

Practical Software
Estimation

Infosys Press seeks to develop and publish a series of pragmatic

books on software engineering and information technologies, both

current and emerging. Leveraging Infosys’s extensive global

experience helping clients to implement technologies successfully,

each book distills critical lessons learned and shows how to apply

them in a real-world, enterprise setting. Readers will find throughout

this open-ended and broad-ranging series a wealth of practical

insights, specific guidance, and informative examples not readily

available elsewhere.

■ ■ ■

www.awprofess iona l .com

Infosys Press

www. in fosys .com

www.awprofessional.com
www.infosys.com

Practical Software
Estimation
Function Point Methods for
Insourced and Outsourced Projects

M. A. Parthasarathy
Foreword by N. R. Narayana Murthy
Chairman and Chief Mentor
Infosys Technologies Ltd.

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

This document contains material, which has been extracted from the International Function Point Users Group
(IFPUG) 4.2 Counting Practices Manual. It is reproduced in this document with the permission of IFPUG
(http://www.ifpug.org). The International Function Point Users Group (IFPUG) is a not-for-profit, member
run, user group. The IFPUG mission is to be a recognized leader in promoting and encouraging the effective
management of application software development and maintenance activities using Function Point Analysis
and other software measurement techniques. For more information contact IFPUG at http://www.ifpug.org, or
e-mail ifpug@ifpug.org, or phone (USA) 609-799-4900, or fax 609-799-7032.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact U.S. Corporate
and Government Sales, (800) 382-3419, corpsales@pearsontechgroup.com.

For sales outside the United States, please contact International Sales, international@pearsoned.com.

This Book Is Safari Enabled

The Safari® Enabled icon on the cover of your favorite technology book means the book is
available through Safari Bookshelf. When you buy this book, you get free access to the
online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books, find
code samples, download chapters, and access technical information whenever and wherever you need it.

To gain 45-day Safari Enabled access to this book:

• Go to http://www.awprofessional.com/safarienabled

• Complete the brief registration form

• Enter the coupon code W2G8-LHVF-XVZQ-XWFQ-B9GX

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail
customer-service @safaribooksonline.com.

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Parthasarathy, M. A.
Practical software estimation : function point methods for insourced and outsourced projects / M. A. Parthasarathy.

p. cm.
Includes bibliographical references and index.
ISBN 0-321-43910-4 (pbk. : alk. paper)
1. Computer software—Development. 2. Computer software—Development—Estimates. I. Title.

QA76.76.D47P356 2007
005.3—dc22

2006036476
Copyright © 2007 M. A. Parthasarathy

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and per-
mission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to Pearson Education, Inc., Rights and Contracts Department, 75
Arlington Street, Suite 300, Boston, MA 02116, fax: (617) 848-7047.

ISBN 0-321-43910-4

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.

First printing, February 2007

http://www.ifpug.org
http://www.ifpug.org
http://www.awprofessional.com/safarienabled
www.awprofessional.com

To

My son, Aravind, and my wife, Rama,
who kept pushing me to complete this book.

My father, Tiru Narayan, and my mother, Padma,
for grooming me to be worthy of many achievements!

My fellow Infoscions,
for providing me the platform to learn and share.

This page intentionally left blank

vii

CONTENTS

List of Figures .. xvii
List of Tables .. xix
Foreword... xxv
Preface .. xxvii
Acknowledgments ... xxxiii

Chapter 1: Introduction ... 1

What Is Software Estimation? .. 1
Ingredients of a Good Estimation .. 6

Activity Scope .. 6
Work Environment .. 6
Consistency ... 7
Usage of Tools ... 7
Learning from Past Experience .. 8

Software Project Estimation ... 8
Project Scope .. 9
Software Environment ... 10
Team Experience ... 11
Software Development Tools .. 11

Continuous Improvement Cycle ... 12
Why Software Estimation? ... 15

Metrics—Past, Present, and Future .. 16
Importance of Estimation ... 18

Estimation—Who and How ... 19

Conclusion .. 21
References ... 22
Other Interesting Reading Material .. 23

Chapter 2: Role of Estimation in Software Projects 25

Software Projects and Estimation .. 25
Project Budget Approval Phase .. 26
Project Contract Phase ... 27
Project Execution Phase ... 28

Estimation and Measurement .. 31
Estimation and Measurement Complexities 32
Modularized Estimation .. 34
Case Study—Modularized Estimation 37

Large Application Systems ... 40
Heterogeneous Portfolio of Application Systems 41

Conclusion .. 42
References ... 43
Other Interesting Reading Material .. 43

Chapter 3: A Study of Function Point Analysis 45

Why Estimation? .. 45
What Is an Estimation Method? .. 46

Function Points .. 47
What Is a Function Point? ... 47
Function Point as a Measuring Yardstick 49
Uses and Benefits of Function Points 50

Function Point Analysis .. 51
FPA—Objectives .. 53
The FPA Model ... 55
The FPA Process ... 57

Conclusion .. 70
References ... 72

viii Contents

Chapter 4: Data Functions ... 73

Introduction .. 73
Definition of Files .. 74

A Data File Example ...74
Data Functions Defined by IFPUG .. 75

ILFs and EIFs ... 76
Embedded Terms .. 77
Rules for Identification of ILFs and EIFs 80
Determining Complexity of ILFs and EIFs 81
Complexity and FP Count Contributions 86
Tips to Remember ... 88

Conclusion .. 95
Identifying ILF/EIF: User View versus Developer View 95

References ... 96
Other Interesting Reading Material .. 96

Chapter 5: Transactional Functions ... 97

Introduction .. 97
Definition of Transactions ... 98
Albrecht’s Definition of Transactions 100

Ingredients of a Transaction ... 100
Transactional Functions Defined by IFPUG 102
EI, EO, and EQ ... 104

External Input .. 104
External Output .. 104
External Inquiry .. 104
Embedded Terms .. 105
Rules for Identification of EI, EO, and EQ 107

Complexity and FP Count Contributions 111
External Inputs .. 111
External Outputs/External Inquiries 112
Step-by-Step FP Contribution Calculation Process 112
CRUD Transactions ... 115

Contents ix

x Contents

Invoice System—FP Counting Process 116
Conclusion .. 118

Identifying EI/EO/EQ—User View versus
Developer View .. 119

References ... 119
Other Interesting Reading Material .. 119

Chapter 6: General System Characteristics 121

Introduction .. 121
Functional and Non-Functional Requirements 122

Functional Requirements ... 122
Non-Functional Requirements .. 123

Introduction to General System Characteristics 123
Degree of Influence (DI) ... 125

Guidelines for General System Characteristics 125
GSC-1: Data Communications .. 126
GSC-2: Distributed Data Processing 126
GSC-3: Performance .. 127
GSC-4: Heavily Used Configuration 127
GSC-5: Transaction Rate ... 129
GSC-6: Online Data Entry .. 129
GSC-7: End-User Efficiency .. 130
GSC-8: Online Update .. 131
GSC-9: Complex Processing .. 131
GSC-10: Reusability .. 132
GSC-11: Installation Ease .. 134
GSC-12: Operational Ease ... 134
GSC-13: Multiple Sites .. 135
GSC-14: Facilitate Change .. 135

GSC and NFR ... 137
Layers ... 139
Tiers .. 139
Quality of Service (QoS) .. 140
ISO/IEC 14143-1: Definition of User Requirements 140

From the Dinosaur Era to the Jet Age 141
The Relationship among GSC, NFR,
and Technology Platform ... 143
Case Study ... 145

Conclusion .. 146
References ... 147
Other Interesting Reading Material .. 147

Chapter 7: Size, Effort, and Scheduling of Projects 149

Importance of Size ... 149
Key Inputs to Software Sizing ... 149
Differentiate Functions from Production
Effort/Costs .. 150
Function Point Analysis Method ... 152
Size—The Differentiator .. 154
The Yardstick .. 155

Inputs to Sizing .. 155
Source of Inputs ... 156
Accuracy of Requirements ... 157
Role of Size in the Software Development Lifecycle 158

Impact of Delivery Rate .. 159
Productivity Drivers .. 159
Software Product .. 160
Software Production Process .. 160
Software Development Environment 160
Productivity Measurement .. 161
Measuring Input .. 162
Productivity ... 162

Effort and Schedule .. 163
Deriving Effort ... 164
Scheduling ... 165
Resource Loading ... 165
Costing ... 167

Conclusion .. 167

Contents xi

References ... 168
Other Interesting Reading Material .. 169

Chapter 8: Estimation Flavors .. 171

Change Forever .. 171
Development Projects ... 173

Functional Decomposition of Modules 173
Case Study—Invoicing Application .. 174
Development—Function Point Analysis Method 176

Reengineering Projects .. 177
Reengineering—Function Point Analysis Method 179

Migration Projects .. 182
Maintenance Projects .. 183

Request for Service ... 184
Estimating Maintenance Requests—Function
Point Analysis .. 185
Case Study—Maintenance Request .. 186
Complexity in Estimation of Request for Service 188

Conclusion .. 192
References ... 192

Chapter 9: A Sense of Where You Are ... 193

On the Right Track, On Time .. 193
Pervasive Estimations ... 196

The Rippling Effect .. 197
Agile Software Projects ... 199

Case Study ... 202
Estimation Maturity .. 208

Mentor and Monitor Estimation Methods 210
Conclusion .. 211
References ... 212
Other Interesting Reading Material .. 213

xii Contents

Chapter 10: Tips, Tricks, and Traps .. 215

Introduction .. 215
Setting the Context .. 215

Tips .. 216
Estimate Invisible Overheads ... 216
Tip 1: Project Team Size ... 217
Tip 2: Lifecycle Model .. 218
Tip 3: Warranty Support ... 220
Tip 4: Prototype .. 220
Tip 5: Proof-of-Concept .. 220

Tricks ... 221
Trick 1: Manipulating Project Costs .. 221
Trick 2: The Balancing Effect ... 222
Trick 3: User versus Developer View 223
Trick 4: Accuracy of Inputs to Estimation 224

Traps .. 225
Trap 1: Estimation Tools .. 225
Trap 2: Arbitrary Guesstimate ... 226
Trap 3: GSC—The Killer .. 226
Trap 4: Application Size and Delivery Schedule 228
Trap 5: Caution while Counting FP
of Existing Applications ... 229

Conclusion .. 230
References ... 231
Other Interesting Reading Material .. 231

Chapter 11: Insourcing versus Outsourcing 233

Introduction .. 233
Environment—The Differentiator ... 234

The Insourcing IT Organization .. 234
The Outsourcing IT Organization ... 236

Estimation Approach .. 239
Insourcing Estimation ... 239
Outsourcing Estimation .. 240

Contents xiii

Insourcing versus Outsourcing: Pros and Cons 242
Conclusion .. 247
Reference ... 247

Chapter 12: Key Factors in Software Contracts 249

Introduction .. 249
Types of Contracts ... 250

The Fixed Price Contract ... 250
The Time and Material Contract .. 252
The Flexible Contract ... 255

Project Execution Methods ... 257
Conclusion .. 263
References ... 263

Chapter 13: Project Estimation and Costing 265

Introduction .. 265
Ingredients of Project Costs ... 265

Project Lifecycle Phases and Cost .. 266
Requirements Phase ... 266
Design Phase .. 268
Build and Test Phase .. 269
Lifecycle Model .. 270
Resource Allocations .. 271
Develop a Cost Matrix ... 271

Estimation and TCO .. 272
Estimating TCO Costs ... 274

Conclusion .. 274
Other Interesting Reading Material ...275

Chapter 14: Other Estimation Methods .. 277

Introduction .. 277
Estimation Methods .. 277

Estimation Approaches .. 278

xiv Contents

Heuristic Approach ... 279
Top-Down Estimation Approach ... 279
The Bottom-Up Approach .. 283

Parametric Approach .. 285
COCOMO II Model .. 286
COSMIC-FFP Method .. 288

Estimation Models Pros and Cons .. 291
Conclusion .. 294
References ... 294
Other Interesting Reading Material .. 295

Chapter 15: Estimation Tools .. 297

Why Use Tools? .. 297
Evolution of Estimation Tools .. 298
Ingredients of a Good Estimation Tool 298
Deploying Estimation Tools in IT Organizations 300

List of Tools ... 302
Conclusion .. 305
References ... 306
Other Interesting Reading Material .. 306

Chapter 16: Estimation Case Study ... 307

Introduction .. 307
Basic Assumptions ... 307
Step-by-Step FP Counting Process
(Development Projects) .. 309

Case Study: 1—Invoicing System .. 312
Invoice Module ... 315

Case Study 2: Enhanced Invoicing System 350
Step-by-Step FP Counting Process
(Enhancement Projects) .. 350
Assessing the Impact of Enhancing
the Invoice Application ... 352

Conclusion .. 359

Contents xv

References ... 359
Other Interesting Reading Material .. 359

Appendix A: Reference Tables: Transaction Function Counts...... 361

Reference Table to Calculate ILF/EIF FP Count361
Reference Table to Calculate EI/EO/EQ FP Count362
Reference Table to Calculate Total FP Count362
Reference Table to Calculate VAF from
GSC—Total Degree of Influence...363

Appendix B: Reference Tables: Data Function Points 365

Internal Logical Files and External Interface Files365
External Inputs/External Outputs/External Inquiries366

Bibliography...369
Index ..373

xvi Contents

FIGURES

Figure 1.1 Estimation ingredients .. 7

Figure 1.2 Estimation ingredients—comparison 9

Figure 1.3 Estimation effectiveness .. 13

Figure 2.1 Role of estimation ... 27

Figure 2.2 Estimation and measurement ... 31

Figure 2.3 Estimation and measurement complexities 32

Figure 2.4 Application components ... 36

Figure 2.5 Multi-platform application portfolio 42

Figure 3.1 Functional measurement ... 48

Figure 3.2 Different views of software ... 53

Figure 3.3 Components of an application.. 56

Figure 3.4 FPA counting process ... 58

Figure 3.5 Scope and boundary of an application 64

Figure 4.1 Components of an application.. 75

Figure 4.2 Two views of DET... 83

Figure 4.3 Defining RET ... 85

Figure 4.4 Invoice data model ... 89

Figure 5.1 Input and output components of a mobile phone........ 99

Figure 5.2 Definition of transaction .. 101

Figure 5.3 Components of an application.. 104

Figure 5.4 Identifying FTR in transactions....................................... 110

Figure 5.5 Invoice data model ... 114

xvii

xviii

Figure 6.1 IT architecture ... 138

Figure 7.1 Defining size.. 153

Figure 7.2 Productivity parameters .. 161

Figure 7.3 Deriving effort and costs.. 164

Figure 8.1 Functional decomposition... 174

Figure 8.2 Module level FP counts.. 177

Figure 8.3 Reengineering applications... 178

Figure 8.4 Migrating data... 180

Figure 8.5 Request for service.. 184

Figure 8.6 Ratio between enhancement and application size 189

Figure 8.7 Enhancement complexity .. 190

Figure 9.1 Rippling effect ... 197

Figure 9.2 Agile projects... 201

Figure 9.3 Containing variance ... 209

Figure 10.1 Communication paths.. 218

Figure 10.2 Iterative lifecycle model... 219

Figure 10.3 Different views of software ... 223

Figure 13.1 Typical inputs to project estimates 266

Figure 14.1 Work-breakdown structure ... 281

Figure 14.2 COSMIC-FFP: FUR... 289

Figure 14.3 COSMIC-FFP: Input/output identification 290

Figure 16.1 Scope, boundary, and components
of an application ... 309

Figure 16.2 Invoicing workflow .. 313

Figure 16.3 Invoicing modules .. 314

Figure 16.4 Invoicing module attributes.. 316

Figures

TABLES

Table 2.1 Productivity Factors Variance Due to Technology....... 38

Table 2.2 Productivity Factors Variance Due to Project
Execution Type... 39

Table 2.3 Productivity Factors Variance Due to
Project Size... 39

Table 3.1 Category of Application Count....................................... 63

Table 3.2 Calculate Value Adjustment Factor................................ 70

Table 4.1 ILF/EIF Complexity Factor... 87

Table 4.2 ILF FP Contribution.. 87

Table 4.3 EIF FP Contribution.. 88

Table 4.4 Invoice ILF Identification .. 90

Table 4.5 Customer ILF Identification .. 90

Table 4.6 Customer EIF Identification .. 91

Table 4.7 Item Data ILF Identification .. 91

Table 4.8 Item Details ILF Identification .. 91

Table 4.9 Item Information ILF Identification 92

Table 4.10 DET and RET Identification .. 92

Table 4.11 DET/RET Identification... 94

Table 4.12 FP Count .. 94

Table 5.1 Elementary Process Identification Rules 108

Table 5.2 DET and FTR Identification Rules.................................. 109

Table 5.3 EI Complexity Factor .. 111

xix

Table 5.4 EO/EQ Complexity Factor .. 112

Table 5.5 EI/EQ FP Contribution .. 112

Table 5.6 EO FP Contribution .. 113

Table 5.7 EI Identification—Item Data ... 114

Table 5.8 EI Identification—Item Data and Item Details.............. 115

Table 5.9 EI Identification—Invoice, Item Data,
and Item Details .. 116

Table 5.10 DET and FTR Identification for the Invoice
Application .. 117

Table 5.11 DET and FTR Counting Rules for Invoice 118

Table 5.12 FP Contribution for Invoice... 118

Table 6.1 Data Communications ... 126

Table 6.2 Distributed Data Processing.. 127

Table 6.3 Performance .. 128

Table 6.4 Heavily Used Configuration ... 128

Table 6.5 Transaction Rate.. 129

Table 6.6 Online Data Entry... 130

Table 6.7 End-User Efficiency.. 130

Table 6.8 Online Update... 132

Table 6.9 Complex Processing ... 133

Table 6.10 Reusability ... 133

Table 6.11 Installation Ease .. 134

Table 6.12 Operational Ease... 135

Table 6.13 Multiple Sites... 136

Table 6.14 Facilitate Change .. 136

Table 6.15 ISO 9126 QoS Framework.. 142

Table 6.16 GSC and QoS Mapping.. 144

Table 6.17 Mapping of NFR to GSC.. 146

xx Tables

Table 7.1 Activity Comparison for Products and
Software Development .. 151

Table 7.2 Resource Loading Chart .. 166

Table 8.1 Enhancement List ... 188

Table 8.2 Variety of Maintenance Requests 191

Table 9.1 Case Study ... 203

Table 9.2 Milestone Progress ... 203

Table 9.3 Milestone Re-Estimation.. 203

Table 9.4 Milestone Progress Percentages...................................... 212

Table 10.1 Team Size versus Communication Paths....................... 218

Table 11.1 Insourcing .. 243

Table 11.2 Outsourcing... 243

Table 11.3 Insourcing .. 244

Table 11.4 Outsourcing... 244

Table 11.5 Insourcing .. 245

Table 11.6 Outsourcing... 245

Table 11.7 Insourcing .. 246

Table 11.8 Outsourcing... 246

Table 13.1 Cost Matrix .. 272

Table 14.1 Pros and Cons of Various Estimation Models............... 292

Table 15.1 Critical Parameters Desired
in Estimation Tools ... 301

Table 15.2 List of Popular Estimation Tools..................................... 303

Table 16.1 Invoice Information DET and RET Count..................... 318

Table 16.2 Invoice Information ILF Identification 318

Table 16.3 Invoice ILF Unadjusted FP Count 319

Table 16.4 Customer Information DET and RET Count 319

Table 16.5 Customer Information EIF Identification...................... 320

Tables xxi

Table 16.6 Customer EIF Unadjusted FP Count.............................. 320

Table 16.7 Dealer Information DET and RET Count 321

Table 16.8 Dealer ILF Unadjusted FP Count 321

Table 16.9 Spares and Accessories Information
DET and RET Count... 322

Table 16.10 Spares and Accessories ILF Unadjusted
FP Count .. 322

Table 16.11 Servicing Facilities Information
DET and RET Count... 322

Table 16.12 Servicing Facilities ILF Unadjusted FP Count 323

Table 16.13 Accounts Information DET and RET Count 323

Table 16.14 Accounts ILF Unadjusted FP Count............................... 324

Table 16.15 Payments Information DET and RET Count 324

Table 16.16 Payments ILF Unadjusted FP Count.............................. 324

Table 16.17 Bank Information DET and RET Count......................... 325

Table 16.18 Bank ILF Unadjusted FP Count 325

Table 16.19 Sales Executive Information
DET and RET Count... 326

Table 16.20 Sales Executive ILF Unadjusted FP Count 326

Table 16.21 Stores Information DET and RET Count 326

Table 16.22 Stores ILF Unadjusted FP Count 327

Table 16.23 Elementary Process Identification Rules 328

Table 16.24 DET and FTR Identification Rules.................................. 328

Table 16.25 Transactions for Invoice Module 329

Table 16.26 DET and FTR Identification
for Invoice Module ... 330

Table 16.27 DET and FTR Identification
for Customer Module... 333

Table 16.28 DET and FTR Identification for Dealer Module 333

xxii Tables

Table 16.29 DET and FTR Identification for Spares
and Accessories Module .. 335

Table 16.30 DET and FTR Identification for Servicing
Facilities Module... 336

Table 16.31 DET and FTR Identification Accounts Module 338

Table 16.32 DET and FTR Identification Payments Module 339

Table 16.33 DET and FTR Identification Bank Module.................... 340

Table 16.34 DET and FTR Identification for Sales
Executive Module... 341

Table 16.35 DET and FTR Identification for Stores Module 342

Table 16.36 Total Data Function FP Count (Unadjusted)................. 343

Table 16.37 Total Transaction Function FP Count
(Unadjusted).. 344

Table 16.38 Invoicing System—General System
Characteristics... 346

Table 16.39 Resource Loading Chart (Illustrative Only).................. 349

Table 16.40 Buy-Back Agent Data Function Information
DET and RET Count... 352

Table 16.41 Buy-Back Cars Data Function Information
DET and RET Count... 352

Table 16.42 Spares and Accessories ILF Unadjusted
FP Count .. 353

Table 16.43 DET and FTR Identification for Buy-Back
Agent Module ... 353

Table 16.44 DET and FTR Identification for Buy-Back
Cars Module .. 354

Table 16.45 Modified Invoice Information DET
and RET Count.. 355

Table 16.46 Modified Invoice ILF Unadjusted FP Count................. 356

Table 16.47 DET and FTR Identification
for Invoice Module ... 356

Tables xxiii

Table 16.48 Total Data Function FP Count (Unadjusted)................. 357

Table 16.49 Total Transaction Function FP Count
(Unadjusted).. 358

Table A.1 ILF/EIF FP Count Table (with Examples) 361

Table A.2 EI/EO/EQ FP Count Table (with Examples) 362

Table A.3 Total FP Count... 362

Table A.4 General System Characteristics and VAF Table............ 363

Table B.1 ILF/EIF Complexity Factor ... 365

Table B.2 ILF FP Contribution.. 366

Table B.3 EIF FP Contribution.. 366

Table B.4 EI Complexity Factor.. 366

Table B.5 EO/EQ Complexity Factor.. 367

Table B.6 EI/EQ FP Contribution .. 367

Table B.7 EO FP Contribution .. 367

xxiv Tables

FOREWORD

In order to derive continuous improvement in the software engineering
process, it is essential to measure and control the process. Good soft-
ware estimation methodologies ensure process predictability and clar-
ity on timelines. Accurate estimation benefits several stakeholders and
results in

• Better profitability
• Better employee morale
• Higher customer satisfaction

In situations where the end customer is not very conversant with soft-
ware engineering or the nuances of programming, estimation gives
credibility to the software engineering process, and helps the service
provider gain respect from the customer. Superior estimation method-
ologies lead to optimal utilization of inputs and improve the quality of
the end product, both of which result in higher satisfaction levels. In
essence, a process-driven objective estimation, which eliminates the
person dependency, is a competitive advantage for the organization
that implements it.

Despite considerable effort and costs having gone into research on
improving the accuracy of software estimation, the results have been far
from satisfactory. Estimation accuracy has varied from as low as 5% to
as high as 350%! There are a number of reasons for such a high degree of
variation in estimations, including inadequate scope capture, lack of
appropriate technical skills, and poor project execution techniques.

Heads of large IT organizations continue to be tormented by one of the
most difficult facets of managing IT business: controlling their budgets.
Estimates that cover costs towards discretionary and non-discretionary

xxv

expenses, including operational and infrastructure costs, have always
been a source of dispute and ambiguity. Unlike hard facts and figures
available in manufacturing industry, there are many gray areas in the
software industry that have yet to be ironed out.

This book attempts to address many of the gray areas in the software
project execution process. M. A. Parthasarathy of Infosys has used his
vast experience in project execution in writing this book. Starting from
a very basic explanation of the ingredients of a typical estimation activ-
ity, he proceeds to remove some of the basic misconceptions about soft-
ware estimation.

In a truly “flat world” scenario today, there is a compelling need for IT
organizations to bring together an international global workforce
where people from different countries and cultures come together to
produce world-class services and products, resulting in many com-
plexities in software project execution. In this context, it is very impor-
tant to have process driven effort and cost estimation methodologies.

Software professionals and managers will find this book insightful
and lucidly written, providing an analytical approach to estimation
methodologies.

N. R. Narayana Murthy
Chairman and Chief Mentor
Infosys Technologies Ltd.
Bangalore

xxvi Foreword

PREFACE

I never imagined that writing a book would be such an exhausting but
exciting experience. Originally I only had a mental picture of how the
book would evolve, with certain key aspects of software estimation I
intended to write down. But as the chapters unfolded one after another,
the thoughts poured out more freely. The difficult part was organizing
the thoughts into a structured way of presentation, adding tables and
diagrams to enhance the enumeration, and tying up other loose ends to
make the whole discussion complete in all respects (almost all). I hope I
have been successful in doing this.

Although I had fairly deep knowledge and experience in software estima-
tion techniques from my early years as an IT professional, it was at
Infosys that I had the extraordinary experience of doing a deep dive into a
huge variety of estimation-related interactions. Having personally trained
more than 500 software professionals at Infosys on Function Points and
other estimations methods, the amount of knowledge I acquired during
these sessions was huge. Added to this was the visibility I gained as an
estimation expert, which brought another storehouse of enriched
knowledge. This enrichment happened through a regular stream of
queries and issues that the project managers, programmers, and architects
brought to me. Analyzing and solving these issues was exciting, although
challenging. But the biggest benefit was to me, that of improving my
estimation skills. Every situation was unique and needed interpretation
and application of a variant of standard estimation methods.

IT professionals who have been working with large outsourcing orga-
nizations similar to Infosys across the globe have likely experienced a
fairly wide variety of project execution situations during their service.
The experience takes various forms, including project execution, technical
challenges, customer interactions, testing and debugging issues, and to

xxvii

some extent estimation-related challenges. I have been quite fortunate
to have received the maximum experience of estimation-related chal-
lenges across a wide variety of projects, either directly or through
issues and challenges posed to me by project teams. It is this experience
that I have hoped to put together in the form of this book and share
with a global community of IT professionals.

Quite frequently I have seen IT professionals in need of assistance to
arrive at a good estimation figure for a complex or unique project. I have
tried to provide that assistance, realistically and practically, throughout
this book. I would receive the ultimate satisfaction from knowing that IT
professionals have been able to resolve the majority of estimation-
related issues through the examples and instruction in this book!

Layout of Chapters

Having been actively involved in software project management and soft-
ware estimation-related activities for a long time, direct interaction with
software project managers, architects, and programmers was among the
many benefits I received. The layout of the chapters of this book has been
designed to start with general software estimation topics, including an
introduction to basic estimation concepts, followed by a discussion of the
function point estimation method and, finally, in later chapters, coverage
of a variety of other software project estimation needs.

Chapter 1, “Introduction,” has been written as an introduction to estima-
tion concepts for project managers and programmers who have had very
little exposure to estimation principles and the ingredients that constitute
estimation. This chapter broadly covers basic aspects of how estimations
are done in different project execution situations and how these esti-
mates can be refined through continuous improvement cycles.

Chapter 2, “Role of Estimation in Software Projects,” takes you forward
toward establishing a link between estimation and software project exe-
cution. The intention is to explain various complexities of software pro-
jects and show how estimates also need to be customized accordingly.
Complexities include project execution lifecycle models, technology plat-
form variations, and project size. Project managers with previous project
execution and basic estimation related exposure can skip this chapter.

xxviii Preface

Chapter 3, “A Study of Function Point Analysis,” takes you through the
various aspects of the IFPUG Function Point Analysis (FPA) method.
The FPA method is discussed in full detail here, including discussion
on how to identify attributes of the various components of the FPA
method. IT professionals who do not have a good knowledge of IFPUG
FPA method should definitely read this chapter in detail.

Chapters 4 and 5 cover “Data Functions” and “Transactional Functions”
extensively. For IT practitioners, it is essential that a mapping of the FPA
estimation method is provided to the actual software project execution
process. These chapters provide the detailed mapping along with exten-
sive examples from real software project situations. If you have gone
through Chapter 3, it is advisable to read Chapters 4 and 5 also.

Chapter 6, “General System Characteristics,” has been especially writ-
ten to delve into the most critical and complex part of the IFPUG FPA
method. Estimators have often experienced difficulty in making the
right judgment of the correct level of impact (degree of influence) of
each of the 14 general system characteristic (GSC) parameters. An effort
to map the GSCs to the software architecture and its performance para-
meters have been made here. This chapter should be very interesting to
serious estimators.

Chapter 7, “Size, Effort, and Scheduling of Projects,” has been put
together to help understand the process of converting the software
size, as discovered in earlier chapters, to effort and schedule. Criticality
of certain software project execution environment including productivity
of the team, resource loading, and use of tools has been used as important
input to derive project effort and schedule. All estimators, managers, and
even programmers should definitely go through this chapter.

Chapter 8, “Estimation Flavors,” exposes you to some of the practical
estimation-related problems encountered during actual project execu-
tion. Typical estimation methods provide us with basic estimation
processes that are usable in software development projects and some-
times in maintenance projects. But this is not the total reality in an IT
organization environment. There are a host of other project execution
varieties including migration, reengineering, porting, and more. This
chapter picks up a few such popular software projects and maps the stan-
dard estimation method (IFPUG FPA) to the situations.

Chapter 9, “A Sense of Where You Are,” addresses the dynamic project
execution situations and how estimates are required to be revisited
at every milestone stage. It explains how the information about the

Preface xxix

executed part of the project can be effectively analyzed and utilized to
predict the remaining project execution effort and duration.

Chapter 10, “Tips, Tricks, and Traps,” brings to you a variety of com-
plexities that occur during project execution situations and provides
possible solutions on how to tackle these situations. This chapter will
be very handy to estimators who face many complex project execution
scenarios.

Chapter 11, “Insourcing versus Outsourcing,” discusses various aspects
of project execution that are unique to situations when the project is
executed through insourcing as against the situation when the project
is executed through an outsourcing vendor. The focus is on the way
estimates are impacted by insourcing and outsourcing situations.

Chapter 12, “Key Factors in Software Contracts,” will be of great inter-
est to managers and software professionals involved in preparing
software contracts. Popular contracting models involving fixed price,
time, and material are discussed with respect to impact on estimation
process. Also discussed are certain project execution lifecycle models
that have a direct impact on estimations.

Chapter 13, “Project Estimation and Costing,” takes you further from
project sizing and effort estimations to converting them into actual
costs. Discussions on aspects of resource loading based on project exe-
cution phases, technical complexities, and its impact on overall costs
will help you understand some of the flavors of project costing.

Chapter 14, “Other Estimation Methods,” is an important chapter for
estimators and managers who are keen to know more about additional
popular estimation methods (other than the function point method).
This chapter discusses aspects of how various estimation methods are
modeled based on heuristic and parametric approaches. Brief discussions
on a few estimation methods, including Delphi method, COCOMO II,
and COSMIC-FFP, are covered.

Chapter 15, “Estimation Tools,” gives you key tips on features you
should look for while selecting estimating tools for procurement. A
comprehensive list of popular tools available in the market, along with
a brief discussion on each tool’s features, is provided.

Chapter 16, “Estimation Case Study,” is perhaps one of the most impor-
tant chapters for all serious software professionals, estimators, and man-
agers. The first case study in this chapter extensively covers details of the
estimation process for typical development projects. Also provided is a

xxx Preface

case study on estimation for executing an enhancement request in a
maintenance project.

With the intention of providing ready-to-use formats for easy and
quick counting of Function Point parameters like data and transaction
functions, I have provided sample tables in Appendixes A and B.

Bangalore, 2007

Preface xxxi

This page intentionally left blank

ACKNOWLEDGMENTS

Throughout the journey of writing this book—and in a few situations
before, which actually led to the writing of this book—a number of
well-wishers have helped me. In no particular order, I would like to
place on record my heartfelt thanks to all of them.

For initiating the idea of writing a book on estimation and continually
reminding me to act on it, I would like to thank many of my close
friends, in particular, my colleagues S. V. Subrahmanya and Shubha V.
One person acted as my guide and mentor, always carefully listening to
my radical ideas on software estimations and many other IT related top-
ics: Srinath Batni. Srinath always participated actively in my thought
processes and in fact refined and improved upon the ideas on several
occasions. My thanks to Srinath for all the support and contributions.

My heartfelt thanks to Narayana N. R. Murthy, Nandan M. Nilekani,
Kris Gopalakrishnan, Shibulal and K. Dinesh, founders of Infosys, for
providing me with the opportunity to validate and develop some of
my estimation-related initiatives. The insight and thought leadership
demonstrated by them on many software estimation related processes
have immensely helped me mature as an estimation expert.

I would like to thank the reviewers of this book for having gone through
the pain of careful evaluation of the contents. My thanks to Frank Parth,
Paul Below, Jim Brosseau, Joseph M. Tarrani, and U. Maitland. The
review comments I received from these professional reviewers have
greatly improved the quality of the book’s contents.

I want to make a special mention of my colleagues from our own
Infosys internal estimation core group, ESTEEM (Estimation Enterprise
Model), who provided me with opportunities to explore ideas, come

xxxiii

up with improved solutions to estimation-related problems, and much
more. I would like to convey my appreciation to Dinesh Ganesan,
Aman Kumar Singhal, Milind V. Badkundri, and Siddharth Sawhney
(all from the ESTEEM team) for taking time off from their busy sched-
ules to review the manuscript and provide invaluable suggestions.

Deependra Moitra and his team provided me with the much-needed
guidance and assistance to establish the relationship with the publish-
ers of this book. Special thanks to Pandurangan A. G., for facilitating
the Foreword by N. R. Narayana Murthy. Vijayaraghavan T. S., Aarathi
Chellappa, and Kanupriya Sindhu helped me with corporate clearances.
My thanks to them.

The ever-encouraging support and guidance provided to me by my
publishers have greatly helped me to keep moving forward with the
difficult chapters of the book. I would like to mention my special appre-
ciation to Peter Gordon and Kim Boedigheimer of Addison-Wesley for
this. It was only when the manuscript reached the copyediting stage
that I realized how bad my grammar and sentence formation capabili-
ties were. Many thanks to Katherine Murray for going through every
sentence of the manuscript painstakingly and polishing the contents.
My thanks to Tyrrell Albaugh and her team for facilitating production-
related activities.

My daily carpooling to the office has brought its own extra benefits.
Not only was I able to try out many of my “great” ideas about estima-
tion and software engineering in general and get appropriate answers
(not always palatable!), but I was also gently but consistently pushed to
complete the book at the earliest possible date, in the larger interest of
the software developer community across the globe. For all this and
much more, I would like to thank Dr. Ravindra Muthya Pranesha.

Bangalore, 2007

xxxiv Acknowledgments

CHAPTER 1

Introduction

What Is Software Estimation?

Estimation: It is the mark of an instructed mind to rest satisfied
with the degree of precision which the nature of a subject requires,

and not to seek exactness where an approximation may suffice.
—Aristotle, 330 bc

Estimation is a frequently occurring phenomenon in our everyday
lives. When we leave home for the office in the morning, we roughly
estimate the time it will take to reach the office. When we plan to make
a business analysis presentation in a meeting, we estimate the time it
will take to complete the presentation, perhaps including time for
questions and answers as well. A building contractor estimates the
schedule and cost required to construct a building according to specific
requirements. The driver of a car moving at a specific speed encounters
an object crossing the road and instantly estimates the time it will take
the car to reach the point of intersection and then corrects the speed
accordingly. In all these everyday situations, the estimating activity
happens sometimes consciously and sometimes subconsciously. It
remains for the user to determine the level of estimation accuracy
needed, based on the criticality of the activity itself. Above all, the
process of estimation itself is refined iteratively in each of the preceding
situations, based on historic data or past experience.

The parameters that define estimation vary depending upon the activity
being estimated. Activities could be cost, resources (for example, mate-
rials), manpower, and equipment. Other parameters could be elapsed
time, schedule, or other similar attributes. The key parameter common

1

The Dream Project

Sunil was completely shattered. He was totally exhausted, both
physically and mentally. He felt his career as a software profes-
sional was doomed. After toiling for almost nine months on one of
the most grueling software project assignments he had ever had,
the project itself was scrapped by the customer. He was totally at a
loss to imagine what had gone wrong.

Although the project started nine months ago, to Sunil it seemed
just a few weeks ago. Sunil was a lucky project manager indeed; he
had been selected to lead a very prestigious software project.
Almost all the components of the project seemed to be right. The
project was being executed for one of the company’s largest
customers. The customer team was tech savvy. The technology
was state-of-the-art. The application being developed was
expected to bring a dramatic increase in business for the customer,
based on some very innovative thinking by the business users.
Above all, Sunil felt confident this would be a successful project
due to the excellent environment in which he was working. His
manager was a very good senior software professional, and the
team members were well skilled in the technology on which the
application was being developed. All the required tools and other
development environment were in place.

Sunil’s team followed all the processes needed in good software
project execution. The requirements were done with due diligence

to all situations is experience. Whatever the method of estimation, the
differentiating factor between a good and bad estimate is the experience
of the estimator in arriving at the right mix of the parameters and their
attributes. Organizations that are established in implementing quality
practices like ISO 9002 and/or SEI/CMMI [1] document individual expe-
riences as best practices and make them available to other estimators
across the organization. Basically the environment in which the activity is
being executed defines the estimation parameters. Typically, we would
not be able to correlate and compare the estimations for two different
categories of activities. For example, the time required to travel a certain
distance in a certain traffic environment cannot be compared with the
time taken to complete the construction of a building.

2 Chapter 1 Introduction

and after a couple of thorough reviews, the customer signed off on
the project. The design was carefully done, keeping both function
and performance in view. The team included good developers
and the code generated was of good quality. Early tests of some of
the modules showed good results. Everything seemed to be going
fine, Sunil recalled.

Of course there were a few hiccups on the way, but Sunil thought
he addressed them quite well. Although there were a few slip-
pages in the schedule, Sunil was confident of recovering. But now,
as he recalled the events that happened during the early days, he
wondered whether he really did a good job of fixing the issues and
the connected risks. Did he fail to recognize the early warnings?
He remembered each of these situations quite vividly:

Project Kick-Off: Immediately after the customer signed off on the
big contract for the project, Sunil decided to do a detailed evalua-
tion of the scope first including derived effort and schedule esti-
mations. He brought a couple of senior team members and did an
effort estimation based on the past experience of delivering simi-
lar projects. They had not previously sized a project of this magni-
tude; however, they had completed smaller projects and thought
they would be able to do an extrapolation and arrive at a good
guesstimate for the current project. They quickly realized that it
was indeed a very large project. After several rounds of delibera-
tions, it was decided to fix the delivery schedule at 15 months with
an average team size of 30 members. The team was aware that the
customer had a tight deadline and any further extension of sched-
ule might not be allowed.

Schedule Renegotiation: During discussions with the customer on
project execution strategy, team members realized that the cus-
tomer was quite inflexible on the 10-month delivery schedule
agreed upon during contract negotiations. Sunil had no option
but to return to the drawing board and recalculate the project
schedule and the related impact on other project delivery aspects.
They had to do several review rounds to arrive at the best possible
project execution plan. The reduction of schedule by 30 percent
(from 15 months to 10 months) had a direct impact on the average
team size, increasing it by a whopping 50 percent (from 30 members
to 45 members). In order to reach this timeframe, they also reduced

What Is Software Estimation? 3

the buffer that had been built in earlier. As a result, all the phases
of the software project were very tightly planned with little scope
left to maneuver slippages.

Requirements Phase: During the requirements gathering phase, the
scope was reviewed with the business users. The business users
pointed out that due to recent changes in government regulations,
the software application required specific changes in order to com-
ply with the new regulations. This also meant changing the func-
tional workflow of activities. Sunil’s team included all the relevant
changes and did a quick re-estimation. The overall effort had gone
up by another 6 percent. Once again, a negotiation with the cus-
tomer to increase the schedule was denied. The result was an
increase in team size by another three members. Sunil was worried
about the possible impact and increased risk but was confident his
team would deliver.

Design Phase: The first serious signs of problems surfaced during
design phase. The software was being developed on the Java plat-
form. The technology vendor had recently introduced a new prod-
uct that would dramatically change the way the business workflow
could be manipulated directly by the end users. Although the prod-
uct was a boon to the users, it meant two significant deviations to
the project team: the team had to learn and understand features of
the new product, and the team would need to invest additional
effort to include the new product into the revised architecture of the
software application. Overall, the effort went up again. Sunil’s team
was rightly worried this time. The size of the project was balloon-
ing, but the end date of delivery was not allowed to change.

Project Progress Review: Sunil felt it was time to escalate the situa-
tion to his manager internally. His manager decided to do a com-
plete review of the project status. Another surprise was soon to be
discovered. The project had already slipped by two weeks. The
late changes in project scope and the last-minute changes due to
the addition of the new product had made their impact on sched-
ule slippage. This situation was further aggravated when it was
discovered that the new product was still in beta and had quite a
number of bugs that needed to be removed by the vendor. By now
the team size had grown to 50 members and it was looking almost
impossible to meet the 10-month schedule.

4 Chapter 1 Introduction

Build Phase: During the coding stage, one of the key senior mem-
bers fell ill and had to take two weeks leave. Two other develop-
ers decided to quit, thus adding salt to the wound. The early
schedule slippage had a crunching impact on the time provi-
sioned for the coding (build) phase. Despite Herculean efforts,
the team found it impossible to meet the original deadline. Sunil
had no other option but to go back to the customer to negotiate
more time.

During discussions with the customer, the critical nature of the
whole project emerged. The business users had planned strategi-
cally for this project to be ready in 10 months in order to meet a
possible window of business opportunity that would last only a
few months. Missing the deadline would mean a loss of business
opportunity. The chances of similar opportunity occurring in the
near future were almost nonexistent. Sunil was a depressed
project manager when he returned from the meeting with the cus-
tomer. The project team met to discuss the situation. Many enthu-
siastic younger team members felt there still was a last chance to
meet the deadline if everyone pitched in with extra effort. The
team decided to work extended work hours and weekends. There
was an air of expectation and things seemed to improve.

But not for long. During early tests, serious performance issues
were detected. Inconsistencies in coding standards followed by
different groups within the project team were also found. This
again was a setback that had a direct impact on delivery schedule.
It was now impossible to meet the deadline under any circum-
stances. After internal deliberations with the team and Sunil’s
manager, it was decided to convey the sad news to the customer.
The only option was to extend the delivery schedule by three
months. The customer was aghast at the proposal. The matter was
escalated to higher management and after a couple of rounds of
senior level meetings it was decided by the customer to scrap the
project.

What really did go wrong?

For a detailed solution to this project problem, please refer to
Chapter 9, “A Sense of Where You Are.”

What Is Software Estimation? 5

Ingredients of a Good Estimation

Unless all the key ingredients of estimation are identified and assessed
thoroughly, the process of estimation itself will be incomplete and in
many situations, the end result will not be of much use. The key ele-
ments are discussed here.

Activity Scope

The important key element that forms the basis of estimation is the
scope of the activity being estimated. Scope is a very loose term and will
take different shapes in different situations. For example, if you were
constructing a building, the scope would probably be the square feet of
area being built. If you were traveling between two locations, the scope
would be the distance in miles. If you intend to build a wardrobe for
your bedroom, the scope would again be the area in square feet. If you
are building a software application, the scope could be the size of the
software in terms of functionality that it delivers or in terms of lines of
code delivered. If you are making a business presentation to your cus-
tomer, the scope could be the content that you intend to cover in order
to make a good sales pitch. For a sportsperson who is practicing hard to
win a 100-meter race, the scope would be the exact 100 meters the per-
son needs to cover.

Work Environment

The environment in which the activity is being executed makes a huge
impact on the overall estimation. While driving a compact car in the U.S.,
I could cover 10 miles in 12 minutes on Highway 101 in California. But it
takes 45 minutes to drive seven miles on a similar highway between
Madiwala and Electronic City in Bangalore, India. Likewise, it would
be as tough to drive on the main streets of New York as it is easy to
drive around the Parliament House in New Delhi. Obviously there is a
big difference in environment between these situations. In this sense,
environment refers to the layout of roads, traffic rules, and the people
who follow (or do not follow) traffic regulations. It also refers to the
capacity of the roads, which can handle a certain density of traffic. In
another example, I could be constructing a building of a certain size in
a crowded locality of a city or I could be constructing the same building
in a jungle area. In the first case, there would be severe restrictions on
movement of material and equipment, and in the second case, quite a

6 Chapter 1 Introduction

bit of effort would go first into clearing the jungle and then making long
trips (for the material and for me) to the site on regular basis. Environ-
ment topics could range from weather conditions to political interfer-
ence. They all play a crucial role in the final estimation. Figure 1.1 shows
the various ingredients of estimation.

Consistency

Historic data, the competency of the team that executes the activity,
and best practices developed over the years derive the estimation of
time and hence the schedule for the activity to be delivered. Despite the
repetition of similar sets of activities involved in completing a particu-
lar assignment, each new attempt is different in some way from previ-
ous one. Teams encounter new obstructions, issues, and hurdles, which
may or may not have occurred in the previous occasion. It is these iter-
ations that make a person or a team “experienced.” And by carefully
recording and analyzing the experiences, you can add immense value
to the final estimation. In software parlance, the rate of delivery of a
unit of work is better known as productivity.

Usage of Tools

Tools that are used to execute an activity play a significant role in defin-
ing the effort and the time taken to complete the activity. Tools can take

Ingredients of a Good Estimation 7

Figure 1.1 Estimation ingredients.

Scope

Environment

Tools

Experience

different forms, shapes, and sizes depending upon the type of activity.
The tool could be the type of car used for traveling between two loca-
tions, the construction equipment used for constructing a building, the
sports gear used by the athletes, or the utility of other software tools
used by the software developer. Effective use of tools has a major
impact on productivity.

Learning from Past Experience

The popular definition of an expert, “One who has learned from past
mistakes,” has much relevance when you have a need for improving a
defined process through multiple and continuous iterations. Fortunately,
you need not learn everything from your past mistakes; you also can
learn from others’ mistakes, provided you have a well-defined process to
record experiences and mistakes, and devise corrective actions. Each of
the iterations of the improvement cycle will consist of the following:

• Define/refine the execution model
• Estimate required parameters based on the execution model
• Implement the defined model
• Continuously monitor during execution
• Measure key parameters of output generated (metrics)
• Analyze metrics, find the area of improvement, and refine the exe-

cution model

In each of these iteration cycles, the original estimation at the beginning
of the cycle will be validated at the end of the cycle and based on the
data collected, the estimation will be refined.

Software Project Estimation

Is estimation for a software development activity different from other
estimations? I would say it is similar to any other estimation activity if
you know the key parameters required to do an estimation—for exam-
ple, scope, environment, experience, and tools. Figure 1.2 enumerates
the two sides of the same coin. The three ingredients (scope, tools, and
environment) are shown in two different contexts: general engineering
and software engineering. In both situations, the contribution of all
three ingredients is equally significant and plays an important role in
arriving at final project execution estimates.

8 Chapter 1 Introduction

Project Scope

Software developers do realize that it is extremely difficult to capture
accurately the scope of a given software project. A wide variety of
ingredients make a software system complete. Here are just a few:

• Business functionality addressed through the application system
• The various modules of the application
• The platform, language, and database used
• Tools used as part of the application
• Performance and other execution capacity attributes of the system
• Interface with other systems in the environment

Although the number of methods used to capture the scope of the com-
ponents of a software system have evolved over the last few decades,
almost none of them can size the scope with precision. In software
terms, the scope is equated with the size of the software system. The
size has been defined in different units of measurement, such as Lines
of Code (LOC), Function Points (FP), number of programs, and num-
ber of objects. Some of the popular software estimation models that
have been developed by experts include

• Function Point Analysis Method [2]
• Mark II Function Points [3]

Software Project Estimation 9

Figure 1.2 Estimation ingredients—comparison.

Scope

Tools

Experience

Environment

General Engineering
Experience

Software Engineering
Experience

Environment

Hardware,
Network

Business
User

Construction and Manufacturing

Weld, Bore, Tool

• COCOMO II Model [4]
• Feature Points [5]
• Object Points [6]
• COSMIC-FFP Method [7]
• Delphi Method [8]
• Use Case Points [9]
• Others (See Chapter 14, “Other Estimation Methods.”)

Software Environment

A software system needs the right environment to exist and perform in
much the same way a fish needs water to live. Most software systems
are designed and developed for a particular target environment. Some-
times a variant of the software does execute in similar environments,
which have basically originated from a common basic environment.
For example, a software system developed for UNIX version 9.4 is
likely to work with UNIX version 10.0, and with very few changes, it
may work on the Linux operating system as well. But it is very unlikely
for a software system developed on a mainframe operating system to
work without changes on a Microsoft Windows operating system.
There are many such parameters that define the environment in which
a software system was developed and as a result, the software system
can work only in certain target environments. Some of the key parame-
ters that define the software environment are

• Operating system (including the version)
• Technology platform
• Programming language
• File system
• Database system (if applicable)
• Interfaces to other environments (if applicable)
• Hardware
• Communication system (if applicable)
• Architecture of the application system
• Performance and other scalability expectations from the software

system

Developing a software system based on the environment in which
the system is expected to execute has a considerable impact on the

10 Chapter 1 Introduction

estimated effort. In situations where the same software system needs
to execute in multiple types of environment, the effort to develop
such a feature further adds to the overall effort.

Team Experience

Competency of the developers of the project team is a key factor that
impacts the effort required to deliver the software system. Experience
gained by developers while delivering software development projects
helps enhance the competency of individuals as well as the team.
Given the same software project scope, different teams may use differ-
ent levels of effort. Some of the key aspects that define the competency
of a developer team are

• Ability to understand clearly the scope
• Technical expertise on the development platform
• Project management expertise
• Quality procedures and processes
• Software testing skills

Software Development Tools

A wide variety of tools available in the market helps the developer in a
variety of ways and forms. Some of the popular tools are

• Design tools
• Build tools
• Tools to review code according to standards
• Online documentation
• Tools to develop repeatable test scenarios
• Configuration tools

Each tool helps in some portion of the software development lifecycle.
The benefits of using tools vary. The tools could help you adopt formal
designing or coding practices, prepare documentation, configure the
development environment, or facilitate easy testing of individual mod-
ules or programs. Directly or indirectly, the final benefit of using a tool
is that it helps you complete the activity faster, thus saving develop-
ment time.

The capability of the project team to deliver measurable outputs at a
unit rate is termed productivity. For example, if the measurable output

Software Project Estimation 11

of the project is in function points count and the unit of time is hours,
the productivity can be described in function points per hour. Experi-
ence, environment, and tools are all components of productivity.

Continuous Improvement Cycle

No two software projects are ever the same.
Even if the same project is redone!

Every new software project is a unique experience to the team. I’m sure
that software project execution teams will agree with me whether they
are part of the internal “Information Systems” department of an orga-
nization or they are from an external “Outsourcing” organization, and
no matter how many software projects they have executed.

Parameters other than scope, environment, experience, and tools
change the way project execution takes place. For example:

• User (customer): The adage, “The customer is king,” fits very aptly
into a software project contract. From concept to commissioning, as
the project execution lifecycle progresses, so does the user’s concep-
tual image of the end product. Steve McConnell [11] has observed:
“… software development is a process of gradual refinement. You
begin with a fuzzy picture of what you want to build and then spend
the rest of the project trying to bring that picture into clearer focus.” At
times the user has only a conceptual image of the product at the start
and as time progresses, the image gets refined until the user is almost
sure of what he or she wants. And by this time, the software project is
almost nearing its end. With the user in this state of mind, imagine the
uncertainty the development team would have to manage.

• Technology: Upgrades in technology are not uncommon during the pro-
ject execution lifecycle, particularly if the project is of long duration.
And it may be possible that the user has the inclination to adopt the
latest technology. If this happens, it has a direct impact on the project
execution process and, as a result, the estimation, effort, and schedule.

A good software project execution team understands these fluctuating
aspects of project execution and builds a certain amount of flexibility
into their execution model.

The estimation effectiveness shown in Figure 1.3 improves with each
iteration of project execution. As a process, the learning during each

12 Chapter 1 Introduction

Why Software Is “Soft”

Have you ever wondered who originally gave the name “software”
to applications that were developed using a set of programs in a
particular language, and why? Maybe the name originated
because the end product was not actually visible to the user and
only the effect of the “software” could be experienced. Maybe the
name came from the fact that software is malleable enough to be
modified, stretched, tinkered with, and purified through fire
(destructive testing). The end product could look better and better
as it passed through these iterations. Let’s look at some of the seri-
ous aspects of the soft issue here.

cycle is extracted during the cycle and converted into best practices.
The measure and analyze processes help in identifying the shortcom-
ings as well as the best practices that happened during a particular
cycle. Based on these findings, a corrective action is applied before the
next cycle of project execution.

Continuous Improvement Cycle 13

Figure 1.3 Estimation effectiveness.

Scope

Environment

Tools

Experience

Implement

Monitor

Feedback

Analyze

Best
Practices

Cor
re

ct

Continous improvement Cycle

Consider a typical software project execution lifecycle. In almost
every phase of project execution, the soft part of the software being
developed causes significant impact on the clear understanding of
scope, quality, effort, and finally the schedule of delivery itself.
Here are a few parameters to consider:

User: Put yourself in the shoes of the user. You can almost never say
with absolute confidence that the scope defined by you, as cap-
tured by the project team, is final and that barring a few minor
changes there will not be any significant changes in scope as the
project progresses. As the user, you know this but confidently ask
the project team to proceed with requirements definition. This
often happens in project situations, due at least in part to a lax atti-
tude by the stakeholders. The software being soft does play a sig-
nificant role here. The killer assumption you (as the user) make
here is that as the software project continues with construction,
there exists ample opportunity to modify the scope at any time.
The modification could happen even during the acceptance phase!

Designer: As much the user banks on the software being soft, the
designer also carries the same assumption forward. The design is
completed to the extent possible, based on the scope provided by
the user, and passed on to the developer team. The understanding
is that when additional (or balance) scope is provided, the
designer returns to the design document and makes appropriate
changes. “But this will mean rework,” cries the developer. No
problem; the software is soft and can be modified.

Developer: The developer team bears the brunt of the entire chain
of reactions due to incomplete scope and incomplete design all
because of the fact that software is soft. This is almost the last
phase of project execution before test and acceptance happens.
The developer team cannot pass the buck any further. Every small
change in scope has a rippling and ballooning effect on the design,
build, and test phases. Because of this, the quality, effort, and
schedule of the project take a hit. All because software is soft.

How does this impact the estimation of the project? It is obvious
that impact is huge!

On the other hand, if I compare soft with hard, there are clear differ-
ences in the way hard things are produced. For example, imagine

14 Chapter 1 Introduction

a television manufacturing factory. If you look at an assembly line
in the shop that rolls out a particular model of TV, you might be
amazed to see the way the shape of the final product slowly builds
as it moves along the assembly line. You would also notice that
each and every component of the TV belongs in a specific place
and it fits perfectly! Why? Someone in the manufacturing design
office has taken extreme care to ensure that each and every assem-
bly and subassembly has been carefully crafted to fit. Also planned
well in advance are the workflow arrangements—what needs to
come in what order and how the parts are tested. Imagine what
would happen if you apply the same rules to soft products. Can
the manufacturer afford to design a circuit board that is in its early
stage of draft design and let it go into production? Can the LCD
panel of the TV tube or the outer frame of the TV case go into pro-
duction without the rest of the components being designed to
fit perfectly with each other? The daily losses would be huge and
the lack of fit among the components would almost turn the set
into junk.

But it is not so with soft products!

Why Software Estimation? 15

Why Software Estimation?

A true professional always plans his or her project meticulously before
the actual execution of the work begins. Effort estimation of individual
activities is a key input to any good planning process. A building con-
tractor must have a good handle on various activities in different
phases of the project with near accurate estimates of resources, mater-
ial, equipment, costs, etc., in order to be able to monitor and execute the
project within a given time schedule. Of course, the customer for whom
the building is being constructed must have an estimate of the amount
of financing needed for milestone payments. Also as the project execu-
tion moves toward the final stages, the re-estimation needs become
more frequent and critical. Disruptions in the building construction
activities due to reasons like unplanned absenteeism of labor or delay
in supply of critical construction material may force the project man-
ager to reassess the impact on project schedules. In order to reschedule
the project, it is necessary to re-estimate some of the activities.

Metrics—Past, Present, and Future

Those who cannot remember the past are condemned to repeat it!
—Santayana

Several well-documented analysis reports [10] highlight key factors
responsible for failures of software projects, with bad estimation being
a major contributor. Going a step further, there are several known rea-
sons for estimations to be bad. These reasons include

• Ignoring past/historic data
• Optimism and bias in estimations
• Uncertainty of requirements
• Non-estimation
• Management pressure
• Unskilled estimators
• Budget constraints

Each of these factors, either individually or in combination, causes bad
estimations. Enabling estimators through formal training and mentor-
ing does help, but the training needs to be complemented with a well-
defined process to formally collect metrics on past data. If implemented,
the development team can now successfully bat the googlies bowled (a
cricket term) sometimes by the management in the form of budget con-
straints and unreasonable delivery schedules.

The ISO and the SEI organizations have well-defined processes to col-
late metrics, and analyze and suggest improvements to a project execu-
tion activity. Estimation plays a significant role in defining and
capturing metrics as per the ISO and SEI/CMMI recommendations.
There are various estimation units that include Lines of Code (LOC),
Function Points (FP), and Actual Effort (Person Hours), which can be
effectively utilized as a yardstick to measure the size of a software
application (these units of measurement are discussed in detail in later
chapters). These yardsticks provide a critical reference baseline to ratio-
nalize the actual results of the software project execution process across
multiple projects. For example, the productivity of the development
team is defined as Function Points per Person Month (FP/PM) and
sometimes as Person Hours per Function Point. The Defects Density
that the development team generates is measured in terms of Defects
per 1000 FP (there are other units of measure, too). Organizations that
are able to implement effectively the ISO or SEI/CMMI processes find
these measuring yardsticks of immense value. They help measure

16 Chapter 1 Introduction

various project execution parameters across a wide variety of tech-
nology platforms, business functions, and even competency of the
development teams in an “apples to apples” situation. Here are
some of the key benefits of using a metrics collection process in an
organization:

• Past project execution metrics help in assessing and analyzing the
capabilities, strengths, and weakness of the processes, domain, and
technology skills as well as the project execution methods deployed
across the organization.

• Past experience also shows that as the project execution starts near-
ing the end stage, the testing and bug fixes activities increase. Typically
the programmers in the project team would be under tremendous
pressure to manage several activities simultaneously. These activi-
ties include completion of ongoing modules, testing the completed
modules, and fixing the bugs reported on the tested modules. With
the fast-approaching project delivery date, the pressure mounts
exponentially, quite often leading to more mistakes. Metrics on
these operational issues should be used to fine-tune estimations for
similar projects.

• Present project execution metrics help in measuring, mentoring,
and monitoring the ongoing projects in different lifecycle stages
of execution. Comparing them with past metrics helps quick cor-
rection and fine-tuning, thus improving the probability of deliv-
ering the project on time, within cost, and with quality
parameters.

• Future needs are those set as targets for achievement in the next six
to 12 months. These targets could include improvement of produc-
tivity by 5 percent or a reduction in defect density by 10 percent.
Once again, good estimation methods with defined units of mea-
surement help in clear definition of future plans.

Why Software Estimation? 17

Estimation Dilemma!

Larry was clearly in a frustrated mood. Despite having the assis-
tance of a good technology expert and couple of senior developers
from his team, Larry was unable to pin down the exact develop-
ment effort that the team needed in order to be able to deliver the
project on time.

Just a week ago his manager, Peter, asked Larry to take this new
project. The organization was losing considerable revenue because
of fraudulent medical insurance claims. In the recent management
meeting, it was decided to develop an application that could col-
late, analyze, and detect possible fraudulent cases well in advance.
Peter was given the responsibility to put together a team and
deliver this application. Larry had a record of successful project
delivery and because this project was critical, his selection was an
obvious choice. Larry was given just two days to come up with a
project execution plan. Of course, the elapsed time to deliver was
decided by the management well in advance. Larry had four
months to do this.

Larry had enthusiastically started working on the project execu-
tion plan. He arranged a meeting time with a couple of subject
matter experts, and obtained the allocation of a trusted technology
expert and a couple of senior developers. The team went through
an elaborate requirements-capturing process and also a high-level
architecture definition of the application. At the end of the second
day, Larry had in front of him a fairly well-defined scope. In order
to obtain multiple approaches to effort estimations, Larry asked
the technology expert and the developers to come up with their
estimations separately. As a seasoned project manager, Larry
worked on his own estimations. When Larry and his team com-
pared the three estimates, the differences were too high to be in
the comfort zone. The lowest and the highest estimates differed by
more than 100 percent. Absolute lack of any process to collate and
analyze historic data added to the woes of Larry’s team. They had
no backup support to depend on.

A classical case of lack of estimation capabilities in the organiza-
tion was staring Larry in the face!

18 Chapter 1 Introduction

Importance of Estimation

As discussed in the beginning of this chapter, one of the critical factors
that determine the success of your project involves how well you are
able to estimate the parameters that control the project execution itself.
Accurate estimates are as critical to software projects as they are to pro-
jects in manufacturing, construction, and similar professions.

Bad estimations or no estimations can lead to situations where the suc-
cess of the project itself is at risk. Here are a few examples:

• Software projects have a notorious tendency of leaning toward fail-
ure if not handled with utmost diligence. Even published reports
show success rates of software projects as quite low. Bad estima-
tions are among the major causes for project failures.

• The process of estimation should encompass all the activities that
consume effort and provide sufficient contingency for other risk
factors that might derail the project. The risk factors include
• Inconsistent or incomplete project scope definition
• Competency of the project team resources
• Complex business rules and algorithms
• Unexpected change in technology environment

• Project management depends heavily on your anticipating the slip-
page in the project execution process well in advance and making
appropriate corrections. Effort estimates for individual activities
and a constant check on deviations in these efforts are critical
inputs to good project management practices.

Estimation—Who and How

Software estimation is an art. As such, it requires an estimator to have
artistic capability. Each estimator paints his or her own style of estima-
tion picture—some artists follow traditional art forms and others develop
their own techniques. No matter what an estimator’s style, some of the
key stakeholders who need estimates include

• The business folks

• The end user

• The sponsor

• The subject matter experts (SME)

• The project manager

• The developer

• The IT management
• The outsourcing vendor (if involved)

Estimation—Who and How 19

The Business Folks: Without the business people, a software project does
not exist, more-or-less. You may have all the other stakeholders you
need to execute the project but without a business need it is next to
impossible to kick start the project. The business envisions a new busi-
ness opportunity that exists in the near future. In order to be able to reach
and take advantage of the new business opportunity, the business team
debates and visualizes the need for their IT group to enhance and pro-
vide new business functionality in their application systems. Thus the
need for a fresh software project is born. But if you are wondering about
the link between business and software estimation, the answer is the
time-to-market that is given to the developer team. The clear mandate
that is given to the project sponsor is this: No matter what effort and
resources are required, you have to deliver by a given time! Any delay
beyond that certain stretch of time may result in the whole project becom-
ing inconsequential. The business need may not exist after that point.

The End User: Equally important are the end users. They are the most diffi-
cult community of all the stakeholders, and sometimes they are also the
business folks themselves. Most end users are typically senior employees
of the organization. Having seen several generations of system changes,
they are the most difficult to satisfy with further changes to application
usage patterns. As such, they need to be involved in key project planning
activities from the start. The project delivery schedule is the key area of
interest to end users because that determines when they need to start get-
ting acclimatized to the new functionalities in the upgraded applications.

The Sponsor: Being the sponsor of the project brings clear responsibility on
two fronts: budget versus expenses, where the sponsor needs to keep a
tight check on the costs incurred against the deliveries, and the time sched-
ule the sponsor has promised to the end users (business folks). Without a
good handle on estimates of cost and effort, and, as a result, the schedule, it
would be impossible for the sponsor to manage these important commit-
ments. The cost estimates also are useful in making a build-or-buy deci-
sion while evaluating COTS (Common Off The Shelf) products.

The Subject Matter Experts (SME): Similar to the end user, the SMEs need to
plan their participation in advance. The project schedule that is based on
estimated effort would highlight the periods of participation by SMEs.

The Project Manager: Project management, among other essential ingre-
dients, is one of the critical factors needed in order for a software
project to be successful. Meticulous planning, continuous monitoring,
and applying corrective factors at the appropriate time are the traits of
a successful project manager. Estimation of size, and hence the effort, is

20 Chapter 1 Introduction

a major input to project management process. Tom DeMarco [12] has
observed, “Estimating is at the very heart of the difficulty we have in
controlling software projects.” It is not enough if a project manager
does the estimation once in the beginning of the project. Re-estimation
activity at the completion of every milestone of the project is absolutely
essential. We will discuss this in detail in subsequent chapters. Change
in scope during project execution is a common phenomenon, better
known as scope creep. A project manager will need a good estimation
model to size the scope creep and arrive at the increase in overall effort,
change in schedule, and costs based on the actual impact on the project
deliverables due to scope creep.

The Developer: As important as it is to other stakeholders to be aware of
estimation needs of various activities of the project, it is equally essen-
tial that the developer team have a good understanding of the esti-
mated effort that has been calculated for each of the design or coding
activities assigned to them. A true developer will understand the effort
allotted to the assigned activity and will continuously check to ensure
the target is met.

The IT Management: The responsibility for managing all IT-related activ-
ities within the organization remains with the IT group. For them, the
main focus is to develop and deliver the project on time and within
budget. Also of interest to the IT group are the maintenance costs when
the application goes live (Total Cost of Ownership). The estimated
effort and hence the schedule and cost would be key inputs.

The Outsourcing Vendor: Quite frequently the software projects are out-
sourced to external vendors. The vendor prepares estimations based on
the skills and competency he or she has in domain and technology areas.

If we look holistically at the complete scenario of a software project exe-
cution, the single most important aim that emerges is the successful
delivery of the project that meets the scope, is within the budgeted
costs, delivered on time, and of good quality. The business user is ulti-
mately the last and the main person to be impacted if there is any slip in
the schedule or in the quality of the product delivered.

Conclusion

Estimation is an art of approximation and an activity that is done before
the product has even started to take shape. It is natural that measurement
of such an activity is never 100 percent perfect. Given that the estimation

Conclusion 21

of an activity is dependent on four major factors—scope, environment,
experience, and tools—it is evident that if you improve the confidence
in predicting the outcome of these factors, it helps in improving the
accuracy of estimation.

Understanding the process of estimation in software projects is not enough
by itself; it is equally critical that you understand how to apply the estima-
tion knowledge appropriately to different situations during the lifecycle
phases of the project execution. And while applying the estimation meth-
ods, you also need to take care to implement the necessary corrective steps
in order to bring the project back on the track. This is experience! You could
follow all instructions as written in this book, but bringing the right mix-
ture of the process and methods comes only by experience.

Boehm and Fairley [13] have highlighted the significance of being
aware of the context in which estimations are being done in their article
“Software Estimation Perspectives.” They make the following points:

• It is best to understand the background of an estimate before you
use it.

• It is best to orient your estimation approach to the use you’re going
to make of the estimate.

I will attempt to explain all of these complexities as well as the ambigu-
ities of the process of estimation throughout the rest of this book. Let’s
explore together the various nuances of software estimation in the
coming chapters.

References

1. The Capability Maturity Model Integrations (CMMI) was devel-
oped by the Software Engineering Institute (SEI), Carnegie Mellon
University. www.sei.cmu.edu/cmmi

2. The Function Point Analysis method was developed by Allan
Albrecht and is now maintained by International Function Point
Users Group. www.ifpug.org

3. Symons, Charles. Software Sizing and Estimating: Mark II Function
Points (Function Point Analysis), John Wiley & Sons, 1991.

4. Boehm, Barry W. Software Engineering Economics, Prentice Hall,
1981. http://sunset.usc.edu/research/COCOMOII/index.html

22 Chapter 1 Introduction

www.sei.cmu.edu/cmmi
www.ifpug.org
http://sunset.usc.edu/research/COCOMOII/index.html

5. Feature Points developed by Capers Jones of Software Productivity
Inc. is a variant of IFPUG Function Point Analysis. www.spr.com/
products/feature.shtm

6. Banker, R., R. Kauffman, and R. Kumar. “An Empirical Test of
Object-Based Output Measurement Metrics in a Computer Aided
Software Engineering (CASE) Environment,” Journal of Management
Information System, 1994.

7. COSMIC-FFP, version 2.0. Copyright © 1999. The Common Software
Measurement International Consortium (COSMIC). www.cosmicon.com

8. Delphi Method was originally developed by the Rand Corporation
(1948) and improved into Wideband Delphi Method by Barry W.
Boehm and colleagues in the 1970s.

9. Schneider, Geri, and Jason Winters. Applying Use Cases—A Practical
Guide. Addison-Wesley, 1998.

10. The Standish Group International, Inc. The Chaos Report. 1995.

11. McConnell, Steve. Rapid Development. Microsoft Press, 1996.

12. DeMarco, Tom. Controlling Software Projects. Englewood Cliffs, NJ:
Prentice Hall, 1982.

13. Boehm, Barry W., and Richard E. Fairley. “Software Estimation Per-
spectives.” IEEE Software. November/December, 2000.

Other Interesting Reading Material

McConnell, Steve. “What Is an Estimate,” in Software Estimation—
Demystifying the Black Art. Microsoft Press, 2006. Pp. 3–14.

Other Interesting Reading Material 23

www.spr.com/products/feature.shtm
www.spr.com/products/feature.shtm
www.cosmicon.com

This page intentionally left blank

CHAPTER 2

Role of Estimation
in Software Projects

Software Projects and Estimation

Managing software projects successfully requires a combination of
skill, training, and experience. Whatever the business need that the
project is addressing, structured and planned project execution is of
paramount importance. Software projects are very different from tradi-
tional projects such as constructing a building or a steel plant or land-
ing a rocket on the moon. In most construction projects, you can see the
progress of work being done. In software projects, until the coded mod-
ules are sent to test it is impossible to determine how much real
progress is being made. Even after the programmer claims the module
is completed, the testing and integration efforts may show problems
that will require extensive redesign and recoding.

In any field, a well-defined project will contain the following attributes:

• Goal to be achieved
• Resources required
• Behavioral parameters (quality and performance)
• Costs involved
• Timeframe to complete

A good project management process is necessary to bind these attrib-
utes and make a successful delivery of the end product. The process
encompasses certain key ingredients that include

25

• Developing a good project execution plan
• Converting the goal into a well-structured requirement specification
• Dividing the project into well-defined phases
• Allocating the right resources to the right job
• Working out the cost of project execution
• Delivering the project within the overall timeframe

At the heart of each software project is a key element: scope. In a broad
sense, scope encompasses the entire set of activities that are necessary
for a software project to be executed successfully. Scope includes soft-
ware development, deployment, enabling users, and procuring and
setting up the appropriate hardware. But specific to a software applica-
tion development project, scope is limited to the business and technical
functionalities that will be delivered through the software. Every other
attribute, including effort, resources, schedule, and cost, are derivates
of scope. A project may have a set of sub projects to be delivered; each
sub-project will have its own scope; and the overall project scope will
be a sum of the scope of all its sub-projects plus other overheads. Trans-
forming the scope into effort and other related parameters is the art of
estimation.

Estimation touches almost every aspect of software project execution.
This chapter explores the execution aspects of a typical software
project in a bit more detail and establishes the importance of estima-
tion in each of the project lifecycle phases. The three phases are the
project budget approval phase, the project contract phase, and project
execution phase.

Project Budget Approval Phase

In large organizations, often the need for a new software project is con-
ceived to meet business needs of the organization. But before the
approval to go ahead is given, the core management deliberates vari-
ous aspects of the project, including the budget to be allocated. This
budget includes not just the cost of project execution but also all other
related costs like infrastructure, operational, and maintenance costs.
Because this is the conceptual stage of the project, the functional scope
of the software application is still very hazy. In this situation, arriving
at an estimated cost for the project is quite difficult. Typically a ballpark
budgetary figure is calculated, based on a reference to software with
similar functionalities executed in the recent past. Sometimes it is a
total “gut feel” estimate.

26 Chapter 2 Role of Estimation in Software Projects

The role of estimation here is quite complex but critical at the same time.
It’s complex because the information related to the business functional-
ity the software application needs is in an incubation stage. The busi-
ness users as well as the IT folks are yet to deliberate the complete
details of the scope. As such the details available are very high-level
details. The role of estimation (Figure 2.1) is critical because the esti-
mated figure drives the budget to be allocated, and if this figure is
beyond allowable limits, the project itself might not be approved. For
most projects, estimates during this phase are expected to be very rough
estimates. Budget estimates to ±30% are usually sufficient. (Note: This
means that at this stage when estimates are still being budgeted based
on ambiguous information, the estimated figures could vary between
+30% to –30% of actual numbers.)

