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PREFACE TO THE FIFTH EDITION

This book describes statistical models and methods for analyzing discrete time series and
presents important applications of the methodology. The models considered include the
class of autoregressive integratedmoving average (ARIMA)models and various extensions
of these models. The properties of the models are examined and statistical methods for
model specification, parameter estimation, andmodel checking are presented. Applications
to forecasting nonseasonal as well as seasonal time series are described. Extensions of the
methodology to transfer function modeling of dynamic relationships between two or more
time series, modeling the effects of intervention events, multivariate time series modeling,
and process control are discussed. Topics such as state-space and structural modeling,
nonlinear models, long-memory models, and conditionally heteroscedastic models are
also covered. The goal has been to provide a text that is practical and of value to both
academicians and practitioners.

The first edition of this book appeared in 1970 and around that time there was a great
upsurge in research on time series analysis and forecasting. This generated a large influx of
new ideas, modifications, and improvements by many authors. For example, several new
research directions began to emerge in econometrics around that time, leading to what is
now known as time series econometrics. Many of these developments were reflected in the
fourth edition of this book and have been further elaborated upon in this new edition.

The main goals of preparing a new edition have been to expand and update earlier
material, incorporate new literature, enhance and update numerical illustrations through
the use of R, and increase the number of exercises in the book. Some of the chapters in
the previous edition have been reorganized. For example, Chapter 14 on multivariate time
series analysis has been reorganized and expanded, placing more emphasis on vector au-
toregressive (VAR) models. The VARmodels are by far the most widely used multivariate
time series models in applied work. This edition provides an expanded treatment of these
models that includes software demonstrations.

Chapter 10 has also been expanded and updated. This chapter covers selected topics in
time series analysis that either extend or supplement material discussed in earlier chapters.

xix



Box3G Date: May 21, 2015 Time: 1:48 pm

xx PREFACE TO THE FIFTH EDITION

This includes unit roots testing, modeling of conditional heteroscedasticity, nonlinearmod-
els, and longmemorymodels. A section of unit root testing that appeared in Chapter 7 of the
previous edition has been expanded and moved to Section 10.1 in this edition. Section 10.2
deals with autoregressive conditionally heteroscedastic models, such as the ARCH and
GARCH models. These models focus on the variability in a time series and are useful for
modeling the volatility or variability in economic and financial series, in particular. The
treatment of the ARCH and GARCH models has been expanded and several extensions
have been added.

Elsewhere in the text, the exposition has been enhanced by revising, modifying, and
omitting text as appropriate. Several tables have either been edited or replaced by graphs
to make the presentation more effective. The number of exercises has been increased
throughout the text and they now appear at the end of each chapter.

A further enhancement to this edition is the use of the statistical software R for model
building and forecasting. The R package is available as a free download from the R Project
for Statistical Computing at www.r-project.org.A brief description of the software is given
in Appendix A1.1 of Chapter 1. Graphs generated using R now appear in many of the
chapters along with R code that will help the reader reconstruct the graphs. The software
is also used for numerical illustration in many of the examples in the text.

The fourth edition of this book was published by Wiley in 2008. Plans for a new edition
began during the fall of 2012. I was deeply honoredwhen George Box askedme to help him
with this update. George was my Ph.D. advisor at the University of Wisconsin-Madison
and remained a dear friend to me over the years as he did to all his students. Sadly, he was
rather ill when the plans for this new edition were finalized towards the end of 2012. He
did not have a chance to see the project completed as he passed away in March of 2013. I
am deeply grateful for the opportunity to work with him and for the confidence he showed
in assigning me this task. The book is dedicated to his memory and to the memory of his
distinguished co-authors Gwilym Jenkins and Gregory Reinsel. Their contributions were
many and they are all missed.

I also want to express my gratitude to several friends and colleagues in the time series
communitywho have read the manuscript and provided helpful comments and suggestions.
These includeRueyTsay,WilliamWei, SungAhn, andRajaVeluwho have readChapter 14
onmultivariate time series analysis, andDavidDickey, JohannesLedolter, TimoTeräsvirta,
andNielsHaldrupwho have readChapter 10 on special topics. Their constructive comments
and suggestions are much appreciated. Assistance and support from Paul Lindholm in
Finland is also gratefully acknowledged. The use of R in this edition includes packages
developed for existing books on time series analysis such as Cryer and Chan (2010),
Shumway and Stoffer (2011), and Tsay (2014). We commend these authors for making
their code and datasets available for public use through the R Project.

Research for the original version of this book was supported by the Air Force Office of
Scientific Research and by the British Science Research Council. Research incorporated
in the third edition was partially supported by the Alfred P. Sloan Foundation and by the
National Aeronautics and Space Administration. Permission to reprint selected tables from
Biometrika Tables for Statisticians, Vol. 1, edited by E. S. Pearson and H. O. Hartley is
also acknowledged. On behalf of my co-authors, I would like to thank George Tiao, David
Mayne, David Pierce, Granville Tunnicliffe Wilson, Donald Watts, John Hampton, Elaine
Hodkinson, Patricia Blant, Dean Wichern, David Bacon, Paul Newbold, Hiro Kanemasu,
Larry Haugh, John MacGregor, Bovas Abraham, Johannes Ledolter, Gina Chen, Raja
Velu, Sung Ahn, Michael Wincek, Carole Leigh, Mary Esser, Sandy Reinsel, and

http://www.r-project.org
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Meg Jenkins, for their help, in many different ways, in preparing the earlier editions.
A very special thanks is extended to Claire Box for her long-time help and support.

The guidance and editorial support of Jon Gurstelle and Sari Friedman at Wiley is
gratefully acknowledged. We also thank Stephen Quigley for his help in setting up the
project, and Katrina Maceda and Shikha Pahuja for their help with the production.

Finally, I want to express my gratitude to my husband Bert Beander for his encourage-
ment and support during the preparation of this revision.

GRETA M. LJUNG
Lexington, MA
May 2015
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PREFACE TO THE FOURTH EDITION

It may be of interest to briefly recount how this book came to be written. Gwilym Jenkins
and I first became friends in the late 1950s. We were intrigued by an idea that a chemical
reactor could be designed that optimized itself automatically and could follow a moving
maximum.We both believed that many advances in statistical theory came about as a result
of interaction with researchers who were working on real scientific problems. Helping to
design and build such a reactor would present an opportunity to further demonstrate this
concept.

When Gwilym Jenkins came to visit Madison for a year, we discussed the idea with
the famous chemical engineer Olaf Hougen, then in his eighties. He was enthusiastic and
suggested that we form a small team in a joint project to build such a system. The National
Science Foundation later supported this project. It took 3 years, but suffice it to say, that
after many experiments, several setbacks, and some successes the reactor was built and it
worked.

As expected, this investigation taught us a lot. In particular, we acquired proficiency in
the manipulation of difference equations that were needed to characterize the dynamics of
the system. It also gave us a better understanding of nonstationary time series required for
realistic modeling of system noise. This was a happy time. We were doing what we most
enjoyed doing: interacting with experimenters in the evolution of ideas and the solution of
real problems, with real apparatus and real data.

Later there was fallout in other contexts, for example, advances in time series analysis,
in forecasting for business and economics, and also developments in statistical process
control (SPC) using some notions learned from the engineers.

Originally Gwilym came for a year. After that I spent each summer with him in England
at his home in Lancaster. For the rest of the year, we corresponded using small reel-to-reel
tape recorders. We wrote a number of technical reports and published some papers but
eventually realized we needed a book. The first two editions of this book were written
during a period in which Gwilym was, with extraordinary courage, fighting a debilitating
illness to which he succumbed sometime after the book had been completed.
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Later Gregory Reinsel, who had profound knowledge of the subject, helped to complete
the third edition. Also in this fourth edition, produced after his untimely death, the new
material is almost entirely his. In addition to a complete revision and updating, this fourth
edition resulted in two new chapters: Chapter 10 on nonlinear and long memory models
and Chapter 12 on multivariate time series.

This book should be regarded as a tribute to Gwilym and Gregory.
I was especially blessed to work with two such gifted colleagues.

GEORGE E. P. BOX

Madison, Wisconsin
March 2008
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PREFACE TO THE THIRD EDITION

This book is concerned with the building of stochastic (statistical) models for time series
and their use in important areas of application. This includes the topics of forecasting,
model specification, estimation, and checking, transfer function modeling of dynamic
relationships, modeling the effects of intervention events, and process control. Coincident
with the first publication of Time Series Analysis: Forecasting and Control, there was a
great upsurge in research in these topics. Thus, while the fundamental principles of the kind
of time series analysis presented in that edition have remained the same, there has been a
great influx of new ideas, modifications, and improvements provided by many authors.

The earlier editions of this book were written during a period in which Gwilym Jenkins
was, with extraordinary courage, fighting a slowly debilitating illness. In the present revi-
sion, dedicated to his memory, we have preserved the general structure of the original book
while revising, modifying, and omitting text where appropriate. In particular, Chapter 7
on estimation of ARMA models has been considerably modified. In addition, we have
introduced entirely new sections on some important topics that have evolved since the
first edition. These include presentations on various more recently developed methods for
model specification, such as canonical correlation analysis and the use of model selection
criteria, results on testing for unit root nonstationarity in ARIMA processes, the state-space
representation of ARMAmodels and its use for likelihood estimation and forecasting, score
tests for model checking, structural components, and deterministic components in time se-
ries models and their estimation based on regression-time series model methods. A new
chapter (12) has been developed on the important topic of intervention and outlier analysis,
reflecting the substantial interest and research in this topic since the earlier editions.

Over the last few years, the new emphasis on industrial quality improvementhas strongly
focused attention on the role of control both in process monitoring and in process adjust-
ment. The control section of this book has, therefore, been completely rewritten to serve
as an introduction to these important topics and to provide a better understanding of
their relationship.

xxv
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xxvi PREFACE TO THE THIRD EDITION

The objective of this book is to provide practical techniques that will be available to
most of the wide audience who could benefit from their use. While we have tried to remove
the inadequacies of earlier editions, we have not attempted to produce here a rigorous
mathematical treatment of the subject.

We wish to acknowledge our indebtedness to Meg (Margaret) Jenkins and to our wives,
Claire and Sandy, for their continuing support and assistance throughout the long period
of preparation of this revision.

Research on which the original book was based was supported by the Air Force Office
of Scientific Research and by the British Science Research Council. Research incorporated
in the third edition was partially supported by the Alfred P. Sloan Foundation and by the
National Aeronautics and Space Administration.We are grateful to Professor E. S. Pearson
and the Biometrika Trustees for permission to reprint condensed and adapted forms of
Tables 1, 8, and 12 of Biometrika Tables for Statisticians, Vol. 1, edited by E. S. Pearson
and H. O. Hartley, to Dr. Casimer Stralkowski for permission to reproduce and adapt
three figures from his doctoral thesis, and to George Tiao, David Mayne, Emanuel Parzen,
David Pierce, Granville Wilson, Donald Watts, John Hampton, Elaine Hodkinson, Patricia
Blant, Dean Wichern, David Bacon, Paul Newbold, Hiro Kanemasu, Larry Haugh, John
MacGregor, Bovas Abraham, Gina Chen, Johannes Ledolter, Greta Ljung, Carole Leigh,
Mary Esser, and Meg Jenkins for their help, in many different ways, in preparing the
earlier editions.

GEORGE BOX AND GREGORY REINSEL
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1
INTRODUCTION

A time series is a sequence of observations taken sequentially in time. Many sets of data
appear as time series: a monthly sequence of the quantity of goods shipped from a factory, a
weekly series of the number of road accidents, daily rainfall amounts, hourly observations
made on the yield of a chemical process, and so on. Examples of time series abound in
such fields as economics, business, engineering, the natural sciences (especially geophysics
and meteorology), and the social sciences. Examples of data of the kind that we will be
concerned with are displayed as time series plots in Figures 2.1 and 4.1. An intrinsic
feature of a time series is that, typically, adjacent observations are dependent. The nature
of this dependence among observations of a time series is of considerable practical interest.
Time series analysis is concerned with techniques for the analysis of this dependence. This
requires the development of stochastic and dynamicmodels for time series data and the use
of such models in important areas of application.

In the subsequent chapters of this book, we present methods for building, identifying,
fitting, and checking models for time series and dynamic systems. The methods discussed
are appropriate for discrete (sampled-data) systems, where observation of the system occurs
at equally spaced intervals of time.

We illustrate the use of these time series and dynamic models in five important areas of
application:

1. The forecasting of future values of a time series from current and past values.

2. The determination of the transfer function of a system subject to inertia---the deter-
mination of a dynamic input--output model that can show the effect on the output of
a system of any given series of inputs.

3. The use of indicator input variables in transfer function models to represent and
assess the effects of unusual intervention events on the behavior of a time series.

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
○c 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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4. The examination of interrelationships among several related time series variables of
interest and determination of appropriate multivariate dynamic models to represent
these joint relationships among the variables over time.

5. The design of simple control schemes by means of which potential deviations of
the system output from a desired target may, so far as possible, be compensated by
adjustment of the input series values.

1.1 FIVE IMPORTANT PRACTICAL PROBLEMS

1.1.1 Forecasting Time Series

The use at time 𝑡 of available observations from a time series to forecast its value at some
future time 𝑡 + 𝑙 can provide a basis for (1) economic and business planning, (2) production
planning, (3) inventory and production control, and (4) control and optimization of industrial
processes. As originally described by Holt et al. (1963), Brown (1962), and the Imperial
Chemical Industries (ICI) monograph on short term forecasting (Coutie, 1964), forecasts
are usually needed over a period known as the lead time, which varies with each problem.
For example, the lead time in the inventory control problemwas defined byHarrison (1965)
as a period that begins when an order to replenish stock is placed with the factory and lasts
until the order is delivered into stock.

We will assume that observations are available at discrete, equispaced intervals of
time. For example, in a sales forecasting problem, the sales 𝑧𝑡 in the current month 𝑡 and
the sales 𝑧𝑡−1, 𝑧𝑡−2, 𝑧𝑡−3,… in previous months might be used to forecast sales for lead
times 𝑙 = 1, 2, 3,… , 12 months ahead. Denote by �̂�𝑡(𝑙) the forecast made at origin 𝑡 of
the sales 𝑧𝑡+𝑙 at some future time 𝑡 + 𝑙, that is, at lead time 𝑙. The function �̂�𝑡(𝑙), which
provides the forecasts at origin 𝑡 for all future lead times, based on the available information
from the current and previous values 𝑧𝑡, 𝑧𝑡−1, 𝑧𝑡−2, 𝑧𝑡−3,… through time 𝑡, will be called the
forecast function at origin 𝑡. Our objective is to obtain a forecast function such that the mean
square of the deviations 𝑧𝑡+𝑙 − �̂�𝑡(𝑙) between the actual and forecasted values is as small as
possible for each lead time 𝑙.

In addition to calculating the best forecasts, it is also necessary to specify their accuracy,
so that, for example, the risks associated with decisions based upon the forecasts may
be calculated. The accuracy of the forecasts may be expressed by calculating probability
limits on either side of each forecast. These limits may be calculated for any convenient
set of probabilities, for example, 50 and 95%. They are such that the realized value of the
time series, when it eventually occurs, will be included within these limits with the stated
probability. To illustrate, Figure 1.1 shows the last 20 values of a time series culminating at
time 𝑡. Also shown are forecasts made from origin 𝑡 for lead times 𝑙 = 1, 2,… , 13, together
with the 50% probability limits.

Methods for obtaining forecasts and estimating probability limits are discussed in detail
in Chapter 5. These forecasting methods are developed based on the assumption that the
time series 𝑧𝑡 follows a stochastic model of known form. Consequently, in Chapters 3
and 4 a useful class of such time series models that might be appropriate to represent the
behavior of a series 𝑧𝑡, called autoregressive integrated moving average (ARIMA) models,
are introduced and many of their properties are studied. Subsequently, in Chapters 6, 7,
and 8 the practical matter of how these models may be developed for actual time series data
is explored, and the methods are described through the three-stage procedure of tentative
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FIGURE 1.1 Values of a time series with forecast function and 50% probability limits.

model identification or specification, estimation of model parameters, and model checking
and diagnostics.

1.1.2 Estimation of Transfer Functions

A topic of considerable industrial interest is the study of process dynamics discussed, for
example, by Aström and Bohlin (1966, pp. 96--111) and Hutchinson and Shelton (1967).
Such a study is made (1) to achieve better control of existing plants and (2) to improve the
design of new plants. In particular, several methods have been proposed for estimating the
transfer function of plant units from process records consisting of an input time series 𝑋𝑡

and an output time series 𝑌𝑡. Sections of such records are shown in Figure 1.2, where the
input 𝑋𝑡 is the rate of air supply and the output 𝑌𝑡 is the concentration of carbon dioxide
produced in a furnace. The observations were made at 9-second intervals. A hypothetical
impulse response function 𝑣𝑗 , 𝑗 = 0, 1, 2,…, which determines the transfer function for the
system through a dynamic linear relationship between input 𝑋𝑡 and output 𝑌𝑡 of the form
𝑌𝑡 =

∑∞
𝑗=0 𝑣𝑗𝑋𝑡−𝑗 , is also shown in the figure as a bar chart. Transfer function models that

FIGURE 1.2 Input and output time series in relation to a dynamic system.



Box3G Date: May 21, 2015 Time: 8:54 am

4 INTRODUCTION

relate an input process 𝑋𝑡 to an output process 𝑌𝑡 are introduced in Chapter 11 and many
of their properties are examined.

Methods for estimating transfer function models based on deterministic perturbations of
the input, such as step, pulse, and sinusoidal changes, have not always been successful. This
is because, for perturbations of a magnitude that are relevant and tolerable, the response
of the system may be masked by uncontrollable disturbances referred to collectively as
noise. Statistical methods for estimating transfer function models that make allowance for
noise in the system are described in Chapter 12. The estimation of dynamic response is of
considerable interest in economics, engineering, biology, and many other fields.

Another important application of transfer function models is in forecasting. If, for
example, the dynamic relationship between two time series 𝑌𝑡 and 𝑋𝑡 can be determined,
past values of both series may be used in forecasting 𝑌𝑡. In some situations, this approach
can lead to a considerable reduction in the errors of the forecasts.

1.1.3 Analysis of Effects of Unusual Intervention Events to a System

In some situations, it may be known that certain exceptional external events, intervention
events, could have affected the time series 𝑧𝑡 under study. Examples of such interven-
tion events include the incorporation of new environmental regulations, economic policy
changes, strikes, and special promotion campaigns. Under such circumstances, we may
use transfer function models, as discussed in Section 1.1.2, to account for the effects of
the intervention event on the series 𝑧𝑡, but where the ‘‘input’’ series will be in the form
of a simple indicator variable taking only the values 1 and 0 to indicate (qualitatively) the
presence or absence of the event.

In these cases, the intervention analysis is undertaken to obtain a quantitative measure
of the impact of the intervention event on the time series of interest. For example, Box
and Tiao (1975) used intervention models to study and quantify the impact of air pollution
controls on smog-producing oxidant levels in the Los Angeles area and of economic
controls on the consumer price index in the United States. Alternatively, the intervention
analysis may be undertaken to adjust for any unusual values in the series 𝑧𝑡 that might
have resulted as a consequence of the intervention event. This will ensure that the results
of the time series analysis of the series, such as the structure of the fitted model, estimates
of model parameters, and forecasts of future values, are not seriously distorted by the
influence of these unusual values. Models for intervention analysis and their use, together
with consideration of the related topic of detection of outlying or unusual values in a time
series, are presented in Chapter 13.

1.1.4 Analysis of Multivariate Time Series

For many problems in business, economics, engineering, and physical and environmental
sciences, time series data may be available on several related variables of interest. A more
informative and effective analysis is often possible by considering individual series as
components of a multivariate or vector time series and analyzing the series jointly. For
𝑘-related time series variables of interest in a dynamic system, we may denote the series as
𝑧1𝑡, 𝑧2𝑡,… , 𝑧𝑘𝑡, and let 𝒁 𝑡 = (𝑧1𝑡,… , 𝑧𝑘𝑡)′ denote the 𝑘 × 1 time series vector at time 𝑡.

Methods ofmultivariate time series analysis are used to study the dynamic relationships
among the several time series that comprise the vector 𝒁 𝑡. This involves the development
of statistical models and methods of analysis that adequately describe the interrelationships
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among the series. Two main purposes for analyzing and modeling the vector of time series
jointly are to gain an understanding of the dynamic relationships over time among the
series and to improve accuracy of forecasts for individual series by utilizing the additional
information available from the related series in the forecasts for each series. Multivariate
time series models and methods for analysis and forecasting of multivariate series based
on these models are considered in Chapter 14.

1.1.5 Discrete Control Systems

In the past, to the statistician, the words ‘‘process control’’ have usually meant the quality
control techniques developed originally by Shewhart (1931) in the United States (see
also Dudding and Jennet, 1942). Later on, the sequential aspects of quality control were
emphasized, leading to the introduction of cumulative sum charts by Page (1957, 1961) and
Barnard (1959) and the geometric moving average charts of Roberts (1959). Such basic
charts are frequently employed in industries concerned with the manufacture of discrete
‘‘parts’’ as one aspect of what is called statistical process control (SPC). In particular (see
Deming, 1986), they are used for continuousmonitoring of a process. That is, they are used
to supply a continuous screening mechanism for detecting assignable (or special) causes
of variation. Appropriate display of plant data ensures that significant changes are quickly
brought to the attention of those responsible for running the process. Knowing the answer to
the question ‘‘when did a change of this particular kind occur?’’ we may be able to answer
the question ‘‘why did it occur?’’ Hence a continuous incentive for process stabilization
and improvement can be achieved.

By contrast, in the process and chemical industries, various forms of feedback and
feedforward adjustment have been used in what we will call engineering process control
(EPC). Because the adjustments made by engineering process control are usually computed
and applied automatically, this type of control is sometimes called automatic process
control (APC). However, the manner in which these adjustments are made is a matter of
convenience. This type of control is necessary when there are inherent disturbances or
noise in the system inputs that are impossible or impractical to remove. When we can
measure fluctuations in an input variable that can be observed but not changed, it may
be possible to make appropriate compensatory changes in some other control variable.
This is referred to as feedforward control. Alternatively, or in addition, we may be able
to use the deviation from target or ‘‘error signal’’ of the output characteristic itself to
calculate appropriate compensatory changes in the control variable. This is called feedback
control. Unlike feedforward control, this mode of correction can be employed even when
the source of the disturbances is not accurately known or the magnitude of the disturbance
is not measured.

In Chapter 15, we draw on the earlier discussions in this book, on time series and
transfer function models, to provide insight into the statistical aspects of these control
methods and to appreciate better their relationships and different objectives. In particular,
we show how some of the ideas of feedback control can be used to design simple charts
for manually adjusting processes. For example, the upper chart of Figure 1.3 shows hourly
measurements of the viscosity of a polymer made over a period of 42 hours. The viscosity
is to be controlled about a target value of 90 units. As each viscosity measurement comes
to hand, the process operator uses the nomogram shown in the middle of the figure to
compute the adjustment to be made in the manipulated variable (gas rate). The lower chart
of Figure 1.3 shows the adjustments made in accordance with the nomogram.
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FIGURE 1.3 Control of viscosity. Record of observed viscosity and of adjustments in gas rate
made using nomogram.

1.2 STOCHASTIC AND DETERMINISTIC DYNAMIC
MATHEMATICAL MODELS

The idea of using a mathematical model to describe the behavior of a physical phenomenon
is well established. In particular, it is sometimes possible to derive a model based on
physical laws, which enables us to calculate the value of some time-dependent quantity
nearly exactly at any instant of time. Thus, we might calculate the trajectory of a missile
launched in a known direction with known velocity. If exact calculation were possible,
such a model would be entirely deterministic.

Probably no phenomenon is totally deterministic, however, because unknown factors
can occur such as a variable wind velocity that can throw a missile slightly off course. In
many problems, we have to consider a time-dependent phenomenon, such as monthly sales
of newsprint, in which there are many unknown factors and for which it is not possible
to write a deterministic model that allows exact calculation of the future behavior of the
phenomenon. Nevertheless, it may be possible to derive amodel that can be used to calculate
the probability of a future value lying between two specified limits. Such a model is called
a probability model or a stochastic model. The models for time series that are needed,
for example, to achieve optimal forecasting and control, are in fact stochastic models. It
is necessary in what follows to distinguish between the probability model or stochastic
process, as it is sometimes called, and the actually observed time series. Thus, a time series
𝑧1, 𝑧2,… , 𝑧𝑁 of 𝑁 successive observations is regarded as a sample realization from an
infinite population of such time series that could have been generated by the stochastic
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process. Very often we will omit the word ‘‘stochastic’’ from ‘‘stochastic process’’ and
talk about the ‘‘process.’’

1.2.1 Stationary and Nonstationary Stochastic Models for Forecasting and Control

An important class of stochastic models for describing time series, which has received a
great deal of attention, comprises what are called stationary models. Stationary models
assume that the process remains in statistical equilibrium with probabilistic properties
that do not change over time, in particular varying about a fixed constant mean level
and with constant variance. However, forecasting has been of particular importance in
industry, business, and economics, where many time series are often better represented as
nonstationary and, in particular, as having no natural constant mean level over time. It is not
surprising, therefore, that many of the economic forecasting methods originally proposed
by Holt (1957, 1963), Winters (1960), Brown (1962), and the ICI monographs (Coutie,
1964) that used exponentially weighted moving averages can be shown to be appropriate
for a particular type of nonstationary process. Although such methods are too narrow to
deal efficiently with all time series, the fact that they often give the right kind of forecast
function supplies a clue to the kind of nonstationary model that might be useful in these
problems.

The stochastic model for which the exponentially weighted moving average forecast
yields minimum mean square error (Muth, 1960) is a member of a class of nonstationary
processes called autoregressive integrated moving average processes, which are discussed
in Chapter 4. This wider class of processes provides a range of models, stationary and
nonstationary, that adequately represent many of the time series met in practice. Our
approach to forecasting has been first to derive an adequate stochastic model for the
particular time series under study. As shown in Chapter 5, once an appropriate model has
been determined for the series, the optimal forecasting procedure follows immediately.
These forecasting procedures include the exponentially weighted moving average forecast
as a special case.

Some Simple Operators. We employ extensively the backward shift operator 𝐵, which
is defined by 𝐵𝑧𝑡 = 𝑧𝑡−1; hence 𝐵𝑚𝑧𝑡 = 𝑧𝑡−𝑚. The inverse operation is performed by
the forward shift operator 𝐹 = 𝐵−1 given by 𝐹𝑧𝑡 = 𝑧𝑡+1; hence 𝐹𝑚𝑧𝑡 = 𝑧𝑡+𝑚. Another
important operator is the backward difference operator, ∇, defined by ∇𝑧𝑡 = 𝑧𝑡 − 𝑧𝑡−1.
This can be written in terms of 𝐵, since

∇𝑧𝑡 = 𝑧𝑡 − 𝑧𝑡−1 = (1 − 𝐵)𝑧𝑡

Linear Filter Model. The stochastic models we employ are based on an idea originally
due to Yule (1927) that an observable time series 𝑧𝑡 in which successive values are highly
dependent can frequently be regarded as generated from a series of independent ‘‘shocks’’
𝑎𝑡. These shocks are random drawings from a fixed distribution, usually assumed normal
and having mean zero and variance 𝜎2

𝑎
. Such a sequence of independent random variables

𝑎𝑡, 𝑎𝑡−1, 𝑎𝑡−2,… is called a white noise process.
The white noise process 𝑎𝑡 is supposed transformed to the process 𝑧𝑡 by what is called a

linear filter, as shown in Figure 1.4. The linear filtering operation simply takes a weighted
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FIGURE 1.4 Representation of a time series as the output from a linear filter.

sum of previous random shocks 𝑎𝑡, so that

𝑧𝑡 = 𝜇 + 𝑎𝑡 + 𝜓1𝑎𝑡−1 + 𝜓2𝑎𝑡−2 +⋯

= 𝜇 + 𝜓(𝐵)𝑎𝑡 (1.2.1)

In general, 𝜇 is a parameter that determines the ‘‘level’’ of the process, and

𝜓(𝐵) = 1 + 𝜓1𝐵 + 𝜓2𝐵
2 +⋯

is the linear operator that transforms 𝑎𝑡 into 𝑧𝑡 and is called the transfer function of the filter.
The model representation (1.2.1) can allow for a flexible range of patterns of dependence
among values of the process {𝑧𝑡} expressed in terms of the independent (unobservable)
random shocks 𝑎𝑡.

The sequence𝜓1, 𝜓2,… formed by the weights may, theoretically, be finite or infinite. If
this sequence is finite, or infinite and absolutely summable in the sense that

∑∞
𝑗=0 |𝜓𝑗| < ∞,

the filter is said to be stable and the process 𝑧𝑡 is stationary. The parameter 𝜇 is then the
mean about which the process varies. Otherwise, 𝑧𝑡 is nonstationary and 𝜇 has no specific
meaning except as a reference point for the level of the process.

Autoregressive Models. A stochastic model that can be extremely useful in the represen-
tation of certain practically occurring series is the autoregressivemodel. In this model, the
current value of the process is expressed as a finite, linear aggregate of previous values
of the process and a random shock 𝑎𝑡. Let us denote the values of a process at equally
spaced times 𝑡, 𝑡 − 1, 𝑡 − 2, … by 𝑧𝑡, 𝑧𝑡−1, 𝑧𝑡−2,…. Also let �̃�𝑡 = 𝑧𝑡 − 𝜇 be the series of
deviations from 𝜇. Then

�̃�𝑡 = 𝜙1�̃�𝑡−1 + 𝜙2�̃�𝑡−2 +⋯ + 𝜙𝑝�̃�𝑡−𝑝 + 𝑎𝑡 (1.2.2)

is called an autoregressive (AR) process of order 𝑝. The reason for this name is that a linear
model

�̃� = 𝜙1�̃�1 + 𝜙2�̃�2 +⋯ + 𝜙𝑝�̃�𝑝 + 𝑎

relating a ‘‘dependent’’ variable 𝑧 to a set of ‘‘independent’’ variables 𝑥1, 𝑥2,… , 𝑥𝑝, plus
a random error term 𝑎, is referred to as a regressionmodel, and 𝑧 is said to be ‘‘regressed’’
on 𝑥1, 𝑥2,… , 𝑥𝑝. In (1.2.2) the variable 𝑧 is regressed on previous values of itself; hence
the model is autoregressive. If we define an autoregressive operator of order 𝑝 in terms of
the backward shift operator 𝐵 by

𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵
2 −⋯ − 𝜙𝑝𝐵

𝑝

the autoregressive model (1.2.2) may be written economically as

𝜙(𝐵)�̃�𝑡 = 𝑎𝑡
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The model contains 𝑝 + 2 unknown parameters 𝜇, 𝜙1, 𝜙2,… , 𝜙𝑝, 𝜎
2
𝑎, which in practice

have to be estimated from the data. The additional parameter 𝜎2
𝑎
is the variance of the white

noise process 𝑎𝑡.
It is not difficult to see that the autoregressive model is a special case of the linear filter

model of (1.2.1). For example, we can eliminate �̃�𝑡−1 from the right-hand side of (1.2.2) by
substituting

�̃�𝑡−1 = 𝜙1�̃�𝑡−2 + 𝜙2�̃�𝑡−3 +⋯ + 𝜙𝑝�̃�𝑡−𝑝−1 + 𝑎𝑡−1

Similarly, we can substitute for �̃�𝑡−2, and so on, to yield eventually an infinite series in
the 𝑎’s. Consider, specifically, the simple first-order (𝑝 = 1) AR process, �̃�𝑡 = 𝜙�̃�𝑡−1 + 𝑎𝑡.
After 𝑚 successive substitutions of �̃�𝑡−𝑗 = 𝜙�̃�𝑡−𝑗−1 + 𝑎𝑡−𝑗 , 𝑗 = 1,… , 𝑚 in the right-hand
side we obtain

�̃�𝑡 = 𝜙𝑚+1�̃�𝑡−𝑚−1 + 𝑎𝑡 + 𝜙𝑎𝑡−1 + 𝜙2𝑎𝑡−2 +⋯ + 𝜙𝑚𝑎𝑡−𝑚

In the limit as 𝑚 → ∞ this leads to the convergent infinite series representation �̃�𝑡 =∑∞
𝑗=0 𝜙

𝑗𝑎𝑡−𝑗 with 𝜓𝑗 = 𝜙𝑗 , 𝑗 ≥ 1, provided that |𝜙| < 1. Symbolically, in the general AR
case we have that

𝜙(𝐵)�̃�𝑡 = 𝑎𝑡

is equivalent to

�̃�𝑡 = 𝜙−1(𝐵)𝑎𝑡 = 𝜓(𝐵)𝑎𝑡

with 𝜓(𝐵) = 𝜙−1(𝐵) =
∑∞

𝑗=0 𝜓𝑗𝐵
𝑗 .

Autoregressive processes can be stationary or nonstationary. For the process to be
stationary, the 𝜙’s must be such that the weights 𝜓1, 𝜓2,… in 𝜓(𝐵) = 𝜙−1(𝐵) form a
convergent series. The necessary requirement for stationarity is that the autoregressive
operator,𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵

2 −⋯ − 𝜙𝑝𝐵
𝑝, considered as a polynomial in𝐵 of degree

𝑝, must have all roots of 𝜙(𝐵) = 0 greater than 1 in absolute value; that is, all roots must
lie outside the unit circle. For the first-order AR process �̃�𝑡 = 𝜙�̃�𝑡−1 + 𝑎𝑡 this condition
reduces to the requirement that |𝜙| < 1, as the argument above has already indicated.

Moving Average Models. The autoregressive model (1.2.2) expresses the deviation �̃�𝑡 of
the process as a finite weighted sum of 𝑝 previous deviations �̃�𝑡−1, �̃�𝑡−2,… , �̃�𝑡−𝑝 of the
process, plus a random shock 𝑎𝑡. Equivalently, as we have just seen, it expresses �̃�𝑡 as an
infinite weighted sum of the 𝑎’s.

Another kind of model, of great practical importance in the representation of observed
time series, is the finite moving average process. Here we take �̃�𝑡, linearly dependent on a
finite number 𝑞 of previous 𝑎’s. Thus,

�̃�𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 −⋯ − 𝜃𝑞𝑎𝑡−𝑞 (1.2.3)

is called a moving average (MA) process of order 𝑞. The name ‘‘moving average’’ is
somewhat misleading because the weights 1,−𝜃1,−𝜃2,… ,−𝜃𝑞, which multiply the 𝑎’s,
need not total unity nor need they be positive. However, this nomenclature is in common
use, and therefore we employ it.
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If we define a moving average operator of order 𝑞 by

𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵
2 −⋯ − 𝜃𝑞𝐵

𝑞

the moving average model may be written economically as

�̃�𝑡 = 𝜃(𝐵)𝑎𝑡

It contains 𝑞 + 2 unknown parameters 𝜇, 𝜃1,… , 𝜃𝑞, 𝜎2
𝑎
, which in practice have to be

estimated from the data.

Mixed Autoregressive--Moving Average Models. To achieve greater flexibility in fitting
of actual time series, it is sometimes advantageous to include both autoregressive and
moving average terms in themodel. This leads to themixedautoregressive--moving average
(ARMA) model:

�̃�𝑡 = 𝜙1�̃�𝑡−1 +⋯ + 𝜙𝑝�̃�𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 −⋯ − 𝜃𝑞𝑎𝑡−𝑞 (1.2.4)

or

𝜙(𝐵)�̃�𝑡 = 𝜃(𝐵)𝑎𝑡

The model employs 𝑝 + 𝑞 + 2 unknown parameters 𝜇, 𝜙1,… , 𝜙𝑝, 𝜃1,… , 𝜃𝑞 , 𝜎
2
𝑎
, that are

estimated from the data. Thismodelmay also bewritten in the formof the linear filter (1.2.1)
as �̃�𝑡 = 𝜙−1(𝐵)𝜃(𝐵)𝑎𝑡 = 𝜓(𝐵)𝑎𝑡, with𝜓(𝐵) = 𝜙−1(𝐵)𝜃(𝐵). In practice, it is frequently true
that an adequate representation of actually occurring stationary time series can be obtained
with autoregressive, moving average, or mixed models, in which 𝑝 and 𝑞 are not greater
than 2 and often less than 2. We discuss the classes of autoregressive, moving average, and
mixed models in much greater detail in Chapters 3 and 4.

Nonstationary Models. Many series actually encountered in industry or business (e.g.,
stock prices and sales figures) exhibit nonstationary behavior and in particular do not vary
about a fixed mean. Such series may nevertheless exhibit homogeneous behavior over time
of a kind. In particular, although the general level about which fluctuations are occurring
may be different at different times, the broad behavior of the series, when differences in
level are allowed for, may be similar over time.We show in Chapter 4 and later chapters that
such behaviormay often be represented by a model in terms of a generalized autoregressive
operator𝜑(𝐵), in which one or more of the zeros of the polynomial𝜑(𝐵) [i.e., one or more
of the roots of the equation 𝜑(𝐵) = 0] lie on the unit circle. In particular, if there are 𝑑 unit
roots and all other roots lie outside the unit circle, the operator 𝜑(𝐵) can be written

𝜑(𝐵) = 𝜙(𝐵)(1 − 𝐵)𝑑

where 𝜙(𝐵) is a stationary autoregressive operator. Thus, a model that can represent
homogeneous nonstationary behavior is of the form

𝜑(𝐵)𝑧𝑡 = 𝜙(𝐵)(1 − 𝐵)𝑑𝑧𝑡 = 𝜃(𝐵)𝑎𝑡

that is,

𝜙(𝐵)𝑤𝑡 = 𝜃(𝐵)𝑎𝑡 (1.2.5)
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where

𝑤𝑡 = (1 − 𝐵)𝑑𝑧𝑡 = ∇𝑑𝑧𝑡 (1.2.6)

Thus, homogeneous nonstationary behavior can sometimes be represented by a model that
calls for the 𝑑th difference of the process to be stationary. In practice, 𝑑 is usually 0, 1, or
at most 2, with 𝑑 = 0 corresponding to stationary behavior.

The process defined by (1.2.5) and (1.2.6) provides a powerful model for describing
stationary and nonstationary time series and is called an autoregressive integrated moving
average process, of order (𝑝, 𝑑, 𝑞), or ARIMA(𝑝, 𝑑, 𝑞) process. The process is defined by

𝑤𝑡 = 𝜙1𝑤𝑡−1 +⋯𝜙𝑝𝑤𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 −⋯ − 𝜃𝑞𝑎𝑡−𝑞 (1.2.7)

with 𝑤𝑡 = ∇𝑑𝑧𝑡. Note that if we replace 𝑤𝑡, by 𝑧𝑡 − 𝜇, when 𝑑 = 0, the model (1.2.7) in-
cludes the stationarymixedmodel (1.2.4), as a special case, and also the pure autoregressive
model (1.2.2) and the pure moving average model (1.2.3).

The reason for inclusion of the word ‘‘integrated’’ (which should perhaps more ap-
propriately be ‘‘summed’’) in the ARIMA title is as follows. The relationship, which is
the inverse to (1.2.6), is 𝑧𝑡 = 𝑆𝑑𝑤𝑡, where𝑆 = ∇−1 = (1 − 𝐵)−1 = 1 + 𝐵 + 𝐵2 +⋯ is the
summation operator defined by

𝑆𝑤𝑡 =
∞∑
𝑗=0

𝑤𝑡−𝑗 = 𝑤𝑡 +𝑤𝑡−1 +𝑤𝑡−2 +⋯

Thus, the general ARIMA process may be generated by summing or ‘‘integrating’’ the
stationary ARMA process 𝑤𝑡𝑑 times. In Chapter 9, we describe how a special form of the
model (1.2.7) can be employed to represent seasonal time series. The chapter also includes
a discussion of regressionmodels where the errors are autocorrelated and follow an ARMA
process.

