brian Johnson

Adam Drobot
Tom Robertazzi
Ahmet Murat Tekalp

Cybernetical Intelligence

Engineering Cybernetics with Machine Intelligence

Kelvin K. L. Wong

Copyright © 2024 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permission.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley &
Sons, Inc. and/or its affiliates in theUnited States and other countries andmay not be usedwithout
written permission. All other trademarks are the property of their respective owners. JohnWiley &
Sons, Inc. is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages. Further, readers should be aware that websites listed in this work may have changed or
disappeared between when this work was written and when it is read. Neither the publisher nor
authors shall be liable for any loss of profit or any other commercial damages, including but not
limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact
our Customer Care Department within the United States at (800) 762-2974, outside the United
States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our
web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data applied for:

Hardback: 9781394217489

Cover Design: Wiley
Cover Image: Courtesy of author

Set in 9.5/12.5pt STIXTwoText by Straive, Pondicherry, India

https://www.copyright.com
http://www.wiley.com/go/permission
https://www.wiley.com

Contents

Preface xv
About the Author xix
About the Companion Website xxi

1 Artificial Intelligence and Cybernetical Learning 1
1.1 Artificial Intelligence Initiative 1
1.2 Intelligent Automation Initiative 4
1.2.1 Benefits of IAI 5
1.3 Artificial Intelligence Versus Intelligent Automation 5
1.3.1 Process Discovery 6
1.3.2 Optimization 7
1.3.3 Analytics and Insight 8
1.4 The Fourth Industrial Revolution and Artificial Intelligence 9
1.4.1 Artificial Narrow Intelligence 10
1.4.2 Artificial General Intelligence 12
1.4.3 Artificial Super Intelligence 13
1.5 Pattern Analysis and Cognitive Learning 14
1.5.1 Machine Learning 15
1.5.1.1 Parametric Algorithms 16
1.5.1.2 Nonparametric Algorithms 17
1.5.2 Deep Learning 20
1.5.2.1 Convolutional Neural Networks in Advancing Artificial Intelligence 21
1.5.2.2 Future Advancement in Deep Learning 22
1.5.3 Cybernetical Learning 23
1.6 Cybernetical Artificial Intelligence 24
1.6.1 Artificial Intelligence Control Theory 24
1.6.2 Information Theory 26
1.6.3 Cybernetic Systems 27
1.7 Cybernetical Intelligence Definition 28
1.8 The Future of Cybernetical Intelligence 30

v

Summary 32
Exercise Questions 32
Further Reading 33

2 Cybernetical Intelligent Control 35
2.1 Control Theory and Feedback Control Systems 35
2.2 Maxwell’s Analysis of Governors 37
2.3 Harold Black 39
2.4 Nyquist and Bode 40
2.5 Stafford Beer 42
2.5.1 Cybernetic Control 42
2.5.2 Viable Systems Model 42
2.5.3 Cybernetics Models of Management 43
2.6 James Lovelock 43
2.6.1 Cybernetic Approach to Ecosystems 43
2.6.2 Gaia Hypothesis 44
2.7 Macy Conference 44
2.8 McCulloch–Pitts 45
2.9 John von Neumann 47
2.9.1 Discussions on Self-Replicating Machines 47
2.9.2 Discussions on Machine Learning 48

Summary 48
Exercise Questions 49
Further Reading 50

3 The Basics of Perceptron 51
3.1 The Analogy of Biological and Artificial Neurons 51
3.1.1 Biological Neurons and Neurodynamics 52
3.1.2 The Structure of Neural Network 53
3.1.3 Encoding and Decoding 56
3.2 Perception and Multilayer Perceptron 57
3.2.1 Back Propagation Neural Network 59
3.2.2 Derivative Equations for Backpropagation 59
3.3 Activation Function 61
3.3.1 Sigmoid Activation Function 61
3.3.2 Hyperbolic Tangent Activation Function 62
3.3.3 Rectified Linear Unit Activation Function 62
3.3.4 Linear Activation Function 64

Summary 65
Exercise Questions 67
Further Reading 67

vi Contents

4 The Structure of Neural Network 69
4.1 Layers in Neural Network 69
4.1.1 Input Layer 69
4.1.2 Hidden Layer 70
4.1.3 Neurons 70
4.1.4 Weights and Biases 71
4.1.5 Forward Propagation 72
4.1.6 Backpropagation 72
4.2 Perceptron and Multilayer Perceptron 73
4.3 Recurrent Neural Network 75
4.3.1 Long Short-Term Memory 76
4.4 Markov Neural Networks 77
4.4.1 State Transition Function 77
4.4.2 Observation Function 78
4.4.3 Policy Function 78
4.4.4 Loss Function 78
4.5 Generative Adversarial Network 78

Summary 79
Exercise Questions 80
Further Reading 81

5 Backpropagation Neural Network 83
5.1 Backpropagation Neural Network 83
5.1.1 Forward Propagation 85
5.2 Gradient Descent 85
5.2.1 Loss Function 85
5.2.2 Parameters in Gradient Descent 88
5.2.3 Gradient in Gradient Descent 88
5.2.4 Learning Rate in Gradient Descent 89
5.2.5 Update Rule in Gradient Descent 89
5.3 Stopping Criteria 89
5.3.1 Convergence and Stopping Criteria 90
5.3.2 Local Minimum and Global Minimum 91
5.4 Resampling Methods 91
5.4.1 Cross-Validation 93
5.4.2 Bootstrapping 93
5.4.3 Monte Carlo Cross-Validation 94
5.5 Optimizers in Neural Network 94
5.5.1 Stochastic Gradient Descent 94
5.5.2 Root Mean Square Propagation 96
5.5.3 Adaptive Moment Estimation 96

Contents vii

5.5.4 AdaMax 97
5.5.5 Momentum Optimization 97

Summary 97
Exercise Questions 99
Further Reading 100

6 Application of Neural Network in Learning and Recognition 101
6.1 Applying Backpropagation to Shape Recognition 101
6.2 Softmax Regression 105
6.3 K-Binary Classifier 107
6.4 Relational Learning via Neural Network 108
6.4.1 Graph Neural Network 109
6.4.2 Graph Convolutional Network 111
6.5 Cybernetics Using Neural Network 112
6.6 Structure of Neural Network for Image Processing 115
6.7 Transformer Networks 116
6.8 Attention Mechanisms 116
6.9 Graph Neural Networks 117
6.10 Transfer Learning 118
6.11 Generalization of Neural Networks 119
6.12 Performance Measures 120
6.12.1 Confusion Matrix 120
6.12.2 Receiver Operating Characteristic 121
6.12.3 Area Under the ROC Curve 122

Summary 123
Exercise Questions 123
Further Reading 124

7 Competitive Learning and Self-Organizing Map 125
7.1 Principal of Competitive Learning 125
7.1.1 Step 1: Normalized Input Vector 128
7.1.2 Step 2: Find the Winning Neuron 128
7.1.3 Step 3: Adjust the Network Weight Vector and Output Results 129
7.2 Basic Structure of Self-Organizing Map 129
7.2.1 Properties Self-Organizing Map 130
7.3 Self-Organizing Mapping Neural Network Algorithm 131
7.3.1 Step 1: Initialize Parameter 132
7.3.2 Step 2: Select Inputs and Determine Winning Nodes 132
7.3.3 Step 3: Affect Neighboring Neurons 132
7.3.4 Step 4: Adjust Weights 133
7.3.5 Step 5: Judging the End Condition 133

viii Contents

7.4 Growing Self-Organizing Map 133
7.5 Time Adaptive Self-Organizing Map 136
7.5.1 TASOM-Based Algorithms for Real Applications 138
7.6 Oriented and Scalable Map 139
7.7 Generative Topographic Map 141

Summary 145
Exercise Questions 146
Further Reading 147

8 Support Vector Machine 149
8.1 The Definition of Data Clustering 149
8.2 Support Vector and Margin 152
8.3 Kernel Function 155
8.3.1 Linear Kernel 155
8.3.2 Polynomial Kernel 156
8.3.3 Radial Basis Function 157
8.3.4 Laplace Kernel 159
8.3.5 Sigmoid Kernel 159
8.4 Linear and Nonlinear Support Vector Machine 160
8.5 Hard Margin and Soft Margin in Support Vector Machine 164
8.6 I/O of Support Vector Machine 167
8.6.1 Training Data 167
8.6.2 Feature Matrix and Label Vector 168
8.7 Hyperparameters of Support Vector Machine 169
8.7.1 The C Hyperparameter 169
8.7.2 Kernel Coefficient 169
8.7.3 Class Weights 170
8.7.4 Convergence Criteria 170
8.7.5 Regularization 171
8.8 Application of Support Vector Machine 171
8.8.1 Classification 171
8.8.2 Regression 173
8.8.3 Image Classification 173
8.8.4 Text Classification 174

Summary 174
Exercise Questions 175
Further Reading 176

9 Bio-Inspired Cybernetical Intelligence 177
9.1 Genetic Algorithm 178
9.2 Ant Colony Optimization 181

Contents ix

9.3 Bees Algorithm 184
9.4 Artificial Bee Colony Algorithm 186
9.5 Cuckoo Search 189
9.6 Particle Swarm Optimization 193
9.7 Bacterial Foraging Optimization 196
9.8 Gray Wolf Optimizer 197
9.9 Firefly Algorithm 199

Summary 200
Exercise Questions 201
Further Reading 202

10 Life-Inspired Machine Intelligence and Cybernetics 203
10.1 Multi-Agent AI Systems 203
10.1.1 Game Theory 205
10.1.2 Distributed Multi-Agent Systems 206
10.1.3 Multi-Agent Reinforcement Learning 207
10.1.4 Evolutionary Computation and Multi-Agent Systems 209
10.2 Cellular Automata 211
10.3 Discrete Element Method 212
10.3.1 Particle-Based Simulation of Biological Cells and Tissues 214
10.3.2 Simulation of Microbial Communities and Their Interactions 215
10.3.3 Discrete Element Method-Based Modeling of Biological Fluids and

Soft Materials 216
10.4 Smoothed Particle Hydrodynamics 218
10.4.1 SPH-Based Simulations of Biomimetic Fluid Dynamic 219
10.4.2 SPH-Based Simulations of Bio-Inspired Engineering Applications 220

Summary 221
Exercise Questions 222
Further Reading 223

11 Revisiting Cybernetics and Relation to Cybernetical Intelligence 225
11.1 The Concept and Development of Cybernetics 225
11.1.1 Attributes of Control Concepts 225
11.1.2 Research Objects and Characteristics of Cybernetics 226
11.1.3 Development of Cybernetical Intelligence 227
11.2 The Fundamental Ideas of Cybernetics 227
11.2.1 System Idea 227
11.2.2 Information Idea 229
11.2.3 Behavioral Idea 230
11.2.4 Cybernetical Intelligence Neural Network 231
11.3 Cybernetic Expansion into Other Fields of Research 234

x Contents

11.3.1 Social Cybernetics 234
11.3.2 Internal Control-Related Theories 237
11.3.3 Software Control Theory 237
11.3.4 Perceptual Cybernetics 238
11.4 Practical Application of Cybernetics 240
11.4.1 Research on the Control Mechanism of Neural Networks 240
11.4.2 Balance Between Internal Control and Management Power

Relations 240
11.4.3 Software Markov Adaptive Testing Strategy 242
11.4.4 Task Analysis Model 244

Summary 245
Exercise Questions 246
Further Reading 247

12 Turing Machine 249
12.1 Behavior of a Turing Machine 250
12.1.1 Computing with Turing Machines 251
12.2 Basic Operations of a Turing Machine 252
12.2.1 Reading and Writing to the Tape 253
12.2.2 Moving the Tape Head 254
12.2.3 Changing States 254
12.3 Interchangeability of Program and Behavior 255
12.4 Computability Theory 256
12.4.1 Complexity Theory 257
12.5 Automata Theory 258
12.6 Philosophical Issues Related to Turing Machines 259
12.7 Human and Machine Computations 260
12.8 Historical Models of Computability 261
12.9 Recursive Functions 262
12.10 Turing Machine and Intelligent Control 263

Summary 264
Exercise Questions 265
Further Reading 265

13 Entropy Concepts in Machine Intelligence 267
13.1 Relative Entropy of Distributions 268
13.2 Relative Entropy and Mutual Information 268
13.3 Entropy in Performance Evaluation 269
13.4 Cross-Entropy Softmax 271
13.5 Calculating Cross-Entropy 272
13.6 Cross-Entropy as a Loss Function 273

Contents xi

13.7 Cross-Entropy and Log Loss 274
13.8 Application of Entropy in Intelligent Control 275
13.8.1 Entropy-Based Control 275
13.8.2 Fuzzy Entropy 276
13.8.3 Entropy-Based Control Strategies 277
13.8.4 Entropy-Based Decision-Making 278

Summary 279
Exercise Questions 279
Further Reading 280

14 Sampling Methods in Cybernetical Intelligence 283
14.1 Introduction to Sampling Methods 283
14.2 Basic Sampling Algorithms 284
14.2.1 Importance of Sampling Methods in Machine Intelligence 286
14.3 Machine Learning Sampling Methods 287
14.3.1 Random Oversampling 288
14.3.2 Random Undersampling 290
14.3.3 Synthetic Minority Oversampling Technique 290
14.3.4 Adaptive Synthetic Sampling 292
14.4 Advantages and Disadvantages of Machine Learning Sampling

Methods 293
14.5 Advanced Sampling Methods in Cybernetical Intelligence 294
14.5.1 Ensemble Sampling Method 295
14.5.2 Active Learning 297
14.5.3 Bayesian Optimization in Sampling 299
14.6 Applications of Sampling Methods in Cybernetical Intelligence 302
14.6.1 Image Processing and Computer Vision 302
14.6.2 Natural Language Processing 304
14.6.3 Robotics and Autonomous Systems 307
14.7 Challenges and Future Directions 308
14.8 Challenges and Limitations of Sampling Methods 309
14.9 Emerging Trends and Innovations in Sampling Methods 309

Summary 310
Exercise Questions 311
Further Reading 312

15 Dynamic System Control 313
15.1 Linear Systems 314
15.2 Nonlinear System 316
15.3 Stability Theory 318
15.4 Observability and Identification 320

xii Contents

15.5 Controllability and Stabilizability 321
15.6 Optimal Control 323
15.7 Linear Quadratic Regulator Theory 324
15.8 Time-Optimal Control 326
15.9 Stochastic Systems with Applications 328
15.9.1 Stochastic System in Control Systems 329
15.9.2 Stochastic System in Robotics and Automation 329
15.9.3 Stochastic System in Neural Networks 330

Summary 331
Exercise Questions 331
Further Reading 332

16 Deep Learning 333
16.1 Neural Network Models in Deep Learning 335
16.2 Methods of Deep Learning 336
16.2.1 Convolutional Neural Networks 337
16.2.2 Recurrent Neural Networks 340
16.2.3 Generative Adversarial Networks 342
16.2.4 Deep Learning Based Image Segmentation Models 345
16.2.5 Variational Auto Encoders 348
16.2.6 Transformer Models 350
16.2.7 Attention-Based Models 352
16.2.8 Meta-Learning Models 354
16.2.9 Capsule Networks 357
16.3 Deep Learning Frameworks 358
16.4 Applications of Deep Learning 359
16.4.1 Object Detection 360
16.4.2 Intelligent Power Systems 361
16.4.3 Intelligent Control 362

Summary 362
Exercise Questions 363
References 364
Further Reading 365

17 Neural Architecture Search 367
17.1 Neural Architecture Search and Neural Network 369
17.2 Reinforcement Learning-Based Neural Architecture Search 371
17.3 Evolutionary Algorithms-Based Neural Architecture Search 374
17.4 Bayesian Optimization-Based Neural Architecture Search 376
17.5 Gradient-Based Neural Architecture Search 378
17.6 One-shot Neural Architecture Search 379

Contents xiii

17.7 Meta-Learning-Based Neural Architecture Search 381
17.8 Neural Architecture Search for Specific Domains 383
17.8.1 Cybernetical Intelligent Systems: Neural Architecture Search in

Real-World 384
17.8.2 Neural Architecture Search for Specific Cybernetical Control Tasks 385
17.8.3 Neural Architecture Search for Cybernetical Intelligent Systems in

Real-World 386
17.8.4 Neural Architecture Search for Adaptive Cybernetical Intelligent

Systems 388
17.9 Comparison of Different Neural Architecture Search Approaches 389

Summary 391
Exercise Questions 391
Further Reading 392

Final Notes on Cybernetical Intelligence 393
Index 399

xiv Contents

Preface

Life evolves into existence from the edge of chaos and builds up a newmechanism
based on a set of rules that governs the law of survival, reproduction, and evolu-
tion. This complex set of rules that allows a living thing to interact with its envi-
ronment comes into being from the beginning of life itself, which is something one
can understand as intelligence. All the wonders of art, design, sciences, etc., in the
world make us ponder upon the question of the ages, on the origin of creation and
the existence of life itself and the evolution of intelligence that comes into being.
“The important thing is not to stop questioning,” is a famous quotation by Albert

Einstein from 1955. A robot gains intelligence by questioning and seeking answers,
which form examples for the labels for the unseen examples. However, will the
robot have a creative mind similar to that of Einstein? This leads us to the question
of whether creativity can be programmed. Can an analogy be bridged between the
robot’s experience in developing multiple search way paths for the optimal solu-
tion and an intelligent being’s intuition to design creative solutions?
Artificial intelligence (AI) is built on the pillars of a few major branches of sci-

ence and engineering, namely, systematology, information theory, and cybernet-
ics, which is typically based on control theory that was derived from the studies of
Norbert Wiener, the world-renowned father of cybernetics. In 1954, Hsue-sen
Tsien founded engineering cybernetics by publishing the famous engineering
cybernetics in America. On the basis of cybernetics, a predictive system may be
regarded as a multiple feedback system. The framework of a multilayer perceptron
as well as that of a backpropagation neural network can be based on the theoretic
of system control in modern cybernetics. With this type of thinking, perceptron
theory offers a cohesive approach to the statistical mechanics and principles of
cybernetics as a basis for the successful neural network modeling.
A feedback controller’s operation is to change the behavior of a system funda-

mentally. Feedback control systems sample a system’s outputs, compare them to a
set of desired outputs, and then utilize the resulting error signals to compute the

xv

system’s control inputs in such a way that the errors are minimized. Artificially
built feedback control systems, which are utilized to govern industrial, automo-
tive, and aeronautical systems, are responsible for today’s aerospace achievements.
Biological systems are full of naturally occurring feedback controls. The cell, one of
the most basic of all life forms, regulates the potential difference across the cell
membrane to preserve homeostasis. Although neural network controllers are
adaptive learning systems, they do not need the conventional assumptions of
adaptive control theory, such as parameter linearity and the presence a regression
matrix. It is demonstrated in detail the process to create neural network based con-
trollers for cybernetical systems, a general category of nonlinear systems, compli-
cated industrial systems with vibrations and flexibility effects, force control, motor
dynamics control, and other applications. These are given for both continuous-
time and discrete-time weight tuning.
Integration of AI and cybernetics can produce applications in predictive control,

pattern recognition, and classification, which essentially are based on the same
fundamentals. This book proposes for the first time the novel perspective of
machine intelligence, which is termed asCybernetical Intelligence. Such a new field
will have extensive and practical applications in not just the combinatorial opti-
mization problems but also in pattern recognition, data mining, and other related
machine intelligence based cybernetics problems.
The key concept of Cybernetical Intelligence grew from a desire to understand

and build systems that can achieve goals, whether complex human goals or just
goals. It is even deeper underlying conceptual term. Cybernetics holds the world
sufficiently to gain feedback in order to correct the actions to achieve goals. It is
mutual combination of automated communication and control system between
artificially intelligent machines and the environment with subsequent strong sup-
port from machine learning; the concepts of systems thinking and systems theory
became integral parts of the established scientific language of Cybernetical Intelli-
gence and can lead to numerous new methodologies and applications.
The basic ideas of Cybernetical Intelligence can be treated without reference to

electronics, but they are fundamentally challenging; so although advanced tech-
niques may be necessary for advanced applications, a great deal can be done, espe-
cially in biological sciences, by the use of mathematical derivations, provided they
are used with a clear and deep understanding of the principals involved.
This book is intended to provide a concise conceptualization of Cybernetical

Intelligence. It starts from common place and well-understood concepts and pro-
ceeds, step by step, to show how these concepts can be made exact and how they
can be developed until they lead into subjects such as feedback, stability, regula-
tion, ultrastability, information, coding, noise, and other cybernetic topics. Closed-
loop applications and features of neural network are examined and developed in
great detail in this book, employing mathematical stability proof approaches that

xvi Preface

illustrate how to construct neuro-controllers while also ensuring their stability and
performance. Control engineering based concepts, a family of multi-loop neuro-
controllers for various applications have been created methodically.
There are strategies for both continuous-time and discrete-time weight tuning

given. The book is intended for students taking a second semester in control the-
ory, as well as engineers in academia and industry who construct feedback con-
trollers for complex systems found in commercial, industrial, and military
applications. The many types of neuro-controllers are organized in tables for sim-
ple reference when it comes to design procedures.
This material is a comprehensive exploration of the advanced terminologies in

AI and cybernetics. In Chapter 1, the concept of AI and its relation to cybernetics
are introduced. Chapter 2 delves into the theory of cybernetical intelligence and
control. Chapter 3 covers the basics of perceptron, including its activation func-
tion. The structure of the multilayer perceptron neural network is discussed in
Chapter 4, while Chapter 5 covers the backpropagation algorithm and its deriva-
tives, as well as the resampling rate. Chapter 6 focuses on neural network applica-
tions in learning and recognition. Chapter 7 explores self-organizing and its
applications in AI, and Chapter 8 covers support vector machines and their appli-
cations. Chapters 9 and 10 delve into bio- and life-inspired Cybernetical Intelli-
gence. Chapters 11 and 12 revisit cybernetics and its relation to Cybernetical
Intelligence and Turing machines. Entropy concepts and sampling methods in
Cybernetical Intelligence are covered in Chapters 13 and 14. Chapters 15 and 16
describe linear systems and deep learning, including their methods and applica-
tions. Finally, Chapter 17 focuses on neural architecture search, including its
methods and applications. Every chapter presents its own characteristic concept,
and the concatenation of these concepts generates a mind map and general frame-
work for the formulation ofmachine learning from the cybernetics perspective and
encompassing the Cybernetical Intelligence philosophy. The philosophical insights
and mathematical theories in this book will give us the adequate knowledge nec-
essary for building AI.
It is the author’s belief that the subject founded is well understood and is then

built up carefully, step by step, with advancedmathematical, computing, and engi-
neering knowledge. Having spent years consolidating and developing the concep-
tual roadmap of machine learning from the cybernetics perspective, the author is
proud to present the novel work on Cybernetical Intelligence to the academic com-
munity with the ultimate aim of training the next generation of AI cybernetists.

Preface xvii

About the Author

Prof. Dr. Kelvin K. L.Wong is a distinguished expert
in medical image processing and computational
science, who earned his Ph.D. from The University
of Adelaide. With a strong academic background
from Nanyang Technological University and The
University of Sydney, he has been at the forefront
of merging the fields of cybernetics and artificial
intelligence (AI). He is widely recognized for intro-
ducing the term “Cybernetical Intelligence” and
is the inventor and founder of the Deep Red AI
system. Dr. Wong’s impactful research in AI has
yielded significant achievements with the potential

to positively impact humanity. He is the author of influential books such as
Methods in Research and Development of Biomedical Devices and Computational
Hemodynamics–Theory, Modelling, and Applications. With extensive experience
as an associate editor and guest editor for esteemed biomedical engineering and
computational intelligence journals, he has contributed extensively to the field.
As an internationally recognized biomedical engineering scientist and AI
cybernetist, Dr. Wong was named among Stanford University’s top 1.3% biomed-
ical engineering researchers in 2020. He has actively participated in researching
the management and control of COVID-19 and is a dedicated supporter and
donor to UNICEF, advocating for kindness and human rights. Throughout his
professorship, he has mentored numerous students, providing invaluable guid-
ance and shaping their careers. Leading a team of experts in AI, healthcare,
disease management, and diagnosis, Dr. Wong’s expertise has been instrumental
in supporting government projects and initiatives in developing countries.

xix

About the Companion Website

This book is accompanied by a companion website:

www.wiley.com/go/cyberintel

This website includes:

• Assignments and Solutions

xxi

https://www.wiley.com/go/cyberintel

1

Artificial Intelligence and Cybernetical Learning

Artificial intelligence (AI) is a field of engineering cybernetics that focuses on the
development of intelligent machines that can simulate human-like behaviors such
as learning, problem-solving, reasoning, and decision-making. AI technology
involves the use of algorithms and computational models to analyze vast amounts
of data, recognize patterns and make predictions, and interact with humans
through natural language processing (NLP) and other forms of communication.
This chapter will comprehensively explore various aspects of AI, including its

relation to cybernetics and the fundamental principles governing it. Additionally,
it will delve into the nuances of parametric and nonparametric algorithms and
core concepts of cybernetical intelligence (CI). Through a systematic and rigorous
exposition, readers will acquire a robust understanding of the key principles and
algorithms that underlie AI. Consequently, they will be well equipped with the
requisite knowledge to develop their own AI applications, leveraging the insights
gained from this chapter.

1.1 Artificial Intelligence Initiative

Intelligence includes the capacity for abstraction, logic, learning, reasoning, com-
munication, and inference. It can learn from the environment both actively and
passively and use the knowledge to obtain adaptive ability. AI can be defined as
a human-made machine with human-like intelligence. The use of AI in education
has produced effective pedagogical effects in addition to technical advancements
and theoretical developments. Automated target identification, automatic medical
diagnosis, and audio recording are a few interesting uses. AI may be utilized to

1

Cybernetical Intelligence: Engineering Cybernetics with Machine Intelligence, First Edition.
Kelvin K. L. Wong.
© 2024 The Institute of Electrical and Electronics Engineers, Inc.
Published 2024 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/cyberintel

provide customized assistance and increase knowledge-gap awareness, allowing
educators to deliver individualized and adaptable education with efficiency and
effectiveness. Enabling computers to simulate intelligent behavior using prestored
world models is the main goal of AI. The AI simulates human cognitive processes
such as reasoning, learning, pattern recognition, knowledge reasoning, and
machine learning (ML). ML refers to the creation of automated systems capable
of processing massive volumes of data for data mining and is one of the more tra-
ditional fields of computing intelligence.
ML is a part of AI that allows machines to obtain intelligence from data without

being explicitly programmed. Therefore, it often associates ML with data mining.
ML enables a cyber system to possess intelligence by using massive data. Based on
that data, ML models or algorithms can mine the knowledge, rules, and laws
behind the data. ML identifies underlying functional links in systems between sets
of variables and individual variables. The goal of combining the fields of ML and
cybernetics is to identify different ways that systems interact with one another
through various methods for learning from data. Equation (1.1) illustrates how
ML may be summed up as learning a function (f) that maps input variables (x)
to output variables (y).

y = f x 1 1

The configuration of the function is unknown, but the ML algorithms learn to
map the target function from the training data. It is necessary to assess many algo-
rithms to determine which one is best at modeling the underlying function
because they all reach different conclusions or exhibit biases on the function’s
structure. In theory, there are two types of ML algorithms: parametric algorithms
and nonparametric algorithms. Additionally, three well-known techniques are
used to trainML algorithms. Supervised learning, unsupervised learning, and rein-
forcement learning are the three categories of ML.
The most significant methodology in ML is supervised learning, which is

especially crucial in the processing of multimedia data. This kind of learning
is comparable to how humans learn from their past experiences to obtain new
information and improve their capacity to carry out activities in the actual world.
Models for supervised learning are designed to predict the appropriate label for
newly presented data. Unsupervised learning is typically used to identify pat-
terns in the input data that propose candidate features prior to the application
of supervised learning, and feature engineering changes these candidate
features to make them more appropriate for supervised learning. It is quite
time-consuming to identify the correct category or response for every observa-
tion in the training set in addition to the characteristics. With the help of
semi-supervised learning, one may train models with very little labeled data,
which will reduce the labeling work.

2 1 Artificial Intelligence and Cybernetical Learning

Unsupervised learning can be motivated from information-theoretic and
Bayesian principles. It empowers the model to work independently to identify
previously unnoticed patterns and information. Take into account a device (or
living thing) that gets a series of inputs, such as x1, x2,…, xt, where xt is the sensory
input at time t. This input, which is known as sensory data, can be a represen-
tation of a retinal image, a camera’s pixels, or a sound waveform. The most
famous technique is clustering in which each observation belongs to at least
one of the k clusters, while i and j belong to centroid of each cluster. Further-
more, variation within each cluster is achieved by minimizing the sum of the
squared Euclidean distance between each observation within a cluster, as shown
in Equation (1.2).

argmin
Ck , k 1,…K

k

k = 1 i Ck

Xi − μk
2
, 1 2

where μk represents the centroid of the kth cluster, Xi is the i
th data point in the kth

cluster, and Ck represents the set of indices of data points assigned to the kth clus-
ter. Reinforcement learning, on the other hand, is heavily influenced by the theory
of Markov decision processes and deals with the ability to learn the associations
between stimuli, actions, and the occurrence of positive events. The agents are
taught a reward and punishment scheme in reinforcement learning. For wise
actions, the agent is rewarded, and for poor ones, they are penalized. While doing
this, the agent tries to minimize the undesirable motions while maximizing the
desirable ones. It is hardly unexpected that reinforcement learning has been
noticed in the really distant past given its clear adaptive benefit. A few cybernetics
experiments have made use of reinforcement learning. Robots can learn skills that
a human instructor is unable to teach, adapt a learned ability to a new task, and
accomplish optimization even in the absence of an analytical formulation with
the help of this sort of ML. The predicted total of the immediate reward and
the long-term reward under the best feasible policy (Max Policies), as given in
Equation (1.3), is utility u (over a limited agent lifespan):

u st , a = E R st , a + MaxPolicies
N − 1

j = 1

R t + j , 1 3

where st is the state at time step t, R (st, a) is the immediate reward of executing
an action in state st, N is the number of steps in the lifetime of the agent, and R
is the reward time step t. The operator E stands for taking an expectation over
all sources of randomness in the system. Here, st denotes the state at time step
t, R(st, a) is the instantaneous benefit of carrying out an action in state st, and N
denotes the total number of steps the agent will take throughout its lifespan.
Taking an expectation across all system randomness sources is what the operator.

1.1 Artificial Intelligence Initiative 3

The configuration of the function is unknown, but theML algorithms learn to map
the target function from the training data. It is necessary to compare multiple algo-
rithms to determine which one is the best successful at modeling the underlying
function since different algorithms reach different conclusions or have different
biases on the structure of the function. As a result, ML algorithms may be divided
into parametric and nonparametric varieties, which will be covered in the follow-
ing subsections.

1.2 Intelligent Automation Initiative

Intelligent automation initiative (IAI) is an emerging technology-driven approach
to optimize business processes and decision-making through a combination of AI,
robotic process automation (RPA), and other advanced technologies. It aims to
streamline repetitive and mundane tasks, improve productivity, reduce errors,
and enable employees to focus on higher-value-added activities. The IAI strategy
involves the integration of different technologies to automate various aspects of
the business, including customer service, supply chain management, finance,
human resources, and more. The main components of IAI include:

• Artificial intelligence (AI): A subset of computer science that focuses on devel-
oping algorithms that can mimic human intelligence, such as speech recogni-
tion, NLP, ML, and computer vision. AI helps organizations to make sense of
vast amounts of data, predict trends, and make informed decisions.

• Robotic process automation (RPA): A software tool that uses bots to automate
repetitive and rule-based tasks, such as data entry, invoice processing, and report
generation. RPA can reduce operational costs, improve accuracy, and increase
efficiency.

• Advanced analytics: It involves the use of statistical models, data mining, and
predictive analytics to analyze data and extract insights. This can help organiza-
tions to make informed decisions and improve business outcomes.

• Chatbots: AI-powered virtual assistants that can interact with customers,
answer queries, and resolve issues in real time. Chatbots can improve customer
satisfaction, reduce response times, and free up resources for other tasks.

•Machine learning: A subset of AI that focuses on developing algorithms that can
learn from data without being explicitly programmed. ML can be used to make
predictions, identify patterns, and automate decision-making.

• Cognitive automation: Involves the use of AI and other advanced technologies
to automate complex tasks that require human-like reasoning and decision-
making. This can include tasks such as fraud detection, risk analysis, and supply
chain optimization.

4 1 Artificial Intelligence and Cybernetical Learning

1.2.1 Benefits of IAI

IAI is a strategic approach to integrating advanced technologies, such as AI, RPA,
and ML, to automate business processes and workflows. Here are some of the
benefits of implementing IAI:

• Increased productivity: Automation can perform repetitive and time-consuming
tasks faster and with fewer errors than humans, leading to increased productiv-
ity and efficiency. By freeing up employees from these mundane tasks, they can
focus on higher-value tasks that require creativity and critical thinking.

• Cost savings: Automation can help reduce labor costs, as companies no longer
need to hire additional staff to perform repetitive tasks. Additionally, automa-
tion can help reduce operational costs by streamlining processes and reducing
the potential for errors and delays.

• Improved accuracy and quality: Automation can perform tasks with a high
degree of accuracy, consistency, and quality, reducing the potential for errors
and improving the quality of work produced.

• Faster processing times: Automation can help speed up processing times for
tasks such as data entry, data analysis, and report generation. This can lead
to faster decision-making and improved business agility.

• Enhanced customer experience: Automation can help improve the customer
experience by enabling faster response times to inquiries, reducing errors,
and providing more accurate and personalized services.

• Increased scalability: Automation can help businesses scale their operations
more easily by enabling them to handle higher volumes of work without the
need for additional staff.

• Better data insights: Automation can help businesses gather and analyze data
more quickly and accurately, enabling them to make better-informed decisions.

Overall, the benefits of IAI can help businesses streamline their operations,
reduce costs, and improve their ability to compete in an increasingly fast-paced
and competitive market.

1.3 Artificial Intelligence Versus Intelligent Automation

AI and intelligent automation (IA) are two related technologies that are transform-
ing the way businesses operate. AI is the simulation of human intelligence pro-
cesses by machines, while IA refers to the automation of processes using AI
and other advanced technologies. IA combines RPA, ML, and other AI technolo-
gies to automate repetitive and time-consuming tasks. It allows businesses to

1.3 Artificial Intelligence Versus Intelligent Automation 5

automate processes that were previously done manually, which saves time,
reduces costs, and improves accuracy.
AI, on the other hand, is a broader field that encompasses a range of technolo-

gies, including ML, NLP, and computer vision. These technologies enable
machines to perform tasks that would typically require human intelligence, such
as understanding language, recognizing images, and making decisions based on
data. When AI and IA are combined, businesses can achieve even greater benefits.
For example, IA can be used to automate processes such as data entry and docu-
ment processing, while AI can be used to analyze that data and provide insights for
decision-making. This can help businesses make more informed decisions faster,
which can lead to improved efficiency, productivity, and profitability. Moreover,
AI can help automate decision-making processes by analyzing vast amounts of
data and providing recommendations based on that data. IA can then be used
to execute those decisions automatically, further streamlining business processes.
The complete workflow of how IA works is shown in Figure 1.1.

1.3.1 Process Discovery

Process discovery involves using mathematical equations and algorithms to ana-
lyze business processes and identify areas where automation can be applied. One
example of a mathematical equation used in process discovery is the process cycle
efficiency (PCE), as shown in Equation (1.4).

PCE =
VT
CT

× 100 , 1 4

where value-added time (VT) is the time spent on activities that directly add value
to the customer, and cycle time (CT) is the total time taken to complete the process,
including both value-added and non-value-added activities. The PCE formula
helps businesses identify areas where there is wastage or inefficiency in the proc-
ess. A high PCE indicates that a process is highly efficient and that there isminimal
wastage, while a low PCE suggests that there is a lot of wastage that can be elimi-
nated through automation.
The first step in process discovery is to collect data on the current business

processes. This can be done by conducting interviews with key stakeholders,
analyzing documentation such as process maps, or observing the processes

Intelligent
automation

Process
discovery

Optimization
Analytics

and insights

Figure 1.1 Workflow of intelligent automation.

6 1 Artificial Intelligence and Cybernetical Learning

in action. Once the data has been collected, the next step is to map out the pro-
cesses using visual diagrams such as flowcharts or swim lane diagrams. This
helps to identify the different steps involved in the process, as well as the
inputs and outputs at each stage. After the process has been mapped out,
the next step is to analyze it in detail. This involves looking for inefficiencies
or bottlenecks in the process that could be improved through automation or
optimization. Based on the analysis, the process can be optimized by identify-
ing areas where automation can be applied to reduce manual effort, speed up
processing times, or reduce errors. This may involve using RPA to automate
repetitive tasks or using ML or AI to analyze data and make predictions about
future outcomes.
Once the process has been optimized, it is important to test it thoroughly to

ensure that it works as intended. This may involve conducting user acceptance
testing (UAT) or running pilot programs to ensure that the process is reliable
and effective. Once the testing is complete, the optimized process can be imple-
mented into production. Overall, process discovery is an essential part of IA, as
it helps organizations identify and optimize their existing business processes,
reducing costs, increasing efficiency, and improving the overall customer expe-
rience. By leveraging technologies, such as RPA, ML, and AI, organizations
can automate repetitive tasks, make better decisions based on data, and
streamline their operations to stay competitive in a rapidly evolving business
landscape.

1.3.2 Optimization

Optimization is an important aspect of IA. It refers to the process of improving the
efficiency and effectiveness of automated processes over time by continuously ana-
lyzing and refining them. Optimization involves using advanced technologies such
as ML and AI to analyze data generated by automated processes. By analyzing this
data, businesses can identify areas where the process can be improved and make
adjustments to improve efficiency and effectiveness.
One example of how optimization can be achieved is with predictive analytics.

Predictive analytics uses statistical algorithms and ML techniques to analyze
historical data and make predictions about future outcomes. By using predictive
analytics, businesses can identify potential problems in their automated
processes before they occur, allowing them to take corrective action to prevent
issues from arising. Optimization is an ongoing process in IA, and it requires busi-
nesses to continuously monitor and analyze their automated processes to identify
areas for improvement. By doing so, businesses can improve efficiency, reduce
costs, and improve the quality of products or services produced, leading to

1.3 Artificial Intelligence Versus Intelligent Automation 7

improved customer satisfaction and profitability. Here are the key steps involved
in optimizing processes using IA:

• Identify the processes to be optimized: The first step is to identify the processes
that are causing bottlenecks, delays, or inefficiencies. This can be done by ana-
lyzing data, conducting surveys, or observing the workflow. Once the processes
have been identified, it is important to prioritize them based on their impact on
the business.

• Define the objectives: The next step is to define the objectives of the optimization
process. This could be reducing costs, improving quality, increasing productiv-
ity, or enhancing customer satisfaction. The objectives should be specific, meas-
urable, and achievable.

• Collect data: Data is essential for IA to work effectively. It is important to collect
relevant data related to the processes being optimized, such as CT, throughput,
error rates, and customer feedback. The data can be collected from various
sources, such as sensors, databases, or manual inputs.

• Analyze the data: The data collected needs to be analyzed using advanced
analytics techniques, such as ML or statistical analysis. This will help identify
patterns, trends, and correlations that can provide insights into the root causes
of the problems. Based on these insights, it is possible to develop strategies to
optimize the processes.

• Implement intelligent automation: The next step is to implement IA to automate
the processes. This can be done using a combination of technologies, such as
RPA, NLP, and ML. The automation can be used to eliminate manual tasks,
reduce errors, and speed up the process.

•Monitor and refine: Once the optimization process has been implemented, it is
important to monitor the performance of the processes and refine the strategies
if needed. This can be done using key performance indicators (KPIs) such as CT,
cost per unit, and customer satisfaction scores. The data collected can be used to
fine-tune the automation algorithms and make continuous improvements.

Overall, the combination of optimization and IA can provide significant benefits
to organizations, such as cost savings, increased productivity, and improved cus-
tomer satisfaction. By following these steps, businesses can create a data-driven
approach to process optimization that leverages the power of advanced
technologies.

1.3.3 Analytics and Insight

Analytics and insights are critical components of IA. They refer to the process of
collecting and analyzing data generated by automated processes to gain insights
into how the processes are performing and identify areas for improvement.

8 1 Artificial Intelligence and Cybernetical Learning

Analytics involves the use of advanced technologies such as ML and AI to analyze
large volumes of data and identify patterns and trends. For example, businesses
can use analytics to identify bottlenecks in their processes, areas where there is
wastage or areas where automation can be applied to improve efficiency. Insights
involve using the data generated by analytics to inform business decisions. For
example, businesses can use insights gained from analytics to identify opportu-
nities for process improvement, inform strategic decision-making, or identify areas
where additional automation can be applied. Analytics and insights are essential
in IA because they help businesses identify areas for improvement, optimize pro-
cesses, and make data-driven decisions. By continuously analyzing data generated
by automated processes and using insights to inform decision-making, businesses
can improve efficiency, reduce costs, and improve the quality of products or ser-
vices produced. IA is the use of AI and ML technologies to automate processes,
tasks, and workflows. When applied to analytics, IA can significantly enhance
the speed, accuracy, and efficiency of data processing and analysis.
By leveraging IA, businesses can quickly and easily extract insights from large

amounts of data, identify trends and patterns that might be difficult to spot man-
ually, and make data-driven decisions based on accurate and reliable information.
This can help companies improve their performance, optimize their processes,
reduce costs, and stay ahead of the competition.
In conclusion, AI and IA are two powerful technologies that are transforming

the way businesses operate. By combining these technologies, businesses can auto-
mate processes, analyze data, andmakemore informed decisions faster, which can
lead to improved efficiency and profitability.

1.4 The Fourth Industrial Revolution and Artificial
Intelligence

AI has played a crucial role in every industrial revolution from the first to the
fourth. In the First Industrial Revolution, machines were primarily powered by
steam, water, and coal. However, the Second Industrial Revolution brought about
the rise of electricity and the development of the telegraph and telephone. The use
of computers and automation in manufacturing was first introduced during the
Third Industrial Revolution, which led to the development of AI. Then, AI tech-
nology was further improved in the Fourth Industrial Revolution (4IR), which
brought about the Internet of Things (IoT), Big Data, and cloud computing.
The use of AI in these revolutions has brought about increased efficiency, produc-
tivity, and automation of various industries. In the 4th Industrial Revolution,
AI is being used to optimize manufacturing processes, improve supply chain

1.4 The Fourth Industrial Revolution and Artificial Intelligence 9

management, and revolutionize healthcare by developing more accurate diag-
noses and personalized treatments. AI has become a crucial tool in various indus-
tries, and it is expected to continue playing an essential role in future revolutions.
The 4IR is a term used to describe the current era of rapid technological advance-

ment that is transforming the way of living, working, and communicating. It
builds upon the previous industrial revolutions, which were characterized by
the mechanization of production (1IR), the introduction of mass production
and assembly lines (2IR), and the automation of production through the use of
computers and robotics (3IR). The 4IR is characterized by the integration of phys-
ical, digital, and biological systems and the use of technologies such as AI, the IoT,
and robotics to drive innovation and productivity.
AI is one of the key technologies driving the 4IR. It refers to the ability of

machines to perform tasks that typically require human intelligence, such as
learning, reasoning, problem-solving, and perception. AI systems are designed
to simulate human cognitive abilities and can be used to automate a wide range
of tasks across different industries. One of the most significant impacts of AI is its
ability to analyze vast amounts of data quickly and accurately. This makes it par-
ticularly useful for applications, such as predictive analytics, where it can be used
to identify patterns and make predictions based on historical data. AI is also
increasingly being used for NLP, which enables computers to understand and
process human language. Another key application of AI in the 4IR is in the devel-
opment of autonomous systems, such as self-driving cars and drones. These
systems use a combination of sensors, algorithms, and ML to navigate their envi-
ronment and make decisions in real time.
AI is also being used to improve healthcare, with applications such as persona-

lized medicine, medical imaging, and drug discovery. In the financial sector, AI is
being used for fraud detection and risk assessment, while in manufacturing, it is
being used to optimize production processes and improve product quality. How-
ever, the increasing use of AI also raises concerns about issues such as job displace-
ment, bias in decision-making, and data privacy. As such, there is a growing need
for ethical frameworks and regulations to ensure that AI is used in a responsible
and transparent manner. The Fourth Industrial Revolution will be characterized
by the widespread use of AI and Big Data. AI can be categorized into three stages:
narrow artificial intelligence (ANI), artificial general intelligence (AGI), and super
artificial intelligence (ASI). The ultimate goal is to achieve intelligence or even
wisdom.

1.4.1 Artificial Narrow Intelligence

Artificial Narrow Intelligence (ANI) is a type of AI that is designed to perform spe-
cific tasks within a limited range of functions. ANI systems are built using ML

10 1 Artificial Intelligence and Cybernetical Learning

algorithms and statistical models, and they are trained on large amounts of data to
perform specific tasks. ANI systems usemathematical equations and algorithms to
process data and make decisions based on that data. These mathematical models
are often complex and can involve several different types of algorithms and tech-
niques. One example of an ANI system is a computer vision system that is designed
to recognize objects in images. This type of system uses deep learning algorithms,
such as convolutional neural networks (CNNs), to analyze images and identify pat-
terns that are associated with specific objects.
Themathematical equations used in ANI systems vary depending on the specific

application, but they generally involve techniques such as linear algebra, proba-
bility theory, and optimization. Here are some examples of mathematical equa-
tions that are commonly used in ANI:
Linear regression is a statistical technique that is used to model the relationship

between two variables. In ANI, linear regression can be used to predict the value of
an output variable based on the values of one or more input variables. The equa-
tion for linear regression is:

y = b0 + b1x1 + b2x2 + … + bnxn, 1 5

where y is the output variable, x1, x2, …, xn are the input variables, and b0, b1, b2, …,
bn are the coefficients of the regression equation. Bayes’ Theorem is a mathemat-
ical equation that is used to calculate the probability of an event based on prior
knowledge of related events. In ANI, Bayes’ Theorem can be used to make predic-
tions based on data that has been collected previously. The equation for Bayes’
Theorem is:

P A B =
P B A P A

P B
, 1 6

where P(A B) is the probability of eventA given that event B has occurred, P(B A)
is the probability of event B given that event A has occurred, P(A) is the prior prob-
ability of event A, and P(B) is the prior probability of event B.
Gradient descent is an optimization algorithm that is used to find the minimum

of a function. In ANI, gradient descent can be used to adjust the parameters of
an ML model to minimize the error between predicted and actual values.
The equation for the gradient descent algorithm is:

b = a− γ∇f a , 1 7

where b is the next position of the migrating point, while a represents its current
position. The minus sign refers to the minimization part of the gradient descent
algorithm. The γ is a waiting factor and the gradient term∇f (a) is simply the direc-
tion of the steepest descent.

1.4 The Fourth Industrial Revolution and Artificial Intelligence 11

In summary, ANI is a type of AI that uses mathematical equations and algo-
rithms to process data and perform specific tasks. The specific mathematical mod-
els and equations used in ANI systems depend on the specific application, but they
generally involve techniques such as linear algebra, probability theory, and
optimization.

1.4.2 Artificial General Intelligence

Artificial General Intelligence (AGI) is a theoretical type of AI that can perform
tasks that typically require human-level intelligence.
The idea behind AGI is that an AI system would be able to learn and adapt to

new situations, just as a human would. This would require the AI to be able to
reason, make decisions, and solve problems in a variety of contexts. One of the
key challenges in creating AGI is developing algorithms that can handle the com-
plexity of human-like thinking.
One approach to developing AGI is through deep learning, which uses neural

networks to simulate the function of the human brain. Neural networks consist
of interconnected nodes that perform computations based on input data. These
computations are typically represented as mathematical equations. The connec-
tions between nodes are weighted based on the strength of the correlation between
the input and output data. The weights are adjusted during the learning process,
allowing the neural network to improve its predictions over time.
Another approach to developing AGI is reinforcement learning, which involves

training an AI system to make decisions based on feedback from its environment.
Reinforcement learning uses a reward-based system to encourage the AI to take
actions that lead to positive outcomes. The goal is to develop an AI system that
can learn from its mistakes and make better decisions over time. There are many
mathematical equations used in the development of AGI, including:

• Gradient descent: This equation is used in deep learning to adjust the weights of
the connections between nodes in a neural network. It involves calculating the
gradient of the error function with respect to the weights and then adjusting the
weights in the direction of the gradient.

• Bellman equation: This equation is used in reinforcement learning to calculate
the expected value of a decision based on the potential future rewards. It takes
into account the immediate reward as well as the expected future reward based
on the decision.

• Bayes’ Theorem: This equation is used in probabilistic reasoning to update
the probability of a hypothesis based on new evidence. It is often used in ML
algorithms that involve uncertainty.

12 1 Artificial Intelligence and Cybernetical Learning

Overall, AGI is a complex and challenging field of study that involves many dif-
ferent mathematical approaches. While still there has not been a fully functioning
AGI system, ongoing research is pushing the boundaries of what is possible with
AI and bringing us closer to creating machines that can reason, learn, and adapt
like humans.

1.4.3 Artificial Super Intelligence

Artificial Super Intelligence (ASI) refers to the hypothetical future state of AI
where machines will surpass human intelligence and become capable of perform-
ing tasks that are currently considered impossible for machines. While there is no
universally accepted definition of super AI, one way to conceptualize it is through
the concept of an AGI. An AGI is an AI system that is capable of understanding or
learning any intellectual task that a human being can, including those that are cur-
rently beyond the capabilities of any machine. ASI could be seen as an even more
advanced version of AGI, capable of not just performing any intellectual task but
surpassing human intelligence in all areas. The development of ASI would likely
involve significant advances in fields such as ML, artificial neural networks
(ANNs), and reinforcement learning, as well as the development of entirely
new approaches to AI. Some possible mathematical equations and concepts that
could be involved in the development of super AI include:

• Neural networks: ANNs are a mathematical model that is inspired by the struc-
ture and function of biological neural networks in the brain. ANNs consist of
layers of interconnected nodes (also known as neurons), which are capable of
processing information and making predictions. ANNs can be trained using
algorithms such as backpropagation to adjust the weights and biases of the
nodes to improve their performance. Super AI could potentially involve the
development of more advanced and complex neural networks, with a greater
number of layers and nodes.

• Reinforcement learning: A type of ML that involves an agent learning through
trial and error in an environment where it receives feedback in the form of
rewards or punishments. The agent’s goal is to learn a policy (i.e. a set of actions)
that maximizes its long-term reward. Super AI could potentially involve the
development of more advanced reinforcement learning algorithms, such as deep
reinforcement learning, which uses deep neural networks to represent the
agent’s policy.

• Bayesian networks: A probabilistic graphical model that represents a set of ran-
dom variables and their conditional dependencies using a directed acyclic graph.
Bayesian networks can be used for reasoning, prediction, and decision-making

1.4 The Fourth Industrial Revolution and Artificial Intelligence 13

under uncertainty. Super AI could potentially involve the development of more
advanced Bayesian networks, capable of handling larger and more complex
data sets.

• Information theory: Information theory is a mathematical framework for quan-
tifying and analyzing the amount of information in a message or data set. Infor-
mation theory can be used for tasks such as data compression, error correction,
and signal processing. ASI could potentially involve the development of more
advanced information-theoretic approaches to AI, such as the use of entropy-
based measures to optimize learning algorithms.

• Optimization theory: A branch of mathematics that deals with finding the best
solution to a problem within a set of constraints. Optimization theory can be
used to solve a wide range of problems in AI, such as parameter tuning, feature
selection, and hyperparameter optimization. ASI could potentially involve
the development of more advanced optimization algorithms, such as stochastic
gradient descent with adaptive learning rates.

Overall, the development of super AI would likely involve significant advances
in a wide range of mathematical fields, as well as interdisciplinary collaborations
between computer scientists, mathematicians, and other experts. While it is diffi-
cult to predict the exact form that super AI will take, these mathematical concepts
and approaches are likely to play a central role in its development.

1.5 Pattern Analysis and Cognitive Learning

Pattern analysis and cognitive learning are two important concepts in the field of
AI and ML. These approaches have been used in various applications, such as
image recognition, NLP, and speech recognition, to name a few.
Pattern analysis is the process of identifying patterns or regularities in data. It

involves analyzing large amounts of data and looking for commonalities or trends
that can be used to make predictions or draw conclusions. In ML, pattern analysis
is often used in unsupervised learning, where the algorithmmust identify patterns
on its own without any explicit training or guidance.
Cognitive learning, on the other hand, is a subfield of AI that is focused on mim-

icking the way humans learn and process information. This approach is based on
the idea that human learning involves more than just identifying patterns in data.
It involves reasoning, problem-solving, and decision-making. Cognitive learning
algorithms attempt to replicate these processes by using techniques such as neural
networks and decision trees.
One of the key advantages of pattern analysis and cognitive learning is their

ability to handle large amounts of data. This makes them particularly useful in

14 1 Artificial Intelligence and Cybernetical Learning

applications where there is a lot of data to analyze, such as in social media mon-
itoring or financial forecasting. Another advantage is their ability to learn and
adapt over time.ML algorithms can be trained on new data as it becomes available,
allowing them to improve their predictions or recommendations over time. There
are several applications of pattern analysis and cognitive learning in various indus-
tries. For example, in healthcare, pattern analysis can be used to identify early
warning signs of diseases, while cognitive learning can be used to help doctors
diagnose and treat patients.

1.5.1 Machine Learning

ML is a field in AI that deals with developing algorithms andmodels that can learn
patterns and relationships in data without being explicitly programmed. The key
idea behind ML is to use data to train a model to make predictions or decisions
based on new data. ML can be broadly classified into three categories: supervised
learning, unsupervised learning, and reinforcement learning.
Supervised learning involves training a model on a labeled dataset, where the

desired output is known. In supervised learning, the model is trained to learn
the relationship between input variables and their corresponding output variables.
The model is then used to predict the output variable for new input variables.
Examples of supervised learning algorithms include linear regression, logistic
regression, decision trees, random forests, and neural networks.
Unsupervised learning involves training amodel on an unlabeled dataset, where

the desired output is not known. In unsupervised learning, the model is trained to
learn the structure of the data and identify patterns and relationships between the
input variables. Examples of unsupervised learning algorithms include clustering
algorithms, such as K-means clustering and hierarchical clustering, and dimen-
sionality reduction algorithms, such as principal component analysis (PCA) and
t-distributed stochastic neighbor embedding (t-SNE).
Reinforcement learning involves training a model to interact with an environ-

ment and learn from its experiences. In reinforcement learning, the model is
rewarded or punished based on its actions, and it learns to take actions that max-
imize its reward. Examples of reinforcement learning algorithms include Q-learn-
ing, SARSA, and deep reinforcement learning. The process of ML typically
involves the following steps:

• Data collection: Collecting and preprocessing the data is the first step inML. The
data is collected from various sources and is cleaned and preprocessed to remove
any noise, outliers, or missing values.

• Feature engineering: Involves selecting and transforming the input variables to
improve the performance of the model. The features are selected based on their

1.5 Pattern Analysis and Cognitive Learning 15

relevance to the output variable and are transformed to ensure that they are in
the appropriate format for the model.

•Model training: Involves selecting an appropriate algorithm and training the
model on the dataset. The model is trained using a portion of the data, and
the remaining portion is used for validation and testing.

•Model evaluation: Involves measuring the performance of the model on the val-
idation and testing datasets. The performance metrics used to evaluate the
model depend on the problem being solved and the type of algorithm used.

•Model deployment: Involves integrating the trained model into the production
environment and using it to make predictions or decisions on new data.

1.5.1.1 Parametric Algorithms

The foundation of parametric algorithms is a mathematical representation of the
input–output connection. They have fewer applications than nonparametric algo-
rithms as a result, but they are quicker and simpler to learn. The most suitable
problems for parametric algorithms have well-defined and predictable input data.
A parametric model is a learning model that uses a collection of fixed-size para-
meters to summarize data (regardless of the number of training samples). The
methods consist of two steps: choosing a function’s form in the first step and learn-
ing the function’s coefficients from training data in the second. Equation (1.8)
illustrates a functional form for the mapping function f.

x1, x2 = b0 + b1x1 + b2x2 1 8

where x1 and x2 are two input variables, and b0, b1, and b2 are the line’s coefficients
that determine the intercept and slope.
By assuming a line’s functional form, the learning process may be greatly

streamlined. All that is needed to turn this into a predictive model for the circum-
stance is to guess the coefficients of the line equation. Since the assumed func-
tional form is generally a linear combination of the input variables, parametric
ML algorithms are sometimes referred to as “linear machine learning algorithms.”
The coefficients must be estimated with respect to Equation (1.4). As a conse-
quence, a predictive model is produced for the specified job. Any value may be pre-
dicted using the intercept and coefficients. Parametric models are often referred to
as linear ML models. This is because the function’s expected form is linear.
Figure 1.2 also displays a few examples of parametric algorithms.
In the context of cybernetics, parametric algorithms can be used to model com-

plex systems and predict their behavior. The process of estimating these para-
meters often involves optimization techniques, such as gradient descent, that
seek to minimize the difference between the predicted output and the actual out-
put. For instance, in the development of control systems for autonomous vehicles.

16 1 Artificial Intelligence and Cybernetical Learning

By modeling the relationships between inputs such as speed and steering angle
and outputs such as vehicle trajectory and speed, parametric algorithms can be
used to predict the behavior of the vehicle and adjust its controls to optimize its
performance. These algorithms can also be used to learn from feedback and
improve their predictions over time, leading to more efficient and reliable control
systems.
Overall, parametric algorithms are a powerful tool in the field of cybernetics, as

they allow researchers tomodel complex systems andmake predictions about their
behavior. By optimizing these models through the estimation of parameters,
researchers can create systems that are more efficient, adaptable, and robust.

1.5.1.2 Nonparametric Algorithms

Algorithms for nonparametric ML do not place a lot of reliance on the character-
istics of the mapping function. Since they are not making any assumptions, they
are free to learn any functional form of the training data. Nonparametric techni-
ques are the best option when there is a lot of data, no previous knowledge, and no
need to worry about choosing the right features.
Nonparametric methods make an effort to produce the mapping function that

fits the training data the best while keeping some generalizability to unknown
data. They may thus accommodate a variety of functional shapes. The k-Nearest
Neighbor method is a simple nonparametric model that makes predictions based
on the kmost similar training patterns for fresh data instances. The method’s only
mapping function shape assumption is that patterns with similar characteristics
are likely to have similar output variables. For nonparametric ones, the quantity
of training data affects how many parameters are used. The number of parameters

Parametric
algorithms

Logistic regression

Yi = β0 + β1x1 + εi f (x) = wTx + b

Linear discernment
analysis

Naïve bayes

P(c|x) z = + b
n

i = 1
∑xiwi

P(x|c)P(c)

P(x)

Neural network

Figure 1.2 Examples of parametric algorithms along with their characteristic
mathematical equations.

1.5 Pattern Analysis and Cognitive Learning 17

increases with the amount of training data. This has the effect of making nonpa-
rametric algorithms’ training times significantly longer. Figure 1.3 also displays a
few examples of nonparametric methods.
After a detailed understanding of AI, ML algorithms, and their different cate-

gories, it is important to understand how AI and cybernetics are related to each
other. AI and cybernetics are sometimes confused with each other, as to which
deals with the creation of intelligent cyborgs and robots. In reality, cybernetics
and AI are two different perspectives on intelligent systems or systems that may
act to achieve a purpose. Furthermore, both AI and cybernetics are built on the
notion of human–machine interaction and are based on binary logic. Moreover,
the feature-wise difference between parametric and nonparametric algorithms
is shown in Table 1.1.
They are two distinct but linked fields. Cybernetics is based on a constructivist

understanding of the universe, whereas AI is based on a realist notion that
machines can operate and behave like humans. Cybernetics constitutes a
closed-loop feedback control system, while neural networks serve as multiple
control mechanisms for interconnected neurons in a system. This shows that
creating these meta-systems calls for new technology. It is crucial to take your
time and pay attention to it in order to do this. Participant observation and
self-observation are two techniques mentioned by Martelaro that may provide
a feedback loop on the designer’s own creative process. It is a reality that in
the future, more designers need to get familiar with cybernetics. More critically,

Nonparametric
algorithms

K-nearest neighbor

d (x,y) =
E (s) =

Support vector
machine

Decision tree

m

i = 1

∑(xi – yi)
2

c

i = 0

∑ –pi log2 pi

y = wx + b

Figure 1.3 Examples of nonparametric algorithms along with their characteristics
mathematical equations.

18 1 Artificial Intelligence and Cybernetical Learning

engineers should consider including feedback systems into design tools that may
help designers with both the current design project and the design process. Once
it is understood that how AI and cybernetics are relating to each other further,
there is need to understand the mathematics of cybernetics. According to Wiener
who proposed the study of control and communication in the animal and the
machine, it is suggested that learning, cognition, adaptability, emergence, com-
munication, and efficiency are all ideas in cybernetics that are fundamental to
the comprehension of complex systems.
The nonparametric algorithms are particularly useful when the underlying

relationship between inputs and outputs is unknown or difficult to model. For
instance, in the development of control systems for unmanned aerial vehicles.
These systems must be able to adapt to changing conditions, such as wind speed
and direction, while maintaining stability and control of the vehicle. Nonparamet-
ric algorithms such as support vector machines and decision trees have been used
to model the relationship between inputs such as airspeed and altitude, and
outputs such as pitch and roll angles, allowing for more accurate and adaptable
control systems. Overall, nonparametric algorithms offer a flexible and
adaptable approach to modeling complex systems in cybernetics, particularly
when the underlying relationships between inputs and outputs are unknown or
difficult to model using traditional parametric approaches.
Neural networks are a class of cybernetic systems that are modeled on the

structure and function of the human brain. They is a type of ML algorithm that

Table 1.1 Feature-wise difference between parametric and nonparametric algorithm.

Feature Parametric Algorithm Nonparametric Algorithm

Definition Makes assumptions about the
underlying data distribution

Makes no assumptions about the
underlying data distribution

Model
complexity

Often simpler, with fewer
parameters to estimate

More complex, with more
parameters or even infinite
parameters

Data size
requirements

Typically requires a larger sample
size to estimate parameters
accurately

Can often work with smaller
sample sizes

Flexibility Less flexible, as the assumptions
made about the data can limit the
types of data that can be analyzed

More flexible, as they can be
applied to a wider range of data
types and distributions

Robustness More sensitive to outliers and
violations of assumptions

More robust to outliers and
violations of assumptions

Common
examples

Linear regression, ANOVA, t-tests k-nearest neighbors, decision
trees, support vector machines

1.5 Pattern Analysis and Cognitive Learning 19

is capable of learning complex patterns in data and making predictions based on
that learning. Neural networks are composed of layers of interconnected nodes,
or neurons, that process and transmit information. They are used for tasks such
as classification, regression, and pattern recognition. The basic unit of a neural
network is the artificial neuron, which computes a weighted sum of its inputs
and applies an activation function. The output of a neuron is given by y=
f (w x+ b), where y is the output, x is the input, w is the weight vector, b is the
bias, and f is the activation function.
Neurons are typically organized into layers within a neural network. The input

layer receives data from the outside world, while the output layer produces the
final output of the network. In between the input and output layers, there may
be one or more hidden layers that perform computations on the data as it passes
through the network. During the training process, a neural network is presented
with a set of input–output pairs, known as training data. The network adjusts the
weights of the connections between its neurons in order tominimize the difference
between its predicted outputs and the true outputs of the training data. This proc-
ess is known as backpropagation, and it allows the neural network to learn com-
plex patterns in the data and make accurate predictions on new, unseen data.
Neural networks are highly versatile and can be used in a wide range of applica-

tions, including image and speech recognition, NLP, and predictive analytics. They
are particularly effective at tasks that involve large amounts of data and complex
patterns, such as detecting fraud in financial transactions or predicting stock
prices.
One of the key advantages of neural networks is their ability to learn from

experience and improve their performance over time. As they are presented with
more data and experience, they can refine their internal representations of the
data and make more accurate predictions. This ability to learn and adapt makes
neural networks a powerful tool for solving complex problems in a wide range of
domains.

1.5.2 Deep Learning

Deep learning is a subfield of ML that uses neural networks with multiple layers
to learn and recognize complex patterns in data. It is a form of AI that allows
machines to learn from data, rather than being explicitly programmed. At a high
level, ML is the process of teaching a computer to make predictions or decisions
based on data, without being explicitly programmed. This can be done using a vari-
ety of algorithms, including linear regression, decision trees, support vector
machines, and neural networks. In contrast to traditional programming, where
rules and instructions are explicitly defined by the programmer, ML algorithms

20 1 Artificial Intelligence and Cybernetical Learning

“learn” from data, iteratively improving their performance as they are exposed to
more examples.
Deep learning is a specific type of ML that uses neural networks with many

layers to learn hierarchical representations of data. In a neural network, informa-
tion is processed through a series of interconnected nodes, or neurons, which are
organized into layers. The input layer receives data, which is then transformed by a
series of hidden layers before being output as a prediction or decision. Each layer
in a neural network can be thought of as learning increasingly complex features of
the data, allowing the network to make more accurate predictions.
Deep learning has gained popularity in recent years due to its ability to achieve

state-of-the-art performance on awide range of tasks, including image recognition,
speech recognition, NLP, and game playing. It has been particularly effective in
domains where there is a large amount of data available, as deep learning models
can leverage this data to learn complex patterns that may be difficult or impossible
for humans to detect. In summary, deep learning is a subfield of ML that uses neu-
ral networks with multiple layers to learn hierarchical representations of data. It is
a form of AI that allows machines to learn from data, rather than being explicitly
programmed. While ML encompasses a wide range of algorithms and techniques,
deep learning specifically focuses on neural networks with many layers.

1.5.2.1 Convolutional Neural Networks in Advancing Artificial Intelligence

Neural networks are a type ofML algorithm that is designed tomimic the structure
and function of the human brain. They are composed of multiple interconnected
processing units called neurons, which are arranged in layers. Each neuron takes
in input, processes it, and produces an output, which is then passed on to the next
layer of neurons. Neural networks have been used extensively in advancing AI in a
number of ways, including:

• Image recognition: One of the most widely used applications of neural networks
is in image recognition. Neural networks can be trained to recognize and classify
images based on patterns and features present in the image data. This has many
practical applications, such as in self-driving cars, where the car needs to be able
to recognize and respond to objects in its environment.

• Natural language processing: Neural networks can also be used for NLP, which
involves teaching machines to understand and generate human language. This
has many applications, such as in chatbots, language translation, and speech
recognition.

• Predictive analytics: Neural networks are also used in predictive analytics,
where they are trained on historical data to make predictions about future
events. This has many practical applications, such as in financial forecasting,
fraud detection, and weather prediction.

1.5 Pattern Analysis and Cognitive Learning 21

• Robotics: Neural networks are also used in robotics, where they can be used to
control the movement of robots and make decisions based on sensor data. This
has many practical applications, such as in manufacturing and logistics.

• Gaming: Neural networks are also used in gaming, where they can be used to
create intelligent opponents that can learn and adapt to the player’s behavior.

1.5.2.2 Future Advancement in Deep Learning

Deep neural networks have seen significant advancements in recent years, and
they are expected to continue evolving in the future. Here are some potential
advancements that one can expect in the field of neural networks:

• Deep reinforcement learning: Reinforcement learning involves the use of a
reward system to train an AImodel. Deep reinforcement learning involves using
neural networks to learn from the data generated by a reward-based system. This
technique has already been used to teach machines to play complex games like
Go and Chess. In the future, deep reinforcement learning will become more
sophisticated and could be used to solve more complex problems in industries
like robotics and autonomous vehicles.

• Explainable AI: The ability to interpret and explain the decisions made by AI
models is becoming increasingly important. Explainable AI (XAI) aims to make
AI more transparent by providing insights into the decision-making process of
AI models. In the future, XAI techniques will become more sophisticated and
will be able to provide more detailed and accurate explanations of AI model
decisions.

• Generative adversarial networks (GANs): A type of neural network that can gen-
erate synthetic data that closely resembles real-world data. GANs are already
being used to create realistic images and videos. In the future, GANswill become
more advanced and can be used to create highly realistic virtual environments
for gaming and training purposes.

• Transfer learning: Involves taking a pretrained neural network and fine-tuning
it for a specific task. This technique allows for faster and more efficient training
of neural networks. In the future, transfer learning will become more prevalent,
and pretrained neural networks will become more widely available.

• Edge computing: Involves processing data at the edge of a network, rather than
sending it to a centralized server for processing. This approach is becomingmore
important as the amount of data generated by IoT devices continues to grow. In
the future, edge computing will become more sophisticated, and AI models will
be designed to work effectively in edge computing environments.

• Quantum neural networks: Quantum computing is a rapidly growing field, and
quantum neural networks (QNNs) are an area of active research. QNNs could

22 1 Artificial Intelligence and Cybernetical Learning

potentially outperform classical neural networks in certain applications. In the
future, QNNs will become more sophisticated and can be seen the development
of hybrid classical–QNNs that combine the strengths of both approaches.

• Neuromorphic computing: Involves designing hardware that mimics the struc-
ture and function of the human brain. This approach could lead to highly effi-
cient and powerful AI models. In the future, neuromorphic computing will
become more prevalent.

The future of neural networks looks bright, and one can expect to see continued
advancements in this field in the years to come. These advancements will make AI
models more powerful, efficient, and transparent, and will enable them to solve
increasingly complex problems.

1.5.3 Cybernetical Learning

Cybernetics is a transdisciplinary field of study that explores the behavior of com-
plex systems and how they can be controlled or regulated through feedback
mechanisms. At its core, cybernetics seeks to understand the interactions between
systems, and how they can be optimized for a desired outcome. Cybernetics has
been influential in the development of AI, as many of the concepts and techniques
used in AI are based on cybernetic principles. For example, feedback mechanisms
are critical to the functioning ofmany AI systems, as they allow the system to adapt
and learn from its environment. Additionally, cybernetics has contributed to the
development of control systems, which are used to regulate the behavior of auton-
omous agents in AI applications such as robotics and autonomous vehicles. By
drawing on the principles of cybernetical learning, researchers in AI are able to
create systems that are more efficient, adaptable, and resilient and thereby giving
rise to CI. At its core, cybernetic learning is about creating a feedback loop between
a learner and their environment or task. This feedback loop allows the learner to
adjust their behavior and improve their performance over time. The learner
receives information about their progress and uses that information to make
adjustments and improve their approach. There are several key components to
cybernetic learning:

• Feedback loops: A crucial aspect of cybernetic learning. Learners need to receive
feedback on their progress and performance so they can adjust their behavior
and improve. Feedback can come in many forms, such as grades, test scores,
or verbal feedback from a teacher.

• Control systems: The mechanisms that govern how the feedback loop operates.
They set the parameters for what is considered successful performance and
adjust those parameters based on feedback from the learner.

1.5 Pattern Analysis and Cognitive Learning 23

• Adaptation: Cybernetic learning is about adapting and adjusting behavior over
time. As the learner receives feedback and makes changes, the control system
also adjusts to ensure that the feedback loop remains effective.

• Communication: Effective communication is critical for cybernetic learning.
The learner needs to be able to understand the feedback they receive and com-
municate their progress and challenges effectively.

One example of cybernetic learning is adaptive learning software, which uses
feedback loops and control systems to adjust the difficulty of tasks based on the
learner’s performance. The software can adapt to the learner’s needs and provide
targeted feedback and support, helping them to improve their performance over
time. The study of how systems control themselves and act in support of goals
depending on input from the environment is included in cyberneticsmore broadly.
Cybernetics is related to creating intelligent cyborgs and robots. In actuality, cyber-
netics and AI are different ways of thinking about intelligent systems or systems
that can act toward reaching a goal. CI presents cogent and non-vital explanations
for continuously ordered natural and biological phenomena that have previously
been examined by scientific thinkers relying on vital functions. Cybernetics is a
relatively new science concerned with the study of mechanical, biological, phys-
ical, and cognitive regulating systems. It is a broad concept that encompasses infor-
mation processing, feedback regulation, and decision-making.

1.6 Cybernetical Artificial Intelligence

Cybernetics is the interdisciplinary study of the structure, function, and control of
complex systems, including mechanical, biological, and social systems. It is often
described as the science of communication and control of the animal and the
machine. Cybernetics uses mathematical equations to model and analyze systems.

1.6.1 Artificial Intelligence Control Theory

Control theory is a branch of cybernetics that deals with the analysis and design of
systems that can be controlled or regulated. It is concerned with the study of how
systems behave, how they can be controlled, andhow to optimize their performance.
Control theory deals with the design of controllers that can manipulate a system to
achieve a desired response. Themost commonly used controller is the Proportional–
Integral–Derivative (PID) controller, which is defined by the Equation (1.9).

u t = kpe t + Ki

t

0
e t dt + Kd

de t
dt

, 1 9

24 1 Artificial Intelligence and Cybernetical Learning

where u(t) is the control input, e(t) is the error signal, kp, Ki, and Kd are the
proportional, integral, and derivative gains, respectively. The main objective of
control theory is to design control systems that can regulate the behavior of a sys-
tem in order to achieve a desired outcome. This is typically done by introducing
feedback mechanisms that allow the system to adjust its behavior in response
to changes in the environment or its own internal state.
There are several types of control systems that can be used to regulate the behav-

ior of a system, including open-loop control, closed-loop control, and adaptive con-
trol. Open-loop control involves setting the input to the system based on a
predetermined set of rules or instructions. Closed-loop control, on the other hand,
involves using feedback mechanisms to adjust the behavior of the system in
response to changes in the environment or its own internal state. Adaptive control
involves usingML algorithms to adjust the behavior of the control system based on
real-time data.
Control theory is used in a wide variety of applications, including robotics,

manufacturing, aerospace, and automotive industries. It is an important field of
study in engineering, computer science, and mathematics and has contributed
significantly to the development of modern control systems and automation
technologies.
Artificial Intelligence Control Theory (AICT) is an emerging field that combines

principles of control theory with AI techniques to design intelligent systems that
can control complex dynamic systems. AICT is used to create adaptive, predictive,
and autonomous control systems that can learn from data and optimize their per-
formance over time.
Control theory is a well-established field of engineering that deals with the anal-

ysis and design of systems that can be controlled to achieve specific goals. It
involves the study of dynamic systems, feedback control, stability analysis, and
optimal control. Control theory is widely used in many applications such as aer-
ospace, chemical process control, and robotics.
AI, on the other hand, deals with the development of algorithms and techniques

that enable machines to learn from data and make decisions based on that knowl-
edge. AI techniques such as ML, deep learning, and reinforcement learning have
been widely used in various applications such as image recognition, speech recog-
nition, and NLP.
AICT combines these two fields to create intelligent control systems that can

learn from data and adapt to changing environments. AICT algorithms use ML
and other AI techniques to learn the dynamic behavior of the system and predict
its future behavior. These predictions are used to adjust the control inputs to
achieve the desired performance.
AICT algorithms can be classified into three categories: model-based control,

data-driven control, and hybrid control. Model-based control uses mathematical

1.6 Cybernetical Artificial Intelligence 25

models of the system to design control algorithms. Data-driven control, on the
other hand, uses data-driven models such as neural networks to design control
algorithms. Hybrid control combines both approaches and uses both mathemati-
cal models and data-driven models to design control algorithms. One of the main
advantages of AICT is its ability to handle complex and uncertain systems. AICT
algorithms can learn from data and adapt to changing environments, making
them more robust and reliable than traditional control systems. AICT algorithms
can also optimize their performance over time, leading to better control and higher
efficiency. Applications of AICT include autonomous vehicles, robotics, industrial
automation, and smart grids. AICT is also being used in healthcare to develop
intelligent systems that can monitor patients and provide personalized care.
In conclusion, machine intelligence-based control is an emerging field that com-

bines principles of control theory with AI techniques to design intelligent systems
that can control complex dynamic systems. AICT algorithms use ML and other AI
techniques to learn from data, adapt to changing environments, and optimize their
performance over time. AICT has the potential to revolutionize many applications
and industries, leading to more efficient and reliable systems.

1.6.2 Information Theory

Information theory is a branch of mathematics that deals with the quantification
and transmission of information. It was initially developed by Claude Shannon in
the 1940s as a way to study the transmission of information over communication
channels. Since then, it has become an essential tool in various fields such as tele-
communications, computer science, engineering, and cybernetics. One of the key
concepts in information theory is entropy, which measures the amount of uncer-
tainty or randomness in a system. The entropy of a discrete random variable X is
given by:

H X = −
x
p x log 2p x , 1 10

where p(x) is the probability distribution of X. In cybernetics, information theory
plays a crucial role in understanding and analyzing complex systems. Cybernet-
ics is the study of systems that are self-regulating and can adjust to changes in
their environment. These systems can be biological, mechanical, or social, and
they all have the common feature of being able to communicate with their
environment.
In information theory, information is measured in terms of bits. A bit is the basic

unit of information, and it represents the choice between two alternatives, usually
expressed as 0 or 1. Information theory considers communication channels as a

26 1 Artificial Intelligence and Cybernetical Learning

way of transmitting information, and it measures the efficiency of communication
channels by determining how much information can be transmitted over the
channel.
One of the key concepts in information theory is entropy. Entropy is a measure

of the uncertainty or randomness of a message or signal. The higher the entropy,
the greater the uncertainty or randomness. Shannon’s entropy is the most com-
mon measure of entropy used in information theory. It measures the average
number of bits needed to represent a message or signal, and it is based on the prob-
ability distribution of the symbols in the message or signal. Another important
concept in information theory is channel capacity. Channel capacity is the max-
imum rate at which information can be transmitted over a communication chan-
nel without error. It depends on the properties of the channel, such as its
bandwidth and noise level, and it can be calculated using Shannon’s channel
capacity formula. Information theory has also been used to study feedback and
control systems, which are common in cybernetics. Feedback is a process by which
a system can adjust its behavior based on information about its current state. Infor-
mation theory has provided insights into how feedback can be used to control com-
plex systems and how the quality of feedback can affect system performance. In
conclusion, information theory is an essential tool in cybernetics for understand-
ing and analyzing complex systems. It provides a mathematical framework for
measuring and quantifying information, and it has led to significant advances
in communication, control, and computing.

1.6.3 Cybernetic Systems

Cybernetic systems are systems that incorporate feedback loops to maintain a
desired state. The behavior of these systems can be modeled using differential
equations. One common model is the predator–prey model. Consider two popula-
tions whose sizes at a reference time t are denoted by x (t) and y(t), respectively. The
functions x and y might denote population numbers or concentrations or some
other scaled measure of the population sizes, but are taken to be continuous func-
tions. Changes in population size with time are described by the time derivatives

x dx
dt and y dy

dt, respectively, and a general model of interacting populations is

written in terms of two autonomous differential equations

x = x f x, y

y = y g x, y ,
1 11

where the time t does not appear explicitly in the functions x f (x, y) and y g (x, y).
The functions f and g denote the respective per capita growth rates of the two spe-
cies. At the heart of a cybernetic system is a feedback loop that allows the system to

1.6 Cybernetical Artificial Intelligence 27

monitor its own performance and adjust its behavior accordingly. The feedback
loop typically consists of three components:

• Sensor: The sensor detects changes in the system’s environment or behavior and
converts them into a signal that can be processed by the system.

• Controller: The controller processes the sensor signal andmakes decisions about
how to adjust the system’s behavior in response.

• Actuator: The actuator receives the controller’s instructions and carries out the
necessary changes to the system’s behavior.

This feedback loop allows the system to adjust its behavior in response to
changes in its environment, ensuring that it operates effectively and efficiently.
For example, a thermostat uses a simple feedback loop to regulate the temperature
in a room. The sensor detects the current temperature, the controller compares it
to the desired temperature, and the actuator turns the heating or cooling system on
or off as necessary to maintain the desired temperature. Cybernetic systems can
range in complexity from simple feedback loops to highly complex, multilayered
systems that incorporate ML and AI algorithms. Examples of complex cybernetic
systems include self-driving cars, which use a combination of sensors, controllers,
and actuators to navigate roads and respond to changing traffic conditions, and
industrial control systems that regulate the operation of large-scale manufacturing
processes.
One key advantage of cybernetic systems is their ability to adapt to changing

environments and operating conditions. By monitoring their own performance
and making adjustments in real time, these systems can optimize their behavior
to achieve the best possible outcomes. This adaptability makes cybernetic systems
ideal for use in a wide range of applications, from consumer electronics to indus-
trial automation to aerospace and defense.

1.7 Cybernetical Intelligence Definition

The area of cybernetics and intelligent machines arose from an intellectual revo-
lution based on the belief that at least part of our mental descriptions can be trans-
lated into machines that can be rendered into the specifications for the design of
machines, systems, and programs. The application of cybernetics is vast in various
aspects of life such as control theory, information theory, and many more, as
shown in Figure 1.4. Until recently, the concept that humans are able to build
something far more complicated and intelligent than themselves can only be con-
sidered a dream. This began to change when scientists and mathematicians began
to consider new approaches to making machines smarter and hyperintelligent.

28 1 Artificial Intelligence and Cybernetical Learning

Cybernetics has successfully blended human intelligence with machines. The best
instances of this human–machine fusion are AI and cybernetics. Both AI and
cybernetics are founded on the binary logic premise. Both phrases are frequently
used interchangeably, resulting in confusion of their terminology. Cybernetics is
an interdisciplinary discipline that examines how a system processes information,
responds to it, and changes or is altered in order to improve its performance. It is a
broad concept that encompasses information processing, feedback regulation, and
decision-making.
AI is founded on the realist belief that machines can operate and behave like

humans, whereas cybernetics is based on a constructivist worldview. According
to research, the differences between AI and cybernetics are conceptual rather than
semantic. The science of human–machine interaction based on the principles of
feedback, control, and communication is known as cybernetics. Cybernetics is a
relatively new science concerned with the study of mechanical, biological, phys-
ical, and cognitive regulating systems. It investigates control and communication
principles in live creatures, machines, and groups, as well as self-organization.
Cybernetics is an interdisciplinary discipline that examines how a system pro-
cesses information, responds to it, and changes or is altered in order to improve
its performance. It is a broad theory of information processing, control, and deci-
sion-making.
Similar to an individual with a specific job in life who learns from a variety of

external inputs via a feedback mechanism, AI systems should be built with a pur-
pose that allows them to learn from external interaction or data while being true to
their aim. The system’s operational principles may guide the goal. Survival of the

Control theory
(1868)

General system theory and
analysis (1968)

Artificial intelligence (1956)

Mathematical communication
theory (1948)

Information theory
(1948)

Data analysis and
decision making (1944)

Operation research (1943)

Optimization (1939)

Cybernetics

Figure 1.4 Historical overview and development of cybernetics.

1.7 Cybernetical Intelligence Definition 29

fittest is the aim of an evolutionary system, but maximization of economic produc-
tion is the aim of a capitalist society. When a system’s guiding principle notices an
outside factor that is causing it to act erratically, it adjusts the system’s course to
keep it on course. Similar to this, the underlying idea of an AI system should be
designed such that it may self-correct when it deviates from its intended behavior
owing to external data. As a consequence, an AI system should be created in a
manner that adheres to its guiding principles and allows it to learn from both
objective information and the subjective experience of the external system with
which it interacts.
One of the earliest examples of this connection is the development of neural net-

works, which were inspired by the biological neural networks found in the human
brain. Neural networks are a type of AI algorithm that is based on feedback
mechanisms, allowing them to learn from data and improve their performance
over time. This approach was influenced by cybernetics, which emphasized the
importance of feedback in controlling and regulating complex systems. Another
example of the link between cybernetics and AI is in the development of reinforce-
ment learning algorithms. Reinforcement learning is a type of ML that involves
training an agent to make decisions in an environment in order to maximize a
reward signal. This approach was influenced by cybernetics, which emphasized
the importance of feedback in controlling and regulating complex systems.
The connection between cybernetics and AI is also evident in the development

of control systems for autonomous vehicles. These systems use a combination of
feedback mechanisms and ML algorithms to predict the behavior of the vehicle
and adjust its controls to optimize its performance. This approach draws on both
the principles of cybernetics, which emphasize the importance of feedback in con-
trolling and regulating complex systems, and the techniques of AI, which provide
powerful tools for modeling and predicting system behavior. Overall, the connec-
tion between cybernetics and AI reflects a shared interest in understanding and
controlling complex systems through the use of feedback mechanisms and learn-
ing algorithms. This has led to the development of a wide range of AI algorithms
that are inspired by the principles of cybernetics and that have the potential to rev-
olutionize our ability to control and regulate complex systems in a wide range of
domains.

1.8 The Future of Cybernetical Intelligence

CI has the potential to transform our society in many ways, from improving
healthcare and education to revolutionizing transportation and manufacturing.
However, as CI becomes more integrated into our lives, there are growing

30 1 Artificial Intelligence and Cybernetical Learning

concerns about its safety and ethical implications. This section is going to discuss
how CI could change our society and how one can ensure that CI is developed and
used safely and responsibly.

• Healthcare: CI has already started to transform healthcare by improving disease
diagnosis and treatment. In the future, CI could help doctors identify early warn-
ing signs of diseases, develop personalized treatment plans for patients, and even
perform complex surgeries. However, it is important to ensure that CI is devel-
oped and used in a way that prioritizes patient safety and privacy.

• Education: CI has the potential to personalize education and help students learn
more efficiently. CI could be used to develop personalized learning plans for stu-
dents, provide instant feedback on their work, and even help teachers identify
struggling students. However, it is important to ensure that CI is not used to
replace teachers but rather to enhance their abilities and improve the overall
quality of education.

• Transportation: Self-driving cars and drones are already starting to revolutionize
transportation, and CI could make transportation even safer and more efficient.
CI could be used to optimize traffic flow, reduce congestion, and improve public
transportation. However, it is important to ensure that CI is developed and used
in a way that prioritizes safety and reduces the risk of accidents.

• Manufacturing: CI could transform manufacturing by automating production
processes, reducing costs, and improving product quality. CI could be used to
optimize production lines, predict maintenance needs, and even develop new
products. However, it is important to ensure that CI is developed and used in
a way that prioritizes worker safety and job security.

• Ethical implications: CI raises many ethical concerns, including issues of bias,
transparency, and accountability. It is important to ensure that CI is developed
and used in an ethical and responsible manner, with the well-being of humans
and society as a top priority. This includes ensuring that CI systems are trans-
parent and accountable and that they do not discriminate against individuals or
groups based on their race, gender, or other factors.

• Safety concerns: CI also raises concerns about safety, particularly when it comes
to autonomous systems such as self-driving cars and drones. It is important to
ensure that these systems are designed and tested in a way that prioritizes safety
and reduces the risk of accidents. This includes developing robust safety proto-
cols and ensuring that autonomous systems are able to respond appropriately to
unexpected situations.

In light of abovementioned applications and implications, the future of CI is full
of possibilities and potential, but it is important to ensure that CI is developed and
used in a way that prioritizes safety, ethics, and responsibility. By working together

1.8 The Future of Cybernetical Intelligence 31

to address these concerns by ensuring that, the CI is a force for good that benefits
everyone in our society.

Summary

This chapter discussed various aspects of AI and its related technologies, including
IA, cybernetics, the 4IR, and AICT. Started by exploring the origins of AI, which
can be traced back to cybernetics—the study of communication and control in liv-
ing organisms and machines. This discipline provided a theoretical framework for
understanding how machines and living organisms can interact and learn from
each other. Then this book delved into IA, which is the use of AI technologies
to automate business processes and improve productivity. IA combines various
technologies, including AI, RPA, and other tools, to create intelligent systems that
can learn and adapt to changing business needs.
Moreover, the chapter discussed the 4IR, which refers to the current technolog-

ical revolution that is transforming the manufacturing and industrial sectors by
integrating advanced technologies such as AI, the IoT, and blockchain. This trans-
formation is expected to have a profound impact on the global economy. The chap-
ter also explored AICT, a branch of control theory that deals with the design of
controllers for AI systems. AICT is concerned with developing algorithms that
can control AI systems to achieve desired outcomes and ensure safety and relia-
bility, which gives rise to a form of CI.
The future of AI with the exploding utilization of CI looks promising. With

advancements in technology, AI is expected to become more advanced and ubiq-
uitous in our daily lives, leading to greater automation and efficiency in various
industries. However, this could also raise concerns about job displacement and
ethical considerations surrounding AI. Cybernetics will likely continue to develop
and merge with AI, leading to the creation of more advanced and intelligent sys-
tems that can be controlled and optimized in real time. Overall, it presents exciting
possibilities for innovation and progress, but also poses important ethical and soci-
etal questions that will need to be addressed as the technology continues to evolve.

Exercise Questions

Q.1.1 Define artificial intelligence.

Q.1.2 Discuss how AI and cybernetics are related to each other.

Q.1.3 Describe machine learning and differentiate between parametric and non-
parametric machine learning algorithms.

32 1 Artificial Intelligence and Cybernetical Learning

Q.1.4 Explain cybernetics with mathematical expressions.

Q.1.5 What is third-order cybernetics?

Q.1.6 Are cybernetic models more predictive in AI?

Q.1.7 What is the Bayes’ rule in probability theory, and how is it used in Bayesian
inference to update prior probabilities based on new evidence?

Q.1.8 What is the formula for calculating the sigmoid function in a neural net-
work, and how is it used in the activation function?

Q.1.9 Can you explain the difference between L1 and L2 regularization in
machine learning, and how they are mathematically expressed in the loss
function?

Further Reading

Martelaro N, Ju W. Cybernetics and the design of the user experience of AI systems.
Interactions. 2018 Oct 25;25(6):38–41.

Wiener N.God &Golem, Inc.: a comment on certain points where cybernetics impinges on

religion. MIT press; 1966 Mar 15.

Further Reading 33

2

Cybernetical Intelligent Control

Control theory is a field of engineering and mathematics that deals with the
analysis and design of systems that are able to control the behavior of other
systems. It involves the use of mathematical models to describe the dynamics of
a system and the design of control algorithms to manipulate the inputs of the
system in order to achieve desired outcomes.
In a control system, there is a process or system that is being controlled and a

controller that receives information about the process and generates an output sig-
nal to adjust the process, as shown in Figure 2.1. The controller’s output is typically
a function of the input signal (which represents the desired outcome or set point)
and the feedback signal (which represents the actual state of the process).
There are two main types of control systems: open loop and closed loop. In an
open-loop system, the controller sends an output signal to the process without
any feedback on the process state, which can result in errors or instability. In a
closed-loop system, the feedback signal is used to adjust the output signal and
achieve better control of the process. Control theory also involves the study of sta-
bility and controllability of systems. Stability refers to the ability of a system to
return to a steady state after a disturbance or change, while controllability refers
to the ability to manipulate the system’s output through the input signal. The anal-
ysis of stability and controllability is important in designing robust control systems
that can adapt to changes in the environment and operate reliably.

2.1 Control Theory and Feedback Control Systems

Control theory is a branch of engineering and mathematics that deals with the
analysis and design of feedback control systems. A feedback control system is a
type of system where the output of the system is fed back to the input, in order

35

Cybernetical Intelligence: Engineering Cybernetics with Machine Intelligence, First Edition.
Kelvin K. L. Wong.
© 2024 The Institute of Electrical and Electronics Engineers, Inc.
Published 2024 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/cyberintel

to regulate the output and maintain it at a desired level. The purpose of control
theory is to design controllers that can regulate the output of a system in the pres-
ence of disturbances and uncertainties, in order to achieve the desired perfor-
mance and stability.
The main components of a feedback control system are the plant, the controller,

the sensors, and the actuator. The plant is the physical system that is being con-
trolled, the sensors measure the output of the plant, the actuator adjusts the input
to the plant, and the controller processes the sensor information and generates the
control signal for the actuator. The performance of a feedback control system can
be analyzed using mathematical models that describe the dynamics of the plant
and the controller. These models can be represented in the form of differential
equations, transfer functions, or state–space models. One of the most important
concepts in control theory is feedback, which is the process of feeding the output
of the system back to the input. Feedback control systems can be divided into two
main categories: open-loop and closed-loop control systems.
In an open-loop control system, the control signal is generated based on a set

point or reference signal, without any feedback from the output of the system.
The performance of an open-loop control system is often limited by the uncertain-
ties and disturbances in the plant. In a closed-loop control system, the output of the
system is fed back to the input, in order to regulate the output and maintain it at a
desired level. The performance of a closed-loop control system can be improved by
designing a feedback controller that can compensate for the disturbances and
uncertainties in the plant.
The design of a feedback controller involves selecting the appropriate control

structure and tuning the controller parameters to achieve the desired performance
and stability. There are several methods for controller design, such as classical
control, modern control, and robust control.
Classical control methods, such as proportional–integral–derivative (PID) con-

trol, are based on linear time-invariant models and can be easily implemented in

Error detector

Input Output
ProcessController

Error
signal

Feedback signal

Feedback
elements

Actuating
signal

Figure 2.1 Understanding the concept of control system.