Project Contract Phase

Having obtained the budget approval from management, the sponsor
of the project now works toward getting the project executed. The
sponsor has a couple of options: assign the project to the internal IT
group, invite external vendors to submit a bid through an RFP (request
for proposal); or maybe do a combination of both.

At this stage, it is essential that the estimation of the project cost is done
with due diligence and that the figure is accurate. Other indirect

Software Projects and Estimation 27

Figure 2.1 Role of estimation.

RFP/
Contracts

Project Lifecycle Stages:
Specs, Design, Build, Test

Negotiating
Scope Creep

Budgets
and Costing

Schedule
Slippage

Project
Metrics Project

Progress

Maintenance

Estimator

expenses—including infrastructure, retraining the user community,
and operational expenses—are also estimated. Certain risks that the
sponsor might face include

• The sum total of project execution costs and all other indirect costs
might exceed the budget amount allocated.

• Upon floating an RFP and processing the bids, it might turn out
that even the lowest bidder’s figures exceed the budget amount.

• It is not uncommon for the management to revise the budget fig-
ures (downwards) due to business pressures.

If the project is budget driven, the sponsor has no other option but to go
back to the drawing board and rework the scope of the project so as to
fit the expenses within the budget. The task will become even more dif-
ficult because cutting the scope will require appropriate approval from
the business users. In certain situations, the sponsor may decide to exe-
cute a separate requirements definition phase for the project in order to
clearly establish the scope of the project. This will help arrive at more
precise cost estimates.

Another critical role estimation plays here is in the form of accurate siz-
ing of the software—typically Function Points or Lines of Code (LOC).
The business functionality that the application needs to deliver is
detailed to the extent that the level of ambiguity is kept the minimum.
All the vendors have the same understanding. Also defined clearly is
the technology platform requirements and other performance and
related quality needs of the application. Accurate budgets cannot be
provided until the scope of the work is thoroughly understood and the
Work Breakdown Structure has been completed by the project man-
agers to identify the activities needed to develop the product.

Project Execution Phase

The project execution responsibility now moves to the project manager
of the team who has been entrusted with the project. Estimation plays a
very major and critical role in several ways throughout the project exe-
cution lifecycles.

Project Planning: This is the foundation of the entire project itself. Each
activity involved in the project execution is carefully evaluated for its
impact in terms of effort, criticality, and the position with respect to
other activities. Estimation of the effort for individual activity is essential

28 Chapter 2 Role of Estimation in Software Projects

for arriving at the timeframe by which various milestones are reached.
The total elapsed time required to deliver the project (schedule) is thus
derived from the plan. Quite often the programmer is not the decision
maker as far as the project delivery schedule is concerned. Whereas the
business demands its preference of delivery schedule, the IT organiza-
tion and the project team negotiate the realistic delivery dates with the
business based on its technical estimates. As such, once again estima-
tion plays another important role in re-defining efforts for modified
activities, their sequence as well as overall delivery schedules.

Resource Allocations: Finding the right number of resources with the
right skills required to execute a software project on time and within
budget is a tough job that requires a managed resource planning
process deployed across all projects in the IT organization. Do not for-
get the very basic fact that the effort estimation for individual activities
has been done assuming that the project team will have a certain mini-
mum level of competency. In software parlance, this is known as pro-
ductivity of resources. During actual resource allocation you face the
reality that expecting the right skilled resources to be available is only
wishful thinking. Another situation could arise when you decide to
outsource the project either fully or in part. The productivity of the out-
sourced team could be quite different from that of your own internal IT
team. Whatever the reasons may be, the result is a mismatch between
the effort that was estimated and the actual capability of the assembled
team. Very often this calls for re-estimation.

Project Milestones: Execution of a project without intermediate mile-
stones is akin to driving a car on a highway without any dashboard
meters and signs along the road. In both cases, it would be similar to a
blind drive with no clue as to when you will reach the end of journey.
The software engineering methods have simplified the task of identifying
standard milestones in a software project. Requirements, Design,
Build, and Test are some of the very common, basic milestones that can
occur in a software project. The definition of a milestone will vary if
other software project execution lifecycle methods like iterative or agile
development methods are deployed. But the challenge here is to estimate
effort and schedule for each of the milestones. The estimation technique
adopted here is different. The metrics collection process in the organi-
zation includes details of effort spent during individual milestones.
This information is refined over a number of projects and an average
estimated effort as a percentage of total effort and schedule is calcu-
lated. By breaking down the effort and delivery schedule estimates at

Software Projects and Estimation 29

milestone levels based on historic data, the project progress can be
tracked more accurately.

Project Monitoring: As discussed in the previous section, estimation
plays a key role in tracking the project progress. At the completion of
every milestone, the estimation method helps in the following ways:

• Assessing the variance between original estimate and actual effort
spent during the milestone; also helps in arriving at the actual pro-
ductivity of the project team based on actual effort spent

• Re-planning the rest of the project execution milestones by re-
estimating the balance activities based on the actual productivity of
the project team

• Trapping any scope creep (change in scope) that might have gone
unnoticed due to improper project tracking

Trapping scope creep is discussed in detail in Chapter 10, “Tips, Tricks,
and Traps.”

Project Metrics: Successful implementations of good quality processes
require an extensive collection of all project activities metrics. Some of
the key attributes for which metrics are collected include

• Productivity
• Defect density
• Effort variance
• Schedule variance
• Cost variance
• Cost of quality

The projects for which the metrics are collected could reflect a wide
range of technology, project size, functionality, and complexity. As
such, identifying a yardstick by which heterogeneous projects can be
compared becomes a necessity. Defining a single yardstick that can
measure all varieties of software execution is quite difficult. IT orga-
nizations usually identify a couple of the most commonly used mea-
suring units that can encompass most metrics collection processes. A
comparison table is also developed for the identified measuring
units to facilitate budgeting and other management level decisions.
The function point estimation method provides for developing such
a yardstick. In fact, some of the attributes mentioned previously,
such as productivity and defect density, can be measured with Function
Point as a measuring unit.

30 Chapter 2 Role of Estimation in Software Projects

Estimation and Measurement

Estimation and measurement (Figure 2.2) are two faces of the same
attribute of a software application: Size. This explanation can be
extended to other similar attributes of software projects that include
effort, schedule, and quality parameters.

“You cannot manage what you cannot measure!” is a very popular state-
ment quoted by measurement gurus. But remember, you can measure
something only after it has been created. And if you intend to arrive at an
approximate value that defines the size of the software that has yet to be
developed, it is then called estimation. Whatever the intention, at differ-
ent lifecycle stages of a project execution, estimation, measurement, or
both are employed. To illustrate a few situations, consider the following:

• Estimation: During the contract process there is a need to estimate
the size, effort, and cost of a software product that is yet to be devel-
oped. At every milestone in the project execution stages, the bal-
ance of effort required to deliver the project needs to be estimated.
Estimation is definitely not done at the end of the project.

• Measurement: With the exception of the contract phase and the time
preceding the first milestone (for fresh development projects only),
measurement activity takes place in all other situations. At the

Estimation and Measurement 31

Figure 2.2 Estimation and measurement.

Before the Software
Is Created (an Approximation)

Measurement

Software
Application
Size and

Complexity

After the Software
Is Created (a Fact)

Estimation

completion of every milestone, both measurement of the com-
pleted activities and estimation of the balance milestones based on
the analysis of the data collated, are done. This helps in tracking as
well as making corrections to a project schedule that might be
going off track and helps the project deliver on time, and within
budget. This topic is discussed in more detail in Chapter 10.

Estimation and Measurement Complexities

The process of estimation and measurement is usually complex due to
the very basic fact that every software project and its attributes are
unique. As described in Figure 2.3, several variable factors need to be
measured.

A good estimation or measurement method must satisfy a wide variety
of software application complexities. It is also true that we are yet to
develop one method that does it all. A few alternatives address some
of the estimations needs, in part. Function Point Analysis method,
COCOMO II [1] method, and Lines-Of-Code method are a few examples.

32 Chapter 2 Role of Estimation in Software Projects

Figure 2.3 Estimation and measurement complexities.

Software
Application

Size?
Function Points,
Lines of Code...

Domain?
Finance, Retail,
Manufacturing,

Insurance...

Category?
Development,

Reengineering,
Maintenance,

Migration,
Porting...

Technology?
J2EE, .NET,

COBOL, C++,
RPG...

Platform?
Mainframe,

Windows, UNIX,
AS/400...

Complexity?
Mission-critical,

Business-critical,
Multi-platform,

Architecture: Two-
tier, Three-tier...

The following list introduces some of the key components of a software
system and the impact of their variations on estimation methods:

• Domain: The business functionality that has to be delivered through
the software is the foundation of the rest of the software compo-
nents. Estimations can vary drastically, based purely on variety of
business functions being delivered. The effort to develop an inven-
tory management system might be quite different from the effort to
develop a human resources management system.

• Technology: The platform, language, database, and other technology
components, including the tools that are deployed in the software
system, all contribute greatly to the variation in estimations. Coding
complexities, skills available (productivity) and the performance
parameters that need to be met determine the quantum of total
effort to develop the software.

• Project Category: A wide variety of software execution processes are
adopted, based on business needs. Fresh development, mainte-
nance of existing software systems, and migrating software appli-
cations from old to new technology are a few examples of execution
processes. In each case, the execution process is quite different, and
the related effort varies substantially as well. The estimation method
for these needs to be mapped accordingly.

• Software System Complexity: Over and above the variants discussed
thus far, there are a few other complexities that apply to the software
system as a whole. The application could be mission-critical (for exam-
ple, launching a rocket to the moon or designing a critical healthcare
system), business-critical (such as a fund management system or share
transaction system), complex architecture-based (such as three-tier or
multi-tier architecture or involving integration with many other sys-
tems). There could even be strict service-level agreements that need to
be met by the software system. Once again, each one of these consider-
ations impacts the estimated effort to develop and deploy.

Each of the above parameters significantly impacts the final estimation.
A comprehensive estimation method that can encompass all the com-
plexities and variations, as discussed previously, does not exist today.
But does someone really need that kind of estimation method? Indepen-
dent software programmers working on one-off software projects may
not need an elaborate estimation method. Large IT groups handling a
wide variety of software project execution, day-in day-out, eagerly
look forward to deploying an organization-wide measurement process

Estimation and Measurement 33

that could facilitate estimates of various projects on equal terms, what-
ever their technology or category may be. By far the most popular sizing
method used by many IT groups is the Source Lines-Of-Code approach
(SLOC). And if you intend to compare and contrast estimates for a variety
of software projects across the IT organization, SLOC unit of measure-
ment perhaps should be the last option. This is so because the accuracy
of SLOC based estimations cannot be predicted.

Modularized Estimation

A complete estimation process involves evaluating the size (volume) of
the software project, evaluating the effort required to deliver the
project, and finally, arriving at the costs involved. Although sizing the
project can be done by using one of the popular estimation methods,
converting the size into effort and costs is somewhat complex. The
complexity arises due to the variations in effort and costs that could
occur based on factors that include the project development and
deployment platform; project execution category (new development,
reengineering, maintenance, and migration); skills of the project execu-
tion team; and few other environmental factors. Dissecting various
components of estimation that facilitate evaluating alternatives is a
modularized way of estimating the project. The modularization is sim-
ply a process of identifying the individual attributes of the estimation
steps and the relation between them. You should be able to plug in the
most appropriate component that fits your needs in the chain of events
that leads to overall effort and cost estimates.

A careful study of a typical software application will reveal the various
components that exist within its boundary. These components can be
broadly classified as follows:

• The base size of the application
• The platform on which the application is developed
• The project execution type
• The skills/competency of the project team
• Other components such as quality processes and tools, etc.

Estimation of the overall effort to deliver the software application will
greatly depend on the complexities related to these components, neces-
sarily in the given order.

Size: This attribute is core to all other attributes and greatly influences
the overall effort during the estimation process. Size is directly linked

34 Chapter 2 Role of Estimation in Software Projects

to the business functionality that the target application is expected to
deliver. There are a few alternatives for measuring size. Function
Points (IFPUG [2]) is the most popular method, giving you the num-
ber of Function Points (FP) count based on the functionalities being
delivered by the application. FP count is independent of the technol-
ogy on which the application is/was developed. Lines of Code (LOC)
is another method of defining the size of the application. LOC is nor-
mally counted for applications that have been completed. The LOC is
always available for count in a particular language like COBOL, JAVA,
C#, etc. Another popular method to assess application size is based on
the number of Use Cases (UC) prepared during scope definition.
There are specific uncertainties in the method. Selecting and writing
Use Cases at the right level of granularity—and also consistently—is
quite complicated.

Technology/Platform: The vehicle to convert business functions into a
software application that is capable of input, output, reports, and data
storage facilities is the technology. Technology includes several para-
meters like these:

• Language (COBOL, C#, JAVA, C++…)
• Platform (UNIX, MVS, Windows…)
• Files/Database (VSAM, IMS, IDMS, RDBMS, DB2…)
• Architecture (2 tiers, 3 tiers…)
• Middleware (IBM MQ, MSMQ…)

Choosing the right technology while developing an application is a
complex process and depends on several business, technology, and
management requirements. There is a direct relation between the size
of the software and the effort required to deliver on the technology on
which the software is developed (see Figure 2.4). The larger the size of
the application, the higher the effort to develop it on a given technology.

Process Type: Depending upon the business need, a software project
could be executed in several varieties of processes. These types of projects
include development, reengineering, maintenance, enhancement,
migration, and porting. Each of these types may adopt different project
execution processes. The estimation parameters for these types of pro-
jects also vary due to the fact that project effort is mainly driven by the
process of execution. For example, development is the fresh creation of
a software application as compared to maintenance, which involves
activities like corrective, adaptive, and preventive maintenance of

Estimation and Measurement 35

existing software applications. The effort to develop a fresh software
system is quite large as compared to executing even a major enhance-
ment to an existing application under the maintenance process.

Skills/Competency: Otherwise termed as “productivity,” the unit rate at
which software can be delivered depends heavily on the skills of the
project team. Within the IT group of an organization, it is not unusual
to find different levels of productivity on different technologies, as well
as different types of project execution processes. For example, the pro-
ductivity of the project team working on a J2EE development project
will differ with the productivity of another project team working on a
COBOL/CICS/DB2 mainframe maintenance project. Beyond the vari-
ance in estimated effort due to project size, technology, and type, the
productivity factor plays a significant role in finally defining the over-
all effort estimations.

Others: A number of other indirect factors act as project execution over-
heads. These include project management, quality assurance, and other
related activities. In most situations, the effort for these activities is a
percentage of the overall project effort estimations.

The advantages of making the estimation process into a modular form
are many. Applying variations to each of the modules will impact the
overall estimates. Some key benefits include these:

36 Chapter 2 Role of Estimation in Software Projects

Figure 2.4 Application components.

Skills

Base Size

Size
• Function Points
• Lines-Of-Code
• Use Case

Technology/
Platform
• J2EE
• .NET
• Mainframe
• Others

Type

• Development
• Enhancement
• Maintenance
• Others

Skills

• Productivity
• Defects
• Architecture
• Others

Type

Platform

Application Size (Functionality) Is Core to All Other Attributes

• If you are able to develop evaluation processes for each of the mod-
ules separately, you can mix and match different modules with dif-
ferent degrees of variation depending on project requirements.

• It is possible to do a what-if analysis based on project needs as well
as alternatives that you may want to assess on individual modules.

• You can assess the strengths and weaknesses of your team in each
of the module areas and organize focused improvement activities.

• Collating historic data of previously executed projects by module will
help you analyze organization capabilities.

Case Study—Modularized Estimation

This section provides an example of a Raw Material Issue Module in a
Materials Management System. The module facilitates receipt and stor-
age of raw materials sent received from external suppliers in the stores.
The module also records all issues to the shop floor from the stores.
Overall balance stock in each of the storage bins in the store is tracked,
and when the level falls below a predefined threshold level, a message
to initiate procurement activities is sent automatically to the purchas-
ing department. This example uses the modularized estimation
method to illustrate the steps for calculating the application size, the
effort required to deliver the project, as well as the possible cost.

NOTE All data used in this example is for illustrative purposes
only and should not be taken as standard data for similar estimates
in your organization.

Step 1: Estimate Size

This example does not go into details of identifying various inputs,
outputs, interfaces, reports, and tables for the Raw Material Issue Mod-
ule but simply assumes those factors are known. Assuming that the
function point estimation method was applied, a final, adjusted func-
tion point count = 380 FP is determined.

Step 2: Evaluate Technology Alternatives

There are a large number of parameters based on which the rating can
be calculated for a given technology. This rating can be used as a multi-
plying factor in overall effort and cost estimates. Table 2.1 shows just a
couple of these parameters for a select few technologies. You can
develop a larger table suitable to your organization.

Estimation and Measurement 37

You can add other parameters such as database, middleware, and
architecture to further evaluate and fine-tune the productivity factor
applicable from a technology perspective.

This example is constrained by two factors that determine the technology:

• There is a business need to provide a very high level of user experi-
ence to the large customer base. Good GUI (graphic user interface)
and ease of navigation is of primary importance.

• At the top IT management level there has been a decision to slowly
move all applications to two of the latest technologies, J2EE and .NET.

In view of the above considerations, it has been decided to develop the
project on .NET technology. The Technology Productivity Factor for
.NET is (T-1) = 0.80.

Step 3: Assess Impact Due to Project Execution Type

The various types of project execution that typically take place in an IT
organizations are considered in Table 2.2. Impact on the productivity fac-
tor as applicable to various lifecycle stages of each of the project execu-
tion types is evaluated. You may want to add others as applicable in
your organization.

The existing raw material issue module was originally developed more
than two decades ago on a mainframe using COBOL. It was badly
designed, unstructured, and had many performance and user interface
issues. The module is being totally re-designed and re-built on the .NET
platform. As such, this project will be categorized under reengineering

38 Chapter 2 Role of Estimation in Software Projects

Relative
User Build and Tools Other Productivity

Technology Interface Test Ease Availability Overheads Factor (T-1)

Mainframe Low Medium High High 1.20 ×

J2EE High High Medium Low 0.90 ×

Microsoft .NET High High Medium Low 0.80 ×

UNIX/C Medium Medium Medium Medium 1.35 ×

Table 2.1 Productivity Factors Variance Due to Technology

Note: Productivity factors provided in all tables in this chapter are purely illustrative
figures and are compared against an organization’s average productivity across
platforms.

project execution type. The productivity factor for the reengineering
project type (P-1) = 1.20.

Step 4: Evaluate Skills/Capability Available

IT organizations typically adopt the metrics collection processes that
obtain information about the skills competency of project teams that
execute a variety of software projects. A common practice is to collate
and average metrics on a given set of technology platforms across dif-
ferent project execution environments. If we intend to make our esti-
mates precise, it would be a good practice to refine the average
productivity figures through the skills-based productivity factors as
shown in Table 2.3.

Because this example project is 380 FP in size, the productivity factor
(S-1) = 1.00 is used.

Estimation and Measurement 39

Build Other Productivity
Project Size Requirements Design and Test Overheads Factor (S-1)

< 350 FP Low Low Low Low 0.70 ×

351–750 FP Medium Medium Medium Medium 1.00 ×

751–1500 FP Medium High Medium High 1.25 ×

> 1500 FP High Very High High Very High 1.50 ×

Table 2.3 Productivity Factors Variance Due to Project Size

Project Build and Other Productivity
Execution Type Requirements Design Test Overheads Factor (P-1)

New Medium Medium High Low 0.90 ×
Development

Reengineering Very High Medium High Medium 1.20 ×

Maintenance Low Low High Low 0.70 ×

Migration Medium Low Medium High 0.75 ×

Table 2.2 Productivity Factors Variance Due to Project Execution Type

Step 5: Calculate Total Effort

Now all the productivity factors are identified. You can now complete
the last few activities to arrive at the overall effort:

• Application Size = 380 Function Points (FP)
• Productivity for the IT Organization (Average Assumed) = 15 Function

Points/Person Month
• Other Productivity Factors (as identified previously) = (T-1=0.80,

P-1=1.20, S-1=1.00)
• Total Project Effort = (380/15) * 0.80 * 1.20 * 1.00 = ~ 25 Person

Months

NOTE The above case study is an illustration showing how you
can put together a matrix of tables to componentize and modular-
ize various aspects of project execution, technology, and other
parameters. Using these parameters and components, you can
arrive at a more precise effort and cost estimates. This example has
not provided a factor for cost variations; you may want to include
your own.

Large Application Systems

Large business organizations that have been in business for several
decades have gradually become dependent on their software systems to
provide the impetus toward increased business revenues year after year.
Although business strategy plays a significant role in shaping the future
of the organization, without the active participation of the IT-enabled
internal software systems, it becomes extremely difficult for the organiza-
tion to achieve the growth targets. As a result, more and more organiza-
tions become dependent on their internal IT units to continuously
improve their cycle time to complete a work-flow process and at the same
time show reduction in the total cost of ownership (TCO) of their systems.

So what is the critical issue here? It is very simple. As the business orga-
nization grew over several decades, so did the software applications and
the IT infrastructure on which this software worked. The IT environment
was transformed from a large, monolithic, slow processing, low memory
system with a limited number of users to a super fast, gigabyte memory

40 Chapter 2 Role of Estimation in Software Projects

system with a large number of users. The software applications that were
working in the old, dinosaurian era had to be transformed gradually to
work on the now prevalent jet-age era infrastructure. But the problems
did not end there. As the software industry grew, along with growing
demands, out came a wide variety of programming languages, plat-
forms, databases, and so on. To further add to the woes of the managers
of the software development teams in organizations, every innovation of
new programming brought its own breed of developer who had exper-
tise on the state-of-art programming platform of that era.

For every fresh software application development or enhancement, pro-
grammers in each era developed their own style of new programs on
the latest platform that could deliver state-of-the-art features. At the
same time the application could talk with old legacy systems as well.
And when the next generation of programming platforms and develop-
ers came along, they developed more applications in the newer platform,
which connected with the then legacy systems. Thus, life went on …

Heterogeneous Portfolio of Application Systems

In a typical organization, as the business grows, the applications devel-
oped to meet the business demands begin mushrooming. Initially these
small and medium applications tend to be stand-alone in nature and
rarely are there direct interactions between two applications. With ever
growing pressure to reduce business process time (turnaround or time-
to-market), the need to integrate these individual applications becomes
stronger. The integration process addresses two key issues: first, the
stand-alone applications talk to each other through an appropriate
middleware software, and second, the workflow process provides
seamless continuity and presents an end-to-end solution to the user.

NOTE To understand the complexity of a large portfolio of appli-
cation systems, refer to Figure 2.5.

Does this kind of heterogeneous application portfolio, developed on a
wide range of technology platforms and then integrated through mid-
dleware, pose a complex situation for estimation processes? Yes, they
do. Imagine that you, as part of a development team, are given the
project assignment to develop the customer support system on the .NET
platform (refer to Figure. 2.5). In a stand-alone application system, you
would simply go ahead and size the application and estimate the effort,
schedule, and costs. But in a real-life situation, most applications are

Large Application Systems 41

integrated as shown in Figure 2.5; thus the effort to develop or intro-
duce a new application must include additional effort to integrate with
other existing systems both technically as well as functionally.

Conclusion

The estimation process in any software project is not only integral, but
also a very critical component. The success or failure of projects
depends heavily on the accuracy of effort and schedule estimations,
among other things. Although the final estimated effort seems to be
one single entity, in reality this is an aggregation of a number of indi-
vidual components that has its own complexity and variation based on
project situation and functional needs.

Project managers tend to focus more on delivering the project to the
agreed specifications, but pay less attention to careful estimation of
various activities and various phases of the project execution lifecycle.
This has led to serious issues, sometimes resulting in scrapping projects

42 Chapter 2 Role of Estimation in Software Projects

Figure 2.5 Multi-platform application portfolio.

C++/UNIX

MAINFRAME/COBOL/CICS/DB2

J2EE/WEBSPHERE

VB.NET/SQL

SAP System

J2EE/ORACLE

AS400/RPG

Customer
Support
System

Business
Intelligence

System

Pricing
System

Trading
System

Trading
Interface

Sales
Analysis

Web-based
Users

Order
Payments

Aging
Analysis

Finance
Analysis

Financial
System

Accounting
System

Sub-system 1

Funds

Remittance
Processing

Sub-system 2

Sub-system 3

Assets

Banks

Employee
System

HR
System

Salary
System

Policies
System

Departments and Locations

Electronic
Fund Transfer

Demand
Forecasting

Middleware (BizTalk)

.NET/SQL/COMMERCE SERVER

Brokers
Order

Processing
Customer

Complaints

Middleware
(MQ Series)

C++/UNIX SAP/COTS Middleware
(MQ Series)

DWH/ORACLE

VB.NET/SQL

SAS

completely. It is very important to understand that almost all the lifecy-
cle stages of a project, from cradle to grave, need a careful dose of accu-
rate estimation of effort, schedule, and costs. The role of estimation in
software projects can thus be summarized as follows:

• Incubation: Provides a broad guideline in assessing the feasibility
and the probability of successful completion of the project itself.

• Software Contract: Estimation plays a critical role in defining major
contractual agreements, including costs. In situations where the
project sponsor needs a tool to determine which technology to use
for implementation, good estimation methods prove useful.

• Execution: Helps the project team in setting clear targets for effort,
schedule, and costs. Also helps the team monitor and mentor the
project progress.

• Complex Projects: In situations where execution of your project hap-
pens in an existing complex IT environment, you should provide
for application design complexities due to integration with existing
applications. The will result in additional impact on effort, sched-
ule, and costs.

References

1. Boehm, Barry W. Software Engineering Economics, Prentice Hall,
1981. http://sunset.usc.edu/research/COCOMOII/index.html

2. International Function Point Users Group (IFPUG). Function Point
Counting Practices Manual (CPM) Release 4.2.

Other Interesting Reading Material

McConnell, Steve. “The Software-Estimation Story,” in Rapid Develop-
ment. Microsoft Press, 1996. Pp. 165–173.

Dreger, Brian J. “Introduction, Function Point Identification and
Classification,” in Function Point Analysis, Prentice Hall, 1989. Pp. 1–4.

Other Interesting Reading Material 43

http://sunset.usc.edu/research/COCOMOII/index.html

This page intentionally left blank

CHAPTER 3

A Study of
Function Point Analysis

Why Estimation?

To err is human. But it is also human
nature to learn through errors.

To be able to deliver a software project on time and within budget
would be a dream come true for most software professionals. From the
time a project is conceived until the project is successfully delivered,
the project team goes through a number of project lifecycle phases. As
discussed in the previous chapter, the project could involve a number
of complexities that need to be addressed during the entire lifecycle of
the project. They include:

• Understanding each and every activity that takes place in each of
the lifecycle phases of the project. You also need to be aware of the
sequence and dependency between these activities.

• Knowing approximately how much time each activity may take.
• Identifying the external dependencies for which the team should

provide.
• Understanding the known ambiguities in the project, both func-

tional as well as technological.
• Knowing the expected scope of additions and/or changes that may

take place during project execution.
• Recognizing how to assess the skills of the project team.

45

• Identifying the buffers and contingencies the project manager needs to
provide for, in order to be able to mitigate known and unknown risks

• Understanding the kind of effort that goes into stringent quality
review and tests

Software projects are conceived with the intention of meeting specific
business needs of the client organization. In order to meet the business
needs, which are time specific, it is essential that the project be completed
within a specified timeframe and within budget. The project manager is
almost always under tremendous pressure to deliver the project accord-
ing to the schedule prescribed by the business. This pressure is even
greater due to the fact that the estimated time of delivery by the project
manager is never acceptable to the business because their expectations
are directly mapped to business opportunities, which appear much ear-
lier than the need for the software is articulated. The project manager
thus needs tools and techniques that can help in negotiating the best
project delivery schedules. These tools and techniques include

• A method to convert activities at the most granular level into
measurable effort

• A process to help aggregate these efforts into an overall project effort
• The best practice to convert overall effort into a realistic schedule
• The best practice of allocating the right resources to the right job
• A method to track progress during the project execution
• An important technique: The capability to negotiate a reasonably

plausible project schedule with the management and business people

What Is an Estimation Method?

An estimation method is a set of processes, supported by appropriate
empirical formulae and backed with historical reference data, that help
derive predictable results within a decent level of accuracy. There are a
number of software project estimation methods available to project
managers that help arrive at estimated size, effort, schedule, resource
loading, and other similar parameters. A brief discussion on some of
the other estimation methods is provided in Chapter 14, “Other Esti-
mation Methods.” For an estimation method to become easily accept-
able by software developers as well as business and IT groups, the key
ingredients of the method should

• Be a method that can be easily understood and deployable
• Allow modularization of the software application components

46 Chapter 3 A Study of Function Point Analysis

• Provide predictable results with an accuracy within reasonable limits
• Be comparable across a variety of software projects
• Be backed by extensive regression analysis data
• Facilitate conversion/transformation of the output to other project

execution parameters such as schedule, cost, progress, etc.
• Include well-documented instruction manuals, continually updated

by recognized bodies

Very few estimation methods truly provide answers to the maximum
needs of a software project estimator as described here. Among these is
the Function Point Analysis method. The rest of this chapter discusses
the Function Point Analysis method in detail, including its applicability
to software project estimations as well as the ease with which the method
is understood by estimators. Chapters 4, 5, and 6 discuss data functions,
transactional functions, and general system characteristics, respectively,
while continuing to focus on the core Function Point Analysis method.

Function Points

Almost all engineering disciplines depend on the basic premise of
being able to measure the various parameters with which that specific
branch of engineering deals. For example, civil engineers can measure
various civil structures using the metric system of measurement; elec-
trical engineers can measure through units like watts, volts, amperes,
etc.; and mechanical engineers measure outputs through joules, horse
power, and other measuring scales. But software engineering is rela-
tively young and we are yet to arrive at a well-defined and universally
acceptable unit of measurement for all software systems. Perhaps func-
tion points is the nearest to becoming a universal unit of measuring
software systems, based on the business functions delivered by the
application. Lines-Of-Code is a very poor alternative.

What Is a Function Point?

First, what is this unit of measurement called function point (FP) and
how does it help measure the size of a software application?

A function point is a unit of measure for arriving at software application
size. The software size thus measured (in FP count) is proportional to the
functionality delivered by the application. There are many explanations

Function Points 47

on how the Function Point Analysis (FPA) process helps measure the
overall software size. Before considering those details, consider what
“functionality” is being measured through the FP count. Most software
applications service one of two major categories of user needs: the busi-
ness need or the functional need of the organization. An order processing
application meets the business need, whereas an attendance system
meets an internal functional need of the organization. There are excep-
tions when special software systems are developed to meet technical
needs of the IT group of an organization. For example, a middleware
system that connects two applications deployed in disparate platforms
is an exception to that rule. Whatever the need may be, the FPA method
does not differentiate the delivered functional value of the application
to the user. The FPA method treats the order processing and attendance
system similarly.

Understanding the means through which the functionality is delivered
by a typical software application is essential. The ultimate aim is to
help the user experience the functionality provided by the application.
Consider, for a moment, the software application as though it is a black
box to the user. The user experiences all functionalities delivered by the
application through the user interface. All the processes, information
store, and other extraction of external information are transparent to
the user.

Functionality is the process by which information (data) about an entity
is fetched, stored, or exported. Figure 3.1 shows the components and
the interactions between various processes in a software application.
Entities could be of any size and could represent any aspect of a busi-

48 Chapter 3 A Study of Function Point Analysis

Figure 3.1 Functional measurement.

User

Store

ProcessRequest Print

ness, person, product, or other similar concept. A few sample entities
include

• An employee
• A customer
• An invoice
• A product or a component
• Payment info
• Salary info

An employee application provides you with the functionality to store,
fetch, update, and export (print) information about employees. The
functionalities provided by the Customer, Invoicing, Salary, and Inven-
tory applications are similar.

Function Point as a Measuring Yardstick

This section uses an example of an Employee application to illustrate
how functionalities are delivered through the software and how the
application is sized. This example involves 24 actual attributes that
need to be processed for an employee. The attributes include

• Employee Name, Address, Contact #, SSN #, DOB (a total of five
attributes)

• Role, Designation, Grade, Department, DOJ (a total of five attributes)
• Educational Qualification(s) (five attributes)
• Previous Work Experience(s) (five attributes)
• Dependents’ Information (four attributes)

The basic functionalities that are expected to be provided in the applica-
tion are the facility to store, fetch, process, and print employee informa-
tion. These are achieved through various instances of interactions known
as transactions. The total functionalities received by the user from the
employee application can be measured as “x” function points. This number
is the collective effort that may be needed to develop the software to process
the 24 attributes that define an employee. The activities may include

• Creating data entry screens
• Creating database files
• Generating reports
• Displaying the menu and other cosmetic needs

Function Points 49

A single unit of function point may be too small to assign to a single
transaction; for example, to measure the size of a data entry screen.
Also, in order to keep the effort of working on various components of a
software application—such as screens, reports, tables, etc.—comparable
to each other through a single measuring yardstick, the function point
counting has been appropriately balanced. Consider a few such (illus-
trative) comparisons:

• Size of a simple data entry screen with 12 data attributes = 3 function
points

• Size of a simple report with 15 data attributes = 4 function points
• Size of a simple table (database) with 15 data attributes = 7 function

points

Even though the actual process involved to develop each of the compo-
nents are quite different, the common measuring yardstick for all of
them is the function point (FP) unit. In fact it is this unique feature of FP
unit, that of being comparable as a unit of work across variety of soft-
ware development activities, that greatly helps in extending the mea-
suring activity to a larger range of IT-related project executions.
Although FP is a unit of work that can measure the functionality or the
size of the application under consideration, FP does not give the rate of
delivery of a unit of work. The following section discusses some of the
uses and benefits of utilizing FP as a standard yardstick to measure a
unit of work.

Uses and Benefits of Function Points

The following list introduces some of the direct uses and benefits that
can be derived out of the Function Point Analysis method:

• Because the FP count is technology independent, it can be effectively
used and reused for sizing a wide variety of software applications.

• Many other metric collection processes are well enabled by mea-
sures that are referenced to FP as a base. For example, productivity
is measured as FP per person month, defect density per 1000 FP,
and cost per FP.

• Project schedules are better evaluated based on the number of FP
that can be best delivered in a given timeframe.

• Some of the software project contracts (RFP) are based on expected
FP to be delivered. The dollars per FP is a measuring scale in these
contracts.

50 Chapter 3 A Study of Function Point Analysis

• Scope creep (increase in scope) during project execution is better
measured and trapped using FP as a sizing tool.

• Converting the FP count of a software project into total effort is sim-
ple, based on the productivity of the project team on the technology
platform.

Additional uses of FP are discussed in later chapters. See Chapter 7,
“Size, Effort, and Scheduling of Projects,” to understand how the func-
tion point count can be converted to project estimates.

Function Point Analysis

Although the computer industry existed from way back in the 1940s,
there were hardly any well-defined, process-oriented software estima-
tion methods in use. Unlike the hardware industry, where the product
capacity was measurable and comparable to proportional costing
methods, the software industry was woefully lacking a dependable
estimation method. Because software is “soft,” fixing its value is a
tricky process. At best, designing, developing, and deploying a soft-
ware application that meets the user’s needs can be equated to deliver-
ing a service. Until the late ‘70s, this service was measurable in several
ways that include

• Time and Material: Perhaps the easiest way to define a contract
involves charging for the services delivered. The effort consumed
per month by the project team is billed on a monthly basis. This
continues until the project is completed and delivered to the user’s
satisfaction. Overhead costs such as traveling, logistics, etc., are
billed on actual expenses. The customer is normally at the mercy of
the vendor to complete the project in a reasonable time.

• Output—LOC: One of the most popular estimation methods even
now is the measure of the software application delivered in Lines-
Of-Code. Most software applications are coded using popular lan-
guages like COBOL, Visual Basic, C++, and C#, and the connected
database system is coded using the SQL language. The final output
of almost all these languages is measurable in Lines-Of-Code. The
contract for the services delivered is typically agreed based on cost
per LOC and delivered after acceptance is complete. The cost may
vary based on language, database, and other related parameters
specific to the software application.

Function Point Analysis 51

• Fixed Price Contract: The vendor does an internal estimation of the
size of application being developed. The estimation could be based
on LOC or person months as effort. Based on the accuracy of the
estimation and other risks involved, buffer effort, margins, and
other overhead costs are added to make this a fixed price contract.
The vendor takes the risk of delivering the project within the con-
tract price, whatever the variance between the original estimate
and the final effort may be.

There have been many fallacies in these methods. The measure of the
service in person months was directly dependent, among other vari-
ables, on the capabilities and skills of the project team that was assem-
bled. A time and material project, without a cap on time or cost, would
become open-ended, and the customer would have very little control
over the project team. Measuring a project size by Lines-Of-Code is
even more ambiguous. A few glaring discrepancies are

• The Source Lines-Of-Code (SLOC) count developed to deliver cer-
tain business functionality can differ widely when developed using
different software languages. This is true because each software
language has its own features and functionalities that can address
certain aspects of business logic. As such, costing the project based
on LOC delivered would be quite risky. The developer team may
decide to choose a language that generates maximum LOC.

• Structured and compact coding as compared to free-for-all coding
makes a huge difference in the final LOC delivered. Writing com-
pact code is dependent on the skills of the project team members on
that language.

• Code generator tools are available that generate the program auto-
matically, based on business logic and other related attributes. The
tools often generate code that is much higher than the LOC gener-
ated by a good programmer. It would be unwise to cost such pro-
jects based on LOC.

Allan Albrecht came up with an innovative way of measuring soft-
ware size when he was asked by his employer, IBM, to evaluate project
productivity. He equated it to the functionality delivered by the soft-
ware application. He strongly felt the need to arrive at an alternative
to LOC as a measure of software size. “He [Allan Albrecht] took the
position that the economic output unit of software projects should be
valid for all languages and should represent topics of concern to the
users of software. In short, he wished to measure the functionality of
the software” [1].

52 Chapter 3 A Study of Function Point Analysis

After considerable research, Albrecht established the new thought
process that all software applications could be measured uniformly
based on five key attributes:

• Inputs to the application
• Outputs from the application
• Provision to query
• Internal data store
• External interfaces

These five attributes were easily identifiable for a majority of software
applications and they were truly platform independent. Albrecht pre-
sented a paper on his research findings at an IBM conference in 1979.
Thus was born a remarkable software estimation method that viewed
software from a totally new perspective; that of the attributes that were
visible and could be experienced by the user of the application.
Albrecht introduced the Function Point Analysis (FPA) method in 1979.
Universal acceptance of this method of sizing software applications
directly led to measuring a few other related parameters, such as pro-
ductivity, defect density, and effort.

FPA—Objectives

Two views of the business value of software applications existed dur-
ing this time. The business user viewed the application from the busi-
ness value perspective and measured its capability by the business
functionalities provided by the application. On the other hand, the pro-
grammer viewed the software from the technology perspective and
valued or sized the application from the perspective of the technology
complexity, volume of code written, and other related features like files
and reports. The two views were almost completely opposite, but they
both were right in their own perspectives (see Figure 3.2).

Function Point Analysis 53

Business User

Software
Application

Business
Functions

Technology
and Processes

Programmer

Figure 3.2 Different views of software.

User vs. Programmer View

Between the two, obviously the business user rates the higher priority
because the business need opens the opportunity for IT to develop the
new software. Another argument that is heavily in favor of the business
user points to the fact that irrespective of technology or processes
adopted to develop a software application, the functionality delivered
by the application is the same. For example, if an order processing
application is to be developed with a defined scope of functionalities, it
is almost certain that the end goal would be to meet the scope, irrespec-
tive of the technology chosen. Above all, any software project first
needs to be budgeted and approved by the sponsor. Typically, manage-
ment at this level understands the business functionality more easily
than the technology and process complexities. It would be far easier to
convince the management as well as the business user to approve the
project budget based on the functionality being delivered.

Albrecht perhaps had a good measure of the pulse of management, which
has the critical role of approving software projects. Management deter-
mined the future of IT within the organization. The FPAmethod developed
by Albrecht was thus focusing mainly on sizing an application from the
business user’s perspective only. The method was completely independent
of the technology platform on which the software was being developed.

The FPA method of measuring software size is a significant milestone in
the evolution of software estimation methodologies. With one stroke,
software size became core to all metrics on software development
processes. In fact this measure could address estimation needs through
the entire lifecycle of the software application itself, from cradle to
grave. Key metrics that are derived out of software size as a base include

• Project effort, schedule, and cost
• Productivity of the developer team
• Defect density
• Quality metrics
• Maintenance costs
• Migration costs

Each of these metrics is discussed in detail in later chapters. The FPA
method provided a single yardstick by which many measurement-
related metrics could be derived with a fairly decent level of consis-
tency. Much more than providing a tool to measure size, the method
also facilitated comparison of totally disparate software systems by
using the same common yardstick known as function points.

54 Chapter 3 A Study of Function Point Analysis

Other objectives of developing the FPA method were to

• Design an estimation method that was fairly easy to understand,
both by the business users of the software as well as the developers.

• Keep learning time to a minimum; ensure that repeated usage
quickly builds expertise.

• Make sure the estimated outputs generated through the FPA method
are reliable and consistent. It was expected that sizing of existing
applications would be within ±10% of actual size and for fresh devel-
opment projects it would be within ±20% of the final product size.

• Enable the estimated output (size) to be utilized to derive project
effort in any technology because the method is independent of
technology platform. The productivity on the selected technology
would drive the overall effort figures.

• Assure that verification of the output function points could be done
by an independent, experienced assessor.

The FPA Model

The FPA model facilitates the measurement of software application
size. The output of this method is a count (number) called function
points. A function point is defined as a unit of business functionality
delivered through the software being measured. If application X has a
measured count of 500 function points (FP), the count signifies that the
functionality delivered by the application to the end users is equivalent
to 500 business functions.

The FPA model is based on the premise that any software application
can be sized based on five key parameters: inputs, outputs, inquiries,
internal files, and external interfaces. Clearly all five parameters cho-
sen by Albrecht are those visible to the user and hence are tangible
attributes. The most significant part of the software, from the devel-
oper’s perspective, is the code, which is not visible to the end user and
is like a black box. The FPA method does not touch the code part of the
software at all.

Figure 3.3 highlights the five key attributes of FPA model as applicable
to a typical software application. These attributes collectively and holis-
tically encompass all the parameters of any software application. By
measuring complexity and hence the size of these attributes it is possi-
ble to measure the overall size of any application. The number of items
under each category of attribute can vary in individual applications

Function Point Analysis 55

based on the business functionality being addressed by these applica-
tions. The following list discusses each of the five attributes in detail.

1. Inputs: In order for a software application to exist, it is essential that
programmers provide the means through which data (business
information) can be stored in the files that belong to the application.
Moving data from an external source into the application files and
updating and maintaining the data are all included under the input
attribute. All the CRUD (Create, Read, Update, and Delete) opera-
tions are classified under the input attribute. The actual mode of
input can vary depending on business needs. Input could be in
batch mode, manual, or other modes.

2. Outputs: Business information processed through the software
application could be output in various forms, modes, and media. A
pay-slip, a financial statement, a part item in a store, and a complete
inventory report are examples of outputs. The outputs could be
printed on company stationery, stored on other media like disk files
or tapes, or even displayed on the monitor itself.

3. Inquiries: Quite often the user has the need to query a variety of
information from the data stored in the application. The output of
an inquiry is quite similar to that of outputs discussed previously
but the outputs generated here are in their original form. Business

56 Chapter 3 A Study of Function Point Analysis

Figure 3.3 Components of an application.

Inputs

Application Boundary

Business Logic Business Logic

Business Logic Business Logic

Business Logic

Business Logic

Internal Files

Reports

Files

Files

Inquiries

Outputs

Code

Files

Application-B
Interface Application-A

11

33

22

22

22

44

55

User

FPA Method—Attributes

information is not processed; rather it is just sorted or rearranged
based on user request and presented in a readable form.

4. Internal Files: Every software application basically works on pro-
cessing data stored within the application and presents the output in
the form of business information. As such, all the data that are owned
and maintained within the application are stored in files known as
internal files. These files belong to the application and any modifica-
tion to the data contents is the responsibility of the application owner.

5. Interfaces: A software application that enables users to make busi-
ness transactions with the software normally interacts with other
applications, either within or external to the organization. Having
an application that is totally independent and does not feed into or
get inputs from another application would be very unusual. Inter-
facing with other applications is a key attribute that contributes
to the size of the application being measured. Typical interfaces
are accomplished through intermediate data files, although there
could be other modes as well. In the FPA model, interface attrib-
utes are defined as files that belong to external applications and are
maintained by those external applications. The files do not belong
to the application being sized.

The FPA model mandates certain other processes by which the project
sizing activity can be made more precise. These include

• Defining a clear boundary of the application being sized. In Figure 3.3,
the core part of the application where the internal files and all the
code are enclosed is in a boundary. All five attributes of the FPA
model that interact with the core are outside the boundary.

• The General System Characteristics (GSC) is another set of 14 attrib-
utes that define the overall complexity of the software application
being sized. These 14 GSC help the estimator define certain perfor-
mance and operational aspects of the application. The final applica-
tion size gets impacted based on the parameters chosen. For more
information, refer to Chapter 6, “General System Characteristics.”

The FPA Process

The previous section discussed the various attributes of the FPA model—
inputs, outputs, inquiries, internal files, and external interfaces—which
form the core of the sizing process. And once these are obtained, applying
the 14 GSCs to this core data obtained through the five attributes would
fine-tune the overall application size. In order to obtain the best results

Function Point Analysis 57

from the FPA model, it is essential that you follow certain well-defined
sizing processes and workflows as prescribed in the user manual CPM
(Counting Practices Manual), version 4.2 by IFPUG [2]. The steps to be
followed include

• Identify a good estimator
• Obtain all the relevant artifacts of the application being counted
• Understand the user view
• Identify the type of function point (FP) count
• Determine the scope and boundary of the application
• Count the (unadjusted) data functions
• Count the (unadjusted) transaction functions
• Using the 14 GSC, calculate the value adjustment factor
• Arrive at the adjusted function point (FP) count

A closer look at each of these steps will help you understand the signifi-
cance as well as the right approach for determining a fairly accurate
function point (FP) count of a software application. Figure 3.4 illustrates
the sequence of the steps to be followed during the counting process.
Although the counting method is fairly simple and easy to follow, it is

58 Chapter 3 A Study of Function Point Analysis

Figure 3.4 FPA counting process.

Internal
Logical
Files

Transaction
Functions

External
Interface

Files

Value
Adjustment

Factor

Unadjusted
Function

Point Count

Final
Adjusted
FP Count

Type of
Count and
Application
Boundary

External
Inputs

External
Outputs

External
Inquiries

Data
Functions

Obtain
Project

Information

14 General System Characteristics

Identify
Estimator

appropriate to be cautious and ensure none of the relevant information
is left out or ignored.

Identify Estimator

Your project may not necessarily require a CFPS (IFPUG Certified
Function Point Specialist) certified analyst but it is essential to identify
an estimator who has the right level of skills to undertake the estima-
tion process. An inexperienced estimator might make all the difference
between a good and a bad estimate. Some of the desired skills include

• Fairly good knowledge of the business domain for which the
application is being developed

• An understanding of the various components, attributes, and the
process of executing an FPA estimation project

• Awareness of the environment under which the application will be
deployed

• Analysis of the information received from users to distinguish
their task needs from functional requirements, business rules, non-
functional requirements, quality attributes, suggested solutions,
and extraneous information

• Understanding the software performance expectations from busi-
ness users in terms of usability, scalability, availability, and reliability

• Experience participating in software development projects in the past

Obtain Project Information

As much as the project scope is a critical input to a successful project
execution, it is even more critical to accurate project size and effort esti-
mation. The process of collating project requirements involves activities
that include

• Interviewing the key stakeholders and documenting the discussions
• Reviewing any documentation available on the proposed project
• For old software systems, obtaining and reviewing system flowcharts
• Obtaining any other relevant information

Gathering every possible source of information that could enhance
understanding of the business functions the software application will
address is essential. Having obtained all the information about the
requirements of the project, the next step is to separate the functional
and non-functional needs. As discussed earlier, functional needs map

Function Point Analysis 59

directly to the business functions that will be delivered through the soft-
ware application. Ensure that the functional needs are complete in all
respects and adhere to a certain minimum level of compliance, such as

• Non-ambiguous: The information can be interpreted only in one way.
• Consistent: Throughout the document, definitions are repeated

consistently.
• Testable: Information is clear enough to be testable.
• Complete: All relevant information surrounding a function has been

fully enumerated.

Estimations performed based on information that follows the rules
mentioned here are more accurate. Understand and be aware that you
will never get the complete and final set of information that defines the
scope of the application being developed. You are expected to dig
deeper, ask more questions, and gather information about activities
and work-flow processes that have been incompletely explained. Accu-
racy of the estimation will increase with every additional bit of infor-
mation thus obtained.

Understand the User View

There is a reason the adage, “The user is king,” has been coined. The
estimator should be absolutely clear that ultimately the scope has to be
understood and defined as it is viewed and perceived by the user.
(Refer to Figure 3.2 to see how user and developer perspectives may
differ.) The following paragraphs explain several key aspects of user
view and explore how it impacts the end FP count due to differences
between the ways the estimator and the user see the application.

A Business Function: The user expects certain business process steps to
be achieved through the software. Again, the user expects the process
to follow certain sequences and related exceptions to occur. The appli-
cation should address these scenarios. Quite often the user does not
convey all the alternatives and exceptions that could occur in such a
scenario. Another problem sometimes occurs when the estimator
assumes the scenario is based on his own experience and defines the
business function without considering the business user’s perspective.
It is essential that such situations be handled with utmost care. The
user view counts. The user is paying for the project and, as a result, the
application should meet user needs only.

60 Chapter 3 A Study of Function Point Analysis

Function Point Analysis 61

The ATM Transaction

MyBank wanted a software application to handle ATM transac-
tions. The requirement was quite simple and straightforward; the
application should facilitate the following business functions:

• Authenticate user
• Accept request for money
• Deliver required money
• Update account balance
• Close transaction

The project team and the estimator reviewed the requirements
and came up with the following steps that were to be addressed in
the software application in order to meet the business function:

1. User swipes the ATM card.
2. The software records user information and validates authen-

ticity of the ATM card. If found valid, the process advances to
the next step. If not, the transaction is terminated.

3. Requests and accepts the four-digit PIN code from the user
and validates this from the user account information available
with MyBank.

4. Upon successful authentication of user code, the user is allowed
to enter the amount required.

5. The money is dispensed.
6. The transaction is formally declared closed.

The FP count was done accordingly and the project team went
ahead with coding. During early acceptance tests, however, certain
glaring deficiencies in the functional aspect of the software came
up. Some of the key exceptions in the ATM transaction scenario
were omitted, such as:

1. While entering the four-digit PIN code, what happens if the
user enters the wrong code? This was not addressed.

2. Upon entering the amount to be withdrawn, what happens if
it is found that the balance amount in the user account with
MyBank is insufficient to service the request?

3. Most important, what happens if the transaction itself does
not close properly due to operational problems like network
failure or power failures? How does the software reconcile
incomplete transactions?

A review and modification of these exceptions resulted in addi-
tional coding and, of course, the FP count increased proportionally.

User Approval: Although most user requirements are reviewed and
approved by the user, there is a dangerous gap between how the user
reads and understands the documented business functions and how
the project team has assumed certain functional processes while docu-
menting them. This can lead to lots of rework if this gap not resolved
through discussion. At times it is necessary to develop a dummy proto-
type of the application and get it approved by the user. Using terminol-
ogy understood uniformly both by the user and the project team is
recommended.

Change Management: As the project progresses through various lifecycle
phases, the user’s view of the scope often changes also. The changes in
scope could happen due to various reasons like better understanding
of business function, changes in business or technology environment,
and others. The project team should be prepared to accept these
changes and modify the estimates accordingly.

Determine Type of Count

The FPA process supports three kinds of count that can occur. These
depend on the purpose and circumstances under which the count is
being done. They are

• Development
• Enhancement
• Application

Development: Software applications that are freshly developed and
installed for the first time are considered for development FP counts.
The counting is done after the project has been successfully completed,
and should essentially meet all user requirements.

62 Chapter 3 A Study of Function Point Analysis

Enhancement: Functionality enhancements typically are made to exist-
ing applications and done during the maintenance process. Any
change in existing functionality in the form of adding, deleting or
updating functions are considered part of enhancement process. Each
of these change functions (add, delete, and update) are counted sepa-
rately, and the overall sum total is the enhancement FP count. Bug fixes
are also taken as part of enhancement count if the project team that
maintains the application is different from the team that developed the
application.

Application: During the application maintenance process, re-counting
the entire application should be standard practice. Do an FP count after
every enhancement process takes place. The revised FP count of the
application may not be equal to the sum of the pre-revised FP count
and enhancement FP count. A complete, fresh FP count will determine
this. Usually the application count is treated as a baseline FP count
because this is initialized after every enhancement process.

Table 3.1 provides a quick reference to various types of count as related
to software execution processes.

Function Point Analysis 63

Software Execution Process Type of Count Comments

Fresh development Development Count after successful
installation

Reengineer legacy Development
application to new technology

Enhance functionality to Enhancement Counts only the
existing application enhancements (add,

update, and delete)

Revise the application count Application Similar to development
after enhancements are count
incorporated

Migrate application to new Development Separately calculate
technology data migration count

(conversion FP)

Bug fixing in existing Enhancement Only affected functions
applications are counted

Table 3.1 Category of Application Count

Scope and Boundary of Application

The scope of the project encompasses the complete set of functionality
being delivered by the application, as expected by the user. If the applica-
tion is a subset of a large set of applications, then consider only the subset,
as defined by the user, with appropriate interfaces to other subsets of
applications surrounding the application. Scope defines the functions
that need to be included during the count. Sometimes the functions may
span two applications. In this situation, the estimator should identify
them as two separate applications for counting purposes.

The boundary of an application is well within the overall scope of the
application. Boundary is very useful for defining the border between
the functions available to the user and the software application being
measured.

Defining the application boundary is a critical task that should be done
with care. Boundary is defined based on the user’s view of which busi-
ness functions should be available to the user. Figure 3.5 provides an

64 Chapter 3 A Study of Function Point Analysis

Inputs

Application Boundary

Inquiries

Outputs

Files

Application-B
Interface Application-A

1

3

Files
2

Reports

2

Files

2

Business Logic Business Logic

Business Logic Business Logic

Business Logic

Business Logic

Internal Files

Code

4

5

Scope Boundary

User

Figure 3.5 Scope and boundary of an application.

illustration of boundary, which helps in identifying almost all the
attributes of an FPA process. These include identifying the following:

• The user transaction that processes the internal data that belongs to
the application.

• Data that is internal to the application. All data that is owned and
maintained by the application is treated as internal data. Internal
data is always inside the boundary of the application in the form of
internal files.

• Which data moves in and out of the boundary of the application.
Also identifies which data remains within the boundary.

• Which data is not maintained by the application and hence is
termed external to the application.

Sometimes a master system flowchart of existing applications is useful
in defining the boundary of the application being counted.

Once the process of defining the boundary is completed, the findings
and related assumptions should be reviewed and validated with the
user. All the FPA processes that happen next—that is, calculating the
data and transaction functions—are heavily dependent on the correct
definition of the application boundary.

Count Data Functions

Data function is one of the two most critical components of the entire
FPA process. The functionality requirements of the application are
met through data functions and are facilitated by means of internal
and external files. The focus here is on logical storage of data in the
form of files and not the physical implementation. (Refer to Figure 3.3
for a review of the components of the application if necessary. The
internal logical files and the external interface files are the data
functions shown in this figure.) This section introduces the key stan-
dard terms and notations, as described by the IFPUG CPM 4.2 user
manual [2].

Data functions typically facilitate the following interactions for the user:

• Add, update, and delete data from internal files (only)
• Refer data from external files (read)
• Index, sort, or arrange data for the purpose of queries and reports

Function Point Analysis 65

There are two categories of data functions:

• ILF—Internal Logical Files
• EIF—External Interface Files

As mentioned earlier, ILF are owned and maintained by the application
under consideration. EIF primarily are files that are referred by the appli-
cation programs as inputs and they do not belong to the application.
Typically EIFs are expected to be ILFs of another external application.
Returning again to Figure 3.3, notice that the illustration displays the
internal and external files with reference to the application under consid-
eration (Application-A) and the external application (Application-B). ILFs
reside necessarily inside the application boundary and EIFs, outside the
boundary. In Figure 3.3, refer to circled item numbers 4 and 5.

Each file, whether an ILF or an EIF, contains data. Each element of the
data, sometimes referred to as a field or a column, contains information
about an entity. This element is known as a data element and this type
is called a Data Element Type, or DET. For example, an employee name
is a DET. Combining a set of data elements and storing them in a single
file is a common procedure. Application design considerations some-
times necessitate these situations. A set of data elements that can be
considered as a subgroup within the file is called as a Record Element
Type, or RET. What is this subgroup? Consider the example of an
employee file that contains complete data about a typical employee.
The employee data can be broadly classified into

• Personal information—Name, SSN#, Address, DOB, Gender
• Education information—Qualification, Year of passing, Grade,

Institution
• Previous experience—Company, Role, Responsibilities, Period
• Dependent information—Dependent name, DOB, Gender, Relation

You can clearly see here that each of the above classifications of infor-
mation about the employee contains a set of DETs. The set of DETs
together form a subgroup of information about a subclassification of
information. The subgroup of information is typically homogeneous in
nature and depicts information about a particular behavior of the
entity, the employee. In the above example, each of the classifications is
an RET and the ILF employee file has four RETs.

It is not enough to know about DETs and RETs that constitute an ILF.
A variety of combinations is possible using the DETs and RETs in

66 Chapter 3 A Study of Function Point Analysis

different real-life situations. In order to address these variations, the FPA
process has provided for defining the ILF and EIF into three category of
complexity: Low, Average, and High. Based on the combination of the
number of DETs and RETs identified in an ILF or EIF, the complexity is
identified from a standard, prescribed table by IFPUG CPM 4.2.

Each of the complexity categories—low, average, and high—directly
maps to a function point count, which is a constant number. For ILFs,
the FP counts are Low –7, Average –10, and High –15. For EIFs the FP
counts are Low –5, Average –7, and High –10. These FP counts are
defined as unadjusted function points. Later, when the other complex-
ity factor known as Value Adjustment Factor (VAF) is imposed on the
FP count, you obtain the adjusted FP count. VAF is derived from the 14
GSCS discussed earlier. These are discussed later in this chapter.

For more detail and extensive examples on data functions, see Chapter 4,
“Data Functions.”

Count Transaction Functions

Transaction function is the second critical component of the FPA process.
It is only through transactions that a user can interact with the data that
resides in the internal and external files. All transaction functions are
outside the boundary of the application and they typically transact
with the data functions that reside in the ILFs and EIFs (refer to Figure
3.3). The three basic types of transactions are inputs, outputs, and
inquiries. These are the features that are visible to the user, and the exe-
cution of the application is done using these functions. The transaction
functions provide the following features to the user:

• Provision to add, update, or delete data in the internal files
• Genertation of predefined standard reports
• Provision to query on data from internal and external files

There are three categories of transaction functions:

• EI—External Inputs
• EO—External Outputs
• EQ—External Inquiries

All the transaction functions are termed “external” because they all
reside outside the boundary of the application. (See circled item num-
bers 1, 2, and 3 in Figure 3.3.) All three functions facilitate interactions

Function Point Analysis 67

between the user and the application. Through EIs, the user can input
data into the application and maintain them as desired. An EI does not
need to be an online data entry system. Inputs through EIs could be
offline, batch mode, or other trigger-based inputs. Most applications
need to generate reports or other forms of output. These are facilitated
through External Outputs (EOs). Reports are normally predefined,
repeatable outputs, and as such they are selectable through menu
options in the application. The click of a report option in the Report
menu generates the desired report (EO). Not all EOs are directed to
printers; they can be sent to any other media like tapes, disks, or even
monitors. Query features are provided in most applications to facilitate
quick validation of certain business functions the user wants. Some-
times queries also provide answers to what-if analysis requirements.
External Inquiries (EQ)s are the functions through which queries can be
identified and counted during the FPA process. Similar to EOs, outputs
from EQs can be directed to any media. Although reports (EO) neces-
sarily contain derived (calculated) data as part of the output, this is not
so in case of queries. EQ contains only raw data extracted from the files
(ILF or EIF) and are rearranged or sorted according to user needs.

Consider the employee example discussed earlier in relation to data
functions. In order to input employee information into the ILF, you need
a data entry facility (EI). You can query the list of employees within a
certain age group through EQ. If you need a report that provides infor-
mation on the number of employees in different age groups and the
number of dependents associated, you would use an EO to produce it.

The transactions EI/EO/EQ consist of two types of attributes: DET and
FTR. You learned about DETs earlier in this chapter. FTR is the File
Type Referenced by the transaction. FTR could be in an ILF or EIF.
Every file referenced by the transaction is counted as one FTR.

Each EI/EO/EQ transaction type is again categorized into three levels
of complexity based on the number of DET and FTR that they service.
In order to address these levels, the FPA process has divided EI/EO/EQ
into three categories: Low, Average, and High. Based on the combina-
tion of the number of DETs and FTRs identified in an EI/EO/EQ, the
complexity is identified from a standard, prescribed table by IFPUG
CPM 4.2.

Very similar to the FP counting discussed earlier with regards to
EIF/ILF, each of the complexity categories—Low, Average, and High—
for each type of transaction, EI/EO/EQ, directly map to a function point

68 Chapter 3 A Study of Function Point Analysis

count that is a constant number. For EIs, the FP counts are Low –3,
Average –4, and High –6. For EOs, the FP counts are Low –4, Average –5,
and High –7. For EQs, the FP counts are Low –3, Average –4, and High –6.
These FP count are defined as Unadjusted function points. Later, when
the other complexity factor known as General System Characteristics
based Value Adjustment Factor is imposed on the FP count, we then
obtain the Adjusted FP count. These are discussed later in this chapter.

For more detail and extensive examples on transaction functions, see
Chapter 5, “Transactional Functions.”

Calculate the Value Adjustment Factor

Figure 3.3 shows the visible five functions available to the user; namely,
ILF, EIF, EI, EO, and EQ. These functions capture the operational attrib-
utes of the application. Over and above these attributes are another set
of attributes known as technical attributes of a software application.
These technical attributes, although they are not visible to the user,
define various technical parameters of the application through which
the performance of the application can be controlled.

Based on a number of complexities that could occur in typical software
applications, Albrecht came up with a set of technical parameters,
which he called general system characteristics. There were 14 such GSCs
identified. Each of the GSCs could be defined in terms of degree of
influence on a scale of 0 to 5, where “0” means no impact and “5”
means maximum impact. Table 3.2 describes the 14 general system
characteristics that contribute toward arriving at the right value adjust-
ment factor (VAF). The table shows two extreme variations of the total
degree of influence (TDI) values. If all 14 GSCs have no impact (lowest
values), the VAF works out at 0.65. On the other hand, if all the TDI
have maximum impact (highest values), the VAF is 1.35. Between the
two extreme ranges exists a variation of 0.70. This means that if the
mid-range of values is assumed as 1.0, the 14 GSCs together could have
an impact ranging from –35% (0.65) to +35% (1.35).

The VAF was devised to recalibrate the total unadjusted FP count that
was arrived at through individual FP counts made by data and transac-
tion functions—ILF, EIF, EI, EO, and EQ. The 14 GSCs were to be
applied at the overall application level and not at individual data or
transaction functions. The simple formula used here is

Adjusted FP Count = Unadjusted FP Count × VAF

Function Point Analysis 69

Conclusion

The Function Point Analysis process has been perhaps the most popu-
lar estimation method among software professionals. There are quite a
number of reasons for the method’s popularity:

• FPA maps clearly to the functional needs of the application being
counted. This feature makes it easier for the user to validate the
mapping of requirements to the components of the actual estima-
tion method itself.

70 Chapter 3 A Study of Function Point Analysis

Value Lowest Highest
GSC Description Range Values Values

1 Data Communications 0–5 0 5

2 Distributed Data Processing 0–5 0 5

3 Performance 0–5 0 5

4 Heavily Used Configuration 0–5 0 5

5 Transaction Rate 0–5 0 5

6 Online Data Entry 0–5 0 5

7 End-User Efficiency 0–5 0 5

8 Online Update 0–5 0 5

9 Complex Processing 0–5 0 5

10 Reusability 0–5 0 5

11 Installation Ease 0–5 0 5

12 Operation Ease 0–5 0 5

13 Multiple Sites 0–5 0 5

14 Facilitate Change 0–5 0 5

Total Degree of Influence—TDI 0 70

VAF = (TDI * 0.01) + 0.65 0.65 1.35

Table 3.2 Calculate Value Adjustment Factor

• FPA carefully avoids complexities that could be introduced if varia-
tions due to the technology being used are included in the calculation
method. The technology component can be separately introduced in
the form of productivity of the developer.

• The method provides for varying complexity within each of the
attributes being measured. For example each internal file (ILF) can
be of simple, average, or complex category. This feature helps finer
tuning of the final FP count by the estimator.

• Key characteristics of the application being counted that do not fit
into the definition of inputs, outputs, queries, internal, and external
files are separately introduced in the form of general system charac-
teristics (GSCs). Several performance and application-quality related
parameters that impact the final FP count of the application are pro-
vided for fine-tuning FP count.

An estimator attempting to learn and practice the FPA estimation
method might not get accurate estimates in the first few attempts. In
fact, to check the accuracy of estimates, the estimator will have to wait
until the project is completed, and all the data is collated and analyzed.
But don’t worry; wine gets tastier as it matures over years. With experi-
ence, the judgment of using the right parameters to arrive at the right
complexity as well as identifying the correct number of attributes to
arrive at the unadjusted FP count will make estimates more accurate.
Arriving at the GSC-based VAF is most critical to arriving at the final
adjusted FP count. An experienced software professional, who under-
stands the larger aspects of application development and deployment,
would be able to provide near accurate GSC-VAF. The estimator should
obtain help from an expert software professional.

This chapter discussed estimation basics and explored various compo-
nents of the IFPUG Function Point Analysis method in detail. The three
chapters that follow are dedicated to deeper discussions on the three
major aspects of the Function Point Analysis method:

• Chapter 4, “Data Functions,” delves into all the data-related aspects
of the FPA estimation process. Important aspects of data functions,
including DET, RET, and other related terms are explained in detail
along with examples.

• Chapter 5, “Transactional Functions,” covers all the transaction-
related complexities, including deep discussions on DET, FTR, and
other related items. Examples have been used at appropriate places
to help you understand the complexities.

Conclusion 71

• Chapter 6, “General System Characteristics,” (GSC) has been spe-
cially provided to address some of the complex FPA attributes. A
special section dedicated to mapping GSCs to quality parameters of
the application is included.

References

1. Jones, T. Capers. “Foreword,” in Function Point Analysis (by Brian J.
Dreger). Prentice Hall, 1989.

2. International Function Point Users Group (IFPUG). Function Point
Counting Practices Manual (CPM), Release 4.2.

72 Chapter 3 A Study of Function Point Analysis

CHAPTER 4

Data Functions

Introduction

In God we trust, in Data we rest!

Businesses around the world are dependent on IT systems to provide
the right data at the right time. Critical and major decisions are made,
based on the variety of processed information that these systems pro-
duce. Obviously all the information processed is totally dependent on
the raw data maintained by the different systems running within the
organization. Identifying and structuring the right set of data files for
the system being designed is critical both for successful implementation
as well as accurate estimation.

The previous chapter focused on the overall FPA estimation method,
but only briefly touched on the topics of data and transaction functions.
Because professional FPA estimators need a deeper discussion on data
and transaction functions, this chapter discusses data functions, as
applied and as described by the IFPUG Function Point Analysis
method, and provides a number of examples and diagrams.

Creating, maintaining, and processing data into meaningful infor-
mation are core needs of any software system. Stated broadly, from
an estimation perspective, data can be classified into two varieties:
data owned by the system and data referred by the system (applica-
tion). The International Function Point Users Group (IFPUG) [1]
has a clear method of differentiating between data owned by the
system and the data referred by it. But first consider how a file is
defined.

73

Definition of Files

Estimators are often faced with the dilemma of clearly defining what a
“file” is in the context of function point (FP) counts as explained by
IFPUG. There are two main areas of conflict:

• Differentiating between logical and physical implementation of
data files

• Understanding various technological implementations of data files
like flat files, VSAM files, RDBMS system, IMS, IDMS, DB2, and
similar databases

The Counting Practices Manual 4.2 (CPM) [1] prepared by IFPUG
clearly reiterates that all the attributes involved in FP count should
always be seen from the user point of view. Thus identifying files
becomes easier if the estimator views files the way the user sees them.
In other words, “user view” maps to the concept of logical file.

You can understand a data file by considering that

• A set of characters (or numbers) form a data element.
• A set of data elements constitute a record.
• A set of records form a file.

As more and more complex software systems were designed, the struc-
ture of data files also became equally complex, moving from the simple
files defined here to files having variable records, with each record hav-
ing variable subrecords and the size of data elements themselves
becoming variable.

A user needs neither to be aware of the complexities of defining files
nor be worried about implementation issues. The designer is the one to
bring the expertise on structuring the right data model for the system
that can extract the highest performance, both from data consistency as
well as transactions response time perspectives.

A Data File Example

Let’s take the example of data files (only) for an Order Processing sys-
tem. The application has a need to store various pieces of information
from every transaction:

• Order details
• Item details

74 Chapter 4 Data Functions

• Item costs
• Sales tax
• Total order cost

Looking at just one Order Details data file from the user point of view,
you see a single data file. From the designer’s point of view, however, it
gets broken down to Order Header file and the Order Details File,
which is linked through Order Number as the key. Other files are neces-
sary for sales tax information and more. Which assumption is then cor-
rect? Should this be a single file or multiple files? The following sections
address these questions.

Data Functions Defined by IFPUG

Before going further, take a few minutes to understand data functions
and their attributes as defined by IFPUG. Later in this chapter you will
learn more about the key attributes that define a data function.

IFPUG’s Counting Practice Manual (CPM) broadly classifies the data
function types into two categories: Internal Logical Files (ILFs) and
External Interface Files (EIFs). As described in Chapter 3, the boundary
of the application being counted decides what is internal and what is
external to the system (see Figure 4.1). All files owned and maintained

Data Functions Defined by IFPUG 75

Figure 4.1 Components of an application.

Inputs

Application Boundary

Business Logic Business Logic

Business Logic Business Logic

Business Logic

Business Logic

Internal Files

Reports

Files

Files

Inquiries

Outputs

Code

External Files

Application-B

EIF

ILF

Interface Application-A

1

3

2

2

22

4

5

User

by the application being counted are ILFs and all files referenced by the
application but outside the boundary of the scope of count, are EIFs. In
other words, if the CRUD (Create, Read, Update, and Delete) factor
applies to a file in the system, it is likely to be an ILF, and if it is read
only, the file is an EIF.

Another critical definition of files by IFPUG reiterates that any consid-
eration of attributes of a file should be based on the fact that it is seen
from the user perspective. If we now consider the Order details exam-
ple, it would be appropriate to consider the Order details as one file (an
ILF or EIF as the case may be) and not multiple files as viewed by the
data modeler. One may challenge this definition because this rule will
lead to fewer function points in the final numbers. Because the IFPUG
method is designed to meet the user requirement, it is then seen as
counting various attributes accordingly. This approach also increases
the comfort of the user because the user is now able to map his or her
needs to the function points counting process.

Figure 4.1 describes the various attributes of an application that are
needed for function point counting purposes. The ILFs are within the
boundary of the application being counted and as such, all ILFs are main-
tained by the programs belonging to the application. Similarly, the EIFs
are external to the boundary of the application being counted and these
files are being used for reference purposes only.

ILFs and EIFs

The CPM 4.2 (IFPUG) [2] defines ILF and EIF as follows:

• ILF: “An internal logical file (ILF) is a user identifiable group of log-
ically related data or control information maintained within the
boundary of the application. The primary intent of an ILF is to hold
data maintained through one or more elementary processes of the
application being counted.”

• EIF: “An external interface file (EIF) is a user identifiable group of
logically related data or control information referenced by the
application, but maintained within the boundary of another appli-
cation. The primary intent of an EIF is to hold data referenced
through one or more elementary processes within the boundary of
the application counted. This means an EIF counted for an applica-
tion must be in an ILF in another application.”

The basic difference between an ILF and EIF is that although the ILF is
owned and maintained by the application being counted, the EIF is

76 Chapter 4 Data Functions

used for reference by the application being considered for FP counting
purposes. The EIF referenced by the application being counted must be
an ILF to another application.

Embedded Terms

The various embedded terms used in the previous definitions of ILF
and EIF—control information, user identifiable, elementary process,
and maintained—are explained in detail in the sections that follow.

Control Information

Control information is the data that influences an elementary process
of the application being counted. It specifies what, when, or how data
is to be processed. In other words, the behavior of an application, when
being executed, can be controlled by means of control information.
Instead of executing a set of workflow processes manually, you can
record them in the required order and in a format that can be under-
stood by the system on which the application is being executed. On a
given trigger, the system automatically executes the workflow-related
subsystems (applications), which then process and generate the required
outputs. The control information itself can be stored in a data file for-
mat and can be an ILF to the application being counted.

Example 1
At the end of every work day, all sales data entered in the application
has to be processed, analyzed, and used in reports that are generated in
a given format. The control information data file will have all the work-
flow process-based instructions, such as “collate sales data for the day
from given sales data files, arrange in certain order, process and ana-
lyze the data, and finally generate reports.” For each of these processes,
predefined applications are identified. In a typical mainframe platform,
a JCL (Job Control Language) file can be treated as an ILF under the
control information category.

Example 2
A large plant that manufactures circuit boards depends heavily on
continuous power supply availability. Upon failure of electricity, the
backup power supply needs to kick start without a break in power supply.