Chapter 10 includes material that may be considered more specialized and that either
supplements or extends the material presented in the earlier chapters. The chapter begins
with a discussion of unit root testing that may be used as a supplementary tool to determine
if a time series is nonstationary and can be made stationary through differencing. This
is followed by a discussion of conditionally heteroscedastic models such as the ARCH
and GARCHmodels. These models assume that the conditional variance of an observation
given its past vary over time and are useful formodeling time varying volatility in economic
and financial time series, in particular. In Chapter 10, we also discuss nonlinear time series
models and fractionally integrated long-memory processes that allow for certain more
general features in a time series than are possible using the linear ARIMA models.

1.2.2 Transfer Function Models

An important type of dynamic relationship between a continuous input and a continuous
output, for which many physical examples can be found, is that in which the deviations of
input 𝑋 and output 𝑌 , from appropriate mean values, are related by a linear differential
equation. In a similar way, for discrete data, in Chapter 11 we represent the transfer
relationship between an output 𝑌 and an input 𝑋, each measured at equispaced times, by
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the difference equation

(1 + 𝜉1∇ +⋯ + 𝜉𝑟∇𝑟)𝑌𝑡 = (𝜂0 + 𝜂1∇ +⋯ + 𝜂𝑠∇𝑠)𝑋𝑡−𝑏 (1.2.8)

in which the differential operator 𝐷 = 𝑑∕𝑑𝑡 is replaced by the difference operator ∇ =
1 − 𝐵. An expression of the form (1.2.8), containing only a few parameters (𝑟 ≤ 2, 𝑠 ≤ 2),
may often be used as an approximation to a dynamic relationship whose true nature is more
complex.

The linear model (1.2.8) may be written equivalently in terms of past values of the input
and output by substituting 𝐵 = 1 − ∇ in (1.2.8), that is,

(1 − 𝛿1𝐵 −⋯ − 𝛿𝑟𝐵
𝑟)𝑌𝑡 = (𝜔0 − 𝜔1𝐵 −⋯ − 𝜔𝑠𝐵

𝑠)𝑋𝑡−𝑏

= (𝜔0𝐵
𝑏 − 𝜔1𝐵

𝑏+1 −⋯ − 𝜔𝑠𝐵
𝑏+𝑠)𝑋𝑡 (1.2.9)

or

𝛿(𝐵)𝑌𝑡 = 𝜔(𝐵)𝐵𝑏𝑋𝑡 = Ω(𝐵)𝑋𝑡

Alternatively, we can say that the output 𝑌𝑡 and the input 𝑋𝑡 are linked by a linear filter

𝑌𝑡 = 𝑣0𝑋𝑡 + 𝑣1𝑋𝑡−1 + 𝑣2𝑋𝑡−2 +⋯

= 𝑣(𝐵)𝑋𝑡 (1.2.10)

for which the transfer function

𝑣(𝐵) = 𝑣0 + 𝑣1𝐵 + 𝑣2𝐵
2 +⋯ (1.2.11)

can be expressed as a ratio of two polynomial operators,

𝑣(𝐵) = Ω(𝐵)
𝛿(𝐵)

= 𝛿−1(𝐵)Ω(𝐵)

The linear filter (1.2.10) is said to be stable if the series (1.2.11) converges for |𝐵|
≤ 1, equivalently, if the coefficients {𝑣𝑗} are absolutely summable,

∑∞
𝑗=0 |𝑣𝑗 | < ∞. The

sequence of weights 𝑣0, 𝑣1, 𝑣2,…, which appear in the transfer function (1.2.11), is called
the impulse response function. We note that for the model (1.2.9), the first 𝑏 weights
𝑣0, 𝑣1,… , 𝑣𝑏−1, are zero. A hypothetical impulse response function for the system of
Figure 1.2 is shown in the center of that diagram.

Models with Superimposed Noise. We have seen that the problem of estimating an appro-
priate model, linking an output 𝑌𝑡 and an input 𝑋𝑡, is equivalent to estimating the transfer
function 𝑣(𝐵) = 𝛿−1(𝐵)Ω(𝐵), for example, specifying the parametric form of the transfer
function 𝑣(𝐵) and estimating its parameters. However, this problem is complicated in prac-
tice by the presence of noise 𝑁𝑡, which we assume corrupts the true relationship between
input and output according to

𝑌𝑡 = 𝑣(𝐵)𝑋𝑡 +𝑁𝑡

where 𝑁𝑡 and 𝑋𝑡 are independent processes. Suppose, as indicated by Figure 1.5, that the
noise 𝑁𝑡 can be described by a stationary or nonstationary stochastic model of the form
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FIGURE 1.5 Transfer function model for dynamic system with superimposed noise model.

(1.2.5) or (1.2.7), that is,

𝑁𝑡 = 𝜓(𝐵)𝑎𝑡 = 𝜑−1(𝐵)𝜃(𝐵)𝑎𝑡

Then the observed relationship between output and input will be

𝑌𝑡 = 𝑣(𝐵)𝑋𝑡 + 𝜓(𝐵)𝑎𝑡
= 𝛿−1(𝐵)Ω(𝐵)𝑋𝑡 + 𝜑−1(𝐵)𝜃(𝐵)𝑎𝑡 (1.2.12)

In practice, it is necessary to estimate the transfer function

𝜓(𝐵) = 𝜑−1(𝐵)𝜃(𝐵)

of the linear filter describing the noise, in addition to the transfer function 𝑣(𝐵) =
𝛿−1(𝐵)Ω(𝐵), which describes the dynamic relationship between the input and the
output. Methods for doing this are discussed in Chapter 12.

1.2.3 Models for Discrete Control Systems

As stated in Section 1.1.5, control is an attempt to compensate for disturbances that infect
a system. Some of these disturbances are measurable; others are not measurable and only
manifest themselves as unexplained deviations from the target of the characteristic to be
controlled. To illustrate the general principles involved, consider the special case where
unmeasured disturbances affect the output𝑌𝑡 of a system, and suppose that feedback control
is employed to bring the output as close as possible to the desired target value by adjustments
applied to an input variable𝑋𝑡. This is illustrated in Figure 1.6. Suppose that𝑁𝑡 represents
the effect at the output of various unidentified disturbances within the system, which in the
absence of control could cause the output to drift away from the desired target value or set
point 𝑇 . Then, despite adjustments that have been made to the process, an error

𝜀𝑡 = 𝑌𝑡 − 𝑇

= 𝑣(𝐵)𝑋𝑡 +𝑁𝑡 − 𝑇

will occur between the output and its target value 𝑇 . The object is to choose a control
equation so that the errors 𝜀 have the smallest possible mean square. The control equation
expresses the adjustment 𝑥𝑡 = 𝑋𝑡 −𝑋𝑡−1 to be taken at time 𝑡, as a function of the present
deviation 𝜀𝑡, previous deviations 𝜀𝑡−1, 𝜀𝑡−2,…, and previous adjustments 𝑥𝑡−1, 𝑥𝑡−2,….
The mechanism (human, electrical, pneumatic, or electronic) that carries out the control
action called for by the control equation is called the controller.
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FIGURE 1.6 Feedback control scheme to compensate an unmeasured disturbance 𝑁𝑡.

One procedure for designing a controller is equivalent to forecasting the deviation from
target which would occur if no control were applied, and then calculating the adjustment
that would be necessary to cancel out this deviation. It follows that the forecasting and
control problems are closely linked. In particular, if a minimummean square error forecast
is used, the controller will produce minimum mean square error control. To forecast the
deviation from target that could occur if no control were applied, it is necessary to build a
model

𝑁𝑡 = 𝜓(𝐵)𝑎𝑡 = 𝜑−1(𝐵)𝜃(𝐵)𝑎𝑡

for the disturbance. Calculation of the adjustment 𝑥𝑡 that needs to be applied to the input
at time 𝑡 to cancel out a predicted change at the output requires the building of a dynamic
model with transfer function

𝑣(𝐵) = 𝛿−1(𝐵)Ω(𝐵)

which links the input with output. The resulting adjustment 𝑥𝑡 will consist, in general, of a
linear aggregate of previous adjustments and current and previous control errors. Thus the
control equation will be of the form

𝑥𝑡 = 𝜁1𝑥𝑡−1 + 𝜁2𝑥𝑡−2 +⋯ + 𝜒0𝜀𝑡 + 𝜒1𝜀𝑡−1 + 𝜒2𝜀𝑡−2 +⋯ (1.2.13)

where 𝜁1, 𝜁2,…, 𝜒0, 𝜒1, 𝜒2,… are constants.
It turns out that, in practice, minimum mean square error control sometimes results in

unacceptably large adjustments 𝑥𝑡 to the input variable. Consequently, modified control
schemes are employed that restrict the amount of variation in the adjustments. Some of
these issues are discussed in Chapter 15.

1.3 BASIC IDEAS IN MODEL BUILDING

1.3.1 Parsimony

We have seen that the mathematical models we need to employ contain certain constants or
parameters whose values must be estimated from the data. It is important, in practice, that
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we employ the smallest possible number of parameters for adequate representations. The
central role played by this principle of parsimony (Tukey, 1961) in the use of parameters
will become clearer as we proceed. As a preliminary illustration, we consider the following
simple example.

Suppose we fitted a dynamic model (1.2.9) of the form

𝑌𝑡 = (𝜔0 − 𝜔1𝐵 − 𝜔2𝐵
2 −⋯ − 𝜔𝑠𝐵

𝑠)𝑋𝑡 (1.3.1)

when dealing with a system that was adequately represented by

(1 − 𝛿𝐵)𝑌𝑡 = 𝜔0𝑋𝑡 (1.3.2)

The model (1.3.2) contains only two parameters, 𝛿 and 𝜔0, but for 𝑠 sufficiently large, it
could be represented approximately by the model (1.3.1), through

𝑌𝑡 = (1 − 𝛿𝐵)−1𝜔0𝑋𝑡 = 𝜔0(1 + 𝛿𝐵 + 𝛿2𝐵2 +⋯)𝑋𝑡

with |𝛿| < 1. Because of experimental error, we could easily fail to recognize the rela-
tionship between the coefficients in the fitted equation. Thus, we might needlessly fit a
relationship like (1.3.1), containing 𝑠 + 1 parameters, where the much simpler form (1.3.2),
containing only two, would have been adequate. This could, for example, lead to unneces-
sarily poor estimation of the output 𝑌𝑡 for given values of the input𝑋𝑡,𝑋𝑡−1,….

Our objective, then, must be to obtain adequate but parsimonious models. Forecasting
and control procedures could be seriously deficient if these models were either inadequate
or unnecessarily prodigal in the use of parameters. Care and effort is needed in selecting the
model. The process of selection is necessarily iterative; that is, it is a process of evolution,
adaptation, or trial and error and is outlined briefly below.

1.3.2 Iterative Stages in the Selection of a Model

If the physical mechanism of a phenomenon were completely understood, it would be
possible theoretically to write down a mathematical expression that described it exactly.
This would result in a mechanistic or theoretical model. In most instances the complete
knowledge or large experimental resources needed to produce a mechanistic model are not
available, andwemust resort to an empirical model. Of course, the exactmechanisticmodel
and the exclusively empirical model represent extremes.Models actually employed usually
lie somewhere in between. In particular, we may use incomplete theoretical knowledge to
indicate a suitable class of mathematical functions, which will then be fitted empirically
(e.g., Box and Hunter, 1965); that is, the number of terms needed in the model and the
numerical values of the parameters are estimated from experimental data. This is the
approach that we adopt in this book. As we have indicated previously, the stochastic and
dynamic models we describe can be justified, at least partially, on theoretical grounds as
having the right general properties.

It is normally supposed that successive values of the time series under consideration or
of the input--output data are available for analysis. If possible, at least 50 and preferably
100 observations or more should be used. In those cases where a past history of 50 or more
observations is not available, one proceeds by using experience and past information to
derive a preliminary model. This model may be updated from time to time as more data
become available.
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FIGURE 1.7 Stages in the iterative approach to model building.

In fitting dynamic models, a theoretical analysis can sometimes tell us not only the
appropriate form for the model, but may also provide us with good estimates of the
numerical values of its parameters. These values can then be checked later by analysis of
data.

Figure 1.7 summarizes the iterative approach to model building for forecasting and
control, which is employed in this book.

1. From the interaction of theory and practice, a useful class of models for the purposes
at hand is considered.

2. Because this class is too extensive to be conveniently fitted directly to data, rough
methods for identifying subclasses of these models are developed. Such methods
of model identification employ data and knowledge of the system to suggest an
appropriate parsimonious subclass of models that may be tentatively entertained. In
addition, the identification process can be used to yield rough preliminary estimates
of the parameters in the model.

3. The tentatively entertained model is fitted to data and its parameters estimated. The
rough estimates obtained during the identification stage can now be used as starting
values in more refined iterative methods for estimating the parameters, such as the
nonlinear least squares and maximum likelihood methods.

4. Diagnostic checks are applied with the goal of uncovering possible lack of fit and
diagnosing the cause. If no lack of fit is indicated, the model is ready to use. If any
inadequacy is found, the iterative cycle of identification, estimation, and diagnostic
checking is repeated until a suitable representation is found.
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Identification, estimation, and diagnostic checking are discussed for univariate time
series models in Chapters 6, 7, 8, and 9, for transfer function models in Chapter 12, for
intervention models in Chapter 13, and for multivariate time series models in Chapter 14.

Themodel building procedureswill be illustrated using actual time series with numerical
calculations performed using the R software and other tools. A brief description of the R
software is included in Appendix A1.1 along with references for further study. Exercises
at the end of the chapters also make use of the software.

APPENDIX A1.1 USE OF THE R SOFTWARE

The R software for statistical computing and graphics is a common choice for data analysis
and development of new statistical methods. R is available as Free Software under the terms
of the Free Software Foundations’s GNU General Public License in source code form. It
compiles and runs on all common operating systems including Windows, MacOS X, and
Linux. The main website for the R project is http://www.r-project.org.

The R environment consists of a base system, which is developed and maintained by the
R Core Team, and a large set of user contributed packages. The base system provides the
source code that implements the basic functionality of R. It also provides a set of standard
packages that include commonly used probability distributions, graphical tools, classic
datasets from the literature, and a set of statistical methods that include regression analysis
and time series analysis. In addition to these base packages, there are now thousands of
contributed packages developed by researchers around the world. Packages useful for time
seriesmodeling and forecasting include the stats package that is part of the base distribution
and several contributed packages that are available for download. These include the TSA
package by K-S Chan and Brian Ripley, the astsa package by David Stoffer, theRmetrics
packages fGarch and fUnitRoots for financial time series analysis by Diethelm Wuertz
and associates, and the MTS package for multivariate time series analysis by Ruey Tsay.
We use many functions from these packages in this book. We also use datasets available
for download from the R datasets package, and the TSA and astsa packages.

Both the base system and the contributed packages are distributed through a network
of servers called the Comprehensive R Archive Network (CRAN) that can be accessed
from the official R website. Contributed packages that are not part of the base distribution
can be installed directly from the R prompt ‘‘>’’ using the command install.package().
Under the Windows system, the installation can also be done from a drop-down list. The
command will prompt the user to select a CRAN Mirror, after which a list of packages
available for installation appears. To use a specific package, it also needs to be loaded into
the system at the start of each session. For example, the TSA package can be loaded using
the commands library(TSA) or require(TSA). The command data() will list all datasets
available in the loaded packages. The command data(airquality) will load the dataset
airquality from the R datasets package into memory. Data stored in a text file can be read
into R using the command is read.table. For a .csv file, the command is read.csv. To get
help on specific functions, e.g. the arima function which fits an ARIMA model to a time
series, type help(arima) or ?arima.

R is object-oriented software and allows the user to create many objects. For example,
the command ts() will create a time series object. This has advantages for plotting the time
series and for certain other applications. However, it is not necessary to create a time series
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object for many of the applications discussed in this book. The structure of the data in R
can be examined using commands such as class(), str(), and summary().

The data used for illustration in this book, as well as in some of the exercises, include
a set of time series listed in Part Five of the book. These series are also available at
http://pages.cs.wisc.edu/ reinsel/bjr-data/index.html. At least three of the series are also
included in the R datasets package and can be accessed using the data() command
described above. Some of the exercises require the use of R and it will be assumed
that the reader is already familiar with the basics of R, which can be obtained by working
through relevant chapters of texts such as Crawley (2007) andAdler (2010). Comprehensive
documentation in the form of manuals, contributed documents, online help pages, and FAQ
sheets is also available on the Rwebsite. SinceR builds on the S language, a useful reference
book is also Venables and Ripley (2002).

EXERCISES

1.1. The dataset airquality in the R datasets package includes information on daily air
quality measurements in New York, May to September 1973. The variables included
aremean ozone levels at Roosevelt Island, solar radiation at Central Park, averagewind
speed at LaGuardia Airport, and maximum daily temperature at LaGuardia Airport;
see help(airquality) for details.
(a) Load the dataset into R.

(b) Investigate the structure of the dataset.

(c) Plot each of the four series mentioned above using the plot() command in R; see
help(plot) for details and examples.

(d) Comment on the behavior of the four series. Do you see any issues that may
require special attention in developing a time series model for each of the four
series.

1.2. Monthly totals of international airline passengers (in thousands of passengers), January
1949--December 1960, are available as Series G in Part Five of this book. The data
are also available as series AirPassengers in the R datasets package.

(a) Load the dataset into R and examine the structure of the data.

(b) Plot the data using R and describe the behavior of the series.

(c) Perform a log transformation of the data and plot the resulting series. Compare
the behavior of the original and log-transformed series. Do you see an advantage
in using a log transformation for modeling purposes?

1.3. Download a time series of your choosing from the Internet. Note that financial and
economic time series are available from sources such as Google Finance and the Fed-
eral Reserve Economic Data (FRED) of Federal Reserve Bank in St. Louis, Missouri,
while climate data is available from from NOAA’s National Climatic Data Center
(NCDC).

(a) Store the data in a text file or a .csv file and read the data into R.

(b) Examine the properties of your series using plots or other appropriate tools.

(c) Does your time series appear to be stationary? If not, would differencing and/or
some other transformation make the series stationary?

http://pages.cs.wisc.edu/reinsel/bjr-data/index.html
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PART ONE

STOCHASTIC MODELS AND THEIR
FORECASTING

In the first part of this book, which includes Chapters 2, 3, 4, and 5, a valuable class of
stochastic models is described and its use in forecasting discussed.

A model that describes the probability structure of a sequence of observations is called
a stochastic process. A time series of 𝑁 successive observations 𝐳′ = (𝑧1, 𝑧2,… , 𝑧𝑁 ) is
regarded as a sample realization, from an infinite population of such samples, which could
have been generated by the process. A major objective of statistical investigation is to infer
properties of the population from those of the sample. For example, to make a forecast is to
infer the probability distributionof a future observation from the population, given a sample
𝐳 of past values. To do this, we needways of describing stochastic processes and time series,
and we also need classes of stochastic models that are capable of describing practically
occurring situations. An important class of stochastic processes discussed in Chapter 2 is the
stationary processes. They are assumed to be in a specific form of statistical equilibrium,
and in particular, vary over time in a stable manner about a fixed mean. Useful devices
for describing the behavior of stationary processes are the autocorrelation function and the
spectrum.

Particular stationary stochastic processes of value in modeling time series are the autore-
gressive (AR), moving average (MA), andmixed autoregressive--moving average (ARMA)
processes. The properties of these processes, in particular their autocorrelation structures,
are described in Chapter 3.

Becausemany practically occurring time series (e.g., stock prices and sales figures) have
nonstationary characteristics, the stationary models introduced in Chapter 3 are developed
further in Chapter 4 to give a useful class of nonstationary processes called autoregressive
integrated moving-average (ARIMA) models. The use of all these models in forecasting
time series is discussed in Chapter 5 and is illustrated with examples.

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
○c 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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2
AUTOCORRELATION FUNCTION AND
SPECTRUM OF STATIONARY
PROCESSES

A central feature in the development of time series models is an assumption of some form
of statistical equilibrium. A particularly useful assumption of this kind (but an unduly
restrictive one, as we will see later) is that of stationarity. Usually, a stationary time
series can be usefully described by its mean, variance, and autocorrelation function or
equivalently by itsmean, variance, and spectral density function. In this chapter,we consider
the properties of these functions and, in particular, the properties of the autocorrelation
function, which will be used extensively in developing models for actual time series.

2.1 AUTOCORRELATION PROPERTIES OF STATIONARY MODELS

2.1.1 Time Series and Stochastic Processes

Time Series. A time series is a set of observations generated sequentially over time.
If the set is continuous, the time series is said to be continuous. If the set is discrete,
the time series is said to be discrete. Thus, the observations from a discrete time series
made at times 𝜏1, 𝜏2,… , 𝜏𝑡,… , 𝜏𝑁 may be denoted by 𝑧(𝜏1), 𝑧(𝜏2),… , 𝑧(𝜏𝑡),… , 𝑧(𝜏𝑁). In
this book, we consider only discrete time series where observations are made at a fixed
interval ℎ. When we have 𝑁 successive values of such a series available for analysis,
we write 𝑧1, 𝑧2,… , 𝑧𝑡,… , 𝑧𝑁 to denote observations made at equidistant time intervals
𝜏0 + ℎ, 𝜏0 + 2ℎ,… , 𝜏0 + 𝑡ℎ,… , 𝜏0 +𝑁ℎ. For many purposes, the values of 𝜏0 and ℎ are
unimportant, but if the observation times need to be defined exactly, these two values can
be specified. If we adopt 𝜏0 as the origin and ℎ as the unit of time, we can regard 𝑧𝑡 as the
observation at time 𝑡.

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
○c 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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FIGURE 2.1 Yields of 70 consecutive batches from a chemical process.

Discrete time series may arise in two ways:

1. By sampling a continuous time series: For example, in the situation shown in
Figure 1.2, where the continuous input and output from a gas furnace was sampled at
intervals of 9 seconds.

2. By accumulating a variable over a period of time: Examples are rainfall, which is
usually accumulated over a period such as a day or a month, and the yield from a
batch process, which is accumulated over the batch time. For example, Figure 2.1
shows a time series consisting of the yields from70 consecutive batches of a chemical
process. The series shown here is included as Series F in Part Five of this book.

Deterministic and Statistical Time Series. If future values of a time series are exactly
determined by some mathematical function such as

𝑧𝑡 = cos(2𝜋𝑓𝑡)

the time series is said to be deterministic. If future values can be described only in terms of a
probability distribution, the time series is said to be nondeterministic or simply a statistical
time series. The batch data of Figure 2.1 provide an example of a statistical time series.
Thus, although there is a well-defined high--low pattern in the series, it is impossible to
forecast the exact yield for the next batch. It is with such statistical time series that we are
concerned in this book.

Stochastic Processes. A statistical phenomenon that evolves in time according to proba-
bilistic laws is called a stochastic process. We will often refer to it simply as a process,
omitting the word ‘‘stochastic.’’ The time series to be analyzed may then be thought of as
a particular realization, produced by the underlying probability mechanism, of the system
under study. In other words, in analyzing a time series we regard it as a realization of a
stochastic process.
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FIGURE 2.2 Observed time series (thick line), with other time series representing realizations of
the same stochastic process.

For example, to analyze the batch data in Figure 2.1, we can imagine other sets of
observations (other realizations of the underlying stochastic process), which might have
been generated by the same chemical system, in the same𝑁 = 70 batches. Thus, Figure 2.2
shows the yields from batches 𝑡 = 21 to 𝑡 = 30 (thick line), together with other time series
thatmight have been obtained from the population of time series defined by the underlying
stochastic process. It follows that we can regard the observation 𝑧𝑡 at a given time 𝑡, say
𝑡 = 25, as a realization of a random variable 𝑧𝑡 with probability density function 𝑝(𝑧𝑡).
Similarly, the observations at any two times, say 𝑡1 = 25 and 𝑡2 = 27, may be regarded
as realizations of two random variables 𝑧𝑡1 and 𝑧𝑡2 with joint probability density function
𝑝(𝑧𝑡1 , 𝑧𝑡2). For illustration Figure 2.3 shows contours of constant density for such a joint
distribution, together with the marginal distribution at time 𝑡1. In general, the observations
making up an equispaced time series can be described by an 𝑁-dimensional random
variable (𝑧1, 𝑧2,… , 𝑧𝑁 ) with probability distribution 𝑝(𝑧1, 𝑧2,… , 𝑧𝑁 ).

FIGURE 2.3 Contours of constant density of a bivariate probability distribution describing a
stochastic process at two times 𝑡1, 𝑡2, together with the marginal distribution at time 𝑡1.
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2.1.2 Stationary Stochastic Processes

A very special class of stochastic processes, called stationary processes, is based on the
assumption that the process is in a particular state of statistical equilibrium. A stochastic
process is said to be strictly stationary if its properties are unaffected by a change of
time origin, that is, if the joint probability distribution associated with 𝑚 observations
𝑧𝑡1
, 𝑧𝑡2

,… , 𝑧𝑡𝑚
, made at any set of times 𝑡1, 𝑡2,… , 𝑡𝑚, is the same as that associated with

𝑚 observations 𝑧𝑡1+𝑘, 𝑧𝑡2+𝑘,… , 𝑧𝑡𝑚+𝑘, made at times 𝑡1 + 𝑘, 𝑡2 + 𝑘,… , 𝑡𝑚 + 𝑘. Thus, for a
discrete process to be strictly stationary, the joint distribution of any set of observations
must be unaffected by shifting all the times of observation forward or backward by any
integer amount 𝑘.

Mean and Variance of a Stationary Process. When 𝑚 = 1, the stationarity assumption
implies that the probability distribution 𝑝(𝑧𝑡) is the same for all times 𝑡 and may be written
as 𝑝(𝑧). Hence, the stochastic process has a constant mean

𝜇 = 𝐸[𝑧𝑡] = ∫

∞

−∞
𝑧𝑝(𝑧)𝑑𝑧 (2.1.1)

which defines the level about which it fluctuates, and a constant variance

𝜎2
𝑧
= 𝐸[(𝑧𝑡 − 𝜇)2] =

∫

∞

−∞
(𝑧 − 𝜇)2𝑝(𝑧)𝑑𝑧 (2.1.2)

which measures its spread about this level. Since the probability distribution 𝑝(𝑧) is the
same for all times 𝑡, its shape can be inferred by forming the histogram of the observations
𝑧1, 𝑧2,… , 𝑧𝑁 , making up the observed time series. In addition, the mean 𝜇 of the stochastic
process can be estimated by the sample mean

�̄� = 1
𝑁

𝑁∑
𝑡=1
𝑧𝑡 (2.1.3)

of the time series, and the variance 𝜎2
𝑧
of the stochastic process can be estimated by the

sample variance

�̂�2
𝑧
= 1
𝑁

𝑁∑
𝑡=1

(𝑧𝑡 − �̄�)2 (2.1.4)

of the time series.

Autocovariance and Autocorrelation Coefficients. The stationarity assumption also im-
plies that the joint probability distribution 𝑝(𝑧𝑡1 , 𝑧𝑡2 ) is the same for all times 𝑡1, 𝑡2, which
are a constant interval apart. In particular, it follows that the covariance between values 𝑧𝑡
and 𝑧𝑡+𝑘, separated by 𝑘 intervals of time, or by lag 𝑘, must be the same for all 𝑡 under
the stationarity assumption. This covariance is called the autocovariance at lag 𝑘 and is
defined by

𝛾𝑘 = cov[𝑧𝑡, 𝑧𝑡+𝑘] = 𝐸[(𝑧𝑡 − 𝜇)(𝑧𝑡+𝑘 − 𝜇)] (2.1.5)
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FIGURE 2.4 Scatter diagrams at lags (a) 𝑘 = 1 and (b) 𝑘 = 2 for the batch data of Figure 2.1.

Similarly, the autocorrelation at lag 𝑘 is

𝜌𝑘 =
𝐸[(𝑧𝑡 − 𝜇)(𝑧𝑡+𝑘 − 𝜇)]√
𝐸[(𝑧𝑡 − 𝜇)2]𝐸[(𝑧𝑡+𝑘 − 𝜇)2]

=
𝐸[(𝑧𝑡 − 𝜇)(𝑧𝑡+𝑘 − 𝜇)]

𝜎2
𝑧

since, for a stationary process, the variance 𝜎2
𝑧
= 𝛾0 is the same at time 𝑡 + 𝑘 as at time 𝑡.

Thus, the autocorrelation at lag 𝑘, that is, the correlation between 𝑧𝑡 and 𝑧𝑡+𝑘, is

𝜌𝑘 =
𝛾𝑘

𝛾0
(2.1.6)

which implies, in particular, that 𝜌0 = 1.
It also follows for a stationary process that the nature of the joint probability distribution

𝑝(𝑧𝑡, 𝑧𝑡+𝑘) of values separated by 𝑘 intervals of time can be inferred by plotting a scatter
diagram using pairs of values (𝑧𝑡, 𝑧𝑡+𝑘) of the time series, separated by a constant interval or
lag 𝑘. For the batch data displayed in Figure 2.1, Figure 2.4(a) shows a scatter diagram for
lag 𝑘 = 1, obtained by plotting 𝑧𝑡+1 versus 𝑧𝑡, while Figure 2.4(b) shows a scatter diagram
for lag 𝑘 = 2, obtained by plotting 𝑧𝑡+2 versus 𝑧𝑡. We see that neighboring values of the
time series are correlated. The correlation between 𝑧𝑡 and 𝑧𝑡+1 appears to be negative and
the correlation between 𝑧𝑡 and 𝑧𝑡+2 positive. Figure 2.4 was generated in R as follows:

> Yield = read.table("SeriesF.txt",header=TRUE)
> y1=Yield[2:70]
> x1=Yield[1:69]
> y2=Yield[3:70]
> x2=Yield[1:68]
> win.graph(width=5,height=2.7,pointsize=5)
> par(mfrow=c(1,2)) % Places two graphs side-by-side
> plot(y=y1,x=x1,ylab=expression(z[t+1]),xlab=expression(z[t]),
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main="(a): k=1",type=’p’)
> abline(lsfit(x1,y1))
> plot(y=y2,x=x2,ylab=expression(z[t+2]),xlab=expression(z[t]),

main="(b): k=2",type=’p’)
> abline(lsfit(x2,y2))

2.1.3 Positive Definiteness and the Autocovariance Matrix

The covariancematrix associated with a stationary process for observations (𝑧1, 𝑧2,… , 𝑧𝑛)
made at 𝑛 successive times is

𝚪𝑛 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝛾0 𝛾1 𝛾2 ⋯ 𝛾𝑛−1
𝛾1 𝛾0 𝛾1 ⋯ 𝛾𝑛−2
𝛾2 𝛾1 𝛾0 ⋯ 𝛾𝑛−3
⋮ ⋮ ⋮ ⋯ ⋮

𝛾𝑛−1 𝛾𝑛−2 𝛾𝑛−3 ⋯ 𝛾0

⎤⎥⎥⎥⎥⎥⎥⎦

= 𝜎2
𝑧

⎡⎢⎢⎢⎢⎢⎢⎣

1 𝜌1 𝜌2 ⋯ 𝜌𝑛−1
𝜌1 1 𝜌1 ⋯ 𝜌𝑛−2
𝜌2 𝜌1 1 ⋯ 𝜌𝑛−3
⋮ ⋮ ⋮ ⋯ ⋮

𝜌𝑛−1 𝜌𝑛−2 𝜌𝑛−3 ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎦

= 𝜎2
𝑧
P𝑛 (2.1.7)

A covariance matrix 𝚪𝑛 of this form, which is symmetric with constant elements on any
diagonal, is called an autocovariance matrix, and the corresponding correlation matrix
P𝑛 is called an autocorrelation matrix. Now, consider any linear function of the random
variables 𝑧𝑡, 𝑧𝑡−1,… , 𝑧𝑡−𝑛+1:

𝐿𝑡 = 𝑙1𝑧𝑡 + 𝑙2𝑧𝑡−1 +⋯ + 𝑙𝑛𝑧𝑡−𝑛+1 (2.1.8)

Since cov[𝑧𝑖, 𝑧𝑗] = 𝛾|𝑗−𝑖| for a stationary process, the variance of 𝐿𝑡 is

var[𝐿𝑡] =
𝑛∑
𝑖=1

𝑛∑
𝑗=1
𝑙𝑖𝑙𝑗 𝛾|𝑗−𝑖|

which is necessarily greater than zero if the 𝑙’s are not all zero. It follows that both
the autocovariance matrix and the autocorrelation matrix are positive definite for any
stationary process. Correspondingly, it is seen that both the autocovariance function {𝛾𝑘}
and the autocorrelation function {𝜌𝑘}, viewed as functions of the lag 𝑘, are positive-definite
functions in the sense that

∑𝑛

𝑖=1
∑𝑛

𝑗=1 𝑙𝑖𝑙𝑗 𝛾|𝑗−𝑖| > 0 for every positive integer 𝑛 and all
constants 𝑙1,… , 𝑙𝑛.

Conditions Satisfied by the Autocorrelations of a Stationary Process. The positive defi-
niteness of the autocorrelation matrix (2.1.7) implies that its determinant and all principal
minors are greater than zero. In particular, for 𝑛 = 2,

|||||
1 𝜌1
𝜌1 1

|||||
> 0
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so that

1 − 𝜌21 > 0

and hence

−1 < 𝜌1 < 1

Similarly, for 𝑛 = 3, we must have

|||||
1 𝜌1
𝜌1 1

|||||
> 0

|||||
1 𝜌2
𝜌2 1

|||||
> 0

|||||||

1 𝜌1 𝜌2
𝜌1 1 𝜌1
𝜌2 𝜌1 1

|||||||
> 0

which implies that

− 1 < 𝜌1 < 1
− 1 < 𝜌2 < 1

− 1 <
𝜌2 − 𝜌21
1 − 𝜌21

< 1

and so on. Since P𝑛 must be positive definite for all values of 𝑛, the autocorrelations of
a stationary process must satisfy a very large number of conditions. As will be shown
in Section 2.2.3, all of these conditions can be brought together in the definition of the
spectrum.

Stationarity of Linear Functions. It follows from the definition of stationarity that the
process 𝐿𝑡, obtained by performing the linear operation (2.1.8) on a stationary process 𝑧𝑡
for fixed 𝑛 and fixed coefficients 𝑙1,… , 𝑙𝑛, is also stationary. The autocovariance of the
process 𝐿𝑡, at a general lag 𝑘 ≥ 0, is given by

cov[𝐿𝑡, 𝐿𝑡−𝑘] =
𝑛∑
𝑖=1

𝑛∑
𝑗=1
𝑙𝑖𝑙𝑗cov[𝑧𝑡+1−𝑖, 𝑧𝑡+1−𝑘−𝑗] =

𝑛∑
𝑖=1

𝑛∑
𝑗=1
𝑙𝑖𝑙𝑗𝛾|𝑘+𝑗−𝑖|

In particular, the first difference ∇𝑧𝑡 = 𝑧𝑡 − 𝑧𝑡−1 and higher differences ∇𝑑𝑧𝑡 are station-
ary. This result is of particular importance to the discussion of nonstationary time series
presented in Chapter 4.

The result also extends to infinite linear operations or infinite linear (time-invariant)
filters applied to a stationary process {𝑧𝑡}, under a condition of absolute summability. That
is, if {𝑧𝑡} is a stationary process and {𝑦𝑡} is defined by the infinite linear (time-invariant)
filter

𝑦𝑡 = 𝜓0𝑧𝑡 + 𝜓1𝑧𝑡−1 + 𝜓2𝑧𝑡−2 +⋯ =
∞∑
𝑖=0
𝜓𝑖𝑧𝑡−𝑖 (2.1.9)
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with fixed coefficients {𝜓𝑖} such that
∑∞
𝑖=0 |𝜓𝑖| < ∞, then {𝑦𝑡} is also stationary. The

absolute summability condition,
∑∞
𝑖=0 |𝜓𝑖| < ∞, guarantees that the variables 𝑦𝑡 in (2.1.9)

are well-defined finite random variables (with probability one) and represent the limit of
the sequence

∑𝑛

𝑖=0 𝜓𝑖𝑧𝑡−𝑖 as 𝑛 → ∞. The variance of 𝑦𝑡 in (2.1.9) (taking 𝐸[𝑧𝑡] = 0 for
convenience) is

var[𝑦𝑡] = 𝐸[𝑦2𝑡 ] =
∞∑
𝑖=0

∞∑
𝑗=0
𝜓𝑖𝜓𝑗𝛾|𝑗−𝑖|

This variance is finite since |∑∞
𝑖=0

∑∞
𝑗=0 𝜓𝑖𝜓𝑗𝛾|𝑗−𝑖|| ≤

∑∞
𝑖=0

∑∞
𝑗=0 |𝜓𝑖||𝜓𝑗||𝛾|𝑗−𝑖|| ≤

𝛾0
{∑∞

𝑖=0 |𝜓𝑖|
}2
< ∞. The autocovariance of 𝑦𝑡 at any lag 𝑘 ≥ 0 is then

cov[𝑦𝑡, 𝑦𝑡−𝑘] = lim
𝑛→∞

𝑛∑
𝑖=0

𝑛∑
𝑗=0
𝜓𝑖𝜓𝑗𝛾|𝑘+𝑗−𝑖| =

∞∑
𝑖=0

∞∑
𝑗=0
𝜓𝑖𝜓𝑗𝛾|𝑘+𝑗−𝑖| (2.1.10)

which converges by the dominated convergence result.

Gaussian Processes. If the probability distribution of observations associated with any set
of times is a multivariate normal distribution, the process is called a normal or Gaussian
process. Since the multivariate normal distribution is fully characterized by its moments
of first and second order, the existence of a fixed mean 𝜇 and an autocovariance matrix
𝚪𝑛 of the form (2.1.7) for all 𝑛 would be sufficient to ensure the stationarity of a Gaussian
process.

Weak Stationarity. We have seen that for a process to be strictly stationary, the whole
probability structure must depend only on time differences. A less restrictive requirement,
called weak stationarity of order 𝑓 , is that the moments up to some order 𝑓 depend only
on time differences. For example, the existence of a fixed mean 𝜇 and an autocovariance
matrix 𝚪𝑛 of the form (2.1.7) is sufficient to ensure stationarity up to second order. That
is, a process {𝑧𝑡} is weakly stationary (of order 2), or second-order stationary, if the mean
𝐸[𝑧𝑡] = 𝜇 is a fixed constant for all 𝑡 and the autocovariances cov[𝑧𝑡, 𝑧𝑡+𝑘] = 𝛾𝑘 depend
only on the time difference or time lag 𝑘 for all 𝑡. Thus, second-order stationarity and an
assumption of normality are sufficient to produce strict stationarity.

White Noise Process. The most fundamental example of a stationary process is a sequence
of independent and identically distributed random variables, denoted as 𝑎1,… , 𝑎𝑡,…,
which we also assume to havemean zero and variance 𝜎2

𝑎
. This process is strictly stationary

and is referred to as a white noise process. Because independence implies that the 𝑎𝑡 are
uncorrelated, its autocovariance function is simply

𝛾𝑘 = 𝐸[𝑎𝑡𝑎𝑡+𝑘] =

{
𝜎2
𝑎
𝑘 = 0

0 𝑘 ≠ 0

If one concentrates only on the second-order properties, then a sequence of random vari-
ables 𝑎𝑡, which are uncorrelated, have mean zero, and common variance 𝜎2

𝑎
has the same

autocovariance function 𝛾𝑘 as above, and is weakly (second-order) stationary. Such a pro-
cess may also be referred to as a white noise process (in the weak sense), when the focus
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is only on the second-order properties. Although the white noise process has very basic
properties, this process plays an important role in the building of processes with muchmore
interesting and more complicated properties through linear filtering operations as in (2.1.8)
and (2.1.9).

2.1.4 Autocovariance and Autocorrelation Functions

It was seen in Section 2.1.2 that the autocovariance coefficient 𝛾𝑘, at lag 𝑘, measures the
covariance between two values 𝑧𝑡 and 𝑧𝑡+𝑘 a distance 𝑘 apart. The plot of 𝛾𝑘 versus lag 𝑘
is called the autocovariance function {𝛾𝑘} of the stochastic process. Similarly, the plot of
the autocorrelation coefficient 𝜌𝑘 as a function of the lag 𝑘 is called the autocorrelation
function {𝜌𝑘} of the process. Note that the autocorrelation function is dimensionless, that
is, independent of the scale of measurement of the time series. Since 𝛾𝑘 = 𝜌𝑘𝜎2𝑧 , knowledge
of the autocorrelation function {𝜌𝑘} and the variance 𝜎2𝑧 is equivalent to knowledge of the
autocovariance function {𝛾𝑘}.