36 2 Cybernetical Intelligent Control

hardware. Modern control methods, such as state–space control and optimal con-
trol, are based on more advanced mathematical models and require computations
that are more complex. Robust control methods, such as H-infinity control and
sliding mode control, are designed to be more tolerant to uncertainties and distur-
bances in the plant and can provide better performance and stability in harsh
environments. The performance and stability of a feedback control system can
be analyzed using various techniques, such as root locus, Bode plot, Nyquist plot,
and frequency response analysis. These techniques can provide insights into the
stability margins and frequency characteristics of the system. In summary, control
theory and feedback control systems play a crucial role in the design and analysis
of intelligent control systems. They provide a mathematical framework for under-
standing the behavior of complex systems and designing controllers that can reg-
ulate the output of these systems in the presence of disturbances and uncertainties.
Moreover, summarizing the key aspects of control theory and feedback control sys-
tems is shown in Table 2.1.

2.2 Maxwell’s Analysis of Governors

Governors are devices used to regulate the speed of steam engines. They work by
controlling the flow of steam into the engine in response to changes in the engine’s
speed. Maxwell was interested in understanding how governors work and how
they could be optimized to achieve better performance. Maxwell’s analysis of gov-
ernors began with a study of the basic principles of control theory. He recognized
that the behavior of a governor could be modeled as a system with an input (the
speed of the engine), an output (the position of the governor’s valve), and a feed-
back loop (the position of the valve affecting the speed of the engine). By analyzing
the dynamics of this system, Maxwell was able to derive a set of equations that
described how the governor would respond to changes in the engine’s speed.
One of the key insights that Maxwell had was that the design of a governor could
be optimized by adjusting the position of the balls or weights that are used to reg-
ulate the valve. He showed that by changing the shape and position of these balls,
it was possible to achieve a faster response time and greater stability in the gover-
nor’s control of the engine’s speed.
Maxwell’s analysis of governors provided an early example of how control the-

ory could be applied to engineering problems. His work laid the foundation for the
development of modern control theory, which has since been applied to a wide
range of applications, from aerospace and robotics to industrial automation and
process control. The spindle is connected to a steam engine, and the balls are con-
nected to a valve that controls the flow of steam into the engine. As the engine’s

2.2 Maxwell’s Analysis of Governors 37

speed changes, the spindle and balls move up and down, causing the valve to open
or close and regulating the speed of the engine. Maxwell modeled this system as a
feedback control system with an input signal (the engine speed), an output signal
(the valve position), and a feedback signal (the spindle position). The feedback
signal is used to adjust the output signal to maintain the desired engine speed.
Mathematically, Maxwell represented the system as follows:

Table 2.1 Key aspects of control theory and feedback control systems.

Aspect Description

Definition Control theory is an interdisciplinary branch of engineering and
mathematics that deals with the analysis and design of systems that
behave in a desired manner. Feedback control systems are a type of
control system that uses feedback mechanisms to adjust the behavior of
the system.

Purpose Control theory aims to design systems that behave in a desired manner.
Feedback control systems aim tomaintain a system’s output at a desired
level by adjusting the input based on feedback from the system.

Mathematical
models

Control theory uses mathematical models of physical systems to
analyze their behavior and design control algorithms. Feedback control
systems use mathematical models of the system being controlled to
determine how to adjust the input based on feedback.

Feedback
mechanisms

Control theory often uses feedback mechanisms to adjust the system’s
behavior. Feedback control systems always use feedback mechanisms
to adjust the system’s behavior.

Control
algorithms

Control theory designs algorithms for adjusting a system’s behavior.
Feedback control systems use feedback to adjust the input to the system,
which can be done using a wide range of control algorithms, including
proportional–integral–derivative (PID) control, adaptive control, and
model predictive control.

Applications Control theory and feedback control systems are used in a wide range of
applications, including manufacturing, robotics, aerospace, chemical
processes, and automotive systems.

Key features Both control theory and feedback control systems require a deep
understanding of the system being controlled, usemathematical models
to analyze behavior, and aim to maintain desired levels of output.
Feedback control systems use feedback mechanisms to adjust the
system’s behavior in real time.

Challenges Designing effective control algorithms, addressing issues of stability and
control, and ensuring the system remains responsive to changes in the
environment. Feedback control systems also require accurate sensors to
provide feedback, which can be a challenge in some applications.

38 2 Cybernetical Intelligent Control

The input signal is the engine speed, denoted byω. The output signal is the valve
position, denoted by y. The feedback signal is the spindle position, denoted by x.
The system dynamics are described by the equation:

m
d2x
dt2

= mg−F x, y − k
dx
dt

, 2 1

where m is the mass of the spindle and balls, g is the acceleration due to gravity,
F(x, y) is the force exerted by the valve on the spindle, and k is the damping
coefficient. The force F(x, y) is given by:

F x, y =
1
2

mω2r2 −m g + y h sin 2θ, 2 2

where r is the length of the spindle, h is the distance from the center of the spindle
to the valve, and θ is the angle between the spindle and the vertical axis. The feed-
back control law that Maxwell proposed is given by:

y = k x− x0 + y0, 2 3

where k is the gain of the feedback loop, x0 and y0 are the desired values of the
spindle position and valve position, respectively.
Maxwell’s analysis showed that the stability and performance of the governor

system can be improved by adjusting the position of the balls and the gain of
the feedback loop. This work laid the foundation for modern control theory, which
has since been applied to a wide range of systems in engineering and science.

2.3 Harold Black

Harold Black’s contributions to control theory are centered around the concept of
negative feedback amplification. He showed that by introducing a negative feed-
back loop into an amplifier, the performance of the amplifier could be improved,
making it more stable and reducing distortion. The principle of negative feedback
is used in many control systems today, where the output of the system is fed back
and used to modify the input in order to achieve a desired response. Mathemati-
cally, the principle of negative feedback can be represented as follows:

y = G s u− y H s , 2 4

where y is the output of the system, u is the input, G(s) is the forward transfer func-
tion of the system, and H(s) is the feedback transfer function. The negative feed-
back loop subtracts a portion of the output from the input so that the input to the
system is modified to reduce the error between the desired output and the actual
output. The transfer function of a negative feedback system can be derived by

2.3 Harold Black 39

substituting the equation for y into the equation. The input u the transfer function
of a negative feedback system can be analyzed to determine its stability and per-
formance characteristics:

y
u
=

G s
1 + H s G s

2 5

The poles and zeros of the transfer function can be used to determine the fre-
quency response and transient response of the system. Black’s work on negative
feedback amplification laid the foundation for modern control theory, and the
principle of negative feedback is used in many different types of control systems,
including mechanical systems, electrical systems, and biological systems.

2.4 Nyquist and Bode

Harry Nyquist’s contributions to control theory include his work on sampling the-
ory, which is a fundamental aspect of digital signal processing and control.
Nyquist’s sampling theorem states that in order to accurately reconstruct a contin-
uous-time signal from its samples, the sampling rate must be at least twice the
maximum frequency component of the signal. This principle is essential for the
design and analysis of digital control systems.
Consider x(t) to be a continuous-time signal, and x(nT) to be its samples,

where T the sampling interval, and n is is an integer. The sampled signal can
be expressed as:

xs t =
∞

n = − ∞
x nT p t−nT , 2 6

where p(t) is the impulse response of the sampling process, also known as the sam-
pling kernel. The impulse response is a function that describes how the continu-
ous-time signal is sampled, and it plays a critical role in determining the accuracy
and fidelity of the sampled signal. The Fourier transform of the sampled signal can
be derived by taking the Fourier transform of both sides of the equation:

xs ω =
x ω p ωT

T
, 2 7

where x(ω) is the Fourier transform of the continuous-time signal, and xs(ω) is the
Fourier transform of the sampled signal. The p(ωT) is the Fourier transform of the
sampling kernel, which determines the frequency response of the sampling proc-
ess. Nyquist’s sampling theorem states that in order to accurately reconstruct the
continuous-time signal from its samples, the sampling rate must be at least twice

40 2 Cybernetical Intelligent Control

the maximum frequency component of the signal. This is known as the Nyquist–
Shannon sampling theorem, and it is a fundamental principle of digital signal pro-
cessing and control. Nyquist’s work on sampling theory has had a profound impact
on the development of digital control systems. By accurately sampling and proces-
sing signals, digital control systems can achieve high precision and accuracy, and
they can be implemented using efficient and cost-effective hardware. Today, dig-
ital control systems are used in a wide variety of applications, including aerospace,
automotive, and industrial control.
Hendrik Wade Bode was an American engineer and control theorist who made

significant contributions to the field of intelligent control. Bode is best known for
his work on frequency domain analysis and the development of Bode plots, which
are graphical representations of the frequency response of a control system. Bode’s
work laid the foundation for the design and analysis of modern feedback control
systems. Bode’s contributions to intelligent control can be summarized as follows:

• Frequency domain analysis: Bode’s work focused on the frequency response of
control systems, which describes how the system responds to inputs of different
frequencies. Bode introduced the concepts of gain margin and phase margin,
which are measures of the stability and performance of a control system. The
gain margin and phase margin can be used to analyze the robustness of a control
system to disturbances and uncertainties.

• Bode plots: Bode developed the concept of Bode plots, which are graphical repre-
sentations of the frequency response of a control system. Bode plots show the
magnitude and phase of the system’s transfer function as a function of fre-
quency. Bode plots provide a powerful tool for analyzing the stability and per-
formance of control systems, and they are widely used in the design and analysis
of feedback control systems.

• Loop shaping: Bode introduced the concept of loop shaping, which is a design
technique for achieving desired performance specifications in a control system.
Loop shaping involves adjusting the magnitude and phase of the system’s trans-
fer function at different frequencies to achieve a desired response. Loop shaping
is a powerful tool for designing robust and efficient control systems.

• Intelligent control: Bode’s work on frequency domain analysis and loop shaping
laid the foundation for the development of intelligent control systems, which use
advanced algorithms and techniques to achieve high performance and robust-
ness. Intelligent control systems are used in a wide variety of applications,
including robotics, aerospace, and industrial automation.

Bode’s contributions to intelligent control have had a profound impact on the
development of modern control systems. By providing powerful tools for the
design and analysis of feedback control systems, Bode’s work has enabled
engineers to develop control systems with high performance, efficiency, and

2.4 Nyquist and Bode 41

robustness. Today, intelligent control systems are used in a wide variety of appli-
cations, from aerospace and automotive to biomedical and environmental control.

2.5 Stafford Beer

Stafford Beer was a British management theorist and cybernetician who made
important contributions to the field of intelligent control. Beer’s work was focused
on developing a cybernetic approach to management, which involved using feed-
back control systems to improve organizational performance. Here are some of
Beer’s key contributions to cybernetical intelligent control, along with relevant
math equations:

2.5.1 Cybernetic Control

Beer’s approach to management was based on the principles of cybernetics, which
is the study of systems that regulate themselves through feedback. Cybernetic con-
trol involves using feedback mechanisms to regulate the behavior of a system, in
order to achieve a desired goal. Beer’s work focused on applying cybernetic prin-
ciples to the management of organizations.
The mathematical basis of cybernetic control is the feedback loop, which con-

sists of a sensor, a controller, and an actuator. The sensor measures the current
state of the system, and the controller calculates the corrective action needed to
achieve the desired goal. The actuator then applies the corrective action to the sys-
tem. The feedback loop provides a mechanism for regulating the behavior of the
system and ensuring that it remains within acceptable limits.

2.5.2 Viable Systems Model

Beer developed the viable systems model (VSM), which is a cybernetic model of
organizational structure and function. The VSM is designed to ensure that an
organization is capable of adapting to changing circumstances and maintaining
its viability over time. The VSM consists of five levels, each of which corresponds
to a different function within the organization. The five levels are:

• Level 1: Operations—the activities that produce the organization’s outputs.

• Level 2: Coordination—the activities that coordinate the work of the operations.

• Level 3: Control—the activities that monitor and control the performance of the
operations and coordination.

• Level 4: Intelligence—the activities that collect and analyze information about
the environment and the organization’s performance.

• Level 5: Policy—the activities that determine the organization’s goals and
strategies.

42 2 Cybernetical Intelligent Control

The VSM provides a framework for designing organizations that are capable of
adapting to changing circumstances and maintaining their viability over time.

2.5.3 Cybernetics Models of Management

Beer developed a number of cybernetics models of management, which are
designed to helpmanagers understand and improve the performance of their orga-
nizations. One such model is the management cybernetics model, which consists
of three feedback loops:

• The performance feedback loop—which measures the current performance of
the organization and provides feedback to the management.

• The learning feedback loop—which allows the organization to learn from its
experiences and improve its performance over time.

• The strategic feedback loop—which ensures that the organization’s strategies
are aligned with its goals and its environment.

The management cybernetics model provides a framework for designing feed-
back control systems that can help organizations improve their performance
and adapt to changing circumstances.
Overall, Stafford Beer’s work on cybernetical intelligent control provided impor-

tant insights into the use of feedback control systems to improve organizational
performance. His work on cybernetics, the VSM, and cybernetic models of man-
agement helped to lay the foundation for the development of modern approaches
to organizational design and management.

2.6 James Lovelock

James Lovelock is a British scientist who is best known for his work on the Gaia
hypothesis, which suggests that the Earth is a self-regulating system. Lovelock’s
work on cybernetics intelligent control is based on the idea that the principles
of cybernetics can be applied to the study of ecological systems.

2.6.1 Cybernetic Approach to Ecosystems

Lovelock’s work on cybernetics intelligent control is based on the principles of
cybernetics, which involves the study of systems that regulate themselves through
feedback. Lovelock’s approach involves applying these principles to the study of
ecological systems, in order to understand how they regulate themselves and
maintain their stability.

2.6 James Lovelock 43

The mathematical basis of Lovelock’s approach to cybernetic ecosystems is the
feedback loop, which consists of a sensor, a controller, and an actuator. The sensor
measures the current state of the system, and the controller calculates the correc-
tive action needed to achieve the desired goal. The actuator then applies the cor-
rective action to the system. The feedback loop provides a mechanism for
regulating the behavior of the ecosystem and ensuring that it remains within
acceptable limits.

2.6.2 Gaia Hypothesis

Lovelock’s most famous contribution to the field of cybernetics intelligent control
is the Gaia hypothesis, which suggests that the Earth is a self-regulating system
that maintains its own stability through feedback loops. According to the Gaia
hypothesis, the Earth’s biosphere, atmosphere, oceans, and geology are all inter-
connected and work together to maintain a stable environment for life. The math-
ematical basis of the Gaia hypothesis is the feedback loop, which is responsible for
maintaining the Earth’s stability. The feedback loop involves the exchange of
information between the Earth’s systems, which allows them to adjust their behav-
ior in response to changes in the environment. The feedback loop helps to main-
tain a stable environment for life on Earth and ensure that the Earth’s systems are
able to adapt to changing circumstances over time.
The mathematical basis of the Daisyworld model is the feedback loop, which

involves the exchange of information between the daisies and the atmosphere.
The daisies absorb and reflect sunlight, which affects the temperature of the
atmosphere. The temperature of the atmosphere affects the growth and reproduc-
tion of the daisies. This feedback loop helps to regulate the behavior of the ecosys-
tem and ensures that it remains within acceptable limits.
Overall, James Lovelock’s work on cybernetics intelligent control provided

important insights into the use of feedback control systems to understand ecolog-
ical systems. His work on the Gaia hypothesis, cybernetic models of ecosystems,
and the Daisy world model helped to lay the foundation for the development of
modern approaches to the study of ecology and environmental science.

2.7 Macy Conference

The Macy Conferences were a series of interdisciplinary meetings that were held
in New York City between 1946 and 1953. The Josiah Macy Jr. Foundation, a phil-
anthropic organization that aims to support research in medicine, the social
sciences, and the humanities, organized the conferences. The meetings brought
together leading researchers and thinkers from a wide range of disciplines,

44 2 Cybernetical Intelligent Control

including mathematics, engineering, psychology, biology, and philosophy. One of
the main objectives of the Macy conferences was to explore the emerging field
of cybernetics, which was concerned with the study of communication, control,
and feedback in both natural and artificial systems. The mathematician Norbert
Wiener, who was one of the key figures at the conferences, coined the term
“cybernetics.” Wiener defined cybernetics as “the study of control and communi-
cation in the animal and the machine.”
At the Macy Conferences, researchers discussed topics such as information

theory, neural networks, artificial intelligence, and the relationship between
man and machine. They explored the idea of feedback and control systems in
both biological and technological systems, leading to new insights into the oper-
ation of complex systems and the possibility of creating artificial systems that
could learn and adapt. One of the key contributions of the Macy Conferences
was the development of the concept of feedback. Feedback, in this context, refers
to the process by which a system receives information about its own behavior
and uses that information to adjust its behavior in response. The idea of feed-
back was applied to both biological and technological systems, leading to new
insights into the operation of complex systems and the possibility of creating
artificial systems that could learn and adapt.
The Macy Conferences also had an impact on the development of the field of

artificial intelligence. Many of the early pioneers of AI, such as John McCarthy
and Marvin Minsky, were influenced by the discussions at the conferences and
drew on ideas from cybernetics and related fields to develop their own theories
of intelligent systems. Overall, the Macy Conferences were an important forum
for the exchange of ideas and the development of new concepts related to com-
munication, control, and feedback in both natural and artificial systems. The
interdisciplinary nature of the conferences helped to foster a new way of think-
ing about complex systems, and their influence can still be seen today in fields
such as cybernetics, artificial intelligence, and systems theory.

2.8 McCulloch–Pitts

The McCulloch–Pitts model, proposed by Warren McCulloch and Walter Pitts in
1943, is a simple mathematical model of a neuron that is often used in the study
of cybernetics and intelligent control. The model consists of a binary threshold
function that takes in input signals and produces an output signal based on
whether the inputs exceed a certain threshold. The mathematical basis of the
McCulloch–Pitts model is a set of binary threshold functions, which can be
represented as follows:

2.8 McCulloch–Pitts 45

Consider x1, x2,…, xn to be the input signals to the neuron, andw1,w2,…,wn to be
the weights associated with each input signal. Then, the neuron’s output y is
given by:

y = f w1x1 + w2x2 + … + wnxn , 2 8

where f is the threshold function, which takes the form, f (x) = 1, if x≥ 0 f (x) = 0,
if x< 0. In other words, the output of the neuron is determined by whether the
weighted sum of the inputs exceeds a certain threshold.
The McCulloch–Pitts model is often used to represent simple decision-making

processes in intelligent control systems. For example, a control systemmight use a
set of neurons to determine whether a certain action should be taken based on a set
of input signals. Each neuron might represent a different criterion for taking
action, and the output of the neurons would be combined to make a decision.
Figure 2.2 is the McCulloch–Pitts neuron model, which can also be written in

the form on the right, and the output y can be expressed by Equation (2.9).

y = φ
n

i = 1

wixi + b 2 9

The McCulloch–Pitts model can be seen as the foundation of artificial neural
networks and machine-learning algorithms. Its key concept of using binary
threshold functions to simulate the behavior of neurons has been built upon
and expanded to create more complex and powerful models. For example, modern
neural networks can contain multiple layers of interconnected neurons, with each
layer performing a different level of processing on the input data. The output of
one layer is passed as input to the next layer, allowing the network to learn and

Input signals Bias

b

y

Summing junction

Activation
function

φ(.)∑
Output

Synaptic weights

X1

X2

X3

X4

W1

W2

W3

W4

Figure 2.2 McCulloch and Pitts neuron model.

46 2 Cybernetical Intelligent Control

recognize complex patterns in the data. Furthermore, the weights assigned to the
input signals can be adjusted through a process called training, where the network
is presented with a large set of input–output examples and its weights are adjusted
to minimize the difference between the predicted and actual outputs. This allows
the network to learn from experience and improve its accuracy over time.
The McCulloch–Pitts model has also been used in other areas of intelligent con-

trol, such as in the development of fuzzy logic systems. Fuzzy logic systems use
membership functions and fuzzy sets to represent uncertain or imprecise informa-
tion and make decisions based on a set of rules. In summary, the McCulloch–Pitts
model has been a foundational concept in the development of artificial intelligence
and intelligent control systems. Its simplicity and elegance have inspired countless
research efforts and practical applications, making it an important contribution to
the field of cybernetics.

2.9 John von Neumann

John von Neumann was one of the key participants in the Macy Conferences on
cybernetics, which were held in the 1940s and 1950s and brought together scien-
tists from a wide range of fields to discuss the emerging field of cybernetics and its
applications in areas such as intelligent control and artificial intelligence. At the
Macy Conferences, von Neumann contributed to discussions on a variety of topics
related to intelligent control and artificial intelligence. Some of his key contribu-
tions included:

2.9.1 Discussions on Self-Replicating Machines

One of John von Neumann’s key contributions to the Macy Conferences on cyber-
netics was his work on self-replication. He was interested in the idea of designing
machines that could reproduce themselves, and he believed that such machines
would be a key feature of intelligent control systems. Von Neumann argued that
self-replication was a fundamental characteristic of life and that machines capable
of self-replication would have the potential to explore new frontiers in space and
other domains. He also believed that self-replication was essential for the sustain-
ability of any intelligent control system.
At the Macy Conferences, von Neumann contributed to discussions on the

design and construction of self-replicating machines. He proposed a model for a
self-replicating machine that consisted of a set of instructions or “blueprint” for
building a copy of itself, as well as a set of tools or “universal constructor” for car-
rying out the instructions. Von Neumann’s model for self-replicating machines
was based on the idea of cellular automata, which are simple computational

2.9 John von Neumann 47

systems that consist of a grid of cells that can be in different states. In von
Neumann’s model, each cell represented a unit of information or “bit,” and the
machine’s “blueprint” was encoded in the state of the cells. Von Neumann’s work
on self-replication was groundbreaking, and it laid the foundation for the devel-
opment of self-replicating machines and other forms of artificial life. His ideas
have had a profound impact on the field of artificial intelligence, and they continue
to inspire research in the field today.

2.9.2 Discussions on Machine Learning

Von Neumann was interested in the idea of machine learning and contributed to
discussions on the design of learning algorithms and the use of machine learning
in intelligent control systems. In particular, he focused on the use of statistical
methods for machine learning.
Von Neumann recognized that machine learning could be used to improve the

performance of intelligent control systems by allowing them to adapt to changing
environments and learn from experience. He also recognized that statistical meth-
ods were essential formachine learning, as they provided away tomake inferences
and predictions based on data. One of von Neumann’s contributions to the devel-
opment of machine learning was his work on the theory of games. He recognized
that games provided a natural framework for studying decision-making processes,
and he developed mathematical models to describe these processes. This work laid
the foundation for modern game theory, which is used to study decision-making
processes in a wide range of fields.
VonNeumann also contributed to the development of artificial neural networks,

which are machine-learning algorithms that are loosely modeled on the structure
and function of the human brain. He recognized that artificial neural networks
could be used to solve a wide range of problems in intelligent control and artificial
intelligence, and he developed mathematical models to describe their behavior.
Overall, von Neumann’s contributions to the development of machine learning
and artificial intelligence have had a profound impact on modern technology
and continue to be studied and refined today.

Summary

Cybernetical intelligent control is a field of study that involves the use of control
theory and feedback control systems to design intelligent machines that can learn
and improve their performance over time. It has its roots in the work of scientists
such as James Clerk Maxwell, who developed mathematical models for governors
that were used to regulate the speed of machines. The concept was further

48 2 Cybernetical Intelligent Control

developed during the Macy Conferences in the mid-20th century, where scientists
discussed the potential of cybernetics to create intelligentmachines. One of the key
contributions to cybernetics was the McCulloch and Pitts model, which provided a
theoretical framework for understanding how neurons in the brain work. John
von Neumann, who attended the Macy Conferences, contributed to the develop-
ment of self-replicating machines, machine-learning algorithms, and the use of
game theory in intelligent control systems. The future of cybernetical intelligent
control and artificial intelligence is promising. With the rapid advancements in
technology, it is likely that intelligent control systems will become even more
sophisticated and capable of performing complex tasks with greater efficiency
and accuracy. Another important area is the integration of intelligent control sys-
tems with other technologies such as robotics and the Internet of Things (IoT),
enabling these systems to operate in real-world environments and interact with
the physical world.
Additionally, the ethical and social implications of intelligent control systems

and artificial intelligence will need to be considered and addressed, including
issues such as privacy, transparency, and accountability. Overall, the future of
cybernetical intelligent control and artificial intelligence holds great potential
for transforming various industries and improving human lives.

Exercise Questions

Q.2.1 Explain the current limitations of cybernetical intelligent control and
artificial intelligence systems?

Q.2.2 How can cybernetical intelligent control and artificial intelligence systems
be made more transparent and explainable?

Q.2.3 What are the ethical considerations involved in the development and use
of intelligent control and artificial intelligence systems?

Q.2.4 In which directions the intelligent control and artificial intelligence
systems be made more resilient to attacks and disruptions?

Q.2.5 How can intelligent control and artificial intelligence systems be used to
enhance human decision-making and problem-solving?

Q.2.6 How can one ensure that intelligent control and artificial intelligence
systems are aligned with human values and goals?

Exercise Questions 49

Q.2.7 What are some of the emerging applications of intelligent control and
artificial intelligence systems in various industries and domains?

Q.2.8 Describe how intelligent control and artificial intelligence systems be
used to address some of the world’s most pressing challenges, such as cli-
mate change and inequality?

Q.2.9 Explain how one can ensure that intelligent control and artificial intel-
ligence systems are developed and used in a responsible and sustainable
manner?

Q.2.10 What are some of the emerging technologies and research areas that are
likely to shape the future of intelligent control and artificial intelligence?

Further Reading

Åström KJ. Computer aided tools for control system design. Department of Automatic
Control, Lund Institute of Technology (LTH); 2016.

BatesonMC. Angels fear revisited: Gregory Bateson’s cybernetic theory of mind applied
to religion-science debates. In: A legacy for living systems: Gregory Bateson as
precursor to biosemiotics. Taylor & Francis; 2008: pp. 15–25.

Kirchner JW. The Gaia hypotheses: are they testable? Are they useful. Scientists on
Gaia. 1991:38–46.

Mead M. Cybernetics of cybernetics. éditeur non identifié; 1968.
Warwick K. Cybernetic enhancements. Reshaping the Human Condition Exploring

Human Enhancement. 2008:123.

50 2 Cybernetical Intelligent Control

3

The Basics of Perceptron

3.1 The Analogy of Biological and Artificial Neurons

To understand and build a neural network, one may compare the structure and
function of neurons in the brain to the artificial neurons in a mathematically con-
structed neural topology. Both biological and artificial neurons receive input, proc-
ess it, and produce an output. In the case of biological neurons, the information
comes in the form of electrical signals from other neurons, and the output is also
an electrical signal sent to other neurons. Neural network concept is derived from
the human brain, and learning is achieved by simulating the work of the brain.
The human brain is made up of neurons and the neural network is made up of
artificial neurons (Figure 3.1).
In artificial neurons, the input is typically numerical values, and the output is

also numerical. The processing in both types of neurons is similar, as it involves
using mathematical functions to transform the input into the output. This anal-
ogy aims to mimic the functioning of biological neurons in artificial neural net-
works to improve their performance and make them more similar to the human
brain. Another critical aspect of the brain’s information processing is lateral
and feedback connections. Lateral connections allow neurons to communicate
with each other within the same layer of neurons, while feedback connections
allow neurons to communicate with neurons in higher layers. This can be mim-
icked in artificial neural networks by using recurrent connections, where the
output of one neuron is used as input to another neuron.
Additionally, sparsity can be used to extend the analogy further. In the brain,

only a small percentage of neurons are active at any given time, while the majority
of neurons are not active. This concept of sparsity can be mimicked in artificial
neural networks by using sparse representations, where only a small percentage

51

Cybernetical Intelligence: Engineering Cybernetics with Machine Intelligence, First Edition.
Kelvin K. L. Wong.
© 2024 The Institute of Electrical and Electronics Engineers, Inc.
Published 2024 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/cyberintel

of neurons are active at any given time. This can help reduce the network’s
complexity and improve its performance. Another essential aspect of biological
neurons is the biological noise and stochasticity, which can be mimicked in arti-
ficial neurons by adding some noise or randomness in the processing. This can
help to improve the robustness and generalization of the network. It is also worth
noting that the analogy between biological and artificial neurons is limited to the
structure of neurons and the way they process information, as well as the way they
are organized and connected in networks. The brain has a hierarchical organiza-
tion where information is processed in different areas, and it is also parallel, where
many neurons process the same information simultaneously.

3.1.1 Biological Neurons and Neurodynamics

According to the Hodgkin–Huxley model, the behavior of biological neurons
is a set of four differential equations describing neurons’ electrical activity.

Dendrites Signal Inputing

Soma and nucleus
Total input calculation and

Activation function

Receive signals from other neurons and

the outside world
Data entry

The arrival of electrical signals will cause

neurons to excite, and the connected

neurons will send chemical signals

Axon Signal outputing

Convert chemical signals into electrical

signals, so that the signals are transmitted

to the next neuron

Data output

Biological neuron Artificial neuron

Perform linear or nonlinear operations on

input data

Signal inputing

Figure 3.1 Analogy of real neurons and artificial neurons.

52 3 The Basics of Perceptron

The equations model the flow of ions through the neuron’s membrane and how
this flow changes over time. The equations are as follows:

Cm
dv
dt

= Iion − gNa m
3h V −VNa − gK n4 V −VK − gL V −VL 3 1

dm
dt

=
m∞ −m

τm
3 2

dn
dt

=
n∞ − n

τn
3 3

dh
dt

=
h∞ − h

τh
, 3 4

where Cm is the membrane capacitance, Iion is the total ionic current, gNa, gK, and
gL are conductance of sodium, potassium, and leak channels, respectively. While
m, n, and h are the gates of the sodium, potassium, and leak channels, respectively.
The VNa, VK, and VL are reversal potentials of the sodium, potassium, and leak
channels, respectively, and m∞, n∞, and h∞ are steady-state values of the gates
τm, τn, and τh are the time constants of the gates.
According to the FitzHugh–Nagumo model, it is a set of two nonlinear

differential equations that describe the electrical activity of neurons are defined
in Equations (3.5) and (3.6).

dx
dt

= c y−
x3

3
+ x 3 5

dy
dt

= −
x− a + by

C
, 3 6

where x is the neuron’s membrane potential, y is a recovery variable, and a, b, c =
parameters of the model. Cybernetic intelligence studies machine systems that can
learn and adapt to new information. Artificial neural networks are machine-
learning algorithms that mimic the structure and function of biological neurons.
The analogy of biological and artificial neurons refers to comparing the structure
and function of biological neurons to the artificial neurons in artificial neural net-
works. Artificial neurons receive inputs, process them through an activation func-
tion, and produce an output. Summarizing the key differences between artificial
and biological neurons is shown in Table 3.1.

3.1.2 The Structure of Neural Network

A neural network has at least two physical components: the processing elements
and the connections between them. The processing elements are called neurons,

3.1 The Analogy of Biological and Artificial Neurons 53

Table 3.1 Summarizing the key differences between artificial and biological neurons.

Aspect Artificial Neuron Biological Neuron

Definition Amathematical model designed to
simulate the behavior of a
biological neuron in an artificial
neural network.

A specialized cell is the basic
building block of the nervous
system in animals and humans.

Components Typically consists of an input, an
activation function, and an output.

Consists of a cell body (soma),
dendrites, an axon, and axon
terminals (synaptic terminals).

Input Receives input signals from other
neurons or from sensors.

Receives input signals from other
neurons or from sensory
receptors.

Activation
function

A mathematical function that
transforms the input signals into
an output signal.

The neuron integrates the input
signals and, if the combined
input is above a certain threshold,
generates an action potential.

Output Produces an output signal that is
transmitted to other neurons or to
an output device.

Transmits output signals to other
neurons via axons, or to muscle
cells or glands via neuromuscular
junctions or neuroglandular
junctions.

Learning Typically uses supervised or
unsupervised learning algorithms
to adjust the weights of the inputs
to the neuron.

Biological neurons can modify
the strength of their connections
(synaptic plasticity) based on the
activity of the synapse.

Speed Artificial neurons can process
input signals much faster than
biological neurons.

Biological neurons operate much
more slowly than artificial
neurons.

Power
consumption

Artificial neurons consume much
less power than biological
neurons.

Biological neurons consume a
significant amount of energy,
primarily to maintain ion
gradients across the cell
membrane.

Reproduction
and repair

Artificial neurons can be easily
duplicated or replaced if damaged.

Biological neurons cannot be
easily duplicated or replaced if
damaged.

Applications Artificial neurons are used in
artificial neural networks for tasks,
such as image and speech
recognition, and in robotics and
control systems.

Biological neurons are involved
in a wide range of physiological
processes, including sensation,
perception, movement, and
cognition.

54 3 The Basics of Perceptron

and the connections between the neurons are known as links. Every link has a
weight parameter associated with it. Figure 3.2 describes the working process of
the neural network.
The overall structure of a neural network is hierarchical, with multiple layers of

neurons organized in a feedforward or recurrent configuration. The input layer
receives data from the outside world, the hidden layers process the data, and
the output layer produces the final result. The data processing in the network is
guided by the learning rule, which adjusts the network weights to minimize the
error between the network’s prediction and the desired outcome.
The error or loss function evaluates the network’s performance and guides the

learning process. Standard error functions include the mean squared error (MSE)
and cross-entropy loss, as shown in Equations (3.7) and (3.8), respectively.

MSE =
1
2N

N

i = 1

yi − yi
2

3 7

loss = −
1
N

N

i = 1

yi log yi + 1− yi log 1− yi 3 8

The gradient descent algorithm uses the gradient of the error concerning the
weights to update the consequences in the direction of the minimum error, as
shown in Equation (3.9):

wnew = wold − η
∂L
∂w

, 3 9

Brain stimulation

Pixel

LN

LN

LN

LN

LN LN

Operations in

line-notline layer

Neurons Actions

Encode Decode

Figure 3.2 The structure of the neural network.

3.1 The Analogy of Biological and Artificial Neurons 55

where wold and wnew are the old and updated new weights, respectively, L

represents the loss, η represents the learning rate, and ∂L
∂w represents the

gradient of the loss with respect to the weight.

3.1.3 Encoding and Decoding

Encoders are a type of neural network architecture that is commonly used for
dimensionality reduction and feature extraction. They consist of two main compo-
nents: an encoding part that maps the input data to a lower-dimensional represen-
tation, and a decoding part that maps the lower-dimensional representation back
to the original input space. The encoding part is typically implemented as a feed-
forward neural network, such as a multilayer perceptron (MLP), with a smaller
number of hidden units compared to the input size. This reduces the dimension-
ality of the input data by compressing it into a lower-dimensional representation,
which is then fed into the decoding part. There are various types of encoders, includ-
ing auto encoders, variation auto encoders, and de-noising auto encoders, each with
slightly different architecture and training objectives. These encoders are widely
used in various applications, including computer vision, natural language proces-
sing, and anomaly detection.

• The x is the input data, with dimensions (n, d), where n is the number of samples
and d is the number of features.

• The encoding function h maps the input data to a lower-dimensional represen-
tation z, with dimensions (n, m), where m is the number of hidden units in the
encoding layer. The encoding function is typically implemented as a feedfor-
ward neural network, with parameters θ, h(x, θ) = z = σ(Wx+ b). Where W
is the weight matrix, b is the bias vector, and σ is the activation function
(e.g. sigmoid, ReLU).

• The decoding function g maps the lower-dimensional representation z back to
the original input space x , with dimensions (n, d). The decoding function
is also implemented as a feedforward neural network, with parameters φ,
g(z, φ) = x = σ(W z+ b). Where W is the weight matrix, b is the bias vector,
and σ is the activation function.

• The loss function is defined as the reconstruction error between the original

input x and the reconstructed input x, J θ,φ = x− x 2.

The decoding part is also typically implemented as a feedforward neural net-
work, with a structure that is symmetrical to the encoding part. The goal of the
decoding part is to reconstruct the original input data from the lower-dimensional
representation.

56 3 The Basics of Perceptron

• The hidden representation of the data is represented by z, with dimensions
(n, m), where n is the number of samples and m is the number of hidden units
in the encoding layer.

• The decoding function g maps the hidden representation z back to the original
input space x, with dimensions (n, d), where d is the number of features. The
decoding function is typically implemented as a feedforward neural network,
with parameters φ, g z,φ = x = σ W z + b .

3.2 Perception and Multilayer Perceptron

Perception is the simplest type of artificial neural network, made up of a single
layer of input nodes connected to output nodes, used for binary classification tasks.
The input nodes pass their values to the output nodes via weighted connections,
which are then transformed by an activation function to produce the final predic-
tion. The weights of the connections can be adjusted through learning algorithms
to improve the model’s accuracy over time. Given an input vector x, the output y
can be calculated as y = f (Wx+ b), where W is a matrix of weights, b is a bias
vector, and f is an activation function.
The activation function f introduces nonlinearity into the model and can be cho-

sen based on the solved problem. Common activation functions include the step
function, sigmoid, tanh, and ReLU. The weights W, and biases b, are adjustable
parameters that determine the model’s output. They are typically updated during
training using an optimization algorithm, such as gradient descent, to minimize a
cost or loss function, which measures the difference between the predicted output
and the true output. Training a perception aims to find the optimal values for W
and b that produce the most accurate predictions for a given input data.
MLP fully connects the most straightforward and classic neural network. One

will take MLP as an example to illustrate the specific structure of the neural net-
work. The network consists of an input, hidden, and output layer. The number of
neurons in the input layer is determined by the number of feature vectors of the
input data, the number of neurons in the output layer depends on the problem
type, and the hidden layer determines the complexity of the network. In the clas-
sification problem, only one output neuron is required for the two-classification
problem, and the multi-classification problem has as many output neurons repre-
senting different types. Given an input vector x, the output y can be calculated as
y = f i …f 2 W 2h1 + b2 … , where fi is the activation function of the ith layer, wi is
the weight matrix of the ith layer, bi is the bias vector of the i

th layer, and hi is the
output of the ith layer, given by hi = fi− 1(wi− 1hi− 2 + bi− 1).
The activation function fi, is used to introduce nonlinearity into the model and

can be chosen based on the problem being solved. Common activation functions

3.2 Perception and Multilayer Perceptron 57

include the sigmoid, tangent, and ReLU. The weights wi, and biases bi, are adjust-
able parameters that determine the output of the model. They are typically
updated during training using an optimization algorithm, such as gradient
descent, to minimize a cost or loss function, which measures the difference
between the predicted output and the true output. Training an MLP aims to find
the optimal values for all the weights and biases that produce the most accurate
predictions for a given input data. Table 3.2 summarizing the differences
between perception and MLP.

Table 3.2 Summarizing the differences between perception and multilayer perceptron.

Aspect Perceptron Multilayer Perceptron (MLP)

Definition A type of artificial neuron that
can make a binary decision.

A type of neural network composed of
multiple layers of artificial neurons that
can make complex decisions.

Architecture Consists of a single layer of
artificial neurons with no
hidden layers.

Consists of multiple layers of artificial
neurons, including one or more hidden
layers between the input and output
layers.

Learning
algorithm

Uses the Perceptron learning
rule, a type of supervised
learning algorithm, to adjust
the weights of the inputs to
the neuron.

Uses backpropagation, a type of
supervised learning algorithm, to adjust
the weights of the inputs to the neurons
in the hidden and output layers.

Activation
function

Typically uses a step function
as the activation function.

Can use a variety of activation
functions, such as sigmoid, ReLU, or
tanh.

Output
function

Produces a binary output
signal, i.e. either 0 or 1.

Can produce a continuous or binary
output signal, depending on the
problem being solved.

Capability Can only solve linearly
separable problems.

Can solve more complex problems that
are not linearly separable.

Performance Performs well on simple
problems with a small
number of input variables.

Performs well on complex problems
with a large number of input variables.

Overfitting Prone to overfitting when the
number of input variables is
large.

Can be prone to overfitting when the
number of hidden layers or neurons is
large.

Applications Used in simple classification
problems, such as image
recognition.

Used in a wide range of applications,
including image and speech
recognition, natural language
processing, and predictive modeling.

58 3 The Basics of Perceptron

3.2.1 Back Propagation Neural Network

Back Propagation (BP) neural network is a classic algorithm for obtaining started
in machine learning. BP neural network is a “universal model + error correction
function” each time the error analysis is performed according to the training and
expected results. Then the weights and thresholds are modified to obtain a model
that can output consistent with the desired results. It is currently the most widely
used and successful model in deep learning tasks.
Given training dataset D = {(x1, y1), (x2, y2), …., (xn, yn)}, where xi Rd, yi Rl,

and xi is a d × 1 matrix that represents the input features, yi is a l × 1 matrix that
represents the components for the output.
Figure 3.3 shows a neural network whose input layer has d neurons, the hid-

den layer has q neurons, and output layer has l neurons. The neuron for the input
layer has a threshold θj, the neuron of the hidden layer has a threshold γh. The
weight between the input layer’s neuron and the hidden layer’s neuron is vih, the
weight between the hidden layer’s neuron and the output layer’s neuron is whj.

The input of the hidden layer’s neuron is αh =
d
i− 1vihxi, the input of the output

layer’s neuron is βj =
q
h = 1whjbh.

3.2.2 Derivative Equations for Backpropagation

For training example (xk, yk), one may assume the output of the output layer is

yk= yk1,y
k
2,…,y

k
l = f βj−θj , then the mean square error Ek=

1
2

l

j=1
ykj −ykj

2
,

in this neural network, their parameter space has (d+ l+ 1)q+ l components.
The weight between the input layer neuron and the hidden layer’s neuron has
d × q features, and the weight between the hidden layer’s neuron and the out-
put layer’s neuron has q × l components. The threshold of the hidden layer and
output layer has q+ l components.
The backpropagation algorithm is an iterative gradient descent strategy. With a

given learning rate η, the parameter increment is described in Equation (3.10)
(Algorithm 3.1).

... ...

...

... ...

Input layer

Hidden layer

Output layer
Yj

bh

Xi

Input of the j output neuron

Input of the h hidden neuron

∑
q

h = 1

Whj ∗ bh

V

W βj =

∑
d

i = 1

Vih ∗ Xiαh =

Figure 3.3 Schematic diagram of neural network.

3.2 Perception and Multilayer Perceptron 59

Δwhj = − η
∂Ek

∂whj
3 10

One can use the chain rule in calculus to obtain Equation (3.11):

∂Ek

∂whj
=

∂Ek

∂ykj

∂ykj
∂βj

∂βj
∂whj

3 11

According to the definition of βj, one has

∂βj
∂whj

= bh 3 12

If the active function is sigmoid, then the derivative can be easily obtained as:

f x = f x 1− f x 3 13

Then it is to update w as follows:

Δwhj = ηgjbh 3 14

Similarly, one can obtain

eh = −
∂Ek

∂bh

∂bh
∂αh

= −
l

j = 1

∂Ek

∂βj

∂βj
∂bh

f αh − γh

=
l

j = 1

whjgjf αh − γh

= bh 1− bh
l

j = 1

whjgj

3 15

Algorithm 3.1 The Definition of the Backpropagation Algorithm Using
Pseudo-Code

Input: training data xi
Process: backpropagation
1: for iteration in 1 to N
2: for each training data xi
3: obtain output yi
4: calculate Δwhj, Δθj, Δvih, Δγh
5: update parameters
Output: none

60 3 The Basics of Perceptron

3.3 Activation Function

Activation functions are mathematical functions that are applied to the output of a
neuron in a neural network to introduce nonlinearity in the network’s decision-
making process. They help to transform the inputs of the neuron into outputs that
can be interpreted by the next layer of the neural network.
The importance of activation functions in neural networks cannot be overstated.

Without activation functions, the network would simply be a linear model, and
would not be able to learn complex patterns in the data. Activation functions
are essential in enabling neural networks to model nonlinear relationships
between the inputs and the outputs.
Some of the key roles that activation functions play in neural networks include:

• Introducing nonlinearity: Activation functions help to introduce nonlinearity
into the neural network, which is critical for enabling the network to learn com-
plex patterns and relationships in the data.

• Modeling complex functions: Activation functions can be used to model com-
plex functions that are difficult to represent using simple linear models.

• Determining the output range: Activation functions can be used to constrain the
output of a neuron to a particular range, such as between 0 and 1 or between −1
and 1, which is useful in certain types of problems, such as classification.

• Regularization: Some activation functions, such as the Dropout regularization
technique, can be used to prevent overfitting in the neural network.

Overall, activation functions are a fundamental component of neural networks
and play a crucial role in enabling them to learn and model complex patterns and
relationships in the data.

3.3.1 Sigmoid Activation Function

The Sigmoid Activation Function is a widely used activation function that outputs
values between 0 and 1. The sigmoid function has a characteristic S-shaped curve,
as shown in Figure 3.4, which allows it to introduce nonlinearity into the neural
network.
The function approaches 0 as x approaches negative infinity and approaches 1 as

x approaches positive infinity. At x = 0, the sigmoid function has a value of 0.5.
One limitation of the sigmoid function is that it can suffer from the “vanishing
gradient” problem, which can make it difficult to train deep neural networks.
As the input to the sigmoid function becomes very large or very small, the gradient
of the function approaches zero, which can slow down the learning process. As a
result, other activation functions, such as the ReLU and its variants, have become
more popular in recent years.

3.3 Activation Function 61

3.3.2 Hyperbolic Tangent Activation Function

The Hyperbolic Tangent activation function is a commonly used activation func-
tion in neural networks. It maps the input to a value between −1 and 1. The math-
ematical equation for the hyperbolic tangent function is:

f x = tanh x =
ex − e− x

ex + e− x
, 3 16

where x is the input to the neuron, e is the mathematical constant approximately
equal to 2.718, and f (x) is the output of the neuron. The hyperbolic tangent func-
tion is a scaled version of the sigmoid function and has a similar shape. However,
the hyperbolic tangent function maps the input to a range between −1 and 1,
which can be useful in certain types of classification problems.
Like the sigmoid function, the hyperbolic tangent function is also differentiable,

which makes it suitable for use in backpropagation algorithms for training neural
networks (Figure 3.5).
In summary, the hyperbolic tangent activation function is a commonly used

activation function that maps the input to a range between −1 and 1 and is useful
in certain types of classification problems. It is also differentiable, which makes it
suitable for use in backpropagation algorithms for training neural networks.

3.3.3 Rectified Linear Unit Activation Function

The Rectified Linear Unit (ReLU) Activation Function is a popular activation
function that is widely used in neural networks. It is defined mathematically as:

f x = max 0, x , 3 17

5

0

–4 4

Figure 3.4 Sigmoid
activation function.

62 3 The Basics of Perceptron

where x is the input to the neuron. The ReLU function outputs 0 if x is negative,
and x if x is positive. The function has a simple implementation and is computa-
tionally efficient.
The ReLU function introduces nonlinearity into the neural network, which

allows it to model complex relationships between inputs and outputs. The ReLU
function is also less prone to the vanishing gradient problem than some other
activation functions, such as the sigmoid and tanh functions (Figure 3.6).
The leaky ReLU function is a variant of the ReLU function that introduces a

small slope for negative values of x. It is defined mathematically as:

f x = max ax, x , 3 18

5

0

–4 4

Figure 3.6 Rectified
linear unit.

5

0

–4 4

Figure 3.5 Tangent activation
function.

3.3 Activation Function 63

where x is the input to the neuron, and a is a small positive constant that is usually
set to 0.01.
The parametric ReLU function is a variant of the Leaky ReLU function that

allows the slope for negative values of x to be learned during training.
One drawback of the ReLU function is that it can suffer from the “dying ReLU”

problem. This occurs when the input to the ReLU function is negative, and the
output is 0. In this case, the gradient of the function is also 0, which means that
the weights of the neuron are not updated during backpropagation. This can lead
to neurons becoming “dead,” or inactive, and can result in reduced performance of
the neural network.
To address the “dying ReLU” problem, several variants of the ReLU function

have been proposed, including the Leaky ReLU, the Parametric ReLU, and the
Exponential ReLU. These variants introduce a small slope for negative values of
x, which helps to prevent the gradient from becoming 0.

3.3.4 Linear Activation Function

The linear activation function is a simple activation function that returns the input
value without any transformation. The mathematical equation for the linear acti-
vation function is shown in Equation (3.18) and graphically shown in Figure 3.7.

f x = x, 3 19

where x is the input to the neuron. In a neural network, the input to a neuron is
typically multiplied by a weight before being passed through the activation func-
tion. The weighted linear function is expressed mathematically as:

f x = wx, 3 20

5

0

–4 4

Figure 3.7 Linear activation
function.

64 3 The Basics of Perceptron

where x is the input to the neuron,w is the weight associated with the input, and
f (x) is the output of the neuron. In some cases, the input to a neuronmay be trans-
formed before being passed through the activation function. This can be expressed
mathematically as:

f x = wx + b, 3 21

where x is the input to the neuron,w is the weight associated with the input, b is a
bias term, and f (x) is the output of the neuron. The linear activation function is
rarely used in deep learningmodels because it does not introduce nonlinearity into
the network. As a result, it can be difficult for the network to learn complex rela-
tionships between inputs and outputs.
Instead, nonlinear activation functions like the sigmoid, ReLU, and tanh func-

tions are more commonly used because they introduce nonlinearity into the net-
work, allowing it to learn more complex patterns in the data. The linear activation
function is useful in cases where the output needs to be proportional to the input,
such as in linear regression problems. However, it is not commonly used in deep
learning models because it does not introduce nonlinearity into the network,
which can limit the network’s ability to learn complex relationships between
inputs and outputs.
A comparative table of commonly used activation functions in neural networks,

including their mathematical formulations, range, monotonicity, differentiability,
advantages, and disadvantages, is presented in Table 3.3.

Summary

This chapter discusses the analogy of biological and artificial neurons and their
similarities in structure and function. The chapter described how the structure
of neurons in the brain can be mimicked in artificial neural networks and how
this has led to the development of powerful machine-learning algorithms and also
explored the structure of neural networks, including the derivative equations used
in backpropagation, which train the network to learn from data. The chapter also
discussed how these equations allow the network to adjust its weights and biases to
improve its performance. Finally, by looking at the generalization of neural net-
works, which refers to their ability to make predictions about new data based
on what they have learned from previous data, one have seen how this generali-
zation ability can be improved using regularization and dropout techniques.
In summary, this chapter has provided an overview of the analogy between bio-

logical and artificial neurons and how this analogy has led to the development of
powerful machine-learning algorithms. One has also discussed the key concepts
and techniques used in the structure and training of neural networks and how
these techniques can be used to improve their performance.

Summary 65

Table 3.3 Comparative of various activation functions in neural network.

Activation
Function Mathematical Formulation Range Monotonicity Differentiability Advantages Disadvantages

Linear f (x) = x (−∞, ∞) Yes Yes Simple and fast
computation

Limited
representation power
for nonlinear data

Sigmoid
f x =

1
1 + e− x

(0, 1) No Yes Smooth and
interpretable
output

Vanishing gradient
problem

Hyperbolic
tangent
(Tanh)

f x = tan h x =
ex − e− x

ex e− x

(−1, 1) Yes Yes Nonlinear and
zero-centered
output

Vanishing gradient
problem

Rectified
linear unit
(ReLU)

f (x) = max(0, x) (0, ∞) No No (except at 0) Simple and
effective for deep
networks

Dying ReLU problem

Leaky
ReLU

f (x) =max(αx, x) where α is
a small constant (e.g. 0.01)

(−∞, ∞) Yes Yes Solves dying
ReLU problem

Can lead to non-
smooth derivatives

Softmax
f xi =

exi
C
j=1e

x
j

where C is the number of
classes

(0, 1) No Yes Outputs
probability
distribution over
classes

Requires multiple
outputs for multi-
class classification

Exercise Questions

Q.3.1 Explain the analogy of biological and artificial neurons and how it is
applied in artificial neural networks.

Q.3.2 Describe a neural network’s structure and the different layers’ roles.

Q.3.3 Explain the backpropagation algorithm and how it is used to train a neu-
ral network.

Q.3.4 What is the role of bias terms in artificial neural networks, how do they
relate to the resting potential of biological neurons, and what is themath-
ematical expression for the bias term?

Q.3.5 What is the role of regularization and dropout in improving the general-
ization of a neural network?

Q.3.6 How does the structure of a biological neuron compare to that of an arti-
ficial neuron in a neural network?

Q.3.7 Describe the dynamics of the gates of the channels in a biological neuron
and how it is related to the activation function of an artificial neuron.

Q.3.8 Describe the importance of the membrane potential and the ion channels
in a biological neuron and how they relate to the weights and biases of an
artificial neuron.

Q.3.9 Discuss the similarity of the synaptic connections in a biological neuron
and the weights of an artificial neuron.

Q.3.10 Explain the role of the learning rate in the backpropagation algorithm
and how it affects the training of a neural network.

Further Reading

Rogers SK, Kabrisky M. An introduction to biological and artificial neural networks for

pattern recognition. SPIE press; 1991.
Rosenblatt F. Principles of neurodynamics. perceptrons and the theory of brain

mechanisms. Cornell Aeronautical Lab Inc, Buffalo NY; 1961 Mar 15.

Further Reading 67

4

The Structure of Neural Network

A neural network is a machine learning model that is inspired by the structure and
function of the brain. It is a network of interconnected nodes, which are called
artificial neurons that process information and make predictions.

4.1 Layers in Neural Network

4.1.1 Input Layer

A neural network is composed of multiple layers of artificial neurons, each layer
performing a different computation. The layers in a neural network can be
grouped into two main categories: input layers and hidden layers. The input layer
in a neural network receives the raw input data and passes it on to the next layer.
The mathematical representation of the input layer is straightforward and can be
represented as a vector x = [x1, x2, …, xn], where xi is the ith input feature and n is
the number of features.
This input vector x is used as the input to the first hidden layer, which performs

computations on the input data to extract features that can be used to make pre-
dictions. However, in some cases, it may be necessary to normalize or preprocess
the input data before passing it on to the next layer. One common method for nor-
malizing the input data is min–max normalization, which scales the input features
to a specific range (e.g. [0, 1]). The mathematical equation for min–max normal-
ization can be given by:

xi =
xi − xmin

xmax
− xmin, 4 1

69

Cybernetical Intelligence: Engineering Cybernetics with Machine Intelligence, First Edition.
Kelvin K. L. Wong.
© 2024 The Institute of Electrical and Electronics Engineers, Inc.
Published 2024 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/cyberintel

where xi is i
th input feature, xmin and xmax are the minimum and maximum values

of the features.

4.1.2 Hidden Layer

The hidden layer is where the bulk of the computation in a neural network takes
place. The hidden layer performs nonlinear transformations on the input data and
extracts features that can be used tomake predictions. Themathematical represen-
tation of a single artificial neuron in the hidden layer can be given by the following
equation:

z =
n

i = 1

wixi + b

y = f z ,

4 2

where z is the weighted sum of inputs, wi is the weight for the i
th input, xi is the i

th

input, b is the bias, and f (z) is the activation function. Common activation
functions include the sigmoid function and rectified linear unit (ReLU).
Table 4.1 summarizes the different layers that can be present in a neural network.

4.1.3 Neurons

Each neuron has one or more inputs, which are combined using weights, and an
activation function is applied to the weighted sum to produce the output of the
neuron. The mathematical equation for the output of a single neuron can be
given by:

z =
n

i = 1

wixi + b

y = φ z ,

4 3

where z is the weighted sum of inputs, xi is the i
th input, wi is the weight associated

with the ith input, b is the bias term, and φ(z) is the activation function. The acti-
vation function φ(z) is applied to the weighted sum to produce the output of the
neuron. The mathematical equation for the output of the neuron is y = φ (z).
The learning process adjusts these parameters to minimize the difference between
the predicted output of the network and the true output, as determined by a loss
function. If the activation function is the sigmoid function, themathematical equa-
tion for the activation function is shown in Equation (4.4), the equation transforms

70 4 The Structure of Neural Network

the weighted sum of inputs into a value between 0 and 1, which can be interpreted
as the probability of a certain class or output.

φ z =
1

1 + e− z
4 4

4.1.4 Weights and Biases

In a neural network, the weights and biases are the parameters that are learned
during the training process. They determine the strength and direction of the con-
nections between neurons and affect the output of the network.

Table 4.1 Summarizing the different layers that can be present in a neural network.

Layer Type Description

Input layer The layer that receives the input data. The number of neurons in
this layer corresponds to the number of input variables.

Hidden layer(s) One or more layers of artificial neurons that receive input from the
previous layer and apply a nonlinear transformation to produce an
output. The number of neurons and layers can vary depending on
the complexity of the problem being solved.

Output layer The final layer of the neural network that produces the output
prediction. The number of neurons in this layer corresponds to the
number of output variables.

Convolutional
layer

A type of layer used in convolutional neural networks (CNNs) that
performs feature extraction from image or video data. These layers
typically include a set of learnable filters that are convolved with
the input data to produce a feature map.

Pooling layer Another type of layer used in CNNs that reduces the spatial size of
the feature maps produced by the convolutional layer. This helps to
make the network more computationally efficient and reduces the
risk of overfitting.

Recurrent layer A layer used in recurrent neural networks (RNNs) that allows the
network to process sequential data by maintaining an internal
memory state. These layers are useful for natural language
processing and time series prediction.

Normalization
layer

A layer that normalizes the output of the previous layer tomake the
network more stable and reduce the impact of vanishing or
exploding gradients during training.

Dropout layer A layer that randomly drops out a percentage of the neurons in the
previous layer during training to reduce overfitting.

Batch
normalization
layer

A layer that normalizes the output of a previous layer for each
mini-batch during training. This can improve the training speed
and stability of the network.

4.1 Layers in Neural Network 71

Themathematical equation for the weighted sum of inputs for a single neuron is
given by:

z =
n

i = 1

wixi + b, 4 5

where z is the weighted sum of inputs, xi is the i
th input, wi is the weight associated

with the ith input, and b is the bias term. The weights wi represent the strength of
the connection between the ith input and the neuron, and the bias term b repre-
sents an offset or a baseline for the weighted sum of inputs. The learning process
adjusts the weights and biases to minimize the difference between the predicted
output of the network and the true output, as determined by a loss function.
The adjustment of the weights and biases is typically done through gradient
descent, where the gradient of the loss function with respect to the weights and
biases is computed and used to update the parameters in the direction that reduces
the loss.

4.1.5 Forward Propagation

In a neural network, forward propagation refers to the process of computing the
output of the network given an input, by successively applying the activation func-
tion to the weighted sum of inputs for each neuron. Given an input x and a set of
weights w and biases b, the weighted sum of inputs z for a single neuron can be
computed as:

z =
n

i = 1

wixi + b 4 6

The activation function g is then applied to the weighted sum of inputs to pro-
duce the output y of the neuron, = g(z).
Where g can be any activation function, such as a sigmoid, ReLU, or others. For a

multilayer neural network, the process of forward propagation is repeated for each
layer, where the output of one layer serves as the input to the next.

4.1.6 Backpropagation

Backpropagation is the process of computing the gradient of the loss function with
respect to the parameters (weights and biases) of the neural network so that the
parameters can be updated during the training process.
Given a loss function J, the gradient of the loss with respect to the parameters

(weights and biases) of the neural network can be computed using the chain rule of
differentiation.

72 4 The Structure of Neural Network

For a single neuron in the output layer, the gradient of the loss with respect to
the weights w and biases b can be written as:

∂J
∂w

=
∂J
∂z

∂z
∂w

∂J
∂b

=
∂J
∂z

∂z
∂b

,

4 7

where z is the weighted sum of inputs to the neuron, and ∂ represents the partial
derivative. The gradients are used in the backpropagation algorithm to update the
weights and biases during the training process of a neural network. The backpro-
pagation algorithm computes the gradients of the loss with respect to the para-
meters by repeatedly applying the above equations, starting from the output
layer and working backward through the hidden layers to the input layer. The
computed gradients are then used to update the parameters using an optimization
algorithm, such as gradient descent, to minimize the loss and train the neural net-
work. These are the main concepts and mathematical equations involved in the
structure of a neural network. Neural networks are powerful machine learning
models that can learn complex relationships between inputs and outputs, and they
have been used to solve a wide range of problems, such as image classification,
speech recognition, and natural language processing.

4.2 Perceptron and Multilayer Perceptron

The Perceptron is a simple linear binary classifier algorithm introduced in the
1950s as one of the earliest models of artificial neural networks. The Perceptron
model consists of a single layer of neurons and uses a linear decision boundary
to classify the input data into two classes.
Given an input vector x, the Perceptron predicts the output y using a weighted

sum of the inputs and a bias term, which is then passed through an activation func-
tion, y = f (wT x + b). The w is the weight vector that determines the importance of
each input feature, b is the bias term that shifts the activation function f is the acti-
vation function, typically a step function or a sigmoid function, which maps the
weighted sum of inputs to binary output.
The Perceptron algorithm updates the weights and biases iteratively based on

the errors made on the training data until convergence or a maximum number
of iterations is reached. Despite its simplicity, the Perceptron has several limita-
tions, such as being unable to model nonlinearly separable data, and it has been
largely replaced by more complex models such as Multilayer Perceptron and

4.2 Perceptron and Multilayer Perceptron 73

Convolutional Neural Network (CNN). For a single training sample (xi, yi), the Per-
ceptron algorithm updates the weights and bias using the following update rule:

wnew = wold + η yi − yi xi

bnew = bold + η yi − yi
4 8

The η is the learning rate, a hyperparameter that determines the step size of
the updates, yi is the predicted output for the sample xi, yi is the true label for
the sample xi.
The prediction yi is obtained by passing the weighted sum of inputs through the

activation function, which for a step function, the perceptron algorithm repeats
this update rule for each sample in the training set until convergence, i.e. until
the model’s predictions match the true labels for all the training samples, or until
a maximum number of iterations is reached.
Once the Perceptron has been trained, it can be used to make predictions for

new unseen data by applying the same weighted sum and activation function to
the inputs. An MLP typically consists of an input layer, one or more hidden
layers, and an output layer. The input layer receives the raw features of the data
and passes them through the weighted connections to the hidden layers, where
the inputs are transformed through nonlinear activation functions. The trans-
formed inputs are then passed to the output layer, which generates the final
prediction.
A common activation function used in the hidden layers of an MLP is the sig-

moid function, which was previously defined in Equation (3.17). The prediction y
of anMLP for a given input x is obtained by passing x through themultiple layers of
the network and computing the weighted sum of inputs for each neuron in the
output layer, with the sigmoid function applied to the weighted sums.
The error between the predicted output and the actual output is typically calcu-

lated using a loss function, such as mean squared error (MSE) or cross-entropy
loss. For instance, L be the loss function, y be the actual output, and ŷ be the pre-
dicted output, the error can be defined as:

L y, y =
1
n

n

i

yi − yi
2, 4 9

where n is the number of instances in the training data. The gradient of the loss
with respect to the weights and biases can be computed using the gradient of the
loss with respect to the output of the layer. These gradients are then used to
update the weights and biases using gradient descent or a variant thereof. The
weights and biases are updated in the opposite direction of the gradient, to min-
imize the loss and reduce the error between the predicted output and the actual
output.

74 4 The Structure of Neural Network

4.3 Recurrent Neural Network

A recurrent neural network (RNN) is a type of neural network designed to handle
sequential data. It has a loop that allows information to persist across many time
steps by updating hidden state information with new input data. The hidden state
is used to make predictions at each time step, and the process is repeated until the
final prediction is made. RNNs can be used for various applications such as lan-
guage modeling, speech recognition, and time-series forecasting. In RNNs, math-
ematical equations are used to model the relationships between input sequences
and their corresponding outputs. RNNs use a dynamic computational graph,
which allows them to process sequences of inputs by looping over the same set
of weights at each time step.
In the Figure 4.1, the architecture of RNN is shown where, one can see that the

new hidden state h is generated using both its corresponding input x, as well as the
previous hidden state h1, which captures any dependencies that might have come
from earlier samples. The output y2 is then a function of the hidden state h2 and
finally, w is the weight vector over the layer. Mathematically, the way we combine
the current input with the previous hidden state. The hidden state in a RNN is an
internal representation of the current time step of a sequence. At each time step,
the hidden state is updated based on the previous hidden state and the current
input. The hidden state contains information about the entire sequence processed
so far, and it is used tomake predictions at each time step. The equations for updat-
ing the hidden state in a simple RNN can be represented as:

h t = f whhh t− 1 + wxhx t + bh , 4 10

ho

wh wh

wy

wx

wy

wx

wh

wy

wx

y1 y2 y3

h1 h2 h3

x1 x2 x3

Figure 4.1 Architecture of recurrent neural network.

4.3 Recurrent Neural Network 75

where f is the activation function, whh and wxh are the weights matrices for the
hidden-to-hidden and input-to-hidden connections, bh is the bias term, h(t) is
the hidden state at time t, h(t−1) is the hidden state at the previous time step,
and x(t) is the input at time t.
The output state in a RNN is the result produced by the final activation function

in the network for a given input sequence. It is based on the hidden state computed
at each time step of the sequence and represents a summary of the input sequence
processed by the network. The output state can be represented mathematically by
a vector y(t), where t represents the current time step. It is usually computed using
an activation function g(h(t)) and the hidden state h(t) as input, such as y(t) = g(why
(h(t))) + by, where wh and by are the weight matrix and bias vector for the output
state, respectively.

4.3.1 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a type of RNN designed to handle the prob-
lem of vanishing gradients in traditional RNNs by introducing a memory cell,
input gate, forget gate, and output gate. The memory cell maintains its state across
time steps, while the input and forget gates control the flow of information into
and out of the cell, and the output gate produces the final output. This structure
allows LSTM networks to better preserve long-term dependencies, leading to
improved performance on tasks such as language modeling and sequential predic-
tion. The LSTM network uses a set of gates, including the input gate, forget gate,
and output gate, to control the flow of information into and out of the cell state.
The equation for the cell state is given by:

ct = tanh wc ht− 1, xt + bc
ct = f tct − 1 + itct
ht = ot tanh ct ,

4 11

where ct is the cell state at timestamp t, ct represents candidate for cell state at time-
stamp t, ht− 1 is the output of previous LSTM block, xt is the input at current time-
stamp, ot is the output gate. The input gate in a LSTM network is used to control
the flow of information into the memory cell. The input gate can be defined
mathematically as follows:

it = σ wi ht− 1, xt + bi , 4 12

where it is the input gate activation at time step t, σ is the sigmoid activation func-
tion,wi is the weight matrix for the input gate, (ht− 1, xt) is the concatenation of the
previous hidden state ht− 1 and current input xt. The bi is the bias for the input gate.
The input gate activation it ranges from 0 to 1, and it determines the proportion of
new information that will be added to the memory cell at time step t.

76 4 The Structure of Neural Network

The forget gate in an LSTM network is a sigmoid function that helps control the
flow of information from the cell state to the output state. The math equation for
the forget gate f can be represented as:

f = σ wf ht− 1, xt + bf , 4 13

where wf is the weight matrix, ht− 1 is the previous hidden state, xt is the current
input, bf is the forget gate bias, and σ is the sigmoid activation function. The output
of the forget gate is then used to determine howmuch of the previous cell state will
be forgotten and howmuchwill be kept. The output gate in LSTM is determined by
the following mathematical equation:

Ot = σ wo ht− 1, xt + b0 , 4 14

where σ is the sigmoid activation function. wo is the weight matrix for the output
gate. ht− 1 is the hidden state from the previous time step. xt is the input at time step
t. b0 is the bias for the output gate. The output gate calculates how much of the
hidden state should be output at time step t.

4.4 Markov Neural Networks

Markov Neural Network (MNN) is a type of neural network that combines neural
networks with Markov models. It consists of an underlying graph structure where
each node represents a hidden state and each edge represents a transition between
hidden states. The transition probabilities are determined by neural network para-
meters, and the outputs are generated based on these probabilities and the
observed inputs. MNNs can be used for various applications such as image seg-
mentation, speech recognition, and natural language processing. The key feature
of MNN is its ability to model temporal dependencies and relationships between
different inputs and outputs. The mathematical equations behind MNNs can be
complex, involving a combination of Markov models, RNNs, and deep neural
networks.

4.4.1 State Transition Function

Given the current state of the system, the state transition function maps the state
to the next state. The state transition function can be represented mathematically
as st = f (st− 1, At− 1). Where st is the current state, st− 1 is the previous state, and
At− 1 is the previous action.

4.4 Markov Neural Networks 77

4.4.2 Observation Function

Given the current state of the system, the observation function maps the state to
the observation. The observation function can be represented mathematically as
Ot = g(St). Where Ot is the current observation.

4.4.3 Policy Function

The policy function maps the current state and observation to the action. The pol-
icy function can be represented mathematically as At = π(St, Ot). Where At is the
current action. In MNN, the policy function is implemented as a neural network,
which takes the state and observation as inputs and outputs the action.

4.4.4 Loss Function

The loss function measures the difference between the predicted action and the
actual action. The loss function can be represented mathematically as

L θ =
T

t = 1

At − π st ,Ot, θ
2, 4 15

where T is the number of time steps, θ is the set of parameters of the policy func-
tion. The goal of MNN is to minimize the loss function by updating the parameters
of the policy function using gradient-based optimization methods such as stochas-
tic gradient descent.

4.5 Generative Adversarial Network

A Generative Adversarial Network (GAN) is composed of two parts: a generator
and a discriminator. The generator creates fake data that is meant to resemble real
data, while the discriminator determines whether each sample is real or fake. The
generator and discriminator are trained together in an adversarial process, where
the generator tries to create data that will fool the discriminator, and the discrim-
inator tries to correctly identify whether each sample is real or fake.
The mathematical structure of a GAN can be described as follows:

• Input data: Let x be a sample of real data, drawn from a real data distribution
Pdata (x).

• Generator: The generator, G(z), maps a random noise vector z to a sample x .

• Discriminator: The discriminator, D(x), outputs a scalar probability that x is a
real sample, drawn from Pdata (x).

78 4 The Structure of Neural Network

• Loss functions: The generator and discriminator have opposite loss functions.
The generator’s loss is given by the negative log-likelihood of the discriminator’s
prediction that x is real:

LG = − log D G Z , 4 16

the discriminator’s loss is given by the negative log-likelihood of the real samples
being real, and the fake samples being fake:

LD = − log D x + log 1−D G Z 4 17

The generator and discriminator are trained alternately, updating their
weights and biases to minimize their respective loss functions. The generator
tries to create samples that will fool the discriminator, while the discriminator
tries to correctly identify real and fake samples. The training process continues
until the discriminator can no longer distinguish between real and fake
samples.
In summary, a GAN consists of a generator that creates fake data and a discrim-

inator that determines whether each sample is real or fake. The generator and dis-
criminator are trained in an adversarial process to produce realistic fake data.

Summary

Neural networks are machine learning models inspired by the structure and func-
tion of the human brain. They consist of interconnected nodes called neurons,
which process information and make predictions based on input data. There
are several types of neural networks, including the Perceptron and Multilayer Per-
ceptron. In a neural network, data is processed through various layers including
the input layer, hidden layer, and output layer. The neurons in each layer use
mathematical equations to calculate weights and biases, which are then used in
the forward and backward propagation steps to make predictions and adjust
the model based on the accuracy of those predictions. Performance measures such
as the confusion matrix, receiver operating characteristic (ROC) curve, and area
under the ROC curve are used to evaluate the accuracy of a neural network model.
These measures use mathematical equations to compare the predicted output of
the model with actual output.
In summary, neural networks are complex mathematical models that use a com-

bination of equations and algorithms to process and analyze data. The choice of
which type of neural network to use, and the specific mathematical equations
used, depends on the type and size of the data being analyzed, as well as the desired
outcome.

Summary 79

Exercise Questions

Q.4.1 How does the number of layers in a neural network affect its performance
and why?

Q.4.2 In a perceptron, the activation function used is a step function defined as:

f x = 1, if x > = 0 f x = 0, if x < 0

Consider a perceptron with the following weights and inputs:
Weight w1 = 0.5; Weight w2 = −0.3; Input x1 = 0.7; Input x2 = −0.2;

Calculate the weighted sum and the output of the perceptron.

Q.4.3 How does the sequential nature of Recurrent Neural Network (RNN)
make it better suited for processing sequences of data?

Q.4.4 What is the role of gating mechanism in Long Short-Term Memory
(LSTM) networks and how does it prevent vanishing gradients?

Q.4.5 How does the Markov property influence the design and training of
Markov Neural Network (MNN)?

Q.4.6 What is the mathematical expression for the backpropagation algorithm
in neural networks, and how is it used to compute the gradients of the
loss function with respect to the weights?

Q.4.7 What are some popular activation functions used in neural networks and
why are they important?

Q.4.8 How do weight initialization techniques affect the performance and con-
vergence of a neural network?

Q.4.9 What is the vanishing gradient problem in deep neural networks and
how can it be addressed?

Q.4.10 How does the choice of optimization algorithm impact the training of a
neural network?

Q.4.11 How can regularization techniques such as dropout and weight decay be
used to prevent overfitting in neural networks?

80 4 The Structure of Neural Network

Q.4.12 How is the structure of a recurrent neural network (RNN) designed to
handle sequential data, and what is the mathematical expression for
the hidden state update in a basic RNN?

Q.4.13 In a multilayer perceptron, the activation function used in the hidden
layer is the sigmoid function defined as:

f x =
1

1 + e− x

Consider a multilayer perceptron with a single hidden layer having the
following weights and inputs:
Weight w1 = 0.6; Weight w2 = −0.4; Input x1 = 0.8; Input x2 = −0.5;

Calculate the weighted sum and the output of the hidden layer neuron.

Further Reading

Bengio Y, De Mori R, Flammia G, Kompe R. Global optimization of a neural network-
hidden Markov model hybrid. IEEE Transactions on Neural Networks 1992 Mar 1;
3(2):252–9.

Goodfellow IJ. Piecewise linear multilayer perceptrons and dropout. arXiv preprint
arXiv:1301.5088. 2013 Jan 22.

Hinton GE. How neural networks learn from experience. Scientific American. 1992
Sep 1;267(3):144–51.

Li Y, Zhang Y, Wang H. Partial Parallel Interference Cancellation Multiuser Detection
using Recurrent Neural Network Based on Hebb Learning Rule. In 2006 6th
World Congress on Intelligent Control and Automation 2006 Jun 21
(Vol. 1, pp. 2989–2992).

Bishop CM. Neural Networks for Pattern Recognition. Oxford: Oxford University Press;
1995. ISBN 978-0-19-853849-3.

Paulsen O, Sejnowski TJ. Natural patterns of activity and long-term synaptic plasticity.
Current Opinion in Neurobiology. 2000;10(2):172–179.

Further Reading 81

5

Backpropagation Neural Network

5.1 Backpropagation Neural Network

Cybernetics is a wide-ranging field concerned with circular causal processes,
including in ecological, technological, biological, cognitive, and social systems,
and also in the context of practical activities, such as designing and learning
managing, as shown in Figure 5.1. In the realm of technology, cybernetics delves
into the design and control of complex systems such as robotics, automation, and
control systems. It investigates how information flows, feedback mechanisms,
and control processes can optimize the functioning and efficiency of technolog-
ical systems. By applying cybernetic principles, engineers and designers can
create intelligent and adaptive technologies that learn and adapt to changing
conditions.
Overall, cybernetics provides a framework for understanding and managing

complex systems across various domains. It offers a unified approach to studying
circular causal processes, facilitating advancements in design, learning, manage-
ment, and decision-making within a wide range of practical activities.
Backpropagation Neural Network (BPNN) is a type of artificial neural network

that uses gradient descent and the backpropagation algorithm to learn the weights
of the network, as shown in Figure 5.2. The backpropagation algorithm involves
computing the gradient of the loss function with respect to the weights of the net-
work. The gradient is then used to update the weights, moving them in the direc-
tion of reducing the loss. The mathematical equation for the loss function J for a
single training example is given by:

J =
1
2

y− y 2, 5 1

83

Cybernetical Intelligence: Engineering Cybernetics with Machine Intelligence, First Edition.
Kelvin K. L. Wong.
© 2024 The Institute of Electrical and Electronics Engineers, Inc.
Published 2024 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/cyberintel

where y is the predicted output for the input x, y is the actual output, and 1
2 is a

normalization constant. The gradient of the loss with respect to the weight wij

from the ith neuron in the ith layer to the jth neuron is given by:

dJ
dwij

= y− y aj 1− aj ai 5 2

The weights are updated using the equation:

wi p + 1 = wi p + Δwip, 5 3

where Δwip is the weight correction at iteration p.

Error propagation

Signal propagation direction

Output layer

Input layer

x1

x2

y

Figure 5.2 Process of Backpropagation Neural Network.

Threshold/Reference

Sensor Controller Other
system

ActionDifference

Reaction feedback

–

+

Figure 5.1 Principle diagram of a cybernetic system with a feedback loop.

84 5 Backpropagation Neural Network

5.1.1 Forward Propagation

Forward propagation is the process of computing the output of a neural network
based on its input and weights. It starts at the input layer and passes the inputs
through each successive layer, computing the weighted sum of inputs at each layer
and applying an activation function to generate the output. The output of one layer
is used as the input for the next layer until the final layer is reached. The mathe-
matical equation for forward propagation can be represented as:

zi = wix + bi, 5 4

where zi is the weighted sum of inputs for layer i,wi is the weight matrix for layer i,
x is the input, and bi is the bias for layer i. The activation function f is then applied
to zi to obtain the output ai for layer i. Table 5.1 describe the various parameters
involved in neural network training.

5.2 Gradient Descent

Gradient descent is an optimization algorithm used to minimize a loss function in
machine learning models, such as neural networks. It works by iteratively adjust-
ing the model’s parameters in the direction of steepest decrease of the loss func-
tion. The algorithm updates the parameters by subtracting the gradient of the loss
with respect to the parameters, multiplied by a learning rate. This process is
repeated until the loss converges to a minimum value or a stopping criterion is
met. The choice of learning rate, the choice of optimization algorithm, and the
presence of any regularization techniques can influence the convergence rate
and stability of the optimization. Gradient descent is a commonly used optimiza-
tion algorithm for training neural networks and other machine learning models. It
optimizes a model by iteratively adjusting its parameters to minimize a loss
function.

5.2.1 Loss Function

The loss function in gradient descent measures the difference between the pre-
dicted output and actual output for a single training example, as shown in
Figure 5.3. It is used to guide the optimization process of the model by indicating
the direction and magnitude of error. The most common loss function used in
gradient descent is mean squared error (MSE), represented mathematically as:

MSE =
1
n

n

i = 1

yi − yi
2, 5 5

5.2 Gradient Descent 85

Table 5.1 Various parameters involved in neural network training.

Property Forward Propagation Parameters Backward Propagation Parameters

Input data The training examples,
represented as a matrix of input
values.

The training examples,
represented as a matrix of input
values.

Weights The weights connecting the
neurons in the network.

The weights connecting the
neurons in the network.

Biases The biases added to the weighted
inputs of each neuron.

The biases added to the weighted
inputs of each neuron.

Activation
function

The nonlinear function applied to
the output of each neuron.

The derivative of the activation
function.

Output The predicted output of the
network given the input.

The gradient of the loss function
with respect to the output.

Loss function Measures the difference between
the predicted and actual outputs.

Measures the difference between
the predicted and actual outputs
and is used to compute the
gradient of the loss function.

Error signal The difference between the
predicted and actual outputs.

The gradient of the loss function
with respect to the output.

Gradients The gradients of the loss function
with respect to the weights and
biases.

The gradients of the loss function
with respect to the weights and
biases.

Learning rate A hyperparameter that controls
the step size of the weight updates.

A hyperparameter that controls
the step size of the weight
updates.

Optimization
algorithm

A method for finding the optimal
weights and biases during
training, such as stochastic
gradient descent.

A method for finding the optimal
weights and biases during
training, such as stochastic
gradient descent.

Regularization Techniques used to prevent
overfitting of the network during
training, such as L1 or L2
regularization.

Techniques used to prevent
overfitting of the network during
training, such as L1 or L2
regularization.

Dropout A technique used to prevent
overfitting by randomly dropping
out some neurons during training.

Not applicable.

Batch size The number of training examples
used in each iteration of training.

The number of training examples
used in each iteration of training.

Epochs The number of times the entire
training set is passed through the
network during training.

The number of times the entire
training set is passed through the
network during training.

86 5 Backpropagation Neural Network

where n is the number of samples in the dataset, yi is the true value of the ith

sample, and yi is the predicted value of the ith sample (Figure 5.4).
It is to quantify the discrepancy between predicted and desired outcomes, guid-

ing the learning process toward minimizing this discrepancy for improved model
performance. Different loss functions serve specific purposes, such as minimizing
deviations in regression tasks withMSE ormeasuring dissimilarity in classification
problems with cross-entropy loss.

Weight

Derivative of cost
Minimum cost

Gradient

Incremental
step

Initial
weight

Cost

Figure 5.3 Procedure of gradient descent.

x (explanatory variable)

w0 (intercept)

w1 (slope)
= Δy/Δx

Vertical offset
|ŷ – y|

ŷ = w0 + w1x

(xi, yi)

y
(r

es
po

ns
e

va
ri

ab
le

)

Δy

Δx

Figure 5.4 Graphical representation for loss function.

5.2 Gradient Descent 87

5.2.2 Parameters in Gradient Descent

In gradient descent, parameters refer to the variables that are learned by the model
in order to minimize the loss function. These parameters are typically represented
by weight matrices and bias vectors that are associated with each layer in the neu-
ral network. The goal of gradient descent is to iteratively update these parameters
in order to minimize the loss function and find the best values that produce the
most accurate predictions. The optimization process is performed by computing
the gradient of the loss function with respect to the parameters and updating them
in the direction of the negative gradient. The size of the update is determined by
the learning rate hyperparameter, which controls the step size of the optimization
process. The parameters in gradient descent are represented as weights (w) and
biases (b) in a neural network model. They can be updated through the following
equation during the training process:

θnew = θold − α∇θL θ , 5 6

where θold and θnew are old and updated vectors of parameters, α is the learning
rate and ∇θL(θ) is the gradient of the loss function L(θ) with respect to the para-
meters θ. The gradient is calculated using the backpropagation algorithm, which
computes the derivative of the loss function with respect to each parameter in the
network, and uses this information to update the parameters in a direction that
minimizes the loss.

5.2.3 Gradient in Gradient Descent

Gradient in gradient descent refers to the derivative of the loss function with
respect to the parameters of the model. It represents the slope of the loss function
at a particular point, indicating the direction of the maximum increase in loss. The
gradient is used in the gradient descent algorithm to update the parameters in the
direction of theminimum loss. The gradient is calculated by taking the partial deri-
vatives of the loss function with respect to each parameter and is used to update the
parameters in the direction of the negative gradient, which minimizes the loss.
Mathematically, the gradient (∇) is computed by taking the partial derivatives
of the function (J) with respect to each parameter (θ), as shown in following
equation:

∇J θ =
∂J
∂θ1

,
∂J
∂θ2

,…, ∂J
∂θn

, 5 7

where J represents the cost or loss function, θ represents the vector of parameters
or weights.

88 5 Backpropagation Neural Network

5.2.4 Learning Rate in Gradient Descent

The learning rate in gradient descent is a hyperparameter that determines the size
of the step taken during each iteration of the optimization process. The learning
rate controls the speed and convergence of the optimization, with a high learning
rate leading to quick but potentially unstable convergence, and a low learning rate
leading to slow but stable convergence. The learning rate is multiplied with the
gradient calculated at each iteration to update the parameters of the model.
A commonly used equation to update the parameters is as follows:

θnew = θold − η∇θJ θ , 5 8

where θold and θnew are the old and updated model parameters, respectively, η
represents the learning rate, J(θ) represents the loss function, and ∇θJ(θ) repre-
sents the gradient of the loss function with respect to the parameters θ.

5.2.5 Update Rule in Gradient Descent

The update rule in gradient descent is a rule that defines how the model para-
meters are updated based on the gradient of the loss function. The gradient of
the loss function with respect to the model parameters provides information about
how much the parameters need to be adjusted in order to minimize the loss. The
update rule defines the manner in which the model parameters are adjusted using
the gradient information. For example, the most commonly used update rule in
gradient descent is the gradient descent algorithm, which updates the parameters
as follows:

θnew = θold − α∇θL θ , 5 9

where θold and θnew are the old and updated parameters, L(θ) represents the loss
function, ∇θL(θ) represents the gradient of the loss function with respect to the
model parameters, and α represents the learning rate.

5.3 Stopping Criteria

The stopping criteria in gradient descent is a set of conditions that determine when
the training process should stop. This is important to prevent overfitting, where the
model becomes too complex and starts to memorize the training data rather than
generalizing it to new data. Maximum number of iterations: The training process
stops after a set number of iterations, regardless of the improvement in the loss
function. Threshold on the improvement of the loss function: The training process
stops when the improvement in the loss function falls below a certain threshold.

5.3 Stopping Criteria 89

Early stopping: The training process stops when the loss on a validation set stops
improving and starts to increase, indicating overfitting. Convergence: The training
process stops when the gradient of the loss function approaches zero, indicating
that a minimum has been found. The choice of stopping criteria can impact the
final performance of the model, so it is important to carefully consider the appro-
priate criteria for a particular problem.

5.3.1 Convergence and Stopping Criteria

Convergence and stopping criteria in gradient descent refer to the criteria for
determining when to end the optimization process. Convergence means that
the parameters of themodel have reached a stable state and are no longer changing
significantly. Stopping criteria are used to determine when the optimization proc-
ess has converged and should be stopped. There are several common stopping
criteria for gradient descent:
The fixed number of iterations stopping criteria for gradient descent is a simple

stopping rule in which the optimization algorithm terminates after a predeter-
mined number of iterations have been completed. The mathematical equation
for this criteria can be expressed as if (current iteration number >=max iterations)
stop optimization, where “current iteration number” is the current iteration of the
optimization algorithm and “max iterations” is themaximumnumber of iterations
specified as the stopping criteria. The tolerance on the change in parameters stop-
ping criteria for gradient descent can be defined as follows:
For instance,W be the set of weights in the neural network andW0 be the initial

weights. Then, the stopping criteria can be defined as:

wt −wt− 1 < ε, 5 10

where t is the iteration number and ε is a small positive number representing the
tolerance for change in the parameters. If the difference between the current
weights and the previous iteration’s weights is less than ε, then the training process
stops, and the final weights wt are used. This stopping criteria helps to prevent
overfitting by ensuring that the training process stops when themodel has reached
a satisfactory level of accuracy, rather than continuing until the model overfits the
training data.
In gradient descent optimization, the tolerance on the change in the objective

function is a stopping criterion used to determine when to stop the optimization
process. This criterion is based on the change in the value of the objective function
between two consecutive iterations. If the change in the objective function is below
a certain threshold, it can be assumed that the optimization has converged. The
threshold is specified as a tolerance parameter. In gradient descent optimization,
the tolerance on the gradient can be used as a stopping criterion by checking

90 5 Backpropagation Neural Network

whether the gradient of the objective function falls below a certain threshold. If the
gradient is small enough, it can be assumed that the optimization has reached a
local minimum.
The gradient of the objective function J is defined as the vector of its partial deri-

vatives with respect to the parameters θ. The gradient can be computed during
each iteration of the optimization and its norm can be used as a measure of the
progress of the optimization:

∇J θ =
∂J θ

∂θ1

2

+
∂J θ

∂θ1

2

+ … +
∂J θ

∂θn

2

5 11

A threshold value ε is set for the gradient norm and the optimization stops when
||∇J(θ)|| < ε. So the equation for tolerance on the gradient can be: ||∇J(θ)|| < ε. The
choice of stopping criteria depends on the specific problem and the optimization
algorithm being used. It is important to choose an appropriate stopping criteria
to avoid both underfitting (stopping the optimization too early) and overfitting
(continuing the optimization too long).

5.3.2 Local Minimum and Global Minimum

In mathematics, a minimum is a point on a function where the output value is the
lowest within a specific range or domain. There are two types of minimums that
can be observed in functions: local minimums and global minimums, as shown in
Figure 5.5. A local minimum is a point on a function where the output value is the
lowest among all the nearby points within a small region. In other words, a local
minimum is a point where the function is lower than any other points immediately
adjacent to it.
A global minimum, on the other hand, is a point on a function where the output

value is the lowest within the entire domain of the function. In other words, a
global minimum is the absolute lowest point on the function. In summary, a local
minimum is a point on a function where the output value is the lowest among
nearby points, while a global minimum is a point on a function where the output
value is the lowest within the entire domain of the function.

5.4 Resampling Methods

Resampling methods are techniques for estimating the performance of machine
learning algorithms by using different subsets of the available data. They are
mainly used to address the problem of overfitting and to provide a more robust
assessment of the model’s generalization performance (Figure 5.6).

5.4 Resampling Methods 91

8

6

4

2

0

–2

–4

–6

8

6

4

2

0

–2

–4

–6

–8

30 3020 2010

Global minimum

Local minimum

10

Figure 5.5 Local minimum and global minimum in peaks.

All data

Training

Resample 1

Analysis Assessment Analysis Assessment Analysis Assessment

Resample 12 Resample 8

Testing

Figure 5.6 Data splitting scheme from the initial data split to resampling.

92 5 Backpropagation Neural Network

5.4.1 Cross-Validation

Cross-validation is a technique for evaluating the performance of amodel by divid-
ing the dataset into several parts, training the model on a portion of the data, and
evaluating it on the remaining portion. The main objective is to prevent overfitting
by evaluating the model’s ability to generalize to unseen data. There are various
types of cross-validation techniques such as k-fold cross-validation, leave-one-
out cross-validation, and stratified k-fold cross-validation.
In k-fold cross-validation, the dataset is divided into k parts or folds of

roughly equal size and the model is trained on k−1 of the folds and evaluated
on the remaining fold. This process is repeated k times, with each fold being
used as the test set once. The performance metric is then averaged across
the k iterations. For instance, one has a dataset with n samples and a model
with parameters theta. The x and y be the feature matrix and target vector,
respectively. The k-fold cross-validation procedure can be expressed mathemat-
ically as:
For each iteration i = 1, 2, 3, …, k:
a. for i = 1 to k do
Split data into training set and validation set in the ratio of (k−1)/k and 1/k,

respectively

Train the model on the training set
Evaluate the performance of the model on the validation set using a perfor-
mance metric (such as MSE, accuracy, or F1-score)
Store the performance metric of the model on the validation set

f. end for
g. Compute the average performance metric across all k iterations
h. Return the average performance metric as the final result of k-fold cross-

validation.

5.4.2 Bootstrapping

Bootstrapping is a statistical resampling method used to estimate the distribution
of a statistic (e.g. the mean) by generating multiple, independent samples from the
original data set with replacement. The goal of bootstrapping is to obtain a more
robust estimate of the true population parameters by generating a large number of
resamples, each of which provides an estimate of the statistic of interest. Bootstrap-
ping involves randomly selecting samples with replacement from the original
dataset to form multiple new datasets (referred to as “bootstrapped” datasets) of
the same size as the original dataset.

5.4 Resampling Methods 93

5.4.3 Monte Carlo Cross-Validation

Monte Carlo cross-validation is a type of cross-validation that uses random sam-
pling to divide a dataset into multiple folds for model validation. It involves repeat-
ing the process of training and evaluating the model multiple times with different
partitions of the dataset. The performance of the model is estimated by averaging
the results of these evaluations. The aim is to reduce the variance of the model
evaluation by considering multiple subsets of the data. Monte Carlo cross-
validation can be computationally expensive, but it can provide more robust
estimates of the model performance compared to other resampling methods.
The performance of the model is then evaluated using a metric, such as accuracy,
on the validation set. The average of the performance metrics over the K iterations
is then taken as the final performance metric for the model. The math equation for
Monte Carlo Cross-Validation (MCCV) can be represented as:

Performance Metric =
1
K

K

i = 1

Performance Metric for fold i, 5 12

where performance metric is a metric such as accuracy, precision, recall, or
F1-score, and represents the sum of the performance metrics over the K folds.

5.5 Optimizers in Neural Network

Optimizers in neural network are algorithms used to update the model’s para-
meters in order to minimize the loss function. Each optimizer has its own math-
ematical update rule to adjust the parameters. The choice of optimizer depends on
the problem and the desired training speed, stability, and accuracy, and some com-
mon optimizers are shown in Figure 5.7.

5.5.1 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is an optimization algorithm in neural networks
that updates the parameters in the direction of the negative gradient of the loss
function. The equation for SGD update rule is given by:

w t + 1 = wt− η∇L wT , 5 13

where wt is the parameter value at iteration t, η is the learning rate and ∇L(w(t)) is
the gradient of the loss function L atwt. In each iteration of SGD, a random sample
from the training data is selected and the gradient of the loss function with respect

94 5 Backpropagation Neural Network

to the parameters is calculated for that sample. The parameters are then updated
according to the following equation:

θnew = θold − α∇L θxi, yi , 5 14

where θold and θnew are the old and updated vector of parameters to be optimized,
respectively. The α is the learning rate, a hyperparameter that determines the step
size of the update. The∇L(θxi, yi) is the gradient of the loss function Lwith respect
to the parameters θ, calculated for a single sample (xi, yi) from the training data.
The optimization procedure continues until a stopping criteria, such as a fixed

number of iterations or a minimum improvement in the loss function, is met. The
randomness of SGD provides a regularization effect that helps prevent overfitting
and makes it suitable for large-scale datasets. SGD is also computationally effi-
cient, as only one sample is used in each iteration and parallel updates can bemade
for multiple samples.