Data Functions Defined by IFPUG 77

The control information file maintains the trigger and subsequent
workflow processes by which the backup power needs to come up. The
application that reads the control information has a set of other support
sensors and connected equipment, which takes care of starting and
stopping the backup power supply.

User Identifiable

The term User Identifiable refers to defined requirements for processes
and/or groups of data that are agreed upon, and understood by, both the
user(s) and software developer(s). The intent here is to ensure that all
inputs that are taken in order to design a data file are identified from the
user point of view. It is essential that the inputs thus agreed are docu-
mented and signed off on by the user as well as the software developer.

Example 1
A large shoe store requires an order processing application to process
and generate orders to the suppliers of a variety of shoes. Practical
requirements of the order processing system are discussed in detail with
the user and then mutually agreed on and recorded. Care is taken
while defining the various data items that need to be stored and
processed by the order processing application. The name and the
attribute of each data element are identified in a manner that is easily
understood by the user. For example, shoe type, size, material, color,
price, and gender (male/female) could be some of the information
about the order that is identified and approved by the user. The data
item for the application thus becomes the user identifiable inputs.

Example 2
The finance department needs a new salary processing application to
be designed and developed. Here the user is the finance department
and the requirements described by them are recorded. Various data
items are required to process employee salary: basic salary, allowances,
deductions, and tax, are provided and approved by the user. Thus the
data processing requirements are user identifiable and are the basic
inputs for the design of the salary processing application.

Elementary Process

An elementary process is the smallest unit of activity that is meaning-
ful to the user. The elementary process must be self-contained and

78 Chapter 4 Data Functions

leave the business of the application being counted in a consistent state.
The process of getting user inputs, validating, and updating the inputs
to a data file is termed an elementary process. The elementary process
is said to be complete when the data updating to a file is complete in all
respects and there is a consistency in the updated information.

Example 1
Take the very simple situation of an application that maintains com-
pany employee information. The information stored includes employee
generic information, dependent information, educational background,
work experience history, etc. The elementary process here encompasses
full and complete information update of all employee information in a
single transaction. In other words, if the program that is written to
record employee information does not provide for updating the full set
of information mentioned here, it is not considered as conforming to an
elementary process.

Example 2
In an invoicing system, the information to be recorded includes the
generic information of the invoice (invoice #, date, customer, total amount,
excise/tax id, etc.), details of the items invoiced, taxes, and other over-
heads. In order for the data recorded to be consistent, the elementary
process here requires all information about the invoice to be processed
in a single transaction.

Maintained

The term maintained is the ability to modify data through an elementary
process. Examples include, but are not limited to, adding, changing,
deleting, populating, revising, updating, assigning, and creating data.

You also must understand that each of these terms (adding, changing,
and so forth), requires a different set of elementary processes. This is
enumerated in detail as follows:

• The add elementary process first creates a blank record for the user
to input, validates identified data items, and then populates all the
contents in each of the data elements and finally creates a new
record in the file when saved.

• The update elementary process fetches an existing record from the
file, allows the user to change required data items, and then facili-
tates updating the revised data into the file upon saving.

Data Functions Defined by IFPUG 79

• The delete elementary process first fetches the requested record,
allows the user to identify the information and approve delete
process, and then removes the record from the file. It could be a
physical or logical deletion.

Rules for Identification of ILFs and EIFs

In order to ensure that the various files being included in the FP count-
ing process for an application are rightly identified, it is critical that the
definitions of embedded terms mentioned in the earlier sections of this
chapter are strictly followed. It will help identifying the right ILFs and
EIFs that are involved with the application being counted. There are
several benefits:

• The true user view is captured to identify ILFs and EIFs.
• Clear differentiation between ILFs and EIFs happens based on correct

demarcation of application boundary, again based on user view.
• The various workflow processes decide the maintenance activities

that are associated with each data file.
• The core of any application is the information it stores and processes.

This information storage happens in the form of data files. As such,
correct identification of data files also facilitates identifying other
related attributes of FP counting, such as transactions, reports,
interfaces, etc.

The following sections define identification rules as given in CPM 4.2
(IFPUG). The identification rules are limited to classifying a file as an
ILF or EIF. Once identified, to further determine the complexity of each
of the files, a separate set of rules is provided.

ILF Identification Rules

To identify ILFs, look for groups of data or control information that sat-
isfy the following definition of an ILF. All the following counting rules
must apply for the information to be counted as an ILF:

• The group of data or control information is logical and user
identifiable.

• The group of data is maintained through an elementary process
within the application boundary being counted.

Figure 4.1 shows the ILF inside the boundary of the application. Basi-
cally ILF are owned by the application. As far as the function point

80 Chapter 4 Data Functions

counting process is concerned, it does not matter in what form the ILF
is maintained within the technology platform on which the application
is being developed. Each ILF could be stored in various alternative
forms; for example, as RDBMS table, simple text file, VSAM file, and
other generic file types.

All the data that is core to the application is stored in the ILFs. The ILFs
facilitate modification of data in each file. Other operations, like queries
and reports, can be done using the ILF.

EIF Identification Rules

To identify EIFs, look for groups of data or control information that sat-
isfy the definition of an EIF. The following counting rules must apply
for the information to be counted as an EIF:

• The group of data or control information is logical and user
identifiable.

• The group of data is referenced by, and external to, the application
being counted.

• The group of data is not maintained by the application being
counted.

• The group of data is maintained in an ILF of another application.

In Figure 4.1, the EIF is outside the boundary of the application. Unlike
the ILF, which belongs to the application, the EIF is treated as an external
reference data file only. If the application simply refers to a file that
belongs to another external application, the file is identified as an EIF. As
mentioned in the preceding rules, an EIF does not allow any updates or
maintenance process to be executed by the application. Typically, the EIF
concept is used to provide data interface between two applications. Sim-
ilar to the usage of ILF, the EIF can also be used in various processing sit-
uations that include data entry operations through EI, queries through
EQ, reports through EO, and other interfaces through EIFs themselves.

Determining Complexity of ILFs and EIFs

As described earlier in this chapter, a data file contains a set of records
consisting of a set of data elements. Because this definition is the basic
and common component of any data file, ILF or EIF, you can now pro-
ceed further to categorize ILF and EIF into three large groups of
complexities: Low, Average, and High.

Data Functions Defined by IFPUG 81

IFPUG has defined a clear process of identifying an ILF or EIF as Low,
Average, or High and also has a fixed number of unadjusted function
points assigned to each of these categories. Only two major compo-
nents of any data file decide its complexity: data elements (DET) and
record elements (RET). The sections that follow explain the attributes of
DET and RET and provide examples to support the definition.

DET

A data element type (DET) is a unique, user-recognizable, non-repeated
field. In simple terms, it is a field within a record of a file or a column in a
database table (file), but the mapping of a field or column in the file
should be with respect to the data element recognized from the user
point of view. This definition makes understanding a data element a bit
complex. This section discusses the rules for identifying a DET, followed
by a number of examples that illustrate various situations and mapping
to user view. Please read them carefully and try to understand the impli-
cations as applicable to practical situations. Improper interpretation of
data elements (and later, RETs) might lead to improper counting of
unadjusted function points. Here are the rules (from IFPUG CPM 4.2) [3]:

Rule 1: “Count a DET for each unique user recognizable, non-repeated
field maintained in or retrieved from the ILF or EIF through the execu-
tion of an elementary process.” Under normal circumstances, if you
consider an employee file with employee information and other rele-
vant information, such as dependent information, academic informa-
tion, experience, etc., the DETs that might generally be required are

• Employee name, SSN#, Date-of-Birth, Permanent Address, Date-of-
Joining

• Dependent’s name, Date-of-Birth, Gender
• Academic qualification, University/Institution, Year, Grade
• Work Type, Grade, Duration, Employer, Salary

The preceding set of DETs can be mapped to data elements from the user
view. But if you explore a bit deeper you will find that “Employee
name” is actually split into first name, middle name, and last name.
The basic doubt an estimator gets here is whether they are three differ-
ent DETs or a single DET. Figure. 4.2 has the two different views of
the same DET—Employee Name. A similar dilemma arises when we
explore the “address” part of the DET. The address is normally split
into house #, street, city, ZIP Code, and country. Are they five separate
DETs or a single DET?

82 Chapter 4 Data Functions

The answer to all such concerns is the philosophy of estimation
explained by IFPUG: follow the user view. Typically “Employee name”
is a single entity from the user view and it is the application designer
(programmer) who splits this to make data processing easier and
more presentable. As such, if this is a design-related split, you should
count Employee name as one single DET. But there are situations
wherein the user asks for the Employee name to be split in order to
facilitate certain business-related requirements. In such situations, you
should count this as three DETs as mentioned earlier (and as shown in
View-2, Figure 4.2). In the same manner, you can visualize the address
as one or more DETs based on user view only. There are situations
when the user has asked for ZIP Code to be separated in order to
process information data based on ZIP Code. In such cases, the ZIP
Code is counted as a separate DET.

Rule 2: “When two applications maintain and/or reference the same
ILF/EIF, but each maintains/references separate DETs, count only the
DETs being used by each application to size the ILF/EIF” [4].

Example 1
Application A may use an Employee Name, SSN #, Address, City, State,
and Zip Code. Application B may use the same ILF but also use
employee salary information DETs like Basic Salary, Allowances,
Deductions, Tax, and Net Salary. Application A would count six DETs;
Application B would count five DETs. This is a situation of different
data elements in the same file being referenced by different applica-
tions and hence different counts of DETs.

Example 2
Application X maintains and/or references an ILF that contains
Employee Name, SSN#, and Address. Application Y maintains and/or

Data Functions Defined by IFPUG 83

Figure 4.2 Two views of DET.

Employee Name (Char=60)Employee Name (Char = 60)

First Name (20)First Name (20) Middle Name (20)Middle Name (20) Last Name (20)Last Name (20)

DET = 1View-1

View-2 # DET = 3

DET – User View

references the Dependent’s Name, Date-of-Birth, and Gender. Applica-
tion X would count three DETs; Application Y would count three DETs,
both from the same ILF.

Rule 3: “Count a DET for each piece of data required by the user to estab-
lish a relationship with another ILF or EIF” [5]. Note that under normal
circumstances, the relationship between two files is established per the
design requirements specified by the designer and hence cannot be
counted as additional DETs. But there could be specific situations wherein
the user has a need to establish a relationship between two files (ILF or
EIF), and in this situation the linking data element is counted as a DET.

Example
A specific user requirement intends to track payments made against all
the invoices received. The ILF, which maintains invoice information
DETs, has an additional reference DET (foreign key) called payment
voucher #, which is also a DET in the payment voucher ILF. Here the
payment voucher # is counted as an additional DET in the invoice ILF.
This is a user requirement.

RET

A record element type (RET) is a user-recognizable subgroup of data ele-
ments within an ILF or EIF. There are two types of subgroups:

• Optional
• Mandatory

Optional subgroups are those that the user has the option of using.
The user may choose to use one or none of the subgroups during an
elementary process that adds or creates an instance of the data.

Mandatory subgroups are subgroups where the user must use at least
one subgroup.

Defining, designing, or identifying the right set of RETs for a given ILF
or EIF has significant importance in the whole process of data model-
ing for an application. Sometimes the entire FP count may get distorted
if the assumptions made while identifying the right set of DETs and
RETs are incorrect. And in these situations, classification of mandatory
and optional subgroups (within an RET) are critical.

Consider the earlier example of a data file with information about
employees and their dependents. Here the employee data becomes

84 Chapter 4 Data Functions

Employee Data Dependent Data Experience Data

Recursive Recursive

VSAM View

RDBMS View

Mandatory Optional

Employee
Data

Dependent
Data

Experience
Data

Mandatory

Optional Optional

RET – Subgroups

Figure 4.3 Defining RET.

mandatory and dependent data becomes optional. In other words,
mandatory RET contains data or information that is absolutely essential
for a record to exist. Optional RET may or may not have data or infor-
mation that needs to exist for all or every record of an employee. Every
employee record will have generic information about the employee that
is mandatory, but every employee record is not required to have the
optional dependent data.

Figure 4.3 shows alternate ways of depicting a data model and shows
how records are designed based on multiple RETs within a record. The
VSAM (a mainframe file handling system) has the ability to store multi-
ple RETs within a record. In the example shown in Figure 4.3, the RETs
are employee data, dependent data, and experience data. On the other
hand, if the same group of employee information has to be designed in
an RDBMS system, the employee data, dependent data, and experience
data become three tables connected to the employee data as the base
table through a reference key. In both situations (VSAM and RDBMS)
the employee data is of mandatory subgroup category because without the
mandatory category, other groups of information do not look meaningful.

Data Functions Defined by IFPUG 85

The dependent and experience data are optional subgroups because
they depend on the employee data. A particular instance of an
employee record can exist without dependent or experience data (or
both) but it cannot exist without the employee data.

RET Rules: One of the following rules applies when counting RETs:

• Count a RET for each optional or mandatory subgroup of the ILF or
EIF, or

• If there are no subgroups, count the ILF or EIF as one RET.

Example
An apparel store uses an invoice data file (ILF) that stores the following
information:

• Invoice #, Invoice Date, Customer Name, Sales Tax, Total Invoice
Amount

• Item #, Item Code, Rate, Quantity, Cost

Two subgroups of information are involved: generic information about
the invoice, and the details of the items invoiced. Mapping to the defin-
ition of RETs, you will observe that the generic information of the
invoice is the mandatory subgroup and the item details is the optional
subgroup. This also means there are two RETs in this data file: invoice
generic data and items data.

Some of the expert estimators follow a different form of explanation to
determine multiple RETs in a data file. They presume that whereas a
mandatory RET can have only one set of data in one record, the
optional RET can have multiple, recursive sets of data for the same
mandatory RET. For example, an employee ILF will have one manda-
tory RET that stores the generic information about the employee, but
the same record can have multiple subgroups containing employee
dependent(s) data that is termed optional. Similarly an invoice ILF will
have the generic data about the invoice as one subgroup, mandatory
RET but multiple subgroups of item details as optional RET.

Complexity and FP Count Contributions

As explained earlier in this chapter, the two key attributes that define
and size a data file (ILF and EIF) are DET and RET. IFPUG has a well-
defined matrix table between DET and RET variations that derives
complexity of an ILF/EIF. As the number of DET or RET increases in a
given ILF/EIF, the complexity of the file also varies upward from low
to average and then to the high category.

86 Chapter 4 Data Functions

Table 4.1 gives the reference matrix that can be used to determine the
complexity factor of each ILF/EIF.

After you refer to Table 4.1 and determine the complexity of an ILF/EIF,
you then have to assign the actual FP contribution (count) to the ILF/EIF,
based on the complexity factor. Two separate tables can help you with
this, one each for ILF and EIF, providing the exact FP contribution for
each of the complexity categories of simple, average, and high.

The contribution FP count table for ILF is given in Table 4.2.

The contribution FP count table for EIF is shown in Table 4.3.

Step-by-Step FP Contribution Calculation Process

The following six sequential steps provide you the guideline to assess
and count the FP value for data functions:

1. Determine whether the data file is an ILF or EIF, based on the appli-
cation boundary defined by user.

2. Determine the number of DETs and RETs that exist in each of
ILF/EIF by following the rules explained earlier in this chapter.

3. Determine the complexity factor (Low, Average, or High) from
Table 4.1 based on number of DETs and RETs counted for each
ILF/EIF.

Data Functions Defined by IFPUG 87

Range 1 to 19 DET 20 to 50 DET 51 or More DET

1 RET Low Low Average

2 to 5 RET Low Average High

6 or more RET Average High High

Functional Complexity Rating Unadjusted Function Points

Low 7

Average 10

High 15

Table 4.1 ILF/EIF Complexity Factor

Table 4.2 ILF FP Contribution

4. Using the complexity factor, for each ILF, find the FP contribution
(unadjusted FP count) from Table 4.2.

5. Using the complexity factor, for each EIF, find the FP contribution
(unadjusted FP count) from Table 4.3.

6. Add FP contribution for all ILFs and EIFs to get the total unad-
justed FP count for data transactions.

The following chapters explain how the unadjusted FP count can be
converted to an adjusted FP count using the value adjustment factor.

Tips to Remember

Many practical situations could lead to ambiguous identification of
various ILF and EIF parameters during actual FP counting. Here are a
few tips to remember:

• An ILF or EIF may appear repeatedly in multiple sections of the
same application during the counting process. Ensure that once a
specific, identified ILF or EIF is defined and recorded, any subse-
quent appearance of the same ILF or EIF should be ignored. Dupli-
cate counting of the same ILF or EIF will lead to erroneous FP
count. For example, an ILF for employee data may appear in the
employee data update module as well as in the employee job main-
tenance module. Count the employee ILF only once. But if in the
event of multiple occurrences of the same ILF you find that the data
element information varies, take the maximum data element count.

• The basic definition of an ILF or EIF maps them to a logical imple-
mentation of a file. Do not confuse this with the physical implemen-
tation of an existing data model in an RDBMS system. You should
identify an ILF or EIF based on user view and ensure it is a logical
implementation only. Do not map an ILF or EIF to a table in an
RDBMS system without checking the basic rule.

88 Chapter 4 Data Functions

Functional Complexity Rating Unadjusted Function Points

Low 5

Average 7

High 10

Table 4.3 EIF FP Contribution

Case Study: Counting ILF/EIF of an Invoicing Application

The user requires an invoice processing application to be developed.
The module needs to meet the following user requirements:

• Maintain, inquire, and print invoices.
• Include customer information in the invoice. The customer data is

maintained by another application.
• Maintain, inquire, and print items information.
• Inquire and report invoices summary for various customers.

This data model can be implemented in various types of databases
(relational, IMS, IDMS, etc.). But remember that from the user perspec-
tive, this is supposed to be platform independent and as such, only the
files and the entity relationship between files need to be taken into con-
sideration while processing the FP count for ILFs and EIFs.

You can now prepare the list of possible fields in each of the entities
shown in Figure 4.4. The data elements assumed here are illustrative
only and might change significantly in different real-life situations.

The Entity-Relation (E-R diagram) in Figure 4.4 shows the following
four groups of information:

• Invoice Data
• Customer Data
• Item Data
• Item Details Data

Data Functions Defined by IFPUG 89

Figure 4.4 Invoice data model.

Invoice

Invoice Customer

Invoice Items

Items_Details

Item

Customer

Application Boundary

Follow IFPUG rules and determine whether each of the preceding
items is an ILF or EIF.

The analysis of Invoice Data is given in Table 4.4.

Based on the above analysis, the Invoice Data file, maintained within
the boundary of the application being counted, is an ILF.

The analysis of Customer Data is given in Table 4.5.

Based on the above analysis, the Customer Data file is not an ILF.
Table 4.6 explores whether this file fits the EIF identification rules.

Based on the above analysis, the Customer Data file is an EIF.

The analysis of Item Data is given in Table 4.7.

Based on the preceding analysis, the Item Data file, although maintained
within the boundary of the application being counted, is not an ILF.

The analysis of Item Details Data is given in Table 4.8.

90 Chapter 4 Data Functions

ILF Identification Rule Does the Rule Apply?

The group of data or control Yes. The complete data information
information is logical and user of the Customer is user identifiable.
identifiable.

The group of data is maintained No. The elementary process does
through an elementary process not maintain the Customer data.
within the application boundary
being counted.

Table 4.5 Customer ILF Identification

ILF Identification Rule Does the Rule Apply?

The group of data or control Yes. The complete data information
information is logical and user of the Invoice together with Item
identifiable. details is user identifiable.

The group of data is maintained Yes. The elementary process
through an elementary process maintains the Invoice and Item
within the application boundary Details data.
being counted.

Table 4.4 Invoice ILF Identification

Data Functions Defined by IFPUG 91

EIF Identification Rule Does the Rule Apply?

The group of data or control Yes. The complete data information
information is logical and user of the Customer is user identifiable.
identifiable.

The group of data is referenced by, Yes. The Customer data is
and external to, the application referenced by and external to the
being counted. Invoice application.

The group of data is not maintained Yes. The Customer data is not
by the application being counted. maintained by the Invoice

application.

The group of data is maintained in Yes. The data is maintained in the
an ILF of another application. Customer application.

Table 4.6 Customer EIF Identification

ILF Identification Rule Does the Rule Apply?

The group of data or control No. The data information of the
information is logical and Item is partial because it does not
user identifiable. contain details of each item as

identified by the user.

The group of data is maintained Yes. The elementary process
through an elementary process maintains the Item data.
within the application boundary
being counted.

Table 4.7 Item Data ILF Identification

ILF Identification Rule Does the Rule Apply?

The group of data or control No. The data information of the
information is logical and user Item Details is partial as it does not
identifiable. contain details of each item as

identified by the user.

The group of data is maintained Yes. The elementary process
through an elementary process maintains the Item data.
within the application boundary
being counted.

Table 4.8 Item Details ILF Identification

Based on the above analysis, the Item Details Data file, although main-
tained within the boundary of the application being counted, is not an ILF.

Based on the user perspective, Item data alone and Item Details alone
are not ILFs, but when combined, the Item Information is user identifi-
able. You must combine the two data files to form a single group of data
items as identified by the user.

Apply the analysis to Item information Data as given in the Table 4.9.

Based on the above analysis, the Item Information, maintained within
the boundary of the application being counted, is one ILF.

Table 4.10 counts the DETs and RETs in each of the ILF/EIFs, which can
then be used to define the complexity that will further determine the FP
contributions.

92 Chapter 4 Data Functions

ILF Identification Rule Does the Rule Apply?

The group of data or control Yes. The data information of the
information is logical and user Item Information is complete and
identifiable. is user identifiable.

The group of data is maintained Yes. The elementary process
through an elementary process maintains the Item information
within the application boundary data.
being counted.

Table 4.9 Item Information ILF Identification

File Fields Counting Process

Invoice Entity RET 1 (mandatory)

Invoice # DET 1

Invoice Date DET 2

Sales Tax # DET 3

Discount Amount DET 4

Gross Amount DET 5

Table 4.10 DET and RET Identification

Data Functions Defined by IFPUG 93

1a. Invoice Customer Entity— RET 2 under Invoice Entity
Subgroup (mandatory)

Customer Id DET 6

Customer Name DET 7

Customer Address DET 8

Shipping Address DET 9

1b. Invoice Items Entity— RET 3 under Invoice Entity
Subgroup

Item # DET 10

Item Description DET 11

Rate DET 12

Quantity DET 13

Cost DET 14

Items Entity RET 1 (mandatory)

Item # DET 1

Item Description DET 2

2a. Items Details Entity— RET 2
Subgroup

Item # (foreign key) Previously counted as DET 1

Item Category DET 3

Item Rate DET 4

Customer Entity RET 1 (mandatory)

Customer Id DET 1

Customer Name DET 2

Address DET 3

Shipping Address DET 4

Table 4.10 DET and RET Identification (Continued)

Table 4.11 applies the DET and RET counting rules and so that you can
check whether it matches the numbers identified previously.

The exact FP contribution can now be evaluated (see Table 4.12) using
the contribution figures provided by IFPUG.

94 Chapter 4 Data Functions

Rule 1-Invoice 2-Items 3-Customer
Rule Applies? Entity Entity Entity

Count a DET for each unique Yes 14 4 4
user-recognizable, non-repeated
field maintained in or retrieved
from the ILF or EIF through
the execution of an elementary
process.

When two applications No NA NA NA
maintain and/or reference the
same ILF/EIF, but each
maintains/references separate
DETs, count only the DETs
being used by each application
to size the ILF/EIF.

Count a DET for each piece No NA NA NA
of data required by the user
to establish a relationship
with another ILF or EIF.

Count a RET for each Yes 3 1 1
optional or mandatory
subgroup of the ILF or EIF.

Or, if there are no subgroups, Yes NA 1 1
count the ILF or EIF as one RET.

Table 4.11 DET/RET Identification

Unadjusted
Entity File DET RET Complexity FP Count

Invoice ILF 14 3 Low 7

Items ILF 4 1 Low 7

Customer EIF 4 1 Low 5

Table 4.12 FP Count

Conclusion 95

Conclusion

The data functions constitute the core part of an application and all
transactions are designed to manipulate data functions. Counting the
FP value of data functions is critical though the counting process is not
very complex. Key points to note while counting data functions include

• Identify all data files that are within the scope of the application
that is being evaluated for FP count

• Segregate data files that are maintained by the application being
counted and those data files that are only referred but not main-
tained by the application

• Data files particularly are user identifiable because the FP method
follows the logical implementation of files

Identifying ILF/EIF: User View versus Programmer View

During the process of defining and identifying the right number of
ILF/EIF, programmers often tend to go a bit overboard in including
files that are needed from an application design perspective, but actu-
ally not seen from the user view. All files that are not included in the
user view have to be discounted in the FP counting process. Determin-
ing correctly whether an ILF/EIF belongs to an application can involve
quite a bit of ambiguity. Here are a few examples of ILF/EIF that can be
included and also those that can be generally excluded from an appli-
cation FP count.

ILFs that are generally included:

• Any application data that is maintained by an external transaction
like employee, invoice, inventory, payroll, banking, accounts, etc.

• Online help data maintained within the application
• Control information maintained within the application
• Error logs and audit data maintained within the application
• All files that are identified and approved by the user

ILFs that are generally excluded:

• Sort files, temporary files, work files, indexes, and similar files that are
purely envisioned by the programmer from the design perspective.
They are intended to enhance the performance of the application.

• View or join files introduced due to design/build requirements.

• Files not maintained by the application being counted and those
being used for reference only.

• Files that are set up to track and monitor transactions from begin-
ning to end.

References

1. International Function Point Users Group (IFPUG). Function Point
Counting Practices Manual (CPM), Release 4.2.

2. Ibid.

3. Ibid.

4. Ibid.

5. Ibid.

Other Interesting Reading Material

Garmus, David, and David Herron. “Sizing Data Functions” in Function
Point Analysis: Measurement Practices for Successful Software Projects.
Addison-Wesley, 2004. Pp. 93–109.

96 Chapter 4 Data Functions

CHAPTER 5

Transactional Functions

Introduction

Transactions are the means through which data is transformed into
meaningful information. Static data is of very little use to the business.
A good transaction processing system provides continuous data
updates, collating and compiling it into useful information and then
presenting it in a readable form.

Transactions are also the vehicle through which the user accesses the
raw as well as processed data. Three categories of transactions are
available to the user:

• The transaction to input data into the system
• The transaction to query information from the system
• The transaction to generate reports

Chapter 3, “A Study of Function Point Analysis,” focused on the
overall FPA estimation method, but that chapter simply introducd
data and transaction functions. Because professional FPA estimators
need a full understanding of data and transaction functions, Chapter 4
focused on data functions, and this chapter discusses transaction
functions in more detail, supported by a number of examples and
diagrams.

The International Function Point Users Group (IFPUG) has speci-
fied a clear method to differentiate between various types of trans-
actions. But first you need to understand how a transaction is
defined.

97

Definition of Transactions

The FPA estimation method prescribes three basic types of transaction
functions: inputs, inquiries, and outputs. (These functions have been
discussed previously in this book: Refer to Figure 3.3 in Chapter 3 for
more information.) Through these transaction functions, the user is
able to interact with the application. Most transaction functions are
predefined, and the look and feel as well as the processing logic of the
functions are frozen during the software design and development
process. Data entry screens, online queries and report generation are
some of the practical examples of transaction functions.

While attempting to estimate the size and effort required to design,
develop, and test these input/output transaction functions, estimators
normally encounter a conflict situation about which items to include and
which ones to exclude. Understanding the basic concept of how external
entities interact with internal intelligent software is helpful at this point.

Mapping a human system to a software application shows similarities
in its execution processes. The various attributes specified by the
IFPUG method to define an application system—input (EI), output
(EO), inquiry (EQ), internal file (ILF), and external interface file (EIF)—
can all be equated to important parts of a human system:

• The main memory or storage area, part of the human brain (gray cells),
is the ILF.

• Inputs to the brain come through the eyes, ears, and nose. They are
the EI/EQ.

• Outputs from the brain can be made through the mouth (voice),
hands, etc. They are EO.

The information stored in the brain is not of much use unless there are
means to extract it to the outer world and take advantage of the quality
of the content. The various input/output mechanisms facilitate infor-
mation from the brain so that it can be transacted and made available to
the external user. The information extracted could be raw data or
processed data. The transaction vehicle provides for this flexibility.

Case Study

Take the example of a mobile phone. Very similar to the brain and the
human system, you can map various components that include input,
output, interface, and data storage in a mobile phone.

98 Chapter 5 Transactional Functions

Figure 5.1 identifies the various modes of transactions that are similar
to the transaction screens or windows provided for a typical software
application.

Similar to a human brain or a mobile unit, a software application
requires multiple modes of input as well as output through which a
user can transact with the application to record or obtain desired infor-
mation. In a way, the user is seldom able to actually see and feel the
design and code that comprises a software application—that is what
makes it similar to a black box. By providing access facilities to this
black box, the user is allowed to view, access, and manipulate the infor-
mation stored there. These access features are the transaction screens in
the application.

In translating the various features of the mobile phone to FPA transac-
tion functions, you will be able to do the following mapping:

• The keypad, including the navigation buttons, are input facilities
and each of the keys has a built-in function to perform a specific
action under different situations. You can map these keys to External
Inputs (EI).

• The display screen as well as the speaker facilitates output that can
be seen or heard. These elements can be mapped to External Out-
puts/Inquiries (EO/EQ).

Definition of Transactions 99

Figure 5.1 Input and output
components of a mobile phone.

Outputs,
Queries

Interface

Inputs

Mic

Data Store

• The antenna of the mobile phone is the basic means of connecting
with an external wireless network. This can be mapped to External
Interface File (EIF).

• The mobile phone has its own data storage facility that is mapped
to Internal Logical File (ILF).

Albrecht’s Definition of Transactions

Perhaps after careful evaluation of the various modes and alternatives
of input and output that can exist for a software application, Albrecht
identified three major forms of transactions: External Inputs (EI), Exter-
nal Outputs (EO), and External Inquiries (EQ). The term external is
being used here to indicate that the transactions occur from outside the
application boundary and interact with data stored inside the bound-
ary. This remarkable evaluation by Albrecht has resulted in significant
consolidation of several forms of input/output transactions into just
three varieties. Key achievements that resulted include

• A learner of IFPUG FPA estimation method feels comfortable in
quickly understanding and adapting to a small number of simple
input/output categories.

• An expert estimator can map a large variety of input/output mech-
anisms to these three categories of transactions. (These are dis-
cussed later in this chapter.)

• With a few exceptions, almost all user interaction requirements are
provided for through only three modes of transaction with the
application.

• By separating input, output, and queries into three categories and
assigning appropriate weights to the FP counts, Albrecht gave the
estimators a method to measure the FP count more accurately.

Ingredients of a Transaction

This section explores what constitutes a transaction, its relation to appli-
cation development, and how it helps in sizing and defining the effort to
develop a transaction. Figure 5.2 explains the architecture of a transac-
tion that typically begins as input from an external user; then passes
through the user interface layer, the application, and the database; and
finally exits in the form of output on a printer or other external devices.

100 Chapter 5 Transactional Functions

The transaction architecture shown in Figure 5.2 can be split and mapped
to the three varieties of transactions defined by IFPUG as follows:

• The interaction between the external user and the database through
the application, facilitating data maintenance in the database, is
typically an External Input.

• The interaction between the external user that results in accessing
data from the database and resulting in an external output on exter-
nal device is typically an External Output.

• In a situation where the interaction between the external user and
the database results in an extraction of raw (unprocessed) data, the
transaction is typically termed an External Inquiry.

A transaction that occurs between the user and the software applica-
tion is facilitated through a user interface. To explain this in software
parlance, the user interface (UI) is the experience that the user gets
while interacting with the application. The UI is backed with appropri-
ate business or workflow logic in appropriate language code. This code
facilitates the instructions given by the user to appropriately interact
first with the system and then the data at the back end, extracting
meaningful information and finally bringing it back to the user through
the same UI.

IFPUG’s Counting Practices Manual 4.2 (CPM) [1] clearly states that all
the components involved in FP count should be seen from the user’s
point of view. While identifying the components that can be considered

Albrecht’s Definition of Transactions 101

Figure 5.2 Definition of a transaction.

Device Drivers

DBMS

Hard
Disk

Operating System

A
pp

lic
at

io
n

A

Tape

Printer

Display

Output

Input

User
Interface

a transaction, it is essential that the estimator understand various pos-
sible modes of transactions that could occur in the software industry:

• Transactions are assumed to be platform independent during the
sizing process. As such, transactions could be character-based
screens or GUI (Graphic User Interface) screens.

• The basic mode of input/output transactions could vary over a
wide variety of devices. Keyboard, mouse, pointing devices, bar
code readers, or other sensors are some of the examples.

• The mode of transaction execution could vary depending upon the
design and the processing need of the application. Online and
batch execution are two basic variations. In some situations, trans-
actions get triggered based on set parameters. For example, a
department store might trigger a stock replenishment transaction
when the stock level of a particular product falls below the prede-
fined minimum store level. A second example might be that of a
GPS tracking system installed in a car that triggers a transaction
and warns the driver of certain traffic congestion ahead on the
highway.

All the preceding examples are considered transaction functions and
need to be included in the FPA counting method.

As more and more complex software systems were designed, the trans-
action media became equally complex, moving from simple character-
based screens to GUI-based graphic screens, and, more recently, to
wireless devices. Some of today’s hand-held devices are capable of
multiple varieties of transactions including telephone, e-mail, music,
and camera functions.

A user does not need to be aware of the complexities of defining the
transactions nor be worried about implementation issues. The designer
must work hard to design the right transaction mode for the system
to extract the highest performance, both from data consistency as
well as response time perspectives.

Transactional Functions Defined by IFPUG

Transactional functions provide the means for a user to transact with the
application. These functions facilitate the processing of data contained
in the system, and convert and present it in a form desired by the user.

102 Chapter 5 Transactional Functions

Unlike data functions, all the transaction functions belong to the appli-
cation being counted and are directly related to the data processing
requirements of the user.

The IFPUG FPA method sets certain parameters that clearly define
the rules for identifying a transaction. These definitions include the
following:

• The transaction is visible or accessible to the user.
• All transactions are identified to be outside the boundary but

within the scope of the application being counted.
• The various data elements that constitute the transaction necessar-

ily move from outside to inside the application boundary and vice
versa.

• The transaction could be invoked through various means of input
(batch or online) or through a variety of hardware devices, sensors,
and more.

The FPA method also clearly differentiates between various types of
transactional functions. These differences are identified by assessing
the intent of each of the transactions. A few rules are enumerated as
follows:

• The External Input (EI) transaction is primarily designed to main-
tain one or more Internal Logical Files (ILF). The term maintain
includes processes like add, update, delete, and populate.

• Two other transactions, External Output (EO) and External Inquiry
(EQ), are quite similar in many respects. But the key differentiator
is in their intent. Whereas EQ fetches and produces data that is raw
and in its original form, the EO fetches as well as processes the data
and delivers in an analyzed form.

• Another differentiator between EO and EQ is that the facility of
updating an ILF is allowed only in an EO transaction process.

Figure 5.3 describes the various attributes of an application that are
needed for function point counting purposes. The EI/EO/EQ are all
outside the boundary of application being counted. The next section
describes the three transactional functions as explained by IFPUG and
then further explains various parameters and terms used to define
them. Examples for each of the parameters will help illustrate the defi-
nition in different contexts.

Transactional Functions Defined by IFPUG 103

EI, EO, and EQ

The CPM 4.2 (IFPUG) defines EI, EO, and EQ as follows:

External Input

“An external input (EI) is an elementary process that processes data or
control information that comes from outside the application’s bound-
ary. The primary intent of an EI is to maintain one or more ILFs and/or
to alter the behavior of the system.”

External Output

“An external output (EO) is an elementary process that sends data or con-
trol information outside the application’s boundary. The primary intent
of an external output is to present information to a user through process-
ing logic other than or in addition to the retrieval of data or control infor-
mation. The processing logic must contain at least one mathematical
formula or calculation, or create derived data. An external output may
also maintain one or more ILFs and/or alter the behavior of the system.”

External Inquiry

“An external inquiry (EQ) is an elementary process that sends data or
control information outside the application boundary. The primary

104 Chapter 5 Transactional Functions

Figure 5.3 Components of an application.

Inputs

Application Boundary

Business Logic Business Logic

Business Logic Business Logic

Business Logic

Business Logic

Internal Files

Reports

Files

Files

Inquiries

Outputs

Code

Files

Application-B
Interface

Application-A

1

3

2

2

2

4

5

User

intent of an external inquiry is to present information to a user through
the retrieval of data or control information. The processing logic con-
tains no mathematical formula or calculation, and creates no derived
data. No ILF is maintained during the processing, nor is the behavior of
the system altered.”

Chapter 4, “Data Functions,” explains that one single physical transac-
tion like EI (or EO/EQ), as seen by the user, may not translate into one
logical transaction. A designer may combine more than one logical
transaction into one physical transaction to facilitate usage conve-
nience. Identify these design-related differences and count the occur-
rence of true logical transactions.

Embedded Terms

This section explains in detail the various embedded terms used in the
preceding definitions of EI, EO, and EQ.

Elementary Process

An elementary process is a defined unit of activity that is understood
by the user. When a transaction is executed, the process facilitates
transmission of information between the user and the application
across the boundary of the application. The elementary process helps
define how and when the information that is being processed can be
termed as complete in all respects. The key definition to remember is
this: The elementary process that processes a set of data and then either
updates, inquires, or reports an output should leave the final business
information of the system in a consistent state.

Example 1
An HR application is required to maintain all information about every
employee of the organization. Additional information, such as depen-
dent data, employee experience, and employee academic records is
also maintained for every employee. The design of an EI that facilitates
recording of this information conforms to the definition of elementary
process of this EI. When an employee record is updated, the process
should facilitate update of all the attributes of the employee, including
his or her dependent, experience, and academic data. If the EI process
does only a partial data update, it is conforming to the elementary
process requirement of an EI. As such, the process may not be counted
as a valid EI.

EI, EO, and EQ 105

Example 2
A typical invoicing application for an apparel store must process and
record three types of information:

• The invoice details, such as invoice number, date, and customer
details

• Item details for every item procured, like item number, quantity,
and rate

• Invoice payment details, including total cost, tax, and other refer-
ence data

An elementary process is considered to be completed if the EI
design facilitates processing and recording of all the above sets of
information.

Control Information

Control information is the data that influences an elementary process
of the application being counted. It specifies what, when, or how data
is to be processed. This has been discussed in detail (with examples) in
Chapter 4.

User Identifiable

The term user identifiable refers to defined requirements for processes
and/or groups of data that are agreed upon, and understood by, both
the user(s) and software developer(s). This has also been discussed in
detail (with examples) in Chapter 4.

Processing Logic

The behavior of a transaction is often controlled by the processing
logic that goes behind its intent. Just as a transaction itself is designed
based on user requirements, the processing logic that is built into the
transaction is based on user requirements. A few popular examples of
processing logic include the following:

• Validating input data. The data could be raw data or an output of a
mathematical equation, etc.

• Determining whether the process meets a defined business rule.
• Establishing whether the transaction meets its minimum conditions

to be accepted as a standard transaction like EI/EO/EQ.

106 Chapter 5 Transactional Functions

Maintained

The term maintained is the ability to modify data through an ele-
mentary process. Examples include, but are not limited to, adding,
changing, deleting, populating, revising, updating, assigning, and
creating. This has been discussed in detail (with examples) in
Chapter 4.

Rules for Identification of EI, EO, and EQ

In order to ensure that the various transactions included in the FP
counting process are rightly identified, it is critical that the definitions
of embedded terms mentioned in the earlier sections of this chapter
are strictly followed. This will help you identify the right EI, EO, and
EQ involved with the application being counted. There are several
benefits:

• The true user’s view is captured to identify EI, EO, and EQ.
• Clear differentiation between EI, EO, and EQ happens based on the

correct processing logic involved—again, based on the user’s view.
• The various workflow processes decide the maintenance activities

that are associated with each transaction.

The following sections define identification rules as given in CPM 4.2
(IFPUG). The identification rules are limited to classifying a transac-
tion as an EI, EO, or EQ. Additionally, a separate set of rules is further
provided to help you further determine the complexity of each of the
transaction.

EI Identification Rules

To identify EI, look for transactions that satisfy the following criteria of
an EI. All the following counting rules must apply for the information
to be counted as an EI:

• The data elements being transacted are input from outside the
application boundary.

• One or more Internal Logical Files (ILF) are maintained through the
transaction.

• The processing logic applied for a transaction is unique and has not
been used in another transaction of the same application.

EI, EO, and EQ 107

EO/EQ Identification Rules

To identify EO, look for transactions that satisfy the following criteria
of an EO. All the following counting rules must apply for the informa-
tion to be counted as an EO:

• The information residing in data elements being transacted is sent
outside the application boundary.

• One or more files (ILF/EIF) are referenced through the transaction.
• The processing logic applied for a transaction is unique and has not

been already used in another transaction of the same application.
• The one unique rule that differentiates EO and EQ is the usage of a

mathematical formula or calculation (derived data) in the processing
logic. If the output contains derived data, the transaction is an EO; and
if it does not contain any derived data, the transaction is an EQ.

Table 5.1 provides a summary of elementary process identification
rules for the three types of transaction functions (EI/EO/EQ).

108 Chapter 5 Transactional Functions

*NA = Not Applicable.

Identification Rule EI EO EQ

The process is the smallest unit of activity that is Y Y Y
meaningful to the user.

The process is self-contained and leaves the Y Y Y
business of the application in a consistent state.

The primary intent of an elementary process is to Y N N
maintain an ILF or alter the behavior of the system.

The processing logic of the elementary process NA∗ Y N
contains at least one mathematical formula or calculation.

The processing logic of the elementary process Y Y/N N
alters the behavior of the system.

The primary intent of the elementary process is N Y Y
to present information to a user.

The data moves from outside to inside the Y Y Y
application boundary (or vice versa).

An ILF is maintained by the elementary process. Y Y/N N

Table 5.1 Elementary Process Identification Rules

*NA = Not Applicable.

EI, EO, and EQ 109

Table 5.2 provides guidelines on how to apply the DET and FTR counting
rules for the three types of transaction functions: (EI/EO/EQ).

Determining Complexity of EI, EO, and EQ

IFPUG has defined a clear process of identifying an EI, EO or EQ as
simple, average, or complex and also has assigned a fixed number of
unadjusted function points to each of these categories. Only two major
components of any transaction decide its complexity; that is, Data
Elements (DET) and File Type Referenced (FTR).

• DET: A data element type is a unique user-recognizable, non-
repeated field. In simple terms, it is a field in a file or a column in a
database table (file), but the mapping of a field or column in the
file should be with respect to the data element recognized from
the user ’s point of view. For more details and examples, refer to
Chapter 4.

• FTR: A file type referenced (FTR) is a file, internal or external, that
has been accessed by the transaction.

FTR rules: The following rules apply when counting FTRs:

• Count an FTR for each file referenced by the transaction.
• Count an FTR for each file maintained.

Identification Rule EI EO EQ

Count an FTR for each ILF maintained. Y Y NA∗

Count an FTR for each EIF referenced. Y Y Y

Count one DET for each user-recognizable, Y Y Y
non-repeated field that enters or exits the
application boundary and is required to complete
the input/output/query process.

Count one DET for each message sent (for example, Y Y Y
an error/confirmation message).

Count one DET for each action button. Y Y Y

Table 5.2 DET and FTR Identification Rules

Example
The marketing department of a cosmetics sales and distribution com-
pany requires the sales reporting application to maintain as well as
generate periodic sales reports. Various reports are produced; for
example, reports by salesperson, region, and product are all generated.

Figure 5.4 has captured the gist of the way an FTR is identified in most
transaction functions. The following list explains the assumptions
made in the figure:

• Employee is the salesperson file that stores personal details of all
salespeople.

• Products is the file that contains all information of the various vari-
eties of cosmetic products sold and distributed by the company.

• Sales Targets is the file that maintains the quarterly and annual sales
targets set for each salesperson. The targets are regional as well as
product-specific.

• Regions is the file that stores data of all regions on which the sales-
people operate. This file is maintained by Application B; hence this
file in an external file.

• Customer is the file that is maintained by Application C and is also
an external file.

110 Chapter 5 Transactional Functions

Figure 5.4 Identifying FTR in transactions.

Application Boundary

Business Logic Business Logic

Business Logic Business Logic

Business Logic

Business Logic

Employee

Sales
Reports

Code

Regions

Application-B

Interfaces Application-A
FTR

FTR (ILF)

EO

EI/EQ

Products

Customer

Application-C

Sales
Targets

FTR (ILF)

FTR (ILF)

FTR

User

The transactions that can be identified for normal sales activities
processing are

• The data entry modules (EI) required to maintain the employee
and products need one FTR each. But to maintain the sales target
data, you need to reference two external FTRs (the region and cus-
tomer data files). Counting one FTR for each file, you get a total of
three FTRs to maintain sales target data. But only the sales target
file (an ILF) is updated. The regions and customer (EIF) are only
referenced.

• For generating the regional, customer-specific sales reports we
need all the files—employee, products, sales targets, and region—
as well as customer files. Count each one as one FTR. For this sales
report example, you need a total of five FTRs.

Complexity and FP Count Contributions

As explained earlier in this chapter, the two key attributes that
define and size a transaction (EI, EO, and EQ) are the DET and FTR.
IFPUG has a well-defined matrix table between DET and FTR varia-
tions that derives complexity of an EI/EO/EQ. As the number of
DET or FTR increases in a given EI/EO/EQ, the complexity of the
transaction also varies upward, from simple to average and then to
the high category.

External Inputs

Table 5.3 gives the reference matrix that can be used to determine the
complexity factor of each EI.

Complexity and FP Count Contributions 111

Range 1 to 4 DETs 5 to 15 DETs 16 or More DETs

0 to 1 FTR Low Low Average

2 FTRs Low Average High

3 or more FTRs Average High High

Table 5.3 EI Complexity Factor

External Outputs/External Inquiries

Table 5.4 gives the reference matrix that can be used to determine the
complexity factor of each EO/EQ.

After you decide the complexity of an EI/EO/EQ, you then have to
assign the actual FP contribution (count) to the EI/EO/EQ based on
the complexity factor. There are two separate tables, one for EI/EQ and
another for EO, that provide the exact FP contribution for each of the
categories of complexity (simple, average, and high).

The contribution FP count table for EI/EQ is given in Table 5.5.

The contribution FP count table for EO is given in Table 5.6.

Step-by-Step FP Contribution Calculation Process

In order to ensure that the estimator is able to clearly identify all the
transactions that are applicable and are also those identified by the user,
it is essential that the following steps are executed in the given sequence:

1. Determine whether the transaction is an EI, EO, or EQ, based on the
processing logic required by the user.

2. Determine the number of DETs and FTRs that exist in each of
EI/EO/EQ by following the rules explained earlier in this chapter.

112 Chapter 5 Transactional Functions

Range 1 to 5 DETs 6 to 19 DETs 19 or More DETs

0 to 1 FTR Low Low Average

2 to 3 FTRs Low Average High

4 or more FTRs Average High High

Table 5.4 EO/EQ Complexity Factor

Functional Complexity Rating Unadjusted Function Points

Low 3

Average 4

High 6

Table 5.5 EI/EQ FP Contribution

3. Determine the complexity factor (simple, average, or high) from
Tables 5.1 and 5.2 based on number of DETs and FTRs counted for
each EI/EO/EQ.

4. Using the complexity factor for each EI/EQ, find the FP contribution
(unadjusted FP count) from Table 5.3.

5. Using the complexity factor for each EO, find the FP contribution
(unadjusted FP count) from Table 5.4.

6. Add FP contribution for all EI/EO/EQ to get the total unadjusted
FP count for transactional functions.

The following chapters explain how the unadjusted FP count can be
converted to adjusted FP count using the value adjustment factor.

Case Study: Counting EI/EO/EQ of an Invoicing Application

This case study was first introduced in Chapter 4 to explain the identifi-
cation of data files. This chapter revisits the case study to identify the
transactional functions required to facilitate easy user interactions. As
you may recall, in this example, the user needs an invoice processing
application. The module needs to meet the following user requirements:

• Maintain, inquire and print invoices.
• Include customer information in the invoice.
• The customer data is maintained by another application.
• Maintain, inquire and print items information.
• Facility to inquire and report invoices summary for various customers.

The transactional functions EI/EO/EQ can obviously be developed in
any technology like J2EE, .NET, or mainframe/COBOL, but it does not
really make a difference while identifying each of the transactions
because they are basically technology independent.

Complexity and FP Count Contributions 113

Functional Complexity Rating Unadjusted Function Points

Low 4

Average 5

High 7

Table 5.6 EO FP Contribution

The Entity-Relation (E-R Diagram) in Figure 5.5 shows the following
four groups of information:

• Invoice Data
• Customer Data
• Item Data
• Item Details Data

Follow IFPUG rules and determine whether each of these groups
requires EI, EO, or EQ. Start with individual data handling transactions
and then move on to the consolidated invoice transactions.

The analysis of Item transactional functions is given in Table 5.7.

Based on this analysis, the Item transaction function maintained within
the boundary of the application is not being counted as an EI.

114 Chapter 5 Transactional Functions

EI Identification Rule Does the Rule Apply?

The process is the smallest unit of No. The Item Data by itself does
activity that is meaningful to the user. not conform to complete and

meaningful information.

The process is self-contained and Yes. The process is self-contained
leaves the business of the and leaves the business in a
application in a consistent state. consistent state.

Table 5.7 EI Identification—Item Data

Figure 5.5 Invoice data model.

Invoice

Invoice Customer

Invoice Items

Items_details

Item

Customer

Now consider the analysis of Item and Item Details transactional func-
tions together as given in Table 5.8.

Based on this analysis, the Item and Item Details transaction function,
maintained within the boundary of the application is being counted as
an EI. This EI can be utilized by the user to maintain data about all the
items being transacted through the invoice.

CRUD Transactions

Special discussion is necessary at this stage to analyze the differences in
the basic elementary processes for each of the CRUD (Create, Read,
Update, and Delete) categories of functional transactions associated
with a typical EI. The following list explains the basic variations in the
way each of the transactions happen:

• Create transactions involve creating a blank record in the data file,
obtaining all relevant data element contents from the user, and then
populating the data elements in the blank record with the content
obtained from the user.

• Read transactions normally require scanning the data file and obtain-
ing the data element contents of an identified record. Normally this
transaction is combined with other transactions like Update and
Delete.

• Update transactions involve fetching an existing record from the
data file, displaying it to the user, obtaining any changes, and
finally writing it back to the data file with necessary updates.

• Delete transactions require fetching an identified record from an
existing data file, displaying and obtaining confirmation from the
user to remove it, and then logically (and sometimes physically)
removing the record.

Complexity and FP Count Contributions 115

EI Identification Rule Does the Rule Apply?

The process is the smallest unit Yes. The Item Data and Item
of activity that is meaningful to Details together conform to
the user. complete and meaningful

information.

The process is self-contained and Yes. The process is self-contained
leaves the business of the and leaves the business in a
application in a consistent state. consistent state.

Table 5.8 EI Identification—Item Data and Item Details

If you evaluate the elementary process involved in each of the preceding
CRUD transactions, you will find that except in the case of a Read trans-
action, all others are unique. As such, while counting EI for a data main-
tenance transaction, you will be counting them as three EIs, one each for
Create, Update, and Delete. The complexity of these three EIs might vary
depending on the number of data elements (DETs) involved in each of
the transactions. Typically the Delete transaction does not require all the
DETs to be displayed before accepting confirmation to delete.

The customer data information does not require transactions to be
counted because it has been stated that this information belongs to an
external application. The customer data has been used in the invoice
application for reference purposes only.

Now consider the analysis of Invoice, including the Item and Item
Details transactional functions, as given in Table 5.9.

Based on the above analysis, the Invoice that includes Item and Item Details
transaction functions maintained within the boundary of the application is
being counted as an EI. This EI can be utilized by the user to maintain data
about all invoices being transacted through the Invoice application.

Invoice System—FP Counting Process

You can now count the DETs and FTRs in each of the EI/EO/EQ (for
the entire invoice application) and then use the count to define the com-
plexity that will further determine the FP contributions (see Table 5.10).

You can now apply the DET and FTR counting rules and check whether
the count matches the numbers identified previously (see Table 5.11).

116 Chapter 5 Transactional Functions

EI Identification Rule Does the Rule Apply?

The process is the smallest unit Yes. The Invoice, Item Data, and
of activity that is meaningful to Item Details together conform to
the user. complete and meaningful

information.

The process is self-contained and Yes. The process is self-contained
leaves the business of the and leaves the business in a
application in a consistent state. consistent state.

Table 5.9 EI Identification—Invoice, Item Data, and Item Details

Invoice System—FP Counting Process 117

EI Contents Counting Process

Items Entity FTR 1

Item # DET 1

Item Description DET 2

1a. Items Details Entity—Subgroup FTR not counted

Item # (foreign key) Previously counted as DET 1

Item Category DET 3

Item Rate DET 4

Invoice Entity FTR 1 (RET 1)

Invoice # DET 1

Invoice Date DET 2

Sales Tax # DET 3

Discount Amount DET 4

Gross Amount DET 5

2a. Invoice Customer Entity—Subgroup FTR 2 (EIF from external
application)

Customer Id DET 6

Customer Name DET 7

Customer Address DET 8

Shipping Address DET 9

2b. Invoice Items Entity—Subgroup RET 2 under Invoice Entity
(optional)

Item # DET 10

Item Description DET 11

Rate DET 12

Quantity DET 13

Cost DET 14

Table 5.10 DET and FTR Identification for the Invoice Application

The exact FP contribution can now be evaluated using the contribution
figures provided by IFPUG (see Table 5.12).

NOTE This case study describing FP counting does not cover the
complete FP counting requirements of an invoice system. The
counting stops at unadjusted FP count. The next chapter discusses
the value adjustment factor used to convert the unadjusted FP to
adjusted FP count.

Conclusion

The ability to clearly identify the complete and correct number of trans-
actional functions for an application does not happen in the first
attempt—it is best done through a couple of iterations. Reviewing all the

118 Chapter 5 Transactional Functions

Rule Rule Applies? Items Invoice

Is the data moving in from outside the Yes Yes Yes
application boundary?

An ILF is maintained by the EI. Yes Yes Yes

Count an FTR for each ILF maintained. Yes 1 2

Count an FTR for each EIF reference. Yes 0 1

Count one DET for each user- Yes 4 14
recognizable, non-repeated field that
enters or exits the application
boundary and is required to complete
the external input.

Count one DET for each message sent. Yes 1 1

Count one DET for each action button. Yes 2 2

Table 5.11 DET and FTR Counting Rules for Invoice

Entity Trans. DET FTR Complexity Unadjusted FP Count

Items EI 4 1 Low 7

Invoice EI 14 3 Low 7

Table 5.12 FP Contribution for Invoice

transactions through iterations will help resolve certain overlapping
and multiple usage processes, including

• Helping to identify repetition of processing logic across multiple
transactions

• Rationalizing common data elements, such as files referenced that
are spanning across multiple transactions

Identifying EI/EO/EQ—User View versus Developer View

During the process of defining and identifying the right number of
EI/EO/EQ, it is not uncommon for developers to go a bit overboard in
including transactions that are needed from an application design
perspective but actually not seen from the user view. All such files that
are not included in the user view have to be discounted from the FP
counting process. Determining whether an EI/EO/EQ belongs in an
application is sometimes a difficult task. Here are a few examples that
illustrate the EI/EO/EQ that can be included and also those that can be
generally excluded:

EI/EO/EQ that are generally included:

• Any application data file that is maintained by an external transac-
tion, such as employee, invoice, inventory, payroll, banking, accounts,
etc., has a mandatory requirement to provision CRUD operations on
each of the data files.

EI/EO/EQ that are generally excluded:

• Transactions for online help data not maintained within the application
• Transactions for error logs and audit data that are maintained

within the application but not defined as a user requirement

References

1. International Function Point Users Group (IFPUG). Function Point
Counting Practices Manual (CPM) Release 4.2.

Other Interesting Reading Material

Garmus, David, and David Herron. “Sizing Transaction Functions,” in
Function Point Analysis: Measurement Practices for Successful Software
Projects. Addison-Wesley, 2004. Pp. 111–143.

Other Interesting Reading Material 119

This page intentionally left blank

CHAPTER 6

General System
Characteristics

Introduction

Programmers will always dream about capturing the complete, total,
and true requirements of a software application. Most likely, that will never
happen unless the user is the actual programmer! From time immemor-
ial, experts have tried their best to dissect a software application into var-
ious components, architectural layers, work-flow processes, technology
aspects, and more. No doubt these efforts have improved understanding
and enhanced the design of many software development processes.
There is a limit to the requirements that are captured; the rest is assumed.

The Function Point Analysis method defined by IFPUG does its best to
facilitate capturing of scope of the software application to the maxi-
mum extent possible. Broadly, the scope (requirements) is classified
into two distinct areas:

• Business functionality as desired and visible to the user. These are
classified as files (internal and external), input, output (reports), and
inquiries.

• Application characteristics (behaviors) that explain various attrib-
utes during actual execution, such as performance, security, usabil-
ity, and more.

Whereas the business functionality is visible to the user, the application
characteristics are visible to the programmer (designer) and experienced

121

by the user. Obviously, the business functionality, the application
behavior-related information, and scope are provided by the user. But
in real-life situations, emphasis is placed on capturing maximum infor-
mation on the business functions of the application. The performance,
security, and other behavioral requirements are vaguely enumerated. It
is left to the application designer to define these. And unless the
designer is truly immersed in the IT environment of the organization
where the application is being deployed, true justification in capturing
these behavioral attributes becomes difficult.

Before going into more detail on the general system characteristics in the
context of a typical software application, including how to measure them
and incorporate the impact on the final function point count of an appli-
cation, briefly consider two very basic but critical definitions of soft-
ware application from a software professional’s perspective: functional
and non-functional requirements. Later, this chapter will link the non-
functional requirements to the general system characteristics (GSCs).

Functional and Non-Functional Requirements

Chapters 3, 4, and 5 discussed the FPA method, including data and trans-
actional functions and how to implement them in actual counting situa-
tions. This chapter is specifically dedicated to explaining the concept of
general system characteristics (GSCs) that are applicable to the application
being counted as a whole system. Before going into detail on the 14 GSCs,
their attributes, and their impact on the final function point (FP) count,
consider the two broad subsections of a software application, popularly
known as the functional and non-functional requirements.

Functional Requirements

Functional requirements (FR) refer to the business functionality that
the application is expected to address. In simple terms, FR define what
the product (application) should do. FR are the core of any software
application and define the critical business services that are expected to
be facilitated when the user works with the application. Functional
requirements are visible to the user and can be validated through well-
defined test procedures. Some of the common FR include:

• Collecting input on predefined business functions, process them,
and then provide appropriate output

122 Chapter 6 General System Characteristics

• Enabling predefined business rules to be embedded in various
transactions initiated by the user

• Facilitating storage of a large amount of business critical data in a
specified format

• Facilitating a wide variety of processed output in the form of
reports in a predefined format

• Providing a good user interaction interface that forms the means of
communication between the user and the application

• Ensuring that the behavior of the application is predictable and is
consistent

Non-Functional Requirements

Non-functional requirements (NFR) define the system properties and
specify the behavioral pattern under various operating conditions. They
are also called constraints that are imposed on the application. The NFR
are not directly visible to the user and it is quite difficult to validate them
in a simulated environment. As the name suggests, NFR do not address
any of the direct business functions expected from the application. Some
key NFR properties that could be attributed to an application include

• Reliability
• Response time
• Performance
• Security
• Availability
• Scalability
• Capacity

Often the NFR turn out to be more critical than the FR. For example, the
lack of certain functionality in a system can be managed through man-
ual or alternate means, but improper design leading to a system crash
because of an increase in user base can lead to the application being
totally unusable. This is discussed in more detail later in the chapter.

Introduction to General System Characteristics

The data and transactional functions discussed in earlier chapters
together represent the total business functions that are delivered through
the application being counted. Truly this is the logical representation of

Introduction to General System Characteristics 123

the functionality and does not address the physical implementation of
the functions in an IT environment. In other words, data and transac-
tional functions are the what of the application features, and the physi-
cal implementation of these functions is the how of the features being
deployed in a given hardware/infrastructure environment.

The Function Point Analysis (FPA) method by IFPUG has captured the
critical implementation features of typical applications through 14 gen-
eral system characteristics (GSCs). These 14 GSCs encompass almost all
the major implementation complexities that can exist, and through care-
ful evaluation of each of the GSCs, the estimator can arrive at a final
function point (FP) count that includes logical as well as physical
implementation properties of the application being counted. Chapter 3
briefly discussed this.

Although the data and transactional functions (unadjusted FP) remain
the same regardless of their implementation, including technology and
infrastructure, the GSCs play a significant role in defining the final
(adjusted) FP count that is dependent on the implementation environ-
ment. The 14 GSCs are

1. Data Communications
2. Distributed Data Processing
3. Performance
4. Heavily Used Configuration
5. Transaction Rate
6. Online Data Entry
7. End-User Efficiency
8. Online Update
9. Complex Processing

10. Reusability
11. Installation Ease
12. Operational Ease
13. Multiple Sites
14. Facilitate Change

Every application being counted needs a mandatory evaluation on all
14 GSC parameters in order to arrive at the final, adjusted FP count. It is
important to know that as much as the user’s view is important to agree
and count data and transactional functions, it is equally critical and

124 Chapter 6 General System Characteristics

essential that the 14 GSCs are evaluated based on the user’s view.
While gathering information from the user about the business func-
tions that need to be delivered, it would be advisable to educate the
user about the importance of the 14 GSCs that define the properties of
the application and agree on the attributes that the user expects.

Degree of Influence (DI)

While evaluating the 14 GSCs, provision has been made by the FPA
method to assess the impact of each of the GSCs based on a range of
increasing complexity factor. This range varies in value between 0 and
5, with 0 as the lowest complexity and 5 as the highest. Based on user
input, the estimator must evaluate the complexity number (0 to 5) for
each of the 14 GSCs. The sum of the degree of influence for all of the
14 GSCs is known as total degree of influence (TDI).

You can easily calculate the two extreme ranges of values for TDI by
assuming the lowest and the highest degree of influence values for
each of the 14 GSCs:

• The TDI value is = 0 when all the 14 GSCs have the lowest degree of
influence

• The TDI value is = 70 when all the 14 GSCs have the highest degree
of influence

If you take the mid-range of TDI value as average (between 0 and 70), it
is obvious the TDI has a variation range of ±35%.

The FPAmethod offers a well-defined explanation for each of the 14 GSCs
in order to arrive exactly at the degree of influence. This next section
goes through each of these explanations and provides appropriate
support definitions. From a practitioner’s perspective, it has been
observed frequently that estimators tend to make mistakes in arriving
at the right degree of influence for each of the GSCs. Thus the final FP
count does get impacted to a great extent. Sometimes this leads to lack
of credibility of the FPA estimation method itself.

Guidelines for General System Characteristics

After considerable research and deliberations, IFPUG has come up
with explanations on how to evaluate and assess the level of degree of
influence for each of the 14 GSC parameters. This section provides the
details as defined by IFPUG.

Guidelines for General System Characteristics 125

GSC-1: Data Communications

Every application should have at least two layers architecturally: the
client layer and the server layer. Depending upon the complexity,
environment, and other factors, these layers could extend to more
layers or the other networking hardware and communication proto-
cols may be introduced within the two layers. The overall complexity
of the application will vary with the complexity of these layers. The
Data Communications GSC defines the level of complexity based on
the communication environment that is envisaged for the application
being counted. Table 6.1 describes the degree of influence attributed
to each level of complexity.

GSC-2: Distributed Data Processing

Data movement is critical to business applications. The Distributed
Data Processing GSC helps measure the complexity that arises due to
the intensity and complexity involved in data handling processes in the
application (see Table 6.2). All data processing measured is within the
application boundary. In most situations, this GSC impacts typically
with the GSC-1 Data Communications.

126 Chapter 6 General System Characteristics

DI Guidelines

0 Application is pure batch processing or a stand-alone PC.

1 Application is batch but has remote data entry or remote
printing.

2 Application is batch but has remote data entry and remote
printing.

3 Application includes online data collection or TP (teleprocessing)
front-end to a batch process or query system.

4 Application is more than a front-end, but supports only one type of
TP communications protocol.

5 Application is more than a front-end, and supports more than one
type of TP communications protocol.

Table 6.1 Data Communications

DI = Degree of Influence.

GSC-3: Performance

Applications that serve a large user base, are mission-critical, or
business-critical typically have stringent performance requirements.
The parameters are provided by the user. Faster response time, perform-
ing at the same level at peak user logins, higher throughput, etc., are
some of the performance requirements set by the user. The performance
requirements are addressed during the design phase (see Table 6.3).
Depending on the platform, technology, and tools used for developing
the application, the effort can vary over a large range.

GSC-4: Heavily Used Configuration

Quite often the software architect comes across the situation where the
hardware on which the application is to be deployed has serious pro-
cessing limitations. The limitation could be due to various reasons,
including CPU availability, storage capacity, and other interfacing com-
ponents (see Table 6.4). Sometimes the hardware is already overloaded
with other important applications. In these situations, innovative
design and programming techniques are required.

Guidelines for General System Characteristics 127

DI Guidelines

0 Application does not aid the transfer of data or processing
functions between components of the system.

1 Application prepares data for user processing on another
component of the system such as PC spreadsheets and PC DBMS.

2 Data is prepared for transfer; then it is transferred and
processed on another component of the system (not for
end-user processing).

3 Distributed processing and data transfer are online and in one
direction only.

4 Distributed processing and data transfer are online and in both
directions.

5 Processing functions are dynamically performed on the most
appropriate component of the system.

Table 6.2 Distributed Data Processing

DI = Degree of Influence.

128 Chapter 6 General System Characteristics

DI Guidelines

0 No special performance requirements were stated by the user.

1 Performance and design requirements were stated and reviewed
but no special actions were required.

2 Response time or throughput is critical during peak hours. No
special design for CPU utilization was required. Processing
deadline is for the next business day.

3 Response time or throughput is critical during all business
hours. No special design for CPU utilization was required.
Processing deadline requirements with interfacing systems
are constraining.

4 Stated user performance requirements are stringent enough to
require performance analysis tasks in the design phase.

5 Performance analysis tools were used in the design, development,
and/or implementation phases to meet the stated user
performance requirements.

Table 6.3 Performance

DI = Degree of Influence.

DI Guidelines

0 No explicit or implicit operational restrictions are included.

1 Operational restrictions do exist, but are less restrictive than
a typical application. No special effort is needed to meet the
restrictions.

2 Some security or timing considerations are included.

3 Specific processor requirements for a specific piece of the application
are included.

4 Stated operation restrictions require special constraints on the
application in the central processor or a dedicated processor.

5 There are special constraints on the application in the distributed
components of the system.

Table 6.4 Heavily Used Configuration

DI = Degree of Influence.

GSC-5: Transaction Rate

With increase in the user base, an application that is business-critical to
the user demands that each user is serviced at the same rate of response
on the transactions. In complex, algorithm-based applications, the
architecture must be multi-layered in order to be able to scale up to
peak transaction rates (see Table 6.5).

GSC-6: Online Data Entry

Interactive and real-time data entry features are common among user
interface intensive data entry screens of software applications. The
GSC for Online Data Entry defines the complexity of an application
based on the percentage of application that has online, interactive data
entry features (see Table 6.6). Some of the complexities seen in online
data-entry screens are real-time data validations as well as reference
information for faster data entry operations.

Guidelines for General System Characteristics 129

DI Guidelines

0 No peak transaction period is anticipated.

1 Peak transaction period (for example, monthly, quarterly,
seasonally, annually) is anticipated.

2 Weekly peak transaction period is anticipated.

3 Daily peak transaction period is anticipated.

4 High transaction rate(s) stated by the user in the application
requirements or service level agreements are high
enough to require performance analysis tasks in the
design phase.

5 High transaction rate(s) stated by the user in the application
requirements or service level agreements are high enough to
require performance analysis tasks and, in addition, require the
use of performance analysis tools in the design, development,
and/or installation phases.

Table 6.5 Transaction Rate

DI = Degree of Influence.

GSC-7: End-User Efficiency

As more and more organizations are IT enabled, the variety of users with
varying levels of IT experience grows. Basically the GSC for End-User
Efficiency measures the capability of the end user and defines the com-
plexity value, which is inversely proportional to the awareness level of
the user. Most software product vendors have now been moving
toward providing a high level of user experience that is oriented
toward making applications easier to use.

130 Chapter 6 General System Characteristics

DI Guidelines

0 All transactions are processed in batch mode.

1 1% to 7% of transactions are interactive data entry.

2 8% to 15% of transactions are interactive data entry.

3 16% to 23% of transactions are interactive data entry.

4 24% to 30% of transactions are interactive data entry.

5 More than 30% of transactions are interactive data entry.

Table 6.6 Online Data Entry

DI = Degree of Influence.

DI Guidelines

0 None of the 16 activities

1 One to three of the 16 activities

2 Four to five of the 16 activities

3 Six or more of the 16 activities, but there are no specific user
requirements related to efficiency

4 Six or more of the 16 activities, and stated requirements for end-
user efficiency are strong enough to require design tasks for human
factors to be included (for example, minimize key strokes, maximize
defaults, use of templates)

5 Six or more of the 16 activities, and stated requirements for end-
user efficiency are strong enough to require use of special tools
and processes to demonstrate that the objectives have been achieved

Table 6.7 End-User Efficiency

DI = Degree of Influence.

The IFPUG FPA method defines the following set of 16 activities that
can capture the need for varying level of End-User Efficiency (see
Table 6.7):

• Navigational aids (for example, function keys, jumps, and dynami-
cally generated menus)

• Menus
• Online help and documents
• Automated cursor movement
• Scrolling
• Remote printing via online transactions
• Pre-assigned function keys
• Batch jobs submitted from online transactions
• Cursor selection of screen data
• Heavy use of reverse video, highlighting, colors underlining, and

other indicators
• Hard copy user documentation of online transactions
• Mouse interface
• Pop-up windows
• As few screens as possible to accomplish a business function
• Bilingual support (supports two languages; count as four items)
• Multilingual support (supports more than two languages; count as

six items)

GSC-8: Online Update

Many business-critical applications have a mandatory need to keep
the data up-to-date to the last transaction level. This could also mean
that all resources attached to the application are more frequently busy.
Every transaction is complete and closed online. Typically online data
entry goes together with online update. Sometimes stringent audit
needs and backup and recovery requirements are tied up with critical
online systems. Table 6.8 presents the guidelines for the Online
Update GSC.

GSC-9: Complex Processing

In a number of situations, due to the complexity of the business func-
tions, heavy transaction processing or even complex algorithmic needs

Guidelines for General System Characteristics 131

are necessary. The Complex Processing GSC captures the complexity
based on presence (or absence) of the following five components (see
Table 6.9):

• Sensitive control (for example, special audit processing) and/or
application specific security processing

• Extensive logical processing
• Extensive mathematical processing
• Much exception processing resulting in incomplete transactions that

must be processed again (for example, incomplete ATM transactions
caused by TP interruption, missing data values, or failed validations)

• Complex processing to handle multiple input/output possibilities
(for example, multimedia or device independence)

GSC-10: Reusability

Reuse of code can happen in two situations: software development
with reusable codes or software development for reuse purposes. For
example, if you have a predesigned set of software codes (sometimes
known as objects) and the project team uses these predeveloped objects,
this process is then known as software development with reusable codes.

132 Chapter 6 General System Characteristics

DI Guidelines

0 None

1 Online update of one to three control files is included. Volume of
updating is low and recovery is easy.

2 Online update of four or more control files is included. Volume of
updating is low and recovery is easy.

3 Online update of major internal logical files is included

4 Protection against data lost is essential and has been specially
designed and programmed in the system

5 High volumes bring cost considerations into the recovery process.
Highly automated recovery procedures with minimum operator
intervention are included.

Table 6.8 Online Update

DI = Degree of Influence.

When the project team develops fresh code with the intention of using
this code again in future development projects, the process is known as
software development for reuse. The Reusability GSC refers to the second
category. While developing an application, portions of the code are ear-
marked for reuse and componentized to facilitate reuse either within
the same application or in other applications. The degree of componen-
tization is captured through this GSC (see Table 6.10).

Guidelines for General System Characteristics 133

DI Guidelines

0 None of the five components

1 Any one of the five components

2 Any two of the five components

3 Any three of the five components

4 Any four of the five components

5 All five of the 5 components

Table 6.9 Complex Processing

DI = Degree of Influence.

DI Guidelines

0 No reusable code.

1 Reusable code is used within the application.

2 Less than 10% of the application considered more than one user’s
needs.

3 Ten percent (10%) or more of the application considered more than
one user’s needs.

4 The application was specifically packaged and/or documented to
ease reuse, and the application is customized by the user at source
code level.

5 The application was specifically packaged and/or documented to
ease reuse and the application is customized for use by means of
user parameter maintenance.

Table 6.10 Reusability

DI = Degree of Influence.

GSC-11: Installation Ease

Often estimators come across specific needs from the user that stipulate
that the software be installable on different hardware configurations.
Combined with these complexities, frequent upgrades to the next ver-
sions of the OS or technology platform also require the software design
and coding to be more structured in order to facilitate smooth conver-
sions (see Table 6.11).

GSC-12: Operational Ease

Once installed and configured on a given platform, the application or the
software system should not need any manual intervention, except during
serious breakdown situations. To attain this status, maximum design and
coding effort is needed and hence the Operational Ease GSC will have
maximum degree of influence value. Although some of the parameters
given in Table 6.12 are oriented more toward mainframe and legacy sys-
tems, the estimator can map these to newer platforms appropriately.