The autocorrelation function, shown in Figure 2.5 as a plot of the diagonals of the
autocorrelation matrix, reveals how the correlation between any two values of the se-
ries changes as their separation changes. Since 𝜌𝑘 = 𝜌−𝑘, the autocorrelation function is

FIGURE 2.5 Autocorrelation matrix and corresponding autocorrelation function of a stationary
process.
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FIGURE 2.6 Positive half of the autocorrelation function of Figure 2.5.

necessarily symmetric about zero, and in practice it is only necessary to plot the positive
half of this function. Figure 2.6 shows the positive half of the autocorrelation function
given in Figure 2.5. When we speak of the autocorrelation function, we typically mean
the positive half. In the past, the autocorrelation function has sometimes been called the
correlogram.

From what has previously been shown, a normal stationary process 𝑧𝑡 is completely
characterized by its mean 𝜇 and its autocovariance function {𝛾𝑘}, or equivalently by its
mean 𝜇, variance 𝜎2

𝑧
, and autocorrelation function {𝜌𝑘}.

2.1.5 Estimation of Autocovariance and Autocorrelation Functions

Up to now,we have only considered the theoretical autocorrelation function that describes a
stochastic process. In practice, we have a finite time series 𝑧1, 𝑧2,… , 𝑧𝑁 of𝑁 observations,
fromwhich we can only obtain estimates of the mean 𝜇 and the autocorrelations. The mean
𝜇 = 𝐸[𝑧𝑡] is estimated as in (2.1.3) by the sample mean �̄� =

∑𝑁

𝑡=1 𝑧𝑡∕𝑁 . It is easy to see
that 𝐸[�̄�] = 𝜇, so that �̄� is an unbiased estimator of 𝜇. As a measure of precision of �̄� as an
estimator of 𝜇, we find that

var[�̄�] = 1
𝑁2

𝑁∑
𝑡=1

𝑁∑
𝑠=1
𝛾𝑡−𝑠 =

𝛾0
𝑁

[
1 + 2

𝑁−1∑
𝑘=1

(
1 − 𝑘

𝑁

)
𝜌𝑘

]

A ‘‘large-sample’’ approximation for this variance is given by

var[�̄�] =
( 𝛾0
𝑁

)(
1 + 2

∞∑
𝑘=1
𝜌𝑘

)

in the sense that 𝑁var[�̄�] → 𝛾0
(
1 + 2

∑∞
𝑘=1 𝜌𝑘

)
as 𝑁 → ∞, assuming that

∑∞
𝑘=−∞ |𝜌𝑘|

< ∞. Notice that the first factor in var[�̄�], 𝛾0∕𝑁 , is the familiar expression for the variance
of �̄� obtained from independent random samples of size 𝑁 , but the presence of autocorre-
lation among the 𝑧𝑡 values can substantially affect the precision of �̄�. For example, in the
case where a stationary process has autocorrelations 𝜌𝑘 = 𝜙|𝑘|, |𝜙| < 1, the large-sample
approximation for the variance of �̄� becomes var[�̄�] = (𝛾0∕𝑁)[(1 + 𝜙)∕(1 − 𝜙)], and the
second factor can obviously differ substantially from 1.

A number of estimates of the autocorrelation function have been suggested in the
literature, and their properties are discussed by Jenkins and Watts (1968), among others. It
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TABLE 2.1 Estimated Autocorrelation Function of Batch Data

𝑘 𝑟𝑘 𝑘 𝑟𝑘 𝑘 𝑟𝑘

1 −0.39 6 −0.05 11 0.11
2 0.30 7 0.04 12 −0.07
3 −0.17 8 −0.04 13 0.15
4 0.07 9 0.00 14 0.04
5 −0.10 10 0.01 15 −0.01

is concluded that the most satisfactory estimate of the 𝑘th lag autocorrelation 𝜌𝑘 is

𝑟𝑘 = �̂�𝑘 =
𝑐𝑘

𝑐0
(2.1.11)

where

𝑐𝑘 = �̂�𝑘 =
1
𝑁

𝑁−𝑘∑
𝑡=1

(𝑧𝑡 − �̄�)(𝑧𝑡+𝑘 − �̄�) 𝑘 = 0, 1, 2,… , 𝐾 (2.1.12)

is the estimate of the autocovariance 𝛾𝑘 and �̄� is the sample mean of the time series. The
values 𝑟𝑘 in (2.1.11) may be called the sample autocorrelation function. To obtain a useful
estimate of the autocorrelation function in practice, we would typically need at least 50
observations, and the estimated autocorrelations 𝑟𝑘 would be calculated for 𝑘 = 0, 1,… , 𝐾 ,
where 𝐾 was not larger than, say,𝑁∕4.

The estimated autocorrelation function 𝑟𝑘 of the batch data in Figure 2.1 is given
in Table 2.1 and plotted in Figure 2.7. The autocorrelation function is characterized by
correlations that alternate in sign and tend to damp out with increasing lag. Autocorrelation
functions of this kind are not uncommon in production data and can arise because of
‘‘carryover’’ effects. In this particular example, a high-yielding batch tended to produce
tarry residues, which were not entirely removed from the vessel and adversely affected the
yield of the next batch.

Figure 2.7 and the autocorrelations shown in Table 2.1 were generated in R as follows:

> Yield = read.table("SeriesF.txt",header=TRUE)
> ACF = acf(Yield,15)
> ACF % retrieves the values shown in Table 2.1

2.1.6 Standard Errors of Autocorrelation Estimates

To identify a model for a time series, using methods to be described in Chapter 6, it is
useful to have a rough check on whether 𝜌𝑘 is effectively zero beyond a certain lag. For this
purpose, we can use the following expression for the approximate variance of the estimated
autocorrelation coefficient of a stationary normal process given by Bartlett (1946):

var[𝑟𝑘] ≃
1
𝑁

∞∑
𝑣=−∞

(𝜌2
𝑣
+ 𝜌𝑣+𝑘𝜌𝑣−𝑘 − 4𝜌𝑘𝜌𝑣𝜌𝑣−𝑘 + 2𝜌2

𝑣
𝜌2
𝑘
) (2.1.13)
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FIGURE 2.7 Estimated autocorrelation function of batch data.

For example, if 𝜌𝑘 = 𝜙|𝑘| (−1 < 𝜙 < 1), that is, the autocorrelation function damps out
exponentially, (2.1.13) gives

var[𝑟𝑘] ≃
1
𝑁

[
(1 + 𝜙2)(1 − 𝜙2𝑘)

1 − 𝜙2
− 2𝑘𝜙2𝑘

]
(2.1.14)

and in particular

var[𝑟1] ≃
1
𝑁

(1 − 𝜙2)

For any process for which all the autocorrelations 𝜌𝑣 are zero for 𝑣 > 𝑞, all terms except
the first appearing in the right-hand side of (2.1.13) are zero when 𝑘 > 𝑞. Thus, for the
variance of the estimated autocorrelation 𝑟𝑘, at lags 𝑘 greater than some value 𝑞 beyond
which the theoretical autocorrelation functionmay be deemed to have ‘‘died out’’, Bartlett’s
approximation gives

var[𝑟𝑘] ≃
1
𝑁

(
1 + 2

𝑞∑
𝑣=1
𝜌2
𝑣

)
𝑘 > 𝑞 (2.1.15)

To use this result in practice, the estimated autocorrelations 𝑟𝑘 (𝑘 = 1, 2,… , 𝑞) are
substituted for the theoretical autocorrelations 𝜌𝑘, and when this is done, we refer to the
square root of (2.1.15) as the large-lag standard error. On the assumption that the 𝜌𝑘 are
all zero beyond some lag 𝑘 = 𝑞, the large-lag standard error approximates the standard
deviation of 𝑟𝑘 for suitably large lags (𝑘 > 𝑞). We will show in Chapter 3 that the moving
average (MA) process in (1.2.3) has a correlation structure such that the approximation
(2.1.15) applies to this process.

Similar expressions for the approximate covariance between the estimated autocorrela-
tions 𝑟𝑘 and 𝑟𝑘+𝑠 at two different lags 𝑘 and 𝑘 + 𝑠 were also given by Bartlett (1946). In
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particular, the large-lag approximation reduces to

cov[𝑟𝑘, 𝑟𝑘+𝑠] ≃
1
𝑁

𝑞∑
𝑣=−𝑞

𝜌𝑣𝜌𝑣+𝑠 𝑘 > 𝑞 (2.1.16)

This result shows that care is required in the interpretation of individual autocorrelations
because large covariances can exist between neighboring values. This effect can sometimes
distort the visual appearance of the sample autocorrelation function,whichmay fail to damp
out according to expectation.

A case of particular interest occurs for 𝑞 = 0, that is, when the 𝜌𝑘 are taken to be zero for
all lags (other than lag 0), and hence the series is completely random or white noise. Then,
the standard errors from (2.1.15) for estimated autocorrelations 𝑟𝑘 take the simple form

se[𝑟𝑘] ≃
1√
𝑁

𝑘 > 0

In addition, in this case the result in (2.1.16) indicates that estimated autocorrelations 𝑟𝑘
and 𝑟𝑘+𝑠 at two different lags are not correlated, and since the 𝑟𝑘 are also known to be
approximately normally distributed for large𝑁 , a collection of estimated autocorrelations
for different lags will tend to be independently and normally distributed with mean 0 and
variance 1∕𝑁 .

Two standard error limits determined under the assumption that the series is completely
random are included for the autocorrelation function of the batch data in Figure 2.7. Since
𝑁 equals 70 in this case, the two standard errors limits are around ±0.24. The magnitude
of the estimated autocorrelation coefficients are clearly inconsistent with the assumption
that the series is white noise.

Example. For further illustration, assume that the following estimated autocorrelations
were obtained from a time series of length𝑁 = 200 observations, generated from a stochas-
tic process for which it was known that 𝜌1 = −0.4 and 𝜌𝑘 = 0 for 𝑘 ≥ 2:

𝑘 𝑟𝑘 𝑘 𝑟𝑘

1 −0.38 6 0.00
2 −0.08 7 0.00
3 0.11 8 0.00
4 −0.08 9 0.07
5 0.02 10 −0.08

On the assumption that the series is completely random, that is, white noise, we have
𝑞 = 0. Then, for all lags, (2.1.15) yields

var[𝑟𝑘] ≃
1
𝑁

= 1
200

= 0.005

The corresponding standard error is 0.07 = (0.005)1∕2. Since the value of −0.38 for 𝑟1
is over five times this standard error, it can be concluded that 𝜌1 is nonzero. Moreover,
the estimated autocorrelations for lags greater than 1 are all small. Therefore, it might
be reasonable to ask next whether the series was compatible with a hypothesis (whose
relevance will be discussed later) whereby 𝜌1 was nonzero, but 𝜌𝑘 = 0 (𝑘 ≥ 2). Using
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(2.1.15) with 𝑞 = 1 and substituting 𝑟1 for 𝜌1, the estimated large-lag variance under this
assumption is

var[𝑟𝑘] ≃
1
200

[1 + 2(−0.38)2] = 0.0064 𝑘 > 1

yielding a standard error of 0.08. Since the estimated autocorrelations for lags greater than
1 are small compared with this standard error, there is no reason to doubt the adequacy of
the model 𝜌1 ≠ 0, 𝜌𝑘 = 0 (𝑘 ≥ 2).

Remark. The limits shown in Figure 2.7, which assume that the series is white noise, are
generated by default in R. Alternative limits, consistent with the assumptions underlying
(2.1.15), can be obtained by adding the argument ci.type="ma" to the acf() command.

2.2 SPECTRAL PROPERTIES OF STATIONARY MODELS

2.2.1 Periodogram of a Time Series

Another way of analyzing a time series is based on the assumption that it is made up of
sine and cosine waves with different frequencies. A device that uses this idea, introduced
by Schuster (1898), is the periodogram. The periodogramwas originally used to detect and
estimate the amplitude of a sine component, of known frequency, buried in noise. We will
use it later to provide a check on the randomness of a series (usually, a series of residuals
after fitting a particular model), where we consider the possibility that periodic components
of unknown frequency may remain in the series.

To illustrate the calculation of the periodogram, suppose that the number of observations
𝑁 = 2𝑞 + 1 is odd. We consider fitting the Fourier series model

𝑧𝑡 = 𝛼0 +
𝑞∑
𝑖=1

(𝛼𝑖𝑐𝑖𝑡 + 𝛽𝑖𝑠𝑖𝑡) + 𝑒𝑡 (2.2.1)

where 𝑐𝑖𝑡 = cos(2𝜋𝑓𝑖𝑡), 𝑠𝑖𝑡 = sin(2𝜋𝑓𝑖𝑡), and 𝑓𝑖 = 𝑖∕𝑁 , which is the 𝑖th harmonic of the
fundamental frequency 1∕𝑁 associated with the 𝑖th sine wave component in (2.2.1) with
frequency 𝑓𝑖 and period 1∕𝑓𝑖 = 𝑁∕𝑖. The least squares estimates of the coefficients 𝛼0 and
(𝛼𝑖, 𝛽𝑖) will be

𝑎0 = �̄� (2.2.2)

𝑎𝑖 =
2
𝑁

𝑁∑
𝑡=1
𝑧𝑡𝑐𝑖𝑡 (2.2.3)

𝑖 = 1, 2,… , 𝑞

𝑏𝑖 =
2
𝑁

𝑁∑
𝑡=1
𝑧𝑡𝑠𝑖𝑡 (2.2.4)

since
∑𝑁

𝑡=1 𝑐
2
𝑖𝑡
=
∑𝑁

𝑡=1 𝑠
2
𝑖𝑡
= 𝑁∕2, and all terms in (2.2.1) are mutually orthogonal over

𝑡 = 1,… , 𝑁 . The periodogram then consists of the 𝑞 = (𝑁 − 1)∕2 values

𝐼(𝑓𝑖) =
𝑁

2
(𝑎2
𝑖
+ 𝑏2

𝑖
) 𝑖 = 1, 2,… , 𝑞 (2.2.5)
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where 𝐼(𝑓𝑖) is called the intensity at frequency 𝑓𝑖. When 𝑁 is even, we set 𝑁 = 2𝑞 and
(2.2.2)--(2.2.5) apply for 𝑖 = 1, 2,… , (𝑞 − 1), but

𝑎𝑞 =
1
𝑁

𝑁∑
𝑡=1

(−1)𝑡𝑧𝑡

𝑏𝑞 = 0

and

𝐼(𝑓𝑞) = 𝐼(0.5) = 𝑁𝑎2𝑞

Note that the highest frequency is 0.5 cycle per time interval because the smallest period is
two intervals.

2.2.2 Analysis of Variance

In an analysis of variance table associated with the fitted regression (2.2.1), when𝑁 is odd,
we can isolate (𝑁 − 1)∕2 pairs of degrees of freedom, after eliminating the mean. These
are associated with the pairs of coefficients (𝑎1, 𝑏1), (𝑎2, 𝑏2),… , (𝑎𝑞, 𝑏𝑞), and hence with
the frequencies 1∕𝑁, 2∕𝑁,… , 𝑞∕𝑁 . The periodogram 𝐼(𝑓𝑖) = (𝑁∕2)(𝑎2

𝑖
+ 𝑏2

𝑖
) is seen to

be simply the ‘‘sum of squares’’ associated with the pair of coefficients (𝑎𝑖, 𝑏𝑖) and hence
with the frequency 𝑓𝑖 = 𝑖∕𝑁 or period 𝑝𝑖 = 𝑁∕𝑖. Thus,

𝑛∑
𝑡=1

(𝑧𝑡 − �̄�)2 =
𝑞∑
𝑖=1
𝐼(𝑓𝑖) (2.2.6)

When 𝑁 is even, there are (𝑁 − 2)∕2 pairs of degrees of freedom and a further single
degree of freedom associated with the coefficient 𝑎𝑞 .

If the series were truly random, containing no systematic sinusoidal component, that is,

𝑧𝑡 = 𝛼0 + 𝑒𝑡

with 𝛼0 the fixedmean, and the 𝑒’s independent and normal, withmean zero and variance𝜎2,
each component 𝐼(𝑓𝑖) would have expectation 2𝜎2 and would be distributed1 as 𝜎2𝜒2(2),
independently of all other components. By contrast, if the series contained a systematic
sine component having frequency 𝑓𝑖, amplitude 𝐴, and phase angle 𝐹 , so that

𝑧𝑡 = 𝛼0 + 𝛼 cos(2𝜋𝑓𝑖𝑡) + 𝛽 sin(2𝜋𝑓𝑖𝑡) + 𝑒𝑡

with𝐴 sin𝐹 = 𝛼 and𝐴 cos𝐹 = 𝛽, the sum of squares 𝐼(𝑓𝑖)would tend to be inflated since
its expected value would be 2𝜎2 +𝑁(𝛼2 + 𝛽2)∕2 = 2𝜎2 +𝑁𝐴2∕2.

In practice, it is unlikely that the frequency 𝑓 of an unknown systematic sine component
would exactly match any of the frequencies 𝑓𝑖 for which intensities have been calculated.
In this case the periodogram would show an increase in the intensities in the immediate
vicinity of 𝑓 .

1It is to be understood that 𝜒2(𝑚) refers to a random variable having a chi-square distribution with 𝑚 degrees of
freedom, defined explicitly, for example, in Appendix A7.1.
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TABLE 2.2 Mean Monthly Temperatures for Central England in 1964

𝑡 𝑧
𝑡

𝑐1𝑡 𝑡 𝑧
𝑡

𝑐1𝑡

1 3.4 0.87 7 16.1 −0.87
2 4.5 0.50 8 15.5 −0.50
3 4.3 0.00 9 14.1 0.00
4 8.7 −0.50 10 8.9 0.50
5 13.3 −0.87 11 7.4 0.87
6 13.8 −1.00 12 3.6 1.00

Example. A large number of observations would generally be used in calculation of the
periodogram. However, to illustrate the details of the calculation, we use the set of 12
mean monthly temperatures (in degrees Celsius) for central England during 1964, given in
Table 2.2. The table gives 𝑐𝑖𝑡 = cos(2𝜋𝑡∕12), which is required in the calculation of 𝑎1,
obtained from

𝑎1 = 1
6
[(3.4)(0.87) +⋯ + (3.6)(1.00)]

= −5.30

The values of the 𝑎𝑖, 𝑏𝑖, 𝑖 = 1, 2,… , 6, are given in Table 2.3 and yield the analysis of
variance of Table 2.4. As would be expected, the major component of these temperature
data has a period of 12 months, that is, a frequency of 1/12 cycle per month.

2.2.3 Spectrum and Spectral Density Function

For completeness, we add here a brief discussion of the spectrum and spectral density
function. The use of these important tools is described more fully by Jenkins and Watts
(1968), Bloomfield (2000), and Shumway and Stoffer (2011, Chapter 4), among others.
We do not apply them to the analysis of time series in this book, and this section can be
omitted on first reading.

Sample Spectrum. The definition of the periodogram in (2.2.5) assumes that the frequen-
cies 𝑓𝑖 = 𝑖∕𝑁 are harmonics of the fundamental frequency 1∕𝑁 . By way of introduction
to the spectrum, we relax this assumption and allow the frequency 𝑓 to vary continuously

TABLE 2.3 Amplitudes of Sines and Cosines at
Different Harmonics for Temperature Data

𝑖 𝑎𝑖 𝑏𝑖

1 −5.30 −3.82
2 0.05 0.17
3 0.10 0.50
4 0.52 −0.52
5 0.09 −0.58
6 −0.30
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TABLE 2.4 Analysis of Variance Table for Temperature Data

Frequency

𝑖 𝑓𝑖 Period Periodogram Degrees of Mean
𝐼(𝑓𝑖) Freedom Square

1 1/12 12 254.96 2 127.48
2 1/6 6 0.19 2 0.10
3 1/4 4 1.56 2 0.78
4 1/3 3 3.22 2 1.61
5 5/12 12/5 2.09 2 1.05
6 1/2 2 1.08 1 1.08

263.10 11 23.92

in the range of 0--0.5 cycle. The definition (2.2.5) of the periodogram may be modified to

𝐼(𝑓 ) = 𝑁

2
(𝑎2
𝑓
+ 𝑏2

𝑓
) 0 ≤ 𝑓 ≤

1
2

(2.2.7)

and 𝐼(𝑓 ) is then referred to as the sample spectrum (Jenkins and Watts, 1968). Like the
periodogram, it can be used to detect and estimate the amplitude of a sinusoidal component
of unknown frequency 𝑓 buried in noise and is, indeed, a more appropriate tool for this
purpose if it is known that the frequency 𝑓 is not harmonically related to the length of the
series. Moreover, it provides a starting point for the theory of spectral analysis, using a
result given in Appendix A2.1. This result shows that the sample spectrum 𝐼(𝑓 ) and the
estimate 𝑐𝑘 of the autocovariance function are linked by the important relation

𝐼(𝑓 ) = 2

[
𝑐0 + 2

𝑁−1∑
𝑘=1

𝑐𝑘 cos(2𝜋𝑓𝑘)

]
0 ≤ 𝑓 ≤

1
2

(2.2.8)

That is, the sample spectrum is the Fourier cosine transform of the estimate of the autoco-
variance function.

Spectrum. The periodogram and sample spectrum are appropriate tools for analyzing time
series made up of mixtures of sine and cosine waves, at fixed frequencies buried in noise.
However, stationary time series of the kind described in Section 2.1 are characterized by
random changes of frequency, amplitude, and phase. For this type of series, the sample
spectrum 𝐼(𝑓 ) fluctuates wildly and is not capable of any meaningful interpretation.

However, suppose that the sample spectrum was calculated for a time series of 𝑁
observations, which is a realization of a stationary normal process. As already mentioned,
such a process would not have any cosine or sine deterministic components, but we could
formally carry through the Fourier analysis and obtain values of (𝑎𝑓 , 𝑏𝑓 ) for any given
frequency 𝑓 . If repeated realizations of 𝑁 observations were taken from the stochastic
process, we could build up a population of values for 𝑎𝑓 , 𝑏𝑓 , and 𝐼(𝑓 ). Thus, we could
calculate the mean value of 𝐼(𝑓 ) in repeated realizations of size𝑁 , namely,

𝐸[𝐼(𝑓 )] = 2

[
𝐸[𝑐0] + 2

𝑁−1∑
𝑘=1

𝐸[𝑐𝑘] cos(2𝜋𝑓𝑘)

]
(2.2.9)
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For large 𝑁 , it may be shown (e.g., Jenkins and Watts, 1968) that the mean value of the
estimate 𝑐𝑘 of the autocovariance coefficient in repeated realizations tends to the theoretical
autocovariance 𝛾𝑘, that is,

lim
𝑁→∞

𝐸[𝑐𝑘] = 𝛾𝑘

On taking the limit of (2.2.9) as𝑁 tends to infinity, the power spectrum 𝑝(𝑓 ) is defined
by

𝑝(𝑓 ) = lim
𝑁→∞

𝐸[𝐼(𝑓 )] = 2

[
𝛾0 + 2

∞∑
𝑘=1
𝛾𝑘 cos(2𝜋𝑓𝑘)

]
0 ≤ 𝑓 ≤

1
2

(2.2.10)

We note that since

|𝑝(𝑓 )| ≤ 2

[
|𝛾0| + 2

∞∑
𝑘=1

|𝛾𝑘|| cos(2𝜋𝑓𝑘)|
]

≤ 2

(
|𝛾0| + 2

∞∑
𝑘=1

|𝛾𝑘|
)

(2.2.11)

a sufficient condition for the spectrum to converge is that 𝛾𝑘 damps out rapidly enough for
the series (2.2.11) to converge. Since the power spectrum is the Fourier cosine transform of
the autocovariance function, knowledge of the autocovariance function is mathematically
equivalent to knowledge of the spectrum, and vice versa. From now on, we refer to the
power spectrum as simply the spectrum.

On integrating (2.2.10) between the limits 0 and 1
2 , the variance of the process 𝑧𝑡 is

𝛾0 = 𝜎2𝑧 = ∫

1∕2

0
𝑝(𝑓 ) df (2.2.12)

Hence, in the same way that the periodogram 𝐼(𝑓 ) shows how the variance (2.2.6) of
a series, consisting of mixtures of sines and cosines, is distributed between the various
distinct harmonic frequencies, the spectrum 𝑝(𝑓 ) shows how the variance of a stochastic
process is distributed between a continuous range of frequencies. One can interpret 𝑝(𝑓 ) df
as measuring approximately the variance of the process in the frequency range of 𝑓 to
𝑓 + df. In addition, from the definition in (2.2.10), the spectral representation for the
autocovariance function {𝛾𝑘} can be obtained as

𝛾𝑘 =
∫

1∕2

0
cos(2𝜋𝑓𝑘)𝑝(𝑓 ) df

which together with (2.2.10) directly exhibits the one-to-one correspondence between the
power spectrum and the autocovariance function of a process. Conversely, since the 𝛾𝑘
form a positive-definite sequence, provided the series (2.2.11) converges, it follows from
Herglotz’s theorem (see, e.g., Loève, 1977) that a unique function 𝑝(𝑓 ) exists such that
𝛾𝑘 have the spectral representation 𝛾𝑘 =

1
2 ∫

1∕2
−1∕2 𝑒

𝑖2𝜋𝑓𝑘𝑝(𝑓 ) df. Consequently, the power
spectrum 𝑝(𝑓 ) of a stationary process, for which (2.2.11) converges, can be defined as this
unique function, which is guaranteed to exist and must have the form of the right-hand side
of (2.2.10) by the spectral representation.
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The fundamental property of the spectrum that 𝑝(𝑓 ) ≥ 0 for all 0 ≤ 𝑓 ≤
1
2 follows from

𝐼(𝑓 ) ≥ 0 and the definition in (2.2.10). In fact, a function 𝑝(𝑓 ) defined on 0 ≤ 𝑓 ≤
1
2 can

be the spectrum of a stationary process if and only if it satisfies 𝑝(𝑓 ) ≥ 0 for 0 ≤ 𝑓 ≤
1
2

and ∫ 1∕2
0 𝑝(𝑓 ) df ≤ ∞. Conversely, a sequence {𝛾𝑘}∞𝑘=0 can be the autocovariance function

of a stationary process if and only if {𝛾𝑘} is a nonnegative-definite sequence, and this is
equivalent to the condition that 𝑝(𝑓 ) ≥ 0, 0 ≤ 𝑓 ≤

1
2 , with 𝑝(𝑓 ) defined by (2.2.10).

Spectral Density Function. It is sometimesmore convenient to base the definition (2.2.10)
of the spectrum on the autocorrelations 𝜌𝑘 rather than on the autocovariances 𝛾𝑘. The
resulting function

𝑔(𝑓 ) = 𝑝(𝑓 )
𝜎2
𝑧

= 2

[
1 + 2

∞∑
𝑘=1
𝜌𝑘 cos(2𝜋𝑓𝑘)

]
0 ≤ 𝑓 ≤

1
2

(2.2.13)

is called the spectral density function. Using (2.2.12), it is seen that the spectral density
function has the property

∫

1∕2

0
𝑔(𝑓 ) df = 1

Since 𝑔(𝑓 ) is also positive, it has the same properties as an ordinary probability density
function. This analogy extends to the estimation properties of these two functions, as we
discuss next.

Estimation of the Spectrum. One would expect that an estimate of the spectrum could be
obtained from (2.2.10), by replacing the theoretical autocovariances 𝛾𝑘 with their estimates
𝑐𝑘. Because of (2.2.8), this corresponds to taking the sample spectrum as an estimate of
𝑝(𝑓 ). However, it can be shown (e.g., Jenkins and Watts, 1968) that the sample spectrum
of a stationary time series fluctuates violently about the theoretical spectrum. An intuitive
explanation of this fact is that the sample spectrum corresponds to using an interval, in the
frequency domain, whose width is too small. This is analogous to using too small a group
interval for the histogram when estimating an ordinary probability distribution. By using a
modified or smoothed estimate

�̂�(𝑓 ) = 2

[
𝑐0 + 2

𝑁−1∑
𝑘=1

𝜆𝑘𝑐𝑘 cos(2𝜋𝑓𝑘)

]
(2.2.14)

where the 𝜆𝑘 are suitably chosen weights called a lag window, it is possible to increase
the bandwidth of the estimate and to obtain a smoother estimate of the spectrum. The
weights 𝜆𝑘 in (2.2.14) are typically chosen so that they die out to zero for lags 𝑘 > 𝑀 ,
where𝑀 is known as the truncation point and𝑀 < 𝑁 is moderately small in relation to
series length 𝑁 . As an alternative computational form, one can also obtain an estimate of
the spectrum smoother than the sample spectrum 𝐼(𝑓 ) by forming a weighted average of
a number of periodogram values 𝐼(𝑓𝑖+𝑗) in a small neighborhood of frequencies around a
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FIGURE 2.8 Estimated power spectrum of batch data.

given frequency 𝑓𝑖. Specifically, a smoothed periodogram estimator of 𝑝(𝑓𝑖) takes the form

�̂�(𝑓𝑖) =
𝑚∑

𝑗=−𝑚
𝑊 (𝑓𝑗)𝐼

(
𝑓𝑖 +

𝑗

𝑁

)

where
∑𝑚

𝑗=−𝑚𝑊 (𝑓𝑗) = 1, the symmetric weighting function 𝑊 (𝑓𝑖) is referred to as the
spectral window, and 𝑚 is chosen to be much smaller than𝑁∕2.

Figure 2.8 shows an estimate of the spectrum of the batch data. It is seen that most
of the variance of the series is concentrated at high frequencies. This is due to the rapid
oscillations in the original series, shown in Figure 2.1.

Remark. The command spectrum() can be used to estimate the power spectrum in R.
To use this command, a smoothing window must be specified; see help(spectrum) and
the references therein for details. The following command will generate a graph roughly
similar to Figure 2.8:

spectrum(Yield,spans=c(7,7),taper=0)

As an alternative, the R program spec.ar() fits an autoregressive model of order 𝑝 to the
series and computes the spectral density of the fitted model. The lag order 𝑝 is selected
using a model selection criterion such as the AIC to be discussed in Chapter 6.

2.2.4 Simple Examples of Autocorrelation and Spectral Density Functions

For illustration,we now show equivalent representations of two simple stationary stochastic
processes based on:

1. Their theoretical models

2. Their theoretical autocorrelation functions
3. Their theoretical spectra

Consider the two processes

𝑧𝑡 = 10 + 𝑎𝑡 + 𝑎𝑡−1 𝑧𝑡 = 10 + 𝑎𝑡 − 𝑎𝑡−1

where 𝑎𝑡, 𝑎𝑡−1,… are a sequence of uncorrelated normal random variables with mean
zero and variance 𝜎2

𝑎
, that is, Gaussian white noise. From the result in Section 2.1.3 on
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stationarity of linear functions, it is clear that the two processes above are stationary. Using
the definition (2.1.5),

𝛾𝑘 = cov[𝑧𝑡, 𝑧𝑡+𝑘] = 𝐸[(𝑧𝑡 − 𝜇)(𝑧𝑡+𝑘 − 𝜇)]

where 𝐸[𝑧𝑡] = 𝐸[𝑧𝑡+𝑘] = 𝜇 = 10, and the autocovariances of these two stochastic pro-
cesses are obtained from

𝛾𝑘 = cov[𝑎𝑡 + 𝑎𝑡−1, 𝑎𝑡+𝑘 + 𝑎𝑡+𝑘−1]
= cov[𝑎𝑡, 𝑎𝑡+𝑘] + cov[𝑎𝑡, 𝑎𝑡+𝑘−1] + cov[𝑎𝑡−1, 𝑎𝑡+𝑘] + cov[𝑎𝑡−1, 𝑎𝑡+𝑘−1]

and 𝛾𝑘 = cov[𝑎𝑡 − 𝑎𝑡−1, 𝑎𝑡+𝑘 − 𝑎𝑡+𝑘−1], respectively. Hence, the autocovariances are

𝛾𝑘 =
⎧⎪⎨⎪⎩

2𝜎2
𝑎
𝑘 = 0

𝜎2
𝑎
𝑘 = 1

0 𝑘 ≥ 2

𝛾𝑘 =
⎧⎪⎨⎪⎩

2𝜎2
𝑎
𝑘 = 0

−𝜎2
𝑎
𝑘 = 1

0 𝑘 ≥ 2

Thus, the theoretical autocorrelation functions are

𝜌𝑘 =

{
0.5 𝑘 = 1

0.0 𝑘 ≥ 2
𝜌𝑘 =

{
−0.5 𝑘 = 1

0.0 𝑘 ≥ 2

and using (2.2.13), the theoretical spectral density functions are

𝑔(𝑓 ) = 2[1 + cos(2𝜋𝑓 )] 𝑔(𝑓 ) = 2[1 − cos(2𝜋𝑓 )]

The autocorrelation functions and spectral density functions are plotted in Figure 2.9
together with a sample time series from each process.

1. It should be noted that for these two stationary processes, knowledge of either the
autocorrelation function or the spectral density function, with the mean and vari-
ance of the process, is equivalent to knowledge of the model (given the normality
assumption).

2. It will be seen that the autocorrelation function reflects one aspect of the behavior
of the series. The comparatively smooth nature of the first series is accounted for by
the positive association between successive values. The alternating tendency of the
second series, in which positive deviations usually follow negative ones, is accounted
for by the negative association between successive values.

3. The spectral density throws light on a different but equivalent aspect. The predom-
inance of low frequencies in the first series and high frequencies in the second is
shown by the spectra.

Remark. The two models considered in Figure 2.9 are special cases of the moving average
model defined in (1.2.3). Specifically, themodels are first-ordermoving average, orMA(1),
models with parameters 𝜃 = −1 and 𝜃 = +1, respectively. As such, they are also special
cases of the more general autoregressive integrated moving average (ARIMA) model
defined in (1.2.7), where the order now is (0, 0, 1). Figure 2.9 was generated in R by taking
advantage of special functions for simulating ARIMA processes and for computing the
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Model (1): z t =10 +at + at−1 Model (2): z t =10 +at −at−1
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FIGURE 2.9 Two simple stochastic models with their corresponding theoretical autocorrelation
functions and spectral density functions.

theoretical autocorrelation function and power spectrum for these processes. The function
arima.sim() simulates a time series from a specifiedmodel, whileARMAacf() computes its
theoretical autocorrelation. Both functions are available in the stats library of R. The TSA
library includes a function ARMAspec() that computes and plots the theoretical spectrum
of an autoregressive--moving average (ARMA) process. The commands used to generate
Figure 2.9 are given below. Note, however, that the MA parameters are entered as +1
and −1, since R uses a definition that has positive signs of the MA parameters in (1.2.3).

> library(TSA)
> set.seed(12345)
> par(mfrow=c(3,2)) % Specifies panels in three rows and two columns
> plot(10+arima.sim(list(order=c(0,0,1), ma = +1.0), n=100),ylab =

expression(z[t]),main=(expression(Model˜(1):z[t] == 10+a[t]+a[t-1])))
> plot(10+arima.sim(list(order=c(0,0,1), ma = -1.0), n=100),ylab =

expression(z[t]),main=(expression(Model˜(2):z[t] == 10+a[t]-a[t-1])))
> plot(ARMAacf(ar=0,ma=1.0,10),type="h",x=(0:10),xlab="lag",ylab="ACF")
> abline(h=0)
> plot(ARMAacf(ar=0,ma=-1.0,10),type="h",x=(0:10),xlab="lag",ylab="ACF")
> abline(h=0)
> ARMAspec(model=list(ma=1.0),freq=seq(0,0.5,0.001),plot=TRUE)
> ARMAspec(model=list(ma=-1.0),freq=seq(0,0.5,0.001),plot=TRUE)
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2.2.5 Advantages and Disadvantages of the Autocorrelation and Spectral Density
Functions

Because the autocorrelation function and the spectrum are transforms of each other,
they are mathematically equivalent, and therefore any discussion of their advantages and
disadvantages turns not on mathematical questions but on the representational value. Be-
cause, as we have seen, each sheds light on a different aspect of the data, they should be
regarded not as rivals but as allies. Each contributes something to an understanding of the
stochastic process in question.

The obtaining of sample estimates of the autocorrelation function and of the spectrum
are nonstructural approaches, analogous to the representation of an empirical distribution
function by a histogram. They are both ways of letting data from stationary series ‘‘speak
for themselves’’ and provide a first step in the analysis of time series, just as a histogram
can provide a first step in the distributional analysis of data, pointing the way to some
parametric model on which subsequent analysis will be based.

Parametric time series models such as those of Section 2.2.4, are not necessarily asso-
ciated with a simple autocorrelation function or a simple spectrum. Working with either
of these nonstructural methods, we may be involved in the estimation of many lag correla-
tions and many spectral ordinates, even when a parametric model containing only one or
two parameters could represent the data. Each correlation and each spectral ordinate is a
parameter to be estimated, so that these nonstructural approaches might be very prodigal
with parameters, when the approach via the model could be parsimonious. On the other
hand, initially, we probably do not knowwhat type of model may be appropriate, and initial
use of one or the other of these nonstructural approaches is necessary to identify the type
of model that is needed (in the same way that plotting a histogram helps to indicate which
family of distributions may be appropriate). The choice between the spectrum and the
autocorrelation function as a tool in model building depends upon the nature of the models
that turn out to be practically useful. The models that we have found useful, which we
consider in later chapters of this book, are simply described in terms of the autocorrelation
function, and it is this tool that we will employ for model specification.

APPENDIX A2.1 LINK BETWEEN THE SAMPLE SPECTRUM AND
AUTOCOVARIANCE FUNCTION ESTIMATE

Here, we derive the result (2.2.8):

𝐼(𝑓 ) = 2

[
𝑐0 + 2

𝑁−1∑
𝑘=1

𝑐𝑘 cos(2𝜋𝑓𝑘)

]
0 ≤ 𝑓 ≤

1
2

which links the sample spectrum 𝐼(𝑓 ) and the estimate 𝑐𝑘 of the autocovariance function.
Suppose that the least square estimates 𝑎𝑓 and 𝑏𝑓 of the cosine and sine components, at

frequency 𝑓 , in a series are combined according to 𝑑𝑓 = 𝑎𝑓 − 𝑖𝑏𝑓 , where 𝑖 = −
√
−1; then

𝐼(𝑓 ) = 𝑁

2
(𝑎𝑓 − 𝑖𝑏𝑓 )(𝑎𝑓 + 𝑖𝑏𝑓 )

= 𝑁

2
𝑑𝑓𝑑

∗
𝑓

(A2.1.1)
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where 𝑑∗
𝑓
is the complex conjugate of 𝑑𝑓 . Then, using (2.2.3) and (2.2.4), we obtain

𝑑(𝑓 ) = 2
𝑁

𝑁∑
𝑡=1
𝑧𝑡[cos(2𝜋𝑓𝑡) − 𝑖 sin(2𝜋𝑓𝑡)]

= 2
𝑁

𝑁∑
𝑡=1
𝑧𝑡𝑒

−𝑖2𝜋𝑓𝑡 (A2.1.2)

= 2
𝑁

𝑁∑
𝑡=1

(𝑧𝑡 − �̄�)𝑒−𝑖2𝜋𝑓𝑡

Substituting (A2.1.2) in (A2.1.1) yields

𝐼(𝑓 ) = 2
𝑁

𝑁∑
𝑡=1

𝑁∑
𝑡′=1

(𝑧𝑡 − �̄�)(𝑧𝑡′ − �̄�)𝑒−𝑖2𝜋𝑓 (𝑡−𝑡
′) (A2.1.3)

Since

𝑐𝑘 =
1
𝑁

𝑁−𝑘∑
𝑡=1

(𝑧𝑡 − �̄�)(𝑧𝑡+𝑘 − �̄�)

the transformation 𝑘 = 𝑡 − 𝑡′ transforms (A2.1.3) into the following required result:

𝐼(𝑓 ) = 2
𝑁−1∑

𝑘=−𝑁+1
𝑐𝑘𝑒

−𝑖2𝜋𝑓𝑘

= 2

[
𝑐0 + 2

𝑁−1∑
𝑘=1

𝑐𝑘 cos(2𝜋𝑓𝑘)

]
0 ≤ 𝑓 ≤

1
2

EXERCISES

2.1. The following are temperature measurements 𝑧𝑡 made every minute on a chemical
reactor:

200, 202, 208, 204, 204, 207, 207, 204, 202, 199, 201, 198, 200,
202, 203, 205, 207, 211, 204, 206, 203, 203, 201, 198, 200, 206,
207, 206, 200, 203, 203, 200, 200, 195, 202, 204.207, 206, 200

(a) Plot the time series.