SGD
Momentum

NAG

Adagrad

Adadelta
RMSprop

250

200

150

100

f(
x,

y)

50

0

–2

–2

–1

–1

0

0

11
yx

2

2

3

3

4

4

Figure 5.7 Optimizers in neural network.

5.5 Optimizers in Neural Network 95

5.5.2 Root Mean Square Propagation

RootMean Square Propagation (RMSprop) is a gradient descent optimization algo-
rithm for training deep neural networks. It is similar to SGD, but instead of using a
fixed learning rate, it adjusts the learning rate dynamically based on the average of
the historical squared gradients of the parameters. This helps to mitigate the issue
of fluctuating or diminishing learning rates in SGD, which can slow down or
prevent convergence of the optimization process. The update rule is given as:

rt = γrt− 1 + 1− γ g2t , 5 15

where rt is the moving average of the squared gradient at time step t. The γ is the
decay rate, typically set to 0.9, and gt is the gradient at time step t. The moving
average of the squared gradients is updated after each iteration as:

θt + 1 = θt −
η

rt + ε
gt, 5 16

where θt is the model parameters, η is the learning rate, and ε is a small constant to
avoid division by zero.

5.5.3 Adaptive Moment Estimation

Adaptive Moment Estimation (Adam) is a popular optimization algorithm used in
deep learning to update the model parameters. It combines the advantages of
RMSprop and SGD with momentum. The Adam algorithm maintains exponential
moving averages of the gradient and squared gradient and computes adaptive
learning rates for each parameter. The mathematical equation for updating the
parameters using Adam is:

vt = β1 vt− 1 + 1− β1 ∇θJθ 5 17

st = β2 st− 1 + 1− β2 ∇θJθ
2 5 18

vt =
vt

1− β1
t 5 19

st =
st

1− β2
t 5 20

θt + 1 = θt + α
vt
st + ε

, 5 21

where θt+ 1 is the updated parameter at time step t + 1; θt is the parameter at time
step t, vt and st are the moving average of the gradient and squared gradient,
respectively; v and st are the bias-corrected moving average of vt and st; α is the
learning rate; β1 and β2 are the hyperparameters for the moving average; and ε
is a small constant to avoid division by zero.

96 5 Backpropagation Neural Network

The key advantage of the Adam algorithm is that it provides an adaptive learning
rate for each parameter, which can help overcome the drawbacks of traditional
optimization algorithms, such as a need for manual tuning of the learning rate.

5.5.4 AdaMax

The AdaMax optimizer uses a similar formula to the Adam optimizer, with the
difference being in the calculation of the moving average of squared gradient.
In AdaMax, the moving average is calculated using the L-infinity norm instead
of the L2 norm used in Adam. The AdaMax optimizer update rule is given by:

mt + 1 = β1mt + 1− β1 gt , vt + 1

= max β2vt , ε gt wt + 1

= wt − lr
mt

vt + ε
,

5 22

where mt is the moving average of the gradient, vt is the moving average of the
squared gradient, gt is the gradient at time t, β1 and β2 are the decay rates for
the moving averages, lr is the learning rate, wt is the parameter at time t, and
ϵ is a small constant for numerical stability.

5.5.5 Momentum Optimization

Momentum optimization is a gradient descent optimization method that incorpo-
rates the information from the past gradients to update the parameters. It works by
updating the parameters in the direction of the accumulated past gradients, which
helps overcome the oscillations and speed up convergence. The update rule for
momentum optimization can be formulated as:

vt = βvt− 1 + 1− β g 5 23

wt = wt− 1 − hvt , 5 24

where vt is the velocity, wt is the weight, β is the momentum term that controls
the extent to which past gradients influence the current update, g is the current
gradient, and h is the step size (Table 5.2).

Summary

This chapter discussed a wide number of topics that may potentially be connected
to either machine learning or artificial neural networks. These topics were
spread out throughout the book. In the course of the presentation, a number of

Summary 97

fundamental concepts were brought up, such as optimizers, backpropagation, gra-
dient descent, overfitting avoidance measures, resampling approaches, and resam-
pling methodologies. These were some of the most significant topics that were to
be learned from this chapter. In addition to this, one discussed the mathematical
equations that are utilized in the process of explaining these concepts. Some exam-
ples of these equations include the update rule in gradient descent, the tolerance
on the gradient, cross-validation, bootstrapping, Monte Carlo cross-validation, and
the optimizers such as SGD, RMSprop, Adam, AdaMax, and momentum optimi-
zation. To be able to comprehend how machine learning algorithms and neural

Table 5.2 Summarizing some common optimizers used in neural network training.

Optimizer Description

Stochastic gradient descent
(SGD)

A simple optimization algorithm that updates the weights
of the neural network using the gradients of the loss
function with respect to the weights.

Adam (adaptive moment
estimation)

An optimization algorithm that combines ideas from both
momentum-based and RMSprop algorithms. Adam adapts
the learning rate based on estimates of the first and second
moments of the gradients.

RMSprop (root mean
square propagation)

An optimization algorithm that uses a moving average of
the squared gradients to adapt the learning rate. It has been
shown to work well for nonstationary objectives such as
neural network training.

Adagrad (adaptive gradient
algorithm)

An optimization algorithm that adapts the learning rate for
each weight based on the sum of the squares of past
gradients for that weight. It is particularly useful for sparse
data problems.

Adadelta An optimization algorithm that is similar to Adagrad, but
adapts the learning rate based on a moving average of the
past gradients instead of the sum of the squares of past
gradients.

Nesterov accelerated
gradient (NAG)

An optimization algorithm that uses a modified gradient
that takes into account the current velocity of the weights.
This allows the optimizer to “look ahead” and update the
weights before computing the gradient.

Momentum-based
optimization

An optimization algorithm that uses a momentum term
that allows the optimizer to “carry over” some of the
previous weight updates when computing the current
update. This can help the optimizer avoid getting stuck in
local minima.

98 5 Backpropagation Neural Network

networks function, as well as how to fine-tune them for particular tasks, it is
necessary to have knowledge of these elementary concepts, which serve as the
fundamental building blocks.

Exercise Questions

Q. 5.1 What is the mathematical expression for the gradient of the loss function
with respect to the weights in a neural network, and how is it computed
using backpropagation?

Q. 5.2 In a backpropagation neural network, the activation function used in the
hidden layer is the rectified linear unit (ReLU), given by:

f x = max 0, x

Calculate the output of the ReLU activation function for an input
x =−3.

Q. 5.3 How do you prevent overfitting in artificial neural networks?

Q. 5.4 Explain the concept of adaptive learning rate methods, such as Adagrad,
Adam, and RMSprop, and how they adjust the learning rate dynamically
based on the gradient history, and what is the mathematical expression
for the update rule of Adagrad?

Q. 5.5 What are some of the popular optimizers used in neural networks?

Q. 5.6 What is the concept of momentum in gradient descent and how it is used
to improve the convergence and robustness of the algorithm, and what is
the mathematical expression for the update rule with momentum?

Q. 5.7 How does Monte Carlo cross-validation differ from traditional cross-
validation?

Q. 5.8 What is the purpose of regularization in neural networks?

Q. 5.9 Can you explain the difference between early stopping and dropout in
overfitting prevention?

Exercise Questions 99

Q. 5.10 In a backpropagation neural network, the error term for a neuron in the
hidden layer is calculated using the following equation:

δh = f zh × Σ δj × wjh

Given the following values:
Derivative of the activation function: f (zh) = 0.5; Error terms of the

neurons in the next layer: δ1 = 0.3, δ2 = 0.4; Weights connecting the
hidden neuron to the neurons in the next layer: w1h = 0.6, w2h = 0.8;
Calculate the error term δh for the hidden neuron.

Further Reading

Cochocki A, Unbehauen R. Neural networks for optimization and signal processing.
John Wiley & Sons, Inc.; 1993 Jun 1.

Fitrianto A, Linganathan P. Comparisons between resampling techniques in linear
regression: a simulation study. CAUCHY: Jurnal Matematika Murni dan Aplikasi.
2022 Oct 11;7(3):345–53.

Wythoff BJ. Backpropagation neural networks: a tutorial. Chemometrics and Intelligent
Laboratory Systems. 1993 Feb 1;18(2):115–55.

100 5 Backpropagation Neural Network

6

Application of Neural Network in Learning and Recognition

6.1 Applying Backpropagation to Shape Recognition

The backpropagation algorithm is perhaps the most basic component of a neural
network. It was initially presented in 1960s and over 30 years later (1989) popular-
ized by Rumelhart, Hinton, and Williams in a study named “Learning representa-
tions by back-propagating mistakes.” The program uses a technique called chain
rule to efficiently train a neural network. Simply said, backpropagation does a
backward pass across a network after each forward pass while modifying the mod-
el’s parameters (weights and biases). Four neurons make up the input layer of the
four-layer neural network, four neurons make up the hidden layers, and one neu-
ron makes up the output layer, as shown in Figure 6.1.
The input neuron can be as simple as scalars or more complex like vectors or

multidimensional matrices.

y =
b

i = 1

wixi + b, 6 1

where y is the output, xi are the input values, wi are the weights associated with
each input, b is the bias, and n is the number of input neurons.
The final values at the hidden neurons are computed using zl—weighted inputs

in layer l, and al—activations in layer l. For layer 2, the equations are
described below:

z 2 = w 1 x + b 1

a 2 = f z 2
6 2

101

Cybernetical Intelligence: Engineering Cybernetics with Machine Intelligence, First Edition.
Kelvin K. L. Wong.
© 2024 The Institute of Electrical and Electronics Engineers, Inc.
Published 2024 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/cyberintel

The final part of a neural network is the output layer which produces the pre-
dicted value.

y = f z , 6 3

where y is the output of the output layer, z is the input to the output layer, and f is
the activation function applied to z. Backpropagation is a widely used algorithm
for training artificial neural networks, including those used in shape recognition.
The algorithmworks by adjusting the weights of the network in the direction of the
negative gradient of the cost function, which measures the difference between the
network’s output and the desired output. This process is repeated iteratively until
the weights converge to a minimum value that corresponds to a good fit for the
training data.
The backpropagation algorithm consists of two main phases: the forward phase

and the backward phase. In the forward phase, the input is passed through the
network, and the output is computed. In the backward phase, the error is propa-
gated back through the network, and the weights are adjusted to reduce the error.
The key equations in the backpropagation algorithm are the gradient of the cost

function with respect to the weights, and the update rule for the weights. The gra-
dient is computed using the chain rule of calculus, and the update rule is typically a
simple form of stochastic gradient descent.
The general form of the update rule for a weight wij in a network with L layers is:

wij t + 1 = wij t − η
∂E

∂wij t
, 6 4

where wij(t) is the weight at time t, η is the learning rate, and
∂E

∂wij t
is the partial

derivative of the error E with respect to the weight wij at time t. This partial deriv-
ative is computed using the backpropagation algorithm shown in Equation (6.5),

Hidden layers

Input layer Output layer

Land cover classesImage bands

Figure 6.1 Illustration of simple 4-layer neural network.

102 6 Application of Neural Network in Learning and Recognition

which propagates the error from the output layer back to the input layer, updating
the weights in each layer as it goes. The update rule is applied iteratively over a
number of epochs or until convergence is achieved.

δij = oj − tj f nj oi, 6 5

where oj is the output of neuron j, tj is the desired output, f (nj) is the derivative of
the activation function of neuron j with respect to its net input, and outputi is the
output of neuron i, which is the input to neuron j.
In shape recognition, the input to the network is typically a set of features that

describe the shape of an object, such as its edges or corners. The output is a prob-
ability distribution over a set of possible classes, indicating the likelihood that the
shape belongs to each class. The cost function used in training is typically the
cross-entropy between the network’s output and the true class labels.
By adjusting the weights of the network using backpropagation, the network can

learn to recognize shapes based on their features. This is a powerful tool for com-
puter vision and other applications that require pattern recognition, the complete
process is described below.

• Input data: The first step is to gather and preprocess the input data for the neural
network. In the case of shape recognition, this might involve converting an
image of a shape into a matrix of pixel values.

• Initialize the network: Next, the neural network is initialized with random
weights and biases for each neuron in each layer.

• Forward propagation: The input data is then fed through the network layer by
layer using the feedforward process. The inputs are multiplied by the weights
and the biases are added to produce the activation of each neuron.

• Compute error: The error between the network’s output and the desired output
is then computed using a loss function such as mean squared error.

• Backpropagation: The error is then propagated back through the network in
reverse order, starting from the output layer and working backward. This is done
using the chain rule of calculus to compute the gradient of the error with respect
to the weights and biases of each neuron in the network.

• Update weights and biases: The gradients are then used to update the weights
and biases of the network using an optimization algorithm such as stochastic
gradient descent. The learning rate determines how quickly the weights and
biases are updated.

• Repeat: The above steps are repeated for a certain number of epochs or until the
error is minimized to an acceptable level.

For instance, one wants to train a neural network to recognize the shape of a
triangle. One can represent the triangle as a matrix of pixel values, where each

6.1 Applying Backpropagation to Shape Recognition 103

pixel is either “on” or “off.” One can also represent the target output as a vector
with three elements, each representing one of the three sides of the triangle.
To train the neural network using backpropagation, one would first randomly

initialize the weights of the network. One would then feed the pixel values for each
triangle in our training set through the network, and compare the output of the
network to the target output for that triangle.
Using the difference between the predicted output and the target output, one

would calculate the error, and then use the backpropagation algorithm to update
the weights of the network in a way that reduces the error. This process is repeated
for all triangles in the training set, and typically for many epochs (i.e. iterations
through the entire training set).
After the neural network is trained, one can use it to recognize new triangles by

feeding their pixel values through the network and observing the output. Here is an
example of a small training set with two triangles: Triangle 1 (target output: [1, 0, 1])

0 0 1 0 0

0 1 0 1 0

1 0 0 0 1

6 6

Triangle 2 (target output: [1, 1, 0])

1 1 0 0 0

0 1 1 0 0

0 0 1 1 1

6 7

One can represent each of these triangles as a matrix with binary pixel values.
For example, the first triangle can be represented as:

0 0 1 0 0

0 1 0 1 0

1 0 0 0 1

6 8

To train a neural network to recognize these triangles, one would first randomly
initialize the weights of the network. One would then feed each triangle through
the network and use the difference between the predicted output and the target
output to update the weights of the network using the backpropagation algorithm.
After the network is trained, one can use it to recognize new triangles by feeding

their pixel values through the network and observing the output. For example, if
one had a new triangle with pixel values:

1 0 0 0 1

0 1 0 1 0

0 0 1 0 0

6 9

104 6 Application of Neural Network in Learning and Recognition

One would feed these pixel values through the network and observe the output
to see if the network recognizes the triangle.

6.2 Softmax Regression

Softmax regression, also known as the multinomial logistic regression, is a tech-
nique used to performmulti-class classification. It is an extension of logistic regres-
sion that allows the classification of multiple classes by outputting a probability
distribution over the classes. Ultimately, the algorithm is going to find a boundary
line for each class. Softmax regression algorithm produces a set of values that add
up to 1, and each value represents the probability of the corresponding class being
the correct class. Softmax regression is commonly used in natural language proces-
sing, computer vision, and other fields that involve multi-class classification
problems.
The softmax function is a generalization of the logistic function to multiple

dimensions, and it is used to transform a vector of real numbers into a probability
distribution. The softmax function is defined as follows:

σ z j =
ezi
K

j = 1
ezj

, 6 10

where z is the input vector to the softmax function, zi is the element of the input
vector to the softmax function, ezi is the standard exponential function applied to

each element of the input vector, and
K

j = 1
ezj is the term on the bottom of the for-

mula, which is the normalization term. It ensures that all the output values of the
function will sum to 1 and each will be in the range (0, 1), thus constituting a valid
probability distribution, and K is the number of classes. In softmax regression, the
goal is to learn the weights and biases of a linear model that maps an input vector x
to a vector of scores z. The scores are then passed through the softmax function to
obtain a vector of probabilities over the classes. The softmax regression model can
be defined as follows:

z = wx + b, 6 11

where w is a weight matrix of size k ×D, b is a bias vector of size k, x is an input
vector of size D, and k is the number of classes. The softmax function is then
applied to the scores to obtain the class probabilities:

y̌ = softmax z , 6 12

6.2 Softmax Regression 105

where y̌ is a vector of size k that contains the probabilities of the classes. During
training, the parameters w and b are learned using the cross-entropy loss function,
which measures the difference between the predicted class probabilities and the
true class labels. The cross-entropy loss function is defined as follows:

L = −
1
N

N

i = 1

k

j = 1

yij log y̌ij , 6 13

where N is the number of training examples, yij is the true label of the i
th example

for the jth class, and y̌ij is the predicted probability of the i
th example for the jth class.

The backpropagation algorithm is then used to compute the gradients of the loss
function with respect to the parametersw and b, which are then used to update the
parameters using gradient descent. The gradient of the loss function with respect
to the weights is given by:

∂L
∂wjk

=
1
N

N

i = 1

xij y̌ik − yik , 6 14

and the gradient of the loss function with respect to the biases is given by:

∂L
∂bk

=
1
N

N

i = 1

y̌ik − yik 6 15

In softmax regression, feature importance can be determined by analyzing the
magnitude of the learned weights assigned to each feature. These weights are a
measure of the contribution of each feature to the prediction of the class labels.
The larger the weight, the more important the feature is in the prediction.
The softmax function is commonly used in multi-class classification problems to

convert a vector of real numbers into a probability distribution over the classes. To
compute the feature importance using softmax regression, one can examine the
magnitude of the learnedweights. The weight matrixW can be analyzed to identify
the most important features by examining the magnitude of the weights for each
feature. The features with larger weights are consideredmore important in the pre-
diction of the class labels.
For instance, assuming a softmax regression model trained on an image classi-

fication task with input images of size 32 × 32 pixels and 10 output classes, the
weight matrix W will be of size (32 × 32 × 3, 10), where the input images are flat-
tened into a single vector of length 3072. The next step is to the magnitude of the
weights inW in order to identify the pixels in the input images that aremost impor-
tant in the classification task. The pixels with larger weights will be considered
more important in the prediction of the class labels.

106 6 Application of Neural Network in Learning and Recognition

6.3 K-Binary Classifier

A K-binary classifier is a type of classification algorithm used in machine learning
to classify data into K classes. The classifier is based on the concept of one-vs-all
(OvA) or one-vs-rest (OvR) strategy, in which K classifiers are trained, one for each
class. Each classifier is trained to recognize a specific class by comparing the
features of the data with the features of the training data for that class. The math-
ematical formulation for a K-binary classifier can be represented as follows:
For instance, X be the input feature vector of size n, and Y be the output variable

representing the class label, which can take one of the K possible values. The K-
binary classifier is defined as:

P Y = k X = e

wT
k
X + bk

Σe
wT
j
X + bj

,
6 16

where P(Y = k X) is the probability of the input feature vector X belonging to class
k, e is the exponential function,wk is the weight vector for class k, bk is the bias term
for class k, and the is overall possible values of j from 1 to K. The output of the
classifier is the class label that has the highest probability:

Y = argmaxk P Y = k X , 6 17

where Y is the predicted class label for the input feature vector X. The softmax
function normalizes the output of the discriminant functions, such that the
sum of the probabilities over all classes is equal to one.
The K-binary classifier can be trained using the backpropagation algorithm,

which involves minimizing a cost function that measures the difference between
the predicted probabilities and the true labels of the training data. The cost func-
tion can be represented as the negative log-likelihood of the softmax function:

C = −
1
n

N

i = 1

log p yi xi 6 18

where C represents the cost function,N is the total number of training examples, yi
is the true label of the ith training example, and xi represents the input features of
the ith training example.
p(yi xi) represents the predicted probability of the true label yi given the input

features xi, calculated using the softmax function. The gradient of the cost function
with respect to the weights and biases can be calculated using the chain rule of
calculus, and the weights and biases can be updated using gradient descent or
other optimization algorithms.
The K-binary classifier is widely used in many applications, including image

classification, text classification, and speech recognition.

6.3 K-Binary Classifier 107

For instance, one has a dataset of flower images and one wants to classify them
intoK different classes (e.g. daisy, rose, sunflower, etc.). The dataset hasN samples,
and each sample is represented as a feature vector with D dimensions (e.g. pixel
values of the image). For instance, X be the N × D matrix containing the feature
vectors of all samples, and y be the N × 1 vector containing the corresponding
labels (i.e. integers from 1 to K).
To perform K-binary classification using Softmax regression, one need to first

transform the labels y into K binary indicators (i.e. one-hot encoding). For
instance, Y be the N × Kmatrix containing the one-hot encoding of y, where each
row of Y has a 1 at the index corresponding to the class of the sample and 0
elsewhere.
Then, one need to train a weight matrixW with shape D × K and a bias vector b

with shape K × 1, such that the score of each sample for each class can be
computed as:

S = wx + b 6 19

The score S is aN × Kmatrix, where each row contains the scores of a sample for
all K classes.

6.4 Relational Learning via Neural Network

What will introduce is relational learning by building a neural network, the rela-
tional network. To describe it in more detail, a simple neural network module for
relational reasoning. It describes how to use relation networks (RNs) as a simple
plug-and-play module to solve problems that fundamentally hinge on relational
reasoning.
The design philosophy behind RNs is to constrain the functional form of a neu-

ral network so that it captures the core common properties of relational reasoning.
In other words, the capacity to compute relations is baked into the RN architecture
without needing to be learned, just as the capacity to reason about spatial, trans-
lation invariant properties is built-in to convolutional neural networks (CNNs),
and the capacity to reason about sequential dependencies is built into recurrent
neural networks.
For a simple RN, can express as follows:

RN O = f ϕ
i, j

gθ oi, oj , 6 20

108 6 Application of Neural Network in Learning and Recognition

where the input is a set of “objects”O= {O1,O2,…,On},Oi Rm is the ith object, and
fϕ and gθ are functions with parameters φ and θ, respectively. For our purposes, fϕ
and gθ are multilayer perceptron (MLP), and the parameters are learnable synaptic
weights, making RNs end-to-end differentiable. One call the output of gθ a “rela-
tion”; therefore, the role of gθ is to infer the ways in which two objects are related,
or if they are even related at all (Figure 6.2).
The structure of the relational network consists of two parts. One is the embed-

ding module, which is used to extract its features, and the other is the relation
module, which is used to compute the relationship.
One popular approach to relational learning via neural networks is the graph

neural network (GNN). GNNs operate on graphs, where nodes represent entities
and edges represent relationships between entities. They use a message-passing
algorithm to propagate information between nodes and update their representa-
tions based on the information they receive from neighboring nodes. The output
of the GNN can be used for tasks such as link prediction, node classification, and
graph classification.
Relational learning via neural networks has a wide range of applications in areas

such as social network analysis, recommendation systems, and drug discovery. It
allows for more sophisticated modeling of relationships in data and can improve
the accuracy of predictions for tasks that involve relational data.

6.4.1 Graph Neural Network

GNNs are a class of neural networks that can operate on graph-structured data,
such as social networks, chemical compounds, or protein structures. GNNs aim
to learn node-level or graph-level representations by aggregating information from
the neighboring nodes and edges in a graph.
One of the popular GNN architectures is the message-passing neural network,

which updates the node representations by passing messages between the neigh-
boring nodes. The basic idea ofmessage passing is to combine the feature vectors of
the neighboring nodes and edges, apply a neural network function, and produce a

Object pair
with question

Small...
... +

gθ - MLP

fϕ - MLP

Figure 6.2 Schematic diagram of RNs.

6.4 Relational Learning via Neural Network 109

new feature vector for the node. The message-passing process can be formalized as
follows:

hl + 1
v = σ

u N v

Wlhlu + Wl
ee

l
u,v , 6 21

where hlv is the feature vector of node v at layer l, is a nonlinear activation
function, N(v) is the set of neighboring nodes of v,Wl is a weight matrix for node

features, Wl
e is a weight matrix for edge features, and elu,v is the feature vector of

the edge between nodes u and v at layer l. The superscript (l+1) denotes the
next layer.
The message-passing process can be repeated for multiple layers to incorporate

information from a larger neighborhood. The final node features can be used for
node-level classification, regression, or clustering. For graph-level classification, a
readout function can be used to summarize the node features into a graph-level
representation, which is then fed to a softmax classifier. The readout function
can be a simple summation, mean or max pooling, or a more complex neural
network.
GNNs have shown impressive performance on a variety of graph-based tasks,

such as node classification, link prediction, and molecular property prediction.
They can handle graphs of arbitrary size and structure and can learn meaningful
representations even for nodes with no or limited direct connectivity.
With the numerical representation of graphs that we have constructed above

(with vectors instead of scalars), one is now ready to build a GNN. One will start
with the simplest GNN architecture, one where one learns new embedding for all
graph attributes (nodes, edges, global), but where one does not yet use the connec-
tivity of the graph. This GNN uses a separate MLP (or your favorite differentiable
model) on each component of a graph; one calls this a GNN layer. For each node
vector, one applies the MLP and gets back a learned node vector. One does the
same for each edge, learning a per-edge embedding, and also for the global-context
vector, learning a single embedding for the entire graph (Figure 6.3).
As is common with neural network modules or layers, one can stack these GNN

layers together.
Because a GNN does not update the connectivity of the input graph, one can

describe the output graph of a GNN with the same adjacency list and the same
number of feature vectors as the input graph. But, the output graph has updated
embedding, since the GNN has updated each of the node, edge, and global-context
representations.

110 6 Application of Neural Network in Learning and Recognition

6.4.2 Graph Convolutional Network

The majority of GNNs are Graph Convolutional Networks (GCNs), and the con-
volution in GCN is the same as a convolution in CNNs. It multiplies neurons with
weights (filters) to learn from data features. It acts as sliding window on whole
images to learn features from neighboring cells.
Now the same functionality to GCNs where a model learns the features from

neighboring nodes is transferred. The major difference between GCN and CNN
is that it is developed to work on non-Euclidean data structures where the order
of nodes and edges can vary (Figure 6.4).

Layer N
graph in

Graph independent layer

Update function f = , ...

Un

Vn

En

Un+1

Vn+1

En+1

fUn

fVn

fEn

Layer N+1
graph out

Figure 6.3 A single layer of a simple GNN. A graph is the input, and each component (V, E, U)
gets updated by a MLP to produce a new graph. Each function subscript indicates a separate
function for a different graph attribute at the nth layer of a GNN model.

Figure 6.4 The CNN on the left side and GCN on the right side.

6.4 Relational Learning via Neural Network 111

GCNs are a type of neural network used for processing data that has a graph
structure. The key mathematical equation used in GCNs is the graph convolution,
which is a generalization of the traditional convolution operation used in image
processing.
For instance, A be the adjacency matrix of a graph with N nodes, where Aij= 1 if

there is an edge from node i to node j, and Aij = 0 otherwise. For instance, X be
the feature matrix, where each row corresponds to a node and each column cor-
responds to a feature. The graph convolution of X with a weight matrix W is
given by:

H = f W × A , 6 22

where f is an activation function, such as ReLU, andH is the output feature matrix.
In a single-layer GCN, the weight matrix W is usually initialized randomly and

updated during training using backpropagation. Multiple layers of GCNs can be
stacked to form a deeper network, with each layer processing information from
the previous layer.
Other mathematical equations used in GCNs include the definition of the Che-

byshev polynomial approximation of the graph convolution, which allows for effi-
cient computation, and the definition of the propagation rule, which determines
how information is passed between nodes in the graph.

6.5 Cybernetics Using Neural Network

Cybernetics is the study of communication and control in machines and living
organisms. One application of cybernetics is in the design and development of neu-
ral networks, which are modeled after the structure and function of the human
brain. Neural networks are a type of machine learning algorithm that can learn
from data, identify patterns, and make predictions based on those patterns.
A neural network is made up of multiple interconnected layers of artificial neu-

rons that process data in a hierarchical manner. The input layer receives data, the
hidden layers process the data, and the output layer produces the final result. The
activation function is used to transform the output of each neuron in a layer into a
usable format for the next layer.
The weights of the connections between neurons are adjusted during training

using an optimization algorithm such as backpropagation. This optimization algo-
rithmminimizes the error between the network’s prediction and the actual output
by adjusting the weights.

112 6 Application of Neural Network in Learning and Recognition

The mathematical equation that describes the output of a neuron can be writ-
ten as:

y = f
n

i = 1

wiyi + b , 6 23

where y is the output of the neuron, f is the activation function, wi are the weights
of the connections between the neuron and the previous layer, yi are the inputs to
the neuron, and b is the bias term. The output of the entire neural network can be
written as:

y = f WL f WL− 1 f …f W1y + b1 … + bL− 1 + bL 6 24

The cybernetical layout of the neuron in artificial intelligence is a conceptual
representation of its structure and function, as shown in Figure 6.5. It consists

of input connections Y, a processing unit, and an output connection Y. The input
connections receive data or signals from other neurons or external sources, and
these inputs are weightedW and combined within the processing unit. The cyber-
netical layout of the neuron highlights the flow of information and the computa-
tional operations performed within the neuron. It demonstrates how inputs are
processed and transformed to producemeaningful outputs. This layout, along with
the connections and weights between neurons, forms the basis b for learning and
decision-making in artificial backpropagation neural networks. The loss which is
actually the difference or error rate between actual value and predicted value, is
represented as J and calculated when the network makes backpropagation to
match the actual input to the network and predicted value, hence thus make a
cybernetics loop similar to the backpropagation neural network.

Y

Ŷ

(Ŷ – Y)2

W
b

J =

f (.)∑

1
2

Figure 6.5 Cybernetical layout of the neuron based on perception theory.

6.5 Cybernetics Using Neural Network 113

By arranging neurons in layers and connecting them in specific ways, more com-
plex computational structures like multilayer perceptrons and deep neural net-
works can be constructed. These networks leverage the cybernetical layout of
neurons to tackle various tasks, such as classification, regression, pattern recogni-
tion, and more, in the field of artificial intelligence.
One of the advantages of building neural networks using such a cybernetics con-

cept is their ability to learn and adapt to new information. This makes them useful
for applications such as image and speech recognition, natural language proces-
sing, and autonomous control systems. Additionally, neural networks are highly
parallelizable and can be implemented on hardware such as GPUs or FPGAs for
faster processing. Overall, neural networks are a powerful tool for cybernetics and
can be used to develop intelligent systems that can learn, adapt, and perform com-
plex tasks.
As presented in Chapters 1 and 2, the field of cybernetics, which is the study of

control and communication in machines and living organisms, can be helpful in
image recognition tasks by using artificial neural networks and can be understood
as a form of cybernetical intelligence. Neural networks can be trained using
labeled image data to recognize patterns in images and make predictions about
new images that are presented to the network.
In a neural network-based image recognition system, each pixel of an image is

treated as an input to the network, and the output of the network is a prediction of
the object or class of the image. The network is trained using a set of labeled
images, where the correct object or class label is provided for each image. The net-
work learns to recognize patterns in the input image data that are associated with
each object or class label.
The network can be designed to have multiple layers of neurons, allowing it to

learn more complex representations of the input data. CNNs are a popular type of
neural network for image recognition tasks, as they use a series of convolutional
layers to extract features from the input image data. These features are then fed
into a fully connected neural network layer for classification. Suppose one has a
dataset of grayscale images, each with dimensions 28 × 28 pixels, where each pixel
value ranges from 0 to 255. The aim is to build a neural network that can recognize
handwritten digits from these images.
A feedforward neural network with two hidden layers, each containing 64 neu-

rons can be implemented. The input layer will have 784 neurons (corresponding to
the 28 × 28 pixel dimensions of the images), and the output layer will have 10 neu-
rons (corresponding to the 10 possible digit classes).
The cross-entropy loss function and the softmax activation function for the out-

put layer can be utilized. The weights and biases of the network can be initialized
randomly, and one can use the backpropagation algorithm to adjust them during
training.

114 6 Application of Neural Network in Learning and Recognition

6.6 Structure of Neural Network for Image Processing

Neural networks can be used for image processing tasks, such as image recognition
and classification, by applying the feedforward neural network architecture.
The structure of a neural network for image processing typically consists of an

input layer, one or more hidden layers, and an output layer. The input layer
receives the pixel values of an image as input, and the output layer produces a
probability distribution over the classes of objects that the image may contain.
Each neuron in the hidden layers is connected to all neurons in the previous

layer, and the output of each neuron is passed through an activation function
to produce a nonlinear transformation of the input. The weights of these connec-
tions are adjusted during the training process using backpropagation, a supervised
learning algorithm.
The output layer typically uses a softmax activation function, which produces a

probability distribution over the possible object classes based on the inputs
received from the previous layer. The class with the highest probability is then
selected as the predicted class of the image.
An example of the mathematical equations used in a feedforward neural net-

work for image classification can be represented as follows:
For instance x be the input to the network, a(0). Each hidden layer is com-

puted as:

z l = W l a l− 1 + b l 6 25

a l = g z l , 6 26

where W(l) and b(l) are the weight matrix and bias vector for the lth layer, respec-
tively, z(l) is the linear transformation of the input, and g is the activation function.
The output layer uses the softmax function:

z L = W L a L− 1 + b L 6 27

a L = softmax z L , 6 28

where L is the number of layers in the network, and softmax is the activation func-
tion used for the output layer. During the training process, the weights of the con-
nections are updated using backpropagation and gradient descent. The goal is to
minimize the difference between the predicted class probabilities and the true
class labels using a loss function, such as cross-entropy. Once the network has been
trained, it can be used to classify new images by passing them through the network
and using the output layer to obtain a probability distribution over the possible
object classes.

6.6 Structure of Neural Network for Image Processing 115

6.7 Transformer Networks

A type of neural network for natural language processing, transformers use self-
attention mechanisms to capture global dependencies between input tokens and
enable parallel computation. Transformer networks are complex and involve a
number of components, including self-attention, feedforward layers, and residual
connections.

• The input to the transformer network is typically a sequence of tokens, such as
words in a sentence typically using a lookup table xi = E[wi]. Where xi is the
embedded representation of the ith token, wi is the i

th token, and E is the embed-
ding matrix.

• The output of the multi-head attention is fed through a feedforward neural net-
work, typically with two fully connected layers and an activation function (e.g.
ReLU), FFN(x) = max(0, W1 x+ b1)W2 + b2, where W1 and b1 are the weights
and biases of the first layer, respectively, and W2 and b2 are the weights and
biases of the second layer, respectively.

• To improve the flow of information through the network and allow for deeper
architectures, the output of each self-attention and feedforward layer is added to
the input, resulting in a residual connection, y= LayerNorm(x+Multi-Head(Q,
K, V) + FFN(x)).

• The final output of the transformer network is obtained by applying the same
operations multiple times, resulting in a stack of identical layers. The output
can be used for various tasks, such as language generation, machine translation,
and question answering.

6.8 Attention Mechanisms

A type of mechanism for selectively focusing on relevant input regions, attention
mechanisms are used in various types of neural networks such as RNNs and trans-
formers. Here are the main mathematical equations for attention mechanisms:

• The attention score for each position is computed as the dot product of the query,
key, and value representations, and then scaled by the square root of the key

dimension. Attention (Q, K, V) = softmax
QKT

dk
V , where Q is the query

matrix, K is the key matrix, V is the value matrix, and dk is the key dimension.

•Multi-Head(Q, K, V) = Concat(head1, head2, …, headh).

116 6 Application of Neural Network in Learning and Recognition

• The attention score is computed as a weighted sum of the query and key repre-
sentations, using a feedforward neural network, Attention(Q, K, V) = softmax
(FFN(Q, K))V.

where FFN is the feedforward neural network, and Q and K are the query and key
representations. The feedforward neural network computes the attention score
which is given by: FFN(Q, K) = tanh(W1 [Q; K] + b1)W2 + b2.

6.9 Graph Neural Networks

Designed for graph-structured data such as social networks or molecular struc-
tures, GNNs aggregate information from neighboring nodes to make predictions.
GNNs are a class of deep learning models that can operate on graph-structured
data. Here are some mathematical equations used in GNNs:

• In a message-passing GNN, the representation of a node is updated based on the
representations of its neighboring nodes. The message-passing equation can be
written as:

h t
v = σ

u N v

1
N v

W t h t− 1
u , 6 29

where h t
v is the representation of node v at the tth layer,N(v) is the set of neighbors

of node v, |N(v)| is the number of neighbors of node v, Wt is the weight matrix for
the tth layer, and σ is the activation function.

• Graph Convolutional Network (GCN): In a GCN, the message-passing equation
is defined as:

htv = σ
u N v

1

degu degv
W t h t− 1

u , 6 30

where degu and degv are the degrees of nodes u and v, respectively. This equation
takes into account the sparsity of the graph and helps to prevent over smoothing.

• Graph Attention Network (GAT): In a GAT, the attention mechanism is intro-
duced into the message-passing equation, allowing the model to focus on impor-
tant neighbors:

6.9 Graph Neural Networks 117

h l + 1
i = σ

j Ni

αli,jW
lhlj , 6 31

where hli is the hidden state of node i at layer l, Ni is the set of neighbors of node i,
Wl is a learnable weight matrix at layer l, and σ is the activation function.

6.10 Transfer Learning

Transfer learning is a machine learning technique that leverages knowledge
learned from one task to improve performance on another related task. In deep
learning, transfer learning is often used to fine-tune pretrained models on new
data. Here are somemathematical equations that are involved in transfer learning:

• Fine-tuning: In fine-tuning, a pretrained model is further trained on a new task
using new data. The objective function for fine-tuning can be written as:

L = Lnew + λ Lold , 6 32

where Lnew is the loss function for the new task, Lold is the loss function for the
original task, and λ is the weighting factor that balances the contribution of the
two losses.

• Freeze layers: In some transfer learning scenarios, it may be beneficial to freeze
certain layers of the pretrained model and only fine-tune certain layers. The
objective function for fine-tuning can be written as:

L = Lnew + λ
i F

Li 6 33

• Domain adaptation: In domain adaptation, the goal is to transfer knowledge
from a source domain to a target domain, where the source and target domains
have different distributions. The objective function for domain adaptation can
be written as:

L = Lnew + λD Psrc,Ptgt , 6 34

where D is a distance metric between the source and target domains, such as the
maximum mean discrepancy (MMD), Psrc is the distribution of the source data,
and Ptgt is the distribution of the target data.

118 6 Application of Neural Network in Learning and Recognition

6.11 Generalization of Neural Networks

Figure 6.6 illustrates the overfitting and underfitting compared to the optimum
model. The dots represent the data distribution; the curve denotes the predictive
model ability. As shown in the graph, overfit gives a minimal error for training
data but has a large fluctuation for unseen testing data, whereas underfitting can-
not approximate both training and testing data. In machine learning, if the model
is not trained well, there will be overfit or underfit.
Both of them will decrease the model’s accuracy. In model training, one can use

testing and validation data to evaluate the generalization ability of the predictive
model. If themodel is overfitting, it will catch some detail in training data that does
not exist in the whole data space.When this model faces testing data, it cannot find
the characters that truly determine the example but handle it with the partial fea-
ture. To deal with overfitting, one can expand the dataset with more accurate data
samples, use some image processing methods to process the current dataset,
choose a more applicable model, and train the algorithm with early stopping.
In a MLP, the input is first passed through the input layer and then sequentially

through multiple hidden layers before reaching the final output layer. The hidden
layers allow the network to model complex relationships between the inputs and
outputs, making it suitable for a broader range of problems than a simple percep-
tion. The number of hidden layers and the number of nodes within each layer are
hyperparameters that can be adjusted to optimize the model’s performance. Add-
ing more hidden layers and nodes can increase the model’s capacity, allowing it to
model more complex relationships. It also increases the risk of overfitting, where
the model becomes too difficult and starts to memorize the training data instead of
generalizing to new, unseen data.
Regularization techniques, such as dropout, weight decay, and early stopping,

can reduce overfit and improve the model’s generalization performance.

y

x

y

x

y

x

Overfitting Optimal Underfitting

Figure 6.6 Schematic diagram of neural network in overfitting, optimal, and underfitting.

6.11 Generalization of Neural Networks 119

• Dropout: For instance, hi be the output of node i in a hidden layer. During train-
ing, node i is dropped out with probability p, meaning its output is set to zero,
i.e. hi = 0 with probability p. The resulting output of the layer, h , is given by
h = h × (1−p), where × denotes element-wise multiplication.

•Weight decay: TheW is the weights matrix, and λ is the weight decay factor. The
cost function Jwith weight decay is given by J= J0 + λ||W||2, where J0 is the orig-
inal cost function and ||W||2 is the L2 norm of the weight matrix.

• Early stopping: Jval be the cost function evaluated on a validation set, and nstop is
the number of epochs after which training will stop if the validation error has
not improved. Training stops when the difference between Jval and its minimum
value over the last nstop epochs is greater than a threshold.

6.12 Performance Measures

Performance measures are used to evaluate the accuracy and effectiveness of a
neural network model. Common performance measures for neural networks
are described in further subsections.

6.12.1 Confusion Matrix

Confusion matrix is a matrix that compares the predicted class labels with the true
class labels in a classification problem. The confusion matrix provides a summary
of the correct and incorrect classificationsmade by the model. It is used to evaluate
the accuracy of a binary or multi-class classification model. A typical confusion
matrix has the structure, as shown in Figure 6.7. In this Figure, TP represents true
positives, instances that are positive and classified as positive. TN represents
true negatives, instances that are negative and classified as negative. FP shows
the false positives, instances that are negative but classified as positive. FN
reported the false negatives, instances that are positive but classified as negative.

Positive (1)

Positive (1)

Negative (0)

Negative (0)

TP FP

FN TN

Actual values

Pr
ed

ic
te

d
va

lu
es

Figure 6.7 Structure of typical
confusion matrix.

120 6 Application of Neural Network in Learning and Recognition

Using the values in the confusion matrix, various performance measures such as
accuracy, precision, recall, F1 score, ROC curve, and AUC can be calculated:

Accuracy =
TP + TN

TP + TN + FP + FN
6 35

Precision =
TP

TP + FP
6 36

Recall =
TP

TP + FN
6 37

F1 Score = 2
Precision × Recall
Precision + Recall

6 38

These performance measures give different insights into the performance of a
classifier and are used to evaluate the trade-off between precision and recall.

6.12.2 Receiver Operating Characteristic

The Receiver Operating Characteristic (ROC) is a graphical representation of the
performance of a binary classifier. It plots the True Positive Rate (TPR) versus the
False Positive Rate (FPR) at different classification thresholds. The TPR and FPR
are calculated as follows:

TPR =
TP

TP + FN
6 39

FPR =
FP

TN + FP
, 6 40

where TP, TN, FP, and FN are the number of true positives, true negatives, false
positives, and false negatives, respectively. ROC curve is used to visualize the
trade-off between TPR and FPR of a binary classifier. The ROC curve is created
by plotting the TPR against the FPR at various threshold settings. The curve repre-
sents the relationship between sensitivity (TPR) and specificity. The mathematical
expression for sensitivity and specificity can be expressed as follows:

TPR =
TP

TP + FN
6 41

Specificity =
TN

TN + FP
, 6 42

where TP, TN, FP, and FN are the number of true positives, true negatives, false
positives, and false negatives, respectively.

6.12 Performance Measures 121

The AUC of the ROC curve is a scalar value that summarizes the performance of
the binary classifier by considering all possible threshold values. The AUC can be
calculated using the trapezoidal rule or numerical integration methods. AUC = 1
represents a perfect classifier, whereas AUC = 0.5 represents a random classifier.
For a binary classifier, the optimal threshold is chosen as the threshold that max-

imizes the difference between TPR and FPR, or the Youden’s J statistic. The You-
den’s J statistic is defined as J= TPR+ Specificity−1. The threshold that
maximizes J provides the best trade-off between TPR and FPR.

6.12.3 Area Under the ROC Curve

The area under the ROC curve (AUC) is a scalar value that represents the perfor-
mance of a binary classifier system as the discrimination threshold is varied. The
AUC is calculated by integrating the ROC curve, which is a plot of the TPR versus
the FPR for a binary classifier system. Mathematically, the AUC can be calculated
as the AUC, which is equivalent to the probability that a randomly selected pos-
itive sample will have a higher predicted score than a randomly selected negative
sample. The AUC ranges from 0 to 1, with values closer to 1 indicating higher per-
formance, and is a commonly used measure to compare different binary classifier
models. The mathematical formula for the AUC can be calculated as the definite
integral of the TPR (also known as Sensitivity or Recall) with respect to the FPR:

AUC =

1

0

TPR FPR dFPR, 6 43

where TPR (FPR) is the TPR at a specific FPR value, and the integral is calculated
over the range of possible FPR values, from 0 to 1. In practice, the AUC is usually
calculated using numerical approximations, such as the trapezoidal rule, rather than
analytically solving the integral. These definitions can be used to calculate the TPR
and FPR at different thresholds and plot the resulting values on a ROC curve.
Schematic diagram for the understanding of ROC-AUC is shown in Figure 6.8.

ROC curve

FPR (1–Specificity)

Change line

AUC = 100%

T
P

R
 (

se
ns

iti
vi

ty
)

Figure 6.8 Visual representation of
schematic diagram for ROC-ACU.

122 6 Application of Neural Network in Learning and Recognition

The AUC is a scalar summary of the overall performance of a binary classifier
and provides a single number that summarizes the trade-off between TPR and
FPR. A perfect classifier will have an AUC of 1, while a random classifier will have
an AUC of 0.5.

Summary

This chapter discussed several topics related to neural networks and their applica-
tions in various fields. It began by describing the structure and function of biolog-
ical neurons and how artificial neural networks mimic these structures. It also
discussed the backpropagation algorithm, which is commonly used to train neural
networks, and explained how the learning rate can affect training. Softmax regres-
sion and its application in multi-class classification problems is explored. The
advantages of softmax regression, including feature importance and the ability
to handle nonlinearly separable classes, and then described k-binary classifiers
and their use in multi-class classification problems with more than two classes
were also discussed.
Next, relational learning via neural networks and GNNs, which are designed to

handle complex relationships between data points, are also discussed. The math
equations that underpin these types of neural networks and their applications
in fields such as natural language processing and social network analysis are
explored. Finally, it discussed the use of neural networks in image processing
and how the structure of a neural network can be tailored to handle different types
of image recognition problems.
Overall, these topics demonstrate the wide-ranging applications of neural net-

works and the versatility of this type of machine learning algorithm.

Exercise Questions

Q.6.1 Describe the purpose of the activation function in a neural network, and
how is it mathematically defined?

Q.6.2 How does the backpropagation algorithm update the weights and biases of
a neural network, and what is the purpose of the learning rate?

Q.6.3 What are the differences between supervised and unsupervised learning,
and how are they used in neural networks?

Exercise Questions 123

.

Q.6.4 In a neural network, the activation function is applied to the weighted
sum of inputs to introduce nonlinearity. One commonly used activation
function is the sigmoid function, given by:

σ x =
1

1 + e− x

Calculate the activation value for an input x = 2.

Q.6.5 Describe transfer learning, and how is it used in neural networks?

Q.6.6 Illustrate the purpose of regularization in neural networks, and how is it
achieved mathematically?

Q.6.7 Describe the purpose of batch normalization in neural networks, and
how is it achieved mathematically?

Q.6.8 How dropout technique work in neural networks, and how is it achieved
mathematically?

Q.6.9 Backpropagation is a key algorithm used to train neural networks. The
weight update in backpropagation is calculated using the gradient of the
loss function with respect to the weights. For a single neuron, the weight
update equation can be written as:

Δw = η × δ × x

Given a learning rate of η = 0.1, an error gradient of δ = 0.5, and an
input x = 0.8, calculate the weight update Δw.

Q.6.10 What is the purpose of attention mechanisms in neural networks, and
how are they used in natural language processing?

Further Reading

Cruse H. Neural networks as cybernetic systems. Thieme, Stuttgart; 1996 Jan.
Getoor L, Taskar B, editors. Introduction to statistical relational learning. MIT

Press; 2007.
Yoh-Han, Pao. Adaptive Pattern Recognition and Neural Networks. Addison-Wesle 12

(1989):113–139.

124 6 Application of Neural Network in Learning and Recognition

7

Competitive Learning and Self-Organizing Map

7.1 Principal of Competitive Learning

The self-organizing map (SOM) is one of the most widely used unsupervised
artificial neural networks in which the system has no prior knowledge of the input
data’s properties or qualities, as well as the output data’s class labels. The network
learns to group sample input patterns into classes or clusters based on their com-
monalities. A cluster of patterns would have comparable characteristics. There is
no prior information of what characteristics are crucial for classification or the
number of classes. As the name implies, the network self-organizes to accommo-
date multiple types of inputs. The weighted layer’s number of nodes correlates to
the number of various classes. It is founded on the concept of competitive learning.
Competitive learning is a type of Artificial Neural Network (ANN) learning in

which various neurons or processing units compete to learn how to represent cur-
rent input. There are hierarchical groups of units in the network with inhibitory
and excitatory connections in a competitive learningmodel. Individual layers have
excitatory connections, while units in layered clusters have inhibitory connec-
tions. A cluster’s units are either active or inactive. In ANN, competitive learning
is a type of unsupervised learning in which nodes fight for the right to respond to a
subset of the input data. Competitive learning is a type of Hebbian learning that
operates by improving the specialization of each node in the network. It is great for
discovering data clusters.
Vector quantization and self-organizing maps are examples of models and algo-

rithms based on the competitive learning concept. The nodes associated with
weights compete with each other to win an input pattern in competitive learning
(vector). The node with the highest response for each individual input pattern is
selected and awarded the winner. Only the weights associated with the winning

125

Cybernetical Intelligence: Engineering Cybernetics with Machine Intelligence, First Edition.
Kelvin K. L. Wong.
© 2024 The Institute of Electrical and Electronics Engineers, Inc.
Published 2024 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/cyberintel

node are trained to bemore like the input pattern (vector). The weights of the other
nodes remain unchanged. The winner gets everything, while the losers get noth-
ing. As a result, it is known as aWinner Takes All algorithm (Losers gets nothing).
For Output Node 1:

Y 1 =
D

i = 1

XiWi1, 7 1

where each node is associated with a weight vector having D elements having
input vector Xi and associated weight vector of Y1.
The SOM is a dimensionality reduction approach based on neural networks that

is commonly used to represent a high-dimensional dataset as a two-dimensional
discretized pattern. The dimensionality of the data is reduced while the topology of
the data in the original feature space is preserved. The SOM is one of the most
widely used Unsupervised learning ANN, in which the system has no prior knowl-
edge of the input data’s properties or qualities, as well as the output data’s class
labels.
Competitive learning is one of the most commonly used learning strategies in

self-organizing networks. First, the basic concept is explained first. Pattern classi-
fication, clustering, and similarity in neural network applications, terms such as
input samples, input patterns, and input pattern samples are basically equivalent
concepts. The concept of common input patterns when it comes to identifying and
classifying problems. Patterns are quantitative descriptions or structural descrip-
tions of certain objects of interest, and pattern classes are collections of patterns
with certain common characteristics. Classification is under the guidance of class
knowledge and other tutor signals, the input patterns to be identified are assigned
to the respective pattern classes. The classification of non-tutor guidance is called
clustering, and the purpose of clustering is to classify similar pattern samples into a
class, and the results are not similar, so that the similarity and inter-class classi-
fication of pattern samples are realized. Since there is no expected output in the
training sample without a tutor, there is no prior knowledge about which class
a sample of the input pattern should belong to. For a set of input patterns, only
according to the degree of similarity between them into several classes, so the
similarity is the input pattern clustering basis.

•Measurement of similarity comparing the similarities of different patterns can
usually bemeasured by the distance between the two vectors. So, similarity mea-
surements are usually converted to vector distance measurements. The metric
between vectors determines the degree of similarity in an application. The
twomost common classificationmethods used in traditional pattern recognition
are Euclidean distance and angular measurement. The Euclidean distance is
usually the L2 norm, whereas the angle measurement uses the cosine theorem.

126 7 Competitive Learning and Self-Organizing Map

• Side suppression and competition:When a neuron is excited, it can inhibit nerve
cells in the surrounding neurons, causing competition between nerve cells and
causing multiple cells to excite, but a nerve cell that is most highly excited can
inhibit the surrounding neurons, resulting in a decrease in the excitement of the
surrounding neurons, which in turn wins the competition and other neurons
fail. The virtual connection line between each neuron in the competition layer
represented in the network demonstrates this inhibition. They are the weights in
a biological neural network layer that simulate the mutual inhibition of neu-
rons. This kind of inhibitory weight usually satisfies certain distribution rela-
tions, such as the inhibition of distance is weak, the inhibition of distance is
strong. This weight value is usually fixed in the learning algorithm. The compet-
itive learning method used is the method of “winner is King” in the study of
three elements of neural network which is summarized in the basic concept
of ANN and principle knowledge (complement).

• Normalization of vectors: Because different modes have nonuniform units, the
pattern vectors are normalized, which is the unit length, before data processing,
making the similarity metric easier to calculate. Two- and three-dimensional
unit vectors, for example, can be visually depicted on units and units of balls.
Because most of the time in machine learning, the input patterns are vectors
and are usually preprocessed using normalization, this is explained as a distinct
section to emphasize the relevance of this.

A competitive learning rule has three main components:

• A group of neurons that are identical except for some randomly distributed syn-
aptic weights and hence respond differentially to a set of input patterns.

• A restriction on each neuron’s “strength.”

• Only one output neuron (or one neuron per group) is active (i.e. “on”) at a time,
thanks to a process that allows neurons to compete for the right to respond to a
subset of inputs. A “winner-take-all” neuron is the one that wins the
competition.

Competitive learning is one of the most commonly used learning strategies in
self-organizing networks. The principle of competitive learning is based on the
inhibition phenomenon on the side of biological nerve cells. When a biological
neuron is in an excited state, the surrounding neurons will be inhibited, and
the neuron with the strongest inhibitory effect will be the only winning neuron.
In competitive learning, all units in the network unit group compete with each

other for the right to respond to the external stimulus pattern, and the unit that
wins the competition inhibits the response of the unit that loses the competition
to the stimulus pattern. Competitive learning is a kind of adaptive learning, which
makes the network unit have the characteristic of choosing to accept the external

7.1 Principal of Competitive Learning 127

stimulus mode. This learning method is applied to the ANN, which can be simply
divided into three steps.

7.1.1 Step 1: Normalized Input Vector

Among the best practices for training a Neural Network is to normalize your data
to obtain a mean close to 0. Normalizing the data generally speeds up learning and
leads to faster convergence. Also, the (logistic) sigmoid function is hardly ever used
anymore as an activation function in hidden layers of neural networks, because
the tanh function (among others) seems to be strictly superior. As shown in the
Equation (7.2), Xi is the i

th input pattern vector,Wj is the initial weight vector cor-
responding to Xi. The input pattern vector and initial weight vector of the network
are normalized respectively, where n is the number of input pattern vectors, andN
is the number of neurons in the competition layer.

Xi =
Xi

Xi
, i = 1, 2,…,n 7 2

Wj =
Wj

wj
, j = 1, 2,…,N 7 3

Typically, Euclidean distance of the vector equal to a certain predetermined
value, through the transformation below, called min-max normalization:

x =
x− xmin

xmax − xmin
u− 1 + 1 7 4

In Equation (7.4), x is representing the original data, x is the normalized data,
while xmax and xmin are respectively the maximum and minimum values of the
original vector, and U, l are respectively the upper and lower values of the new
range for normalized data. The Equation (7.4) is a linear transformation that main-
tains all the distance ratios of the original vector after normalization.

7.1.2 Step 2: Find the Winning Neuron

The similarity between each input pattern vector and the weight vector of each
neuron in the competition layer is compared, and the neuron with the highest sim-
ilarity is defined as the winning neuron. Assuming that the number of neurons in
the competition layer is N, the normalized initial weight vector is

Wj j = 1, 2,…,N , and its dimension is the same as the input pattern vector.

For the normalized input pattern vector Xi, denote the neuron most similar to this
input pattern vector as c where c {1, 2, …, N}, then:

c = argminj X −Wj , 7 5

128 7 Competitive Learning and Self-Organizing Map

can be transformed into:

X −Wc = min j X −Wj , 7 6

where c is the winning neuron andWc is the weight vector of the winning neuron.

7.1.3 Step 3: Adjust the Network Weight Vector and Output Results

In order for a neural network to learn, weights associated with neuron connections
must be updated after forward passes of data through the network. These weights
are adjusted to help reconcile the differences between the actual and predicted out-
comes for subsequent forward passes.

7.2 Basic Structure of Self-Organizing Map

SOM neural network is an unsupervised neural network, which adopts an unsu-
pervised self-organizing learning training mode. The basic structure of the SOM
neural network is shown in Figure 7.1, whichmainly includes two layers: the input
layer and the competition layer, and the competition layer is also the output layer.
The input layer is used to receive the information to be processed and transfer the
processing object to the competition layer; the competition layer is used to com-
pare and analyze the received data to find the internal rules between the input
information, so as to achieve the purpose of sorting and classification.
SOMwere originally mainly used for data presentation, but they have now been

utilized to solve a variety of challenges, including the traveling salesman problem.

Competition layer

O
ut

pu
t p

at
te

rn
 v

ec
to

r

In
pu

t p
at

te
rn

 v
ec

to
r

Figure 7.1 SOM network structure diagram.

7.2 Basic Structure of Self-Organizing Map 129

In most cases, map units or neurons constitute a two-dimensional space, resulting
in a mapping from a high-dimensional space to a plane. The computed relative
distance between the spots is preserved on the map. In SOM, points in the input
space that are closest to each other are mapped to nearby map units. As a result,
SOM can be used to analyze clusters in high-dimensional data. SOM are also capa-
ble of generalization. The network can detect or classify inputs it has never seen
before as data during generalization. New input is taken up with the map unit and
is therefore mapped.
The SOM neural network has the competitive classification function of the

self-organizing competitive neural network, which can map the topological distri-
bution features of the network input pattern vector to the competitive layer. The
algorithm only needs a small amount of sample data, and the data can be automat-
ically clustered by setting the parameters of the clustering algorithm, and the
degree of intelligence of the algorithm is good.
The common SOM neural network has two topological structures: one-

dimensional linear array and two-dimensional plane lattice. The difference between
the SOM network structure is mainly in the competition layer. Figure 7.2 is a
schematic diagram of the two-dimensional rectangular plane competition layer,

where x1 , x2,…, xn are the input vector of input layer.
Both in construction and algorithmic features, a SOM differs from traditional

ANNs. To begin with, rather than a sequence of layers, it is made up of a sin-
gle-layer linear 2D grid of neurons. All of the nodes on this grid are connected
directly to the input vector, but not to one another, implying that the nodes have

Output layer

Weights
matrix

x1
→ → →x2 xn = [xn1, xn2, ... , xnm]...

Input layer

Figure 7.2 Schematic diagram of the two-dimensional rectangular plane SOM.

130 7 Competitive Learning and Self-Organizing Map

no knowledge of their neighbor’s values and solely update the weight of their con-
nections as a function of the given inputs. The grid is a map that organizes itself
based on the input data at each iteration. As such, after clustering, each node has
its own (i, j) coordinate, which allows one to calculate the Euclidean distance
between two nodes by means of the Pythagorean theorem.

7.2.1 Properties Self-Organizing Map

In addition, a SOM adjusts its weights via competitive learning rather than error-
correction learning. As all nodes compete for the right to respond to the input, only
a single node is activated at each iteration in which the features of an instance of
the input vector are presented to the neural network. The chosen node the Best
Matching Unit (BMU) is selected according to the similarity between the current
input values and all the nodes in the grid. The node with the least Euclidean dif-
ference between the input vector and all other nodes is picked, along with its
neighbors within a given radius, to have their positions slightly changed to match
the input vector.
The entire grid finally matches the total input dataset by traversing over all of the

nodes on the grid, with like nodes grouped together in one area and dissimilar
nodes segregated.

7.3 Self-Organizing Mapping Neural Network
Algorithm

The SOM is made up ofm neurons that are arranged in a regular low-dimensional
map, typically a 2-Dmap. According to topological connections, these neurons are
connected to their neighbors as shown in Figure 7.1, for each input data, the neu-
rons are at minimum and maximum distance from among 1-neighborhood. For
SOM maps, there are two main topologies: rectangular and hexagonal. Each neu-
ron I have a d-dimensional weight vector w = (wi1, wi2, …., wid) with the same
dimension as the input space, where i = 1, 2 … m. One refer to the Figure 7.2
to illustrate the process of the SOM neural network algorithm. This process is
repeated for each input vector for a (usually large) number of cycles λ. The network
winds up associating output nodes with groups or patterns in the input data set. If
these patterns can be named, the names can be attached to the associated nodes in
the trained net.
During mapping, there will be one single winning neuron: the neuron whose

weight vector lies closest to the input vector. This can be simply determined by
calculating the Euclidean distance between input vector and weight vector.

7.3 Self-Organizing Mapping Neural Network Algorithm 131

While representing input data as vectors have been emphasized in this article,
any kind of object which can be represented digitally, which has an appropriate
distance measure associated with it, and in which the necessary operations for
training are possible can be used to construct a SOM. This includes matrices, con-
tinuous functions, or even other SOM.

7.3.1 Step 1: Initialize Parameter

Consistent with other neural networks, first use random numbers to assign values
to each weight vectorWj (j= 1, 2,…,N) of the output layer, and then normalize the

random numbers to obtain Wj j = 1, 2,…,N .

7.3.2 Step 2: Select Inputs and Determine Winning Nodes

An input pattern XP
i is selected from the training set, that is, a training sample, and

then normalized as an input, that is, the input is xPi . The P refers to the number of
features of the input pattern, i.e. the dimension. The number of neurons in the
input layer is determined by the dimension of the input vector, and one neuron
corresponds to one feature. At this point, there is a need to find the neuron that
is most similar to the input pattern as the winning node. Under the premise of nor-
malization, the larger the dot product of two points in the multi-dimensional
space, the closer the Euclidean distance is. Therefore, the dot product of the

weights Wj and xPi is calculated, and the position of the neuron where the maxi-
mum value is located in the calculation result is selected, and the neuron is the
winning node:

c = argmax Wj xPi 7 7

7.3.3 Step 3: Affect Neighboring Neurons

At the beginning of the algorithm, there is also a need to define a parameter: the
neighborhood radius, denoted as Nj∗ 0 , which is used to determine the influence
range centered on the winning neuron. In the algorithm rules, all neurons located
within the radius of the winning neuron’s neighborhood should update their
weights according to certain rules. This rule is the neighborhood function, which
is used to determine the influence of the winning node on its neighbors, that is, the
update range of each node in the winning neighborhood. The most common
choice is the Gaussian function, which can characterize the relationship between
the strength of the influence and the distance in the winning neighborhood. In
general, the initial neighborhood Nj∗ 0 is large, and Nj∗ t will gradually shrink
with the training time during the training process.

132 7 Competitive Learning and Self-Organizing Map

7.3.4 Step 4: Adjust Weights

Referring to the following equation, adjust the weights for all nodes within the
winning neighborhood Nj∗ t calculated from iteration to time t, where η(t, N)
is a function of the topological distance N between the jth neuron located within
the neighborhood radius and the winning neuron j∗ when the number of training
iterations is t.

wij t + 1 = wij t + η t,N xpi −wij t 7 8

7.3.5 Step 5: Judging the End Condition

For the judgment of the end condition of the entire algorithm process, it is to
determine whether the learning rate in the process of continuously adjusting
the value decays to a certain positive number set in advance. If the end condition
of the algorithm flow cannot be satisfied, then repeat steps 2–4 in the calculation
subprocess.

7.4 Growing Self-Organizing Map

A Growing Self-Organizing Map (GSOM) begins with only two neurons, resulting
in a one-dimensional arrangement. Following the standard SOM technique for
adapting the two matching weight vectors, either a third neuron is added to make
a longer line, alternatively, it is picked to create a 2 × 2-network by opening up an
additional output space dimension. In all following growth phases, the map result
space grid is enlarged by one by enhancing the expansion into one of the current

dimensions, i.e. ni ni + 1, i ≤ dA t , if a new dimension rises ndA t + 1 = 1

ndA t + 1 = 2, dA(t+ 1) = dA(t) + 1. All the starting nodes of the GSOM are bound-

ary nodes, i.e. each node has the freedom to grow in its own direction at the begin-
ning. The Figure 7.3 shows the three possible node growth options for a
rectangular GSOM. The algorithm has a parameter called a spread factor (SF)
to decide the level of spreading. It can take values from 0 to 1, where this factor
is independent of the data.
The local discrepancies between both the data points and the weight vector onto

which they have been mapped are used to decide which direction the grid
should be expanded. Take a look at the data points in the cell ωrk (the variety
of data points placed on the neuron rk), as well as the directions
mrk + ei −mr + ei mrk + ei −mr + ei . This is the outcome of local back projection
of the directions ei from the output space to the input space via nearby neurons

7.4 Growing Self-Organizing Map 133

(with appropriate corrections for neurons at the grid’s edge). The discrepancies
between data points v and the weight vector mrk can be decomposed.

θ =
dA

i = 1

ai v
mr + ei −mr + ei

mr + ei −mr + ei
+ v́, 7 9

and calculate ai(v) projection amplitude plus a residual value v́. The residual value
is the change in the current output space dimensionality dA(t) and the nominal
input space dimensionality, and it indicates deviations in all remaining dimen-
sions, the residual value represents deviations in all the remaining dimensions.
Amplitude of the projection of the v́ is utilized onto the first principal component
as an amplitude a adA + 1 v to determine the biggest feasible extension of the
residuals along one extra dimension after doing a principal component analysis
on the v́
After that, there is a normalization stage.

ai =
v

ai v

dA + 1

j = 1 a
2
j v

, i + 1,…, dA + 1 7 10

Growing Phase:

Input
Winner

selection
Weight

updating
Error

updating
Node

generation

Let W(i) be the weight of node I and X be the input vector. The algorithm will
find a BMU when a new input is presented to the network (winner). How can

Existing nodes

(a) (b) (c)

Winner nodes

New nodes

Figure 7.3 Node growth options in GSOM: (a) one new node, (b) two new nodes,
and (c) three new nodes.

134 7 Competitive Learning and Self-Organizing Map

choose the winning node? Calculating the Euclidean distance as shown in Equa-
tion (7.11) between the given input and all the nodes in the network identifies the
winner BMU node.

distance = X W i 7 11

The node with minimum distance is the Winner (BU). The error value (the dif-
ference between BU and the given input) for the winner node is defined as follows:

error BU = X −W BU 7 12

E t + 1 = E t + X −W BU 7 13

where E is the error function. After calculating the inaccuracy, the algorithmmust
determine whether or not a new nod should be added to the network. The error
distance is used to determine whether the present node network is sufficient. In
each iteration, the algorithm keeps adding the incorrect value to the winner node.
The algorithm considers the weight initialization under four categories:
Case (a and c):

if W 2 > W 1 Wnew = W1 − W2 −W1

if W1 > W 2 Wnew = W1 + W1 −W2

Case (b):

Wnew =
W1 + W2

2

Case (d):
There is only one older neighboring node for the new node. This case will occur

during the initial stage of the network or when the dummy nodes are removed.
Wnew = r1 + r2

2 , where r1 and r2 are upper and lower limits for weights. IfW new is
not between r1 and r2, it will fall under case (d).
Do the weights for the neighborhood nodes need to be adjusted? Yes, it is

required to do so. It is time to update the weight vectors. The degree of adaptation
(learning rate-LR) will be reduced exponentially over repetition, similar to SOM.
Weights of a node before and after updating weights are Wj(k) and Wj(k+ 1). The
input vector is X(k). The winner node’s k-neighboring nodes are represented by
N(k+ 1).

if j N k + 1

Wj k + 1 = Wjk + LR k × X k −Wj k

else Wj K + 1 = Wjk

When there are no more nodes to create, the smoothing phases begin.
The smoothing phase of the method smooths the overall error of the nodes that

7.4 Growing Self-Organizing Map 135

are grown at the final step or iteration. Even the smoothing phase’s initial LR is
smaller than the growth phases. To converge the error value, the input data is pre-
sented multiple times. During the smoothing step, no new nodes are generated.

7.5 Time Adaptive Self-Organizing Map

The time adaptive self-organizing map (TASOM) network is a modified SOM
network with adaptive learning rates and neighborhood sizes as its learning
parameters. Every neuron in the TASOM has its own learning rate and neighbor-
hood size. TASOM networks are distinguished by their adaptable learning rates
and neighborhood sizes. The weights of a TASOMnetwork are continually trained
by the input vectors with this feature. As a result, changes in the environment
are reflected in the weights and learning without any monitoring. TASOM’s
parameters TASOM is able to approximate as a result of this. The distribution of
input space with a focus on the most important if the input vectors are significantly
different, recent input vectors from the ones before it.
For each new input vector, the neighborhood size and learning rate of the

winning neuron and the learning rates of its neighboring neurons are updated.
The TASOM can be concise in eight steps:

I) Initialization: Choose some values for initial weight vectorswj(0), where j= 1, 2,
…, N;

and N; and N is the no. of neurons in the lattice. Initialize the learning rate
parameters nj(0) with values close to unity. Any value between 0 and 1 can be used
for the constant parameters α, β, αs, and βs. The constant parameters sf, and sg should
be set to satisfy the need of the application. Ri(0) should be set to include all the neu-
rons. The components sk(0) of the scaling vectors s(0) = [s1(0), …, sp(0)]T should be
set to random values between 0 and 1, where p is the dimension of input weight
vectors. The parametersEk(0) andE2k(0)may be initializedwith some small random
values. Neighboring neurons of any neuron i in a lattice are included in the set.
For any neuron i in a one-dimensional lattice N, NHi = {i− 1, i+ 1} where NHN =
{N− 1} and NH1 = {2}. Similarly for any neuron i1, i2 in a two-dimensional lattice
N = MxM, NH i1,i2 = i1 − 1, i2 , i1 + 1, i2 , i1, i2 − 1 , i1, i2 + 1 ,

NH 1,1 = 1, 2 , 2, 1 ,NH 1,M = 1,M − 1 , 2,M ,NH M,1

= M, 2 M − 1 ,NH M,M = M,M − 1 , M − 1,M
7 14

II) Sampling: Draw a sample-input vector x from the input distribution.
III) Similarly matching: To use the maximum-distance Euclidean norm as the

matching metric,

136 7 Competitive Learning and Self-Organizing Map

pick the ideal matching or winning neuron i(x) at time n:

i x = argmin x n −wj n s
, j = 1, 2,…,N 7 15

where

x n −wj n s = k

xkn−wj,kn
skn

2
1
2

, 7 16

updating the neighborhood size: Using the following two equations, adjust the
winning neuron i(x) neighborhood size Ai(n):

Ai n + 1 = j N d i, j ≤ Ri n + 1 7 17

Ri n + 1 = Ri n + β g
1

f NHi sg j NHi

wi n −wj n s −Ri n ,

7 18

where the function f(.) gives the cardinality of a set. The neighborhood sizes of the
other neurons do not change. d(i, j) is the difference between two neurons i, j in
lattice.

• Updating the learning-rate parameters: Adjust the learning-rate parameters in
the neighborhood Ai(x)(n+ 1), of the winning neuron i(x) by:

nj n + 1 = nj n + α f
x n −wj n s

sf
− nj n

for j Ai x n + 1

Updating the Synaptic weights: Using the following update rule, adjust the syn-
aptic weight vectors of all output neurons in the neighborhood of Ai(x)(n+ 1):

wj n + 1 =
wj n + nj n + 1 x n −wj n ,

wj n ,

j Ai x n + 1

otherwise
,

7 19

where is the neighbor function placed on the winning neuron nj(n+ 1) is the
learning-rate parameter i(x).

updating the Scaling vector: Adjust the scaling vector s(n+1) with the following
equations:

s n + 1 = s n
y n + 1
x n + 1

, 7 20

where s(n) is the scaling vector at time step n, s(n+ 1) is the updated scaling vector
at time step n+ 1 y(n+ 1) is the output vector at time step n+ 1, x(n+ 1) is the

7.5 Time Adaptive Self-Organizing Map 137

input vector at time step n+ 1, . denotes the Euclidean norm or magnitude of a
vector. It should be noted that in this algorithm, the initialization step of the algo-
rithm is used only for once during the lifetime of the network. New versions of
TASOM networks were introduced and used for bilevel thresholding of gray-level
images, tracking centers or boundaries of moving objects, and adaptive clustering.
What makes TASOM interesting is that once the TASOM-based networks are
trained in a specific environment, they are able to follow changes of the environ-
ment without reinitializing the weight vectors or learning parameters, andwithout
any outside intervention.

7.5.1 TASOM-Based Algorithms for Real Applications

To solve Bilevel thresholding or gray level segmentation TASOM work with two
neurons forming a 1-D lattice. The image gray level pixels form the 1-D input
values of the TASOM, which are used for training the TASOM. During this
network training, the number of neurons is allowed to change. The complete
proposed TASOM BTA is specified in the following steps:

• Set the parameter to a positive constant value that is less than 255, which is the
image’s maximum gray level value. This parameter governs the proposed algo-
rithm’s accuracy in determining the threshold value. Lower values yield more
precise threshold values.

• Construct a TASOM network with two neurons forming a 1-D lattice.

• Set the two neuron indexes: a and b.

• Create a new neuron between and call it the “virtual valley neuron” or simply
“valley neuron” represented as u so that

wu =
wa + wb

2
−

σa + σb
2

, 7 21

ηu = ηa + ηb 7 22

• Find the neurons that do not win any competition during the training and delete
those of them which are placed at the head or tail of the lattice

• If max(wu−wu− 1 , wu−wu+ 1) < θu, then goto next step.

• The place that a new neuron is to be inserted next to the current valley neuron is
defined:

• If wu−wu− 1 > wu−wu+ 1 , then set a = u and b = u−1; else set a = u and
b = u+1.

• The weight of the genuine valley neuron equals the intended threshold.
The (virtual) valley neuron u is used to find the true valley neuron, which is
detailed below.

138 7 Competitive Learning and Self-Organizing Map

The current right neuron is chosen as the left valley neuron. The same process is
done for the right direction, and the right valley neuron is found. Now, the real
valley neuron is the one having the least winning frequency among the two can-
didate valley neurons. The desired threshold is then the weight value of the real
valley neuron. Now, those pixels of the image having gray levels less than the
threshold are set to black, and those pixels with gray levels greater than the thresh-
old are set to white.

7.6 Oriented and Scalable Map

A SOM can be turned into an Oriented and Scalable Map (OS-Map) by generaliz-
ing the neighborhood function and the winner selection. The homogeneous
Gaussian neighborhood function is replaced with the matrix exponential. Thus,
there can specify the orientation either in themap space or in the data space.More-
over, it associates the map’s global scale with the locality of winner selection.
SOM’s stepwise recursive algorithm is inherited by OS-Map, in which t is repre-

senting the current number of iterations, ϕ is a negative constant, and N is the
number of nodes of the map. Similarly, d is representing the dimension of the data
space while A is the d × d orientation matrix. Hence, d × d neighborhood matrix is
equal to the hci(t).
Every model vector should be initialized mi, i [0, N], mi Rd. Initialize learn-

ing rate α(t) and neighborhood radius σ (t).
for T iterations

a) retrieve an input item x(t), x(t) Rd.

select the winner mc(t) by c = argmini x(t)−mi(t) , i {i s(i) < 0}.

b) update the winner and its neighbors:
For each node mi

mi t + 1 mi t + hci t x t −mi t 7 23

hci t = α t e
− A

2σ2 t 7 24

α t 1− s min α + s max α

σ t 1− s min σ + s max σ

s =
e
φt
T − eφ

1− eφ
7 25

The above algorithm and the original SOM have two major differences. First,
rather than choosing the winner from all of the nodes, a contingent subset is

7.6 Oriented and Scalable Map 139

chosen. The scaling of the map is directly affected by such local selection. Second,
instead of being read as a scalar, the neighborhood function, hci(t), is treated as a
matrix. An anisotropic mapping or, to put it another way, adjusting to the desired
direction of the gradient of the model values across the map is possible with such a
neighborhood function.
In the regression formula, the term x(t)−mi(t) is a d-dimensional vector. As a

result, it is natural to think of hci(t) as amatrix (rather than a scalar in SOM), which
is useful for orientation control. The increment is represented by three bivariate
Gaussian functions in cases when the input term x(t) is three-dimensional
(denoted with x, y, and z as subscripts):

hci t x t −mi t = α t

e
−

cx Px D
2 + ćx Ṕx D

2

2σ2 t x t −mi t x

e
−

cy Py D
2
+ ćy Ṕy D

2

2σ2 t x t −mi t y

e
−

cz Pz D
2 + ćz Ṕz D

2

2σ2 t x t −mi t z

, 7 26

where D is the vector going to the ith node on the map, beginning at the winner c.
The horizontal component, Du represents the horizontal distance between two
nodes, while the vertical component, Dv represents the vertical distance between
two nodes. Px indicates the preferred gradient direction for the current winnermc’s
x-component. For example, if the x-component of model vectors must vary twice as
fast in the vertical direction as it does in the horizontal, Px = (± 1, 0) (modulo π)
and cx/c x = 1/2 can be used. For the x-component of modelmc, Px represents the
first eigenvector of the desired distribution (gradient).
The second eigenvector, Px, is parallel to the first. As a result, the matrix expo-

nential is the neighborhood function in:

hci t = α t exp

=
1

2σ2 t

P2
xuP

2
xv 2PxuPxv

P2
yuP

2
yv 2PyuPyv

P2
zuP

2
zv 2PzuPzv

D2
uD

2
v

D2
vD

2
u

DuDv −DuDv

× …

… ×
cx cy cz

ćx ćy ćz
I

,

7 27

where identity matrix is I. The Hadamard product yields a diagonal
covariance with an exponential that is also a diagonal matrix. Multiple heteroge-
neous kernels, broaden the notion of neighborhood function. When

Px = Py = Pz =
1
2
,

1
2

and cx = ćx = cy = ćy = cz = ćz.

140 7 Competitive Learning and Self-Organizing Map

The winner is chosen globally (s(i) < 0, i). In data space, the manifold created
by the map is expected to be aligned with the torus surface.
The simple and general form of the OS-Map algorithm is suited for mapping

from image to image, from image to geometry, from surface to grid, and so forth.
From a theoretical point of view, OS-Map still insists on the self-organizing fashion
(no formulated global expectation) as the original version of SOM. To find this type
of self-organization is ideal for integrating the new notion of orientation and
scaling. Self-organization suggests an opportunity to combine the OS-Map with
hardware parallel computing.

7.7 Generative Topographic Map

The Generative Topographic Mapping model is a probability density model that
depicts the distribution of data in a multi-dimensional space using a fewer number
of latent (or hidden) variables. It is possible to employ a nonlinear link between the
latent space and the data space while remaining tractable by using a discrete grid
of points in latent space, akin to the nodes of the SOM. Generative topographic
map (GTM) is a machine learning method that is a probabilistic counterpart of
the SOM, is probably convergent, and does not require a shrinking neighborhood
or a decreasing step size. It is a generative model: the data is assumed to arise by
first probabilistically picking a point in a low-dimensional space, mapping the
point to the observed high-dimensional input space (via a smooth function), then
adding noise in that space. A latent variable model seeks a D-dimensional repre-
sentation of the p(t) data t = (t1, …, tD) in terms of a number L of latent variables
x = (x1, …, xL). This is accomplished by first considering a function y(x; W) that
maps point x in the latent space to points y(x; W) in the data space. The mapping
is guided by a matrix of parametersW, which might be a feed-forward neural net-
work with W representing the weights and biases. For example, in the case when
the latent-variable space’s dimensions L is less than the data space’s dimensional-
ityD, since it is needed to capture the fact that the data has an intrinsic dimension-
ality of less than D. The transformation y(x; W) The latent-variable space is then
embedded in an L-dimensional non-Euclidean manifold S. The description of the
GTM starts by defining a q-dimensional latent space. Using these basis functions,
there define a nonlinear transformation from the latent space to the data space
given by a linear combination of the basic functions so that each point u in latent
space is mapped to a corresponding point y in the D-dimensional data space given
by Equation (7.28).

y = W ϕ u , 7 28

where W is a D ×M matrix of weight parameters.

7.7 Generative Topographic Map 141

In order to formulate a latent variable model which is similar in spirit to the
SOM, it considers a prior distribution p(x) consisting of a superposition of delta
functions as shown in Figure 7.4, located at the nodes of a regular grid in latent
space. Each node is mapped to a point in data space, which forms the center of
the corresponding Gaussian distribution.
When a probability distribution p(x) is defined in the latent-variable space, a

corresponding distribution p(y W) is defined in the data space. For reasons that
will become evident later, hence refer it to p(x) as the previous distribution of x.
Because of L<D, the t-space distribution would be conformed to the
L-dimensional manifold and so singular. Because the data will only dwell on a
lower-dimensional manifold in actuality, it is necessary to add a noise model
for the t vector. Here choose a radially-symmetric Gaussian centered on y(x, W)
with variance β−1 as the t distribution for a given x and W, so that

p t x,W , β =
β

2π

D 2

e
−
β

2
y x;W − t 2

7 29

The Bernoulli model for categorical variables (with sigmoid conversion of y) and
the multinomial model for two distinct classes are two others p(t x) models. By

x (data)

Reference points
Latent points

y = W ϕ (r)

r1

y1

r2

y2
y3

y4

y7
y8

y9

y5
y6

r3

r4 r5 r6

r7 r8 r9

d3

d2

d1

Figure 7.4 Generative topographic map.

142 7 Competitive Learning and Self-Organizing Map

integrating the x-distribution, the t-space distribution for a given amount of W is
obtained.

p t x,W , β = p t x,W , β p x dx 7 30

Parameter matrix W and the inverse variance for a data set can be obtained by
using maximum likelihood D = (t1, …, tN) containing N data points. In reality, it is
more practical to maximize log probability, which is given by

L W , β = ln
N

n = 1

p tn W , β 7 31

Furthermore, once the earlier distribution p(x) is determined and the mapping’s
functional form y(x, W), then W and β by maximizing L(W, β) can be calculated.
The integral becomes a convolution of two Gaussians, each of which is a Gaussian,
if y(x, W) is a linear function of W and p(x) is Gaussian, the integral becomes a
convolution of two Gaussians, each of which is a Gaussian. For a Gaussian noise
distributed p(t x) with a diagonal covariance matrix, the conventional factor anal-
ysis model is built. The model is strongly connected to principal component anal-
ysis in the case of the radially symmetric Gaussian provided by Equation (7.29),
because the adjusted principal eigenvectors provide columns in the expectation-
maximization solution for W. Furthermore, extend this formalism to nonlinear
functions y(x,W) and construct amodel that is akin to the SOM technique in spirit.
As a conclusion, look at a particular version of p(x) that is generated by a summa-
tion of delta functions in latent space centered on regular grid nodes.

p x =
1
K

K

i = 1

δ x− xi 7 32

In that case, the integral could be computed once again analytically. The center
of a Gaussian density function is formed by mapping each point xi to a correspond-
ing point y(xi,W) in data space. The functional form in data space has the following
form, as shown below.

p t x,W , β =
1
K

K

i = 1

p t xi,W , β 7 33

Then, the log-likelihood function is

L W , β =
N

n = 1

ln
1
K

K

i = 1

p tn xi,W , β 7 34

Since the Gaussians’ centers, provided by p(t x, W, β),they are unable to move
individually, but are linked by function y(xi, W), the distribution p(t W, β) For

7.7 Generative Topographic Map 143

the given noise model, which corresponds to a limited Gaussian mixture model,
y(x, W). Note that if the mapping function y(x, W) is smooth and continuous,
the projected points y(xi,W) will need to have a topographic ordering in the sense
that any two closes in latent space coordinates xA and xB will translate to points y
(xA, W)and y(xB, W).
In the E-step, it uses the current values of the parametersW and β to evaluate the

posterior probability, or responsibility, which each component i takes for every
data point xn, which, using Bayes’ theorem, is given by

ζ W , β =
N

n = 1

ln ρ xn W , β 7 35

Rni = p i xn =
p xn i

jp xn j
7 36

Then in the M-step, use the responsibilities to re-estimate the weight matrix W
by solving the following system of linear equation:

ϕTGϕ +
α

β
I WT

new = ϕTRX 7 37

In the Equation (7.37), ϕ represents the designmatrix of the input features,G is a
matrix that specifies the pairwise similarity between features, α is the regulariza-
tion parameter, β is the precision parameter, I is the identity matrix, and RX is the
target output vector. The equation is used to update the weight vectorW in an iter-
ative process, by solving for Wnew. The regularization term helps to balance the
trade-off between the fitting error and the complexity of the model and can
improve the generalization performance on unseen data.
By adding a regularization term to the log-likelihood in the standard GTM, one

useful modification is to use penalized maximum likelihood. A quadratic regular-
ize of the type is the simplest example:

1
2
α w 2, 7 38

where w is a column vector formed by concatenatingW’s subsequent columns and
the hyperparameter α is a fixed constant. The regularized will be interpreted as the
logarithm of a Gaussian prior distribution over the weights, and techniques for
handling probabilistically will be presented. The regularized is added to the EM
algorithm’s M-step, resulting in a straightforward modification.

ϕTGϕ +
α

β
I WT

new = ϕTRX , 7 39

where I is the M × M unit matrix.

144 7 Competitive Learning and Self-Organizing Map

Summary

In this chapter, it is briefly discussed about competitive learning and their princi-
ples and also details explanation about self-organized map. The SOM is a general
unsupervised technique for grouping comparable instances physically adjacent to
one another in high dimensional data. A number of neural processing elements, or
units, make up the model. These units are organized using a topology, with the
most common option being a two-dimensional grid. Instance presentation and
weight vector adaptation can be used to describe the training process of SOM. Each
training iteration t starts with the random selection of one instance x, x X, and
X Rn. The SOM is given with this instance, and each unit chooses whether or not
to activate it. The activation of a unit is usually calculated using the Euclidean dis-
tance between the weight vector and the instance. A support vector machine
(SVM) is a learning algorithm for binary classification (pattern recognition) and
real-value function approximation (regression estimate). The goal is to map the
n-dimensional input space onto a high-dimensional feature space in a nonlinear
way. A linear classifier is built to classify this high-dimensional feature space. The
training data is labeled as follows: S = {(xi, yi) i = 1, 2, …, N}, yi {−1, 1}, xi Rd.
Consider a hyperplane that separates the positive from the negative examples: w
x + b = 0 is satisfied from those points x which lie on the hyperplane. Moreover, w
is orthogonal to the hyperplane, |b|/||w|| represents the perpendicular distance
from the hyperplane to the origin, and ||w|| is the Euclidean norm of w. Let d+

and d− be the two shortest distance from the separating hyperplane to the closest
positive (or negative) example. Define the margin of a separating hyperplane to be
d+ + d−. Furthermore, most of the control theory schemes rely on an accurate sys-
tem model. Writing down the dynamics from basic principles becomes increas-
ingly difficult as these systems become more complicated. In these situations,
neural networks are utilized to directly approximate the dynamics using system
data. In this sense, neural networks can be regarded as a nonlinear version of
linear regression. Without explicitly describing the system dynamics, neural
networks can be utilized to develop controllers directly from the state. This prob-
lem belongs to the model-free reinforcement learning domain, which is properly
titled. Control theory is based on system theory, with a strong emphasis on analyz-
ing the underlying tools and procedures, which are currently mostly unavailable
for neural networks. Neural networks are more used within the robotics than in
control theory to achieve the above-mentioned goals. A self-organizing map
(SOM) or self-organizing feature map (SOFM) is an unsupervised machine learn-
ing technique used to produce a low-dimensional (typically two-dimensional)
representation of a higher-dimensional data set while preserving the topological
structure of the data. The network learns to group sample input patterns into
classes or clusters based on their commonalities. A cluster of patterns would have
comparable characteristics. There is no prior information of what characteristics

Summary 145

are crucial for classification or the number of classes. Unfortunately, the funda-
mental principles discovered in Cybernetics have been lost in this dark age of
AI. Paul Pangaro is one of the last remaining devoted monks of the “old religion”
of Cybernetics, and he gives us a detailed definition of cybernetics. In comparison
to traditional AI’s disembodied and context-free viewpoint, second-order cyber-
netics, which includes the observer in its discourse, provides a broader foundation
for understanding learning. In reality, this second-order concept corresponds to
meta-learning concepts. Advances in deep learning reveal a perspective that is
more in line with what is found in Cybernetics. This should come as no surprise;
after all, cybernetics is influenced by biology, and the artificial neuron is inspired
by both. When ideas from related domains like evolutionary biology, nonlinear
dynamics, and complexity theory are introduced into the study lexicon, deep learn-
ing will advance faster. Norbert Weiner’s Cybernetics book is unusual in that it
covers a wide range of themes, including groups, statistical mechanics, communi-
cation, feedback, oscillation, gestalt, information, language, learning, self-replica-
tion, and self-organization.

Exercise Questions

Q.7.1 What is the mathematical expression for the SOM algorithm, and how
does it update the weights of the neurons based on the input data?

Q.7.2 Discuss how the Self-Organizing Map (SOM) is biologically inspired?

Q.7.3 What do youmean by competitive learning inmachine learning, and what
are the basic elements of competitive learning?

Q.7.4 How is the quantization error used to measure the quality of the SOM rep-
resentation of the input data, and what is the mathematical expression for
the quantization error?

Q.7.5 Explain the structure of SOM and differentiate between SOM and PCA.

Q.7.6 Is the self-organized feature map an example of competitive learning?

Q.7.7 How do you apply SOM to handwritten digits recognition?

Q.7.8 Explain how the SOM is analogous to SVM and also applications in robot-
ics, etc.

Q.7.9 How one can use SOM and SVM for email classification?

146 7 Competitive Learning and Self-Organizing Map

Q.7.10 Describe and explain the curse of dimensionality in the context of
machine learning.

Q.7.11 How can the SOM algorithm be adapted to perform unsupervised clus-
tering of the input data, and what is the mathematical expression for
the clustering based on the BMU of each input data point?

Q.7.12 Can cybersemiotics provide an update regarding the design processes in
architecture and urbanism?

Q.7.13 What is meant by Cybernetics Protector?

Q.7.14 Explain the concept of the U-matrix in a SOM and visualizes it in the
topology of the map and the distance between neighboring neurons,
and what is the mathematical expression for the U-matrix?

Further Reading

Bedi J, Toshniwal D. Spark map reduce based framework for seismic facies
classification. Journal of Applied Geophysics. 2022 Oct 1;1(205):104762.

Boem A. Norbert Weiner and the origins of cybernetics. Interface Cultures; 2017.
Dubberly H, Pangaro P. Cybernetics and design: conversations for action. In: Design

cybernetics: navigating the new; 2019 Jul 31: pp. 85–99. Cham: Springer International
Publishing.

Kohonen T, Oja E, Simula O, Visa A, Kangas J. Engineering applications of the self-
organizing map. Proceedings of the IEEE. 1996 Oct;84(10):1358–84.

Further Reading 147

8

Support Vector Machine

8.1 The Definition of Data Clustering

Support VectorMachine (SVM) is a type ofmachine learning algorithm that can be
used for classification and regression tasks. While SVMs are typically known for
their classification abilities, they can also be used for clustering data. Data cluster-
ing is the process of grouping together similar data points into clusters. SVM-based
clustering is often referred to as support vector clustering (SVC). SVC is a nonpa-
rametric, unsupervised learning algorithm that aims to partition the data into
groups such that the points within a group are more similar to each other than
to those in other groups.
SVCworks by constructing a hyperplane that separates the data into two classes,

with the hyperplane being equidistant to the nearest data points of each class. The
hyperplane is defined by a set of support vectors, which are the data points closest
to the hyperplane. The distance between the hyperplane and the support vectors is
maximized, which ensures that the hyperplane is the best possible separator for
the given data.
In SVC, the goal is to find a hyperplane that separates the data into groups

or clusters. The hyperplane is defined by a weight vector w and a bias term b.
Mathematically, the hyperplane can be represented as:

WT x + b = 0, 8 1

where x is a data point. The hyperplane divides the feature space into two regions:
one whereWT x+ b> 0 and one whereWT x+ b< 0. Data points on either side of
the hyperplane are assigned to different clusters.