134 Chapter 6 General System Characteristics

DI Guidelines

0 No special considerations were stated by the user, and no special
setup is required for installation.

1 No special considerations were stated by the user but special setup
is required for installation.

2 Conversion and installation requirements were stated by the user,
and conversion and installation guides were provided and tested.
The impact of conversion on the project is not considered to be
important.

3 Conversion and installation requirements were stated by the user,
and conversion and installation guides were provided and tested.
The impact of conversion on the project is considered to be
important.

4 In addition to item 2, automated conversion and installation tools
were provided and tested.

5 In addition to item 3, automated conversion and installation tools
were provided and tested.

Table 6.11 Installation Ease

DI = Degree of Influence.

GSC-13: Multiple Sites

If the user base is spread across several country locations, customiza-
tions that are specific to a country are additional installation specifica-
tions that need to be addressed. Additional effort is consumed due to
additional testing at different locations if the customizations are differ-
ent. The Multiple Sites GSC sometimes goes together with GSC 11,
Installation Ease. Table 6.13 presents the range of influence for the Mul-
tiple Sites GSC.

GSC-14: Facilitate Change

The Facilitate Change GSC addresses the capability of the design and
code structure to facilitate easy maintenance. Although the parameters
in Table 6.14 are focused more on query and report, there are a number
of other situations that could be attributed to facilitating easy modifica-
tions and maintenance of usage. Examples include hard coding data
into the code (remember the great Y2K problems), business logic, and

Guidelines for General System Characteristics 135

DI Guidelines

0 No special operational considerations other than the normal
backup procedures were stated by the user.

1–4 One, some, or all of the following items apply to the application.
Select all that apply. Each item has a point value of one, except as
noted otherwise.

• Effective startup, backup, and recovery processes were
provided, but operator intervention is required.

• Effective startup, backup, and recovery processes were
provided, but no operator intervention is required (count
as two items).

• The application minimizes the need for tape mounts.
• The application minimizes the need for paper handling.

5 The application is designed for unattended operation. Unattended
operation means no operator intervention is required to operate
the system other than to start up or shut down the application.
Automatic error recovery is a feature of the application.

Table 6.12 Operational Ease

DI = Degree of Influence.

136 Chapter 6 General System Characteristics

DI Guidelines

0 User requirements do not require considering the needs of more
than one user/installation site.

1 Needs of multiple sites were considered in the design, and the
application is designed to operate only under identical hardware
and software environments.

2 Needs of multiple sites were considered in the design, and the
application is designed to operate only under similar hardware
and/or software environments.

3 Needs of multiple sites were considered in the design, and the
application is designed to operate under different hardware
and/or software environments.

4 Documentation and support plan are provided and tested to
support the application at multiple sites, and the application is
as described by item 1 or item 2.

5 Documentation and support plan are provided and tested to
support the application at multiple sites and the application
is as described by 3.

Table 6.13 Multiple Sites

DI = Degree of Influence.

DI Guidelines

0 None of the five characteristics

1 A total of one item from the five characteristics

2 A total of two items from the five characteristics

3 A total of three items from the five characteristics

4 A total of four items from the five characteristics

5 A total of five items from the five characteristics

Table 6.14 Facilitate Change

reports being inflexible. The following five characteristics can apply for
the application:

1. Flexible query and report facility is provided that can handle sim-
ple requests; for example, and/or logic applied to only one internal
logical file (count as one item).

2. Flexible query and report facility is provided that can handle
requests of average complexity; for example, and/or logic applied
to more than one internal logical file (count as two items).

3. Flexible query and report facility is provided that can handle com-
plex requests; for example, and/or logic combinations on one or
more internal logical files (count as three items).

4. Business control data is kept in tables that are maintained by the
user with online interactive processes, but changes take effect only
on the next business day (count as one item).

5. Business control data is kept in tables that are maintained by the
user with online interactive processes, and the changes take effect
immediately (count as two items).

All the tables describing the degree of influence for each of the 14 GSC
have been directly adopted from the IFPUG CPM 4.2 manual [1].

AUTHOR’S NOTE I did a fairly detailed search across various
books, technical papers, etc., on the function point method, looking
for an explanation of how the 14 GSCs map to various lifecycle
stages of the software development activity. The findings were very
insignificant and disappointing. Most authors simply explained
the 14 GSCs, their degree of influence, the calculated value
adjustment factor, and moved on. I am making an attempt to
provide an explanation of the 14 GSCs as actually mapped to the
non-functional requirements of a software application. This is in
an early stage of research. The next section, “GSC and NFR,” has
been dedicated to this explanation

GSC and NFR

There is no shortcut to success! If you are looking for a quick and dirty way
to arrive at estimates that are nearly accurate, you will end up with only
dirty estimates. A survey among software professionals once revealed that,

GSC and NFR 137

on average, professionals spend approximately 4 to 16 hours on project
effort and cost estimates. The projects could be as small as a $100,000 or as
large as $2,000,000. I fail to understand why the software professionals
neglect the most critical aspect of a software project—proper estimation.
The success of the project itself depends on accurate estimations. Whatever
tools, techniques, or expertise one may have, it would be quite risky to do
the effort and other estimates of a $2 million project in just two days! If one
has to justify the estimates, it is critical that the estimator understands and
spends quality time in understanding the high-level architecture of the
application. These and other observations are discussed more fully in
Chapter 10, “Tips, Tricks, and Traps.” The desired behavior of a software
application depends to a great extent on the internal engine of the system.
In a civil engineer’s language, a good metaphor for the internal engine
would be the architecture of a building; for a car designer it is the engine,
carburetor, and perhaps the transmission system. Software applications
also rely heavily on the architecture that holds together various layers,
components, and interfaces. Various properties of the application that
decide the behavior of the system during actual execution from no load to
full load are also dependent on the way the engine is designed. Knowing
the environment in which the engine is expected to perform is also impor-
tant for architects. The heart of the system should be built with a strong
base, and architecture is the heart of a software project.

Understanding the deeper implications of various dimensions of IT
architecture is essential. Figure 6.1 outlines the layers, tiers, and levels

138 Chapter 6 General System Characteristics

Figure 6.1 IT architecture.

Layers

Domain Arch

Application Arch

System Arch

Infrastructure Arch

Tiers
Client Tier Middle Tier Back End

QoS

P
er

fo
rm

an
ce

D
ep

en
da

bi
lit

y

S
ec

ur
ity

Application

of service. IT architecture addresses the enterprise level environment
that exists in an organization. A detailed understanding of this will
help you map the attributes of the IT architecture to the GSCs. The var-
ious components of the IT architecture can be broadly classified into
three dimensions [2]:

1. Layers
2. Tiers
3. Quality of service

Layers

Typically, there are three layers that define the logical organization of IT
architecture:

1. Technical architecture consists of two subarchitectures (layers):
• System architecture—defines the technology, standards, and sys-

tem software products for development and deployment of
applications and components

• Infrastructure architecture—deals with the underlying network
and communications environment, and the system manage-
ment architecture required to operate/manage all components
of the architecture

2. Application architecture—involves architectural decisions, patterns,
guidelines and standards required to design and deploy application/
business components on the given technical architecture. It extends
the technical architecture to provide for application developers to
deploy business/application components

3. Domain architecture—is derived from business requirements and
is concerned with design of applications and components that
enact business processes. Domain architecture delivers functional/
business services to end-users

Tiers

The tier is the other dimension of IT architecture. In a distributed com-
puting environment, separating out the processing needs as well as
data handling needs is achieved by providing appropriate tiers like the
front tier, middle tier, and the back-end tier.

• Front tier typically addresses all the client (user) facing processes
like that on a desktop, a mobile device, or other similar user inter-
face devices.

GSC and NFR 139

• Middle tier typically addresses the server side processes, business
logic, etc. The middle tier shares the processing load between the
client and the back end tiers through application servers.

• Back-end tier is the real RDBMS system that handles the data stor-
age, retrieval, and archival processes. Other file handling systems
on legacy systems are also considered among back-end tier.

Quality of Service (QoS)

The third dimension and a key factor that heavily controls the architec-
ture of a software application is the Quality of Service. Critical attrib-
utes like scalability, availability, and reliability, which define the
performance of an application under different load conditions, are
defined and measured under this service. Quality of Service generally
covers system performance, as opposed to system functionality. QoS
requirements specify not what the system does, but how the system
satisfies its clients while doing what it does.

ISO/IEC 14143-1: Definition of User Requirements

ISO/IEC 14143-1 defines Functional Size as “a size of software derived
by quantifying the Functional User Requirements.” ISO/IEC 14143-1
defines the fundamental concepts of Functional Size Measurement
(FSM) and describes the general principles for applying an FSM method
by distinguishing between three categories of user requirements:

• Functional User Requirements
• Quality Requirements
• Technical Requirements

The IFPUG FPA method captures the Functional User Requirements.

The Quality Requirements as defined in ISO/IEC 9126:1991 describe
the degree to which the functional or technical requirements are met.
ISO/IEC 9126:1991 defines the following types of characteristics as part
of the quality model:

• Functionality
• Reliability
• Usability
• Efficiency
• Maintainability
• Portability

140 Chapter 6 General System Characteristics

GSC and NFR 141

The ISO 9126 QoS framework provides for a very specific description
of various performance-related attributes, as shown in Table 6.15.

A careful review of the quality model described reveals the fact that
most of these parameters map to some of the 14 GSC attributes defined
by the IFPUG FPA method. The only component of the ISO/IEC 14143-1
that is not covered by the IFPUG FPA method is Technical Require-
ments. It is clear from the basic definition of the IFPUG FPA method
that the Function Point sizing method is independent of the technology
on which the software is deployed. As such, the Technical Requirements
are not included in the IFPUG FPA method.

Table 6.16 maps the 14 GSC attributes to the QoS attributes (NFR).

The non-functional requirements thus can be mapped to a great extent
to the 14 GSCs. (Author’s note: This is still under research.) While you
are capturing the functional requirements of the application, prepare a
questionnaire that captures the non-functional requirements as well.
The NFR information would be useful in identifying the right degree of
influence for each of the 14 GSCs.

From the Dinosaur Era to the Jet Age

Earlier chapters introduced this idea, but it is worth pausing for a
moment here to do a quick recap on how hardware platforms, software
languages, databases, and other middleware have evolved over the last
40+ years. Along with mainframes, there exist even now, systems that
have serious memory, storage, and processing limitations. State-of-art
systems also exist that are becoming smaller in size but much faster
and cheaper than their predecessors. In this context, if you review the
various degree of influence (DI) parameters defined for each of the
14 GSCs, you will see that many of the definitions are no longer valid in
today’s high-performing technology platforms, languages, databases,
and other infrastructure facilities.

Take the example of the Data Communications GSC: DI-5 requires that
the system support more than one type of TP communication protocol.
The latest platforms have these features built-in and the programmer
simply has to invoke them with a minimum of effort. Similarly, the
complexities attributed to the Distributed Data Processing GSC can be
solved through component load balancing, network load balancing, or
clustering techniques. But yes, to set up these techniques, expertise
and effort are required. This continues to be an area of ongoing
research.

Function Subcategory Description

Functionality Interoperability System should interact with other
systems.

Security Attributes of software that bear on
its ability to prevent unauthorized
access, whether accidental or
deliberate, to programs and data.

Reliability Availability System should be able to maintain a
specified level of performance in case
of software faults. Percentage time
that the system should be accessible
to provide the desired service.

Recoverability System should be capable of
re-establishing its level of perfor-
mance and recovering the data directly
affected in case of a failure and on the
time and effort needed for it within
the designated time and effort.

Efficiency Performance Attributes of software that bear on
response and processing times and
on throughput rates in performing
its function. System should meet the
desired performance expectations
(response, processing time,
throughput rates).

Resource usage Attributes of software that bear
on the amount of resources used
and the duration of such use in
performing its function.

Usability Understandability Attributes of software that bear on
the users’ effort for recognizing the
logical concept and its applicability.

Maintainability Manageability The system should be able to
provide mechanism to manage the
data and applications.

Reusability The degree to which a software
module or other work product can
be used in more than one computing
program or software system.

142 Chapter 6 General System Characteristics

Table 6.15 ISO 9126 QoS Framework

Function Subcategory Description

Portability Conformance System should adhere to the
standards/conventions related to
porting.

Installability Attributes of software that bear on
the effort needed to install the
software in a specified environment.
System should be installable to a
given environment with less effort.

The Relationship among GSC, NFR, and Technology Platform

Despite knowing well the different GSCs and non-functional require-
ments for an application that is being counted, a basic doubt may arise
on how you actually assign the right number for the degree of influ-
ence (DI) for a given GSC. Different technology platforms provide a
wide variety of built-in multi-processing, multi-threading, large-volume
data processing and storage facilities. Do you then discount the degree
of influence if a selected platform provides that GSC requirement as a
built-in feature? Here are some examples to consider:

Example 1
GSC-5 Transaction Rate: Most of the latest hardware as well as the operat-
ing systems themselves provide built-in features that facilitate high trans-
action rates. High-speed storage disks are available with high-speed disk
access timings, high bandwidth network, and CPUs with high MHZ pro-
cessing speed. All these together give you a built-in high transaction facil-
ity. The dilemma here is whether to fix a low degree of influence value to
this GSC because the technology platform is state-of-the-art.

Solution: If the user requirement is met by hardware as well as the oper-
ating system capabilities together, then the DI value would be low (1 or 2).

Example 2
GSC-9 Complex Processing: Old legacy systems had limitations on process-
ing capabilities that were compensated through virtual memory and
exploitation of disk space. The software designer had to use ingenuity to
architect the system in order to be able to utilize the hardware platform to
the maximum. Now with a wide variety of alternatives, like high-speed
CPUs, multi-processors, multi-threading, and many other features built

GSC and NFR 143

Table 6.15 ISO 9126 QoS Framework (Continued)

144 Chapter 6 General System Characteristics

GSC Description QoS Mapping QoS Description

1 Data Maintainability:
Communications Manageability

2 Distributed Data Efficiency: Resource
Processing Usage

3 Performance Efficiency: Attributes of software that
Performance bear on response and

processing times and on
throughput rates in
performing its function.
System should meet the
desired performance
expectations (response,
processing time, throughput
rates).

4 Heavily Used Efficiency: Resource Attributes of software that
Configuration Usage bear on the amount of

resource used and the
duration of such use in
performing its function.

5 Transaction Rate Scalability Ability to scale up to peak
transaction loads.

6 Online Data Entry Efficiency:
Performance

7 End-User Efficiency Usability: Attributes of software that
Understandability bear on the users’ effort for

recognizing the logical
concept and its applicability.

8 Online Update Efficiency:
Performance

9 Complex Functional
Processing Requirement

10 Reusability Maintainability: The degree to which a
Reusability software module or other

work product can be used in
more than one computing
program or software system.

Table 6.16 GSC and QoS Mapping

into the platform, complex processing needs in applications very rarely test
the full capability of the platform. Once again, should the estimator assign a
low degree of influence value to the GSC due to platform capabilities?

Solution: If the user requirement is met by hardware as well as the operat-
ing system capabilities together, then the DI value would be low (1 or 2).

Case Study

A large, high-tech manufacturing company was developing a Web-
based application. The application was intended to provide online
technical support to the onsite service engineers who were working on
maintenance activities on the company’s high-tech machinery. The per-
formance requirements as specified by the user group were as follows:

Efficiency Requirements

• Down Time: The application system needs to be up on a 24/7 basis.
• User Population: Currently the system has 3,000 users with approxi-

mately 300 concurrent users. They are expected to work on the

GSC and NFR 145

GSC Description QoS Mapping QoS Description

11 Installation Ease Portability: Attributes of software that
Installability bear on the effort needed to

install the software in a
specified environment.
System should be installable
to a given environment with
less effort.

12 Operation Ease Reliability: System should be capable of
Recoverability re-establishing its level of

performance and recovering
the data directly affected in
case of a failure and on the
time and effort needed for it.

13 Multiple Sites Portability: System should adhere to the
Conformance standards/conventions

related to porting.

14 Facilitate Change Maintainability: The system should be able to
Manageability provide mechanisms to manage

the data and applications.

Table 6.16 GSC and QoS Mapping (Continued)

system in three shifts: 6 AM to 2 PM, 2 PM to 10 PM, and 10 PM to 6 AM.
The peak time range is from 9 AM to 2 PM.

• Performance Requirements: The customer would like to see a perfor-
mance similar to the other existing systems’ performance. Cur-
rently, the response of existing applications at peak load averages
around 2.4 seconds for most transactions.

Data Requirements

• Growth: Facilitate easy growth in data volumes.
• Archival: Provide automatic backup and recovery facilities.

Environment Requirements

The customer prefers to have the finished product support Internet
Explorer 6.5, Netscape, and possibly a Mac browser. Additionally, if the
finished product does support multiple browsers, the customer is will-
ing to specify the required version of the browser. Performance tuning
should be geared to Microsoft IE 6.5.

This case study provides some input on how the estimator can map the
user requirements with respect to performance and other environmen-
tal specifications to the GSC (see Table 6.17). The mapping will get
more refined with experience.

146 Chapter 6 General System Characteristics

NFR Specified GSC DI

Down Time GSC-12 Operational Ease 5

User Population GSC-5 Transaction Rate 5

Performance Requirements GSC-3 Performance 4

Growth in Data Volumes Not Applicable

Archival GSC-12 Operational Ease 5

Environmental GSC-7 End User Efficiency 3–4

Table 6.17 Mapping of NFR to GSC

Conclusion

Understanding the complexity of the 14 GSCs and capturing the actual
applicable attributes for a given application is somewhat complex. Esti-
mators tend to shy away from this part of the IFPUG FPA estimation
process and sometimes simply assume the VAF as 1.0 by default. There
have also been situations when organizations have simply done away
with the GSC and VAF calculations. They stop at counting the unad-
justed function points and transform this count into effort, schedule,
costs, etc. This is not a good practice. The estimator may choose to skip
the VAF calculations, but the programmer cannot escape the resultant
increase in development effort for complex applications.

The estimator should obtain help from a good architect if he or she is
not confident in arriving at the right attributes for the GSCs. The GSCs
can be mapped to the non-functional requirements, which in turn
define the architecture of the application being designed. Based on the
architecture and QoS parameters, the GSC attributes can be defined.

References

1. International Function Point Users Group (IFPUG). Function Point
Counting Practices Manual (CPM) Release 4.2.

2. Kolathur, Somakumar, and Kingshuk Dasgupta. Architecture Refer-
ence Model (ARM)—Defining IT Architecture. Infosys Technologies,
Ltd., 2001.

Other Interesting Reading Material

Dreger, Brian J. “FPA General Application Characteristics: Rules and
On-line Parts System Example,” in Function Point Analysis. Prentice
Hall, 1989. Pp. 62–77.

Garmus, David, and David Herron. “General System Characteristics”
in Function Point Analysis: Measurement Practices for Successful Software
Projects. Addison-Wesley, 2004. Pp. 145–160.

Other Interesting Reading Material 147

This page intentionally left blank

CHAPTER 7

Size, Effort, and
Scheduling of Projects

Importance of Size

A person intending to build a house typically estimates the overall size
of the house in number of square feet. While buying an office table, you
may specify the size as Length × Breadth × Height. Almost every object
used in daily life can be sized by using one or more parameters.
Because software is “soft,” it is always quite difficult to size it as accu-
rately as other material products like a house, a car, or a television. Soft-
ware professionals traditionally have been measuring the size of software
applications by using different methods; Lines-Of-Code (LOC) is the
oldest and most popular method used.

Whatever the level of approximation, LOC does give some sense of
software size. For example, you can differentiate between two applica-
tions developed in the same language that have LOC figures of 20,000
and 50,000. Measurement of software size (in LOC or other units) is as
important to a software professional as measurement of a building (in
square feet) is to a building contractor. All other derived data, includ-
ing effort to deliver a software project, delivery schedule, and cost of
the project, are based on one of its major input elements: software size.

Key Inputs to Software Sizing

In software estimation parlance, scope of work (also expressed in terms of
business functionality provided) is one of the key inputs that determine

149

the size of the final product being delivered. Software estimators some-
times confuse size and effort. Size, in a software development context,
is the complete set of business functionalities that the end user gets when
the product is deployed and in use. And the person months required
to produce the software application of a given size is the effort. For exam-
ple, in an invoicing application, the user gets the capability to prepare
invoices for products sold to customers. The features provided in the
invoicing application are equivalent to the functionality available; hence,
the size of the application. The amount of time spent by the programmers to
design and build the invoicing application is the effort. IT organizations
should practice recording metrics of past sizing activities and use the
information and experience to size future projects. In his technical paper,
“Size Does Matter: Continuous Size Estimating and Tracking,” Mike Ross
observes, “The secret to making progress in sizing these new environ-
ments (software applications) is to identify the unit of human thought in the
abstraction being used. Next, the organization must go through a calibra-
tion process, starting with projects for which the actual size can be deter-
mined in terms of that unit of human thought” [1].

Differentiate Functions from Production Effort/Costs

While negotiating the price of a product, both the buyer and the seller
normally assume that the final price includes all aspects of the product;
that is, features (functions), look and feel (user interface), quality and
reliability (performance), and more. When two products of the same
type (family) are being compared, very rarely are products 100 percent
identical. To illustrate, compare any two products (for example, mobile
phones like Nokia and Samsung, laptops like IBM and Toshiba, or soft-
ware products like Oracle and Microsoft SQL Server); none of these
products are the same in all respects. Similarly, each software project
has its own unique requirements, and as such, estimating the cost of
the project will also be unique if you adopt the process of assessing
effort based on software features, such as quality, scalability, and relia-
bility, which are normally unique for each project.

Estimating the effort and cost of software development projects is per-
haps much more complex than estimating the production costs of
most consumer products as well as other areas of project execution,
whether it involves construction, manufacturing, services, or other
elements. Table 7.1 provides some insight into the key differences
between a typical product development and software development
activities.

150 Chapter 7 Size, Effort, and Scheduling of Projects

Over and above the ambiguity and ever-changing scope (functionality
and features) in the software development projects shown in Table 7.1,
if you add issues related to the target technology platform on which the
software is being developed, the cup of woes would be full to the brim.
No wonder that the question that bothers a software development

Importance of Size 151

Activity Typical Software
Description Product/Service Development

1 Functions/ Very clear, Somewhat vague; can
Features Clarity defined, and and will change during

definite development phase

2 Quality attributes Accurately Measurable but cost of
measurable quality varies based on

team skills

3 Tools availability Well-established Tools with somewhat
tools available in ambiguous claims on
the market productivity gains

4 Skills/ Defined Defined
Competency of
workers

5 Production effort Can be estimated Quite loosely estimated
very well

6 Effort/Cost Definite Gut feel + Buffer +
Estimation Contingency; typically

overruled by managers

7 Changes during Negligible Very frequent
production

8 Specification & Well-defined, Loosely defined,
Design reviewed, and keeps changing

signed-off before throughout the lifecycle
start of of product
production development

9 Rework/ Almost Always possible to
Improvements impossible to modify even after it

modify once goes into production
the product is
delivered

Table 7.1 Activity Comparison for Products and Software Development

project team is, “Can there be an alternative and better-defined method
of estimating project execution effort and costs?” On second thought,
wouldn’t it be wonderful to have a standard yardstick that can mea-
sure different products with different sets of functions against the same
measuring scale? This yardstick should provide the user with a true
comparison facility. For example, a measuring tape can measure a table
size, the number of square feet in a house, the height of a tower, the dis-
tance between two locations, and more. All the items are different in
nature but the measuring unit (yardstick) is same. Further, if you mea-
sure two similar items (such as the distance between locations) using
the same measuring tape, you can compare the two measurements and
even define a relative size ratio between them.

Function Point Analysis Method

The Function Point Analysis (FPA) methodology-based estimation
model designed by Allan Albrecht of IBM in 1979, and now owned and
continuously upgraded by IFPUG [2] (International Function Point
Users Group), is perhaps the nearest to separating the functions deliv-
ered by a product from the technology platform on which the product
is developed and hence the path to deriving the total effort and cost to
deliver the application. The uniqueness of this FPA method enables the
estimator to clearly size the software application (product) based
purely on the functions that are expected to be delivered by the appli-
cation. Perhaps it is due to this unique feature in the FPA method that
its popularity and usage, as compared to other estimation methods, is
the highest in the software developer community.

To understand the uniqueness of the FPA method, consider the example
of a mobile phone, as shown in Figure 7.1. From a mobile phone user’s
perspective, the various functions the user expects to experience are

• To be able to communicate with contacts, friends, and family at
will, irrespective of physical location and environment

• Instant, online access to the directory of contact numbers
• Provision to send SMS (text) messages to anyone, any time
• Internet browsing facility
• Storing and playing music

The FPA method is built on the premise that the function point (FP)
count finally determined is based totally on the user ’s perspective
of the functions expected to be delivered with the final product.

152 Chapter 7 Size, Effort, and Scheduling of Projects

In Figure 7.1, the Product Features map clearly to the end user functions
that are expected to be delivered from the product (mobile phone). The
FP counting method provides key inputs and maps to this aspect of
Product Size.

Now consider the other half of the effort and cost-calculation activities
(other than Product Sizing), which contribute toward arriving at the
overall product pricing. Figure 7.1 shows those activities as:

• Manufacturing techniques/processes
• Skills/Competency of the workers
• Effective usage of right tools
• Raw material
• Quality process
• Pricing
• After sales service

Importance of Size 153

Figure 7.1 Defining size.

Product Features

End-User Functions

• Mobile Communication
• Send-Receive Phone Calls
• Internet Browse
• Store Personal Phone Directory
• SMS Features
• Ring Tones
• Configuration Settings

Vendor Capabilities

• Manufacturing
Techniques/Processes

• Skilled Workers (Competency)
• Tools Usage
• Raw Material (Quality and Quantity)
• Quality Processes
• Aggressive Pricing
• After Sales Service

The Business Functions Delivered
by the Product

The Effort and Costs Estimated by the Vendor
Is a Derivative of Business Functions

Outputs,
Inquiries

Interface

Inputs

Mic

Data Store

Effort and Cost

A careful review of these parameters exposes the fact that most of these
activities and processes are vendor specific and depend on the team
assembled to deliver the project. The Effort and Cost text box contains all
activities that point to vendor capabilities. Understanding the two differ-
ent attributes of a production activity in terms of Product Size and Effort
and Cost paves the way for further discussion and focus on Size as the
single, critical measurement attribute in software development projects.

Size—The Differentiator

In a typical software development project scenario, the end user (or
business user) is the owner (customer) of the application being devel-
oped and the IT development team or an external (outsourced) vendor
is the supplier. Knowing the size of the application would come in very
handy for the customer in situations where an evaluation of multiple
vendors, including the internal IT development team, is being done.
Here are the key pointers to successful negotiation of software devel-
opment contracts:

• When the application’s size is predetermined, the user can avoid
being misled by different vendors on various functional complexi-
ties of the application. Instead, the vendors could be asked to pro-
vide their quotes for the defined size of the application being
developed on a given technology platform.

• The user may not have a deep knowledge of the internals of the
application development process or even the technology involved
(sometimes the technical architecture and coding of a project is
compared to a black box). Despite this situation, the user can still
manage all project contract execution activities based on the final
size of the product that needs to be delivered and accepted.

• “An experienced estimator can produce reasonably good size esti-
mates by analogy if accurate size values are available for the previ-
ous project and if the new project is sufficiently similar to the
previous one” [3].

• “Basically, function points are the quantified representation—or
size—of the functions (or transactions) and data that go together to
operate as a computer application. They provide a rough unit of size
that is based upon the software component of the requirement” [4].

• Because functional features are separated through the size model,
this opens the opportunity for the customer to choose the technol-
ogy platform on which the application needs to be developed.

154 Chapter 7 Size, Effort, and Scheduling of Projects

Development costs on different technology vary based on skills
available, and this leads to better control over cost and budget
constraints.

• Function points are perhaps one of the best methods to estimate the
size of an application. The method is quite ambiguous and therefore
flexible enough to be molded into a variety of estimation needs, such
as software development, maintenance, reengineering, enhancement,
etc. Source Lines of Code (SLOC) or LOC is a poor alternative.

• “…‘Size’ refers in a very general way to the total scope of a program.
It includes the breadth and depth of the feature set as well as the
program’s difficulty and complexity” [5].

The Yardstick

The business value delivered by software systems, in the form of func-
tions provided, is one of the key inputs to the size of the system. This
size can be used as an effective yardstick to facilitate many needs of an
IT organization. In much the same way a measuring tape can be used to
measure height, length, width, and depth of a variety of material
objects and places, size can be an effective yardstick for software esti-
mation in projects ranging from simple to complex.

Inputs to Sizing

The size of a software application can be measured in several measur-
ing units. Popular sizing units include Source Lines of Code (SLOC),
function points (FP), object points, and feature points. Each measuring
unit is unique in the sense that the measuring unit defined by the
SLOC method does not have a clear and measurable equivalent ratio
with, for example, function points or object points. Each measuring
unit also measures the application size from a different perspective.
For example,

• SLOC measures the total lines of code that can be counted in the
software application. The SLOC are specific to the technology plat-
form on which the application was developed. For a given applica-
tion, the SLOC count will vary for different technology platforms.
The number of SLOC, if written in COBOL, would be far higher
when compared to SLOC written in C, although the delivered func-
tionality would be the same in both cases.

Inputs to Sizing 155

• Function points (FP) count measures the business functionality
delivered by the application being counted. The size measured
through FP method is independent of the technology on which the
application is developed. Therein lies the comforting fact that when
two different experienced estimators are given an application, the
size they measure in function points will be within a comfortable
variance range.

• Object points measures the size of an application by counting the
number of screens, reports, and interfaces (known as objects) required
to complete the coding. The objects themselves can be classified
into different level of complexity such as simple, average, and
complex.

• Feature points [6] is a variant of function points. Developed by
Capers Jones, this method adds another measurable attribute, the
complexity of algorithms. Here the size is measured in feature
points count very similar to function point count.

Source of Inputs

For any type of estimation, it is important to have detailed information
about the application/system. This is also the case with function point
estimation. For estimating the size of an application using function point
analysis, the following information about the application is required:

• Scope (specifications) of the application
• Data being maintained by the application
• Data being referenced (but not being maintained) by the application
• Logical grouping of the data being used by the application
• Input to the application, in terms of data within the defined appli-

cation scope
• Output from the application like reports, queries, etc., within the

scope of application requirements
• The general behavioral characteristics of the system

These inputs can be categorized into two distinct types of require-
ments, typically called functional and non-functional requirements. The
requirements information can be obtained from the following artifacts:

• Functional requirements:
• Business process
• Business work flow

156 Chapter 7 Size, Effort, and Scheduling of Projects

• Conceptual data model
• Functional specifications or use case specifications
• Input on external applications, if any, including details of inter-

face with other applications
• Non-functional requirements:

• Documents stating the performance requirements and other
infrastructure details, like multiple sites, reliability, scalability,
availability, usability, etc.

Accuracy of Requirements

The quality and accuracy of the requirements specification is critical to
correct sizing. The specifications need to be complete, correct, and up-
to-date for the size calculation. The result of wrong size estimation will
lead to incorrect effort projections, schedule calculations, and other
project planning and project costs because these activities are based
heavily on the size information.

Details of all the functionality required by the user at the time of project
initiation may not be available, which can lead to scope change later
(also known as scope creep). The specifications should include the busi-
ness data and reference data. Following are some of the points that
must be specified to ensure the accuracy of the requirements specifica-
tions documents:

• Objectives of the proposed system
• Business requirements
• Scope and boundary
• Business events/functions
• Screens and reports
• External interfaces
• Operating environment; hardware, operating system, technology

platform, and network protocols
• Specific communication requirements
• Performance requirements
• Special user requirements
• Data migration
• Architectural requirements
• Constraints/issues

Inputs to Sizing 157

Role of Size in the Software Development Lifecycle

The purpose of evaluating and estimating the size of a software appli-
cation is to move the estimation process forward to arrive at effort,
schedule, and costs of executing the project. As such, it is essential for
the estimator to understand the relation between the various categories
of size units (SLOC, FP, object points, and feature points) to its applica-
bility in the software development lifecycle stages. The typical lifecycle
stages of software project execution considered here are (1) the require-
ment phase, (2) the design phase, (3) the build (construction) phase,
and (4) the test phase. Consider the following points:

• The Source Lines-Of-Code (SLOC) is the most ambiguous of all the
sizing units and is highly unreliable as far as the estimation process
is considered. Obviously, estimations are done when the applica-
tion is yet to be developed. Predicting the SLOC that the applica-
tion will generate upon project completion would be quite an
uphill task.

• The other concern is to relate the SLOC count to the lifecycle stages
of software project execution. Although the total SLOC generated
at the end of project completion is measurable, coming up with an
estimation formula that would give you the break-up effort for var-
ious lifecycle stages of project execution individually would be
complex. To better illustrate, consider an application in COBOL
that generates 50,000 SLOC. How do you relate this SLOC count to
the effort it would take to complete the lifecycles stages (require-
ments, design, build, and test)? Experts in COBOL may be able to
provide an approximate effort that it takes to code and test a given
count of SLOC. The estimator will then have to convert the code
and test (build) effort to the total project execution effort through
extrapolation methods. Every bit of error in calculation of code and
test effort will be multiplied during the extrapolation.

• Function points is perhaps the nearest method to providing a mea-
suring unit that spans across all the standard lifecycle phases of
software project execution. Function point count of an application
under development depicts the total functionality that the user
expects to be delivered. If you have the data on the delivery rate of
the project team, the total project effort can thus be calculated by
dividing the FP count by the delivery rate (productivity). Further,
the total project execution effort can be now divided into lifecycle
phase efforts based either on historic data from your own organiza-
tion or industry standard data.

158 Chapter 7 Size, Effort, and Scheduling of Projects

For example, consider a project that has a count of 1,000 FP. Assum-
ing a delivery rate (productivity) of the project team on a selected
platform to be 15 FP per person month, you get a total effort of
approximately 67 person months (1,000 FP divided by 15 FP per
person month). If you assume a lifecycle phase breakup of effort as
• Requirements: 15 percent
• Design: 20 percent
• Build: 40 percent
• Test: 25 percent
The total project effort can be divided according to the preceding
percentages. The percentage breakup of effort can be fine-tuned by
taking feedback from completed projects and applying corrections
as applicable through continuous improvement cycles.

• Feature points are quite similar to function points.
• Object points looks at the number of objects (screens, reports, etc.)

likely to be generated in the software. The effort estimated for
objects is similar to that of SLOC and it is focused on the code and
test phase of the project execution lifecycle. The full effort is calcu-
lated by extrapolation as is done in the case of SLOC estimation.

Impact of Delivery Rate

Sizing a software project is important, but knowing the delivery capacity
of your programmers is even more critical. The foundation of a predictable
project execution is the ability to attain repeatable delivery processes.
Having a good handle on the IT organization’s delivery rate helps IT
managers commit to project delivery timelines with higher confidence.

Measuring the actual productivity of the programmers in an organiza-
tion is a lengthy and iterative process. Depending on the size of the IT
organization and the variety of technology platforms in use, the defini-
tion of productivity becomes more and more complex. The following
sections discuss some of these complexities and variations.

Productivity Drivers

Productivity, sometimes known as delivery rate, can be viewed as the
ratio of output/input. In a software development parlance, output is

Impact of Delivery Rate 159

typically the software product and input is the effort spent by the pro-
grammers. The three major ingredients that define productivity are

• Software product (application)
• Software production process (the software project lifecycle activities)
• Software development environment

The productivity measuring team should be able to define and measure
each of these ingredients in order to be able to calculate delivery rate
figures.

Software Product

The product that is the final delivered output is also called the software
application. Other secondary outputs that are delivered during a typi-
cal software development project are documentation for requirement
specification, design, test plans, test results, and operations manual. In
project management, these are called project deliverables.

Software Production Process

Various activities that take place during typical software development life-
cycle stages need different process definition. Typical lifecycle activities are

• Requirement analysis and specification
• Architecture
• Detailed design
• Build and unit test
• System and integration test

Different activities in each lifecycle stage need varied skills and compe-
tencies. Even with a well-defined process for executing each of the life-
cycle activities, the competency of the individual resource controls the
productivity for the lifecycle activity.

Software Development Environment

The general environment under which the software project team works
contributes toward significant variation in productivity. A good devel-
opment environment supported by tested and productive tools plays a
big role in productivity improvements of the project team. A robust
quality control mechanism backed further by reusable software compo-
nents, artifacts, and best practices further enhances productivity rates.

160 Chapter 7 Size, Effort, and Scheduling of Projects

This is perhaps the most difficult part of setting up a well-structured IT
organization. It takes considerable length of time to achieve the matu-
rity in defining, deploying, and accepting a wide range of highly pro-
ductive tools and an equally large number of reusable components that
lead to high productivity figures.

Productivity Measurement

Among the three ingredients that impact software development pro-
ductivity (the product, the development resources and processes, and
the environment), the output is the software product and the input is the
effort spent during software production stages. The environment, under
which the production takes place, controls the variation in input efforts.

Figure 7.2 shows that different lifecycle stage activities require resources
with an appropriate level of competency. The most common roles
involved in a typical software development project are

• Project manager
• Technical architect
• Business analyst
• Programmers
• Testers

Impact of Delivery Rate 161

10%−15% 15%−20% 35%−40%

Requirement
Specs Detailed

Design Build and Unit Test

25%−30%

System and
Integration TestLifecycle

Phases

Resource
Loading

Cost of
Quality

Project
Manager

Technical
Architect

ProgrammerBusiness
Analyst

Legend

Reviews Effort

Team Orientation
Effort

Defect Removal Effort

Figure 7.2 Productivity parameters.

The number of resources for each category for each lifecycle stage is
directly dependent on the project size. Over and above the effort spent
by each of the resource categories, a substantial amount of effort goes
toward quality and audit-related checks throughout the project execu-
tion lifecycle. This quality-related effort is part of the cost of quality.
Cost of quality is the cost an organization spends to attain a certain
level of quality output.

Measuring Input

Input is the effort spent by various resources throughout the project
execution lifecycle toward various kinds of activities like requirement
analysis, high level and detail design (architecture), build and unit test,
and system and integration tests. Also included are efforts toward
cost of quality activities, as shown in Figure 7.2. The efforts thus can be
classified as:

• Requirements/business analysis effort = # business analysts ×
assigned duration

• Architecture and design effort = # architects/technical leads ×
assigned duration

• Coding and unit testing effort = # programmers × assigned duration
• System and integration effort = (# testers + # programmers) ×

assigned duration
• Cost of quality = # reviewers × assigned duration for each + effort

spent on defect removal + effort spent on orienting project team

Productivity

Adding all these efforts gives the overall effort for the entire project.

Productivity of the team = application size/total effort

Organization-wide baselines for different technologies are prepared
using the preceding methods and are used in future projects. Execution
of the future projects is improved through experience. In the absence of
specific technology baseline productivity, the technology that is the clos-
est is chosen. For example, if the productivity information for C++ is not
available, you can start with the productivity figures of C or Java. If noth-
ing close is found, you can use the weighted average productivity from
Capers Jones’s table of the languages and databases involved. (Refer to
http://www.spr.com for more details on Capers Jones’s tables.)

162 Chapter 7 Size, Effort, and Scheduling of Projects

http://www.spr.com

Often IT organizations face a dilemma while defining the list of soft-
ware project execution activities that are included or excluded while cal-
culating the delivery rate of the project team. There is no defined rule
for this. It is best defined by individual organizations, based on the
project execution processes they have adopted. Following is an illustra-
tive list of activities that can be included when expressing the produc-
tivity for a typical software project:

• Requirement analysis
• High level design
• Detailed design
• Build and unit test
• Integration testing
• System testing
• User testing support
• Product quality checks and reviews

Different organizations adopt different methods of including or excluding
certain lifecycle activities. Following is an illustrative list of some of the
activities that are typically not considered while calculating productivity:

• Project management effort
• Configuration management effort
• Additional quality assurance efforts towards attaining SEI-CMMI

Level 4-5
• User acceptance testing activity
• Developing prototype
• Warranty support
• Holidays and personal leaves

Effort and Schedule

Sizing the project by using function points, SLOC, or other methods is a
job only half done. Transforming the size to a deliverable effort within a
comfortable schedule makes the project planning a complete success
story. Further, the total project effort (for example, in person months)
that needs to be consumed in a given schedule provides the guidance
to do a proper resource loading.

Effort and Schedule 163

Once the phase-wise resource loading details are available, you can
apply the resource rate to each category of resource—such as project
manager, architect, analyst, and developer—for the duration of the
assignment. Thus the total base cost for the project is calculated. You
can then add project management, configuration management, and
other overheads as appropriate to get the gross cost. Figure 7.3 shows
the broad parameters that are to be taken into account during different
lifecycle stages of the project execution.

Deriving Effort

The overall project effort (typically measured in person months) is directly
dependent on two critical inputs: application size and project team/
programmer productivity. The steps to calculate each of these items are
as follows:

• From the given specification for the application, calculate the size
of the application. The size can be estimated by using one of the
popular estimation methods, such as
• Function points method: Output will be in FP count.
• Object points method: Output will be a list of classes of simple/

medium/complex categories.
• SLOC method: Output will be a “gut feel” of lines of code.

• Make sure that you have the productivity (delivery rate) available for
the technology platform on which the application is being developed.
For every language there are available average productivity figures

164 Chapter 7 Size, Effort, and Scheduling of Projects

Figure 7.3 Deriving effort and costs.

Application
Size

(FP/LOC)

Application
Specs

Estimate
Apply

Productivity
COCOMO II or
Business Need Project

Schedule

10%−15% 15%−20% 35%−40%

Requirement
Specs Detailed

Design Build and Unit Test

System and
Integration Test

25%−30%

Lifecycle
Phases

Resource
Loading

Effort

Transforming Size to Effort and Cost

that should be adjusted by the historic project productivity data for
your own IT organization. Productivity of your project team:
• Is based on competency of programmers
• Is specific to a given technology
• Is dependent on the software development environment

• Convert application size to effort (in person months):
• Effort = Application size × productivity

• The effort thus derived is the total project effort that would be spent for
all the lifecycle stages of the project, from requirements creation
through user acceptance. Add project management and configuration
management effort as applicable. The effort is also the aggregate of the
individual effort spent by each of the resources assigned to the project.

Scheduling

Transforming the overall project effort into a delivery schedule (elapsed
time) is somewhat tricky. If the right approach is not applied, the risks of
project failure are high. There are three alternatives to calculate the schedule:

• Use popular scheduling methods like COCOMO II.
• “Gut feel” scheduling based on past experience.
• Schedule driven by business user need.

The schedule data that can be obtained by one of these methods is in the
form of duration required to deliver the project itself. For example, the
schedule could span 10 months from the start date of the project. The sched-
ule thus encompasses all the lifecycle stages of the entire project. From the
total duration given to the project team, the project manager must divide
the time into lifecycle-based segments. The lifecycle phase percentage is
also to be based on historical delivery information of the IT organization. For
example, with 10 months of elapsed time, the schedule can be split as follows:

• Requirements: 2 months (20 percent)
• Detailed design: 1.5 months (15 percent)
• Build and unit test: 4 months (40 percent)
• System and integration test: 2.5 months (25 percent)

Resource Loading

Resource loading is a complex activity and has to be worked on with
extreme care. Improper assignment of resources will have an impact on

Effort and Schedule 165

project delivery schedules as well as the quality of outputs. Resource
loading requires two critical mapping considerations:

• The right resource role for the appropriate lifecycle stage. For
example, you need to know when to assign a project manager, an
architect, or a programmer.

• The right duration of assignment. This includes when to assign and
when to release. The effort spent by each resource is determined by
tactful resource allocation method.

For Figure 7.3 shown earlier in this section, the resource loading pat-
terns are displayed illustratively in Table 7.2. For your project, you can
prepare a table showing resource role assignments for the appropriate
durations. For example, assume a total project effort of 100 person
months. This effort includes project management and configuration
management effort. Table 7.2 illustrates the typical resource loading
based on the percentage breakup of elapsed time, as given in the example
in this chapter.

NOTE The elapsed time percentage need not be exactly equiva-
lent to resource person months spent in a given lifecycle stage. For
example, the requirements phase could be 2 months (20 percent)
elapsed time, but the actual resource efforts spent as shown in the
table for months M1 and M2 is only 8 (3+5) person months, which
is only 8 percent of the total effort for the project. Typically, maxi-
mum effort is spent during the build and unit test phase.

166 Chapter 7 Size, Effort, and Scheduling of Projects

Resource M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 Total PM

Project manager 1 1 1 1 1 1 1 1 1 1 10

Technical analyst 1 1 1 1 1 5

Business analyst 2 3 3 3 3 3 3 3 2 2 27

Programmer 4 4 6 8 10 8 6 4 50

Configuration 1 1 1 1 1 1 1 1 8
controller

Total effort 3 5 10 10 11 13 15 14 11 8 100

Table 7.2 Resource Loading Chart

[M1 = Month 1] [Total PM = Total Person Months].

Costing

Once the resource loading chart (as shown in Table 7.2) is complete, it is
fairly easy to attach the rate per hour (or rate per week/month) for each
of the resource roles, such as project manager, architect, analyst, devel-
oper, etc. The steps are

• Arrive at the rate per time unit for each of the resources.
• From the resource loading chart, obtain the duration of assignment

for each category of resource (project manager, architect, analyst,
developer).

• Multiply the individual resource allocation duration by the rate to
obtain individual resource costs.

• Aggregate the individual costs to get the overall project cost for
resources.

• Add overheads and buffers as applicable.

Conclusion

Sizing development effort using a well-established estimation method
like FPA can be a very powerful yardstick you can use to effectively
estimate a number of software project execution processes. Through
well-defined sizing and costing methods, IT groups within organiza-
tions can derive a variety of benefits in various activities that include
software contracts, project management, cost of ownership, IT bud-
gets, outsourcing costs, and more. Here are some key areas of direct
benefit:

• Because software is “soft,” it has always been a difficult product to
measure in real terms. FPA-based sizing can provide a reliable
yardstick by which to measure software.

• Size and complexity are key, and the core input, to all software esti-
mations. All the subsequent information about software projects,
such as effort and schedule based on the skills of the team and cost
based on resource rates, can now be better estimated.

• For a CIO, the comfort of being able to compare and equate two dif-
ferent applications (systems) in their IT organization for purposes
of TCO (Total Cost of Ownership), budgets, or other strategizing

Conclusion 167

purposes has always been another area of serious concern. For
example, equating an Order Management System with a Payment
Processing System on TCO or number of resources deployed
would be quite difficult. Even if the two systems belong to the
same organization and have been developed on the same technol-
ogy platform, equating them on any terms would be a difficult
task. Sizing the two applications using a common yardstick (like
FP count) would perhaps be the nearest to showing their relation
accurately.

• Skills or competency of the software development team (produc-
tivity) can be better compared through a common yardstick like
FP count even if skills are measured across different technology
platforms.

• Measuring and monitoring the quality metrics such as effort and
schedule variance and also code defect density, etc., can be done by
using the sizing technique.

• For a CIO, there are a number of cost-saving, better budgeting, and
project monitoring facilities that can be fine-tuned through applica-
tion sizing methods.

References

1. Ross, Mike. “Size Does Matter: Continuous Size Estimating and Track-
ing.” Quantitative Software Management, Inc.

2. International Function Point Users Group (IFPUG). Function Point
Counting Practices Manual (CPM) Release 4.2.

3. Peters, Kathleen. “Software Project Estimation.” Software Productivity
Centre Inc., kpeters@spc.ca

4. Robyn, Lawrie, and Paul Radford. “Using Function Points in Early
Life Cycle Estimation.” CHARISMATEK Software Metrics.

5. McConnell, Steve. Rapid Development. Microsoft Press, 1996.

6. Feature Points, developed by Capers Jones of Software Productivity,
Inc., is a variant of IFPUG Function Point Analysis. www.spr.com/
products/feature.shtm

168 Chapter 7 Size, Effort, and Scheduling of Projects

www.spr.com/products/feature.shtm
www.spr.com/products/feature.shtm

Other Interesting Reading Material

McConnell, Steve. “Effort Estimation; Schedule Estimation,” in Rapid
Development. Microsoft Press, 1996. Pp 182–198.

Jones, Capers. Applied Software Measurement, Second Edition. McGraw-Hill,
1996.

———. Software Quality: Analysis and Guidelines for Success. Interna-
tional Thomson Computer Press, 1997.

———. Estimating Software Costs. McGraw-Hill, 1998.

Other Interesting Reading Material 169

This page intentionally left blank

CHAPTER 8

Estimation Flavors

Change Forever

The only thing that’s constant is change!

As a quick recap of the discussion on “Large Application Systems,”
in Chapter 2, you may recall that, over a period of several decades, as
business organizations grew, software applications and their IT
infrastructure grew as well. The IT environment was transformed
from a large, monolithic, slow-processing, low-memory system with
a limited number of user systems to a super fast, gigabyte-memory
system with a large number of user systems. The software applica-
tions that were working on systems in the old, dinosaurian era had
to be transformed gradually to work on the now prevalent jet age
infrastructure.

Most business organizations that depend on IT systems to prop up their
business and help it grow year after year are under constant pressure to
keep their IT systems up-to-date. Part of the maze includes the large
number of business applications that run on a variety of software tech-
nology platforms, along with an equal number of infrastructure sys-
tems. At any given time, the IT folks are grappling with one or more of
the following situations:

• There is an urgent need to design and develop new application
modules to facilitate newer business opportunities.

• Upon completion and successful commissioning of newly devel-
oped applications, there is an immediate need to move these into
maintenance mode.

171

• A considerable number of small, medium, and large applications that
are in production and serving business functions in the organization
are required to be maintained on a continuous and long-term basis.

• With recent upgrades in some of the vendor-supplied operating
systems and other infrastructure software, the IT organization has
also decided to upgrade their obsolete infrastructure. This makes it
necessary to port all the applications running on the old infrastruc-
ture to the new infrastructure.

• A number of business critical applications have reached their limit
on user scalability and encountered user interface limitations.
These are now being migrated to state-of-art technology platforms.

• Quite a number of applications that were developed in earlier years
are no longer being used because they have outlived their utility.
The business does not need them. These must be retired after
ensuring that all relevant data is extracted and interfaces with other
applications have been carefully severed.

• Applications that were developed by different user groups were found
to have duplicate functionalities. In addition, applications servicing the
needs of one business unit have been developed in a different technol-
ogy platform over the past several years. Now the applications must be
reengineered to consolidate them into a single technology platform.

What was a state-of-art technology platform in IT a few years back is
obsolete today. In fact, even a system that was recently successfully
developed and deployed is already designated as a “legacy” system. At
any given time in an IT organization, changes are happening continu-
ously. Some of the changes include these:

• New applications are being developed.
• Applications are under maintenance.
• Enhancements are happening on some systems.
• Upgrades to the latest operating systems and infrastructure are in

progress.
• Applications are being migrated to newer technology platforms.
• Applications are being reengineered to facilitate consolidation and

being upgraded to newer technology.

Obviously, a wide variety of estimation methods are needed to facilitate
the estimation of projects of the different types mentioned here. This
chapter explores some of the most commonly needed estimation flavors.
The focus here is on function points as a base to these estimation flavors.

172 Chapter 8 Estimation Flavors

Development Projects

In a true sense, development projects in IT organizations should be
addressing a totally new business or internal organization need.
But quite often the business users raise requests for development
projects that are really extensions of existing business opportuni-
ties. As such, although the project requires doing fresh development
of a business application, interfaces to other existing applications
also are often required. IFPUG [1] defines the development project
as the function point (FP) count delivered to the user with the first
installation of the application. In certain situations, a large enhance-
ment to an existing application may also be called a development
project.

Whatever the context may be the fact remains that the business func-
tionality the development project needs to provide was previously
nonexistent in another software application. Thus the software
project team needs to understand the scope of the new development
project in collaboration with the business and user groups. Trans-
forming a new business concept into detailed requirements that can
feed estimation methods is quite an uphill task during the early
stages of application development. Perhaps only after a couple of
iterations of functional upgrades to the existing application can the
users expect to get a system that meets most of their business func-
tional needs.

Functional Decomposition of Modules

If an estimator wants to do total justice to the process of estimating the
size and effort required to develop a new business application, it is
essential that the estimator completely and clearly understands the
business functions of the application under development. This will
help in two situations:

• If the specifications provided by the user are complete and detailed,
the estimator will be able to quickly divide the application into
modules and sub-modules and then proceed to estimate effort for
individual activities.

• If the specifications are sketchy and incomplete or partial, an esti-
mator with a good background in the business functions being
developed will be able to identify the missing functional elements
and arrive at a fairly good estimate of effort.

Development Projects 173

The first step is to break the application under development into smaller
functional modules that meet all the business functions that can be ser-
viced through a homogeneous set of workflow activities. Identifying the
right level of modules that encompass all the functions within a homo-
geneous set of activities may be a bit difficult to achieve in the beginning.
But through practice, one starts to observe a pattern of such groups of
functions that constitute a module or sub-module (See Figure 8.1).

Case Study—Invoicing Application

An invoicing system provides a simple case study. The application
takes care of all invoicing that happens in an apparel manufacturing
firm. All the related activities connected to invoicing are also serviced
by the application. The key business functions addressed by the invoic-
ing system are

• Creating the invoice at the factory
• Collecting the amount through cash or credit card

174 Chapter 8 Estimation Flavors

Figure 8.1 Functional decomposition.

Application to Be
Estimated

Functional
Module 1

Functional
Module 2

Functional
Module 3

Functional
Module n

Sub-Module
2-1

Sub-Module
2-2

Sub-Module
2-3

Sub-Module
2-2

Reports

Interfaces
Files

Inquiries

Input

• Updating the inventory balance on the shelf
• Generating daily sales reports by product, daily, weekly, and monthly
• Producing sales analysis reports
• Maintaining customer data across locations
• Reconciling sales to pending orders

Having identified a high-level business function need of the invoicing
application, you can now try to define the different modules and sub-
modules that constitute the invoicing system as a whole. (Note: This
example is provided as an illustration only and does not in any way
claim to mimic a real invoicing system in an apparel manufacturing
firm.) The modules are

• Invoicing module with the following sub-modules:
• Invoice Creation module
• Apparel Item module

• Sales Reports module with the following sub-modules:
• Sales Summary module—daily/weekly/monthly/product-wise
• Sales Analysis module
• Sales to Pending Order Reconciliation module

• Customer Info module with the following sub-modules:
• Customer Master module
• Locations module
• Banks Master module

As mentioned earlier, this list of modules and sub-modules is not an
exhaustive list but just an illustration of how the modules can be identi-
fied based on homogeneity of functions.

Having identified all the modules and sub-modules, you can next iden-
tify the various input, output, reports, interfaces, etc., for each module
and sub-module. These attributes can be fed into any estimation
method the estimator is comfortable with and be used to arrive at the
estimated effort for the application as a whole. Ensure that appropriate
level of additional effort is apportioned based on the type of estimation
method used. This is explained in the following sections under differ-
ent estimation methods.

Other methods identify various components of an entire software
application that can be input to any estimation method. But I find that
from a software professional’s perspective, breaking the application

Development Projects 175

into functional modules is somewhat akin to designing the business
function based on business workflow. Another added advantage of this
method is that by the time the estimations are done, the estimator has a
high-level design of the application already in place.

Development—Function Point Analysis Method

The Function Point Analysis estimation method is perhaps most suited
in such situations where the scope and other inputs are somewhat
ambiguous. The detailed requirements could be captured through the
typical requirements specifications method or through the use case
method. In either case, the business functions can be well mapped to
the various attributes of the function point estimation method.

Having captured high-level requirements from the functional users,
next categorize the application into modules and sub-modules as
explained in the previous section. Now segregate the five basic attrib-
utes defined by the FP method for each of the sub-modules, namely:

• External Inputs (EI)
• External Outputs (EO)
• External Inquiries (EQ)
• Internal Logical Files (ILF)
• External Interface Files (EIF)

As shown in Figure 8.2, you start identifying specific FP counting
attributes for each of the sub-modules and then record them carefully.
As you move from sub-module to sub-module, you will observe some
emerging patterns of attributes:

• Certain functions seem to repeat in more than one sub-module.
• Interface files identified in one sub-module are actually internal file

to another sub-module.
• Internal files are sometimes shared by more than one sub-module.

The data and transaction functions identified for each sub-module in
Figure 8.2 are provided as examples only. As discussed earlier, some of
the external interfaces identified in some of the sub-modules may happen
to be internal files of another sub-module. In this situation, the external
interface files are not counted. The General System Characteristics (GSC)
are applied to the entire application to arrive at the value adjustment fac-
tor (VAF). The aggregate FP count from all the modules and sub-modules
is multiplied by the VAF factor to arrive at the final adjusted FP count.

176 Chapter 8 Estimation Flavors

Reengineering Projects

Software reengineering is the process of redesigning and rewriting
existing software applications. There could be several reasons for an
application to be reengineered:

• Aging applications are not able to scale up to higher performance
requirements.

• Years of maintenance tends to damage the original structure of the
application and can lead to frequent breakdown or make the code
prone to defects.

• The platform on which the application was originally written is no
longer supported by the vendor.

• The user has a compelling need to move the application to the latest
GUI-based technology.

• The application no longer facilitates easy maintenance due to bad
structure.

This list is not an exhaustive one. There could be several business, tech-
nological, or other reasons for a user group to resort to reengineering of

Reengineering Projects 177

Figure 8.2 Module level FP counts.

Functional
Module 1

Functional
Module 3

Functional
Module n

Sub-Module
2-1

Sub-Module
2-2

Sub-Module
2-3

Data
Functions

Transaction
Functions

ILF EIF EI EO EQ

Apply 14
GSC

Unadjusted
FP Count 2

Unadjusted
FP Count 1

+ + Unadjusted
FP Count n

VAF
Total Unadjusted

FP Count

Adjusted FP
Count

Application
Scope

+

Functional
Module 2

Application to be
Estimated

an existing application. A detailed discussion on the concept and
process of software reengineering is beyond the scope of this book.

The broad objectives of application reengineering include

• Restructuring the existing application without altering the existing
functionality

• Making the application modular in order to facilitate easy mainte-
nance and enhancements

• Rewriting the application in a new language on a new technology
platform to facilitate improved performance as well as improved
usability

• Cleaning up the data that has accumulated defects or errors over
years of usage

• Planning for the future and designing a scalable and fault tolerant
system

The basic process of reengineering is reverse engineering to under-
stand the business functions being delivered by the application (see
Figure 8.3).

Although reengineering is done to lessen the risk for the business
impact due to inherent structural, business functions, and technology
weaknesses in the existing application, you should also be aware that a
newly developed application has to go through its own lifecycle of
defects and other hiccups before it is stabilized, even if it is a reengi-
neered application.

178 Chapter 8 Estimation Flavors

Figure 8.3 Reengineering applications.

Code

Reports,
Documents

Files,
Interfaces

Screens

Existing Application

Understand
Application

Reengineering
Scope

Redesign and
Restructure

Code

Reports,
Documents

Files,
Interfaces

Screens

Reengineered
Application

Legacy
Platform

Latest
Platform

No Change in
Application

Functionality

Reverse Engineering Forward Engineering

Input

Whatever the reasons to reengineer and whatever the method or process
of reengineering adopted by the project team, the basic fact remains that
the overall functionality of the application is not expected to change.

Reengineering—Function Point Analysis Method

Apart from a difference in the process of collating inputs to define the
scope of the application, the rest of the process to arrive at an FP count for
a reengineering project is similar to a fresh development project. The fol-
lowing steps will help in calculating the FP count and the reengineering
effort:

• While working on the reverse engineering process, as you are
reviewing the various components of the existing application,
begin assessing the FP count of each of the components as it fits into
the FP analysis method.

• Each screen identified will be an input (EI), and if the documentation
provides information on other batch inputs, count them also as EI.
There could be situations wherein the physical appearance of an EI
might combine several logical EIs. You will have to identify them
logically and then count them as appropriate.

• Count all the query screens or query outputs as EQ.
• Identify the reports that are generated through the application and

count them as EO.
• Identify all the logical files that are owned and maintained by the

application and count them as ILF.
• Identify interfaces from other applications and count them as EIF.
• Identify the GSC parameters and calculate the VAF.

After the completion of the reverse engineering activities, when you start
working on the redesigned process, review all the listed FP attributes,
keeping in view the revised structure and design of the target applica-
tion. Some of the attributes among EI, EO, EQ, ILF, EIF, and GSC might
undergo changes. The revised FP count will be the actual size of the
application that has to be taken into consideration for all further calcula-
tions of effort, schedule, and cost. Choose the target technology platform,
select the productivity for the target platform as applicable to your
project team, and proceed to calculate the overall effort for the project.

The one major difference between fresh development and reengi-
neered projects is the existence of data from the legacy application in

Reengineering Projects 179

the latter case. While migrating to the latest platform through reengi-
neering, it is also necessary that the large volume of data that exists in
the old application be transformed into the new database in the target
platform (see Figure 8.4).

The IFPUG method does include the method to count data migration
FP. This is termed Conversion Function Points (CFP). When data is
transformed from the source platform to the destination platform, CFP
are counted. Typically, CFP are counted in the reengineering and migra-
tion category of software projects.

The conversion of data from source to target format is dependent on
several factors that constitute the objective of reengineering or migra-
tion activity. These factors include

• Converting source data format to target data format
• Transforming data sometimes to suit changes in business func-

tions in the target applications. For example, when an old legacy
application is reengineered to a newer technology platform and
in the process a considerable amount of new functionality is
added, this situation requires moving old data supported by the
legacy application to the new application data format and also
providing for storing additional data in the new format. This
will mean transforming data using business logic so that the
target data is understood and accepted by the reengineered
application.

• Splitting or consolidating data from one or more source logical files
to one or more target logical files based on target application data
requirements.

180 Chapter 8 Estimation Flavors

Figure 8.4 Migrating data.

File 1

Old File System
Logical Files

Redesign and
Restructure

File 2

File n

File 1

New RDBMS System
Logical Files

File 2

File n

Input

For software professionals, the conversion process would require writing
programs that read data from the source file, transform the data to suit
the target file, and populate the transformed data into the target file.
The fundamental question that arises here is how to count these pro-
grams. Under which category of FP counting attribute will this be
accounted for? The IFPUG FPA method identifies the data migration
process as an External Input process (EI). The inputs to the EI are the
data elements that are read from the source file. The transformed data
elements are written to the target database that is the ILF of the applica-
tion being reengineered.

A very common concern among estimators is this: How many EI do
you need to count while transforming a large database containing more
than, say, 250 files? Will this be a single EI because all the conversion
programs are likely to be consolidated into one batch file and then exe-
cuted in a batch mode?

The answer lies in the process you adopt while identifying a source
or target file. As discussed earlier in this chapter, files are identified
as logical files that store and process data about one defined entity.
For example, for an entity called employee, the data file can contain
data about the employee, his or her dependents, work experience
information, and maybe academic qualifications. All this informa-
tion put together can be identified as one logical file with three or
four record element types (RET). Also, one EI needs to be considered
to transform data from the source employee file to the target
employee file. The steps that the estimator needs to follow in order to
arrive at the number of EI required to count the FP for data migration
include these:

• From the source database, identify each logical file based on the
business entity that the file or set of files addresses.

• For each logical file identified, assign one EI and calculate the DET
and RET based on actual data elements that cross the boundary of
the application and enter the target database logical file.

• Find the complexity of each EI identified and add them together to
arrive at the total conversion function points (CFP).

• Normally the target database files would have already been
counted as ILF for the target application As such, do not make the
mistake of counting them again during data migration FP counting.

• Ensure that the source files are not counted as ILF or EIF because
they only provide inputs to the EI.

Reengineering Projects 181

It would be appropriate to remind the estimators that in reengineering
projects, provision should be made for some of the additional activities
that are not seen in normal development projects. To enumerate a few:

• Quite often it is found that the documentation of the source appli-
cation is either in bad condition and not up-to-date or it does not
exist at all. The reengineering analysts will have to obtain the infor-
mation by actually reading the code and interviewing the existing
users. This is quite tedious and will require additional effort.

• While testing the final product, over and above system and integration
tests, the user will expect parallel tests and regression tests to be done to
ensure that the outputs of tests are matching with similar tests done on
the source application. Remember that this is a very time-consuming
activity and quite often leads to code and even design changes.

Migration Projects

Migration projects are quite similar to reengineering projects. Typically
the main objective of a migration project is to transform the current
application from a legacy platform to a newer platform. Quite often the
transformation is straightforward and may not involve any reengineer-
ing or even any change of design or application architecture. Release of
a new version of a platform sometimes calls for a migration effort. For
example, when Microsoft released the .NET version of Visual Basic, the
applications in old VB6 were migrated to VB.NET by users who wanted
to access the features of the new platform.

The effort to migrate an application to a target technology platform is
typically less than a reengineering project for applications of similar size.
The steps to follow while counting FP for migration projects include

• Count the FP for the source application as described in the “Reengi-
neering Projects” section earlier in this chapter. Assuming that the
functionality existing in the source application remains the same,
the FP count will not change for the target application platform.

• Because migration of technology often involves migration of data
as well, count the conversion FP as described in the reengineering
CFP process.

• Identify the productivity figures for the target technology platform.
Convert the FP count of the project, including CFP, to effort using
this productivity.

182 Chapter 8 Estimation Flavors

In situations where the migration effort involves very little change in code
structure and also in situations where the technology platform vendor
provides a ready-to-use tool that can migrate the code from the older ver-
sion of the platform to the new version, the estimation process would use
a different productivity data as applicable while using conversion tools.

Maintenance Projects

The software application maintenance community is perhaps the
largest category among software professionals. Almost without excep-
tion, all development projects move to maintenance mode after suc-
cessful deployment in production. The software maintenance process
has been quite elaborately defined by SEI/CMMI processes. Broadly,
there are three categories of maintenance; namely, corrective, adaptive,
and preventive maintenance. These encompass the majority of soft-
ware application maintenance activities. It is not within the scope of
this book to delve into these maintenance processes. However, the
process of estimating various maintenance activities that typically take
place in maintenance projects is discussed.

First consider the contractual (or otherwise) obligations that need to be
met in typical maintenance projects:

• Depending on the size and complexity of the application being
maintained, a certain number of full-time equivalent resources (FTE)
are assigned to the maintenance project.

• The maintenance team will be working on the following main cate-
gories of activities at any given time:
• Production Support: The level 1 and level 2 kind of activities that

involve the first level of interaction and support to users. Other
production support activities include executing batch jobs,
uploading or downloading data extracts, troubleshooting, and
other operational activities.

• Bug Fixes: The corrective category of maintenance activity that
involves identifying the problem and fixing it within a specified
time.

• Enhancements: Done to upgrade/enhance the application with
additional functionality from time to time based on business
needs. Enhancements are typically of two categories: minor and
major. Minor enhancements take less effort as compared to

Maintenance Projects 183

major enhancements. The actual definitions of efforts that iden-
tify minor or major enhancement categories are specific to orga-
nizations. For example, in some IT organizations, enhancement
effort up to 80 hours per enhancement is classified as minor
enhancement and beyond 80 hours but within a certain upper
limit of 250 hours, is classified as major enhancement.

Request for Service

In a typical application maintenance project scenario, the maintenance
activity is triggered through a request for service (see Figure 8.5). A
user issues a request, sometimes also known as a ticket, to address a
problem during application usage. This user request gets transmitted
to the maintenance team responsible for handling maintenance
requests. Depending on the type of problem, the request could be a bug
fixing type or an enhancement type. Once the request is received, the
maintenance team typically follows these steps:

1. Study the request and do an impact analysis of the request. The
impact analysis provides information that includes the number of
programs, screens, files, and other parts of the application that are
impacted.

2. Based on the information obtained through the impact analysis
process, an estimation of the effort and elapsed time to fix the
request is calculated.

3. A formal sign-off and approval to proceed with the maintenance
activity is obtained from the user.

4. The impacted programs, screens, files, and reports are all modified
by the maintenance team.

184 Chapter 8 Estimation Flavors

Figure 8.5 Request for service.

Request
for Service

Impact
Analysis

Code Test

Close Request

User

5. The modified portion of code and all other impacted programs,
screens, files, and reports are thoroughly tested as per standard
testing processes. Once the testing is complete, the modified appli-
cation is deployed into production.

6. The request is then formally closed.

Estimating Maintenance Requests—Function Point Analysis

The application maintenance activities are normally covered by the
enhancement category of project execution under the IFPUG FPA
methodology. Estimating FP count for bug fixes is difficult, but minor
and major enhancements can be estimated by applying the application
enhancement FPA method. As defined by IFPUG CPM 4.2, the three
major processes that could be normally involved during application
enhancement are as follows:

• Functions that are freshly added to the existing functions, changed
or modified, and deleted.

• Due to the added, changed, or deleted functions, sometimes the data
structure also gets impacted. Any change in the structure of logical
files that result in conversion of the data to map to the restructured
functions is counted as conversion function points (CFP).

• Occasionally the overall changes in functions due to maintenance
leads to a change in the values of the general system characteristics
(GSC) attributes. As such, the value adjustment factor (VAF) also
could change.

The FP counting formula provided by IFPUG for a maintenance
activity is

EFP = [(ADD + CHGA + CFP) * VAFA] + (DEL * VAFB)

The explanations for various variables mentioned in the formula
above are

• EFP (Enhancement FP): The total function point that is counted for
the maintenance activity as a whole. This will be the final, adjusted
FP count.

• ADD (Added FP): Function points that were added during the main-
tenance activity. This is unadjusted FP count.

• CHGA (Changed FP): The functions that were modified during the
maintenance activity are counted here. Ensure that the FP value
is counted after the actual change or modification has been done.

Maintenance Projects 185

For example, suppose that you have been required to modify a
screen (EI) that is of medium complexity (4 FP). After you added a
number of data elements (DET), you found that the complexity of
the screen (EI) had changed from medium to complex. The FP to
be taken into consideration would be the value for complex EI
(6 FP). You may encounter situations when the reverse could
happen, and the complexity would have changed from medium
to simple. In this situation, count the FP value for the simple cate-
gory (3 FP).

• CFP (Conversion FP): Discussed earlier in this chapter. Any conver-
sion of data during the maintenance activity is counted as conver-
sion function points.

• DEL (Delete FP): The functions that were removed/deleted, if any,
during maintenance activity are counted as Delete function points

• VAFB-VAF before maintenance activity: The value adjustment factor
that existed before the maintenance activity was started

• VAFA-VAF after maintenance activity: The modified VAF after the
maintenance activity is completed, if any, is taken into considera-
tion here. Normally the VAF changes when there are substantial
changes in functions of the application due to maintenance activity.

In actual maintenance activity estimations, not all the preceding com-
ponents are applicable every time. For example, your application may
not delete functions or the VAF value may not change.

It is important for the estimator and the maintenance team to take the FP
counting activity to its full closure. After a maintenance activity has been
completed, the revised FP count should be done immediately on the
updated application and recorded accordingly. This process is known as
the application function point counting process in the IFPUG FPA method.

NOTE The discussions for estimating maintenance requests here
are applicable to medium and large requests only. Minor requests
requiring less than a day’s effort are not applicable here.

Case Study—Maintenance Request

Consider the example of an Inventory Management System (IMS) that
manages the raw material stores of a large manufacturing company.
All materials required for daily product manufacturing are stored and
managed through the IMS. Although the IMS is integrated with many

186 Chapter 8 Estimation Flavors

other applications within the organization, for case study purposes, the
discussion is limited to the IMS only. The main functions facilitated by
the IMS are

• Material Inventory System
• Material Rate System
• Supplier Database
• Material Issue System
• Goods Received System
• Inventory Analysis Reports

The current system includes a provision to record the inventory bal-
ance in the bins for various stores, based on daily issue of materials to
the production floor. In addition, the system tracks goods received
through suppliers. But in order to keep track of the store inventory bal-
ance and ensure that the balance does not fall below a certain threshold
limit, the present application requires the store’s in-charge person to
generate a daily inventory balance report. When materials are needed,
the stores raise a request to the supplier through the Order Processing
System. Because this is a manual system, occasionally the production
floor faced the problem of non-availability of critical material, and that
led to production delays. A user request was sent to the IMS mainte-
nance team to automate the triggering of orders for inventory that falls
below threshold level.

Another concern faced by the production planning department was
that of being able to predict more accurate raw material requirements
for the various product orders in hand over the next three months. The
planning department put forward a request to the IMS maintenance
team to enhance the application with the feature that helped them
work out the detailed material planning based on product orders on
hand. The need was to add a product and sub-assembly management
system that would facilitate recording the raw material break-up infor-
mation for every product and sub-assembly. Based on this information,
the system could generate a raw material requirement report depend-
ing on the product orders on hand.

Looking at the possible changes and enhancements that need to be
incorporated in the IMS will help you see how to do an estimation of
the resultant maintenance FP count as per the IFPUG FPA method. This
section does not go into the details of attribute-wise DET, RET, and
FTR. This example assumes complexity and proceeds with calculating

Maintenance Projects 187

the FP count. Table 8.1 shows the various attributes of the application
that has been affected. The resultant change in attribute complexity
and the resultant FP count impacted is also shown. This is only an illustra-
tive example. In actual situations the details may change.

Although a change in the menu has been made to include the sub-
assembly module access, the VAF is assumed to have remained the
same (VAF=1.05). The EFP can be calculated as

• EFP = [(ADD + CHGA + CFP) * VAFA] + (DEL * VAFB)
• EFP = [((6+10+14+5) + (4+10) + (4)) * 1.05] + (0 * 1.05) = 56 FP

Complexity in Estimation of Request for Service

Although IFPUG does provide a fairly decent method for calculating
the FP count for a maintenance activity, quite often it is not easy to
identify the complete set of attributes like EI, EO, EQ, ILF, and EIF that

188 Chapter 8 Estimation Flavors

FPA Complexity Complexity FP
Module Impacted Attribute Action Before After Count

Sub-Assembly System

Menu Change GSC VAF

Data Entry Screen EI Add Complex 6

Sub-Assembly EO Add Medium 5×2
Reports (2)

Files Introduced ILF Add Simple 7×2
(2 Files)

Material Inventory System

Screen Modified EI Modify Simple Medium 4

Inventory File ILF Modify Medium Medium 10
Modified

Converted Inventory EI CFP Medium 4
Data

Interface to Order EIF Add Simple 5
Processing

Table 8.1 Enhancement List

are impacted during the initial impact analysis phase. Nevertheless,
the FPA method does give the estimator a process to estimate, with the
accuracy being dependent on the level of inputs provided.