(b) Plot 𝑧𝑡+1 versus 𝑧𝑡.

(c) Plot 𝑧𝑡+2 versus 𝑧𝑡.

After inspecting the graphs, do you think that the series is autocorrelated?

2.2. State whether or not a stationary stochastic process can have the following values of
autocorrelations:
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(a) 𝜌1 = 0.80, 𝜌2 = 0.55, 𝜌𝑘 = 0, for 𝑘 > 2
(b) 𝜌1 = 0.80, 𝜌2 = 0.28, 𝜌𝑘 = 0, for 𝑘 > 2

2.3. Two stationary stochastic processes 𝑧1𝑡 and 𝑧2𝑡 have the following autocovariance
functions:

𝑧1𝑡 ∶ 𝛾0 = 0.5, 𝛾1 = 0.2, 𝛾𝑗 = 0 (𝑗 ≥ 2)
𝑧2𝑡 ∶ 𝛾0 = 2.30, 𝛾1 = −1.43, 𝛾2 = 0.30, 𝛾𝑗 = 0 (𝑗 ≥ 3)

Calculate the autocovariance function of the process 𝑧3𝑡 = 𝑧1𝑡 + 2𝑧2𝑡 and verify that
it is a valid stationary process.

2.4. Calculate 𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑟1, 𝑟2, 𝑟3 for the series given in Exercise 2.1. Make a graph of
𝑟𝑘, 𝑘 = 0, 1, 2, 3.

2.5. On the assumption that 𝜌𝑗 = 0 for 𝑗 > 2, obtain the following:
(a) Approximate standard errors for 𝑟1, 𝑟2, and 𝑟𝑗 , 𝑗 > 2.
(b) The approximate correlation between 𝑟4 and 𝑟5.

2.6. The annual sales of mink furs by a North American company during 1911--1950
are included as Series N in Part Five of this book. The series is also available at
http://pages.stat.wisc.edu/ reinsel/bjr-data/.

(a) Plot the time series using R. Calculate and plot the sample autocorrelation func-
tion of the series.

(b) Repeat the analysis in part (a) for the logarithm of the series. Do you see an
advantage in using the log transformation in this case?

2.7. Repeat the calculations in Exercise 2.6 for the annual sunspot series given as Series
E in Part Five of this book. Use a square root transformation of the data in part (b) in
Exercise 2.6. (Note: This series is also available for a slightly longer time period as
series sunspot.year in the datasets package of R).

2.8. Calculate and plot the theoretical autocorrelation function and the spectral density
function for the AR(1) process 𝑧𝑡 = 0.95𝑧𝑡−1 + 𝑎𝑡. (Hint: See the R code provided
for Figure 2.9). Based on the results, how would you expect a time series generated
from this model to fluctuate relative to its mean?

2.9. Calculate and plot the theoretical autocorrelation function and the spectral density
function for the AR(2) process 𝑧𝑡 + 0.35𝑧𝑡−1 − 0.20𝑧𝑡−2 = 𝑎𝑡.

2.10. Simulate a time series of length𝑁 = 300 from theAR(2)model specified in Exercise
2.9 and plot the resulting series.

(a) Estimate and plot the autocorrelation function for the simulated series. Compare
the results with the theoretical autocorrelation function derived in Exercise 2.9.

(b) Repeat the calculations performed above for a series of length𝑁 = 70 generated
from the same process and compare the results with those for𝑁 = 200.

(c) Do the estimated autocorrelation functions derived above show any similarity to
autocorrelation function of the chemical yield series shown in Figure 2.7. If so,
what would you conclude?

http://pages.stat.wisc.edu/reinsel/bjr-data/
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2.11. Using the data of Exercise 2.1, calculate the periodogram for periods 36, 18, 12, 9,
36/5, and 6 and construct an analysis of variance table showing the mean squares
associated with these periods and the residual mean square.

2.12. A circular stationary stochastic process with period𝑁 is defined by 𝑧𝑡 = 𝑧𝑡+𝑁 .
(a) Show that (see, e.g., Brockwell andDavis, 1991; Fuller, 1996; Jenkins andWatts,

1968) when𝑁 = 2𝑛, the latent roots of the𝑁 ×𝑁 autocorrelation matrix of 𝑧𝑡
are

𝜆𝑘 = 1 + 2
𝑛−1∑
𝑖=1
𝜌𝑖 cos

(
𝜋𝑖𝑘

𝑛

)
+ 𝜌𝑛 cos(𝜋𝑘)

𝑘 = 1, 2,… , 𝑁 and the latent vectors corresponding to 𝜆𝑘, 𝜆𝑁−𝑘 (with 𝜆𝑘 =
𝜆𝑁−𝑘) are

𝓁′
𝑘
=
(
cos

(
𝜋𝑘

𝑛

)
, cos

(2𝜋𝑘
𝑛

)
,… , cos(2𝜋𝑘)

)

𝓁′
𝑁−𝑘 =

(
sin

(
𝜋𝑘

𝑛

)
, sin

(2𝜋𝑘
𝑛

)
,… , sin(2𝜋𝑘)

)

(b) Verify that as 𝑁 tends to infinity, with 𝑘/𝑁 fixed, 𝜆𝑘 tends to g(k/N)/2, where
g(f) is the spectral density function, showing that in the limit the latent roots of
the autocorrelation matrix trace out the spectral curve.
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3
LINEAR STATIONARYMODELS

In this chapter, we describe a general linear stochastic model that assumes that the time
series is generated by a linear aggregation of random shocks. For practical representation,
it is desirable to employ models that use parameters parsimoniously. Parsimony may
often be achieved by representation of the linear process in terms of a small number of
autoregressive--moving average (ARMA) terms. The properties of the resulting ARMA
models are discussed in preparation for their use in model building in subsequent chapters.

3.1 GENERAL LINEAR PROCESS

3.1.1 Two Equivalent Forms for the Linear Process

In Section 1.2.1, we discussed the representation of a stochastic process as the output from
a linear filter, whose input is white noise 𝑎𝑡, that is,

𝑧𝑡 = 𝑎𝑡 + 𝜓1𝑎𝑡−1 + 𝜓2𝑎𝑡−2 +⋯

= 𝑎𝑡 +
∞∑
𝑗=1

𝜓𝑗𝑎𝑡−𝑗 (3.1.1)

where �̃�𝑡 = 𝑧𝑡 − 𝜇 is the deviation of the process from some origin, or from its mean, if
the process is stationary. The general linear process (3.1.1) allows us to represent �̃�𝑡 as a
weighted sum of present and past values of the ‘‘white noise’’ process 𝑎𝑡. Important early
references on the development of linear stochastic models include Yule (1927), Walker
(1931), Slutsky (1937), Wold (1938), Kendall (1945), Bartlett (1946), Quenouille (1952,
1957), Doob (1953), Grenander and Rosenblatt (1957), Hannan (1960), Robinson (1967),

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
○c 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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among others. The usefulness of these models is well-documented in subsequent literature.
The white noise process 𝑎𝑡 may be regarded as a series of shocks that drive the system.
It consists of a sequence of uncorrelated random variables with mean zero and constant
variance, that is,

𝐸[𝑎𝑡] = 0 var[𝑎𝑡] = 𝜎2
𝑎

Since the randomvariables 𝑎𝑡 are assumed uncorrelated, it follows that their autocovariance
function is

𝛾𝑘 = 𝐸[𝑎𝑡𝑎𝑡+𝑘] =

{
𝜎2
𝑎

𝑘 = 0

0 𝑘 ≠ 0
(3.1.2)

Thus, the autocorrelation function of white noise has a particularly simple form

𝜌𝑘 =

{
1 𝑘 = 0

0 𝑘 ≠ 0
(3.1.3)

A fundamental result in the developmentof stationary processes is that ofWold (1938),who
established that any zero-mean purely nondeterministic stationary process �̃�𝑡 possesses a
linear representation as in (3.1.1)with

∑∞
𝑗=0 𝜓

2
𝑗
< ∞. The 𝑎𝑡 are uncorrelatedwith common

variance 𝜎2
𝑎
but need not be independent. We will reserve the term linear processes for

processes �̃�𝑡 of the form of (3.1.1) in which the 𝑎𝑡 are independent random variables.
For �̃�𝑡 defined by (3.1.1) to represent a valid stationary process, it is necessary for

the coefficients 𝜓𝑗 to be absolutely summable, that is, for
∑∞

𝑗=0 |𝜓𝑗| < ∞. Under suitable
conditions (see Koopmans, 1974, p. 254), �̃�𝑡 is also a weighted sum of past �̃�𝑡’s and an
added shock 𝑎𝑡, that is,

�̃�𝑡 = 𝜋1�̃�𝑡−1 + 𝜋2�̃�𝑡−2 +⋯ + 𝑎𝑡

=
∞∑
𝑗=1

𝜋𝑗�̃�𝑡−𝑗 + 𝑎𝑡 (3.1.4)

In this alternative form, the current deviation �̃�𝑡 from the level 𝜇may be thought of as being
‘‘regressed’’ on past deviations �̃�𝑡−1, �̃�𝑡−2,… of the process.

Relationships between the 𝝍 Weights and the 𝝅 Weights. The relationships between the
𝜓 weights and the 𝜋 weights may be obtained by using the previously defined backward
shift operator 𝐵, such that

𝐵𝑧𝑡 = 𝑧𝑡−1 and hence 𝐵𝑗𝑧𝑡 = 𝑧𝑡−𝑗

Later, we will also need to use the forward shift operator 𝐹 = 𝐵−1, such that

𝐹𝑧𝑡 = 𝑧𝑡+1 and 𝐹 𝑗𝑧𝑡 = 𝑧𝑡+𝑗

As an example of the use of the operator 𝐵, consider the following model

�̃�𝑡 = 𝑎𝑡 − 𝜃𝑎𝑡−1 = (1 − 𝜃𝐵)𝑎𝑡
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in which 𝜓1 = −𝜃, 𝜓𝑗 = 0 for 𝑗 > 1. Expressing 𝑎𝑡 in terms of the �̃�𝑡’s, we obtain

(1 − 𝜃𝐵)−1�̃�𝑡 = 𝑎𝑡

Hence, for |𝜃| < 1,

(1 + 𝜃𝐵 + 𝜃2𝐵2 + 𝜃3𝐵3 +⋯)�̃�𝑡 = 𝑎𝑡

and the deviation 𝑧𝑡 expressed in terms of previous deviations, as in (3.1.4), is

�̃�𝑡 = −𝜃�̃�𝑡−1 − 𝜃2�̃�𝑡−2 − 𝜃3�̃�𝑡−3 −⋯ + 𝑎𝑡

so that for this model, 𝜋𝑗 = −𝜃𝑗 .
Using the backshift operator B, the model (3.1.1) can be written as

𝑧𝑡 =

(
1 +

∞∑
𝑗−1

𝜓𝑗𝐵
𝑗

)
𝑎𝑡

or

�̃�𝑡 = 𝜓(𝐵)𝑎𝑡 (3.1.5)

where

𝜓(𝐵) = 1 +
∞∑
𝑗=1

𝜓𝑗𝐵
𝑗 =

∞∑
𝑗=0

𝜓𝑗𝐵
𝑗

with 𝜓0 = 1. As mentioned in Section 1.2.1, 𝜓(𝐵) is called the transfer function of the
linear filter relating �̃�𝑡 to 𝑎𝑡. It can be regarded as the generating function of the 𝜓 weights,
with 𝐵 now treated simply as a variable whose 𝑗th power is the coefficient of 𝜓𝑗 .

Similarly, (3.1.4) may be written as
(
1 −

∞∑
𝑗=1

𝜋𝑗𝐵
𝑗

)
�̃�𝑡 = 𝑎𝑡

or

𝜋(𝐵)�̃�𝑡 = 𝑎𝑡 (3.1.6)

Thus,

𝜋(𝐵) = 1 −
∞∑
𝑗=1

𝜋𝑗𝐵
𝑗

is the generating function of the 𝜋 weights. After operating on both sides of this expression
by 𝜓(𝐵), we obtain

𝜓(𝐵)𝜋(𝐵)�̃�𝑡 = 𝜓(𝐵)𝑎𝑡 = �̃�𝑡

Hence, 𝜓(𝐵)𝜋(𝐵) = 1, so that

𝜋(𝐵) = 𝜓−1(𝐵) (3.1.7)
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This relationship may be used to derive the 𝜋 weights, knowing the 𝜓 weights, and vice
versa.

3.1.2 Autocovariance Generating Function of a Linear Process

A basic data analysis tool for identifying models in Chapter 6 will be the autocorrelation
function. Therefore, it is important to know the autocorrelation function of a linear process.
It is shown in Appendix A3.1 that the autocovariance function of the linear process (3.1.1)
is given by

𝛾𝑘 = 𝜎2
𝑎

∞∑
𝑗=0

𝜓𝑗𝜓𝑗+𝑘 (3.1.8)

In particular, by setting 𝑘 = 0, we find that its variance is

𝛾0 = 𝜎2
𝑧
= 𝜎2

𝑎

∞∑
𝑗=0

𝜓2
𝑗

(3.1.9)

It follows that the stationarity condition of absolute summability of the coefficients 𝜓𝑗 ,∑∞
𝑗=0 |𝜓𝑗| < ∞, implies that the series on the right of this equation converges, and hence

guarantees that the process will have a finite variance.
Another way of obtaining the autocovariances of a linear process is via the autocovari-

ance generating function

𝛾(𝐵) =
∞∑

𝑘=−∞
𝛾𝑘𝐵

𝑘 (3.1.10)

where 𝛾0, the variance of the process, is the coefficient of𝐵
0 = 1, while 𝛾𝑘, the autocovari-

ance of lag 𝑘, is the coefficient of both 𝐵𝑗 and 𝐵−𝑗 = 𝐹 𝑗 . It is shown in Appendix A3.1
that

𝛾(𝐵) = 𝜎2
𝑎
𝜓(𝐵)𝜓(𝐵−1) = 𝜎2

𝑎
𝜓(𝐵)𝜓(𝐹 ) (3.1.11)

For example, suppose that �̃�𝑡 = 𝑎𝑡 − 𝜃𝑎𝑡−1 = (1 − 𝜃𝐵)𝑎𝑡 so that 𝜓(𝐵) = (1 − 𝜃𝐵). Then,

𝛾(𝐵) = 𝜎2
𝑎
(1 − 𝜃𝐵)(1 − 𝜃𝐵−1)

= 𝜎2
𝑎
[−𝜃𝐵−1 + (1 + 𝜃2) − 𝜃𝐵]

Comparing with (3.1.10), the autocovariances are

𝛾0 = (1 + 𝜃2)𝜎2
𝑎

𝛾1 = −𝜃𝜎2
𝑎

𝛾𝑘 = 0 𝑘 ≥ 2

In the development that follows, when treated as a variable in a generating function,𝐵 will
be able to take on complex values. In particular, it will often be necessary to consider the
different cases when |𝐵| < 1, |𝐵| = 1, or |𝐵| > 1, that is, when the complex number𝐵 lies
inside, on, or outside the unit circle.
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3.1.3 Stationarity and Invertibility Conditions for a Linear Process

Stationarity. The convergence of the series (3.1.9) ensures that the process has a finite
variance. Also, we have seen in Section 2.1.3 that the autocovariances and autocorrelations
must satisfy a set of conditions to ensure stationarity. For a linear process (3.1.1), these
conditions are guaranteed by the single condition that

∑∞
𝑗=0 |𝜓𝑗| < ∞. This condition can

also be embodied in the condition that the series 𝜓(𝐵), which is the generating function of
the 𝜓 weights, must converge for |𝐵| ≤ 1, that is, on or within the unit circle. This result
is discussed in Appendix A3.1.

Spectrumof aLinearStationaryProcess. It is shown inAppendixA3.1 that ifwe substitute
𝐵 = 𝑒−𝑖2𝜋𝑓 , where 𝑖 =

√
−1, in the autocovariance generating function (3.1.11), we obtain

one half of the power spectrum. Thus, the spectrum of a linear process is

𝑝(𝑓 ) = 2𝜎2
𝑎
𝜓(𝑒−𝑖2𝜋𝑓 )𝜓(𝑒𝑖2𝜋𝑓 )

= 2𝜎2
𝑎
|𝜓(𝑒−𝑖2𝜋𝑓 )|2 0 ≤ 𝑓 ≤

1
2

(3.1.12)

In fact, this is the well-known expression (e.g., Jenkins and Watts, 1968) that relates the
spectrum 𝑝(𝑓 ) of the output from a linear system to the uniform spectrum 2𝜎2

𝑎
of a white

noise input by multiplying it with the squared gain 𝐺2(𝑓 ) = |𝜓(𝑒−𝑖2𝜋𝑓 )|2 of the system.

Invertibility. We have seen that the𝜓 weights of a linear processmust satisfy the condition
that 𝜓(𝐵) converges on or within the unit circle if the process is to be stationary. We now
consider a similar restriction applied to the 𝜋 weights to ensure what is called invertibility.
This invertibility condition is independentof the stationarity condition and is also applicable
to the nonstationary linear models, which we introduce in Chapter 4.

To illustrate the basic idea of invertibility, consider again the special case

�̃�𝑡 = (1 − 𝜃𝐵)𝑎𝑡 (3.1.13)

Expressing the 𝑎𝑡’s in terms of the present and past 𝑧𝑡’s, this model becomes

𝑎𝑡 = (1 − 𝜃𝐵)−1�̃�𝑡 = (1 + 𝜃𝐵 + 𝜃2𝐵2 +⋯ + 𝜃𝑘𝐵𝑘)(1 − 𝜃𝑘+1𝐵𝑘+1)−1�̃�𝑡

that is,

�̃�𝑡 = −𝜃�̃�𝑡−1 − 𝜃2�̃�𝑡−2 −⋯ − 𝜃𝑘�̃�𝑡−𝑘 + 𝑎𝑡 − 𝜃𝑘+1𝑎𝑡−𝑘−1 (3.1.14)

If |𝜃| < 1, on letting 𝑘 tend to infinity, we obtain the infinite series

�̃�𝑡 = −𝜃�̃�𝑡−1 − 𝜃2�̃�𝑡−2 −⋯ + 𝑎𝑡 (3.1.15)

and the 𝜋 weights of the model in the form of (3.1.4) are 𝜋𝑗 = −𝜃𝑗 . Whatever the value of
𝜃, �̃�𝑡 = (1 − 𝜃𝐵)𝑎𝑡 defines a perfectly proper stationary process. However, if |𝜃| ≥ 1, the
current deviation �̃�𝑡 in (3.1.14) depends on �̃�𝑡−1, �̃�𝑡−2,… , �̃�𝑡−𝑘, with weights that increase
as 𝑘 increases. We avoid this situation by requiring that |𝜃| < 1. We then say that the series
is invertible. We see that this condition is equivalent to

∑∞
𝑗=0 |𝜃|𝑗 ≡

∑∞
𝑗=0 |𝜋𝑗 | < ∞, so
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that the series

𝜋(𝐵) = (1 − 𝜃𝐵)−1 =
∞∑
𝑗=0

𝜃𝑗𝐵𝑗

converges for all |𝐵| ≤ 1, that is, on or within the unit circle. The invertibility requirement
is needed to associate present events with past values in a sensible manner.

The general linear process (3.1.1) is invertible and can be written in the form

𝜋(𝐵)�̃�𝑡 = 𝑎𝑡

if the weights 𝜋𝑗 are absolutely summable, that is, if
∑∞

𝑗=0 |𝜋𝑗| < ∞, which implies that
the series 𝜋(𝐵) converges on or within the unit circle.

Thus, to summarize, a linear process (3.1.1) is stationary if
∑∞

𝑗=0 |𝜓𝑗| < ∞ and is

invertible if
∑∞

𝑗=0 |𝜋𝑗 | < ∞, where 𝜋(𝐵) = 𝜓−1(𝐵) = 1 −
∑∞

𝑗=1 𝜋𝑗𝐵
𝑗 .

3.1.4 Autoregressive and Moving Average Processes

The representations (3.1.1) and (3.1.4) of the general linear process would not be very
useful in practice if they contained an infinite number of parameters 𝜓𝑗 and 𝜋𝑗 . We now
describe a way to introduce parsimony and arrive at models that are representationally
useful for practical applications.

Autoregressive Processes. Consider first the special case of (3.1.4) in which only the first
𝑝 of the weights are nonzero. The model may be written as

�̃�𝑡 = 𝜙1�̃�𝑡−1 + 𝜙2�̃�𝑡−2 +⋯ + 𝜙𝑝�̃�𝑡−𝑝 + 𝑎𝑡 (3.1.16)

where we now use the symbols 𝜙1, 𝜙2,… , 𝜙𝑝 for the finite set of weight parameters. The
resulting process is called an autoregressive process of order 𝑝, or more succinctly, an
AR(𝑝) process. In particular, the AR(1) and AR(2) models

�̃�𝑡 = 𝜙1�̃�𝑡−1 + 𝑎𝑡

= 𝜙1�̃�𝑡−1 + 𝜙2�̃�𝑡−2 + 𝑎𝑡

are of considerable practical importance.
The AR(𝑝) model can be written in the equivalent form

(1 − 𝜙1𝐵 − 𝜙2𝐵
2 −⋯ − 𝜙𝑝𝐵

𝑝)�̃�𝑡 = 𝑎𝑡

or

𝜙(𝐵)�̃�𝑡 = 𝑎𝑡 (3.1.17)

This implies that

�̃�𝑡 =
1

𝜙(𝐵)
𝑎𝑡 = 𝜙−1(𝐵)𝑎𝑡 ≡ 𝜓(𝐵)𝑎𝑡

Hence, the autoregressive process can be thought of as the output �̃�𝑡 from a linear filter
with transfer function 𝜙−1(𝐵) = 𝜓(𝐵) when the input is white noise 𝑎𝑡.
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Moving Average Processes. Next consider the special case of (3.1.1), when only the first
𝑞 of the 𝜓 weights are nonzero. The process may be written as

�̃�𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 −⋯ − 𝜃𝑞𝑎𝑡−𝑞 (3.1.18)

where we now use the symbols −𝜃1,−𝜃2,… ,−𝜃𝑞 for the finite set of weight parameters.
This process is called a moving average process1 of order 𝑞, which we often abbreviate as
MA(𝑞). The special cases of MA(1) and MA(2) models

�̃�𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1
= 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2

are again particularly important in practice.
Using the backshift operator 𝐵𝑎𝑡 = 𝑎𝑡−1, the MA(𝑞) model can be written in the equiv-

alent form as

�̃�𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵
2 −⋯ − 𝜃𝑞𝐵

𝑞)𝑎𝑡

or more succinctly as

�̃�𝑡 = 𝜃(𝐵)𝑎𝑡 (3.1.19)

Hence, the moving average process can be thought of as the output �̃�𝑡 from a linear filter
with transfer function 𝜃(𝐵) when the input is white noise 𝑎𝑡.

Mixed Autoregressive--Moving Average Processes. As discussed in Section 3.1.1, the
finite moving average process

�̃�𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 = (1 − 𝜃1𝐵)𝑎𝑡 |𝜃1| < 1

can also be written as an infinite autoregressive process

�̃�𝑡 = −𝜃1�̃�𝑡−1 − 𝜃21 �̃�𝑡−2 −⋯ + 𝑎𝑡

However, if the process really was MA(1), we would not obtain a parsimonious rep-
resentation using an autoregressive model. Conversely, an AR(1) process could not be
parsimoniously represented using a moving average model. In practice, to obtain parsimo-
nious parameterization, it is often useful to include both autoregressive andmoving average
terms in the model. The resulting model

�̃�1 = 𝜙1�̃�𝑡−1 +⋯ + 𝜙𝑝�̃�𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 −⋯ − 𝜃𝑞𝑎𝑡−𝑞

or

𝜙(𝐵)�̃�𝑡 = 𝜃(𝐵)𝑎𝑡 (3.1.20)

is called the mixed autoregressive--moving average process of order (𝑝, 𝑞), which we
abbreviate as ARMA(𝑝, 𝑞). For example, the ARMA(1, 1) process is

�̃�𝑡 = 𝜙1�̃�𝑡−1 + 𝑎𝑡 − 𝜃1𝑎𝑡−1

1As we remarked in Chapter 1, the term ‘‘moving average’’ is somewhat misleading since the weights do not sum
to unity. However, this nomenclature is now well established and we will use it here.
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Now writing

�̃�𝑡 = 𝜙−1(𝐵)𝜃(𝐵)𝑎𝑡

= 𝜃(𝐵)
𝜙(𝐵)

𝑎𝑡 =
1 − 𝜃1𝐵 −⋯ − 𝜃𝑞𝐵

𝑞

1 − 𝜙1𝐵 −⋯ − 𝜙𝑝𝐵
𝑝
𝑎𝑡

we see that the mixed ARMA process can be thought of as the output �̃�𝑡 from a linear filter,
whose transfer function is the ratio of two polynomial operators 𝜃(𝐵) and 𝜙(𝐵), when the
input is white noise 𝑎𝑡. Furthermore, since �̃�𝑡 = 𝑧𝑡 − 𝜇, where 𝜇 = 𝐸[𝑧𝑡] is the mean of the
process in the stationary case, the general ARMA(𝑝, 𝑞) process can also be written in terms
of the original process 𝑧𝑡 as

𝜙(𝐵)𝑧𝑡 = 𝜃0 + 𝜃(𝐵)𝑎𝑡 (3.1.21)

where the constant term 𝜃0 is

𝜃0 = (1 − 𝜙1 − 𝜙2 −⋯ − 𝜙𝑝)𝜇 (3.1.22)

In the next sections, we discuss some important characteristics of autoregressive, mov-
ing average, and mixed models. In particular, we study their variances, autocorrelation
functions, spectra, and the stationarity and invertibility conditions that must be imposed on
their parameters.

3.2 AUTOREGRESSIVE PROCESSES

3.2.1 Stationarity Conditions for Autoregressive Processes

The parameters 𝜙1, 𝜙2,… , 𝜙𝑝 of an AR(𝑝) process

�̃�𝑡 = 𝜙1�̃�𝑡−1 +⋯ + 𝜙𝑝�̃�𝑡−𝑝 + 𝑎𝑡

or

(1 − 𝜙1𝐵 −⋯ − 𝜙𝑝𝐵
𝑝)�̃�𝑡 = 𝜙(𝐵)�̃�𝑡 = 𝑎𝑡

must satisfy certain conditions for the process to be stationary. For illustration, the AR(1)
process

(1 − 𝜙1𝐵)�̃�𝑡 = 𝑎𝑡

may be written as

𝑧𝑡 = (1 − 𝜙1𝐵)−1𝑎𝑡 =
∞∑
𝑗=0

𝜙
𝑗

1𝑎𝑡−𝑗

provided that the infinite series on the right converges in an appropriate sense. Hence,

𝜓(𝐵) = (1 − 𝜙1𝐵)−1 =
∞∑
𝑗=0

𝜙
𝑗

1𝐵
𝑗 (3.2.1)
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We have seen in Section 3.1.3 that for stationarity, 𝜓(𝐵) must converge for |𝐵| ≤ 1, or
equivalently that

∑∞
𝑗=0 |𝜙1|𝑗 < ∞. This implies that the parameter 𝜙1 of an AR(1) process

must satisfy the condition |𝜙1| < 1 to ensure stationarity. Since the root of 1 − 𝜙1𝐵 = 0
is 𝐵 = 𝜙−1

1 , this condition is equivalent to saying that the root of 1 − 𝜙1𝐵 = 0 must lie
outside the unit circle.

The general AR(𝑝) process 𝜙(𝐵)�̃�𝑡 = 𝑎𝑡 can be written as

�̃�𝑡 = 𝜙−1(𝐵)𝑎𝑡 ≡ 𝜓(𝐵)𝑎𝑡 =
∞∑
𝑗=0

𝜓𝑗𝑎𝑡−𝑗

provided that the right-side expression is convergent. Using the factorization

𝜙(𝐵) = (1 −𝐺1𝐵)(1 −𝐺2𝐵)⋯ (1 − 𝐺𝑝𝐵)

where 𝐺−1
1 ,… , 𝐺−1

𝑝
are the roots of 𝜙(𝐵) = 0, and expanding 𝜃−1(𝐵) in partial fractions

yields

�̃�𝑡 = 𝜙−1(𝐵)𝑎𝑡 =
𝑝∑

𝑖=1

𝐾𝑖

1 − 𝐺𝑖𝐵
𝑎𝑡

Hence, if 𝜓(𝐵) = 𝜙−1(𝐵) is to be a convergent series for |𝐵| ≤ 1, that is, if the weights
𝜓𝑗 =

∑𝑝

𝑖=1𝐾𝑖𝐺
𝑗

𝑖
are to be absolutely summable so that the AR(𝑝) process is stationary,

we must have |𝐺𝑖| < 1, for 𝑖 = 1,… , 𝑝. Equivalently, the roots of the 𝜙(𝐵) = 0 must lie
outside the unit circle. The roots of the equation 𝜙(𝐵) = 0 may be referred to as the zeros
of the polynomial 𝜙(𝐵). Thus, for stationarity, the zeros of 𝜙(𝐵) must lie outside the unit
circle. A similar argument may be applied when the zeros of 𝜙(𝐵) are not all distinct. The
equation 𝜙(𝐵) = 0 is called the characteristic equation for the process.

Note also that the roots of 𝜙(𝐵) = 1 − 𝜙1𝐵 −⋯ − 𝜙𝑝𝐵
𝑝 = 0 are the reciprocals to the

roots of the polynomial equation in 𝑚,

𝑚𝑝 − 𝜙1𝑚
𝑝−1 −⋯ − 𝜙𝑝 = 0

Hence, the stationarity condition that all roots of 𝜙(𝐵) = 0 must lie outside the unit circle,
that is, be greater than 1 in absolute value, is equivalent to the condition that all roots of
𝑚𝑝 − 𝜙1𝑚

𝑝−1 −⋯ − 𝜙𝑝 = 0must lie inside the unit circle, that is, be less than 1 in absolute
value.

Since the series 𝜋(𝐵) = 𝜙(𝐵) = 1 − 𝜙1𝐵 −⋯ − 𝜙𝑝𝐵
𝑝 is finite, no restrictions are re-

quired on the parameters of an autoregressive process to ensure invertibility.

𝝍Weights. Since𝜓(𝐵) = 1∕𝜙(𝐵) so that𝜙(𝐵)𝜓(𝐵) = 1, it readily follows that theweights
𝜓𝑗 for the AR(𝑝) process satisfy the difference equation

𝜓𝑗 = 𝜙1𝜓𝑗−1 + 𝜙2𝜓𝑗−2 +⋯ + 𝜙𝑝𝜓𝑗−𝑝 𝑗 > 0

with 𝜓0 = 1 and 𝜓𝑗 = 0 for 𝑗 < 0, from which the weights 𝜓𝑗 can easily be computed
recursively in terms of the 𝜙𝑖. In fact, as seen from the principles of linear difference
equations as discussed in Appendix A4.1, the fact that the weights 𝜓𝑗 satisfy the difference
equation discussed earlier implies that they have an explicit representation in the form of
𝜓𝑗 =

∑𝑝

𝑖=1𝐾𝑖𝐺
𝑗

𝑖
for the case of distinct roots.
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3.2.2 Autocorrelation Function and Spectrum of Autoregressive Processes

Autocorrelation Function. An important recurrence relation for the autocorrelation func-
tion of a stationary autoregressive process is found by multiplying throughout in

�̃�𝑡 = 𝜙1�̃�𝑡−1 +⋯ + 𝜙𝑝�̃�𝑡−𝑝 + 𝑎𝑡

by �̃�𝑡−𝑘, for 𝑘 ≥ 0, to obtain

�̃�𝑡−𝑘�̃�𝑡 = 𝜙1�̃�𝑡−𝑘�̃�𝑡−1 + 𝜙2�̃�𝑡−𝑘�̃�𝑡−2 +⋯ + 𝜙𝑝�̃�𝑡−𝑘�̃�𝑡−𝑝 + �̃�𝑡−𝑘𝑎𝑡 (3.2.2)

Now, on taking expected values, we obtain the difference equation

𝛾𝑘 = 𝜙1𝛾𝑘−1 + 𝜙2𝛾𝑘−2 +⋯ + 𝜙𝑝𝛾𝑘−𝑝 𝑘 > 0 (3.2.3)

Note that the expectation𝐸[�̃�𝑡−𝑘𝑎𝑡] is zero for 𝑘 > 0, since �̃�𝑡−𝑘 can only involve the shocks
𝑎𝑗 up to time 𝑡 − 𝑘, which are uncorrelated with 𝑎𝑡. On dividing throughout in (3.2.3) by
𝛾0, we see that the autocorrelation function satisfies the same form of difference equation

𝜌𝑘 = 𝜙1𝜌𝑘−1 + 𝜙2𝜌𝑘−2 +⋯ + 𝜙𝑝𝜌𝑘−𝑝 𝑘 > 0 (3.2.4)

Note that this is analogous to the difference equation satisfied by the process �̃�𝑡 itself, but
without the random shock input 𝑎𝑡.

Now suppose that this equation is written as

𝜙(𝐵)𝜌𝑘 = 0

where 𝜙(𝐵) = 1 − 𝜙1𝐵 −⋯ − 𝜙𝑝𝐵
𝑝 and 𝐵 now operates on 𝑘 and not 𝑡. Then, writing

𝜙(𝐵) =
𝑝∏
𝑖=1

(1 − 𝐺𝑖𝐵)

the general solution for 𝜌𝑘 in (3.2.4) (see, e.g., Appendix A4.1) is

𝜌𝑘 = 𝐴1𝐺
𝑘
1 + 𝐴2𝐺

𝑘
2 +⋯ + 𝐴𝑝𝐺

𝑘
𝑝

(3.2.5)

where 𝐺−1
1 , 𝐺−1

2 ,… , 𝐺−1
𝑝

are the roots of the characteristic equation

𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵
2 −⋯ − 𝜙𝑝𝐵

𝑝 = 0

or equivalently,𝐺1, 𝐺2,… , 𝐺𝑝 are the roots of 𝑚
𝑝 − 𝜙1𝑚

𝑝−1 −⋯ − 𝜙𝑝 = 0.
For stationarity, we require that |𝐺𝑖| < 1. Thus, two situations can arise in practice if

we assume that the roots 𝐺𝑖 are distinct.

1. A root 𝐺𝑖 is real, in which case a term 𝐴𝑖𝐺
𝑘
𝑖
in (3.2.5) decays to zero geometrically

as 𝑘 increases. We often refer to this as a damped exponential.

2. A pair of roots 𝐺𝑖 and 𝐺𝑗 are complex conjugates, in which case they contribute a
term

𝐷𝑘 sin(2𝜋𝑓𝑘 + 𝐹 )

to the autocorrelation function (3.2.5), which follows a damped sine wave, with dam-
ping factor 𝐷 = |𝐺𝑖| = |𝐺𝑗 | and frequency 𝑓 such that 2𝜋𝑓 = cos−1[|Re(𝐺𝑖)|∕𝐷].
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In general, the autocorrelation function of a stationary autoregressive process will
consist of a mixture of damped exponentials and damped sine waves.

Autoregressive Parameters inTerms of theAutocorrelations: Yule--WalkerEquations. If
we substitute 𝑘 = 1, 2,… , 𝑝 in (3.2.4), we obtain a set of linear equations for 𝜙1, 𝜙2,… , 𝜙𝑝

in terms of 𝜌1, 𝜌2,… , 𝜌𝑝, that is,

𝜌1 =𝜙1 +𝜙2𝜌1 +⋯+𝜙𝑝𝜌𝑝−1
𝜌2 =𝜙1𝜌1 +𝜙2 +⋯+𝜙𝑝𝜌𝑝−2
⋮ ⋮ ⋮ ⋯ ⋮

𝜌𝑝 =𝜙1𝜌𝑝−1 +𝜙2𝜌𝑝−2 +⋯+𝜙𝑝

(3.2.6)

These are the well-known Yule--Walker equations (Yule, 1927; Walker, 1931). We obtain
Yule--Walker estimates of the parameters by replacing the theoretical autocorrelations 𝜌𝑘
by the estimated autocorrelations 𝑟𝑘. Note that, if we write

𝝓 =

⎡⎢⎢⎢⎢⎣

𝜙1
𝜙2
⋮

𝜙𝑝

⎤⎥⎥⎥⎥⎦
𝝆𝑝 =

⎡⎢⎢⎢⎢⎣

𝜌1
𝜌2
⋮

𝜌𝑝

⎤⎥⎥⎥⎥⎦
𝐏𝑝 =

⎡⎢⎢⎢⎢⎣

1 𝜌1 𝜌2 ⋯ 𝜌𝑝−1

𝜌1 1 𝜌1 ⋯ 𝜌𝑝−2
⋮ ⋮ ⋮ ⋯ ⋮

𝜌𝑝−1 𝜌𝑝−2 𝜌𝑝−3 ⋯ 1

⎤⎥⎥⎥⎥⎦
the solution of (3.2.6) for the parameters 𝝓 in terms of the autocorrelations may be written
as

𝝓 = 𝐏−1
𝑝
𝝆𝑝 (3.2.7)

Variance. When 𝑘 = 0, the contribution from the term 𝐸[�̃�𝑡−𝑘𝑎𝑡], on taking expectations
in (3.2.2), is 𝐸[𝑎2

𝑡
] = 𝜎2

𝑎
, since the only part of �̃�𝑡 that will be correlated with 𝑎𝑡 is the most

recent shock, 𝑎𝑡. Hence, when 𝑘 = 0,

𝛾0 = 𝜙1𝛾−1 + 𝜙2𝛾−2 +⋯ + 𝜙𝑝𝛾−𝑝 + 𝜎2
𝑎

On substituting 𝛾−𝑘 = 𝛾𝑘 and writing 𝛾𝑘 = 𝛾0𝜌𝑘, the variance 𝛾0 = 𝜎2
𝑧
may be written as

𝜎2
𝑧
=

𝜎2
𝑎

1 − 𝜙1𝜌1 − 𝜙2𝜌2 −⋯ − 𝜙𝑝𝜌𝑝
(3.2.8)

Spectrum. For the AR(𝑝) process, 𝜓(𝐵) = 𝜙−1(𝐵) and

𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵
2 −⋯ − 𝜙𝑝𝐵

𝑝

Therefore, using (3.1.12), the spectrum of an autoregressive process is

𝑝(𝑓 ) =
2𝜎2

𝑎

|1 − 𝜙1𝑒
−𝑖2𝜋𝑓 − 𝜙2𝑒

−𝑖4𝜋𝑓 −⋯ − 𝜙𝑝𝑒
−𝑖2𝑝𝜋𝑓 |2 0 ≤ 𝑓 ≤

1
2 (3.2.9)

We now discuss two particularly important autoregressive processes, those of first and
second order.
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3.2.3 The First-Order Autoregressive Process

The first-order autoregressive process is

�̃�𝑡 = 𝜙1�̃�𝑡−1 + 𝑎𝑡

= 𝑎𝑡 + 𝜙1𝑎𝑡−1 + 𝜙2
1𝑎𝑡−2 +⋯ (3.2.10)

where it has been shown in Section 3.2.1 that 𝜙1 must satisfy the condition −1 < 𝜙1 < 1
for the process to be stationary.