149

Cybernetical Intelligence: Engineering Cybernetics with Machine Intelligence, First Edition.
Kelvin K. L. Wong.
© 2024 The Institute of Electrical and Electronics Engineers, Inc.
Published 2024 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/cyberintel

To find the hyperplane, SVC uses the same optimization problem as SVM for
classification. This optimization problem can be formulated as:

minimize
1
2

w 2 + c
i
ξi, 8 2

subject to yi(w
T xi+ b)≥ 1− ξi, and ξi≥ 0 for all i = 1, …, N. Note that ||w|| is the

Euclidean norm of the weight vector, c is a regularization parameter that controls
the trade-off between maximizing the margin and minimizing the classification
error, yi is the class label of data point xi (+1 or −1), and ξi is a slack variable that
allows for some misclassification of data points.
The objective function of the optimization problem is to minimize the L2 norm

of the weight vector, which corresponds to maximizing the margin between the
hyperplane and the closest data points of each class. The slack variables ξi are
added to the objective function to allow for some misclassification of data points.
The inequality constraints enforce that the hyperplane separates the data into dif-
ferent classes with a margin of at least 1. To solve the optimization problem, one
use the Lagrangian function:

L w, b, ξ, α, μ =
1
2

w 2 + c
i
ξi − i

αi yi WT x + b − 1 + ξi −
i
μiξi,

8 3

where αi and μi are the Lagrange multipliers associated with the inequality
and nonnegativity constraints, respectively. One can then obtain the dual form
of the optimization problem by maximizing the Lagrangian with respect to the
Lagrange multipliers:

maximize LD α =
i
αi −

1
2 i, j

αiαj yi yj x
T
i xj, 8 4

subject to 0≤ αi ≤ c for all i = 1, …, N, and iαi yi = 0. Where LD(α) is the dual

function, and xTi xj is the dot product between data points xi and xj in the feature
space. The dual form of the problem is in terms of the Lagrange multipliers αi,
rather than the weight vector w and bias term b.
Once the optimal values of the Lagrange multipliers αi is found, the weight

vector w and bias term b can be found as follows:

w =
i

αi yixi 8 5

b = yk
i

αi yix
T
i xK , 8 6

where k is any data point on the margin, i.e. a support vector with 0 < αi < c.

150 8 Support Vector Machine

There are various distance calculation methods to calculate the distance
between a data point xi and the hyperplane, and for all proposed “distance
measure,” they need to satisfy:

dist xi, xj ≥ 0 8 7

dist xi, xi = 0 8 8

dist xi, xj = dist xj, xi 8 9

dist xi, xj ≤ dist xi, xk + dist xk , xj 8 10

Next, some common distance measurement methods are given.
(1) Euclidean distance
Figure 8.1 is a schematic diagram of Euclidean distance. Euclidean distance is

the easiest-to-understand distance calculation method, which is derived from the
distance formula between two points in Euclidean space. Straight-line distance
between two points. The Euclidean distance dist (xi, xj) of samples xi and xj is:

dist xi, xj =
d

k = 1

x k
i − x k

j

2
8 11

(2) Manhattan distance
Figure 8.2 is a schematic diagram of Manhattan distance. Manhattan distance,

also known as city block distance, is derived from the actual driving distance
to drive from one intersection to another intersection in Manhattan. It is mainly
used for distance calculation between two points such as chessboard and city.
The Manhattan distance dist(xi, xj) for samples xi and xj is:

dist xi, xj =
d

k = 1

x k
i − x k

j 8 12

x1

x2

Figure 8.1 Schematic diagram of Euclidean
distance.

8.1 The Definition of Data Clustering 151

(3) Minkowski distance
The Minkowski distance is the most commonly used for a given sample. Given

sample xi = (xi1, xi2, …, xin) and xj = (xj1, xj2, …, xjn), The Minkowski distance
dist(xi, xj) for samples xi and xj is:

dist xi, xj =
n

u = 1

xiu − xju
p

1
p

8 13

One can further explore Minkowski distance. When p = 1, Minkowski distance
is Manhattan distance; when p = 2, Minkowski distance is Euclidean distance;
when p approaches infinity, Chebyshev distance is achieved.
SVC is a powerful method for clustering data, especially when the data is non-

linearly separable. By maximizing the margin between the clusters, SVC can effec-
tively separate the data and assign each point to the appropriate cluster.
Additionally, the use of slack variables in the optimization problem allows for
some degree of misclassification, making SVC more robust to noisy or imperfect
data.

8.2 Support Vector and Margin

SVM is a supervised machine learning algorithm that is used for classification and
regression tasks. The goal of SVM is to find a hyperplane in a high-dimensional
space that separates the data points into different classes with the largest possible
margin as shown in Figure 8.3. The margin is the distance between the hyperplane
and the closest data points of each class. SVM is particularly useful for dealing with
high-dimensional data and nonlinearly separable data by using kernel functions to
transform the input space into a higher-dimensional space where the data points

x1

x2

Figure 8.2 Schematic diagram of Manhattan
distance.

152 8 Support Vector Machine

are more separable. SVM works by identifying a set of support vectors, which are
the data points that lie on the margin boundaries or are misclassified, and using
them to define the optimal hyperplane and margin.
Support vectors are the data points that lie on the margin boundaries or are mis-

classified. These are the most important data points for determining the location
of the hyperplane and the margin. The reason for this is that the optimization
problem in SVM only depends on the inner product between data points, so the
solution depends only on the support vectors.
To see why this is true, consider the dual form of the SVM optimization problem:

maximize LD α =
i
αi −

1
2 i, j

αiαj yi yj x
T
i xj, 8 14

subject to iαi yi = 0 and αi ≥ 0 for all i = 1, …, N. Where αi is the Lagrange
multiplier associated with the inequality constraint for data point xi. The solution
to the optimization problem is a weight vector w that can be expressed as a linear
combination of the support vectors:

w =
i

αi xiyi, 8 15

where yi is the class label of the data point. The margin is defined as the distance
between the hyperplane and the closest data points of each class. One can define

Optimal hyperplane

Maximum margin

Support vector

Support vector

Figure 8.3 Procedure of support vector machine.

8.2 Support Vector and Margin 153

two parallel hyperplanes that pass through the closest data points and have a dis-
tance of 2M between them. These hyperplanes are called the margin boundaries.
The distance between the margin boundaries is 2M, and the margin is half of this
distance or M.
Mathematically, the margin can be represented as:

M =
1
W

, 8 16

where w is the Euclidean norm of the weight vector w. The margin is therefore
inversely proportional to the norm of the weight vector. Maximizing the margin
corresponds to minimizing the norm of the weight vector.
The support vectors are the data points for which the equality holds, i.e. the

points that are closest to the hyperplane and lie on the margin boundaries. All
other data points have a distance greater than the margin and do not affect the
location of the hyperplane.
To find the optimal hyperplane and margin, SVM uses an optimization problem

that maximizes the margin while minimizing the classification error. The optimi-
zation problem can be formulated as:

minimize
1
2

w 2, 8 17

subject to yi(w
Txi+ b)≥ 1 for all i = 1, …, N, where N is the number of data points.

The inequality constraints ensure that all data points are correctly classified and lie
on the correct side of the hyperplane. The objective function is to minimize the L2
norm of the weight vector, which corresponds to maximizing the margin between
the hyperplane and the closest data points of each class. To solve the optimization
problem, one use the Lagrangian function:

L w, b, a =
1
2

w 2 −
i

αiyi w
Txi + b − 1, 8 18

where αi is the Lagrange multiplier associated with the inequality constraint for
data point xi.
One can then obtain the dual form of the optimization problem by maximizing

the Lagrangian with respect to the Lagrange multipliers αi:

maximize LD α =
i
αi −

1
2 i, j

αiαj yi yj x
T
i xj, 8 19

subject to iαiyi = 0 and αi ≥ 0 for all i = 1, …, N.
Once the solution has been obtained to the dual problem by maximizing the

Lagrangian with respect to the Lagrange multipliers αi, one can use the values
of αi to compute the weight vector w and the bias term b.

154 8 Support Vector Machine

The weight vector w can be computed as:

w =
i

αi yixi, 8 20

where xi is the feature vector of the ith data point. The bias term b can be com-
puted as:

b = yk −
i

αi yix
T
i xk , 8 21

where k is any index for which 0 < αk< c, i.e. any index corresponding to a support
vector that lies on the margin.
Once one have computed the weight vector w and the bias term b, one can use

them to make predictions on new, unseen data points. To classify a new data point
x, compute the following decision function:

f x = wTx + b 8 22

If f (x) > 0, one classify x as belonging to the positive class, and if f (x) < 0, classify
x as belonging to the negative class. If f (x) = 0, x lies on the decision boundary.

8.3 Kernel Function

In SVM, the kernel function is used to map the input data from the original feature
space to a higher-dimensional feature space. This is done to make the data more
separable in the transformed space. The kernel function calculates the dot product
between the mapped feature vectors without actually computing the mapping.
This is known as the kernel trick and allows SVM to work efficiently with
high-dimensional data.
A kernel function is a function that takes in two vectors as input and computes a

scalar value that represents the similarity or distance between the two vectors. There
are many types of kernel functions, but some of the most commonly used ones are:

8.3.1 Linear Kernel

The linear kernel is a common choice for SVMs, especially when the number of
features is high relative to the number of training examples. It defines the dot prod-
uct between two feature vectors as the similarity measure between them:

K xi, xj = xTi xj, 8 23

8.3 Kernel Function 155

where xi and xj are two feature vectors in the input space. The linear kernel is also
known as the inner product kernel because it computes the inner product between
the feature vectors.
When one use the linear kernel, the decision function for SVMs takes the form:

f x = wTx + b, 8 24

where w is the weight vector and b is the bias term, both learned during training.
The weight vector w can be expressed as a linear combination of the training
examples:

w =
i
αiyixi, 8 25

where αi is the Lagrange multiplier associated with the ith training example and yi

is its corresponding class label (+1 or −1).
To compute the bias term b, one need to find a data point that lies exactly on the

hyperplane. One can choose any data point with αi > 0, in this case, one chooses
the first data point with α1 = 0.324:

b = y1 −wTx1

= + 1− 0 324 − 1 0 75 + 0 424 1 1 + 0 288 1 2

= − 0 564,

8 26

where x1 = [0.75, 1, 2] is the feature vector for the first training example. Once one
have computed the weight vector w and the bias term b, one can use them to clas-
sify new examples using the decision function f (x). If f (x) > 0, one classify the
example as belonging to the positive class (+1); otherwise, one classify it as belong-
ing to the negative class (−1).

8.3.2 Polynomial Kernel

Polynomial kernel is a popular kernel function used in SVMs for nonlinear clas-
sification. It transforms the input data into a higher-dimensional feature space,
making it easier to separate the classes using a hyperplane.
The polynomial kernel is defined as:

K x, y = xTy + c
d
, 8 27

where x and y are the input feature vectors, c is a constant, and d is the degree of
the polynomial. The degree d controls the degree of nonlinearity of the decision
boundary.
When d= 1, the polynomial kernel reduces to the linear kernel, and when d> 1,

it introduces nonlinearity into the decision boundary. The constant c is a regular-
ization parameter that controls the trade-off between the model complexity and

156 8 Support Vector Machine

the accuracy of the training data. A large value of c will lead to a more complex
model, while a small value of c will lead to a simpler model with more regulari-
zation. The polynomial kernel is a nonlinear kernel that can handle nonlinearly
separable data by transforming the data into a higher dimensional space. The
degree parameter d controls the order of the polynomial function, which deter-
mines the complexity of the decision boundary. For example, consider a two-
dimensional feature space with the polynomial kernel of degree 2:

K x, x = γx1x1 + γx2x2 + r 2, 8 28

where x = [x1, x2] and x = [x1 , x2]. To classify a new example y, one can compute
the kernel function between y and each support vector in the training set. Then,
one can use the support vectors and their corresponding weights to predict the
class of the new example:

f y = sign
n

i = 1

αiyiK y, xi + b 8 29

8.3.3 Radial Basis Function

The Radial Basis Function (RBF) kernel is a popular kernel used in SVMs for
nonlinear classification and regression tasks. It is also known as the Gaussian
kernel due to its Gaussian-like shape. The RBF kernel measures the similarity
between two feature vectors by computing the distance between them in a
high-dimensional space, where the distance is weighted by the kernel’s parameter
gamma.
The RBF kernel function can be defined as:

K xi, xj = e− γ xi − xj
2
, 8 30

where xi and xj are the feature vectors for two data points i and j, || || represents
the Euclidean distance between the two feature vectors, and γ is a hyperparameter
that controls the shape of the kernel function.
The RBF kernel maps the input data to an infinite-dimensional space, where the

distance between two points is given by the kernel function. The kernel function
assigns high values to data points that are close to each other in the input space,
and low values to points that are far apart. This allows the SVM to capture complex
nonlinear decision boundaries between the different classes.
The kernel matrix K is an N ×N symmetric matrix where each element Kij = K

(xi, xj) represents the similarity between data points xi, xj. The kernel matrix is used
in the dual optimization problem to compute the Lagrange multipliers αi and the
decision function.

8.3 Kernel Function 157

To classify a new data point x, one compute its distance from the support vectors
in the feature space using the kernel function:

f x = sign
i

αiyiK y, xi + b , 8 31

where the sign function returns +1 if the sum is positive, and −1 if the sum is
negative. The decision function f (x) computes the predicted class label for the
new data point x.
The bias term b is computed using the support vectors, which are the data points

that have nonzero Lagrange multipliers αi. The bias term can be computed as:

b =
1
Ns i

yi −
j

αjyjK xj, xi , 8 32

where Ns is the number of support vectors, and the sum is over all support vectors.
This equation ensures that the decision function f (x) satisfies the constraint that
the output is +1 for the most positive support vector and −1 for the most negative
support vector. In summary, the input to an SVM consists of a matrix X of feature
vectors, a vector y of class labels, and optionally a kernel function that maps the
original feature space into a higher-dimensional space. The SVM algorithm uses
this input to learn a decision boundary that separates the positive and negative
examples in the transformed feature space. Once the SVM has learned this deci-
sion boundary, it can be used to classify new, unlabeled examples bymapping their
feature vectors into the same transformed feature space and determining which
side of the decision boundary they lie on.
The output of a SVM depends on the classification task. In a binary classification

problem, the output is a predicted class label (+1 or −1) for a given input vector x.
To predict the class label for a new input vector x, one compute the following

function:

f x = sign wTx + b , 8 33

where sign() is the sign function that returns +1 for positive values and −1 for
negative values. The weight vector w and the bias term b are learned during the
training phase of the SVM. The function f (x) represents the distance of the
input vector x from the decision boundary (i.e. hyperplane) that separates
the positive and negative classes. If the value of f (x) is positive, then the pre-
dicted class label is +1, and if the value of f (x) is negative, then the predicted
class label is −1. The magnitude of f (x) represents the confidence of the predic-
tion. In some cases, it may be useful to obtain a probabilistic output from the
SVM, which represents the probability of the input vector x belonging to each of

158 8 Support Vector Machine

the classes. This can be achieved using the plat scaling method, which involves
fitting a sigmoid function to the SVM output scores.
The probability of the input vector x belonging to the positive class can be com-

puted as follows:

P y = 1 x =
1

1 + eA f x + B
, 8 34

where A and B are constants that are learned during the calibration phase of the
SVM. Overall, the output of an SVM can be either a predicted class label or a prob-
ability estimate, depending on the task and the method used for calibration.

8.3.4 Laplace Kernel

Overall, the output of an SVM can be either a predicted class label or a probability
estimate, depending on the task and the method used for calibration. The
Laplace kernel is a similarity measure between two data points that is less sen-
sitive to small variations than the Gaussian kernel. The Laplace kernel function
is defined as:

K x, y = e−
x− y
σ , 8 35

where x and y are the input vectors, denotes the Euclidean distance, and σ is the
bandwidth parameter. The Laplace kernel function decreases exponentially as the
distance between the input vectors increases, making it suitable for tasks where a
robust similarity measure is required.

8.3.5 Sigmoid Kernel

The Sigmoid kernel, also known as the hyperbolic tangent kernel, is inspired by
neural networks and can be interpreted as a two-layer perceptron. The Sigmoid
kernel function is defined as:

K x, y = tanh αxTy + β , 8 36

where x and y are the input vectors, and α and β are the parameters of the kernel.
The Sigmoid kernel is useful for problems where the decision boundaries are non-
linear and can be approximated by hyperbolic tangent functions. This kernel is
particularly popular in kernel-based learning algorithms for classification tasks.
Both Laplace and Sigmoid kernels can be used in SVMs and other kernel-based
learning algorithms to handle nonlinearly separable data and find appropriate
decision boundaries in the higher-dimensional feature space. Moreover, various
kernels and their parameters details are shown in Table 8.1.

8.3 Kernel Function 159

8.4 Linear and Nonlinear Support Vector Machine

Linear SVM is a type of binary classification algorithm that works well for linearly
separable data. The basic idea of linear SVM is to find the optimal hyperplane that
separates the two classes of data with the maximum margin. The margin is the
distance between the hyperplane and the closest data points of each class. The
intuition behind the margin is that the larger the margin, the more robust the clas-
sification model is to noise and outliers.
The hyperplane can be expressed as a linear function of the input features:

wTx + b = 0, 8 37

where w is the weight vector and b is the bias term. The decision boundary is the
hyperplane that separates the two classes of data. The sign of the output of the
decision function f (x) = wTx+ b determines the predicted class label of the input
feature x:

f x = wTx + b ≥ 0, predict class + 1 8 38

f x = wTx + b < 0, predict class− 1 8 39

To find the optimal hyperplane, one need to solve an optimization problem that
involves minimizing the norm of the weight vectorw subject to the constraints that
all data points are classified correctly. The optimization problem can be written as:

minimize
w 2

2
8 40

Subject to yi(w
Tx+ b) ≥ 1 for all i = 1, …, N, where N is the total number of data

points, xi is the feature vector of the i
th data point, yi is the class label of the i

th data

Table 8.1 Various kernels used in SVM.

Name Equation Parameter

Linear kernel xTi xj Null

Polynomial kernel xTi xj
d d≥ 1, degree of the polynomial

Gaussian kernel e−
xi − xj

2

2σ2
σ > 0, bandwidth

Laplace kernel e−
xi − xj

2σ2
σ > 0, bandwidth

Sigmoid kernel tanh βxTi xj 0 β > 0, θ > 0

160 8 Support Vector Machine

point (+1 or −1). The objective function
w 2

2
represents the norm of the weight

vector w, which measures the complexity of the decision boundary. The larger the
norm of w, the more complex the decision boundary is, and the more likely it is to
overfit the training data. The constraints ensure that all data points are classified
correctly, and the margin is at least 1. The margin is defined as the distance
between the hyperplane and the closest data points of each class.
The optimization problem can be solved using Lagrange multipliers. The

Lagrangian can be written as:

L w, b, a =
w 2

2
−

i

αiyi w
Txi + b − 1, 8 41

where αi are the Lagrange multipliers. The solution to the optimization problem is
given by:

w =
i

αi yixi, 8 42

where αi> 0 are the nonzero Lagrange multipliers. The bias term b can be com-
puted from the Karush–Kuhn–Tucker (KKT) conditions; yi(wTx+ b) = 1 for all i
such that αi > 0.
Once one have computed the weight vector w and the bias term b, one can use

them to predict the class label of new data points by computing the decision func-
tion f (x) = (wTx+ b) and checking its sign. If f (x) is positive, one predict class +1,
otherwise one predict class −1.
Suppose one have a dataset with two classes, +1 and−1, and two features, x1 and

x2. The dataset is shown in Figure 8.4.

0

0

0
0

0
0

0
0

0

0
0

0

+1

+1

–1

0

Figure 8.4 Sample dataset for
Linear SVM.

8.4 Linear and Nonlinear Support Vector Machine 161

The objective of the linear SVM is to find the optimal hyperplane that separates
the two classes of data with the maximum margin. The hyperplane can be
expressed as a linear function of the input features; wTx+ b = 0, where w is the
weight vector and b is the bias term.
To find the optimal hyperplane, one need to solve an optimization problem that

involves minimizing the norm of the weight vector w subject to the constraints that
all data points are classified correctly. One can minimize L(w, b, α) by taking the
partial derivatives of Lwith respect tow and b, setting them to zero, and solving for
w and b:

∂L
∂w

w−
i

αi yixi = 0 => w =
i

αi yixi 8 43

∂L
∂b

−
i

αi yi = 0 =>
i

αi yi = 0 8 44

Substituting w into L, one get the dual form of the optimization problem:

maximize LD α =
i
αi −

1
2 i, j

αiαj yi yj x
T
i xj, 8 45

subject to iαiyi = 0 and αi≥ 0 for all i = 1, …, N.
One can solve the dual problem using any standard quadratic programming

solver. The solution to the dual problem gives us the Lagrange multipliers αi,
which one can use to compute the weight vector w and the bias term b.
Suppose one obtain the following Lagrange multipliers for our dataset: α =

[0.324, 0, 0.297, 0.003, 0.000, 0.625, 0.000, 0.000, and 0.000].
Only the nonzero Lagrangemultipliers contribute to the weight vectorw and the

bias term b; w = iαi yixi= [0.021, −0.526]. To compute the bias term b, one need
to find a data point that lies exactly on the hyperplane. One can choose any data
point with αi> 0, in this case, one choose the first data point with α1 = 0.324; b= y1
−wT x1 = 1.486. So the equation of the hyperplane is:

wTx + b = 0 8 46

This equation can be used to make predictions on new data points. If the value
of the left-hand side is positive, then the data point is classified as +1, and if it is
negative, then the data point is classified as −1.
Nonlinear SVMs are used when the data cannot be separated by a linear

hyperplane in the input space. In such cases, one need to map the input data to
a higher-dimensional feature space where it becomes separable by a linear hyper-
plane. This is known as the kernel trick.

162 8 Support Vector Machine

The idea behind the kernel trick is to replace the inner product of the input vec-
tors with a nonlinear function called a kernel function. The kernel function com-
putes the similarity between the input vectors in the higher-dimensional feature
space without explicitly computing the coordinates of the vectors in that space.
There are several types of kernel functions that can be used in SVMs, including:

• Polynomial kernel: K(x, y) = (xT y+ c)d, where d is the degree of the polynomial
and c is a constant.

• Gaussian RBF kernel: K(x, y) = e(−γ ||x−y||2), where γ is a parameter that
controls the width of the kernel.

• Sigmoid kernel: K(x, y) = tanh(axT y+ c), where a and c are constants.

The optimization problem for nonlinear SVMs is similar to that for linear SVMs,
except that the input vectors are mapped to a higher-dimensional feature space
using a kernel function. The decision boundary is still a hyperplane, but it is
now represented in the feature space instead of the input space. For instance, start
with the nonlinear SVM optimization problem:

minimize
1
2

w 2 + c
i

ξi, 8 47

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi, for all i = 1, …, N and ξ_i ≥ 0, for all i = 1, …, N.

Here, φ is a function that maps the input xi to a higher-dimensional feature
space, and c is a hyperparameter that controls the trade-off between maximizing
the margin andminimizing the classification error. ξi are slack variables that allow
for some misclassification of the training examples. The dual form of the optimi-
zation problem is:

maximize LD α =
i
αi −

1
2 i, j

αiαj yi yj K xi, xj , 8 48

subject to iαiyi = 0 and 0 ≤ αi ≤ c for all i = 1, …, N.
Here, K(xi, xj) is the kernel function that computes the dot product of the trans-

formed feature vectors φ(xi) and φ(xj) without explicitly computing the coordinates
of the vectors in the feature space.
Once the optimal values of αi is obtained from the dual problem, then can com-

pute the weight vector w and the bias term b as:

w =
i

αi yiφxi 8 49

b = yi − i
αiyiK xi, xj , 8 50

where i is any index such that 0 < αi < c.

8.4 Linear and Nonlinear Support Vector Machine 163

To make predictions on a new data point x, its transformed feature vector φ(x) is
computed using the kernel function, and then the equation is utilized as follows:

f x = wTφ x + b 8 51

If f (x) is positive, the data point is classified as +1, and if it is negative, the data
point is classified as−1. One advantage of SVMs is that the kernel trick allows us to
work with high-dimensional feature spaces without explicitly computing the coor-
dinates of the vectors in that space, which can be computationally expensive or
even impossible in some cases.
Another advantage is that SVMs are less prone to overfitting than other classi-

fication algorithms, especially when the number of features is large compared to
the number of training examples. However, one disadvantage of SVMs is that they
can be sensitive to the choice of kernel function and its parameters. Choosing the
right kernel function and its parameters can be a difficult task that requires trial
and error or even domain knowledge.

8.5 Hard Margin and Soft Margin in Support Vector
Machine

For instance, start with a set of data points that one want to classify into two
groups. One can consider two cases for these data: either they are linearly separa-
ble, or the separating hyperplane is nonlinear. When the data is linearly separable,
and one do not want to have any misclassifications, one use SVM with a hard
margin. However, when a linear boundary is not feasible or need to allow some
misclassifications in the hope of achieving better generality.
For instance, assume that the hyperplane separating our two classes is defined as

wTx+ b = 0
Then, the margin by two parallel hyperplanes can be defined as:

wTx + α = 0 8 52

wTx + β = 0 8 53

They are the green and purple lines in the Figure 8.5. Without allowing any
misclassifications in the hard margin SVM, one want to maximize the distance
between the two hyperplanes. To find this distance, one can use the formula
for the distance of a point from a plane. So the distance of the blue points and
the red point from the black line would respectively be:

wTx + α

w
and

wTx + β

w
8 54

164 8 Support Vector Machine

As a result, the total margin would become:

α− β

w
, 8 55

if there is a need to maximize this margin, without the loss of generality, consider

α = b+ 1 and β = b− 1. Subsequently, the problem would be to maximize
2
w

or minimize
w
2

.

In SVM, the hard margin is a concept used to describe the condition when the
training data is linearly separable without any errors or misclassifications. In other
words, the hard margin is a strict condition that requires the SVM to find a hyper-
plane that perfectly separates the two classes in the training data. The hard margin
is defined by the following optimization problem:

minimize
1
2

w 2, 8 56

subject to yi(W
T xi+ b)≥ 1 for i= 1,…, N,where N is the number of training exam-

ples, xi is the i
th example, yi is its corresponding label (+1 or −1), w is the weight

vector, and b is the bias term.

ω
T x +

 β
=

0
ω

T x +
 b

 =
 0

ω
T x

+
α

=
0

Maximum margin

Figure 8.5 Hard margin in support vector machine.

8.5 Hard Margin and Soft Margin in Support Vector Machine 165

The optimization problem aims to minimize the norm of the weight vector w
subject to the constraint that each training example is correctly classified with a
margin of at least 1. The margin is the distance between the hyperplane and
the closest training example from either class.
If the training data is linearly separable and there are no misclassifications, then

the optimization problem has a unique solution, which corresponds to the hyper-
plane that maximizes the margin. This hyperplane is also known as the maximum
margin hyperplane, and it is defined by the support vectors the training examples
that lie on the margin.
The hard margin SVM is sensitive to outliers and noise in the data, as any mis-

classification will violate the constraints and make the optimization problem
infeasible. In practice, it is often difficult to find data that is perfectly linearly sep-
arable, and the hard margin SVM may lead to overfitting if applied to noisy data.
Therefore, soft margin SVM was introduced to handle the case of linearly separa-
ble data with misclassifications.
The soft margin approach is an extension of the hard margin approach in SVM

that allows for some misclassifications in the training data while still aiming to
maximize the margin. The soft margin approach is suitable for datasets that are
not perfectly linearly separable, or when one expect some level of noise or outliers
in the data. In the soft margin approach, one introduce slack variables ξi for each
training example, whichmeasure howmuch the example violates themargin. One
modify the optimization problem by penalizing the misclassifications with a term
that is proportional to the slack variables and adding a hyperparameter c that
controls the trade-off between maximizing the margin and allowing some
misclassifications.
To derive the soft margin optimization problem, one need to allow for some

misclassifications of the training data. One can introduce slack variables ξi for
each data point to represent the amount by which it violates the margin or is
misclassified:

yi w
T xi + b ≥ 1− ξi 8 57

ξi ≥ 0 ξi i,…,N 8 58

The optimization problem for soft margin SVM can be written as:

minimize
1
2

w 2 + c
i

ξi, 8 59

subject to yi(W
T xi+ b) ≥ 1− ξi and ξi≥ 0 for i = 1, …, N, where c is a hyperpara-

meter that controls the trade-off between maximizing the margin and minimizing
the sum of slack variables. The term c iξi is known as the “slack penalty” and
represents the cost of misclassifying a data point.

166 8 Support Vector Machine

Similar to the hard margin case, one can solve the optimization problem using
Lagrange multipliers. The Lagrangian (L) for the soft margin SVM is:

L w, b, ξ, α, μ =
1
2

w 2 + c
i

ξi −
i

αi yi w
Txi + b − 1 + ξi −

i

μiξi,

8 60

where αi and μi are Lagrange multipliers. One can then obtain the dual form of the
optimization problem by maximizing the Lagrangian with respect to the Lagrange
multipliers αi and μi:

maximize LD α, μ =
i
αi −

1
2 i, j

αiαj yi yjx
T
i xj, 8 61

subject to i αiyi = 0, 0 ≤ αi≤ c for all i, and i μi = 0. The solution to the dual
problem gives us the Lagrange multipliers αi and μi, which one can use to compute
the weight vector w and the bias term b. The support vectors are the data points
with nonzero Lagrange multipliers. Similar to the hard margin case, the decision
boundary is given by:

wTx + b =
i

αiyix
T
i x + b 8 62

The soft margin allows for some degree of misclassification and is more robust to
noisy data. However, the choice of the hyperparameter c is important and can
affect the performance of the model. A smaller value of c results in a wider margin
and more misclassifications, while a larger value of c results in a narrower margin
and fewer misclassifications.

8.6 I/O of Support Vector Machine

The input to a SVM is a set of training examples represented as a matrix X with
dimensions N ×M, where N is the number of examples and M is the number
of features. Each row of the matrix X corresponds to a single example, and each
column corresponds to a single feature.

8.6.1 Training Data

The input to a SVM is a set of training examples represented as a matrix X with
dimensions N ×M, where N is the number of examples and M is the number of
features. Each row of the matrix X corresponds to a single example, and each
column corresponds to a single feature. The SVM algorithm learns from a set of

8.6 I/O of Support Vector Machine 167

labeled training examples, where each example represents an observation of the
problem. For instance, in a binary classification problem, each training example
consists of a feature vector and a corresponding class label that indicates
whether the example belongs to the positive or negative class. In a binary clas-
sification problem, for instance xi Rd be the feature vector for the ith training
example and xi {+1, −1} be its class label. Assume that the training examples
are linearly separable, which means that there exists a hyperplane that sepa-
rates the positive examples from the negative examples. The hyperplane is
defined by:

wTx + b = 0, 8 63

where w Rd is the weight vector that determines the orientation of the hyper-
plane, and b R is the bias term that determines its position. The decision function
of the SVM is:

f x = sign wTx + b , 8 64

where sign(x) is the sign function that returns +1 if x> 0,−1 if x< 0, and 0 if x= 0.
The SVM algorithm learns the weight vector w and the bias term b from the

training examples, by solving the following optimization problem: minimize 1/2
||w||2. Where ||w|| is the Euclidean norm of the weight vector, and n is the number
of training examples. The optimization problem can be solved using a variety of
methods, such as quadratic programming or gradient descent. The solution w∗

and b∗ of the optimization problem determine the hyperplane that maximizes
the margin between the positive and negative examples. The margin is defined
as the distance between the hyperplane and the closest positive and negative exam-
ples, as shown in the previous example.

8.6.2 Feature Matrix and Label Vector

The set of feature vectors for all the training examples are collected into a matrix
X, where each row corresponds to a single example and each column corresponds
to a single feature. Each element of the matrix X is a real-valued number that
represents a feature of the example. For instance, if one are trying to classify
images of handwritten digits, each feature might represent the intensity of a par-
ticular pixel in the image. The set of class labels for all the training examples are
collected into a vector y, which has length N (the number of training examples).
Each element of the vector y is a binary value that indicates whether the corre-
sponding example belongs to the positive or negative class. Specifically, yi = +1
if the ith example is a positive example and yi = −1 if the ith example is a negative
example.

168 8 Support Vector Machine

8.7 Hyperparameters of Support Vector Machine

SVM have several hyperparameters that need to be set before training the model.
These hyperparameters control the behavior of the SVM algorithm and can signif-
icantly affect the performance of the model. In this answer, one will discuss some
of the most important hyperparameters of SVM.

8.7.1 The C Hyperparameter

The C hyperparameter in SVMs controls the trade-off between maximizing the
margin and minimizing the classification error on the training data. It is a regu-
larization parameter that balances the bias-variance trade-off in the model.
The C hyperparameter is introduced in the optimization problem as a constraint

on the Lagrange multipliers αi. Specifically, the C parameter controls the upper
bound on the value of αi, which in turn controls the amount of slack allowed in
the optimization problem.
The optimization problem with the C hyperparameter can be expressed as min-

imize 1/2 ||w||2 + c iξi. Where ξi is the slack variable that measures the distance
of the ith data point from the correct margin. The C parameter determines how
much one penalize misclassification errors and violations of the margin.
A larger value of C leads to a stricter margin, whichmay result in overfitting, while
a smaller value of C allows for more errors and a wider margin, which may result
in underfitting. The choice of C should be based on cross-validation or other model
selection techniques to find the value that provides the best trade-off between bias
and variance in the validation data.

8.7.2 Kernel Coefficient

The kernel coefficient, denoted as γ, is a hyperparameter in the kernel function of
the SVM that controls the shape of the decision boundary. In particular, it deter-
mines how far the influence of a single training example reaches, with low values
meaning “far” and high values meaning “close.”
The RBF kernel is a commonly used kernel function that depends on the ker-

nel coefficient. In the RBF kernel, a small value of γmakes the decision boundary
more flexible, allowing more points to be classified as part of the positive or
negative class. Conversely, a large value of γ makes the decision boundary less
flexible, resulting in a smaller number of support vectors and a more strict
classification.
The appropriate value of γ depends on the problem being solved and can be

chosen using cross-validation or other techniques. In general, larger values of γ
are suitable for problems with fewer training examples and simpler decision

8.7 Hyperparameters of Support Vector Machine 169

boundaries, while smaller values of γ are suitable for problems with more training
examples and more complex decision boundaries.

8.7.3 Class Weights

Class weights are used to address the issue of imbalanced classes in a binary clas-
sification problem. In such problems, one class (the minority class) may have sig-
nificantly fewer examples than the other class (the majority class), which can lead
to biased predictions.
The class weight hyperparameter in SVM assigns a weight to each class, which

affects the penalty for misclassifying a sample from that class. The weight assigned
to the positive class is typically set to be smaller than that of the negative class,
which gives more importance to correctly classifying positive examples.
The objective function becomes:

minimize
1
2

w 2 + cpos Σ i yi = +1 ξi + cneg Σ i yi = −1 ξi, 8 65

where ξi is the slack variable for the ith sample. The weights assigned to each
class can be calculated using weightpos = (total samples)/(2 × number of
positive samples) weightneg = (total samples)/(2 × number of negative samples).
Where total samples is the total number of training samples, and number of
positive/negative samples is the number of samples in the positive/negative
class, respectively.

8.7.4 Convergence Criteria

In SVM, the convergence criterion determines when to stop the training process.
SVM algorithms typically use the KKT conditions to check for convergence. The
KKT conditions state that for a given optimization problem with constraints, a
feasible solution is optimal if the gradient of the objective function with respect
to the variables is proportional to the constraints, and the constraints are
satisfied.
The convergence criterion for SVM can be defined in terms of the KKT condi-

tions. Specifically, the training algorithm can be terminated when the following
conditions are met:

• The difference between the current objective value and the previous objective
value is less than a certain tolerance ε.

• The norm of the gradient of the objective function with respect to the parameters
is less than a certain tolerance δ.

• All constraints are satisfied within a certain tolerance η.

170 8 Support Vector Machine

Mathematically, the convergence criterion can be written as:

L w −L wprev ≤ ε

∇L w ≤ δ

yi w
Txi + b − 1 ≤ η,

8 66

where L(w) is the objective function, w is the weight vector, wprev is the weight vec-
tor in the previous iteration, ∇L(w) is the gradient of the objective function with
respect to w, yi is the i

th class label, xi is the i
th feature vector, and b is the bias term.

The values of ε, δ, and η are typically chosen empirically based on the specific
problem and the desired level of accuracy. A smaller value for these tolerances will
result in a more accurate solution but will also require more computational
resources and may result in slower training.

8.7.5 Regularization

Regularization is a technique used to prevent overfitting in machine learning
models. In the context of SVMs, regularization is achieved through the C hyper-
parameter, which controls the trade-off between maximizing the margin and
minimizing the classification error.
The regularization parameter C can be thought of as a penalty for misclassifica-

tions. As C increases, the penalty for misclassifications becomes larger, and the
algorithm will prioritize correctly classifying as many examples as possible. On
the other hand, as C decreases, the algorithm will prioritize maximizing the mar-
gin even if this means making more misclassifications. The hyperparameters of
support vector machine are summarized in Table 8.2.

8.8 Application of Support Vector Machine

SVM is a versatile machine learning algorithm that has various applications in dif-
ferent fields.

8.8.1 Classification

SVM can be used for binary andmulti-class classification problems, where the goal
is to classify data points into one of several categories. In this case, the output of
the SVM is a binary or multi-class label indicating the predicted class of each
input data point. For binary classification, the output of the SVM is a binary label
that indicates the predicted class of each input data point. Given a new input data
point x, the predicted class label ypred is determined as follows:

ypred = sign wT + b , 8 67

8.8 Application of Support Vector Machine 171

where sign () is the sign function that returns −1 for negative values and +1 for
positive values. The w is the weight vector learned by the SVM algorithm, and
b is the bias term. The SVM algorithm learns these parameters based on the
training data.
For multi-class classification, the SVM can be used in several ways. One com-

mon approach is to use the one-vs-all (OVA) method, where one train one

Table 8.2 Summarizing the hyperparameters of support vector machine.

Hyperparameter Description

Kernel SVM uses a kernel function to transform the input data into a
higher-dimensional feature space where it can be separated more
easily. Common kernel functions include linear, polynomial,
RBF, and sigmoid.

Regularization
parameter (C)

This parameter controls the trade-off between maximizing the
margin and minimizing the classification error. A larger value of
C allows for more flexible decision boundaries, while a smaller
value of C encourages the classifier to have a wider margin.

Gamma This parameter is used in the RBF kernel to control the width of
the Gaussian function used to transform the data into the higher-
dimensional feature space. A larger value of gamma leads to a
narrower peak of the Gaussian function, resulting in a more
complex decision boundary.

Degree This parameter is used in the polynomial kernel to specify the
degree of the polynomial function used to transform the data into
the higher-dimensional feature space. A higher degree leads to a
more complex decision boundary.

Coefficient (coef0) This parameter is used in the polynomial and sigmoid kernels to
control the influence of high-degree polynomials. A larger value
of coef0 allows for higher-degree polynomials to have a larger
influence on the decision boundary.

Shrinking This parameter controls whether the algorithm will use a
shrinking heuristic to speed up the optimization process by
removing support vectors that are unlikely to affect the decision
boundary. Enabling shrinking can speed up training, but may
slightly degrade the performance of the model.

Cache size This parameter controls the amount of memory allocated to
caching the kernel matrix during training. A larger cache size can
speed up training but may require more memory.

Class weight This parameter can be used to adjust the penalty assigned to
misclassifications of different classes. It can be useful in cases
where the classes are imbalanced or where misclassifying one
class is more costly than misclassifying another.

172 8 Support Vector Machine

SVM for each class and classify a new data point based on the highest SVM score.
Given a new input data point x, the predicted class label ypred is determined as
follows:

ypred = argmaxj wT
j x + bj , 8 68

where j is the index of the SVM for the jth class, wj is the weight vector learned by
the SVM for the jth class, and bj is the bias term for the jth class. The argmax func-
tion returns the index of the SVM with the highest score.
Another approach for multi-class classification is to use the one-vs-one (OVO)

method, where one train one SVM for each pair of classes and classify a new data
point based on the majority vote of the SVMs.

8.8.2 Regression

SVM can also be used for regression problems, where the goal is to predict a con-
tinuous numerical value, rather than a class label. This is known as Support Vector
Regression (SVR). The idea behind SVR is to find a hyperplane that best fits the
training data, while still allowing some margin of error or tolerance. The margin
of error is controlled by a hyperparameter called epsilon. The solution to the SVR
problem involves finding the optimal values of w and b that satisfy the constraints
and minimize the objective function. This can be done using various optimization
techniques, such as quadratic programming or gradient descent.
Once the SVM model is trained, it can be used to predict the output value for a

new input data point x_test using the equation:

ytest = wT xtest + b, 8 69

where ytest is the predicted output value for the input xtest, w and b are the learned
weight vector and bias term, respectively, and the superscript T denotes the trans-
pose operation.

8.8.3 Image Classification

Image classification using SVM involves using SVM to train a model that can clas-
sify images into different categories based on their features. One popular approach
is to use a variant of SVM called “Support Vector Machines for Image Classifica-
tion” (SVMIC).
In SVMIC, the input to the SVM is a feature vector that describes the image, such

as a vector of pixel intensities. The SVM is trained on a labeled set of such feature
vectors, where each label corresponds to a particular category or class. Once the
SVM is trained, it can be used to predict the category of new, unlabeled images
based on their feature vectors.

8.8 Application of Support Vector Machine 173

The mathematical equations involved in image classification using SVMIC are
similar to those for binary classification in SVM. However, the feature vectors in
image classification are typically much larger, as they may include thousands or
even millions of features. The SVMIC algorithm is designed to handle such large
feature vectors efficiently.

8.8.4 Text Classification

SVM can be used for text classification tasks, where the goal is to classify text docu-
ments into different categories based on their content. In this case, the input to the
SVM is a feature vector extracted from the text, and the output is a predicted class
label. For instance, a binary classification problem is where one wants to classify a
text document into one of two classes, either positive (+1) or negative (−1). One
represent each document as a bag-of-words, which is a vector of word frequencies.
Let xi be the feature vector for the ith document, and yi be its corresponding
class label.
One can use a linear kernel for this problem, where the kernel function is

defined as:

K xi, xj = xTi xj, 8 70

where xTi is the transpose of the feature vector for the ith document and K repre-
sents a kernel function that takes as input two data points.
To predict the class of a new document, one compute the sign of the decision

function f (x) = wT x+ b. If f (x) > 0, one classify the document as positive (+1),
and if f (x) < 0, one classify it as negative (−1).

Summary

This chapter described about SVM, a powerful machine learning algorithm used
for classification and regression tasks. SVM finds a hyperplane that maximally
separates the two classes in the feature space. The hard-margin SVM aims to sep-
arate the classes perfectly with a linear decision boundary, while the soft-margin
SVM allows some misclassifications to handle nonlinearly separable data.
This chapter discussed the mathematics behind SVM, including the optimiza-

tion problem, the Lagrange multipliers, and the dual problem. One also explored
the different types of kernel functions used in SVM, such as the linear kernel, pol-
ynomial kernel, and RBF kernel. Furthermore, one discussed hyperparameters,
including the regularization parameter (C), kernel coefficient (γ), and class
weights, which affect the performance of the SVM algorithm. One also discussed
different convergence criteria and regularization techniques.

174 8 Support Vector Machine

Finally, the discussion about the applications of SVM in image and text classi-
fication, as well as regression problems are described. SVM is particularly useful in
high-dimensional data analysis, where it can handle large feature spaces effec-
tively. Overall, SVM provide an effective and efficient approach for solving a wide
range of machine learning problems.

Exercise Questions

Q.8.1 Describe the difference between a hard margin and a soft margin in SVM?

Q.8.2 What is the mathematical expression for the decision boundary in a linear
SVM, and how is it determined based on the margin and the support
vectors?

Q.8.3 In support vector machines (SVM), the decision boundary is determined
by maximizing the margin between the support vectors. The margin can
be calculated using the equation:

Margin =
1
2

w ,

where w represents the Euclidean norm of the weight vector w. Calcu-
late the margin for a given weight vector w = [0.5, −0.8, 0.2].

Q.8.4 How is the kernel trick used to extend the SVM to nonlinear decision
boundaries, and what is the mathematical expression for the kernel
function?

Q.8.5 In which way does SVM handle imbalanced datasets?

Q.8.6 Describe the role of hyperparameters in SVM?

Q.8.7 The objective of support vector machines (SVM) is to find the hyperplane
that maximizes the margin while minimizing the classification error. The
optimization problem for SVM can be formulated as:

Minimize 1
2 × w 2 Subject to: yi × (wT × xi+ b) > = 1 for all training

examples.
Given a set of training examples and their corresponding labels, deter-

mine the Lagrangian dual form of the SVM optimization problem.

Q.8.8 How does SVM handle large datasets?

Exercise Questions 175

Q.8.9 Explain the difference between binary and multi-class SVM?

Q.8.10 In support vector machines (SVM), the decision function is defined as the
sign of the linear combination of support vectors and their corresponding
weights. It can be expressed as:

f x = sign αi × yi × K xi, x + b

Where αi represents the Lagrange multipliers, yi is the label of the ith
training example, K(xi, x) is the kernel function, and b is the bias term.
Calculate the decision function value for a given test example x = [1.2,
−0.5] using the linear kernel K xi, x = xTi × x.

Further Reading

Lessmann S, Stahlbock R, Crone SF. Optimizing hyperparameters of support vector
machines by genetic algorithms. In IC-AI 2005 Jan (Vol. 74, p. 82).

Pontil M, Verri A. Properties of support vector machines. Neural Computation. 1998
May 15;10(4):955–74.

Thomas J, Maszczyk T, Sinha N, Kluge T, Dauwels J. Deep learning-based classification
for brain-computer interfaces. In 2017 IEEE International Conference on Systems,
Man, and Cybernetics (SMC) 2017 Oct 5 (pp. 234–239).

176 8 Support Vector Machine

9

Bio-Inspired Cybernetical Intelligence

Bio-inspired artificial intelligence is an emerging field of research that draws
inspiration from biological systems and their self-regulating properties to develop
new bio-inspired computational models and algorithms for solving complex pro-
blems. The form of intelligence is a combination of two fields: cybernetics and
biomimetics.
As mentioned in our previous chapters, cybernetics is the study of the control

and communication processes in both biological and artificial systems. Cybernet-
ics seeks to understand how systems can be designed to maintain stability and
adapt to changes in their environment. Bio-inspired computing, on the other hand,
draws inspiration from biological systems to develop new bio-inspired computa-
tional algorithm. Bio-inspired computing techniques include evolutionary algo-
rithms, swarm intelligence, and artificial neural networks. In the machine
learning context, bio-Inspired machine intelligence combines these two fields to
develop new approaches to problem-solving. The goal is to create systems that
can self-regulate and adapt to changes in their environment, much like biological
systems and biomimetics do. By using the principles of cybernetics and bio-
characterized algorithms, researchers can create systems that are more robust,
flexible, and efficient than traditional computational methods.
One of the key areas of research is in developing new algorithms for machine

intelligence and data analysis. By drawing inspirational concepts from biological
systems such as the brain, researchers can develop artificial neural networks that
are more efficient and accurate than traditional machine learning algorithms. For
example, deep learning algorithms that are based on neurons have been developed
to recognize patterns in images and speech. Another area of artificial intelligence
development is to conceptualize new optimization methodologies. Bio-inspired
optimization algorithms such as evolutionary algorithms and swarm intelligence
algorithms have been developed to solve complex optimization problems in a wide

177

Cybernetical Intelligence: Engineering Cybernetics with Machine Intelligence, First Edition.
Kelvin K. L. Wong.
© 2024 The Institute of Electrical and Electronics Engineers, Inc.
Published 2024 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/cyberintel

range of fields, including engineering, cybernetic intelligence, etc. Overall, it is a
promising field of research that has the potential to revolutionize the way one
approach complex problems. By drawing inspiration from biological systems,
researchers can develop new bio-inspired computational models and algorithms
that are more efficient, accurate, and adaptable than traditional methods. As
the field continues to grow, one can expect to seemany exciting new developments
in bio-inspired machine learning, optimization, and other applications of com-
puter science.

9.1 Genetic Algorithm

Genetic Algorithm (GA) is a popular biomimetics algorithm used to solve optimi-
zation problems. The process of natural selection inspires it, and it works by
evolving a population of potential solutions over generations. In relation to bio-
characterized algorithms, it is a concept to develop intelligent systems by taking
inspiration from biological and cybernetic principles, which includes approaches
such as neural networks, swarm intelligence, and evolutionary algorithm. By
using the above-mentioned machine intelligence techniques such as GA, AI
researchers can create intelligent systems that are adaptable, robust, and capable
of learning and evolving over time. In this way, GA is one of the many tools that
can be used to develop bio-inspired cybernetical intelligence, enablingmachines to
mimic and learn from the complex and dynamic systems found in nature. In the
Initialization step, GA creates an initial population of potential solutions, where
each solution is represented as a chromosome. The chromosome is a string of
genes that represent the solution’s parameters. The initial population is created
randomly, or it can be based on some prior knowledge of the problem. In a
GA, the set of genes of an individual is represented using a string, in terms of
an alphabet. Usually, binary values are used (strings of 1 s and 0 s). Hence can
say that genes in a chromosome have encoded (Figure 9.1).
After the population is initialized, the fitness of each solution in the population

is evaluated. The fitness function determines how well each solution solves the
problem. It is assumed that there has a minimization problem, and need to look
for a solution that minimizes the objective function f (x). The fitness function for
each solution can be represented as follows:

Fitness x =
1

f x
9 1

Note that the fitness function is higher for better solutions (i.e. lower values of f
(x)). In this step, it is required to select the fittest individuals from the population in
order to create a new generation of potential solutions. The selection process is

178 9 Bio-Inspired Cybernetical Intelligence

based on the fitness function. The idea is to select individuals with a higher fitness
value so that their genes can be passed on to the next generation. There are various
selection methods, including roulette wheel selection, tournament selection,
rank-based selection, and others. In crossover step, creating a new generation
of potential solutions by combining the genes of the selected individuals. The idea
is to create a new solution that inherits the desirable characteristics of its parents.
The crossover process can be represented mathematically as follows:

Chromosomenew = Crossover Parent1, Parent2 , 9 2

where Chromosomenew is the chromosome of the new solution, and Crossover is
the crossover operator that combines the genes of the two parents (Parent1 and
Parent2). For example, consider the crossover point to be three as shown in
Figure 9.2a.
Offsprings are created by exchanging the genes of parents among themselves

until the crossover point is reached as described in Figure 9.2b and finally, the

A1 0 0 0 0

0 0

0 0

0 0

1 1 1 1 1

1 1 1 1

1

1 1 1 1

A2

A3

A4

Gene

Chromosome

Population

Figure 9.1 Initialization of genetic
algorithm.

A1

1 1 1 1 1 1

0 0 0 0 0 0

1 1 1 1 1 1 1 1 1

1 1 10 0 0 0 0 0 0 0 0

0 0 0
A2

A1 A5

A2

Crossover point

(a) (b) (c)

A6

Figure 9.2 Example of genetic algorithm. (a) represents the crossover point, while
(b) and (c) represents exchanging genes among parents and new offspring respectively.

9.1 Genetic Algorithm 179

new offspring are added to the population as shown in Figure 9.2c. The mutation
step introduces random changes in the new generation of potential solutions. The
mutation process is necessary to maintain diversity in the population and to pre-
vent premature convergence. The mutation process can be represented mathemat-
ically as shown in Equation (9.3).

Mutate Chromosome = Chromosomenew, 9 3

where Mutate is the mutation operator that introduces random changes in the
chromosome, and Chromosomenew is the resulting chromosome after mutation.
Finally, GA terminates when a stopping criterion is met. The stopping criterion
is usually based on a maximum number of generations or a target fitness value.
The maximum number of generations is the number of iterations that the genetic
algorithm will run before terminating. The target fitness value is the minimum
acceptable fitness value for the solution to be considered as acceptable. Where xi is
the ith individual in the population, f is the objective function being optimized, fit-
nessi is the fitness of the i

th individual, and the selection, crossover, mutation, and
survivor selection operators are applied to create the offspring and select the next
generation.
The termination condition is checked at the end of each generation. If the max-

imum number of generations is reached or the target fitness value is achieved, the
GA terminates and returns the best individual found so far as the solution to the
optimization problem. Otherwise, the GA continues to the next generation until
the termination condition ismet. If the stopping criterion is notmet, there is a need
to repeat the selection, crossover, andmutation steps until the algorithm converges
to a satisfactory solution. Overall, the GA can be summarized in the following
pseudocode (Algorithm 9.1):

Algorithm 9.1 Pseudocode for Genetic Algorithm

a) Initialize the population
b) Evaluate fitness of each individual
c) Repeat

Select parents based on fitness
Perform crossover and mutation
Evaluate fitness of each individual in new population

d) Until stopping criterion met
e) Return the best solution found
f) Initialize the population
g) Evaluate fitness of each individual

180 9 Bio-Inspired Cybernetical Intelligence

h) Repeat
Select parents based on fitness
Perform crossover and mutation
Evaluate fitness of each individual in new population

i) Until stopping criterion met
j) Return the best solution found
k) Initialize the population
l) Evaluate fitness of each individual

m) Repeat
Select parents based on fitness
Perform crossover and mutation
Evaluate fitness of each individual in new population

n) Until stopping criterion met
o) Return the best solution found

The GA can offer several advantages and benefits in solving complex problems.
It can lead to the development of highly adaptive and robust biomimetics systems.
By mimicking the principles of natural selection, GA can help to evolve and adapt
to changing environments, making them more resilient and capable of handling
unpredictable situations. It also can be used to develop bio-inspired computing
models that are more autonomous and require less human input. By incorporating
feedback mechanisms and self-learning capabilities, biological inspired systems
can become more self-sufficient, reducing the need for constant human supervi-
sion and intervention.

9.2 Ant Colony Optimization

Ant Colony Optimization (ACO) is a bio-characterized algorithm that is inspired
by the foraging behavior of ants. It is used to solve optimization problems that
involve finding the shortest path in a graph, such as the Traveling Salesman Prob-
lem (TSP).
In ACO, a set of artificial ants are used to explore the graph, and each ant builds

a solution by selecting edges in a probabilistic manner. The probability of selecting
an edge is determined by the amount of pheromone deposited on the edge by pre-
vious ants, as well as the distance between the two nodes connected by the edge.
The pheromone trail represents the collective knowledge of the ants and is used to
guide the search toward better solutions. The typical example of the algorithm is
shown in Figure 9.3.

9.2 Ant Colony Optimization 181

The ACO is an example of a biomimetical algorithm that falls under the broader
umbrella of bio-characterized algorithms, which aims to develop bio-inspired
intelligent systems that draw inspiration from the principles of bio-inspired com-
puting and cybernetics, and ACO is a prime example of how the behavior of ani-
mals can be used to solve complex optimization problems. By mimicking the
behavior of ants and their ability to find efficient paths, ACO can be used to solve
a wide range of optimization problems, including those in logistics, transportation,
and telecommunications and the algorithm consists of the following steps. A set of
artificial ants are placed at a starting node. The pheromone trail on all edges is
initialized to a small value. Each ant selects an edge tomove to the next node based
on a probabilistic rule. The probability of selecting an edge is given by:

pkij =
ταij η

β
ij

l Nk
i

ταij η
β
ij

, 9 4

where pkij is the probability of selecting edge (i, j) for ant k. Here τij is the amount of

pheromone on edge (i, j), and the ηij is the inverse of the distance between nodes i
and j. The α and β are parameters that control the importance of pheromone and

distance, respectively. The Nk
i is the set of neighboring nodes of node i that have

not been visited by ant k. After an ant has selected an edge, it moves to the next

Food
Food

(ii)

(i)

Marking a trail

Following the trail

Nest

(a) (b) (c)

Nest Nest

Food Food

Figure 9.3 Example of the procedural steps from (a) to (b), and then to (c) of the ant colony
optimization.

182 9 Bio-Inspired Cybernetical Intelligence

node and repeats the process until it has visited all nodes. After all ants have com-
pleted their tours, the amount of pheromone on each edge is updated according to
the Equation (9.5):

τij 1− ρ τij +
m

k = 1

Δτkij, 9 5

where ρ is the evaporation rate of the pheromone. By definition m is the number
of ants.

Δτkij is the amount of pheromone deposited on edge edge (i, j) by ant k, which is

given by:

Δτkij =
Q
Lk

, edge i, j is used in ant k s tour

0, otherwise

, 9 6

where Q is a constant that controls the amount of pheromone deposited. The Lk is
the length of ant k s tour. The algorithm terminates when a stopping criterion is
met, such as reaching a maximum number of iterations or a satisfactory solution.
One common stopping criterion in ACO is to terminate the algorithm after a max-
imum number of iterations, Tmax, has been reached. This can be expressed as:

t ≥ Tmax, 9 7

where t is the current iteration of the algorithm. Another stopping criterion is to
terminate the algorithm when a satisfactory solution has been found. This is often
based on a threshold value, , that determines how close the current best solution
is to the optimal solution. Specifically, the algorithm can terminate if the relative
difference between the current best solution, fbest, and the optimal solution, fopt, is
less than or equal to ε. This can be expressed as Equation (9.8).

f opt − f best
f opt

≤ ε, 9 8

where fopt is the optimal solution and fbest is the current best solution found by the
algorithm. In practice, these stopping criteria can be combined or used individu-
ally depending on the specific problem and computational resources available. The
choice of stopping criterion can have a significant impact on the performance of
the algorithm, as it affects the balance between exploration and exploitation in the
search process. For instance, see the pseudocode for applying the ACO algorithm.
An artificial ant is made for finding the optimal solution. In the first step of solving
a problem, each ant generates a solution. In the second step, paths found by dif-
ferent ants are compared, and in the third step, paths value or pheromone is
updated (Algorithm 9.2).

9.2 Ant Colony Optimization 183

Algorithm 9.2 Pseudocode for ACO Algorithm

a) Procedure ACO_MetaHeuristic
b) While not_termination do

generateSolutions()
daemonActions()
PheromoneUpdate()
Repeat

c) End procedure

Overall, ACO is an effective method for solving optimization problems that
involve finding the shortest path in a graph. The algorithm is robust and can
handle large and complex biomimetics problems. In the context of biologically
characterized algorithms, ACO can be combined with other bio-inspired algorithms
such as neural networks or swarm intelligence. For example, a biological system
that uses ACO and neural networks might include the Equation (9.9).

y = f w1x1 + w2x2 + … + wnxn , 9 9

where y is the output of the neural network, xi is the input, wi is the weight asso-
ciated with input xi, and f is the activation function. These equations demonstrate
how ACO can be combined with other bio-inspired algorithms within a biological-
inspired system to create a more powerful optimization algorithm that is inspired
by the principles of biology and cybernetics.

9.3 Bees Algorithm

The Bees Algorithm (BA) is a biologically characterized optimization technique
that is based on the behavior of bees as they search for nectar. The BA is a swarm
intelligence optimization algorithm that was inspired by the foraging behavior
of honeybees. The algorithm has been applied to a wide range of optimization
problems in engineering cybernetics.
The BA works by simulating the behavior of bees in a hive. In the algorithm, a

population of bees is used to explore the search space and find the optimal solution
to a given optimization problem. The population is divided into three groups of
bees: employed bees, onlooker bees, and scout bees.
The employed bees represent the solutions that are currently being exploited,

while the onlooker bees select a solution from the employed bees based on its fit-
ness value. The scout bees are responsible for introducing new solutions into the

184 9 Bio-Inspired Cybernetical Intelligence

population by randomly exploring the solution space. The complete flowchart of
the algorithm is shown in Figure 9.4.
During each iteration of the BA, the employed bees and onlooker bees collabo-

rate to generate new solutions, and the best solutions are updated in the popula-
tion. The scout bees also randomly search the solution space, and if they find a
better solution than the current solutions in the population, they replace the worst
solution in the population. The aim of this algorithm is to develop bio-related com-
puting systems that draw inspiration from the principles of biology and cybernet-
ics. The BA is a prime example of how the behavior of animals can be used to solve
complex optimization problems, and it can be used in a wide range of applications,
including engineering, cybernetic intelligence and also in biomimetics to solve
problems. One of the strengths of the BA is its ability to balance exploration
and exploitation. The algorithm uses a combination of random search and exploi-
tation of the best solutions found so far, which allows it to efficiently search the
solution space and find high-quality solutions. Overall, the BA is a powerful bio-
metric intelligence optimization algorithm that is inspired by the behavior of bees
in a hive. By using a combination of local search and global search strategies, the

(5) Select best bees from
scout bees(b)

(5) Select Elite bees from
scout bees(e)

Start

(1) Initial scout bees(n)

(2) Evaluate fitness

(1) Neighborhood search
recruit bees(n2)

(4) Neighborhood search
recruit bees(n1)

(7) Randomize recruit
random bees(r)

(8) Convergence?

End

Figure 9.4 Flowchart of the bees algorithm.

9.3 Bees Algorithm 185

algorithm is able to efficiently search the solution space and find high-quality solu-
tions to optimization problems.
The BA starts by generating a population of n employed bees, where each

employed bee represents a potential solution to the optimization problem. The
position of the ith employed bee is represented by the vector xi, and the fitness
of the ith employed bee is evaluated using the objective function(s), f (xi). Each
employed bee searches for a food source in its local neighborhood by performing
a local search around its current position. The search is performed using a muta-
tion operator that generates a new solution, vi, based on the current position, xi,
and a random perturbation r as described in Equation (9.10).

vi = xi + r 9 10

The fitness of the new solution, f(vi), is then evaluated. If f(vi) is better than f (xi),
the employed bee is replaced with the new solution, vi. The onlooker bees select a
food source based on the probability distribution function, pi, which is calculated
as follows:

pi =
fitnessi
n

j = 1
fitnessj

, 9 11

where fitnessi is the fitness of the ith employed bee, and n is the total number of
employed bees. The onlooker bee then performs a local search around the selected
food source using the mutation operator. The fitness of the new solution is eval-
uated, and if it is better than the current solution, the employed bee is replaced
with the new solution. The scout bees search for new food sources by randomly
generating new solutions, xi, and evaluating their fitness, f (xi). If a new solution
is better than any of the current solutions, the employed bee is replaced with
the new solution.
The BA continues to iterate through the employed bee, onlooker bee, and scout

bee phases until a stopping criterion is met, such as a maximum number of itera-
tions or a minimum improvement in the objective function(s). Overall, the BA is a
powerful bio-inspired computational intelligence algorithm that combines global
search and local search strategies to efficiently search the solution space and find
high-quality solutions to optimization problems.

9.4 Artificial Bee Colony Algorithm

The Artificial Bee Colony (ABC) algorithm is a bio-related computing algorithm
that mimics the foraging behavior of honeybees. It widely used in machine learn-
ing applications to solve complex biomimetics problems. The algorithm is based on

186 9 Bio-Inspired Cybernetical Intelligence

the principles of swarm intelligence, which is a collective behavior exhibited by
groups of animals that emerge from the interactions between individual members
of the group. The ABC algorithm takes advantage of the collective behavior of bees
to efficiently search for the best solution in a large search space. The complete
pseudocode for ABC is described below (Algorithm 9.3):

Algorithm 9.3 Pseudocode for ABC Algorithm

a) Initialize the colony of bees
b) Set the number of iterations
c) Set the number of trials
d) Set the limit of the number of trials for each food source
e) Set the abandonment limit for each food source

• For each iteration:

• For each employed bee:
○ Select a random food source
○ Generate a new solution using the neighborhood search
○ Evaluate the new solution
○ If the new solution is better than the old one:

• Replace the old solution with the new one
○ Else:

• Increment the number of trials for the food source

• If the number of trials exceeds the limit:

• Abandon the food source

• Generate a new solution randomly

• Evaluate the new solution

• Assign the new solution to the abandoned food source
○ For each onlooker bee:

• Select a food source based on its fitness

• Generate a new solution using the neighborhood search

• Evaluate the new solution

• If the new solution is better than the old one:
○ Replace the old solution with the new one

• Select the best solution found so far as the global best

a) For each scout bee:
○ If the number of trials for a food source exceeds the abandonment limit:
○ Generate a new solution randomly
○ Evaluate the new solution
○ Assign the new solution to the abandoned food source

b) Return the global best solution

9.4 Artificial Bee Colony Algorithm 187

During each iteration of the algorithm, the employed bees and onlooker bees
collaborate to generate new solutions, and the best solutions are updated in the
population. The scout bees also randomly search the solution space, and if they
find a better solution than the current solutions in the population, they replace
the worst solution in the population. In the Figure 9.5, the flowchart to employed
bees generates new solutions and onlooker bees observe employed bees and
generate their own solutions. The algorithm keeps track of the best solution found
so far and continues to search for a better solution until a convergence condition
is met.
The ABC technique starts by generating a population of n employed bees, where

each employed bee represents a potential solution to the optimization problem.
The position of the ith employed bee is represented by the vector xi, and the fitness
of the ith employed bee is evaluated using the objective function(s). Each employed
bee searches for a food source in its local neighborhood by performing a local
search around its current position. The search is performed using a mutation

Scout bee
(general initial solutions randomly)

Start

Employed bee phased
Neighborhood search around corresponding solutions, general new solutions,

update the original solution

Onlooker bee phase
(neighborhood search around pseudo-randomly selected solutions, generate

new solutions, update the original solutions)

Scout bee phase
(abandon the solutions that have not been updates for a long time, generate

new solutions randomly)

Iteration
terminated?

End

Figure 9.5 The flowchart for the artificial bee colony.

188 9 Bio-Inspired Cybernetical Intelligence

operator that generates a new solution vi, based on the current position xi, and a
random perturbation r as shown in Equation (9.12).

vi = xi + r 9 12

The fitness of the new solution f(vi), is then evaluated. If f(vi) is better than f (xi),
the employed bee is replaced with the new solution vi. The onlooker bees select a
food source based on the probability distribution function p, which is calculated as
shown in Equation (9.13).

pi =
fitnessi
n

j = 1
fitnessj

, 9 13

where fitnessi is the fitness of the ith employed bee, and n is the total number of
employed bees. The onlooker bee then performs a local search around the selected
food source using a mutation operator, similar to the employed bees. The onlooker
bee generates a new solution vi, based on the selected food source xi, and a random
perturbation r. The ABC methodology continues to iterate through the employed
bee, onlooker bee, and scout bee phases until a stopping criterion is met. This can
be a maximum number of iterations, a minimum improvement in the objective
function(s), or any other criterion specified by the user. Overall, the ABC method-
ology is a powerful bio-characterizedmachine intelligence algorithm that balances
local search and global search strategies to efficiently search the solution space and
find high-quality solutions to optimization problems.

9.5 Cuckoo Search

Cuckoo Search is an example of bio-related machine intelligence algorithm, which
involves using insights from biological systems to develop computational algo-
rithms that can solve complex problems. By mimicking the behavior of cuckoo
birds, this algorithm provides a novel approach to optimization that is both effi-
cient and effective. Other examples of bio-inspired computing intelligence include
GAs, particle swarm optimization, and ACO, among others. The complete work-
flow of the algorithm is shown in Figure 9.6.
The algorithm starts by randomly generating a set of solutions, or nests, to rep-

resent potential solutions to the optimization problem. Each nest is represented by
a vector xi, where i is the index of the nest. After the initial solutions are generated,
the fitness of each solution is evaluated using the objective function(s) of the opti-
mization problem. The objective function(s) map each solution to a scalar value
representing its fitness or quality. The goal of the optimization problem is typically

9.5 Cuckoo Search 189

to minimize or maximize the objective function(s), depending on the problem.
The pseudocode of the algorithm is given below (Algorithm 9.4).

Algorithm 9.4 Pseudocode for the Cuckoo Search Algorithm

a) Initialize the population of cuckoos
b) Set the number of iterations
c) Set the fraction of nests to be replaced each iteration
d) Set the lower and upper bounds of the search space
e) Set the step size scaling factor

Start

Random initialization of N population

Use Levy flight to find a cuckoo, zj

Evaluate fitness, f zj

f zj > fi

Random selection of nest i, from N nests

Yes

Make fi as solution

Replace ƒzj with new solution

Abandon the worst nests and find new nest using Levy flight

No

Output the best solution

End

Figure 9.6 The flowchart for the cuckoo search algorithm.

190 9 Bio-Inspired Cybernetical Intelligence

f) For each iteration:

• Evaluate the fitness of each cuckoo

• Sort the cuckoos based on their fitness

• Select the fraction of nests to be replaced

• For each new cuckoo:
○ Choose a random cuckoo from the population
○ Generate a new cuckoo solution by Lévy flight
○ Evaluate the fitness of the new cuckoo
○ If the new cuckoo’s fitness is better than the old one:
○ Replace the old cuckoo with the new one
Apply Levy flight to some of the existing cuckoos
Replace some of the worst cuckoos with new ones
Clip the cuckoo population to the lower and upper bounds of the search space

g) Return the best solution found so far

The initial population of solutions can be represented as a matrix X of size n × d,
where n is the number of solutions, and d is the dimensionality of each solution.
Each row of the matrix X represents a solution vector xi. The fitness of each solu-
tion can be evaluated using the objective function(s) f (xi), which takes the solution
vector xi as input and returns a scalar value representing its fitness. Therefore, the
fitness of the initial population can be represented as a vector F of size n × 1, where
each element i corresponds to the fitness of the ith solution as described in
Equation (9.14).

F = f x1 , f x2 ,…, f xn
T 9 14

The goal of the optimization problem is typically to minimize or maximize the
fitness function(s) F. In the case of minimization, the algorithm seeks to find a
solution vector xi such that:

minimize F = f xi , 9 15

in the case of maximization, the algorithm seeks to find a solution vector xi
such that:

maximize F = f xi , 9 16

the new solution vi is generated based on the current solution, xi, and a random
perturbation, u, using the following equation:

vi = xi + αL u xi − xj , 9 17

9.5 Cuckoo Search 191

where α is a step size factor, L(u) is the Lévy distribution function, and xj is a ran-
domly selected solution from the population. The Lévy distribution function is a
probability distribution used in stochastic processes and mathematical finance as
shown in Equation (9.18).

L u =
e− u

2πu

∞

0

e−
Γ2
2udt, 9 18

where Γ is the gamma function, β is a parameter that controls the shape of
the distribution, and |u| is the Euclidean norm of the perturbation vector u.
The gamma function is defined as shown in Equation (9.19).

Γ x =

∞

0

0, ∞ t x− 1 e− tdt, 9 19

the Lévy distribution function is used to generate a random perturbation vector u
of length d, where d is the dimensionality of the solution vectors:

u = u1, u2,…, ud 9 20

Each element of the perturbation vector ui is generated independently from the
others, according to the Lévy distribution function. The new solution vector vi is
then generated using the following equation:

vi = xi + αL u xi − xj , 9 21

where α is a step size factor, L(u) is the Lévy distribution function evaluated at the
perturbation vector u, and xj is a randomly selected solution vector from the
population.
The Lévy distribution function introduces a degree of randomness into the

search process, which allows the algorithm to explore different regions of
the search space. The step size factor controls the magnitude of the change
between xi and vi and can be adjusted during the course of the optimization to
balance exploration and exploitation. The selection of a random solution vector
xj promotes diversity in the search process and helps to prevent the algorithm from
becoming trapped in local optima. Once a new solution, vi, is generated, it is
compared with the solutions in the population. If the fitness of vi is better than
the fitness of the ith solution in the population, the cuckoo bird replaces the host
egg (solution) with its own egg (new solution).
The following procedures present the operational principles of the algorithm.

Generate New Solution: A new solution vector vi is generated using the Lévy Flight
step, as described previously. Evaluate Fitness: The fitness of the new solution vi is
evaluated by applying the objective function to vi. The objective function is a

192 9 Bio-Inspired Cybernetical Intelligence

mathematical function that defines the problem being optimized. Replace Host
Egg: The fitness of the new solution vi is compared with the fitness of the solution
in the population that is being replaced, which is typically the worst solution. If the
fitness of vi is better than the fitness of the solution being replaced, then the cuckoo
bird replaces the host egg (solution) with its own egg (new solution) by updating
the solution vector and its fitness value. For instance, fi be the fitness of the i

th solu-
tion in the population, and let fvi be the fitness of the new solution vi. If f vi is better

than fi, then the cuckoo bird replaces the ith solution with its own egg (new solu-
tion) vi as shown in Equation (9.22).

if f vi > f i xi = vi
f xi = f vi ,

9 22

where xi is the solution vector of the ith solution, and fi is its fitness value. The
replacement process ensures that the population always contains the best solu-
tions found so far in the search process. The Egg Laying step ensures that the pop-
ulation of solutions is constantly being updated with new, potentially better
solutions. By comparing the fitness of the new solution with the fitness of the worst
solution in the population, the algorithm ensures that only solutions that improve
the overall quality of the population are retained. This helps to prevent the algo-
rithm from getting stuck in local optima and promotes convergence toward the
global optimum.

9.6 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a popular bio-inspired optimization algo-
rithm that is based on the collective behavior of swarms of birds. This bio-
characterized algorithm aims to develop bio-related intelligent systems that draw
inspiration from the principles of biology and cybernetics. By using the principles
of PSO within a biomimetics system, researchers can develop more efficient and
effective optimization algorithms that are inspired by the behavior of birds and
other animals. Therefore, the integration of the PSO algorithm into a biologically
characterized system can lead to the development of novel optimization techni-
ques that can help address complex problems in different domains.
The PSO algorithm starts by initializing a population of particles, each of which

represents a potential solution to the optimization problem. The particles move
through the search space, adjusting their position based on their current velocity
and their distance from the best-known solution. The velocity of each particle is
determined by the particle’s previous velocity, the distance to the particle’s per-
sonal best solution, and the distance to the global best solution found so far by

9.6 Particle Swarm Optimization 193

any particle in the population. At each iteration of the algorithm, the particles eval-
uate their fitness based on the objective function of the optimization problem. The
personal best solution and the global best solution are updated based on the fitness
of the particles. The personal best solution is the best solution found by each par-
ticle so far, while the global best solution is the best solution found by any particle
in the population.
The PSO algorithm uses a stochastic search strategy that allows it to effectively

explore the solution space and converge to the global optimum solution. The algo-
rithm is also able to balance exploration and exploitation, which helps to avoid
getting stuck in local optima. One of the strengths of the PSO algorithm is its sim-
plicity and ease of implementation. The algorithm has relatively few parameters,
which makes it easy to use and adapt to different optimization problems. Another
strength of the PSO algorithm is its ability to handle nonlinear, non-convex, and
multimodal optimization problems. However, like all optimization algorithms, the
PSO algorithm has its limitations. It can sometimes suffer from premature conver-
gence or slow convergence, particularly when the search space is large or the
objective function is noisy. The complete flowchart for the working of the algo-
rithm is shown in Figure 9.7.

Start

Initialize group of practical

Evaluate pBest for each particle

Current positions is
better than pBest Update position

False
True

Assign pBest to gBest

Computer velocity

Update particle position

False Target
reached

True
End

Figure 9.7 Flowchart for the particle swarm optimization.

194 9 Bio-Inspired Cybernetical Intelligence

Here are the main steps of the PSO method. The algorithm starts by randomly
initializing a population of particles, where each particle is represented by a vector
of positions and velocities in the search space. The positions represent the candi-
date solutions, and the velocities represent the direction and magnitude of the
movement of the particle. The fitness value of each particle is evaluated by apply-
ing the objective function to its position vector. Each particle updates its personal
best position, which is the position that has the best fitness value among all the
positions it has visited so far. The particle with the best fitness value among all
the personal best positions in the population is selected as the global best position.
Each particle updates its velocity based on its current velocity, its personal best
position, and the global best position. The new velocity is calculated using the
following Equation (9.23).

vt + 1
i = ωVt

i + c1r1 Pt
i −Xt

i + c2r2 Pt
g −Xt

i , 9 23

where vt + 1
i = ωVt

i is the velocity of particle i at time t, Xt
i is the position of particle i

at time t, Pt
i is the personal best position of particle i up to time t, Pt

g is the global

best position of the swarm up to time t, ω is the inertia weight, c1 and c2 are the
acceleration coefficients, and r1and r2 are random numbers uniformly distributed
in the range [0, 1]. Each particle updates its position using the new velocity vector
calculated in step 5. The new position is calculated using the Equation (9.24).

xi t + 1 = xi t + vi t + 1 , 9 24

where xi(t) is the current position of the particle at time t. The algorithm terminates
when a stopping criterion is met, such as reaching a maximum number of itera-
tions, or when the fitness value of the global best position meets a predefined
threshold. The inertia weight, w, is a parameter that controls the balance between
the global and local search capabilities of the PSO algorithm. It determines how
much the particle maintains its current velocity. The inertia weight is usually initi-
alized to a high value and decreased over time to balance the exploration and
exploitation abilities of the algorithm. The updated value of the inertia weight,
w(t), can be computed as shown in Equation (9.25).

w t = wmax − wmax −wmix
t
T
, 9 25

wherewmax andwmin are themaximum andminimum values of the inertia weight,
t is the current iteration, and T is the maximum number of iterations.
The acceleration constants, c1 and c2, are parameters that control the influence

of the personal and global best positions on the velocity update equation. They
determine how much the particle is attracted to its own best solution and the best
solution found by the swarm, respectively. The values of c1 and c2 are usually set to

9.6 Particle Swarm Optimization 195

be equal and within the range of [0, 2]. The PSO algorithm starts by randomly initi-
alizing a population of particles in the search space. Each particle represents a can-
didate solution to the optimization problem and is defined by its position and
velocity vectors. The position vector xi of each particle represents a potential solu-
tion to the problem and is initialized randomly within the search space. The veloc-
ity vector vi of each particle represents the direction andmagnitude of the particle’s
movement in the search space. It is also initialized randomly within a speci-
fied range.

9.7 Bacterial Foraging Optimization

Bacterial foraging optimization (BFO) is a bio-related algorithm that is modeled
after the foraging behavior of bacteria. The algorithm simulates the process by
which bacteria search for food sources in their environment, and use chemical sig-
naling to communicate with each other to coordinate their movements. BFO has
been applied to a variety of optimization problems, including parameter optimi-
zation, function optimization, and feature selection. The complete workflow of
the algorithm is shown in Figure 9.8.
In BFO, movement refers to the displacement of bacteria in the search space.

Bacteria move by changing their position through a process called chemotaxis,

Start

Initial population

Mutation for tumble process

Mutation for swim process

No

Yes

Calculate
fitness

Selection

End

Figure 9.8 Flowchart for the bacterial
foraging optimization.

196 9 Bio-Inspired Cybernetical Intelligence

which is influenced by attractant and repellent signals in their environment.
The movement of bacteria is modeled using a movement equation as shown in
Equation (9.26), which updates the position of each bacteria based on its current
position and its swimming speed.

xi t + 1 = xi t + η t × rand , 9 26

where xi(t) is the position of the ith bacteria at time t, xi(t+ 1) is its new position at
time t+1, η is the step size or swimming speed of the bacteria, (t) is the tumble
probability or the probability of the bacteria changing its direction at time t,
and rand() is a random number between −1 and 1.
The swimming speed of bacteria is also updated using a chemotaxis equation as

shown in Equation (9.27), which takes into account the attractant and repellent
signals at their current position. By adjusting their swimming speed and direction,
bacteria can explore the search space and search for food sources more efficiently.
The movement of bacteria in BFO is inspired by the behavior of bacteria in nature,
where they move toward areas with high concentrations of nutrients and avoid
areas with high concentrations of toxins.

wi t + 1 = wi t + c1 Attracti −Repeli − c2 wi t , 9 27

where wi(t) is the swimming speed of bacteria i at time t, Attracti and Repeli are the
attractant and repellent signals at the current position of bacteria i, respectively,
and c1 and c2 are the scaling coefficients. The update equation for the attractant
and repellent signals is described in Equation (9.28).

A xi t = A xi t + Pi t −Di t ,

R xi t = R xi t + Pi t
9 28

9.8 Gray Wolf Optimizer

Gray Wolf Optimizer (GWO) is a metaheuristic optimization algorithm inspired
by the social hierarchy and hunting behavior of gray wolves in the wild and the
complete workflow of the algorithm is shown in Figure 9.9, where ct represents
in correct number of iterations.
In GWO, the positions of the α, β, and δwolves are updated iteratively to find the

optimal solution of an optimization problem as shown in Equations (9.29), (9.30)
and (9.31) respectively.

9.8 Gray Wolf Optimizer 197

Da = Ca Xa −Xa

Xa = Xa −A1Da

9 29

Dβ = CβXβ −Xβ

Xβ = Xβ −A2Dβ

9 30

Dδ = CδXδ −Xδ

Xδ = Xδ −A3Dδ,
9 31

where X is the position vector of the current search agent, Xa,Xβ, and Xδ are the

position vectors of the α, β, and δ wolves, respectively. The Ca,Cβ, and Cδ are the

position vectors of the prey for the α, β, and δ wolves, respectively. The A1, A2, and

A3 are the updated coefficients. The step size is updated using the Equation (9.32).

α = 2
A

C
1−

t
Tmax

−A, 9 32

where A is the initial step size, C is the average distance between the search agents,
t is the current iteration, and Tmax is the maximum number of iterations. In GWO,

Start

Initialize related param

Randomly initialize the positions of the whole population

No
ct<Max iteration

EndCalculate the fitness

Get Xa, Xβ and Xδ

Output Xa

Update the position of each wolf

Figure 9.9 Flowchart for the gray wolf optimizer.

198 9 Bio-Inspired Cybernetical Intelligence

the fitness function of the optimization problem is used to evaluate the quality of
the solutions. The algorithm starts with an initial population of search agents and
iteratively updates their positions using the Equation (9.32) until the stopping cri-
terion is met.

9.9 Firefly Algorithm

The Firefly Algorithm (FA) is a metaheuristic algorithm inspired by the flashing
behavior of fireflies. In FA, each firefly is attracted to other fireflies with higher
brightness, leading to the formation of clusters of fireflies around the global opti-
mum. The complete workflow of the algorithm is shown in Figure 9.10.

Start

Generate initial populations of fireflies

Evaluate fitness of all fireflies from the objective function

Update the light intensity

Rank the fireflies and update the positions

No

Update the position of each wolf

Rank the fireflies and update the positions

Reach max
iteration?

Yes

Optimal results

Figure 9.10 Flowchart for the firefly algorithm.

9.9 Firefly Algorithm 199

The algorithm starts by initializing the population of fireflies with random solu-
tions. Objective function is used to evaluate the fitness of each firefly. Fireflies are
attracted to each other based on their relative brightness. The brightness of each
firefly is proportional to its fitness value. The attraction between fireflies is
described by the Equation (9.33).

Fij = β0e
− γrij2 Xj −Xi , 9 33

where Fij is the attractiveness of firefly i to firefly j, β0 is the initial attractiveness, γ
is the light absorption coefficient, rij is the Euclidean distance between fireflies i
and j, and Xj and Xi are the positions of fireflies j and i, respectively. Themovement
of each firefly is determined by the attractiveness of the other fireflies in the pop-
ulation. The firefly moves toward the brightest firefly in its vicinity, while also
incorporating some random movement. The movement of firefly i is described
by Equation (9.34).

Xi t + 1 = Xi t + β0e
− γrij2 Xj −Xi + α ε− 0 5 , 9 34

where Xi(t) and Xi(t+ 1) are the positions of firefly i at time t and t+1, respectively,
β0 and γ are the same parameters as in the attraction equation, α is the step size, ε is
a random number between 0 and 1, and 0.5 is used to center the random move-
ment around zero. The FA is known for its ability to find the global optimum
quickly and efficiently. However, the algorithm may struggle with multimodal
problems or problems with a large number of dimensions.

Summary

Biologically characterized artificial intelligence algorithms, also known as bio-
inspired algorithms, are computational methods that draw inspiration from bio-
logical systems to solve complex problems. These techniques are designed to
mimic the behaviors and processes observed in nature, such as evolution, swarm
intelligence, and neural networks. This chapter describes various bio-inspired
optimization concepts, including BA, ABC Algorithm, Cuckoo Search, and PSO.
In addition, the initialization and update equations for the population, as well
as the objective function and fitness function, are examined as the mathematical
underpinnings of these frameworks.
For example, in BA, a population of employed bees is generated and each

employed bee represents a potential solution to the optimization problem. The fit-
ness of each bee is evaluated using the objective function, and the bees perform
local search and global search to improve their solutions. In PSO, a population

200 9 Bio-Inspired Cybernetical Intelligence

of particles is initialized with random positions and velocities, and each particle
represents a potential solution. The velocity of each particle is updated based
on its personal best position and the global best position, and the position of each
particle is updated based on its velocity. The importance of stopping criteria in
these optimization algorithms also discussed. Both ABC Algorithm and PSO are
powerful optimization techniques, but they have some limitations. One common
limitation of both algorithms is that they may converge to local optima when deal-
ing with problems that have multiple local optima. Additionally, PSO may suffer
from premature convergence, while ABC Algorithm requires a large number of
function evaluations to converge. Future research for both algorithms focuses
on developing hybrid algorithms that combine themwith other optimization tech-
niques to overcome their limitations, improving their scalability, and making
them more robust to noisy and dynamic environments by incorporating adaptive
mechanisms. They have been shown to be effective and efficient in many applica-
tions and have inspired the development of new algorithms and computational
models. BFO and GWO are two popular biological-inspired optimization algo-
rithms used to solve complex optimization problems. Additionally, combining
BFO and GWO with biologically characterized algorithms can lead to the devel-
opment of hybrid optimization techniques that leverage the strengths of each algo-
rithm for more effective optimization. As future perspective, the bio-inspired
algorithms are expected to play an increasingly important role in developing
advanced cybernetical technologies, such as autonomous systems, smart cities,
and personalized medicine. The future perspective of bio-inspired algorithms is
therefore highly promising and holds great potential for solving some of the most
pressing challenges of our time.

Exercise Questions

Q.9.1 How does the Artificial Bee Colony Algorithm handle constraints in opti-
mization problems?

Q.9.2 Describe the main idea behind the Particle Swarm Optimization
algorithm.

Q.9.3 Explain how does the topology of the Particle Swarm Optimization affect
its performance.

Q.9.4 What is the role of the inertia weight parameter in Particle Swarm
Optimization?

Exercise Questions 201

Q.9.5 Describe the difference between a global best position and a personal best
position in Particle Swarm Optimization.

Q.9.6 How can the convergence speed of the Artificial Bee Colony Algorithm
be improved?

Q.9.7 Explain the difference between the Bees Algorithm and the Artificial Bee
Colony Algorithm.

Q.9.8 What is the Lévy flight in the Cuckoo Search algorithm?

Q.9.9 Which challenges do Artificial Bee Colony Algorithm and Particle
Swarm Optimization face when dealing with multi-objective optimiza-
tion problems?

Q.9.10 How can Particle Swarm Optimization be modified to handle dynamic
environments?

Q.9.11 Which factors should be considered when selecting a suitable optimiza-
tion algorithm for a specific problem?

Q.9.12 Illustrate the main components of the BFO algorithm.

Q.9.13 How does the Gray Wolf Optimizer algorithm handle constraints in opti-
mization problems?

Further Reading

Aydin E, Purlu M, Turkay BE. Economic dispatch of multi-microgrid systems by using
particle swarm optimization. In 2021 13th International Conference on Electrical
and Electronics Engineering (ELECO) 2021 Nov 25 (pp. 268–272).

Edin BB, Beccai L, Ascari L, Roccella S, Cabibihan JJ, Carrozza MC. Bio-inspired
approach for the design and characterization of a tactile sensory system for a
cybernetic prosthetic hand. In Proceedings 2006 IEEE International Conference on
Robotics and Automation, 2006. ICRA 2006 May 15 (pp. 1354–1358).

Holland JH. Adaptation in natural and artificial systems: an introductory analysis with

applications to biology, control, and artificial intelligence. MIT press; 1992 Apr 29.
Ruiz-Cruz R, Sanchez EN, Ornelas-Tellez F, Loukianov AG, Harley RG. Particle swarm

optimization for discrete-time inverse optimal control of a doubly fed induction
generator. IEEE Transactions on Cybernetics. 2012 Dec 13;43(6):1698–709.

202 9 Bio-Inspired Cybernetical Intelligence

10

Life-Inspired Machine Intelligence and Cybernetics

Bio-inspired and life-inspired machine intelligence demonstrate a major
breakthrough in artificial intelligence and in the history of computing and tech-
nological development. Both terminologies seem to be similar, but in fact, differ
in their ultimate objectives and functionality to serve mankind. Bio-inspired
machine intelligence involves the study of biological processes, systems, and struc-
tures to create algorithms and optimization models that can be applied to machine
learning. For example, scientists may study the way neurons in the brain work to
develop artificial neural networks for deep learning, which uses insights from
biology to create efficient and effective algorithms for solving complex problems.
In contrast, life-inspired machine intelligence is focused on simulating living
organisms and biological phenomena using computer technology. This approach
aims to create digital models of biological systems that can be used to study their
behavior and predict how they will react to different stimuli. For example, scien-
tists may use computer simulations to study the behavior of complex microbial
communities or to model the behavior of individual cells and tissues. In essence,
there is some form of machine intelligence inherent. Overall, life-inspired artificial
intelligence is an exciting and rapidly growing field that has the potential to trans-
form the way one live and work. By harnessing the power of natural intelligence
and applying it to automated cellular machines, one can create more efficient,
adaptive, and intelligent systems than ever before.

10.1 Multi-Agent AI Systems

Multi-agent AI systems are computational systems composed of multiple intelli-
gent agents that interact with each other and with the environment to achieve
a common goal as shown in Figure 10.1. These systems have a broad range of

203

Cybernetical Intelligence: Engineering Cybernetics with Machine Intelligence, First Edition.
Kelvin K. L. Wong.
© 2024 The Institute of Electrical and Electronics Engineers, Inc.
Published 2024 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/cyberintel

applications, such as in robotics, economics, and social networks. In this context,
multi-agent systems are modeled using mathematical frameworks that capture
agent interactions.
Mathematically, a multi-agent AI system can be represented as a tupleM = <A,

S, T, R > where A is the set of agents, S is the set of states, T is the transition func-
tion, and R is the reward function. Each agent ai A has its own set of actions Ai,
state space Si, and policy πi. The state space S is the set of possible configurations
of the environment that the agents perceive. The transition function T : S ×A S
determines how the environment changes in response to the actions of the agents.
The reward function R : S ×A R is a function that associates a reward or penalty
with each state-action pair. The goal of each agent is to maximize its expected
cumulative reward over time.
The behavior of the multi-agent AI system can be studied by simulating the

interactions between the agents over time. This can be representedmathematically
as a sequence of states s1, s2,…, sT, where T represents the number of time steps. At
each time step, each agent i observes the current state st, selects an action ai(t)
from its action space Ai based on its policy πi(st), and receives a reward or payoff
ui(st, a1(t), a2(t), …, an(t)) based on the joint action of all agents. The interactions
between agents can bemodeled using game-theoretic approaches, such as the pris-
oner’s dilemma or the Nash equilibrium. In these models, each agent’s utility or
payoff is determined by the actions of all agents, and the goal of each agent is to
maximize its own utility given the actions of the other agents.
A popular approach for modeling multi-agent AI systems is reinforcement

learning, which is a machine learning technique that allows agents to learn from
their interactions with the environment. In reinforcement learning, agents learn

Sensors
Percepts

Agent

What is the
world like

now

Condition-
action rules

Action to be
done

Environment

Actuators
Actions

Figure 10.1 Workflow of multi-agent system.

204 10 Life-Inspired Machine Intelligence and Cybernetics

to select actions that maximize their expected cumulative reward over time. This is
achieved through an iterative process of trial and error, where the agents adjust
their policies based on the feedback they receive from the environment. Multi-
agent AI systems and cybernetics are closely related fields that have emerged from
the study of complex systems. Cybernetics provides a theoretical framework for
understanding how these multi-agent systems can operate and adapt in a complex
environment. The principles of feedback and control, which are central to cyber-
netics, can be applied to designing and implementing multi-agent systems. By
incorporating feedback loops and control mechanisms into the system, the agents
can adjust their behavior and coordination in response to changes in the environ-
ment and the behavior of other agents.

10.1.1 Game Theory

Game theory is a mathematical framework used to analyze the strategic
behavior of decision-makers, or “players,” in situations where their choices are
interdependent. The primary assumption in game theory is that players are
rational, meaning that they act in their own self-interest, attempting to maximize
their expected utility.
A game in game theory consists of four elements: the set of players, the set of

possible strategies for each player, the payoff function that maps each combination
of strategies to the payoff for each player, and the information available to each
player. To illustrate, consider a simple game between two players, player 1 and
player 2, where each player can choose to cooperate (C) or defect (D). The payoff
for each player depends on the combination of strategies played by both players
and can be represented in a payoff matrix. Game theory provides several tools
and concepts to analyze games, including Nash equilibrium as shown in Equa-
tion (10.1), dominance, and iterated games. Nash equilibrium is a set of strategies,
one for each player, where no player can improve their payoff by unilaterally chan-
ging their strategy.