Although the FP sizing of a maintenance activity can be done using the
preceding method; the effort to execute the actual maintenance activi-
ties does not always remain uniform due to certain other environment
factors. Consider some of the key factors that impact the way the main-
tenance activities like bug fixes and minor and major enhancements are
actually executed and the variance in the effort taken to execute them.

Ratio between Enhancement and Application Size

Fixing a leak in the water pipe in your house is not the same as fixing major
water pipe damage to the city water supply line. Fixing a crack in the

wall of your house is not same as fixing a breach in the river dam.

The estimator needs to understand the critical difference between
maintenance activities that are smaller in scale as compared to those
applied to large applications. Surprisingly, the FP count may not pro-
vide the real clue to these drastically different situations in mainte-
nance project execution conditions.

The three case studies shown in Figure 8.6 give you a fair idea of the
relationship between the size of the application and the size of the
enhancement (maintenance). The size of application could be very
large as compared to the size of enhancement, or, on the other hand, the
size of the enhancement could be almost 60 to 70 percent of the applica-
tion size. To assess the impact of these varieties of ratio between appli-
cation size and enhancement size, recall the earlier discussion of the

Maintenance Projects 189

Figure 8.6 Ratio between enhancement and application size.

Enhancement

Case 2

Application

Enhancement

Case 3

Application

Enhancement

Case 1

Application

three main activities that are undertaken in a typical maintenance
activity: impact analysis, coding, and testing.

• Impact Analysis: The time needed to do an impact analysis will vary
among the three case studies. The effort will also depend upon the
complexity of the maintenance request and will have another
matrix with the complexity of the impact on various modules
within the application.

• Coding: The coding and unit testing effort will also vary depending
upon the complexity matrix between size of application and size of
maintenance request as well as dependent upon the number of
modules affected.

• Testing: The testing is an activity that cannot be negotiated for its com-
pleteness, whatever the impact of the maintenance request may be.
Other than the usual tests like system test and integration test, quite
often the user would be more comfortable if regression test and par-
allel tests also are conducted. This is done to ensure that the test
results compare with the test results that were obtained before
imparting the maintenance activity. As such, it is quite natural that
the overall testing effort would remain the same, irrespective of the
size of maintenance request. There could be exceptions if the main-
tenance activity is a simple bug fix.

The two types of enhancement are shown in Figure 8.7. A maintenance
request may impact only a few modules of the application under the

190 Chapter 8 Estimation Flavors

Enhancement

Simple Enhancement

Application

Modules

Enhancement

Complex Enhancement

Application

Modules

Figure 8.7 Enhancement complexity.

simple enhancement category. On the other hand, when a similar size
maintenance request impacts several modules, the enhancement could
be called a complex one.

To summarize, the size of the maintenance request may not always lead
to similar effort based on standard productivity. The effort may vary
due to several additional reasons as discussed earlier. Perhaps there is a
possibility of improving the accuracy of the size and effort estimations if
you maintain more granular details of the application and its modules.
Table 8.2 illustrates information that could be useful during estimations.

To illustrate with an example, first assume that the application has n mod-
ules. The data for the first four modules is provided in Table 8.2. The FP
count for each module is also provided, along with the information on
the basic business functions that exist in each of the modules. Now
when a maintenance request is received, the following benefits could
be obtained from the table:

• During the impact analysis stage, if you do a quick pre-impact
analysis process through which you identify the list of modules
that are affected, you can then get the total number of function
points that need to be scanned for impact analysis. Through
repeated data gathering during impact analysis activity, you can
develop the productivity data per function point for impact analy-
sis alone. This productivity can be used to arrive at the effort for
impact analysis for a given FP size.

• Another benefit of the table will be to estimate the total testing
effort. Based on previous testing productivity per function point, if
you know the number of modules affected for a given maintenance
request and hence the FP count of impacted modules, you can
work out the testing effort based on the testing productivity of the
maintenance team.

Maintenance Projects 191

Module FP Count Function-1 Function-2 Function-3

Module-1 235 Yes No Yes

Module-2 460 No No Yes

Module-3 220 Yes Yes No

Module-4 640 No No Yes

Table 8.2 Variety of Maintenance Requests

Conclusion

As essential as it is to understand all the nuances of a typical applica-
tion development project, it is even more important that estimators
understand and practice variations of the basic estimation methods
under different varieties of project execution processes like mainte-
nance, porting, reengineering, and migration. The difference lies in
sizing as well as effort estimations. But estimators need to be aware of
certain basic differentiators:

• FP sizing processes for different categories of projects like develop-
ment, reengineering, maintenance, and migration are all different.
Basically, however, the sizing processes are variants of the standard
FPA estimation method.

• Productivity figures also vary for different categories of project
execution

• The maintenance projects are the most complex from a sizing per-
spective. The FP count itself varies based on the impact of the main-
tenance activity. Also complex is the variety of maintenance effort
due to a varying ratio between the size of the application and the
size of the maintenance request

Normally the quality processes provide for collating data for all these
varieties of project execution situations. It would be advantageous if
the data collated is granular to the extent that the productivity figures
for the various categories of projects discussed in this chapter can be
evaluated in a flexible manner. The resultant size and effort calcu-
lated would be more accurate.

References

1. International Function Point Users Group (IFPUG). Function Point
Counting Practices Manual (CPM) Release 4.2.

192 Chapter 8 Estimation Flavors

CHAPTER 9

A Sense of Where
You Are

On the Right Track, On Time

If you are running against time, it will be just a matter of time before time runs you out!

As important as it is to carefully plan your project, it is even more critical
that you keep track of the project’s progress at frequent intervals. Stud-
ies have shown that careful monitoring at predefined milestones helps
in assessing and applying corrections early in the project. Projects that
are monitored have less chance of failure or schedule slippage. But wait,
when we say a “project,” is this applicable only to a software project?
No, in fact almost any work that has a defined set of activities to be per-
formed in a given time with known deliverables can be called a project.
Tracking and monitoring process is applicable to all kinds of projects.

Consider a few examples of successful project executions from the
sports field. In particular, if you observe the project execution process
followed by some world-class athletes, you will be able to see a pattern
of careful tracking, monitoring, and correction applied throughout the
project execution lifecycle. The style and type of corrections applied
vary according to the game being played. For example,

• A long-distance runner has the complete race well planned. The race
is divided into predefined milestones and the speed and time for
each milestone is calculated well in advance. In consultation with
the coach, the milestone strategy is rehearsed again and again. And
finally when the race is actually in progress, a professional athlete

193

sticks to the predefined strategy and thus increases the chance of
success. During the race, if the athlete realizes that he or she is either
behind or even ahead of schedule for a milestone or lap, the runner
immediately makes appropriate correction to get back on course.

• AFormula 1 race car driver practices individual lap timings in consul-
tation with the coach. During the actual race, the driver keeps track of
the lap timings he or she is clocking. Based on the strategy planned
earlier, the driver makes corrections in order to attain top honors.

• In a One-Day Cricket match, the team that has its strategy well-
planned and manages to execute it as planned has a better chance
of winning the match. While choosing to bat first, the run rate to be
maintained during the first 10 overs, how to step up during the mid
and end stages are all part of strategy. Similar strategy holds for the
team that is fielding in the match. In either case, the team captain
and the seniors track and monitor progress almost on every over
basis and try their best to apply corrections.

194 Chapter 9 A Sense of Where You Are

The Sense of Where You Are

In his book, The Sense of Where You Are, John McPhee talks about
Bill Bradley, an accomplished U.S. basketball player, and shows
how a player on the field should use all senses to position himself
exactly with respect to the match environment [1]. The following
points summarize his ideas about the various guiding senses
through which a player can be aware of the state of the environment:

• You need not look around frantically to know which side of
the basketball court you occupy at the moment. Look at the
markings on the floor, and you will know where you are.

• To differentiate between your teammate and the opponent,
you need not stare at each and every player and make eye
contact. Look at the shoes and socks of the various players
around you and you can differentiate between your teammate
and an opponent. If you take a quick glance at the images of
the people moving around you on the court, you can possibly
identify individual teammates based on their running styles
and other body movements.

• Even when you are gauging where the ball is, you need not track
the ball all the time. While concentrating on the movements of
your opponents, you can look quickly at the referee, which enables
you to position the movement of the ball as well.

On the Right Track, On Time 195

• At times, playing defense, you are in front of your opponent.
You sense the opponent’s movements behind you through the
touch of your hand.

• The roar of the crowd every time a basket is scored tells you who
is winning as well as who is better supported by the spectators.

To recap, as a player participating in a crucial basketball match,
you can tap various senses and signals around you to position
yourself and the rest of your players in a dynamically moving sce-
nario. A true professional basketball player uses this technique of
sensing the environment through various sources of input and
dynamically makes corrections to bring about the best possible
performance.

Sensing Where You Are in Software Project Execution

You can use the technique from The Sense of Where You Are in the
software project execution scenario and make corrections dynami-
cally at every milestone or in other defined phases of the project.
The source of input would vary and arise from different direc-
tions, To enumerate a few:

• Strategize the effort and elapsed time for each of the milestone
stages. Continuously measuring and comparing progress with
planned milestone metrics will help you know whether you
are on track and on time.

• Assess the expected productivity of the team assembled to
deliver your project. At every milestone, review and evaluate
whether the desired productivity is being attained. If not,
apply appropriate corrections.

• Evaluate the support, participation, and contribution from
other stakeholders of the project (for example, the user/cus-
tomer, the subject matter experts, the technical experts, and
others). If the desired level of participation is not happening,
discuss this with the stakeholders and make appropriate
adjustments.

• Carefully collate quality metrics of the project. Gathering data
about defects generated during coding, performance short-
comings, estimation blunders, and more, is critical to your
project. Evaluate the impact this information has on the
project schedule and make appropriate corrections.

Pervasive Estimations

Even if you are on the right track, if you are sitting on it,
you will soon be run over by the train!

Software projects and estimations are very tightly integrated entities.
Success of the project depends a great deal on highly accurate estima-
tions, among other parameters. Among the input you need to arrive at
good estimations, the important pieces include

• The scope of the project that defines the functions that will be deliv-
ered by the end product

• The technology platform on which the software application is
being developed

• Competency of the project team members
• The tools being used to develop the application
• The project management process being deployed
• Maturity of the quality processes that can control the quality of the

product as well as the productivity of the project team
• Participation of subject matter experts in knowledge transition,

who provide appropriate clarifications on various business func-
tions being delivered through the project.

• The project execution environment in which the project team is
working

Every project is unique. No matter how you evaluate them, you will
rarely encounter two software projects that have these parameters with
exactly the same degree of impact. On the other hand, estimations at
the beginning of the project are based on certain assumptions because
complete and accurate information pertaining to the parameters is not
available.

IT organizations that have deployed mature quality and measurement
processes have the comfort of analyzing historic data from a large
number of projects executed in the past. And based on the analysis, the
organization can predict its capability to deliver software projects in
the future with a fairly well-defined level of quality and productivity
parameters. These parameters include predictable competency on a
given technology platform, quality of the product, number of defects,
variance in estimation, and variance in delivery schedule.

196 Chapter 9 A Sense of Where You Are

As the project begins its first phase of capturing requirement specifica-
tions and analysis, the mode and quality of input may not meet the
expectations of the requirements specifications team. In other words,
the assumptions on the mode and quality of input during the require-
ments phase would not be met in the actual situation. Due to this
change, project execution will be impacted two ways:

• The effort for the requirements phase will vary as compared to orig-
inal estimates.

• The rest of the lifecycle phase activities are likely to be impacted
possibly due to a change in requirements, and this almost always
results in scope creep.

The Rippling Effect

A well-designed and well-planned software project will typically
have its lifecycle phases well integrated. Based on the total scope of
the project, the effort, schedule, resources, and the cost will be metic-
ulously calculated and scheduled. Under these circumstances any
noticeable change in the scope of any one of the lifecycle phase activ-
ities will immediately have a rippling effect on the other lifecycle
phase activities. Normally the effect is seen more in the lifecycle
activities on the downstream side and to a lesser degree on the
upstream side.

For example, suppose that during the design stage, you find that the
stringent performance needs from the application will require addi-
tional restructuring of the software architecture. This finding will have
a rippling effect on the design, build, and test activities. The effort for
all the three downstream phases is likely to increase. You will also need
to modify the requirement specifications to map to the appropriate per-
formance specifications. Basically a change in scope at any stage will

Pervasive Estimations 197

Requirements Design Build Test

Scope Change

Figure 9.1 Rippling effect.

call for re-estimations of the rest of the lifecycle phases as well as some
modifications to the upstream activities.

The estimation techniques in these situations must be nimble, with a
built-in flexibility to re-estimate and revise the entire project schedule,
effort, resource loading, and costs. Depending on the phase in which
the change in scope happens, the rippling effect on all the project
parameters will vary in intensity. The later the occurrence of a
change in scope, the greater the rippling effect due to the fact that the
rework will need to be done in all the preceding lifecycle phases as
well as the remaining phases. And rework takes more effort than
fresh development.

Change of scope is not the only reason to cause a rippling effect. Other
reasons could include

• A decision to change the technology halfway through project
execution

• A new version release of the product on which the application was
being developed

• Key members of the project team have been pulled off for another
project or have decided to leave the company

• A number of functional changes happened due to new business
demands

• The project schedule was crunched due to severe competition in the
market

How do you re-estimate under such situations? Which estimation
method should you adopt?

Suppose that you are in the build stage of a project and now due to a
change in scope, you need to re-estimate and calculate the overall
impact on the project schedule, effort, and other parameters. Assess-
ing and calculating the incremental change in effort in different life-
cycle stages of the project due to the change in scope is quite a
complex process. One possible solution to this problem is to re-estimate
the total project size, effort, and other parameters and then redistrib-
ute the total effort into lifecycle phase-related effort. If you remove
the actual effort already spent in the earlier lifecycle stages from the
revised efforts, you will obtain the additional effort to be spent in
various lifecycle stages that are already completed. For the lifecycle
phases yet to be executed, the revised effort needs to be taken into

198 Chapter 9 A Sense of Where You Are

consideration. The next section continues the discussion of this
method.

Agile Software Projects

Question: How does a project get delayed?
Answer: One day at a time!
—Frederick P. Brooks, Jr. [2]

Among the analysis and findings of a variety of project failures, delays,
and unsuccessful deployments reported in The Chaos Report [3], the
most significant information is about the very low number of projects
(<17%) that were finally delivered and deployed successfully. This is
without a doubt an alarming finding, but it is doubtful that large soft-
ware outsourcing service providers will agree to this data. With most
outsourcing service providers boasting of highly mature software project
execution and quality control processes in place, backed by SEI/CMMI
Level 5 accreditation, the project delivery and deployment success rate
is claimed to be more than 90 percent!

Without delving deeper into the debate of why and under what cir-
cumstances an IT organization can deliver a higher number of successful
software projects, consider first the various complexities, uncertainties,
and ambiguous situations that a typical project manager has to face in a
fresh development project:

• Scope: Being able to get perfect, complete, and finally signed-off
specifications for a development project will always be the dream
of the development project team. But if you put yourself in the
shoes of the user who has to sign-off on the final specification,
things would look quite different and difficult indeed.

• Design: There are two kinds of design—application architecture
and technical architecture—that are critical to an application being
successfully delivered, deployed, and accepted by the user. Typi-
cally, early in the project execution stage is too early for a user to
fully understand and approve these architectures. The result often
is that changes in the application design occur at the build, test, and
even acceptance stages.

• Build and Test: If defects due to improper design and bad coding
exist, they are trapped during these phases. The test results
throw up errors that could lead to review of coding and rework.

Agile Software Projects 199

Also, if the test output does not conform to the expected output as
desired by the customer, often it becomes necessary to revisit the
design of the application and make appropriate modifications.
This leads to additional work in other downstream activities of
the project.

• Acceptance Test: Not all users have the luxury of actively participat-
ing in the entire project execution lifecycle phases. Normally, the
key users, representing their user groups, participate early during
the requirements phase and then on an as-needed basis in other
phases. In situations where there is a lack of serious, early partici-
pation by the user it is observed that all the functional and non-
functional (performance) defects and other shortcomings are
finally trapped at this gate. The project team then has the arduous
task of reworking the defects all the way from design to acceptance.
This also means making appropriate corrections in the requirement
specifications. The acceptance test phase has to once again go
through the entire testing procedure until all the results are totally
cleared and approved by the user.

Software development projects are likely to face one or more of the
issues discussed here. Even if the outsourcing service provider is
highly process-oriented, the client user team may not be in sync with
the vendor processes.

In order to meet disruptions in project execution due to change in scope
of work, planned or otherwise, it is essential that the project team be
equipped with methods and techniques that help the manager quickly
assess the impact and apply corrections immediately. These are the
qualities of truly agile software projects. One of the key ingredients of
an agile project is the capability of the team to correctly assess the
impact on effort, schedule, resources, and costs across the entire project
lifecycle and apply appropriate changes quickly.

Agility at Project Execution Milestones

Typically project managers take extreme caution and do all sorts of
due diligence in preparing elaborate estimation data for the project
being executed. But it is also commonly seen that once the formality of
estimation is done, the information is carefully stored in a secure filing
cabinet—very often, never ever to be opened again!

For a project to be truly agile it is considered a good practice to re-
estimate project effort and schedule every time you encounter a change

200 Chapter 9 A Sense of Where You Are

in any project attribute, whether it is the scope, design, or even the skill
level of the project team. Consider a few milestones of a typical devel-
opment project to understand how re-estimation can lead to an agile
project. This practice helps the project manager apply the “sense of where
you are” concept.

Figure 9.2 provides insight into how reviews at different milestones can
lead to the following:

• Actual measure of the completed portion of lifecycle activities,
from the beginning of the project through the current milestone.
This measure will provide important input about the stability of
project scope (through sizing) and actual productivity of the
project team thus far.

• The measure can be effectively used to evaluate change in scope, if
any, and the difference in planned and actual productivity. Evaluat-
ing the productivity for a partly finished product may be complex
but an approximate calculation, done by extrapolating the current
productivity to the entire project lifecycle, should suffice for the
time being.

Agile Software Projects 201

Requirement Design Build and Unit Test
System and

Integration Test
Lifecycle
Phases

15%−20% 15%−20% 35%−40% 25%−30%Effort %

Milestones
1 2 3

At Milestone:
• Measure Effort Spent
• Assess Productivity
• Evaluate Project Progress

For Balance Milestones:
• Re-Estimate Revised Size
• Re-Calculate Effort Based
 on Revised Productivity
• Apply Corrections

Measure Re-Estimate

Measure Re-Estimate

Re-EstimateMeasure

Agile
Estimation

Figure 9.2 Agile projects.

• As you measure various parameters that include size, effort, pro-
ductivity, and project progress up to a given milestone, there is
every possibility that you will discover variations or slippage in
one or more of the parameters. These variations are likely to have
an impact on the rest of the project work. Evaluate the impact of the
findings on the milestone phases that are yet to be executed. If there
was a change in scope and also a change in productivity observed
up to this point in the project, the balance of the milestone delivery
schedule will likely be affected as follows:
• Increase in size will increase effort to deliver the rest of lifecycle

stage activities. For example, if you are reviewing the status at
the end of the design phase, the change in size will affect the
effort for the build and test phases.

• If the milestone stage delivery through this point was delayed
and the overall productivity was found to be lower than what
was originally assumed, this will have an impact on the deliv-
ery schedule of balance milestones.

Case Study

An Order Processing System was being developed from scratch.
Upon estimating the project delivery attributes, the estimator found
the following information:

• Project Size: 450 Function Points (FP)
• Productivity: 12 hours per FP (J2EE Platform)
• Total Effort: 5400 hours (675 Person Days)
• Schedule: 5 months (110 Person Days)

The milestones of the project are given in Table 9.1.

At the end of design phase, a review of the project status was done and
the data collected was compared with the original estimates. The project
size was found to be 470 FP, and the milestones are shown in Table 9.2.

Based on the data collected as shown in Table 9.2, if you extrapolate the
projected estimates for the balance phases of the project, the data looks
like the following (the milestones are shown in Table 9.3):

• Revised Productivity: 801/470 = 13.6 Hrs/FP
• Revised Schedule: 131/22 = 6 Months

202 Chapter 9 A Sense of Where You Are

Agile Software Projects 203

Milestone % Time Elapsed Time # Resources Effort

Requirements 14% 15 Days 3 45 P Days

Design 18% 20 Days 4 80 P Days

Build 45% 50 Days 8 400 P Days

Test 23% 25 Days 6 150 P Days

Total 100% 110 Days 675 P Days

Table 9.1 Case Study

Milestone % Time Elapsed Time # Resources Effort

Requirements 14% 18 Days 3 51 P Days

Design 18% 24 Days 4 96 P Days

Build 45% 60 Days 8 480 P Days

Test 23% 29 Days 6 174 P Days

Total 100% 131 Days 801 P Days

Table 9.3 Milestone Re-Estimation

Milestone % Time Elapsed Time # Resources Effort

Requirements 14% 18 Days 3 51 P Days

Design 18% 24 Days 4 96 P Days

Total 32% 42 Days * 160 P Days

Table 9.2 Milestone Progress

*The number of resources allocated during a particular lifecycle stage varies
depending on project size, lifecycle stage, etc. There is no concept of total resources
but there can be a peak number of resources that generally occur during the build
lifecycle stage of the project.

As you can see, the project schedule has shifted by almost one month. In
order to apply correction at this stage, you have the following options:

• Increase resources for the build and test phases in order to increase
effort in these phases and catch up with the original schedule of five
months. If possible, bring the additional resources with high produc-
tivity and target reduced effort for the balance milestone activities.

• Negotiate reduction in project scope that can reduce the FP size and
as a result, impact the overall effort for the balance phases.

This example illustrates the situation the at the end of design phase.
You can follow the same process at the end of every milestone or at any
stage there is a change in scope or any other disruption that calls for a
re-estimate.

204 Chapter 9 A Sense of Where You Are

The Dream Project—Catch the Signals!

Remember the dream project that failed in Chapter 1? This section
explores possible solutions to the problems faced by Sunil at vari-
ous stages of the project execution and applies the “sense of where
you are” technique.

Situation 1: Immediately after the big contract for the project was
signed-off with the customer, Sunil decided to do a detailed evalu-
ation of the scope and the derived effort and schedule estimations.
He brought in a couple of seniors from the team and did an effort
estimation based on the past experience of delivering similar pro-
jects. They had not sized a project of this magnitude before; never-
theless, having done smaller projects they thought they could do
an extrapolation and arrive at a good guesstimate for the current
project. They realized that it was indeed a very large project. After
several rounds of deliberations, it was decided to fix the delivery
schedule to 15 months with an average team size of 30 members.
The team was aware that the customer had a tight deadline to
meet and any further extension of schedule may not be allowed.

Solution 1: Without being aware of the higher level of risk attached
to large projects, it was a wrong move to succumb to delivery
schedule pressures from the customer. Sunil could have sought
expert advice from experienced estimators as well as experienced
project managers who had handled large projects in the past.

Agile Software Projects 205

Situation 2: During discussions with customer on project execu-
tion strategy, the team realized the customer was quite inflexible
on the delivery schedule of 10 months as was agreed upon during
contract negotiations. Sunil had no option but to return to his
drawing board and recalculate the project schedule and the related
impact on other project delivery aspects. They had to do several
rounds of review to arrive at the best possible project execution
plan. The 30 percent reduction of the schedule (from 15 months to
10 months) had a direct impact on the average team size by a
whopping 50 percent increase (from 30 members to 45 members).
They also cut corners on some of the buffer that was built-in earlier.
All the phases of the software project were very tightly planned
with very little room to handle slippages.

Solution 2: IT organizations involved in frequent delivery of soft-
ware projects should be well aware of any delivery limitations
they may have. Limitations could be in different areas that include
project members’ competency, quality processes followed, ability
to handle complex projects, and limitation on the maximum size
of project delivery. If Sunil’s organization had collated and pub-
lished its limitation on executing large projects, Sunil could have
surely looked at the alternatives that could be explored at this
juncture:

• Negotiate reduction in the functionality that was originally planned,
thus reducing the deliverable size. This might reduce the risk.

• Move the removed functionality to the next phase and plan to
deliver the project in multiple iterations.

• Take an aggressive stance and insist that at least 50 percent of the
development team be highly skilled. With improved productiv-
ity of the project team, the risk of failure is somewhat reduced.

Situation 3: During the requirements gathering phase, the scope
was reviewed with the business users. It was then pointed out by
business users that due to recent changes in government regula-
tions, additional validation procedures needed to be embedded in
the software application. This also meant a change in certain func-
tional work-flow of activities. Sunil’s team included all the relevant
changes and did a quick re-estimation. It was found that the over-
all effort had gone up by another six percent. Once again, a negoti-
ation with the customer to increase the schedule was turned down.

206 Chapter 9 A Sense of Where You Are

The result was an increase in team size by another three members.
Sunil was worried about the possible impact and increased risk
but was confident his team would deliver.

Solution 3: The project schedule was already at a high-risk level, so
it would have been disastrous to accept more work, despite what-
ever additional resources were made available. Clearly, the option
to be taken here is to negotiate and work on a trade-off between
existing functionality and additional functionality such that the
overall project size did not change significantly.

Situation 4: The first serious signs of problems surfaced during
design phase. The software was being developed on a Java plat-
form. The technology vendor had recently introduced a new
product that would dramatically change the way the business
workflow could be manipulated directly by the end users.
Although it was a boon to the users, it meant two significant devi-
ations to the project team: the team had to learn and understand
features of the new product, and it also meant additional effort to
include the new product into the revised architecture of the software
application. Overall, the effort went up again. Sunil’s team was
rightly worried this time. The size of the project was ballooning,
but the end date of delivery was not allowed to change!

Solution 4: Looking at the project execution stage and with almost
no scope to stretch the project team any more, Sunil’s reply should
be a loud, “No!” Evaluating the benefits of the new product, and if
they are accepted, making the appropriate architectural changes
should be considered for the next iteration of product release. A
re-estimation at this stage would give further credence to fact that
suggested changes would involve a huge rework, leading to
increased effort.

Situation 5: Sunil felt it was time to escalate the situation to his
manager internally. His manager decided to do a complete review
of the project status. There was another surprise waiting to be dis-
covered. The project had already slipped by two weeks. The late
changes in project scope and the last-minute changes due to the
addition of a new product made its impact on schedule slip-
page. This was further aggravated when it was found that the
new product was still in beta version and there were quite a
number of bugs to be removed by the vendor. By now the team

Agile Software Projects 207

size had grown to 50 members and it looked almost impossible to
meet the 10-month schedule.

Solution 5: By now it is almost too late to apply any corrections. A
re-estimate at this stage would provide critical input on produc-
tivity of the project team, as well as a revised project size. Review
and recalculation of the balance lifecycle phase activities based on
revised productivity and size would indicate the possibility of
project delivery getting delayed. The options available here would
be to either negotiate for a project schedule extension or reduce
some functionality.

Situation 6: During the coding stage, one of the key senior mem-
bers fell ill and had to take two weeks leave. Two other developers
decided to quit, thus compounding the problem. The early sched-
ule slippage had a crunching impact on the duration provisioned
for the coding phase. Despite Herculean efforts, it was found to be
impossible to meet the original deadline. Sunil had no other
option but to go back to the customer to negotiate more time.

Solution 6: Although it is considered a good practice to provide
stand-bys for key resources, quite often resource shortages do not
allow the luxury of stand-by resources for the project manager.
Despite providing replacements, the productivity of the team is
most likely to suffer. Re-estimate all project parameters and apply
possible corrections.

During discussions with the customer, the criticality of the whole
project emerged. The business users had planned for this project
to be ready in 10 months in order to meet a possible window of
business opportunity that would last only a few months. The team
decided to work on weekends and also extended working hours
to late nights. But during early tests, serious performance issues
were detected. Also found were mismatch in coding standards fol-
lowed by different groups within the project team. This again was
a setback that had a direct impact on delivery schedule. It was
now impossible to meet the deadline under any circumstances.
The only option was to extend the delivery schedule by two
months. The customer was aghast at the proposal. The matter was
escalated to higher management and after couple of rounds of
senior level meetings, it was decided by the customer to scrap the
project.

Estimation Maturity

Although it is highly desirable that project teams apply agile estima-
tion techniques in order to continuously monitor and apply corrections
in projects being executed, an IT organization should also constantly
measure the level of estimation accuracy and the results of software
projects executed. Mature quality processes deployment does help in
collating all kinds of metrics, including the contribution from good
estimations. The variances in the delivered effort and variances in
schedule adherence can be tracked and monitored. But in order to con-
tinuously improve the quality and accuracy of estimations, it is essen-
tial that IT organizations apply the “sense of where you are” technique
to the estimation process improvement strategy.

It is quite normal for IT organizations involved in large-scale software
project executions to adopt multiple types of estimation methods. The
reasons for doing so are varied:

• Because there are various types of project executions, one estima-
tion method does not suit all of them. For example, the function
points estimation method may not be a good method to estimate
embedded systems projects.

208 Chapter 9 A Sense of Where You Are

What Really Did Go Wrong?

Large projects are risk prone (The term large project may be under-
stood differently by different readers. Our definition of large
project here is 10,000+ FP size or 500+ Person Months effort). For a
successful project execution, the “sense of where you are” has to
be applied in all its seriousness:

• Due diligence using this method needs to be applied after
almost every month rather than after every milestone.

• The contract should include stringent clauses that strictly
control project scope changes.

• Deeper participation by client experts throughout the project
execution lifecycle would ensure better understanding between
the user and the developer. This de-risking strategy would
better control scope changes to the project.

• The requirements specifications that have been prepared for a spe-
cific project, perhaps using the Use Case process, could be more
suitable to the Use Case Points (UCP) estimation method

• The COCOMO II method would be well suited to projects that
require schedule and cost estimations based on available inputs in
the form of source lines of code (SLOC) or function points (FP)

• Many software projects do not conform to all the lifecycle stages of
a typical software project. For example, there are projects that
require an existing application to interface (connect) with another
application or an external device. These types of projects consist of
coding activities that are focused on work on platform internals. In
these situations, the technology platform experts within the
project team adopt what is known as the Simple, Medium, and
Complex (SMC) estimation method. Here the effort for various
design, code, and test activities is directly evaluated based on SMC
complexity. There could be variety of SMC methods that are
designed for specific varieties of project executions.

Figure 9.3 tries to capture the basic essence of the amount of fluctuation
and variance that different estimation methods can bring when

Estimation Maturity 209

Effort Variance

S
ch

ed
ul

e
V

ar
ia

nc
e

SMC-1

UCP

FP

SMC-2

SMC-3

0% +50%
−50%

+50%

0%

+15%−15%

SMC-4

COCOMO II

Comfort Zone

Delphi

−15%

+15%

Figure 9.3 Containing variance.

compared to the desired level of zero tolerance on effort as well as
schedule variances.

NOTE The estimation methods shown in Figure 9.3 are only illus-
trative and in no way indicate the real variances that occur due to
their usage.

Each of the estimation methods has its own level of accuracy that leads
to a range of variance in project effort, schedule, and costs. The IT
organization management should try and eliminate possible estima-
tion methods that can be replaced by established and more scientific
estimation methods. Expecting a single estimation method to address
all estimation needs of the IT organization is unrealistic, however. As
such, estimators have to deal with multiple estimation methods.

Mentor and Monitor Estimation Methods

If an IT organization supports and maintains multiple estimation
methods, keeping track of each of the methods and constant upgrades
of its implementation methods would help bring better results during
project executions. Mentoring and monitoring estimation methods
requires a certain diligence in order to contain the variations between
estimated and actual effort measured at the end of the project. The
processes suggested are

• Collate various software projects being executed across your IT orga-
nization, analyze and evaluate them, and then decide on the top three
or four estimation methods you intend to promote as well as monitor.

• Initiate a well-designed and planned measuring and monitoring
process for each of the selected estimation methods. If possible,
assign anchors for each initiative.

• Conduct an “as is” evaluation of each estimation method. Collate
important and key information on usage and benefits of each
method, including
• Availability of a well-defined estimation process for the method

identified.
• Issues and concerns related to usage of the estimation method.
• Output results of the use of the estimation method. The metrics

could be variance in estimated versus actual effort and schedule
variance.

• Other pros and cons of usage of the estimation method.

210 Chapter 9 A Sense of Where You Are

• Define a “to be” state that you would want to achieve. Set targets
for the “to be” that can be measured and monitored. The targets
could include
• The three key dimensions of successful deployment of the esti-

mation method: Increase in usage, improvement in accuracy
(variance), and clear process definition for the estimation
method.

• Set clear, phase-wise targets to achieve in each of the dimen-
sions. Also indicate the level or quantifiable measure you would
want to attain in each defined phase.

• Define the evaluation process to assess progress on each of the
estimation methods at each of the predefined phases.

• Deploy a continuous improvement cycle through which a core
team of estimation specialists could mentor and monitor each of
the identified estimation methods. The intention is to continu-
ously improve the maturity of the identified estimation meth-
ods so that the estimated outputs attain the desired level of
accuracy.

Bringing all estimation methods to the same level of maturity is not the
goal here; in fact, this is not possible because of several environmental
factors across the IT organization. Be realistic and set targets for the
improvements and levels of maturity that can be attained for each of
the identified estimation methods.

Conclusion

Estimation is the art of approximation to the nearest level of accu-
racy. If a project is re-estimated at appropriate stages of develop-
ment, the probability of meeting estimated effort, schedule, and
cost would improve as project execution moves toward the latter
half of the lifecycle phase. As an illustration, based on experience
across a large number of projects, the levels of estimation approxi-
mation that can be expected from an expert estimator are shown in
Table 9.4.

The estimation variance percentage figures are the expected vari-
ance with respect to the effort and delivery schedule adherence.
As the project progresses toward the last milestone, re-estimations

Conclusion 211

at these stages will yield accuracy within 5 to 10 percent of actual
figures.

Beware of projects that are full of business process related bugs. It is
likely that these bugs are found only during the final testing phase.
Capers Jones says “… they [software projects] have so many bugs that
the test cycle exceeds its planned duration by about 300 percent and
this throws off everything else.”

Being agile, nimble, and alert will keep the project execution dis-
ruptions under control. The agility should be backed by good re-
estimation techniques that can clearly pinpoint the exact cause of
disruption as well as provide the corrective measures that need to
be applied to bring the project back on track. A good knowledge
management process, if deployed in IT organizations, would facil-
itate reuse of past experiences. All estimation-related best prac-
tices, if recorded, would be of great help to future project teams.

References

1. McPhee, John. A Sense of Where You Are. Farrar, Straus and Giroux,
1999.

2. Brooks, Frederick P., Jr. The Mythical Man-Month. Addison-Wesley,
1975.

3. The Chaos Report. The Standish Group International, Inc., 1995.

212 Chapter 9 A Sense of Where You Are

Milestone Estimation Variance

Requirements 20% to 30%

Design 15% to 25%

Build 10% to 15%

Test 5% to 10%

Table 9.4 Milestone Progress Percentages

Other Interesting Reading Material

Pfleeger Lawrence, Shari. “What Software Engineering Can Learn from
Soccer.” IEEE Software, November–December, 2002. Pp 64–65.

Kan, Stephen H. Metrics and Models in Software Quality Engineering,
Second Edition. Addison-Wesley, 2003.

Jones, Capers. Software Quality—Analysis and Guidelines for Success.
International Thomson Computer Press, 1997.

Other Interesting Reading Material 213

This page intentionally left blank

CHAPTER 10

Tips, Tricks, and Traps

Introduction

For every complex problem, there is an answer
that is short, simple, and wrong!

—H. L. Mencken

From time immemorial, gurus have passed on their experience to their
disciples. The experiences could be in many forms like best practices,
tools, tricks, do’s, and don’ts. Traditionally, the knowledge sharing is
done in two parts: First the basic skills training is provided and then the
advanced or special skills are taught. In a very similar fashion, as you
worked through the earlier chapters of this book, the knowledge sharing
was the first step in building a solid foundation of basics of the subject
of estimation. At the logical conclusion of the basic teaching, the guru
delves into the many varieties of real-life situations and provides,
through personal experience, the best of the solutions—also known as
best practices—in the form of expert opinion.

I wouldn’t call myself a guru on the estimation front. Nevertheless,
drawing on my own experiences during project execution, interactions
with my project managers, and the experiences of my colleagues at
Infosys, I am able to present a collection of expert opinions in the form
of tips, tricks, and traps.

Setting the Context

Often people tend to forget or maybe sometimes even ignore mentioning
the context in which a particular discussion happens. This negligence
could lead to incorrect assumptions regarding the context and the

215

environment under which a particular tip, trick, or trap is being dis-
cussed. As such, I’m making certain basic assumptions about your
experience level, including:

• Basic knowledge of estimations, either through previous experi-
ence or acquired insight by reading the earlier chapters of this book
or other articles or texts on estimating

• Execution of at least a couple of software projects in the recent past
• Estimation of project efforts, schedule, and costs for at least a couple

of projects
• Fairly decent exposure to quality procedures and processes

Additionally, keep in mind that the tips, tricks, and traps in this chapter
have the following characteristics:

• The projects under consideration are medium or large sized projects.
• The project team resources are fairly skilled.

Expert: One who has made the
maximum mistakes on the subject!

Tips

Estimate Invisible Overheads

While working on estimating the basic size, effort, schedule, and cost
for a software development project, you make a number of inherent
assumptions. These assumptions include

• The project team adopts the typical waterfall lifecycle execution
process.

• The deliverables for the project are the usual artifacts, including
requirement specifications, design document, code, test scripts,
other documents, and manuals. Unusual requests, like developing
a throw-away prototype of the application or early development of
a proof-of-concept, are not included.

• The responsibility of the project team ends with testing and acceptance
by the user group. Effort and cost beyond acceptance is not included.

• The project team size is normally small or mid-sized (between 3
and 12 members), depending on the effort and schedule for the
project delivery.

216 Chapter 10 Tips, Tricks, and Traps

This section provides tips related to situations that may occur during
project execution that lead to unaccounted effort. It is not expected that
these situations will occur in all medium or large projects, but one or
more of the following situations may happen.

Even though size of an application can be well defined using the FP
counting or other estimation methodology, when you convert size into
effort, you should take extreme precaution. A variety of effort over-
heads exist that can occur in certain type of projects, and unless you
are aware of these overheads, the overall effort figures might go awry.
The intention here is not to delve into aspects of defining productivity
parameters, but rather to highlight a number of project execution
overheads that are normally ignored. This quite often can lead to
unpredictable results.

Tip 1: Project Team Size

A number of overheads are directly associated with the size of the
project team. Typically these are related to project management effort,
configuration issues, and communication overheads.

For an average team size of 8 to 10 members, you typically assign one
project manager. But if the team size increases to 15, 20, or greater
than 30 it would be quite risky to manage the large team with just one
project manager. A number of project management activities, quality
control activities, and team dynamics will need closer monitoring. As
such, it would be essential to provide additional team leads for every
8 to 10 team members and set up an organization structure accord-
ingly. Alternatively, team leads could also be assigned to predefined
groups of developers based on application modules or other project
activities.

Setting up the configuration for large team sizes has its own com-
plications, including version control, merging codes, multiple
builds, simultaneous test facilities, and so on. Managing the config-
uration of large projects leads to assigning separate configuration
controllers.

Communication among team members, for various reasons like
design issues, coding or build issues, changes in codes, and version
changes, are a common occurrence. As the team size increases, the com-
munication channels between team members increase exponentially
(see Table 10.1).

Tips 217

Figure 10.1 gives you an idea of how this phenomenon happens. As
Steve McConnell, the author of Rapid Development, says, “The more com-
munication paths you have, the more time you spend communicating
and the more opportunities there are for communication mistakes” [1].
Ensure that you have accounted for these overheads while estimating
final effort for the project.

Tip 2: Lifecycle Model

A common assumption among estimators is that the popular “water-
fall” lifecycle model is adopted during project delivery. The IFPUG
FPA method does not mention that the effort could vary depending on
lifecycle model. This is so because the FP count (size) remains the same
irrespective of the lifecycle model that is adopted.

Consider as an example the popular iterative lifecycle model. This
model recommends that the project be broken down into multiple, iter-
ative cycles with each cycle consisting of all the standard waterfall life-
cycle phases (see Figure 10.2).

In a typical waterfall lifecycle model, each phase is assumed to be com-
pleted in all respects before moving to the next phase. As such, the
effort estimation for each of the phases is clear cut and can be frozen.

218 Chapter 10 Tips, Tricks, and Traps

Team Size 2 3 4 5 10 15 25 50

Communication Paths 1 3 6 10 45 105 300 1225

Table 10.1 Team Size versus Communication Paths

Communication Paths
with 10 Programmers = 45

Figure 10.1 Communication paths.

In an iterative lifecycle model, the execution process is quite different,
as explained in the following points:

• The project is first divided into identifiable modules based on busi-
ness functions that can be homogeneously identified. The modules
identified are chosen such that effort for each module is comparable.
Sometimes if the modules are small, two or more modules are com-
bined. This ensures that each iteration is of decent lifecycle duration.

• During each iteration, starting from the base iteration, all the typi-
cal waterfall lifecycle phases are executed. It is expected that at the
end of each iteration, the semi-finished application is in working
condition and can be tested by the user.

• In order to ensure a smooth integration of modules introduced in
successive iterations, appropriate stubs (dummy links to future
expansions) are provided in each module. Stubs are useful for plug-
ging in the next module functionality with the least amount of rework.

• Testing the entire set of functionality developed in each iteration is
done extensively. Because the functionality added in each iteration is
an incremental extension of the previous iteration, testing is normally
done on all the modules developed so far. This process demands a
large effort for testing alone as compared to the typical waterfall model.

• Other activities that consume additional effort in the iterative life-
cycle model are for version control of code during different itera-
tions and a rippling effect due to defects found in earlier iterations.

Tips 219

Iterations

Stubs

Requirements

Design

Build

Test

Figure 10.2 Iterative lifecycle model.

The process discussed here for the iterative model is just one of the
many alternatives used by professional developers. It is difficult to
provide an exact percentage of overhead that could happen due to the
iterative model, but a general increase of overall project effort between
5 and 10 percent, depending on project size, is a reasonable expectation.

Tip 3: Warranty Support

Outsourcing vendors provide warranty support after the application
has been formally accepted and deployed into production. During
warranty support, a fixed number of programmers are assigned to moni-
tor and fix any bugs that are found during the initial stages of applica-
tion deployment in production. IT organizations collect metrics on
project execution aspects to define productivity on various platforms.
Normally the metrics are taken until project delivery and acceptance.

If you are sizing a project using the Function Points method and then
converting the size to effort using the productivity provided by your
organization, be sure to check whether this productivity calculation
includes the warranty support effort. Normally warranty support
effort is not included, and if your project contract has a clause to sup-
port warranty, you need to add this effort separately.

Tip 4: Prototype

Large project development schedules are typically long, drawn-out
efforts sometimes spanning across fiscal years. End users feel uncom-
fortable waiting for long periods in order to get a glimpse of the final
product. In order to overcome this discomfort and also to reduce the
amount of rework due to incorrect understanding of true user require-
ments, the project sponsor sometimes includes the development of a
prototype in the project activities. The prototype will normally be a
dummy set of screens and reports that reflect the final product in look
and feel. But the prototype is typically not a working product. Devel-
oping a prototype requires considerable effort. The IFPUG sizing
model does not provide for prototype activities. If you are following
the FPA method, separately calculate the effort for the prototype. For
other estimation methods, include the additional prototype effort as
applicable. The FP method can be applied to the prototype phase itself.

Tip 5: Proof-of-Concept

The situation for proof-of-concept could be quite similar to the previ-
ous tip, but the activity here is quite different. While designing the

220 Chapter 10 Tips, Tricks, and Traps

architecture of large or complex applications, the designers are
uncomfortable due to the fact that the actual test of their design will
happen only at the last phase of the project during various tests. If seri-
ous flaws in the design are observed during system tests and integra-
tion tests, this may lead to large amounts of rework all the way from the
design phase.

Project managers resort to a proof-of-concept (POC) method in order to
overcome the risks due to improper design of the technical architecture
of the application. Typically POC consists of a very light, but end-to-
end, version of the application. The POC takes up just one small func-
tion of one of the modules and creates all the components that can
address the functionality. The components typically include a data
entry screen, an intermediate layer, and the back end database. When
completed and tested, the POC confirms the quality of the design.

Most estimation methods do not normally include effort for POC. If
your project involves developing a POC to test the design and hence
the performance of the application, ensure that the effort for POC is
separately included.

A word of caution here: In situations where the project team decides to
first develop a POC (as opposed to the user/customer requesting it),
you may include additional effort for the POC, but you may not be
able to charge the customer for it because this would be an internal
decision.

Tricks

Trick 1: Manipulating Project Costs

Quite often IT organizations are constrained by budget limitations.
Due to the availability of limited budgets for projects of lesser impor-
tance, project teams are asked to come up with innovative ways to
deliver at reduced costs. Whether the project team is from the internal
IT organization or an external outsourcing service provider, the pres-
sure to deliver under a scaled down budget is similar to both. Under
these circumstances, smart managers constantly create innovative
new methods to cut costs and grab project opportunities. Among
many such innovations, the temptation to hide known project efforts
and present a budget that fits the sponsor’s purse is strong. Sometimes
the idea behind this innovation is to extract the hidden costs later

Tricks 221

during actual project execution through a change management process.
Change management typically involves keeping track of any change in
scope as compared to the originally agreed scope and presenting a bill
based on the impact on the project in terms of effort and schedule.

The suggestion: Do not push known, critical, or functional requirements
of the project into “change requests” in order to reduce project cost over-
runs. It might later bleed the customer to death! It is a good practice to
make the customer aware of the total cost of the project up front.

Floppy: The state of your customer’s wallet
after paying for the project!

Competitive situations during contract negotiations (Request for Pro-
posal) provide opportunities for you to be creative. Vendors sometimes
go overboard to grab the contract. You don’t need to know rocket sci-
ence in order to manipulate the proposal costs by deliberately moving
some of the key functionalities out of the scope of the contract. The
intention is to claim the removed functionalities as additional work
(change requests) during project execution and sometimes even charge
these heavily. Thus an unsuspecting customer ends up paying much
more than the original contract price. Be aware that this trick does not
improve your customer relationships. Very soon you will find yourself
being eased out, not only from the current contract, but with a possibility
of getting blacklisted too.

If you have to juggle project costs, make customers aware of the func-
tionalities that might be lost and get their approval ahead of time. Pro-
vide ample reasons for doing so. If done correctly, this approach might
get you the contract and even bring customer appreciation.

Trick 2: The Balancing Effect

While following the step-by-step IFPUG FPA estimation methodology,
you will often come across situations wherein the attributes gathered
by you are not very accurate and have been made more by gut feel. In
particular, while defining DETs and RETs, there is always some amount of
subjectivity, which makes the estimator somewhat uncomfortable. But you
should not worry unduly and you can take comfort from the fact that nor-
mally the margin of error in arriving at DET/RET tends to happen both
on the positive as well as the negative side. This eventually evens out.

If you keep one leg on a block of ice and the other leg on
a hot plate, overall you are bound to feel comfortable!

222 Chapter 10 Tips, Tricks, and Traps

The matrix table that defines the complexity of various components of
FP calculation, ILF/EIF/EI/EO/EQ all are based on a couple of major
parameters; that is, DET, RET and FTR. At each level of complexity (for
example, simple, average, and high), a range of DET and RET is
defined. For example, 20 to 50 DET and 2 to 5 RET for an ILF/EIF
makes it of average complexity. There is a possibility that while calcu-
lating the complexity of one ILF, you will find that the number of DETs
is, say, 52. This means the complexity is fixed at high, although it is bor-
dering on average. While calculating the complexity of another ILF,
you may count the actual DETs at 19, setting the complexity at simple,
even though it is bordering on average. There could be more such situ-
ations in FP counting process for one ILF/EI.

Estimators need not worry about such border ambiguities. On an aver-
age, such situations occur uniformly on both sides of the range (higher
and lower), and thus the complexity factor also evens out.

Trick 3: User versus Developer View

Beauty lies in the eyes (I’s) of the beholder!

While assessing the size, and as a result, the effort and cost of the appli-
cation being developed, one must understand that there is a great deal
of difference between the way the application components are viewed
by the user and the software programmer (see Figure 10.3).

There are always two views of a software application. The business user
views the application from the business value perspective and measures
its capability by the business functionalities provided by the application.
On the other hand, the programmer views the software from a technol-
ogy and processes angle, and values or sizes the application from the
perspective of the technology complexity, volume of code written, and
other related features like files, reports, etc. The two views are almost
radically opposed but they both are right in their own perspectives.

Tricks 223

Figure 10.3 Different views of software.

Software
Application

Business
Functions

Technology
and Processes

Business User Programmer

As a professional software estimator, it makes good sense to orient
yourself to the business user. In fact the IFPUG FPA method strongly
supports this theory. There are several benefits:

• Better rapport with the user (and customer).
• Better understanding of the true business needs of the user.
• Key inputs to arriving at overall project effort, schedule, and costs.
• The project is most likely to have fewer problems during accep-

tance by the user due to the fact that the functionalities have been
provided as per user view.

Periodic review of the project progress with the user further ensures
better acceptance as there is early buy-in by the user.

Trick 4: Accuracy of Inputs to Estimation

As you sow, so shall you reap!

“How accurate are your estimates?” I was once asked by one of our
clients. I replied, “If we set aside the variance in estimates due to limita-
tions in an estimation method, the estimates otherwise are as accurate
as the inputs to the estimates provided by the client.”

The quality of the specification is the key to near accurate estimations.
The specifications need to be complete, correct, and up-to-date for the
calculation of sizing. The result of wrong size estimation will lead to
incorrect projections, calculations, and planning because these activi-
ties are based on the size data.

Details of all the functionality required by the user at the time of project
initiation may not be available, and this can lead to scope change later
(also known as scope creep). The specifications should include the busi-
ness data and reference data. But at the time of proposal (Statement of
Work), the details of screen shots, data models, etc., may not be avail-
able. Function point sizing becomes more accurate when this input is
available. Following are some of the points that need to be specified to
ensure the quality of requirements specifications document:

• Objectives of the proposed system
• Business requirements
• Use case specifications (if available)
• Screens, reports
• External interfaces

224 Chapter 10 Tips, Tricks, and Traps

• Operating environment (hardware, software, and network)
• Performance requirements
• Data migration and data retention
• Architectural requirements
• Consistency, reliability, traceability
• Testability

As Dick Fairley says in Making Accurate Estimates, “An estimate can-
not be more accurate than the accuracy of the data used to develop the
estimate” [2]. There have been situations when the input given by
the client for estimating the size of applications to be maintained is
in the magnitude of millions of lines of code. The statement of work
says the application is 18 to 20 million LOC. Such input cannot lead
to accurate estimates of application size, which is further used to cal-
culate the number of resources needed to maintain the application
(Full-Time Equivalents).

If you encounter a situation when the input you need for making the
estimate is vague, get back to the user and obtain more details. And if
you are unsuccessful in getting more details, provide an estimate in a
specified range.

Traps

Trap 1: Estimation Tools

Using a good estimation tool does not guarantee that the output figures
will be a perfect estimate! It all depends on what input you give to
the tool. Do not expect the tool to do some magic and give you correct
estimates.

A fool with a tool is still a fool!

Organizations wanting to set up their own internal measurement
processes look at the option of procuring established tools available in
the market. Most organizations are also aware that a combination of
deploying the right quality processes supported by the right tools
would make the initiative a success. But if this combination is not fol-
lowed to completion, there is a possibility the initiative will fail.

A number of function point estimation tools and workbench products are
available in the market. But procuring one of these tools is not enough for

Traps 225

the FP estimation process to be implemented across the organization. The
user may know how to use the tool but unless the tool has enough data
from the past history of the organization, the tool by itself may not output
the correct values. Also, it is essential that the user have a fairly good
knowledge of the FP estimation methodology to be able to enter the right
parameters for the tool. If not, the output will again be erroneous.

Garbage In = Garbage Out

Trap 2: Arbitrary Guesstimate

While working in a team that is responding to a project proposal, expe-
rienced managers sometimes tend to recommend a rough estimate.
Often this estimate is a pure gut-feel figure based on certain environ-
mental indicators that the senior managers feel they use to arrive at a
good estimate. Avoid announcing arbitrary guesstimate figures. This
has a psychological effect on the team and it may sometimes even lead
to erroneous costing of the proposal itself.

Estimates tend to get stretched (or compressed)
to fit a predefined value!

Quite a few senior managers of internal IT departments take pride in
hazarding a guesstimate effort/cost of a contract being prepared by
their team. Typically these guesses are made with the assumption that
the application size of the contract being drawn is very similar to one
done in the recent past. Although the probability of the guess being
right is low, it has an adverse impact on the team. Team members begin
to mentally tally their estimates with the guessed figure, more so because
the estimate has come from their manager.

Trap 3: GSC—The Killer

One of the key and critical attributes of IFPUG Function Point counting
methodology is General System Characteristics (GSCs). The impact of
the 14 GSCs on the total, unadjusted FP count can be as high as ±35%. For
more about GSCs, see Chapter 6, “General System Characteristics.”

Estimators are cautioned to take extreme care while arriving at the
right attribute (Degree of Influence) for each of the GSCs. The following
points explain why:

• There are 14 GSCs, and the degree of influence (DI) of each of the
GSCs ranges between 0 and 5. If you consider the two extreme situ-
ations for each of the GSCs, the total DI would be either 0 (14 × 0 = 0)
or 70 (14 × 5 = 70).

226 Chapter 10 Tips, Tricks, and Traps

• The value adjustment factor (VAF) uses the formula VAF = (TDI ×
0.01) + 0.65. And the Adjusted Function Point Count = Unadjusted
FP Count × VAF.

• With every change in DI for any of the 14 GSCs, there is an equiva-
lent change in the VAF and hence the adjusted FP count. This
change is approximately 1 percent on the adjusted FP count, with a
change in any DI by 1. For example, if the GSC Reuse had a DI of 2
earlier and was later changed to 3, the impact on the adjusted FP
count will be about a 1 percent increase.

• The exact percentage change in adjusted FP count will vary
depending on the base VAF value before change in DI. For exam-
ple, if you compare two different situation of the TDI (30 to 31 and
40 to 41), the impact would be
• Percent change –1 = (31 – 30)/((30 × 0.01) + 0.65) = 1.0%
• Percent change –2 = (41 – 40)/((40 × 0.01) + 0.65) = 0.95%

• As such, every GSC needs to be evaluated carefully before fixing its
DI value. Understand the impact of the GSC on the application as a
whole and map it to the expectations of the user.

• It would be a good idea to be aware of future changes in the busi-
ness scenario that would impact the application usage—such as
performance, scalability, and availability—and increment the DI
value of appropriate GSC. But remember that it is human to over-
engineer. The technical architecture of the application is sometimes
burdened excessively. This will lead to increased effort.

• It seems somewhat unusual but it is true that any change in DI
value of any GSC has the same overall impact of nearly 1 percent
on the overall FP count. For example, an increment in DI value for
the GSC Facilitate Change has the same impact of about 1 percent
on adjusted FP as it would if the DI for the GSC Distributed Pro-
cessing is changed. We have not really come across an explanation
for this.

Correct evaluation of GSC is a bit complex and requires a deeper
knowledge of software engineering techniques. Due to this problem, IT
organizations sometimes tend to completely skip the GSC evaluation
procedure from the FPA method and try to adopt the unadjusted FP
itself as the final FP count. All further calculations are then based in the
unadjusted FP count. I would say this is a risky proposition. By skip-
ping the impact of GSC on the final FP count, the final size may be dif-
ferent from the actual FP count by as much as 30 percent. The direct

Traps 227

impact of this variance would be on the project team due to change in
the overall effort and schedule that has been fixed by the manager.

Trap 4: Application Size and Delivery Schedule

Well-known analysts such as the Standish Group, Gartner, and others
have been publishing IT industry performance reports periodically.
Among many other analyses provided, the key information that stands
out is the large number of projects that fail to get delivered year after
year. Among the many known reasons a project may be shelved half-
way through, one of the key factors is the failure of the IT managers to
foresee a threat early in the game.

The reasons for failure of many critical projects include

• Unrealistic project schedules (Time-to-Market)
• Big-bang approach
• Disproportionate ratio of application size to project schedule

Typically the business users set up the requirement for an IT solution to
meet their future business needs. The resulting application to be devel-
oped or enhanced has to meet a certain stringent deadline for delivery.
Project managers, in their enthusiasm to take up challenging assign-
ments, sometimes ignore the fact that projects of certain size can be
delivered only in a given timeframe. This sometimes leads to project
schedule slippage and eventually being shelved altogether because the
business need no longer exists.

IT organizations as well as outsourcing service providers should take
care to know the delivery capability of their software programmer com-
munity. The capability can be defined based on several parameters:

• Project execution capability for a variety of project categories,
including development, reengineering, and maintenance

• Competency of their programmers on a variety of technologies, lan-
guages, and databases

• Managing large and complex projects with a project team of 100+
developers on a single project

• A proven past record of delivering projects within 5 percent of bud-
geted time and costs

While estimating the size, effort, schedule, and cost of a software
project, the project manager should take extreme care and do due dili-
gence while evaluating the capability of his programmer team to deliver

228 Chapter 10 Tips, Tricks, and Traps

the project. After converting the size in function points to effort in per-
son months using the productivity of the project team, the next step is
to fit the effort into a deliverable schedule (elapsed time). The
COCOMO II method does provide the solution that converts effort into
schedule. But quite often the schedules are driven by the management
or the business users due to business pressures. Under these circum-
stances, if your project is under pressure to deliver on an unrealistic
schedule, check the capability of your IT organization and, only if
found suitable, accept the schedule.

Beware: Accepting an impossible schedule can be disastrous for both
the project team and the user.

Trap 5: Caution while Counting the FP of Existing Applications

Quite often you come across situations when you need to do a function
point count of applications that are already in production. Reasons
could be several, including the need to assign budgets and resources to
maintain or enhance the application functionalities. But this section
will not delve into the reasons. The estimator should take extreme care
while identifying various components of the existing application that
are being evaluated for FP count. Otherwise, the final FP count may be
drastically different from the real count.

A huge difference exists between physical and logical views of an
application being counted. In fact this phenomenon can be related to
two different situations when an application FP count is being done.
When the application is yet to be designed and developed, the estima-
tor identifies various items like files, screens, reports, queries, and
interfaces based on the requirements specified by the user. At this
stage, the attributes can be assumed to be logical because these attrib-
utes are yet to go through the design phase. But once the design of the
application is completed, the logical attributes are converted to physi-
cal attributes because these now provide the input to the build and test
phases. As such the estimator, while counting the FP of an existing
application, gets to view mostly the physical attributes. It requires
some amount of ingenuity to convert the physical attributes to logical
ones and then apply the FP counting processes. In other words, adopt
the user view to get the right perspective. Here are some guidelines
that are also provided in the IFPUG CPM 4.2 Manual. [3]

• One of the main areas of confusion arises during the identification
of the right set of files (ILF) that meet the IFPUG FP counting condi-
tions. Information about files in existing applications is normally

Traps 229

available in the form of data models. If you directly take each file
(or table) as an ILF, this may lead to wrong FP counts. For example,
if an employee application has a need to maintain data about an
employee, the person’s dependents, and experience, there is a pos-
sibility that due to RDBMS design constraints the designer would
have created them as three different tables (files): one each for
employee, dependent, and experience. These files would have been
linked through the employee number as the primary key. In this sit-
uation, if you go by the data model design that represents the phys-
ical representation of files, you have to count them as three ILFs. But
if you view this from the user’s perspective, it will actually be only
one ILF with possibly three RETs. And this is the right FP count that
is based on logical representations.

• The reverse could also be true in some situations. Sometimes in
order to improve the performance of the application response time,
the designers combine two or more logical files into one single
physical file. Once again, view the contents of the file from the user’s
perspective and then identify the correct number of ILFs.

• At times, due to design constraints certain additional temporary
storage files are created by the designer. There could be several rea-
sons for doing so including performance improvement, multiple
choices of data processing needs, and similar requirements. Be
aware of such needs and do not include these files in the final FP
count because they are not arising from the user’s view.

• Look out for processing logic that tends to repeat across transactions
within the same application. Duplicate usage (reuse) of such pro-
cessing logic is not allowed to be counted multiple times as per the
IFPUG rule. For example, if there is a need to provide a drop-down
list box item to choose an employee name in multiple data entry
screens, this should be counted only once during the first occurrence
and then ignored in subsequent occurrences. The processing logic
behind the drop-down list box to select an employee from an
employee database is created only once and reused across screens.

Conclusion

Although you may understand the theory behind an estimation method
through manuals or classroom training and feel comfortable and confi-
dent in being able to apply them, the real life situation is quite different.

230 Chapter 10 Tips, Tricks, and Traps

As an estimator, you have to train your mind to apply the estimation
basics that have been taught in a modified version according to situa-
tions on the field. You will never come across the ideal situation that
has been taught to you in classroom sessions.

I would equate this to the situation when we as toddlers were taught
by our parents to walk. And when we started walking we were also
taught the basics of crossing a road, climbing stairs, and similar activi-
ties connected to using our hands, legs, and other body sensors. But as
time passes, we come across a million varieties of situations when we
have to improvise the walking process taught to us by our parents, and
we keep applying variations on the basics we learned as toddlers. Isn’t
this a miracle in our lives?

The situation while applying estimation methods to applications in a
real IT environment is no different. Each situation will be unique. The
more you use the method, the more you learn. Do not expect to hit the
right estimates the first, second, or even the third time you attempt
them. The more mistakes you make, the more you learn, and the more
you will be known as an expert!

References

1. McConnell, Steve. Rapid Development. Microsoft Press, 1996.

2. Fairley, Dick. “Making Accurate Estimates,” IEEE Software,
November–December, 2002.

3. International Function Point Users Group (IFPUG). Function Point
Counting Practices Manual (CPM) Release 4.2.

Other Interesting Reading Material

McConnell, Steve. “Estimation Tips,” in Rapid Development. Microsoft
Press, 1996. Pp 177–179.

Other Interesting Reading Material 231

This page intentionally left blank

CHAPTER 11

Insourcing
versus Outsourcing

Introduction

Although it is normal for businesses to set up their own in-house IT
departments that cater to all the IT-related needs of the organization,
lately the outsourcing bug seems to be biting a large number of organi-
zations looking to cut IT budgets and at the same time increase busi-
ness growth through their IT systems.

With the boom in outsourcing, vendors around the globe, particularly
in India, are pitching their best wares to win more and more IT out-
sourcing deals. Tough and fierce competition among the outsourcing
vendors has forced them to continuously improve their software
project delivering capabilities. Mature quality processes, innovations in
project execution methods, and deployment of a young and highly tal-
ented resource pool have converted the outsourcing service provider
community to become highly advanced in the software technology
area. On the other hand, the age-old insourcing practices in internal IT
organizations have retained experienced and mature software profes-
sionals who also have tremendous background in the business domain
in which they are deployed. This chapter focuses on the differences in
the way software project execution take place in two varieties of the IT
environment: insourcing and outsourcing. This chapter also covers the
impact of estimations due to the difference in the competencies of these
two approaches to software development.

233

Environment—The Differentiator

First consider the key environmental differences between insourcing
and outsourcing. This will set the context of the discussion later in this
chapter on the role the environment plays in the way software project
estimations are done. The parameters that define the environment
include

• Organization structure
• IT applications
• Hardware and technology platform
• People and organization culture
• Skills
• Quality processes

Each of these environment parameters plays a role in shaping the
behavior of the IT organizations, including the project execution
processes. This includes the estimation processes as well as the input to
the estimations.

The Insourcing IT Organization

Most large businesses have their own internal IT organizations. As the
business has evolved and grown, the IT organization likely started as a
small group of software developers, grew gradually into an IT depart-
ment, and then emerged into a large IT organization. This phenomenon
brings up a number of interesting flavors to the various parameters
that define the environment of an IT organization.

Organization Structure

The IT organization within the business is typically considered to be an
important department that has the responsibility to maintain and con-
stantly upgrade the IT systems. The functionality that needs to be
delivered through the IT systems is controlled by the business users of
the organization. The IT organization, in consultation with the business
organization, works toward keeping the applications in sync with busi-
ness needs.

The budget for IT operations is based on business maintenance and
growth plans for the year, and the budgets are always under pressure.

234 Chapter 11 Insourcing versus Outsourcing

IT Applications

Applications evolve as the organization and its business grows. Quite
often functionalities are enhanced to cater to newer business functions
as well as enhancements to existing applications. When the organiza-
tion decides to add new services, it requires that new applications be
freshly developed or purchased to service the functions of the new ser-
vice. Mergers and acquisitions bring their own set of adoption needs
for applications in both merging organizations; they are designed dif-
ferently but service the same functionality overall.

Hardware

Organizations that have evolved their IT systems over several decades
tend to accumulate a large variety of hardware, connected interfaces,
and networking systems. Huge transformational costs deter the IT
management from upgrading to newer hardware. At the same time,
maintaining the legacy systems incur huge operational costs. Lack of
budgets adds to the woes resulting in the IT organizations maintaining
their hardware platforms from the dinosaur era through the current jet
age. They all co-exist and even talk to each other through middleware.

Technology Platform

Similar to the issues faced in hardware platforms, the technology plat-
forms also evolve at almost the same pace, sometimes faster, and bring
similar challenges to the IT management. Often while upgrading the
technology on which an application was originally developed, IT man-
agers simultaneously decide to upgrade hardware platforms. This
packaging saves transformational costs.

People

Like a mature, strong tree, the developer community in an internal IT
organization grows along with the organization and has deep roots
and strong branches that can easily sense every movement of the wind,
water, and earth (IT environment) to make appropriate corrections.
Having literally been soaked in the day-to-day business transactions of
the organization, almost all of the IT community has good insight into
how each of the software application services the business functions.
Functional enhancements, technical changes, or problem fixes to exist-
ing applications are executed very comfortably by the programmers.

Environment—The Differentiator 235

On the other hand, sometimes temporary hires or subcontractors
deployed in internal IT groups weaken the collective strength of the IT
teams because they are moved frequently. All the extensive efforts put in
by senior IT professionals to train subcontractors are lost instantly when
the subcontractors are moved due to internal or external decisions.

Skills

When it comes to the technology platform area, the senior programmer
community tends to stick to legacy technologies. This is natural
because seniors from the older generation of software professionals
have spent considerable energy and time to master the legacy technol-
ogy. Whereas the legacy platform has been in existence for very long
time, is stable, and can deliver high performance outputs, it is in user
interface area that the newer technology shines. In these situations,
migrating the application (at least the client portion) to newer technol-
ogy would require a huge amount of time for learning the new technol-
ogy. This is sometimes complemented by hiring programmers from the
younger generation who can adapt to newer technologies easily.

Quality Processes

Internal IT organizations have not been very strong in adopting inter-
national standard quality processes like those prescribed by SEI—
Capability Maturity Models. Low priority to metrics measurement
programs, lack of continuous improvement programs, and insufficient
documentations sometimes cause considerable anguish to the project
execution teams. Estimation methods are typically budget based or
based on other in-house estimation models. Exceptions do exist, how-
ever, in which some the IT organizations have strong quality processes
deployed across the organization.

The Outsourcing IT Organization

Quite unlike the internal IT organization that works and behaves like
any other department within the main organization, the outsourcing
service providers thrive in a highly competitive, business-oriented
environment. The very survival of the outsourcing organization depends
on how well it can attain customer satisfaction through high-quality
deliverables at the lowest cost. Some of the organizational, personnel,
and infrastructure related behaviors that emerge due to the competi-
tive environment are discussed in the following sections.

236 Chapter 11 Insourcing versus Outsourcing

The Organization Structure

Because IT is the main line of business, almost the entire organization,
from the top management to the junior developer, is highly IT-oriented.
Smaller organizations are compact in nature and typically serve cus-
tomers directly on an individual assignment basis. Large organizations
are structured quite differently. Often they have special focus on vertical
industry business areas as well as on technology platforms. As such, the
organizations are normally bifurcated into business units that focus on
industry verticals and technology units (providing support to the busi-
ness units) that focus on technologies. Additional support functions are
provided for deploying quality processes and training activities.

The IT Applications

Applications typically developed and maintained within outsourcing
service provider organizations are for internal use only. They are of an
MIS nature and help internal functioning of the organization’s busi-
ness. The applications also help tracking customer project activities
that include project management, quality management and other
reporting, and billing needs. The role of internal applications is to auto-
mate the IT delivery environment without compromising the quality of
deliverables.

Hardware

Outsourcing service providers typically do not own huge hardware
inventories. Other than the state-of-art hardware platform that is
required to maintain their internal IT applications, most customer pro-
jects are typically executed on the customer hardware environment.
With ever increasing pressure from fellow outsourcing service
providers, the focus in these organizations is to move as much work to
offshore sources as the project execution model allows. Offshore loca-
tions typically are low-cost software delivery locations like India, China,
and the Philippines. In offshore situations, the outsourcing organiza-
tions set up network connectivity with the customer environment in
order to facilitate seamless software project execution activities.

Inability to replicate the customer hardware platform at offshore loca-
tions has a direct impact on the productivity of the project team (and
hence estimations). Some of the critical integration tests cannot be fully
replicated offshore and therefore are completed later at the customer’s
location.

Environment—The Differentiator 237

Technology Platform

Unlike the internal IT organizations, the programmer communities in out-
sourcing service provider organizations belong largely to the newer
generation. Having graduated recently from top engineering and busi-
ness schools, the programmers are mostly educated on state-of-art tech-
nology platforms. Lack of deep knowledge of legacy technology
platforms is made up through extensive training and mentoring by
seniors within the organization. With a constant demand from clients
to migrate to newer technologies, outsourcing organizations develop
specific solutions to address these transformational project require-
ments and keep their developers appropriately skilled.

People

Once again, the competitive environment among outsourcing ven-
dors drives the process of hiring the best available talent. The average
age of the young programmer is normally 24 to 26 years. Over and
above the education on newer software technologies that they acquire
in their colleges, these young programmers are eager to learn more and
hone their skills on a wide variety of technologies and project execu-
tion capabilities. Add to this the willingness to work extra hard and
spend late hours at work, and you have a truly dynamic workforce to
utilize.

Skills

Whatever the educational background of the programmers may be,
most outsourcing organizations provide additional, focused training
on specific software engineering, quality, and technology platforms to
ensure the fine-tuning of their skills. On top of this, the programmers
get the opportunity of working on a variety of software projects on the
technology for which they have been trained and mentored. This helps
in strengthening their technology skills, making them experts on the
identified technology platform.

Quality Processes

A good majority of outsourcing service providers have been accred-
ited at SEI CMMI Level 4–5 on the quality processes deployed by
them. These organizations also have invested in knowledge-sharing
initiatives that promote exchange of best practices in software project

238 Chapter 11 Insourcing versus Outsourcing

execution activities. One of their major goals becomes the deployment
of continuous improvement programs that help them achieve lower
levels of delivered defects, lower variance in effort, and schedule and
estimations that more accurately reflect actual results. Investments in
many quality-related initiatives are significant.

Estimation Approach

Now that you understand the difference in the environment between
insourcing and outsourcing organizations, this section explores the
difference in estimation approaches that are adopted by these two
organizations.

Insourcing Estimation

Decisions to execute projects are often budget driven. The CIO is allo-
cated an overall budget for the fiscal year based on several factors,
including the business growth of the parent organization, plans to
upgrade hardware and technology platforms, and the mandate to meet
additional fresh application development needs put forth by business
users.

Based on priorities set by the IT organizations internally, the overall
budget is further divided into critical needs, long-pending important
upgrades and enhancements, and futuristic technologies.

At times when the actual budget allocated to a specific software project
does not meet the actual need, alternative approaches are explored. If
budgets are low, outsourcing to offshore service providers is an option.
Another option is to reduce non-critical functionalities that were origi-
nally planned for development projects, resulting in reduced costs. Yet
another option is to implement the functionality in a series of smaller
projects over a period of time (incremental development).

Some large companies have large internal IT organizations that at any
given time may have a wide variety of IT-related activities in progress.
These activities include new software development, maintenance of
existing applications, migration to newer technologies, and other
infrastructure-related operations. Some organizations set up an internal
design and control office to handle centrally all the technical and
estimation-related activities for the entire IT organization.

Estimation Approach 239

Outsourcing Estimation

Estimation is a totally different story here. The outsourcing service
provider organization is completely focused on acquiring the software
project contract. The competitive environment further complicates the
estimation process.

In order to maximize revenues by winning the maximum number of
contracts at a decent margin, the outsourcing organization maintains a
meticulously tabulated repository of critical information about the
capabilities of the programmer community that helps in quick and
accurate estimations. The information includes

• Productivity of the company’s resources on various technology
platforms

• Accuracy of various estimation methods used by the organization
and the variance as compared to actual effort spent

• Metrics on quality of projects delivered like defects and schedule
variance

Estimation Process

The standard estimation process typically adopted by outsourcing
organizations include

• Obtaining inputs about the project through the specifications pro-
vided by the customer

• Applying the estimation method that is most appropriate based on
the quality, input specifications, and project size

• Converting project size into total effort based on the technology
platform on which the project is being executed. The productivity
for the platform is obtained from the data repository to derive the
total project effort.