Autocorrelation Function. Using (3.2.4), the autocorrelation function satisfies the first-
order difference equation

𝜌𝑘 = 𝜙1𝜌𝑘−1 𝑘 > 0 (3.2.11)

which, with 𝜌0 = 1, has the solution

𝜌𝑘 = 𝜙𝑘
1 𝑘 ≥ 0 (3.2.12)

Since −1 < 𝜙 < 1, the autocorrelation function decays exponentially to zero when 𝜙1 is
positive but decays exponentially to zero and oscillates in sign when 𝜙1 is negative. In
particular, we note that

𝜌1 = 𝜙1 (3.2.13)

Variance. Using (3.2.8), the variance of the process is

𝜎2
𝑧
=

𝜎2
𝑎

1 − 𝜌1𝜙1

=
𝜎2
𝑎

1 − 𝜙2
1

(3.2.14)

on substituting 𝜌1 = 𝜙1

Spectrum. Finally, using (3.2.9), the spectrum is

𝑝(𝑓 ) =
2𝜎2

𝑎

|1 − 𝜙1𝑒
−𝑖2𝜋𝑓 |2

=
2𝜎2

𝑎

1 + 𝜙2
1 − 2𝜙1 cos(2𝜋𝑓 )

0 ≤ 𝑓 ≤
1
2 (3.2.15)

Example. Figure 3.1 shows realizations from two AR(1) processes with 𝜙1 = 0.8 and
𝜙1 = −0.8, and the corresponding theoretical autocorrelation functions and spectra. Thus,
when the parameter has the large positive value 𝜙1 = 0.8, neighboring values in the series
are similar and the series exhibits marked trends. This is reflected in the autocorrelation
function, which slowly decays to zero, and in the spectrum, which is dominated by low
frequencies. When the parameter has the large negative value 𝜙1 = −0.8, the series tends
to oscillate rapidly, and this is reflected in the autocorrelation function, which alternates
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FIGURE 3.1 Realizations from two first-order autoregressive processes and their corresponding
theoretical autocorrelation functions and spectral density functions.

in sign as it decays to zero, and in the spectrum, which is dominated by high frequencies.
Figure 3.1 was generated in R and can be reproduced as follows:

>library(TSA)
>set.seed(12345)
>par(mfrow=c(3,2))
>plot(arima.sim(list(order=c(1,0,0),ar = 0.8), n=100),ylab=

expression(z[t]),main=expression("AR(1) process with "*phi*"=0.8"))
>plot(arima.sim(list(order=c(1,0,0),ar = -0.8), n=100), ylab=

expression(z[t]),main=expression("AR(1) process with "*phi*"=-0.8"))
>plot(ARMAacf(ar=0.8,ma=0,15)[-1],type="h",ylab="ACF",xlab="lag")
>abline(h=0)
>plot(ARMAacf(ar=-0.8,ma=0,15)[-1],type="h",ylab="ACF",xlab="lag")
>abline(h=0)
>ARMAspec(model=list(ar=0.8),freq=seq(0,0.5,0.001),plot=TRUE)
>ARMAspec(model=list(ar=-0.8),freq=seq(0,0.5,0.001),plot=TRUE)

3.2.4 Second-Order Autoregressive Process

Stationarity Condition. The second-order autoregressive process can be written as

�̃�𝑡 = 𝜙1�̃�𝑡−1 + 𝜙2�̃�𝑡−2 + 𝑎𝑡 (3.2.16)
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FIGURE 3.2 Typical autocorrelation and partial autocorrelation functions 𝜌𝑘 and 𝜙𝑘𝑘 for various
stationary AR(2) models (Source: Stralkowski, 1968).

For stationarity, the roots of

𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵
2 = 0 (3.2.17)

must lie outside the unit circle, which implies that the parameters 𝜙1 and 𝜙2 must lie in the
triangular region

𝜙2 + 𝜙1 < 1
𝜙2 − 𝜙1 < 1 (3.2.18)

−1 < 𝜙2 < 1

as shown in Figure 3.2.

AutocorrelationFunction. Using (3.2.4), the autocorrelation function satisfies the second-
order difference equation

𝜌𝑘 = 𝜙1𝜌𝑘−1 + 𝜙2𝜌𝑘−2 𝑘 > 0 (3.2.19)

with starting values 𝜌0 = 1 and 𝜌1 = 𝜙1∕(1 − 𝜙2). From (3.2.5), the general solution to this
difference equation is

𝜌𝑘 = 𝐴1𝐺
𝑘
1 + 𝐴2𝐺

𝑘
2

=
𝐺1(1 −𝐺2

2)𝐺
𝑘
1 −𝐺2(1 −𝐺2

1)𝐺
𝑘
2

(𝐺1 − 𝐺2)(1 +𝐺1𝐺2)
(3.2.20)

where 𝐺−1
1 and 𝐺−1

2 are the roots of the characteristic equation 𝜙(𝐵) = 0. When the
roots are real, the autocorrelation function consists of a mixture of damped exponentials.
This occurs when 𝜙2

1 + 4𝜙2 ≥ 0 and corresponds to regions 1 and 2, which lie above the
parabolic boundary in Figure 3.2. Specifically, in region 1, the autocorrelation function
remains positive as it damps out, corresponding to a positive dominant root in (3.2.20). In
region 2, the autocorrelation function alternates in sign as it damps out, corresponding to a
negative dominant root.
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If the roots 𝐺1 and 𝐺2 are complex (𝜙2
1 + 4𝜙2 < 0), a second-order autoregressive

process displays pseudoperiodic behavior. This behavior is reflected in the autocorrelation
function, for on substituting 𝐺1 = 𝐷𝑒𝑖2𝜋𝑓0 and 𝐺2 = 𝐷𝑒−𝑖2𝜋𝑓0 (0 < 𝑓0 <

1
2 ) in (3.2.20),

we obtain

𝜌𝑘 =
𝐷𝑘 sin(2𝜋𝑓0𝑘 + 𝐹 )

sin𝐹
(3.2.21)

We refer to this as a damped sine wave with damping factor 𝐷, frequency 𝑓0, and phase
𝐹 . These factors are related to the process parameters as follows:

𝐷 = |𝐺𝑖| =
√
−𝜙2 (3.2.22)

where the positive square root is taken,

cos(2𝜋𝑓0) =
Re(𝐺𝑖)
𝐷

=
𝜙1

2
√
−𝜙2

(3.2.23)

tan𝐹 = 1 +𝐷2

1 −𝐷2 tan(2𝜋𝑓0) (3.2.24)

Again referring to Figure 3.2, the autocorrelation function is a damped sine wave in
regions 3 and 4, the phase angle 𝐹 being less than 90◦ in region 4 and lying between 90◦
and 180◦ in region 3. This means that the autocorrelation function starts with a positive
value throughout region 4 but always switches sign from lag 0 to lag 1 in region 3.

Yule--Walker Equations. For the AR(2) model, the Yule--Walker equations become

𝜌1 = 𝜙1 + 𝜙2𝜌1
𝜌2 = 𝜙1𝜌1 + 𝜙2

(3.2.25)

which, when solved for 𝜙1 and 𝜙2, give

𝜙1 =
𝜌1(1 − 𝜌2)
1 − 𝜌21

𝜙2 =
𝜌2 − 𝜌21

1 − 𝜌21

(3.2.26)

These equations can also be solved to express 𝜌1 and 𝜌2 in terms of 𝜙1 and 𝜙2 to give

𝜌1 =
𝜙1

1 − 𝜙2

𝜌2 = 𝜙2 +
𝜙2
1

1 − 𝜙2
(3.2.27)

which provide the starting values for the recursions in (3.2.19). Expressions (3.2.20) and
(3.2.21) are useful for explaining the different patterns for 𝜌𝑘 that may arise in practice.
However, for computing the autocorrelations of an AR(2) process, it is simplest to make
direct use of the recursions implied by (3.2.19).

Using the stationarity condition (3.2.18) and the expressions for 𝜌1 and 𝜌2 in (3.2.27),
it can be seen that the admissible values of 𝜌1 and 𝜌2, for a stationary AR(2) process, must
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(a)

(b)

FIGURE 3.3 Admissible regions for (a) 𝜙1, 𝜙2 and (b) 𝜌1, 𝜌2, for a stationary AR(2) process.

lie in the region

−1 < 𝜌1 < 1
−1 < 𝜌2 < 1

𝜌21 <
1
2 (𝜌2 + 1)

The admissible region for the parameters𝜙1 and 𝜙2 is shown in Figure 3.3(a), while Figure
3.3(b) shows the corresponding admissible region for 𝜌1 and 𝜌2.

Variance. From (3.2.8), the variance of the AR(2) process is

𝜎2
𝑧
=

𝜎2
𝑎

1 − 𝜌1𝜙1 − 𝜌2𝜙2

=
1 − 𝜙2
1 + 𝜙2

𝜎2
𝑎

(1 − 𝜙2)2 − 𝜙2
1

(3.2.28)
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Spectrum. From (3.2.9), the spectrum is

𝑝(𝑓 ) =
2𝜎2𝑎

|1 − 𝜙1𝑒
−𝑖2𝜋𝑓 − 𝜙2𝑒

−𝑖4𝜋𝑓 |2

=
2𝜎2

𝑎

1 + 𝜙2
1 + 𝜙2

2 − 2𝜙1(1 − 𝜙2) cos(2𝜋𝑓 ) − 2𝜙2 cos(4𝜋𝑓 )
0 ≤ 𝑓 ≤

1
2

(3.2.29)

The spectrum also reflects the pseudoperiodic behavior that the series exhibits when the
roots of the characteristic equation are complex. For illustration, Figure 3.4(a) shows 70
values of a series generated from the AR(2) model

�̃�𝑡 = 0.75�̃�𝑡−1 − 0.50�̃�𝑡−2 + 𝑎𝑡

Figure 3.4(b) shows the corresponding theoretical autocorrelation function. The roots of
the characteristic equation

1 − 0.75𝐵 + 0.5𝐵2 = 0

are complex, so that the pseudoperiodic behavior observed in the series is to be expected.
We clearly see this behavior reflected in the theoretical autocorrelation function of Figure
3.4(b), the average apparent period being about 6. The damping factor 𝐷 and frequency

(a) Simulated AR(2) process
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FIGURE3.4 (a) Time series generated from a second-order autoregressive process �̃�𝑡 = 0.75 �̃�𝑡−1 −
0.50 �̃�𝑡−2 + 𝑎𝑡, along with (b) the theoretical autocorrelation function, and (c) the spectral density
function for the same process.
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𝑓0, from (3.2.22) and (3.2.23), are

𝐷 =
√
0.50 = 0.71 𝑓0 =

cos−1(0.5303)
2𝜋

= 1
6.2

Thus, the fundamental period of the autocorrelation function is 6.2. In addition, the theoret-
ical spectral density function in Figure 3.4(c) shows that a large proportion of the variance
of the series is accounted for by frequencies in the neighborhood of 𝑓0.

Figure 3.4 was generated in R using the following commands:

> library(TSA)
> ar.acf=ARMAacf(model=list(ar=c(0.75,-0.5)))
> ar.spec=ARMAspec(model=list(ar=c(0.75,-0.5),freq=seq(0,0.5,0.0005)))
> layout(matrix(c(1,1,2,3),2,2,byrow=TRUE))
> plot(arima.sim(list(order=c(2,0,0),ar=c(0.75,-0.5)), n=70), ylab=

expression(z[t]),xlab="Time",main=("Simulated AR(2) process"))
> plot(ar.acf, main="b")
> plot(ar.spec, main="c")

3.2.5 Partial Autocorrelation Function

In practice, we typically do not know the order of the autoregressive process initially,
and the order has to be specified from the data. The problem is analogous to deciding on
the number of independent variables to be included in a multiple regression. The partial
autocorrelation function is a tool that exploits the fact that, whereas an AR(𝑝) process has
an autocorrelation function that is infinite in extent, the partial autocorrelations are zero
beyond lag 𝑝.

The partial autocorrelations can be described in terms of 𝑝 nonzero functions of the
autocorrelations. Denote by 𝜙𝑘𝑗 the 𝑗th coefficient in an autoregressive representation of
order 𝑘, so that 𝜙𝑘𝑘 is the last coefficient. From (3.2.4), the 𝜙𝑘𝑗 satisfy the set of equations

𝜌𝑗 = 𝜙𝑘1𝜌𝑗−1 +⋯ + 𝜙𝑘(𝑘−1)𝜌𝑗−𝑘+1 + 𝜙𝑘𝑘𝜌𝑗−𝑘 𝑗 = 1, 2,… , 𝑘 (3.2.30)

leading to the Yule--Walker equations (3.2.6), which may be written as

⎡⎢⎢⎢⎢⎣

1 𝜌1 𝜌2 ⋯ 𝜌𝑘−1
𝜌1 1 𝜌1 ⋯ 𝜌𝑘−2
⋮ ⋮ ⋮ ⋯ ⋮

𝜌𝑘−1 𝜌𝑘−2 𝜌𝑘−3 ⋯ 1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

𝜙𝑘1
𝜙𝑘2
⋮

𝜙𝑘𝑘

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

𝜌1
𝜌2
⋮

𝜌𝑘

⎤⎥⎥⎥⎥⎦
(3.2.31)

or

𝐏𝑘𝝓𝑘 = 𝝆𝑘 (3.2.32)
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Solving these equations for 𝑘 = 1, 2, 3,…, successively, we obtain

𝜙11 = 𝜌1

𝜙22 =

|||||
1 𝜌1
𝜌1 𝜌2

||||||||||
1 𝜌1
𝜌1 1

|||||

=
𝜌2 − 𝜌21

1 − 𝜌21

(3.2.33)

𝜙33 =

|||||||

1 𝜌1 𝜌1
𝜌1 1 𝜌2
𝜌2 𝜌1 𝜌3

|||||||
|||||||

1 𝜌1 𝜌2
𝜌1 1 𝜌1
𝜌2 𝜌1 1

|||||||
In general, for 𝜙𝑘𝑘, the determinant in the numerator has the same elements as that in the
denominator, but with the last column replaced by 𝝆𝑘. The quantity 𝜙𝑘𝑘, regarded as a
function of the lag 𝑘, is called the partial autocorrelation function.

For an AR(𝑝) process, the partial autocorrelations 𝜙𝑘𝑘 will be nonzero for 𝑘 ≤ 𝑝 and
zero for 𝑘 > 𝑝. In other words, the partial autocorrelation function of the AR(𝑝) process has
a cutoff after lag 𝑝. For the AR(2) process, partial autocorrelation functions 𝜙𝑘𝑘 are shown
in each of the four regions of Figure 3.2. As a numerical example, the partial autocorre-
lations of the AR(2) process �̃�𝑡 = 0.75�̃�𝑡−1 − 0.50�̃�𝑡−2 + 𝑎𝑡 considered in Figure 3.4 are
𝜙11 = 𝜌1 = 0.5, 𝜙22 = (𝜌2 − 𝜌21)∕(1 − 𝜌21) = −0.5 ≡ 𝜙2, and 𝜙𝑘𝑘 = 0, for all 𝑘 > 2.

The quantity𝜙𝑘𝑘 is called the partial autocorrelation of the process {𝑧𝑡} at lag 𝑘, since it
equals the partial correlation between the variables 𝑧𝑡 and 𝑧𝑡−𝑘 adjusted for the intermediate
variables 𝑧𝑡−1, 𝑧𝑡−2,… , 𝑧𝑡−𝑘+1 (or the correlation between 𝑧𝑡 and 𝑧𝑡−𝑘 not accounted for
by 𝑧𝑡−1, 𝑧𝑡−2,… , 𝑧𝑡−𝑘+1). Now, it is easy to establish from least squares theory that the
values 𝜙𝑘1, 𝜙𝑘2,… , 𝜙𝑘𝑘, which are the solutions to (3.2.31), are the regression coefficients
in the linear regression of 𝑧𝑡 on 𝑧𝑡−1,… , 𝑧𝑡−𝑘, that is, they are the values of coefficients
𝑏1,… , 𝑏𝑘, which minimize 𝐸[(𝑧𝑡 − 𝑏0 −

∑𝑘

𝑖=1 𝑏𝑖𝑧𝑡−𝑖)
2]. Hence, assuming for convenience

that the process {𝑧𝑡} has mean zero, the best linear predictor, in the mean squared error
sense, of 𝑧𝑡 based on 𝑧𝑡−1, 𝑧𝑡−2,… , 𝑧𝑡−𝑘+1 is

�̂�𝑡 = 𝜙𝑘−1,1𝑧𝑡−1 + 𝜙𝑘−1,2𝑧𝑡−2 +⋯ + 𝜙𝑘−1,𝑘−1𝑧𝑡−𝑘+1

whether the process is an AR or not. Similarly, the best linear predictor of 𝑧𝑡−𝑘 based on
the (future) values 𝑧𝑡−1, 𝑧𝑡−2,… , 𝑧𝑡−𝑘+1 is

�̂�𝑡−𝑘 = 𝜙𝑘−1,1𝑧𝑡−𝑘+1 + 𝜙𝑘−1,2𝑧𝑡−𝑘+2 +⋯ + 𝜙𝑘−1,𝑘−1𝑧𝑡−1

Then, the lag 𝑘 partial autocorrelation of {𝑧𝑡}, 𝜙𝑘𝑘, can be defined as the correlation between
the residuals from these two regressions on 𝑧𝑡−1,… , 𝑧𝑡−𝑘+1, that is,

𝜙𝑘𝑘 = corr[𝑧𝑡 − 𝑧𝑡, 𝑧𝑡−𝑘 − �̂�𝑡−𝑘] (3.2.34)
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TABLE 3.1 Estimated Partial Autocorrelation Function for the Chemical Yield Data in
Figure 2.1

𝑘 �̂�𝑘𝑘 𝑘 �̂�𝑘𝑘 𝑘 �̂�𝑘𝑘

1 −0.39 6 −0.12 11 0.14
2 0.18 7 0.02 12 −0.01
3 0.00 8 0.00 13 0.09
4 −0.04 9 − 0.06 14 0.17
5 −0.07 10 0.00 15 0.00

As examples, we find that 𝜙11 = corr[𝑧𝑡, 𝑧𝑡−1] = 𝜌1, while

𝜙22 = corr[𝑧𝑡 − 𝜌1𝑧𝑡−1, 𝑧𝑡−2 − 𝜌1𝑧𝑡−1]

=
𝛾2 − 2𝜌1𝛾1 + 𝜌21𝛾0

[(𝛾0 + 𝜌21𝛾0 − 2𝜌1𝛾1)2]1∕2
=

𝜌2 − 𝜌21

1 − 𝜌21

which agrees with the results in (3.2.33) derived from the Yule--Walker equations. Higher
order partial autocorrelations 𝜙𝑘𝑘 defined through (3.2.34) can similarly be shown to be
the solution to the appropriate set of Yule--Walker equations.

3.2.6 Estimation of the Partial Autocorrelation Function

The partial autocorrelationsmay be estimated by fitting successively autoregressivemodels
of orders 1, 2, 3,… by least squares and picking out the estimates �̂�11, �̂�22, �̂�33,… of the
last coefficient fitted at each stage. Alternatively, if the values of the parameters are not
too close to the nonstationary boundaries, approximate Yule--Walker estimates of the
successive autoregressive models may be employed. The estimated partial autocorrelations
can then be obtained by substituting estimates 𝑟𝑗 for the theoretical autocorrelations in
(3.2.30), to yield

𝑟𝑗 = �̂�𝑘1𝑟𝑗−1 + �̂�𝑘2𝑟𝑗−2 +⋯ + �̂�𝑘(𝑘−1)𝑟𝑗−𝑘+1 + �̂�𝑘𝑘𝑟𝑗−𝑘 𝑗 = 1, 2,… , 𝑘 (3.2.35)

and solving the resultant equations for 𝑘 = 1, 2,…. This can be done using a simple recur-
sive method due to Levinson (1947) and Durbin (1960), which we describe in Appendix
A3.2. However, these estimates obtained from (3.2.35) become very sensitive to rounding
errors and should not be used if the values of the parameters are close to the nonstationary
boundaries.

3.2.7 Standard Errors of Partial Autocorrelation Estimates

It was shown by Quenouille (1949) that on the hypothesis that the process is autoregressive
of order 𝑝, the estimated partial autocorrelations of order 𝑝 + 1, and higher, are approxi-
mately independently and normally distributed with zero mean. Also, if 𝑛 is the number of
observations used in fitting,

var[�̂�𝑘𝑘] ≃
1
𝑛

𝑘 ≥ 𝑝 + 1
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Thus, the standard error (SE) of the estimated partial autocorrelation �̂�𝑘𝑘 is

SE[�̂�𝑘𝑘] = �̂�[�̂�𝑘𝑘] ≃
1√
𝑛

𝑘 ≥ 𝑝 + 1 (3.2.36)

3.2.8 Calculations in R

The estimation of the partial autocorrelation function is conveniently performed in R.
For example, the command pacf(Yield) in the stats package gives the estimated partial
autocorrelations shown in Table 3.1 for the chemical yield data plotted in Figure 2.1.
An alternative is to use the command acf2() in the R package astsa. This command
has the advantage that it produces plots of the autocorrelation and partial autocorrelation
functions in a single graph. This allows easy comparison of the two functions, which will
be useful for specifying a model for the time series. Figure 3.5 shows a graph of the 15 first
autocorrelations and partial autocorrelations for the chemical yield data produced using
this routine. The patterns of the two functions resemble those of an AR(1) process with
a negative value of 𝜙1, or possibly an AR(2) process with a dominant negative root (see
region 2 of Figure 3.2). Also shown in Figure 3.5 by dashed lines are the two SE limits
calculated on the assumption that the process is white noise. Since �̂�22 is the second biggest
partial autocorrelation, the possibility that the process is AR(2) should be kept in mind.
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FIGURE 3.5 Estimated autocorrelation and partial autocorrelation functions for the chemical yield
data in Series F.
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The use of the autocorrelation and partial autocorrelation functions for model specification
will be discussed more fully in Chapter 6. Figure 3.5 was generated using the following R
commands:

> library(astsa)
> seriesF=read.table("SeriesF.txt,header=TRUE)
> Yield=ts(seriesF)
> acf2(Yield,15)

3.3 MOVING AVERAGE PROCESSES

3.3.1 Invertibility Conditions for Moving Average Processes

We now derive the conditions that the parameters 𝜃1, 𝜃2,… , 𝜃𝑞 must satisfy to ensure the
invertibility of the MA(𝑞) process:

�̃�𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 −⋯ − 𝜃𝑞𝑎𝑡−𝑞

= (1 − 𝜃1𝐵 −⋯ − 𝜃𝑞𝐵
𝑞)𝑎𝑡

= 𝜃(𝐵)𝑎𝑡 (3.3.1)

We have already seen in Section 3.1.3 that the first-order moving average process

�̃�𝑡 = (1 − 𝜃1𝐵)𝑎𝑡

is invertible if |𝜃1| < 1; that is,

𝜋(𝐵) = (1 − 𝜃1𝐵)−1 =
∞∑
𝑗=0

𝜃
𝑗

1𝐵
𝑗

converges on or within the unit circle. However, this is equivalent to saying that the root,
𝐵 = 𝜃−11 of (1 − 𝜃1𝐵) = 0, lies outside the unit circle.

The invertibility condition for higher order MA processes may be obtained by writing
�̃�𝑡 = 𝜃(𝐵)𝑎𝑡 as

𝑎𝑡 = 𝜃−1(𝐵)�̃�𝑡

Hence, if

𝜃(𝐵) =
𝑞∏

𝑖=1
(1 −𝐻𝑖𝐵)

where𝐻−1
1 ,… , 𝐻−1

𝑞
are the roots of 𝜃(𝐵) = 0, then, on expanding in partial fractions, we

obtain

𝜋(𝐵) = 𝜃−1(𝐵) =
𝑞∑
𝑖=1

(
𝑀𝑖

1 −𝐻𝑖𝐵

)

which converges, or equivalently, the weights 𝜋𝑗 = −
∑𝑞

𝑖=1𝑀𝑖𝐻
𝑗

𝑖
are absolutely

summable, if |𝐻𝑖| < 1, for 𝑖 = 1, 2,… , 𝑞. It follows that the invertibility condition for
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an MA(𝑞) process is that the roots𝐻−1
𝑖

of the characteristic equation

𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵
2 −⋯ − 𝜃𝑞𝐵

𝑞 = 0 (3.3.2)

lie outside the unit circle. From the relation 𝜃(𝐵)𝜋(𝐵) = 1, it follows that the weights 𝜋𝑗
satisfy the difference equation

𝜋𝑗 = 𝜃1𝜋𝑗−1 + 𝜃2𝜋𝑗−2 +⋯ + 𝜃𝑞𝜋𝑗−𝑞 𝑗 > 0

with the convention that 𝜋0 = −1 and 𝜋𝑗 = 0 for 𝑗 < 0, from which the weights 𝜋𝑗 can
easily be computed recursively in terms of the 𝜃𝑖.

Note that since the series

𝜓(𝐵) = 𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵
2 −⋯ − 𝜃𝑞𝐵

𝑞

is finite, no restrictions are needed on the parameters of the moving average process to
ensure stationarity.

3.3.2 Autocorrelation Function and Spectrum of Moving Average Processes

Autocorrelation Function. The autocovariance function of an MA(𝑞) process is

𝛾𝑘 = 𝐸[(𝑎𝑡 − 𝜃1𝑎𝑡−1 −⋯ − 𝜃𝑞𝑎𝑡−𝑞)(𝑎𝑡−𝑘 − 𝜃1𝑎𝑡−𝑘−1 −⋯ − 𝜃𝑞𝑎𝑡−𝑘−𝑞)]

= −𝜃𝑘𝐸[𝑎2
𝑡−𝑘] + 𝜃1𝜃𝑘+1𝐸[𝑎2

𝑡−𝑘−1] +⋯ + 𝜃𝑞−𝑘𝜃𝑞𝐸[𝑎2
𝑡−𝑞]

since the 𝑎𝑡 are uncorrelated, and 𝛾𝑘 = 0 for 𝑘 > 𝑞. Hence, the variance of the process is

𝛾0 = (1 + 𝜃21 + 𝜃22 +⋯ + 𝜃2
𝑞
)𝜎2

𝑎
(3.3.3)

and

𝛾𝑘 =

{
(−𝜃𝑘 + 𝜃1𝜃𝑘+1 + 𝜃2𝜃𝑘+2 +⋯ + 𝜃𝑞−𝑘𝜃𝑞)𝜎2𝑎 𝑘 = 1, 2,… , 𝑞

0 𝑘 > 𝑞

Thus, the autocorrelation function is

𝜌𝑘 =
⎧⎪⎨⎪⎩

−𝜃𝑘 + 𝜃1𝜃𝑘+1 +⋯ + 𝜃𝑞−𝑘𝜃𝑞

1 + 𝜃21 +⋯ + 𝜃2
𝑞

𝑘 = 1, 2,… , 𝑞

0 𝑘 > 𝑞

(3.3.4)

We see that the autocorrelation function of an MA(𝑞) process is zero, beyond the order 𝑞
of the process. In other words, the autocorrelation function of a moving average process
has a cutoff after lag 𝑞.

Moving Average Parameters in Terms of Autocorrelations. If 𝜌1, 𝜌2,… , 𝜌𝑞 are known,
the 𝑞 equations (3.3.4) may be solved for the parameters 𝜃1, 𝜃2,… , 𝜃𝑞 . However, unlike
the Yule--Walker equations (3.2.6) for an autoregressive process, the equations (3.3.4)
are nonlinear. Hence, except in the simple case where 𝑞 = 1, which is discussed shortly,
these equations have to be solved iteratively. Estimates of the moving average parameters
may be obtained by substituting estimates 𝑟𝑘 for 𝜌𝑘 and solving the resulting equations.
However, unlike the autoregressive estimates obtained from the Yule--Walker equations,
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the resulting moving average estimates may not have high statistical efficiency. Neverthe-
less, they can provide useful rough estimates at the model identification stage discussed
in Chapter 6. Furthermore, they provide useful starting values for an iterative parameter
estimation procedure, discussed in Chapter 7, which converges to the efficient maximum
likelihood estimates.

Spectrum. For the MA(𝑞) process,

𝜓(𝐵) = 𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵
2 −⋯ − 𝜃𝑞𝐵

𝑞

Therefore, using (3.1.12), the spectrum of an MA(𝑞) process is

𝑝(𝑓 ) = 2𝜎2
𝑎
|1 − 𝜃1𝑒

−𝑖2𝜋𝑓 − 𝜃2𝑒
−𝑖4𝜋𝑓 −⋯ − 𝜃𝑞𝑒

−𝑖2𝑞𝜋𝑓 |2 0 ≤ 𝑓 ≤
1
2

(3.3.5)

We now discuss in greater detail the moving average processes of first and second order,
which are of considerable practical importance.

3.3.3 First-Order Moving Average Process

We have already introduced the MA(1) process

�̃�𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1
= (1 − 𝜃1𝐵)𝑎𝑡

and we have seen that 𝜃1 must lie in the range −1 < 𝜃1 < 1 for the process to be invertible.
The process is, of course, stationary for all values of 𝜃1.

Autocorrelation Function. It is easy to see that the variance of this process equals

𝛾0 = (1 + 𝜃21)𝜎
2
𝑎

The autocorrelation function is

𝜌𝑘 =
⎧⎪⎨⎪⎩

−𝜃1
1 + 𝜃21

𝑘 = 1

0 𝑘 > 1
(3.3.6)

from which it is noted that 𝜌1 must satisfy |𝜌1| = |𝜃1|∕(1 + 𝜃21) ≤
1
2 . Also, for 𝑘 = 1, we

find that

𝜌1𝜃
2
1 + 𝜃1 + 𝜌1 = 0 (3.3.7)

with roots for 𝜃1 equal to 𝜃1 = (−1 ±
√

1 − 4𝜌21)∕(2𝜌1). Since the product of the roots is
unity, we see that if 𝜃1 is a solution, so is 𝜃−11 . Furthermore, if 𝜃1 satisfies the invertibility

condition |𝜃1| < 1, the other root 𝜃−11 will be greater than unity and will not satisfy the
condition.For example, if 𝜌1 = −0.4, the two solutions are 𝜃1 = 0.5 and 𝜃1 = 2.0. However,
only the solution 𝜃1 = 0.5 corresponds to an invertible model.
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Spectrum. Using (3.3.5), the spectrum of the MA(1) process is

𝑝(𝑓 ) = 2𝜎2
𝑎
|1 − 𝜃1𝑒

−𝑖2𝜋𝑓 |2
= 2𝜎2

𝑎
[1 + 𝜃21 − 2𝜃1 cos(2𝜋𝑓 )] 0 ≤ 𝑓 ≤

1
2

(3.3.8)

In general, when 𝜃1 is negative, 𝜌1 is positive, and the spectrum is dominated by low
frequencies. Conversely, when 𝜃1 is positive, 𝜌1 is negative, and the spectrum is dominated
by high frequencies.

Partial Autocorrelation Function. Using (3.2.31) with 𝜌1 = −𝜃1∕(1 + 𝜃21) and 𝜌𝑘 = 0, for
𝑘 > 1, we obtain after some algebraic manipulation

𝜙𝑘𝑘 =
−𝜃𝑘1 (1 − 𝜃21)

1 − 𝜃
2(𝑘+1)
1

Thus, |𝜙𝑘𝑘| < |𝜃1|𝑘, and the partial autocorrelation function is dominated by a damped
exponential. If 𝜌1 is positive, so that 𝜃1 is negative, the partial autocorrelations alternate
in sign. If, however, 𝜌1 is negative, so that 𝜃1 is positive, the partial autocorrelations are
negative. From (3.1.15), it has been seen that the weights 𝜋𝑗 for the MA(1) process are

𝜋𝑗 = −𝜃𝑗1, and hence since these are coefficients in the infinite autoregressive form of
the process, it makes sense that the partial autocorrelation function 𝜙𝑘𝑘 for the MA(1)
essentially mimics the exponential decay feature of the weights 𝜋𝑗 .

We now note a duality between the AR(1) and the MA(1) processes. Thus, whereas the
autocorrelation function of an MA(1) process has a cutoff after lag 1, the autocorrelation
function of an AR(1) process tails off exponentially. Conversely, whereas the partial
autocorrelation function of an MA(1) process tails off and is dominated by a damped
exponential, the partial autocorrelation function of an AR(1) process has a cutoff after
lag 1. It turns out that a corresponding approximate duality of this kind occurs in general in
the autocorrelation and partial autocorrelation functions between AR and MA processes.

3.3.4 Second-Order Moving Average Process

Invertibility Conditions. The second-order moving average process is defined by

�̃�𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2

= (1 − 𝜃1𝐵 − 𝜃2𝐵
2)𝑎𝑡

and is stationary for all values of 𝜃1 and 𝜃2. However, it is invertible only if the roots of the
characteristic equation

1 − 𝜃1𝐵 − 𝜃2𝐵
2 = 0 (3.3.9)

lie outside the unit circle, that is,

𝜃2 + 𝜃1 < 1
𝜃2 − 𝜃1 < 1 (3.3.10)

−1 < 𝜃2 < 1
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These are parallel to conditions (3.2.18) required for the stationarity of an AR(2)
process.

Autocorrelation Function. Using (3.3.3), the variance of the process is

𝛾0 = 𝜎2
𝑎
(1 + 𝜃21 + 𝜃22)

and using (3.3.4), the autocorrelation function is

𝜌1 =
−𝜃1(1 − 𝜃2)
1 + 𝜃21 + 𝜃22

𝜌2 =
−𝜃2

1 + 𝜃21 + 𝜃22

(3.3.11)

𝜌𝑘 = 0 𝑘 > 2

Thus, the autocorrelation function has a cutoff after lag 2.
It follows from (3.3.10) and (3.3.11) that the first two autocorrelations of an invertible

MA(2) process must lie within the area bounded by segments of the curves

𝜌2 + 𝜌1 = −0.5
𝜌2 − 𝜌1 = −0.5 (3.3.12)

𝜌21 = 4𝜌2(1 − 2𝜌2)

The invertibility region (3.3.10) for the parameters is shown in Figure 3.6(a) and the
corresponding admissible region (3.3.12) for the autocorrelations in Figure 3.6(b). The latter
shows whether a given pair of autocorrelations 𝜌1 and 𝜌2 is consistent with the assumption
that the model is an MA(2) process. If they are consistent, the values of the parameters
𝜃1 and 𝜃2 can be obtained by solving the nonlinear equations (3.3.11). To facilitate this
calculation, Chart C in the Collection of Tables and Charts in Part Five has been prepared
so that the values of 𝜃1 and 𝜃2 can be read off directly, given 𝜌1 and 𝜌2.

Spectrum. Using (3.3.5), the spectrum of the MA(2) process is

𝑝(𝑓 ) = 2𝜎2
𝑎
|1 − 𝜃1𝑒

−𝑖2𝜋𝑓 − 𝜃2𝑒
−𝑖4𝜋𝑓 |2

= 2𝜎2
𝑎
[1 + 𝜃21 + 𝜃22 − 2𝜃1(1 − 𝜃2) cos(2𝜋𝑓 ) − 2𝜃2 cos(4𝜋𝑓 )]

0 < 𝑓 <
1
2

(3.3.13)

and is the reciprocal of the spectrum (3.2.29) of a second-order autoregressive process,
apart from the constant 2𝜎2

𝑎
.

Partial Autocorrelation Function. The exact expression for the partial autocorrelation
function of an MA(2) process is complicated, but it is dominated by the sum of two
exponentials if the roots of the characteristic equation 1 − 𝜃1𝐵 − 𝜃2𝐵

2 = 0 are real, and
by a damped sine wave if the roots are complex. Thus, it behaves like the autocorrelation
function of an AR(2) process. The autocorrelation functions and partial autocorrelation
functions for various values of the parameters within the invertible region are shown in
Figure 3.7. Comparison of Figure 3.7 with Figure 3.2, which shows the corresponding
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(a)

(b)

FIGURE 3.6 Admissible regions for (a) 𝜃1, 𝜃2 and (b) 𝜌1, 𝜌2 for an invertible MA(2) process.

FIGURE 3.7 Autocorrelation and partial autocorrelation functions 𝜌𝑘 and 𝜙𝑘𝑘 for various MA(2)
models.
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autocorrelations and partial autocorrelations for an AR(2) process, illustrates the duality
between the MA(2) and the AR(2) processes.

Example. For illustration, consider the second-order moving average model

�̃�𝑡 = 𝑎𝑡 − 0.8𝑎𝑡−1 + 0.5𝑎𝑡−2

The variance of the process is 𝛾0 = 𝜎2
𝑎
(1 + (0.8)2 + (−0.5)2) = 1.89𝜎2

𝑎
, and from (3.3.11)

the theoretical autocorrelations are

𝜌1 =
−0.8(1 − (−0.5))

1 + (0.8)2 + (−0.5)2
= −1.20

1.89
= −0.635 𝜌2 =

−(−0.5)
1.89

= 0.265

and 𝜌𝑘 = 0, for 𝑘 > 2. The theoretical partial autocorrelations are obtained by solving
(3.2.31) successively; the first several values are𝜙11 = 𝜌1 = −0.635, 𝜙22 = (𝜌2 − 𝜌21)∕(1 −
𝜌21) = −0.232, 𝜙33 = 0.105, 𝜙44 = 0.191, and 𝜙55 = 0.102.

Figure 3.8 shows the autocorrelation and partial autocorrelation functions up to
15 lags for this example. Note the partial autocorrelations 𝜙𝑘𝑘 display an approximate
damped sinusoidal behavior with moderate rate of damping, similar to the behavior
depicted for region 4 in Figure 3.7. This is consistent with the fact that the roots of

𝜃(𝐵) = 0 are complex with modulus (damping factor) 𝐷 =
√
0.5 ≃ 0.71 and frequency

𝑓0 = cos−1(0.5657)∕(2𝜋) = 1∕6.48 in this example.
The autocorrelation and partial autocorrelation functions shown in Figure 3.8 were

generated using the function ARMAacf() in the R stats package. The commands needed
to reproduce the graph are shown below. Note that the moving average parameters in the
ARMAacf() function are again entered with their signs reversed since R uses positive signs
in defining the moving average operator, rather than the negative signs used here.
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FIGURE 3.8 (a) Autocorrelation function and (b) partial autocorrelation function for the MA(2)
model �̃�𝑡 = 𝑎𝑡 − 0.8𝑎𝑡−1 + 0.5𝑎𝑡−2.
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> ACF=ARMAacf(ar=0,ma=c(-0.8,+0.5),lag.max=15,pacf=FALSE)[-1]
> PACF=ARMAacf(ar=0,ma=c(-0.8,+0.5),lag.max=15,pacf=TRUE)
> par(mfrow=c(2,1))
> plot(ACF,type=’h’,ylim=c(-0.8,0.6),xlab=’lag’,main=’(a): ACF’)
> abline(h=0)
> plot(PACF,type=’h’,ylim=c(-0.8,0.6),xlab=’lag’,main=’(b):PACF’)
> abline(h=0)
> ACF % Retrieves the autocorrelation coefficients
> PACF % Retrieves the partial autocorrelation coefficients

3.3.5 Duality Between Autoregressive and Moving Average Processes

The previous sections have examined the properties of autoregressive and moving average
processes and discussed the duality between these processes. As illustrated in Table 3.2 at
the end of this chapter, this duality has the following consequences:

1. In a stationary autoregressive process of order 𝑝, 𝑎𝑡 can be represented as a finite
weighted sum of previous �̃�’s, or �̃�𝑡 as an infinite weighted sum

𝑧𝑡 = 𝜙−1(𝐵)𝑎𝑡
of previous 𝑎’s. Conversely, an invertible moving average process of order 𝑞, �̃�𝑡, can
be represented as a finite weighted sum of previous 𝑎’s, or 𝑎𝑡 as an infinite weighted
sum

𝜃−1(𝐵)�̃�𝑡 = 𝑎𝑡

of previous �̃�’s.

2. The finite MA process has an autocorrelation function that is zero beyond a certain
point, but since it is equivalent to an infinite AR process, its partial autocorrelation
function is infinite in extent and is dominated by damped exponentials and/or damped
sine waves. Conversely, the AR process has a partial autocorrelation function that is
zero beyond a certain point, but its autocorrelation function is infinite in extent and
consists of a mixture of damped exponentials and/or damped sine waves.

3. For an autoregressive process of finite order 𝑝, the parameters are not required to
satisfy any conditions to ensure invertibility. However, for stationarity, the roots of
𝜙(𝐵) = 0 must lie outside the unit circle. Conversely, the parameters of the MA
process are not required to satisfy any conditions to ensure stationarity. However, for
invertibility, the roots of 𝜃(𝐵) = 0 must lie outside the unit circle.