A∗,B∗ such that A,B, u1 A∗,B ≥ u1 A,B∗ and u2 A∗,B ≥ u2 A,B∗

10 1

Dominance is a situation where one strategy is always better than another,
regardless of the other player’s choice. Iterated games allow for repeated rounds
of play and can lead to the development of more complex strategies such as tit-
for-tat, which involves cooperating initially and then mimicking the other player’s
previous choice. Dominant strategy is a strategy that is always better than any
other strategy, regardless of the other player’s strategy. Mathematically, a domi-
nant strategy can be represented as Equation (10.2).

10.1 Multi-Agent AI Systems 205

A is a dominant strategy if B,U1 A,B ≥ u1 B ,B B = A

B is a dominant strategy if A,U2 A,B ≥ u2 A,B B = B
10 2

Game theory has numerous applications in various fields such as economics,
political science, psychology, biology, and computer science. It can help to under-
stand social interactions, predict behavior, and develop optimal strategies in com-
plex situations. Overall, game theory is a powerful tool that provides a structured
and quantitative approach to analyzing strategic decision-making. In addition to
game theory, multi-agent systems can be modeled using other mathematical fra-
meworks such as reinforcement learning and swarm intelligence. These frame-
works provide alternative approaches to modeling the interaction between
agents and can be used to design multi-agent systems for specific applications.
Game theory and cybernetics are closely linked disciplines that share several com-
monalities. Game theory provides a framework for analyzing strategic decision-
making inmulti-agent systems, which is a central problem in cybernetics. By using
game-theoretic models, cyberneticists can design control systems that optimize the
behavior of multiple agents in complex environments. Conversely, cybernetics
provides a framework for understanding the dynamics of feedback systems, which
is used to inform the development of game-theoretic models. Together, game
theory and cybernetics offer powerful tools for analyzing and controlling complex
systems in a variety of domains, from economics and politics to engineering
and biology.

10.1.2 Distributed Multi-Agent Systems

Distributed multi-agent systems are a type of multi-agent AI system in which the
agents are distributed across a network or a physical space and interact with each
other in a decentralizedmanner. These systems havemany applications, such as in
robotics, sensor networks, and distributed computing. A distributed multi-agent
system can be represented mathematically as a tuple M = <A, S, T, R>, where
A is the set of agents, S is the set of states, T is the transition function, and R is
the reward function. Each agent ai A has its own set of actions Ai, state space
Si, and policy πi. At each time step t, each agent i observes the current state
si(t), selects an action ai(t) from its action space Ai based on its policy πi(si(t)),
and receives a reward or payoff ui(s1(t), a1(t), a2(t), …, an(t)) based on the joint
action of all agents. The transition function T : S ×A S determines how the
environment changes in response to the actions of the agents as shown in
Equation (10.3).

T s1 t + 1 , s2 t + 1 ,…, sn t + 1 s1 t , s2 t ,…, sn t , a1 t , a2 t ,…, an t ,

10 3

206 10 Life-Inspired Machine Intelligence and Cybernetics

where s1(t+ 1) represents the next state of agent i, given the current state s1(t) and
the joint action a1(t), a2(t), …, an(t) of all agents.
The reward function R:S ×A R is a function that associates a reward or

penalty with each state-action pair. In a distributed multi-agent system, the
reward function may depend on the joint actions of the agents as shown in
Equation (10.4).

R s1 t , a1 t , a2 t ,…, an t , 10 4

which gives the reward or penalty for the joint action of all agents at time t. The
behavior of the distributed multi-agent system can be studied by simulating the
interactions between the agents over time. This can be represented mathemati-
cally as a sequence of states s1(0), s2(0), …, sn(0), s1(1), s2(1), …, sn(1), …, s1(T),
s2(T), …, sn(T).
The interactions between agents in a distributedmulti-agent system can bemod-

eled using various approaches, such as message passing, gossip protocols, and
swarm intelligence. In message passing, each agent communicates with a subset
of other agents to exchange information and coordinate their actions. In gossip
protocols, agents randomly select other agents to exchange information with,
which can help spread information quickly and efficiently. In swarm intelligence,
agents interact with each other using simple rules to achieve complex collective
behavior, such as flocking, foraging, or pattern formation.
Distributed multi-agent systems can be analyzed using various mathematical

tools, such as graph theory, game theory, and control theory. Graph theory can
be used to model the network topology of the agents and study the connectivity
and communication patterns of the system. Game theory can be used to model
the strategic interactions between the agents and study the equilibria of the system.
Control theory can be used to design controllers for the agents that achieve certain
performance objectives, such as stability, robustness, or optimality.

10.1.3 Multi-Agent Reinforcement Learning

Multi-agent reinforcement learning (MARL) is a subfield of life-inspired machine
learning that focuses on learning policies for multiple agents that interact with
each other and with a shared environment. MARL can be represented mathemat-
ically as a Markov game, which is an extension of the Markov decision process
(MDP) to multiple agents. In MARL, the agents interact with each other and with
the environment and receive a joint reward signal that depends on the joint action
they take. The goal is to learn a policy for each agent that maximizes its expected
cumulative reward over time. In aMARL system, agents learn to cooperate or com-
pete with each other to maximize a shared or individual reward signal, while also
adapting to changes in the environment and the behavior of other agents.

10.1 Multi-Agent AI Systems 207

This mirrors the cybernetic concept of feedback and control, where agents contin-
ually adjust their actions based on the feedback received from the environment
and other agents. MARL has many practical applications in areas such as robotics,
game AI, and transportation systems, where decentralized decision-making is
critical to achieving efficient and robust performance.
For instance, a simple case of two agents, i and j, that interact with each other

and with the environment. The state of the environment at time t is denoted by s
(t), and the actions of the agents are denoted by ai(t) and aj(t), respectively. The
joint action of the agents is denoted by a(t) = (ai(t), aj(t)), and the joint state-
action pair is denoted by (s(t), a(t)). The transition function T(s(t+1)|s(t), a(t))
specifies the probability of transitioning from state s(t) to state s(t+1) when
the joint action a(t) is taken. This can be modeled as a probability distribution
over the next state s(t+1) given the current state s(t) and joint action a(t). The
reward function R(s(t), a(t)) specifies the joint reward that the agents receive
for taking the joint action a(t) in state s(t). This can be a function of the current
state and action or a function of the current state and the resulting next state. The
value functionVi(s(t)) represents the expected cumulative reward that agent i can
achieve starting from state s(t) and following its policy πi. This can be defined
mathematically as:

Vi s t = E
∞

k = 0

γkri t + k + 1 s t , πi , 10 5

where γ is the discount factor, ri(t+ k+ 1) is the reward that agent i receives at time
t+ k+ 1, and the expectation is taken over the possible future trajectories of the
environment and the policies of the agents. The action-value function Qi(s(t),
ai(t)) represents the expected cumulative reward that agent i can achieve starting
from state s(t), taking action ai(t), and following its policy πi. This can be defined
mathematically as:

Qi s t , ai t = E
∞

k = 0

γkri t + k + 1 s t , ai t , πi , 10 6

where ri(t+ k+ 1) is the reward that agent i receives at time t+ k+ 1, and the
expectation is taken over the possible future trajectories of the environment
and the policies of the agents. The optimal value function Vs(t) represents the
maximum expected cumulative reward that can be achieved from state s(t) by
following the optimal policies of all agents. Similarly, the optimal action-value

function Qs t ,ai t represents the maximum expected cumulative reward that can
be achieved by taking action ai(t) in state s(t) and following the optimal policies
of all agents.

208 10 Life-Inspired Machine Intelligence and Cybernetics

The optimal value function Vs(t) and optimal action-value function Qs t ,ai t

can be obtained by solving the Bellman optimality equations as shown in
Equations (10.7) and (10.8).

V π s = Eπ Gt s = st = Eπ

T

j = 0

γ jrt + j + 1 s = st 10 7

V π s, a = Eπ Gt st = s,At = a = Eπ

N

j = 0

γ jrt + j + 1 st = s,At = a

10 8

Another approach to MARL is to use communication and coordination between
the agents to improve their performance. This can be achieved by adding a com-
munication channel between the agents, or by using a centralized critic that
observes the joint state and action space and provides feedback to the agents. In
summary, MARL is a subfield of machine learning that focuses on learning poli-
cies for multiple agents that interact with each other and with a shared environ-
ment. It can be formulated mathematically as a Markov game and can be
addressed using various approaches such as Q-learning, actor-critic methods,
and policy gradient methods.

10.1.4 Evolutionary Computation and Multi-Agent Systems

Evolutionary computation (EC) is a subfield of bio-inspired machine intelligence
that is based on the principle of natural selection. It is a powerful optimization
technique that can be used to solve complex problems that are difficult to solve
using traditional optimization methods. EC is often used in conjunction with
multi-agent systems (MAS) to solve complex problems that require the collabora-
tion of multiple agents. In this context, EC can be used to evolve the behavior of
individual agents, while MAS can be used to coordinate the behavior of multiple
agents toward a common goal. One of the most popular EC algorithms is the
genetic algorithm (GA), which is inspired by the process of natural selection. In
GA, a population of candidate solutions is evolved over a number of generations.
Each candidate solution is represented as a chromosome, which is a string of bits
that encode the solution. The fitness of each chromosome is evaluated based on
how well it solves the problem at hand. The fittest chromosomes are then selected
for reproduction, while the less fit chromosomes are discarded. The process of
selection, crossover, and mutation is repeated over multiple generations, with
the hope that the population will evolve toward a better solution.
In the context of MAS, EC can be used to evolve the behavior of individual

agents toward a common goal. Each agent is represented as a chromosome, and

10.1 Multi-Agent AI Systems 209

its behavior is encoded in the chromosome. The fitness of each agent is evalu-
ated based on how well it contributes toward the common goal. The fittest
agents are then selected for reproduction, while the less fit agents are discarded.
The process of selection, crossover, and mutation is repeated over multiple
generations, with the hope that the population of agents will evolve toward
a better solution.
GA:

• Initialization: Generate an initial population of N chromosomes

• Evaluation: Evaluate the fitness of each chromosome in the population

• Selection: Select the fittest chromosomes for reproduction

• Crossover: Perform crossover between pairs of selected chromosomes to create
offspring

•Mutation: Mutate the offspring to introduce new genetic material

• Termination: Check if termination criteria are met, otherwise go to step 2

MAS-EC:

• Initialization: Generate an initial population of N chromosomes, each represent-
ing an agent

• Evaluation: Evaluate the fitness of each agent in the population based on its
behavior in the multi-agent system

• Selection: Select the fittest agents for reproduction

• Crossover: Perform crossover between pairs of selected agents to create offspring

•Mutation: Mutate the offspring to introduce new behavior

• Update: Update the behavior of the agents in the multi-agent system based on
the evolved chromosomes

• Termination: Check if termination criteria are met, otherwise go to step 2

Evolutionary computation can be used to optimize control strategies for
cybernetic systems, while multi-agent systems can provide a distributed con-
trol approach that is robust to failures and can adapt to changing conditions.
Furthermore, the study of emergent behaviors in multi-agent systems can
inform the design of cybernetic systems that exhibit desired emergent proper-
ties. The EC and MAS are powerful techniques that can be used in combina-
tion to solve complex problems that require the collaboration of multiple
agents. The use of EC allows the behavior of individual agents to be evolved
toward a common goal, while MAS allows the coordination of multiple agents
toward the same goal. The mathematical equations that govern EC and MAS
provide a framework for implementing these techniques in a systematic and
efficient manner.

210 10 Life-Inspired Machine Intelligence and Cybernetics

10.2 Cellular Automata

Cellular automata are often used in the context of biomimetic intelligence to sim-
ulate and study complex biological systems. The behavior of a cellular automaton
can be used to model the behavior of individual cells in a tissue or organ, and the
emergent patterns that arise from the interactions between these cells can be used
to model the behavior of the system as a whole. The basic mathematical equation
for a one-dimensional cellular automaton with n cells is:

S t + 1, i = f S t, i− 1 , S t, i , S t, i + 1 , 10 9

where S(t, i) represents the state of cell i at time t, and f is a local rule that deter-
mines the state of the cell at the next time step based on its own state and the states
of its two neighbors. This local rule is often represented as a lookup table or a
Boolean function. In a one-dimensional CA, the cells are arranged in a line,
and the state of each cell is updated based on the states of its two neighbors. In
a two-dimensional CA, the cells are arranged in a grid, and the state of each cell
is updated based on the states of its eight neighbors.
Cellular automata can exhibit a wide range of behaviors, including simple peri-

odic patterns, chaotic patterns, and complex emergent patterns. The behavior of a
cellular automaton can be analyzed using techniques from dynamical systems the-
ory and statistical physics. One of the most well-known examples of a cellular
automaton is Conway’s Game of Life, which is a two-dimensional CA with four
states: dead, alive, dying, and birthing. The local rule for the Game of Life is as
follows:

• A dead cell with exactly three live neighbors becomes a live cell (birth).

• A live cell with two or three live neighbors stays alive (survival).

• All other live cells die, and all other dead cells remain dead.

The Game of Life exhibits a wide range of interesting and complex patterns,
including gliders, oscillators, and spaceships, which have been studied extensively
in the field of cellular automata. Cellular automata have many applications,
including in physics, computer science, and biology. They are particularly useful
for simulating complex systems that exhibit emergent behavior, such as traffic
flow, population dynamics, and pattern formation. Bacterial biofilms are complex
communities of microorganisms that adhere to surfaces and communicate with
each other through chemical signals. In the context of bio-inspired machine intel-
ligence, cellular automata can be used to model the behavior of bacterial biofilms
and their interactions with the surrounding environment. Consider a biofilm
be represented as a grid of cells, where each cell i, j represents an individual

10.2 Cellular Automata 211

bacterium at position (i, j) in the biofilm. The state of each cell can be represented
as S(i, j), which can take on different values depending on the behavior of the bac-
terium. For example, S(i, j) = 0 can represent a dead cell, while S(i, j) = 1 can rep-
resent a live cell.
The behavior of each cell is determined by a set of rules that depend on the

local environment. For example, a cell may secrete a chemical signal if it is
surrounded by a certain number of other cells, or it may move to an adjacent
location if it detects a nutrient gradient. These rules can be represented math-
ematically as a set of functions f(S(i, j), S(i−1, j), S(i+1, j), S(i, j−1), S(i, j+1))
that determine the new state of the cell based on its current state and the states
of its neighboring cells. The emergent behavior of the biofilm can be studied by
simulating the behavior of the cellular automaton over time. This can be repre-
sented mathematically as a set of update rules that determine the new state of
each cell at each time step.
By studying the emergent behavior of the cellular automaton, researchers

can gain insights into the behavior of bacterial biofilms and develop new stra-
tegies for controlling their growth and spread. This approach can be used to
design new antimicrobial agents or to engineer surfaces that are resistant to
biofilm formation. Cellular automata models can be seen as a type of cyber-
netic system, where each cell represents a simple computational unit that
interacts with its local environment based on a set of rules. This concept of
decentralized decision-making and information processing is a key principle
in cybernetics. Moreover, the study of cellular automata has contributed to
the development of cybernetic theories and methods, such as self-organization
and emergence. Cellular automata have been used to model a wide range of
phenomena in various fields, such as biology, physics, and social sciences.
By studying the behavior of cellular automata, researchers have gained
insights into the emergence of complex patterns and structures, which can
be applied to design cybernetic systems that are capable of adaptive and intel-
ligent behavior. Thus, cellular automata provide a valuable tool for under-
standing and designing cybernetic systems.

10.3 Discrete Element Method

The DEM is a numerical technique used to study the behavior of a system of dis-
crete particles subjected to external forces as shown in Figure 10.2. It is widely used
in various fields, including physics, chemistry, engineering, and material science.
DEM treats each particle as an individual entity and takes into account the inter-
actions between particles, such as contact forces, friction, and collisions.

212 10 Life-Inspired Machine Intelligence and Cybernetics

The equations used in DEM can be divided into two main categories: particle
motion equations and force equations. The particle motion equations are used
to calculate the position and velocity of each particle at each time step. The force
equations are used to calculate the forces acting on each particle due to the inter-
actions with other particles and external forces. The force acting on particle i can
be written as the sum of all the forces acting on it:

Fi = Fcontact + Fexternal, 10 10

where Fcontact is the contact force acting on particle i due to its interaction with
neighboring particles, and Fexternal is any external force acting on particle i, such
as gravity. The contact force between two particles i and j can be calculated using
the Hertzian contact model:

Fcontact = knδ
3
2
nnij − ktδtvijtij, 10 11

Start

Initial setting Reading data

Tumbling motion and boundary conditions

Searching for particle-wall contact

Solving particle-particle interaction

Solving particle-wall interaction

Integrating motions and temperature equations

Output data

No
t > Ts ?

Yes

End

Figure 10.2 Workflow of discrete element method.

10.3 Discrete Element Method 213

where kn and kt are the normal and tangential stiffness coefficients, respectively,
δn and δt are the normal and tangential displacements of the particles at their
contact point, nij and tij are the normal and tangential contact normal vectors,
and vij is the relative velocity between the particles. The DEM simulations can
be used to model various systems, such as granular materials, powders, fluids,
and biological tissues. It is a powerful tool for studying the behavior of these com-
plex systems used to design and optimize various engineering and manufactur-
ing processes.
The cybernetics used to analyze the behavior of complex systems that involve

feedback loops, such as the interaction between particles and their surroundings.
By applying feedback control principles and information theory to DEM simula-
tions, researchers can gain a better understanding of how the system responds to
different stimuli and how it can be controlled or optimized. For example, to sim-
ulate the behavior of biological tissues, such as bone or cartilage, and to study
how the tissue responds to mechanical loading. By applying feedback control
principles to the DEM model, researchers can analyze the tissue’s response to
different loads and develop strategies for optimizing tissue growth and repair.
Overall, the combination of DEM and cybernetics has the potential to advance
our understanding of complex systems and to enable the development of new
technologies in various fields.

10.3.1 Particle-Based Simulation of Biological Cells and Tissues

Particle-based simulation of biological cells and tissues using DEM is a widely used
technique for studying the mechanical behavior of biological materials. In this
approach, cells and tissues are modeled as discrete particles that interact with each
other through contact forces. The goal is to simulate the mechanical response of
the system to external stimuli and to study the effects of various parameters, such
as cell shape, size, and stiffness.
The equations used in particle-based simulations of biological cells and tis-

sues are similar to those used in traditional DEM simulations. However, addi-
tional equations are needed to account for the biological properties of the
system. One of the key parameters in cell mechanics is the cytoskeleton, which
is a network of protein filaments that gives the cell its mechanical stability and
shape. To model the cytoskeleton, the cell is divided into discrete particles that
represent the nodes of the cytoskeletal network. The cytoskeletal particles are
connected by springs, which represent the cytoskeletal filaments. The stiffness
of the springs depends on the properties of the cytoskeletal filaments, such as
their length, diameter, and cross-linking density. The contact force between two
cells is calculated using the Hertzian contact model as described earlier.

214 10 Life-Inspired Machine Intelligence and Cybernetics

The motion of the particles in the system is governed by the equations of
motion, which are given by:

mi
d2ri
dt2

= Fi, 10 12

wheremi is the mass of particle i, ri is the position vector of particle i, and Fi is the
net force acting on particle i. The force acting on particle i can be written as the
sum of all the forces acting on it:

Fi = Fcontact + Fcytoskeleton + Fexternal, 10 13

where Fcontact is the contact force acting on particle i due to its interaction with
neighboring particles, Fcytoskeleton is the force acting on particle i due to the cyto-
skeleton, and Fexternal is any external force acting on particle i, such as gravity
or a magnetic field.
Particle-based simulations of biological cells and tissues using DEM have been

used to study a wide range of biological processes, such as cell division, migration,
and differentiation. These simulations have also been used to design and optimize
tissue engineering and regenerative medicine strategies. Overall, life-inspired
machine intelligence techniques can help improve the accuracy and efficiency
of particle-based simulations of biological cells and tissues, leading to a better
understanding of the mechanical behavior of biological materials and the devel-
opment of more effective biomedical applications.

10.3.2 Simulation of Microbial Communities and Their Interactions

Simulation of microbial communities and their interactions involves modeling the
behavior of multiple species of microorganisms in a shared environment. This field
of research is important for understanding the dynamics of microbial ecosystems
and how they respond to different environmental conditions. There are various
mathematical models and computational tools that can be used to simulate micro-
bial communities and their interactions. In agent-based models, the behavior of
individual microorganisms is represented by a set of rules or algorithms. The inter-
actions between microorganisms and their environment can be represented math-
ematically using functions or equations. For example, the behavior of bacterial
populations can be modeled using the following equation:

Ni t + 1 = Ni t + ri t Ni t 1−
Ni t
ki

−Di t Ni t , 10 14

where Ni(t) is the population size of bacterial species i at time t, ri(t) is the growth
rate of species i at time t, ki is the carrying capacity of the environment for species I,

10.3 Discrete Element Method 215

Di(t) is the death rate of species i at time t. In Dynamic Flux Balance Analysis, met-
abolic network models are used to predict the metabolic fluxes of microorganisms
under different environmental conditions. Thesemodels can be represented math-
ematically using a set of equations that describe the mass balance and reaction
kinetics of the different metabolites in the network. For example, the following
equation can be used to describe the rate of change of the concentration of a
metabolite x in a microbial community:

dx
dt

= vjsji, 10 15

where
dx
dt

is the rate of change of the concentration of metabolite x, vj is the rate

of reaction j in the metabolic network and sji is the stoichiometric coefficient of
metabolite i in reaction j. Game theory models can be used to simulate the inter-
actions between different microorganisms in a microbial community. These mod-
els can be represented mathematically using a set of equations that describe the
costs and benefits of different strategies. For example, Table 10.1 can be used to
represent the payoff matrix for a two-player game:
Here, S_A and S_B are the two strategies being played, R is the reward for play-

ing strategy S_A against strategy S_A, S is the sucker’s payoff for playing strategy
S_B against strategy S_A, T is the temptation for playing strategy S_A against strat-
egy S_B, and P is the punishment for playing strategy S_B against strategy S_B.

10.3.3 Discrete Element Method-Based Modeling of Biological Fluids
and Soft Materials

DEM is a numerical technique used for modeling complex systems composed of
many interacting particles. In the context of bio-inspired machine intelligence,
DEM is used for simulating biological fluids and soft materials such as blood,
mucus, and tissues. The basic idea is to represent these materials as a collection
of particles that interact with each other through contact and frictional forces.
The behavior of the particles is determined by solving the equations of motion
and contact mechanics using numerical methods.

Table 10.1 Representation of the payoff matrix.

Strategies S_A S_B

S_A R S

S_B T P

216 10 Life-Inspired Machine Intelligence and Cybernetics

One of the key challenges in modeling biological fluids and soft materials is
the complex interplay between the particles and the surrounding fluid. This is
typically modeled using a combination of fluid dynamics equations and
particle-based models such as DEM. The fluid flow is modeled using the
Navier-Stokes equations, while the particle-based model is used to simulate
the mechanical interactions between the particles. DEM is a powerful compu-
tational technique for simulating the mechanical behavior of discrete elements
in a system. In the context of bio-inspired machine intelligence, DEM has been
used to model the behavior of biological fluids and soft materials, such as blood,
mucus, and tissues. The basic idea is to represent the fluid or soft material as a
collection of discrete particles, and then use Newton’s laws of motion to sim-
ulate their interactions. The equations of motion for each particle in the system
are given by:

mi
d2ri
dt2

=
J = 1

j iNFij, 10 16

where mi is the mass of the ith particle, ri is its position, Fij is the force on par-
ticle i due to particle j, and N is the total number of particles in the system.
The force between two particles i and j is modeled as a sum of elastic and
dissipative forces:

Fij = Felastic
ij + Fdissipative

ij 10 17

The elastic force represents the deformation of the particles due to their inter-
action and is given by:

Felastic
ij = Frepulsive

ij + Fadhesive
ij , 10 18

where Frepulsive
ij is the repulsive force between the particles, and Fadhesive

ij is the adhe-

sive force between them. The dissipative force represents the dissipation of energy
due to the deformation of the particles and is given by:

Fadhesive
ij = − ηvij, 10 19

where η is the coefficient of friction, and vij is the relative velocity between the par-
ticles. By solving these equations of motion numerically, one can simulate the
behavior of biological fluids and soft materials, and study their properties and
interactions in detail. This has important applications in fields such as bioengi-
neering, where the behavior of biological materials must be understood in order
to design effective treatments and therapies.

10.3 Discrete Element Method 217

10.4 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a numerical technique used for simu-
lating fluid flows and other physical phenomena. In the context of bio-inspired
machine intelligence, SPH is used for modeling biological fluids such as blood,
mucus, and cerebrospinal fluid. The basic idea is to represent the fluid as a collection
of particles that interact with each other through pairwise forces. Themotion of each
particle is then determined by solving the equations of motion and the continuity
equation. SPH is a numerical technique used for simulating fluid flows and other
physical phenomena. The complete workflow of the SPH is shown in Figure 10.3.
The basic equations of SPH involve the calculation of the density and pressure at

each particle location. Consider a fluid particle located at position ri with massmi,
velocity vi, and density ρi. The density at this particle location is calculated as:

wij =
1

hd
e−

ri − rj
2

2h2 , 10 20

where h is the smoothing length, which controls
the size of the smoothing kernel, and d is the
dimensionality of the simulation. The pressure
at each particle location is calculated using an
equation of state, which relates the pressure pi
to the density ρi and other fluid properties.
A commonly used equation of state is the ideal
gas law:

pi = γ− ρiei, 10 21

where γ is the ratio of specific heats, which is typ-
ically set to 1.4 for air, and ei is the internal energy
of the fluid. The velocity of each particle is
updated based on the forces acting on it, which
include the pressure and viscosity forces. The
pressure force f pi on particle i is given by:

f pi = −
j

mj
pi
p2i

+
pj
p2j

∇iwij, 10 22

where ∇iwij is the gradient of the smoothing
kernel with respect to the position of particle i.
The viscosity force f vi on particle i is given by:

f vi = μ
j

mj
vj − vi
ρj

∇2
i wij 10 23

Start

Particle initialization

Find neighbors

Compute kernel

Compute density rate

Compute pressure

Compute acceleration

Time integration

t > Tmax
No

End

Yes

Figure 10.3 Workflow of SPH.

218 10 Life-Inspired Machine Intelligence and Cybernetics

In addition, the use of SPH in cybernetics can also aid in the development of
control systems for bio-inspired engineering applications. By modeling the behav-
ior of fluids through SPH and incorporating feedback mechanisms, researchers
can design control systems that adjust the behavior of the fluid in real-time to
achieve a desired outcome. This has potential applications in fields such as robot-
ics, where bio-inspired systems are used to improve the performance of robots in
various tasks. The combination of SPH and cybernetics provides a powerful tool
for studying and designing bio-inspired systems with complex fluid dynamics.
By understanding the behavior of these systems and their interactions with the
environment, researchers can develop more advanced and efficient technologies
that mimic the natural world.

10.4.1 SPH-Based Simulations of Biomimetic Fluid Dynamic

SPH is a Lagrangian method for simulating fluid dynamics. In SPH, the fluid is
discretized into particles and each particle represents a certain volume of fluid.
The equations of motion for each particle are solved based on the interactions
between neighboring particles, which are calculated using a smoothing kernel
function. This approach allows for the simulation of complex fluid phenomena,
including turbulence and multiphase flows.
In the context of biomimetic fluid dynamics, SPH has been used to simulate

the fluid dynamics of swimming organisms, such as fish and jellyfish. These simu-
lations can provide insights into the underlying mechanisms of swimming, as well
as the hydrodynamic forces and energy expenditure involved. SPH has also been
used to simulate the flow of blood through vessels and the movement of cilia in the
respiratory system. The equations of motion for each particle in SPH are given by:

dvi
dt

=
N

j i

mj
pi
p2i

+
pj
p2j

+
ij

∇iwij 10 24

dρi
dt

=
N

j i

mj vi − vj ∇iwij, 10 25

where vi is the velocity of particle i, mj is its mass, pi and ρi are its pressure and
density, respectively, and wij is the smoothing kernel function between particles
i and j. The smoothing kernel function wij is typically a Gaussian or cubic spline
function and is used to calculate the influence of neighboring particles on each
particle’s properties. The choice of smoothing kernel function can have a

10.4 Smoothed Particle Hydrodynamics 219

significant impact on the accuracy and stability of the simulation. Overall, SPH-
based simulations of biomimetic fluid dynamics have shown promise in providing
insights into the complex fluid dynamics of biological systems.

10.4.2 SPH-Based Simulations of Bio-Inspired Engineering
Applications

SPH is a popular method for simulating fluid dynamics in bio-inspired engineering
applications. One of the key advantages of SPH is its ability to handle complex geo-
metries and boundary conditions. In bio-inspired engineering, SPH has been used
to model fluid flow in various systems, such as blood flow in the cardiovascular
system, fish swimming, and insect flight. SPH-based simulations of these applica-
tions involve the use of SPH particles to represent the fluid or fluid-like substances.
These particles interact with each other based on a smoothing kernel function
that determines the strength and range of the interaction. The governing equations
for SPH-based simulations of fluid dynamics are the continuity equation and
the Navier-Stokes equations. These equations can be discretized using the SPH
method, resulting in a set of equations for the motion of SPH particles. The con-
tinuity equation in SPH form can be expressed as:

dρi
dt

=
j

mjνij∇iwij, 10 26

where ρi is the density of particle i, mj is the mass of particle j, vij is the velocity
difference between particles i and j, and wij is the smoothing kernel function.
The momentum equation in SPH form can be expressed as:

dνi
dt

=
j

mj
pi
p2i

+
pj
p2j

+
ij

∇iwij, 10 27

where vi is the velocity of particle i, pi is the pressure of particle i, and piij is the
viscous stress tensor. SPH-based simulations can also incorporate particle inter-
actions with solid surfaces. This is achieved by introducing boundary particles
that interact with fluid particles through boundary conditions. Overall, SPH-
based simulations of bio-inspired engineering applications provide a powerful
tool for understanding fluid dynamics and optimizing the design of biomimetic
devices.

220 10 Life-Inspired Machine Intelligence and Cybernetics

Summary

The chapter provides an overview of life-inspired machine intelligence, which
aims to simulate living organisms and biological phenomena using computer tech-
nology. This approach creates digital models of biological systems to study their
behavior and predict their reactions. Examples of life-inspired machine intelli-
gence include computer simulations of microbial communities and models of
individual cells and tissues. While, bio-inspired machine intelligence involves
studying biological processes, systems, and structures to create machine learning
algorithms and optimization models, the life-inspired approach uses insights from
living organisms to simulate life. Every cell or element in the framework is per-
ceived to be alive and functionally active in interacting with neighboring cell ele-
ments. This provides a concept of a living thing that may be programmed to be
alive in the computational environment. It also discusses several subtopics, such
as evolutionary computation and multi-agent systems, particle-based simulation
of biological cells and tissues, and SPH-based simulations of biomimetic fluid
dynamics and life-inspired engineering applications. Each element’s functionality
and interaction states are programmed based on equations often relating to cyber-
netics, which is basically control theory. The overall integration gives rise to a sys-
tem form of machine intelligence. Some schools of thought termed this cellular
automaton, while others relate this to DEMs. The systematic framework based
on such concepts can generate a version of intelligent life beings from the cellular
to the organism perspective. This may be termed as life-inspired machine intelli-
gence from a broader perspective.
One potential future research direction for biomimetic intelligence is the

development of more advanced multi-agent systems that can effectively collab-
orate and communicate with each other. Another area of interest is the use of
DEM-based models to simulate more complex living biological systems, such
as tissues and organs. Furthermore, there is potential for the use of life-inspired
machine intelligence models in personalized medicine and drug discovery. By
leveraging insights from biology, these models can aid in the development of
intelligent targeted therapies and more efficient drug discovery processes. In
summary, the field of biomimetic intelligence has significant potential for driv-
ing innovation and advancing various fields. Future research in this area can lead
to the development of more advanced and sophisticated living models that can
have a significant impact on healthcare, biotechnology, robotics, and other
AI-related fields.

Summary 221

Exercise Questions

Q.10.1 In what ways can life-inspired machine intelligence be used to improve
cybernetic systems and processes, and how can it be incorporated into
existing technologies?

Q.10.2 How can multi-agent AI systems be designed to effectively coordinate
and collaborate in complex environments, and what are some examples
of successful applications of these systems?

Q.10.3 Describe the role of game theory in the development of intelligent sys-
tems, and how can it be used to optimize decision-making in multi-
agent scenarios.

Q.10.4 How can distributedmulti-agent systems be designed to enable efficient
communication and coordination between agents, and what are some
challenges associated with implementing these systems?

Q.10.5 Illustrate the key principles of evolutionary computation, and how can
they be applied to the design of multi-agent systems to improve their
adaptability and robustness.

Q.10.6 Explain how cellular automata can be used tomodel complex biological
systems, and what are some examples of successful applications of this
approach?

Q.10.7 What is the discrete element method, and how can it be used to simu-
late the behavior of complex materials and structures?

Q.10.8 Describe how particle-based simulations can be used to model the
behavior of biological cells and tissues, and what are some of the chal-
lenges associated with implementing these simulations?

Q.10.9 How can the principles of Smoothed Particle Hydrodynamics be
applied to bio-inspired engineering applications?

Q.10.10 Describe some future directions for research in bio-inspired machine
intelligence.

Q.10.11 How can bio-inspired machine intelligence models be applied in real-
world applications, such as robotics and biotechnology?

222 10 Life-Inspired Machine Intelligence and Cybernetics

Further Reading

Barresi J. Prospects for the cyberiad: certain limits on human self-knowledge in the
cybernetic age. Journal for the Theory of Social Behaviour. 1987 Mar;17(1):19–46

Byrski A, Dreżewski R, Siwik L, Kisiel-Dorohinicki M. Evolutionary multi-agent
systems. The Knowledge Engineering Review. 2015 Mar;30(2):171–86.

Jozwiak L. Life-inspired systems: assuring quality in the era of complexity. In 5th
InternationalWorkshop on System-on-Chip for Real-Time Applications (IWSOC’05)
2005 Jul 20 (pp. 139–142).

Monaghan JJ. Smoothed particle hydrodynamics. Annual Review of Astronomy and

Astrophysics. 1992 Sep;30(1):543–74.

Further Reading 223

11

Revisiting Cybernetics and Relation to Cybernetical
Intelligence

11.1 The Concept and Development of Cybernetics

In 1948, Americanmathematician NorbertWiener titled his bookCybernetics. This
simple and ancient name was given a new meaning and became a synonym for a
brand new discipline, which has been used since then. Cybernetics has since been
spread and applied rapidly and has spurred the intense interest of mathematicians,
engineers, biologists, psychologists, and even scholars in philosophy and social
sciences. At the same time, this theory quickly spread to the world and has influ-
enced many disciplines. Today, its influence has a far-reaching impact: the words
“control,” “feedback,” “information,” and “communication” have been integrated
into people’s daily life, just as the evolution of “natural selection,” “competition for
survival,” “survival of the fittest”—are familiar and understood by the public.
The conceptualized structure for the development of cybernetics is shown in
Figure 11.1.

11.1.1 Attributes of Control Concepts

There seems to be little debate on the attributes of control concepts for cybernetics,
and it is generally agreed that “the essence of control lies in enabling the system to
achieve stable and purposeful action.” First of all, “control” and “behavior” are
closely related and mutually causal. Lerner described control as “the effects
imposed on an object or objects, selected based on the information that is required
to be obtained and used to ‘improve’ the function or development of that object.”
Its meanings are as follows:

• The purpose of exerting this effect is to improve the object and achieve the
desired goal.

225

Cybernetical Intelligence: Engineering Cybernetics with Machine Intelligence, First Edition.
Kelvin K. L. Wong.
© 2024 The Institute of Electrical and Electronics Engineers, Inc.
Published 2024 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/cyberintel

• Control is an action imposed on an object.

• This function is realized through the selection and use of information.

It can be reduced to the following simplistic understanding: the so-called control
is the regulation of the system itself to achieve stability.

11.1.2 Research Objects and Characteristics of Cybernetics

The discussion on the research object of cybernetics has not been interrupted until
now, and academia has not formed a unified view. The more consistent basic view
is that the research object of cybernetics is wide, and the purpose is to explore these
systems’ regulation and control rules.

Gain
scheduling

Feedback
linearization

Linearization

Sliding mode
control

Stability
control

Back
stepping

Nonlinear
equation

Description
function

Lyapunov

Advances
stability

Controller
design based
on stability

theory

Adaptive
control

Robust
control

Intelligent
control

Complex
system

Single-input
single-output

(SISO) linear system

Multiple-input
multiple-output

(MIMO) linear system

Nonlinear system

Nonlinear system

Cybernetics algorithm

Cybernetical
intelligence

Learning
control

Expert
system

Neural
network
control

Fuzzy control

Bionic
Algorithms

Hierarchical
control

Machine learning techniques
and control algorithms

Differential
equation

Transfer
function

Polynomial
matrix

Time domain
analysis

Frequency
domain
analysis

Modern
frequency

domain

State
feedback/

observation

Optimal
control

Model
predictive

control

State Space
Equation

Controllability
and

observability

Nonlinear

Phase plane
method

Figure 11.1 The structure and development of cybernetics. SISO stands for Single Input
Single Output and MIMO is the abbreviation of Multiple Input Multiple Output. The
difference lies on the number of inputs and outputs, which means SISO systems are often
less complex than MIMO systems.

226 11 Revisiting Cybernetics and Relation to Cybernetical Intelligence

Since there is feedback, there must be a related communication problem,
which is the reception, processing, and transmission of information. Wiener
often demonstrated that communication and control are the same things, that
control requires communication, and that it (the communication between the
agent and the controlled body in a cybernetic system) must be bidirectional.
Wiener pointed out that control is communication. In the field of control sys-
tems, there are several mathematical equations that are commonly used to
model and analyze the communication and control in cybernetic systems such
as transfer function of a system, which describes the relationship between the
input and output of a system in the frequency domain represented by the
Equation (11.1).

G s =
Output s
Input s

11 1

The PID controller, which is a control algorithm commonly used in control sys-
tems. The PID controller uses three types of control, proportional, integral, and
derivative control, represented mathematically as represented by Equation (11.2).

u t = Kpe t + Ki e t dt + Kd
de t
dt

11 2

11.1.3 Development of Cybernetical Intelligence

Cybernetics has had an important influence on the development of the following
modern disciplines: control theory, computer science, information theory, auto-
mata theory, artificial intelligence, artificial neural networks, cognitive science,
computer simulation science, dynamical systems, and artificial life. In the 1940s
and 1950s, cybernetics first explored the core concepts of these fields, such as com-
plexity, self-organization, self-reproduction, autonomy, networks, connectionism,
and adaptability. For example, von Neumann’s computer architecture, game
theory, cellular automata; Ashby and von Forester’s self-organizing analysis; Brai-
tenberg’s autonomous robots; McCulloch’s artificial neural networks, perceptron,
and classifiers, etc.

11.2 The Fundamental Ideas of Cybernetics

11.2.1 System Idea

The object of cybernetics is system. The cyberneticmethodology is a prerequisite to
treating the object as a system. This mainly refers to system thinking, which dis-
tinguishes it from the two main ways of thinking in human history—holistic and

11.2 The Fundamental Ideas of Cybernetics 227

reductive thinking. System thinking is the inheritance development of these two
ways of thinking. It is based on the system concept, system relationship, and struc-
tural properties. Objects are organized from the model to study the function and
behavior of the system. Focusing on the holistic and integrated properties of things
reveals the diversity of contact, system, structure, and function. System thinking
comprises four pillars: “One is the organic nature of life, that is, the living organ-
ism is placed in the center of the conceptual system for investigation; the second is
wholeness, which regards the living organism as an orderly, open, self-regulating
and purposeful organic whole and focuses on its wholeness and non-additively.
Third, the model is used to describe the object. It is not to decompose the whole
into parts but to simulate the object’s behavior in the way of the model after form-
ing the concept of the object. The fourth is to emphasize sufficient knowledge of
the whole, rather than precise knowledge because precise knowledge of a complex
system is elusive.” The system idea corresponds to the black box approach. The
black box approach opens up a new way to recognize and study complex systems.
A cybernetic approach that uses external observations and tests to study black
box’s functional characteristics and behavior and explore their possible internal
structures and mechanisms through input and output information. “Several alter-
native structures are enclosed in ‘closed boxes,’ and the oneway to study them is by
using the inputs and outputs of the closed boxes,”Wiener wrote in the role of mod-
els in science. Classical control is based on the mathematical model of the transfer
function for linear time-invariant (LTI) system analysis and design. A linear sys-
tem is one that linear differential equations can describe. LTI system is a special
kind of linear system which inherits the characteristics of the superposition of lin-
ear systems. When solving the response of the LTI system, the unit’s short rectan-
gular impulse response hΔ(t) of the system at time 0 is assumed. The unit short
rectangular pulse is Δ in width and 1/Δ in amplitude. Now the magnitude of
the short matrix impulse near time 0 is u(0), and the impulse response to the sys-
tem is Δu(0)hΔ(t). The output y in the time domain becomes as shown in
Equation (11.3):

y t =

∞

0

u τ h t− τ dτ, t ≥ 0 11 3

Laplace transform is an important mathematical transformation and plays an
important role in classical control theory. However, it is related to Fourier trans-
form for a long time which is essentially the projection of the time domain signal
f (t) onto an orthogonal basis e jωt, and the orthogonal basis e jωt here according to
Euler’s formula as shown in Equation (11.4).

ejwt = cos ωt + j sin ωt , 11 4

228 11 Revisiting Cybernetics and Relation to Cybernetical Intelligence

the Fourier transform is defined by the integral as shown in Equation (11.5):

F ω =

∞

−∞

f t e− jωtdt 11 5

The Laplace transform transforms the signal from the time domain to the
frequency domain, which is the same as the Fourier transform, except that the
Laplace transform adds a decay factor t which guarantees convergence of the Four-
ier integral. The concept of transfer function from the Laplace transform is derived
to solve the response of LTI system.

11.2.2 Information Idea

Information theory is one of the essential contents of cybernetics. The primary
research method of cybernetics is the feedback control method, and the feedback
here is mainly from the perspective of information. In other words, feedback in the
cybernetic system mainly refers to information feedback, and the process of feed-
back control is the process of information generation, maintenance, transmission,
and acceptance. Each control link is the information source and the information
acceptor. The process of control and the achievement of the purpose of the system
is carried out around information. Therefore, the communication process is cen-
tral to the whole feedback control method. The excellent communication process
between each link of the system determines the efficiency of the system. Infor-
mation ideas correspond to information methods, which belong to the most
important contents of cybernetics methodology. In cybernetics, the concept of
information has an expansive meaning. As a new idea, the function of the control
system is studied from an information aspect. It uses the concept of information as
the basis for analyzing and processing problems and abstracts the movement proc-
ess of the system as an information transformation process, leaving aside all the
concrete movement forms of objects. It focuses on studying the system’s informa-
tion process from the perspective of connection and transformation. Therefore, it
does not need to deconstruct and analyze the whole structure of things but to con-
sider the flow of its information comprehensively. It may be expressed by informa-
tion input and output functions to achieve a sense of the whole system. The
concept of information makes it possible to study different natural or social phe-
nomena from a wholly new and unified point of view. Norbert Wiener looked at
control systems from the point of view of information; the essence of discovery
control is communication. The feedback control process of adequate action in dif-
ferent material systems is regarded as obtaining, using, maintaining, and transmit-
ting information to maintain its internal stability. In information theory, there are

11.2 The Fundamental Ideas of Cybernetics 229

several mathematical equations that are commonly used to quantify and analyze
the amount of information in a system. Some examples include:

• Shannon’s entropy, which measures the amount of uncertainty or randomness
in a system. It is represented mathematically as:

H x = − p x log 2 p x , 11 6

where x is the random variable, p(x) is the probability of x, and H(x) is the entropy
of x.

• Themutual information between two random variables x and y, whichmeasures
the amount of information that x provides about y. It is represented mathemat-
ically as:

I x, y = p x, y log 2
p x, y
p x p y

, 11 7

where p(x, y) is the joint probability of x and y, p(x) is the marginal probability of x
and p(y) is the marginal probability of y.

11.2.3 Behavioral Idea

Cybernetic behavior thoughts are divided into two parts: the first is the definition
and classification of behavior, and the second is the concept of adaptive behavior.
From the cybernetic perspective, behavior is any change that occurs ontogeny con-
cerning the external environment. The basis of this definition is a pair of concepts,
“individual” and “environment.” The individual is an entity that can be felt, while
the environment is everything that exists outside that entity. In general, behavior is
any change in an individual that the outside world can detect. Cybernetics cate-
gorizes behavior in a typical dichotomy. The primary criterion for classifying
behavior as passive or dynamic is whether all the energy involved in ontogenetic
change is directly imported from the outside world. The second criterion is
whether the dynamic behavior serves a function, making it purposeful or aimless.
There are two types of dynamic behavior: one, in which people supply this energy
to accomplish a goal, and another, in which people provide this energy for no
apparent reason. The third criterion of cybernetic behavior classification is: Does
purposeful behavior have feedback? If there is, there is feedback behavior; if not,
there is no feedback behavior. The fourth criterion of cybernetic behavior classi-
fication is where it is negative feedback behavior predicted, which defines it as pre-
dictive behavior or non-predictive behavior. The whole cybernetic behavior
definition and classification can be briefly summarized in Figure 11.2.

230 11 Revisiting Cybernetics and Relation to Cybernetical Intelligence

11.2.4 Cybernetical Intelligence Neural Network

Artificial intelligence (AI) is built on the pillars of a few major branches of science
and engineering, namely, systematology, information theory, and cybernetics,
which is typically based on control theory that was derived from the studies of
Norbert Wiener, the world-renowned father of cybernetics. In 1954, Hsue-sen
Tsien founded engineering cybernetics by publishing the famous “Engineering
Cybernetics” in the United States. On the basis of cybernetics, a predictive system
may be regarded as a multiple feedback system. The framework of multilayer per-
ceptron as well as that of a backpropagation neural network (BP) can be based on
the theoretic of system control in modern cybernetics. With this type of thinking,
perceptron theory offers a cohesive approach to the statistical mechanics and
principles of cybernetics as a basis for successful neural network modeling.
A feedback controller’s operation is to change the behavior of a system funda-

mentally. Feedback control systems sample a system’s outputs, compare them to a
set of desired outputs, and then utilize the resulting error signals to compute the
system’s control inputs in such a way that the errors are minimized. Artificially
built feedback control systems, which are utilized to govern industrial, automo-
tive, and aeronautical systems, are responsible for today’s aerospace achievements.
Although neural network controllers are adaptive learning systems, they do not
need the conventional assumptions of adaptive control theory, such as parameter
linearity and the presence of a regression matrix. It is demonstrated in detail how
to create neural network controllers for cybernetical systems, a general category of
nonlinear systems, complicated industrial systems with vibrations and flexibility
effects, force control, motor dynamics control, and other applications. These
strategies are given for both continuous-time and discrete-time weight tuning.

Action

Is all the
energy provided directly by

the outside world ?

Passive
behavior

Is there a purpose ?

Is there a prediction ?
Is there negative

feedback ?

Active
behavior

Purpose-
free

behavior

Purposive
behaviour

Have
feedback
behavior

No
feedback
behavior

No
predictive
behavior

Have
predictive
behavior

Yes

No No

Yes

Yes

NoNo

Yes

Figure 11.2 Cybernetic dichotomies of behavior.

11.2 The Fundamental Ideas of Cybernetics 231

Cybernetical intelligence is introduced based on the integration of AI and cyber-
netics, which can produce applications in predictive control, pattern recognition,
and classification, which essentially are based on the same fundamentals. The key
concept of cybernetical intelligence grew from a desire to understand and build
systems that can achieve goals, whether complex human goals or just goals. It
is an even deeper underlying conceptual term. Cybernetics holds the world suffi-
ciently to gain feedback in order to correct the actions to achieve goals. It is a
mutual combination of automated communication and control systems between
artificially intelligent machines and the environment with subsequent strong sup-
port from machine learning, the concepts of systems thinking and systems theory
became integral parts of the established scientific language of cybernetical intel-
ligence and can lead to numerous new methodologies and applications. The var-
ious influencing factors in the neural network control system are complicated, and
the internal interaction cannot be directly observed, so it can be considered a gray
or even black system. One can fit the model by system identification or statistical
regression. However, it can only make a preliminary analysis from the rough
development curve, unable to accurately analyze the role of the influencing fac-
tors. The appropriate neural network can simulate any curve and select specific
samples through deep learning to get more accurate results, more suitable for
analyzing the network control system. Inspired by “Re3 Writer” and other works
in neural networks, conceptualize the design scheme of the neural network
as “Re8 analytics” as given by: Read, Refine, Reflect, Review, Rectify, Response,
Reason, and Report as shown in Figure 11.3.
Specific description of each operator is as follows:

1) Read: Collecting the data required for training and validation. It is necessary to
preprocess the data before training the neural network. The data should be uni-
fied into one order of magnitude. The appropriate data preprocessing, includ-
ing normalization, can achieve better training results. This operator can also be
termed as Retrieve if the perceptual information is obtained from a sensor via
data acquisition.

2) Refine: Building and defining the structure of the neural network. In the design
of network layers, the more layers of the neural network, the higher the accu-
racy of the obtained data and the lower the error, but at the same time, themore
layers, the more complex the network structure, which may significantly
increase the training time.

3) Reflect: Specifically evaluating the errors of the neural network. Error analysis
is performed after training to quantify the performance of the neural network
via the designed loss function.

4) Rectify: Adjusting the parameters of the neural network. Many works choose
the classical BP neural network for training, which updates the parameters

232 11 Revisiting Cybernetics and Relation to Cybernetical Intelligence

Begin

Read
Collecting the data required for training

and validation.

Refine
Building and defining the structure of

the neural network.

Rectify
Adjusting the parameters of the neural

network.

Review
Analyzing the performance of the neural

network.

Does performance satisfy the
requirement ?

Response
Executing actions based on the

performance.

Finish

No

R
ep

ea
t

Yes

Reflect
Specifically evaluating the errors of the

neural network

Reason
Improving the explainability and

interpretability of the neural network.

Report
Reporting and discussing the

performance of datasets and network.

R
e8 a

na
ly

ti
cs

R
e8 a

na
ly

ti
cs

Figure 11.3 The flow chart of Re8 analysis for cybernetical intelligence neural networks.

11.2 The Fundamental Ideas of Cybernetics 233

based on the loss function. Therefore, the network will keep upgrading in the
way that reducing the loss value.

5) Review: Analyzing the performance of the neural network. In addition to the
loss function, other metrics, such as confusion matrix, can be utilized to reflect
the capability of the network in various means. For example, receiver operating
characteristic (ROC) curve is a graph showing the performance of a classifica-
tion model at all classification thresholds.

6) Response: Executing actions based on the performance. Training can be termi-
nated if the neural network hasmet the baseline. But sometimes it is required to
rebuild the network or augment the dataset in order to obtain desirable results.

7) Reason: Improving the explain ability and interpretability of the neural net-
work. By making the underlying mechanisms explicit via the use of mathe-
matical formulae or visualizing features in the model, experts may better
comprehend and have more faith in the results of the neural network.

8) Report: Reporting the performance of the dataset and the neural network and
discuss techniques for a successful training. Over the past few years, more
researchers have become passionate to share their results as evidenced by on
the growing number of publications on the topic of neural networks.

11.3 Cybernetic Expansion into Other Fields of Research

11.3.1 Social Cybernetics

In the history of social cybernetics, E.A. Ross, a famous American sociologist, and
social psychologist, first mentioned the concept of “social control” in his 1896 arti-
cle “American Journal of Sociology.” Ross made a comprehensive and systematic
study of social control. In his theory, the goal of social control is social order.
Through the law, religion, public opinion, and other means, people’s behaviors
are restricted to meet the requirements of social order. In 1942, American jurist,
Ezra Pound, published “Social Control through Law,”which proposed the method
of social control from the perspective of law. From the cybernetics point of view,
the nature and tasks of law and regarded its decrees as authoritative, used to rec-
ognize and protect those interests within defined limits, and used in judicial and
administrative processes to exercise social control. Pound’s research on law-based
control has had a profound impact on social control. In the 1970s, the Dutch
scholar, Hanken, published the book Cybernetics and Society, which stipulated
social control from the perspective of individual behavior with amicro perspective.
In the Fourth International Conference on Cybernetics and Systems Theory in 1978,
Baumgatler and other scholars believed that “individuals and groups are subject to
material, social structure, and cultural constraints in their actions, but at the same

234 11 Revisiting Cybernetics and Relation to Cybernetical Intelligence

time, they are also locally creating their own, historical, creative and active forces.”
The development of social control theory is closely connected with cybernetics,
system theory, and information theory, which are intercrossing and supporting
each other. Therefore, the social control theory should be integrated with relevant
theories instead of being independent and static.

1) The Definition of Cybernetics in the Social System
Cybernetics was formed in the 1940s and was first used by Wiener in his book
Cybernetics: or Control and Communication in the Animal and the Machine,
marking the birth of cybernetics. In the social system, to conduct economic,
political, and other social activities orderly, it is necessary to restrict human
behavior and implement social control through norms. Social control refers
to anti-deviant, anti-immoral, anti-criminal, and other behaviors for the safety
and interests of individuals and society so that society can achieve a stable state
of order. Social cybernetics is a branch that can use the theory of cybernetics,
take the system as the research object, and use the communication of informa-
tion to achieve the purpose of control.

2) Social Cybernetics and Systems Theory
In 1968, Bertalanffy L, anAustrian-American biologist, took systems as the object
of scientific research in his book General System Theory: Foundations, Develop-
ment, Applications and gave a comprehensive exposition of the dynamic, open
systems theory. In his theory, there will be some similarity or isomorphism
between different systems, which is the basis of general systems theory. In the
theory of social systems, social organizations are composed of people, and people
coordinate their activities to form a system. In this system, the internal depart-
ments or subsystems are the lower-level system, and the social system, composed
of multiple subsystems, belongs to the higher-level system. In social cybernetics,
the control object is also a part of the social system. It is necessary to use the the-
ory andmethod of system theory to coordinate the relationship between individ-
ual elements to realize the optimal control of the system.
In systems theory, there are several mathematical models and equations that

are commonly used to represent and analyze social systems. Some examples
include:

• The Lotka-Volterra equation, which is used tomodel the dynamics of predator-
prey systems. It is represented mathematically as shown in Equation (11.8).

dx
dy

= ax− bxy

dy
dt

= − cy + dxy

11 8

11.3 Cybernetic Expansion into Other Fields of Research 235

where x and y are the populations of the predator and prey, respectively, and a,
b, c, and d are parameters that describe the interaction between the predator
and prey.

• The DeGroot model, which is used to model the dynamics of opinion
formation in a social system. It is represented mathematically as shown in
Equation (11.9).

x i, t + 1 = 1− a x i, t + a
1
n

x j, t , 11 9

where x(i, t) is the opinion of agent i at time t, a is the weight of the influence of
others, and the summation is over all agents.

3) Social Cybernetics and Information Theory
In 1948, Shannon published A Mathematical Theory of Communication, which
marked the birth of information theory. According to information theory, a sys-
tem realizes its purposeful movement by acquiring, transmitting, processing,
and processing information. In social cybernetics, the purposeful movement
of the system is abstracted as a process of information transformation. The
system contains a tremendous amount of information. In order to control
the system with less information, the theoretical basis is information theory,
which studies the laws of information transmission and transformation.
In information theory, there are several mathematical equations that are

commonly used to quantify and analyze the amount of information in a system.
Some examples include:

• The Shannon entropy, which measures the amount of uncertainty or ran-
domness in a system. It is represented mathematically as represented by
Equation (11.10).

H x = − p x log 2 p x , 11 10

where x is the random variable, p(x) is the probability of x, and H(x) is the
entropy of x.

• The mutual information between two random variables X and Y, which mea-
sures the amount of information that X provides about Y. It is represented
mathematically as:

I X ,Y = p x, y log 2
p x, y
p x p y

, 11 11

where p(x, y) is the joint probability of x and y, p(x) is themarginal probability of
x and p(y) is the marginal probability of y.

236 11 Revisiting Cybernetics and Relation to Cybernetical Intelligence

11.3.2 Internal Control-Related Theories

Internal control can be interpreted from both accounting and management direc-
tions. The Committee of Sponsoring Organizations of the Treadway Commission
(COSO) defines internal control as follows: internal control by the enterprise’s
board of directors, managers, and other employees, to the efficiency of operational
management effect, reliability of financial reporting, abide by the relevant laws
and regulations such as the achievement of goals and provide reasonable assur-
ance of the process. It also stipulates the five elements of internal control: control
environment, risk assessment, control activities, information communication, and
monitoring. In 2008, the enterprise internal control is defined as a basic norm of
middle management, which is a process for implementing the subject’s board of
directors, supervisors, and management staff. The target is for the enterprise oper-
ation and legal management compliance, asset security, financial report, and
related information to provide reasonable assurance and improve management
efficiency and effectiveness through this process. The strategy promotes the enter-
prise to realize development.
In the current internal control theory, ensuring the safety of assets and the truth of

accounting information should be regarded as the main task of internal control.
Moreover, one cannot ignore the connection between internal control and account-
ing. The improvement of the accounting systemneeds the guarantee of internal con-
trol. On the other hand, internal control should use the information provided by
accounting to complete their tasks. The development of internal control theory is
bound to require accounting theory in this aspect. Throughout the whole develop-
ment process of internal control, it can be found that accounting control is a primary
means to ensure the smooth implementation of internal control. Accounting control
is using the information provided by accounting tomanage the production and oper-
ation of the enterprise, which is the ultimate value maximization of the enterprise.
Although the internal control theory mentioned above is diversifying, the core of its
accounting control is still unshaken. Management power and internal control
should interact and influence each other, including positive guidance and harmful
restraint. From the perspective of informatics, management power, and internal
control are transmitted to each other in the form of information. The information
room has energy and value, which allows the decision and choices of both sides
affect each other. At the same time, both sides will use their function to choose
“favorable information” and avoid “unfavorable information.”

11.3.3 Software Control Theory

Software cybernetics has been an emerging research direction in software engi-
neering recently. It mainly discusses the cross-application of software engineering

11.3 Cybernetic Expansion into Other Fields of Research 237

and feedback cybernetics, aiming to apply the cybernetics method to the practice
of software engineering, take the software process as the controlled object, and
quantitatively analyze its various feedback mechanisms. It optimizes the control
of software behavior so that the software process becomes rule-based to ensure bet-
ter and improve the reliability of software. The research of software control theory
comes from a core problem in software engineering: whether the highly complex
software behavior can be controlled or how to control it effectively. There are two
main research backgrounds. The first is to deal with the problem of software trust-
worthiness. In order to deal with various software trustworthiness problems, it is
required to carry out real-time, practical, and quantitative monitoring and control
of software behavior. The second is dealing with the problem of software adapta-
bility: the software system is required to have adaptability under the open network
environment, and the dynamic changes of user behavior and user needs to ensure
the quality of service, providing different forms of services.
By harnessing cybernetics, which is based on control theory to solve the problem

of how to design an effective test strategy. The studies on the selection strategy of
test cases from the perspective of the testing process, transformed the software
testing process into a control problem according to the control theory, and finally
proposed a Markov control method for software testing. A closed-loop feedback
control system is constructed by taking the software under test as a controlled
object and using Markov chain to model it mathematically. And the testing strat-
egy is treated as the corresponding controller, as shown in Figure 11.4.

11.3.4 Perceptual Cybernetics

There is one overwhelming truth about life: for any living thing that faces the trou-
bles of turbulence from its external environment, its survival requires stabilizing
its vital internal chemistry in some way. Every creature has instinctive behaviors
that allow its stable internal chemicals to spread its genes long enough. Preventing

Control

Test Strategy
(Controller)

Tested software
(Control objective)

Observed variables

Software Testing

Figure 11.4 Software testing as a control problem in cybernetics.

238 11 Revisiting Cybernetics and Relation to Cybernetical Intelligence

instability in the outside world can take two forms. Life also uses both methods to
maintain stability: the first is to develop passive armor (such as membranes, skin,
or shells), which is not a perfect shield against outside organisms, however. The
second way that a creature can actively and forcefully defend itself against the
world to which it is subjected is more critical. The organism must be able to sense
the critical state of the external world; it must be possible to compare perceived
states with the desired conditions of those states and take action to influence them
to achieve and maintain the desired conditions. “Sensing” means changing an
internal state (such as a chemical concentration or the activity frequency of a neu-
ron) in response to changes in the external world. In PCT, such an internal state is
called a “sensing signal,” and the signal value is “sensing.” Perception refers to a
signal value with unconscious meaning. It may be directly related to the current
state of an attribute in the external world, but most of the time, the correlation is
indirect. In most cases, the value of the perceptual signal depends not only on the
current state of the physical variables affecting the perceptron but also on the cur-
rent value of the internal variables. The external variables that affect the perceived
signal value can be very complex and depend on the external environment. Com-
paring the value (reference or goal) expected to perceive some state to it, and keep-
ing it there, is the strict engineering sense of the word “control.” The perception of
the external state is unstable, but the external state itself can be stable. The organ-
ism still uses fewer actions to influence its external state, hence perceptual cyber-
netics. For this reason, the PCT has a core principle: all actions are perceived
controls. The behavior of stabilizing perception may vary with changing environ-
mental influences, but a sound control systemwill changewhen its reference value
changes.
As for PCT, there is a ubiquitous example in daily life. For example, when the

external temperature is high, humans will perceive heat and sweat, which is not
a cognitive level behavior, but a PCT behavior: no matter what the external tem-
perature is, the human body constantly regulates and controls its body temper-
ature to maintain an average temperature by sensing it and comparing it with the
normal body temperature. Therefore, one can define perceived control as a neg-
ative feedback process. The Laplace Transform, which is a mathematical method
that can be used to transform a time domain function into a frequency domain
function. It is commonly used to analyze the stability of negative feedback sys-
tems. The Laplace transform of a function f(t) is represented mathematically as
shown in Equation (11.12).

F s = L f t

=
∞

0
e− stf t dt,

11 12

where s is the complex frequency variable and F(s) is the Laplace transform of f(t).

11.3 Cybernetic Expansion into Other Fields of Research 239

11.4 Practical Application of Cybernetics

11.4.1 Research on the Control Mechanism of Neural Networks

The cyber financial crime control system aims to control the number of cyber
financial crimes. At present, analyzing the influencing factors of network financial
crimes mainly starts from different angles of law, society, economy, and other
aspects. Therefore, the “man-machine-property-law-ring” is used to analyze net-
work financial crime as an influencing factor.

11.4.2 Balance Between Internal Control and Management Power
Relations

Organizations with a high cost of internal control implementation usually have
the problem of the greater power of the management. The excessive power of
the management will affect the establishment of the internal control system,
and internal control can restrain the excessive “expansion” of the power of the
management. The characteristics, alternative strategies, utility functions, and
information structures of the internal control involved in the game and the man-
agement are different. Therefore, one can study from two different angles: the
incomplete information dynamic game model and the incomplete information
static gamemodel, trying to find a refined Bayesian Nash equilibrium. In this state,
the game should be the ideal state (incentive compatibility constraint), that is, the
internal control to achieve the optimal state of management power at the same
time, to get the maximum benefit.

1) Dynamic Game with Incomplete Information
Assume that x1 is the utility that the enterprise achieves the expectation of the
owner and the internal control executive, and then the revenue available to the
management is s1. x2 is the utility that the enterprise fails to achieve the expecta-
tion of the owner and the internal control executive, and the income that the man-
agement can obtain is denoted by s2. D is the failure to conclude the contract, and
themanagement will find jobs again to get their benefits. d1 and d2 are the negative
benefits at a1 and a2, respectively. There are only two kinds of information in the
information system: Good News (GN) and Bad News (BN). There are also two
situations: Good Situation (GS) and Bad Situation (BS). Therefore, the benefit
function that internal control executive and management can obtain is shown
in Table 11.1.
If the internal control is expected to achieve the expected and achievable state,

starting from the rational assumption, the benefit obtained by the management in
this state is bound to be greater than or equal to the benefit obtained by the internal

240 11 Revisiting Cybernetics and Relation to Cybernetical Intelligence

control when it fails to achieve the expected and achievable state, which can be
expressed in a mathematical formula as shown in Equations (11.13) and (11.14):

f s1 P
GN
GS

+ f s2 P
BN
GS

≥ f s1 P
GN
BS

+ f s2 P
BN
BS

11 13

P
GN
GS

P
GN
BS

≥
P

BN
GS

P
BN
BS

11 14

Furthermore, in order to meet the regular progress of the game, it is necessary to
ensure that the management will accept the policies proposed by the internal con-
trol executive and the constraints on the power of his management, which can be
expressed in a mathematical expression as shown in Equation (11.15).

f s1 P
GN
GS

+ f s2 P
BN
GS

− d1 ≥ D 11 15

Finally, in order to enable the management to promote the smooth progress
of internal control from a positive perspective, according to the rational assump-
tion, the model must ensure that the benefit function of the executor in the case of
a1 (internal control meets expectations) is greater than or equal to the case of a2
(internal control fails to meet expectations). Mathematical terms can be expressed
as in Equations (11.16) and (11.17).

x1 − s1 P
GN
GS

+ x2 − s2 P
BN
GS

≥ x1 − s1 P
GN
BS

+ x2 − s2 P
BN
BS

11 16

x1 − s1 − x2 − s2 P
GN
GS

− P
BN
GS

≥ 0 11 17

For the purpose of generalization, one can assume that the behavior of the man-
agement is entirely observable and that the asymmetric information phenomenon

Table 11.1 The yarns of game theory.

α1 (Internal Control
Meets Expectations)

α2 (Internal Control Fails to
Meet Expectations)

Management f (s1)− d1 f (s2)− d2

Internal control execution x1− s1 x2− s2

11.4 Practical Application of Cybernetics 241

has wholly disappeared. The extraordinary situationmust send out good news, and
the lousy situation must send out bad news, namely, P(GN/GS) = P(BN/BS) = 1,
P(BN/GS) = P(GN/BS) = 0. Therefore, the following can be obtained from the
above three expressions.

f s1 P
GN
GS

− f s2 P
BN
GS

− d1 ≥ 0 11 18

f s∗ = d1 + D 11 19

2) Static Game with Incomplete Information
Assume that the internal control is executed in order to guarantee the regular oper-
ation of the internal control. The cost of system supply is C, the probability that
internal control implementation can achieve the desired effect is P. Internal con-
trol execution party bring overall enterprise yields w. The stringency of executive
party or penalties for violation of the internal control is b. The influence degree of
management power on internal control is e.
The optimal decision of the management is:

max E S1 = f s∗ − bPf 2 s∗ 11 20

Take f (s∗) as the independent variable, make the derivative of the above equa-
tion andmake it equal to 0, one can achieve this as shown in following expressions.

dE S1
df s∗

= 1− 2bPf s∗ = 0 11 21

f s∗ =
1

2bP
11 22

11.4.3 Software Markov Adaptive Testing Strategy

In order to apply the Markov decision process to optimize the software testing
process without loss of generality, the following assumptions are made for the soft-
ware under test.

1) There are N defects in the system at time 0;
2) Only one decision is selected at any time, and at most, one defect is found;
3) When a defect is detected, it is considered that the defect has been eliminated.

The system state is transferred immediately, and no new defects will be intro-
duced. If St = j, Zt = 1, then St+1 = j− 1. Then j = 0, 1, …, N, t = 0, 1, 2, …,
indicates that there are j software defects in the system under test at time t;

4) If the system does not detect the defect, it will keep the original state: If St = j,
Zt = 0, St+ 1 = j;

242 11 Revisiting Cybernetics and Relation to Cybernetical Intelligence

5) St = 0 is the convergence state, namely the target state;
6) There are m alternative decisions in each state, whose set is A = {1, 2, …, m};
7) The value of Zt is only related to the value of S and At at time t;
8) After the decision At is selected and executed at time t, if a defect is detected, a

cost of size WSt(At) will be generated if the defect is detected;
9) The cost of defect removal is ignored. Order θ = {0, 1, …, N− 1} represents the

set of state stages, the state of the dynamic system is denoted by x (n), n θ. The
evolution process of it is described by the Equation (11.23).

x n + 1 = Ax n + B1 n u n + B2 n v n + w n , x0 Rr 11 23

The utility functions of the front and rear states are defined by Equation (11.24).

J1 N , 0; u, v; x0 = E
N − 1

n = 0

x n 2
Q1 n

+ u n 2
R11 n

+ v n 2
R12 n

+ x n 2
Q1 n

11 24

J2 N , 0; u, v; x0 = E
N − 1

n = 0

x n 2
Q2 n

+ u n 2
R21 n

+ v n 2
R22 n

+ x n 2
Q2 n

11 25

The policy spaces corresponding to the front and back states are defined by
Equation (11.26).

τ2,n = y2,n Rr V , such as E y2 φ n , y2 φ n v < ∞ 11 26

The so-called game problem is to find a specific leader strategy to meet:

J1 y∗1,R y∗1 = min J1 y1,R y1 11 27

R y1 = argminJ2 y1, y2 11 28

According to the above assumptions, if τ is used to represent the time taken by
the system to reach the target state (all defects are detected), there are shown in
Equation (11.29).

Jω N = Eω

τ

t = 0

WSt At , 11 29

where ω represents the software testing strategy, which determines the selec-
tion of test cases during the testing process; Eω is the expected value relative
to the testing strategy; Jω(N) denotes the expected testing cost caused by all
defects detected.

11.4 Practical Application of Cybernetics 243

11.4.4 Task Analysis Model

Perceptual Control Based Task Analysis (PCBTA) model mainly focuses on the
state transition during the execution of the system rather than the sequence of
operations. The process by which users adjust the system’s state according to their
intentions is the process of controlling display variables according to task objec-
tives. Unlike traditional task analysis models or methods, which focus on provid-
ing users with a practical working set, PCBTA models provide users with the
correct system state determined by display variables. Combined with the basic
process of software development, the primary process and steps of this model mod-
eling are given, as shown in Figure 11.5.
In order to introduce the user’s viewpoint and model the dynamic external envi-

ronment, the PCBTA model uses task analysis based on perceptual cybernetics,
which is used to represent the relationship between user goals and display vari-
ables. Perceived control refers to the behavior people adopt to achieve their goals
in the face of a dynamic, complex, and uncertain external environment. A premise
for introducing perceptual cybernetics into taskmodeling is that the way one think
humans process things in this dynamic, complex world is essentially based on the
theory. PCT takes the user’s point of view and models interaction abstractions in a

Hierarchical task
analysis

User task process
chart

User conceptual
model

Show Variables

Phase I Phase II

Design
assessment and

iteration

Phase III

User interface
sketches

designers model
Availability design

principles

Collect user
conceptual models

Conceptual control
task model

Figure 11.5 PCBTA modeling process.

244 11 Revisiting Cybernetics and Relation to Cybernetical Intelligence

dynamic environment. The relationship between the perceptual control system
and the environment is shown in Figure 11.6.

Summary

Cybernetics, along with relativity and quantum theory, has been identified as the
three major leaps in the development of science in the first half of the 20th cen-
tury. The research on cybernetics has basic practical significance, and with the
development of cybernetics, it is more deeply connected with other fields. They
keep crossing each other and play a crucial role in solving problems in other
fields. This chapter mainly presents the theoretical content and application of
cybernetics. After half a century of development, the application of control the-
ory has greatly broken the limits of human beings and become an indispensable
basic means for humans to understand and transform the natural process. In the
future, the development of control theory will enable people to deal with the
complex system control problems in people’s life, social economy, ecological
environment, industrial production, and other fields in a more scientific way,
and benefit mankind in a wider range of aspects. The novel perspective of
machine intelligence with cybernetics, which is termed as cybernetical intelli-
gence, will have extensive and practical applications in combinatorial optimiza-
tion problems and pattern recognition, data mining, and other related machine
intelligence-based cybernetics problems. The ingenious Re8 series of operators
is summarized as a general investigation scheme for cybernetical intelligence
neural networks.

Perceptual system

Visual signal

Tactile signal

Hearing signal

Gustatory signal

Olfactory signal

Sensor

Effector

Mapper Perceptual signal

Difference

External world

Figure 11.6 The relationship between perceptual control system and environment.

Summary 245

Exercise Questions

Q.11.1 Can you explain the mathematical expression for the feedback loop in a
cybernetic system, and how it enables the system to regulate its behav-
ior based on the comparison between the desired output and the actual
output?

Q.11.2 Can you explain the concept of model-based control in cybernetics, and
how it uses a mathematical model of the system to predict its behavior
and optimize its control, and what is the mathematical expression for
the model-based feedback control system?

Q.11.3 Describe the new term, cybernetical intelligence, defined as in
the paper.

Q.11.4 Demonstrate the Re8 analytics and how is it used in the development of
cybernetical intelligent neural networks.

Q.11.5 How does the paper present the new perspectives of social control
theory, internal control-related theory, and perceptual theory?

Q.11.6 Examine and explain how cybernetics is connected to other fields and
what role does it play in solving problems in other fields.

Q.11.7 How does the concept of adaptive control in cybernetics enable a system
to adjust its control parameters based on its changing environment or
dynamics, and what is the mathematical expression for the adaptive
feedback control system?

Q.11.8 Illustrate the application of control theory broken the limits of human
beings.

Q.11.9 How will the development of control theory benefit mankind in the
future?

Q.11.10 What are the extensive and practical applications of cybernetical intel-
ligence in machine intelligence?

Q.11.11 Explain how does the Re8 series of operators function as a general inves-
tigation scheme for cybernetical intelligence neural networks.

246 11 Revisiting Cybernetics and Relation to Cybernetical Intelligence

Q.11.12 How does cybernetics compare to relativity and quantum theory in
terms of its significance in the development of science?

Q.11.13 What is the concept of homeostasis in cybernetics, and how does it
relate to the goal of maintaining a stable internal state in a system,
and what is the mathematical expression for the feedback control sys-
tem that achieves homeostasis?

Q.11.14 Explain the concept of cybernetical intelligence and how it can be used
in combinatorial optimization problems and pattern recognition, data
mining, and other related machine intelligence-based cybernetics
problems.

Further Reading

Bertalanffy LV. General system theory: foundations, development, applications.
G. Braziller; 1968.

Breiman L. The individual ergodic theorem of information theory. The Annals of
Mathematical Statistics. 1957 Sep 1;28(3):809–11.

Clemson B. Cybernetics: a new management tool. CRC Press; 1991.
Dahling RL. Shannon’s information theory: the spread of an idea. Studies of Innovation

and of Communication to the Public. II 1962;118–39.
Dimirovski GM. An overview of fastcinating ideas on complexity and complex

networks and systems in computational cybernetics: Dedicated to Prof. Rudoplh E.
Kalman, a giant of systems and control sciences, who past away on July 3, 2016: Jean
Jacques Russeaux:“Who dares to say—this far man can go but not a step further.” In
IEEE EUROCON 2017-17th International Conference on Smart Technologies 2017
Jul 6 (pp. 650–664). IEEE.

Nee V, Ingram P. Embeddedness and beyond: institutions, exchange, and social
structure. The New Institutionalism in Sociology. 1998 Feb 1;19:45.

Pias C, editor. Cybernetics-theMacy conferences 1946–1953: the complete transactions.
In Macy conferences 2016. Chicago University Press.

Ross EA. Social control. American Journal of Sociology. 1896 Mar 1;1(5):513–35.
Wiener N. Cybernetics or control and communication in the animal and the machine.

MIT Press; 2019 Oct 8.
Wiener N, Polatin P, Philtine EC, Hiltner S, Hirsh J, Doerr Hallenbeck P, Brozek J,

Louis PA, Schafer R.Cybernetics or control and com-munication in the animal and the
machine Norbert Wiener. MIT Press; 1948.

Further Reading 247

12

Turing Machine

The Turing machine is a theoretical model of computation that was first
introduced by the British mathematician and computer scientist Alan Turing in
the 1930s. A simple abstract machine is capable of performing any computation
that can be carried out by any computer or algorithm.
The Turing machine consists of an infinite tape divided into squares, each of

which can contain a symbol from a finite set of possible symbols. Themachine also
has a read/write head that can move left or right along the tape and can read and
write symbols on the tape. Themachine has a set of states and a transition function
that determines how the machine should behave based on the current symbol on
the tape and the current state of themachine. The operation of the Turingmachine
proceeds as follows:

• Themachine starts in an initial state and the read/write head is positioned over a
square on the tape.

• The machine reads the symbol on the tape at the current position.

• Based on the current state of the machine and the symbol on the tape, the
machine consults its transition function to determine the next state of
the machine and the symbol to write on the tape.

• Themachinewrites the symbol on the tape at the current position andmoves the
read/write head left or right as instructed by the transition function.

• The machine continues to perform steps 2–4 until it reaches a halting state, at
which point the computation is complete.

The Turing machine is a powerful theoretical concept that has been used to
prove fundamental results in computer science and mathematics. For example,
Turing used the concept of the Turing machine to show that there are some pro-
blems that are fundamentally unsolvable by any algorithm, a concept known as

249

Cybernetical Intelligence: Engineering Cybernetics with Machine Intelligence, First Edition.
Kelvin K. L. Wong.
© 2024 The Institute of Electrical and Electronics Engineers, Inc.
Published 2024 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/cyberintel

the “halting problem.” Additionally, the Turing machine has been used to define
the notion of computability, which is the ability to solve a problem using an algo-
rithm. The parameters of a Turing machine are summarized in Table 12.1.

12.1 Behavior of a Turing Machine

A Turing machine is a theoretical computing machine that operates on an infinite
tape of symbols. The behavior of a Turing machine is described by its transition
function, which specifies how the machine moves and changes the symbol on
the tape based on its current state and the symbol that it is currently reading.
To describe the behavior of a Turing machine, one start with an initial tape con-

figuration, which consists of a finite sequence of input symbols followed by an infi-
nite sequence of blank symbols. The machine starts in the initial state q0, with the
tape head positioned on the leftmost input symbol.
At each step, the machine reads the symbol on the tape under the tape head,

looks up its current state in the transition function, and performs the transition
specified by the function. This involves writing a new symbol on the tape, moving
the tape head in one position to the left or right, and changing the state of the

Table 12.1 Table summarizing the parameters of a Turing machine.

Parameter Description

States A Turing machine has a finite set of states that it can be in. When the
machine is in a particular state, it performs a particular action (e.g. read
a symbol, write a symbol, and move the tape head).

Tape The tape of a Turing machine is divided into discrete cells, each of
which can contain a symbol from a finite set of symbols. The tape is
initially blank except for a finite sequence of symbols that represent the
input.

Tape head The tape head of a Turing machine is a read/write head that can move
left or right along the tape one cell at a time.

Alphabet The alphabet of a Turing machine is the set of symbols that can be
written to or read from the tape.

Transition
function

The transition function specifies the behavior of the Turing machine.
Given the current state and symbol read from the tape, it specifies the
next state of the machine, the symbol to write to the tape, and the
direction for the tape head to move (left or right).

Halting state The halting state is a special state that indicates that the Turing
machine has finished its computation. Once the machine enters the
halting state, it stops and outputs the contents of the tape.

250 12 Turing Machine

machine. The behavior of a Turing machine can be modeled using a mathematical
notation called a transition table. The table lists each possible combination of cur-
rent state and current symbol, along with the new state, new symbol, and direction
(left or right) of the headmovement for that combination. The table also specifies a
halting state, which indicates that the machine has reached the end of its compu-
tation and should stop. The behavior of a Turing machine can also be described
using a mathematical formalism known as a Turing machine program. The pro-
gram consists of a set of rules that specify the behavior of the machine at each step
of its computation. The program can be used to simulate the behavior of the
machine on a given input, and can also be used to prove theoretical results about
the capabilities of Turing machines. Formally, a Turing machine can be defined as
a 7-tuple (Q, Σ, Γ, δ, q0, B, F), whereQ is a finite set of states, Σ is a finite set of input
symbols, Γ is a finite set of tape symbols, where Σ Γ. δ :Q × Γ Q × Γ × {L, R} is
the transition function, which describes how the machine transitions between
states, q0 Q is the initial state of the machine, B Γ is the blank symbol, which
is used to represent empty cells on the tape. F Q is the set of final states,
which represent the acceptance states of the machine. The transition function
δ(q, a) = (p, b, d) specifies that if the machine is in state q and is reading symbol
a, it should transition to state p, write symbol b on the tape, and move the head in
direction d (either left or right).

12.1.1 Computing with Turing Machines

• Computing with Turing Machines involves specifying a set of rules that the
machine will follow to perform a computation. The rules describe how the
machine will read and write symbols on its tape, move its head left or right
on the tape, and change its internal state. A Turing machine can be thought
of as having an infinite tape divided into cells, each of which can hold a symbol
from a finite set of possible symbols. The machine also has a head that can read
and write symbols on the tape and move left or right along the tape. The state of
the machine is determined by its internal state and the symbol currently being
read by the head. The basic steps involved in computing with a Turing
machine are:

• Start in an initial state with the head positioned over the first cell of the tape.

• Read the symbol on the current cell and look up the corresponding transition
rule in the machine’s rule table.

•Write the new symbol on the current cell, move the head left or right on the tape,
and transition to a new state as specified by the rule.

• Repeat steps 2 and 3 until the machine enters a final state, indicating that the
computation is complete.

12.1 Behavior of a Turing Machine 251

The rules for a Turing machine are typically specified using a transition function
that maps the current state and input symbol to a new state, output symbol, and
head movement direction. The transition function can be written as:

δ q, a = p, b, d , 12 1

where q is the current state, a is the input symbol, p is the new state, b is the symbol
to be written on the tape, and d is the direction in which the head should move
(either L for left or R for right). The transition function for a Turing Machine
can be expressed as:

δ Q × Q × × L,R , 12 2

where Q is the set of states, Σ is the tape alphabet, and L and R indicate the direc-
tion to move the tape head (left or right). The function that describes the behavior
of a Turing Machine can be written as:

f
∗ ∗

, 12 3

where ∗ is the set of all possible strings over the tape alphabet Σ. The universal
TuringMachine can simulate the behavior of any other TuringMachine. The tran-
sition function for the universal machine is:

δ Q × × τ Q × × τ × L,R, S , 12 4

where Γ is the set of all symbols that can appear on the tape. The halting problem,
which asks whether a given Turing Machine will eventually halt or run forever,
can be expressed as: H = { M, w M is a Turing Machine that halts on input w}.
Where M, w is a string encoding the Turing Machine M and its input string w.

It can be shown that there is no algorithm that can solve the halting problem for all
possible Turing Machines and input strings.
Turing machines can simulate any algorithm or computer program, which

makes them a powerful tool for studying computability and complexity theory.
They are also the theoretical basis for modern digital computers and programming
languages.

12.2 Basic Operations of a Turing Machine

A Turing Machine operates on a tape that is divided into discrete cells, each con-
taining a symbol from a finite alphabet. The machine has a tape head that can read
and write symbols on the tape, and move back and forth along the tape. The basic
operations of a Turing Machine can be described as follows:

252 12 Turing Machine

• Reading a symbol from the tape: The current symbol under the tape head is read
and stored in the machine’s memory.

•Writing a symbol on the tape: The Turing Machine can write a new symbol to
the current cell under the tape head.

• Moving the tape head: The tape head can move one cell to the left or right.

• Changing states: The Turing Machine can change its state according to its tran-
sition function, which takes as input the current state and the symbol under the
tape head, and outputs a new state and a set of instructions for how to manip-
ulate the tape and move the tape head.

These basic operations can be combined to perform any computation that a
Turing Machine is capable of. By reading symbols from the tape, writing new
symbols, moving the tape head, and changing states according to its transition
function, a Turing Machine can simulate any algorithm that can be expressed
in terms of these operations.

12.2.1 Reading and Writing to the Tape

A Turing Machine operates on a tape that is divided into discrete cells, each con-
taining a symbol from a finite alphabet. The machine has a tape head that can read
and write symbols on the tape, and move back and forth along the tape. To read a
symbol from the tape, the Turing Machine moves the tape head to the cell that it
wants to read and then reads the symbol that is stored in that cell. The symbol is
then temporarily stored in the machine’s memory. To write a symbol to the tape,
the Turing Machine moves the tape head to the cell that it wants to write to and
then writes the symbol to that cell. The previous symbol that was stored in that cell
is overwritten.
Consider the tape to be represented as an infinite sequence of cells, indexed by

integers: T = (…, T[−2], T[−1], T[0], T[1], T[2], …).
Each cell in the tape contains a symbol from a finite alphabet Σ, which may

include a special blank symbol to indicate unused cells. To read a symbol from
the tape, the Turing Machine reads the symbol in the current cell under the tape
head and stores it in a temporary variable:

ω = T h , 12 5

where, h represents the current position of the tape head on the tape. To write a
symbol to the tape, the TuringMachine writes the new symbol σ to the current cell
under the tape head, overwriting the previous symbol:

T h = σ, 12 6

12.2 Basic Operations of a Turing Machine 253

where, σ is a symbol from the tape alphabet Σ. To move the tape head to the left or
right, the Turing Machine updates the position variable h accordingly:

h = h + d, 12 7

where, d is either −1 (to move the tape head one cell to the left) or 1 (to move the
tape head one cell to the right). The above operations of reading, writing, andmov-
ing the tape head can be combined to perform any computation that a Turing
Machine is capable of. By reading symbols from the tape, writing new symbols,
moving the tape head, and changing states according to its transition function,
a Turing Machine can simulate any algorithm that can be expressed in terms of
these operations. Note that the tape is infinite in both directions, so the Turing
Machine can access any cell on the tape by moving the tape head left or right.
However, in practice, a physical Turing Machine would have a finite amount of
memory to store the tape, and so would be limited in the number of cells it could
access.

12.2.2 Moving the Tape Head

A Turing Machine operates on a tape that is divided into discrete cells, each con-
taining a symbol from a finite alphabet. The machine has a tape head that can read
and write symbols on the tape, and move back and forth along the tape. To move
the tape head, the Turing Machine can either move it to the left or to the right by
one cell at a time. This is done by changing the position of the tape head on the
tape. Consider h be the current position of the tape head on the tape. To move the
tape head to the left, the Turing Machine subtracts 1 from h:

h = h− 1 12 8

To move the tape head to the right, the Turing Machine adds 1–h:

h = h + 1 12 9

In practice, the TuringMachine would also need to check whether the tape head
has reached the end of the tape and take appropriate action (such as moving to a
new blank cell or halting the computation). Note that the tape is infinite in both
directions, so the TuringMachine canmove the tape head left or right by any finite
number of cells. However, in practice, a physical Turing Machine would have a
finite amount of memory to store the tape, and so would be limited in the number
of cells it could access.

12.2.3 Changing States

In a Turing Machine, the machine’s state describes the current condition of the
machine, including the position of the tape head, the contents of the tape, and

254 12 Turing Machine

the machine’s internal memory. The machine’s state can change during computa-
tion, allowing the Turing Machine to perform different operations depending on its
current state. To change states, the Turing Machine can transition from one state to
another based on a set of predefined rules called the transition function.
The transition function is defined by a set of rules that describe what action the

TuringMachine should take based on its current state and the symbol it reads from
the tape. These rules define the next state of themachine, the symbol to write to the
tape, and the direction to move the tape head (left or right). The rules are typically
written in the form:

q, a p, b, d , 12 10

where q is the current state, a is the symbol being read from the tape, p is the next
state, b is the symbol to write to the tape, and d is the direction to move the tape
head (either left or right). For example, suppose there is a Turing Machine that
operates on a tape with the alphabet {0, 1, blank}, and the machine is currently
in state q0. The transition function for the machine might include a rule that says:

q0, 1 q1, 0,R 12 11

This rule means that if the machine is in state q0 and reads a “1” from the tape, it
should transition to state q1, write a “0” to the tape, and move the tape head one
cell to the right.
The ability to change states based on the contents of the tape allows the Turing

Machine to perform complex computations and is the basis for its computa-
tional power.

12.3 Interchangeability of Program and Behavior

The interchangeability of program and behavior is a fundamental concept in the
field of computer science, particularly in the study of Turing machines and other
computational models.
At a basic level, the idea is that any computation that can be performed by a

particular program can also be performed by a particular behavior, and vice versa.
In other words, its program can define the behavior of a machine, and the program
of a machine can be inferred from its behavior. This concept has important impli-
cations for the development of software and computer systems, as it suggests that
different implementations of the same program can have the same behavior, and
different programs can achieve different behaviors. One of the key insights behind
this concept is that the behavior of a machine is determined by its state and its
input, and the transition between states is determined by the program. This can

12.3 Interchangeability of Program and Behavior 255

be represented mathematically using a transition function that maps the current
state and input to a new state and output.
For example, consider a simple Turing machine that accepts the binary input

“101” and outputs the binary number “3” in decimal. A program that specifies
the transition function for each state and input combination can define the behav-
ior of the machine.
By examining the behavior of the machine, it is possible to infer the program

that generates that behavior. In this way, the program and behavior are inter-
changeable, and different programs can be used to achieve the same behavior,
or different behaviors can be achieved with different programs.
Overall, the interchangeability of program and behavior is a powerful concept

that has important implications for the design and analysis of computer systems
and the development of new computing technologies.

12.4 Computability Theory

Computability theory, also known as recursion theory, is a branch of theoretical
computer science and mathematical logic that studies the concept of computabil-
ity. It deals with the fundamental question of what can be computed and what
cannot be computed.
Intelligent control, on the other hand, is a field of study that deals with the

design and analysis of control systems that can operate autonomously and make
decisions based on the available data. It involves the use of machine learning, arti-
ficial intelligence, and other advanced techniques to develop control systems that
are more efficient and effective than traditional control systems.
The intersection of computability theory and intelligent control lies in the

development of algorithms and decision-making processes that are based on the
principles of computability. These algorithms and decision-making processes
can be used to design and optimize intelligent control systems. Some key concepts
in computability theory are summarized in Table 12.2.
One example of the application of computability theory in intelligent control is

the use of machine learning algorithms to learn patterns in data and make predic-
tions based on those patterns. The computability theory provides the theoretical
framework for understanding the limits of what can be learned and predicted.
Another example is the use of feedback control systems, which are based on the

principles of computability and control theory, to regulate the behavior of intelli-
gent systems. Feedback control systems use sensors to measure the output of the
system and adjust the input based on the difference between the desired output
and the actual output.

256 12 Turing Machine

In summary, the concepts and principles of computability theory can be used to
develop and optimize intelligent control systems that are more efficient and effec-
tive than traditional control systems. The integration of these two fields can lead to
the development of more advanced and sophisticated intelligent control systems
that can operate autonomously and adapt to changing conditions.

12.4.1 Complexity Theory

Complexity theory is a field of study that seeks to understand the inherent com-
plexity of computational problems and algorithms, and the resources required to
solve them. It is an important area of research in intelligent control, as it helps to
determine the efficiency and scalability of algorithms used in intelligent control
systems. One of the main measures of complexity in computational problems is
time complexity, which measures the amount of time required to solve a problem
as a function of the size of the input. Another important measure is space complex-
ity, whichmeasures the amount of memory required to solve a problem. One of the

Table 12.2 Summarizing some key concepts in computability theory.

Concept Description

Decision problem A problem that has a yes-or-no answer, such as “is this number
prime?” or “does this program terminate?”

Turing machine Amathematical model of a computer that consists of a tape, a tape
head, and a set of rules for moving the tape head and reading/
writing symbols to the tape.

Halting problem The decision problem of determining, given a Turingmachine and
an input, whether the machine will eventually halt or run forever.
It has been proven to be undecidable, meaning there is no
algorithm that can solve it for all possible inputs.

Church-Turing
thesis

The informal claim that any problem that can be solved by an
algorithm (i.e. a step-by-step procedure) can be solved by a Turing
machine. This thesis has not been proven or disproven, but it is
widely believed to be true.

Recursively
enumerable set

A set of numbers that can be generated by a Turing machine (i.e.
the machine can eventually halt and output the number).

Recursive set A set of numbers for which there exists a Turing machine that can
decide whether a given number is a member of the set (i.e. the
machine will always halt and output either “yes” or “no”).

Undecidable
problem

A decision problem for which no algorithm exists that can solve it
for all possible inputs. Examples include the halting problem and
the problem of determining whether two given Turing machines
compute the same function.

12.4 Computability Theory 257

most famous problems in complexity theory is the P versus NP problem, which
asks whether or not problems that can be verified in polynomial time can also
be solved in polynomial time. If P = NP, it would have significant implications
for the efficiency of algorithms used in intelligent control systems.
Another important concept in complexity theory is the notion of completeness.

A problem is said to be NP-complete if it is in the set of NP problems and every
problem in NP can be reduced to it in polynomial time. NP-complete problems
are believed to be inherently difficult to solve efficiently, and their study has led
to the development of important algorithms such as the traveling salesman prob-
lem. In intelligent control, complexity theory is used to determine the efficiency
and scalability of algorithms used in various applications such asmachine learning
and optimization. For example, the time complexity of an algorithm used for train-
ing a neural network is an important factor in determining the feasibility of using
that algorithm for real-time applications. The time complexity of a neural network
training algorithm can be expressed in terms of the number of iterations required
to converge to a solution. Let n be the number of iterations and T(n) be the time
complexity of the algorithm.