• Transforming the effort into resource loading based on the execu-
tion model and the schedule agreed with the customer

• Lastly, converting the resource loading data to actual costs based on
rates that the outsourcing vendor has fixed for various roles
(project manager, module leader, architect, business analyst, and
programmer)

This estimation process is normally adopted for development, reengi-
neering, and similar projects. Beyond this, a number of other factors
play a significant role in defining the estimations and establishing the

240 Chapter 11 Insourcing versus Outsourcing

way in which the figures vary based on the type of customer project
being executed. The accuracy of estimations is also affected by certain
other environmental parameters. Some of the environment character-
istics including the domain, the project execution process (mainte-
nance), and customer expectations are discussed in the following
sections.

Domain

The business domain, including the knowledge of business process
workflow, is one of the critical areas where the outsourcing vendors
normally lack depth of understanding. And scientific estimation meth-
ods like function points depend heavily on domain functionality deliv-
ered through an application. In order to overcome this deficiency, the
outsourcing organizations not only maintain a repository of domain-
wise generic business workflow model information, but also insist on
obtaining a maximum amount of business information on the software
contracts under negotiation. Situations wherein the project teams have
absolutely no knowledge of the domain on which the project is being
executed call for special training through internal or external resources.
The costs are sometimes added to the overall estimations, reducing the
potential savings in outsourcing.

Maintenance Projects

Taking over an existing application in a maintenance contract requires
that a number of contractual obligations be met by the outsourcing ser-
vice provider. The important obligations among them are

• Service the requests from the users. The requests could be for bug
fixes, minor enhancements, and major enhancements.

• Ensuring that the outputs delivered are defect-free, completed on
time, and within the budgeted costs.

• In most contracts, the services are bound by service level agreements
(SLA). The SLAs define the accepted level of variance in defects and
delivery schedules while servicing a request from the user.

The health of the application being taken over for maintenance is
another critical factor that the outsourcing vendor verifies with due
diligence. Some health indicators include the age of the application,
stability, number of recent bug fixes, and number of enhancement
requests. These factors determine the additional effort that needs to be

Estimation Approach 241

spent by the maintenance team. As such, appropriate effort is added to
the overall estimations.

Customer

Another factor that affects project execution activities is the customer
group’s complementary capabilities on quality processes as well as
technology. The customer group should be able to respond to queries,
issues, and concerns raised by the outsourcing vendor that directly
impact the quality parameters like performance and scalability as well
issues on architecture and other technical design parameters. If this
does not happen, the project progress may suffer. On occasion the ven-
dor might have to make decisions that are seen as appropriate to the
situation. In these situations, additional effort is spent by the project
managers as well as the team. Occasionally, meetings of outsourcing
vendors with end users are organized by IT managers to validate the
understanding of user requirements.

Outsourcing vendors evaluate the customer on some of the parameters
mentioned here and add appropriate effort to balance the shortcom-
ings on quality and technical competencies, if needed.

Insourcing versus Outsourcing: Pros and Cons

Insourcing and outsourcing both have advantages as well as disad-
vantages. The best answer depends on the real need of the customer
organization. IT organizations that are under considerable pressure to
cut costs and at the same time maintain and upgrade existing IT infra-
structure look toward outsourcing as a possible way to achieve these
goals. This section explores the pros and cons of the two types of sourc-
ing by looking at the following categories:

• Strategic
• Financial
• Technical
• Operations

Businesses use one or more of the preceding perspectives to decide
whether to keep a project in-house or outsource.

242 Chapter 11 Insourcing versus Outsourcing

Strategic Considerations

Tables 11.1 and 11.2 compare the pros and cons of insourcing and out-
sourcing as they relate to strategic issues.

Impact: The productivity of internal IT folks would be higher because
they will understand the business process and requirements better
than the outsourcing vendor team. Mature project delivery processes
supported by well-defined quality procedures help outsourcing teams
make up the gap in the productivity, but only to a certain extent.

Insourcing versus Outsourcing: Pros and Cons 243

Pros Cons

1 Provides continued opportunity Work pressure may provide little
for the internal IT community to time to hone their skills through
grow within the organization. internal or external training

programs.

2 Critical and sensitive projects Upgrades and maintenance of
that handle classified information these critical applications may
are retained with internal IT require an upgrade in IT staffing
organization. skills.

3 Experienced and senior IT staff Skilled resources could have
are retained internally on been better utilized in new
existing assignments. developments as well as in

higher roles within the
organization.

Table 11.1 Insourcing

Pros Cons

1 Better project execution Requires closer monitoring of
capabilities with proved quality outsourcing vendor activities.
of deliverables could be availed.

2 Internal IT folks could be freed Requires experienced internal
to take up assignment on state- IT managers to manage
of-art technologies. outsourcing contracts better.

3 Easy to scale-up as well as scale- Quality of resources during quick
down based on business needs. ramp-ups may not always be

consistent.

Table 11.2 Outsourcing

Financial Considerations

Tables 11.3 and 11.4 compare insourcing and outsourcing from a finan-
cial perspective.

Impact: Project delivery costs are typically lower when outsourced to
low-cost offshore vendors in countries like India, China, and the
Philippines. This happens despite lower productivity of offshore ven-
dor teams in certain areas like the requirements phase.

244 Chapter 11 Insourcing versus Outsourcing

Pros Cons

1 Costs are controlled and This may sometimes lead to
consistent. Budgets are known cutting down some of the
upfront and all planning is upgrades when cost overruns
done accordingly. happen.

2 Infrastructure including Trying out newer technology
software licensing costs are would require investments at
internal and upgrades are risk.
controllable.

3 Vendor management overheads Granular level internal
are avoided. management sometimes adds

extra burden on costs.

Table 11.3 Insourcing

Pros Cons

1 One of the main reasons to Requires strict contract
outsource is cost saving. management to avoid cost

overruns from additional costs
due to scope creep.

2 Predictable cash outflows based Could lead to getting tied up
on well-defined outsourcing with one vendor for long
contracts. durations.

3 Lower costs due to off-shoring Controlling offshore activities
as well as skilled resources on becomes difficult and risk on
newer technology. critical projects is high.

Table 11.4 Outsourcing

Technical Considerations

Tables 11.5 and 11.6 compare the technical issues involved in insourcing
and outsourcing development projects.

Impact: There are no significant benefits of outsourcing to a low-cost,
young programmer community if the application systems are of a legacy
nature. But in situations where applications are being migrated to state-
of-art technology platform, outsourcing does bring in larger benefits in
cost savings due to the fact that typically outsourcing vendors in low-cost
countries like India are well equipped to deliver on newer technologies.

Insourcing versus Outsourcing: Pros and Cons 245

Pros Cons

1 Opportunity to learn newer Reskilling senior staff on newer
technologies keeps internal staff technologies takes considerable
comfortable. effort.

2 Transformation of applications Transformation to newer
to newer technology ensures technology may sometimes lead
easy retaining of business to injunction of newer technical
functions. bugs due to lack of skilled

resources.

3 A central core team that controls Migration to standardized
enterprise level standardization technologies might be costly.
of technology upgrades could
reduce technology disparities.

Table 11.5 Insourcing

Pros Cons

1 Adopting the latest technologies Internal IT organization staff
is quite normal and comfortable also needs to be knowledgeable
to outsourcing organizations. on newer technologies to

manage technology upgrades.

2 Frequent technology-based Although technology migrations
migration assignments across are perfect, maintenance of
customer organizations makes business functions as per
outsourcing vendors develop original applications needs
predefined solutions for quick to be carefully verified.
transformations.

Table 11.6 Outsourcing

Operations Considerations

Tables 11.7 and 11.8 compare the differences involved in operations for
insourcing and outsourcing projects.

Impact: Of late, organizations have started offshoring infrastructure
maintenance and operations to low-cost locations like India and China.
The outsourcing vendors have started perfecting the process of remote
infrastructure management through some of the well-established tools.
Because operations are directly dependent on the number of resources
deployed, any replacement of resources with low-cost offshore resources
results in direct cost savings.

What do these comparisons have to do with estimations? A lot. Most of
the factors, both for and against insourcing or outsourcing, have a
direct impact on the final estimations. Whereas the size of the applica-
tion under consideration might remain the same, the overhead and

246 Chapter 11 Insourcing versus Outsourcing

Pros Cons

1 Skilled and experienced Over the years, the cost of
operations staff ensure continuity operations tends to increase due
in IT infrastructure operations. to increased salaries of senior

staff.

2 Production support operations Long absence of staff requires
are well understood by internal temporary backups and may
staff and are in sync with user lead to drop in quality of service.
needs.

Table 11.7 Insourcing

Pros Cons

1 Provide good cost benefits by Needs closer monitoring by
moving some of the non-critical internal IT staff.
operations to offshore areas.

2 Ramping-up of operation staff Might sometimes lead to drop
is considered easy with in quality of service and even
outsourcing organizations due failure on some of the service
to high availability of local level agreements.
resources.

Table 11.8 Outsourcing

variations due to the various factors mentioned will impact the overall
estimations of effort and cost.

Conclusion

Considerable debate exists in the IT industry on the business benefits of
outsourcing as compared to retaining operations internally. Lost jobs
and loss of control on some IT operations due to outsourcing has been a
point of discussion. But this is greatly offset by cost benefits that are so
huge that the operational efficiency and the improved economies of
outsourcing organizations override other discomforts.

Business organizations have made use of outsourcing options effec-
tively by adopting a judicious mix of insourcing and outsourcing ser-
vices. Also, the outsourcing services have been often distributed
among more than one outsourcing service provider in order to mitigate
risks due to heavy dependence on one vendor.

On the other hand, not all outsourcing contracts have been success sto-
ries. According to Capers Jones, “About 5 percent of outsource contracts
end up in court” [1].

References

1. Jones, Capers. “Conflict and Litigation between Software Clients
and Developers.” Software Productivity Research, 2004.

References 247

This page intentionally left blank

CHAPTER 12

Key Factors
in Software Contracts

Introduction

Quite similar to any other business transaction between two orga-
nizations, outsourced software projects require a formal contrac-
tual agreement between the buyer and the seller. Software
contracts also include the usual sections such as scope of work,
schedule, and deliverables, as well as other commercial terms and
conditions common to contractual agreements. But what stands
out in software contracts is the specific definition of the scope that
describes the features and functions the user expects to be able to
utilize.

As discussed in Chapter 1, because software is soft, defining exactly the
scope of a software project is quite complex as compared to the manu-
facturing of a TV set. The most users can do is describe the require-
ments and their expectations and hope that the delivered product will
meet their actual needs.

This chapter intends to limit the discussion to the impact on estima-
tions and costs in a software contract based on variety of project execu-
tion types. Legal and other non-project related aspects of a typical
contract are not within the scope of this chapter.

249

Types of Contracts

The two most popular types of contracts used between the customer
and the vendor are the fixed price contract and the time and material
contract. There are a number of other varieties of software contracts;
some are variants of these two. The choice of contract type is normally
driven by the customer, and there could be several reasons for software
contracts to be of varied types. Fixed budgets, limited budgets, the risk
factor of the work, time to market, and phase-wise upgrades are some
of the common reasons customers request one type of contract over
another.

The Fixed Price Contract

Based on detailed requirements provided by the customer, the out-
sourcing service vendor prepares a contract that describes the ven-
dor’s understanding of the scope, the project execution steps,
schedule, and the deliverables. The contract price is provided as a
fixed price.

To date I have not come across a software specification with the scope
defined perfectly to map to the last line of code generated in the actual
software. At best, the scope can define the size of the final software
product with an estimated variance of ±20%. This philosophy extends
to the software contract as well. When a fixed price software contract is
being drawn for a project, both the customer and the outsourcing ven-
dor are aware of the inherent risks built into the contract due to several
factors:

• The top three items of concern are scope, scope, and scope. It is
almost impossible for a user (subject matter expert) to define the
business functions that are required to be delivered by the software
application that is being negotiated under the contract completely
and 100 percent accurately. This is a fact well known both to the
customer as well as the vendor and each tries to mitigate this risk
through appropriate clauses in the contract.
• The user includes a condition that at the completion of the

requirements definition phase, the user’s sign-off is mandatory.
Despite this condition the user is not sure whether the total scope
can really be captured during the requirements phase. As such,
the user may want a provision of perhaps 3 to 5 percent increase
in scope during the rest of software project execution phases.

250 Chapter 12 Key Factors in Software Contracts

• The vendor on the other hand is equally anxious of the fact that
the company offered a fixed price to develop the software with
certain basic assumptions on scope. Due to pricing pressure from
competitors, the profit margin is kept thin. This means any
increase in scope would directly impact the company’s profitabil-
ity. To overcome this risk, the vendor introduces a section in the
contract known as “change control.” Every time a change in scope
is envisaged, the vendor does an impact analysis of the change. If
the change in functionality was not part of the original scope, the
vendor does an effort, cost, and schedule impact analysis. This
information is presented through the “change control” process.
Upon sign-off from the user, the work is executed.

• The quality of the delivered application is another serious cause for
concern to the customer. Because the term quality is used loosely to
define the final product, it has several critical parameters that have
to be fully understood both by the customer and the vendor before
the contract can be considered executed to the total satisfaction of
both the parties. These parameters include
• Quality includes the “usability” aspects of the application. This

means that the user interface (UI) as well as the navigational
aspects of the application should meet the user’s needs. Unless
the contract clearly specifies the process of user interface design
approval by the users, the risk of rework during the application
acceptance phase is high. In large application development con-
tracts, a prototype phase is included to overcome this risk.

• Response time to user requests is another “quality” parameter that
needs attention. Typically the user expects the response time to be
high (response time less than one second). Quite often the limita-
tions of the environment and platform on which the application is
being deployed do not allow the expected response time. To some
extent the project execution team overcomes this deficiency
through fine-tuning the architecture and design of the software
application. This often results in significant unaccounted effort.

• The ability of the application to scale up to peak load demands in
terms of either large number of transactions or large number of
simultaneous users is a key “quality” factor. Often the user is not
able to clearly define these parameters in advance. If the user
tries to play it safe by demanding a highly scalable architecture,
the increased effort on design and coding as well as unforeseen
upgrades of the environment may escalate the costs upfront.
On the other hand if a safe scalability figure is provided, when

Types of Contracts 251

during peak loads the demand exceeds the scalable limit of the
application, the application may crash. Usually, a trade-off is best.

• Another critical parameter that impacts fixed price contracts is the
“testing and approval” of documents, artifacts, and the code dur-
ing various lifecycle stages of the software project execution. The
reasons could be several:
• Ambiguity or incomplete definition of scope can lead to delays

in the sign-off of requirement specification documents.
• Delays in approving the architecture and design of the technol-

ogy platform on which the application is being developed
impact the project execution. In some situations, the customer
IT organization may not have experts on a specific technology
and depend on the vendor to provide assistance.

• The final testing and acceptance phase is the most critical phase
of the project execution. Once approved and accepted, any
modifications later would lead to additional expenses. As such,
the sponsor of the project makes best efforts to deploy the most
experienced subject matter experts in order to ensure that all
the functionality that is expected to be delivered by the applica-
tion is fully tested and evaluated. Quite often many functional
requirements that were not originally defined are found missing,
thus leading to rework. Remember that rework at the acceptance
phase involves the maximum amount of work.

The understanding between the customer and the vendor and the level
of comfort and confidence in mutually resolving deviations from con-
tracted conditions during actual project execution determines how the
estimations are buffered by the vendor. The catch here is that if there is
too much buffering, the estimates and, as a result, the escalated cost of
contract might lead to the contract itself being lost. On the other hand,
being pragmatic and expecting the deviations during project execu-
tions to be addressed through the “change control” process is depen-
dent on trusted customer relations.

The Time and Material Contract

The time and material (T&M) contracts are typically adopted when the
project effort is not clearly predictable. Application maintenance pro-
jects normally are contracted on a T&M basis. Unlike the fixed price
software project contracts that focus more on scope of work as the basis
of pricing, the T&M software contracts are more dependent on the

252 Chapter 12 Key Factors in Software Contracts

resources deployed to execute a project. Resources include the software
programmers and sometimes infrastructure resources that are included
in the T&M contracts. The T&M contracts can be deployed in a variety
of outsourcing situations. The next section discusses the application
maintenance contract that is normally costed on a T&M basis.

Application Maintenance Contracts

The actual number of resources, also known as full-time persons (FTP)
that are required to maintain one or more set of applications are deter-
mined based on several parameters. These parameters include

• The overall size of the application that is required to be maintained.
The size could be in a function point count, lines of code, or any other
unit of size measurement.

• The technology platform on which the applications are deployed.
• The historic data about the applications that can determine the

resources required to maintain them. The historic information
includes
• Age of the applications
• Their stability
• Number of bugs reported and fixed during last couple of years
• Complexity of the applications
• Criticality of the applications (mission-critical?)
• Projected new functional enhancements to existing applications.

This is largely dependent on user community and organization
business growth.

• Stringent service level agreements (SLA) to be met
Based on these parameters, IT organizations, both insourcing as well
as outsourcing service providers, have evolved estimation models that
provide fairly accurate numbers on the actual number of FTP required
to maintain the applications.

In situations where a sizeable number of applications are to be main-
tained by a group of resources (also known as a portfolio of applications),
IT organizations have innovatively deployed resources that are shared
across multiple applications. In these situations, because one programmer
could be servicing maintenance activities for more than one applica-
tion, the resources are termed full time equivalents (FTE). As such,
the FTE deployed for a given application maintenance may not always

Types of Contracts 253

be a whole number but could be a fraction—for example, 0.5 FTE. The
FTE totals are then converted to FTP, which is always a whole number.
The term FTE is also commonly used to express equivalence to a full-
time person (FTP) but compensates for their vacations and holidays.

Whatever the method adopted to arrive at the final FTP, the resources
are then structured into a project team consisting of various roles like
project manager, technical lead, module leads, and developers. The
rates for the roles are fixed in the same contract. The overall hourly
costs are calculated based on the number of resources under different
roles deployed for a project.

The outsourcing service providers further extend the project execution
to the popularly known Global Delivery Model (GDM). This model
typically evaluates the necessity of various resources that need to be
positioned at the customer location and the rest at an offshore location
where the benefit of low-cost resources can be availed.

Case Study

This section provides an example of an application maintenance contract
being negotiated under the time and material basis. Based on assumed
application parameters, the following calculations are envisaged:

• Application size = 2500 function points
• Historic info: Pretty stable, normal quota of bugs and fixes, average

complexity, and a non-critical system
• FTP (FTE) estimated: 10 resources (assumed)
• Roles breakup: Project Manager = 1, Business Analyst = 2,

Programmers = 7

A table can be created to provide rates for individual roles on an hourly
basis. Based on the rates, the monthly billing as well as annual costs
can be calculated. If the outsourcing service provider adopts the
GDM model, rates for the resources deployed offshore are applied
accordingly.

Using robust estimation methods to produce the optimum number of
FTEs required to maintain an application (or a portfolio of applications)
is critical for even winning the contract itself. Historic data about the
application characteristics as well as about the vendor organization’s
execution capability helps to produce the best FTE estimates. Profit
margins in T&M contracts are generally fixed and steady because these
kinds of contracts are based on hourly resource rates.

254 Chapter 12 Key Factors in Software Contracts

The Flexible Contract

Unique project execution situations sometimes provide estimators
with the opportunity to develop unique software project contracts.
These unique situations are basically faced by the customer (user) due
to various business or budget situations. The situations might include
• Undefined project scope
• Limited project budget
• Tight delivery schedule

Undefined Project Scope

The business users have envisioned a new software application that will
address business opportunities they see in the near future. But the exact
scope of the business functions to be addressed is unclear. In this situa-
tion the sponsor would want to have the flexibility of understanding the
scope and hence the overall cost of the project. There could be several
other similar reasons where the scope is not fully known in advance.

The software contract in this situation is split into two portions. The first
phase is limited to requirements elicitation only. During this phase, the
business analysts and senior members of the project team do a complete
study of the requirements based on interviews and other data gathering
activities. At the end of the phase, the project is sized and then the cost and
schedule for the rest of the project lifecycle activities is calculated. Some-
times the customer takes the option of assigning the requirements phase
to two vendors in order to cross-verify the results and recommendations.

The scope of the project itself is unknown and in fact it is the scope being
evaluated here. Typically the resources (FTE) are assigned on a gut-feel
estimate basis. The contract is ideally done on a T&M basis.

Limited Project Budget

Quite often the sponsoring manager is constrained by limited bud-
gets. Under these situations the sponsor explores the possibility of
defining a contract that provides the flexibility of choosing the
project deliverables. Some of the flexible items could be
• Reduced frills in user interface
• Include only absolutely necessary functions
• Reduced documentation
• Reduced number of internal quality reviews (even if it means lower

quality)

Types of Contracts 255

A willing outsourcing vendor might work out a low-budget contract
that could fit the available budget based on cutting some of the non-
critical project activities. This may lead to a risk of poor quality soft-
ware. An upgrade phase at a later stage when more funds are available
could help mitigate this risk. In some cases, the customer requests
reduced testing cycles, thus reducing the overall effort and costs. A
word of caution: This may not be a good practice because it might lead
to significant risks of application failure later.

The estimation method here is modified to accommodate revised
productivity due to the modified project execution method dis-
cussed above. All changes in scope that may occur during project
execution are managed through change control process.

Tight Delivery Schedule

In situations where the software project is expected to specifically
address a critical business need, it is essential that the project is com-
pleted and ready for deployment before the business opportunity period
starts. If not, the whole exercise might go to waste. In some situations, the
project might be unnecessary if the business opportunity has passed.

In a business-opportunity/high-risk situation, the business user is not
ready to accept any flexibility in the project delivery schedule. As such,
extreme care should be taken while the software project contract is
being drawn. Some of the critical parameters that should be clearly
described and discussed in detail are
• Scope: The outsourcing vendor should thoroughly understand the

complete scope of the application, including the functionality that
is expected to be provided.

• Schedule: The delivery schedule is equally critical. The project man-
ager should ensure that the estimated effort to deliver the project
can actually be completed within the proposed schedule.

• Variable Contract: In the event that the project does not progress as
planned, the project team should have the option of revising the
scope to remove some of the non-critical functions in order to be
able to meet the delivery schedule.

• In certain situations even the acceptance processes are toned down
in order to facilitate deployment of the application in production.

• If the project is business-critical, it is not unusual for the outsourced
vendor to include additional costs to mitigate certain known risks
as discussed above.

256 Chapter 12 Key Factors in Software Contracts

Project Execution Methods

Almost every software project is unique in some ways. The uniqueness
occurs for a variety of reasons. In a software project context, there are
several people who play roles in defining the specific project execution
process, including:

• The Project Sponsor: The sponsor has the purse to pay for the project.
But he or she also ensures that the project is a success at any cost.
The priority would be the project execution lifecycle model that is
time-tested and ensures confirmed delivery of the application at
the agreed schedule.

• The User: The user has several items on his or her wish list. The user
interface should be good, response time to be under one second,
and the application should be able to take peak transactions and
user loads without affecting the response time.

• The Architect: The architect wants to ensure that the design is tested
early in the project execution lifecycle. This will avoid rework at a
later stage if the design is found wanting during stringent perfor-
mance tests.

There could be additional reasons that lead to a variation in the project
execution method. For this reason, it is essential that while defining the
contract, the outsourcing service provider should understand the
unique project execution needs and clearly spell out the project execu-
tion methodology in the contract. The following sections explore some
of these variations in project execution methods.

Lifecycle Models

Do not assume that all projects are delivered using the standard water-
fall lifecycle model. Different customer organizations may have different
priorities on the project execution lifecycle model.

• Waterfall Model: Projects expected to be delivered under normal sit-
uations adopt this model. Compulsory review after completion of
each phase is done. The final test and acceptance is done when the
complete application is ready.

• Iterative Model: Serious business users depend on the application to
facilitate improved business transactions. They understand the crit-
icality of the project execution processes and its role in enhancing
the application’s ability to deliver the desired functionalities. Quite
often users prefer the iterative lifecycle delivery model. This model

Project Execution Methods 257

ensures that the users get the benefit of reviewing the application
after every iteration and test the functionality implemented so far.

• The Big Bang Approach: Normally users intending to save time and
effort on reviews adopt the big bang approach. Once the require-
ments are frozen and signed-off, the user typically does not inter-
fere in the project execution processes. Only at the completion of
the testing activities does the user do an acceptance test of the entire
application and other deliverables.

The software contract should include details on the lifecycle model
being adopted. All the milestones applicable to the selected model
should be identified along with deliverables at each milestone. The cri-
teria required for the milestone to become acceptable should also be
highlighted.

If estimates of project size are done using the function point method
then you should be aware that the function point count (size) is inde-
pendent of project execution lifecycle models. But the productivity for
different lifecycle execution models does vary because such effort esti-
mates for lifecycle models will also vary. The iterative model is likely to
consume the highest effort for a given project FP size.

Product Quality

Applications that need to serve business-critical or mission-critical
functionalities must meet stringent performance parameters. These
performance parameters could be of different categories, including
• Reliability: The application (product) is reliable and its performance

and output are consistent and uniform under all load conditions
• Scalability: The application can scale to peak loads of transactions

or large number of users and continue to meet the same response
time as seen under normal load

• Availability: The application design has been architected to be fault
tolerant. The system is robust and its availability is high. Adequate
backup, recovery, and stand-by facilities have been built-in to facili-
tate high availability.

If the software contract is for a critical application that has the require-
ment to meet one or more of the preceding product quality parameters,
the design and test phases would have to be carefully planned to meet
these requirements. These parameters are also known as Quality of
Services.

258 Chapter 12 Key Factors in Software Contracts

Estimators using the function point estimation method will be aware of
the 14 GSCs. These GSCs do provide for additional FP count through
the value adjustment factor-based Quality of Services parameters that
are applicable to a software project.

Project Specific Overheads

You learned about some of these topics in the estimation-related chap-
ters, and heard more about them in “Tips, Tricks, and Traps” (Chapter 10).
But while discussing the contract, it is essential to include sections
that highlight some of these overhead activities because they directly
impact the project costs as well the deliverables expected by the cus-
tomer. The standard estimation methods typically address the applica-
tion size and the standard project execution lifecycle activities starting
from requirements and going through testing and acceptance. The esti-
mated effort, schedule, resource loading, costs, and deliverables are all
accordingly spelled out in the contract. But over and above the stan-
dard activities in project execution, a few other non-generic activities
are requested by the user in specific situations, such as

• Prototype: Large and complex projects require special attention
from several stakeholders in order to make the project a success.
The stakeholders are not limited to the sponsor and the outsourcing
vendor; they include the end users and business users. There have
been situations wherein the internal IT team that is expected to take
over the application after it is successfully delivered and deployed
in production is also included as a stakeholder. In these situations it
is a common practice to plan an early prototype phase in the
project. The prototype will have the look and feel of the proposed
end product except that the users will get only a demo version to
review and it will not be a working model. This practice helps
reduce the risk of project failure due to incorrect understanding of
the requirements by the outsourcing vendor.

• Proof-of-Concept: Similar to the prototype situation, the stakeholders
often request a proof-of-concept phase (POC). Unlike the prototype
that has a focus on usability aspects of the product and displays vari-
ous screens and other user interfaces, the POC has a focus on the
architecture and the design of the product. The POC intends to test all
the architectural layers of the application with lightweight but simu-
lated real-time transactions. Without going into technical detail, imag-
ine a project where the user interface is a web-based interface and the
middle layer is an application server that facilitates transactions

Project Execution Methods 259

between the client user and the back-end database system. This is a
three-tiered architecture. In order to validate the architecture, a small
application module is developed on the exact platform in which the
final product is being developed. This module, known as the POC,
has a user interface screen that captures data from the user, transacts
through the middle (app server) and back-end layer (RDBMS), and
returns the requested information to the client (web screen). Thus the
POC helps in validating the design and helps in fine-tuning any inter-
face or finding shortcomings early in the project execution phase.

• Large Projects: Large projects need all planning to be done on a large
scale. The team size is large, project activities are subdivided into
smaller teams, and you need more than one manager to manage
individual teams. On the other hand, the project sponsor also has to
organize the team that interacts with and monitors the project
progress at frequent intervals. Effort estimates are naturally affected
and the overheads should be included in the overall project esti-
mates. But from a contract negotiations perspective, the impact on
both the sponsor as well as the vendor side should be discussed and
highlighted. This will help reduce the risk in the project both from a
cost as well as a project execution perspective.

• Warranty: As discussed in an earlier chapter, normal estimates do
not provide for effort due to warranty-related obligations. War-
ranty stipulations vary from project to project and must be agreed
upon in advance. The warranty phase kicks off immediately after
the project is successfully accepted and deployed. The warranty
period, number of resources deployed, and the service level agree-
ments are some of the key factors that should be clearly highlighted
in the contract.
An important issue that sometimes occurs with warranty-related
contractual agreements concerns the actual start date of warranty
period. Under normal circumstances it is expected that once the
software project is completed in all respects and the final product is
delivered to the customer, the product is deployed into production
almost immediately after the acceptance phase is complete. The
outsourcing vendor keeps resources ready to take over the war-
ranty phase immediately after the product goes into production.
But sometimes it happens that due to pre-planned release schedules,
set up by the customer IT organization, or other similar reasons, the
deployment of the product into production gets delayed. In these
circumstances, the vendor faces the dilemma of holding the resources
for a considerable time period and wait for the warranty period to

260 Chapter 12 Key Factors in Software Contracts

kick in. You should be aware of this disconnect and ensure that
appropriate clauses are incorporated in the software contract to
mitigate losses due to unforeseen delays.
Estimators need to identify the project overheads applicable to
their projects. Among the overhead items discussed, activities like
prototype and POC can be estimated using a modified function
point method. For other overhead activities, estimate the effort
directly based on person hours that are likely to be spent.

Truncated/Partial Projects

It is not uncommon for the customer to offer software projects to out-
sourcing service providers that do not conform to typical, complete
project execution phases. Indeed this situation could occur for the
internal (insourcing) IT organizations as well. You may find several
causes for truncated or partial projects:

• Budgeting Purposes: The user has a software project approved by the
management in principle and has an immediate need to provide
the budgeted costs for review and approval. The user creates a pilot
project that consists of a high-level requirements gathering phase
only. It is also expected that at the end of the requirements phase,
the vendor will prepare a full proposal that provides the total cost
of fully delivering the project itself. This cost, plus contingency
costs, becomes the budget amount required to be submitted to the
management for approval by the sponsor.

• Partial Project: Preparing the requirement specifications of complex
business functions is not easy. The sponsors and the subject matter
experts (SME) do not have the confidence that the outsourcing
project team can do justification to the true functional requirement
of the project and develop the perfect specifications. In these situa-
tions quite often the SME team themselves prepare the complete
and detailed specifications. This specification is then contracted to
outsourcing vendors.
Also upon completion of the requirements phase that provides the
budgeted costs, it is not necessary that the user (sponsor) contract
the same vendor to execute the balance of the project. The user may
choose to hire another vendor to complete the rest of the project for
which the requirements were developed by the previous vendor.
An extension of this situation occurs when the SME team has devel-
oped the requirements as well as high-level design of the application

Project Execution Methods 261

and expects the outsourcing vendor to complete the build and test
phases (coding and testing).
Contracts for maintenance of applications typically consist of three
major activities; bug fixes, minor enhancements, and major enhance-
ments. Customers sometimes prefer to deploy more than one vendor
on maintenance activities for the same set of applications. In this situ-
ation the bug fixes and minor enhancements are offered to one ven-
dor and the major enhancements to another. This is sometimes seen
as a vendor de-risking practice.
Bad and delayed project deliverables (defective) and non-process
oriented project execution practices sometimes force the customer to
terminate the contract with the incumbent vendor midway and hand
it over to another outsourcing vendor. The project team that is taking
over from the incumbent vendor team has to face a number of
knowledge transition issues and hassles. Ensure that adequate provi-
sion is made in the contract to cover unforeseen take-over situations.

Provide for one or more of these project overhead phases clearly in the
contract as applicable. Give details of impact on effort, schedule, and costs
in the contract and ensure these aspects are discussed before the con-
tract is actually signed-off. In situations where the customer IT organi-
zation also has to respond by providing review and monitoring support
activities, calculate the impact on the availability of subject matter experts
and the related costs to the sponsor and provide this information sepa-
rately to the sponsor.

Integration Projects

Software projects that involve development or enhancement of new
functionality in an existing IT organization are rarely of the stand-
alone type. The application being developed normally has to integrate
with one or more existing applications in the organization. Under
these circumstances, the outsourcing vendor team has to get access to
information regarding all other applications with which integration
has to be provided. Quite often this integration activity causes delays
in project completion due to incomplete or partial information being
provided by the owners of other applications. The integration testing
activities also require consent and collaboration from other applica-
tion owners. It is essential that the software contract includes appro-
priate mention of assured participation from concerned groups within
the IT organization.

262 Chapter 12 Key Factors in Software Contracts

Conclusion

Over and above the functional, technical, and commercial aspects of
the software project that are covered in a software contract, it is essen-
tial that a number of non-specific and unique requirements of a soft-
ware project are also clearly represented. I am not sure whether an
absolutely perfect contract can be compiled that truly covers each and
every aspect of the project. As such it will be in the interest of both the
customer as well as the outsourcing vendor to develop a contract that
can address the maximum number of known deviations in the project
execution as compared to standard projects.

Sometimes mutual trust and long-standing relations between the cus-
tomer and vendor help overcome deficiencies in the contracted obliga-
tions. Typically all contracts include a change management section that
protects the vendor to be able to claim any deviations that have not
been already specified in the contract. But taking undue advantage of
this facility is not a good idea. On the other hand the outsourcing ven-
dor has to take adequate precaution on termination of contracts mid-
way due to various reasons. An exit clause with suitable claims on
damages is normally included to take care of such situations. Addition-
ally, software projects grow at a measured rate of two percent per calen-
dar month. This growth has to be tracked and provision has to be made
to manage this growth through the change management process [1].

References

1. Jones, Capers. “Conflict and Litigation between Software Clients
and Developers.” Software Productivity Research, 2004.

References 263

This page intentionally left blank

CHAPTER 13

Project Estimation
and Costing

Introduction

Estimating the size of a software application is not the end of the
estimation process but it is the means through which other project
parameters can be further evaluated. Sizing the software by differ-
ent units of measurement, including function points, source lines of
code (LOC), and other measures, provides the basic information
you can use to derive various project parameters. These parameters
include the effort required to complete the project, the elapsed time
required, the resources that need to be deployed during various
stages of project execution, and finally, the overall cost of the project
itself.

Business needs fuel IT growth in an organization but quite often budgets
finally determine the fate of software projects. Costing of individual pro-
jects is critical due to the fact that the decision to go ahead with the
project is based on available budgets as compared to the project costs.

Ingredients of Project Costs

This book has discussed various ingredients of project estimation includ-
ing size, effort, resources, and costs. Each ingredient plays a key role in
taking the calculations forward in a particular sequence. Figure 13.1
shows how the ingredients act in sequence to cumulatively determine
project costs.

265

Project Lifecycle Phases and Cost

You learned how project size is converted to effort, schedule, resource
loading, and costs in Chapter 7. While calculating the various project
parameters that led to the overall costing in that chapter, the example
assumed an ideal environment where all the participants and resources
were freely available and of desired quality and skills. But in real project
execution situations, expecting the environment and the resources to be
of ideal quality and quantity is unwise.

This chapter delves more deeply into various ingredients of a typical soft-
ware project and shows how they impact the costing process. For each of
the ingredients, there are variations in costing based on several environ-
mental factors. This section follows the project execution lifecycle stages
and discusses ingredients in these phases and how they affect costs.

Requirements Phase

Under ideal conditions, you can assume that the user has a good idea of
the functionality of the product (project) and has all supporting docu-
ments for discussions. Also the subject matter experts are available and

266 Chapter 13 Project Estimation and Costing

Figure 13.1 Typical inputs to project estimates.

Uncertainties

Complexity

Unit Costs/Margins

Resource Availability

Skills Availability

Size

Time,
Schedule

Cost

Effort

Estimated
Measure

Data

RFP/Specs

Dependencies/Constraints

Legend

Productivity

can spend considerable time with the project team. You also assume that
the project team resources identified for the requirements phase have
good previous experience of having done similar assignments in the past.
But in real project situations, many of these assumptions may not be true.

The core of a software project is the functional requirements that are
expected to be delivered by the finished product. All the remaining
project phases depend directly on the requirements. Defects generated
during the requirements phase that go undetected into the next lifecycle
phases have higher fixing and reworking costs. The later in the lifecycle
stages the defect is detected, the higher the fixing and reworking costs.

Consider a few key resources involved in the requirements phase and the
impact they have on project costs due to incorrect or sub-optimal usage:

• Subject Matter Expert (SME): The SME is the most experienced and
knowledgeable resource who can make a big difference in the
project’s success. For this reason, the SME is also in high demand to
keep the current applications running. The SME is perhaps among
the most expensive resource category as well.
During the requirements phase in a project execution stage, it is
essential that the SME play a key role in defining the project scope
and help the project team thoroughly understand the project
requirements. Unfortunately due to other project pressures, the SME
is typically available for knowledge transition sessions for shorter
durations only. The resulting impact is on the quality of requirements
definition. Requirements defects tend to creep in and sometimes this
is detected only during the testing and acceptance phase. The costs to
fix the defects at the testing phase are quite high. On the other hand,
if the project team is provided the support of the SME for longer and
appropriate durations, many requirements-based defects and the
resulting costs of rework could probably be saved.

• Experienced Resources: Demanding and obtaining full participation
and support from the SME is not enough. It is equally important
that the project team members who interact with the SME to obtain
the accurate requirements are equally well-versed in the business
domain and the functionalities that are required to be captured. A
communication is said to be complete only when the receiver is
able to fully understand and record the information provided by
the sender. Deploying inexperienced resources in the project team
for requirements capturing purposes will have even larger impact
on project costs than non-availability of SME.

Project Lifecycle Phases and Cost 267

• Requirements Capturing Processes: The third component of the
requirements phase that binds the SME and the expert resources is
the well laid out process of requirements elicitation. In a structured
process,
• Templates and guidelines ensure that the right and the com-

plete information are captured in a structured manner.
• The validation process ensures early detection of defects, includ-

ing missing information, and fixes them appropriately.
• The testing process ensures those test scenarios are developed

during the requirements phase. Through these test scenarios
the business workflow could be evaluated for correctness of
desired outputs.

Design Phase

Several factors feed into software architecture and design aspects. The
user interface, transaction load, number of users, technology platform
limitations, and other environmental factors are some of the contribu-
tors to the way design are done. But while estimating efforts and cost,
estimators normally assume that the design created by the project team
is perfect and suits project requirements. Quite often, the design is
being modified to meet user requirements even during testing and
acceptance phases.

Project costs can vary for several reasons, mainly due to imperfect
design. The following list shows some of the common problems
encountered during (or preceding) the design phase that have an
impact on overall project effort and hence project costs.

• Over-Engineered Requirements: In the enthusiasm to exceed customer
expectations, the project team sometimes tends to over-engineer
the functions they promise to deliver through the application. This
can lead to situations where the design team must bend the design
rules to meet certain non-generic functional requirements. The
associated increase in design efforts leading to increased coding
efforts later add to overall costs.

• Over-Architected Design: Quite similar to the situation discussed pre-
viously, the technical experts in the project team sometimes tend to
showcase their technical expertise. Unmindful of the actual needs
of the end user, the technical architecture of the application is bur-
dened with unwanted layers. This will have a direct impact on
costs through increased design as well as coding efforts. It can also

268 Chapter 13 Project Estimation and Costing

lead to the introduction of additional software in intermediate
architecture layers that can increase costs significantly.

• Poor Design: Imperfect design can lead to the application’s inability
to meet stringent performance requirements. If the design valida-
tion process does not capture this deficiency, only during the perfor-
mance testing phase are the defects trapped, thus leading to
increased effort and costs due to extensive rework. Deploying
unskilled (or under-skilled) technical resources could be one of the
main reasons for design-related defects.

• Interface with Other Systems: IT organizations that have grown over
several decades typically have a large portfolio of applications
deployed on a wide variety of technology platforms. In these orga-
nizations, it is quite normal to expect the application being designed
to interface with a few other existing applications. The technical
experts involved in the design activities need to carefully evaluate
all the interfacing requirements. The technical and functional
designs of all other applications involved have to be fully under-
stood before designing the interfaces. On many occasions the inter-
face design deficiencies have surfaced only during the final system
test and integration test phase. Fixing these interfacing defects
sometimes requires changes in application design as well as signifi-
cant changes in interface design parameters. The other impacts are
on coding and retesting that further add to project costs.

Build and Test Phase

Having completed the requirements and design phases of the project
successfully and reasonably on target, the project team moves on to the
last major phase of the project: the build and test phase. Experienced
project managers understand that despite the availability of two key
inputs to this phase—requirements and design—things may not go as
planned. There could be a number of environmental, technical, people,
and operations-related issues that could derail the build and test phase.
To resolve the issues and bring the project back on track might involve
increased effort and cost. The following list presents some of these
issues:

• Environment Setup: Project managers who take the lifecycle phases as
they come and do not believe much in advance planning may face a
large variety of issues during the build and test phase. Among them,
the setup of the build and test environment is the most critical issue.
The programmers start working on individual portions of the code

Project Lifecycle Phases and Cost 269

assigned to them and when the time arrives to compile and test the
modules, all the issues surface. These include
• Compiling issues due to improper setup of the environment
• Issues during the unit test of individual modules due to improper

interfacing between various architectural layers
• Build and test failures due to improper setup of administrative

parameters and access rights
Over and above the frustrations felt by the programmer team, consid-
erable time is lost in setting the environment parameters mentioned
above correctly. If the project team size is medium or large, the impact
on lost hours due to environment issues is significant. A proof-of-
concept test phase that actually tests the entire environment helps in
containing these project effort and cost escalations.

• Use of Tools: Certainly there is considerable benefit from using tools
during build and test phases. The productivity of the project team
is certain to show noticeable improvements. A wide variety of tools
is available on almost any technology platform. These tools could
do the following:
• Check coding standards
• Verify codify style
• Help develop online help documents automatically
• Automate testing processes
While estimating effort for the build and test phases, the productivity
that is considered for the project team does include the use of tools.
But it is evident that use of tools saves costs during build and test
phases. The more repetitive the activities in these phases, the greater
the savings, if done with tools. For example, if the project team size is
large and each module is developed by a group of programmers, the
team needs to repeatedly test the functionality of the module. Testing
tools facilitate recording the testing activities and allow automated
repeat usage, thus saving considerable time with each test cycle.

Lifecycle Model

Adopting a specific lifecycle model has a direct impact on the effort and
costs. Consider the two most popular lifecycle models:

• Waterfall Model: Although the waterfall model is the simpler of the
two models, it has its own drawbacks. Once a particular phase is
completed and project execution has moved forward, if there is a

270 Chapter 13 Project Estimation and Costing

situation to move back to the previous phase, the overhead on various
activities is heavy. While deciding on a waterfall model, project
estimators should take into consideration the competency of the
project team in various environmental factors that impact efforts.
For example, if the technical experts in the team do not have ade-
quate technical competency, there is every possibility that the
design may have inherent deficiencies that will result in rework
during the build and test phase. If this happens in a waterfall model
project execution process, the costs will get escalated.

• Iterative Model: This model has built-in de-risking methods. Every
iteration is a mini waterfall model in itself. The outcome of each
iteration is a testable product. This means the product gets
reviewed by the user progressively, thus gaining early acceptance
by the user. But the flip side of this model is the increased effort due
to repetition of some of the effort-consuming activities in each iteration.
For example, the testing phase that happens after every iteration
has to go through the test process that was executed for all the pre-
vious iterations as well. The costs due to the iterative model of project
execution are usually higher than waterfall model.

Resource Allocations

Resources are one of the major cost consumers in a software project.
Some of the best practices followed in resource allocations recommend
allocation of the right resource with the appropriate competency to the
right job. This will ensure cost optimization because resources cost dif-
ferently for different levels of competency and experience.

While preparing the resource allocation chart, carefully identify the
required competency at each lifecycle phase of the project and make
allocations accordingly. Allocating the right resources at the right
time is important, but it is equally important to release the resources
when their roles are complete. Extended allocation (blocking) of key,
high-cost resources in the project will have a direct impact on project
costs. Project managers often are unwilling to release key resources
anticipating unexpected emergencies during the deployment phase
of the project.

Develop a Cost Matrix

As discussed in the previous sections of this chapter, a number of envi-
ronmental parameters impact the overall project costs. Some of these

Project Lifecycle Phases and Cost 271

parameters get included in the usual estimation processes, but most of
them do not. For best results, develop a cost matrix table of your own and
track costs due to various environmental and other factors. Table 13.1 pro-
vides an illustrative matrix for your reference.

Attach costs to each of the impacted project parameters and include
these costs to the overall project costs. The table does not show the
impact on additional software licenses due to over-architecting. You
can add a column to show impact on software licenses and evaluate the
additional costs they bring.

Estimation and TCO

While budgeting project costs, IT organizations view the overall costs
that include many other expenses beyond the cost of developing the
software application. This is necessary in order to provide for the costs
that the IT organization has to budget for the current fiscal year as well
as for future years. The total amount the IT organization can spend on a
software application deployed in the organization—from the time the
software was developed until it is retired—is known as the Total Cost
of Ownership (TCO).

The following list introduces some of the key components of the TCO
that are applicable to a typical software application in an IT organization.

272 Chapter 13 Project Estimation and Costing

Parameter Impact Requirement Design Build and Test Total Impact

Availability of SME Yes Yes High

Domain experts Yes Medium

Technical experts Yes Yes High

Poor design Yes Yes Medium

Usage of tools Yes Yes Yes Medium

Environment setup Yes Yes Medium

Lifecycle model Yes Yes Yes Low

Resource allocation Yes Low

Table 13.1 Cost Matrix

Additionally, the list shows how and when they apply in the lifecycle
of the application.

• Application Development Costs: The first-time conceptualization and
development costs involved in the software project

• Application Maintenance Costs: Once the new software development
phase is complete and the application is successfully tested,
approved, and moved into production, it is time now to maintain
the application. The software maintenance project involves all
activities that include
• Production support, including operations and online support

to end users.
• Fixing bugs that are detected by users during application usage.
• Enhancing the application with functionalities as requested by

users. The enhancements could be of the minor or major category.
• Application Migration Costs: At a certain stage in the life of the

application, a need may arise for the application to be migrated
to a newer technology platform. There could be several reasons
to do this, including taking advantage of newer features in the
target technology, better user interface needs, and higher perfor-
mance requirements. Typically technology migration project assign-
ments are not given to the existing maintenance team because it
might impact maintenance activities. A separate project team is
assigned to do the migration. The migration costs are incurred in
these situations.

• Application Retiring Costs: There could be a couple of reasons to retire
an existing application. Perhaps the functions delivered by the
application no longer support the existing business functions, or
the functions supported by the application are being transitioned
and consolidated with another application. Whatever the reason,
the retiring process involves a number of activities, including
• Shutting down the application from production after all user

communications have been completed.
• Data that was being maintained by the application is moved to

another application as required by the retirement plan.
• Reverse engineering and reengineering into newer technology

if the retirement plan requires it.
• Designing, developing, and deploying the reengineered appli-

cation into production.

Estimation and TCO 273

All these activities involve costs that have to be taken into considera-
tion as part of the TCO.

Estimating TCO Costs

While you are putting together the various components that consti-
tute the TCO costs, you should be aware that the costs are not limited
to application development, maintenance, and migration. Other costs
include

• Infrastructure Costs: For the application to execute successfully in a
production environment, it is essential that the entire supporting
infrastructure also is set up. The infrastructure includes hardware
and networking costs. Also included are other software licensing
costs, including operating systems, database, and other integration
software.

• Operations Costs: These are the costs of employees deployed to
perform operations activities, including general administrative
work, database management, and other production support
activities.

Conclusion

Estimation methods normally are oriented toward sizing a software
application. Very few estimation methods—for example, the COCOMO
II method—provide a process of calculating the costs beyond software
development costs. But the IT organization that intends to deploy and
maintain the software application in production must address other
expenses connected with each application. These additional costs could
come from several places in the project:

• The project execution process adopted during the fresh develop-
ment of the application

• The environment that has been set up during the application devel-
opment as well as during application maintenance later

• Infrastructure costs
• Resource costs
• Operations costs
• Other recurring and incidental costs

274 Chapter 13 Project Estimation and Costing

The total costs towards application development, maintenance, and
other operations costs are together known as total cost of ownership.
But the TCO concept has a span across the lifetime of the application.
Some of the costs occur during the first year and the rest are recurring
costs.

Other Interesting Reading Material

Jones, Capers. Estimating Software Costs. McGraw Hill, 1998.

Other Interesting Reading Material 275

This page intentionally left blank

CHAPTER 14

Other Estimation
Methods

Introduction

One estimation method doesn’t fit all.

Software estimation and sizing concepts have been in existence almost
as long as software itself. As software engineering, software technol-
ogy, and software development processes evolved, a large variety of
estimation methods also surfaced. Earlier chapters focused primarily
on the function point estimation method. This chapter presents some of
the popular estimation methods and their applicability in different
project execution situations. The estimation methods discussed here
are not an exhaustive list, but they represent some of the methods com-
monly practiced by project managers and estimators.

Estimation Methods

Over the past several decades, experts in software engineering have been
evolving a wide variety of estimation methods based on years of per-
sonal experience as well as research and analysis of past software project
data. As software project size grew in size and complexity, some of the
rigid estimation methods could not keep pace with the scale, except for a
few that kept improvising and managed to survive the increasing
demands on software project estimations.

277

Estimation Approaches

The software experts adopted a variety of estimation approaches that
derive the estimation method they conceptualized and developed.
Most estimation methods can be classified into two major approaches
to estimating software volume: heuristic and parametric.

• Heuristic Approach: Heuristic approaches by definition are the prac-
tices through which professionals experiment and find solutions to
frequent problems. Software gurus, experts, and experienced pro-
fessionals have developed estimation approaches that were evolved
through extensive and repeated practice and experience. The practi-
tioners of the heuristic approaches have experimented with various
patterns of solving the software project estimating problem. Some
of the commonly used heuristic approach-based estimation meth-
ods are the expertise-based, analogy-based, bottom-up, top-down, and
algorithm-based methods:
• Expertise-Based: Experts who believed in following their own past

experience rather than using estimation methods developed by
other experts adopted a variety of methods. “Expertise-based
techniques are useful in the absence of quantified, empirical
data” [1]. These methods were popular among a large commu-
nity of software professionals.

• Analogy Method: The analogy method uses the experience of
past projects. This method compares the proposed project to
previously completed, similar projects where actual project
development information is known.

• Bottom-Up Method: This method adopts the bottom-up approach
by first identifying each and every component or activity at a
very granular level. Then the method estimates each compo-
nent of the software project separately and combines the results
to produce an estimate of the entire project.

• Top-Down Method: This method follows the top-down order of
working through main modules, sub-modules, and the indi-
vidual functions. This method is also referred to the Work-
Breakdown Structure (WBS) method. There are other alternatives
to this method that include the lifecycle-wise break-up of activi-
ties and estimation at activity level.

• Algorithmic Method: Based on a certain pattern of data observed
by the experts, the algorithmic method gets conceptualized.
The pattern is further transformed into mathematical formulae

278 Chapter 14 Other Estimation Methods

that can be used to derive software estimates. But before the for-
mulae are released to practice, the author of the estimation
method validates the theory through a number of pilot trials
and then through rigorous testing using historic data as well as
other supporting research work.

• Parametric Approach: Well-known models like Rayleigh Model or
other models devised by estimation experts were used to develop
parametric approach-based estimation methods. Here the term esti-
mation has been loosely used to cover application sizing as well as
effort, schedule, and cost estimates. Some examples are
• Larry Putnam’s Software Life-cycle Model (SLIM) based on the

Rayleigh Manpower Distribution Model
• SEER-SEM by Galorath, Inc., based on the Jensen Model
• SELECT Estimator based on the ObjectMetrix model developed

by the Object Factory
• COCOMO II based on the ingenious model developed by Barry

Boehm
• COSMIC-FFP based on the model developed by Common Soft-

ware Measurement International Consortium (COSMIC)
• Function Points based on the model developed by Allan

Albrecht and later by International Function Point Users Group
(IFPUG) [2]

• Knowledge Plan from Software Productivity Research

Heuristic Approach

This section discusses some of the frequently used estimation methods
that are heuristic-based. Experts and senior software professionals have
developed these common-sense based estimation methods. These meth-
ods are not well documented, and the information that is available is of
high level and includes loosely structured definitions. But these methods
are easily and quickly understood by software professionals because
they are naturally aligned to the way projects are actually executed.

Top-Down Estimation Approach

The process adopted in this method approaches the sizing of the appli-
cation in a top-down fashion. Identify the topmost component of the
application being sized and then drill down to lower levels until you

Heuristic Approach 279

reach an appropriate level of granularity. Next, estimate the effort to
develop the component at the lowest level of granularity, aggregate the
estimation data upward to obtain the overall estimate for the software
project. Add overhead efforts as appropriate.

Several alternate approaches follow the top-down approach. Each one of
these approaches is experience based and does not follow any predefined
model. A few commonly used top-down estimation approaches include

• Work-Breakdown Structure (WBS) estimation
• Wideband Delphi method

The following sections explain each of these approaches.

Work-Breakdown Structure Estimation Method (WBS)

Originally developed by the U.S. Defense establishment during the early
‘90s, the WBS estimation method is described in Military Standard (MIL-
STD) 881B as “a product-oriented family tree composed of hardware, soft-
ware, services, data, and facilities.” The WBS facilitates capturing all the
activities that can possibly be involved in the entire project in an orga-
nized way. Typically, the WBS is shown graphically in a top-down hier-
archical way, as shown in Figure 14.1.

The WBS method offers a number of alternative approaches to defining
the top-down structure of the application system being estimated. Two
examples are

• Product-Centric: The application is broken down into the main
product, sub-product, modules, elements, and components. Actual
estimated effort or cost for each component is evaluated and then
aggregated upward.

• Project Lifecycle-Centric: The activities that are involved in the
project execution are broken down lifecycle-wise (for example,
requirements, design, build, and test). Each lifecycle phase is further
broken down into individual activities. Estimates for individual
activities are made and then aggregated upward.

Wideband Delphi Estimation Method

Originally the Delphi method was developed by the Rand Corporation in
1948. In the Delphi method, a small team of software experts come together
and independently generate estimates for a given problem and through
repeated iterations reach consensus on a mutually agreeable estimate.

280 Chapter 14 Other Estimation Methods

Application to be
Estimated

Functional
Module 1

Functional
Module 2

Functional
Module 3

Functional
Module n

Sub-Mod 1

Sub-Mod 2

Sub-Mod 1

Sub-Mod 2

Sub-Mod 1

Sub-Mod 2

Level-2

Level-1

Level-3

Level-4

Level-5

WBS Level

Figure 14.1 Work-breakdown structure.

WBS—Product Centered

The Wideband Delphi method was developed in 1970 when Barry Boehm
designed this version jointly with the Rand Corporation. This method is a
structured way of estimation based on collective expertise. Quite often
the Wideband Delphi method is used to cross-validate estimations that
have been done using other popular estimation methods. This is based on
the recognition of the fact that when many experts independently arrive at
the same estimate based on the same assumptions, the estimate is likely to
be correct. “The consensus approach helps eliminate bias in estimates
produced by self-proclaimed experts, inexperienced estimators or influ-
ential individuals who have hidden agendas or divergent objectives” [3].

The important steps followed in the Wideband Delphi method are as
follows:

• A set of experienced software professionals are identified who have
participated in estimation-related activities in the past. Also identi-
fied is an estimation moderator.

• A copy of the requirements is provided to all the estimators. Also
provided is a well-structured form that can capture details of the
estimation and other related attributes.

• A preliminary meeting is organized where all the estimators could
meet, discuss, and exchange views, assumptions, and other para-
meters that are applicable to the project that is being estimated.

• The estimators make a list of tasks and other artefacts that are likely
to be generated during the project execution. Along with each task,
including documentation if any, the estimated effort is recorded.
The data is entered in the form provided for the purpose. The filled
form is then handed over to the moderator.

• The moderator tabulates the data from all forms provided by the
estimators, analyses them, generates the results, and gives them to
the experts.

• The experts meet again to discuss the results. In the meeting, the
experts review the tasks they have considered for the estimate,
refine their individual estimates, and give the revised data to the
moderator. This is repeated until there is convergence on the esti-
mates by the different estimators.

• Typically convergence happens after two to three iterations. The
decision to go through further iterations is taken based on the gap
between the lowest and the highest estimates.

• Once the gap is reduced to a level comfortable for all estimators, the
group arrives at a consensus figure for the final value.

282 Chapter 14 Other Estimation Methods

A moderator who facilitates the group meeting session runs the estimat-
ing process. The basic assumption is that no one knows the right answer.
Everyone has a partial view; and the purpose of the Delphi process is to
share those views. By encouraging the participants to discuss the project
tasks, a skilled moderator can facilitate very informative discussions.

The Bottom-Up Approach

Unlike the top-down approach where the data about the application,
its modules, and programs are vaguely known, the bottom-up
approach requires the information about the components being esti-
mated at the most granular level. This means that it is essential that a
detailed requirement gathering and analysis phase be completed
before the bottom-up estimation approach is attempted.

In this approach, the project work is first divided into major modules.
Each module is further divided into programs. The programs are fur-
ther classified as simple, medium, or complex and the estimated effort
to build each program is done based on past experience of similar pro-
jects. This method estimates each component of the software project
separately and then combines the results to produce an estimate of the
entire project. The estimation is performed when the requirements are
clear or have been approved. The bottom-up approach method has cer-
tain advantages, such as

• It provides a more detailed and accurate basis for estimation,
because it deals with low-level components.

• It supports project tracking more directly than other methods
because its estimates usually address each activity within each
phase of the software development lifecycle.

Some known disadvantages of this method are

• Bottom-up estimates can be done only after the requirements and
design phases have been completed. This could mean that almost
35 percent of the project execution has already been completed
even before estimation begins.

• Estimating the components at the granular level consumes signifi-
cant time.

Simple, Medium, Complex Method (SMC)

One of the most popular estimation methods among software pro-
grammers is the Simple, Medium, Complex (SMC) estimation method.

Heuristic Approach 283

Perhaps the popularity and easy acceptance of this method is due to a
few reasons: The method is easy to understand, has few rules to fol-
low, and is flexible enough to be adapted to any estimation situation.
The dissection of the project being estimated happens in a top-down
approach, but once all the modules, sub-modules, programs, and the
last level of objects are identified, the actual estimates are done in a
bottom-up approach. Having estimated the effort required to code
each module in the application at the granular level, the individual
estimates are aggregated upward. The effort estimates at the program
and object level are both for coding as well as unit level testing activities.
Once the overall code and unit test (build) efforts are obtained for all
the programs and modules of the application, the estimates for the
other lifecycle phase activities including requirements, design, system,
and integration tests are obtained by extrapolating the build efforts.
Typically the effort ratio between build and other lifecycle phases
are calculated based on historic data as applicable to your own IT
organization.

The SMC estimation is generally done after requirements analysis,
which includes the design of the application. At this stage details of
the project are known and requirements are well understood. The
project work is first divided into major programs (or units). Each pro-
gram is classified as simple, medium, or complex, and the build
effort for each program is directly estimated based on past experience
of similar projects. The effort for other stages of the project is esti-
mated using the effort distribution on similar projects. Guidelines for
classifying programs into simple, medium, complex (S/M/C) are
provided by the technology experts within the company. The main
data source for estimation is the process database and the process-
capability baselines. The procedure for estimation includes the fol-
lowing steps:

• Study the requirements and design of the application and, using
the top-down approach, identify modules, sub-modules, programs,
objects, classes, and other attributes including screens, reports, and
interfaces that are encompassed in the coding and testing activities.

• Classify the attributes into three major categories as simple,
medium, or complex (S/M/C). It is essential a predefined guide-
line exists to identify an attribute as simple, medium, or complex.
Remember that the guideline may vary based on the technology
platform and other environmental aspects.

284 Chapter 14 Other Estimation Methods

• Take into consideration other impacting factors that include the
skills of the programmers, the development environment, and the
complexity of the coding language to further refine the build and
unit test effort for each program in the SMC category.

• Add all the individual build effort to arrive at the total build effort
for the entire project. Add any overhead interfacing or integration
effort that might have been left out.

• Extrapolate the total build effort into efforts for other lifecycle
phases of the project on a predefined ratio basis. IT organizations
typically collate historical data from previous projects. This infor-
mation would be quite useful to arrive at the ratio between differ-
ent lifecycle stages. If none is available, use a gut feel ratio of 1:2.5
between build and overall project effort. In other words, it is assumed
that in a typical project execution situation the programmers are
fairly competent to develop and deliver the project. And in this sit-
uation the build effort is generally around 40 percent of the overall
project effort. As a result, to extrapolate the 40 percent build effort
into total project effort, multiply the build effort by 2.5 to get the
total project effort.

• The SMC estimation process is based on the assumption that the
project will execute smoothly without any hiccups or change in
requirements, design, and other performance parameters. But this
is only wishful thinking. Refine the total effort estimates based on
project-specific factors. “Take special care to factor in project-
specific factors like expected volatility of requirements, clarity of
requirements, degree of willingness of the customer to work with
you to generate clarity of the requirements, etc” [4]. Ensure that
you document all the assumptions made during the estimation
process.

Parametric Approach

“Parametric estimates approximate the software delivered volume using
a predictor that can be more easily determined earlier in the software
lifecycle, called a metric” [5]. Researchers go through extensive and
rigorous analysis of historic data from past projects and develop para-
metric models that can predict desired outputs. Estimation models that

Parametric Approach 285

are developed based on a parametric approach typically encompass the
complete project execution lifecycle activities as a whole. Basically these
estimation models assist in sizing or defining the volume of the project
itself. The sizing could be in various alternative units of measurement
that include source lines of code (SLOC), function point count, effort, or
duration in person hours and other similar units.

The following sections discuss some of the popular parametric
approach-based estimation models that include COCOMO Model, and
COSMIC-FFP. The Function Points Analysis method is another popular
estimation method that is parametric approach based. The FPA method
has been discussed quite extensively in earlier chapters; therefore it is
not repeated here.

COCOMO II Model

The COnstructive COst MOdel (COCOMO) was first proposed by
Barry W. Boehm in his book Software Engineering Economics in 1981. The
most fundamental calculation in the COCOMO model is the use of the
Effort Equation to estimate the number of person-months required to
execute a software project. The other COCOMO results, like estimates
of person requirements and schedule, are derived from this quantity.

EFFORT = A × (SIZE) B

In this equation, A is proportionally constant and B represents econ-
omy or diseconomy of scale. B depends on the development mode. The
estimate of a project’s size is in source lines of code (SLOC). SLOC is
defined such that

• Only source lines of code that are delivered as part of the prod-
uct are included; test drivers and other support software are
excluded.

• Source lines are created by the project staff; code created by applica-
tions generators is excluded.

• One instruction is one line of code.
• Declarations are counted as instructions.
• Comments are not counted as instructions.

The development mode is one of the most important factors that contribute
to a project’s duration and cost. It affects the economy and diseconomy

286 Chapter 14 Other Estimation Methods

Parametric Approach

of scale. Every project is considered to be developed in one of the three
modes:

• Organic Mode: The project is developed in a familiar, stable environment,
and the product is similar to previously developed products. The
product is relatively small and requires little innovation. A simple
accounting system is a good example of organic mode.

• Semi-Detached Mode: The project’s characteristics are intermediate
between organic and embedded modes.

• Embedded Mode: The project is characterized by tight, inflexible con-
straints and interface requirements. An embedded mode project
will require a great deal of innovation. A real-time system with tim-
ing constraints and customized hardware is an example of an
embedded mode.

COCOMO is defined in terms of three different models: the basic
model, the intermediate model, and the detailed model. The more com-
plex models account for more factors that influence software projects,
and make more accurate estimates.

COCOMO II takes software size and a set of factors as input and esti-
mates effort in person-months. Estimates from the basic COCOMO II
model can be made more accurate by taking into account other factors
concerning the required characteristics of the software to be developed,
the qualification and experience of the development team, and the soft-
ware development environment.

This is an advanced version of the old COCOMO model, and it is still
being developed. Two versions of the COCOMO model have been
developed to be used in two stages of software development. They are
the early design model and the post-architectural model. Both use the
following basic equation:

PM = 2.45 × EAF × (Size)B

In this equation, EAF is effort adjustment factor. EAF is a product of
7 effort multipliers in the early design model and 17 in the post-
architecture model. Effort multipliers are rated in one of the following
categories: very low, low, nominal, high, very high, and extra high.
Numeric weights are assigned to them based on their effect on devel-
opment effort.

287

B is a scaling factor (1.01 to 1.26), representing diseconomies of scale.

B is given by

B = 1.01 + ∑ · Wi

∑ · Wi is the sum of five components, which affect economy of scale.
They are also rated, and weights (0.00 to 0.05) are assigned to them.

NOTE The COCOMO II model has been covered very briefly and
at a very high level here. For full details of the model and its vari-
ants, please refer to the book Software Engineering Economics by
Barry Boehm.

COSMIC-FFP Method

COSMIC Full Function Points (FFP) was developed by the Common
Software Measurement International Consortium (COSMIC). The con-
sortium started in 1998 and the core group consists of 12 expert mem-
bers from seven nations in Europe, America, and Asia-Pacific.

The first version of its method, COSMIC-FFP v2.0, was published in
October 1999, as the first, true second-generation functional size mea-
surement (FSM) method [6]. Extensive and successful field trials were
carried out over 2000 and 2001. COSMIC published its latest definition
of the method, v2.2, in January 2003. Later, the COSMIC-FFP method of
sizing the functional requirements of software was approved as an
International Standard (ISO/IEC 19761:2003).

The COSMIC-FFP method considers the measurement of the func-
tional size of software through two distinct phases (see Figure 14.2):

• The mapping phase consists of the following tasks:
• Identify software layers
• Identify boundary
• Identify triggering events and functional processes
• Identify data groups

• The measurement phase consists of these tasks:
• Identify data movements
• Assign size units
• Aggregate results

288 Chapter 14 Other Estimation Methods

COSMIC-FFP method gives the size of software in terms of Cosmic
Functional Size Unit (Cfsu). Use the productivity data for similar
process types or projects to obtain the overall effort estimate. Overall
effort estimate is the product of size (in Cfsu) and productivity (in
person-hours/Cfsu).

A COSMIC-FFP data movement: moves one or more data attribute
types belonging to a single data group type. There are four types of
data movements:

• Entry
• Exit
• Read
• Write

An Entry (E) moves a data group type from a user across the boundary
into the functional process type, where it is required.

An Exit (X) moves a data group type from a functional process across
the boundary to the user that requires it.

Parametric Approach 289

Figure 14.2 COSMIC-FFP: FUR.

Mapping
Phase

Measurement
Phase

Functional Size
of the Software

FUR Model

Rules and
Procedures

COSMIC-FFP Measurement Manual

(1): COSMIC-FFP functional size model includes concepts, definitions,
 and relationship of functional size attributes.

COSMIC-FFP
Functional Size

Model (1)

FUR of the
Software to be

Measured

COSMIC-FFP
Software FUR

Model

A Read (R) moves a data group type from persistent storage within
reach of the functional process that requires it.

A Write (W) moves a data group type inside a functional process to
persistent storage.

A unit of measure is known as COSMIC Functional Size Unit = Cfsu.

The yardstick (by convention) to measure 1 Cfsu = 1 Data Movement.

Data movement types are: Entry (E), Exit (X), Read (R), and Write (W).

• Each added data movement receives 1 Cfsu.
• Each changed data movement receives 1 Cfsu.
• Each deleted data movement receives 1 Cfsu.

The size of a functional process is the sum of the number of data move-
ments (Entries, Exits, and Reads, and Writes—see Figure 14.3).

290 Chapter 14 Other Estimation Methods

Figure 14.3 COSMIC-FFP: Input/output identification.

Software

<< Front
End >>

<< Back
End >>

Writes

S
to

ra
ge

 H
ar

dw
ar

e

B
ou

nd
ar

y

Reads

Exits

Engineered
Devices

or

Users

Entries

Entries

I/O
 H

ar
dw

ar
e

Exits

COSMIC-FFP is one simple model for both MIS and real-time software,
in any layer or tier of a multi-tier architecture. This model can be applied
at any time during the software development lifecycle. COSMIC-FFP is
derived without reference to

• Effort
• Methods used
• Physical or technical components

COSMIC-FFP has not yet been designed to take into account the func-
tional size of software or its parts, which are characterized by complex
mathematical algorithms or other specialized and complex rules, such
as those that may be found in

• Expert systems
• Simulation software
• Self-learning software
• Weather forecasting systems
• Processing of continuous variables, such as audio sounds or video

images, etc.

NOTE The COSMIC-FFP model has been covered here only
briefly and at a very high level. For full details of the model and its
variants, please refer to the Cosmic Measurement Manual at
www.cosmicon.com.

Estimation Models Pros and Cons

As discussed earlier in this chapter, different estimation models were
designed by experts to meet estimation requirements. Different models
also were developed in different time periods because software engi-
neering itself was evolving. Table 14.1 provides a brief comparison
enumerating the advantages and disadvantages of a few popular esti-
mation methods.

Estimation Models Pros and Cons 291

www.cosmicon.com

292 Chapter 14 Other Estimation Methods

Estimation Applicable
Method Stages Advantages Disadvantages

Function Point Requirements to Confidence level of Depends on the
Testing the estimate is higher. subjective weight

given by the
estimator.

Needs trained
person to do it.

Counting the
function points
needed for FPA
remains largely
a manual
operation.

Measuring rules
and business logic
is more complex.

COCOMO II High Level Local calibration
Requirements needed for

accuracy.

In early phase
of system
lifecycle,
the size is
estimated with
great uncertainty
value. Its accuracy
is necessarily
limited because
of lack of factors
that have a
significant
influence on
software costs.

Table 14.1 Pros and Cons of Various Estimation Models

Estimate based on user
perspective of the system.

Function points are
independent of the
language, methodologies,
or tools used for
implementation.

Non-technical users
have a better unders-
tanding of what function
points are measuring
because function points
are based on the user’s
external view of the
system.

COCOMO II model not
only can use source lines
of code (SLOC), but also
can use object points,
unadjusted function
points as metrics for
sizing a project.

Basic COCOMO II is
good for quick, early,
rough order of
magnitude estimates
of software costs.

Estimation Models Pros and Cons 293

Estimation Applicable
Method Stages Advantages Disadvantages

COSMIC-FFP High Level Benchmark data
Requirements is not currently

available.

International
acceptance
is limited
but growing.

Wideband Pre- Estimate is only as
Delphi requirements, good as the
Technique Proposal expert’s opinion.

Requires multiple
experts to do
the estimates.

Hard to
document the
factors used by
the experts
and does not
define a process
for individuals
to follow when
estimating.

It is a time-
consuming
process.

SMC (Simple, End of Design The criteria and
Medium, effort for SMC
Complex may not be
Method) consistent

across users.

Only experts on
technology can
do decent
SMC estimates.

Table 14.1 Pros and Cons of Various Estimation Models (Continued)

Easy to understand
and use; program
perspective.

Can also be used
for estimating
enhancements and
maintenance work.

Useful in absence
of quantified,
empirical data.

Can factor in
differences between
past project
experiences and
requirements of the
proposed project.

It has a high
customization value
specific to the
organization taking
reuse into account.

Usable for both MIS
applications as well as
real-time applications.
Simple to use.

No subjectivity in
determining the
model elements.

294 Chapter 14 Other Estimation Methods

Conclusion

Software project estimation approaches and estimation models derived
from various approaches have been in existence for several decades now.
Different software project situations will require different estimation
methods. Perhaps this is the point of contention—which estimation
method should you use? My suggestions would be as follows:

• Ensure that you or your team identify an estimator who has a fairly
good understanding of software engineering and software project
execution processes.

• If you (the estimator) have not estimated software projects in the
past, perhaps it would be a good idea to do a couple of estimation
exercises, using simple estimation approaches like the SMC method.
This will help you understand and fine-tune various aspects and
attributes of the estimation process.

• Analyze estimation needs of your project team and your IT organization
(if applicable) and classify them into typical software projects like devel-
opment, maintenance, enhancement, reengineering, and migration.

• Obtain the assistance of an estimation expert to help you in identi-
fying the right estimation model(s) to suit your software project
estimation requirements.

• If possible, get your team trained on the selected estimation meth-
ods, through the help of the estimation expert or training vendors.

• Start with a couple of pilot estimations to fine-tune the estimation
process. When you are comfortable, deploy the estimation method(s)
for future projects.

While choosing an estimation method, explore the history of how the
method evolved and how long it has been in existence. Look also at the
support of the method by international committee or other bodies. Also
check the kind of regression analysis that has been done on past project
data before arriving at the selected model.

References

1. Boehm, Barry W., Chris Abts, and Chulani Sunita. “Software Devel-
opment Cost Estimation Approaches—A Survey.” Barry Boehm,
Chris Abts, University of Southern California, Los Angeles, CA

90089–0781 and Sunita Chulani, IBM Research, 650 Harry Road,
San Jose, CA 95120.

2. International Function Point Users Group (IFPUG). Function Point
Counting Practices Manual (CPM) Release 4.2.

3. Wiegers, Karl E. “Stop Promising Miracles.” Software Development,
Vol. 8, No. 2; February 2000. Pp. 49–54.

4. R. Agarwal, Manish Kumar, Yogesh, S. Mallick, R.M. Bharadwaj,
and D. Anantwar. “Estimating Software Projects.” Infosys Tech-
nologies Limited, IIM, ACM SIGSOFT—Software Engineering Notes.
Vol. 24, No. 4; July 2001. Pg. 60.