4. The spectrum of amoving average process has an inverse relationship to the spectrum
of the corresponding autoregressive process.

3.4 MIXED AUTOREGRESSIVE--MOVING AVERAGE PROCESSES

3.4.1 Stationarity and Invertibility Properties

We have noted earlier that to achieve parsimony it may be necessary to include both
autoregressive andmoving average terms. Thus, we may need to employ the mixed ARMA
model

�̃�𝑡 = 𝜙1�̃�𝑡−1 +⋯ + 𝜙𝑝�̃�𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 −⋯ − 𝜃𝑞𝑎𝑡−𝑞 (3.4.1)
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that is,

(1 − 𝜙1𝐵 − 𝜙2𝐵
2 −⋯ − 𝜙𝑝𝐵

𝑝)�̃�𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵
2 −⋯ − 𝜃𝑞𝐵

𝑞)𝑎𝑡

or

𝜙(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡

where 𝜙(𝐵) and 𝜃(𝐵) are polynomial operators in 𝐵 of degrees 𝑝 and 𝑞.
We subsequently refer to this process as an ARMA(𝑝, 𝑞) process. It may be thought of

in two ways:

1. As a 𝑝th-order autoregressive process

𝜙(𝐵)�̃�𝑡 = 𝑒𝑡

with 𝑒𝑡 following the 𝑞th-order moving average process 𝑒𝑡 = 𝜃(𝐵)𝑎𝑡.
2. As a 𝑞th-order moving average process

�̃�𝑡 = 𝜃(𝐵)𝑏𝑡

with 𝑏𝑡 following the 𝑝th-order autoregressive process 𝜙(𝐵)𝑏𝑡 = 𝑎𝑡 so that

𝜙(𝐵)�̃�𝑡 = 𝜃(𝐵)𝜙(𝐵)𝑏𝑡 = 𝜃(𝐵)𝑎𝑡

It is obvious that moving average terms on the right of (3.4.1) will not affect the earlier
arguments, which establish conditions for stationarity of an autoregressive process. Thus,
𝜙(𝐵)�̃�𝑡 = 𝜃(𝐵)𝑎𝑡 will define a stationary process provided that the characteristic equation
𝜙(𝐵) = 0 has all its roots outside the unit circle. Similarly, the roots of 𝜃(𝐵) = 0 must lie
outside the unit circle if the process is to be invertible.

Thus, the stationary and invertible ARMA(𝑝, 𝑞) process (3.4.1) has both the infinite
moving average representation

�̃�𝑡 = 𝜓(𝐵)𝑎𝑡 =
∞∑
𝑗=0

𝜓𝑗𝑎𝑡−𝑗

where 𝜓(𝐵) = 𝜙−1(𝐵)𝜃(𝐵), and the infinite autoregressive representation

𝜋(𝐵)�̃�𝑡 = �̃�𝑡 −
∞∑
𝑗=1

𝜋𝑗�̃�𝑡−𝑗 = 𝑎𝑡

where 𝜋(𝐵) = 𝜃−1(𝐵)𝜙(𝐵), with both the 𝜓𝑗 weights and the 𝜋𝑗 weights being absolutely
summable. The weights 𝜓𝑗 are determined from the relation 𝜙(𝐵)𝜓(𝐵) = 𝜃(𝐵) to satisfy

𝜓𝑗 = 𝜙1𝜓𝑗−1 + 𝜙2𝜓𝑗−2 +⋯ + 𝜙𝑝𝜓𝑗−𝑝 − 𝜃𝑗 𝑗 > 0

with 𝜓0 = 1, 𝜓𝑗 = 0 for 𝑗 < 0, and 𝜃𝑗 = 0 for 𝑗 > 𝑞, while from the relation 𝜃(𝐵)𝜋(𝐵) =
𝜙(𝐵) the 𝜋𝑗 are determined to satisfy

𝜋𝑗 = 𝜃1𝜋𝑗−1 + 𝜃2𝜋𝑗−2 +⋯ + 𝜃𝑞𝜋𝑗−𝑞 + 𝜙𝑗 𝑗 > 0
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with the 𝜋0 = −1, 𝜋𝑗 = 0 for 𝑗 < 0, and 𝜙𝑗 = 0 for 𝑗 > 𝑝. From these relations, the 𝜓𝑗 and
𝜋𝑗 weights can readily be computed recursively in terms of the 𝜙𝑖 and 𝜃𝑖 coefficients.

3.4.2 Autocorrelation Function and Spectrum of Mixed Processes

Autocorrelation Function. The autocorrelation function of the mixed process may be
derived by a method similar to that used for autoregressive processes in Section 3.2.2.
On multiplying throughout in (3.4.1) by �̃�𝑡−𝑘 and taking expectations, we see that the
autocovariance function satisfies the difference equation

𝛾𝑘 = 𝜙1𝛾𝑘−1 +⋯ + 𝜙𝑝𝛾𝑘−𝑝 + 𝛾𝑧𝑎(𝑘) − 𝜃1𝛾𝑧𝑎(𝑘 − 1) −⋯ − 𝜃𝑞𝛾𝑧𝑎(𝑘 − 𝑞)

where 𝛾𝑧𝑎(𝑘) is the cross-covariance function between 𝑧 and 𝑎 and is defined by 𝛾𝑧𝑎(𝑘) =
𝐸[�̃�𝑡−𝑘𝑎𝑡]. Since 𝑧𝑡−𝑘 depends only on shocks that have occurred up to time 𝑡 − 𝑘 through
the infinite moving average representation �̃�𝑡−𝑘 = 𝜓(𝐵)𝑎𝑡−𝑘 =

∑∞
𝑗=0 𝜓𝑗𝑎𝑡−𝑘−𝑗 , it follows

that

𝛾𝑧𝑎(𝑘) =

{
0 𝑘 > 0

𝜓−𝑘𝜎
2
𝑎

𝑘 ≤ 0

Hence, the preceding equation for 𝛾𝑘 may be expressed as

𝛾𝑘 = 𝜙1𝛾𝑘−1 +⋯ + 𝜙𝑝𝛾𝑘−𝑝 − 𝜎2
𝑎
(𝜃𝑘𝜓0 + 𝜃𝑘+1𝜓1 +⋯ + 𝜃𝑞𝜓𝑞−𝑘) (3.4.2)

with the convention that 𝜃0 = −1. We see that this implies

𝛾𝑘 = 𝜙1𝛾𝑘−1 + 𝜙2𝛾𝑘−2 +⋯ + 𝜙𝑝𝛾𝑘−𝑝 𝑘 ≥ 𝑞 + 1

and hence

𝜌𝑘 = 𝜙1𝜌𝑘−1 + 𝜙2𝜌𝑘−2 +⋯ + 𝜙𝑝𝜌𝑘−𝑝 𝑘 ≥ 𝑞 + 1 (3.4.3)

or

𝜙(𝐵)𝜌𝑘 = 0 𝑘 ≥ 𝑞 + 1

Thus, for the ARMA(𝑝, 𝑞) process, there will be 𝑞 autocorrelations 𝜌1,… , 𝜌𝑞 whose values
depend directly on the choice of the 𝑞 moving average parameters 𝜃𝑖, as well as on the
𝑝 autoregressive parameters 𝜙𝑗 . Also, the 𝑝 values 𝜌𝑞−𝑝+1,… , 𝜌𝑞 provide the necessary
starting values for the difference equation𝜙(𝐵)𝜌𝑘 = 0, where𝑘 ≥ 𝑞 + 1, which then entirely
determines the autocorrelations at higher lags. If 𝑞 − 𝑝 < 0, the whole autocorrelation
function 𝜌𝑗 , for 𝑗 = 0, 1, 2,…, will consist of a mixture of damped exponentials and/or
damped sine waves, whose nature is dictated by (the roots of) the polynomial𝜙(𝐵) and the
starting values. If, however, 𝑞 − 𝑝 ≥ 0, there will be 𝑞 − 𝑝 + 1 initial values 𝜌0, 𝜌1,… , 𝜌𝑞−𝑝,
which do not follow this general pattern. These facts are useful in identifying mixed series.

Variance. When 𝑘 = 0, we have

𝛾0 = 𝜙1𝛾1 +⋯ + 𝜙𝑝𝛾𝑝 + 𝜎2
𝑎
(1 − 𝜃1𝜓1 −⋯ − 𝜃𝑞𝜓𝑞) (3.4.4)
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which has to be solved along with the 𝑝 equations (3.4.2) for 𝑘 = 1, 2,… 𝑝 to obtain
𝛾0, 𝛾1,… , 𝛾𝑝.

Spectrum. Using (3.1.12), the spectrum of the mixed ARMA(𝑝, 𝑞) process is

𝑝(𝑓 ) = 2𝜎2
𝑎

|𝜃(𝑒−𝑖2𝜋𝑓 )|2
|𝜙(𝑒−𝑖2𝜋𝑓 )|2

= 2𝜎2
𝑎

|1 − 𝜃1𝑒
−𝑖2𝜋𝑓 −⋯ − 𝜃𝑞𝑒

−𝑖2𝑞𝜋𝑓 |2
|1 − 𝜙1𝑒

−𝑖2𝜋𝑓 −⋯ − 𝜙𝑝𝑒
−𝑖2𝑝𝜋𝑓 |2 0 ≤ 𝑓 ≤

1
2

(3.4.5)

Partial Autocorrelation Function. The mixed process 𝜙(𝐵)�̃�𝑡 = 𝜃(𝐵)𝑎𝑡 can be written as

𝑎𝑡 = 𝜃−1(𝐵)𝜙(𝐵)�̃�𝑡

where 𝜃−1(𝐵) is an infinite series in 𝐵. Hence, the partial autocorrelation function of a
mixed process is infinite in extent. It behaves eventually like the partial autocorrelation
function of a pure moving average process, being dominated by a mixture of damped
exponentials and/or damped sine waves, depending on the order of the moving average and
the values of the parameters it contains.

3.4.3 First Order Autoregressive First-Order Moving Average Process

A mixed ARMA process of considerable practical importance is the ARMA(1, 1) process

�̃�𝑡 − 𝜙1�̃�𝑡−1 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 (3.4.6)

that is,

(1 − 𝜙1𝐵)�̃�𝑡 = (1 − 𝜃1𝐵)𝑎𝑡

We now derive some of its more important properties.

Stationarity and Invertibility Conditions. First, we note that the process is stationary if
−1 < 𝜙1 < 1, and invertible if −1 < 𝜃1 < 1. Hence, the admissible parameter space is the
square shown in Figure 3.9(a). In addition, from the relations 𝜓1 = 𝜙1𝜓0 − 𝜃1 = 𝜙1 − 𝜃1
and 𝜓𝑗 = 𝜙1𝜓𝑗−1 for 𝑗 > 1, we find that the 𝜓𝑗 weights are given by 𝜓𝑗 = (𝜙1 − 𝜃1)𝜙

𝑗−1
1 ,

𝑗 ≥ 1, and similarly it is easily seen that 𝜋𝑗 = (𝜙1 − 𝜃1)𝜃
𝑗−1
1 , 𝑗 ≥ 1, for the stationary and

invertible ARMA(1, 1) process.

Autocorrelation Function. From (3.4.2) and (3.4.4) we obtain

𝛾0 = 𝜙1𝛾1 + 𝜎2
𝑎
(1 − 𝜃1𝜓1)

𝛾1 = 𝜙1𝛾0 − 𝜃1𝜎
2
𝑎

𝛾𝑘 = 𝜙1𝛾𝑘−1 𝑘 ≥ 2
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(a)

(b)

FIGURE 3.9 Admissible regions for (a) 𝜙1, 𝜃1 and (b) 𝜌1, 𝜌2 for a stationary and invertible
ARMA(1, 1) process.

with 𝜓1 = 𝜙1 − 𝜃1. Hence, solving the first two equations for 𝛾0 and 𝛾1, the autocovariance
function of the process is

𝛾0 =
1 + 𝜃21 − 2𝜙1𝜃1

1 − 𝜙2
1

𝜎2
𝑎

𝛾1 =
(1 − 𝜙1𝜃1)(𝜙1 − 𝜃1)

1 − 𝜙2
1

𝜎2
𝑎

(3.4.7)

𝛾𝑘 = 𝜙1𝛾𝑘−1 𝑘 ≥ 2

The last equation gives 𝜌𝑘 = 𝜙1𝜌𝑘−1, 𝑘 ≥ 2, so that 𝜌𝑘 = 𝜌1𝜙
𝑘−1
1 , 𝑘 > 1. Thus, the auto-

correlation function decays exponentially from the starting value 𝜌1, which depends on 𝜃1
and 𝜙1.

2 This exponential decay is smooth if 𝜙1 is positive and alternates if 𝜙1 is negative.
Furthermore, the sign of 𝜌1 is determined by the sign of (𝜙1 − 𝜃1) and dictates from which
side of zero the exponential decay takes place.

2By contrast, the autocorrelation function for the AR(1) process decays exponentially from the starting value
𝜌0 = 1.



Box3G Date: May 21, 2015 Time: 9:7 am

80 LINEAR STATIONARY MODELS

FIGURE 3.10 Autocorrelation and partial autocorrelation functions 𝜌𝑘 and 𝜙𝑘𝑘 for various
ARMA(1, 1) models.

The first two autocorrelations may be expressed in terms of the parameters of the
ARMA(1,1) process, as follows:

𝜌1 =
(1 − 𝜙1𝜃1)(𝜙1 − 𝜃1)
1 + 𝜃21 − 2𝜙1𝜃1

(3.4.8)

𝜌2 = 𝜙1𝜌1

Using these expressions and the stationarity and invertibility conditions, it may be shown
that 𝜌1 and 𝜌2 must lie in the region

|𝜌2| < |𝜌1|
𝜌2 > 𝜌1(2𝜌1 + 1) 𝜌 < 0 (3.4.9)

𝜌2 > 𝜌1(2𝜌1 − 1) 𝜌1 > 0

Figure 3.9(b) shows the admissible space for 𝜌1 and 𝜌2; that is, it indicates which combi-
nations of 𝜌1 and 𝜌2 are possible for a mixed (1, 1) stationary, invertible process.

Partial Autocorrelation Function. The partial autocorrelation function of the mixed
ARMA(1, 1) process consists of a single initial value 𝜙11 = 𝜌1. Thereafter, it behaves
like the partial autocorrelation function of a pure MA(1) process and is dominated by a
damped exponential. Thus, as shown in Figure 3.10, when 𝜃1 is positive, it is dominated
by a smoothly damped exponential that decays from a value of 𝜌1, with sign determined by
the sign of (𝜙1 − 𝜃1). Similarly, when 𝜃1 is negative, it is dominated by an exponential that
oscillates as it decays from a value of 𝜌1, with sign determined by the sign of (𝜙1 − 𝜃1).
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FIGURE 3.11 Theoretical autocorrelation and partial autocorrelation functions of an ARMA(1,1)
process with 𝜙 = 0.8 and 𝜃 = −0.6.

Numerical Example. For numerical illustration, consider the ARMA(1, 1) process,

(1 − 0.8𝐵)�̃�𝑡 = (1 + 0.6𝐵)𝑎𝑡

so that 𝜙 = 0.8 and 𝜃 = −0.6. Further assuming 𝜎2
𝑎
= 1, we find from (3.4.7) and (3.4.8)

that the variance of �̃�𝑡 is 𝛾0 = 6.444, and 𝜌1 = 0.893. Also, the autocorrelation function
satisfies 𝜌𝑗 = 0.8𝜌𝑗−1, 𝑗 ≥ 2, so that 𝜌𝑗 = 0.893(0.8)𝑗−1, for 𝑗 ≥ 2.

The autocorrelation and partial autocorrelation functions are shown in Figure 3.11.
The exponential decay in the autocorrelation function is clearly evident from the graph.
The partial autocorrelation function also exhibits an exponentially decaying pattern that
oscillates in sign due to the negative value of 𝜃. The figure was generated in R using the
commands included below. Notice again that the parameter 𝜃, although negative in this
example, is entered as + 0.6 since R defines the MA operator 𝜃(𝐵) as (1 + 𝜃𝐵) rather that
(1 − 𝜃𝐵) as done in this text.

> ACF=ARMAacf(ar=0.8,ma=0.6,20)[-1]
> PACF=ARMAacf(ar=0.8,ma=0.6,20,pacf=TRUE)
> win.graph(width=8,height=4)
> par(mfrow=c(1,2))
> plot(ACF,type="h",xlab="lag");abline(h=0)
> plot(PACF,type="h",xlab="lag");abline(h=0)

3.4.4 Summary

Figure 3.12 brings together the admissible regions for the parameters and for the auto-
correlations 𝜌1, 𝜌2 for AR(2), MA(2), and ARMA(1, 1) processes, which are restricted to
being both stationary and invertible. Table 3.2 summarizes the properties of mixed ARMA
processes and brings together all the important results for autoregressive, moving average,
and mixed processes, which will be needed in Chapter 6 to identify models for observed
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FIGURE 3.12 Admissible regions for the parameters and 𝜌1, 𝜌2 for AR(2), MA(2), and
ARMA(1, 1) processes that are restricted to being both stationary and invertible.

time series. In the next chapter, we extend the mixed ARMAmodel to produce models that
can describe nonstationary behavior of the kind that is frequently met in practice.

APPENDIX A3.1 AUTOCOVARIANCES, AUTOCOVARIANCE
GENERATING FUNCTION, AND STATIONARITY CONDITIONS FOR A
GENERAL LINEAR PROCESS

Autocovariances. The autocovariance at lag 𝑘 of the linear process

�̃�𝑡 =
∞∑
𝑗=0

𝜓𝑗𝑎𝑡−𝑗

with 𝜓0 = 1 is clearly

𝛾𝑘 = 𝐸[𝑧𝑡�̃�𝑡+𝑘]

= 𝐸

[ ∞∑
𝑗=0

∞∑
ℎ=0

𝜓𝑗𝜓ℎ𝑎𝑡−𝑗𝑎𝑡+𝑘−ℎ

]

= 𝜎2
𝑎

∞∑
𝑗=0

𝜓𝑗𝜓𝑗+𝑘 (A3.1.1)

using the property (3.1.2) for the autocovariance function of white noise.

Autocovariance Generating Function. The result (A3.1.1) may be substituted in the au-
tocovariance generating function

𝛾(𝐵) =
∞∑

𝑘=−∞
𝛾𝑘𝐵

𝑘 (A3.1.2)
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to give

𝛾(𝐵) = 𝜎2
𝑎

∞∑
𝑘=−∞

∞∑
𝑗=0

𝜓𝑗𝜓𝑗+𝑘𝐵
𝑘

= 𝜎2
𝑎

∞∑
𝑗=0

∞∑
𝑘=−𝑗

𝜓𝑗𝜓𝑗+𝑘𝐵
𝑘

since 𝜓ℎ = 0 for ℎ < 0. Writing 𝑗 + 𝑘 = ℎ, so that 𝑘 = ℎ − 𝑗, we have

𝛾(𝐵) = 𝜎2
𝑎

∞∑
𝑗=0

∞∑
ℎ=0

𝜓𝑗𝜓ℎ𝐵
ℎ−𝑗

= 𝜎2
𝑎

∞∑
ℎ=0

𝜓ℎ𝐵
ℎ

∞∑
𝑗=0

𝜓𝑗𝐵
−𝑗

that is,

𝛾(𝐵) = 𝜎2
𝑎
𝜓(𝐵)𝜓(𝐵−1) = 𝜎2

𝑎
𝜓(𝐵)𝜓(𝐹 ) (A3.1.3)

which is the result (3.1.11) quoted in the text.

Stationarity Conditions. If we substitute 𝐵 = 𝑒−𝑖2𝜋𝑓 and 𝐹 = 𝐵−1 = 𝑒𝑖2𝜋𝑓 in the auto-
covariance generating function (A3.1.2), we obtain half the power spectrum. Hence, the
power spectrum of a linear process is

𝑝(𝑓 ) = 2𝜎2
𝑎
𝜓(𝑒−𝑖2𝜋𝑓 )𝜓(𝑒𝑖2𝜋𝑓 )

= 2𝜎2
𝑎
|𝜓(𝑒−𝑖2𝜋𝑓 )|2 0 ≤ 𝑓 ≤

1
2 (A3.1.4)

It follows that the variance of the process is

𝜎2
𝑧
=
∫

1∕2

0
𝑝(𝑓 )𝑑𝑓 = 2𝜎2

𝑎 ∫

1∕2

0
𝜓(𝑒−𝑖2𝜋𝑓 )𝜓(𝑒𝑖2𝜋𝑓 ) df (A3.1.5)

Now if the integral (A3.1.5) is to converge, it may be shown (Grenander and Rosenblatt,
1957) that the infinite series 𝜓(𝐵) must converge for 𝐵 on or within the unit circle.
More directly, for the linear process �̃�𝑡 =

∑∞
𝑗=0 𝜓𝑗𝑎𝑡−𝑗 , the condition

∑∞
𝑗=0 |𝜓𝑗| < ∞ of

absolute summability of the coefficients 𝜓𝑗 implies (see Brockwell and Davis, 1991;
Fuller, 1996) that the sum

∑∞
𝑗=0 𝜓𝑗𝑎𝑡−𝑗 converges with probability 1 and hence represents

a valid stationary process.

APPENDIX A3.2 RECURSIVE METHOD FOR CALCULATING ESTIMATES
OF AUTOREGRESSIVE PARAMETERS

We now show how Yule--Walker estimates for the parameters of an AR(𝑝 + 1) model may
be obtained from the estimates for an AR(𝑝) model fitted to the same time series. This
recursive method of calculation, which is due to Levinson (1947) and Durbin (1960), can
be used to approximate the partial autocorrelation function, as described in Section 3.2.6.



Box3G Date: May 21, 2015 Time: 9:7 am

RECURSIVEMETHODFORCALCULATINGESTIMATESOFAUTOREGRESSIVEPARAMETERS 85

To illustrate the recursion, consider equations (3.2.35). Yule--Walker estimates are
obtained for 𝑘 = 2, 3 from

𝑟2 = �̂�21𝑟1 + �̂�22

𝑟1 = �̂�21 + �̂�22𝑟1 (A3.2.1)

and

𝑟3 = �̂�31𝑟2 + �̂�32𝑟1 + �̂�33

𝑟2 = �̂�31𝑟1 + �̂�32 + �̂�33𝑟1 (A3.2.2)

𝑟1 = �̂�31 + �̂�32𝑟1 + �̂�33𝑟2

The coefficients �̂�31 and �̂�32 may be expressed in terms of �̂�33 using the last two equations
of (A3.2.2). The solution may be written in matrix form as

(
�̂�31

�̂�32

)
= 𝐑−1

2

(
𝑟2 − �̂�33𝑟1

𝑟1 − �̂�33𝑟2

)
(A3.2.3)

where

𝐑2 =
[
𝑟1 1
1 𝑟1

]

Now, (A3.2.3) may be written as
[
�̂�31

�̂�32

]
= 𝐑−1

2

[
𝑟2
𝑟1

]
− �̂�33𝐑−1

2

[
𝑟1
𝑟2

]
(A3.2.4)

Using the fact that (A3.2.1) may also be written as
[
�̂�21

�̂�22

]
= 𝐑−1

2

[
𝑟2
𝑟1

]

it follows that (A3.2.4) becomes
[
�̂�31

�̂�32

]
=

[
�̂�21

�̂�22

]
− �̂�33

[
�̂�22

�̂�21

]

that is,

�̂�31 = �̂�21 − �̂�33�̂�22

�̂�32 = �̂�22 − �̂�33�̂�21 (A3.2.5)

To complete the calculation of �̂�31 and �̂�32, we need an expression for �̂�33. On substituting
(A3.2.5) in the first of the equations (A3.2.2), we obtain

�̂�33 =
𝑟3 − �̂�21𝑟2 − �̂�22𝑟1

1 − �̂�21𝑟1 − �̂�22𝑟2
(A3.2.6)
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Thus, the partial autocorrelation �̂�33 is first calculated from �̂�21 and �̂�22, using (A3.2.6),
and then the other two coefficients, �̂�31 and �̂�32, may be obtained from (A3.2.5).

In general, the recursive formulas are

�̂�𝑝+1,𝑗 = �̂�𝑝𝑗 − �̂�𝑝+1,𝑝+1�̂�𝑝,𝑝+1−𝑗 𝑗 = 1, 2,… , 𝑝 (A3.2.7)

�̂�𝑝+1,𝑝+1 =
𝑟𝑝+1 −

∑𝑝

𝑗=1 �̂�𝑝𝑗𝑟𝑝+1−𝑗

1 −
∑𝑝

𝑗=1 �̂�𝑝𝑗𝑟𝑗

(A3.2.8)

EXERCISES

3.1 Write the following models in 𝐵 notation:

(1) �̃�𝑡 − 0.5�̃�𝑡−1 = 𝑎𝑡

(2) �̃�𝑡 = 𝑎𝑡 − 1.3𝑎𝑡−1 + 0.4𝑎𝑡−2
(3) �̃�𝑡 − 0.5�̃�𝑡−1 = 𝑎𝑡 − 1.3𝑎𝑡−1 + 0.4𝑎𝑡−2

3.2 For each of the models of Exercise 3.1 and also for the following models, state
whether it is (a) stationary or (b) invertible.
(4) �̃�𝑡 − 1.5�̃�𝑡−1 + 0.6�̃�𝑡−2 = 𝑎𝑡

(5) �̃�𝑡 − �̃�𝑡−1 = 𝑎𝑡 − 0.5𝑎𝑡−1
(6) �̃�𝑡 − �̃�𝑡−1 = 𝑎𝑡 − 1.3𝑎𝑡−1 + 0.3𝑎𝑡−2

3.3. For each of the models in Exercise 3.1, obtain:

(a) The first four 𝜓𝑗 weights

(b) The first four 𝜋𝑗 weights

(c) The autocovariance generating function

(d) The first four autocorrelations 𝜌𝑗
(e) The variance of �̃�𝑡 assuming that 𝜎2

𝑎
= 1.0

3.4. Calculate the first fifteen 𝜓𝑗 weights for each of the three models in Exercise 3.2
using the function ARMAtoMA in R. See help(ARMAtoMA) for details.

3.5. Classify each of the models (1) to (4) in Exercises 3.1 and 3.2 as a member of the
class of ARMA(p, q) processes.

3.6. (a) Write down the Yule--Walker equations for models (1) and (4) considered in
Exercises 3.1 and 3.2.

(b) Solve these equations to obtain 𝜌1 and 𝜌2 for the two models.

(c) Obtain the partial autocorrelation function for the two models.

3.7. Consider the first-order autoregressive model 𝑧𝑡 = 𝜃0 + 𝜙𝑧𝑡−1 + 𝑎𝑡, where the con-
stant 𝜃0 is a function of the mean of the series.

(a) Derive the autocovariances 𝛾𝑘 = 𝐸([𝑧𝑡 − 𝜇][𝑧𝑡−𝑘 − 𝜇]) for this series.
(b) Calculate and plot the autocorrelation function for 𝜙 = 0.8 using the R command

ARMAacf(); see help(ARMAacf) for details.
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(c) Calculate and plot the partial autocorrelation function for the same process.

3.8. Consider the mixed ARMA(1,1) model 𝑧𝑡 − 𝜙𝑧𝑡−1 = 𝑎𝑡 − 𝜃𝑎𝑡−1, where −1 < 𝜙 < 1
and 𝐸(𝑧𝑡) is assumed to be zero for convenience.

(a) Derive the autocovariances 𝛾𝑘 = 𝐸([𝑧𝑡 − 𝜇][𝑧𝑡−𝑘 − 𝜇]) for this series.
(b) Calculate and plot the autocorrelation function for 𝜙 = 0.9 and 𝜃 = −0.3 using

R (see Exercise 3.7).

(c) Calculate and plot the partial autocorrelation function for the same process.

3.9. For the AR(2) process �̃�𝑡 − 1.0�̃�𝑡−1 + 0.5�̃�𝑡−2 = 𝑎𝑡:

(a) Calculate 𝜌1.

(b) Using 𝜌0 and 𝜌1 as starting values and the difference equation form for the
autocorrelation function, calculate the values of 𝜌𝑘 for 𝑘 = 2,… , 15.

(c) Use the plotted autocorrelation function to estimate the period and damping factor
of the autocorrelation function.

(d) Check the values in (c) by direct calculation using the parameter values and the
related roots 𝐺−1

1 and 𝐺−1
2 of 𝜙(𝐵) = 1 − 1.0𝐵 + 0.5𝐵2.

3.10. (a) Plot the power spectrum 𝑔(𝑓 ) of the autoregressive process of Exercise 3.9, and
show that it has a peak at a period that is close to the period in the autocorrelation
function.

(b) Graphically, or otherwise, estimate the proportion of the variance of the series in
the frequency band between 𝑓 = 0.0 and 𝑓 = 0.2 cycle per data interval.

3.11. (a) Why is it important to factorize the autoregressive and moving average operators
after fitting a model to an observed series?

(b) It was shown by Jenkins (1975) that the number of mink skins 𝑧𝑡 traded annually
between 1848 and 1909 in North Canada is adequately represented by the AR(4)
model

(1 − 0.82𝐵 + 0.22𝐵2 + 0.28𝐵4)[ln(𝑧𝑡) − 𝜇] = 𝑎𝑡

Factorize the autoregressive operator and explain what the factors reveal about the
autocorrelation function and the underlying nature of the mink series. The data for
the period 1850--1911 are listed as Series N in Part Five of this book. Note that the
roots of 𝜙(𝐵) = 0 can be calculated using the R commond polyroot(), where the
autoregressive parameters are entered with their signs reversed; see help(polyroot)
for details.

3.12. Calculate and plot the theoretical autocorrelation function and partial autocorrelation
function for the AR(4) model specified in Exercise 3.11(b).
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4
LINEAR NONSTATIONARYMODELS

Many empirical time series (e.g., stock price series) behave as though they had no fixed
mean. Even so, they exhibit homogeneity in the sense that apart from local level, or perhaps
local level and trend, one part of the series behaves much like any other part. Models that
describe such homogeneous nonstationary behavior can be obtained by assuming that some
suitable difference of the process is stationary. In this chapter, we examine the properties of
the important class of models for which the 𝑑th difference of the series is a stationary mixed
autoregressive--moving average process. These models are called autoregressive integrated
moving average (ARlMA) processes.

4.1 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE PROCESSES

4.1.1 Nonstationary First-Order Autoregressive Process

Figure 4.1 shows four time series that have arisen in forecasting and control problems.
All of them exhibit behavior suggestive of nonstationarity. Series A, C, and D repre-
sent ‘‘uncontrolled’’ outputs (concentration, temperature, and viscosity, respectively) from
three different chemical processes. These series were collected to show the effect on these
outputs of uncontrolled and unmeasured disturbances such as variations in feedstock and
ambient temperature. The temperature Series C was obtained by temporarily disconnecting
the controllers on the pilot plant involved and recording the subsequent temperature fluc-
tuations. Both A and D were collected on full-scale processes, where it was necessary to
maintain some output quality characteristic as close as possible to a fixed level. To achieve
this control, another variable had been manipulated to approximately cancel out variations
in the output. However, the effect of these manipulations on the output was accurately

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
○c 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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FIGURE 4.1 Typical time series arising in forecasting and control problems.

known in each case, so that it was possible to compensate numerically for the control ac-
tion. That is, it was possible to calculate very nearly the values of the series that would have
been obtained if no corrective action had been taken. It is these compensated values that are
recorded here and referred to as the ‘‘uncontrolled’’ series. Series B consists of the daily
IBM stock prices during a period beginning in May 1961. A complete list of all the series
is given in the collection of time series at the end of this book. In Figure 4.1, 100 successive
observations have been plotted from each series and the points joined by straight lines.

There are an unlimited number of ways in which a process can be nonstationary.
However, the types of economic and industrial series that we wish to analyze frequently
exhibit a particular kind of homogeneous nonstationary behavior that can be represented
by a stochastic model, which is a modified form of the autoregressive--moving average



Box3G Date: May 21, 2015 Time: 9:22 am

90 LINEAR NONSTATIONARY MODELS

FIGURE 4.2 Realization of the nonstationary first-order autoregressive process �̃�𝑡 = 2�̃�𝑡−1 + 𝑎𝑡
with 𝜎2

𝑎
= 1.

(ARMA) model. In Chapter 3, we considered the mixed ARMA model

𝜙(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡 (4.1.1)

with 𝜙(𝐵) and 𝜃(𝐵) polynomial operators in 𝐵, of degree 𝑝 and 𝑞, respectively. To ensure
stationarity, the roots of𝜙(𝐵) = 0must lie outside the unit circle. A naturalway of obtaining
nonstationary processes is to relax this restriction.

To gain some insight into the possibilities, consider the first-order autoregressivemodel,

(1 − 𝜙𝐵)�̃�𝑡 = 𝑎𝑡 (4.1.2)

which is stationary for |𝜙| < 1. Let us study the behavior of this process for 𝜙 = 2, a
value outside the stationary range. Figure 4.2 shows a series �̃�𝑡 generated by the model
�̃�𝑡 = 2�̃�𝑡−1 + 𝑎𝑡 using a set of unit random normal deviates 𝑎𝑡 and setting �̃�0 = 0.7. It is
seen that after a short induction period, the series ‘‘breaks loose’’ and essentially follows
an exponential curve, with the generating 𝑎𝑡’s playing almost no further part. The behavior
of series generated by processes of higher order, which violate the stationarity condition, is
similar. Furthermore, this behavior is essentially the same whether or not moving average
terms are introduced on the right of the model.

4.1.2 General Model for a Nonstationary Process Exhibiting Homogeneity

Autoregressive IntegratedMoving AverageModel. Although nonstationarymodels of the
kind described above are of value to represent explosive or evolutionary behavior (such
as bacterial growth), the applications that we describe in this book are not of this type. So
far, we have seen that an ARMA process is stationary if the roots of 𝜙(𝐵) = 0 lie outside
the unit circle, and exhibits explosive nonstationary behavior if the roots lie inside the unit
circle. The only case remaining is that the roots of 𝜙(𝐵) = 0 lie on the unit circle. It turns
out that the resulting models are of great value in representing homogeneous nonstationary
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time series. In particular, nonseasonal series are often well represented by models in which
one or more of these roots are unity and these are considered in the present chapter1.

Let us consider the model

𝜑(𝐵)�̃�𝑡 = 𝜃(𝐵)𝑎𝑡 (4.1.3)

where 𝜑(𝐵) is a nonstationary autoregressive operator such that 𝑑 of the roots of 𝜑(𝐵) = 0
are unity and the remainder lie outside the unit circle. Then the model can be written as

𝜑(𝐵)�̃�𝑡 = 𝜙(𝐵)(1 − 𝐵)𝑑�̃�𝑡 = 𝜃(𝐵)𝑎𝑡 (4.1.4)

where 𝜙(𝐵) is a stationary autoregressive operator. Since ∇𝑑�̃�𝑡 = ∇𝑑𝑧𝑡, for 𝑑 ≥ 1, where
∇ = 1 − 𝐵 is the differencing operator, we can write the model as

𝜙(𝐵)∇𝑑𝑧𝑡 = 𝜃(𝐵)𝑎𝑡 (4.1.5)

Equivalently, the process is defined by the two equations

𝜙(𝐵)𝑤𝑡 = 𝜃(𝐵)𝑎𝑡 (4.1.6)

and

𝑤𝑡 = ∇𝑑𝑧𝑡 (4.1.7)

Thus, we see that the model corresponds to assuming that the 𝑑th difference of the series
can be represented by a stationary, invertible ARMAprocess. An alternativeway of looking
at the process for 𝑑 ≥ 1 results from inverting (4.1.7) to give

𝑧𝑡 = 𝑆𝑑𝑤𝑡 (4.1.8)

where 𝑆 is the infinite summation operator defined by

𝑆𝑥𝑡 =
𝑡∑

ℎ=−∞
𝑥ℎ = (1 + 𝐵 + 𝐵2 +⋯)𝑥𝑡

= (1 − 𝐵)−1𝑥𝑡 = ∇−1𝑥𝑡

Thus,

𝑆 = (1 − 𝐵)−1 = ∇−1

The operator 𝑆2 is similarly defined as

𝑆2𝑥𝑡 = 𝑆𝑥𝑡 + 𝑆𝑥𝑡−1 + 𝑆𝑥𝑡−2 +⋯

=
𝑡∑

𝑖=−∞

𝑖∑
ℎ=−∞

𝑥ℎ = (1 + 2𝐵 + 3𝐵2 +⋯)𝑥𝑡

and so on for higher order 𝑑. Equation (4.1.8) implies that the process (4.1.5) can be
obtained by summing (or ‘‘integrating’’) the stationary process (4.1.6) 𝑑 times. Therefore,
we call the process (4.1.5) an autoregressive integrated moving average (ARIMA) process.

1In Chapter 9, we consider models, capable of representing seasonality of period 𝑠, for which the characteristic
equation has roots lying on the unit circle that are the 𝑠th roots of unity.
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The ARIMA models for nonstationary time series, which were also considered earlier by
Yaglom (1955), are of fundamental importance for forecasting and control as discussed
by Box and Jenkins (1962, 1963, 1965, 1968a, 1968b, 1969) and Box et al. (1967a).
Nonstationary processes were also discussed by Zadeh and Ragazzini (1950), Kalman
(1960), and Kalman and Bucy (1961). An earlier procedure for time series analysis that
employed differencing was the variate difference method (see Tintner (1940) and Rao and
Tintner (1963)). However, the motivation, methods, and objectives of this procedure were
quite different from those discussed here.

Technically, the infinite summation operator 𝑆 = (1 − 𝐵)−1 in (4.1.8) cannot actually
be used in defining the nonstationary ARlMA processes, since the infinite sums involved
will not be convergent. Instead, we can consider the finite summation operator 𝑆𝑚 for any
positive integer 𝑚, given by

𝑆𝑚 = (1 + 𝐵 + 𝐵2 +⋯ + 𝐵𝑚−1) ≡ 1 − 𝐵𝑚
1 − 𝐵

Similarly, the finite double summation operator can be defined as

𝑆 (2)
𝑚

=
𝑚−1∑
𝑗=0

𝑚−1∑
𝑖=𝑗

𝐵𝑖 = (1 + 2𝐵 + 3𝐵2 +⋯ + 𝑚𝐵𝑚−1)

≡
1 − 𝐵𝑚 − 𝑚𝐵𝑚(1 − 𝐵)

(1 − 𝐵)2

since (1 − 𝐵)𝑆(2)
𝑚 = 𝑆𝑚 − 𝑚𝐵𝑚, and so on. Then the relation between an integrated

ARMA process 𝑧𝑡 with 𝑑 = 1, for example, and the corresponding stationary ARMA
process 𝑤𝑡 = (1 − 𝐵)𝑧𝑡, in terms of values back to some earlier time origin 𝑘 < 𝑡, can be
expressed as

𝑧𝑡 =
𝑆𝑡−𝑘

1 − 𝐵𝑡−𝑘
𝑤𝑡 =

1
1 − 𝐵𝑡−𝑘

(𝑤𝑡 +𝑤𝑡−1 +⋯ +𝑤𝑘+1)

so that 𝑧𝑡 = 𝑤𝑡 +𝑤𝑡−1 +⋯ +𝑤𝑘+1 + 𝑧𝑘 can be thought of as the sum of a finite num-
ber of terms from the stationary process 𝑤 plus an initializing value of the process 𝑧
at time 𝑘. Hence, in the formal definition of the stochastic properties of a nonstationary
ARIMA process as generated in (4.1.3), it would typically be necessary to specify initializ-
ing conditions for the process at some time point 𝑘 in the finite (but possibly remote) past.
However, these initial condition specifications will have little effect on most of the im-
portant characteristics of the process, and such specifications will for the most part not be
emphasized in this book.

As mentioned in Chapter 1, the model (4.1.5) is equivalent to representing the process 𝑧𝑡
as the output from a linear filter (unless 𝑑 = 0, this is an unstable linear filter), whose input
is white noise 𝑎𝑡. Alternatively, we can regard it as a device for transforming the highly
dependent, and possibly nonstationary process 𝑧𝑡, to a sequence of uncorrelated random
variables 𝑎𝑡, that is, for transforming the process to white noise.