T n = O f n , 12 12

where O(f (n)) denotes the upper bound of the time complexity in terms of a
function f (n). The overall time complexity of training a neural network can be
expressed as the product of the number of iterations required to converge and
the time complexity of computing the gradient for one mini-batch:

T = n × O k × m , 12 13

where n is the number of iterations required to converge, k is the size of the
mini-batch, andm is the number of parameters in the network. Overall, complex-
ity theory is a critical field of study in intelligent control as it helps to ensure that
algorithms used in intelligent control systems are efficient and scalable, leading to
better performance and more successful applications.

12.5 Automata Theory

Automata theory is a branch of computer science that studies the properties of
abstract computing devices called automata. These devices are mathematical mod-
els of machines that can perform a finite number of operations, or transitions, on
inputs from a finite set of symbols. Automata theory is closely related to the study
of formal languages, which are sets of strings of symbols that can be generated by a
particular set of rules. The theory provides a formal framework for describing and

258 12 Turing Machine

analyzing the properties of languages, including regular, context-free, and context-
sensitive languages.
In the context of intelligent control, automata theory can be used to model and

analyze the behavior of control systems. For example, a finite-state machine can be
used to represent the behavior of a system that has a finite number of states and
transitions between those states. This machine can then be used to design a control
system that achieves a desired behavior.
Formally, an automaton can be defined as a 5-tuple (Q, Σ, δ, q0, F), where Q is a

finite set of states
Σ is a finite set of input symbols, also known as the alphabet. The δ :Q × Σ Q is

a transition function that maps a state and an input symbol to a new state q0 Q is
the initial state
F Q is the set of accepting states.
An automaton can be visualized as a directed graph, where each state is repre-

sented by a node and each transition is represented by an edge labeled with an
input symbol. The initial state is usually marked with an arrow pointing to it,
and the accepting states are typically denoted by double circles. Automata theory
includes several types of automata, such as:

• Finite-state automata (FSAs), which have a finite number of states and can rec-
ognize regular languages

• Pushdown automata (PDAs), which have a stack that allows them to recognize
context-free languages

• Turing machines, which have an infinite tape and can recognize recursively
enumerable languages

In the context of intelligent control, automata theory can be used to analyze the
behavior of a control system and determine whether it satisfies certain properties,
such as safety or liveness. It can also be used to design a control system that
achieves a desired behavior, based on a formal specification of that behavior in
terms of a formal language.

12.6 Philosophical Issues Related to Turing Machines

The concept of Turing machines raises several philosophical issues, including the
nature of computation, the limits of knowledge, and the relationship between
mind and machine.
One of themost significant philosophical issues raised by Turingmachines is the

question of whether they provide a complete model of computation. Some theor-
ists argue that there may be forms of computation that cannot be carried out by

12.6 Philosophical Issues Related to Turing Machines 259

Turing machines, and that therefore, the Turing machine model is incomplete.
This has led to the development of alternative models of computation, such as
quantum computing and hypercomputation.
Another philosophical issue related to Turing machines is the question of

whether they have any relevance to the study of the mind. Some theorists argue
that the Turing machine model is limited in its ability to capture the complexities
of mental processes, and that therefore, it cannot be used to fully understand the
nature of human thought and consciousness. However, others argue that Turing
machines provide a useful framework for studying the mind and that they can be
used to develop intelligent systems that simulate human thought processes.
Finally, Turing machines raise questions about the nature of knowledge and
understanding. Since Turing machines are purely formal systems, some philoso-
phers argue that they cannot provide genuine knowledge or understanding of the
world. Others argue that Turing machines can provide genuine knowledge and
understanding and that they are useful tools for exploring the limits of knowledge
and understanding. Overall, the philosophical issues raised by Turing machines
highlight the need for interdisciplinary approaches to understanding the nature
of computation, mind, and knowledge.

12.7 Human and Machine Computations

Human and machine computations are two different approaches to solving pro-
blems, and they differ in the way they process information. Human computations
rely on the use of biological neurons and are typically more flexible and adaptable
to new situations. Machine computations, on the other hand, rely on algorithms
and digital circuits, which are programmed to perform specific tasks.
Mathematically, human and machine computations can be described in differ-

ent ways. For human computations, researchers often use models of biological
neurons, such as the McCulloch-Pitts model, to describe how the brain processes
information. These models use mathematical equations to represent the behavior
of individual neurons and the connections between them. For example, the
McCulloch–Pitts model describes the behavior of a neuron as a function of its
inputs, which are weighted according to the strength of the connections between
neurons. The output of the neuron is then compared to a threshold value, and if
the output exceeds this value, the neuron fires, sending a signal to other neurons in
the network.
Machine computations, on the other hand, are typically described using formal

languages and algorithms. Formal languages are sets of symbols and rules for
manipulating those symbols, and they are used to define the syntax and semantics

260 12 Turing Machine

of programming languages. Algorithms are sets of instructions for solving a spe-
cific problem or performing a specific task, and they can be described using pseu-
docode or flowcharts. Pseudocode is a high-level description of an algorithm that
uses plain language to describe the steps involved, while flowcharts use graphical
symbols to represent the steps of the algorithm. Overall, while human and
machine computations are different approaches to problem-solving, both can be
described using mathematical and computational models, and both have contrib-
uted to the development of modern computing and artificial intelligence.

12.8 Historical Models of Computability

Historical models of computability refer to the different theoretical frameworks
that have been proposed to capture the notion of computation. Some of the most
significant models of computability include:

• Turing machines: Turing machines were first proposed by Alan Turing in 1936
as a way of formalizing the concept of computation. A Turing machine consists
of a tape divided into cells, a read/write head that canmove back and forth along
the tape and a set of states that define the machine’s behavior. The machine
starts in an initial state and reads the symbol on the current cell of the tape.
Based on the current state and the symbol read, the machine can write a new
symbol to the tape, move the read/write head left or right, and transition to a
new state. A Turing machine can compute any function that is computable
by an algorithm.

• Lambda calculus: Lambda calculus was first proposed by Alonzo Church in the
1930s as an alternative model of computation. Lambda calculus is based on the
idea of applying functions to arguments. A lambda expression consists of a var-
iable, a body that specifies how the variable is used, and an abstraction operator
that binds the variable to the body. Lambda calculus can be used to compute any
function that is computable by an algorithm.

• Recursive functions: Recursive functions were first proposed by Kurt Gödel and
Jacques Herbrand in the 1930s as a way of formalizing the concept of comput-
ability. A recursive function is a function that can be defined in terms of itself.
Recursive functions can be used to compute any function that is computable by
an algorithm.

• Post-Turing machines: Post-Turing machines were proposed by Emil Post as an
alternative to Turing machines. Post-Turing machines are similar to Turing
machines but have a slightly different set of operations. Post-Turing machines
can compute any function that is computable by a Turing machine.

12.8 Historical Models of Computability 261

• Register machines: Register machines were first proposed by Marvin Minsky in
the 1960s as a way of modeling computer architectures. A register machine con-
sists of a set of registers that can hold values, a set of operations that can be per-
formed on the registers, and a program that specifies the sequence of operations
to be performed. Register machines can compute any function that is comput-
able by an algorithm.

These models of computability have had a significant impact on the develop-
ment of computer science and the study of algorithms. They have also helped
to establish the theoretical limits of computation and have provided a framework
for understanding the nature of computation and its relationship to other areas of
mathematics and science.

12.9 Recursive Functions

Recursive functions, also known as computable functions, are a class of functions
that can be calculated by an algorithm. In other words, these are functions that can
be computed by a Turingmachine. Recursive functions can be thought of as a set of
rules that generate an output for each input.
The basic building blocks of recursive functions are primitive recursive

functions, which include constants, successor functions, and projection functions.
From these, more complex functions can be built using operations such as
composition, recursion, and minimization. Composition is the process of
combining two or more functions to create a new function. For example, if
f (x) = 2x and g(x) = x+ 1, then the composite function h(x) = f (g(x)) is equal
to h(x) = 2(x+ 1) = 2x+ 2.
Consider a base case f(0) = c, where c is a constant value. Inductive step for all

positive integers n, define f(n) recursively in terms of f(n− 1) and other mathemat-
ical operations. For example, as defined below:

f n = g n, f n− 1 , 12 14

where g() is mathematical function that takes n and x as input and returns a new
value. This allows us to build up complex functions by defining them in terms of
simpler functions.
If there is a need to define a function that cannot be expressed using only prim-

itive recursion, one can use theminimization operator. For example, define a func-
tion h(x) that computes the smallest integer y such that f(y) > x as follows:

h x = μy f y > x , 12 15

262 12 Turing Machine

where μ is the minimization operator, and [f(y) > x] is an indicator function that
evaluates to 1 if f(y) is greater than x and 0 otherwise. Recursion is the process of
defining a function in terms of itself. This allows for the creation of functions that
can repeat a process a certain number of times or perform an operation until a
certain condition is met. For example, the factorial function can be defined recur-
sively as follows:

n = n n− 1 if n > 0

n = 1 if n = 0,
12 16

using recursion, this function can be called repeatedly until the base case (n= 0 or
n= 1) is reached, at which point the function terminates. Minimization is a process
of finding the minimum value of a function. In the context of recursive functions,
this involves finding the smallest value of n for which a certain condition is met.
For example, the smallest natural number that is not the sum of two squares can be
found using a minimization function.
Recursive functions can also be used to solve problems in various fields such as

computer science, mathematics, and physics. For example, they can be used in the
design of algorithms for searching, sorting, and data analysis. They can also be
used in the development of mathematical models for complex systems. Overall,
recursive functions are an important concept in the field of computability and have
a wide range of applications in various fields.

12.10 Turing Machine and Intelligent Control

Turing machine is a fundamental concept in intelligent control and artificial intel-
ligence. It serves as a theoretical framework for understanding the limits and cap-
abilities of computing systems. In intelligent control, Turing machines are used to
model various computational processes and to analyze the complexity of
algorithms.
Turing machines consist of a tape, a head that can read and write symbols on

the tape, and a control unit that determines the machine’s behavior. The tape is
divided into cells, each of which can hold a symbol from a finite alphabet. The
head can move back and forth along the tape and can read and write symbols on
the tape. The control unit of a Turing machine is a finite-state machine that
determines the machine’s behavior based on the current state of the machine
and the symbol on the tape under the head. The control unit can change the
state of the machine, move the head left or right along the tape, and write a
new symbol on the tape. Turing machines can compute any computable func-
tion, which includes all functions that can be computed by a digital computer.

12.10 Turing Machine and Intelligent Control 263

This is known as the Church-Turing thesis, which states that any function that
can be computed by an algorithm can be computed by a Turing machine, and
vice versa.
In intelligent control, Turing machines are used to analyze the computational

complexity of algorithms and to design algorithms for solving complex problems.
They are also used as a theoretical framework for understanding the limits and
capabilities of intelligent systems, including artificial neural networks and other
machine learning algorithms. The inputs to a Turing machine can be represented
as a string of symbols, and the machine operates by reading these symbols one at a
time, using its set of rules to determine what action to take based on each symbol.
The machine can also write new symbols to a tape, allowing it to store information
and perform calculations. One application of Turing machines in intelligent con-
trol is in the development of artificial intelligence algorithms. For example, a
machine learning algorithm can be represented as a Turing machine that has been
trained to recognize patterns in data andmake predictions based on those patterns.
The machine can read in new data and use its set of rules to make predictions
about future outcomes.
Turing machines can also be used to model and analyze the behavior of complex

control systems, such as those used in manufacturing or transportation. By repre-
senting these systems as Turing machines, researchers can study their behavior
and develop more efficient and effective control strategies. Overall, the concept
of Turing machine has played a significant role in the development of intelligent
control and artificial intelligence and continues to be an important tool for analyz-
ing and designing computational systems.

Summary

This chapter has described the concept of Turingmachines, their behavior, and the
interchangeability of program and behavior. Philosophical issues related to Turing
machines were also discussed. Additionally, the use of Turing machines in intel-
ligent control systems was explored.
In the future, the development of more advanced computing technologies will

likely have a significant impact on the field of intelligent control. The use of Turing
machines and other computational models will continue to evolve, and new appli-
cations of these models will be discovered. The use of intelligent control systems
will become more widespread, as they have the potential to improve the efficiency
and effectiveness of a wide range of processes and systems. As these technologies
continue to evolve, it will be important to consider their ethical implications and
ensure that they are being used in a responsible and beneficial way.

264 12 Turing Machine

Exercise Questions

Q.12.1 What is the relationship between the Halting problem and the limits of
computation?

Q.12.2 How does the concept of undecidability relate to computability theory?

Q.12.3 Can amodern computer compute all functions that can be computed by
a Turing machine?

Q.12.4 What is the mathematical expression for the transition function in a
Turingmachine, and how does it determine the next state and tape sym-
bol based on the current state and tape symbol?

Q.12.5 How do finite state machines differ from Turing machines in terms of
computational power?

Q.12.6 How can Turing machines be used to model and prove the computabil-
ity of functions and languages, such as the Church-Turing thesis and
the Universal Turing machine, and what is the mathematical expres-
sion for the computation of a Turing machine?

Q.12.7 How does the concept of complexity relate to the analysis of algorithms?

Q.12.8 How can Turing machines be used to define and study complexity
classes, such as P, NP, and NP-complete, and what is the mathematical
expression for the time and space complexity of a Turing machine
computation?

Q.12.9 What is the role of randomness in computation, and how is it related to
complexity?

Q.12.10 Can machines ever achieve true artificial intelligence?

Further Reading

Conti M, De Gaspari F, Mancini LV. A novel stealthy attack to gather SDN
configuration-information. IEEE Transactions on Emerging Topics in Computing.
2018 Feb 16;8(2):328–40.

Further Reading 265

Cooper SB. Computability theory. CRC Press; 2003 Nov 17.
Hodges A. Did church and turing have a thesis about machines. Church’s Thesis After.

2006;70:242–52.
Nakao Y. Precision control of single point diamond turning machine using intelligent

controller. LMA. 1998 Oct:71.

266 12 Turing Machine

13

Entropy Concepts in Machine Intelligence

Entropy is a fundamental concept in information theory, and it plays an important
role in machine intelligence. In simple terms, entropy refers to the degree of dis-
order or randomness in a system. In machine intelligence, entropy is often used as
a measure of uncertainty or information content. One of the most common uses of
entropy in machine intelligence is in decision trees, where it is used to determine
the optimal split for a given dataset. In this context, entropy is used to measure the
impurity of a given dataset, with lower entropy indicating a more homogeneous
dataset. By minimizing entropy, decision trees can efficiently split the data into
smaller and more homogeneous subsets, ultimately leading to predictions that
are more accurate.
Entropy is also used in the field of natural language processing, where it can be

used to measure the degree of uncertainty or ambiguity in a given sentence or text.
This can be useful in tasks such as machine translation or sentiment analysis,
where understanding the meaning and context of a given text is essential. In addi-
tion to its uses in decision trees and natural language processing, entropy is also
used in a variety of other machine learning algorithms, such as clustering and
anomaly detection. In clustering, for example, entropy can be used to determine
the optimal number of clusters, with lower entropy indicating a more clearly
defined set of clusters.
Overall, entropy is a powerful and versatile tool in machine intelligence, provid-

ing a way to measure uncertainty and information content across a wide range of
applications. By understanding the concept of entropy and its uses in machine
intelligence, researchers and practitioners can develop more accurate and efficient
machine learning algorithms that can help to solve a wide range of real-world
problems.

267

Cybernetical Intelligence: Engineering Cybernetics with Machine Intelligence, First Edition.
Kelvin K. L. Wong.
© 2024 The Institute of Electrical and Electronics Engineers, Inc.
Published 2024 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/cyberintel

13.1 Relative Entropy of Distributions

Relative entropy, also known as Kullback–Leibler divergence, is a measure of how
different two probability distributions are from each other. It is commonly used in
statistics and information theory to quantify the distance between two probability
distributions. Relative entropy is defined as follows:
Given two probability distributions P and Q over the same sample space X, the

relative entropy of P with respect to Q, denoted by D(P Q), is defined as:

D P Q =
x

P x log
P x
Q x

, 13 1

where x denotes the sum over all values of x in the sample space X, and P(x) and
Q(x) are the probabilities assigned to x by the distributions P and Q, respectively.
The relative entropy can be interpreted as the amount of additional information

required to encode data generated from P using an optimal code designed for Q. In
other words, it measures the inefficiency of using a code designed for Q to encode
data generated from P. Some key properties of relative entropy include:

• D(P Q)≥ 0 for all probability distributions P and Q, and D(P Q) = 0 if and only
if P = Q.

• Relative entropy is not a symmetric measure, that is, D(P Q) is not necessarily
equal to D(Q P).

• Relative entropy is not a metric, since it violates the triangle inequality.

• Relative entropy is additive over independent random variables.

• Relative entropy can be extended to continuous probability distributions by
replacing the summation with an integral.

Relative entropy has many important applications in machine learning, including
model selection, clustering, and data compression. For example, in model selection,
relative entropy can be used to compare the performance of different models by
measuring the difference between the predicted and actual probability distributions.
Overall, relative entropy is a powerful and versatile tool in information theory and

machine learning, providing a way to measure the difference between probability
distributions and quantify the amount of information required to encode data gen-
erated from one distribution using a code designed for another distribution.

13.2 Relative Entropy and Mutual Information

Relative entropy and mutual information are both important concepts in informa-
tion theory, and they are closely related to each other. In this response, one will
describe each concept in detail and explain their relationship. Relative entropy,

268 13 Entropy Concepts in Machine Intelligence

also known as Kullback–Leibler divergence, is a measure of how different two
probability distributions are from each other. Given two probability distributions
P and Q over the same sample space X, the relative entropy of P with respect to Q,
denoted by D(P Q), is defined as shown in Equation (13.2).
The relative entropy can be interpreted as the amount of additional information

required to encode data generated from P using an optimal code designed for Q. In
other words, it measures the inefficiency of using a code designed for Q to encode
data generated from P. Mutual information, on the other hand, measures the
amount of information that two random variables share. It is defined as:

I X ,Y = D P X ,Y P X P Y , 13 2

where P(X, Y) is the joint probability distribution of X and Y, and P(X) and P(Y) are
the marginal probability distributions of X and Y, respectively.
The mutual information can be interpreted as the reduction in uncertainty of

one random variable when the value of the other variable is known. It measures
the degree to which two random variables are dependent on each other. The rela-
tionship between relative entropy and mutual information is given by:

I X ,Y = D P X ,Y P X P

= D P X ,Y P X Q Y −D P X ,Y Q X Q Y , 13 3

where Q(X) and Q(Y) are any other probability distributions over X and Y,
respectively.
This equation shows that mutual information can be expressed as the difference

between two relative entropies. The first termmeasures the difference between the
joint distribution and the product of the marginal under the true distribution,
while the second term measures the difference between the joint distribution
and the product of the marginal under an alternative distribution.
Overall, relative entropy andmutual information are both important concepts in

information theory, providing a way tomeasure the difference between probability
distributions and quantify the amount of information shared between random
variables. The relationship between the two concepts highlights the fundamental
connections between information theory and probability theory, and their appli-
cations in fields such as machine learning, data compression, and signal
processing.

13.3 Entropy in Performance Evaluation

Entropy can be used as a metric to evaluate the performance of a classification
model. It measures the degree of uncertainty or disorder in the system, and in
the context of classification, it represents the uncertainty in the classification

13.3 Entropy in Performance Evaluation 269

decision. Consider there is a classificationmodel that assigns a label y to an input x.
One also have a true label t for each input x. If one consider the set of all possible
labels Y, the entropy of the classification model is defined as:

H = −
y
p y log 2 p y , 13 4

where py is the proportion of inputs that are classified as label y by the model, and
log2 is the base-2 logarithm.
In this equation, one can see that the entropy H is a function of the distribution

of the labels assigned by the model. If the model assigns the correct label to all
inputs, the entropy will be 0, indicating that there is no uncertainty in the classi-
fication decision. On the other hand, if the model assigns different labels to differ-
ent inputs with equal probability, the entropy will be maximal, indicating
maximum uncertainty. To evaluate the performance of a classification model,
one can use the concept of cross-entropy. Cross-entropy measures the difference
between the predicted distribution and the true distribution of the labels. Assume
to represent the true distribution of the labels as p (y). The cross-entropy H(p , p)
between the predicted distribution p(y) and the true distribution p (y) is defined as:

H p , p = −
y
p y log 2 p y , 13 5

In this equation, one can see that the cross-entropy is a function of both the pre-
dicted distribution and the true distribution. If the predicted distribution is iden-
tical to the true distribution, the cross-entropy will be 0, indicating that the model
is perfectly accurate. On the other hand, if the predicted distribution is different
from the true distribution, the cross-entropy will be positive, indicating that the
model is less accurate.
Finally, one can use the concept of information gain to evaluate the contribution

of each feature to the classification performance. Information gain measures the
reduction in entropy achieved by splitting the dataset based on a particular feature.
Assume that one have a dataset consisting of input-output pairs (x, y). The entropy
of the dataset isH(y), as defined above. If one split the dataset based on a particular
feature f, one obtain two subsets of the data: one subset with inputs that have fea-
ture f, and another subset with inputs that do not have feature f. The information
gain IG(f) achieved by splitting the dataset based on feature f is defined as:

IG f = H y −H y f , 13 6

where H(y f) is the entropy of the output labels given the feature f. This equation
represents the information gain is a function of both the dataset entropy and the
entropy of the output labels given the feature. If the feature is highly informative,
the entropy of the output labels given the feature will be low, resulting in a high

270 13 Entropy Concepts in Machine Intelligence

information gain. On the other hand, if the feature is not informative, the entropy
of the output labels given the feature will be high, resulting in a low informa-
tion gain.

13.4 Cross-Entropy Softmax

Cross-entropy Softmax is a commonly used method for multi-class classification
problems. It is a variant of the Softmax function that maps the output of a neural
network to a probability distribution over multiple classes. The cross-entropy Soft-
max loss function measures the difference between the predicted probability dis-
tribution and the true probability distribution of the classes. Consider there is a
neural network with K output nodes, where each node represents a class. Denote
the output of the network for input x and class k as zk(x). The Softmax function is
defined as:

σ z j =
ezi
K

j = 1
ezj

, 13 7

where z is the input vector to the softmax function, zi is the elements of the input
vector to the softmax function, ezi is the standard exponential function applied to

each element of the input vector, K
j = 1e

zj is the term on the bottom of the formula:

the normalization term. It ensures that all the output values of the function will
sum to 1 and each be in the range (0, 1), thus constituting a valid probability dis-
tribution, and K is the number of classes. In softmax regression, the goal is The
cross-entropy SoftMax loss function measures the difference between the pre-
dicted probability distribution and the true probability distribution of the classes.
Denote the true probability distribution of the classes for input x as yk(x), where
yk(x) = 1 if input x belongs to class k, and yk(x) = 0 otherwise. The cross-entropy
SoftMax loss function L is defined as:

L = − kyk x log 2 softmax zk x , 13 8

where log is the natural logarithm, and the summation is: taken over all classes k.
This equation shows the cross-entropy softmax loss function is a function of both
the predicted probability distribution and the true probability distribution. If the
predicted probability distribution is identical to the true probability distribution,
the cross-entropy softmax loss function will be 0, indicating that the network is
perfectly accurate. On the other hand, if the predicted probability distribution is
different from the true probability distribution, the cross-entropy softmax loss
function will be positive, indicating that the network is less accurate.

13.4 Cross-Entropy Softmax 271

The cross-entropy softmax loss function is commonly used as the objective func-
tion for training neural networks for multi-class classification problems. The goal
of training is to minimize the cross-entropy softmax loss function with respect to
the network weights, using methods such as gradient descent. By minimizing the
cross-entropy softmax loss function, the network learns to output probabilities that
are close to the true probabilities of the classes, and hence achieve high accuracy
on the classification task.

13.5 Calculating Cross-Entropy

Cross-entropy is a measure of the difference between two probability distributions.
It is commonly used in machine learning as a loss function for classification tasks.
The formula for calculating cross-entropy between two probability distributions
P and Q is:

H P,Q = −
x

P x log Q x , 13 9

where x represents the possible outcomes, P(x) is the probability of outcome x in
distribution P, and Q(x) is the probability of outcome x in distribution Q.
Intuitively, the cross-entropy measures the average number of bits required to

encode outcomes from distribution P using a code optimized for distribution Q.
If the two distributions are the same, the cross-entropy will be 0. Otherwise, the
cross-entropy will be positive. In the context of machine learning, the cross-
entropy is used to measure the difference between the predicted probability distri-
bution and the true probability distribution of the classes. Consider there is a neu-
ral network with K output nodes, where each node represents a class. Let’s denote
the predicted probability distribution over classes for input x as Qk(x), and the true
probability distribution over classes for input x as Pk(x). The cross-entropy loss
function L is defined as:

L = −
k

Pk x log 2 Qk x , 13 10

where the summation is taken over all classes k. In this equation, one can see that
the cross-entropy loss function is a function of both the predicted probability dis-
tribution and the true probability distribution. If the predicted probability distri-
bution is identical to the true probability distribution, the cross-entropy loss
function will be 0, indicating that the network is perfectly accurate. On the other
hand, if the predicted probability distribution is different from the true probability
distribution, the cross-entropy loss function will be positive, indicating that the

272 13 Entropy Concepts in Machine Intelligence

network is less accurate. The goal of training a neural network for classification
tasks is to minimize the cross-entropy loss function with respect to the network
weights, using methods such as gradient descent. By minimizing the cross-entropy
loss function, the network learns to output probabilities that are close to the true
probabilities of the classes, and hence achieve high accuracy on the classifica-
tion task.

13.6 Cross-Entropy as a Loss Function

Cross-entropy is a commonly used loss function in machine learning, particularly
in classification tasks. It is a measure of the difference between the predicted prob-
ability distribution and the true probability distribution of the classes. The cross-
entropy loss function measures how well the predicted distribution matches the
true distribution and is used as a guide for adjusting the model parameters during
the training process.
In the context of classification tasks, one can assume that one have a neural net-

work with K output nodes, where each node represents a class. Assume to denote
the predicted probability distribution over classes for input x as Qk(x), and the true
probability distribution over classes for input x as Pk(x). The cross-entropy loss
function L is defined as:

L = −
k

Pk x log Qk x , 13 11

where the summation is taken over all classes k. The cross-entropy loss function
has several desirable properties as a loss function for classification tasks:

• A continuous and differentiable function can be used with gradient-based opti-
mization algorithms.

• It penalizes heavily for incorrect predictions with high confidence, encouraging
the network to output probabilities that are close to the true probabilities.

• It is a convex function, which means that the optimization problem is well-
behaved and can be efficiently solved using standard optimization techniques.

During the training process, the goal is to minimize the cross-entropy loss func-
tion with respect to the network weights, using methods such as gradient descent.
The gradients of the loss function with respect to the network weights are com-
puted using the chain rule of calculus and are used to update the weights in
the direction that minimizes the loss function. This process is repeated iteratively
until the network converges to a set of weights that achieve high accuracy on the
classification task.

13.6 Cross-Entropy as a Loss Function 273

In summary, cross-entropy loss function is a widely used loss function for clas-
sification tasks in machine learning. It is a measure of the difference between the
predicted and true probability distributions and is used as a guide for adjusting the
model parameters during the training process to achieve high accuracy.

13.7 Cross-Entropy and Log Loss

Cross-entropy and log loss are two commonly used loss functions in machine
learning, particularly in binary classification tasks. While they are mathematically
similar, there are some differences between the two that are important to
understand.
Cross-entropy is a more general loss function that can be used for multi-class

classification tasks as well as binary classification tasks. It measures the difference
between the predicted probability distribution and the true probability distribution
of the classes and is defined as:

L = −
k

Pk x log 2 Qk x , 13 12

where the summation is taken over all classes k, and Pk(x) and Qk(x) represent the
true and predicted probability distributions over the classes, respectively. In the
binary classification case, there are only two classes, and the cross-entropy loss
reduces to:

L = − y log 2 p − 1− y log 2 1− p , 13 13

where y is the true label (either 0 or 1) and p is the predicted probability of the
positive class.
While cross-entropy and log loss are mathematically similar, there are some dif-

ferences between the two that are worth noting. First, cross-entropy is a more gen-
eral loss function that can be used for multi-class classification tasks as well as
binary classification tasks, while log loss is only used for binary classification tasks.
Second, while both loss functions penalize heavily for incorrect predictions with
high confidence, cross-entropy is more sensitive to the difference between the pre-
dicted and true probabilities, particularly when the true probability is close to zero
or one. Finally, cross-entropy tends to be more stable numerically than log loss,
particularly when the predicted probability is close to zero or one.
In practice, both cross-entropy and log loss are commonly used as loss functions

in binary classification tasks. The choice between the two often depends on the
specific problem at hand, and the performance of the model using each loss func-
tion should be evaluated empirically.

274 13 Entropy Concepts in Machine Intelligence

13.8 Application of Entropy in Intelligent Control

Entropy has various applications in the field of intelligent control, particularly in
the context of optimizing control systems. In this context, entropy can be used to
quantify the level of disorder or uncertainty in a system and to help control systems
make decisions based on the available information.
One application of entropy in intelligent control is in the area of adaptive con-

trol. In adaptive control, the control parameters of a system are adjusted based on
the observed behavior of the system, with the goal of optimizing its performance.
Entropy can be used in this context to measure the degree of uncertainty or unpre-
dictability in the system and to guide the adaptation process. Specifically, entropy
can be used to estimate the information content of the system, which can be used
to adjust the control parameters in a way that maximizes the system’s information
content.
Another application of entropy in intelligent control is in the area of feedback

control. In feedback control, the behavior of the system is monitored and adjusted
based on feedback signals, with the goal of achieving a desired output. Entropy can
be used in this context to measure the degree of uncertainty or unpredictability in
the feedback signals and to adjust the control parameters accordingly. Specifically,
entropy can be used to estimate the information content of the feedback signals,
which can be used to adjust the control parameters in a way that maximizes the
system’s information content. Entropy can also be used in the context of control
systems that operate in environments with high levels of noise or uncertainty. In
these systems, entropy can be used to quantify the level of uncertainty or unpre-
dictability in the environment and to adjust the control parameters accordingly.
Specifically, entropy can be used to estimate the information content of the
environment, which can be used to adjust the control parameters in a way that
maximizes the system’s information content.
Overall, entropy has a variety of applications in intelligent control, particularly

in the areas of adaptive control, feedback control, and control in uncertain or noisy
environments. By quantifying the level of uncertainty or unpredictability in a
system or environment, entropy can help control systems make decisions based
on the available information, and optimize their performance accordingly.

13.8.1 Entropy-Based Control

Entropy-based intelligent control is a control strategy that uses the concept of
entropy to design and optimize control systems. The basic idea behind entropy-
based control is to use the amount of entropy in a system as a measure of its com-
plexity or disorder and to use this measure to guide the control of the system.

13.8 Application of Entropy in Intelligent Control 275

Entropy-based control can be used in a variety of control systems, including
industrial process control, robotics, and environmental control systems. The basic
approach involves three main steps:

• Entropy measurement: The first step is to measure the entropy of the system
being controlled. This can be done using a variety of techniques, depending
on the system being controlled. For example, in a temperature control system,
the entropy might be measured by monitoring the fluctuations in temperature
over time.

• Control design: Once the entropy has been measured, the next step is to design a
control system that is able to regulate the entropy within the desired range. This
might involve designing a feedback controller that adjusts the control inputs in
response to changes in the entropy, or it might involve designing a model-based
controller that uses a mathematical model of the system to predict how the
entropy will change in response to different control inputs.

• Optimization: Finally, the control system can be optimized to improve its
performance. This might involve adjusting the control parameters to minimize
the entropy of the system, or it might involve using a reinforcement learning
algorithm to find the optimal control policy.

Entropy-based control has several advantages over traditional control
approaches. One advantage is that it can be used to control systems that are dif-
ficult to model or that have complex, nonlinear dynamics. Another advantage is
that it can be used to optimize the performance of the system, rather than simply
regulating a single variable such as temperature or pressure. Overall, entropy-
based intelligent control is a powerful and flexible approach to control system
design and optimization, and has applications in a wide range of fields.

13.8.2 Fuzzy Entropy

Fuzzy entropy is a measure of the degree of uncertainty or fuzziness of a fuzzy set.
Fuzzy sets are a generalization of classical sets that allow for the representation of
vague or imprecise concepts. In a fuzzy set, each element has a degree of member-
ship in the set, rather than being either a member or a nonmember as in a classical
set. Fuzzy entropy is ameasure of the amount of uncertainty in the degree of mem-
bership of the elements of a fuzzy set.
The concept of fuzzy entropy was first introduced by Yager in 1984. It has since

been used in a variety of applications, including fuzzy clustering, pattern recogni-
tion, and decision-making.
There are several different measures of fuzzy entropy, including Tsallis

entropy, Renyi entropy, and Shannon entropy. Each of these measures has its
own advantages and disadvantages, and the choice of measure depends on the

276 13 Entropy Concepts in Machine Intelligence

specific application. One of the main advantages of fuzzy entropy is that it pro-
vides a way to quantify the degree of uncertainty or fuzziness in a fuzzy set. This
can be useful in a variety of applications, such as decision-making or pattern rec-
ognition, where it is important to have a measure of the degree of uncertainty in
the data.
Another advantage of fuzzy entropy is that it can be used to guide the design of

fuzzy systems. For example, in a fuzzy control system, the entropy of the fuzzy
sets can be used as a measure of their complexity, and the control system can
be optimized to minimize the entropy. Overall, fuzzy entropy is a useful concept
in fuzzy set theory and has a wide range of applications in decision-making, pattern
recognition, and control system design.

13.8.3 Entropy-Based Control Strategies

Entropy-based control strategies involve using entropy as a control variable to reg-
ulate the behavior of a system. The basic idea is to use entropy as a measure of the
level of disorder or uncertainty in the system and to use this measure to adjust the
control inputs in order to achieve a desired level of performance.
The entropy-based control approach is particularly useful in situations where

the behavior of the system is complex and difficult to model accurately. By using
entropy as a measure of the system’s behavior, the controller can adapt to changes
in the system and maintain a desired level of performance, even in the presence of
disturbances and uncertainties. The most common entropy-based control strategy
is based on the principle of maximum entropy. This principle states that, given a
set of constraints, the most likely distribution is the one that maximizes the
entropy. This principle can be used to design a control strategy that maximizes
the entropy of the system, subject to constraints on the control inputs and the
desired level of performance. Mathematically, the entropy-based control strategy
can be formulated as follows:

• Define the system state variables X(t), the control inputs U(t), and the desired
level of performance Y(t).

• Calculate the entropy of the system at time t, given by the entropy H(X(t)).

• Define a cost function J(U(t)) that measures the performance of the system as a
function of the control inputs.

• Design a control law that maximizes the entropy of the system subject to the
constraints on the control inputs and the desired level of performance, i.e.

• Implement the control law in real time, using feedback from the system to adjust
the control inputs as necessary to maintain the desired level of performance.

The entropy-based control strategy can be applied to a wide range of systems,
including industrial processes, environmental control systems, and robotics.

13.8 Application of Entropy in Intelligent Control 277

It is particularly useful in situations where the behavior of the system is highly
nonlinear or uncertain, and where traditional control strategies may not be
effective.

13.8.4 Entropy-Based Decision-Making

Entropy-based decision-making is a method for making decisions in situations
where the available information is uncertain or incomplete. The basic idea is to
use entropy as a measure of the uncertainty or randomness of the available infor-
mation and to use this measure to guide the decision-making process.
The entropy-based decision-making process can be broken down into the fol-

lowing steps:

• Define the decision problem: This involves identifying the decision variables,
the possible outcomes, and the criteria for evaluating the outcomes.

• Collect information: This involves gathering information about the relevant
variables and their relationships, as well as any available data.

• Calculate entropy: This involves calculating the entropy of the available
information using the formula: H(X) = − Σp(x)log2 p(x), where X is the set
of possible outcomes, p(x) is the probability of outcome x, and log2 is the
base-2 logarithm.

• Calculate conditional entropy: This involves calculating the entropy of the
available information given a particular decision variable using the formula:
H(Y X) = − Σ p(x, y) log2 p(y x), where Y is the decision variable, X is the
set of possible outcomes, p(x, y) is the joint probability of outcome x and decision
y, and p(y x) is the conditional probability of decision y given outcome x.

• Calculate mutual information: This involves calculating themutual information
between the available information and the decision variable using the formula:
I(Y; X) =H(Y)−H(Y X), where I(Y; X) is the mutual information between Y and
X, H(Y) is the entropy of the decision variable, and H(Y X) is the conditional
entropy of the decision variable given the available information.

•Make the decision: The decision is made based on the mutual information. The
decision variable with the highest mutual information is selected as the optimal
decision.

The entropy-based decision-making method can be applied to a wide range of
decision problems, including resource allocation, risk management, and product
design. It is particularly useful in situations where the available information is
incomplete or uncertain, and where traditional decision-making methods may
not be effective.

278 13 Entropy Concepts in Machine Intelligence

Summary

Entropy is a concept that is used in various fields, including information theory,
physics, statistics, andmachine learning. In information theory, entropy is a meas-
ure of the uncertainty or randomness of a system; while in physics, it is a measure
of the disorder or randomness of a system. In statistics, entropy is used to measure
the amount of information in a probability distribution. In machine learning,
entropy is used to measure the impurity of a set of training data in decision tree
algorithms. In intelligent control, entropy-based methods are used to make
decisions and control systems in situations where the available information is
uncertain or incomplete. Entropy-based intelligent control methods include
entropy-based control strategies and entropy-based decision-making. Entropy-
based control strategies involve using entropy to guide the control process, while
entropy-based decision-making involves using entropy to make decisions based on
the available information. These methods are particularly useful in situations
where traditional control methods may not be effective, such as in complex sys-
tems with multiple variables and uncertain outcomes.
As entropy-based methods continue to evolve and be refined, they hold great

promise for a wide range of applications in intelligent control. One area where
these methods may prove particularly useful is in the development of autonomous
systems and robots, where the ability to make decisions and navigate complex
environments is critical. Another potential area for future research is the integra-
tion of entropy-based methods with other techniques from machine learning and
artificial intelligence. For example, combining entropy-based decision-making
with deep learning algorithms could lead to more robust and effective decision-
making processes.
There is also a need for further exploration of the practical applications of

entropy-based control strategies and decision-making methods in real-world sce-
narios. While these methods have shown promise in research settings, more work
is needed to determine how well they perform in complex and dynamic systems
with uncertain and changing conditions.

Exercise Questions

Q.13.1 Can you explain the concept of entropy in the context of decision trees
and information gain, and what is the mathematical expression for the
entropy of a random variable?

Q.13.2 What is the mathematical equation for Shannon entropy, and how is it
used to measure the uncertainty or randomness of a discrete probability
distribution?

Exercise Questions 279

Q.13.3 In a multi-class classification problem, you have a dataset with four
classes: A, B, C, and D. The class distribution in the dataset is as follows:
p(A) = 0.5, p(B) = 0.2, p(C) = 0.15, and p(D) = 0.15. Calculate the
entropy of the dataset using the Gini impurity formula: Gini
Impurity = 1− (p(c)2)

Q.13.4 Can you provide the mathematical equation for the entropy-based reg-
ularization term in logistic regression, and how does it help to prevent
overfitting of the model?

Q.13.5 How does the concept of entropy relate to the performance evaluation
of machine learning models?

Q.13.6 How can entropy-based methods be used to improve the efficiency of
renewable energy systems?

Q.13.7 Consider a dataset with five possible classes: A, B, C, D, and E. The class
distribution in the dataset is as follows: p(A) = 0.2, p(B) = 0.3,
p(C) = 0.25, p(D) = 0.1, and p(E) = 0.15. Calculate the entropy of the
dataset using the Shannon entropy formula:

Entropy S = − p c × log 2 p c

What is the entropy of the dataset?

Q.13.8 Can entropy-based methods be used to improve the performance of
financial trading systems?

Q.13.9 How can entropy-based decision-making methods be used to optimize
supply chain management?

Q.13.10 What is the mathematical equation for the entropy of a continuous
probability distribution, such as the Gaussian distribution, and how
is it related to the differential entropy measure?

Further Reading

Abbas AE. Wiley encyclopedia of biomedical engineering. Entropy;2006 Apr 14.
Bulut F. Different mathematical models for entropy in information theory. Bilge

International Journal of Science and Technology Research. 2017;1(2):167–74.

280 13 Entropy Concepts in Machine Intelligence

Dubois D, Prade H, Yager R. Merging fuzzy information. In: Fuzzy sets in approximate

reasoning and information systems. Springer; 1999:pp. 335–401.
Karmeshu J, editor. Entropy measures, maximum entropy principle and emerging

applications. Springer; 2003.
Saridis GN. Entropy formulation of optimal and adaptive control. IEEE Transactions on

Automatic Control. 1988 Aug;33(8):713–21.
Weber S. Measures of fuzzy sets and measures of fuzziness. Fuzzy Sets and Systems.

1984 Aug 1;13(3):247–71.

Further Reading 281

14

Sampling Methods in Cybernetical Intelligence

14.1 Introduction to Sampling Methods

The sampling methods in cybernetical intelligence (CI) involve the use of
statistical techniques to obtain information about a population from a sample.
The sampling methods are used to select a subset of data from a larger dataset,
which can then be analyzed and used to make predictions or decisions. Sampling
methods can be classified into two broad categories: probabilistic sampling and
non-probabilistic sampling. Probabilistic sampling methods involve selecting
samples randomly from a population, while non-probability sampling methods
do not involve random selection. Common probability sampling methods used
in machine learning include simple random sampling, systematic sampling, stra-
tified sampling, and cluster sampling. The characteristics chart for the categories
of sampling methods is shown in Figure 14.1. Simple random sampling involves
randomly selecting samples from the entire population. Systematic sampling
involves selecting samples based on a specific interval or pattern. Stratified sam-
pling involves dividing the population into strata or subgroups and then selecting
samples from each stratum based on a predetermined criterion. Cluster sampling
involves dividing the population into clusters and then randomly selecting clusters
to sample from.
Non-probability sampling methods used in CI include convenience sampling,

snowball sampling, and purposive sampling. Convenience sampling involves
selecting samples based on their accessibility and availability. Snowball sampling
involves selecting samples based on referrals from other participants. Purposive
sampling involves selecting samples based on a predetermined criterion, such
as their expertise or experience. Sampling methods in CI play a crucial role in

283

Cybernetical Intelligence: Engineering Cybernetics with Machine Intelligence, First Edition.
Kelvin K. L. Wong.
© 2024 The Institute of Electrical and Electronics Engineers, Inc.
Published 2024 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/cyberintel

ensuring the accuracy and reliability of data analysis and decision-making. By
using appropriate samplingmethods, researchers and practitioners can obtain rep-
resentative samples that accurately reflect the characteristics of the population
being studied.

14.2 Basic Sampling Algorithms

In the context of sampling methods, standard distributions refer to the probability
distributions that are commonly used as a basis for generating random samples.
Some of the most common standard distributions used in sampling methods
include:

• Uniform distribution: A probability distribution where all values within a given
range are equally likely to be selected. It can be denoted by the following
equation:

P x =
1

b− a
if a ≤ x ≤ b,

0 otherwise
14 1

where a and b are the lower and upper bounds of the distribution.

Random
sampling

Stratified
sampling

Probabilistic Cluster
sampling

Sampling
methods Purposive

samplingNon-
probabilistic

Quota
sampling

Convenience
sampling

Figure 14.1 Categories of sampling methods.

284 14 Sampling Methods in Cybernetical Intelligence

• Normal distribution: A continuous probability distribution that is often used to
model real-world phenomena. It is characterized by its mean and standard devi-
ation, and can be denoted by the following equation:

P x =
1

σ 2π
e
−

x− μ 2

2σ2 , 14 2

where μ is the mean and σ is the standard deviation of the distribution.

• Poisson distribution: A discrete probability distribution that is often used to
model count data. If X is the number of events in the given interval, then the
probability of observing x events in the given interval is shown in
Equation (14.3).

P X = x = e− λ λ
x

x
x = 0, 1, 2,…N , 14 3

where e is themathematical constant and λ is themean number of events per inter-
val. These are just a few examples of standard distributions that are commonly
used in sampling methods. Other distributions include the beta distribution,
gamma distribution, and t-distribution, among others. Geometrical interpretation
of the transformation method for generating non uniformly distributed random
numbers is shown in Figure 14.2, where h(x) is the indefinite integral of the desired
distribution P(x). If a uniformly distributed random variable y is transformed using
x = h−1(y), then x will be distributed according to P(x).

h(x)

P(x)

x

y

0

1

Figure 14.2 Geometrical
interpretation of the
transformation method for
generating non uniformly
distributed random numbers.

14.2 Basic Sampling Algorithms 285

14.2.1 Importance of Sampling Methods in Machine Intelligence

Sampling methods play a critical role in machine intelligence as they enable us to
learn from large datasets efficiently. When dealing with high-dimensional data, the
computational cost of evaluating the objective function for every possible data point
can be prohibitively high. Sampling methods provide an effective solution to this
problem by allowing us to estimate the objective function from a small subset of
the data, as shown in Figure 14.3. Sampling methods are important in machine
intelligence because they allow us to make accurate predictions and decisions based
on incomplete or limited data. In many real-world scenarios, collecting data on the
entire population is impossible or impractical, and one has to rely on a sample of the
population to make inferences about the population as a whole. By using various
sampling methods, we can ensure that the collected sample is representative of
the population, which increases the accuracy of our predictions and decisions.
In addition, sampling methods are also used in machine learning and data anal-

ysis to train models and make predictions. These methods are used to divide the
available data into training, validation, and testing sets, which are then used to
train and evaluate machine learning models. Proper sampling techniques ensure
that the data used for training and testing is representative of the population and
reduce the risk of overfitting or underfitting the model. Sampling methods are also
important in addressing issues related to bias and fairness in machine learning
models. Biases can arise due to differences in the representation of different sub-
groups in the data, and sampling methods can be used to ensure that the data used
to train the model is representative of the population and does not favor any
particular subgroup. This is important for ensuring fairness in decision-making
systems and reducing the risk of discrimination.
In summary, sampling methods are essential in machine intelligence as they

enable us to make accurate predictions and decisions based on incomplete or
limited data, ensure fairness and reduce biases in decision-making systems, and
improve the accuracy of machine learning models.

Whole dataset Sub dataset

Figure 14.3 Difference between original and sample data.

286 14 Sampling Methods in Cybernetical Intelligence

14.3 Machine Learning Sampling Methods

Machine learning sampling methods are techniques used to select and analyze a
representative subset of data from a larger dataset. In machine learning, data is the
foundation for training models, and the accuracy and reliability of the models
depend on the quality of data used for training. However, the amount of data avail-
able for analysis is often large, and the cost of obtaining more data can be prohib-
itively expensive. Sampling methods provide a solution by enabling researchers to
analyze smaller subsets of data that still provide accurate insights into the larger
dataset.
There are different types of sampling methods in machine learning, such as ran-

dom sampling, stratified sampling, systematic sampling, and cluster sampling.
Random sampling is the simplest form of sampling, where data is randomly
selected from the larger dataset. Stratified sampling involves dividing the dataset
into subgroups based on certain characteristics and then selecting a sample from
each subgroup. Systematic sampling involves selecting data at regular intervals
from the larger dataset. Cluster sampling involves selecting data from subgroups
or clusters within the larger dataset. The widely used sampling method is stratified
sampling, which involves dividing the population into strata and then selecting
samples from each stratum in proportion to the size of the stratum. The equation
for stratified sampling can be expressed as shown in Equation (14.4).

xs =
H

h = 1
xh, 14 4

where xs represents the sample selected from the population, xh represents the ele-
ments of the hth stratum, H is the number of strata in the population, and
represents the union of sets. The union of sets refers to the collection of all ele-
ments that are members of any of the sets in the collection. In stratified sampling,
the union of the strata forms the entire population being sampled. Additionally,
importance sampling is a technique used to generate samples from a probability
distribution that is difficult to sample directly. Consider there is a need to compute
the expected value E[g(X)] of a function of a random vector x by Monte Carlo inte-
gration. The standard way to proceed is to produce a computer-generated sample
of realizations of n independent random vectors x1, …, xn having the same distri-
bution as x.

gX ,n =
1
n

n

i = 1

g xi 14 5

The importance of sampling methods in machine learning lies in their ability to
reduce the cost and time required for data collection and analysis, while still pro-
viding accurate insights into the larger dataset. By analyzing a representative

14.3 Machine Learning Sampling Methods 287

subset of data, researchers can identify patterns, trends, and correlations that can
inform the development of machine learning models. Additionally, sampling
methods can help to identify outliers or anomalies in the data, which can improve
the accuracy of machine learning models. The choice of sampling method will
depend on the specific research question, the size and nature of the dataset,
and the desired level of precision and accuracy. Sampling methods play a crucial
role in machine learning, as they can help to reduce the amount of data needed for
analysis, improve the efficiency of algorithms, and minimize bias in the results.
Table 14.1 compares different sampling methods used in machine learning, along
with their mathematical equations.

14.3.1 Random Oversampling

Random oversampling is a popular technique used in machine learning to
address the problem of imbalanced datasets, where one class has significantly
fewer samples than the other(s). This technique involves randomly duplicating
instances from the minority class until they are balanced with the majority class.
The generic overview of the sampling technique applied to the dataset is shown
in Figure 14.4.

Table 14.1 Comparing different sampling methods used in machine learning.

Sampling
Method Description Equation

Random
sampling

Each data point in the dataset has
an equal chance of being selected
for the sample.

P xi =
1
N

Stratified
sampling

Samples are drawn from each
stratum in the dataset, where each
stratum represents a different
category or class.

P xi =
ni
N

where ni is the number

of data points in stratum i and N is
the total number of data points in
the dataset.

Cluster
sampling

The dataset is divided into clusters,
and a random sample of clusters is
selected. All data points within the
selected clusters are included in the
sample.

P xi =
1
k
where k is the number of

clusters in the dataset.

Systematic
sampling

Every kth data point in the dataset is
selected for the sample. P xi =

1
k

if i = 0

0 otherwise

288 14 Sampling Methods in Cybernetical Intelligence

In the case of binary classification, consider there is a dataset with two classes,
positive (P) and negative (N), and there is a need to oversample the minority class
(P) using random oversampling.

• First, count the number of instances in each class, NP for positive and NN for
negative.

• Next, calculate the λ, which is the ratio of the number of samples in the majority
class to the number of samples in the minority class.

λ =
NN

NP
14 6

• Randomly select instances from the positive class and duplicate them until the
number of instances in the positive class equals that of the negative class.

• After oversampling, the new imbalance ratio is 1.

Random oversampling can be done with or without replacement. In the case of
replacement, instances from the minority class are randomly selected and dupli-
cated with replacement until the number of instances in the minority class equals
that of the majority class. In the case of without replacement, instances from the
minority class are randomly selected without replacement until the number of
instances in the minority class equals that of the majority class.

Raw data

Feature
engineering

Sample
training data

Training

Classification

Classification
results

Random
sampling

Figure 14.4 The generic overview of the
sampling technique applied to the dataset.

14.3 Machine Learning Sampling Methods 289

One limitation of random oversampling is that it can lead to overfitting, as it
duplicates existing instances in the minority class rather than generating new
ones. To address this limitation, synthetic oversampling techniques such as Syn-
thetic Minority Oversampling Technique (SMOTE) have been developed, which
generate new synthetic instances based on existing ones.

14.3.2 Random Undersampling

Random undersampling is a technique used in machine learning to handle imbal-
anced datasets. It involves randomly removing instances from the majority class to
balance the class distribution with the minority class. The idea behind random
undersampling is to reduce the size of the majority class, thereby increasing the
relative importance of the minority class in the dataset. Random undersampling
can be implemented by randomly selecting a subset of instances from the majority
class equal to the size of the minority class. This can be expressed mathemati-
cally as:
The idea behind this technique is to randomly remove examples from the major-

ity class until the dataset is balanced.
The process of random undersampling involves the following steps:

• Determine the ratio of the minority class to the majority class.

• Randomly select a subset of the majority class samples.

• Combine the minority class samples with the randomly selected subset of the
majority class samples to form a new, balanced dataset.

One potential problem with random undersampling is that it can discard useful
information from the majority class, leading to a reduction in overall accuracy. To
mitigate this issue, researchers have developed more sophisticated undersampling
techniques. Overall, random undersampling is a simple and computationally effi-
cient way to address the class imbalance problem inmachine learning. However, it
should be used judiciously and in conjunction with other techniques, such as over-
sampling or generating synthetic examples. The process of randomly selecting a
subset of instances from themajority class can be repeatedmultiple times to obtain
multiple balanced datasets, which can then be used to train and evaluate machine
learning models. However, it is important to note that random undersampling can
lead to loss of information from the majority class and may not be effective for
highly imbalanced datasets. The overview and difference between undersampling
and oversampling can be seen in Figure 14.5.

14.3.3 Synthetic Minority Oversampling Technique

SMOTE is a popular oversampling technique used in machine learning to handle
imbalanced datasets. In SMOTE, synthetic samples are generated for the minority
class by interpolating between existing minority class samples. The algorithm

290 14 Sampling Methods in Cybernetical Intelligence

works by selecting aminority class sample at random and then finding its k nearest
neighbors. The synthetic sample is then generated by taking a linear combination
of the feature values of theminority sample and one of its k nearest neighbors. This
synthetic sample is added to the dataset, and the process is repeated until the
desired level of oversampling is achieved.

xi = xi + γ xj − xi , 14 7

where xi is the newly generated synthetic sample, xi is the original minority sam-
ple, xj is one of the k nearest neighbors of xi randomly selected, and γ is a random
value representing the proportion of the distance between xi and xj to add to xi to
create xi This equation ensures that the synthetic samples are not identical to the
original minority samples, but rather lie on the line segment between xi and xi in
the feature space. The basic principle of SMOTE is shown in Figure 14.6.
SMOTE has been shown to be effective in balancing datasets while also avoiding

overfitting. However, it can sometimes generate synthetic samples that are too
similar to existing samples, leading to reduced model generalization. There
are several variations of SMOTE that aim to address this issue, such as

Under sampling Over sampling

Copies of
minority class

Original dataset

Samples of
majority classes

Original dataset

Figure 14.5 Overview and difference between undersampling and oversampling.

Majority class samples

Minority class samples

Randomly selected minority class samples

5 k nearest neighbors

Randomly selected samples from 5 neighbors

xi

xi
Generated synthetic minority instance

ˆ

Figure 14.6 Basic principle of synthetic minority oversampling technique.

14.3 Machine Learning Sampling Methods 291

Borderline-SMOTE and Adaptive Synthetic Sampling (ADASYN). The SMOTE
algorithm can be mathematically represented as follows:
Consider there is a dataset D with minority class instances and majority class

instances. Let the minority class instances be denoted by Dmin and majority class
instances be denoted by Dmaj.

• First, choose a minority class instance x from Dmaj.

• Next, compute the k nearest neighbors of x in Dmin using a distance metric.

• For each neighbor of x, randomly select one neighbor and create a synthetic
instance as a linear combination of x and the selected neighbor. The synthetic
instance is added to the dataset Dmin.

This process is repeated until the desired level of oversampling is achieved.
SMOTE is often combined with random undersampling to balance the class
distribution.

14.3.4 Adaptive Synthetic Sampling

ADASYN is a variant of the SMOTE algorithm that was proposed to address the
issue of class imbalance in binary classification problems. It generates synthetic
samples of the minority class by interpolating between existing minority class
instances. The algorithm first calculates the density distribution of the minority
class instances, which is then used to calculate the number of synthetic instances
that need to be generated for each minority class instance. The Generic working of
ADASYN algorithm is shown in Figure 14.7.
ADASYN generates more synthetic instances for minority class instances that

are in areas of higher density and fewer synthetic instances for minority class
instances that are in areas of lower density. This makes it possible to balance
the class distribution in a dataset while still preserving the underlying distribution
of the data. The ADASYN algorithm can be representedmathematically as follows:
Consider X to be the input feature matrix and y to be the corresponding class

labels, where y = {0, 1} for a binary classification problem. Let N be the total num-
ber of examples in the dataset, and let n be the number of examples in the minor-
ity class.

• Calculate the class imbalance ratio (CIR) as n/N.

• For each example xi in the minority class, compute its K nearest neighbors from
the majority class. The K is a user-defined hyperparameter.

• For each minority example xi, calculate the density ratio (DR).

• For each minority example xi, calculate the synthetic sample ratio (SSR).

• Generate synthetic samples for each minority example xi by interpolating
between xi and its K nearest neighbors from the majority class.

• Combine the original minority class examples with the synthetic samples to
obtain a new balanced dataset.

292 14 Sampling Methods in Cybernetical Intelligence

The ADASYN algorithm is an iterative process that can be repeated until the
desired level of balance is achieved. It is a computationally efficient method for
handling imbalanced datasets and has been shown to improve the performance
of classifiers on imbalanced data.

14.4 Advantages and Disadvantages of Machine
Learning Sampling Methods

Machine learning sampling methods have several advantages that make them
important in improving the performance of machine learning models. One of
the primary advantages of these methods is their ability to address the class imbal-
ance problem, which is a common issue in many real-world machine learning
applications. By balancing the class distribution of the data, these methods can
improve the model’s accuracy and reduce bias toward the majority class. Another
advantage of CI sampling methods is their ability to reduce the variance of the
model, which helps to improve the generalization ability of the model. This is par-
ticularly important when working with small datasets or datasets that are noisy or
contain outliers. Sampling methods can help to reduce the impact of these factors
on the model’s performance and make it more robust. Furthermore, sampling
methods can help to reduce the computational cost of training a machine learning
model. By reducing the size of the training data, these methods can speed up the
training process and enable the use of more complex models that would otherwise

Original set
6

4

2

0

–2

–4

–6

–5 0 5

6

4

2

0

–2

–4

–6

–5 0 5

Class # 0 Class # 1

ADASYN

Figure 14.7 Generic working of ADASYN algorithm.

14.4 Advantages and Disadvantages of Machine Learning Sampling Methods 293

be computationally infeasible. This can be particularly useful in applications
where speed is a critical factor, such as real-time prediction or decision-making.
Overall, the advantages of such artificial intelligence (AI)-based sampling meth-

ods make them an important tool in its toolkit. However, it is important to note
that these methods also have some limitations and potential drawbacks, such as
the risk of overfitting, loss of information, and reduced representativeness of
the original data. Therefore, careful consideration and evaluation of the specific
problem and data at hand are necessary when deciding whether and how to
use these methods. While machine learning sampling methods can be beneficial
in improving the performance of models, they also have some disadvantages. One
of themain drawbacks is that oversamplingmethods can result in overfitting of the
model to the training data. This means that the model may perform well on the
training data but fail to generalize to new, unseen data. Additionally, oversam-
pling can lead to a biased representation of theminority class, whichmay not accu-
rately reflect the true distribution of the data. Undersampling methods, on the
other hand, can result in loss of information and underfitting of the model. This
means that the model may not capture the full complexity of the data and may
perform poorly on both the training and testing data. Synthetic sampling techni-
ques, such as SMOTE and ADASYN, may also introduce noise into the data, par-
ticularly when the minority class is highly variable. This can lead to incorrect
decision boundaries and reduced performance of the model. Moreover, the choice
of sampling method can have a significant impact on the final model’s perfor-
mance, and there is no one-size-fits-all solution. The optimal sampling method
may depend on the specific dataset and the problem at hand. Another disadvan-
tage of CI sampling methods is that they can be computationally expensive, par-
ticularly when dealing with large datasets or high-dimensional feature spaces. This
can make it difficult to scale the models for real-world applications.
Finally, it is important to note that sampling methods are just one approach to

address class imbalance in machine learning. Other techniques, such as cost-
sensitive learning, anomaly detection, and one-class classification, may also be
effective in certain scenarios.

14.5 Advanced Sampling Methods in Cybernetical
Intelligence

Advanced sampling methods in CI refer to techniques that go beyond the tradi-
tional oversampling and undersamplingmethods used inmachine learning. These
techniques are used to overcome the limitations of conventional sampling meth-
ods and improve the accuracy and efficiency of machine learning algorithms.

294 14 Sampling Methods in Cybernetical Intelligence

One advanced sampling method is the ensemble method, which combines mul-
tiple learning algorithms to improve the accuracy of predictions. This method uses
a combination of diverse models and data sets to create a more robust and accurate
model. Another advanced sampling method is the cost-sensitive learning
approach, which takes into account the cost of misclassification errors. This
approach assigns different weights to different samples based on their relative
importance and helps to reduce the overall cost of classification errors. Another
advanced sampling method is the active learning approach, which involves select-
ing the most informative samples for labeling rather than labeling all samples in
the data set. This approach reduces the cost of labeling and improves the efficiency
of machine learning algorithms. Another advanced sampling method is the
semi-supervised learning approach, which uses a small labeled data set and a large
unlabeled data set to improve the accuracy of CI algorithms.
However, advanced sampling methods also have their limitations. These meth-

ods are often computationally expensive and require large amounts of training
data to work effectively. They also require a high level of expertise in machine
learning and data science to implement correctly. Despite these limitations,
advanced sampling methods have shown great potential in improving the accu-
racy and efficiency of machine learning algorithms in CI. These methods are
essential for the development of intelligent systems that can learn and adapt to
new situations and data.

14.5.1 Ensemble Sampling Method

Ensemble sampling is a type of advanced sampling method in machine learning,
which combines multiple models or algorithms to improve the overall predictive
performance, as shown in Figure 14.8. In other words, it is a technique that aggre-
gates the predictions of multiple models to arrive at a more accurate and reliable
prediction. The idea behind ensemble sampling is that combining multiple models
with different strengths and weaknesses can produce a more accurate and robust
prediction than any individual model on its own.
One popular ensemble sampling technique is the random forest algorithm,

which combines multiple decision trees to create a forest of trees. Each tree in
the forest is trained on a randomly selected subset of the data, and the final pre-
diction is made by aggregating the predictions of all the trees. Another ensemble
sampling technique is gradient boosting, which involves iteratively adding models
to the ensemble and adjusting the weights of the training data to improve the accu-
racy of the predictions.
Assume there is a datasetD= {(x1, y1), (x2, y2),…, (xn, yn)}, where xi is the ith input

data and yi is the corresponding output label.

14.5 Advanced Sampling Methods in Cybernetical Intelligence 295

• Bagging: For bagging, randomly sample the dataset with replacement to gener-
ate B new datasets. In Bagging, the bootstrapped samples are first created. Then,
either a regression or classification algorithm is applied to each sample. Finally,
in the case of regression, an average is taken over all the outputs predicted by the
individual learners. Mathematically, Bagging is represented by the following
formula:

f bag = f 1 X + … + f b X 14 8

The term on the left-hand side is the bagged prediction, and the terms on the right-
hand side are the individual learners.

• Boosting: For boosting, sequentially train a series of models on the same dataset
D, where each model focuses on the samples that the previous model misclas-
sified. The final prediction is a weighted sum of the predictions from each model
(Figure 14.9).

• Stacking: For stacking, train several base models on the original dataset and
then use the predictions from the base models as input features to train a
meta-model. The final prediction is the prediction from the meta-model. The
equation is as follows:

yens = f meta y1, y2,…, ym , 14 9

where yens is the ensemble prediction, fmeta is the meta-model that combines the
predictions of the base models, and (y1, y2, …, ym) are the predictions of the base
models.
Ensemble sampling has several advantages over traditional sampling methods.

Firstly, it can improve the accuracy of predictions by combining the strengths of

Ensemble
methods

Minority
class #1

Minority
class #2

Model-1

Class-balanced
dataset

Majority
class #N-1

Majority
class #N

Model-2
Bagging
Model

Performance
metrics

Model-n

Figure 14.8 Workflow of ensemble sampling technique.

296 14 Sampling Methods in Cybernetical Intelligence

multiple models. Secondly, it can reduce overfitting by combiningmultiple models
with different biases. Thirdly, it can provide more reliable predictions by using the
predictions of multiple models rather than relying on a single model.
However, there are also some disadvantages to ensemble sampling. One poten-

tial drawback is that it can be computationally expensive and time-consuming,
particularly when dealing with large datasets. Additionally, the performance of
the ensemble is dependent on the quality of the individual models, so if the models
are poorly constructed or trained, the performance of the ensemble will suffer.
Finally, ensemble sampling can be more difficult to interpret and explain than
individual models, which can be a challenge in some applications where transpar-
ency is important.

14.5.2 Active Learning

Active learning is an approach in which an AI algorithm selects the most informa-
tive data points to be labeled by an expert to improve the performance of the
model, as shown in Figure 14.10. In active learning, the algorithm interacts with
the expert to obtain the most relevant and useful data points for training.
The main idea behind active learning is to select the most informative data

points that can help the model learn better. This is done by selecting the data
points that are the most uncertain or where the model has the highest prediction
error. By selecting these data points for labeling, the model can improve its accu-
racy by reducing the error rate. The equation used in active learning is the query
function, which is used to select the most informative data points. The query

Bagging

Classifier-1

Classifier-2

Classifier-3

Classifier-1

Classifier-2

Classifier-3

Boosting

Parallel Sequential

Figure 14.9 Ensemble learning bagging vs boosting.

14.5 Advanced Sampling Methods in Cybernetical Intelligence 297

function selects data points that are the most uncertain or where the model has the
highest prediction error. The query function is defined as:

xq = argmax xi U f xi , 14 10

where xq is the data point selected by the query function, U is the set of unlabeled
data points, and f(xi) is the function used to measure the uncertainty of the model
at the data point xi.The query function can be designed using different methods,
such as entropy-based methods, margin-based methods, and confidence-based
methods. After selecting the most informative data points, the model is trained
on this data, and the process is repeated until the model achieves the desired level
of accuracy. Active learning can significantly reduce the amount of labeled data
required for training, making it a powerful tool in machine learning.
The selection of informative samples is based on the uncertainty of the model’s

predictions. For example, the model may be more uncertain about the classifica-
tion of certain data points and therefore would select those points for labeling to
improve the model’s accuracy. There are several methods for measuring uncer-
tainty, such as margin sampling, entropy sampling, and querying by committee.
One advantage of active learning is that it reduces the labeling effort, as the model
only selects the most informative samples for labeling. This can lead to significant
cost savings, particularly when labeling is expensive or time-consuming. Addition-
ally, active learning can improve the performance of the model as it focuses on the
most informative samples for learning. One common strategy in active learning is
uncertainty sampling, which selects instances for annotation that are predicted to
be uncertain or difficult for the current model to classify. This can be formalized
using the following equation:

xt = argmaxxi U p xiyi,Dt , 14 11

Machine learning
models

Making predictionsTraining a model

Annotate

Labeled data Unlabeled data

Sampling data

Human annotator

Figure 14.10 Process of active learning in machine learning and computer vision.

298 14 Sampling Methods in Cybernetical Intelligence

where xt is the instance selected for annotation at time t, U is the set of unanno-
tated instances, p(xi yi,Dt) is the predictive distribution of the model at time t given
the training data Dt, and argmax selects the instance with the highest uncertainty.
Another popular active learning strategy is query by committee, which maintains
an ensemble of models and selects instances that cause disagreement or uncer-
tainty among the models, as shown in Equation (14.12).

xt = argmaxxi U
1
K

k

j = 1

p xiyi,D
j
t , 14 12

where k is the number of models in the committee,D j
t is the training data for the j

th

model at time t, and the argmax selects the instance with the highest disagreement
or entropy. However, one disadvantage of active learning is that it requires an
expert to label the selected samples, which may not always be available or reliable.
Additionally, the performance of the active learning model can be sensitive to the
selection of the initial labeled set and the selection of the active learning algorithm.

14.5.3 Bayesian Optimization in Sampling

Bayesian optimization is an advanced sampling method in machine learning that
is used to optimize expensive black-box functions, as shown in Figure 14.11. It is
particularly useful in cases where evaluating the objective function is computa-
tionally expensive and time-consuming. Bayesian optimization is a sequential
approach that uses a surrogate model to approximate the true objective function
and an acquisition function to guide the search for the optimum. The algorithm
maintains a probabilistic model, called a surrogate or a proxy model, which pre-
dicts the value of the objective function at any point x in the search space. The sur-
rogate model is constructed based on the samples collected so far and is used to
guide the search for the next sample. The overall schematic of Bayesian optimiza-
tion is shown in Figure 14.12.
The acquisition function, often denoted by α(x), is a measure of the utility of

sampling the function at a given point x. The most commonly used acquisition
function is the expected improvement (EI) function, which is defined as:

EI x = E max f x − f x∗ , 14 13

where x is the point at which the function is sampled next, and x∗ is the current
best point found so farE[], denotes the expected value operator, andmax() returns
the maximum value between its arguments. The expected improvement is the
expected value of the maximum improvement in the objective function that can
be achieved by sampling at x .

14.5 Advanced Sampling Methods in Cybernetical Intelligence 299

The surrogate model and the acquisition function are updated iteratively based
on the samples collected so far. At each iteration, the algorithm chooses the point
that maximizes the acquisition function and samples the objective function at that
point. The sample is then used to update the surrogate model and the acquisition
function for the next iteration. Bayesian optimization is particularly useful in

Start

Data?

No

No

Yes

Sample
selection

Experiment

GPR model

El calculation

Repeat

Reach
target

?

Yes

End

Figure 14.11 Workflow of Bayesian
optimization.

300 14 Sampling Methods in Cybernetical Intelligence

settings where the objective function is expensive to evaluate since it canminimize
the number of function evaluations required to find the optimum.

• Gaussian process regression:

f x GP m x , k x, x , 14 14

wherem(x) is the mean function and k(x, x) is the covariance function. GP stands
for Gaussian process, which is a flexible probabilistic model that can be used to
model the unknown function f (x) in Bayesian optimization.

• Acquisition function:

A x = E I f x > f x∗ , 14 15

where I is the indicator function, f(x) is the predicted value of the unknown func-
tion at point x, and f (x∗) is the best-observed value so far. The acquisition function
measures the potential usefulness of evaluating the unknown function at a new
point x.

• Expected improvement:

EI x = E max f x − f x∗ , 0 , 14 16

where EI(x) is the expected improvement in the best-observed value if the
unknown function is evaluated at point x. EI(x) is a popular acquisition function
in Bayesian optimization.

Suggest new sample

Design variable space

ML model

Evaluation

Adaptive sampling
Maximum number of

iteration reached

Acquisition
function

Output optimal
solution Exploitation of

better performance

Exploitation of
high uncertainty

Figure 14.12 Schematic of Bayesian optimization framework.

14.5 Advanced Sampling Methods in Cybernetical Intelligence 301

• Upper confidence bound:

UCB x = m x + βσ x , 14 17

whereUCB(x) is the upper confidence bound at point x, β is a hyperparameter that
controls the balance between exploration and exploitation, and σ(x) is the standard
deviation of the predicted value of the unknown function at point x. The UCB is
another popular acquisition function in Bayesian optimization.

• Posterior distribution update:

p f X ,Y ,X∗ = p Y X , f p f X ,X∗ , 14 18

where p(f X, Y,X ∗) is the posterior distribution of the unknown function given the
observed data Y at points X and the best-observed value so far at points X∗, p(Y X, f)
is the likelihood function, and p(f X, X∗) is the prior distribution. The posterior
distribution is updated after each evaluation of the unknown function.

14.6 Applications of Sampling Methods in Cybernetical
Intelligence

Sampling methods in CI have a wide range of applications. One of the main appli-
cations is in the field of image recognition and processing. By using various sam-
plingmethods, images can be resized, compressed, and enhanced. Moreover, these
methods are used to balance class distribution in machine learning algorithms,
which is particularly useful in medical diagnosis and fraud detection.
Sampling methods also have applications in data mining, where they are used to

explore and extract patterns from large datasets. In addition, sampling methods
are used in process control, where they are applied to monitor and control indus-
trial processes. They can also be used in robotics and autonomous systems, where
they are applied to decision-making and control tasks. Overall, the applications of
sampling methods in CI are diverse and span across different domains, including
image processing, natural language processing (NLP), recommendation systems,
data mining, process control, and robotics. By using appropriate sampling techni-
ques, the data can be optimized for a particular application, leading to improved
performance and accuracy of machine learning algorithms.

14.6.1 Image Processing and Computer Vision

Samplingmethods are commonly used in image processing and computer vision to
address the issue of imbalanced datasets. In image classification, datasets often
have an uneven distribution of samples across different classes, making it

302 14 Sampling Methods in Cybernetical Intelligence

challenging for machine learning models to accurately classify new images. Image
processing and computer vision are broad fields that involve various techniques
and algorithms. However, in general, the following equations provide a high-level
overview of how image processing and computer vision work:

• Image acquisition: An image is first acquired using a camera or other sensors
and represented as a matrix of pixels.

• Preprocessing: The acquired image is then preprocessed to remove noise,
enhance contrast, and perform other operations that make the image more suit-
able for subsequent analysis. A commonly used preprocessing technique is the
convolution operation and the Gaussian filter, as shown in Equations (14.20)
and (14.21), respectively.

x f , g =

∞

−∞

f t g x− t dt 14 19

G x, y =
1

2πσ2
e
−
x2 + y2

2σ2 14 20

• Feature extraction: Next, features are extracted from the preprocessed image.
Features can be edges, corners, blobs, or any other characteristic that can help
distinguish one image from another. The popular feature extraction technique is
Sobel operator for edge detection, as shown in Equations (14.22) and (14.23).

Gx =

− 1 0 1

− 2 0 2

− 1 0 1

f 14 21

Gy =

− 1 − 2 − 1

0 0 0

1 2 1

f 14 22

• Object recognition: The extracted features are then used for object recognition,
where the goal is to identify objects or regions of interest in the image. One
widely used algorithm for object recognition is the Convolutional Neural Net-
work (CNN), which involves training a deep neural network on a large dataset
of labeled images.

• Classification: Once objects or regions of interest are identified, they are classi-
fied into different categories. The classification algorithm used depends on the

14.6 Applications of Sampling Methods in Cybernetical Intelligence 303

specific task at hand. For example, for facial recognition, a Support Vector
Machine (SVM) classifier may be used.

• Post-processing: Finally, the results of the analysis are post-processed, which
can involve further filtering, thresholding, or other operations to improve the
accuracy of the analysis.

• Sampling methods have been widely applied in image processing and computer
vision applications. One of the key challenges in these fields is to efficiently and
accurately extract useful features from large datasets of images. The use of sam-
pling techniques such as random oversampling and undersampling, SMOTE,
and adaptive synthetic sampling has been proven effective in addressing the
problem of imbalanced data in image classification tasks.

•Moreover, ensemble sampling methods such as bagging and boosting have also
been used to improve the accuracy and robustness of image classifiers by com-
bining multiple base classifiers. In addition, active learning approaches using
uncertainty sampling and query-by-committee have been employed tominimize
the annotation cost and improve the performance of image classification tasks.

• Bayesian optimization has also been applied in image processing and computer
vision tasks such as image segmentation and object detection. Bayesian optimi-
zation can help efficiently search the high-dimensional parameter space of com-
plex models and algorithms and find the optimal parameter settings for
achieving the best performance.

• The use of sampling methods can be describedmathematically using techniques
from statistics and machine learning. For example, the probability distribution
of the sample can be represented using equations such as the Gaussian distribu-
tion or the multinomial distribution. The oversampling and undersampling
techniques can be described using equations for generating new samples based
on the original samples. Ensemble methods such as bagging and boosting can be
described using equations for combining the outputs of multiple classifiers.
Bayesian optimization can be formulated using equations for the acquisition
function and the posterior distribution over the model parameters.

14.6.2 Natural Language Processing

NLP is a branch of AI that deals with the interaction between computers and
human language. It focuses on developing algorithms and techniques that enable
computers to understand, interpret, and generate human language.
One of the fundamental tasks in NLP is language modeling, which involves pre-

dicting the likelihood of a sequence of words. Language models are typically
trained on large datasets of text, and the most common approach is to use a neural
network-based architecture, such as a Recurrent Neural Network (RNN) or a

304 14 Sampling Methods in Cybernetical Intelligence

Transformer. In addition to language modeling, NLP involves a range of other
tasks, including:

• Part-of-Speech Tagging (POS Tagging): This involves labeling each word in a
sentence with its corresponding part of speech, such as noun, verb, adjective,
etc. This task is typically performed using statistical models or machine learning
algorithms, such as Hidden Markov Models (HMMs) or Conditional Random
Fields (CRFs).

• Named Entity Recognition (NER): This involves identifying and extracting
named entities, such as people, places, organizations, etc., from text. This task
is typically performed using machine learning algorithms, such as SVMs
or CRFs.

• Sentiment Analysis: This involves analyzing the emotional tone of a piece of
text, such as positive, negative, or neutral. This task is typically performed using
machine learning algorithms, such as Naive Bayes or SVMs.

A common approach to language modeling is to use a neural network-based
architecture, such as a RNN or a Transformer. The probability of a sequence of
words, given a previous sequence, can be calculated using the following equation:

P w1,w2,…,wn =
n

i = 1

P wi w1,w2,…,wi−1 , 14 23

where wi represents the i
th word in the sequence, and P(wi w1, w2, …, wi− 1) repre-

sents the conditional probability of the ith word given the previous words in the
sequence. Another example of a mathematical equation used in NLP is in Part-
of-Speech (POS) tagging. A common approach to POS tagging is to use HMMs,
where the probability of a particular tag sequence, given a sequence of words,
can be calculated using the following equation:

P T1,T2,…Tn w1,w2,…,wn =
n

i = 1

P Ti Ti− 1 P wi Ti , 14 24

where Ti represents the i
th tag in the sequence, andwi represents the i

thword in the
sequence. In the context of NLP, sampling methods are commonly used in gener-
ative models such as language models and machine translation models. These
methods are used to estimate the conditional probability distribution of the next
word or sequence of words given the previous words in the text.
One of the most widely used sampling methods in NLP is the Markov chain

Monte Carlo (MCMC) method. In this method, a chain of samples is generated
by iteratively proposing a new sample and accepting or rejecting it based on a prob-
ability criterion. The chain converges on the target distribution, which is the dis-
tribution of interest. The Metropolis–Hastings algorithm is one of the most widely

14.6 Applications of Sampling Methods in Cybernetical Intelligence 305

usedMCMC algorithms. It works by proposing a new state, accepting it with a cer-
tain probability, and rejecting it otherwise. The acceptance probability ensures
that the Markov chain converges to the target distribution, as the ratio of the target
distribution probabilities cancels out in the acceptance probability. The algorithm
generates a sequence of samples that converge to the target distribution as the
number of samples approaches infinity. In NLP, MCMC methods are used to esti-
mate the parameters of probabilistic models, such as HMMs and Bayesian net-
works, and to generate samples from the models. MCMC is also used in topic
modeling, where it is used to estimate the topic distributions of a corpus of text.
Another popular sampling method in NLP is the Gibbs sampling method, which
is a special case of the MCMC method. In Gibbs sampling, a new sample is
generated by sampling each variable from its conditional distribution, given the
current values of the other variables.
Given a joint probability distribution P(X), the conditional probability distribu-

tion of each variable given the current values of the other variables can be denoted
as P(Xi X−i). The Gibbs sampling method iteratively updates the value of each
variable by sampling from its conditional distribution given the current values
of the other variables. The equations for one iteration of Gibbs sampling for a
binary variable Xi, given its neighbors X−i are:

p Xi = 0 X−i =
P xi = 0,X−i

P Xi = 0,X−i + P Xi = 1,X−i
14 25

p Xi = 0 X−i =
P xi = 1,X−i

P Xi = 0,X−i + P Xi = 1,X−i
, 14 26

where X−i represents all variables except Xi. These equations calculate the proba-
bility of Xi being 0 or 1, given the current values of all other variables. The new
value of Xi is then sampled from this distribution. The process is repeated for
all variables until convergence is reached.
Importance sampling is another sampling method used in NLP. In this method,

a set of samples is generated from a proposal distribution, which is a distribution
that is easy to sample from, but may not be similar to the target distribution. The
importance of each sample is then estimated by a weight function, and the final
estimate is computed as a weighted sum of the samples. Finally, annealed impor-
tance sampling is a variant of importance sampling that can be used to sample
from complex distributions. In this method, a sequence of intermediate distribu-
tions is constructed between the proposal distribution and the target distribution,
and samples are generated from each intermediate distribution using importance
sampling. Overall, sampling methods play an important role in NLP by enabling
the estimation of complex probability distributions and facilitating the develop-
ment of generative models for natural language generation, machine translation,
and other NLP applications.

306 14 Sampling Methods in Cybernetical Intelligence

14.6.3 Robotics and Autonomous Systems

One important concept in robotics is kinematics, which describes the motion of
objects without considering the forces that cause that motion. In the case of robots,
kinematics is used to describe the position, orientation, and velocity of the robot’s
end-effector (the tool or hand of the robot) relative to its base. The kinematics
equations for a robotic manipulator can be derived using the Denavit–Hartenberg
(DH) convention, which provides a systematic method for assigning coordinate
frames to each link of the manipulator. The DH parameters are used to transform
between adjacent frames and calculate the position and orientation of the end-
effector in terms of the joint angles. For autonomous systems, the main challenge
is to develop algorithms that enable the system to perceive and interpret its envi-
ronment, plan and execute actions, and learn from its experience. A key approach
in autonomous systems is reinforcement learning (RL), which involves the use of
mathematical models to learn from trial-and-error experience.
The RL problem can be formulated as a Markov Decision Process (MDP), which

is a mathematical framework that models the interaction between an agent and its
environment. The goal of RL is to learn a policy that maps states to actions that
maximize the expected cumulative reward. The equations for the MDP can be
written as follows:

• S: set of states

• A: set of actions

• P(s s, a): transition probability function from state s to state s given action a

• R(s, a, s): reward function for transitioning from state s to state s with action a

• τ: discount factor

• π(s): policy function that maps states to actions

The state-value function V(s) and action-value function Q(s, a) are defined as
follows:

V s = E R t + 1 + τR t + 2 + τ2R t + 3 + … St = s 14 27

Q s, a = E R t + 1 + τR t + 2 + τ2R t + 3 + … St = s,At = a

14 28

The optimal value function V∗ and Q∗ are defined as the maximum expected
cumulative reward achievable from any given state or state-action pair,
respectively:

V∗ s = maxaQ
∗ s, a 14 29

Q∗ s, a = R s, a, s + τmaxaQ∗ s , a 14 30

The Bellman equation is used to compute the optimal value function:

V s = maxa
s

P s s, a R s, a, s + γV s 14 31

14.6 Applications of Sampling Methods in Cybernetical Intelligence 307

The policy improvement theorem states that if the value function of a policy π is
improved by changing the policy in one or more states, then the new policy is bet-
ter than or equal to the old policy.
Samplingmethods are widely used in CI in robotics and autonomous systems for

a range of applications, including state estimation, control, and planning. These
methods aim to approximate the distribution of a set of random variables, which
represent the state of the system, by generating a set of samples that are drawn
from this distribution. One commonly used method is MCMC, which is based
on generating a Markov chain that has the desired distribution as its equilibrium
distribution. In robotics and autonomous systems, MCMCmethods are often used
for state estimation and localization, where the goal is to estimate the robot’s state
based on noisy sensor measurements. Both MCMC and particle filtering can be
formulated as a recursive Bayes filter, where the posterior distribution over the
state variables is updated based on the sensor measurements and the system
dynamics.

14.7 Challenges and Future Directions

CI, which combines the fields of control theory, AI, and cognitive science, has
made significant progress in recent years. However, there are still many challenges
to be addressed in this field. One major challenge is the lack of robustness and reli-
ability in many existing cybernetical systems. These systems can be vulnerable to
various types of attacks, such as adversarial attacks or system failures, which can
have serious consequences in safety-critical applications.
Another challenge is the need formore efficient and scalable algorithms for deci-

sion-making and control. Many existing cybernetical systems rely on hand-crafted
or heuristic-based control strategies, which may not be optimal or adaptable to dif-
ferent scenarios. More research is needed to develop data-driven approaches that
can learn from experience and adapt to changing environments. Furthermore,
there is a need for better integration between cybernetical systems and human
operators. Many existing systems are designed to operate autonomously, without
considering the potential impact on human users or stakeholders. Future direc-
tions in CI should focus on developing more transparent, explainable, and
human-centered systems that can work collaboratively with humans in a safe
and efficient manner.
Overall, it is promising, but there are still many challenges and opportunities for

research and development. By addressing these challenges and focusing on
human-centered design principles, cybernetical systems can be more reliable, effi-
cient, and useful in a wide range of applications.

308 14 Sampling Methods in Cybernetical Intelligence

14.8 Challenges and Limitations of Sampling Methods

Sampling methods have been widely used in CI to solve various problems, includ-
ing NLP, robotics, and autonomous systems. However, these methods also face
some challenges and limitations that need to be addressed.
One of the main challenges with sampling methods in CI is the trade-off

between exploration and exploitation. Sampling methods need to explore the
search space to find a good solution while also exploiting the current knowledge
to improve the search efficiency. The balance between these two can be difficult to
achieve, leading to either slow convergence or premature convergence to a subop-
timal solution. Another challenge is the curse of dimensionality. As the dimen-
sionality of the search space increases, the number of samples required to
obtain a representative sample increases exponentially. This can make the sam-
pling process computationally expensive and impractical for high-dimensional
problems. Furthermore, sampling methods rely on the choice of the proposal
distribution, which can significantly affect the performance of the sampling
algorithm. Designing an effective proposal distribution can be challenging,
especially for complex and high-dimensional problems.
Finally, sampling methods are prone to getting stuck in local optima, leading to

suboptimal solutions. Overcoming this limitation requires developing more
sophisticated sampling methods that can escape from local optima and explore
the search space more efficiently. In the future, addressing these challenges and
limitations will be crucial for the advancement of sampling methods in cyberne-
tical machine intelligence (CMI). Developing new algorithms that can balance
exploration and exploitation, overcome the curse of dimensionality, and efficiently
explore complex search spaces will be essential. Additionally, incorporating deep
learning techniques and other machine learning approaches into sampling meth-
ods can also lead to improved performance and more efficient search.

14.9 Emerging Trends and Innovations in Sampling
Methods

Samplingmethods are essential tools in CI that enable efficient and effective learn-
ing in various applications. As technology advances, there are emerging trends and
innovations in sampling methods that improve their effectiveness and applicabil-
ity. Some of the emerging trends and innovations in sampling methods in CI
include:

• Variational Inference: A recent development in sampling methods that allows
the efficient approximation of intractable posterior distributions. It provides a

14.9 Emerging Trends and Innovations in Sampling Methods 309

computationally efficient alternative to traditional methods such as Gibbs sam-
pling and Metropolis–Hastings algorithms.

• Deep Generative Models: Models, such as variational autoencoders and gener-
ative adversarial networks, provide a powerful framework for sampling meth-
ods. They allow for the generation of complex, high-dimensional data that
can be used in various applications, including image and speech recognition.

• Importance Sampling: An efficient technique that allows for the estimation of
rare events that occur in complex systems. It enables efficient sampling of dis-
tributions that have low probability regions, which are difficult to sample using
traditional sampling methods.

• Bayesian Optimization: A powerful sampling method that can be used to opti-
mize complex systems. It uses a probabilistic model to explore the parameter
space of a system and determine the best possible parameters to achieve the
desired outcome.

• Parallel and Distributed Sampling: With the availability of large-scale comput-
ing resources, parallel and distributed sampling has emerged as a popular trend
in CI. It enables efficient sampling of large datasets and complex systems, which
are difficult to handle using traditional sampling methods.

These emerging trends and innovations in sampling methods are expected to
have a significant impact on their development. They will enable the efficient
and effective processing of large and complex datasets, leading to improved per-
formance and accuracy in various applications.

Summary

CI-based sampling methods involve the process of selecting representative sam-
ples from a population in order to estimate the characteristics of the entire popu-
lation. In machine learning, sampling methods are used to train and evaluate
models, and various advanced sampling techniques have been developed in the
field of CI, such as MCMC and importance sampling. These methods are widely
applied in NLP, robotics, and other areas of AI. Despite their usefulness, there are
also challenges and limitations associated with sampling methods, such as bias
and inefficiency. Future directions in this field may involve the development of
new sampling methods that address these limitations, as well as the integration
of sampling techniques with other areas of AI research.
However, there are also challenges and limitations associated with sampling

methods, such as the need for large amounts of data, the computational cost of
generating samples, and the difficulty in choosing appropriate sampling methods
for a given problem. Future directions in sampling methods may include

310 14 Sampling Methods in Cybernetical Intelligence

developing more efficient and scalable algorithms, combining sampling methods
with other techniques such as RL, and exploring applications in new domains such
as healthcare and finance. Overall, sampling methods are an important tool in
machine learning and CI, with potential for a wide range of applications and con-
tinued innovation.

Exercise Questions

Q.14.1 Explain the difference between random sampling and stratified sampling
in the context of machine learning.

Q.14.2 Describe the difference between importance sampling and rejection
sampling?

Q.14.3 Based on the following equation,

p x =
1
N

N

i = 1

δ x− xi

How does the Monte Carlo method utilize random samples to estimate
the probability density function (PDF) of a continuous random variable?

Q.14.4 What is the difference between deterministic and stochastic sampling
methods?

Q.14.5 Provide an example of an advanced sampling method used in cyberneti-
cal intelligence?

Q.14.6 How can importance sampling be used to estimate the properties of a tar-
get distribution?

Q.14.7 Explain an example of an application of sampling methods in cyberneti-
cal intelligence?

Q.14.8 How do sampling methods help in data augmentation and improve the
performance of machine learning models?

Q.14.9 Explain the role of the acceptance probability in the Metropolis–Hastings
algorithm and how it ensures the convergence of theMarkov chain to the
desired target distribution.

Exercise Questions 311

x, x = min 1,
p x q x x
p x q x x

Q.14.10 Describe the challenges in implementing sampling methods in large-
scale distributed systems and how can they be addressed?

Further Reading

Tippets WE, Moyle PB. Epibenthic feeding by rainbow trout (Salmo gairdneri) in the
Mccloud River, California. The Journal of Animal Ecology. 1978 Jun; 1:549–59.

Batista GE, Prati RC, Monard MC. A study of the behavior of several methods for
balancing machine learning training data. ACM SIGKDD Explorations Newsletter.
2004 Jun 1;6(1):20–9.

Lewis DD, Catlett J. Heterogeneous uncertainty sampling for supervised learning. In
Machine Learning Proceedings 1994 1994 Jan 1 (pp. 148–156). Morgan Kaufmann.

Schaffer C. Overfitting avoidance as bias. Machine Learning. 1993 Feb;10:153–78.
Meek C, Thiesson B, Heckerman D. The learning-curve sampling method applied to

model-based clustering. Journal of Machine Learning Research. 2002 Feb;2:397–418.

312 14 Sampling Methods in Cybernetical Intelligence

15

Dynamic System Control

Dynamic system control is the use of control theory and algorithms to regulate the
behavior of a dynamic system over time. A dynamic system is a system that
changes over time in response to its inputs and environment. Examples of dynamic
systems include robots, aircraft, chemical processes, and biological systems.
The goal of dynamic system control is to design a control system that can main-

tain stability, track reference signals, and reject disturbances in the face of uncer-
tainty and variability. This is achieved by using feedback control, which involves
measuring the output of the system and comparing it to a desired reference signal.
The difference between the measured output and the reference signal is called the
error, and it is used to adjust the inputs to the system to reduce the error and main-
tain stability. The design of a control system for a dynamic system involves several
steps. First, the system must be modeled mathematically, either using analytical
equations or numerical simulations. The model must be able to capture the essen-
tial dynamics of the system and the interactions between its components.
Next, a control strategy must be selected, such as proportional-integral-

derivative (PID) control, model predictive control (MPC), or adaptive control.
The choice of control strategy depends on the complexity of the system, the level
of uncertainty and variability, and the desired performance criteria. Once the con-
trol strategy is selected, the controller parameters must be tuned to achieve the
desired performance. This involves adjusting the gains of the controller to balance
the tradeoff between stability, tracking, and disturbance rejection.
Finally, the control system must be implemented and tested on the real system.

This involves verifying that the control system can maintain stability and achieve
the desired performance in the face of uncertainty and variability. Dynamic system
control has many applications in engineering, science, and technology. It is used to

313

Cybernetical Intelligence: Engineering Cybernetics with Machine Intelligence, First Edition.
Kelvin K. L. Wong.
© 2024 The Institute of Electrical and Electronics Engineers, Inc.
Published 2024 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/cyberintel

regulate the behavior of complex systems, such as robots, autonomous vehicles,
and chemical processes, and to optimize their performance. It is also used in bio-
logical systems, such as the control of insulin secretion in the human body, and in
social systems, such as the regulation of traffic flow in a city.