5. Ibid.

6. COSMIC-FFP, Version 2. The Common Software Measurement
International Consortium (COSMIC). www.cosmicon.com

Other Interesting Reading Material

McConnell, Steve. “Expert Judgment in Groups,” in Software Estimation—
Demystifying the Black Art. Microsoft Press, 2006. Pp. 149–155.

IFPUG. IT Measurement: Practical Advice from the Experts. Addison-Wesley,
2002.

Park, Robert E., et al. “Checklists and Criteria for Evaluating the Costs
and Schedule Estimating Capabilities of Software Organizations.” Tech-
nical Report CMU/SEI 95-SR-005; Software Engineering Institute; January
1995.

Putnam, Lawrence H. Measures for Excellence. Prentice Hall, 1992.

Putnam, Lawrence H., and Ware Myers. Industrial Strength Software.
IEEE Press, 1997.

Roetzheim, William H., and Reyna A. Beasley. Best Practices in Software
Cost and Schedule Estimation. Prentice Hall, 1998.

Other Interesting Reading Material 295

www.cosmicon.com

This page intentionally left blank

CHAPTER 15

Estimation Tools

Why Use Tools?

IT managers often expect a good estimation tool to solve their estima-
tion deployment problems across the developer community. Simply
acquiring a good software estimation tool does not guarantee good
software estimates. If the quality of input to the estimation tool is poor,
then poor estimates will result; this is what’s known as the Garbage In =
Garbage Out (GIGO) principle. You may have a high-powered Harley
Davidson motorcycle, but unless you know how to drive it and you
also know the roads, you may not be able to move any faster than you
would if you were driving an ordinary motorcycle.

While discussing some popular estimation tools in her article, “Soft-
ware Project Estimation,” Kathleen Peters warns us to be alert to claims
by software tool vendors. “No estimation tool is the ‘silver bullet’ for
solving your estimation problems. They can be very useful items in
your estimation toolkit, and you should seriously consider using one
(or more), but their output is only as good as the inputs they are given
and they require you to have an estimation and software development
process in place to support them” [1].

Getting good estimates requires collecting, refining, and maintaining
historical data from current and past projects to provide the necessary
inputs required for the software estimation tools. An estimation tool
will be a very handy tool to someone who knows how to estimate. If
the estimator is experienced working with software engineering,
domains, and technology, he or she would be able to extract maximum
benefit even from a fairly decent estimation tool.

297

Evolution of Estimation Tools

For more than four decades now, experts on software engineering have
been conceptualizing and developing early versions of estimation tools.
The goal was to arrive at estimates of consistent accuracy through a
better defined and more consistent software estimation process. These
tools were developed based on historical data collated from several
thousands of software projects, as well as research of critical compo-
nents that feed into industry standards as well as proprietary estimation
methods.

Lack of consistent and reliable historical data slowed down the
progress of tools developed in the early ’70s. As more data became
available, however, estimation tools progressively improved, and they
have continued to evolve. Most software estimation tools use algorithms
based on reliable models, and some of the more advanced tools are
rule-based or knowledge-based as well as interactive.

Ingredients of a Good Estimation Tool

If you intend to buy a good estimation tool from the market, make sure
that you have done your homework thoroughly. Other than certain
basic and mandatory estimation-related features, a large number of
organization-specific requirements need to be met in an estimation
tool. The tool evaluation procedure should cover these aspects.

Here are some of the key functional capabilities that should be consid-
ered when selecting a software estimation tool:

• True Adoption of Estimation Method: The estimation tool should truly
adopt the estimation method that you intend to deploy in your
organization. Localization and variation of the estimation method
itself should not be allowed. For example, if you intend to procure a
function point based or COCOMO II based estimation tool, ensure
that the tool fully reflects all the processes as defined by the authors
of the selected estimation method.

• Customizable: This feature will give the true flexibility of configur-
ing the tool to suit your organization data with minimum data
entry and manipulation overheads. The customization feature will
help the estimator to define applicable input and map it to the esti-
mation method-based data requirements. An important benefit
would be the blending of the organization’s historical data with
current project data to generate software estimates. The SEI CMMI

298 Chapter 15 Estimation Tools

estimation process recommends estimation improvements through
analysis of historic estimation data.

• Facilitate Intelligent Estimates: The tool should have built-in intelli-
gence to be able to generate estimates early in the project lifecycle,
even when data on project scope and technology platform is yet to
be fully defined. As the project execution completes each lifecycle
stage, the tool should allow the user to add or update data incre-
mentally and thus provide updated estimates with a higher degree
of accuracy. The project risks and probability of completing the rest
of project lifecycle phases should be dynamically revised based on
data fed up to that point.

• End-to-End Estimates: The tool should go beyond software sizing
estimates. Based on input that includes resource rates and prede-
fined resource loading patterns, the tool should be able to provide
an overall project cost.

• Estimates for Variety of Projects: The tool should support the estima-
tion needs for projects like maintenance, migrations, reengineering,
and porting and package implementation over and above new
development projects.

• Maximum Utilization of Features: Tools that brand themselves as hav-
ing “mind-blowing features” are rarely fully utilized by the buyer.
Out of a large variety of features provided by the tool, the user is
only able to take advantage of an estimated 30 to 35 percent of the
features. The rest of the features are not of interest to the user. On
the other hand, the user may have a need for a different set of fea-
tures that the tool does not provide.
While evaluating the tool for features, do not forget to do a
features-versus-needs match and also to watch for features that
are not of use to you. Do not land yourself in a situation where
you do half the work through the tool, do the rest manually, and
then spend even more time connecting and analyzing the two
outputs.

• Good-to-Have Features: The tool should have some of the basic fea-
tures that would be expected in a good quality tool. These features
include
• Facilitate “what if” analysis based on different scenarios the

user could provide as input
• Provide good documentation
• Provide multi-lingual support

Why Use Tools? 299

• Facilitate interfacing with other tools and applications through
some commonly used interface protocols like XML

• Facilitate ease of use through good GUI features and online
help features

• Officially Certified Tool: If an organized body or a committee that
owns the estimation method exists, verify that the tool is for-
mally certified by this body. For example, if you are procuring
a function point estimation tool, this should be certified by
IFPUG [2].

The IT management should evaluate available tools in the market and
choose the tool that best suits the IT environment in their organization.
This section does not discuss the cost aspects of the tool because normally
this is organization-specific and depends on the budgeting provided
internally.

A few other critical parameters will help you assess estimation as
well. These parameters are specific to the estimation process that has
been approved and deployed in your IT organization. As an individ-
ual, you can choose the parameters with which you are most comfort-
able. Table 15.1 provides a closer look at the parameters involved in
estimation.

Deploying Estimation Tools in IT Organizations

IT organizations are under constant pressure to improve the quality
of software project executions and the output delivered. Typically,
the IT management strategizes the process improvements in a phase-
wise manner. If the IT organization has plans to implement the SEI-
CMMI quality process, the phase-wise quality process improvements
would be focused on achieving the next level of accreditation (Level 1
to Level 5). Improving estimation process is one of the key factors in
these process improvement strategies. IT organizations sometimes
decide to a procure a popular estimation tool from the market and
deploy it across the organization in order to overcome the pressure
to move to a higher level of quality processes implementation. Unless
this move is backed with the appropriate level of maturity in mea-
surement processes and also metrics collection and analysis processes
in the organization, simply deploying an estimation tool may be a
disaster.

300 Chapter 15 Estimation Tools

Feature Description Criticality

Project Type Selection Development, maintenance, High
enhancement, migration,
porting, etc.

Calibration/ IFPUG, COCOMO II, NESMA, High
Standard Parametric, Monte Carlo

Sizing Method SLOC, Function Points, High
COCOMO II, UML Use Case,
Object Points, etc.

Lifecycle Selection Waterfall, iterative, etc. Low

Programming At least 20+ popular languages Medium
Language Selection

Maintaining Build repository of completed High
Historic Data projects resulting in more

accurate estimates

What-if Scenarios Analyze different scenarios, Medium
such as whether to have a
highly skilled team instead
of a less experienced team, etc.

Track Scope Creep Ability to track and flag changes Medium
in functional scope during
project progress updates

Constraints and Provision to identify constraints Medium
Priorities and priorities that map to project

execution plan

Selection of Relevant Characteristics like efficiency, Medium
Projects from Your staffing, reliability, phase
History for Customized customization, etc., will be
Estimates transferred to new estimate

Storage of Metrics Store quality metrics including Medium
and Data Analysis effort and schedule variance,

defects, and other overheads

Integrated Reporting Flexible reporting features Medium

Interface to Interface Microsoft Office and Medium
Other Tools and Web through protocols like XML
Applications for easy collaboration and sharing

Table 15.1 Critical Parameters Desired in Estimation Tools

Why Use Tools? 301

Deployment of estimation practices supported by the right estimation
tool should be a step-by-step process. Some of the critical steps to be
followed include

• As-Is Analysis: The first step is to conduct an internal survey across
all the IT groups, collating relevant information on project execu-
tion processes and estimation methods used. Analyze the informa-
tion and identify key gaps that are estimation-related.

• “To Be” Strategy: In consultation with top management and other
estimation and quality experts, define the To Be plan with respect to
estimation deployment across the organization. This strategy should
include key aspects such as
• Setting up software measurement processes if not already done
• Deployment of metrics collection processes
• Training and enabling key software managers and estimators

on some of the popular estimation methods as applicable to the
IT organization

• Process to evaluate and select the right estimation tool that suits
the organization’s IT environment

• Pilot Project: Once the IT organization is enabled on quality proc-
esses that include measurement and metrics collection processes, it
is time to evaluate and choose a couple of tools from the market for
pilot tests. Select a couple of project situations and pilot the tool.

• Feedback and Analysis: The feedback from the users of the estima-
tion tool from the pilot projects, as well as the technical and feature
evaluation done by estimation and quality experts within the IT
organization would help determine tool procurement.

The pilot project test and the feedback will provide key insights into the
probability of successful deployment of the estimation tool in the IT
organization. More than testing the capabilities of the tool itself, the
pilot process will test the deployment status of other quality processes.
It will also help you understand the acceptance of estimation tools by
the software community in your organization.

List of Tools

Table 15.2 provides a select list of tools that are popular in the software
estimation community. Each tool has been designed with a specific esti-
mation method and a specific output as an objective.

302 Chapter 15 Estimation Tools

List of Tools 303

Tool Features and Owner Methods

Construx Estimate Construx Estimate leverages a Utilizes Monte
blend of proven estimation Carlo simulation
models to predict effort, with two estimation
budget, and schedule for models (Putnam
software projects based on size Model and
estimates. The estimate comes COCOMO)
calibrated with industry data,
but is more effective when
calibrated with your
organization’s data.

http://www.construx.com/
estimate/

Costar Costar is a cost estimation tool Parametric,
that supports COCOMO II COCOMO
(and its variants), REVIC, and
Ada. Costar is an interactive
tool that permits managers to
make trade-offs and what-if
analyses to arrive at the
optimal project plan.

http://www.softstarsystems.
com/

Cost Xpert Cost Xpert is a software cost Parametric,
estimating tool that integrates Stochastic, System
multiple estimating models Dynamic,
into one tool to provide Knowledge-based,
accurate and comprehensive Database
estimates. It claims to be the
only tool offering support
for sophisticated modeling
techniques, such as system
dynamic modeling, knowledge-
based modeling, both scholastic
and deterministic modeling,
and a variety of cost models
including the latest release of
COCOMO II.

http://www.costxpert.com/

Table 15.2 List of Popular Estimation Tools

(Continued)

http://www.construx.com/estimate/
http://www.construx.com/estimate/
http://www.softstarsystems.com/
http://www.softstarsystems.com/
http://www.costxpert.com/

Tool Features and Owner Methods

Function Point Charismatek’s Function Point Supports FP model
WORKBENCH WORKBENCH is a tool that by IFPUG and

expedites function point NESMA
analysis by providing facilities
to store, update, and analyze
individual counts. FPW
provides intuitive graphical
support for the counting
process of a base system or an
enhancement to an existing
application.

http://www.charismatek.
com.au/

KnowledgePLAN SPR KnowledgePLAN Function Points by
provides a complete and IFPUG
rational view of all trade-offs
among features, schedules,
quality, and costs. You can
explore the cost/value
implications of additional
resources, more powerful
languages, development tools,
improved methods, and other
technical changes. You can also
track milestones, schedules,
resources, actual work effort,
and defects found.

http://www.spr.com/

PRICE-S True S and PRICE S estimate Function Points by
costs, resources, and schedules IFPUG, Rigorous
for software projects of all Monte Carlo or
types—such as business systems, Latin Hypercube
communications, command and simulation for
control, avionics and space cost-risk analysis
systems—and all sizes, from
software components to
extremely complex systems such
as those deployed in mission-
critical vehicles.

http://www.pricesystems.com/

304 Chapter 15 Estimation Tools

Table 15.2 List of Popular Estimation Tools (Continued)

http://www.charismatek.com.au/
http://www.charismatek.com.au/
http://www.spr.com/
http://www.pricesystems.com/

Tool Features and Owner Methods

SEER-SEM Galorath’s SEER-SEM is a Parametric
decision-support tool that
estimates the cost, labor,
staffing, schedule, reliability,
and risk for all types of
software development and/or
maintenance projects

http://www.galorath.com/

SLIM-Estimate The Software Life-cycle Parametric
Management (SLIM) tool for
software cost estimating
(SLIM-Estimate), provides
features that include reliability
modeling, schedule estimating,
planning, tracking, and
benchmarking.

http://www.qsm.com/

Conclusion

Tools are meant to improve the quality and productivity of any process.
Estimation tools no doubt provide significant benefits to software
project estimators. When used with the right input, the tools can pro-
vide a wide variety of output that can act as a decision support mecha-
nism. There are many situations in IT organizations where estimation
tools can bring immense value, including

• During software project proposal stage
• At the beginning of the project execution
• At every project execution milestone stage
• At every stage when changes in project scope or requirements

occur
• At the completion of the project

As a general suggestion, however, I would caution you, as an estimator,
not to jump into tool-based estimations too early in the game. Practice a

Conclusion 305

Table 15.2 List of Popular Estimation Tools (Continued)

http://www.galorath.com/
http://www.qsm.com/

few estimations manually first. Once you are comfortable with manual
estimations, the next step is to develop your own estimation tool with
some of the basic features. Tools like Microsoft Excel would be quite
suitable for in-house estimation tool development. Once you are com-
fortable with the estimation process as well as the use of in-house tools,
you can go for robust, tested, and market-approved tools.

References

1. Peters, Kathleen. Software Project Estimation. Software Productivity
Centre Inc., Canada.

2. International Function Point Users Group (IFPUG). Function Point
Counting Practices Manual (CPM) Release 4.2.

Other Interesting Reading Material

McConnell, Steve. “Software Estimation Tools,” in Software Estimation:
Demystifying the Black Art. Redmond, WA: Microsoft Press, 2006.
Pp 157–164.

306 Chapter 15 Estimation Tools

CHAPTER 16

Estimation Case Study

Introduction

The proof of the pudding is in the eating.

Estimators commonly attend professional training courses as a part of
continuous enhancement of their skills in various areas. A professional
trainer prepares well and ensures that the training sessions are con-
ducted in a planned manner, perhaps following the pedagogic method
of teaching. After the classes are over, estimators are thrilled to have
acquired new knowledge through which they can go and conquer the
world. But when they decide to try out the learning on a few immedi-
ate estimation assignments, the problems begin. I have often observed
that while the instructor explains the tricks of the trade, it looks quite
easy to understand. But when I am back at my desk and start working
on a live problem using the same tricks taught by the instructor, all hell
breaks loose!

This chapter has been developed keeping in mind the difficulties faced
by estimators during live estimation situations. Though I do not claim
to have answers for the entire spectrum of practical situations you may
encounter, I have attempted to pick a variety of estimation problems
and have worked out solutions for them.

Basic Assumptions

Before discussing the case study contents, I feel it would be appropriate
to set the context for certain basic assumptions. These assumptions are

307

generally applicable to all the exercises discussed here, unless a specific
variation is mentioned.

• Business Functions: The different exercises here address a variety of
business situations. A particular business workflow area in a large
business industry may be selected, but the example will discuss
only a very small component of the business. It should not be
assumed that the example actually simulates the real-life business
situation. When you attempt to capture business functions for a live
case that you are working on, identify the right set of workflow
procedures for the application you are counting.

• Application Implementation Elements: The number of (data entry)
screens, reports, queries, and other implementation elements like
the data model will be symbolically assumed. Also assumed will be
the number of data elements (fields/columns) for each of the
screens, reports, and tables. You may want to take your project
requirement specifications as input for your counting purposes.
Ensure that the specifications, including critical data elements, are
actually verified and approved by the user.

• Programmer Productivity: Some examples here convert the size of
the project in function points to effort in person months. An
assumed productivity of the project team will be used for this con-
version. This productivity may not be applicable to your organiza-
tion. You may have to use data as applicable from your organization.
If productivity data for your organization or project team does not
exist, you may want to look at some of the industry standard pro-
ductivity figures available in the public domain (www.isbsg.com).

• Project Environment: The standard project environment that includes
the tools for coding, testing, and other project execution purposes is
assumed to be available to the project team. Identify the tools and
other environment complexities existing in your organization and
accordingly adjust the productivity of the project team.

• Application Performance Requirements: Normal performance require-
ments are assumed for all applications unless otherwise specified.
If there are instances of high performance needs in your project,
this requirement may either be reflected in the calculations of gen-
eral system characteristics (GSCs) or through a reduced productivity
of the project team due to complex design, complex algorithms,
extensive coding, and testing requirements.

Figure 16.1 provides a quick reference to various components of a func-
tion point counting process.

308 Chapter 16 Estimation Case Study

www.isbsg.com

Introduction 309

Step-by-Step FP Counting Process (Development Projects)

Here are the main steps that you need to follow diligently if you want
to obtain accurate FP sizing as well as derived effort and delivery
schedule for software development projects.

• Step 1: Identify all the stakeholders, users, and other people who
are likely to be either directly or indirectly associated with this
module. This will help in better understanding the actual needs
(requirements) of end users.

• Step 2: Identify the business entities. Based on the detailed specifica-
tions prepared earlier, determine the various category of informa-
tion required to be stored, processed, and maintained through this
module. Examples of information category could be the business
functions, business entities, business processing rules, business work-
flow, and the input/output necessary for the software project under
consideration (for example, Employee, Supplier, Customer, etc.).

• Step 3: Identify data items. Now convert the information to be
processed into data items. Not all details of data items will be avail-
able in the specifications. It is the job of the designer to evaluate
ingredients of the information that has to be processed and identify
data items accordingly. For example, information regarding an
entity “employee” may typically consist of data items (data ele-
ments) like employee number, employee name, personal details,

Inputs

Application Boundary

Inquiries

Outputs
Files

Application-B
Interface

1

3

Files 2

Reports

2

Files

2

Business Logic Business Logic

Business Logic Business Logic

Business Logic

Business Logic

Internal Files

Code

Application-A

4

5

Scope Boundary

User

Figure 16.1 Scope, boundary, and components of an application.

professional experience details, educational qualification details,
and dependent details.

• Step 4: Group data items into entities. Now comes the difficult step—
grouping the data items into user identifiable business entities.
Remember that each group of data items has to holistically encom-
pass all information related to the identified business entity. The
grouping has to be done with utmost care because this grouping
will decide the identification of data files, Internal Logical File and
External Interface File (ILF/EIF), as well as the Record Element
Type (RET) within data files. (See items 4 and 5 in Figure 16.1. These
items will be clear shortly when you learn about the business enti-
ties of the Invoice module.)

• Step 5: Identify the data functions (files, ILF/EIF, etc.) that are
required to accommodate the groups of data items identified in Step 4.
One or more groups of data items may together form one single data
file. Also determine whether the data files thus identified are within
the application boundary or external to the boundary. The findings
can be explained as follows:
• The data files identified within the boundary of the application

are the ILF.
• The data files outside the boundary are the EIF, and it will be

assumed that these data files are maintained as ILF by another
external application.

• All the data items (fields/columns) are actually the Data Element
Type (DET).

• If more than one group of data items (DET) is identified within
the same data file, these groups are identified as multiple record
element type (RET).

• Determine the number of DET and RET that exist in each of
ILF/EIF by following the rules explained in Chapter 4.

• Determine the complexity factor (low, average, and high) from
Table 4.1 in Chapter 4, “Data Functions,” based on number of
DET and RET counted for each ILF/EIF.

• Using the complexity factor, for each ILF, find the FP contribu-
tion (unadjusted FP count) from Table 4.2 in Chapter 4.

• Using the complexity factor, for each EIF, find the FP contribu-
tion (unadjusted FP count) from Table 4.3 in Chapter 4.

• Add FP contribution for all ILF and EIF to get the total unad-
justed FP count for Data Transactions.

310 Chapter 16 Estimation Case Study

• Step 6: Identify the transaction functions (input/output transactions)
that are required to input, process, output, and maintain information
available in the data files that are associated with the application.
Classify the transaction functions based on the type of information
processing being done. The following steps explain the rules.
• Ascertain that the identified transactions are outside the bound-

ary of the application but within the scope of application.
Figure 16.1 differentiates between application scope and appli-
cation boundary.

• The IFPUG FPA method recognizes three types of transactions:
External Inputs (EI), External Outputs (EO) and External Inquir-
ies (EQ). Refer to items 1, 2, and 3 in Figure 16.1. Determine
whether the transaction is an EI, EO, or EQ based on the pro-
cessing logic required by the user.

• External Input (EI): This transaction function facilitates mainte-
nance of data in internal data files (ILF). EI sometimes refer-
ences (read-only) data from external interface files (EIF).

• External Output (EO): This transaction function facilitates report
generation based on information stored in internal data files
(ILF) as well as external interface files (EIF).

• External Inquiry (EQ): This transaction function facilitates user
queries on the data stored in internal data files (ILF) as well as
external interface files (EIF).

• Determine the number of DET and FTR that exist in each of
EI/EO/EQ by following the rules explained earlier in Chapter 5,
“Transactional Functions”.

• Determine the complexity factor (simple, average, high) from
Table 5.1 and Table 5.2 in Chapter 5, based on number of DET
and FTR counted for each EI/EO/EQ.

• Using the complexity factor, for each EI, find the FP contribu-
tion (unadjusted FP count) from Table 5.3 in Chapter 5.

• Using the complexity factor, for each EO/EQ, find the FP con-
tribution (unadjusted FP count) from Table 5.4 in Chapter 5.

• Add FP contribution for all EI/EO/EQ to get the total unad-
justed FP count for transactional functions.

• Step 7: Aggregate the data function FP count and the transaction
function FP count to obtain the total unadjusted FP count.

• Step 8: Obtain the degree of influence rating for each of the 14 General
System Characteristics (GSC) as explained in Chapter 6, “General

Introduction 311

System Characteristics.” Convert the total degree of influence value
to Value Adjustment Factor (VAF). Multiply the unadjusted FP count
with VAF to obtain the adjusted FP count.

• Step 9: Transform the adjusted FP count into the total effort required
to execute the software project. This can be achieved by obtaining the
delivery rate (productivity) of the project team and then multiplying
the adjusted FP count with productivity. The effort thus obtained will
encompass all the project execution lifecycle activities that include
requirements, design, build (construction) and unit tests, and system
and integration tests. The effort may or may not include project man-
agement effort, depending on the particular productivity baseline.

• Step 10: The total effort now needs to be adjusted to a project delivery
schedule. There are methods available to do the conversion.
COCOMO II is one such popular method. The delivery schedule
(duration or elapsed time) obtained may sometimes need to be
refined based on user needs.

• Step 11: Transform the total effort obtained in Step 9 into a resource
loading chart. This step is significant in the sense that assigning the
appropriate resource with the right skills for the appropriate lifecy-
cle phase of the project is critical for the success of the project.

NOTE The various data elements that are being assumed in the
following sections are for demonstration purposes only. Discus-
sions on why certain data elements are required or not required
are out of the scope of this book. You may want to identify your
actual data elements and other project parameters based on actual
requirements approved by the user. It is also assumed here that the
requirements have already been done in consultation with the
user and detailed specification (or Use Cases) documents have
been prepared.

Case Study 1: Invoicing System

Fast Cars is an automobile dealership. The dealer has been in business
for the last 20+ years and has its headquarters in Paris (France) and
dealerships in France as well as across the U.S. and Europe. Fast Cars
has a history of strategic relationship with Speed Motors Company, the
leading automobile manufacturer in Europe. The dealer has grown

312 Chapter 16 Estimation Case Study

organically, from a single dealership outlet in France to outlets across
Europe and the U.S. Over the years it has also added other services to
customers that include

• After-sales service facilities
• Spare parts sales
• Facilitating bank loans to customers
• Used cars buy-back program

Having established itself as a trusted partner to its customers as well as
Speed Motors, Fast Cars has a respectable presence in most locations.
The company has created partnerships with local banks to provide soft
loans to its customers. Figure 16.2 shows a high-level structure of vari-
ous workflow processes that happen in the dealer’s organization.

The management of Fast Cars has a need to freshly develop an auto-
mated invoicing application. The implementation of the invoicing
application is envisioned as done in phases. As a pilot, only the main
dealership office in central Paris has been identified for implementa-
tion. All processing will be limited only to one dealership center. In
later phases this is planned to be extended to other dealers’ offices
across Europe and then the U.S.

The invoicing system needs to be structured functionally and the top-
level modules that need to be developed must be identified. For each of

Case Study 1: Invoicing System 313

Figure 16.2 Invoicing workflow.

Invoicing
System

Customer

Selects Car Create Invoice

Invoice

Make
Payment

Update
Payment

Spares
System

Service
System

Used Car
Buy-Back

Billing

Billing

Discount

Bank

Bank Transaction
Statement

Invoicing System

the modules, you will then identify various inputs, outputs, inquiries,
and data storage requirements that can then be evaluated for project
sizing purposes.

The invoicing system will broadly have the following modules that
have been envisioned based on the high-level business process work-
flow provided by the client. Figure 16.3 provides a high-level structure
of the sub-modules.

• Invoices
• Customer
• Spares
• Servicing
• Buy-back
• Miscellaneous

The actual business workflow is explained in the following scenario:

• Scenario 1: Buy a new car
• Activity 1: Customer (prospective car buyer) arrives at the

dealer’s showroom and identifies a car for possible purchase.
The customer relationship process begins. The customer’s per-
sonal details are recorded through the Customer module.

• Activity 2: The sales executive prepares details of the costing for
the car and other attachments/fittings. The details are provided
to the accounts person, who in turn prepares the draft invoice for
the car. The invoice is generated through the Invoices module.

314 Chapter 16 Estimation Case Study

Figure 16.3 Invoicing modules.

Invoicing System

Invoices Customer Spares Misc.Servicing Buy-Back

Screens, Reports, Inquiries, Interfaces

Invoicing—Functional Decomposition

• Activity 3: The sales executive determines whether the cus-
tomer has an old car that the he or she may want to trade in
order to receive a discount on the new car. If this is true, the
price for the old car is negotiated. The details of the old car and
the price negotiated are recorded through the Buy-Back mod-
ule. Also the negotiated price is automatically updated in the
draft Invoice against provision made for discounts.

• Activity 4: Customer makes payment toward the final deal. The
payment received is updated in the above Invoice.

• Scenario 2: Service a car
• Activity 1: Customer brings his or her car for servicing. The ser-

vice attendant takes possession of the car, inspects the car, and
prepares a service schedule using the Servicing module.

• Activity 2: Upon completion of the servicing of the car, the service
mechanic prepares the detailed list of servicing activities and use
of spare parts, if any. The servicing invoice is then prepared using
the Servicing module. Details of parts including the part number,
unit rates, and quantity are all obtained from the Spares module.

• Activity 3: The serviced car is delivered to the customer (owner).
Payment is received and updated on the servicing Invoice.

Invoice Module

The Invoice module is the heart of this invoicing system. This module
will facilitate some of the major invoicing, payment, and other related
business functions for the Fast Cars automobile dealer. The list of busi-
ness functions that are supported by the invoice module are

• Invoicing: Create, update, query, and delete invoices
• Bank Advice: Generate advice data to be sent to the bank
• Reports: Generate Invoice-related daily and periodic reports

This case study uses the Function Point Analysis estimation method.
Based on the various input and output parameters shown in Figure 16.4
for the Invoice module, you can identify all five parameters of a typical
FPA estimation method; EI, EO, EQ, ILF, and EIF. This section provides
details of each of the sub-modules by evaluating the individual data ele-
ments that need to be maintained for an invoice.

You can use the FP counting steps described earlier in this chapter as a
guide to arrive at the FP count, overall effort, and schedule, as well as
resource loading details.

Case Study 1: Invoicing System 315

Step 1: Identify Stakeholders

The stakeholders for the invoicing application can be broadly identi-
fied as follows:

• Customer: The buyer of the car and other accessories from the dealer.
• Dealer: The Fast Cars dealer who issues the invoice to the customer.
• Accounts Department: The accounts department requires informa-

tion on assets (Car and Spares) sold against revenue earned.
• Bank: The bank to which the dealer sends the customer for possible

financing of the car and also regular bank advice on daily payments
received etc. is sent by the dealer.

• Sales Executive: The sales executives need to meet sales targets. The
invoice data provides direct inputs to sales figures achieved.

• Storekeeper: The spares and accessories store personnel need to keep
track of various spares and accessories sold to the customer.

• Buy-Back Agency: The buy-back agency (sometimes external) needs
to incorporate their transactions into the invoicing application in
order to adjust the discount offered to the customer who is trading
the old automobile for the new purchase.

The process of identifying the stakeholders will help you begin visualiz-
ing the various pieces of information required to be maintained through
the invoice application. Additionally, you will begin to understand the

316 Chapter 16 Estimation Case Study

Application Boundary

Business Logic Business Logic

Business Logic Business Logic

Business Logic

Business Logic

Invoice

Sales
Reports

Code

Interfaces
ILF/FTR

EO

Spares and
Accessories

Buy-Back

Bank

ILF/FTR

ILF/FTR

1. Invoice
2. Receipts
3. Discount

Invoice

EO

EI/EQ

Customer

Customer Module

EIF/FTR

ILF/FTR

User

Figure 16.4 Invoicing module attributes.

Invoicing Module

Case Study 1: Invoicing System 317

various transactions and reports that need to be incorporated into the
application.

Steps 2 and 3: Identify Category of Information and Data Items

Having identified the stakeholders in Step 1, you can now work toward
various categories of information that need to be processed through the
invoice application. The requirement specification document will pro-
vide the key input. You can assume the following data items:

• Invoice Information: Details about the invoice that include
• Invoice Generic Information: Invoice Number, Invoice Date, Cus-

tomer Name, Customer Address (Door #, Street, Locality, State,
Country, ZIP Code, Contact Numbers), Invoice Amount, Tax
Percentage and Tax Amount, Discount Amount, Payment Date,
Amount Received, and Payment Mode

• Invoice Items Information: Item Code, Item Description, Item Cat-
egory, Item Quantity, and Item Rate

• Customer Information: Data items about the customer, including
Customer Code, Customer Name, Customer Profession, Cus-
tomer Address (Door #, Street, Locality, State, Country, ZIP
Code, Contact Numbers), and Car Preferences (Cost, Capacity,
and Color)

• Dealer Information: Data items about the automotive dealer, includ-
ing Dealer Code, Dealer Location, Dealer Capacity (automobiles),
Servicing Facilities, Spares and Accessories Capacity, and Sales
Capacity (Revenue)

• Accounts Information: Account Code, Account Name, Amount,
Transaction Date, and Transaction Type (Cr/Dr)

• Bank Information: Bank Code, Bank Name, Bank Address (Door #,
Street, Locality, State, Country, ZIP Code, and Contact Numbers)

• Sales Executive Information: Data items about the sales executive
include Sales Executive Code, Sales Executive Name, Sales Execu-
tive Designation, Sales Executive Address (Door #, Street, Locality,
State, Country, ZIP Code, and Contact Numbers), Sales Executive
Salary, Sales Target, Target Period, and Current Sales Status

• Stores Information: Store Code, Item Code, Item Name, Item Stock
Quantity, Item Bin Code, and Item Re-order Level

• Buy-Back Information: This facility is not planned for the current
development project. It is likely to be added as an enhancement later.

Steps 4 and 5: Identify Data Functions (Data Files: ILF/EIF)

Based on the broad categorization of information that is required to be
stored, processed, and output through the invoice application (as spec-
ified in Steps 2 and 3), you can now identify various files (ILF/EIF) that
are required to be designed for data input/output purposes.

• Invoice Information: Typically every invoice will consist of only one
invoice header information record (generic information) and one or
more invoice item records. Table 16.1 provides details about every
data element (field) required in each of the files and further identi-
fies record element type (RET) as appropriate.

• Follow IFPUG rules and determine whether each item in the
preceding group is an ILF or EIF. The analysis of invoice informa-
tion is given in Table 16.2.

318 Chapter 16 Estimation Case Study

Information DET
Item Data Elements Count

Invoice Generic Invoice Number, Invoice Date, Customer 14
Information Name, Customer Address (Door #, Street,
(RET 1) Locality, State, Country, ZIP Code, Contact

Numbers (2)), Dealer Code, Sales Executive
Code, Invoice Amount

Invoice Items Item Code, Item Description, Item 5
Information Category, Item Quantity, Item Rate
(RET 2)

Table 16.1 Invoice Information DET and RET Count

Table 16.2 Invoice Information ILF Identification

ILF Identification Rule Does the Rule Apply?

The group of data or control Yes. The complete data information
information is logical and user of the Invoice together with Item
identifiable. details is user identifiable.

The group of data is maintained Yes. The elementary process
through an elementary process maintains the Invoice and Item
within the application boundary Details data.
being counted.

Entity File RET DET Complexity Unadjusted FP Count

Invoice ILF 2 19 (14 + 5) Average 10

• Based on this analysis, the Invoice information, maintained within
the boundary of the application being counted, is identified as an ILF.

• Note: Table 16.2 (taken from IFPUG CPM 4.2) will not be repeated
again for the following ILF/EIF. This method will be used, how-
ever. Return to Table 16.2 to review as needed.

• The exact FP contribution for Invoice ILF can now be evaluated as
shown in Table 16.3 using the contribution figures provided by
IFPUG. Refer to Tables B.1 through B.7 in Appendix B, “Reference
Tables: Data Function Points.”

• Customer Information: Two kinds of information need to be stored in
the customer file: the customer personal information, and the cus-
tomer preferences of cars and other special vehicles. Typically each
set of customer information can have one or more car preferences.
It is assumed that the Customer module exists as a separate appli-
cation and it will now be integrated with the Invoice application.
Table 16.4 provides more detail on the various data elements.

• Follow IFPUG rules and determine whether each item in the pre-
ceding group is an ILF or EIF.

• Based on the analysis similar to the one shown in Table 16.2, the Cus-
tomer information is not maintained within the boundary of the appli-
cation being counted and cannot be identified as an ILF. Table 16.5
helps you evaluate whether this file can be identified as an EIF.

Case Study 1: Invoicing System 319

Table 16.3 Invoice ILF Unadjusted FP Count

Information DET
Item Data Elements Count

Customer Generic Customer Code, Customer Name, 11
Information Customer Profession, Customer
(RET 1) Address (Door #, Street, Locality, State,

Country, ZIP Code, Contact Numbers(2))

Car Preferences Model, Color, Seating Capacity, 4
(RET 2) Engine Capacity

Table 16.4 Customer Information DET and RET Count

320 Chapter 16 Estimation Case Study

• Based on the analysis similar to the one shown in Table 16.5, the
Customer information is maintained outside the boundary of the
application being counted and can identified as an EIF.

• The exact FP contribution for Customer EIF can now be evaluated
using the contribution figures provided by IFPUG. (Refer to Tables B.1
to B.7 in Appendix B.)

In order to arrive at the complexity level, you need to take into consid-
eration the various DET identified in Table 16.4. Table 16.6 provides the
details of DET, complexity and, as a result, the unadjusted function
point count.

• Dealer Information: Fast Cars Company has a network of dealers
spread across the globe. The management intends to track various
business growth indicators across its network of dealers. Various
business measuring parameters, including Stock Capacity, Servicing
Facilities, and Spares and Accessories capacity are required to be
stored and tracked against each dealer. The file structure for the
needs mentioned previously requires multiple sets of data elements,

EIF Identification Rule Does the Rule Apply?

The group of data or control information Yes. The complete data information
is logical and user identifiable. of the Customer is user identifiable.

The group of data is referenced by, Yes. The Customer data is
and external to, the application referenced by and external to
being counted. the Invoice application.

The group of data is not maintained Yes. The Customer data is not
by the application being counted. maintained by the Invoice

application.

The group of data is maintained Yes. The data is maintained in
in an ILF of another application. the Customer application.

Table 16.5 Customer Information EIF Identification

Entity File RET DET Complexity Unadjusted FP Count

Customer EIF 2 15 (11 + 4)) Low 5

Table 16.6 Customer EIF Unadjusted FP Count

grouped together, that can have multiple records for each dealer. For
example, a dealer in Germany may have the following capacity:
• Stocking capacity for 10 varieties of cars, trucks, and sports vehicles.
• Servicing capacity for 5 varieties of service for all vehicle models.
• The dealer can store all the spares and accessories for the variety

of vehicles, including additional stock for older models.
• This analysis shows that each dealer record can have one or more

stock capacity records, servicing facility records, and spares and
accessories records. As such, the dealer file will have four record
element types (RET) as shown in Table 16.7.

Case Study 1: Invoicing System 321

Table 16.7 Dealer Information DET and RET Count

DET
Information Item Data Elements Count

Dealer Generic Dealer Code, Location, Manager Name, 13
Information (RET 1) Dealer Address (Door #, Street, Locality,

State, Country, and Zip Code, Contact
Numbers (2)), Sales Capacity, Messages

Dealer Stock Model, Seating Capacity, Engine Capacity, 5
Capacity (RET 2) Vehicle Category, Stock Count

Spares and Spares Code, Capacity 2
Accessories (RET 3)

Services (RET 4) Service Code, Capacity 2

Table 16.8 Dealer ILF Unadjusted FP Count

Unadjusted
Entity File RET DET Complexity FP Count

Dealer ILF 4 22 (13 + 5 + 2 + 2) Average 10

• Follow IFPUG rules and determine whether each of the items in the
preceding group is an ILF or EIF.

• Based on the analysis similar to the one shown in Table 16.2, the
dealer information maintained within the boundary of the applica-
tion being counted is identified as an ILF.

• The exact FP contribution for Dealer ILF can now be evaluated as
shown in Table 16.8 using the contribution figures provided by IFPUG.

Table 16.10 Spares and Accessories ILF Unadjusted FP Count

Unadjusted FP
Entity File RET DET Complexity Count

Spares and ILF 1 7 Low 7
Accessories

322 Chapter 16 Estimation Case Study

• Spares and Accessories Information: Each dealer needs to stock spares
and accessories to meet servicing needs of the vehicles that the
dealer is handling. A separate Spares and Accessories module will
be needed (see Table 16.9).

Table 16.9 Spares and Accessories Information DET and RET Count

Information
Item Data Elements DET Count

Spares and Spares Code, Spares Category, Spares 7
Accessories Description, Spares Unit, Spares Unit
(RET 1) Rate, Spares Stock Count, Re-order Level

Table 16.11 Servicing Facilities Information DET and RET Count

Information DET
Item Data Elements Count

Servicing Service Code, Service Category, Vehicle 7
Facilities (RET 1) Category, Service Cost, Floor Capacity,

Number of Technicians, Number of Vehicles

• Based on the analysis similar to the one shown in Table 16.2, the
Spares and Accessories information, maintained within the bound-
ary of the application being counted, is identified as an ILF.

• The exact FP contribution for Spares and Accessories ILF can now
be evaluated as shown in Table 16.10 using the contribution figures
provided by IFPUG.

• Servicing Facilities Information: Each dealer needs to provide servicing
facilities to meet the servicing needs of the vehicles that the dealer is
handling. A separate Servicing Facilities module will be needed.
Table 16.11 identifies the lone RET and various DET required.

• Based on the analysis similar to the one shown in Table 16.2, the
Servicing Facilities information maintained within the boundary of
the application being counted is identified as an ILF.

• The exact FP contribution for Servicing Facilities ILF can now be
evaluated as shown in Table 16.12 using the contribution figures
provided by IFPUG.

• Accounts Information: The accounts information here was required
to record payment information against the specific account code
that has been previously defined through the Accounts application.
While designing the accounts information, developers observed
that the accounts and payment information actually belongs to two
different entities. As such, you need to identify two files, one each
for accounts and payment. Table 16.13 identifies the lone RET and
various DET required.

• Follow IFPUG rules and determine whether each item in the group
is an ILF or EIF.

• Based on the analysis similar to the one shown in Table 16.2, the
Accounts Data file is identified as an ILF.

• The exact FP contribution for Accounts EIF can now be evaluated as
shown in Table 16.14 using the contribution figures provided by
IFPUG.

Case Study 1: Invoicing System 323

Table 16.12 Servicing Facilities ILF Unadjusted FP Count

Unadjusted FP
Entity File RET DET Complexity Count

Servicing ILF 1 7 Low 7
Facilities

Table 16.13 Accounts Information DET and RET Count

DET
Information Item Data Elements Count

Accounts Information Account Code, Account Name, 4
(RET 1) General Ledger Code, General

Ledger Name

• Payments Information: The payments information is required to
store details of amount received by the dealer against the car that
was sold to the customer. Though the payment data will show on
the invoice itself, internally this information is recorded in a sepa-
rate file. Now find details of the payment file. Table 16.15 identifies
the lone RET and various DET required.

• Follow IFPUG rules and determine whether each item in the pre-
ceding group is an ILF or EIF.

• Based on the analysis similar to the one shown in Table 16.2, the
Payments Data file is identified as an ILF.

• The exact FP contribution for Payments ILF can now be evaluated
as shown in Table 16.16 using the contribution figures provided by
IFPUG.

324 Chapter 16 Estimation Case Study

Table 16.14 Accounts ILF Unadjusted FP Count

Unadjusted
Entity File RET DET Complexity FP Count

Accounts ILF 1 4 Low 7

Table 16.16 Payments ILF Unadjusted FP Count

Unadjusted
Entity File RET DET Complexity FP Count

Payments ILF 1 10 Low 7

Table 16.15 Payments Information DET and RET Count

Information Item Data Elements DET Count

Payments Account Code*, Customer Code, 10
Information (RET 1) Invoice Number, Amount,

Discount, Transaction Date,
Transaction Type (Cr/Dr),
Payment Mode, Bank Code,
Reference Number (Check #)

*Account Code is not counted in this table because it is treated as a reference key. In
certain situations you can exclude Customer Code, Bank Code, and Invoice Number
as reference keys.

• Bank Information: The Bank information needs to be maintained in
order to generate Bank Transactions at the end of day. A bank trans-
action statement is generated that includes all payment received
data for the day, along with Account Code and Bank Code. This
transaction statement is sent to the bank on daily basis. Table 16.17
identifies the lone RET and various DET required.

• Follow IFPUG rules and determine whether each item in the pre-
ceding group is an ILF or EIF.

• Based on the analysis similar to the one shown in Table 16.2, the
Bank Data file is identified as an ILF.

• The exact FP contribution for Bank ILF can now be evaluated as
shown in Table 16.18 using the contribution figures provided by
IFPUG.

• Sales Executive Information: The management of Fast Cars regularly
tracks the targets set for each dealership. Information on sales is
obtained through the daily sales achieved by the sales executives.
Other personnel information for the sales executives, including
salary data, is also required to be stored. Table 16.19 identifies the
three RET and various DET required.

Case Study 1: Invoicing System 325

Table 16.17 Bank Information DET and RET Count

DET
Information Item Data Elements Count

Bank Information Bank Code, Bank Name, Bank Address 10
(RET 1) (Door #, Street, Locality, State, Country,

and Zip Code, Contact Numbers (2))

Table 16.18 Bank ILF Unadjusted FP Count

Unadjusted
Entity File RET DET Complexity FP Count

Bank ILF 1 10 Low 7

326 Chapter 16 Estimation Case Study

• Follow IFPUG rules and determine whether each item in the pre-
ceding group is an ILF or EIF.

• Based on the analysis similar to the one shown in Table 16.2, the
Sales Executive Data file is identified as an ILF.

• The exact FP contribution for Sales Executive ILF can now be evalu-
ated as shown in Table 16.20 using the contribution figures pro-
vided by IFPUG.

• Stores Information: All the necessary spares, accessories, and other
extra fittings are stocked in the stores. Table 16.21 identifies the RET
and various DET required.

Table 16.19 Sales Executive Information DET and RET Count

Information DET
Item Data Elements Count

Sales Executive Sales Executive Code, Name, 12
Information (RET 1) Designation, Address (Door #,

Street, Locality, State, Country, and
Zip Code, Contact Numbers (2)),
Dealer Code

Salary Information Sales Executive Code*, Sales 2
(RET 2) Executive Salary, Salary Period

Sales Information Sales Executive Code*, Sales 3
(RET 3) Target, Target Period and

Current Sales Status

* Sales Executive Code not counted.

Table 16.20 Sales Executive ILF Unadjusted FP Count

Unadjusted FP
Entity File RET DET Complexity Count

Sales Executive ILF 3 17 Low 7

Table 16.21 Stores Information DET and RET Count

Information Item Data Elements DET Count

Stores Information Stores Code, Stores Name, Stores 4
(RET 1) Location, Stores Manager

• Buy-Back Information: This facility is not planned for the current
development project. It is likely to be added as an enhancement later.

Step 6: Identify Transaction Functions (EI/EQ/EO)

Having identified the stakeholders in Step 1, you can now work toward
various categories of information needed to be processed through the
invoice application. The requirement specification document will pro-
vide the key input. For each of the business entities identified in Step 1,
you can now identify various transaction functions that are required in
order to facilitate business activities of Fast Cars dealers.

Typically there are three kinds (EI/EO/EQ) of transaction functions
that are possible for each business entity. For the purpose of this case
study, you can assume a variety of transaction functions that could pos-
sibly be applicable. For each of the transaction functions identified, you
can then proceed with evaluating the function point count as per
IFPUG CPM 4.2 guidelines.

Consider the rules for analysis of the three varieties of transactional
functions (EI/EO/EQ) as shown in Tables 16.23 and 16.24. The tables
cover the elementary process identification rules as well as the DET
and FTR counting rules that generically apply to all varieties of transac-
tion functions. Because you will evaluate these transaction functions
for each business entity later in the chapter, these tables will be helpful
in identifying the transaction function type (EI/EO/EQ) as well as its
counting parameters DET and FTR.

• Follow IFPUG rules and determine whether each item in the pre-
ceding group is an ILF or EIF.

• Based on the analysis similar to the one shown in Table 16.2, the
Stores Data file is identified as an ILF.

• The exact FP contribution for Stores ILF can now be evaluated as shown
in Table 16.22 using the contribution figures provided by IFPUG.

Case Study 1: Invoicing System 327

Table 16.22 Stores ILF Unadjusted FP Count

Entity File RET DET Complexity Unadjusted FP Count

Stores ILF 1 4 Low 7

328 Chapter 16 Estimation Case Study

Table 16.23 Elementary Process Identification Rules

Identification Rule EI EO EQ

The process is the smallest unit of activity that is Y Y Y
meaningful to the user.

The process is self-contained and leaves the Y Y Y
business of the application in a consistent state.

The primary intent of an elementary process is to Y N N
maintain an ILF or alter the behavior of the system.

The processing logic of the elementary process NA Y N
contains at least one mathematical formula or
calculation.

The processing logic of the elementary process Y Y/N N
alters the behavior of the system.

The primary intent of the elementary process is to N Y Y
present information to a user.

Is the data moving in from outside to inside Y Y Y
(or vice versa) the application boundary?

An ILF is maintained by the elementary process. Y Y/N N

*NA = Not Applicable.

Table 16.24 DET and FTR Identification Rules

Identification Rule EI EO EQ

Count an FTR for each ILF maintained. Y Y NA

Count an FTR for each EIF referenced. Y Y Y

Count one DET for each user recognizable, Y Y Y
non-repeated field that enters or exits the
application boundary and is required to
complete the input/output/query process.

Count one DET for each message sent Y Y Y
(Ex. Error/Confirmation Message).

Count one DET for each action button. Y Y Y

*NA = Not Applicable.

Table 16.24 provides guidelines on how to apply the DET and FTR
counting rules for the three types of transaction functions: EI/EO/EQ.

Taking each of the modules, analyze various transaction functions that
are required to maintain the business transactions. You can also iden-
tify various DET/RET/FTR for each of the transaction functions.

• Invoice Information: The user has identified (assumed) the following
variety of transactions, including input, output, and queries for the
invoice entity as shown in Table 16.25.

• You can now identify various DET and FTR for each of the transaction
functions in the Invoice module. Table 16.26 identifies the various
RET and DET required for each of the invoice transaction modules.

• Customer Information: It is assumed that the user has identified the
following variety of transactions, including inputs, outputs, and
inquiries for the customer entity as shown in Table 16.27. You can now
identify various DET and FTR for each of the transaction functions in
the Customer module.

• Dealer Information: It is assumed that the user has identified the fol-
lowing variety of transactions, including inputs, outputs, and
inquiries for the dealer entity as shown in Table 16.28. You can now
identify various DET and FTR for each of the transaction functions
in the Dealer module.

Case Study 1: Invoicing System 329

Table 16.25 Transactions for Invoice Module

Transaction Type Comments

Create Invoice EI Invoice Data Entry provision

Invoice Query EQ Query on old Invoices

Print Invoice EO Print-out the final Invoice

Invoice Summary EO Summary Invoice
Report Reports—Weekly/Quarterly

Receive Payments EI Payments (against Invoice)
Data Entry

Payments Query EQ Query on old Payments

Invoice Aging EO Periodic Aging Analysis
Analysis Report (Outstanding Payments)

Sales Reports EO Summary Sales Reports
(Weekly, Quarterly, Yearly)

FP
Transaction Type DET/FTR Count Comments

Create EI Invoice Number, Invoice 6 Data Entry
Invoice Date, Customer Name, (High) Screen(s)

Customer Address (Door #, for adding
Street, Locality, State, new Invoices
Country, and Zip Code,
Contact Numbers (2)), Dealer
Code, Sales Executive Code,
Invoice Amount, Tax Percent-
age and Tax Amount, Click
(Add, Edit, Delete and Save)
Button, Error Messages
(DET = 18)

Item Code, Item Description,
Item Category, Item
Quantity, Item Rate (DET = 6)

FTR: Invoice, Customer,
Dealer, Sales Executive

(Total: DET = 24, FTR = 4)

Modify EI All DETs/FTRs as identified 6 Data Entry
Invoice for “Create Invoice” (High) Screen(s) for

above) modifying
existing Invoices

Delete EI All DETs/FTRs as identified 6 Data Entry
Invoice for “Create Invoice” above) (High) Screen(s)

for deleting
Invoices. It is
assumed that
the user will
require viewing
all data before
deleting.

Query EQ All DETs/FTRs as identified 6 Query and
Invoice for “Create Invoice” above) (High) search Invoices

on multiple
DETs; Invoice #,
Customer, etc.

330 Chapter 16 Estimation Case Study

(Total: DET = 24, FTR = 4)

(Total: DET = 24, FTR = 4)

(Total: DET = 24, FTR = 4)

Table 16.26 DET and FTR Identification for Invoice Module

Case Study 1: Invoicing System 331

Table 16.26 DET and FTR Identification for Invoice Module (Continued)

FP
Transaction Type DET/FTR Count Comments

Print EO All DETs as identified for 7 It is required
Invoice “Create Invoice” above (High) to provide a

except click button) + hard copy
Invoice Total, Payment of the final
Received, Payment Date, Invoice to the
Payment Mode, Balance Due Customer.

FTR: All FTR from Create
Invoice + Payments

(Total: DET = 28, FTR = 5)

Invoice EO Invoice Number, Invoice 5 Invoiced
Summary Date, Customer Name, (Avg.) amount reports
Report Invoice Amount, Tax required by

Percentage and Tax Amount, Dealers.
Discount Amount, Payment
Date, Amount Received,
Payment Mode,
Weekly Totals, Quarterly
Totals (DET = 12)

FTR: Invoice, Customer,
Payment

(Total: DET = 12, FTR = 3)

Receive EI All DETs/FTRs as identified 6 It is assumed
Payments for “Create Invoice” (High) here that in

above) + Payment order to enter
Date, Amount Received, payment details,
Payment Mode you also need to

invoke Invoice
details. Also
you are allowed
to modify
payments in
the same screen.

Delete payments
will automati-
cally happen
along with
delete Invoice.

(Continued)

(Total: DET = 27, FTR = 3)

FP
Transaction Type DET/FTR Count Comments

Payments EQ All DETs/FTRs as 6
Query identified for “Create (High)

Invoice” above) + Payment
Date, Amount Received,
Payment Mode

(Total: DET = 27, FTR = 3)

Invoice EO Invoice Number, Invoice 5 Aging analysis
Aging Date, Customer Name, (Avg.) for specified
Analysis Invoice Amount, Amount aging e.g.,

Received, Balance Due, 30 days,
Payment Pending Age 30–60 days, and
(days), Ageing Totals 60 days and
(DET = 8) above. Sum

totals for
every category.

Sales Report EO All DETs/FTRs as 5 Report sorted
by Sales identified for “Invoice (Avg.) on Sales
Executive Aging Analysis” Executive Code

(Total: DET = 8, FTR = 3)

Sales EO All DETs/FTRs as 5 Report sorted
Report by identified for “Invoice (Avg.) on Dealer
Dealer Code Aging Analysis” Code

(Total: DET = 8, FTR = 3)

Sales EO All DETs/FTRs as 5 Report sorted
Report identified for “Invoice (Avg.) on Location
by Location Aging Analysis” Code

(Total: DET = 8, FTR = 3)

TOTAL Unadjusted FP totals for 68
entire Invoice Module
(EI/EO/EQ)

Table 16.26 DET and FTR Identification for Invoice Module (Continued)

332 Chapter 16 Estimation Case Study

FTR: Invoice, Customer,
Payment

(Total: DET = 8, FTR = 3)

Case Study 1: Invoicing System 333

Table 16.27 DET and FTR Identification for Customer Module

FP
Transaction Type DET/FTR Count Comments

Create EI Customer Code, Customer 3 Data Entry
Customer Name, Customer (Low) Screen(s) for

Profession, Customer adding new
Address (Door #, Street, Customer
Locality, State, Country,
and Zip Code, Contact
Numbers(2)) (DET = 11)

Car Preferences (Model,
Cost, Capacity, Color)
(DET = 4)

FTR: Customer

(Total: DET = 15, FTR = 1)

Modify EI All DETs/FTRs as 3 Data Entry
Customer identified for “Create (Low) Screen(s)

Customer” for modifying
existing
Customers

Delete EI All DETs/FTRs as 3 Data Entry
Customer identified for “Create (Low) Screen(s)

Customer” for deleting
existing
Customers

Customer EQ All DETs/FTRs as 3 This
Report identified for “Create (Low) report is

Customer” treated
as EQ
because
there is no
derived
data.

TOTAL Unadjusted FP totals 12
for entire Customer
Module (EI/EO/EQ)

(Total: DET = 15, FTR = 1)

(Total: DET = 15, FTR = 1)

(Total: DET = 15, FTR = 1)

334 Chapter 16 Estimation Case Study

Table 16.28 DET and FTR Identification for Dealer Module

FP
Transaction Type DET/FTR Count Comments

Create EI Dealer Code, Location, 6 Data Entry
Dealer Manager Name, Dealer (High) Screen(s)

Address (Door #, Street, for adding
Locality, State, Country, new Dealer
and Zip Code, Contact
Numbers (2)), Sales
Capacity, Messages
(DET = 13)

Model, Seating Capacity,
Engine Capacity, Vehicle
Category, Stock Count
(DET = 5)

Spares Code, Capacity
(DET = 2)

Service Code, Capacity
(DET = 2)

FTR: Dealer, Vehicle
Models, Spares, Service

(Total: DET = 22, FTR = 4)

Modify EI All DETs/FTRs as iden- 6 Data Entry
Dealer tified for “Create Dealer” (High) Screen(s)

for modifying
existing
Dealers

Delete EI All DETs/FTRs as iden- 6 Data Entry
Dealer tified for “Create Dealer” (High) Screen(s)

for deleting
existing
Dealers

Dealer EQ All DETs/FTRs as 6 This report
Report identified for “Create (High) is treated

Dealer” above) as EQ since
there is no
derived data.

TOTAL Unadjusted FP totals 24
for entire Dealer Module
(EI/EO/EQ)

(Total: DET = 22, FTR = 4)

(Total: DET = 22, FTR = 4)

(Total: DET = 22, FTR = 4)

Case Study 1: Invoicing System 335

Table 16.29 DET and FTR Identification for Spares and Accessories Module

FP
Transaction Type DET/FTR Count Comments

Create EI Spares Code, Spares 3 Data Entry
Spares and Category, Spares (Low) Screen(s)
Accessories Description, Spares Unit, for adding
Record Spares Unit Rate, Spares new Spares

Stock Count, Re-order and Accessories
Level (DET = 7) Record

FTR: Spares and
Accessories

(Total: DET = 7, FTR = 1)

Modify EI All DETs/FTRs as 3 Data Entry
Spares and identified for “Create (Low) Screen(s) for
Accessories Spares and Accessories modifying
Record Record” existing

Spares and
Accessories
Record

Delete EI All DETs/FTRs as 3 Data Entry
Spares and identified for “Create (Low) Screen(s)
Accessories Spares and Accessories for deleting
Record Record” existing

Spares &
Accessories
Record.

Spares and EQ All DETs/FTRs as 3 This report
Accessories identified for “Create (Low) is treated
Report Spares and Accessories as EQ since

Record” there is
no derived
data.

(Total: DET = 7, FTR = 1)

(Total: DET = 7, FTR = 1)

(Total: DET = 7, FTR = 1)

(Continued)

• Spares and Accessories Information: All information about all the
spares and accessories that the dealer intends to stock will be main-
tained through the Spares and Accessories module. Table 16.29
identifies the various RET and DET required for the spares and
accessories transaction modules.

336 Chapter 16 Estimation Case Study

Table 16.29 DET and FTR Identification for Spares and Accessories Module
(Continued)

FP
Transaction Type DET/FTR Count Comments

Spares and EO All DETs/FTRs as 5
Accessories identified for “Create (Avg)
Billing Spares and Accessories

Record” + Customer
Code + Customer
Name + Bill Total

FTR: Spares and
Accessories, Customer

(Total: DET = 10, FTR = 2)

TOTAL Unadjusted FP totals for 17
entire Spares &
Accessories Module
(EI/EO/EQ)

FP
Transaction Type DET/FTR Count Comments

Create EI Service Code, Service 3 Data Entry
Servicing Category, Vehicle (Low) Screen(s)
Facilities Category, Service Cost, for adding
Record Floor Capacity, Number new Servicing

of Technicians, Number Facilities Record
of Vehicles (DET = 7)

FTR: Servicing Facilities

(Total: DET = 7, FTR = 1)

Table 16.30 DET and FTR Identification for Servicing Facilities Module

• Servicing Facilities Information: All information about the servicing
that the dealer intends to provide to clients will be maintained through
the Servicing Facilities module. Table 16.30 identifies the various RET
and DET required for each of the servicing transaction modules.

Case Study 1: Invoicing System 337

FP
Transaction Type DET/FTR Count Comments

Modify EI All DETs/FTRs as 3 Data Entry
Servicing identified for “Create (Low) Screen(s)
Facilities Servicing Facilities for modifying
Record Record” existing

Servicing
Facilities
Record

Delete EI All DETs/FTRs as 3 Data Entry
Servicing identified for “Create (Low) Screen(s)
Facilities Servicing Facilities for deleting
Record Record” existing

Servicing
Facilities
Record

Servicing EQ All DETs/FTRs as 3 This report
Facilities identified for “Create (Low) is treated
Report Servicing Facilities as EQ

Record”) since there
is no derived
data.

Servicing EO All DETs/FTRs as 5
Billing identified for “Create (Avg)

Servicing Facilities
Record” above) +
Customer Code +
Customer Name +
Bill Total

FTR: Servicing
Facilities, Customer

(Total: DET = 10, FTR = 2)

TOTAL Unadjusted FP totals 17
for entire Servicing
Facilities Module
(EI/EO/EQ)

(Total: DET = 7, FTR = 1)

(Total: DET = 7, FTR = 1)

Table 16.30 DET and FTR Identification for Servicing Facilities Module
(Continued)

(Total: DET = 7, FTR = 1)

338 Chapter 16 Estimation Case Study

Table 16.31 DET and FTR Identification Accounts Module

FP
Transaction Type DET/FTR Count Comments

Create EI (Account Code, Account 3 Data Entry
Account Name, General Ledger (Low) Screen(s)
Record Code, General Ledger for adding

(Name (DET = 4) new Account
Record

Modify EI All DETs/FTRs as iden- 3 Data Entry
Account tified for “Create Account (Low) Screen(s) for
Record Record” modifying

existing
Accounts
Record

Delete EI All DETs/FTRs as iden- 3 Data Entry
Account tified for “Create (Low) Screen(s) for
Record Account Record” deleting

existing
Account
Record

Accounts EQ All DETs/FTRs as 3 This report
Report identified for “Create (Low) is treated

Account Record” as EQ since
there is
no derived
data.

TOTAL Unadjusted FP totals for 12
entire Accounts Module
(EI/EO/EQ)

(Total: DET = 4, FTR = 1)

FTR: Accounts

(Total: DET = 4, FTR = 1)

(Total: DET = 4, FTR = 1)

(Total: DET = 4, FTR = 1)

• Accounts Information: All the financial transactions that happen at
the dealer’s office must be recorded against the appropriate account
code. At present, a separate Accounts module does not exist. As
such, the accounts information is maintained as another module.
Table 16.31 identifies the various RET and DET required for each of
the accounts transaction modules.

FP
Transaction Type DET/FTR Count Comments

Create EI Account Code*, Customer 3 Data Entry
Payment Code, Invoice Number, (Low) Screen(s) for
Record Amount, Discount, Transaction adding new

Date, Transaction Type Payment
(Cr/Dr), Payment Mode, Record
Bank Code, Reference
Number (Check #) (DET = 10)

FTR: Payments, Invoice

(Total: DET = 10, FTR = 1)

Modify EI All DETs/FTRs as 3 Data Entry
Payment identified for “Create (Low) Screen(s) for
Record Payment Record” modifying

existing
Payment Record

Delete EI All DETs/FTRs as 3 Data Entry
Payment identified for “Create (Low) Screen(s) for
Record Payment Record” deleting existing

Payment Record

Payments EQ All DETs/FTRs as 3 This report
Report identified for “Create (Low) is treated as EQ

Payment Record” since there is no
derived data.

TOTAL Unadjusted FP totals for entire 12
Payments Module (EI/EO/EQ)

Case Study 1: Invoicing System 339

• Payments Information: The payments information is required to
store details of amount received by the dealer against the car that
was sold to the customer. Though the payment data will show on
the invoice itself, internally this information is recorded in a sepa-
rate file. Table 16.32 identifies the various RET and DET required
for each of the payment transaction modules.

*Account Code is not counted in this table because it is treated as a reference key. In
certain situations, you can exclude Customer Code, Bank Code, and Invoice Number
as reference keys.

Table 16.32 DET and FTR Identification Payments Module

(Total: DET = 10, FTR = 1)

(Total: DET = 10, FTR = 1)

(Total: DET = 10, FTR = 1)

FP
Transaction Type DET/FTR Count Comments

Create EI Bank Code, Bank Name, 3 Data Entry
Bank Bank Address (Door #, Street, (Low) Screen(s) for
Record Locality, State, Country, and adding new

Zip Code, Contact Numbers (2)). Bank Record
(DET = 10)

FTR: Bank

(Total: DET = 10, FTR = 1)

Modify EI All DETs/FTRs as identified 3 Data Entry
Bank for “Create Bank Record” (Low) Screen(s) for
Record modifying

existing Bank
Record

Delete Bank EI All DETs/FTRs as identified 3 Data Entry
Record for “Create Bank Record” (Low) Screen(s) for

deleting existing
Bank Record

Bank EO All DETs as identified for 5 This report
Report “Create Bank Record” above) + (Avg) is treated as

Account Code + Payment a Bank
Amount + Payment Date + transaction
Payment Reference (Check #) + statement.
Total Amount

FTR: Bank, Account, Payment

(Total: DET = 15, FTR = 3)

TOTAL Unadjusted FP totals for entire 14
Bank Module (EI/EO/EQ)

340 Chapter 16 Estimation Case Study

Table 16.33 DET and FTR Identification Bank Module

(Total: DET = 10, FTR = 1)

(Total: DET = 10, FTR = 1)

• Bank Information: The Bank information needs to be maintained in
order to generate Bank Transactions at the end of day. A bank trans-
actions statement is generated that includes all payment received
data for the day, along with Account Code and Bank code. This
transaction statement is sent to the bank on a daily basis. Table 16.33
identifies the various RET and DET required for each of the Bank
Transaction modules.

Case Study 1: Invoicing System 341

• Sales Executive Information: It is assumed that the user has identified
the following variety of transactions, including inputs, outputs,
and inquiries for the sales executive entity as shown in Table 16.34.
You can now identify various DET and FTR for each of the transac-
tion functions in the Sales Executive module.

Table 16.34 DET and FTR Identification for Sales Executive Module

FP
Transaction Type DET/FTR Count Comments

Create Sales EI Sales Executive Code, Name, 6 Data Entry
Executive Designation, Address (Door #, (High) Screen(s) for
Code Street, Locality, State, Country, adding new

and Zip Code, Contact Sales Executive
Numbers (2)), Dealer Code, Code
Sales Executive Salary, Salary
Period, Sales Target, Target
Period, Current Sales Status
(DET = 17)

FTR: Sales Executive, Dealer

(Total: DET = 17, FTR = 2)

Modify EI All DETs/FTRs as iden- 6 Data Entry
Sales tified for “Create Sales (High) Screen(s) for
Executive Executive Code” modifying
Code existing Sales

Executive Codes

Delete Sales EI All DETs/FTRs as 6 Data Entry
Executive identified for “Create (High) Screen(s) for
Code Sales Executive Code” deleting

existing Sales
Executive Codes

Sales EO All DETs/FTRs as identified 7 Sales Target
Executive for “Create Sales Executive (High) vs. Actual
Report Code” above) + Current Sales report

Total + Target Total + Target Gap

(Total: DET = 20, FTR = 2)

TOTAL Unadjusted FP totals for entire 25
Sales Executive Module
(EI/EO/EQ)

(Total: DET = 17, FTR = 2)

(Total: DET = 17, FTR = 2)

342 Chapter 16 Estimation Case Study

• Stores Information: All the spares, accessories, and other extra
fittings are stocked in the stores. Table 16.35 identifies the vari-
ous RET and DET required for each of the stores transaction
modules.

Table 16.35 DET and FTR Identification for Stores Module

Trn. FP
Transaction Type DET/FTR Count Comments

Create EI Stores Code, Stores 3 Data Entry
Stores Name, Stores Location, (Low) Screen(s) for
Code Stores Manager adding new

(DET = 4) Stores Code

Modify EI All DETs/FTRs as 3 Data Entry
Stores identified for “Create (Low) Screen(s) for
Code Sales Executive Code” modifying

existing
Stores
Codes

Delete EI All DETs/FTRs as 3 Data Entry
Stores Code identified for “Create (Low) Screen(s) for

Stores Code” deleting
existing
Stores
Codes

Stores EQ All DETs/FTRs as 3 This report
Report identified for “Create (Low) is treated

Stores Code” as EQ since
there is no
derived
data

TOTAL Unadjusted FP totals for 12
entire Stores Module
(EI/EO/EQ)

(Total: DET = 4, FTR = 1)

FTR: Stores

(Total: DET = 4, FTR = 1)

(Total: DET = 4, FTR = 1)

(Total: DET = 4, FTR = 1)

Case Study 1: Invoicing System 343

• Buy-back Information: This facility is not planned for the current
development project. It is likely to be added as an enhancement
later.

Step 7: Aggregate Data and Transaction Function (Unadjusted)
FP Counts

Aggregate the data function FP count and the transaction function FP
count to obtain the total Unadjusted FP Count.

Table 16.36 summarizes the overall data functions identified in Step 6
and also the total unadjusted function points for data functions only.

Table 16.37 summarizes the overall transaction functions identified in
Step 6 and also shows the total unadjusted function points for transaction
functions only.

• Total Unadjusted FP Count for the Invoice Application = 74 + 213 = 287.

Table 16.36 Total Data Function FP Count (Unadjusted)

Unadjusted FP
Data Function Type Complexity Count

Invoice ILF Average 10

Customer EIF Low 5

Dealer ILF Average 10

Spares and Accessories ILF Low 7

Servicing Facilities ILF Low 7

Accounts ILF Low 7

Payments ILF Low 7

Bank ILF Low 7

Sales Executive ILF Low 7

Stores ILF Low 7

TOTAL 74

344 Chapter 16 Estimation Case Study

Table 16.37 Total Transaction Function FP Count (Unadjusted)

Unadjusted FP
Transaction Function Type Complexity Count

Create Invoice EI High 6

Modify Invoice EI High 6

Delete Invoice EI High 6

Query Invoice EQ High 6

Print Invoice EO High 7

Invoice Summary Report EO Average 5

Receive Payments EI High 6

Payments Query EQ High 6

Invoice Aging Analysis EO Average 5

Sales Report by Sales Executive EO Average 5

Sales Report by Dealer Code EO Average 5

Sales Report by Location EO Average 5

Create Customer EI Low 3

Modify Customer EI Low 3

Delete Customer EI Low 3

Customer Report EQ Low 3

Create Dealer EI High 6

Modify Dealer EI High 6

Delete Dealer EI High 6

Dealer Report EQ High 6

Create Spares and Accessories EI Low 3

Modify Spares and Accessories EI Low 3

Delete Spares and Accessories EI Low 3

Spares and Accessories Report EQ Low 3

Spares and Accessories Billing EO Average 5

Create Servicing Facilities EI Low 3

345Case Study 1: Invoicing System

Unadjusted FP
Transaction Function Type Complexity Count

Modify Servicing Facilities EI Low 3

Delete Servicing Facilities EI Low 3

Servicing Facilities Report EQ Low 3

Servicing Facilities Billing EO Average 5

Create Account EI Low 3

Modify Account EI Low 3

Delete Account EI Low 3

Account Report EQ Low 3

Create Payment EI Low 3

Modify Payment EI Low 3

Delete Payment EI Low 3

Payment Report EQ Low 3

Create Bank Code EI Low 3

Modify Bank Code EI Low 3

Delete Bank Code EI Low 3

Bank Advice Report EO Average 5

Create Sales Executive Code EI High 6

Modify Sales Executive Code EI High 6

Delete Sales Executive Code EI High 6

Sales Executive Report EO High 7

Create Stores Code EI Low 3

Modify Stores Code EI Low 3

Delete Stores Code EI Low 3

Stores Report EQ Low 3

TOTAL 213

Table 16.37 Total Transaction Function FP Count (Unadjusted) (Continued)

346 Chapter 16 Estimation Case Study

Table 16.38 Invoicing System—General System Characteristics

Degree of
GSC # GSC Description Influence Comments

1 Data Communications 4 The application is online
and supports at least one
type of communication
protocol.

2 Distributed Data 4 Distributed data
processing and
exchange is occurring
in both directions;
from corporate to dealers
and vice versa.

3 Performance 3 Though performance
requirements are not
very stringent, the
performance needs are
business critical.
Performance is not
CPU-dependent.

4 Heavily Used 3 Limited operational
Configuration constraint
exists. Dedicated servers
need to be set up for
back-end processing.

5 Transaction Rate 3 Average transaction
rates are expected. But
during peak seasons
(festive, etc.) the
transaction rates are
likely to shoot up.

Step 8: Obtain GSC Values for Invoice Application

The next step is to obtain the degree of influence rating for each of the
14 general system characteristics (GSCs) as explained in Chapter 6.
Table 16.38 evaluates the impact of each of the 14 GSCs on the invoice
application. Convert the total degree of influence value to value adjust-
ment factor (VAF). Multiply the Unadjusted FP Count with VAF to
obtain the Adjusted FP Count.

Case Study 1: Invoicing System 347

(Continued)

Table 16.38 Invoicing System—General System Characteristics (Continued)

Degree of
GSC # GSC Description Influence Comments

6 Online Data Entry 5 More than 30 percent
of transactions are
expected to be
interactive.

7 End-User Efficiency 5 More than six online
functions are being
implemented in the
application.

8 Online Update 3 Online update of
major internal logical
files is designed. No
specific built-in
design for data loss
envisaged.

9 Complex Processing 1 Limited processing
complexity expected.

10 Reusability 3 At least 15 percent of
code is expected to be
reused across various
modules of the
application.

11 Installation Ease 3 The application (client
portion) will be installed
in multiple locations
globally. The expectation
is that the application
installation is designed
for this.

12 Operational Ease 3 Some of the standard
requirements like
automatic startup,
backup, and recovery
procedures as well as
automating printer and
other operational
needs are being built-in.

348 Chapter 16 Estimation Case Study

Degree of
GSC # GSC Description Influence Comments

13 Multiple Sites 4 Provision for installing
at multiple locations
and on varying
hardware, supported
by documentation, has
to be made.

14 Facilitate Change 3 All variable/reference
data has been kept out
of code to facilitate easy
modification by user.

Total Degree of 47
Influence (TDI)

Value Adjustment 1.12 VAF = 0.65 + (TDI * 0.01)
Factor

Table 16.38 Invoicing System—General System Characteristics (Continued)

Step 9: Transform the Adjusted FP Count into Total Effort

Transform the adjusted FP count into the total effort required to execute
the software project. This can be achieved by obtaining the delivery
rate (productivity) of the project team and then multiplying the
adjusted FP count with productivity. The effort thus obtained will
encompass all the project execution lifecycle activities that include
requirements, design, build (construction) and unit test, and system
and integration tests.