If in (4.1.5), the autoregressive operator 𝜙(𝐵) is of order 𝑝, the 𝑑th difference is taken,
and the moving average operator 𝜃(𝐵) is of order 𝑞, we say that we have an ARIMAmodel
of order (𝑝, 𝑑, 𝑞), or simply an ARIMA(𝑝, 𝑑, 𝑞) process.
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Two Interpretations of the ARIMA Model. We now show that the ARIMA model is an
intuitively reasonable model for many time series that occur in practice. First, we note that
the local behavior of a stationary time series is heavily dependent on the level of �̃�𝑡. This
is to be contrasted with the behavior of series such as those in Figure 4.1, where the local
behavior of the series appears to be independent of its level.

If we are to use models for which the behavior of the process is independent of its level,
we must choose the autoregressive operator 𝜑(𝐵) such that

𝜑(𝐵)(�̃�𝑡 + 𝑐) = 𝜑(𝐵)�̃�𝑡

where 𝑐 is any constant. Thus 𝜑(𝐵) must be of the form

𝜑(𝐵) = 𝜙1(𝐵)(1 − 𝐵) = 𝜙1(𝐵)∇

Therefore, a class of processes having the desired property will be of the form

𝜙1(𝐵)𝑤𝑡 = 𝜃(𝐵)𝑎𝑡

where 𝑤𝑡 = ∇�̃�𝑡 = ∇𝑧𝑡. Required homogeneity excludes the possibility that 𝑤𝑡 should
increase explosively. This means that either 𝜙1(𝐵) is a stationary autoregressive operator
or 𝜙1(𝐵) = 𝜙2(𝐵)(1 − 𝐵), so that 𝜙2(𝐵)𝑤𝑡 = 𝜃(𝐵)𝑎𝑡, where now 𝑤𝑡 = ∇2𝑧𝑡. In the latter
case, the same argument can be applied to the second difference, and so on.

Eventually, we arrive at the conclusion that for the representation of time series that
are nonstationary but nevertheless exhibit homogeneity, the operator on the left of (4.1.3)
should be of the form 𝜙(𝐵)∇𝑑 , where 𝜙(𝐵) is a stationary autoregressive operator. Thus,
we are led back to the model (4.1.5).

To approach the model from a somewhat different viewpoint, consider the situation
where 𝑑 = 0 in (4.1.4), so that 𝜙(𝐵)�̃�𝑡 = 𝜃(𝐵)𝑎𝑡. The requirement that the zeros of 𝜙(𝐵) lie
outside the unit circle would ensure not only that the process �̃�𝑡 was stationary with mean
zero, but also that ∇𝑧𝑡,∇2𝑧𝑡,∇3𝑧𝑡,… were each stationary with mean zero. Figure 4.3(a)
shows one kind of nonstationary series we would like to represent. This series is homoge-
neous except in level, in that except for a vertical translation, one part of it looks much the
same as another. We can represent such behavior by retaining the requirement that each of
the differences be stationary with zero mean, but letting the level ‘‘go free.’’ We do this by
using the model

𝜙(𝐵)∇𝑧𝑡 = 𝜃(𝐵)𝑎𝑡

Figure 4.3(b) shows a second kind of nonstationarity or fairly common occurrence. The
series has neither a fixed level nor a fixed slope, but its behavior is homogeneous if we
allow for differences in these characteristics. We can represent such behavior by the model

𝜙(𝐵)∇2𝑧𝑡 = 𝜃(𝐵)𝑎𝑡

which ensures stationarity and zero mean for all differences after the first and second but
allows the level and the slope to ‘‘go free.’’
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(a)

(b)

FIGURE 4.3 Two kinds of homogeneous nonstationary behavior. (a) A series showing nonsta-
tionarity in level such as can be represented by the model 𝜙(𝐵)∇𝑧𝑡 = 𝜃(𝐵)𝑎𝑡. (b) A series showing
nonstationarity in level and in slope such as can be represented by the model 𝜙(𝐵)∇2𝑧𝑡 = 𝜃(𝐵)𝑎𝑡.

4.1.3 General Form of the ARIMA Model

For reasons to be given below, it is sometimes useful to consider a slight extension of the
ARIMA model in (4.1.5), by adding a constant term 𝜃0, yielding the more general form

𝜑(𝐵)𝑧𝑡 = 𝜙(𝐵)∇𝑑𝑧𝑡 = 𝜃0 + 𝜃(𝐵)𝑎𝑡 (4.1.9)

where

𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵
2 −⋯ − 𝜙𝑝𝐵𝑝

𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 −⋯ − 𝜃𝑞𝐵𝑞

In what follows:

1. 𝜙(𝐵) will be called the autoregressive operator; it is assumed to be stationary, that
is, the roots of 𝜙(𝐵) = 0 lie outside the unit circle.

2. 𝜑(𝐵) = 𝜙(𝐵)∇𝑑 will be called the generalized autoregressive operator; it is a nonsta-
tionary operator with 𝑑 of the roots of 𝜑(𝐵) = 0 equal to unity, that is, 𝑑 unit roots.

3. 𝜃(𝐵) will be called the moving average operator; it is assumed to be invertible, that
is, the roots of 𝜃(𝐵) = 0 lie outside the unit circle.

When 𝑑 = 0, this model represents a stationary process. The requirements of stationarity
and invertibility apply independently, and, in general, the operators𝜙(𝐵) and 𝜃(𝐵) will not
be of the same order. Examples of the stationarity regions for the simple cases of 𝑝 = 1, 2
and the identical invertibility regions for 𝑞 = 1, 2 were given in Chapter 3.
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Stochastic and Deterministic Trends. When the constant term 𝜃0 is omitted, the model
(4.1.9) is capable of representing series that have stochastic trends, as typified, for example,
by random changes in the level and slope of the series. In general, however, we may wish
to include a deterministic function of time 𝑓 (𝑡) in the model. In particular, automatic
allowance for a deterministic polynomial trend, of degree 𝑑, can be made by permitting 𝜃0
to be nonzero. For example, when 𝑑 = 1, we may use the model with 𝜃0 ≠ 0 to represent
a possible deterministic linear trend in the presence of nonstationary noise. Since, from
(3.1.22), to allow 𝜃0 to be nonzero is equivalent to permitting

𝐸[𝑤𝑡] = 𝐸[∇𝑑𝑧𝑡] = 𝜇𝑤 =
𝜃0

1 − 𝜙1 − 𝜙2 −⋯ − 𝜙𝑝

to be nonzero, an alternative way of expressing this more general model (4.1.9) is in the
form of a stationary invertible ARMA process in �̃�𝑡 = 𝑤𝑡 − 𝜇𝑤. That is,

𝜙(𝐵)�̃�𝑡 = 𝜃(𝐵)𝑎𝑡 (4.1.10)

Notice, when 𝑑 = 1, for example, ∇𝑧𝑡 = 𝑤𝑡 = �̃�𝑡 + 𝜇𝑤 implies that 𝑧𝑡 = �̃�𝑡 + 𝜇𝑤𝑡 + 𝛼,
where 𝛼 is an intercept constant and the process �̃�𝑡 is such that ∇�̃�𝑡 = �̃�𝑡, which has zero
mean. Thus, 𝜃0 ≠ 0 allows for a deterministic linear trend component in 𝑧𝑡 with slope
𝜇𝑤 = 𝜃0∕(1 − 𝜙1 −⋯ − 𝜙𝑝).

In many applications, where no physical reason for a deterministic component exists,
the mean of 𝑤 can be assumed to be zero unless such an assumption is inconsistent with
the data. In many cases, the assumption of a stochastic trend is more realistic than the
assumption of a deterministic trend. This is of special importance in forecasting, since a
stochastic trend does not require the series to follow the trend pattern seen in the past. In
what follows, when 𝑑 > 0, we will often assume that 𝜇𝑤 = 0, or equivalently, that 𝜃0 = 0,
unless it is clear from the data or from the nature of the problem that a nonzero mean, or
more generally a deterministic component of known form, is needed.

Some Important Special Cases of the ARIMA Model. In Chapter 3, we examined some
important special cases of the model (4.1.9), corresponding to the stationary situation,
𝑑 = 0. The following models represent some special cases of the nonstationary model
(𝑑 ≥ 1), which seem to be common in practice.

1. The (0, 1, 1) process:

∇𝑧𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1
= (1 − 𝜃1𝐵)𝑎𝑡

corresponding to 𝑝 = 0, 𝑑 = 1, 𝑞 = 1, 𝜙(𝐵) = 1, 𝜃(𝐵) = 1 − 𝜃1𝐵.
2. The (0, 2, 2) process:

∇2𝑧𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2
= (1 − 𝜃1𝐵 − 𝜃2𝐵2)𝑎𝑡

corresponding to 𝑝 = 0, 𝑑 = 2, 𝑞 = 2, 𝜙(𝐵) = 1, 𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2.

3. The (1, 1, 1) process:

∇𝑧𝑡 − 𝜙1∇𝑧𝑡−1 = 𝑎𝑡 − 𝜃1𝑎𝑡−1
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TABLE 4.1 Summary of Simple Nonstationary Models Fitted to Time Series of Figure 4.1

Series Model Order of Model

A ∇𝑧𝑡 = (1 − 0.7𝐵)𝑎𝑡 (0, 1, 1)
B ∇𝑧𝑡 = (1 + 0.1𝐵)𝑎𝑡 (0, 1, 1)
C (1 − 0.8𝐵)∇𝑧𝑡 = 𝑎𝑡 (1, 1, 0)
D ∇𝑧𝑡 = (1 − 0.1𝐵)𝑎𝑡 (0, 1, 1)

or

(1 − 𝜙1𝐵)∇𝑧𝑡 = (1 − 𝜃1𝐵)𝑎𝑡

corresponding to 𝑝 = 1, 𝑑 = 1, 𝑞 = 1, 𝜙(𝐵) = 1 − 𝜙1𝐵, 𝜃(𝐵) = 1 − 𝜃1𝐵.

For the representation of nonseasonal time series (seasonal models are considered in
Chapter 9), we rarely seem to meet situations for which either 𝑝, 𝑑, or 𝑞 need to be greater
than 2. Frequently, values of zero or unity will be appropriate for one or more of these
orders. For example, we show later that Series A, B, C, and D given in Figure 4.1 are
reasonably well represented2 by the simple models shown in Table 4.1.

Nonlinear Transformation of 𝒛. The range of useful applications of the model (4.1.9)
widens considerably if we allow the possibility of transformation. Thus, we may substitute
𝑧
(𝜆)
𝑡

for 𝑧𝑡, in (4.1.9), where 𝑧(𝜆)
𝑡

is some nonlinear transformation of 𝑧𝑡, involving one or
more parameters 𝜆. A suitable transformation may be suggested by the application, or in
some cases it can be estimated from the data. For example, if we were interested in the sales
of a recently introduced commodity, we might find that the sales volume was increasing at
a rapid rate and that it was the percentage fluctuation that showed nonstationary stability
(homogeneity) rather than the absolute fluctuation. This would support the analysis of the
logarithm of sales since

∇ log(𝑧𝑡) = log
(
𝑧𝑡

𝑧𝑡−1

)
= log

(
1 +

∇𝑧𝑡
𝑧𝑡−1

)
≃

∇𝑧𝑡
𝑧𝑡−1

where ∇𝑧𝑡∕𝑧𝑡−1 are the relative or percentage changes, the approximation holding if the
relative changes are not excessively large. When the data cover a wide range and especially
for seasonal data, estimation of the transformation using the approach of Box and Cox
(1964) may be helpful (for an example, see Section 9.3.5). This approach considers the
family of power transformations of the form 𝑧

(𝜆)
𝑡

= (𝑧𝜆
𝑡
− 1)∕𝜆 for 𝜆 ≠ 0 and 𝑧(0)

𝑡
= log(𝑧𝑡)

for 𝜆 = 0.
Software to estimate the parameter 𝜆 in the Box--Cox power transformation is available

in the TSA andMASS libraries of R. For example, the function BoxCox.ar() in the TSA
package finds a power transformation so that the transformed series is approximately a
Gaussian AR process.

2As is discussed more fully later, there are certain advantages in using a nonstationary rather than a stationary
model in cases of doubt. In particular, none of the fitted models above assume that 𝑧𝑡 has a fixed mean. However,
we show in Chapter 7 that it is possible in certain cases to obtain stationary models of slightly better fit.
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4.2 THREE EXPLICIT FORMS FOR THE ARIMA MODEL

We now consider three different ‘‘explicit’’ forms for the general model (4.1.9). Each of
these allows some special aspect to be appreciated. Thus, the current value 𝑧𝑡 of the process
can be expressed

1. In terms of previous values of the 𝑧’s and current and previous values of the 𝑎’s, by
direct use of the difference equation,

2. In terms of current and previous shocks 𝑎𝑡−𝑗 only, and

3. In terms of a weighted sum of previous values 𝑧𝑡−𝑗 of the process and the current
shock 𝑎𝑡.

In this chapter, we are concerned primarily with nonstationary models in which ∇𝑑𝑧𝑡
is a stationary process and 𝑑 is greater than zero. For such models, we can, without loss of
generality, omit 𝜇 from the specification or equivalently replace �̃�𝑡 by 𝑧𝑡. The results of this
chapter and the next will, however, apply to stationary models for which 𝑑 = 0, provided
that 𝑧𝑡 is then interpreted as the deviation from the mean 𝜇.

4.2.1 Difference Equation Form of the Model

Direct use of the difference equation permits us to express the current value 𝑧𝑡 of the process
in terms of previous values of the 𝑧’s and of the current and previous values of the 𝑎’s.
Thus, if

𝜑(𝐵) = 𝜙(𝐵)(1 − 𝐵)𝑑 = 1 − 𝜑1𝐵 − 𝜑2𝐵
2 −⋯ − 𝜑𝑝+𝑑𝐵𝑝+𝑑

the general model (4.1.9), with 𝜃0 = 0, may be written as

𝑧𝑡 = 𝜑1𝑧𝑡−1 +⋯ + 𝜑𝑝+𝑑𝑧𝑡−𝑝−𝑑 − 𝜃1𝑎𝑡−1 −⋯ − 𝜃𝑞𝑎𝑡−𝑞 + 𝑎𝑡 (4.2.1)

For example, consider the process represented by the model of order (1, 1, 1)

(1 − 𝜙𝐵)(1 − 𝐵)𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡

where, for convenience, we drop the subscript 1 on 𝜙1 and 𝜃1. Then this process may be
written as

[1 − (1 + 𝜙)𝐵 + 𝜙𝐵2]𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡

that is,

𝑧𝑡 = (1 + 𝜙)𝑧𝑡−1 − 𝜙𝑧𝑡−2 + 𝑎𝑡 − 𝜃𝑎𝑡−1 (4.2.2)

with𝜑1 = 1 + 𝜙 and𝜑2 = −𝜙 in the notation introduced above. For many purposes, and, in
particular, for calculating forecasts, the difference equation (4.2.1) is the most convenient
form to use.



Box3G Date: May 21, 2015 Time: 9:22 am

98 LINEAR NONSTATIONARY MODELS

4.2.2 Random Shock Form of the Model

Model in Terms of Current and Previous Shocks. As discussed in Chapter 3, a linear
model can be written as the output 𝑧𝑡 from the linear filter

𝑧𝑡 = 𝑎𝑡 + 𝜓1𝑎𝑡−1 + 𝜓2𝑎𝑡−2 +⋯

= 𝑎𝑡 +
∞∑
𝑗=1

𝜓𝑗𝑎𝑡−𝑗

= 𝜓(𝐵)𝑎𝑡 (4.2.3)

whose input is white noise, or a sequence of uncorrelated shocks 𝑎𝑡 with mean 0 and
common variance 𝜎2

𝑎
. It is sometimes useful to express the ARIMA model in this form,

and, in particular, the 𝜓 weights will be needed in Chapter 5 to calculate the variance of the
forecast errors. However, since the nonstationary ARIMA processes are not in statistical
equilibrium over time, they cannot be assumed to extend infinitely into the past, and hence
an infinite representation as in (4.2.3) will not be possible. But a related finite truncated
form,whichwill be discussed subsequently, always exists.We now show that the𝜓 weights
for an ARIMA process may be obtained directly from the difference equation form of the
model.

General Expression for the 𝝍 Weights. If we operate on both sides of (4.2.3) with the
generalized autoregressive operator 𝜑(𝐵), we obtain

𝜑(𝐵)𝑧𝑡 = 𝜑(𝐵)𝜓(𝐵)𝑎𝑡

However, since 𝜑(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡, it follows that

𝜑(𝐵)𝜓(𝐵) = 𝜃(𝐵) (4.2.4)

Therefore, the 𝜓 weights may be obtained by equating coefficients of 𝐵 in the expansion

(1 − 𝜑1𝐵 −⋯ − 𝜑𝑝+𝑑𝐵𝑝+𝑑 )(1 + 𝜓1𝐵 + 𝜓2𝐵
2 +⋯)

= (1 − 𝜃1𝐵 −⋯ − 𝜃𝑞𝐵𝑞) (4.2.5)

Thus, we find that the 𝜓𝑗 weights of the ARIMA process can be determined recursively
through the equations

𝜓𝑗 = 𝜑1𝜓𝑗−1 + 𝜑2𝜓𝑗−2 +⋯ + 𝜑𝑝+𝑑𝜓𝑗−𝑝−𝑑 − 𝜃𝑗 𝑗 > 0

with 𝜓0 = 1, 𝜓𝑗 = 0 for 𝑗 < 0, and 𝜃𝑗 = 0 for 𝑗 > 𝑞. We note that for 𝑗 greater than the
larger of 𝑝 + 𝑑 − 1 and 𝑞, the 𝜓 weights satisfy the homogeneous difference equation
defined by the generalized autoregressive operator, that is,

𝜑(𝐵)𝜓𝑗 = 𝜙(𝐵)(1 − 𝐵)𝑑𝜓𝑗 = 0 (4.2.6)

where 𝐵 now operates on the subscript 𝑗. Thus, for sufficiently large 𝑗, the weights 𝜓𝑗 are
represented by a mixture of polynomials, damped exponentials, and damped sinusoids in
the argument 𝑗.
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Example. For illustration, consider the (1, 1, 1) process (4.2.2), for which

𝜑(𝐵) = (1 − 𝜙𝐵)(1 − 𝐵)
= 1 − (1 + 𝜙)𝐵 + 𝜙𝐵2

and

𝜃(𝐵) = 1 − 𝜃𝐵

Substituting in (4.2.5) gives

[1 − (1 + 𝜙)𝐵 + 𝜙𝐵2](1 + 𝜓1𝐵 + 𝜓2𝐵
2 +⋯) = 1 − 𝜃𝐵

and hence the 𝜓𝑗 satisfy the recursion 𝜓𝑗 = (1 + 𝜙)𝜓𝑗−1 − 𝜙𝜓𝑗−2, 𝑗 ≥ 2 with 𝜓0 = 1 and
𝜓1 = (1 + 𝜙) − 𝜃. Thus, since the roots of 𝜑(𝐵) = (1 − 𝜙𝐵)(1 − 𝐵) = 0 are 𝐺−1

1 = 1 and

𝐺−1
2 = 𝜙−1, we have, in general,

𝜓𝑗 = 𝐴0 + 𝐴1𝜙
𝑗 (4.2.7)

where the constants 𝐴0 and 𝐴1 are determined from the initial values 𝜓0 = 𝐴0 + 𝐴1 = 1
and 𝜓1 = 𝐴0 + 𝐴1𝜙 = 1 + 𝜙 − 𝜃 as

𝐴0 =
1 − 𝜃
1 − 𝜙

𝐴1 =
𝜃 − 𝜙
1 − 𝜙

Thus, informally, we may wish to express model (4.2.2) in the equivalent form

𝑧𝑡 =
∞∑
𝑗=0

(𝐴0 + 𝐴1𝜙
𝑗)𝑎𝑡−𝑗 (4.2.8)

Since |𝜙| < 1, the weights 𝜓𝑗 tend to 𝐴0 for large 𝑗, so that shocks 𝑎𝑡−𝑗 , which entered
in the remote past, receive a constant weight 𝐴0. However, the representation in (4.2.8)
is strictly not valid because the infinite sum on the right does not converge in any sense;
that is, the weights 𝜓𝑗 are not absolutely summable as in the case of a stationary process.
A related truncated version of the random shock form of the model is always valid, as we
discuss in detail shortly. Nevertheless, for notational convenience, we will often refer to
the infinite random shock form (4.2.3) of an ARIMA process, even though this form is
strictly not convergent, as a simple notational device to represent the valid truncated form
in (4.2.14), in situations where the distinction between the two forms is not important.

Truncated Form of the Random Shock Model. For technical purposes, it is necessary and
in some cases convenient to consider the model in a form slightly different from (4.2.3).
Suppose that we wish to express the current value 𝑧𝑡 of the process in terms of the 𝑡 − 𝑘
shocks 𝑎𝑡, 𝑎𝑡−1,… , 𝑎𝑘+1, which have entered the system since some time origin 𝑘 < 𝑡. This
time origin 𝑘 might, for example, be the time at which the process was first observed.

The general model

𝜑(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡 (4.2.9)

is a difference equation with the solution

𝑧𝑡 = 𝐶𝑘(𝑡 − 𝑘) + 𝐼𝑘(𝑡 − 𝑘) (4.2.10)
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A short discussion of linear difference equations is given in Appendix A4.1. We remind
the reader that the solution of such equations closely parallels the solution of linear dif-
ferential equations. The complimentary function 𝐶𝑘(𝑡 − 𝑘) is the general solution of the
homogeneous difference equation

𝜑(𝐵)𝐶𝑘(𝑡 − 𝑘) = 0 (4.2.11)

In general, this solution will consist of a linear combination of certain functions of time.
These functions are powers 𝑡𝑗 , real geometric (exponential) terms𝐺𝑡, and complex geomet-
ric (exponential) terms 𝐷𝑡 sin(2𝜋𝑓0𝑡 + 𝐹 ), where the constants 𝐺, 𝑓0, and 𝐹 are functions
of the parameters (𝝓, 𝜽) of the model. The coefficients that form the linear combinations
of these terms can be determined so as to satisfy a set of initial conditions defined by the
values of the process before time 𝑘 + 1. The particular integral 𝐼𝑘(𝑡 − 𝑘) is any function
that satisfies

𝜑(𝐵)𝐼𝑘(𝑡 − 𝑘) = 𝜃(𝐵)𝑎𝑡 (4.2.12)

It should be carefully noted that in this expression𝐵 operates on 𝑡 and not on 𝑘. It is shown
in Appendix A4.1 that this equation is satisfied for 𝑡 − 𝑘 > 𝑞 by

𝐼𝑘(𝑡 − 𝑘) =
𝑡−𝑘−1∑
𝑗=0

𝜓𝑗𝑎𝑡−𝑗 = 𝑎𝑡 + 𝜓1𝑎𝑡−1 +⋯ + 𝜓𝑡−𝑘−1𝑎𝑘+1 𝑡 > 𝑘 (4.2.13)

with 𝐼𝑘(𝑡 − 𝑘) = 0, 𝑡 ≤ 𝑘. This particular integral 𝐼𝑘(𝑡 − 𝑘), thus, represents the finite trun-
cated form of the infinite random shock form (4.2.3), while the complementary function
𝐶𝑘(𝑡 − 𝑘) embodies the ‘‘initializing’’ features of the process 𝑧 in the sense that𝐶𝑘(𝑡 − 𝑘) is
already determined or specified by the time 𝑘 + 1. Hence, the truncated form of the random
shock model for the ARIMA process (4.1.3) is given by

𝑧𝑡 =
𝑡−𝑘−1∑
𝑗=0

𝜓𝑗𝑎𝑡−𝑗 + 𝐶𝑘(𝑡 − 𝑘) (4.2.14)

For illustration, consider Figure 4.4. The above discussion implies that any observation
𝑧𝑡 can be considered in relation to any previous time 𝑘 and can be divided up into two
additive parts. The first part 𝐶𝑘(𝑡 − 𝑘) is the component of 𝑧𝑡, already determined at time
𝑘, and indicates what the observations prior to time 𝑘 + 1 had to tell us about the value of
the series at time 𝑡. It represents the course that the process would take if at time 𝑘, the
source of shocks 𝑎𝑡 had been ‘‘switched off.’’ The second part, 𝐼𝑘(𝑡 − 𝑘), represents an
additional component, unpredictable at time 𝑘, which embodies the entire effect of shocks
entering the system at time 𝑘. Hence, to specify an ARIMA process, one must specify
the initializing component 𝐶𝑘(𝑡 − 𝑘) in (4.2.14) for some time origin 𝑘 in the finite (but
possibly remote) past, with the remaining course of the process being determined through
the truncated random shock terms in (4.2.14).

Example. For illustration, consider again the example

(1 − 𝜙𝐵)(1 − 𝐵)𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡
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FIGURE 4.4 Role of the complementary function 𝐶𝑘(𝑡 − 𝑘) and of the particular integral 𝐼𝑘(𝑡 − 𝑘)
in describing the behavior of a time series.

The complementary function is the solution of the difference equation

(1 − 𝜙𝐵)(1 − 𝐵)𝐶𝑘(𝑡 − 𝑘) = 0

that is,

𝐶𝑘(𝑡 − 𝑘) = 𝑏
(𝑘)
0 + 𝑏(𝑘)1 𝜙𝑡−𝑘

where 𝑏(𝑘)0 , 𝑏(𝑘)1 are coefficients that depend on the past history of the process and, it will
be noted, change with the origin 𝑘.

Making use of the 𝜓 weights (4.2.7), a particular integral (4.2.13) is

𝐼𝑘(𝑡 − 𝑘) =
𝑡−𝑘−1∑
𝑗=0

(𝐴0 + 𝐴1𝜙
𝑗)𝑎𝑡−𝑗

so that, finally, we can write the model (4.2.8) in the equivalent form

𝑧𝑡 = 𝑏
(𝑘)
0 + 𝑏(𝑘)1 𝜙𝑡−𝑘 +

𝑡−𝑘−1∑
𝑗=0

(𝐴0 + 𝐴1𝜙
𝑗)𝑎𝑡−𝑗 (4.2.15)

Note that since |𝜙| < 1, if 𝑡 − 𝑘 is chosen sufficiently large, the term involving 𝜙𝑡−𝑘 in this
expression is negligible and may be ignored.

Link Between the Truncated and Nontruncated Forms of the Random Shock Model.
Returning to the general case, we can always think of the process with reference to some
(possibly remote) finite origin 𝑘, with the process having the truncated random shock form
as in (4.2.14). By comparison with the nontruncated form in (4.2.3), one can see that we
might, informally, make the correspondence of representing the complementary function
𝐶𝑘(𝑡 − 𝑘) in terms of the 𝜓 weights as

𝐶𝑘(𝑡 − 𝑘) =
∞∑

𝑗=𝑡−𝑘
𝜓𝑗𝑎𝑡−𝑗 (4.2.16)
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even though, formally, the infinite sum on the right of (4.2.16) does not converge. As
mentioned earlier, for notational simplicity, we will often use this correspondence.

In summary, then, for the general model (4.2.9),

1. We can express the value 𝑧𝑡 of the process, informally, as an infinite weighted sum
of current and previous shocks 𝑎𝑡−𝑗 , according to

𝑧𝑡 =
∞∑
𝑗=0

𝜓𝑗𝑎𝑡−𝑗 = 𝜓(𝐵)𝑎𝑡

2. The value of 𝑧𝑡 can be expressed, more formally, as a weighted finite sum of the 𝑡 − 𝑘
current and previous shocks occurring after some origin 𝑘, plus a complementary
function 𝐶𝑘(𝑡 − 𝑘). This finite sum consists of the first 𝑡 − 𝑘 terms of the infinite
sum, so that

𝑧𝑡 = 𝐶𝑘(𝑡 − 𝑘) +
𝑡−𝑘−1∑
𝑗=0

𝜓𝑗𝑎𝑡−𝑗 (4.2.17)

Finally, the complementary function 𝐶𝑘(𝑡 − 𝑘) can be taken, for notational conve-
nience, to be represented as the truncated infinite sum, so that

𝐶𝑘(𝑡 − 𝑘) =
∞∑

𝑗=𝑡−𝑘
𝜓𝑗𝑎𝑡−𝑗 (4.2.18)

For illustration, consider once more the model

(1 − 𝜙𝐵)(1 − 𝐵)𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡

We can write 𝑧𝑡 either, informally, as an infinite sum of the 𝑎𝑡−𝑗’s

𝑧𝑡 =
∞∑
𝑗=0

(𝐴0 + 𝐴1𝜙
𝑗)𝑎𝑡−𝑗

or, more formally, in terms of the weighted finite sum as

𝑧𝑡 = 𝐶𝑘(𝑡 − 𝑘) +
𝑡−𝑘−1∑
𝑗=0

(𝐴0 + 𝐴1𝜙
𝑗)𝑎𝑡−𝑗

Furthermore, the complementary function can be written as

𝐶𝑘(𝑡 − 𝑘) = 𝑏
(𝑘)
0 + 𝑏(𝑘)1 𝜙𝑡−𝑘

where 𝑏(𝑘)0 and 𝑏(𝑘)1 , which satisfy the initial conditions through time 𝑘, are

𝑏
(𝑘)
0 =

𝑧𝑘 − 𝜙𝑧𝑘−1 − 𝜃𝑎𝑘
1 − 𝜙

𝑏
(𝑘)
1 =

−𝜙(𝑧𝑘 − 𝑧𝑘−1) + 𝜃𝑎𝑘
1 − 𝜙
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The complementary function can also be represented, informally, as the truncated infinite
sum

𝐶𝑘(𝑡 − 𝑘) =
∞∑

𝑗=𝑡−𝑘
(𝐴0 + 𝐴1𝜙

𝑗)𝑎𝑡−𝑗

from which it can be seen that 𝑏(𝑘)0 and 𝑏(𝑘)1 may be represented as

𝑏
(𝑘)
0 = 𝐴0

∞∑
𝑗=𝑡−𝑘

𝑎𝑡−𝑗 =
1 − 𝜃
1 − 𝜙

∞∑
𝑗=𝑡−𝑘

𝑎𝑡−𝑗

𝑏
(𝑘)
1 = 𝐴1

∞∑
𝑗=𝑡−𝑘

𝜙𝑗−(𝑡−𝑘)𝑎𝑡−𝑗 =
𝜃 − 𝜙
1 − 𝜙

∞∑
𝑗=𝑡−𝑘

𝜙𝑗−(𝑡−𝑘)𝑎𝑡−𝑗

Complementary Function as a Conditional Expectation. One consequence of the trun-
cated form (4.2.14) is that for 𝑚 > 0,

𝐶𝑘(𝑡 − 𝑘) = 𝐶𝑘−𝑚(𝑡 − 𝑘 + 𝑚) + 𝜓𝑡−𝑘𝑎𝑘 + 𝜓𝑡−𝑘+1𝑎𝑘−1 +⋯

+ 𝜓𝑡−𝑘+𝑚−1𝑎𝑘−𝑚+1 (4.2.19)

which shows how the complementary function changes as the origin 𝑘 is changed. Now
denote by 𝐸𝑘[𝑧𝑡] the conditional expectation of 𝑧𝑡, at time 𝑘. That is the expectation given
complete historical knowledge of the process up to, but not beyond time 𝑘. To calculate
this expectation, note that

𝐸𝑘[𝑎𝑗] =

{
0 𝑗 > 𝑘

𝑎𝑗 𝑗 ≤ 𝑘

That is, standing at time 𝑘, the expected values of the future 𝑎’s are zero and of those that
have happened already are their actually realized values.

By taking conditional expectations at time 𝑘 on both sides of (4.2.17), we obtain𝐸𝑘[𝑧𝑡] =
𝐶𝑘(𝑡 − 𝑘). Thus, for (𝑡 − 𝑘) > 𝑞, the complementary function provides the expected value
of the future value 𝑧𝑡 of the process, viewed from time 𝑘 and based on knowledge of
the past. The particular integral shows how that expectation is modified by subsequent
events represented by the shocks 𝑎𝑘+1, 𝑎𝑘+2,… , 𝑎𝑡. In the problem of forecasting, which
we discuss in Chapter 5, it will turn out that 𝐶𝑘(𝑡 − 𝑘) is the minimum mean square error
forecast of 𝑧𝑡 made at time 𝑘. Equation (4.2.19) may be used in ‘‘updating’’ this forecast.

4.2.3 Inverted Form of the Model

Model in Terms of Previous 𝒛’s and the Current Shock 𝒂𝒕. We have seen in Section 3.1.1
that the model

𝑧𝑡 = 𝜓(𝐵)𝑎𝑡

may also be written in the inverted form

𝜓−1(𝐵)𝑧𝑡 = 𝑎𝑡
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or

𝜋(𝐵)𝑧𝑡 =

(
1 −

∞∑
𝑗=1

𝜋𝑗𝐵
𝑗

)
𝑧𝑡 = 𝑎𝑡 (4.2.20)

Thus, 𝑧𝑡 is an infinite weighted sum of previous values of 𝑧, plus a random shock:

𝑧𝑡 = 𝜋1𝑧𝑡−1 + 𝜋2𝑧𝑡−2 +⋯ + 𝑎𝑡

Because of the invertibility condition, the 𝜋 weights must form a convergent series; that is,
𝜋(𝐵) must converge on or within the unit circle.

General Expression for the 𝝅 Weights. To derive the 𝜋 weights for the general ARIMA
model, we can substitute (4.2.20) in

𝜑(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡

to obtain

𝜑(𝐵)𝑧𝑡 = 𝜃(𝐵)𝜋(𝐵)𝑧𝑡

Hence, the 𝜋 weights can be obtained explicitly by equating coefficients of 𝐵 in

𝜑(𝐵) = 𝜃(𝐵)𝜋(𝐵) (4.2.21)

that is,

(1 − 𝜑1𝐵 −⋯ − 𝜑𝑝+𝑑𝐵𝑝+𝑑 ) = (1 − 𝜃1𝐵 −⋯ − 𝜃𝑞𝐵𝑞)
× (1 − 𝜋1𝐵 − 𝜋2𝐵2 −⋯) (4.2.22)

Thus, we find that the 𝜋𝑗 weights of the ARIMA process can be determined recursively
through

𝜋𝑗 = 𝜃1𝜋𝑗−1 + 𝜃2𝜋𝑗−2 +⋯ + 𝜃𝑞𝜋𝑗−𝑞 + 𝜑𝑗 𝑗 > 0

with the convention 𝜋0 = −1, 𝜋𝑗 = 0 for 𝑗 < 0, and 𝜑𝑗 = 0 for 𝑗 > 𝑝 + 𝑑. It will be noted
that for 𝑗 greater than the larger of 𝑝 + 𝑑 and 𝑞, the 𝜋 weights satisfy the homogeneous
difference equation defined by the moving average operator

𝜃(𝐵)𝜋𝑗 = 0

where 𝐵 now operates on 𝑗. Hence, for sufficiently large 𝑗, the 𝜋 weights will exhibit
similar behavior as the autocorrelation function (3.2.5) of an autoregressive process; that
is, they follow a mixture of damped exponentials and damped sine waves.

Another interesting fact is that if 𝑑 ≥ 1, the 𝜋 weights in (4.2.20) sum to unity. This may
be verified by substituting 𝐵 = 1 in (4.2.21). Thus, 𝜑(𝐵) = 𝜙(𝐵)(1 − 𝐵)𝑑 is zero when
𝐵 = 1 and 𝜃(1) ≠ 0, because the roots of 𝜃(𝐵) = 0 lie outside the unit circle. Hence, it
follows from (4.2.21) that 𝜋(1) = 0, that is,

∞∑
𝑗=1

𝜋𝑗 = 1 (4.2.23)
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Therefore, if 𝑑 ≥ 1, the process may be written in the form

𝑧𝑡 = �̄�𝑡−1(𝜋) + 𝑎𝑡 (4.2.24)

where

�̄�𝑡−1(𝜋) =
∞∑
𝑗=1

𝜋𝑗𝑧𝑡−𝑗

is a weighted average of previous values of the process.

Example. We again consider, for illustration, the ARIMA(1, 1, 1) process:

(1 − 𝜙𝐵)(1 − 𝐵)𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡

Then, using (4.2.21),

𝜋(𝐵) = 𝜑(𝐵)𝜃−1(𝐵) = [1 − (1 + 𝜙)𝐵 + 𝜙𝐵2](1 + 𝜃𝐵 + 𝜃2𝐵2 +⋯)

so that

𝜋1 = 𝜙 + (1 − 𝜃) 𝜋2 = (𝜃 − 𝜙)(1 − 𝜃) 𝜋𝑗 = (𝜃 − 𝜙)(1 − 𝜃)𝜃𝑗−2, 𝑗 ≥ 3.

The first seven 𝜋 weights corresponding to 𝜙 = −0.3 and 𝜃 = 0.5 are given in Table 4.2.
Thus, 𝑧𝑡 would be generated by a weighted average of previous values, plus an additional
shock, according to

𝑧𝑡 = (0.2𝑧𝑡−1 + 0.4𝑧𝑡−2 + 0.2𝑧𝑡−3 + 0.1𝑧𝑡−4 +⋯) + 𝑎𝑡

We notice, in particular, that the 𝜋 weights die out as more and more remote values of 𝑧𝑡−𝑗
are involved. This happens when −1 < 𝜃 < 1, so that the series is invertible.

We mention in passing that, for models fitted to actual time series, the convergent 𝜋
weights usually die out rather quickly. Thus, although 𝑧𝑡 may be theoretically dependent
on the remote past, the representation

𝑧𝑡 =
∞∑
𝑗=1

𝜋𝑗𝑧𝑡−𝑗 + 𝑎𝑡

will usually show that 𝑧𝑡 is dependent to an important extent only on recent past values
𝑧𝑡−𝑗 of the time series. This is still true even though for nonstationary models with 𝑑 > 0,
the 𝜓 weights in the ‘‘weighted shock’’ representation

𝑧𝑡 =
∞∑
𝑗=0

𝜓𝑗𝑎𝑡−𝑗

do not die out to zero.What happens, of course, is that all the information that remote values
of the shocks 𝑎𝑡−𝑗 supply about 𝑧𝑡 is contained in recent values 𝑧𝑡−1, 𝑧𝑡−2,⋯ of the series.
In particular, the expectation 𝐸𝑘[𝑧𝑡], which in theory is conditional on complete history of
the process up to time 𝑘, can usually be computed to sufficient accuracy from recent values
of the time series. This fact is particularly important in forecasting applications.
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TABLE 4.2 First Seven 𝝅Weights for an ARIMA(1, 1, 1) Process with 𝝓 = −𝟎.𝟑, 𝜽 = 𝟎.𝟓

𝑗 1 2 3 4 5 6 7

𝜋𝑗 0.2 0.4 0.2 0.1 0.05 0.025 0.0125

4.3 INTEGRATED MOVING AVERAGE PROCESSES

A nonstationary model that is useful in representing some commonly occurring series is
the (0, 1, 1) process:

∇𝑧𝑡 = 𝑎𝑡 − 𝜃𝑎𝑡−1

The model contains only two parameters, 𝜃 and 𝜎2
𝑎
. Figure 4.5 shows two time series

generated by this model from the same sequence of random normal deviates 𝑎𝑡. For the first
series, 𝜃 = 0.6, and for the second, 𝜃 = 0. Models of this kind have often been found useful
in inventory control problems, in representing certain kinds of disturbances occurring in
industrial processes, and in econometrics. We will show in Chapter 7 that this simple
process can, with suitable parameter values, supply useful representations of Series A, B,
and D shown in Figure 4.1. Another valuable model is the (0, 2, 2) process

∇2𝑧𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2

which contains three parameters, 𝜃1, 𝜃2, and 𝜎
2
𝑎
. Figure 4.6 shows two series generated

from this model using the same set of normal deviates. For the first series, the parame-
ters (𝜃1, 𝜃2) = (0, 0) and for the second (𝜃1, 𝜃2) = (1.5,−0.8). The series tend to be much
smoother than those generated by the (0, 1, 1) process. The (0, 2, 2) models are useful in
representing disturbances (such as Series C) in systems with a large degree of inertia. Both
the (0, 1, 1) and the (0, 2, 2) models are special cases of the class

∇𝑑𝑧𝑡 = 𝜃(𝐵)𝑎𝑡 (4.3.1)

We call these models integrated moving average (IMA) processes, of order (0, 𝑑, 𝑞), and
consider their properties in the following section.