15.1 Linear Systems

A linear system is a mathematical model that describes the relationship between
inputs and outputs of a physical or abstract system. The basic principle of a linear
system is that the response of the system to a linear combination of inputs is the
same as the linear combination of the individual responses to each input. In other
words, the output of a linear system is a linear function of its input. Mathemati-
cally, a linear system can be represented by a set of linear equations, which relate
the inputs and outputs of the system.

y = Ax, 15 1

where y is the output vector, x is the input vector, and A is the system matrix. The
system matrix is a square matrix of coefficients that represents the relationship
between the inputs and outputs of the system.
The behavior of a linear system can be analyzed using various tools and techni-

ques from linear algebra and calculus. For example, the eigenvalues and eigenvec-
tors of the matrix A can be used to determine the stability and frequency response
of the system. The stability of a linear system is determined by the eigenvalues of
the matrix A, and the frequency response of a linear system is determined by the
transfer function, which is the ratio of the output to the input in the frequency
domain. Linear systems have many important properties that make them useful
for modeling and control. They can be easily analyzed using mathematical tools,
and their behavior can be predicted and controlled with high accuracy. However,
linear systems also have limitations since many physical systems are nonlinear
and cannot be accurately represented by linear models. Therefore, nonlinear
systems and control techniques are also important for many applications. Linear
systems are used in many areas of science and engineering, such as electrical
engineering, mechanical engineering, control theory, signal processing, and
communications. They are used to model a wide range of physical systems, such
as circuits, mechanical systems, chemical processes, and biological systems. The
theory of linear systems is also used to develop control strategies for these
systems, such as feedback control, optimal control, and adaptive control. In a
linear system, the inputs and outputs are related by linear equations. The behavior

314 15 Dynamic System Control

of the system can be analyzed using various tools and techniques from linear alge-
bra, such as matrix multiplication, determinants, eigenvalues, and eigenvectors.
For example, the eigenvalues and eigenvectors of the system matrix A can be used
to determine the stability and frequency response of the system.
The eigenvectors of the system matrix A are the directions in which the system

response is amplified or attenuated. They can be used to determine the frequency
response of the system, which is the ratio of the output to the input in the fre-
quency domain.
Other tools from calculus, such as Laplace transforms and transfer functions,

can also be used to analyze the behavior of linear systems. The transfer function
is the ratio of the output to the input in the Laplace domain, and it can be used to
determine the frequency response of the system.
Linear systems are used in many areas of science and engineering, such as elec-

trical engineering, mechanical engineering, control theory, signal processing, and
communications. They are used to model a wide range of physical systems, such as
circuits, mechanical systems, chemical processes, and biological systems. The
theory of linear systems is also used to develop control strategies for these systems,
such as feedback control, optimal control, and adaptive control.
Linear systems in neural networks are systems that can be described by linear

equations or linear transformations. In the context of neural networks, linear
systems are often used as building blocks for more complex networks or as models
for specific phenomena such as linear filters or linear classifiers.
One common example of a linear system in neural networks is the linear neuron

model, which describes the behavior of a neuron that computes a linear combina-
tion of its inputs and produces an output based on this computation. Linear neu-
rons are often used in the input layers of neural networks, where they can be used
to extract simple features or to preprocess the input data before it is passed to more
complex layers. Another example of a linear system in neural networks is the lin-
ear transformation, which is a function that maps a set of inputs to a set of outputs
using a linear equation or matrix multiplication. Linear transformations are often
used in the hidden layers of neural networks, where they can be used to combine
and transform the features extracted by the input layer into higher-level represen-
tations that are more suitable for classification or other tasks.
Linear systems in neural networks have a number of important properties that

make them useful for a wide range of applications. For example, linear systems
are often easy to analyze mathematically, which can make it easier to design and
optimize neural networks. They are also computationally efficient, which makes
them well-suited for large-scale applications such as image or speech recognition.
Additionally, linear systems can often be combinedwith nonlinear systems to create
more complex models that can capture a wider range of phenomena.

15.1 Linear Systems 315

15.2 Nonlinear System

A nonlinear system is a system in which the output is not directly proportional to
the input. Nonlinear systems can exhibit a wide range of complex behaviors, such
as chaos, bifurcations, and multiple equilibria, that cannot be modeled or pre-
dicted using linear systems theory.
In a nonlinear system, the relationship between the inputs and outputs is

described by nonlinear equations, which can take many different forms, such
as polynomials, exponential functions, or trigonometric functions. Nonlinear sys-
tems can also have time-varying parameters, which can further complicate the
modeling and analysis of the system. The behavior of nonlinear systems can be
analyzed using a variety of techniques from nonlinear dynamics, such as phase
space analysis, bifurcation analysis, and chaos theory. These techniques involve
the use of advanced mathematical tools, such as differential equations, dynamical
systems theory, and chaos theory.
One of the key concepts in nonlinear dynamics is the idea of the phase space,

which is amulti-dimensional space that represents all possible states of the system.
The behavior of the system is described by trajectories in the phase space, which
can exhibit a wide range of complex behaviors, such as periodic orbits, strange
attractors, and chaotic behavior. Bifurcation analysis is another important tool
in nonlinear dynamics, which involves the study of how the behavior of the system
changes as the parameters of the system are varied. Bifurcations can lead to the
emergence of new behaviors, such as the creation of new periodic orbits or the
onset of chaotic behavior.
Chaos theory is another important area of nonlinear dynamics that involves the

study of deterministic systems that exhibit unpredictable and complex behavior,
such as the butterfly effect and sensitive dependence on initial conditions. Chaos
theory has applications in many areas of science and engineering, such as weather
forecasting, economics, and biology. The equations governing nonlinear systems
are generally more complex than those governing linear systems and may involve
terms with higher orders of the variables. Nonlinear systems can be represented
using state-space models, which describe the evolution of the system’s state over
time. The equations for a nonlinear state-space model are:

x t + 1 = f x t , u t y t = h x t , u t , 15 2

where x(t) is the state vector at time t, u(t) is the input vector at time t, y(t) is the
output vector at time t, and f and h are nonlinear functions that describe the system
dynamics and the output equation, respectively. In addition to the state-space
model, nonlinear systems can also be represented using differential equations,
which describe how the state variables change over time as a function of their

316 15 Dynamic System Control

current values and the inputs to the system. Nonlinear differential equations can
be written in a general form as:

dx
dt

= f x, u , 15 3

where x is the vector of state variables and u is the vector of inputs. The function f
describes the dynamics of the system and is generally nonlinear.
Solving nonlinear equations or differential equations analytically is often not

possible, and numerical methods such as numerical integration or iterative meth-
ods are used to obtain approximate solutions. Nonlinear systems are important in
many areas of science and engineering, including control theory, physics, biology,
and economics. Nonlinear systems are used inmany areas of science and engineer-
ing, such as physics, chemistry, biology, and engineering. They are used to model a
wide range of physical systems, such as fluid dynamics, population dynamics, and
chemical reactions. The theory of nonlinear systems is also used to develop control
strategies for these systems, such as feedback control, adaptive control, and non-
linear control. However, the analysis and control of nonlinear systems are typically
more complex and challenging than those of linear systems due to their complex
behavior and mathematical complexity.
Nonlinear systems in cybernetical intelligence refer to systems that cannot be

described by linear equations or linear transformations. These systems are often
used to model complex and nonlinear phenomena such as chaotic systems, neural
networks, and biological systems.
In the context of cybernetical intelligence, nonlinear systems are often used to

model and control complex systems, such as robotics, transportation systems, and
industrial processes. The behavior of nonlinear systems can be highly complex
and difficult to predict and may exhibit phenomena such as bifurcations, chaos,
and nonlinear resonances. Nonlinear systems can be analyzed and controlled
using a variety of techniques. One approach is to use mathematical models, such
as differential equations or difference equations, to describe the behavior of the
system. Thesemodels can be analyzed using numerical methods or analytical tech-
niques, such as bifurcation analysis, Lyapunov stability analysis, or phase space
analysis. Another approach to controlling nonlinear systems is to use machine
learning techniques, such as neural networks or fuzzy logic systems, to model
and control the system. These techniques can be used to create models that can
adapt to changing conditions or to learn from data and make predictions about
the behavior of the system.
Nonlinear systems in cybernetical intelligence can be challenging to analyze and

control, but they offer a powerful tool for modeling and controlling complex sys-
tems. By using mathematical models, machine learning techniques, and advanced

15.2 Nonlinear System 317

control algorithms, it is possible to create intelligent systems that can adapt and
learn in complex and dynamic environments.

15.3 Stability Theory

Stability analysis of a dynamic system is concerned with the behavior of the system
over time, particularly how it responds to disturbances or changes in the initial
conditions. The behavior of a system can be described by its response function,
which is a mathematical expression that relates the output of the system to its
input and initial conditions. In general, the response function can be represented
by a differential equation:

dx
dt

= f x, u , 15 4

where x is the vector of state variables, u is the vector of input variables, and f(x, u)
is the vector of system dynamics. The stability of a system can be analyzed by
studying the behavior of the system around its equilibrium points, which are
the values of x and u where the system does not change over time. There are
two main types of stability: asymptotic stability and Lyapunov stability.
Asymptotic stability: A system is said to be asymptotically stable if its response

decays to zero over time, regardless of the initial conditions. Mathematically, this
can be expressed as:

limit ∞⟹x t = 0, 15 5

where x(t) is the response of the system at time t. Lyapunov stability: A system is
said to be Lyapunov stable if its response remains bound within a certain range,
regardless of the initial conditions. This type of stability is more general than
asymptotic stability and can be applied to nonlinear systems as well as linear sys-
tems. The Lyapunov stability analysis involves finding a Lyapunov function,
which is a scalar function that is positive definite and has a global minimum at
the desired equilibrium point of the system. The Lyapunov function is used to
determine whether the system will remain within a certain region of stability
or not.
The stability of linear systems can be analyzed using several techniques, includ-

ing the root locus method, the frequency response method, and the state-space
method. These methods rely on mathematical models of the system dynamics,
which can be represented by linear differential equations of the form:

dx
dt

= Ax + Bu, 15 6

318 15 Dynamic System Control

where A is the matrix of system dynamics, B is the matrix of input coefficients, and
x and u are the vectors of state and input variables, respectively.
The root locus method is a graphical technique for analyzing the stability of a

linear system. It involves plotting the roots of the system’s characteristic equation
in the complex plane as a function of a parameter, such as the gain of a feedback
loop. The stability of the system can be determined by examining the location of
the roots relative to the imaginary axis.
The frequency responsemethod is another graphical technique for analyzing the

stability of a linear system. It involves calculating the system’s response to sinus-
oidal inputs of different frequencies and plotting the amplitude and phase of the
output as a function of frequency. The stability of the system can be determined by
examining the gain and phase margins of the frequency response.
The state-space method is a mathematical technique for analyzing the stability

of a linear system. It involves representing the system dynamics in a matrix form
and analyzing the eigenvalues of the system matrix. The stability of the system
can be determined by examining the location of the eigenvalues in the com-
plex plane.
Stability theory in cybernetical intelligence refers to the study of the stability of

dynamical systems in the context of control theory and cybernetics. The goal of
stability analysis is to determine whether a system will converge to a stable equi-
librium or exhibit unstable behavior and to design control algorithms that ensure
stability in the presence of disturbances or uncertainty.
In cybernetical intelligence, stability theory is used to analyze and design control

systems for a wide range of applications, such as robotics, aerospace systems, and
industrial processes. Stability analysis involves studying the behavior of a system
over time and analyzing its response to various disturbances or inputs.
There are several techniques used in stability analysis, including Lyapunov

stability analysis, input–output stability analysis, and passivity-based stability
analysis. Lyapunov stability analysis is one of the most widely used techniques,
which involves analyzing the stability of a system based on a function called
the Lyapunov function. This function measures the energy of the system and its
rate of change and is used to determine whether the system will converge to a
stable equilibrium or not.
Input–output stability analysis involves analyzing the stability of a system based

on its input–output behavior, while passivity-based stability analysis involves ana-
lyzing the stability of a system based on its energy storage and dissipation proper-
ties. Stability theory is essential in cybernetical intelligence as it ensures the
stability of control systems, which are used to regulate and optimize the behavior
of complex systems. By using advanced stability analysis techniques, it is possible
to design control algorithms that ensure stability in the presence of disturbances,
uncertainties, and nonlinearities.

15.3 Stability Theory 319

15.4 Observability and Identification

Observability and identification are important concepts in control theory that deal
with the ability to measure and estimate the state of a system. Observability refers
to the ability to infer the internal state of a system by only measuring its input and
output signals. In other words, if a system is observable, it is possible to reconstruct
its internal state using only the available measurements.
Identification, on the other hand, involves estimating the internal parameters of

a system based on input–output measurements. In other words, given a set of
input–output data, identification seeks to determine the unknown parameters that
govern the behavior of the system. Mathematically, observability and identifica-
tion are described using state-space models. A state-space model represents a
dynamic system as a set of first-order differential equations, where the state vector
contains the internal variables of the system and the input and output vectors
represent the external inputs and measured outputs of the system, respectively.
The state-space model can be written as follows:

x t = f x t , u t , t 15 7

y t = h x t , u t , t , 15 8

where x(t) Rn is the state vector, u(t) Rm is the input vector, y(t) Rp is the
output vector, f(x(t), u(t), t) is the system dynamics function, and h(x(t), u(t), t)
is the output function.
Observability can be determined by checking whether it is possible to recon-

struct the state vector x(t) from the available output measurements y(t) over a finite
time interval [t0, tf]. Identification involves estimating the parameters of the sys-
tem dynamics function f(x(t), u(t), t) based on input–output data. This can be done
using various techniques, such as system identification algorithms or machine
learning methods. One common approach is to use least-squares regression to esti-
mate the parameters of the system dynamics function. Given a set of input–output
data (u(t), y(t)) over a time interval [t0, tf], the objective is to minimize the error
between the measured output y(t) and the output predicted by the model y t ,
which is given by:

y t = h x t , u t , t , 15 9

where h x t is the estimated state vector obtained by solving the state equations
using the estimated parameters. The least-squares solution for the system dynam-
ics function parameters can be obtained by minimizing the following cost
function:

J =
1
2

tf

t0

y t − y t TQ y t − y t dt, 15 10

320 15 Dynamic System Control

whereQ is a positive definite weighting matrix. In intelligent control, observability
and identification are two important concepts that are essential for developing
effective control strategies. Observability refers to the ability to measure or infer
the internal state of a system based on its observable inputs and outputs.
A system is said to be observable if its state can be estimated accurately using only
its input and output signals. Observability is important because it enables us to
design controllers that can regulate the behavior of the system in a desired
manner, even when the internal states are not directly measurable. Observability
can be enhanced by carefully choosing the system inputs and outputs, as well as by
using appropriate measurement techniques.
Identification, on the other hand, refers to the process of estimating the

unknown parameters of a system based on its input–output data. Identification
is important because it enables us to develop accurate mathematical models of
the system, which can be used to design controllers that can effectively regulate
the system’s behavior. Identification techniques can be used to estimate various
system parameters, such as the transfer function coefficients, the time delays,
the system order, and the noise characteristics.
Together, observability and identification form the basis of intelligent control.

By making a system observable and identifying its parameters, one can develop
effective control strategies that can regulate the system’s behavior in real-time.
This is particularly important for complex systems, such as those encountered
in robotics, aerospace, and manufacturing, where accurate and reliable control
is critical for safe and efficient operation.

15.5 Controllability and Stabilizability

Controllability is a concept in control theory that refers to the ability to steer the
state of a system from an initial state to a desired final state in a finite time through
the application of control inputs. It is a fundamental property of a control system
and is closely related to the ability to stabilize a system.
In general, a system is said to be controllable if, for any initial state x0 and any

desired final state xf, there exists a control input u(t) that can steer the system from
x0 to xf in a finite time. The controllability of a system can be analyzed mathemat-
ically using the concept of the controllability matrix. The controllability matrix C
of a linear time-invariant system can be defined as:

C = B AB A2B…An− 1B , 15 11

where A and B are the state and input matrices, respectively, and n is the order of
the system. The controllability matrix is a square matrix of dimension n × nm,
where nm is the number of input channels.

15.5 Controllability and Stabilizability 321

If the rank of the controllability matrix is equal to the order of the system, then
the system is said to be controllable. This means that every state of the system can
be reached by applying appropriate control inputs. If the rank of the controllability
matrix is less than the order of the system, then the system is uncontrollable, and
some states cannot be reached by any control input. Controllability is important in
control system design because it allows the designer to determine whether or not
the system can be controlled to achieve a desired response. If the system is control-
lable, the designer can then design a control law that will steer the system to the
desired state. If the system is uncontrollable, the designer must either modify the
system or the control objectives in order to achieve the desired response.
Stabilizability is a property of a system that ensures that it can be stabilized by a

control input. In other words, if a system is stabilizable, then it is possible to design
a control law that will drive the system to a desired equilibrium point or a desired
trajectory. Mathematically, a linear time-invariant system is said to be stabilizable
if there exists a feedback control law that can stabilize the system. The stabilizing
control law is typically designed using the state-feedback control approach, which
involves finding a feedback gain matrix K that can be used to compute the control
input u(t) as:

u t = −Kx t , 15 12

where x(t) is the state of the system at time t. The Stabilizability of a system can be
analyzed using the concept of controllability, which is the ability to steer the sys-
tem from any initial state to any desired state using a control input. If a system is
controllable, then it is possible to design a control law that can drive the system to
any desired state. However, even if a system is controllable, it may not be stabiliz-
able, as there may not exist a feedback control law that can stabilize the system.
Stabilizability can be checked using various methods, such as the Lyapunov sta-
bility analysis, the pole placementmethod, or the LQR control design. These meth-
ods involve analyzing the stability of the closed-loop system, which is obtained by
applying the feedback control law to the original system. In summary, Stabilizabil-
ity is a key property of a control system that ensures that the system can be stabi-
lized by a feedback control law. It is closely related to the concept of controllability
and can be analyzed using various methods based on the stability analysis of the
closed-loop system.
The Stabilizability of a system can be determined by analyzing its controllability

and observability properties. If a system is controllable and observable, then it is
said to be stabilizable. Mathematically, a linear time-invariant (LTI) system can be
represented as:

x = Ax + Bu 15 13

y = Cx, 15 14

322 15 Dynamic System Control

where x is the state vector, u is the control input, y is the output, A is the state
matrix, B is the input matrix, and C is the output matrix. To determine the Stabi-
lizability of the system, one can use the Kalman controllability matrix:

Kc = B,AB,A2B,…,An− 1B , 15 15

where n is the order of the system. The system is said to be controllable if the rank
of the Kalman controllability matrix is equal to the order of the system. If the sys-
tem is controllable, then one can design a control input u that can steer the system
from any initial state to a desired final state or equilibrium point.
However, controllability does not guarantee Stabilizability. A system may be

controllable but may not be stabilizable if it has unstable poles or if the desired
equilibrium point is not reachable by any control input. To determine Stabilizabil-
ity, one needs to analyze the eigenvalues of the system. If all the eigenvalues of the
system are stable (i.e. have negative real parts), then the system is said to be sta-
bilizable. If there are any unstable eigenvalues, then the system is not stabilizable.
Stabilizability can also be determined by analyzing the system’s transfer func-

tion. A system is stabilizable if all the poles of its transfer function are in the left
half of the complex plane. In summary, Stabilizability refers to the ability of a con-
trol system to stabilize a given unstable system by using a control input. It can be
determined by analyzing the controllability and observability properties of the
system, as well as the eigenvalues and transfer function of the system.

15.6 Optimal Control

Optimal control is a branch of control theory that deals with finding the control
inputs for a system to optimize a certain objective function, subject to certain con-
straints. The goal of optimal control is to determine the control inputs that will
drive the system from an initial state to a final state while minimizing or maximiz-
ing a certain performance measure. The main idea of optimal control is to use
mathematical optimization techniques to find the control inputs that will produce
the best possible outcome. This involves minimizing or maximizing an objective
function, which is typically a measure of the system’s performance or cost. There
are two main types of optimal control: open-loop and closed-loop. Open-loop
control involves determining the control inputs based on a predetermined plan
or trajectory, while closed-loop control involves adjusting the control inputs in
real-time based on feedback from the system.
The mathematical framework for optimal control is provided by the calculus of

variations and the theory of partial differential equations. The basic approach is to
formulate the problem as an optimization problem, where the objective function is

15.6 Optimal Control 323

typically a cost function that depends on the state of the system and the control
inputs. The optimal control problem can be solved using various methods, includ-
ing dynamic programming, Pontryagin’s minimum principle, and the maximum
principle. Thesemethods involve solving a system of differential equations, known
as the Hamiltonian equations, which describe the evolution of the system’s state
and the adjoint variables that are used to calculate the gradients of the objective
function with respect to the control inputs.
The optimal control problem can also be solved using numerical methods, such

as gradient descent, conjugate gradient, or the Nelder–Mead simplex method.
These methods involve iteratively adjusting the control inputs to minimize or
maximize the objective function.
Optimal control is a mathematical method used to find the best control inputs

for a system to achieve a desired output. The problem is formulated as a minimi-
zation problem of a cost function. The cost function is defined as the sum of a run-
ning cost and a terminal cost, which is evaluated over a finite time horizon. The
running cost is a measure of the performance of the system at each instant of time,
and the terminal cost is a measure of the performance of the system at the end of
the time horizon. The general form of the optimal control problem is given by:

minj =
tf

t0

L x t , u t , t dt + M x tf , 15 16

where j is the cost function, which is a scalar function that is to be minimized. L is
the running cost, which is a scalar function of the state x(t), control u(t), and time t.
x(t) is the state of the system at time t. Note that u(t) is the control input at time t. f is
the dynamics of the system, which relates the state and control input to the time
derivative of the state. Once the value function is obtained, the optimal control
input can be computed using Pontryagin’s minimum principle. The optimal state
trajectory can be obtained by solving the system dynamics using the optimal con-
trol input. Optimal control is widely used in many fields, such as aerospace, robot-
ics, and process control, to design controllers that achieve optimal performance. It
is a powerful tool for solving complex control problems, where traditional control
methods may not be effective.

15.7 Linear Quadratic Regulator Theory

Linear Quadratic Regulator (LQR) is a popular control design technique that is
used to derive optimal feedback control laws for linear systems. The LQR theory
considers a linear time-invariant system with a quadratic cost function. The objec-
tive of the LQR is to find a feedback control law that minimizes the quadratic cost

324 15 Dynamic System Control

function over a finite time horizon. The LQR theory is widely used in various appli-
cations, including aerospace, automotive, and robotics. The LQR theory is based
on the solution of the Linear Quadratic (LQ) optimal control problem. The LQ
problem involves finding a feedback control law that minimizes a quadratic cost
function subject to the dynamics of the system. The cost function typically includes
the control input and the deviation of the state from a desired set point.
The LQR theory extends the LQ problem to include an observer that estimates

the system state based on the measured output. The observer is typically designed
using the Kalman filter, which is a method for estimating the state of a linear sys-
tem based on noisy measurements. The LQR control law is obtained by solving a
Riccati equation, which is a matrix equation that describes the optimal control law
for the system. The solution of the Riccati equation provides the feedback gain
matrix that minimizes the cost function. The LQR problem can be formulated
as follows: Given a linear system described by the state equation

x t = Ax t + Bu t , 15 17

where x(t) Rn is the state vector, u(t) Rm is the control input, A is an n × n
matrix, and B is an n ×m matrix. The objective is to design a control law of
the form.

u t = −Kx t , 15 18

where K is anm × n gain matrix, that minimizes the following quadratic cost func-
tion over a finite time horizon [0, T]:

J =
1
2

T

0
xT t Qx t + uT t Ru t dt + xT T Qf x T , 15 19

where Q ≥ 0 is an n × n positive semidefinite matrix, R ≥ 0 is an m ×m positive
semidefinite matrix, and Qf≥ 0 is an n × n positive semidefinite matrix. The opti-
mal gain matrix K can be obtained by solving the following algebraic Riccati
equation:

ATP + P A− P B R− 1BTP + Q = 0, 15 20

where P is an n × n positive semidefinite matrix called the solution of the Riccati
equation. Once the optimal gain matrix K is obtained. The stability of the closed-
loop system under the LQR control law can be guaranteed if the matrix pair
(A− BK, B) is stabilizable.
The LQR theory has several advantages, such as its ability to handle state and

control constraints, its simplicity in implementation, and its ability to provide
robust control in the presence of model uncertainties. However, it is limited to lin-
ear systems and may not always provide the optimal control solution for nonlinear
systems.

15.7 Linear Quadratic Regulator Theory 325

The LQR theory is a widely used technique in intelligent control for designing
optimal control systems. It is based on the use of a cost function that measures the
trade-off between the control effort and the system’s performance. In LQR theory,
the system is modeled as a linear time-invariant system, and the control input is
designed tominimize the cost function over a finite time horizon. The optimal con-
trol input is obtained by solving the associated Riccati equation. The LQR control-
ler is known for its ability to provide optimal control solutions that are both stable
and robust.
Neural networks, on the other hand, are a powerful tool for approximating com-

plex nonlinear functions. They can be used in conjunction with LQR theory to
design optimal controllers for nonlinear systems. The basic idea is to use a neural
network to approximate the nonlinear dynamics of the system and then apply the
LQR technique to the resulting linearized system. This approach is known as the
neural network LQR (NNLQR) controller. The NNLQR controller has several
advantages over traditional LQR controllers. First, it can handle nonlinear sys-
tems, which are common in many real-world applications. Second, it can adapt
to changes in the system’s dynamics, making it more robust to disturbances
and uncertainties. Finally, it can learn from experience, making it a powerful tool
for autonomous control.
In summary, LQR theory is a powerful technique for designing optimal control

systems, and it can be extended to handle nonlinear systems using neural net-
works. The resulting NNLQR controllers are stable, robust, and adaptive, making
them well-suited for a wide range of applications in intelligent control.

15.8 Time-Optimal Control

Time-optimal control is a control theory that aims to find the control input that
will minimize the time taken by a system to move from an initial state to a final
state while satisfying a set of constraints. The objective is to find the control input
that will minimize the time taken to achieve a desired state while ensuring that the
state variables remain within certain bounds.
Time-optimal control problems can be formulated as optimal control problems,

where the objective is to minimize the time taken subject to the constraints of the
system dynamics and the control input. The solution to the time-optimal control
problem provides the optimal control input that will take the system from the ini-
tial state to the final state in minimum time. The formulation of a time-optimal
control problem depends on the type of system under consideration. For linear sys-
tems, the time-optimal control problem can be formulated as a LQR problem. For
nonlinear systems, the problem can be formulated as an optimal control problem
subject to state and control constraints.

326 15 Dynamic System Control

The solution to the time-optimal control problem for linear systems is given by
the LQR control law, which provides a feedback control law that minimizes a
quadratic cost function. The LQR control law is based on the solution to the Riccati
equation, which is a matrix differential equation that relates the control input to
the state variables. For nonlinear systems, the solution to the time-optimal control
problem can be obtained using Pontryagin’s maximum principle, which provides
the necessary conditions for optimality. The maximum principle relates the opti-
mal control input to the Hamiltonian function, which is a function of the state
variables, the control input, and the cost function. The solution to the time-optimal
control problem is an important topic in control theory and has applications in
various fields, including aerospace, robotics, and manufacturing.
Time-optimal control refers to the problem of finding a control signal that mini-

mizes the time required to reach a specified final state while satisfying system con-
straints. The time-optimal control problem is usually formulated as an optimal
control problem, and the solution to this problem is called the time-optimal con-
trol law.
To solve this problem, various techniques such as Pontryagin’s maximum prin-

ciple, dynamic programming, and numerical methods like nonlinear program-
ming can be used. In time-optimal control, the control signal is typically
“bang–bang,” meaning that it switches between two extreme values, such as
on/off, in order to minimize the time required to reach the final state. This type
of control strategy is commonly used in robotics, aerospace, and other applications
where quick and precise control is required. Time-optimal control is a concept in
control theory that seeks to minimize the time required to bring a system from an
initial state to a desired final state. In the context of neural networks, time-optimal
control can be used to design controllers that achieve a desired output as quickly as
possible, subject to constraints on the control inputs and the dynamics of the
system.
One approach to time-optimal control in neural networks is to use the Pontrya-

gin Maximum Principle, which is a powerful mathematical tool for optimizing
control systems. The principle provides a set of necessary conditions for a control
input to be optimal, which can be used to derive a set of differential equations that
describe the optimal control trajectory. These equations can then be solved using
numerical methods to obtain the optimal control input. Another approach to time-
optimal control in neural networks is to use MPC, which is a control strategy that
uses a model of the system to predict its future behavior and optimize the control
input over a finite time horizon. In this approach, a neural network is used to
model the dynamics of the system, and the MPC algorithm is used to compute
the optimal control input at each time step.
Time-optimal control in neural networks has a wide range of applications in

areas such as robotics, autonomous vehicles, and aerospace engineering. For

15.8 Time-Optimal Control 327

example, it can be used to design controllers for unmanned aerial vehicles (UAVs)
that can achieve high-speed maneuvering and obstacle avoidance, or to design
controllers for robotic systems that can perform complex tasks quickly and
efficiently.

15.9 Stochastic Systems with Applications

Stochastic systems are mathematical models used to describe systems that are sub-
ject to random fluctuations or noise. These systems are commonly used in various
fields such as finance, engineering, physics, biology, and many others. In general,
stochastic systems are more challenging to analyze and control than deterministic
systems, as they involve uncertainty and randomness. One of the key concepts in
stochastic systems is probability theory, which provides a mathematical frame-
work for analyzing and modeling random events. In stochastic systems, probabil-
ity theory is used to describe the likelihood or probability of different outcomes
based on the randomness and uncertainty in the system.
Stochastic systems can be classified into two main categories: discrete-time sys-

tems and continuous-time systems. Discrete-time systems are characterized by a
sequence of random variables that evolve over discrete time steps, while continu-
ous-time systems are described by stochastic differential equations that describe
how a continuous process evolves over time.
Stochastic systems are often used to model real-world systems that are inher-

ently stochastic, such as financial markets, weather systems, and biological pro-
cesses. In finance, stochastic models are used to model asset prices and value
financial derivatives such as options and futures. In engineering, stochastic models
are used to model the behavior of complex systems such as control systems, com-
munication networks, and manufacturing processes. In physics, stochastic models
are used to describe the behavior of systems at the quantum level, and in biology,
stochastic models are used to describe the behavior of biological systems such as
population dynamics and epidemiology. Applications of stochastic systems
include riskmanagement in finance, optimization of complex systems in engineer-
ing, and modeling of complex biological systems in biology. In addition, stochastic
systems are used in artificial intelligence and machine learning algorithms such as
stochastic gradient descent, which is used to optimize the parameters of neural
networks.
Stochastic systems are also used in control theory, which is the study of how to

design controllers that can control a system’s behavior. Stochastic control theory is
concerned with the design of controllers that can handle the uncertainty and
randomness in stochastic systems. Stochastic control theory is used in many

328 15 Dynamic System Control

applications such as finance, economics, and engineering, where the systems
being controlled are inherently stochastic.

15.9.1 Stochastic System in Control Systems

Stochastic systems are commonly used in control systems where random fluctua-
tions are expected or desired. In such systems, the objective is to control the sys-
tem’s behavior despite the presence of random disturbances, measurement errors,
or other uncertainties.
One common application of stochastic control is in the control of noisy systems,

such as those encountered in signal processing, communications, and robotics. In
such systems, the control objective is often to minimize the effects of noise and
interference on the system’s performance. Stochastic control techniques can be
used to design controllers that are robust to these uncertainties and can adapt
to changing noise conditions.
Another application of stochastic control is in the control of complex systems

with multiple interacting components, such as in biological systems or traffic net-
works. In such systems, the interactions between components can lead to complex
and unpredictable behavior. Stochastic control can be used to design controllers
that can adapt to these uncertainties and maintain stable behavior despite the
complex interactions.
Stochastic control is also used in finance and economics to model and control

the behavior of financial systems and markets. In such systems, the stochastic
behavior of prices, interest rates, and other variables can be modeled using sto-
chastic differential equations. Stochastic control techniques can be used to design
optimal trading strategies or to control the risk of financial portfolios. Overall, sto-
chastic control provides a powerful framework for designing controllers that can
cope with uncertainties and adapt to changing conditions, making it an essential
tool for control systems in a wide range of applications.

15.9.2 Stochastic System in Robotics and Automation

Stochastic systems play a vital role in robotics and automation. In robotics, the sto-
chastic system is used to model the uncertainty in the robot’s environment, sen-
sors, and actuators. For example, a robot may have uncertainty in its sensors such
as noise, which can be modeled using a stochastic system. Similarly, the robot’s
motion can also be modeled using a stochastic system to account for the uncertain-
ties in the control inputs.
Stochastic control theory can be used to design controllers that are robust to

uncertainties in the robot’s environment. One such approach is the use of a
Kalman filter, which is a mathematical technique that uses a stochastic model
to estimate the state of a system. In robotics, the Kalman filter can be used to

15.9 Stochastic Systems with Applications 329

estimate the robot’s position and velocity based on noisy sensor measurements.
Another application of stochastic systems in robotics is motion planning. In this
case, the stochastic system is used tomodel the robot’s environment and the uncer-
tainty in the robot’s motion. The goal is to find a trajectory that maximizes the
probability of the robot reaching its target while avoiding obstacles and other con-
straints. In automation, stochastic systems are used tomodel the uncertainty in the
manufacturing process. For example, the variability in the manufacturing process
can be modeled using a stochastic system. This can be used to design controllers
that are robust to the variability in the manufacturing process.
Overall, stochastic systems are essential in robotics and automation to account

for the uncertainties in the system and environment and design controllers that are
robust to these uncertainties.

15.9.3 Stochastic System in Neural Networks

A stochastic system in neural networks is a system that exhibits random behavior
or variability in its inputs, parameters, or outputs. These systems can be character-
ized by probability distributions that describe the random processes that govern
their behavior. In the context of neural networks, stochastic systems are often used
tomodel complex phenomena such as noise in sensory inputs, variability in neural
firing rates, or uncertainty in system parameters.
Stochastic systems in neural networks can be analyzed using a variety of math-

ematical tools, including probability theory, statistical inference, and stochastic
processes. One common approach to modeling stochastic systems in neural net-
works is to use probabilistic models such as Bayesian networks or Markov models.
These models can capture the probabilistic dependencies between the different
components of the system and can be used to make predictions about the system’s
behavior or to infer the underlying parameters from observed data.
Another approach to modeling stochastic systems in neural networks is to use

Monte Carlo methods, which involve generating large numbers of random
samples from the system’s probability distributions and using these samples to
estimate the system’s behavior or parameters. Monte Carlo methods can be par-
ticularly useful for analyzing complex systems where analytical solutions are
not available or are too difficult to compute.
Stochastic systems in neural networks have a wide range of applications in areas

such as machine learning, robotics, and neuroscience. For example, they can be
used to model the variability in neural firing rates observed in experimental data
or to generate synthetic data for training machine learning models that are robust
to noise and uncertainty. They can also be used to design controllers for robotic
systems that can adapt to changing environments or perform tasks in the presence
of uncertainty.

330 15 Dynamic System Control

Summary

This chapter covered a wide range of topics related to dynamic system control.
From the basics of linear and nonlinear systems to the more advanced concepts
of stability theory and optimal control, one discussed how these concepts can
be applied to various real-world applications. One also highlighted the importance
of mathematical modeling and the use of stochastic systems to handle uncertain-
ties and noise in the system. As technology continues to advance, these concepts
will become increasingly important in developing advanced control systems for
complex and challenging problems.
In the future, dynamic system control will continue to play a critical role in var-

ious fields, such as robotics, automation, aerospace, and transportation systems.
As the complexity of these systems increases, the need for efficient and effective
control strategies will also increase. One potential future direction is the develop-
ment of more sophisticated and intelligent control algorithms that incorporate
advanced machine learning and artificial intelligence techniques. Another poten-
tial area of research is the application of control theory to emerging technologies
such as quantum computing and quantum control. Overall, dynamic system con-
trol will continue to be an active and important area of research with significant
potential for future advancements and applications.

Exercise Questions

Q.15.1 How can nonlinear systems be representedmathematically, and what are
some common techniques used for their analysis and control?

Q.15.2 What is the mathematical equation for the transfer function of a linear
time-invariant (LTI) system, and how does it relate to the input–output
behavior of the system?

Q.15.3 Explain controllability, and how can it be used to design control systems
for dynamic systems?

Q.15.4 How can optimal control theory be used to design control systems, and
what are some of its limitations?

Q.15.5 What is stochastic control, and how can it be used to handle uncertainties
and noise in dynamic systems?

Exercise Questions 331

Q.15.6 Explain how can the LQR theory be used to design optimal control sys-
tems, and what are some of its advantages and limitations?

Q.15.7 What are some common challenges associated with designing control
systems for robotics and automation applications, and how can they be
overcome?

Q.15.8 Can you provide the mathematical equation for the stability criterion of
a dynamic system, such as the Routh–Hurwitz stability criterion, and
how it helps to determine the stability and convergence properties of
the system?

Q.15.9 How can feedback control be used to regulate the performance of
dynamic systems, and what are some common feedback control
techniques?

Q.15.10 How does the concept of optimal control use the cost function to find
the input that minimizes the performance index, and what is the math-
ematical equation for the optimal control problem, such as the LQR
problem?

Further Reading

Franklin, GF., Powell, JD. and Workman, ML. Digital control of dynamic systems
(Vol. 3). Addison-wesley, Reading, MA; 1998.

Goldberg DE. Dynamic system control using rule learning and genetic algorithms.
In IJCAI 1985 Aug 18 (Vol. 85, pp. 588–592). ACM Digital Library.

Kalman RE. Contributions to the theory of optimal control. Boletín de la Sociedad
Matemática Mexicana. 1960 Apr;5(2):102–19.

Russell DL. Controllability and stabilizability theory for linear partial differential
equations: recent progress and open questions. SIAM Review. 1978 Oct;20
(4):639–739.

Slemrod M. A note on complete controllability and stabilizability for linear control
systems in Hilbert space. SIAM Journal on Control. 1974 Aug;12(3):500–8.

332 15 Dynamic System Control

16

Deep Learning

Deep learning is a subset of machine learning that uses neural networks with
numerous layers in order to learn from complex data. It is a powerful technique
that has revolutionized various fields, including computer vision, natural language
processing, speech recognition, and robotics. Deep learning models are trained
using large datasets, and they have the ability to learn and generalize from the data
to make accurate predictions.
The basic unit of a deep learningmodel is a neural network, which is a collection

of nodes or neurons that are organized into layers. Each neuron receives input
from other neurons, processes it using an activation function, and produces an out-
put that is sent to other neurons in the next layer. The output of the final layer
represents the prediction of the model. Deep learning models can be trained using
supervised, unsupervised, or semi-supervised learning techniques. In supervised
learning, the model is trained using labeled data, where the input data is paired
with the correct output. In unsupervised learning, the model is trained on unla-
beled data, where the objective is to learn the underlying structure of the data.
Semi-supervised learning is a combination of both techniques, where the model
is trained on a small amount of labeled data and a large amount of unlabeled data.
The training of deep learning models is done using optimization techniques such
as gradient descent, where the objective is to minimize the loss function. The loss
function measures the difference between the predicted output of the model and
the actual output.
One of the strengths of deep learning is its ability to learn high-level representa-

tions of the data automatically. This is achieved through the use of convolutional
neural networks (CNNs) in computer vision and recurrent neural networks
(RNNs) in natural language processing. CNNs are designed to recognize spatial
patterns in images, while RNNs are designed to process sequential data. Deep
learning has many applications in various fields, including image and speech

333

Cybernetical Intelligence: Engineering Cybernetics with Machine Intelligence, First Edition.
Kelvin K. L. Wong.
© 2024 The Institute of Electrical and Electronics Engineers, Inc.
Published 2024 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/cyberintel

recognition, natural language processing, self-driving cars, and robotics. It has also
shown promising results in healthcare, finance, and social sciences. However, the
use of deep learning also raises ethical and social concerns, such as data privacy,
algorithmic bias, and the impact on the job market.
Deep learning is a type of machine learning that is based on artificial neural net-

works with multiple layers. It has become a popular tool in intelligent control due
to its ability to learn complex patterns and relationships in data.
In intelligent control, deep learning can be used in various ways. One common

application is in predictive maintenance, where the neural network is trained on
historical data to predict when a system is likely to fail. This can help prevent
equipment downtime and reduce maintenance costs.
Another application of deep learning in intelligent control is in anomaly detec-

tion. By analyzing patterns in data, a neural network can learn what is normal
behavior for a system and detect any anomalies that may indicate a fault. This
can help prevent equipment damage and improve safety.
Deep learning can also be used in control systems to optimize performance. By

using the neural network to learn the relationship between system inputs and out-
puts, it can be used to identify the best control actions to achieve the desired results.
Overall, deep learning has proven to be a powerful tool in intelligent control, with
numerous applications in predictive maintenance, anomaly detection, and control
optimization. Its ability to learn from data and identify complex patterns makes it a
valuable asset in improving the performance and efficiency of control systems.
Deep learning is a powerful tool for cybernetical intelligence, which refers to the

integration of control systems with intelligent algorithms to improve system per-
formance. In the context of cybernetics, deep learning algorithms can be used to
create intelligent systems that can learn and adapt to changing environments in
real-time. Deep learning algorithms can be used to create neural network-based
controllers that can learn the system dynamics directly from data. This approach
is called data-driven control and can be used for complex systems where tradi-
tional control methods are difficult to apply. By using deep learning for control,
the system can adapt to changes in the environment and learn from experience
to improve performance. Another application of deep learning in cybernetical
intelligence is in the design of intelligent decision-making systems. Deep learning
algorithms can be used to learn from data and make predictions or decisions based
on the learned patterns. This can be applied to a range of cybernetical systems,
such as autonomous vehicles, robotics, and smart cities.
Furthermore, deep learning can also be used in the design of intelligent sensor

systems. By combining deep learning algorithms with advanced sensor technolo-
gies, it is possible to create systems that can accurately detect and interpret com-
plex patterns in the environment. This can be applied to a range of cybernetical
systems, such as surveillance systems, smart homes, and environmental
monitoring.

334 16 Deep Learning

16.1 Neural Network Models in Deep Learning

Neural network models are an essential component of deep learning. They are
mathematical models inspired by the structure and functionality of the human
brain. These models consist of layers of artificial neurons that process information
in a hierarchical manner. In this section, one will discuss neural network models
in deep learning in detail, including their architecture, training, and applications.
Neural network models are composed of layers of interconnected neurons,

which receive input data and produce output predictions. The number of layers
and neurons in each layer depend on the complexity of the problem at hand.
The three main types of layers used in neural network models are:

• Input layer: This layer receives the input data and passes it to the next layer.

• Hidden layer: This layer performs computations on the input data and passes the
results to the next layer. Neural network models can have multiple hidden
layers.

• Output layer: This layer produces the final output prediction based on the com-
putations performed by the hidden layers.

The basic equation for computing the output of a neuron in a neural network
model is:

y = f
n

i = 1

wixi + b , 16 1

where y is the output of the neuron, xi are the input values, wi are the weights
assigned to each input, b is the bias term, and f is the activation function.
The weights and biases of the neurons are learned during the training process.

The training process involves presenting the neural network model with a set of
input data and corresponding output labels. The model then adjusts its weights
and biases tominimize the difference between its output predictions and the actual
output labels. This process is repeated iteratively until the model achieves a satis-
factory level of accuracy. There are several types of neural network models used in
deep learning, including:

• Feedforward neural networks: These are the simplest type of neural network
models, where the information flows only in one direction, from the input layer
to the output layer.

• Convolutional neural networks (CNNs): These are commonly used for image
and video recognition tasks. They use specialized layers, such as convolutional
and pooling layers, to extract relevant features from the input data.

• Recurrent neural networks (RNNs): These are used for processing sequential
data, such as natural language processing and speech recognition. They use
loops to process the data and maintain a memory of previous inputs.

16.1 Neural Network Models in Deep Learning 335

• Generative adversarial networks (GANs): These are used for generating new data
samples that are similar to the training data. They consist of two networks, a gen-
erator network that produces the new data samples, and a discriminator network
that evaluates the similarity of the generated samples to the training data.

Neural network models have been successfully applied to various intelligent
control applications, such as robotics, autonomous vehicles, and process control.
They can learn complex patterns and relationships in the input data, making them
suitable for handling nonlinear and dynamic systems. However, the training proc-
ess can be computationally expensive, and the models can be prone to overfitting,
which is when the model memorizes the training data and performs poorly on
new data.
One of the main advantages of neural networks in cybernetical intelligence is

their ability to learn complex patterns and relationships from data. Neural net-
works can be trained using data from the system and can then use this learned
information to make predictions or control decisions. This is particularly useful
in systems with complex and non-linear dynamics, where traditional control
methods are difficult to apply.
Neural networks can be used in a range of cybernetical applications, such as con-

trol, decision-making, and sensor systems. For example, in control systems, neural
networks can be used to create controllers that can learn the system dynamics
directly from data, without the need for a mathematical model. This approach,
called data-driven control, is particularly useful in complex systems where tradi-
tional control methods are limited. In decision-making systems, neural networks
can be used to learn from data and make predictions or decisions based on the
learned patterns. This can be applied to a range of cybernetical systems, such as
autonomous vehicles, robotics, and smart cities. For example, a neural network
could be trained to predict traffic patterns in a smart city and make decisions to
optimize traffic flow. Neural networks can also be used in sensor systems, where
they can be combined with advanced sensor technologies to create systems that
can accurately detect and interpret complex patterns in the environment. This
can be applied to a range of cybernetical systems, such as surveillance systems,
smart homes, and environmental monitoring.

16.2 Methods of Deep Learning

Deep Learning is a subset of machine learning that uses artificial neural networks
to model and solve complex problems. There are several methods used in deep
learning, each with its unique characteristics and applications. Here one describe
some of the main methods in detail:

336 16 Deep Learning

16.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specialized type of neural network
commonly used in deep learning for image and video recognition, natural lan-
guage processing, and other applications that require high-dimensional inputs.
CNNs are designed to learn and extract features from input data by convolving
them with a set of learned filters.
In a CNN, the input data is typically a matrix of pixel values for an image. The

convolutional layers apply a set of filters to this input data to produce a set of fea-
ture maps. Each filter is a matrix of weights that is applied to a small region of the
input matrix. This operation is known as convolution, and it can be thought of as a
sliding window that moves over the input matrix and performs a dot product at
each location. The output of the convolutional layers is then passed through a
non-linear activation function, such as a rectified linear unit (ReLU), which intro-
duces non-linearity into the model. The output of the activation function is then
typically passed through one or more pooling layers, which downsample the fea-
ture maps by taking the maximum or average value within a small region of the
feature map. The output of the pooling layers is then passed through one or more
fully connected layers, which are similar to the layers in a traditional neural net-
work. These layers perform a weighted sum of the input values, followed by an
activation function, to produce the final output. The math equations for a single
convolutional layer can be expressed as follows:

yi,j = σ
m n

xi + m,j + n wm,n , 16 2

where yi,j is the output at position (i, j), x{i+m, j+ n} is the input value at position
(i+m, j+ n),w{m,n} is the weight at position (m, n), and σ is the activation function.
The complete basic structure of CNN is shown in Figure 16.1.
Convolutional Neural Networks (CNNs) have been applied in various fields of

intelligent control, including robotics, computer vision, and autonomous vehicles.
The use of CNNs in intelligent control systems allows for the processing of com-
plex and high-dimensional data, such as images and videos, to make intelligent
decisions and actions.
In the context of robotics, CNNs have been used for object detection and recog-

nition, which is an important task for robots that operate in dynamic environ-
ments. The CNN can be trained on a dataset of images with annotated objects,
allowing it to recognize and identify objects in real-time, enabling the robot to
make more informed decisions. Similarly, in the context of autonomous vehicles,
CNNs have been used for tasks such as lane detection and traffic sign recognition.
By training a CNN on a dataset of road images, the model can recognize and

16.2 Methods of Deep Learning 337

interpret road markings and traffic signs, allowing the vehicle to make intelligent
decisions about its course of action.
CNNs can also be used for anomaly detection in industrial processes, such as

predictive maintenance. By analyzing sensor data from industrial machinery,
CNNs can detect anomalies that may indicate a fault or failure in the system,
allowing for preemptive maintenance to be performed to avoid downtime and
costly repairs. Overall, the use of CNNs in intelligent control systems has shown
great potential in improving the accuracy and efficiency of decision-making pro-
cesses in various fields.
The ConvLSTM, or convolutional long short-term memory, is a type of neural

network architecture that combines the convolutional neural network (CNN) and
the long short-term memory (LSTM) network. ConvLSTM was first introduced by
Shi et al. in 2015 and has since become a popular choice for sequence-to-sequence
prediction tasks, such as video frame prediction, weather forecasting, and natural
language processing. The ConvLSTM network consists of multiple layers, each of
which includes a convolutional layer, an LSTM layer, and a set of activation func-
tions. The convolutional layer extracts features from the input sequence, while the
LSTM layer processes the temporal information and maintains a memory of the
past inputs. The activation functions help to introduce non-linearity into the net-
work. The Network structure of ConvLSTM is shown in Figure 16.2.
The main advantage of ConvLSTM is its ability to handle both spatial and tem-

poral dependencies in the input sequence. The convolutional layer helps to cap-
ture spatial features in each frame of the sequence, while the LSTM layer
maintains a memory of the past frames and captures temporal dependencies
between them. This makes ConvLSTM well-suited for tasks that require modeling
of complex sequences with long-term dependencies, such as video prediction.

Fully
connected

Convolution
Pooling

Input Output

Feature extraction Classification

Figure 16.1 Basic convolutional neural networks structure.

338 16 Deep Learning

OutputUp-sampling
(weight sharing)

Auxiliary line (training only)
Forward LSTM

Input

C
on

v,
64

C
on

v,
64

C
on

v,
64

Feature extraction Cardiac cycle phase code

L
R

 im
ag

e
se

qu
en

ce

SR
 im

ag
e

se
qu

en
ce

C
on

v,
64

C
on

v,
64

C
on

v,
64

pR
eL

U

pR
eL

U

C
on

v,
64

5

C
on

v,
12

9

Pi
xe

lS
hu

ff
le

Pi
xe

lS
hu

ff
le

Pi
xe

lS
hu

ff
le

pR
eL

U

1
×

1
C

on
v,

1
1

×
1

C
on

v,
1

1
×

1
C

on
v,

1
Reverse LSTMC

on
v,

64

Cardiac cycle phase code

Figure 16.2 Network structure of ConvLSTM.

During training, ConvLSTM is typically trained using backpropagation through
time (BPTT), a variant of backpropagation that allows the network to learn over a
sequence of input data. The network is trained to minimize the difference between
the predicted output and the actual output, using a loss function such as mean
squared error (MSE) or binary cross-entropy.
In practice, ConvLSTM has been used in a wide range of applications, including

video prediction, action recognition, and natural language processing. It has also
been combined with other neural network architectures, such as the attention
mechanism, to further improve performance in sequence-to-sequence prediction
tasks. Overall, ConvLSTM is a powerful and flexible neural network architecture
that has shown promise in a variety of applications that require the modeling of
complex sequences.
One of the challenges faced in cybernetic intelligence is the ability to accurately

classify and recognize patterns in complex data. This can be addressed using Con-
volutional Neural Networks (CNN), a type of neural network specifically designed
for image recognition and classification.
CNNs are highly effective in identifying patterns in images due to their ability to

learn features at different levels of abstraction, from simple edges and lines tomore
complex shapes and structures. They achieve this by using convolutional layers
that apply filters to the input image, which helps to highlight important features
and reduce noise.
In addition to convolutional layers, CNNs also use pooling layers to downsample

the feature maps generated by the convolutional layers, further reducing the
dimensionality of the data and improving computational efficiency. Finally, fully
connected layers are used to classify the image based on the learned features.

16.2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of neural networks that are
designed to process sequential data. They have been successfully applied in various
fields such as natural language processing, speech recognition, and time series
analysis. Unlike feedforward neural networks, RNNs have feedback connections
that allow them to retain information over time. This makes them suitable for
tasks that require processing sequences of data with temporal dependencies.
The key feature of RNNs is the use of recurrent connections that allow informa-

tion to be passed from one step to the next in a sequence. At each time step, the
network takes an input vector and a hidden state vector as input, and produces an
output vector and an updated hidden state vector as output. The hidden state vec-
tor is updated based on both the input vector and the previous hidden state vector,
allowing the network to store information about past inputs. The basic equations
of an RNN can be expressed as follows:

340 16 Deep Learning

ht = f whx xt + whh ht− 1 + bh 16 3

yt = g why ht + by , 16 4

where xt is the input vector at time step t, ht is the hidden state vector at time step t,
and yt is the output vector at time step t. The whx and whh are weight matrices, bh is
the bias vector for the hidden state,why is the weightmatrix for the output, and by is
the bias vector for the output. The f and g are activation functions such as the sig-
moid function or the hyperbolic tangent function. The basic structure of RNN is
shown in Figure 16.3.
There are several variants of RNNs, such as Long Short-Term Memory (LSTM)

networks and Gated Recurrent Unit (GRU) networks, which have been developed
to address the problem of vanishing gradients during training. These networks
have additional mechanisms that allow them to selectively retain or forget infor-
mation over time, making themmore effective for longer sequences. In the context
of intelligent control, RNNs have been used for a variety of tasks such as time series
prediction, anomaly detection, and control of nonlinear systems. For example,
RNNs have been used to model and control complex systems such as power grids
and robots. They have also been used for fault diagnosis and predictive mainte-
nance in industrial processes.
Recurrent Neural Networks (RNNs) are a powerful type of neural network used

in intelligent control systems. They are used for time-series analysis, sequence pre-
diction, and natural language processing. In intelligent control systems, RNNs are
used to model and control systems with a time-varying behavior, where the cur-
rent state of the system depends on the past states. RNNs are designed to handle
sequential data, such as time-series data or data with a temporal component. They
are also capable of handling data with variable lengths, making them useful for
natural language processing and speech recognition. In intelligent control sys-
tems, RNNs are used to predict the future state of the system based on past
observations.

Unfold

o

w

h

v

v v v

w w w

u u u u

ot–1

ht–1

ot+1

ht+1

ot

x xt–1 xt+1xt

ht

Figure 16.3 The basic recurrent neural networks.

16.2 Methods of Deep Learning 341

One of the most popular types of RNNs is the Long Short-TermMemory (LSTM)
network. LSTMs are designed to overcome the limitations of traditional RNNs,
such as the vanishing gradient problem, which can make it difficult to learn
long-term dependencies. LSTMs are well-suited for tasks that require the network
to remember information over a long period, such as predicting the behavior of a
complex system over time.
In intelligent control systems, RNNs can be used for a range of applications, such

as predictive maintenance, process control, and anomaly detection. For example,
an RNN can be used to predict the future behavior of a machine based on its past
behavior, allowing for proactive maintenance before a failure occurs. RNNs can
also be used to detect anomalies in a system by comparing the predicted behavior
to the actual behavior, allowing for early detection of potential problems. Overall,
RNNs are a valuable tool in intelligent control systems, providing a powerful
method for modeling and predicting the behavior of complex systems over time.

16.2.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a class of deep learning models that
are used for generative tasks such as image, audio, and text generation. The basic
idea behind GANs is to train two neural networks, a generator and a discriminator,
in a two-player minimax game. The generator network is trained to produce fake
data that looks similar to real data, while the discriminator network is trained to
distinguish between real and fake data.
During training, the generator network tries to produce data that can fool the

discriminator network into believing it is real, while the discriminator network
tries to correctly classify whether the data is real or fake. This adversarial training
process helps the generator network learn to produce increasingly realistic data.
The architecture of GANs typically consists of a generator network and a discrim-
inator network, both of which are usually deep neural networks. The generator
network takes a random noise vector as input and produces fake data that is
intended to look like real data. The discriminator network takes either real or fake
data as input and produces a binary output, indicating whether the input is real or
fake. The loss function used in GANs is a combination of two terms: the generator
loss and the discriminator loss. The generator loss measures how well the gener-
ator network is able to fool the discriminator network, while the discriminator loss
measures how well the discriminator network is able to distinguish between real
and fake data. GANs have many applications in various fields, including image
generation, data augmentation, style transfer, and anomaly detection. In the con-
text of intelligent control, GANs can be used for tasks such as generating synthetic
data for training models, predicting future system behavior, and detecting anoma-
lies in system performance. The general workflow of GAN is shown in Figure 16.4.

342 16 Deep Learning

Generative Adversarial Networks (GANs) have a wide range of applications in
cybernetical intelligent control, including computer vision, robotics, and natural
language processing. In computer vision, GANs can be used for image and video
synthesis, object detection, and recognition. For example, GANs can be trained on
a large dataset of images and can generate new images that are similar to the ones
in the training set. In robotics, GANs can be used for motion planning and control,
reinforcement learning, and robot perception. For instance, GANs can be used to
generate simulated environments that can be used to train robots to perform tasks
in the real world.
GANs have been used in a variety of applications in cybernetic intelligence,

including image and video generation, text-to-image synthesis, and data augmen-
tation. They have also shown promise in areas such as anomaly detection, where
they can be used to detect unusual patterns in data. However, GANs can be chal-
lenging to train and require careful tuning of hyper parameters. There is also a risk
of mode collapse, where the generator produces limited variation in its output,
leading to a loss of diversity in the generated data. Overall, GANs are a powerful
tool in cybernetic intelligence for generating synthetic data and have potential
applications in a wide range of fields. However, their success depends on careful
design and training to avoid common pitfalls.
The p-GANs, or projected gradient descent generative adversarial networks, are

a type of generative model that use adversarial training to learn to generate real-
istic samples from a given dataset. The key idea behind p-GANs is to use a pro-
jected gradient descent approach to enforce a constraint on the generator

Latent space
Generated fake samples

Is D correct?
Z Generator (G)

Discriminator (D)

Real samples

Fine-tuning

Figure 16.4 The general workflow of GAN.

16.2 Methods of Deep Learning 343

function, ensuring that it generates only samples that lie within a given range or
subspace. This approach addresses one of the key limitations of traditional GANs,
which can sometimes generate samples that are unrealistic or outside the range of
the original dataset.
In practice, p-GANs work by training two neural networks in parallel: a gener-

ator network G as shown in Figure 16.5 and a discriminator network D which is
shown in Figure 16.6. The generator network takes as input a random noise vector
z and produces a generated sample x. The discriminator network takes as input
either a real sample from the original dataset or a generated sample from the gen-
erator network, and outputs a probability value indicating whether the input is
real or fake. The overall generic architecture of p-GAN is shown in Figure 16.7.
During training, the generator network tries to generate samples that can fool

the discriminator network, while the discriminator network tries to correctly dis-
tinguish between real and fake samples. The two networks are trained iteratively,
with the generator network updating its weights to minimize the difference
between the discriminator’s output for its generated samples and the expected out-
put (i.e. 1 for real samples and 0 for generated samples), and the discriminator net-
work updating its weights to better distinguish between real and fake samples.
To enforce the constraint on the generator function, p-GANs use a projected gra-

dient descent approach to project each generated sample onto the subspace
defined by the range of the original dataset. This helps ensure that the generated

LR input

C
on

v,
64

C
on

v,
64

C
on

v,
64

C
on

v,
64

C
on

v,
64

U
pS

am
p-

2×

C
on

v,
64

R
eL

U

R
eL

U

R
B

R
B

R
B

R
B

R
B

U
B

U
B

U
BR
B

R
eL

UB
N

B
N

Residual velocity SR outputUpper sample block

Figure 16.5 Structure diagram of p-GANs generator G network.

LR

SR

S1

S*

S1 S1 S1S2 S2 S2 S2

or

C
on

v,
64

C
on

v,
X

C
on

v,
64

C
on

v,
12

8

C
on

v,
12

8

C
on

v,
25

6

C
on

v,
25

6

C
on

v,
51

2

C
on

v,
51

2

D
en

se
 (1

02
4)

L
ea

ky
R

eL
U

D
en

se
 (

1)

Si
gm

od

L
ea

ky
R

eL
U

L
ea

ky
R

eL
U

B
N Dense layer

(fully connected
layer)

LR
or
SR

Figure 16.6 Network structure diagram of p-GANs discriminator D.

344 16 Deep Learning

samples remain within a reasonable range and avoids generating unrealistic sam-
ples. Overall, p-GANs are an effective approach to generative modeling that can
generate high-quality samples while addressing some of the limitations of tradi-
tional GANs. They have applications in a wide range of areas, including image
and video synthesis, data augmentation, and data privacy. In natural language pro-
cessing, GANs can be used for text generation, summarization, and translation.
For example, GANs can be trained on a large dataset of text and can generate
new text that is similar to the ones in the training set. Overall, GANs can be used
to generate new data that can be used to train and improve the performance of
various intelligent control systems. However, due to their complex nature, GANs
require extensive computational resources and expertise in training and fine-
tuning the models for specific tasks.

16.2.4 Deep Learning Based Image Segmentation Models

Deep learning image segmentation models are a type of neural network architec-
ture that can segment an input image into multiple regions or objects based on
their characteristics. Image segmentation is a critical task in computer vision
applications, such as medical imaging, autonomous vehicles, and object detection.
The UNet is a popular deep learning image segmentation model based on a fully
convolutional neural network (FCN) architecture, which enables it to learn and
predict pixel-level segmentation maps.
The UNet architecture consists of an encoder network and a decoder network,

which are connected by a series of skip connections as shown in Figure 16.8. The
encoder network is similar to a traditional CNN, consisting of multiple convolu-
tional and pooling layers that gradually reduce the spatial resolution of the input

G1 (LR)

D1

D2

G1

G2

G2 (LR)

Mean square error
loss

Mean square error
loss

Cost of confrontation
HR

LR

Image

Cost of confrontation

Triplet loss

Figure 16.7 Architecture of the p-GANs.

16.2 Methods of Deep Learning 345

image while increasing the number of feature maps. The decoder network is
designed to recover the spatial information and produce a segmentation map that
has the same resolution as the input image. The skip connections between the
encoder and decoder networks are a unique feature of UNet. They enable the net-
work to preserve the high-resolution spatial information learned in the encoder
network while also allowing the decoder network to recover the finer details of
the segmentation map. Specifically, the skip connections connect each layer
of the encoder network to a corresponding layer of the decoder network, allowing
the decoder to use information from the encoder at multiple scales to refine the
segmentation map. In the decoder network, each layer consists of an upsampling
layer followed by a concatenation layer and several convolutional layers. The
upsampling layer increases the spatial resolution of the input feature map, while
the concatenation layer combines the feature map with the corresponding feature
map from the encoder network. This concatenation operation helps the decoder
network to learn more accurate segmentation boundaries by incorporating the
high-resolution features learned in the encoder network.
Finally, the output layer of UNet is a softmax layer that produces a probability

distribution over the different classes in the segmentation map. During training,
the network is trained to minimize a loss function, such as cross-entropy loss,
between the predicted segmentation map and the ground truth segmentation
map. UNet has shown excellent performance on a variety of image segmentation
tasks, including medical image segmentation and object detection. Its ability to
capture both global and local features and its efficient use of computation and
memory resources make it a popular choice for many image segmentation
applications.

LR input sequence SR output sequence

32 32

32 32

32

64

128 128 128 128

64
64 64

32 32 32

32 32

Conv 3 × 3, Padding, BatchNorm, ReLU

Conv LSTM 3 × 3, Padding,
BatchNorm, ReLU

Copy concat

Maxpool 2 × 2 Conv 1 × 1, ReLU

Up-sampling 2 × 2

8
×

8
×

10

16
×

16
×

10

16
×

16
×

10

32
×

32
×

10

32
×

32
×

10

64
×

64
×

10

64
×

64
×

10

12
8

×
12

8
×

10

12
8

×
12

8
×

10

Figure 16.8 Structural principle of U-Net.

346 16 Deep Learning

Moreover, 3D Residual U-Net is a neural network architecture for volumetric
medical image segmentation. It is an extension of the popular U-Net architecture
that was originally designed for 2D image segmentation. The 3D Residual U-Net
consists of a contracting path and an expanding path, similar to the U-Net archi-
tecture. The contracting path consists of a series of convolutional layers followed
bymax pooling layers. This path reduces the spatial resolution of the input volume
while increasing the number of feature maps. The expanding path is where the
residual connections are introduced as shown in Figure 16.9. It consists of a series
of up-convolutional layers followed by concatenation layers and residual blocks.
The up-convolutional layers increase the spatial resolution of the feature maps
while reducing the number of feature maps. The concatenation layers combine
the feature maps from the corresponding layer in the contracting path with the
feature maps from the up-convolutional layers.
The residual blocks in the expanding path are similar to those used in the ResNet

architecture. They consist of two convolutional layers, each followed by a batch
normalization layer and a Rectified Linear Unit (ReLU) activation function.
The residual connection is then introduced by adding the input to the output of
the second convolutional layer. This enables the network to learn the residual
mapping between the input and output of the block. The 3D Residual U-Net archi-
tecture also includes several skip connections that connect the contracting path to
the expanding path. These skip connections allow the network to capture both
high-level and low-level features in the input volume and refine the segmentation
map. During training, the 3D Residual U-Net is trained using a dice loss function,
which measures the overlap between the predicted segmentation map and the
ground truth segmentation map.
Overall, the 3D Residual U-Net architecture has shown promising results in var-

ious medical imaging segmentation tasks, such as brain tumor segmentation, lung

321 1132

32

323264

64 64

64

64 64128

128128

L
R

 in
pu

t

SR
 o

ut
pu

t

256 × 256 × 96

128 × 128 × 48

64 × 64 × 24

Convt 3 × 3 × 3

Convt

ReLU (Canv 3 × 3 × 3)

Maxpool 2 × 2
Addition

ReLU (convt 3 × 3 × 3) ReLU

Figure 16.9 Schematic diagram of the network structure principle of 3D residual U-Net.

16.2 Methods of Deep Learning 347

segmentation, and cardiac segmentation. Its ability to capture both global and
local features and its efficient use of computation and memory resources make
it a popular choice for many volumetric medical image segmentation applications.

16.2.5 Variational Auto Encoders

Variational autoencoders (VAEs) are generative models that can learn a low-
dimensional representation of high-dimensional data, such as images, videos, or
audio. VAEs are a type of neural network that consists of two main parts: an
encoder and a decoder. The encoder maps the high-dimensional input data to a
lower-dimensional latent space, while the decoder maps the latent space back
to the original high-dimensional space.
The VAEs use a probabilistic approach to learning the latent space by assuming

that the data is generated from a probabilistic distribution with some mean and
variance. The encoder learns to map the input data to a distribution in the latent
space, while the decoder learns to map the latent space back to the distribution of
the original data. The training process for a VAE involves maximizing a lower
bound on the log-likelihood of the data given the model. This lower bound, also
known as the evidence lower bound (ELBO), can be expressed as:

ELBO = E log p x z −KL q z x p z , 16 5

where x is the input data, z is the latent variable, p(x z) is the likelihood of the data
given the latent variable, q(z x) is the approximate posterior distribution over the
latent variable given the data, and p(z) is the prior distribution over the latent var-
iable. The first term in the ELBO is the reconstruction loss, which encourages the
decoder to reconstruct the input data accurately. The second term is the KL diver-
gence between the approximate posterior and the prior distribution, which
encourages the encoder to learn a distribution over the latent variables that is close
to the prior distribution. The general architecture of VAE is shown in Figure 16.10.
During training, the VAE samples from the approximate posterior distribution

over the latent variable to generate a latent code z for each input data point. The
decoder then generates a reconstruction of the input data using this latent code. By
minimizing the ELBO, the VAE learns to map input data to a lower-dimensional
latent space that captures the underlying structure of the data. This latent space
can be used to generate new data points by sampling from the prior distribution
and passing the samples through the decoder.
The loss function of VAEs consists of two parts: the reconstruction loss and the

regularization loss. The reconstruction loss measures the difference between the
original input data and the reconstructed data generated by the decoder. The reg-
ularization loss, also known as the Kullback-Leibler (KL) divergence, measures
the difference between the distribution of the latent space and a predefined prior

348 16 Deep Learning

distribution, usually a standard Gaussian distribution. The total loss function of
VAEs is given by:

L = Lrec + Lreg, 16 6

where Lrec is the reconstruction loss and Lreg is the regularization loss. The recon-
struction loss is calculated using the mean squared error (MSE) between the
original input data and the reconstructed data:

Lrec =
1
N

x− x 2, 16 7

where N is the number of data points, x is the original input data, and x is the
reconstructed data generated by the decoder. The regularization loss is calculated
using the KL divergence between the distribution of the latent space and the prior
distribution:

Lreg = − 0 5 1 + log 2 σ2 − μ2 − σ2, 16 8

where μ and σ are the mean and standard deviation of the distribution of the latent
space, respectively. The final objective of VAEs is to minimize the total loss func-
tion L with respect to the weights of the encoder and decoder networks, using

Encoder Random sample
Latent
space

Decoder

Diagonal
multivariate

Gaussian

Input data Mean, variance

μ1

μ2

σ1
2

σ2
2

Encoded data Reconstructed data

Figure 16.10 The general architecture of variational autoencoders.

16.2 Methods of Deep Learning 349

stochastic gradient descent (SGD) or other optimization algorithms. In summary,
VAEs are a type of generative model that can learn a low-dimensional represen-
tation of high-dimensional data. VAEs use a probabilistic approach to learning the
latent space and minimize a loss function that includes both reconstruction loss
and regularization loss.
Cybernetically, Variational Autoencoders (VAEs) are used to learn a com-

pressed representation of input data that can be used for data generation and
reconstruction. The process starts with an encoder network that maps the input
data to a lower-dimensional latent space representation. This latent space is
defined by a probability distribution learned during training, which is typically
a Gaussian distribution. The VAE then uses this probability distribution to gener-
ate new data points by sampling from the latent space and decoding them back
into the original input space using a decoder network. By sampling from this prob-
ability distribution, the VAE is able to generate new data points that are similar but
not identical to the original input data. One of the key benefits of VAEs in cyber-
netic intelligence is their ability to perform unsupervised learning. This means that
VAEs can learn useful features and representations of data without requiring
labeled examples. This makes VAEs particularly useful in applications where
labeled data is scarce or expensive to obtain. Another benefit of VAEs is that they
can be used for data compression and reconstruction. By learning a compressed
representation of the input data, VAEs can store and transmit data more effi-
ciently, reducing storage costs and improving processing efficiency.

16.2.6 Transformer Models

Transformer models are a type of neural network architecture that have gained
popularity in natural language processing tasks such as language translation, lan-
guage modeling, and text generation. () First introduced the Transformer in the
paper “Attention Is All You Need.”
The Transformer consists of two main components: the encoder and the

decoder. Both the encoder and the decoder are composed of a series of identical
layers. The encoder takes an input sequence of tokens and produces a sequence
of hidden states. Each token is first embedded into a vector representation and
then passed through multiple layers of self-attention and feed-forward neural net-
works. The self-attention mechanism allows each token to attend to all other
tokens in the sequence and compute a weighted sum of their representations, cap-
turing the importance of each token for the current token.
The decoder takes the encoder’s output and produces an output sequence of

tokens. At each step, the decoder attends to the encoder’s output and the previ-
ously generated tokens to produce a new hidden state. The new hidden state is
then used to generate a probability distribution over the vocabulary of possible

350 16 Deep Learning

tokens, from which the next token is sampled. The overall architecture of trans-
former encoder is shown in Figure 16.11.
The feed-forward neural network consists of two linear transformations with a

ReLU activation function in between:

FFN x = ReLU xw1 + b1 w2 + b2FFN x = ReLU xw1 + b1 w2 + b2,

16 9

where x is the input vector, w1 and w2 are weight matrices, b1 and b2 are bias vec-
tors, and ReLU(x) = max(0, x) is the rectified linear unit activation function. The
Transformer model also includes positional encoding to provide information
about the position of each token in the sequence. The positional encoding is added
to the token embeddings before being passed to the encoder and decoder layers.
Transformer models are a type of neural network used in cybernetic intelligence

that were first introduced in the field of natural language processing (NLP). The
Transformer architecture was designed to address some of the limitations of tra-
ditional recurrent neural networks (RNNs), which can struggle with long-term
dependencies. One of the key benefits of Transformer models in cybernetic intel-
ligence is their ability to process large amounts of data in parallel, making them
much faster and more efficient than traditional RNNs. This has enabled research-
ers to train and deploy larger, more complex models that can handle increasingly
complex tasks. Overall, Transformer models have had a significant impact on the
field of cybernetic intelligence and have enabled major advances in many

Add and normalize
Linear

Softmax

Feed forward Feed forward
DECODER #2

E
N

C
O

D
E

R
 #

2
E

N
C

O
D

E
R

 #
1

Add and normalize
Add and normalize

Self-attention

Feed forward Feed forward

D
E

C
O

D
E

R
 #

1

Add and normalizeAdd and normalize

Feed forward Feed forward

Encoder-decoder attention

Add and normalizeAdd and normalize

Self-attention Self-attention

POSITIONAL
ENCODING

x1 x2

Thinking Machines

Figure 16.11 The overall architecture of transformer encoder.

16.2 Methods of Deep Learning 351

applications, particularly in natural language processing. As research continues to
evolve, it is likely that one will see further innovations and new applications for
these powerful models.

16.2.7 Attention-Based Models

Attention-based models are deep neural network models that can effectively han-
dle the task of sequential processing. These models use attention mechanisms to
dynamically weigh the importance of different input features while processing a
sequence, allowing them to selectively focus on the most relevant information.
This makes attention-based models particularly useful in applications such as
machine translation, speech recognition, and natural language processing. Given
a sequence of input vectors x = (x1, x2, …, xn), and a target vector y, the goal is to
compute a context vector c that captures the most relevant information from the
input sequence for predicting the target vector. The attention mechanism com-
putes the context vector as a weighted sum of the input vectors:

c =
i

aixi, 16 10

where ai is the attention weight assigned to the ith input vector. The attention
weight ai is computed as a function of the target vector y and the ith input vector
xi:

ai = softmax f y, xi , 16 11

where softmax is the softmax function that ensures that the attention weights sum
to one, and f is a function that maps the target vector and the input vector to a
scalar value. The basic architecture of attention based models is shown in
Figure 16.12.
One common type of attention-based model is the self-attention mechanism

used in Transformer models. The self-attention mechanism allows the model to
compute the attention weights for all input vectors simultaneously, based on their
pairwise similarities. This is achieved by computing a score for each pair of input
vectors using a learned matrix of parameters, and then normalizing the scores
using the softmax function. The normalized scores serve as the attention weights
for each input vector. The self-attention mechanism can be represented mathe-
matically as follows:
Given a sequence of input vectors X = (x1, x2, …, xn), the self-attention mechan-

ism computes a new sequence of output vectors Y = (y1, y2, …, yn), where each out-
put vector yi is a weighted sum of the input vectors:

yi =
j

aij xj, 16 12

352 16 Deep Learning

where aij is the attention weight assigned to the jth input vector for computing the
ith output vector. The attention weight aij is computed as follows:

a i,j = softmax
eij
dk

, 16 13

where eij is the score assigned to the jth input vector for computing the ith output
vector, and dk is the dimensionality of the query and key vectors used to compute
the score. The score eij is computed as the dot product of the query vector qi and the
key vector kj

eij = qi kj, 16 14

where qi and kj are learned linear transformations of the input vectors xi and xj,
respectively.
Overall, attention-based models provide a powerful and flexible mechanism for

handling sequential processing tasks by selectively focusing on the most relevant
input features. The self-attention mechanism used in Transformer models has
been particularly effective in a wide range of natural language processing tasks,
and has become a widely adopted technique in the field.
Attention-based models are a type of neural network used in cybernetic intelli-

gence that allow the model to selectively focus on specific parts of the input data
when making predictions. This is achieved through the use of an attention mech-
anism, which assigns weights to different parts of the input data based on their
relevance to the task at hand.

Add and norm Linear

Feed
forward

Add and norm

MatMul
Concatenate

Add and norm

Feed
forward h × heads Softmax

Multi head
attention Scaled dot-product Attention

N×
Add and norm Scale

Add and norm
Multi head
attention Linear Linear Linear MatMulMasked multi

head attention

Positional
encoding Q QK KV VPositional

encoding

Input
embedding

Output
embedding

Figure 16.12 The basic architecture of attention based models.

16.2 Methods of Deep Learning 353

The key benefit of attention-based models in cybernetic intelligence is their abil-
ity to handle long-term dependencies and capture complex patterns in the data.
This makes them particularly useful in applications such as natural language pro-
cessing (NLP) and computer vision, where sequences of data can be very long and
complex. One of the most well-known attention-based models in cybernetic intel-
ligence is the Transformer architecture, which was introduced in 2017 and has
been highly successful in NLP tasks. The Transformer uses self-attention mechan-
isms to enable the model to weigh the importance of different parts of the input
sequence, allowing it to process long sequences of data muchmore efficiently than
traditional recurrent neural networks (RNNs).

16.2.8 Meta-Learning Models

Meta-learning models, also known as learning-to-learn models, aim to learn a
learning algorithm that can generalize well to new tasks with minimal training.
These models leverage prior knowledge gained from previous related tasks to
quickly adapt and learn new tasks with limited training data. Meta-learning mod-
els can be divided into two main categories: model-based and optimization-based
meta-learning.
Model-based meta-learning models learn a model of the learning process, such

as a recurrent neural network (RNN), that can effectively capture and generalize
patterns in the data across different tasks. The model is trained on a meta-training
dataset that consists of multiple related tasks, and its weights are optimized tomin-
imize the loss across all tasks. During meta-testing, the learned model is used to
adapt to a new task with limited training data.
Optimization-based meta-learning models learn an optimization algorithm that

can quickly adapt to a new task. These models aim to find a set of initialization
parameters that can be fine-tuned quickly to achieve good performance on a
new task. The model is trained on a meta-training dataset by optimizing the ini-
tialization parameters to minimize the loss on a small subset of the training data.
During meta-testing, the learned optimization algorithm is used to fine-tune the
initialization parameters for the new task.
One popular type of meta-learning model is the Model-Agnostic Meta-Learning

(MAML) algorithm, which is an optimization-based approach. MAML learns a
good initialization point that can be fine-tuned to a new task quickly. The goal
is to optimize the initialization point such that it performs well on a small subset
of the training data from each task. The optimization is done by minimizing the
average loss across all tasks. Consider D be the set of tasks, with each task d con-
sisting of a training set Sd and a test set Td. Let fθ be a neural network with para-
meters θ, and L be a loss function. MAML aims to learn an initialization point θ

354 16 Deep Learning

such that, after one or a few gradient updates on the training set of a new task d, the
model can achieve good performance on the test set of that task.
The MAML algorithm consists of two loops: an outer loop and an inner loop. In

the outer loop, the initialization point θ is optimized to minimize the loss on the
test sets of all tasks inD. In the inner loop, the model is fine-tuned to a new task by
taking one or a few gradient steps on the training set of that task. The MAML
update rule for the outer loop can be formalized as:

θ = θ− α∇θ
1
N

N

i = 1

L Ti, f θi , 16 15

where θ is the initial parameter vector of the model, θ is the updated parameter
vector of the model, α is the meta-learning rate, which determines the step size of
the update in the outer loop N is the number of tasks in the meta-training set, Ti is
the training set of task I, f θi is the fine-tuned model on task I, and L is the loss

function used to evaluate the model’s performance on the task-specific validation
set. In the inner loop, the model is fine-tuned to a new task by taking one or a few
gradient steps on the training set of that task, which can be formalized as:

θ = θ − β∇θ L f θ Sd ,Td , 16 16

where β is the fine-tuning learning rate, and θ is the updated parameters after
fine-tuning. The updated initialization point θ is used for the next task, and
the process repeats. Another common approach to meta-learning is the use of gra-
dient-based optimization methods such as MAML, which learns a good initializa-
tion point for the model’s parameters that can be quickly adapted to new tasks
with few gradient updates. MAML involves first training a model on a distribution
of tasks, then fine-tuning the model on a specific task by taking a small number of
gradient steps with respect to the task-specific loss.
Meta-learning models can be used for a wide variety of applications, including

few-shot learning, reinforcement learning, and natural language processing. They
have shown promising results in situations where data is scarce or expensive to
collect, and they hold great potential for enabling more efficient and adaptive
learning in complex real-world settings. The math equations used in meta-
learning models can vary depending on the specific approach being used. For
example, in the case of MAML, the meta-learning process can be formulated as
follows:

• Initialize model parameters theta with some initial values

• Sample a batch of tasks T from some distribution p(T)

• For each task i in T: a. Compute a few gradient steps to obtain a new set of para-
meters θaib. Evaluate the performance of the new parameters on a validation set

16.2 Methods of Deep Learning 355

• Compute the meta-objective as the average loss across all tasks on the valida-
tion set

• Compute the meta-gradient of the meta-objective with respect to θ

• Update the parameters theta using the meta-gradient

• In this formulation, the meta-objective is the average loss across all tasks on the
validation set, which measures how well the model is able to generalize to new
tasks. Themeta-gradient is computed using the chain rule of differentiation, and
it provides information about how to update the model parameters to improve
performance on future tasks.

Overall, meta-learning models offer a promising approach to improve the gen-
eralization and adaptation of machine learning algorithms, especially in scenarios
with limited training data.
In cybernetic intelligence, meta-learning is a technique that allows models to

learn how to quickly adapt to new tasks withminimal training data. This approach
is particularly useful in scenarios where there is limited labeled data available or
when the model needs to adapt quickly to changes in the data distribution. Meta-
learning can be applied in several ways in cybernetic intelligence. For example:

• Few-shot learning: In few-shot learning, the goal is to classify objects or perform
other tasks with very few labeled examples. Meta-learning can be used to train a
model to quickly adapt to new tasks with only a small amount of labeled data.

• Reinforcement learning: In reinforcement learning, the agent learns from inter-
acting with the environment and receiving rewards for certain actions. Meta-
learning can be used to help the agent learn more quickly and efficiently by
adapting to new environments and tasks.

• Transfer learning: In transfer learning, knowledge learned from one task is
transferred to another related task. Meta-learning can be used to optimize the
transferability of the learned knowledge between tasks, allowing the model to
adapt more quickly to new tasks.

• Hyper parameter tuning: Meta-learning can be used to optimize hyper para-
meters across different tasks, resulting in better performance overall.

The key advantage of meta-learning in cybernetic intelligence is its ability to
accelerate the learning process and reduce the need for large amounts of labeled
data. This makes it a powerful technique in domains where data is scarce, expen-
sive to obtain, or rapidly changing. As research in meta-learning continues, one
are likely to see further innovations and applications in cybernetic intelligence,
including the development of more sophisticated meta-learning algorithms and
the integration of meta-learning with other AI techniques like deep learning
and reinforcement learning.

356 16 Deep Learning

16.2.9 Capsule Networks

Capsule Networks, also known as CapsNets, are a type of neural network archi-
tecture that aim to overcome the limitations of traditional convolutional neural
networks (CNNs) in handling hierarchical relationships between features. The
concept of CapsNets was introduced in a 2017 (). Capsule Networks represent
objects in the form of “capsules,” which are groups of neurons that encode differ-
ent properties of an object, such as its pose, deformation, and texture as shown in
Figure 16.13. These capsules are arranged in a hierarchical structure, where lower-
level capsules represent features that are more primitive and higher-level capsules
represent objects that are more complex.
The output of a capsule is a vector that represents the probability that the object

represented by that capsule is present in the input. The length of this vector
encodes the probability of the presence of the object, while the orientation of
the vector encodes the pose or transformation of the object. The main equations
used in Capsule Networks are:

• Prediction: The prediction of a capsule j for the presence of an object is calcu-
lated as the weighted sum of the predictions of all the capsules i in the lower
layer, where the weight is given by the coupling coefficient cij.

sj =
i

cij ai, 16 17

where sj is the output of capsule j, ai is the output of capsule i in the lower layer,
and cij is the coupling coefficient between capsules i and j.

Block 1 Block 2 Block 3

GNN Primary capsules Graph capsules Class capsules

hP–1CL–1
ZL–1

ZL

CL

hP–2

h2Z2

Z1

X0(Z0)
C0

C1

C2

d

d

N

Cl∑
l

N

h1

h0

CK–1

C1

C0

Attention
+

Routing Routing

Figure 16.13 Generic architecture of capsule network.

16.2 Methods of Deep Learning 357

• Routing: The coupling coefficients are calculated based on the agreement
between the prediction of capsule i and the output of capsule j. The coupling
coefficients are updated through a dynamic routing algorithm that iteratively
adjusts the weights to ensure that capsules with similar predictions are coupled
together.

cij = softmax bij , 16 18

where bij is the log prior probability that capsule i should be coupled with capsule j.
Capsule Networks have shown promising results in several tasks, including

image classification, object detection, and natural language processing. They offer
a novel approach to modeling hierarchical relationships between features and
have the potential to improve the interpretability and robustness of deep learning
models.

16.3 Deep Learning Frameworks

Deep learning frameworks are software libraries that allow developers to build and
train deep neural networks. They provide a set of high-level APIs for defining the
network architecture, configuring the training process, and deploying themodel to
production. Deep learning frameworks are designed to be highly scalable and effi-
cient, making it possible to train and deploy large-scale models on clusters of GPUs
or CPUs.
Some of the most popular deep learning frameworks include TensorFlow,

PyTorch, Keras, Caffe, and Theano. Each of these frameworks has its unique fea-
tures and strengths, and developers can choose the one that best fits their needs.
TensorFlow is an open-source deep learning framework developed by Google. It
provides a wide range of tools and APIs for building and training deep neural net-
works, including support for both CPU and GPU acceleration. TensorFlow also
includes support for distributed training, making it easy to train large-scale models
on clusters of machines. PyTorch is another popular open-source deep learning
framework, developed by Facebook. It provides a dynamic computational graph,
which makes it easy to define and modify the network architecture during train-
ing. PyTorch also provides a seamless integration with Python, making it easy to
use with other scientific computing libraries such as NumPy and SciPy.

• Keras is a high-level neural network API written in Python, which runs on top of
TensorFlow, Theano, or CNTK. It provides a simple and easy-to-use interface for
building and training deep neural networks, making it a popular choice for
beginners.

358 16 Deep Learning

• Caffe is a deep learning framework developed by Berkeley Vision and Learning
Center. It is optimized for image classification tasks and provides a C++ API,
making it a popular choice for real-time image processing applications.

• Theano is a deep learning framework developed by the Montreal Institute for
Learning Algorithms (MILA). It provides a low-level Python API for building
and training deep neural networks, making it a popular choice for researchers
whowant fine-grained control over the network architecture and training process.

Overall, deep learning frameworks are essential tools for developing and deploy-
ing deep neural networks in various applications, including cybernetical intelli-
gent control systems. Deep learning frameworks are increasingly used in
cybernetical intelligent control applications to design and implement complex
neural network models. These frameworks provide a high-level programming
interface that enables the user to define and train complex neural network archi-
tectures easily.
For example, TensorFlow is a widely used deep learning framework that provides

an open-source library for numerical computation and data flow graphs. Tensor-
Flow allows the user to define a computational graph, which represents a series
of operations that need to be executed on the data. The framework automatically
performs backpropagation to compute the gradients of the operations in the graph,
allowing for efficient optimization of the neural network model. Another popular
deep learning framework is PyTorch, which provides a dynamic computation graph
that allows for easier debugging and faster prototyping of neural network models.
PyTorch is particularly well-suited for applications that require dynamic control
flow, such as recurrent neural networks and generative models.
Keras is another widely used deep learning framework that provides a high-level

interface for building and training neural network models. Keras is built on top of
TensorFlow and allows for rapid prototyping of neural network models with min-
imal coding. Keras provides a wide range of pre-built layers and loss functions,
making it easier for the user to define complex neural network architectures. In
cybernetical intelligent control applications, deep learning frameworks are used
to design and train complex neural network models for tasks such as control, pre-
diction, and classification. These models can then be integrated into a cybernetical
control system to provide intelligent and adaptive control of the system.

16.4 Applications of Deep Learning

Deep learning has been widely applied in cybernetical intelligent control systems
to improve the accuracy, efficiency, and adaptability of various control tasks. Deep
learning is a powerful technique in the field of cybernetic intelligence that has

16.4 Applications of Deep Learning 359

numerous applications across various domains. One of the most significant appli-
cation areas of deep learning is computer vision. Deep learning is widely used in
computer vision applications, such as object detection, image recognition, and
video analysis. For example, convolutional neural networks (CNNs) can be trained
to detect objects in images or videos, while generative adversarial networks
(GANs) can be used for tasks like image synthesis. Another important area where
deep learning is applied in cybernetic intelligence is natural language processing
(NLP). Deep learning is used in NLP applications, such as sentiment analysis, text
classification, and machine translation. Recurrent neural networks (RNNs), long
short-term memory (LSTM) networks, and transformers are commonly used
architectures for these tasks. Deep learning is used in cybersecurity applications
to detect threats and anomalies in network traffic and user behavior. This includes
tasks such as intrusion detection, malware detection, and fraud detection. Finally,
deep learning is used in autonomous vehicle applications to enable vehicles to per-
ceive their surroundings andmake decisions. Deep neural networks can be used to
detect objects on the road and predict their trajectories. Overall, deep learning is a
versatile technique in cybernetic intelligence with a wide range of applications. As
research continues in this field, one are likely to see further advances and innova-
tions that will enable even more applications of deep learning in cybernetic
intelligence.
Some of the applications of deep learning in cybernetical intelligent control

include:

16.4.1 Object Detection

Object detection and recognition is a fundamental task in computer vision and has
numerous applications in cybernetical intelligent control. Deep learning
approaches have shown significant improvement in this task over traditional com-
puter vision techniques.
Convolutional Neural Networks (CNNs) are widely used for object detection and

recognition tasks in deep learning. These models can learn to identify different
objects in images by analyzing their visual features. The model takes an image
as input and produces an output that includes the object class and the location
of the object in the image.
Themost commonly used approach for object detection is the region-based CNN

(R-CNN) family of algorithms. R-CNN performs object detection by first generat-
ing region proposals using an algorithm such as selective search. These regions are
then passed through a CNN to extract features, and a classifier is trained to identify
the object within the region.
Faster R-CNN is an extension of R-CNN that uses a single deep network for gen-

erating region proposals and identifying objects. This approach combines the

360 16 Deep Learning

region proposal network (RPN) and the Fast R-CNN network to achieve real-time
object detection.
Another popular approach for object detection and recognition is You Only

Look Once (YOLO). YOLO divides an image into a grid of cells and predicts
bounding boxes and class probabilities for each cell. The network is trained
end-to-end to optimize detection performance.
Object detection and recognition have numerous applications in cybernetical

intelligent control, including autonomous vehicles, robotics, and security systems.
For example, in autonomous vehicles, object detection is used to identify other
vehicles, pedestrians, and obstacles on the road to ensure safe driving. In robotics,
object detection is used for object manipulation, object recognition, and scene
understanding. In security systems, object detection is used for surveillance and
threat detection.

16.4.2 Intelligent Power Systems

Intelligent control using deep learning has been applied in various domains,
including power systems. Power systems are complex networks that require effi-
cient control to ensure safe and reliable operation. Deep learning techniques can
help to improve the performance of power systems by providingmore accurate and
efficient control.
One of the significant applications of deep learning in power systems is in the

area of fault detection and diagnosis. Faults can occur in power systems due to
various reasons, including equipment failure, weather conditions, or human error.
Early detection and diagnosis of faults are critical to prevent system failures and
ensure safe and reliable operation.
Deep learning algorithms such as Convolutional Neural Networks (CNNs) and

Recurrent Neural Networks (RNNs) can be used to analyze the data collected from
power systems and detect faults accurately. CNNs can be used to analyze the data
from sensors such as current and voltage sensors to detect abnormal patterns,
while RNNs can be used to detect temporal patterns in the data.
Another application of deep learning in power systems is in the area of load fore-

casting. Load forecasting involves predicting the future demand for electricity,
which is essential for power system planning and operation. Deep learning algo-
rithms such as Long Short-TermMemory (LSTM) networks can be used to forecast
the load accurately based on historical data and external factors such as weather
conditions and time of day.
Overall, deep learning techniques have shown promising results in improving

the performance and efficiency of power systems. By providing accurate and effi-
cient control, deep learning can help to ensure safe and reliable operation of power
systems.

16.4 Applications of Deep Learning 361

16.4.3 Intelligent Control

Deep learning has various applications in intelligent control, and it can be used to
improve efficiency, productivity, and safety in industrial processes. Here are some
of the examples of how deep learning can be used in industrial intelligent control:

• Predictive maintenance: Deep learning models can analyze sensor data from
machines and predict when they are likely to fail, allowing for proactive main-
tenance and reducing downtime.

• Quality control: Deep learningmodels can be trained on images of defective pro-
ducts to recognize patterns and identify defects quickly, reducing the time and
cost of manual inspection.

• Process optimization: Deep learning models can analyze large amounts of data
from industrial processes to identify patterns and optimize production para-
meters, improving efficiency and reducing waste.