The following six steps take you through the sequence of converting
the unadjusted function points count into adjusted function points and
then to effort using assumed productivity. It then finally provides you
with an option for adding the project management overhead efforts.

1. The Value Adjustment Factor (see Table 16.38) = 1.12
2. Final (adjusted) Function Points = 287 × 1.12 = 322
3. Assume the technology is J2EE and productivity for J2EE = 10 FP

per Person Month
4. Engineering Effort required to develop the Invoice application =

322/10 = 32 PM

Case Study 1: Invoicing System 349

5. Additional Effort for Project Management and Configuration
Management = 15%

6. Final Effort = 32 + 5 (15%) = 37 Person Months

Step 10: Transform the Total Effort into Delivery Schedule

The total effort now needs to be adjusted to a project delivery schedule.
There are methods available to do the conversion, COCOMO II being
one such popular method. The delivery schedule (duration or elapsed
time) thus obtained may sometimes need to be refined based on user
needs.

For simplicity’s sake, assume that the customer has expressed a con-
straint in accepting any delivery schedule beyond five months. As
such, you can assume the five months as delivery schedule (elapsed
time) allowed from the start date of the project.

Step 11: Map the Resource Loading to Meet the Delivery Schedule

Transform the total effort obtained in Step 9 above into a resource load-
ing chart. This step is significant in the sense that assigning the appro-
priate person with the right skills for the appropriate lifecycle phase of
the project is critical for the project to be a success.

Table 16.39 shows the resource loading chart needed to meet the five-
month schedule, as discussed in Step 10.

Table 16.39 Resource Loading Chart (Illustrative Only)

Lifecycle Phase -> Req. Design Build Test

Month -> Total Person
Resource Type M1* M2* M3* M4* M5* Months

Project Manager 1 1 1 1 1 5

Technical Architect 1 1 1 3

Business Analyst 2 2 2 2 1 9

Programmer/Tester 4 6 6 4 20

Total Effort 3 8 10 10 6 37
(Person Months)

*M1 = Month 1.

350 Chapter 16 Estimation Case Study

The resource allocation for the various lifecycle phases of the project
has been done with a certain assumption about the type of resources,
resource numbers, and duration of allocation based on past experience
of project execution. You may want to devise alternate resource loading
methods based on your experience. Table 16.39 can now be converted
to actual costs by

• Applying rate per day to each role (project manager, architect,
analyst, and developer)

• Apply the rate for the assigned durations (person months)
• Add overheads like infrastructure, including servers, desktops,

and software licenses as applicable
• Add other management overhead costs as applicable

Effort for the second and subsequent phase-wise expansions can be
developed separately.

Case Study 2: Enhanced Invoicing System

Continuing the discussion on software development project(s) for our
dear customer Fast Cars, an automobile dealer, the next phase involves
improving the existing Invoice application by adding another impor-
tant module. Consider this exercise an enhancement project.

Case Study 1 mentioned the Buy-Back module as one of the functions
planned for development. This module was not included in the estima-
tion process so that it could be introduced as an enhancement project.
The next section discusses the estimation process as defined for
enhancement projects in the IFPUG method [1].

Step-by-Step FP Counting Process (Enhancement Projects)

Here are the main steps that you need to follow diligently if you want
to obtain accurate FP sizing as well as derived effort and delivery
schedule for enhancement projects:

• Step 1: Ensure that you have all the information about the existing
application with respect to the Function Points counting processes.
The information should include following FP counting data:
• # Internal Logical Files (ILF)
• # External Interface Files (EIF)
• # External Inputs (EI)
• # External Outputs (EO)

Case Study 2: Enhanced Invoicing System 351

• # External Inquiries (EI)
• # DET, # RET, and # FTR for each of the above attributes
• Degree of influence values for each of the 14 GSC
• Value adjustment factor
Verify the FP count by applying IFPUG counting method using the
attribute data obtained as above. If for any reason you do not have
the necessary information, you will have to follow the steps
explained in Case Study 1 and obtain the required information. You
may have to refer to the existing data model, input/output/query
screens, interface to other applications, reports, and possibly por-
tions of code in order to obtain a good picture of the application
complexity. Without the required FP and its attribute information
about the existing application, you cannot proceed with the IFPUG
method of sizing estimation for enhancements. There are other
alternatives to estimation of size and effort for enhancement pro-
jects but they are out of the scope of the discussions in this section.

• Step 2: Based on the detailed specifications prepared for the proposed
enhancement module, determine the data functions and transaction
functions as explained in Case Study 1 (Steps 3 through 6). The process
of identifying these data and transaction functions should be done
with the assumption that these functions are of a stand-alone nature.

• Step 3: The impact of the data and transaction functions of the
enhancement module on the existing application have to be
assessed next. Review all the data and transaction function attrib-
utes of the existing application and identify additions, modifica-
tions, and deletions, if any, to each of them.

• Step 4: Obtain the detailed information about the GSCs, their degree
of influence value, and the final value adjustment factor figures of
the existing application. Evaluate each of the GSC values for any
possible change in the degree of influence due to enhancement data
and transaction functions.

• Step 5: Evaluate the function point count for the enhancement
project using the IFPUG method provided in CPM 4.2:
• EFP = [(ADD + CHGA + CFP) * VAFA] + (DEL * VAFB)

NOTE For details on the EFP (Enhancement Function Point)
formula, refer to Chapter 8, “Estimation Flavors.”

• Step 6: Convert FP count into effort and schedule as done in Case
Study 1.

Assessing the Impact of Enhancing the Invoice Application

You can now apply the preceding six steps to estimate the FP count for
the Buy-Back module and then convert the FP count into effort.

• Step 1: Obtain the various FP counting parameters for the existing
Invoice application. This has already been done in the Case Study 1.
The details are available in Tables 16.36, 16.37, and 16.38.

• Step 2: Evaluate the data functions and transaction functions for the
Buy-Back module enhancement project.
• Data Function Information: Under the Buy-Back scheme, the dealer

provides an opportunity for the customer to trade the old vehicle
for a discounted cost against the new vehicle purchase. As a busi-
ness strategy, Fast Cars does not encourage dealers to handle the
Buy-Back business. This business is sub-contracted to external
agents who specialize in handling purchase of used cars. The fol-
lowing DET and RET are expected to meet the requirements for
the Buy-Back module.
Table 16.40 identifies the RET and DET for data functions of
Buy-Back Agent module.

Table 16.41 identifies the RET and DET for data functions of the
Buy-Back Cars module.

352 Chapter 16 Estimation Case Study

Table 16.40 Buy-Back Agent Data Function Information DET and RET Count

Information Item Data Elements DET Count

Buy-Back Agent Agent Code, Name, Designation, 12
(RET 1) Address (Door #, Street, Locality, State,

Country, and Zip Code, Contact
Numbers (2)), Dealer Code

Table 16.41 Buy-Back Cars Data Function Information DET and RET Count

Information Item Data Elements DET Count

Buy-Back Cars Customer Code, Car Category, Car 10
(RET 1) Type, Engine Capacity, Seating

Capacity, Color, Accessories,
Manufacturing Year, Vehicle
Condition, Vehicle Cost

Case Study 2: Enhanced Invoicing System 353

• Based on the analysis similar to the one shown in Table 16.2, the
Data Function for Agent and Cars, maintained within the bound-
ary of the application being counted, are identified as an ILF.

• The exact FP contribution for Agent and Cars ILF can now be
evaluated as shown in Table 16.42 using the contribution figures
provided by IFPUG.

• Transaction Functions Information: Provision has to be made to
maintain data for Buy-Back Agents as well as Buy-Back Cars.
Also required are a few reports to be generated to track the used
cars business. These are evaluated in Tables 16.43 and 16.44.

Entity File RET DET Complexity Unadjusted FP Count

Buy-Back Agent ILF 1 12 Low 7

Buy-Back Cars ILF 1 10 Low 7

Table 16.42 Spares and Accessories ILF Unadjusted FP Count

FP
Transaction Type DET/FTR Count Comments

Create Buy- EI Agent Code, Name, Designation, 4 Data Entry
Back Agent Address (Door #, Street, Locality, (Avg) Screen(s)

State, Country, ZIP Code, for adding
Contact Numbers (2)), Dealer new Buy-
Code (DET = 12) Back Agent

FTR: Buy-Back Agent, Dealer

(Total: DET = 12, FTR = 2)

Modify Buy- EI All DETs/FTRs as identified for 4 Data Entry
Back Agent “Create Buy-Back Agent” (Avg) Screen(s)

for
modifying
existing
Buy-Back
Agent
Record

Table 16.43 DET and FTR Identification for Buy-Back Agent Module

(Total: DET = 10, FTR = 2)

(Continued)

354 Chapter 16 Estimation Case Study

FP
Transaction Type DET/FTR Count Comments

Create Buy- EI Customer Code, Car Category, 4 Data Entry
Back Cars Car Type, Engine Capacity, (Avg) Screen(s)

Seating Capacity, Color, for adding
Accessories, Manufacturing new Buy-
Year, Vehicle Condition, Vehicle Back Cars
Cost (DET = 10)

FTR: Buy-Back Cars, Customer

(Total: DET = 10, FTR = 2)

Modify Buy- EI All DETs/FTRs as identified for 4 Data Entry
Back Cars “Create Buy-Back Cars” (Avg) Screen(s) for

modifying
existing
Buy-Back
Cars Record

Table 16.44 DET and FTR Identification for Buy-Back Cars Module

(Total: DET = 10, FTR = 2)

FP
Transaction Type DET/FTR Count Comments

Delete Buy- EI All DETs/FTRs as identified for 4 Data Entry
Back Agent “Create Buy-Back Agent” (Avg) Screen(s)

for deleting
existing
Buy-Back
Agent
Record

Buy-Back EQ All DETs/FTRs as identified for 4 This report
Agent “Create Buy-Back Agent” (Avg) is treated as
Report EQ because

there is no
derived data.

TOTAL Unadjusted FP totals for entire Buy- 16
Back Agent Module (EI/EO/EQ)

Table 16.43 DET and FTR Identification for Buy-Back Agent Module
(Continued)

(Total: DET = 10, FTR = 2)

(Total: DET = 10, FTR = 2)

Case Study 2: Enhanced Invoicing System 355

FP
Transaction Type DET/FTR Count Comments

Delete Buy- EI All DETs/FTRs as identified 4 Data Entry
Back Cars for “Create Buy-Back Cars” (Avg) Screen(s)

for deleting
existing Buy-
Back Cars
Record

Buy-Back EQ All DETs/FTRs as identified 4 This report
Cars Report for “Create Buy-Back Cars” (Avg) is treated

as EQ because
there is no
derived data.

TOTAL Unadjusted FP totals for entire 16
Buy-Back Cars Module
(EI/EO/EQ)

Table 16.44 DET and FTR Identification for Buy-Back Cars Module
(Continued)

(Total: DET = 10, FTR = 2)

(Total: DET = 10, FTR = 2)

• Step 3: The impact of the data and transaction functions of the Buy-
back Module on the existing Invoice application have to be
assessed next. A review of the impact on the data and transaction
function attributes of the existing Invoice application due to the
enhancement module is done. The impacted data and transaction
functions are discussed in Tables 16.45 and 16.46.

Information DET
Item Data Elements Count

Invoice Invoice Number, Invoice Date, Customer 16
Generic Name, Customer Address (Door #, Street, Locality,
Information State, Country, ZIP Code, Contact Numbers (2))
(RET 1) Dealer Code, Sales Executive Code, Invoice

Amount, Buy Back Agent, Buy Back Amount

Invoice Items Item Code, Item Description, Item Category, 6
Information Item Quantity, Item Rate
(RET 2)

Table 16.45 Modified Invoice Information DET and RET Count

356 Chapter 16 Estimation Case Study

FP
Transaction Type DET/FTR Count Comments

Create EI Invoice Number, Invoice Date, 6 Data Entry
Invoice Customer Name, Customer (High) Screen(s)

Address (Door #, Street, Locality, for ad-
State, Country, ZIP Code, ding new
Contact Numbers (2)), Dealer Invoices
Code, Sales Executive Code,
Invoice Amount, Tax Percentage
and Tax Amount, Buy-Back
Amount (DET = 17)

Item Code, Item Description, Item
Category, Item Quantity,
Item Rate (DET = 6)

FTR: Invoice, Customer,
Dealer, Sales Executive,
Buy-Back Cars

(Total: DET = 23, FTR = 5)

Modify EI All DETs/FTRs as identified for 6 Data Entry
Invoice “Create Invoice” (High) Screen(s)

for modify-
ing existing
Invoices

Table 16.47 DET and FTR Identification for Invoice Module

(Total: DET = 23, FTR = 5)

• With the buy-back amount now being available for online process-
ing, the Invoice module needs to be modified to include the buy-
back data.

• The modifications to transaction functions related to the Invoice
module are also counted. These are identified in Table 16.47.

Entity File RET DET Complexity Unadjusted FP Count

Invoice ILF 2 22 (16 + 6) Average 10

Table 16.46 Modified Invoice ILF Unadjusted FP Count

Case Study 2: Enhanced Invoicing System 357

• Consolidated list of data and transaction functions involved in the
enhancement project are shown in Tables 16.48 and 16.49.

FP
Transaction Type DET/FTR Count Comments

Delete EI All DETs/FTRs as identified for 6 Data Entry
Invoice “Create Invoice” (High) Screen(s)

for deleting
Invoices. It
is assumed
that the
user will
require
viewing
all data
before
deleting.

Query EQ All DETs/FTRs as identified for 6 Query and
Invoice “Create Invoice” (High) search

Invoices
on multi-
ple DETs;
Invoice #,
Customer,
etc.

TOTAL 24

Table 16.47 DET and FTR Identification for Invoice Module (Continued)

(Total: DET = 23, FTR = 5)

Unadjusted FP
Data Function Type Complexity Count Comments

Invoice ILF Average 10 ILF Modified

Buy-Back Agent ILF Low 7 ILF Added

Buy-Back Cars ILF Low 7 ILF Added

TOTAL 24

Table 16.48 Total Data Function FP Count (Unadjusted)

(Total: DET = 23, FTR = 5)

358 Chapter 16 Estimation Case Study

Table 16.49 Total Transaction Function FP Count (Unadjusted)

Transaction Unadjusted FP
Function Type Complexity Count Comments

Create Invoice EI High 6 EI Modified

Modify Invoice EI High 6 EI Modified

Delete Invoice EI High 6 EI Modified

Query Invoice EQ High 6 EI Modified

Total 24

• Step 4: Obtain the detailed information about the GSCs, their degree
of influence value, and the final value adjustment factor figures of
the existing application. Evaluate each of the GSC values for any
possible change in the degree of influence due to enhancement data
and transaction functions.
A detailed review of the GSC Table 16.37 shows that there is no
change in any of the degree of influence values for any of the 14
GSC. As such, the TDI remains 47 and the VAF value at 1.12. As
such, VAFA and VAFB are of same value.

• Step 5: Evaluate the function point count for the enhancement
project (EFP) using the IFPUG method provided in CPM 4.2:
• EFP = [(ADD + CHGA + CFP) * VAFA] + (DEL * VAFB)
• ADD FP = 14 (New ILF for Buy-Back Agent and Buy-Back Cars)
• CHGA FP = 34 (Modified ILF Invoice + Modified EI/EQ for

Invoice)
• CFP FP = 0 (no conversions involved)
• VAFA = 1.12 (same as VAF before enhancement)
• DEL FP = 0 (no functions were deleted)
• VAFB = 1.12 (as counted in Case Study 1)
• FP = [(14 + 34 + 0) * 1.12] + (0 * 1.12) = 54 (rounded)

• Step 6: Convert FP count into effort and schedule as done in Case
Study 1.
• Assume the same productivity figures as done in Case Study 1;

10 FP per person month. Using this productivity, you get the
total effort as

Effort = 54/10 = 5.4 person months

• Add 10% for Project Management = 5.4 + 0.54 = 6 person
months

• You can suggest a three member team working for two months
to do the enhancement project.

This case study explains the process of estimating the FP count and
derives the effort for an enhancement project. Other possible exten-
sions of a typical enhancement project, like recalculation of the FP
count of the upgraded application, are not covered here.

Conclusion

This entire chapter, dedicated to providing you with a very detailed
case study, offers a specific focus on how to convert theory into practi-
cal implementation. Software sizing as well as effort and cost estima-
tions are quite tricky when it comes to practical situations. Most
estimation methods are designed to be a bit ambiguous in the sense
that they allow flexibility in real-life implementation.

The two types of case studies provided in this chapter, development
and enhancement, cover a large section of an estimator’s needs. The
intention here is to provide you with a process of applying the function
point estimation method as well as other effort and resource loading
processes.

References

1. International Function Point Users Group (IFPUG). Function Point
Counting Practices Manual (CPM) Release 4.2.

Other Interesting Reading Material

Dreger, Brian J. “FPA Maintenance and Modification: Rules and On-line
Parts System Example,” in Function Point Analysis. Prentice Hall, 1989.
Pp. 108–131.

Other Interesting Reading Material 359

This page intentionally left blank

APPENDIX A

Reference Tables:
Transaction Function

Counts

The following transaction function tabulation and calculation tables
have been provided to facilitate easy processing of function point
counts. You may want to create these tables in an Excel form to auto-
mate certain complexity, FP counts, and other sum totals.

Reference Table to Calculate ILF/EIF FP Count

361

File Name ILF/EIF DET RET Complexity FP Count

File 1 ILF 12 1 Simple 7
File 2 ILF 26 3 Average 10
File 3 EIF 28 3 Average 7

Total

Table A.1 ILF/EIF FP Count Table (with Examples)

362 Appendix A Reference Tables: Transaction Function Counts

File Name EI/EO/EQ DET FTR Complexity FP Count

Data Entry Screen—1 EI 16 2 Average 4

Summary Weekly EO 36 6 High 7
Report—1

Query—1 EQ 12 2 Average 4

Total

Table A.2 EI/EO/EQ FP Count Table (with Examples)

FP Attribute Simple Average High Total FP Count

ILF

EIF

EI

EO

EQ

Total Unadjusted FP Count

Table A.3 Total FP Count

Reference Table to Calculate EI/EO/EQ FP Count

Reference Table to Calculate Total FP Count

Appendix A Reference Tables: Transaction Function Counts 363

Degree of
GSC # GSC Description Influence Comments

1 Data Communications

2 Distributed Data Processing

3 Performance

4 Heavily Used Configuration

5 Transaction Rate

6 Online Data Entry

7 End-User Efficiency

8 Online Update

9 Complex Processing

10 Reusability

11 Installation Ease

12 Operational Ease

13 Multiple Sites

14 Facilitate Change

Total Degree of Influence (TDI)

Value Adjustment Factor VAF = 0.65 + (TDI * 0.01)

Table A.4 General System Characteristics and VAF Table

Reference Table to Calculate VAF from GSC—Total
Degree of Influence

This page intentionally left blank

APPENDIX B

Reference Tables:
Data Function Points

The following data function tabulation and calculation tables have
been provided to facilitate easy processing of function point counts.
You may want to recreate these tables in Excel to automate certain com-
plexity, FP count, and other sum totals.

Internal Logical Files and External Interface Files

365

Range 1 to 19 DET 20 to 50 DET 51 or More DET

1 RET Low Low Average

2 to 5 RET Low Average High

6 or more RET Average High High

Table B.1 ILF/EIF Complexity Factor

Once you decide the complexity of an ILF/EIF after referring to Table B.1,
you then have to assign the actual FP contribution (count) to the
ILF/EIF based on the complexity factor. Two separate tables, one each
for ILF and EIF, provide the exact FP contribution for each category of
complexity: simple, average, and high.

The contribution FP count table for ILF is shown in Table B.2.

External Inputs/External Outputs/External Inquiries

Table B.4 gives the reference matrix that can be used to determine the
complexity factor of each EI.

Table B.5 gives the reference matrix that can be used to determine the
complexity factor of each EO/EQ.

366 Appendix B Reference Tables: Data Function Points

Functional Complexity Rating Unadjusted Function Points

Low 7

Average 10

High 15

Table B.2 ILF FP Contribution

Functional Complexity Rating Unadjusted Function Points

Low 5

Average 7

High 10

Table B.3 EIF FP Contribution

Range 1 to 4 DET 5 to 15 DET 16 or More DET

0 to 1 FTR Low Low Average

2 FTR Low Average High

3 or more FTR Average High High

Table B.4 EI Complexity Factor

The contribution FP count table for EIF is given in Table B.3.

After you use the preceding table to decide the complexity of an
EI/EO/EQ, you then have to assign the actual FP contribution (count)
to the EI/EO/EQ based on the complexity factor. Two separate tables,
one for EI/EQ and another for EO, provide the exact FP contribution
for each category of complexity: simple, average, and high.

The contribution FP count table for EI/EQ is given in Table B.6, and the
contribution FP count table for EO is shown in Table B.7.

Appendix B Reference Tables: Data Function Points 367

Range 1 to 5 DET 6 to 19 DET 20 or More DET

0 to 1 FTR Low Low Average

2 to 3 FTR Low Average High

4 or more FTR Average High High

Table B.5 EO/EQ Complexity Factor

Functional Complexity Rating Unadjusted Function Points

Low 3

Average 4

High 6

Table B.6 EI/EQ FP Contribution

Functional Complexity Rating Unadjusted Function Points

Low 4

Average 5

High 7

Table B.7 EO FP Contribution

This page intentionally left blank

BIBLIOGRAPHY

Agarwal, R. Manish Kumar, S. Mallick Yogesh, R. M. Bharadwaj, and
D. Anantwar. “Estimating Software Projects.” Infosys Technologies
Limited, IIM, Calcutta, India. ACM SIGSOFT, Software Engineering
Notes, Vol., No. 4. July 2001, p. 60.

Albrecht, Alan. The Function Point Analysis method was developed by
Alan Albrecht and is now maintained by International Function Point
Users Group. www.ifpug.org

Banker, R., R. Kauffman, and R. Kumar. “An Empirical Test of Object-
Based Output Measurement Metrics in a Computer Aided Software
Engineering (CASE) Environment,” Journal of Management Information
System, 1994.

Boehm, Barry W., and Richard E. Fairley. “Software Estimation Perspec-
tives.” IEEE Software, November/December, 2000.

Boehm, Barry W. Software Engineering Economics, Englewood Cliffs, NJ:
Prentice Hall, 1981. Available online at: http://sunset.usc.edu/research/
COCOMOII/index.html

Boehm, Barry W., Chris Abts, and Chulani Sunita. “Software Devel-
opment Cost Estimation Approaches: A Survey.” Barry Boehm and
Chris Abts, University of Southern California, Los Angeles, CA
90089, and Sunita Chulani, IBM Research, 650 Harry Road, San Jose,
CA 95120.

Boehm, Barry W. Delphi Method was originally developed by the Rand
Corporation (1948) and improved into Wideband Delphi Method by
Barry W. Boehm and colleagues in the 1970s.

Brooks, Frederick P., Jr., The Mythical Man-Month. Reading, MA: Addison-
Wesley, 1975.

369

www.ifpug.org
http://sunset.usc.edu/research/COCOMOII/index.html
http://sunset.usc.edu/research/COCOMOII/index.html

COSMIC-FFP, version 2.0. Copyright © 1999. The Common Software
Measurement International Consortium (COSMIC). www.cosmicon.com

DeMarco, Tom. Controlling Software Projects. Englewood Cliffs, NJ:
Prentice Hall, 1982.

Dreger, Brian J. Function Point Analysis. Englewood Cliffs, NJ: Prentice
Hall, 1989.

Fairley, Dick. “Making Accurate Estimates.” IEEE Software, November/
December, 2002.

Garmus, David, and David Herron. Function Point Analysis. Boston,
MA: Addison-Wesley, 2004.

International Function Point Users Group (IFPUG). Function Point
Counting Practices Manual (CPM) Release 4.2. http://www.ifpug.org/
publications/manual.htm

International Function Point Users Group (IFPUG). IT Measurement,
Boston, MA: Addison-Wesley, 2002.

Jones, Capers. Foreword to Function Point Analysis by Brian Dreger.
Englewood Cliffs, NJ: Prentice Hall, 1989.

Jones, Capers. Applied Software Measurement, Second Edition. New York:
McGraw-Hill, 1996.

Jones, Capers. Software Quality. Boston, MA: International Thomson
Computer Press, 1997.

Jones, Capers. Estimating Software Costs. New York: McGraw-Hill, 1998.

Jones, Capers. “Conflict and Litigation between Software Clients and
Developers,” Software Productivity Research, Burlington, MA, 2004.

Jones, Capers. Software Assessments, Benchmarks, and Best Practices,
Boston, MA: Addison-Wesley, 2000.

Jones, T. Capers. Feature Points developed by Capers Jones of Software
Productivity, Inc., is a variant of IFPUG Function Point Analysis.
www.spr.com/products/feature.shtm

Kan, Stephen H. Metrics and Models in Software Quality Engineering,
Second Edition, Boston, MA: Addison-Wesley, 2003.

Kolathur, Somakumar, and Kingshuk Dasgupta. Architecture Reference
Model (ARM): Defining IT Architecture. Infosys Technologies Ltd.,
2001.

370 Bibliography

www.cosmicon.com
http://www.ifpug.org/publications/manual.htm
http://www.ifpug.org/publications/manual.htm
www.spr.com/products/feature.shtm

McConnell, Steve. Rapid Development. Redmond, WA: Microsoft
Press, 1996.

McConnell, Steve. Software Estimation: Demystifying the Black Art.
Redmond, WA: Microsoft Press, 2006.

McPhee, John. A Sense of Where You Are. New York: Farrar, Straus and
Giroux, 1999.

Park, Robert E., et al. “Checklists and Criteria for Evaluating the Costs
and Schedule Estimating Capabilities of Software Organizations,”
Technical Report CMU/SEI 95-SR-005; Software Engineering Institute,
Pittsburgh, PA; January 1995.

Peters, Kathleen. “Software Project Estimation.” Software Productivity
Centre, Inc.

Pfleeger Lawrence, Shari. “What Software Engineering Can Learn from
Soccer.” IEEE Software, November/December 2002.

Putnam, Lawrence H. Measures for Excellence, Englewood Cliffs, NJ:
Prentice Hall, 1992.

Putnam, Lawrence H., and Ware Myers. Industrial Strength Software,
Los Alamitos, CA: IEEE Press, 1997.

Roetzheim, William H., and Reyna A. Beasley. Best Practices in Software
Cost and Schedule Estimation, Upper Saddle River, NJ: Prentice Hall, 1998.

Robyn, Lawrie, and Paul Radford. “Using Function Points in Early Life
Cycle Estimation.” CHARISMATEK Software Metrics.

Ross, Mike. “Size Does Matter: Continuous Size Estimating and Track-
ing.” Quantitative Software Management, Inc.

Schneider, Geri, and Jason Winters. Applying Use Cases. Reading, MA:
Addison-Wesley, 1998.

Symons, Charles. Software Sizing and Estimating, Hoboken, NJ: John
Wiley & Sons, 1991.

Software Engineering Institute (SEI). The Capability Maturity Model
Integration (CMMI). Carnegie Mellon University. www.sei.cmu.edu/
cmmi

The Standish Group International, Inc. “The Chaos Report.” 1995.

Wiegers. E. Karl. “Stop Promising Miracles.” Software Development,
Vol. 8, No. 2. February 2000, pp. 49–54.

Bibliography 371

www.sei.cmu.edu/cmmi
www.sei.cmu.edu/cmmi

This page intentionally left blank

INDEX

373

A
Acceptance test phase, 200
Actual Effort (Person Hours),

as estimation unit, 16
ADD (Added FP), 185, 188
Add elementary process, 79
Agile software projects

case study, 202–204
complex issues in, 199–200
project milestones in, 200–202

Albrecht, Allan, 52–55, 100–102
Algorithm-based estimation approach,

278–279
Analogy-based estimation approach, 278
Application maintenance contracts,

253–254
Application servers, 140
Applications

change management in, 171–172
components of, 75–76
estimating total cost of ownership,

273–274
estimation case study. See Invoicing

system case study
functional and non-functional

requirements of, 122–123
of insourcing IT environment, 235
maintenance contracts for, 253–254
in outsourcing IT environment, 237
scope and boundary of, 64–65

Arbitrary guesstimates, 226
Architecture, IT, 257

estimating efforts and costs, 268–269
overview of, 138–140
role of architect in project execution

process, 257

As-is analysis, tool supporting, 302
Attributes, FPA, 55–57
Availability, software contract

requirement, 258

B
Back tier, in IT architecture, 140
Big bang approach, in software contract,

258
Boehm, Barry, 282, 286–288
Bottom-up estimation approach

defining, 278
overview of, 283
Simple, Medium, and Complex

method, 284–285
Boundaries, 57, 64–65
Bradley, Bill, 194–195
Budget estimates

manipulating project costs, 221–222
outsourcing, vs. insourcing, 239, 244–245
project approval phase, 26–27
project contract phase, 27–28
in truncated/partial projects, 261
using flexible contracts for limited,

255–256
Bug fixes

estimating FP count for, 185–186
found only during final testing phase,

212
impacting maintenance projects, 183, 253

Build phase
complex issues in, 199
in failed dream project, 5
impacting project costs, 269–270

Business functions
in development projects, 173–176
in engineering projects, 178
in estimation case study, 308, 315
as functional requirements, 122–123
identifying entities, 309, 313–315
outsourcing estimate process, 241
in reengineering projects, 180
user view of, 60–62
user view vs. developer view, 223–224

C
Calibration tools, 301
Capacity, as non-functional requirement,

123
Capturing process, for requirements, 268
Case studies

agile software projects, 202–204
application maintenance contracts, 254
counting ILF/EIF of invoicing

application, 89–94
estimation case studies, 307–312
Invoicing system. See Invoicing system

case study
Certified Function Point Specialist

(CFPS), IFPUG, 59
CFPS (Certified Function Point

Specialist), 59
CFPs (conversion function points),

181–183, 185–186, 188
Cfsu (COSMIC Function Size Unit), 290
Change management

defined, 222
in fixed price contracts, 251
modifying scope estimates, 62

CHGA (Changed FP), 185–186, 188
COCOMO II (COnstructive COst

MOdel), 286–288, 292
Coding stage, 190, 207
Common Off The Shelf (COTS) pro-

ducts, 20
Communication paths, team size vs.,

217–218
Complex Processing GSC

overview of, 131–133
Quality of Service mapping and, 144–145
technology platforms and, 143, 145

374 Index

Complex projects, estimating, 43
Complexity

EIF and ILF, 81–86
EO, EI and EQ, 109–111
estimation and measurement, 32–34
FP count contributions and, 86–88,

111–116
general system characteristics. See

GSC (General System
Characteristics), guidelines

requests for service, 188–191
Constraints

as non-functional requirements, 123
tools for identifying, 301

COnstructive COst MOdel
(COCOMO II), 286–288, 292

Construx Estimate tool, 303
Continuous improvement cycle

of insourcing IT environment, 236
monitoring estimation methods

with, 211
overview of, 12–13

Contracts. See Software contracts
Control information, 77–78, 106
Conversion FP (CFP), 186, 188
Conversion function points. See CFPs

(conversion function points)
COSMIC (Common Software

Measurement International
Consortium), 288

COSMIC Function Size Unit (Cfsu), 290
Cosmic Measurement Manual, 291
COSMIC-FFP (Full Function Points)

estimation method, 288–293
Cost matrix, developing, 271–272
Cost Xpert estimation tool, 303
Costar estimation tool, 303
Costs. See Budget estimates; Project

costs, estimating
COTS (Common Off The Shelf)

products, 20
CPM (Counting Practices Manual)

classifying data files, 74
classifying data functions, 75–76
classifying FPA process, 58–59,

101–102
CRUD (Create, Read, Update, and

Delete) operations, 56, 115–116

Customers. See Users (customers)
Customizable estimation tools, 298–299

D
Data analysis estimation tools, 301
Data Communications GSC

high-performing technology and, 141
overview of, 126–127
Quality of Service mapping and, 144–145

Data Element Type. See DET (Data
Element Type) counts

Data elements, defined, 66
Data files, 74–75
Data functions, 73–96

complexity and FP counting, 86–88
defined by IFPUG, 75–76
embedded terms for, 77–80
identifying, in case study, 310,

318–327, 352–358
ILF vs. EIF, 76–77
ILF/EIF, counting (case study), 89–94
ILF/EIF, determining complexity, 81–86
ILF/EIF, identifying, 80–81, 95–96
overview of, 65–67
reference tables, 365–367
references on, 96
tips for, 88

Data items, 309–310, 317–318
Data movements, COSMIC-FPP method,

289–290
Defect Density, 16–17
Degree of Influence. See DI

(Degree of Influence)
DEL (Delete FP), 186, 188
Delete elementary process, 80
Delivery schedules

contract negotiations, 204–208, 256
evaluation traps, 228–229
invoicing system case study, 349
measuring input, 162
obtaining in FP counting process, 312
overview of, 159
productivity and, 159–163

DeMarco, Tom, 21
Design phase

complex issues in, 199
contract negotiations in, 206

Index 375

failed dream project, 4, 206
impacting project costs, 268–269
parameters to consider in, 14–15
performance requirements addressed

in, 127–128
DET (Data Element Type) counts

ambiguities in estimating, 222–223
defined, 66–67, 109
deriving complexity of ILF/EIF with,

86–87
FP counting process, invoice system,

116–118
FP counting process, step-by-step,

87–88, 112–115
of ILF/EIF in invoicing application,

92–94
invoicing system case study, 318–319,

321–326
invoicing system case study, adding

enhancements, 352–359
rules for, 82–84
for transaction functions, 109, 328–343

Developers
fluctuating software projects and, 14–15
of insourcing IT environment, 235–236
in outsourcing IT environment, 238
understanding software estimation, 21
user view vs. view of, 95–96, 223–224

Developing cost matrix, 271–272
Development costs, 273
Development projects, 173–177

case study, invoicing application,
174–176

defining, 173
FPA process for, 62, 176–177,

309–312
functional decomposition in, 173–174

DI (Degree of Influence)
of Complex Processing GSC, 131–133
correct evaluation of, 226–228
of Data Communications GSC, 126
of Distributed Data Processing GSC,

126–127
of End-User Efficiency GSC, 130–131
of Heavily Used Configuration GSC,

127–128
of Installation Ease GSC, 134
of Multiple Sites GSC, 135–136

DI (Degree of Influence) (continued)
obtaining in FP counting process,

311–312
of Online Data Entry GSC, 129–130
of Online Update GSC, 131–132
of Operational Ease GSC, 134–135
overview of, 125
of Performance GSC, 127–128
relationship among GSCs, NFRs and

technology platform, 143, 145
of Reusability GSC, 132–133
total degree of influence, 125, 363
of Transaction Rate GSC, 129

Distributed Data Processing GSC,
126–127, 143–146

Documentation, insourced IT
environment, 236

Domain
defined, 139
experts, for cost matrix, 272
impacting estimation methods, 33

Dream project
catching signals, 204–208
overview of, 2–3
warning signs, 3–5

E
Efficiency, QoS framework, 142
Effort estimates

Actual Effort (person hours) unit in, 16
contractual agreements for, 260
costing, 167
deriving, 164–165
invoicing system case study, 348–349
obtaining in FP counting process, 312
outsourcing estimate process

and, 240
overview of, 163–164
references, 168–169
scheduling projects based on, 165
summary, 167–168

EFP (Enhancement FP), 185, 188
EI (External Input) transaction functions

calculating VAF with, 69–70
contribution FP count table for, 367
defined by Albrecht, 100–102
defined by CPM (IFPUG), 104–105

376 Index

determining complexity factor of,
111–112, 367

EI/EO/EQ FP count table, 362
in FP contribution calculation, 112–115
FP counting process, invoice system,

116–118
FPA method in development projects,

176–177
FPA method in reengineering projects,

179–182
invoicing system case study, 327–343
overview of, 67–69
rules for, 103–104
similarity to human systems, 98–100

EIFs (External Interface Files)
calculating VAF with, 69–70
case study, 320
contribution FP count table for, 366
as data function type, 75–76
determining complexity of, 81–82, 86–87
DETs and, 82–84
embedded terms for, 77–80
FP contribution calculation, 87–88,

89–94
FPA method in development projects,

176–177
FPA method in reengineering projects,

179–182
generally included, 95
identification rules, 81
ILF/EIF FP count table, 361
ILFs vs., 75–76
overview of, 66–67
reference matrix for complexity of, 365
RETs and, 84–86

Elementary process
defining, 78–79
for EI, EO and EQ, 104–105
in FP contribution calculation, 90–94
identification rules, 108, 328
maintained, 79–80
in transactional functions, 105–106

Embedded mode, COCOMO II, 287
Embedded terms

EI, EO and EQ, 104–105
ILF, 77–80

End-User Efficiency GSC, 130–131, 144
Enhancement FP (EFP), 185, 188

Enhancements
case study, assessing impact of, 352–359
case study, step-by-step FP counting

process, 350–351
estimating with FPA method, 185
in maintenance projects, 183–184
ratio between application size and,

189–191
Entity-Relation (E-R) diagram, 89
Environment, project

developing cost matrix, 272
estimation case study, 308
impacting project costs, 269–270
insourcing IT organizations, 234–236
as key estimation element, 2, 6–7, 10–11
outsourcing IT organizations, 236–239

EO (External Output) transaction
functions

calculating VAF with, 69–70
contribution FP count table for, 367
defined by Albrecht, 100–102
defined by CPM (IFPUG), 104–105
determining complexity factor of,

112, 367
EI/EO/EQ FP count table, 362
in FP contribution calculation, 112–115
FP counting process, invoice system,

116–118
FPA method in development projects,

176–177
FPA method in reengineering projects,

179–182
invoicing system case study, 327–343
overview of, 67–69
rules for, 103–104
similarity to human systems, 98–100

EQ (External Inquiry) transaction
functions

calculating VAF with, 69–70
defined by Albrecht, 100–102
defined by CPM (IFPUG), 104–105
determining complexity factor of, 112
EI/EO/EQ FP count table, 362
in FP contribution calculations, 112–118
FPA method in development projects,

176–177
FPA method in reengineering projects,

179–182

Index 377

invoicing system case study, 327–343
overview of, 67–69
rules for, 103–104
similarity to human systems, 98–100

E-R (Entity-Relation) diagram, 89
Estimation, 1–23

continuous improvement cycle and,
12–13

defining, 1–2
dilemma in, 17–18
failure of, in dream project, 2–5
hazarding guesstimates, 226
importance of, 18–19
ingredients, 6–8
insourcing, 239
maturity, 208–211
metrics collecting, 16–17
outsourcing, 240–242
pervasive, 196–199
references, 22–23
“softness” of software, 13–15
software vs. other types of, 8–9
stakeholders’ need for, 19–21
summary, 21–22
tools. See Tools, estimation

Estimation, role of, 25–43
in large application systems, 40–42
measurement and. See Measurement
project budget approval phase, 26–27
project contract phase, 27–28
project execution phase, 28–30
references, 43
successful, 25–26

Estimation case study, 307–359. See also
Invoicing system case study

basic assumptions, 307–309
overview of, 307
references, 359
step-by-step FP counting process,

309–312
Estimation flavors

development projects, 173–177
maintenance projects, 183–192
migration projects, 182–183
reengineering projects, 177–182
references, 192
summary, 192
updating IT systems, 171–172

Estimation methods, 277–296
adopting multiple types of, 208–211
choosing tools, 298
heuristic approach, 278–285
mentoring and monitoring, 210–211
outsourcing vs. insourcing of, 239–242
overview of, 46–47, 277
parametric approach, 279, 285–291
pros and cons of, 291–293
references, 294–295
summary, 294

Estimation tips, 215–232
invisible overheads, 216–217
lifecycle model, 218–220
overview of, 215–216
project team size, 217–218
proof-of-concept, 220–221
prototypes, 220
references, 231
summary, 230–231
warranty support, 220

Estimation traps, 225–230
application size and delivery schedule,

228–229
arbitrary guesstimates, 226
counting FP of existing applications,

229–230
estimation tools, 225–226
GSC evaluation, 226–228
overview of, 215–216
references, 231
summary, 230–231

Estimation tricks, 221–225
accuracy of inputs, 224–225
balancing effect, 222–223
manipulating project costs, 221–222
overview of, 215–216
references, 231
summary, 230–231
user vs. developer view, 223–224

Estimators, skills of FPA, 59
Evolution, estimation tool, 298
Execution phase, estimation in, 43
Experience

of estimator, 2
as key element of estimation, 7
in metrics collection process, 17
project team competency and, 8, 11

378 Index

Expertise-based estimation approach,
278

External Inputs. See EI (External Input)
transaction functions

External Inquiries. See EQ (External
Inquiry) transaction functions

External Interface Files. See EIFs
(External Interface Files)

External Outputs. See EO (External
Output) transaction functions

F
Facilitate Change GSC, 135–137, 145
Fast Cars case study. See Invoicing

system case study
Features, evaluating estimation tool,

299–300
Files, data, 74–75
Fixed price contracts, 51, 250–252
Flexible contracts, 255–256
Formats, converting data from source to

target, 180
FP (function point) count estimation

method
case study, enhancements, 350–351,

357–359
of data functions, 86–88, 111–116
in data migration, 180–181
defined, 16, 186
development projects working with,

173
guidelines for existing applications,

229–230
modularized estimation, case study, 39
popularity of, 35
in project contract phase, 28
project metrics using, 30
reference tables, 361–362
step-by-step process for, 309–312

FPA (Function Point Analysis) estimation
method, 45–72

calculating VAF, 69–70
count data functions, 65–67
count transaction functions, 67–69
counting process, 57–59
defining, 47–49
determine type of count, 62–63

for development projects, 176–177
for general system characteristics. See

GSC (general system characteristics)
for maintenance requests, 185–188
measuring software size with, 48–50
for migration projects, 182–183
model, 55–57
objectives of, 53–55
obtaining project information, 59–60
overview of, 51–53
prescribed transaction functions of, 98,

100–102
pros and cons of, 292
for reengineering projects, 179–182
references, 72
scope and boundary of application in,

64–65
user view in, 60–62

FP/PM (Function Points per Person
Month), 16

FR (functional requirements) software,
122–123

Front tier, IT architecture, 139
Front tier, of IT architecture, 139
FSM (Functional Size Measurement)

method, 140–141
FTEs (full-time equivalent resources),

183, 253–254
FTPs (full-time persons), in maintenance

contracts, 253–254
FTR (file type referenced) files

defined, 109
FP contribution calculation, 112–115
FP counting process, 109–111,

116–118
identification rules, 109, 328–343

Full-time equivalent resources (FTEs),
183, 253–254

Function Point WORKBENCH
estimation tool, 304

Function points. See also FP (function
point) count estimation method;
IFPUG (International Function Point
Users Group)

Certified Function Point Specialist, 59
conversion function points, 181–183,

185–186, 188
defined, 55

Index 379

Function Points per Person Month
(FP/PM), 16

Functional decomposition of modules, in
development projects, 173–177

Functional requirements, software,
122–123

Functional Size Measurement (FSM)
method, 140–141

Functionality, 48–49, 239

G
GDM (Global Delivery Model), 254
General system, 69–70
GIGO (Garbage In = Garbage Out)

principle, 297
Global Delivery Model (GDM), 254
Graphic user interface (GUI), 38
GSC (General System Characteristics),

121–147
calculating VAF from, 69–70, 363
correct evaluation of, 226–228
FPA method in development projects,

176
FPA method in maintenance projects,

185–186
FPA method in reengineering projects,

179–182
FPA model, 57
functional requirements, 122–123
non-functional requirements, 123
obtaining in FP counting process,

311–312
obtaining values in invoicing system

case study, 346–348
overview of, 121–122
references, 147

GSC (General System Characteristics),
and NFRs, 137–146

case study, 145–146
from dinosaur era to jet age, 141–143
ISO/IEC 14143:1, definition of user

requirements, 140–141
layers, 139
overview of, 137–139
Quality of Service, 140, 142–143
technology platform and, 143–145
tiers, 139–140

GSC (General System Characteristics),
guidelines

Complex Processing, 131–133
Data Communications, 126
Degree of Influence and, 125
Distributed Data Processing,

126–127
End-User Efficiency, 130–131
Facilitate Change, 135–137
Heavily Used Configuration,

127–128
Installation Ease, 134
Multiple Sites, 135–136
Online Data Entry, 129–130
Online Update, 131–132
Operational Ease, 134–135
overview of, 123–125
Performance, 127–128
Reusability, 132–133
Transaction Rate, 129

Guesstimates, hazards of, 226
GUI (graphic user interface), 38

H
Hardware

Heavily Used Configuration GSC
guidelines for, 127–128

of insourcing IT environment, 235
in outsourcing IT environment, 237

Heavily Used Configuration GSC,
127–128, 144

Heterogenous application portfolios,
41–42

Heuristic approach, 279–285
bottom-up estimation, 283–285
defining, 279
top-down estimation, 279–283
types of, 278–279

Historic data, estimation tools
maintaining, 301

I
Identification rules

DET and FTR, 328
EIF and ILF, 80–81
EIs, 107–108

380 Index

elementary process, 108, 328
EOs and EQs, 108–109
FP contribution calculation, 90–94
ILF, 318–319

IFPUG (International Function Point
Users Group). See also CPM
(Counting Practices Manual)

counting data migration FP, 180–181
data functions defined by, 75–76
defined, 73
development projects defined by, 173
transactional functions defined by, 97,

102–104
ILFs (Internal Logical Files)

calculating VAF from, 69–70
case study, enhanced invoicing

system, 353–359
case study, invoicing system, 318–326
as data function type, 75–76
determining complexity of, 81–82,

86–87, 365
DETs and, 82–84
EIFs vs., 75–76
embedded terms for, 77–80
FP contribution calculation, 87–88,

89–94
FP count contribution table for, 366
FP count of existing applications,

229–230
FPA method in development projects,

176–177
FPA method in reengineering projects,

179–182
generally included, 95–96
ILF/EIF FP count table, 361
overview of, 66–67
RETs and, 84–86
rules for, 80–81, 103–104

Impact analysis stage, maintenance
projects, 190–191

Implementation elements, in estimation,
308

IMS (Inventory Management System),
186–188

Incremental development, 239
Incubation, role of estimation in, 43
Infrastructure architecture, 139
Infrastructure costs, 274

Inputs
accuracy of, 224–225
FPA model and, 56
impacting project costs, 266
outsourcing estimate process and, 240
as type of transaction, 67–69

Inquiries, FPA model, 56–57
Insourcing, vs. outsourcing, 233–248

estimation approach, 239–242
financial considerations, 244–245
operations considerations, 246–247
overview of, 233
project environment considerations,

234–239
reference, 247
strategic considerations, 243–244
summary, 247
technical considerations, 245–246

Installation Ease GSC, 134–136, 145
Integration projects, contractual

agreements for, 262
Intelligence, of estimation tools, 299
Interfaces, FPA model, 57
Internal files, FPA model, 57
Internal Logical Files. See ILFs (Internal

Logical Files)
International Function Point Users

Group. See IFPUG (International
Function Point Users Group)

Interoperability, QoS framework, 142
Inventory Management System (IMS),

186–188
Invoicing system case study

counting ILF/EIF of, 89–94
enhanced, 350–359
overview of, 312–315
references, 359

Invoicing system case study, Invoice
module, 312–350

aggregate data and transaction
function (unadjusted) FP counts,
343–345

identifying category of information
and data items, 317

identifying data functions, 318–327
identifying stakeholders, 316–317
identifying transaction functions,

327–343

Index 381

mapping resource loading to meet
delivery schedule, 349–350

obtaining GSC values for invoice
application, 346–348

overview of, 315
transforming adjusted FP count into

total effort, 348–349
transforming total effort into delivery

schedule, 349
ISO, 16–17
IT architecture. See architecture, IT
Iterative lifecycle model

contractual agreements for, 257
estimation tips, 218–220
impacting project costs, 271
learning from experience to use, 8
as solution to delivery limitations, 205

K
KnowledgePLAN estimation tool, 304

L
Large application systems

complexities of, 40–43, 189–191
estimation maturity required for,

208–211
negotiating contracts for, 204–220, 260
as risk prone, 208

Layers, of IT architecture, 139
Legacy systems

defined, 172
in insourcing IT environment, 235–236
insourcing vs. outsourcing, 245
migrating data in, 180–183
in outsourcing IT environment, 238

Lifecycle models
creating software contract for, 257
developing cost matrix, 272
estimation tips for, 218–220
estimation tools for, 301
impacting project costs, 270–271

Lines of Code. See LOC (Lines of Code)
LOC (Lines of Code)

defined, 16, 35
FPA method vs., 52–55

LOC (Lines of Code) (continued)
as oldest method of measuring

software size, 149
problems with measuring using, 51–52
in project contract phase, 28

M
Maintainability, QoS framework, 142
Maintained

defining, 79–80
in transactional functions, 107

Maintenance contracts, 183–184, 253–254
Maintenance projects, 183–192

affecting total cost of ownership, 273
case study, 186–188
Function Point Analysis estimation for,

185–186
outsourcing, 241–242
request for service in, 184–185, 188–191

Making Accurate Estimates (Fairley), 225
Mandatory subgroups, record element

types, 84–85
Mapping phase, COSMIC-FPP method,

289
Materials, defining in contract

measuring, 51
Maturity, estimation, 208–211
McConnell, Steve, 12, 218
Measurement, 31–40

complexities of, 32–34
estimation vs., 31–32
modularized, 34–40
phase, COSMIC-FPP method, 289

Mentors, outsourcing, 238
Metrics collection

estimation tools that store, 301
insourcing estimate process and, 236
at milestones, 195
modularized estimation using, 39
outsourcing estimate process and, 240
overview of, 16–17
in project execution phase, 30

Middle tier, IT architecture, 140
Migration projects, 182–183

affecting total cost of ownership, 273
FPA estimation for, 182–183
to newer technology platforms, 172

382 Index

overview of, 182
within reengineering projects, 179–181

Milestones, 29–30, 200–204. See also Time,
tracking progress

Mobile phones, 98–100
Modularized estimation

benefits of, 36–37
case study of, 37–40
in development projects, 176–177
functional decomposition of,

173–176
invoicing system case study, 314
for iterative lifecycle module, 219
overview of, 34–36

Monitoring
estimation methods, 210–211
insourcing vs. outsourcing, 243
in project execution phase, 30

Multi-platform application portfolios,
41–42

Multiple Sites GSC, 135–136, 145

N
Navigation, 38, 251
NFR (non-functional requirements), 123.

See also GSC (general system
characteristics), and NFRs

O
Objects, defined, 132
Online Data Entry GSC, 129–130, 144
Online Update GSC, 131–132, 144
Operational Ease GSC, 134–135, 145
Operations

estimating total cost of ownership, 274
outsourcing, vs. insourcing, 246–247

Optional subgroups, record element
types, 84–85

Organic mode, COCOMO II, 287
Organization structure

of insourcing IT environment, 234
in outsourcing IT environment, 237

Outputs
Function Point Analysis model, 56
as type of transaction, 67–69

Outsourcing, vs. insourcing, 233–248
environmental differences, 234–239
estimation approach, 239–242
financial considerations, 244–245
operations considerations, 246–247
overview of, 233
reference, 247
strategic considerations, 243–244
summary, 247
technical considerations, 245–246

Over-engineered requirements, 268
Overhead

contractual agreements for truncated/
partial projects, 261–262

contractual agreements on, 259–261
estimating invisible, 216–221
modularized estimation of, 36

P
Parametric approach, 285–291

COCOMO II model, 286–288
COSMIC-FFP method, 288–291
examples of, 279
overview of, 285–286
popular estimation tools using,

303–305
Partial projects, software contracts for,

261–262
Performance, 123, 258, 308
Performance GSC, 127–128, 144
Person Hours (Actual Effort), as

estimation unit, 16
Pervasive estimations, for project

success, 196–199
Planning, in project execution phase,

28–29
POC (proof-of-concept) phase, 220–221,

259–260
Portability, QoS framework, 143
Portfolio of applications, 253
PRICE-S estimation tool, 304
Priorities, estimation tools identifying,

301
Process type, modularized estimation of,

35–36, 38–39
Processing logic, 106, 230

Index 383

Production support, in maintenance
projects, 183

Productivity
assessing at every milestone, 195
defined, 7, 11–12
estimation case study, 308
measuring programmer delivery rate,

159–163
modularized estimation of, 36, 38–39
outsourcing estimate process

and, 240
references, 168–169
size of maintenance request not

always impacting, 191
Project, dream, 2–5

catching signals, 204–208
overview of, 2–3
warning signs, 3–5

Project approval phase, 26–27
Project category, impacting estimation

methods, 33
Project costs, estimating, 265–275

build and test phase, 269–270
design phase, 268–269
developing cost matrix, 271–272
ingredients of, 265
lifecycle model, 270–271
overview of, 265
reference, 275
requirements phase, 266–268
resource allocations, 271
summary, 274–275
Total Cost of Ownership, 272–274

Project execution methods, 257–262
integration projects, 262
lifecycle models, 257–258
overview of, 256
product quality, 258–259
project specific overheads, 259–261
truncated/partial projects, 261–262

Project execution phase
estimating project based on

environment in, 196
metrics, 30
milestones, 29–30
monitoring, 30
planning, 28–29
resource allocations, 29

Project kick-off, warning signs, 3
Project managers

estimating project based on, 196
traits of successful, 20
understanding all lifecycle stages, 42–43

Project teams
defining competency of software, 11
estimating productivity of, 36, 196,

217–218
experience of developers in, 7
in failed dream project, 3–5
impacting project costs, 267
insisting on highly trained, 205
understanding continuous

improvement cycle, 12–13
Project tracking, bottom-up estimation

approach, 283
Proof-of-concept (POC) phase, 220–221,

259–260
Prototypes

estimating tips for, 220
software contracts for, 259

Q
QoS (Quality of Service)

controlling architecture, 140
framework for, 141–143
impacting fixed price contracts,

251–252
mapping to GSC description, 144–145
Quality Requirements, 140
software contract for, 258–259

Quality processes, 236, 238–239
Queries, as type of transaction, 67–69

R
Rand Corporation, 280, 282
Rapid Development (McConnell), 218
Record Element Types. See RET (Record

Element Type) count
Reengineering projects

Function Point Analysis estimation for,
179–182

objectives of, 178–179
reasons for, 177

384 Index

Reference tables
data function points, 365–367
transaction function counts, 361–363

Reliability
as non-functional requirement, 123
in QoS framework, 142
in software contracts, 258

Reporting, estimation tools for, 301
Request for Proposal, in contract

negotiations, 222
Requests for service

case study, 186–188
complexity in estimating, 188–191
FPA method for analyzing, 185–186
triggering maintenance activity with,

184–185
Requirements

collating project, 59–60
contract negotiations relative to,

205–206
estimation maturity in, 209
in failed dream project, 4, 205–206
functional, 122–123
impacting project costs, 266–268
non-functional, 123
user, 140–141

Resource allocation, 271, 272
Resource loading

in FP counting process, 312
invoicing system case study, 349–350
outsourcing estimates and, 240
overview of, 165–166

Response time
in fixed price contracts, 251
as non-functional requirement, 123

RET (Record Element Type) count
ambiguities in estimating, 222–223
defined, 66–67
deriving complexity of ILF/EIF with,

86–87
in FP contribution calculation, 87–88,

92–94
invoicing system case study, 318–319,

321–326
invoicing system case study, adding

enhancements, 352–359
for migration FP count, 181
overview of, 84–86

Retirement, of previous applications,
172, 273

Reusability GSC, 132–133, 144
Reverse engineering process. See

Reengineering projects
Rippling effect, causes of, 197–199
Risk, in large projects, 208

S
Scalability

contract negotiations regarding, 258
impacting fixed price contracts,

251–252
as non-functional requirement, 123

Scheduling of projects
calculating, 165
contract negotiations regarding,

204–208
costing, 167
deriving effort in, 164–165
evaluation traps, 228–229
failure of, 3–5
overview of, 163–164
references, 168–169
summary, 167–168
tracking project progress. See Time,

tracking progress
Scope

complex issues in, 199
defining, 26
estimating project based on, 196
flexible contracts for undefined

project, 255
FPA process for, 64–65
as key element of estimation, 6
software estimation methods

for, 9–10
Scope creep

defined, 21
estimation tools that track, 301
fixed price contracts mitigating risk of,

250–251
inaccuracy of user input leading to,

224–225
measuring and trapping using FP as

sizing tool, 51
rippling effect of, 197–198

Index 385

Security
Heavily Used Configuration GSC

guidelines, 128
as non-functional requirement, 123
QoS framework, 142

SEER-SEM estimation tool, 305
SEI CMMI, 16–17, 236, 238–239
Semi-detached mode, COCOMO II, 287
Service level agreements (SLAs),

241–242, 253
Simple, Medium, and Complex

estimation method. See SMC
(Simple, Medium, and Complex)
estimation method

Size, of software development
contract negotiations, 154–155
defined, 150
delivery schedule traps, 228–229
differentiating functions from

production effort/costs,
150–152

estimating in project contract
phase, 28

estimation and measurement
determining, 30

FPA method for, 152–154
importance of, 149
inputs to, 149–150, 155–159
metrics used to measure, 16
modularized estimation method for,

34–37
references, 168–169
relationship to enhancement, 189–191
relationship to scope, 9

Sizing method, in estimation tools, 301
SLAs (service level agreements),

241–242, 253
SLIM-Estimate tool, 305
SLOC (Source Lines-Of-Code) unit of

measurement
in COCOMO II model, 286
defined, 34
problems with using, 52

SMC (Simple, Medium, and Complex)
estimation method

defined, 209
overview of, 284–285
pros and cons of, 293

SMEs (Subject Matter Experts)
for cost matrix development, 272
impacting project costs, 267
for partial projects, 261–262
understanding software estimation, 20

Software
complexity impacting estimation

methods, 33
development for reuse, 133
development with re-usable

codes, 132
functional and non-functional

requirements of, 122–123
“softness” of, 13–15

Software contracts, 249–262
estimation vs. measurement

in, 30–31
for integration projects, 262
for lifecycle models, 258
manipulating costs in, 222
overview of, 249
for product quality, 258–259
for project specific overheads,

259–261
reference, 265
role of estimation in, 27–28, 43
summary, 265
for truncated/partial projects, 261–262

Software contracts, types of
application maintenance, 253–254
fixed price, 52, 250–252
flexible, 255–256
Time and Material, 51, 252–253

Software Engineering Economics (Boehm),
286–288

Source Lines-Of-Code. See SLOC (Source
Lines-Of-Code) unit of
measurement

Sponsors, project, 20, 257
Stakeholders

assessing support of, 195
identifying, 309, 316–317
understanding software estimation,

19–20
Storage files, temporary, 230
Subgroups, RET, 84–85, 93
Subject Matter Experts. See SMEs

(Subject Matter Experts)

386 Index

Sub-modules, 176–177
System architecture, 139

T
T & M (Time and Material) contracts, 51,

252–253, 254
TCO (Total Cost of Ownership), 272–274
TDI (total degree of influence), 125, 363
Technical architecture, 139
Technical Requirements, 141
Technology

in application maintenance contracts,
253

estimations based on, 196
impacting estimation methods, 33
insourcing vs. outsourcing, 235–236,

238, 243, 245–246
modularized estimation of, 35, 37–38
non-functional requirements and,

143–146
ongoing changes to newer, 171–172
upgrading, 12
user vs. developer view, 223–224

Terms, embedded
external inputs, outputs and inquiries,

104–105
Internal Logical Files, 77–80

Testing stage
business process related bugs in, 212
complex issues in, 199–200
estimating invisible overhead

for, 216
estimation tips for iterative lifecycle

module, 219
impacting fixed price contracts, 252
liabilities of outsourced IT

environment, 237
in maintenance projects, 190–191
in requirements phase, 268

The Sense of Where You Are (McPhee),
194–195

Tickets, 184
Tiers, of IT architecture, 139–140
Time, tracking progress, 193–213. See also

Scheduling of projects
agile software projects, 199–202
case study, 202–204

defining project contract measuring, 51
dream projects—catching signals,

204–208
estimation maturity and, 208–211
overview of, 193–194
pervasive estimations, 196–199
references, 212–213
sensing where you are, 194–195
summary, 211–212

Time and Material (T & M) contracts, 51,
252–253, 254

Tools, estimation, 297–306
deploying, 300–302
developing cost matrix for, 272
evaluating, 298–300
evolution of, 298
impact on project costs, 270
as key element, 7–8
list of popular, 302–305
reasons to use, 297
references, 306
in software development lifecycle, 11–12
traps of, 225–226

Top-down estimation approach
defining, 278
overview of, 279–280
Wideband Delphi method, 280–283
Work-Breakdown Structure method,

280–281
Total Cost of Ownership (TCO), 272–274
Total Degree Of Influence GSC, 125
Total degree of influence (TDI), 125, 363
Training, insourcing vs. outsourcing, 243
Transaction functions, FPA process

count, 67–69
Transaction Rate GSC

Online Update GSC guidelines, 131–132
overview of, 129
Quality of Service mapping and, 144
relationship of technology platform to,

143, 145
Transactional functions, 97–119

complexity and FP count
contributions, 111–116

defined by Albrecht, 100–102
defined by IFPUG, 102–104
defining, 98–100
EI, EO and EQ, 104–111

Index 387

identifying in FP counting process,
116–118, 311

for invoicing system case study,
327–343, 353–357

overview of, 97
reference tables for counting, 361–363
references, 119
summary, 118–119
unadjusted FP count and, 344–345

Transactions, 97
Truncated/partial projects, contracts for,

261–262

U
UC (Use Case) size estimation method,

35
UI (user interface), 101, 251
Unadjusted FP count

defined, 67
invoicing system case study, 319–320,

343–345
obtaining in FP counting process, 311
in transaction functions, 69

Update elementary process, 79
Upgrades

insourcing vs. outsourcing, 243
to latest operating systems, 172

Usability, QoS framework, 142
Use Case (UC) size estimation method, 35
User identifiable, 78, 106
User interface (UI), 101, 251
Users (customers). See also View, user

acceptance test phase issues, 199–200
contract negotiation with, 204–208,

250–252
developer view vs. view of, 95–96,

223–224
End-User Efficiency activities for,

130–131
fluctuating software projects and, 12,

14–15
FP counting, identifying, 309
FPA process, view of, 60–62, 229–230
functional requirements visible to,

122–123
outsourcing and, 242
project costs and, 221–222

Users (customers) (continued)
project execution role of, 257
project planning involvement of, 20
proof-of-concept for, 220
prototype development and, 220
requests for service issued by,

184–185

V
VAF (Value Adjustment Factor)

calculating from GSC, 69–70, 227
calculating from GSC, reference table,

363
defined, 67
in development projects, 176
in maintenance projects, 185–186
in maintenance request, 186, 188
obtaining in FP counting process, 312
in reengineering projects, 179–182

VAFA-VAF, 186, 188

388 Index

VAFB-VAF, 186, 188
Vendors. See Outsourcing, vs. insourcing
View, user

vs. developer view, 95–96, 222–223
of existing applications, in FPA,

229–230
understanding, in FPA, 60–62

W
Warranty support, 220, 260–261
Waterfall lifecycle model

contractual agreements for, 258
impacting project costs, 270–271
vs. iterative, 218–220

WBS (Work-Breakdown Structure)
estimation method, 280–281

Wideband Delphi estimation method,
280–283, 293

Workflow, invoicing system case study,
313–315

www.informit.com

YOUR GUIDE TO IT REFERENCE

Articles

Keep your edge with thousands of free articles, in-

depth features, interviews, and IT reference recommen-

dations – all written by experts you know and trust.

Online Books

Answers in an instant from InformIT Online Book’s 600+

fully searchable on line books. For a limited time, you can

get your first 14 days free.

Catalog

Review online sample chapters, author biographies

and customer rankings and choose exactly the right book

from a selection of over 5,000 titles.

www.informit.com

Wouldn’t it be great
if the world’s leading technical

publishers joined forces to deliver
their best tech books in a common

digital reference platform?

They have. Introducing
InformIT Online Books

powered by Safari.

■ Specific answers to specific questions.
InformIT Online Books’ powerful search engine gives you
relevance-ranked results in a matter of seconds.

■ Immediate results.
With InformIT Online Books, you can select the book
you want and view the chapter or section you need
immediately.

■ Cut, paste and annotate.
Paste code to save time and eliminate typographical
errors. Make notes on the material you find useful and
choose whether or not to share them with your work
group.

■ Customized for your enterprise.
Customize a library for you, your department or your entire
organization. You only pay for what you need.

in
fo

rm
it

.c
o
m

/
o
n
li

n
e
b
o
o
k
s

Get your first 14 days FREE!
For a limited time, InformIT Online Books is offering

its members a 10 book subscription risk-free for

14 days. Visit http://www.informit.com/online-

books for details.

On
lin

e
Bo

ok
s

http://www.informit.com/onlinebooks
http://www.informit.com/onlinebooks

http://www.awprofessional.com/safarienabled

If you are interested in writing a book or reviewing
manuscripts prior to publication, please write to us at:

Editorial Department
Addison-Wesley Professional
75 Arlington Street, Suite 300
Boston, MA 02116 USA
Email: AWPro@aw.com

Visit us on the Web: http://www.awprofessional.com

You may be eligible to receive:

• Advance notice of forthcoming editions of the book

• Related book recommendations

• Chapter excerpts and supplements of forthcoming titles

• Information about special contests and promotions

throughout the year

• Notices and reminders about author appearances,

tradeshows, and online chats with special guests

at www.awprofessional.com/register

www.awprofessional.com/register
http://www.awprofessional.com

	Cover
	Contents
	List of Figures
	List of Tables
	Foreword
	Preface
	Acknowledgments
	Chapter 1: Introduction
	What Is Software Estimation?
	Ingredients of a Good Estimation
	Activity Scope
	Work Environment
	Consistency
	Usage of Tools
	Learning from Past Experience

	Software Project Estimation
	Project Scope
	Software Environment
	Team Experience
	Software Development Tools

	Continuous Improvement Cycle
	Why Software Estimation?
	Metrics—Past, Present, and Future
	Importance of Estimation

	Estimation—Who and How
	Conclusion
	References
	Other Interesting Reading Material

	Chapter 2: Role of Estimation in Software Projects
	Software Projects and Estimation
	Project Budget Approval Phase
	Project Contract Phase
	Project Execution Phase

	Estimation and Measurement
	Estimation and Measurement Complexities
	Modularized Estimation
	Case Study—Modularized Estimation

	Large Application Systems
	Heterogeneous Portfolio of Application Systems

	Conclusion
	References
	Other Interesting Reading Material

	Chapter 3: A Study of Function Point Analysis
	Why Estimation?
	What Is an Estimation Method?

	Function Points
	What Is a Function Point?
	Function Point as a Measuring Yardstick
	Uses and Benefits of Function Points

	Function Point Analysis
	FPA—Objectives
	The FPA Model
	The FPA Process

	Conclusion
	References

	Chapter 4: Data Functions
	Introduction
	Definition of Files
	A Data File Example

	Data Functions Defined by IFPUG
	ILFs and EIFs
	Embedded Terms
	Rules for Identification of ILFs and EIFs
	Determining Complexity of ILFs and EIFs
	Complexity and FP Count Contributions
	Tips to Remember

	Conclusion
	Identifying ILF/EIF: User View versus Developer View

	References
	Other Interesting Reading Material

	Chapter 5: Transactional Functions
	Introduction
	Definition of Transactions
	Albrecht’s Definition of Transactions
	Ingredients of a Transaction

	Transactional Functions Defined by IFPUG
	EI, EO, and EQ
	External Input
	External Output
	External Inquiry
	Embedded Terms
	Rules for Identification of EI, EO, and EQ

	Complexity and FP Count Contributions
	External Inputs
	External Outputs/External Inquiries
	Step-by-Step FP Contribution Calculation Process
	CRUD Transactions

	Invoice System—FP Counting Process
	Conclusion
	Identifying EI/EO/EQ—User View versus Developer View

	References
	Other Interesting Reading Material

	Chapter 6: General System Characteristics
	Introduction
	Functional and Non-Functional Requirements
	Functional Requirements
	Non-Functional Requirements

	Introduction to General System Characteristics
	Degree of Influence (DI)

	Guidelines for General System Characteristics
	GSC-1: Data Communications
	GSC-2: Distributed Data Processing
	GSC-3: Performance
	GSC-4: Heavily Used Configuration
	GSC-5: Transaction Rate
	GSC-6: Online Data Entry
	GSC-7: End-User Efficiency
	GSC-8: Online Update
	GSC-9: Complex Processing
	GSC-10: Reusability
	GSC-11: Installation Ease
	GSC-12: Operational Ease
	GSC-13: Multiple Sites
	GSC-14: Facilitate Change

	GSC and NFR
	Layers
	Tiers
	Quality of Service (QoS)
	ISO/IEC 14143-1: Definition of User Requirements
	From the Dinosaur Era to the Jet Age
	The Relationship among GSC, NFR, and Technology Platform
	Case Study

	Conclusion
	References
	Other Interesting Reading Material

	Chapter 7: Size, Effort, and Scheduling of Projects
	Importance of Size
	Key Inputs to Software Sizing
	Differentiate Functions from Production Effort/Costs
	Function Point Analysis Method
	Size—The Differentiator
	The Yardstick

	Inputs to Sizing
	Source of Inputs
	Accuracy of Requirements
	Role of Size in the Software Development Lifecycle

	Impact of Delivery Rate
	Productivity Drivers
	Software Product
	Software Production Process
	Software Development Environment
	Productivity Measurement
	Measuring Input
	Productivity

	Effort and Schedule
	Deriving Effort
	Scheduling
	Resource Loading
	Costing

	Conclusion
	References
	Other Interesting Reading Material

	Chapter 8: Estimation Flavors
	Change Forever
	Development Projects
	Functional Decomposition of Modules
	Case Study—Invoicing Application
	Development—Function Point Analysis Method

	Reengineering Projects
	Reengineering—Function Point Analysis Method

	Migration Projects
	Maintenance Projects
	Request for Service
	Estimating Maintenance Requests—Function Point Analysis
	Case Study—Maintenance Request
	Complexity in Estimation of Request for Service

	Conclusion
	References

	Chapter 9: A Sense of Where You Are
	On the Right Track, On Time
	Pervasive Estimations
	The Rippling Effect

	Agile Software Projects
	Case Study

	Estimation Maturity
	Mentor and Monitor Estimation Methods

	Conclusion
	References
	Other Interesting Reading Material

	Chapter 10: Tips, Tricks, and Traps
	Introduction
	Setting the Context

	Tips
	Estimate Invisible Overheads
	Tip 1: Project Team Size
	Tip 2: Lifecycle Model
	Tip 3: Warranty Support
	Tip 4: Prototype
	Tip 5: Proof-of-Concept

	Tricks
	Trick 1: Manipulating Project Costs
	Trick 2: The Balancing Effect
	Trick 3: User versus Developer View
	Trick 4: Accuracy of Inputs to Estimation

	Traps
	Trap 1: Estimation Tools
	Trap 2: Arbitrary Guesstimate
	Trap 3: GSC—The Killer
	Trap 4: Application Size and Delivery Schedule
	Trap 5: Caution while Counting FP of Existing Applications

	Conclusion
	References
	Other Interesting Reading Material

	Chapter 11: Insourcing versus Outsourcing
	Introduction
	Environment—The Differentiator
	The Insourcing IT Organization
	The Outsourcing IT Organization

	Estimation Approach
	Insourcing Estimation
	Outsourcing Estimation

	Insourcing versus Outsourcing: Pros and Cons
	Conclusion
	Reference

	Chapter 12: Key Factors in Software Contracts
	Introduction
	Types of Contracts
	The Fixed Price Contract
	The Time and Material Contract
	The Flexible Contract

	Project Execution Methods
	Conclusion
	References

	Chapter 13: Project Estimation and Costing
	Introduction
	Ingredients of Project Costs

	Project Lifecycle Phases and Cost
	Requirements Phase
	Design Phase
	Build and Test Phase
	Lifecycle Model
	Resource Allocations
	Develop a Cost Matrix

	Estimation and TCO
	Estimating TCO Costs

	Conclusion
	Other Interesting Reading Material

	Chapter 14: Other Estimation Methods
	Introduction
	Estimation Methods
	Estimation Approaches

	Heuristic Approach
	Top-Down Estimation Approach
	The Bottom-Up Approach

	Parametric Approach
	COCOMO II Model
	COSMIC-FFP Method

	Estimation Models Pros and Cons
	Conclusion
	References
	Other Interesting Reading Material

	Chapter 15: Estimation Tools
	Why Use Tools?
	Evolution of Estimation Tools
	Ingredients of a Good Estimation Tool
	Deploying Estimation Tools in IT Organizations

	List of Tools
	Conclusion
	References
	Other Interesting Reading Material

	Chapter 16: Estimation Case Study
	Introduction
	Basic Assumptions
	Step-by-Step FP Counting Process (Development Projects)

	Case Study: 1—Invoicing System
	Invoice Module

	Case Study 2: Enhanced Invoicing System
	Step-by-Step FP Counting Process (Enhancement Projects)
	Assessing the Impact of Enhancing the Invoice Application

	Conclusion
	References
	Other Interesting Reading Material

	Appendix A: Reference Tables: Transaction Function Counts
	Reference Table to Calculate ILF/EIF FP Count
	Reference Table to Calculate EI/EO/EQ FP Count
	Reference Table to Calculate Total FP Count
	Reference Table to Calculate VAF from GSC—Total Degree of Influence

	Appendix B: Reference Tables: Data Function Points
	Internal Logical Files and External Interface Files
	External Inputs/External Outputs/External Inquiries

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