• Supply chainmanagement: Deep learningmodels can analyze supply chain data
to identify bottlenecks and inefficiencies, allowing for more efficient and cost-
effective supply chain management.

• Robotics and automation: Deep learning models can be used to train robots to
perform complex tasks, such as picking and placing objects, improving the effi-
ciency and safety of industrial processes.

Deep learning is closely linked to cybernetics, the study of control and communi-
cation in living organisms and machines. Both fields aim to understand and model
complex systems, and use feedback loops to improve their performance over time. In
the context of deep learning, intelligent control involves using algorithms to learn
from data and improve the accuracy and efficiency of decision-making processes.
This can be applied to a wide range of applications, including image and speech rec-
ognition, natural language processing, and robotics. By integrating deep learning
with cybernetics principles, researchers are able to develop intelligent systems that
can adapt and evolve in response to changing environments and input. Ultimately,
this can lead to more efficient and effective solutions in areas such as autonomous
vehicles, medical diagnosis, and predictive maintenance. Overall, the use of deep
learning in industrial intelligent control can lead to significant improvements in effi-
ciency, safety, and cost-effectiveness in various industrial applications.

Summary

This chapter covered the concept of deep learning and its applications in the field
of intelligent control. It started with an overview of deep learning and its various
methods, including Convolutional Neural Networks, Recurrent Neural Networks,

362 16 Deep Learning

Generative Adversarial Networks, and Deep Belief Networks. It also discussed the
various deep learning frameworks and their applications in cybernetical intelli-
gent control. Furthermore, the chapter explored the different applications of deep
learning in intelligent control, including object detection and recognition, power
systems control, and industrial control. The use of deep learning in these areas can
help to enhance automation, improve efficiency, and optimize the control of com-
plex systems. Overall, deep learning has become an essential tool in the field of
intelligent control, and its continued development and integration with control
systems will lead to more advanced and effective control solutions in various
applications.
As deep learning continues to evolve and mature, it is likely to become an even

more integral part of cybernetical intelligent control systems. Advancements in
deep learning frameworks, such as the development of more efficient algorithms
and hardware, will further improve the performance and capabilities of deep
learning-based systems. Additionally, as more data becomes available and the
amount of computational power continues to increase, the potential applications
of deep learning in intelligent control will expand. However, challenges such as
ethical considerations, data privacy concerns, and the need for explainable AI will
need to be addressed in order to ensure that deep learning-based systems are devel-
oped and deployed responsibly. Overall, the future of deep learning in cybernetical
intelligent control looks promising, and it is expected to play a critical role in
advancing automation, robotics, and other fields.

Exercise Questions

Q.16.1 What are some of the potential ethical concerns around the use of deep
learning in intelligent control systems?

Q.16.2 How does the transformer architecture use attention to improve natural
language processing tasks?

Q.16.3 How can deep learning be applied to improve the efficiency and safety of
industrial processes?

Q.16.4 What are some of the challenges involved in integrating deep learning
into cybernetical intelligent control systems?

Q.16.5 How can deep learning be used to improve the reliability and security of
power systems?

Exercise Questions 363

Q.16.6 Explain the role of transfer learning in deep learning for intelligent con-
trol systems?

Q.16.7 What is the role of regularization in encoder training, and how can one
choose an appropriate regularization method?

Q.16.8 Based on the following Equation,

Δwij = − η
∂E
∂wij

How does the learning rate (η) affect the weight update in the back-
propagation algorithm?

Q.16.9 In what ways can deep learning be used to improve cybersecurity?

Q.16.10 How can one mitigate the problem of catastrophic forgetting during
transfer learning?

Q.16.11 Explain how transfer learning can be applied to unsupervised learn-
ing tasks?

Q.16.12 Below is the equation of softmax is given, how does it convert the output
logits into probabilities for multi-class classification?

softmax zi =
ezi
K
J = 1e

z
J

References

1 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł,
Polosukhin I. Attention is all you need. Advances in Neural Information Processing

Systems. 2017;30:6000–10.
2 Jordan MI, Kearns MJ, Solla SA, editors. Advances in neural information processing

systems 10: proceedings of the 1997 conference. Mit Press; 1998.

364 16 Deep Learning

Further Reading

Arora A, Corchado JM. Face detection and recognition, face emotion recognition
through NVIDIA jetson nano. In Ambient Intelligence–Software and Applications:
11th International Symposium on Ambient Intelligence 2020 Sep 9 (Vol. 1239,
p. 177). Springer Nature.

Bryson AE. Applied optimal control: optimization, estimation and control. CRC
Press; 1975.

Chorowski JK, Bahdanau D, Serdyuk D, Cho K, Bengio Y. Attention-based models for
speech recognition. Advances in Neural Information Processing Systems.
2015;28:577–585.

Stanko I. The architectures of Geoffrey Hinton. In Guide to deep learning basics: logical,

historical and philosophical perspectives; 2020 Jan 24; pp. 79–92. Cham: Springer
International Publishing.

Further Reading 365

17

Neural Architecture Search

Neural Architecture Search (NAS) is an automated approach for finding the best
neural network architecture for a given task. The idea is to use machine learning
algorithms to automatically search through a large space of possible architectures
and identify the one that performs the best on a given dataset. The general
approach to NAS involves the following steps:

• Define the search space: The first step is to define the space of possible neural net-
work architectures. This can include the types of layers, the number of layers, the
number of nodes in each layer, and any other architectural parameters that may
be relevant.

• Generate candidate architectures: Next, the algorithm generates a set of candidate
architectures to evaluate. This can be done randomly or using a more sophisti-
cated approach, such as Bayesian optimization or evolutionary algorithms.

• Train and evaluate the candidate architectures: Each candidate architecture is
trained on the training dataset and evaluated on the validation dataset. The per-
formance metrics, such as accuracy or loss, are recorded for each architecture.

• Update the search space: Based on the performance of the candidate architec-
tures, the search space is updated to include the architectures that per-
formed well.

• Repeat the process: The above steps are repeated until a stopping criterion is
met, such as a specified number of iterations or a convergence of the perfor-
mance metric.

There are several variations of the NAS approach, including:

• Reinforcement learning-based NAS: This approach treats the search for the opti-
mal architecture as a Markov decision process and uses reinforcement learning
to guide the search process.

367

Cybernetical Intelligence: Engineering Cybernetics with Machine Intelligence, First Edition.
Kelvin K. L. Wong.
© 2024 The Institute of Electrical and Electronics Engineers, Inc.
Published 2024 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/cyberintel

• Evolutionary algorithms-based NAS: This approach uses evolutionary algo-
rithms, such as genetic algorithms or differential evolution, to search for the best
architecture.

• Gradient-based NAS: This approach uses gradient descent to optimize the
architecture directly.

NAS has become an active area of research, withmany variations and extensions
being proposed. It has the potential to automate the tedious and time-consuming
process of manual neural network architecture design, allowing researchers to
focus on higher-level tasks such as model interpretation and analysis. Neural
Architecture Search (NAS) can be applied in the context of cybernetical control
intelligent systems to optimize the architecture of the neural network used for con-
trol. In a cybernetical control system, a neural network is used to control a process
based on input data and output feedback. The performance of the system depends
heavily on the architecture of the neural network. However, designing an optimal
architecture manually can be a challenging and time-consuming task. NAS can
automate the process of designing the optimal neural network architecture for
a cybernetical control system. The general approach to NAS is to define a search
space of possible architectures, generate candidate architectures, train and evalu-
ate them, update the search space based on performance, and repeat the process
until a satisfactory architecture is found. The generic working of NAS is shown in
Figure 17.1.
For instance X be the input data, and Y be the output data. Let W be a matrix of
weights that govern the connections between the nodes in the network, and let b
be a vector of biases that are added to the outputs of each node. For a single layer of
the network, the output can be calculated as shown in Equation (17.1).

Y = f WX + b , 17 1

Number

of filters

Number

of filters

Filter

width

Filter

height

Stride

height

Stride

width

Number

of filters

Filter

height

Layer N–1 Layer N Layer N+1

Figure 17.1 The generic working of NAS.

368 17 Neural Architecture Search

where f is an activation function that introduces nonlinearity into the output of the
layer. Common activation functions include the sigmoid function, the rectified lin-
ear unit (ReLU) function, and the hyperbolic tangent function. The equation for a
sigmoid function is shown in Equation (17.2):

f x =
1

1 + e− x
17 2

To build a deep neural network with multiple layers, this equation can be recur-
sively applied to each layer, with the output of one layer becoming the input to the
next layer:

Y = f W 2 f W1X + b1 + b2 + b3 , 17 3

whereW1 andW2 are weight matrices for the first and second layers, b1, b2, and b3
are bias vectors, and f is the activation function. In the context of cybernetical con-
trol, the search space may include architectural parameters such as the number of
layers, the types of layers, the number of neurons in each layer, and the activation
functions. The evaluation of the candidate architectures may be based on perfor-
mance metrics such as the speed of convergence, stability of the control, or accu-
racy of the predictions. One potential challenge in applying NAS to cybernetical
control is the need for real-time control. The search and evaluation process can
be time-consuming, and a delay in control can result in unstable or ineffective con-
trol. To address this challenge, specialized hardware such as Field Programmable
Gate Arrays (FPGAs) can be used to accelerate the search and evaluation process.
Overall, NAS can be a powerful tool for optimizing the neural network architec-

ture used in cybernetical control systems. By automating the architecture design
process, it can improve the performance and efficiency of the system and allow
researchers to focus on higher-level tasks such as model interpretation and
analysis.

17.1 Neural Architecture Search and Neural Network

Neural network and Neural Architecture Search (NAS) are closely related as NAS
is used to automatically search for and optimize neural network architectures for a
given task. Neural networks are a type of machine learning model that is inspired
by the structure and function of the human brain. They are composed of multiple
layers of interconnected nodes or neurons, which can learn and generalize

17.1 Neural Architecture Search and Neural Network 369

patterns from the data. Traditionally, the architecture of neural networks has been
manually designed and optimized by human experts. However, this process is
time-consuming, expensive, and often limited in its ability to explore the vast space
of possible architectures. This is where NAS comes in—it uses machine learning
algorithms to automate the process of designing neural network architectures,
making it faster, more efficient, and more effective.
NAS algorithms search for optimal neural network architectures by exploring

the space of possible architectures using search algorithms such as evolutionary
algorithms, reinforcement learning, Bayesian optimization, gradient-based opti-
mization, or meta-learning. These algorithms evaluate the performance of each
architecture by training and testing the network on a given task, and then selecting
the best-performing architectures based on some optimization criteria. Once the
optimal architecture is found, the network is trained using standard backpropaga-
tion algorithms to learn the weights and biases of the neural network. The trained
neural network can then be used to perform the task it was designed for, such as
image classification, speech recognition, or control tasks in cybernetical intelligent
systems.
Traditionally, the design of control systems has relied on expert knowledge and

trial-and-error methods to determine the optimal architecture for a given task or
environment. However, this approach can be time-consuming and costly, andmay
not always result in the most effective system. NAS, on the other hand, uses
machine learning techniques to automatically design neural network architec-
tures that are optimized for a specific task or environment. By using algorithms
such as reinforcement learning, evolutionary algorithms, or Bayesian optimiza-
tion, NAS can search through a space of possible architectures and find the best
one for a given task. This can greatly reduce the need for expert knowledge in net-
work design, as well as improving the efficiency and effectiveness of the resulting
control system. Furthermore, NAS can also facilitate the development of adaptive
cybernetical intelligent systems, which are able to learn and adapt to new tasks or
environments over time. This is particularly important in applications such as
robotics, autonomous vehicles, and industrial control systems, where the ability
to adapt to changing conditions is crucial for success.
In summary, neural networks and NAS are closely related and work together to

create more efficient and effective machine learning models. Neural networks pro-
vide a flexible and powerful framework for modeling complex patterns in data,
while NAS algorithms help to optimize the architecture of the neural network
to achieve better performance on a given task. Together, these tools enable us
to build more accurate, reliable, and scalable machine learning models that can
help to solve a wide range of real-world problems. Table 17.1 presents the compar-
ison of the Neural Architecture Search and Neural Networks

370 17 Neural Architecture Search

17.2 Reinforcement Learning-Based Neural
Architecture Search

Reinforcement learning-based Neural Architecture Search (NAS) is an approach
to automatically search for an optimal neural network architecture by formulating
the search process as a reinforcement learning problem. In this approach, a rein-
forcement learning agent learns to generate neural network architectures by max-
imizing the expected reward signal. The reward signal is typically a function of the
performance of the network architecture on a given task.
Let’s break down the reinforcement learning-based NAS approach into its core

components:

• State: The state in reinforcement learning-based NAS is typically represented as
a vector of features that describes the current state of the search process. For
example, the state vector might include the current architecture being evalu-
ated, the performance of the architecture on the current task, and other relevant

Table 17.1 Comparing neural architecture search and neural networks.

Feature Neural Architecture Search Neural Networks

Design
process

Automated Manual

Architecture
complexity

Large, often with many layers and
complex connections

Small, often with few layers
and simple connections

Model
performance

Generally better than manually
designed networks

Generally worse than NAS-
designed networks

Time
required

High, due to extensive search through
complex design space

Low, due to simpler design
process

Human
intervention

Limited High

Exploration
space

Large, with extensive search through
potential architectures

Small, with limited
exploration of design space

Scalability Good, as NAS can be applied to a wide
range of neural network tasks

Limited, as manual design
may be required for specific
tasks

Explainability Limited, due to the complexity of
NAS-generated architectures

Good, as human-designed
networks are often easier to
understand

Adaptability Good, as NAS can be used to generate
specialized architectures for specific
tasks

Limited, as manual redesign
may be required for new tasks

17.2 Reinforcement Learning-Based Neural Architecture Search 371

features. The state at time t is represented as a vector st, which contains relevant
information about the current architecture and the performance of the network
on the task at hand. The state vector can be defined as:

st = f at− 1, pt− 1, rt− 1 , 17 4

where at− 1 is the previous action taken, pt− 1 is the previous architecture evalu-
ated, and rt− 1 is the reward received for the previous architecture.

• Action: The action in reinforcement learning-based NAS is the generation of a
new neural network architecture. The action space typically includes a set of
architectural operations that can be applied to the current architecture, such
as adding or removing a layer, changing the activation function, or adjusting
the number of neurons in a layer. The action at time t is represented as a vector
at, which specifies the architectural operations to be applied to the previous
architecture pt− 1. The action vector can be defined as:

at = o1, o2,…, ok , 17 5

where oi is the i
th architectural operation in the action space, and k is the number of

operations in the action space.

• Reward: The reward in reinforcement learning-based NAS is a function of the
performance of the neural network architecture on the given task. The reward
function can be defined inmany ways, depending on the task at hand. For exam-
ple, the reward might be the accuracy of the network on a classification task, or
the negative mean squared error on a regression task. The reward function is a
function R(pt), which maps the performance of the network on the task to a sca-
lar reward value. The reward function can be defined in many ways depending
on the task at hand. For example, in a classification task, the rewardmight be the
accuracy of the network on the training set, while in a regression task, the
reward might be the negative mean squared error on the training set.

• Expected Reward: The expected reward of the policy π can be computed as:

J θ = Eπ R pt θ , 17 6

where Eπ denotes the expectation over the distribution of architectures generated
by the policy π. The objective of reinforcement learning-based NAS is to maximize
the expected reward over a set of training tasks.

• The policy parameters θ can be learned using gradient-based optimization tech-
niques such as policy gradient methods or actor-critic methods. The gradient of
the expected reward with respect to the policy parameters can be computed
using the policy gradient theorem as:

372 17 Neural Architecture Search

∇θ J θ = Eπ ∇θ log π at st, θ Q st, at , 17 7

where Q(st, at) is the state-action value function, which estimates the expected
reward of taking action at in state st and following the policy π. The state-action
value function can be estimated using a critic network, which is trained to mini-
mize themean squared error between the estimated and actual rewards. The actor-
critic method combines the policy gradient method with the critic network to
improve the stability of the optimization process.

• Policy: The policy in reinforcement learning-based NAS is a function that maps
the current state to a probability distribution over the actions. The policy can be
represented as a neural network, where the input is the state vector and the out-
put is a probability distribution over the architectural operations.

The objective of the reinforcement learning-based NAS approach is to find the
optimal policy that maximizes the expected reward over a set of training tasks. The
NAS implementation using reinforcement learning is shown in Figure 17.2.
The optimization problem can be solved using gradient-based optimization tech-

niques, such as policy gradient methods or actor-critic methods. The policy gradi-
ent method updates the policy parameters using the gradient of the expected
reward with respect to the policy parameters, while the actor-critic method com-
bines the policy gradient method with a critic network that estimates the value
function of the policy. In summary, reinforcement learning-based NAS is an
approach to automatically search for an optimal neural network architecture by
formulating the search process as a reinforcement learning problem. The approach
involves defining the state, action, reward, and policy components of the problem,
and optimizing the policy using gradient-based optimization techniques.

Generates an

architecture

Controller

Train

generated

architecture

Reward function

for updating the

controller

Testing and

get accuracy

Figure 17.2 NAS implementation using reinforcement learning.

17.2 Reinforcement Learning-Based Neural Architecture Search 373

17.3 Evolutionary Algorithms-Based Neural
Architecture Search

Evolutionary algorithms-based Neural Architecture Search (NAS) is a class of opti-
mization algorithms that use principles of natural selection to search for optimal
neural architectures. In evolutionary algorithms-based NAS, a population of neu-
ral architectures is iteratively evolved through a process of selection,mutation, and
crossover, with the goal of finding architectures that maximize the performance on
a given task. Here are some key equations and concepts related to Evolutionary
algorithms-based NAS:

• Encoding: The first step in Evolutionary algorithms-based NAS is to encode
the neural architectures in a format that can be used by the optimization
algorithm. A common encoding scheme is to represent the architecture as
a vector of binary or real-valued numbers, where each number corresponds
to a specific architectural decision (e.g. the number of filters in a convolu-
tional layer).

• Fitness Function: The fitness function is a function that evaluates the perfor-
mance of a neural architecture on a given task. The fitness function can be
defined in many ways depending on the task at hand. For example, in a classi-
fication task, the fitness function might be the accuracy of the network on the
training set, while in a regression task, the fitness functionmight be the negative
mean squared error on the training set. F(Ii) = The fitness function that evalu-
ates individual Ii based on some predefined criteria.

• Selection: The selection step involves choosing the fittest architectures from the
current population to produce the next generation. The selection process can be
implemented using various selection strategies, such as tournament selection or
roulette wheel selection. The fitness function is used to assign a probability of
selection to each architecture in the population.

•Mutation: Themutation step involves randomly changing the architecture of the
selected individuals to produce new architectures. The mutation process can be
implemented using various mutation operators, such as random addition or
deletion of architectural components, or random modification of existing
components.

• Crossover: The crossover step involves combining the architecture of two
selected individuals to produce new architectures. The crossover process can
be implemented using various crossover operators, such as one-point or two-
point crossover.

• Elitism: The elitism step involves preserving a small fraction of the fittest indi-
viduals from the previous generation in the next generation to ensure that the
best individuals are not lost during the evolutionary process.

374 17 Neural Architecture Search

• Fitness-based Probability: The probability of an architecture being selected for
reproduction is proportional to its fitness value. This is known as fitness-based
probability and can be expressed as:

Pi =
f i

j f j
, 17 8

where Pi is the probability of selecting architecture i, fi is the fitness value of archi-
tecture i, and jfj is the sum of fitness values over all architectures in the
population.
Fitness Function Optimization: The goal of Evolutionary algorithms-based NAS

is to optimize the fitness function over a set of training tasks. This can be achieved
by iteratively evolving the population of architectures until the fitness function
converges to an optimal solution. An example of the two types of mutations in evo-
lutionary NAS is shown in Figure 17.3.
Convergence Criteria: The convergence criteria determine when to stop the evo-

lutionary process. The convergence criteria can be based on various factors, such
as the number of generations, the fitness values of the best architectures, or the
similarity of the architectures in the population.
These equations and concepts provide a more detailed mathematical formula-

tion of Evolutionary algorithms-based NAS, which can be used to design and
implement more sophisticated NAS algorithms. A candidate architecture is a
potential solution in the search space that represents a neural network with a spe-
cific set of hyper parameters. It can be represented as a vector of values that

Operation mutation
Avg (3 × 3) Sep (3 × 3)Avg (3 × 3) Sep (3 × 3)

4 4

4 4

1 2 3 1 2 3

1 2 3 1 2 3

Avg (3 × 3) Sep (3 × 3)
Connection mutation

Avg (3 × 3) Sep (3 × 3)

Figure 17.3 An example of the two types of mutations in evolutionary NAS.

17.3 Evolutionary Algorithms-Based Neural Architecture Search 375

describe the architecture, such as the number of layers, the number of neurons per
layer, and the type of activation function used as shown in Equation (17.9).

A = h1, h2,…, hn , 17 9

where hi represents a hyper parameter for the ith layer of the network. Genetic
operators, such as mutation and crossover, are used to create new candidate archi-
tectures from existing ones in the population. Mutation involves randomly chan-
ging the value of one or more hyper parameters in the architecture, while
crossover involves combining two architectures to create a new one as shown
in Equations (17.10) and (17.11) respectively.

mutation A = mutate A 17 10

crossover A = crossover A1,A2 17 11

The selection is the process of choosing which candidate architectures will be
used to create the next generation of the population. Selection is typically based
on the fitness function, with higher fitness architectures being more likely to be
selected as shown in Equation (17.12).

A = select A1,A2,…,An 17 12

17.4 Bayesian Optimization-Based Neural Architecture
Search

Bayesian optimization-based Neural Architecture Search (NAS) is a class of opti-
mization algorithms that uses Bayesian optimization to search for optimal neural
architectures. Bayesian optimization-based NAS is particularly useful for optimiz-
ing black-box functions, such as the validation accuracy of a neural network,
where the underlying function is unknown and expensive to evaluate. Here are
some key equations and concepts related to Bayesian optimization-based NAS
and the complete workflow of Bayesian optimization is shown in Figure 17.4.

• Surrogate Model: The first step in Bayesian optimization-based NAS is to con-
struct a surrogate model that approximates the unknown function. The surro-
gate model is typically a Gaussian Process (GP) model that models the
function as a Gaussian distribution with a mean and a covariance function.

• Acquisition Function: The acquisition function is a function that quantifies the
usefulness of evaluating a point in the search space. The acquisition function is
typically defined in terms of the posterior distribution of the surrogate model
and aims to balance the exploration of new architectures with the exploitation
of promising architectures.

376 17 Neural Architecture Search

• Bayesian Optimization Loop: The Bayesian optimization loop consists of
iteratively updating the surrogate model and selecting the next architecture
to evaluate based on the acquisition function.

• Gaussian Process Regression: The Gaussian Process (GP) model is a non-
parametric regression technique that models the function as a Gaussian distri-
bution with a mean and a covariance function. The mean function represents
the expected value of the function at a given point, while the covariance function
captures the correlation between different points in the search space.

f x GP m x , k x, x , 17 13

where f (x) is the function value at point x,m(x) is the mean function, k(x, x) is the
covariance function between points x and x , and GP denotes that the function is
modeled as a Gaussian Process.

• Acquisition Functions: The acquisition function is a function that quantifies the
usefulness of evaluating a point in the search space. There are several popular
acquisition functions, such as Upper Confidence Bound (UCB), Expected

N

N

Y

Y

Begin

Initialize
the

model?

Randomly

generate points

Train Gaussian process

regression

Get the value of

x, y

Conditions

are met?

Output

Figure 17.4 Flow chart of Bayesian optimization.

17.4 Bayesian Optimization-Based Neural Architecture Search 377

Improvement (EI), and Probability of Improvement (PI). The UCB acquisition
function can be expressed as:

a x = m x + βσ x , 17 14

where a(x) is the acquisition value at point x,m(x) is the mean function at point x,
σ(x) is the standard deviation of the GPmodel at point x, and β is a hyperparameter
that balances exploration and exploitation.

• Bayesian Optimization Loop Optimization: The goal of Bayesian optimization-
based NAS is to optimize the fitness function over a set of training tasks. This can
be achieved by iteratively optimizing the acquisition function and updating the
surrogate model until the fitness function converges to an optimal solution.

• Convergence Criteria: The convergence criteria determine when to stop the
Bayesian optimization loop. The convergence criteria can be based on various
factors, such as the number of iterations, the fitness values of the best architec-
tures, or the similarity of the architectures in the search space.

These equations and concepts provide a more detailed mathematical formula-
tion of Bayesian optimization-based NAS, which can be used to design and imple-
ment more sophisticated NAS algorithms.

17.5 Gradient-Based Neural Architecture Search

Gradient-based Neural Architecture Search (NAS) is a class of optimization
algorithms that uses gradient descent to search for optimal neural architectures.
Gradient-based NAS can be used for optimizing both continuous and discrete
search spaces, and has been shown to achieve state-of-the-art performance on
various benchmark datasets. Here are some key equations and concepts related
to gradient-based NAS:

• Differentiable Architecture Search: Differentiable Architecture Search (DARTS)
is a popular gradient-based NAS algorithm that uses a continuous relaxation of
the discrete search space to enable gradient-based optimization. The DARTS
algorithm can be summarized as follows:
– Represent the search space as a directed acyclic graph (DAG)G(V, E), where V

is the set of nodes and E is the set of edges.
– Represent the architecture as a set of continuous variables α that determine

the edges and the operations between nodes.
– Define a proxy loss function L(w, α) that depends on the network weights w

and the architecture variables α.

378 17 Neural Architecture Search

– Optimize the network weights w and the architecture variables α using sto-
chastic gradient descent (SGD) with backpropagation.

• Continuous Relaxation: The key idea behind DARTS is to use a continuous
relaxation of the discrete search space to enable gradient-based optimization.
The continuous relaxation is achieved by using a softmax function to convert
the architecture variables α to a probability distribution over the possible edges
and operations. The continuous relaxation can be expressed as:

p eij =
eαij

ke
αik

, 17 15

where p(eij) is the probability of including edge eij in the DAG, αij is the architec-
ture variable corresponding to edge eij, and ke

αik is the sum of the exponentials of
all architecture variables αik that correspond to the incoming edges to node j.

• Gradient Computation: The gradient of the proxy loss function L(w, α) with
respect to the architecture variables α can be computed using the chain rule
of calculus and the continuous relaxation. The gradient can be expressed as:

dL
dαij

=
k

dL
dwk

dwk

dαij
, 17 16

where dL
dwk

is the gradient of the proxy loss function with respect to the kth weight,

and dL
dαij

is the gradient of the kthweight with respect to the architecture variable αij.

Weight Sharing: To reduce the computation cost of gradient-based NAS, DARTS
introduces weight sharing, which allows sharing the weights across different
architectures during the training process. Weight sharing is achieved by comput-
ing the gradients of the weights with respect to the architecture variables using the
validation set, and then using these gradients to update the architecture variables.
These equations and concepts provide a more detailed mathematical formulation
of gradient-based NAS, which can be used to design and implement more sophis-
ticated NAS algorithms.

17.6 One-shot Neural Architecture Search

One-shot Neural Architecture Search (NAS) is a type of NAS algorithm that is
designed to reduce the computational cost of searching for optimal neural archi-
tectures. The key idea behind One-shot NAS is to train a single “supernet” that
contains all possible architectures in the search space, and then use weight sharing

17.6 One-shot Neural Architecture Search 379

and architecture selection to identify the optimal architecture. Here are some key
equations and concepts related to One-shot NAS:

• Supernet Training: The first step in One-shot NAS is to train a supernet that con-
tains all possible architectures in the search space. The supernet is trained using
a combination of stochastic gradient descent (SGD) and weight sharing, which
allows the supernet to learn a good initialization for all possible architectures.
The supernet can be represented as follows:

f x, α =
i

wiopi x , 17 17

where f (x, α) is the output of the supernet for input x and architecture variables α,
wi are the weights of the supernet, opi(x)are the operations of the supernet, and i
ranges over all possible architectures.

• Architecture Selection: Once the supernet is trained, the next step is to select the
optimal architecture from the search space. This is done by selecting a subgraph
of the supernet that corresponds to the desired architecture, and then training
the weights of that subgraph using SGD.

•Weight Sharing: To reduce the computational cost of One-shot NAS, weight
sharing is used to share the weights of the supernet across different architec-
tures. Weight sharing is achieved by using a single set of weights for all possible
architectures, and then computing the gradients of the weights with respect to
the architecture variables during the optimization process.

• Optimization: The optimization process in One-shot NAS consists of two stages:
supernet training and architecture selection. The supernet training stage
involves training the weights of the supernet using SGD and weight sharing.
The architecture selection stage involves selecting the optimal architecture from
the search space using architecture selection and SGD.

In the context of cybernetical intelligence, One-shot NAS can be seen as a tech-
nique for automating the design of neural networks, which can help to improve
the efficiency and effectiveness of cybernetical control systems. By using One-shot
NAS, cybernetical control systems can be designed to adapt to changing environ-
ments and new data, without the need for manual reconfiguration or redesign of
the neural network architecture. This can help to improve the overall performance
and robustness of cybernetical control systems, and enable them to operate more
effectively in complex and dynamic environments. The generic architecture of
one-shot neural network is shown in Figure 17.5.
In cybernetical intelligent systems, One-shot NAS can be used to automatically

design neural network architectures that are optimized for specific control tasks.
This can help to improve the performance of cybernetical control systems, by

380 17 Neural Architecture Search

enabling them to learn more efficiently from data and adapt to changing environ-
mental conditions. By using One-shot NAS, can also reduce the time and cost
required for manual design and optimization of neural network architectures,
while ensuring that the resulting architectures are well suited to the specific con-
trol task at hand.

17.7 Meta-Learning-Based Neural Architecture Search

Meta-learning-based Neural Architecture Search (NAS) is a type of NAS algorithm
that leverages meta-learning techniques to learn a search strategy that can effi-
ciently explore the space of neural architectures as shown in Figure 17.6. The
key idea behindMeta-learning-based NAS is to use ameta-learner to learn an opti-
mization algorithm that can quickly find the optimal architecture for a given task.
Here are some key equations and concepts related to Meta-learning-based NAS:

• Meta-Learner: The first step in Meta-learning-based NAS is to train a meta-
learner that can learn an optimization algorithm for finding optimal neural
architectures. The meta-learner takes as input a set of tasks, each of which is
associated with a training set and a validation set. The meta-learner can be
represented as θ=meta_learn (D), where θ is the set of meta-parameters learned
by the meta-learner, D is the set of tasks, and meta_learn is the meta-learning
algorithm used to train the meta-learner.

Stage 2
Stage 1

Sample

measurements

Train one-shot

model (f)

Approximate

one-shot model

(g ≈ f) with

compressive

sensing

Restrict f with

minimizer of g

Figure 17.5 One-shot neural network model.

17.7 Meta-Learning-Based Neural Architecture Search 381

• Search Strategy: Once the meta-learner is trained, the next step is to use it to
learn a search strategy that can efficiently explore the space of neural architec-
tures. The search strategy is learned by optimizing the architecture variables α
using the meta-learner’s optimization algorithm.

• Optimization: The optimization process in Meta-learning-based NAS involves
two stages: meta-learning and search. During the meta-learning stage, the
meta-learner is trained on a set of tasks using a variety of optimization algo-
rithms. During the search stage, the search strategy learned by the meta-learner
is used to find the optimal architecture for a given task.

The objective of Meta-learning-based NAS is to find a neural network architec-
ture that performs well on a given task. To achieve this, there is need to define an
objective function that takes into account the performance of the network on a
validation set during the search process. The meta-learning objective function
can be written as:

Lmeta θ, Ø =
i
L Ti, θi, Ø , 17 18

where Lmeta is the meta-learning objective function, θ represents the model para-
meters that are updated during meta-training, Ø represents the hyper parameters
that are optimized during meta-training, Ti represents a task i sampled from a
distribution of tasks, θi represents the parameters of the model trained on task
I, L(Ti, θi, Ø) represents the loss on task i, which is computed using the model para-
meters θi and the hyper parameters Ø. To optimize the policy network, the meta-
learning algorithm minimizes the expected loss, which can be defined as:

L θ,ω = −E log p a θ,ω R θ , 17 19

where p(a θ, ω) is the probability distribution over actions given the architecture
parameterization θ and the policy network parameters ω, and θ is the architecture

Compute

metal loss

Update meta weights

and architecture
Meta learning of weights

and architecture

Architecture

search space Update task weights

and architecture
Task

Compute task loss

Figure 17.6 Meta learning for NAS.

382 17 Neural Architecture Search

parameterization obtained by taking the action a. To solve the optimization prob-
lem, the meta-learning algorithm uses a gradient-based approach, such as the
Reinforce algorithm, to compute the gradient of the expected loss with respect
to the policy network parameters ω. The gradient can be computed as follows:

∇ωL θ,ω = −E ∇ω log p a θ,ω R θ 17 20

The policy network parameters ω can then be updated using the gradient
descent algorithm to maximize the expected reward R(θ) by taking small steps
in the direction of the gradient.
In the context of cybernetical intelligent systems, Meta-learning-based NAS can

be used to improve the efficiency and effectiveness of neural network design and
optimization for control tasks. By leveraging meta-learning techniques, Meta-
learning-based NAS can learn a search strategy that can quickly find the optimal
architecture for a given control task, without the need for manual tuning or
intervention. This can help to reduce the time and cost required for designing
and optimizing neural network architectures for control tasks, while also improving
the overall performance and adaptability of these systems.

17.8 Neural Architecture Search for Specific Domains

Neural Architecture Search (NAS) can be used to design and optimize neural net-
works for specific domains, such as computer vision, natural language processing,
and cybernetical control. In each of these domains, the design and optimization of
neural network architectures can be challenging, requiring domain-specific
knowledge and expertise. Here are some key concepts and equations related to
NAS for specific domains:

• Domain-specific constraints: Each domain has its own specific constraints that
must be taken into account when designing and optimizing neural network
architectures. For example, in computer vision, the size of the input image
and the complexity of the object recognition task may influence the optimal
architecture. In cybernetical control, the dynamics of the control system and
the requirements for stability and performance may influence the optimal
architecture.

• Fitness function: The fitness function is used to evaluate the quality of a given
neural network architecture for a specific task in a domain. In computer vision,
the fitness function maymeasure the accuracy of object recognition on a test set.
In cybernetical control, the fitness function may measure the performance and
stability of the control system under different conditions. The fitness function
can be represented as follows:

17.8 Neural Architecture Search for Specific Domains 383

f α = fitness α,D , 17 21

where α is the architecture variable, D is the task-specific data, and fitness is the
function used to evaluate the quality of the architecture.

• Optimization: The optimization process in NAS for specific domains involves
exploring the space of possible architectures and evaluating them using the fit-
ness function. The optimization can be performed using a variety of algorithms,
including Reinforcement Learning-based NAS, Evolutionary algorithms-based
NAS, and Gradient-based NAS.

17.8.1 Cybernetical Intelligent Systems: Neural Architecture Search in
Real-World

NAS techniques can be used to address many challenges in intelligent control sys-
tems, including those related to optimization, adaptation, and robustness. By
leveraging the power of machine learning and optimization algorithms, NAS
can generate high-quality neural network architectures that can efficiently and
effectively control complex systems in a wide range of environments. The generic
overview of intelligent control is shown in Figure 17.7.
One of the key challenges in intelligent control is optimization, where the goal

is to find the optimal set of control parameters that can achieve a specific

Goal

Learning level

Expert
system

Skill level

Fuzzy ANN

Adaption level

Neuro

controller

Robot

Figure 17.7 Generic overview of intelligent
control system.

384 17 Neural Architecture Search

performance objective. NAS can be used to automatically generate neural net-
work architectures that are optimized for specific control objectives, such as
minimizing energy consumption or maximizing throughput. By leveraging
advanced optimization techniques such as RL and EA, NAS can efficiently
explore the vast space of possible neural network architectures and identify
the most effective solutions.
Another challenge in intelligent control is adaptation, where the control system

must be able to adapt to changing environmental conditions and feedback. NAS
techniques such as One-shot NAS and Meta-learning-based NAS can be used to
generate neural network architectures that are flexible and adaptable, allowing
the control system to learn and improve in real-time based on changing environ-
mental conditions and feedback. This can improve the performance and robust-
ness of the control system, as well as reduce the need for manual tuning and
adjustment. Finally, robustness is another important challenge in intelligent con-
trol systems, where the system must be able to maintain its performance and sta-
bility in the face of unexpected disturbances and uncertainties. NAS can be used to
generate robust neural network architectures that can handle a wide range of dis-
turbances and uncertainties, by leveraging techniques such as BO-based NAS and
Gradient-based NAS. These approaches can optimize the architecture to be more
robust to perturbations and uncertainties, improving the overall reliability and
stability of the control system.
In summary, NAS techniques can be a powerful tool for addressing many chal-

lenges in intelligent control systems, including optimization, adaptation, and
robustness. By generating high-quality neural network architectures that are opti-
mized, flexible, and robust, NAS can help to improve the performance, reliability,
and efficiency of intelligent control systems, making themmore effective in a wide
range of environments and applications.

17.8.2 Neural Architecture Search for Specific Cybernetical
Control Tasks

Neural Architecture Search (NAS) can be used to design and optimize neural net-
work architectures for specific cybernetical control tasks, such as robot navigation,
drone control, or autonomous vehicle control. These tasks typically involve com-
plex dynamics and uncertainties, which can make it challenging to manually
design and optimize neural network architectures. NAS can help to overcome
these challenges by automatically searching for the optimal architecture that is
well-suited to the specific task at hand. Here are some key concepts and techniques
related to NAS for specific cybernetical control tasks:

17.8 Neural Architecture Search for Specific Domains 385

• Task-specific constraints: Each cybernetical control task has its own specific con-
straints that must be taken into account when designing and optimizing neural
network architectures. For example, in robot navigation, the size of the robot
and the environment may influence the optimal architecture. In drone control,
the aerodynamics of the drone and the control objectives may influence the opti-
mal architecture. These constraints must be encoded in the search space for NAS.

• Fitness function: The fitness function is used to evaluate the quality of a given
neural network architecture for the specific cybernetical control task. The fitness
function may measure the performance of the control system, such as the speed
and accuracy of the robot navigation or the stability and precision of the drone
control. The fitness function can be represented as follows:

f α = fitness α,D , 17 22

where α is the architecture variable, D is the task-specific data, and fitness is the
function used to evaluate the quality of the architecture.

• Search space: The search space for NAS in cybernetical control tasks typically
includes various types of layers, activation functions, and connections between
the layers. The search space may also include specific types of modules or build-
ing blocks that are well-suited to the task at hand. For example, in drone control,
the search space may include modules that encode the aerodynamics and flight
dynamics of the drone.

• Optimization: The optimization process in NAS for specific cybernetical control
tasks involves exploring the space of possible architectures and evaluating them
using the fitness function. The optimization can be performed using a variety
of algorithms, including Reinforcement Learning-based NAS, Evolutionary
algorithms-based NAS, and Gradient-based NAS.

By applying NAS to specific cybernetical control tasks, researchers can design
and optimize neural network architectures that are well-suited to the specific task
and environment. This can help to improve the performance and adaptability of
cybernetical control systems, and enable them to operate more efficiently and
effectively in complex and uncertain environments. Additionally, NAS for specific
cybernetical control tasks can help to reduce the time and cost required formanual
design and optimization of neural network architectures, while ensuring that the
resulting architectures are well-suited to the task at hand.

17.8.3 Neural Architecture Search for Cybernetical Intelligent Systems
in Real-World

Neural Architecture Search (NAS) can be used to design and optimize neural net-
work architectures for cybernetical intelligent systems in real-world environments

386 17 Neural Architecture Search

with constraints and uncertainties. Real-world environments can be complex and
dynamic, with changing conditions and unforeseen events, which can make it
challenging to design and optimize neural network architectures manually.
NAS can help to overcome these challenges by automatically searching for the
optimal architecture that is well-suited to the specific environment and task. Here
are some key concepts and techniques related to NAS for cybernetical intelligent
systems in real-world environments:

• Real-world constraints: Cybernetical intelligent systems operating in real-world
environments often have constraints that must be taken into account when
designing and optimizing neural network architectures. These constraints
may include hardware limitations, power constraints, and communication
bandwidth constraints. The search space for NASmust be designed to take these
constraints into account.

• Uncertainties: Real-world environments are often characterized by uncertain-
ties, such as sensor noise, communication delays, and unpredictable events.
The neural network architecture must be designed to be robust to these uncer-
tainties and to adapt to changing conditions.

• Reinforcement learning: Reinforcement Learning-based NAS can be used to
optimize neural network architectures for cybernetical intelligent systems oper-
ating in real-world environments. Reinforcement learning involves learning a
policy that maps observations to actions based on feedback in the form of
rewards or penalties. The neural network architecture can be optimized using
reinforcement learning to maximize the reward function.

• Transfer learning: Transfer learning can be used to transfer knowledge learned
in one environment to another related environment. This can be useful in
real-world environments where data is scarce or expensive to collect. The neural
network architecture can be optimized using transfer learning techniques to
leverage knowledge from related environments.

• Cybernetical Intelligent Systems: The objective function for Meta-learning-
based NAS for cybernetical intelligent systems can be written as:

J θ = EP D L θ− α∇θ L θ,D ,D , 17 23

whereD is the dataset, α is the step size, and L is the loss function used for the given
task. The optimization problem for Gradient-based NAS for cybernetical intelli-
gent systems can be written as:

θ∗ = argminθL f θ x , y , 17 24

where fθ(x) is the neural network architecture, x is the input, y is the output, and L
is the loss function used for the given task. One-shot NAS can also be applied to

17.8 Neural Architecture Search for Specific Domains 387

cybernetical intelligent systems, where the binary gates can be used to decide
which operations to use in each layer of the neural network architecture.

17.8.4 Neural Architecture Search for Adaptive Cybernetical
Intelligent Systems

Adaptive Cybernetical Intelligent Systems (ACIS) refer to intelligent systems that
can adapt their behavior and decision-making strategies in real-time based on
changing environmental conditions and feedback. Such systems must be able to
adjust their neural network architectures to learn from new experiences and data.
Neural Architecture Search (NAS) can be used to design and optimize the archi-
tecture of the neural network for ACIS, allowing it to adapt and learn in real-time.
Here are some key concepts and techniques related to NAS for ACIS:

• Continual Learning: Continual Learning is a type of machine learning that
focuses on training a neural network on a sequence of tasks, allowing it to learn
and adapt to new tasks without forgetting previously learned tasks. NAS for
ACIS must incorporate continual learning to enable the system to learn from
new experiences and adapt to new tasks.

•Meta-Learning: Meta-Learning is a type of machine learning that focuses on
learning how to learn. In the context of NAS for ACIS, meta-learning can be
used to learn the optimal neural network architecture for a given task in a fast
and efficient manner, reducing the time and resources required for manual
architecture design.

• Transfer Learning: Transfer Learning can be used to transfer knowledge learned
from one task or environment to another related task or environment. This can
be useful in ACIS, where data may be scarce or expensive to collect. Transfer
Learning can help to optimize the neural network architecture for new tasks
and environments, while leveraging the knowledge learned from previous tasks
and environments.

• Reinforcement Learning: Reinforcement Learning-based NAS can be used to
optimize the neural network architecture for ACIS, enabling the system to learn
and adapt in real-time based on feedback in the form of rewards or penalties.
Reinforcement Learning-based NAS can be combined with Continual Learning
to enable the system to learn and adapt to new tasks in real-time, without for-
getting previously learned tasks.

• Online Learning: Online Learning is a type of machine learning that focuses on
learning from data that is generated in real-time. NAS for ACIS must incorporate
online learning to enable the system to learn and adapt in real-time to changing
environmental conditions and feedback.

388 17 Neural Architecture Search

For the fine-tuning consider, W{pre} be the weights of a pre-trained neural net-
work,W{new} be the weights of a new neural network, and L be the loss function for
the new task. The fine-tuning objective can be expressed as:

θ = argminθ L θ,Dtrain + λΩθ, 17 25

where θ is the parameters of the pre-trained model, θ is the updated parameters
after fine-tuning L(θ,Dtrain) is the loss function on the training dataset, whichmea-
sures the difference between the predicted outputs of themodel and the actual out-
puts, λ is the regularization parameter, which controls the trade-off between the
model’s performance on the training dataset and its generalization to new data,
Ωθ is the regularization term, which penalizes complex models that may overfit
to the training data, and Dtrain is the training dataset used for fine-tuning. For
feature extraction consider, wpre be the weights of a pre-trained neural network
and h(x) be the output of the pre-trained network for input x. The feature extrac-
tion objective can be expressed as:

f x = g wnewh x f x = g wnewh x , 17 26

where wnew is the weight matrix for a new neural network, and g(.) is a non-linear
activation function that maps the output to the desired range.
By applying NAS to ACIS, researchers can design and optimize the architecture

of the neural network, enabling the system to learn and adapt in real-time based on
changing environmental conditions and feedback. This can help to improve the
performance and reliability of ACIS, enabling them to operate more efficiently
and effectively in complex and dynamic environments. Additionally, NAS for
ACIS can help to reduce the time and resources required for manual architecture
design and optimization, while ensuring that the resulting architecture is
well-suited to the task and environment.

17.9 Comparison of Different Neural Architecture
Search Approaches

The field of Neural Architecture Search (NAS) for Cybernetical Intelligent Systems
(CIS) has seen the development of several different approaches, each with its own
strengths and weaknesses. Here are some key factors to consider when comparing
and evaluating different NAS approaches for CIS:

• Efficiency: The efficiency of an NAS approach refers to its ability to quickly and
effectively generate high-quality neural network architectures. Efficiency can be
measured in terms of search time, computation resources required, and the
number of architectures evaluated.

17.9 Comparison of Different Neural Architecture Search Approaches 389

• Performance: The performance of an NAS approach refers to the quality of the
generated neural network architectures, as measured by metrics such as accu-
racy, speed, and energy efficiency. Performance can also bemeasured in terms of
how well the neural network architecture performs on a specific task or set
of tasks.

• Generalizability: The generalizability of an NAS approach refers to its ability to
generate neural network architectures that perform well on a variety of tasks
and environments, rather than being optimized for a specific task or
environment.

• Flexibility: The flexibility of an NAS approach refers to its ability to adapt and
learn in real-time based on changing environmental conditions and feedback,
allowing it to continuously improve its performance.

• Explainability: The explainability of an NAS approach refers to its ability to pro-
vide insight into the decision-making process and the underlyingmechanisms of
the generated neural network architecture. Some of the most common NAS
approaches for CIS include:

• Reinforcement Learning (RL)-based NAS: RL-based NAS uses an agent to iter-
atively generate and evaluate neural network architectures based on feedback in
the form of rewards or penalties. RL-based NAS can be effective at generating
high-quality neural network architectures, but can be computationally expen-
sive and time-consuming.

• Evolutionary Algorithms (EA)-based NAS: EA-based NAS uses genetic algo-
rithms to evolve and optimize neural network architectures. EA-based NAS
can be more efficient than RL-based NAS, but may struggle to generate complex
architectures.

• Gradient-based NAS: Gradient-based NAS uses gradients to optimize neural
network architectures, allowing it to efficiently generate high-quality architec-
tures. However, gradient-based NASmay struggle with non-differentiable archi-
tecture components.

• Bayesian Optimization (BO)-based NAS: BO-based NAS uses probabilistic mod-
els to optimize neural network architectures. BO-based NAS can be effective at
generating high-quality architectures with limited computational resources, but
may struggle with scalability.

• One-shot NAS: One-shot NAS generates a single architecture that is trained and
evaluated onmultiple tasks, allowing it to learn and adapt in real-time. One-shot
NAS can be effective at generating flexible and adaptable architectures, but may
struggle with performance on specific tasks.

When comparing and evaluating different NAS approaches for CIS, it is impor-
tant to consider the specific requirements and constraints of the task and environ-
ment, as well as the trade-offs between efficiency, performance, generalizability,

390 17 Neural Architecture Search

flexibility, and explainability. Additionally, it is important to consider the scalabil-
ity of the NAS approach, as well as its ability to learn and adapt in real-time based
on changing environmental conditions and feedback. Ultimately, the choice of
NAS approach will depend on the specific needs and goals of the CIS application.

Summary

This chapter presents the Neural Architecture Search (NAS) and its application
in cybernetical intelligent systems. It has covered various NAS approaches
such as Reinforcement Learning-based NAS, Evolutionary Algorithms-based
NAS, Bayesian Optimization-based NAS, Gradient-based NAS, One-Shot NAS,
Meta-Learning-based NAS, and NAS for specific domains. The chapter has also
discussed how NAS can help solve challenges in intelligent control by automating
the design and optimization of neural network architectures. Overall, NAS and
neural networks are closely related and work together to create more efficient
and effective machine learning models.
In the future, NAS continue to play an important role in the development of

cybernetical intelligent systems. As the complexity and size of neural networks
continue to increase, the need for more efficient and effective NAS algorithms will
become even more critical. It is also expected from NAS to become more domain-
specific, with algorithms tailored to specific tasks and applications. Additionally,
the integration of NAS with other machine learning techniques such as transfer
learning, unsupervised learning, and multi-task learning is likely to lead to even
more powerful and adaptive cybernetical intelligent systems. With these advance-
ments, it is expected to see significant progress in the fields of intelligent control,
robotics, and autonomous systems, leading to new and innovative applications in a
wide range of industries.

Exercise Questions

Q.17.1 What is the mathematical equation for the performance metric used to
evaluate different neural network architectures, such as classification
accuracy or mean squared error?

Q.17.2 How can reinforcement learning be used for Neural Architecture Search,
andwhat is themathematical equation for the objective function and pol-
icy gradient used in this approach?

Exercise Questions 391

Q.17.3 Can Evolutionary Algorithms-based NAS be used to find optimal neu-
ral network architectures? If yes, how?

Q.17.4 How can Bayesian Optimization-based NAS aid in the development of
artificial intelligence?

Q.17.5 What is the role of Gradient-based NAS in the development of machine
intelligence?

Q.17.6 What is the mathematical equation for the hyper parameters that con-
trol the search space and optimization algorithm used in Neural Archi-
tecture Search, such as the number of layers, number of neurons, and
learning rate?

Q.17.7 What is Meta-Learning-based NAS and how can it be beneficial for
these systems?

Q.17.8 In what ways can NAS be used to address specific cybernetical con-
trol tasks?

Q.17.9 How can NAS contribute to the development of adaptive machine
learning?

Q.17.10 Can you describe the concept of gradient-based Neural Architecture
Search, and how it uses the gradients of the validation loss with respect
to the architecture parameters to optimize the architecture, and what is
the mathematical equation for this gradient computation?

Further Reading

Batista GE, Prati RC, Monard MC. A study of the behavior of several methods for
balancing machine learning training data. ACM SIGKDD Explorations Newsletter.
2004 Jun 1;6(1):20–9.

Lewis DD, Catlett J. Heterogeneous uncertainty sampling for supervised learning. In
Machine Learning Proceedings 1994 1994 Jan 1 (pp. 148–156). Morgan Kaufmann.

Meek C, Thiesson B, Heckerman D. The learning-curve sampling method applied to
model-based clustering. Journal of Machine Learning Research. 2002;2(Feb):397–418.

Schaffer C. Overfitting avoidance as bias. Machine Learning. 1993 Feb 10:153–78.
Tippets WE, Moyle PB. Epibenthic feeding by rainbow trout (Salmo gairdneri) in the

McCloud River, California. The Journal of Animal Ecology. 1978 Jun 1:549–59.

392 17 Neural Architecture Search

Final Notes on Cybernetical Intelligence

The contemporary world is characterized by uncertainty, where the ability to
predict events accurately bestows the power to influence and shape consequential
actions. This influence extends to the masses, who heed the predictions akin to the
authority held by prophetic figures.
Artificial intelligence (AI) transcends a mere tool status, embodying a culture

grounded in the philosophy of predictions. The allure of AI in this context is com-
parable to the fascination evoked by Nostradamus’s Les Prophéties (published in
1555), a collection of 942 poetic quatrains reputedly foretelling future occurrences.
Utilizing AI poses significant challenges, and achieving mastery in this domain

has been my lifelong pursuit. To propel AI technology forward optimally, I firmly
advocate for developing a tool that democratizes AI model creation based on
machine learning algorithms. This tool should be accessible to a broad audience
without stringent requirements for advanced mathematical or software engineer-
ing knowledge. I believe such a powerful tool could have transformative potential
for society. In 2023, I proudly introduced “Deep Red,” a graphical programming
environment (accessible at https://www.deepredsys.com) engineered as a cloud-
based platform. Deep Red empowers ordinary individuals to construct and deploy
their AI applications seamlessly. User-friendliness has been a primary design prin-
ciple, rooted in the belief that prioritizing consumer benefits is paramount. Addi-
tionally, I decided to write Cybernetical Intelligence, envisioning it as a valuable
resource for Deep Red users seeking to delve into the more intricate facets of
machine learning.
In conjunction with Cybernetical Intelligence, Deep Red is dedicated to tackling

global challenges and mitigating human suffering. Among its primary applica-
tions, medical diagnostics stands out, where medical professionals and radiologists
are empowered to specialize in developing diagnostic tools tailored to patient’s

393

Cybernetical Intelligence: Engineering Cybernetics with Machine Intelligence, First Edition.
Kelvin K. L. Wong.
© 2024 The Institute of Electrical and Electronics Engineers, Inc.
Published 2024 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/cyberintel

https://www.deepredsys.com

specific medical needs. Adequate support materials are available to facilitate
this process, with Cybernetical Intelligence serving as an advanced resource for
AI-based medical diagnosis education. Furthermore, the technology finds critical
use in environmental protection, offering predictive capabilities and pollution
control mechanisms to alleviate respiratory distress.
The overarching objective of Deep Red based on cybernetical intelligence is to

minimize human suffering across diverse domains. AI extends its reach beyond
medical and environmental applications to other scientific and engineering disci-
plines. For instance, AI is pivotal in creating speech-recognition systems, image
and video recognition tools, and autonomous vehicles. This multifaceted field
of AI continues to hold immense potential, and its impact on society is continu-
ously under exploration.
Moreover, AI-driven data-driven decision-making and automation revolution-

ize numerous industries. AI algorithms effectively combat fraud, enhance credit
scoring, and facilitate investment analysis in finance. In manufacturing, AI
enables predictive maintenance and quality control processes, while in transpor-
tation, it facilitates intelligent routing, traffic management, and the development
of autonomous vehicles. The breadth of AI applications appears virtually limitless,
and its profound influence on society holds significant promise for the future.
From a broad perspective, I strongly believe that the advancements in AI have a

transformative impact on various technological domains. AI catalyzes research
and development across different scientific and engineering disciplines, fostering
accelerated improvements in these fields. Each milestone achieved in AI research
generates a significant surge in progress across corresponding domains, contribut-
ing to a profound transformation of scientific and technological landscapes.
An illustrative example of AI’s catalytic effect is observed with the advent of

ChatGPT, a prominent AI language model. This development has expedited crit-
ical processes in programming, information organization, data analysis, and data
mining, thereby substantially accelerating advancements in numerous scientific
and technological sectors.
Introducing large language models (LLMs) in healthcare has unlocked new and

impactful applications in Natural Language Processing (NLP). The latest release of
healthcare-specific LLMs presents a suite of highly accurate tools for production
use. These advanced LLMs offer versatile capabilities, including medical question
answering, research comprehension, clinical text generation, and summarization
of clinical encounters and patient inquiries.
In summary, the dynamic progression of AI exerts a far-reaching influence, driv-

ing advancements in diverse scientific and engineering domains, thus holding the
potential to revolutionize various sectors for the betterment of society.
A simple model can be formulated to establish a mathematical representation of

the interdependence between AI advancement and the progress in other fields of

394 Final Notes on Cybernetical Intelligence

science and engineering. Let us consider two variables: ξ, denoting the level of AI
advancement, and ϖ, representing the level of improvement in other science and
engineering fields. We propose the following relationship:

ϖ t = k ∗ ξ t n

In this equation, t represents time, ϖ(t) signifies the level of advancement in
other science and engineering domains at time t, and ξ(t) denotes the level of
AI advancement at time t. The proportionality constant k characterizes the funda-
mental relationship between AI advancement and progress in other fields. The
exponent n signifies the rate at which advances in other science and engineering
fields change in response to AI advancement. Anticipated to be greater than 1, n is
expected to increase as our technology across diverse scientific and engineering
disciplines progresses to higher levels over time.
Themodel suggests a nonlinear relationship between AI advancement and prog-

ress in other fields, implying that as the level of AI advancement increases, the
advancement in other science and engineering domains will experience exponen-
tial growth. Nonetheless, it is essential to acknowledge that this model is a simpli-
fication, and the actual situation is likely to be more intricate. Real-world progress
in various science and engineering domains is influenced by multifaceted factors,
encompassing economic conditions, policies, resource availability, and more.
Therefore, while this mathematical representation provides insights into the inter-
connectedness of AI and technological advancements, it should be treated as a
foundational framework subject to refinement and expansion in light of complex
real-world dynamics.
Moreover, it is essential to recognize that the efficacy of powerful AI systems

is contingent on robust hardware capabilities. In this context, the Deep Red
system, harnessing AI technology, augments hardware performance, thereby
facilitating the creation of more potent AI models. This interplay between AI
and hardware exemplifies a reciprocal relationship, underscoring a symbiotic
dependence where AI propels hardware advancements while advanced hard-
ware empowers AI.
Nevertheless, upholding human control as the ultimate authority over AI sys-

tems remains paramount. While AI can generate novel ideas and innovations,
it is crucial to emphasize that humans must retain possession and take responsi-
bility for the direction and consequences of AI-driven advancements. By incorpor-
ating human controllers, we can ensure that AI functions as a tool shaped by
human intentions to improve society. Mathematically, this symbiotic relationship
between AI and hardware can be articulated as follows:

Hardware Capability AI Power

AI Power Hardware Capability

Final Notes on Cybernetical Intelligence 395

These equations elucidate the interdependence between AI and hardware, man-
ifesting their reciprocal influence. They underscore the imperative for a harmoni-
ous integration, with human control as the driving force behind responsible AI
development. This alignment ensures that AI’s potential benefits are realized
while potential risks are mitigated, and AI’s trajectory remains aligned with the
broader objectives of societal well-being and progress.
I envision that the integration of Deep Red with Cybernetical Intelligence holds

the potential to significantly accelerate the progress of AI, representing a contri-
bution that I aspire to make on a global scale. However, developing a comprehen-
sive understanding of how to regulate this technological advancement is
imperative, as unsupervised management of AI could lead to a loss of complete
control over human destiny. While my proposed AI application seeks to enhance
the quality of life and alleviate human suffering, it is essential to recognize the
inherent complexity of this endeavour. Pursuing these goals presents a dual
nature, akin to a double-edged sword, where achieving an ideal world may have
unforeseen consequences. To safeguard against such risks, I strongly advocate that
the AI research community’s future generations establish an indispensable human
controller at the highest level of authority in all fully implemented AI systems.
This call for human control aligns with the principles of responsible AI devel-

opment, emphasizing the importance of human oversight to ensure AI technol-
ogy’s ethical and beneficial deployment. By placing human controllers at the
helm, we can steer AI advancements toward a trajectory that serves the greater
good, fostering an environment where AI is harnessed to improve society while
being directed away from potential harm. This balance of power between human
controllers and AI systems is fundamental to shaping AI’s impact that aligns with
our collective aspirations for a better and more equitable world.
The future of AI, robotics, and cybernetics integration promises a paradigm shift

with the emergence of cutting-edge technologies that will redefine industries and
revolutionize human–machine interactions. Envision a world where cyber-
physical systems (CPS) synergistically combine AI algorithms, smart sensors,
and human–machine interfaces to create intelligent entities capable of autono-
mous decision-making (ADM) and self-regulating behaviours. These CPS will
embody artificial general intelligence (AGI), enabling them to learn, reason,
and adapt in real time, resulting in more resilient and reliable systems. The equa-
tion below lies at the heart of technological advancements in this visionary land-
scape. The synergy between AI, robotics, and cybernetics creates an integrated
network of intelligent systems, elevating the capabilities of each component.
One groundbreaking application is the development of AI-driven cyborg

robots equipped with neural networks and reinforcement learning (RL). These
AI-enhanced robotic beings can self-learn from their experiences, optimizing their
performance and behaviour over time. By integrating neuro-fuzzy systems, they

396 Final Notes on Cybernetical Intelligence

will exhibit sophisticated cognition, mimicking human thought processes and
even exhibiting emotional intelligence (EI). As we delve into complex environ-
ments, multi-agent systems (MAS) powered by deep learning (DL) and swarm
intelligence will coordinate and collaborate seamlessly. This symbolizes the trans-
formative impact of combining CPS with AGI to create AI-cyborg entities capable
of surpassing traditional limitations and achieving new frontiers in robotic
intelligence. It showcases the integration of neuro-fuzzy systems and emotional
intelligence into AI-cyborgs, elevating them into AI-enhanced robots. This amal-
gamation enables robots to possess logical reasoning and emotional awareness,
allowing them to interact more empathetically with humans and respond to
dynamic situations with greater nuance. It elucidates the role of DL and swarm
intelligence in shaping MAS. As we embrace these advancements, intelligent
swarms of robots will collectively achieve tasks with remarkable efficiency and
fault tolerance, exemplifying the true power of distributed AI and robotic systems.
In this future landscape, human controllers will play a vital role in steering the

course of AI, ensuring ethical and responsible deployment. As we strive for a better
and more equitable world, the balance of power between human controllers and
AI systems will shape the impact of AI-driven advancements in a manner that
aligns with our collective aspirations.

Final Notes on Cybernetical Intelligence 397

Index

Page numbers in italics refer to figures; page numbers in bold refer to tables

a
activation function 61, 65

hyperbolic tangent (Tanh) 66
linear 61, 66
leaky ReLU 66
modeling complex functions 61
nonlinearity 61
output range 61
rectified linear unit (ReLU) 66
regularization 61
sigmoid 61
softmax 66

actuator 28
AdaDelta 98
AdaMax 97
adaptation 23
adaptive control 25

data-driven control 25
hybrid control 25
model-based control 25

adaptive gradient algorithm
(AdaGrad) 98

adaptive moment estimation 96

analogy (of biological and artificial
neurons) 51–57

ant colony optimization
(ACO) 181–184, 182

algorithm 184
complex biomimetics problems 184
flowchart 182
traveling salesman Problem

(TSP) 181
artificial and biological neurons 54
activation function 54
applications 54
input 54, 116
output 54, 116
reproduction and repair 54

artificial bee colony (ABC) 186, 188
algorithm 187
flowchart 188
methodology 189
random perturbation 189

artificial intelligence (AI) 1, 5, 113, 393
applications 1
algorithms 2

399

Cybernetical Intelligence: Engineering Cybernetics with Machine Intelligence, First Edition.
Kelvin K. L. Wong.
© 2024 The Institute of Electrical and Electronics Engineers, Inc.
Published 2024 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/cyberintel

linear algorithms 16
nonparametric algorithms 2
parametric algorithms 2

categories 10
artificial general intelligence

(AGI) 10, 396
narrow artificial

intelligence (ANI) 10
super artificial

intelligence (ASI) 10
AI-cyborg 397
AI-enhanced robots 397
AI-driven advancements 397
medical diagnosis 394
technology 1, 9

artificial intelligence control theory
(AICT) 24

advantages 26
algorithms 26

artificial intelligence initiative (IAI) 1–4
advanced analytics 4
accuracy and quality 5
automate repetitive 5
analytics and insights 8
accurate diagnoses 10

artificial neural networks (ANNs) 13
artificial neurons 51, 53
attention mechanism 116
automata theory 258
finite-state automata (FSA) 259
pushdown automata (PDA) 259
turing machines 259

autonomous decision-making
(ADM) 396

autonomous vehicles 394

b
back propagation 59, 72, 83–85, 84, 104
algorithm 59
application to shape

recognition 101–104

backward phase 102, 103
definition 60, 103
forward phase 102, 103
input 60, 103, 116
output 60, 116
predicted output 104
process 60
target output 104

bacterial foraging optimization
(BFO) 196–199, 196

algorithm 196
function optimization 196
feature selection 196
parameter optimization 196

Bayesian networks 13
Bayes’ theorem 12
bees algorithm (BA) 184–189, 185

employed bees 184
onlooker bees 184
optimal solution 184
scout bees 184

Bellman equation 12
bio-inspired 203
biological neurons 52
biomimetics 177

cybernetics 177, 203
bootstrapping 93

datasets 93, 94

c
cellular automata 211–212
chatbots 4

chatGPT 394
clustering 3, 125
cognitive automation 4
competitive learning 125–145

group of neurons 127
normalization of vectors 127
network weight vector 129
normalized Input vector 128
winning neuron 128

400 Index

output neuron 127
principles of competitive

learning 125–129
restriction 127
side suppression and competition 127

computational models 2
computers and robotics (3IR) 10
computer vision 4
confusion matrix 120
control algorithms 35
control design 36

classical 36
modern 36
robust 36

control systems 23
closed-loop control 25, 35, 36
open-loop control 25, 35, 36

control theory 24, 35, 37
controllability of systems 35
engineering problems 37
stability 35

convergence criteria 90
convolutional neural networks

(CNNs) 11, 74, 108, 355, 337,
338, 339

graph 111
recurrent 108

cost savings 5
cross-validation 93

Monte Carlo 94
performance metric 94

cuckoo search 189–193, 190
algorithm 190

customer satisfaction 4
cybernetical artificial intelligence 24–28
cybernetical intelligence (CI) 1, 177, 393

applications 302
challenges and future

directions 308–309
emerging trends and

innovations 309

final notes 393–397
image processing and computer

vision 302
Bayesian optimization 304
classification 303
feature extraction 303
image acquisition 303
object recognition 303
preprocessing 303
post-processing 304

natural language processing 304
robotics and autonomous

systems 307
bio-inspired 177–200

chromosome 179, 180
cybernetical AI 24
definition 28

sampling methods 283, 284
advantages and

disadvantages 293
basic sampling algorithms 284
importance 286
introduction 283
machine learning sampling

methods 287
random 288
stratified 288
systematic 288
random oversampling 288,

289, 291
random undersampling 289, 291

advanced sampling methods 294
active learning 297, 298
bagging 296, 297
Bayesian optimization 299,

300, 301
boosting 296, 297
ensemble 295, 296
stacking 296

cybernetical intelligent control 35–49
controller 28

Index 401

cybernetical intelligent control (cont’d)
cybernetic control 42

cybernetical learning 23
cybernetic expansion into other fields of

research 232–239
internal control-related theories 237
software control theory 237, 238
social cybernetics 234

definition 235
information theory 236
systems theory 235

perceptual cybernetics 238
cybernetics 1, 18, 24, 29, 44, 83, 203
advantages 28, 114
cybernetical layout 113
cybernetical systems 27
cybernetics models 43

learning feedback loop 43
performance feedback loop 43
strategic feedback loop 43

practical application 240, 244
internal control 240
management power relations 240
control mechanism (of neural

networks) 240
software Markov adaptive testing

strategy 242, 245
static game with incomplete

information 242
task analysis model 244, 245
using neural network 112

cyberphysical systems (CPS) 296, 396
cyber system 1

d
data collection 15
data insights 5
data mining 4
deep learning 20–23, 333, 397
applications 359

intelligent control 362

intelligent power systems 361
object detection 360

frameworks 358
Caffe 359
Keras 358
Theano 359

methods 336
attention-based models

352, 353
capsule networks 357, 357
convolutional neural networks

(CNNs) 337, 338, 339
neural network models 335–336
prediction 357
routing 358
generative adversarial networks

(GANs) 342, 343, 344, 345
image segmentation

models 345–348, 346, 347
meta-learning models 354–356
recurrent neural networks

(RNNs) 340–343, 341
tansformer models 350, 351
variational autoencoders

(VAEs) 348, 349
deep red 393
deep reinforcement learning 22
decoding 56
diagnostic tools 393
discrete element method 212–217,

213, 216
biological cells and tissues 214
microbial communities and their

interactions 215
dynamic system control 313

controllability and
stabilizability 321–323

linear systems 314–315
linear quadratic regulator

(LQR) 324–326
nonlinear system 316–318

402 Index

observability and
identification 320–321

optimal control 323–324
stability theory 318–319
stochastic systems with

applications 328
control systems 329
neural networks 330
robotics and automation 329

time-optimal control 326–328

e
edge computing 22
education 31
encoding 56

classical neural network 57
multilayer perceptron (MLP) 56
straightforward 57

engineering cybernetics 1
enhanced customer experience 5
emotional intelligence (EI) 397
entropy (concepts in machine

intelligence) 27, 267
application in intelligent control

275
control strategies 277
decision-making 278
entropy-based control 275

control design 276
entropy measurement 276
optimization 276

fuzzy entropy 276
cross-entropy and log loss 274
cross-entropy as a loss function 273
cross-entropy softmax 270

computation 272
entropy in performance

evaluation 269
relative entropy and mutual

information 268
relative entropy of distributions 268

ethical implications 31
explainable AI 22

f
feature engineering 15
feedback control system 35, 38
definition 38
purpose 38
state–space models 36
sensors, actuator 36
transfer functions 36

feedback loops 23
flexibility 19
forward propagation 72, 85, 86
activation function 86
batch size 86
biases 71, 86, 101, 103
dropout 86, 120
input data 86, 103, 116
output 86, 116
weights 71, 86, 101, 112, 133, 155

firefly algorithm (FA) 199–200, 199
Fourier transform 40
fourth industrial revolution (4IR) 9–14
fundamental ideas of

cybernetics 227–234, 231
behavioral idea 230
cybernetical intelligence (based on

neural network) 231–234, 393
information idea 229
system idea 227

g
gaming 22
Gaussian density 143
generative adversarial networks

(GANs) 22, 78, 336, 342, 343,
344, 345

discriminator 78
generator 78
input data 78, 116

Index 403

generative adversarial networks
(GANs) (cont’d)

loss functions 78, 85
generative topographic map

(GTM) 141, 142
genetic algorithm (GA) 178–181
algorithm 180

adaptable 180
robust 180

chromosome 179
global minimum 91, 92
gradient descent 12, 85–89, 87
gradient 88
learning rate 88
parameters 88, 95, 96
stochastic 94, 98
update rule 88

gray wolf optimization (GWO) 197, 198
growing self-organizing map

(GSOM) 133
existing nodes 134
growing phase 134

error updating 134
input 134
node generation 134
winner selection 134
weight updating 134

new nodes 134
winner nodes 134

h
hardware capability 395
Harold Black 39
negative feedback

amplification 39, 40
healthcare 31, 394
revolutionized healthcare 9

Hendrik Wade Bode 41
bode plots 41
frequency domain analysis 41
intelligent control 41

loop shaping 41
historical models of computability 261

Lambda calculus 261
post-turing machines 261
recursive functions 261
register machines 261
Turing machines 249, 261

Hodgkin–Huxley 52
human and machine computations

260
hypothetical future state 13

i
image recognition 21
impulse response 40
increased productivity 5
increased scalability 5
industrial revolution 9–10
information-theoretic 3
information theory 13, 26
intelligent automation 5–9
intelligent automation

initiative (IAI) 4–5
benefits 5
strategy 4

intelligent control system 47
feature matrix 168
I/O of support vector

machine 167–168
label vector 168
training data 167

intelligent machines 1
Internet of Things (IoT) 9
invoice processing 4

j
James Loveloc 43–44

cybernetic approach to ecosystems 43
Gaia hypothesis 44

John von Neumann 47–48
universal constructor 47

404 Index

k
K-binary classifier 107

one-vs-all (OvA) 107
one-vs-rest (OvR) 107

kernel function 155–160
Gaussian 160, 163
Laplace 159, 160
linear 155, 161, 314
polynomial 156, 160, 163
radial basis function 157
sigmoid 159, 160, 163

l
large language models (LLMs) 394

healthcare-specific 394
life-inspired 203–220
linear regression 11, 19
local minimum 91, 92
long short-term memory (LSTM) 76
loss function 78, 87
Lotka-Volterra 235

m
machine learning (ML) 2, 15, 48

reinforcement learning 2, 15
supervised learning 2, 15
unsupervised learning 2, 15

Macy Conference 44
manufacturing 31
Markov neural network (MNN) 77–78
mathematical framework 14
Maxwell’s analysis of governors 37
Maxwell’s models 38
McCulloch–Pitts 45

neuron model 46
mechanization of production 10
medical imaging 10
model training 16
model evaluation 16
model deployment 16
momentum optimization 97, 98

Monte Carlo Cross-Validation
(MCCV) 65

multi-agent AI systems 203–210, 204
distributed systems 206
evolutionary computation(EC) 209
game theory 205, 241
genetic algorithm (GA) 209

multi-agent systems (MAS) 397
multi-agent reinforcement learning

(MARL) 207
multi-agent systems evolutionary

computation (MAS-EC) 209
multilayer perceptron (MLP) 57–60,

58, 73
architecture 58
activation function 58
definition 58
output function 58
overfitting 58

n
natural language processing (NLP) 1,

21, 304, 394
nesterov accelerated gradient (NAG), 98
neural architecture search (NAS) 367,

368, 373
Bayesian optimization 376, 377
evolutionary algorithms 374, 375,

375, 376
gradient-based 378
meta-learning 381, 382
neural architecture search

approaches 389
neural architecture search and neural

network 369
adaptability 371

architecture complexity 371
design process 371
exploration space 371
explainability 371
model performance 371

Index 405

one-shot 379, 381
scalability 371

reinforcement learning 371, 373
action 372
reward 372
state 371

specific domains 383
adaptive cybernetical intelligent

systems 388
cybernetical intelligent systems in

real-world 384, 384, 386
specific cybernetical control

task 384
neural networks 13, 53, 94, 102, 104,

108, 109, 112
algorithm 130
application 101
connections 53
feedforward 56, 116, 117, 335
graph attention network (GAT) 117
graph neural network

(GNN) 109, 117
generalization 119

overfitting 119
optimal 119
underfitting 119

layers 69–73, 70
batch normalization layer 71
convolutional layer74, 71, 111
dropout layer 71, 86, 120
hidden layer 69, 71, 115
input layer 71, 115
neurons 70, 132
normalization layer 71, 127
output layer 71, 115
pooling layer 71
recurrent layer 71, 75, 108

optimizers 94–97
processing elements 53
structure for image processing 115

hidden layers 115

input layer 115
output layer 115

structure 53, 69–79
threshold 59, 91

neurodynamics 52
neuro-fuzzy systems 397
neuromorphic computing 23
nonparametric algorithms 2, 17, 19

definition 19
data size requirements 19
model complexity 19
robustness 19

Nyquist and Bode 40
sampling theorem 40

Nyquist theorem 41
accuracy 41
cost-effective hardware 41

o
observation function 78
optimal control 37
optimization 7

theory 14
oriented and scalable map 139

p
parametric algorithms 2, 16, 19

data size requirements 19
definition 19
model complexity 19
robustness 19

particle swarm optimization
(PSO) 193, 194

pattern analysis and cognitive
learning 14–20

perceptron 51–60, 57, 58, 73, 74
activation function 58, 61–69
applications 58
architecture 58
capability 58
definition 58

406 Index

output function 58
overfitting 58
performance 58

performance measures 120–123
personalized medicine 10
personalized treatments 10
policy function 77
predictive analytics 20, 21
process cycle efficiency (PCE) 6
process discovery 6
proportional–integral–derivative

(PID) 24, 36

q
quantum neural networks 22
quatrains 393

r
receiver operating characteristic

(ROC) 121, 122
area under the ROC curve (AUC) 122

recurrent neural network (RNN) 75–77,
75, 304, 335, 340, 341

recursive functions 262
reinforcement learning 3
relational learning (RN) 108–112, 109

embedding module 108
graph convolutional network

GCN) 111, 111
graph neural network

(GNN) 109, 111
relational module 108
RN architecture 108

ReLU function 63, 116
resampling methods 91–94
revisiting cybernetics and relation to

cybernetical
intelligence 225–227, 226

concept and development 225
attributes of control 225
characteristics 226

development of CI 227
research objects 226

risk analysis 4
robotic process automation (RPA) 4
robotics 22
robust control methods 37
H-infinity 37
sliding mode 37

robustness 19
root mean square propagation

(RMSprop) 96

s
safety concerns 31
self-organizing map (SOP) 125,

129–131, 129, 130
algorithm 131–133
neural network algorithm 130

initialize parameter 132
neighboring neurons 132
winning neuron 132
weights 71, 86, 101, 112, 133, 155

properties 130
simulation of human intelligence 5

self-replicating machines 47
semi-supervised learning 2
sensor 28
simulates 2
smoothed particle hydrodynamics

(SPH) 218–220, 218
bio-inspired engineering

application 220
biomimetic fluid dynamic 219

softmax regression 105
computer vision 105
multi-class classification

problems 105
natural language processing 105, 394

Stafford Beer 42–43
state transition function 77
statistical models 4

Index 407

stopping criteria 89–91
support vector machine

(SVM) 149–174, 152, 153
application 171–174

classification 171
hyperparameters 169–171

cache size 172
C hyperparameter 169, 172
class weights 170, 172
coefficient 172
convergence criteria 170
degree 172
gamma 172
kernel coefficient

169, 172
regularization 171
shrinking 172

data clustering 149–152
Euclidean distance 151, 157
hard margin 164, 165
image classification 173
I/O 167
linear and non-linear 160–164
Manhattan distance 151, 152
Minkowski distance 152
regression 173
soft margin 164, 165, 166
text classification 174

swarm intelligence 397

t
time-consuming tasks 5
transfer learning 22, 118
domain adaptation 118
fine-tuning 118
freeze layers 118

transformer networks 115
transportation 31
time adaptive 136–139

time adaptive self-organizing map
(TASOM) 136

algorithms 136
Turing machine 249–252

alphabet 250
behavior 250
basic operations 252–255
changing states 254
moving the tape head 254
reading and writing 253

computability theory 256–258
Church–Turing thesis 257
decision problem 257
halting problem 257
recursively enumerable set 257
recursive set 257
Turing machine 249, 257
undecidable problem 257

computing 251
halting state 250
intelligent control 263

interchangeability of program and
behavior 255

philosophical issues 259
states 250
transition function 250
tape 250
tape head 250

u
user acceptance testing (UAT) 7

v
viable systems model (VSM) 42

control 42
coordination 42
intelligence 42
operations 42
policy 42

408 Index

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

	Cover
	Title Page
	Copyright Page
	Contents
	Chapter 1 Artificial Intelligence and Cybernetical Learning
	1.1 Artificial Intelligence Initiative
	1.2 Intelligent Automation Initiative
	1.2.1 Benefits of IAI

	1.3 Artificial Intelligence Versus Intelligent Automation
	1.3.1 Process Discovery
	1.3.2 Optimization
	1.3.3 Analytics and Insight

	1.4 The Fourth Industrial Revolution and Artificial Intelligence
	1.4.1 Artificial Narrow Intelligence
	1.4.2 Artificial General Intelligence
	1.4.3 Artificial Super Intelligence

	1.5 Pattern Analysis and Cognitive Learning
	1.5.1 Machine Learning
	1.5.1.1 Parametric Algorithms
	1.5.1.2 Nonparametric Algorithms

	1.5.2 Deep Learning
	1.5.2.1 Convolutional Neural Networks in Advancing Artificial Intelligence
	1.5.2.2 Future Advancement in Deep Learning

	1.5.3 Cybernetical Learning

	1.6 Cybernetical Artificial Intelligence
	1.6.1 Artificial Intelligence Control Theory
	1.6.2 Information Theory
	1.6.3 Cybernetic Systems

	1.7 Cybernetical Intelligence Definition
	1.8 The Future of Cybernetical Intelligence
	Summary
	Exercise Questions
	Further Reading

	Chapter 2 Cybernetical Intelligent Control
	2.1 Control Theory and Feedback Control Systems
	2.2 Maxwell's Analysis of Governors
	2.3 Harold Black
	2.4 Nyquist and Bode
	2.5 Stafford Beer
	2.5.1 Cybernetic Control
	2.5.2 Viable Systems Model
	2.5.3 Cybernetics Models of Management

	2.6 James Lovelock
	2.6.1 Cybernetic Approach to Ecosystems
	2.6.2 Gaia Hypothesis

	2.7 Macy Conference
	2.8 McCulloch–Pitts
	2.9 John von Neumann
	2.9.1 Discussions on Self-Replicating. Machines
	2.9.2 Discussions on Machine Learning

	Summary
	Exercise Questions
	Further Reading

	Chapter 3 The Basics of Perceptron
	3.1 The Analogy of Biological and Artificial Neurons
	3.1.1 Biological Neurons and Neurodynamics
	3.1.2 The Structure of Neural Network
	3.1.3 Encoding and Decoding

	3.2 Perception and Multilayer Perceptron
	3.2.1 Back Propagation Neural Network
	3.2.2 Derivative .Equations.for Backpropagation

	3.3 Activation Function
	3.3.1 Sigmoid Activation Function
	3.3.2 Hyperbolic Tangent Activation Function
	3.3.3 Rectified Linear Unit Activation Function
	3.3.4 Linear Activation Function

	Summary
	Exercise Questions
	Further Reading

	Chapter 4 The Structure of Neural Network
	4.1 Layers in Neural Network
	4.1.1 Input Layer
	4.1.2 Hidden Layer
	4.1.3 Neurons
	4.1.4 Weights and Biases
	4.1.5 Forward Propagation
	4.1.6 Backpropagation

	4.2 Perceptron and Multilayer Perceptron
	4.3 Recurrent Neural Network
	4.3.1 Long Short-Term. Memory

	4.4 Markov Neural Networks
	4.4.1 State Transition Function
	4.4.2 Observation Function
	4.4.3 Policy Function
	4.4.4 Loss Function

	4.5 Generative Adversarial Network
	Summary
	Exercise Questions
	Further Reading

	Chapter 5 Backpropagation Neural Network
	5.1 Backpropagation Neural Network
	5.1.1 Forward Propagation

	5.2 Gradient Descent
	5.2.1 Loss Function
	5.2.2 Parameters in Gradient Descent
	5.2.3 Gradient in Gradient Descent
	5.2.4 Learning Rate in Gradient Descent
	5.2.5 Update Rule in Gradient Descent

	5.3 Stopping Criteria
	5.3.1 Convergence and Stopping Criteria
	5.3.2 Local Minimum and Global Minimum

	5.4 Resampling Methods
	5.4.1 Cross-Validation
	5.4.2 Bootstrapping
	5.4.3 Monte Carlo Cross-Validation

	5.5 Optimizers in Neural Network
	5.5.1 Stochastic Gradient Descent
	5.5.2 Root Mean Square Propagation
	5.5.3 Adaptive Moment Estimation
	5.5.4 AdaMax
	5.5.5 Momentum Optimization

	Summary
	Exercise Questions
	Further Reading

	Chapter 6 Application of Neural Network in Learning and Recognition
	6.1 Applying Backpropagation to Shape Recognition
	6.2 Softmax Regression
	6.3 K-Binary Classifier
	6.4 Relational Learning via Neural Network
	6.4.1 Graph Neural Network
	6.4.2 Graph Convolutional Network

	6.5 Cybernetics Using Neural Network
	6.6 Structure of Neural Network for Image Processing
	6.7 Transformer Networks
	6.8 Attention Mechanisms
	6.9 Graph Neural Networks
	6.10 Transfer Learning
	6.11 Generalization of Neural Networks
	6.12 Performance Measures
	6.12.1 Confusion Matrix
	6.12.2 Receiver Operating Characteristic
	6.12.3 Area Under the ROC Curve

	Summary
	Exercise Questions
	Further Reading

	Chapter 7 Competitive Learning and Self-Organizing. Map
	7.1 Principal of Competitive Learning
	7.1.1 Step 1: Normalized Input Vector
	7.1.2 Step 2: Find the Winning Neuron
	7.1.3 Step 3: Adjust the Network Weight Vector and Output Results

	7.2 Basic Structure of Self-Organizing Map
	7.2.1 Properties Self-Organizing. Map

	7.3 Self-Organizing Mapping Neural Network Algorithm
	7.3.1 Step 1: Initialize Parameter
	7.3.2 Step 2: Select Inputs and Determine Winning Nodes
	7.3.3 Step 3: Affect Neighboring Neurons
	7.3.4 Step 4: Adjust Weights
	7.3.5 Step 5: Judging the End Condition

	7.4 Growing Self-Organizing Map
	7.5 Time Adaptive Self-Organizing Map
	7.5.1 TASOM-Based. Algorithms for Real Applications

	7.6 Oriented and Scalable Map
	7.7 Generative Topographic Map
	Summary
	Exercise Questions
	Further Reading

	Chapter 8 Support Vector Machine
	8.1 The Definition of Data Clustering
	8.2 Support Vector and Margin
	8.3 Kernel Function
	8.3.1 Linear Kernel
	8.3.2 Polynomial Kernel
	8.3.3 Radial Basis Function
	8.3.4 Laplace Kernel
	8.3.5 Sigmoid Kernel

	8.4 Linear and Nonlinear Support Vector Machine
	8.5 Hard Margin and Soft Margin in Support Vector Machine
	8.6 I/O of Support Vector Machine
	8.6.1 Training Data
	8.6.2 Feature Matrix and Label Vector

	8.7 Hyperparameters of Support Vector Machine
	8.7.1 The C Hyperparameter
	8.7.2 Kernel Coefficient
	8.7.3 Class Weights
	8.7.4 Convergence Criteria
	8.7.5 Regularization

	8.8 Application of Support Vector Machine
	8.8.1 Classification
	8.8.2 Regression
	8.8.3 Image Classification
	8.8.4 Text Classification

	Summary
	Exercise Questions
	Further Reading

	Chapter 9 Bio-Inspired Cybernetical Intelligence
	9.1 Genetic Algorithm
	9.2 Ant Colony Optimization
	9.3 Bees Algorithm
	9.4 Artificial Bee Colony Algorithm
	9.5 Cuckoo Search
	9.6 Particle Swarm Optimization
	9.7 Bacterial Foraging Optimization
	9.8 Gray Wolf Optimizer
	9.9 Firefly Algorithm
	Summary
	Exercise Questions
	Further Reading

	Chapter 10 Life-Inspired Machine Intelligence and Cybernetics
	10.1 Multi-Agent. AI Systems
	10.1.1 Game Theory
	10.1.2 Distributed Multi-Agent. Systems
	10.1.3 Multi-Agent. Reinforcement Learning
	10.1.4 Evolutionary Computation and Multi-Agent. Systems

	10.2 Cellular Automata
	10.3 Discrete Element Method
	10.3.1 Particle-Based. Simulation of Biological Cells and Tissues
	10.3.2 Simulation of Microbial Communities and Their Interactions
	10.3.3 Discrete Element Method-Based. Modeling of Biological Fluids and Soft Materials

	10.4 Smoothed Particle Hydrodynamics
	10.4.1 SPH-Based. Simulations of Biomimetic Fluid Dynamic
	10.4.2 SPH-Based. Simulations of Bio-Inspired. Engineering Applications

	Summary
	Exercise Questions
	Further Reading

	Chapter 11 Revisiting Cybernetics and Relation to Cybernetical Intelligence
	11.1 The Concept and Development of Cybernetics
	11.1.1 Attributes of Control Concepts
	11.1.2 Research Objects and Characteristics of Cybernetics
	11.1.3 Development of Cybernetical Intelligence

	11.2 The Fundamental Ideas of Cybernetics
	11.2.1 System Idea
	11.2.2 Information Idea
	11.2.3 Behavioral Idea
	11.2.4 Cybernetical Intelligence Neural Network

	11.3 Cybernetic Expansion into Other Fields of Research
	11.3.1 Social Cybernetics
	11.3.2 Internal Control-Related. Theories
	11.3.3 Software Control Theory
	11.3.4 Perceptual Cybernetics

	11.4 Practical Application of Cybernetics
	11.4.1 Research on the Control Mechanism of Neural Networks
	11.4.2 Balance Between Internal Control and Management Power Relations
	11.4.3 Software Markov Adaptive Testing Strategy
	11.4.4 Task Analysis Model

	Summary
	Exercise Questions
	Further Reading

	Chapter 12 Turing Machine
	12.1 Behavior of a Turing Machine
	12.1.1 Computing with Turing Machines

	12.2 Basic Operations of a Turing Machine
	12.2.1 Reading and Writing to the Tape
	12.2.2 Moving the Tape Head
	12.2.3 Changing States

	12.3 Interchangeability of Program and Behavior
	12.4 Computability Theory
	12.4.1 Complexity Theory

	12.5 Automata Theory
	12.6 Philosophical Issues Related to Turing Machines
	12.7 Human and Machine Computations
	12.8 Historical Models of Computability
	12.9 Recursive Functions
	12.10 Turing Machine and Intelligent Control
	Summary
	Exercise Questions
	Further Reading

	Chapter 13 Entropy Concepts in Machine Intelligence
	13.1 Relative Entropy of Distributions
	13.2 Relative Entropy and Mutual Information
	13.3 Entropy in Performance Evaluation
	13.4 Cross-Entropy Softmax
	13.5 Calculating Cross-Entropy
	13.6 Cross-Entropy as a Loss Function
	13.7 Cross-Entropy and Log Loss
	13.8 Application of Entropy in Intelligent Control
	13.8.1 Entropy-Based. Control
	13.8.2 Fuzzy Entropy
	13.8.3 Entropy-Based. Control Strategies
	13.8.4 Entropy-Based. Decision-Making

	Summary
	Exercise Questions
	Further Reading

	Chapter 14 Sampling Methods in Cybernetical Intelligence
	14.1 Introduction to Sampling Methods
	14.2 Basic Sampling Algorithms
	14.2.1 Importance of Sampling Methods in Machine Intelligence

	14.3 Machine Learning Sampling Methods
	14.3.1 Random Oversampling
	14.3.2 Random Undersampling
	14.3.3 Synthetic Minority Oversampling Technique
	14.3.4 Adaptive Synthetic Sampling

	14.4 Advantages and Disadvantages of Machine Learning Sampling Methods
	14.5 Advanced Sampling Methods in Cybernetical Intelligence
	14.5.1 Ensemble Sampling Method
	14.5.2 Active Learning
	14.5.3 Bayesian Optimization in Sampling

	14.6 Applications of Sampling Methods in Cybernetical Intelligence
	14.6.1 Image Processing and Computer Vision
	14.6.2 Natural Language Processing
	14.6.3 Robotics and Autonomous Systems

	14.7 Challenges and Future Directions
	14.8 Challenges and Limitations of Sampling Methods
	14.9 Emerging Trends and Innovations in Sampling Methods
	Summary
	Exercise Questions
	Further Reading

	Chapter 15 Dynamic System Control
	15.1 Linear Systems
	15.2 Nonlinear System
	15.3 Stability Theory
	15.4 Observability and Identification
	15.5 Controllability and Stabilizability
	15.6 Optimal Control
	15.7 Linear Quadratic Regulator Theory
	15.8 Time-Optimal. Control
	15.9 Stochastic Systems with Applications
	15.9.1 Stochastic System in Control Systems
	15.9.2 Stochastic System in Robotics and Automation
	15.9.3 Stochastic System in Neural Networks

	Summary
	Exercise Questions
	Further Reading

	Chapter 16 Deep Learning
	16.1 Neural Network Models in Deep Learning
	16.2 Methods of Deep Learning
	16.2.1 Convolutional Neural Networks
	16.2.2 Recurrent Neural Networks
	16.2.3 Generative Adversarial Networks
	16.2.4 Deep Learning Based Image Segmentation Models
	16.2.5 Variational Auto Encoders
	16.2.6 Transformer Models
	16.2.7 Attention-Based. Models
	16.2.8 Meta-Learning. Models
	16.2.9 Capsule Networks

	16.3 Deep Learning Frameworks
	16.4 Applications of Deep Learning
	16.4.1 Object Detection
	16.4.2 Intelligent Power Systems
	16.4.3 Intelligent Control

	Summary
	Exercise Questions
	References
	Further Reading

	Chapter 17 Neural Architecture Search
	17.1 Neural Architecture Search and Neural Network
	17.2 Reinforcement Learning-Based Neural Architecture Search
	17.3 Evolutionary Algorithms-Based Neural Architecture Search
	17.4 Bayesian Optimization-Based Neural Architecture Search
	17.5 Gradient-Based Neural Architecture Search
	17.6 One-shot. Neural Architecture Search
	17.7 Meta-Learning-Based Neural Architecture Search
	17.8 Neural Architecture Search for Specific Domains
	17.8.1 Cybernetical Intelligent Systems: Neural Architecture Search in Real-World
	17.8.2 Neural Architecture Search for Specific Cybernetical Control Tasks
	17.8.3 Neural Architecture Search for Cybernetical Intelligent Systems in Real-World
	17.8.4 Neural Architecture Search for Adaptive Cybernetical Intelligent Systems

	17.9 Comparison of Different Neural Architecture Search Approaches
	Summary
	Exercise Questions
	Further Reading

	Final Notes on Cybernetical Intelligence
	Index
	EULA