FIGURE 4.5 Two time series generated from IMA(0, 1, 1) models.
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FIGURE 4.6 Two time series generated from IMA(0, 2, 2) models.

4.3.1 Integrated Moving Average Process of Order (0, 1, 1)

Difference Equation Form. The IMA(0, 1, 1) process

∇𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡 − 1 < 𝜃 < 1

possesses useful representational capability, and we now study its properties in more detail.
The model can be written in terms of the 𝑧’s and the 𝑎’s in the form

𝑧𝑡 = 𝑧𝑡−1 + 𝑎𝑡 − 𝜃𝑎𝑡−1 (4.3.2)

RandomShock Form ofModel. Alternatively,we can obtain 𝑧𝑡 in terms of the 𝑎’s alone by
summing on both sides of (4.3.2). Before doing this, there is some advantage in expressing
the right-hand operator in terms of ∇ rather than 𝐵. Thus, we can write

1 − 𝜃𝐵 = (1 − 𝜃)𝐵 + (1 − 𝐵) = (1 − 𝜃)𝐵 + ∇ = 𝜆𝐵 + ∇

where 𝜆 = 1 − 𝜃, and the invertibility region in terms of 𝜆 is defined by 0 < 𝜆 < 2. Hence

∇𝑧𝑡 = 𝜆𝑎𝑡−1 + ∇𝑎𝑡

Relative to some time origin 𝑘 < 𝑡, applying the finite summation operator𝑆𝑡−𝑘 = 1 + 𝐵 +
⋯ + 𝐵𝑡−𝑘−1 = (1 − 𝐵𝑡−𝑘)∕(1 − 𝐵), we obtain

(1 − 𝐵𝑡−𝑘)𝑧𝑡 = 𝜆𝑆𝑡−𝑘𝑎𝑡−1 + (1 − 𝐵𝑡−𝑘)𝑎𝑡 (4.3.3)

so that

𝑧𝑡 = 𝑎𝑡 + 𝜆(𝑎𝑡−1 + 𝑎𝑡−2 +⋯ + 𝑎𝑘+1) + (𝑧𝑘 − 𝜃𝑎𝑘) (4.3.4)

In comparison to 𝑧𝑡 =
∑𝑡−𝑘−1
𝑗=0 𝜓𝑗𝑎𝑡−𝑗 + 𝐶𝑘(𝑡 − 𝑘), theweights are𝜓0 = 1,𝜓𝑗 = 𝜆 for 𝑗 ≥ 1.

Also, the complementary function is𝐶𝑘(𝑡 − 𝑘) = 𝑧𝑘 − 𝜃𝑎𝑘 = 𝑏
(𝑘)
0 (a ‘‘constant’’ 𝑏0 for each

𝑘), which is the solution of the difference equation (1 - B)𝐶𝑘(𝑡 − 𝑘) = 0. Moreover, in the
infinite form 𝑧𝑡 = 𝑎𝑡 + 𝜆

∑∞
𝑗=1 𝑎𝑡−𝑗 , wemay identify 𝑏(𝑘)0 with 𝜆

∑∞
𝑗=𝑡−𝑘 𝑎𝑡−𝑗 . For thismodel,

then, the complementary function is simply a constant (i.e., a polynomial in 𝑡 of degree zero)
representing the current ‘‘level’’ of the process and associated with the particular origin of
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reference 𝑘. If the origin is changed from 𝑘 − 1 to 𝑘, then 𝑏0 is ‘‘updated’’ according to

𝑏
(𝑘)
0 = 𝑏(𝑘−1)0 + 𝜆𝑎𝑘

since using (4.3.2), 𝑏(𝑘)0 = 𝑧𝑘 + (𝜆 − 1)𝑎𝑘 = 𝑧𝑘−1 − 𝜃𝑎𝑘−1 + 𝜆𝑎𝑘.

Inverted Form of Model. Finally, we can consider the model in the form

𝜋(𝐵)𝑧𝑡 = 𝑎𝑡

or equivalently, in the form

𝑧𝑡 =
∞∑
𝑗=1

𝜋𝑗𝑧𝑡−𝑗 + 𝑎𝑡 = �̄�𝑡−1(𝜋) + 𝑎𝑡

where �̄�𝑡−1(𝜋) is a weighted moving average of previous values of the process.
Using (4.2.21), the 𝜋 weights for the IMA(0, 1, 1) process are given by

(1 − 𝜃𝐵)𝜋(𝐵) = 1 − 𝐵

that is,

𝜋(𝐵) = 1 − 𝐵
1 − 𝜃𝐵

= 1 − 𝜃𝐵 − (1 − 𝜃)𝐵
1 − 𝜃𝐵

= 1 − (1 − 𝜃)(𝐵 + 𝜃𝐵2 + 𝜃2𝐵3 +⋯)

so that

𝜋𝑗 = (1 − 𝜃)𝜃𝑗−1 = 𝜆(1 − 𝜆)𝑗−1 𝑗 ≥ 1

Thus, the process may be written as

𝑧𝑡 = �̄�𝑡−1(𝜆) + 𝑎𝑡 (4.3.5)

The weighted moving average of previous values of the process

�̄�𝑡−1(𝜆) = 𝜆
∞∑
𝑗=1

(1 − 𝜆)𝑗−1𝑧𝑡−𝑗 (4.3.6)

is, in this case, an exponentially weighted moving average (EWMA). This term reflects the
fact that the weights

𝜆 𝜆(1 − 𝜆) 𝜆(1 − 𝜆)2 𝜆(1 − 𝜆)3⋯

fall off exponentially (i.e., as a geometric progression) as 𝑗 increases. The weight function
for an IMA(0, 1, 1) process, with 𝜆 = 0.4 (or 𝜃 = 0.6), is shown in Figure 4.7.

Although the invertibility condition is satisfied for 0 < 𝜆 < 2, in practice, we are most
often concerned with values of 𝜆 between zero and 1 (i.e., 0 < 𝜃 < 1). We note that if 𝜆
had a value equal to 1, the weight function would consist of a single spike (𝜋1 = 1, 𝜋𝑗 = 0
for 𝑗 > 1). As the value 𝜆 approaches zero, the exponential weights die out more and more
slowly and the EWMA stretches back further into past values of the process. Finally, with
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FIGURE 4.7 The 𝜋 weights for an IMA process of order (0, 1, 1) with 𝜆 = 1 − 𝜃 = 0.4.

𝜆 = 0 and 𝜃 = 1, the model (1 − 𝐵)𝑧𝑡 = (1 − 𝐵)𝑎𝑡 is equivalent to 𝑧𝑡 = 𝜃0 + 𝑎𝑡, with 𝜃0
being given by the mean of all past values.

Since 𝑏
(𝑘)
0 = 𝑧𝑘 − 𝜃𝑎𝑘 = 𝑧𝑘+1 − 𝑎𝑘+1, or 𝑧𝑘+1 = 𝑏

(𝑘)
0 + 𝑎𝑘+1, on comparison with

(4.3.5) it follows that for this process, the complementary function 𝑏(𝑘)0 = 𝐶𝑘(𝑡 − 𝑘) in
(4.3.4) is

𝑏
(𝑘)
0 = �̄�𝑘(𝜆) (4.3.7)

an exponentially weighted average of values up to the origin 𝑘. In fact, (4.3.4) may be
written as

𝑧𝑡 = �̄�𝑘(𝜆) + 𝜆
𝑡−𝑘−1∑
𝑗=1

𝑎𝑡−𝑗 + 𝑎𝑡

We have seen that the complementary function 𝐶𝑘(𝑡 − 𝑘) can be thought of as telling
us what is known about the future value of the process at time 𝑡, based on knowledge of
the past when we are standing at time k. For the IMA(0, 1, 1) process, this takes the
form of information about the ‘‘level’’ or location of the process 𝑏(𝑘)0 = �̄�𝑘(𝜆). At time
𝑘, our knowledge of the future behavior of the process is that it will diverge from this
level in accordance with the ‘‘random walk’’ represented by 𝜆

∑𝑡−𝑘−1
𝑗=1 𝑎𝑡−𝑗 + 𝑎𝑡, whose

expectation is zero and whose behavior we cannot predict. As soon as a new observation
is available, that is, as soon as we move our origin to time 𝑘 + 1, the level will be updated
to 𝑏(𝑘+1)0 = �̄�𝑘+1(𝜆).

Important Properties of the IMA(0, 1, 1) Process. Since the process is nonstationary, it
does not vary in a stable manner about a fixed mean. However, the exponentially weighted
moving average �̄�𝑡(𝜆) can be regarded as measuring the local level of the process at
time 𝑡. From its definition (4.3.6), we obtain the well-known recursion formula for the
EWMA:

�̄�𝑡(𝜆) = 𝜆𝑧𝑡 + (1 − 𝜆)�̄�𝑡−1(𝜆) (4.3.8)

This expression shows that for the IMA(0, 1, 1) model, each new level is arrived at by
interpolating between the new observation and the previous level. If 𝜆 is equal to unity,
�̄�𝑡(𝜆) = 𝑧𝑡 which would ignore all evidence concerning location coming from previous
observations. On the other hand, if 𝜆 had some value close to zero, �̄�1(𝜆) would rely
heavily on the previous value �̄�𝑡−1(𝜆), which would have weight 1 − 𝜆. Only the small
weight 𝜆 would be given to the new observation.
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Now consider the two equations

𝑧𝑡 = �̄�𝑡−1(𝜆) + 𝑎𝑡
�̄�𝑡(𝜆) = �̄�𝑡−1(𝜆) + 𝜆𝑎𝑡

(4.3.9)

the latter being obtained by substituting (4.3.5) in (4.3.8) and is also directly derivable from
(4.3.7).

It was pointed out byMuth (1960) that the two equations (4.3.9) provide a useful way of
thinking about the generation of the process. The first equation shows how, with the level
of the system at �̄�𝑡−1(𝜆), a shock 𝑎𝑡 is added at time 𝑡 and produces the value 𝑧𝑡. However,
the second equation shows that only a proportion 𝜆 of the shock is actually absorbed into
the level and has a lasting influence, the remaining proportion 𝜃 = 1 − 𝜆 of the shock being
dissipated. Now a new level �̄�𝑡(𝜆) having been established by the absorption of 𝑎𝑡, a new
shock 𝑎𝑡+1 enters the system at time 𝑡 + 1. Equations (4.3.9), with subscripts increased by
unity, will then show how this shock produces 𝑧𝑡+1 and how a proportion 𝜆 of it is absorbed
into the system to produce the new level �̄�𝑡+1(𝜆), and so on.

Equation (4.3.4) can be used to obtain variance and correlation features of the IMA(0, 1,
1) process directly. For example, with reference to the origin 𝑘 and treating the initializing
function 𝑏(𝑘)0 as constant, we find that

var[𝑧𝑡] = 𝜎2𝑎[1 + (𝑡 − 𝑘 − 1)𝜆2] (4.3.10)

which does not converge as 𝑡 increases. We might also view this variance as, essentially,
the variance of the difference 𝑧𝑡 − 𝑧𝑘, treating 𝑎𝑘 = 0 in (4.3.4). In particular, in the
case of a random walk process, 𝑧𝑡 = 𝑧𝑡−1 + 𝑎𝑡, we have 𝜆 = 1, and this variance function
grows proportionally with 𝑡 − 𝑘, whereas for more common situations with 0 < 𝜆 < 1 (i.e.,
0 < 𝜃 < 1) and especially for 𝜆 close to zero, the variance function of 𝑧𝑡 − 𝑧𝑘 grows much
more slowly with 𝑡 − 𝑘. In addition, for 𝑠 > 0, cov[𝑧𝑡, 𝑧𝑡+𝑠] = 𝜎2𝑎[𝜆 + (𝑡 − 𝑘 − 1)𝜆2], which
implies that corr[𝑧𝑡, 𝑧𝑡+𝑠] will be close to 1 for 𝑡 − 𝑘 large relative to 𝑠 (and 𝜆 not close
to zero). Hence, it follows that adjacent values of the process will be highly positively
correlated, so the process will tend to exhibit rather smooth behavior (unless 𝜆 is close to
zero).

The properties of the IMA(0, 1, 1) process with deterministic drift

∇𝑧𝑡 = 𝜃0 + (1 − 𝜃1𝐵)𝑎𝑡

are discussed in Appendix A4.2.

4.3.2 Integrated Moving Average Process of Order (0, 2, 2)

Difference Equation Form. The IMA(0, 2, 2) process

∇2𝑧𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵2)𝑎𝑡 (4.3.11)

can be used to represent series exhibiting stochastic trends (e.g., see Fig. 4.6), and we now
study its general properties within the invertibility region:

−1 < 𝜃2 < 1 𝜃2 + 𝜃1 < 1 𝜃2 − 𝜃1 < 1
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Proceeding as before, 𝑧𝑡 can be written explicitly in terms of 𝑧’s and 𝑎’s as

𝑧𝑡 = 2𝑧𝑡−1 − 𝑧𝑡−2 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2

Alternatively, we can rewrite the right-hand operator in terms of differences:

1 − 𝜃1𝐵 − 𝜃2𝐵2 = (𝜆0∇ + 𝜆1)𝐵 + ∇2

and on equating coefficients, we find expressions for the 𝜃’s in terms of the 𝜆’s, and vice
versa, as follows:

𝜃1 = 2 − 𝜆0 − 𝜆1 𝜆0 = 1 + 𝜃2
𝜃2 = 𝜆0 − 1 𝜆1 = 1 − 𝜃1 − 𝜃2

(4.3.12)

The IMA(0, 2, 2) model may then be rewritten as

∇2𝑧𝑡 = (𝜆0∇ + 𝜆1)𝑎𝑡−1 + ∇2𝑎𝑡 (4.3.13)

There is an important advantage in using this form of the model, as comparedwith (4.3.11).
This stems from the fact that if we set 𝜆1 = 0 in (4.3.13), we obtain

∇𝑧𝑡 = [1 − (1 − 𝜆0)𝐵]𝑎𝑡

which corresponds to a (0, 1, 1) process, with 𝜃 = 1 − 𝜆0. However, if we set 𝜃2 = 0 in
(4.3.11), we obtain

∇2𝑧𝑡 = (1 − 𝜃1𝐵)𝑎𝑡

As will be shown in Chapter 5, for a series generated by the (0, 2, 2) model, the optimal
forecasts lie along a straight line, the level and slope of which are continually updated
as new data become available. By contrast, a series generated by a (0, 1, 1) model can
supply no information about slope but only about a continually updated level. It can be
an important question whether a linear trend, as well as the level, can be forecasted and
updated. When the choice is between these two models, this question turns on whether or
not 𝜆1 in (4.3.13) is zero.

The invertibility region for an IMA(0, 2, 2) process is the same as that given for an
MA(2) process in Chapter 3. It may be written in terms of the 𝜃’s and 𝜆’s as follows:

𝜃2 + 𝜃1 < 1 0 < 2𝜆0 + 𝜆1 < 4
𝜃2 − 𝜃1 < 1 𝜆1 > 0
−1 < 𝜃2 < 1 𝜆0 > 0

(4.3.14)

The triangular region for the 𝜃’s was shown in Figure 3.6 and the corresponding region for
the 𝜆’s is shown in Figure 4.8.

Truncated and Infinite Random Shock Forms of Model. On applying the finite double
summation operator 𝑆 (2)

𝑡−𝑘, relative to a time origin 𝑘, to (4.3.13), we find that

[1 − 𝐵𝑡−𝑘 − (𝑡 − 𝑘)𝐵𝑡−𝑘(1 − 𝐵)]𝑧𝑡 = [𝜆0(𝑆𝑡−𝑘 − (𝑡 − 𝑘)𝐵𝑡−𝑘) + 𝜆1𝑆
(2)
𝑡−𝑘]𝑎𝑡−1

+[1 − 𝐵𝑡−𝑘 − (𝑡 − 𝑘)𝐵𝑡−𝑘(1 − 𝐵)]𝑎𝑡
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FIGURE 4.8 Invertibility region for parameters 𝜆0 and 𝜆1 of an IMA(0, 2, 2) process.

Hence, we obtain the truncated form of the random shock model as

𝑧𝑡 = 𝜆0𝑆𝑡−𝑘−1𝑎𝑡−1 + 𝜆1𝑆
(2)
𝑡−𝑘−1𝑎𝑡−1 + 𝑎𝑡 + 𝑏

(𝑘)
0 + 𝑏(𝑘)1 (𝑡 − 𝑘)

= 𝜆0

𝑡−𝑘−1∑
𝑗=1

𝑎𝑡−𝑗 + 𝜆1
𝑡−𝑘−1∑
𝑗=1

𝑗𝑎𝑡−𝑗 + 𝑎𝑡 + 𝐶𝑘(𝑡 − 𝑘) (4.3.15)

So, for this process, the 𝜓 weights are

𝜓0 = 1 𝜓1 = (𝜆0 + 𝜆1)⋯ 𝜓𝑗 = (𝜆0 + 𝑗𝜆1)⋯

The complementary function is the solution of

(1 − 𝐵)2𝐶𝑘(𝑡 − 𝑘) = 0

that is,

𝐶𝑘(𝑡 − 𝑘) = 𝑏
(𝑘)
0 + 𝑏(𝑘)1 (𝑡 − 𝑘) (4.3.16)

which is a polynomial in (𝑡 − 𝑘) of degree 1 whose coefficients depend on the location of
the origin 𝑘. From (4.3.15), we find that these coefficients are given explicitly as

𝑏
(𝑘)
0 = 𝑧𝑘 − (1 − 𝜆0)𝑎𝑘
𝑏
(𝑘)
1 = 𝑧𝑘 − 𝑧𝑘−1 − (1 − 𝜆1)𝑎𝑘 + (1 − 𝜆0)𝑎𝑘−1

Also, by considering the differences 𝑏(𝑘)0 − 𝑏(𝑘−1)0 and 𝑏(𝑘)1 − 𝑏(𝑘−1)1 , it follows that if the
origin is updated from 𝑘 − 1 to 𝑘, then 𝑏0 and 𝑏1 are updated according to

𝑏
(𝑘)
0 = 𝑏(𝑘−1)0 + 𝑏(𝑘−1)1 + 𝜆0𝑎𝑘
𝑏
(𝑘)
1 = 𝑏(𝑘−1)1 + 𝜆1𝑎𝑘

(4.3.17)
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We see that when this model is appropriate, our expectation of the future behavior of
the series, judged from origin 𝑘, would be represented by the straight line (4.3.16), having
location 𝑏(𝑘)0 and slope 𝑏(𝑘)1 . In practice, the process will, by time 𝑡, have diverged from this
line because of the influence of the random component

𝜆0

𝑡−𝑘−1∑
𝑗=1

𝑎𝑡−𝑗 + 𝜆1
𝑡−𝑘−1∑
𝑗=1

𝑗𝑎𝑡−𝑗 + 𝑎𝑡

which at time 𝑘 is unpredictable. Moreover, on moving from origin 𝑘 − 1 to origin 𝑘, the
intercept and slope are updated according to (4.3.17).

Informally, through (4.3.15) we may also obtain the infinite random shock form as

𝑧𝑡 = 𝜆0
∞∑
𝑗=1

𝑎𝑡−𝑗 + 𝜆1
∞∑
𝑗=1

𝑗𝑎𝑡−𝑗 + 𝑎𝑡 = 𝜆0𝑆𝑎𝑡−1 + 𝜆1𝑆2𝑎𝑡−1 + 𝑎𝑡 (4.3.18)

So by comparisonwith (4.3.15), the complementary function can be represented informally
as

𝐶𝑘(𝑡 − 𝑘) = 𝜆0
∞∑

𝑗=𝑡−𝑘
𝑎𝑡−𝑗 + 𝜆1

∞∑
𝑗=𝑡−𝑘

𝑗𝑎𝑡−𝑗 = 𝑏
(𝑘)
0 + 𝑏(𝑘)1 (𝑡 − 𝑘)

By writing the second infinite sum above in the form

∞∑
𝑗=𝑡−𝑘

𝑗𝑎𝑡−𝑗 = (𝑡 − 𝑘)
∞∑

𝑗=𝑡−𝑘
𝑎𝑡−𝑗 +

∞∑
𝑗=𝑡−𝑘

[𝑗 − (𝑡 − 𝑘)]𝑎𝑡−𝑗

we see that the coefficients 𝑏(𝑘)0 and 𝑏(𝑘)1 can be associated with

𝑏
(𝑘)
0 = 𝜆0𝑆𝑎𝑘 + 𝜆1𝑆2𝑎𝑘−1 = (𝜆0 − 𝜆1)𝑆𝑎𝑘 + 𝜆1𝑆2𝑎𝑘

𝑏
(𝑘)
1 = 𝜆1𝑆𝑎𝑘

Inverted Form of Model. Finally, we consider the model in the inverted form:

𝑧𝑡 =
∞∑
𝑗=1

𝜋𝑗𝑧𝑡−𝑗 + 𝑎𝑡 = �̄�𝑡−1(𝜋) + 𝑎𝑡

Using (4.2.22), we find on equating coefficients in

1 − 2𝐵 + 𝐵2 = (1 − 𝜃1𝐵 − 𝜃2𝐵2)(1 − 𝜋1𝐵 − 𝜋2𝐵2 −⋯)

that the 𝜋 weights of the IMA(0, 2, 2) process are

𝜋1 = 2 − 𝜃1 = 𝜆0 + 𝜆1
𝜋2 = 𝜃1(2 − 𝜃1) − (1 + 𝜃2) = 𝜆0 + 2𝜆1 − (𝜆0 + 𝜆1)2

(1 − 𝜃1𝐵 − 𝜃2𝐵2)𝜋𝑗 = 0 𝑗 ≥ 3
(4.3.19)

where 𝐵 now operates on 𝑗.
If the roots of the characteristic equation 1 − 𝜃1𝐵 − 𝜃2𝐵2 = 0 are real, the 𝜋 weights

are a mixture of two damped exponentials. If the roots are complex, the weights follow a
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FIGURE 4.9 The 𝜋 weights for an IMA(0, 2, 2) process with 𝜆0 = 0.5, 𝜆1 = 0.6.

damped sine wave. Figure 4.9 shows the weights for a processwith 𝜃1 = 0.9 and 𝜃2 = −0.5,
that is, 𝜆0 = 0.5 and 𝜆1 = 0.6. For these parameter values, the characteristic equation has
complex roots (the discriminant 𝜃21 + 4𝜃2 = −1.19 is less than zero). Hence, the weights in
Figure 4.9 follow a damped sine wave, as expected.

4.3.3 General Integrated Moving Average Process of Order (𝟎, 𝒅, 𝒒)

Difference Equation Form. The general integrated moving average process of order
(0, 𝑑, 𝑞) is

∇𝑑𝑧𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵2 −⋯ − 𝜃𝑞𝐵𝑞)𝑎𝑡 = 𝜃(𝐵)𝑎𝑡 (4.3.20)

where the zeros of 𝜃(𝐵)must lie outside the unit circle for the process to be invertible. This
model may be written explicitly in terms of past 𝑧’s and 𝑎’s in the form

𝑧𝑡 = 𝑑𝑧𝑡−1 −
1
2
𝑑(𝑑 − 1)𝑧𝑡−2 +⋯ + (−1)𝑑+1𝑧𝑡−𝑑 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 −⋯ − 𝜃𝑞𝑎𝑡−𝑞

Random Shock Form of Model. To obtain 𝑧𝑡 in terms of the 𝑎𝑡’s, we write the right-hand
operator in (4.3.20) in terms of ∇ = 1 − 𝐵. In this way, we obtain

(1 − 𝜃1𝐵 −⋯ − 𝜃𝑞𝐵𝑞) = (𝜆𝑑−𝑞∇𝑞−1 +⋯ + 𝜆0∇𝑑−1 +⋯ + 𝜆𝑑−1)𝐵 + ∇𝑑 (4.3.21)

where, as before, the 𝜆’s may be written explicitly in terms of the 𝜃’s, by equating coeffi-
cients of 𝐵.

On substituting (4.3.21) in (4.3.20) and summing 𝑑 times, informally, we obtain

𝑧𝑡 = (𝜆𝑑−𝑞∇𝑞−𝑑−1 +⋯ + 𝜆0𝑆 +⋯ + 𝜆𝑑−1𝑆𝑑)𝑎𝑡−1 + 𝑎𝑡 (4.3.22)

Thus, for 𝑞 > 𝑑, we notice that in addition to the 𝑑 sums, we pick up 𝑞 − 𝑑 additional terms
∇𝑞−𝑑−1𝑎𝑡−1,… involving 𝑎𝑡−1, 𝑎𝑡−2,… , 𝑎𝑡+𝑑−𝑞.

If we write this solution in terms of finite sums of 𝑎’s entering the system after some
origin 𝑘, we obtain the same form of equation, but with an added complementary function,
which is the solution of

∇𝑑𝐶𝑘(𝑡 − 𝑘) = 0
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that is, the polynomial

𝐶𝑘(𝑡 − 𝑘) = 𝑏
(𝑘)
0 + 𝑏(𝑘)1 (𝑡 − 𝑘) + 𝑏(𝑘)2 (𝑡 − 𝑘)2 +⋯ + 𝑏(𝑘)

𝑑−1(𝑡 − 𝑘)
𝑑−1

As before, the complementary function 𝐶𝑘(𝑡 − 𝑘) represents the finite behavior of the
process, which is predictable at time 𝑘. Similarly, the coefficients 𝑏(𝑘)

𝑗
may be expressed,

informally, in terms of the infinite sums up to origin 𝑘, that is, 𝑆𝑎𝑘, 𝑆
2𝑎𝑘,… , 𝑆𝑑𝑎𝑘.

Accordingly, we can discover how the coefficients 𝑏(𝑘)
𝑗

change as the origin is changed,
from 𝑘 − 1 to 𝑘.

Inverted Form of Model. Finally, the model can be expressed in the inverted form

𝜋(𝐵)𝑧𝑡 = 𝑎𝑡

or

𝑧𝑡 = �̄�𝑡−1(𝜋) + 𝑎(𝑡)

The 𝜋 weights may be obtained by equating coefficients in (4.2.22), that is,

(1 − 𝐵)𝑑 = (1 − 𝜃1𝐵 − 𝜃2𝐵2 −⋯ − 𝜃𝑞𝐵𝑞)(1 − 𝜋1𝐵 − 𝜋2𝐵2 −⋯) (4.3.23)

This expression implies that for 𝑗 greater than the larger of 𝑑 and 𝑞, the 𝜋 weights satisfy
the homogeneous difference equation

𝜃(𝐵)𝜋𝑗 = 0

defined by the moving average operator. Hence, for sufficiently large 𝑗, the weights 𝜋𝑗
follow a mixture of damped exponentials and sine waves.

IMA Process of Order (0, 2, 3). One final special case of sufficient interest to merit
comment is the IMA process of order (0, 2, 3):

∇2𝑧𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵2 − 𝜃3𝐵3)𝑎𝑡

Proceeding as before, if we apply the finite double summation operator, this model can be
written in truncated random shock form as

𝑧𝑡 = 𝜆−1𝑎𝑡−1 + 𝜆0
𝑡−𝑘−1∑
𝑗=1

𝑎𝑡−𝑗 + 𝜆1
𝑡−𝑘−1∑
𝑗=1

𝑗𝑎𝑡−𝑗 + 𝑎𝑡 + 𝑏
(𝑘)
0 + 𝑏(𝑘)1 (𝑡 − 𝑘)

where the relations between the 𝜆’s and 𝜃’s are

𝜃1 = 2 − 𝜆−1 − 𝜆0 − 𝜆1 𝜆−1 = −𝜃3
𝜃2 = 𝜆0 − 1 + 2𝜆−1 𝜆0 = 1 + 𝜃2 + 2𝜃3
𝜃3 = −𝜆−1 𝜆1 = 1 − 𝜃1 − 𝜃2 − 𝜃3

Alternatively, it can be written, informally, in the infinite integrated form as

𝑧𝑡 = 𝜆−1𝑎𝑡−1 + 𝜆0𝑆𝑎𝑡−1 + 𝜆1𝑆2𝑎𝑡−1 + 𝑎𝑡
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FIGURE 4.10 Invertibility region for parameters 𝜆−1, 𝜆0, and 𝜆1 and of an IMA(0, 2, 3) process.

Finally, the invertibility region is defined by

𝜃1 + 𝜃2 + 𝜃3 < 1 𝜆1 > 0
−𝜃1 + 𝜃2 − 𝜃3 < 1 2𝜆0 + 𝜆1 < 4(1 − 𝜆−1)

𝜃3(𝜃3 − 𝜃1) − 𝜃2 < 1 𝜆0(1 + 𝜆−1) > −𝜆1𝜆−1
−1 < 𝜃3 < 1 −1 < 𝜆−1 < 1

as is shown in Figure 4.10.
In Chapter 5, we show how forecasts of future values of a time series can be generated

in an optimal manner when the model is an ARIMA process. In studying these forecasts,
we make considerable use of the various model forms discussed in this chapter.

APPENDIX A4.1 LINEAR DIFFERENCE EQUATIONS

In this book, we are often concerned with linear difference equations. In particular, the
ARIMA model relates an output 𝑧𝑡 to an input 𝑎𝑡 in terms of the difference equation

𝑧𝑡 − 𝜑1𝑧𝑡−1 − 𝜑2𝑧𝑡−2 −⋯ − 𝜑𝑝′𝑧𝑡−𝑝′
= 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 −⋯ − 𝜃𝑞𝑎𝑡−𝑞 (A4.1.1)

where 𝑝′ = 𝑝 + 𝑑.
Alternatively, we may write (A4.1.1) as

𝜑(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡

where

𝜑(𝐵) = 1 − 𝜑1𝐵 − 𝜑2𝐵
2 −⋯ − 𝜑𝑝′𝐵𝑝

′

𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 −⋯ − 𝜃𝑞𝐵𝑞
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We now derive an expression for the general solution of the difference equation (A4.1.1)
relative to an origin 𝑘 < 𝑡.

1. We show that the general solution may be written as

𝑧𝑡 = 𝐶𝑘(𝑡 − 𝑘) + 𝐼𝑘(𝑡 − 𝑘)

where 𝐶𝑘(𝑡 − 𝑘) is the complementary function and 𝐼𝑘(𝑡 − 𝑘) is a ‘‘particular inte-
gral.’’

2. We then derive a general expression for the complementary function 𝐶𝑘(𝑡 − 𝑘).
3. Finally, we derive a general expression for a particular integral 𝐼𝑘(𝑡 − 𝑘).

General Solution. The argument is identical to that for the solution of linear differential
or linear algebraic equations. Suppose that 𝑧′

𝑡
is any particular solution of

𝜑(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡 (A4.1.2)

that is, it satisfies

𝜑(𝐵)𝑧′
𝑡
= 𝜃(𝐵)𝑎𝑡 (A4.1.3)

On subtracting (A4.1.3) from (A4.1.2), we obtain

𝜑(𝐵)(𝑧𝑡 − 𝑧′𝑡) = 0

Thus 𝑧′′
𝑡
= 𝑧𝑡 − 𝑧′𝑡 satisfies

𝜑(𝐵)𝑧′′
𝑡
= 0 (A4.1.4)

Now

𝑧𝑡 = 𝑧′𝑡 + 𝑧
′′
𝑡

and hence the general solution of (A4.1.2) is the sum of the complementary function 𝑧′′
𝑡
,

which is the general solution of the homogeneous difference equation (A4.1.4), and a
particular integral 𝑧′

𝑡
, which is any particular solution of (A4.1.2). Relative to any origin

𝑘 < 𝑡, we denote the complementary function 𝑧′′
𝑡
by 𝐶𝑘(𝑡 − 𝑘) and the particular integral

𝑧′
𝑡
by 𝐼𝑘(𝑡 − 𝑘).

Evaluation of the Complementary Function.

Distinct Roots. Consider the homogeneous difference equation

𝜑(𝐵)𝑧𝑡 = 0 (A4.1.5)

where

𝜑(𝐵) = (1 − 𝐺1𝐵)(1 − 𝐺2𝐵)⋯ (1 −𝐺𝑝′𝐵) (A4.1.6)

and where we assume in the first instance that𝐺1, 𝐺2,… , 𝐺𝑝′ are distinct. Then, it is shown
below that the general solution of (A4.1.5) at time 𝑡, when the series is referred to an origin
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at time 𝑘, is

𝑧𝑡 = 𝐴1𝐺
𝑡−𝑘
1 + 𝐴2𝐺

𝑡−𝑘
2 +⋯ + 𝐴𝑝′𝐺

𝑡−𝑘
𝑝′

(A4.1.7)

where the 𝐴𝑖’s are constants. Thus, a real root G of 𝜑(𝐵) = 0 contributes a damped
exponential term 𝐺𝑡−𝑘 to the complementary function. A pair of complex roots contributes
a damped sine wave term 𝐷𝑡−𝑘 sin(2𝜋𝑓0𝑡 + 𝐹 ).

To see that the expression given in (A4.1.7) does satisfy (A4.1.5), we can substitute
(A4.1.7) in (A4.1.5) to give

𝜑(𝐵)(𝐴1𝐺
𝑡−𝑘
1 + 𝐴2𝐺

𝑡−𝑘
2 +⋯ + 𝐴𝑝′𝐺𝑡−𝑘𝑝′

) = 0 (A4.1.8)

Now consider

𝜑(𝐵)𝐺𝑡−𝑘
𝑖

= (1 − 𝜑1𝐵 − 𝜑2𝐵
2 −⋯ − 𝜑𝑝′𝐵𝑝

′ )𝐺𝑡−𝑘
𝑖

= 𝐺
𝑡−𝑘−𝑝′
𝑖

(𝐺𝑝
′

𝑖
− 𝜑1𝐺

𝑝′−1

𝑖
−⋯ − 𝜑𝑝′ )

We see that 𝜑(𝐵)𝐺𝑡−𝑘
𝑖

vanishes for each value of 𝑖 if

𝐺
𝑝′

𝑖
− 𝜑1𝐺

𝑝′−1
𝑖

−⋯ − 𝜑𝑝′ = 0

that is, if 𝐵𝑖 = 1∕𝐺𝑖 is a root of 𝜑(𝐵) = 0. Now, since (A4.1.6) implies that the roots of
𝜑(𝐵) = 0 are𝐵𝑖 = 1∕𝐺𝑖, it follows that𝜑(𝐵)𝐺𝑡−𝑘𝑖

is zero for all 𝑖 and hence (A4.1.8) holds,
confirming that (A4.1.7) is a general solution of (A4.1.5).

To prove (A4.1.7) directly, consider the special case of the second-order equation:

(1 −𝐺1𝐵)(1 −𝐺2𝐵)𝑧𝑡 = 0

which we can write as

(1 −𝐺1𝐵)𝑦𝑡 = 0 (A4.1.9)

where

𝑦𝑡 = (1 −𝐺2𝐵)𝑧𝑡 (A4.1.10)

Now (A4.1.9) implies that

𝑦𝑡 = 𝐺1𝑦𝑡−1 = 𝐺2
1𝑦𝑡−2 = ⋯ = 𝐺𝑡−𝑘1 𝑦𝑘

and hence

𝑦𝑡 = 𝐷1𝐺
𝑡−𝑘
1
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where 𝐷1 = 𝑦𝑘 is a constant determined by the starting value 𝑦𝑘. Hence (A4.1.10) may be
written as

𝑧𝑡 = 𝐺2𝑧𝑡−1 +𝐷1𝐺
𝑡−𝑘
1

= 𝐺2(𝐺2𝑧𝑡−2 +𝐷1𝐺
𝑡−𝑘−1
1 ) +𝐷1𝐺

𝑡−𝑘
1

⋮

= 𝐺𝑡−𝑘2 𝑧𝑘 +𝐷1(𝐺𝑡−𝑘1 +𝐺2𝐺
𝑡−𝑘−1
1 +⋯ + 𝐺𝑡−𝑘−12 𝐺1)

= 𝐺𝑡−𝑘2 𝑧𝑘 +
𝐷1

1 − 𝐺2∕𝐺1
(𝐺𝑡−𝑘1 − 𝐺𝑡−𝑘2 )

= 𝐴1𝐺
𝑡−𝑘
1 + 𝐴2𝐺

𝑡−𝑘
2 (A4.1.11)

where𝐴1, 𝐴2 are constants determined by the starting values of the series. By an extension
of the argument above, it may be shown that the general solution of (A4.1.5), when the
roots of 𝜑(𝐵) = 0 are distinct, is given by (A4.1.7).

Equal Roots. Suppose that 𝜑(𝐵) = 0 has 𝑑 equal roots𝐺−1
0 , so that 𝜑(𝐵) contains a factor

(1 −𝐺0𝐵)𝑑 . In particular, consider the solution (A4.1.11) for the second-order equation
when both 𝐺1 and 𝐺2 are equal to 𝐺0. Then, (A4.1.11) reduces to

𝑧𝑡 = 𝐺𝑡−𝑘0 𝑧𝑘 +𝐷1𝐺
𝑡−𝑘
0 (𝑡 − 𝑘)

or

𝑧𝑡 = [𝐴0 + 𝐴1(𝑡 − 𝑘)]𝐺𝑡−𝑘0

In general, if there are 𝑑 equal roots 𝐺0, it may be verified by direct substitution in
(A4.1.5) that the general solution is

𝑧𝑡 = [𝐴0 + 𝐴1(𝑡 − 𝑘) + 𝐴2(𝑡 − 𝑘)2 +⋯

+𝐴𝑑−1(𝑡 − 𝑘)𝑑−1]𝐺𝑡−𝑘0 (A4.1.12)

In particular, when the equal roots 𝐺0 are all equal to unity as in the IMA (0, 𝑑, 𝑞) process,
the solution is

𝑧𝑡 = 𝐴0 + 𝐴1(𝑡 − 𝑘) + 𝐴2(𝑡 − 𝑘)2 +⋯ + 𝐴𝑑−1(𝑡 − 𝑘)𝑑−1 (A4.1.13)

that is, a polynomial in 𝑡 − 𝑘 of degree 𝑑 − 1.
In general, when 𝜑(𝐵) factors according to

(1 − 𝐺1𝐵)(1 −𝐺2𝐵)⋯ (1 −𝐺𝑝𝐵)(1 −𝐺0𝐵)𝑑

the complementary function is

𝐶𝑘(𝑡 − 𝑘) = 𝐺𝑡−𝑘0

𝑑−1∑
𝑗=0

𝐴𝑗(𝑡 − 𝑘)𝑗 +
𝑝∑
𝑖=1

𝐷𝑖𝐺
𝑡−𝑘
𝑖

(A4.1.14)

Thus, in general, the complementary function consists of a mixture of damped expo-
nential terms 𝐺𝑡−𝑘, polynomial terms (𝑡 − 𝑘)𝑗 , damped sine wave terms of the form
𝐷𝑡−𝑘 sin(2𝜋𝑓0𝑡 + 𝐹 ), and combinations of these functions.
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Evaluation of the ‘‘Particular Integral’’. Wenow show that a particular integral 𝐼𝑘(𝑠 − 𝑘),
satisfying

𝜑(𝐵)𝐼𝑘(𝑡 − 𝑘) = 𝜃(𝐵)𝑎𝑡 𝑡 − 𝑘 > 𝑞 (A4.1.15)

is a function defined as follows:

𝐼𝑘(𝑠 − 𝑘) = 0 𝑠 ≤ 𝑘

𝐼𝑘(1)= 𝑎𝑘+1
𝐼𝑘(2)= 𝑎𝑘+2 + 𝜓1𝑎𝑘+1

⋮

𝐼𝑘(𝑡 − 𝑘) = 𝑎𝑡 + 𝜓1𝑎𝑡−1 + 𝜓2𝑎𝑡−2 +⋯ + 𝜓𝑡−𝑘−1𝑎𝑘+1 𝑡 > 𝑘

(A4.1.16)

where the 𝜓 weights are those appearing in the form (4.2.3) of the model. Thus, the 𝜓
weights satisfy

𝜑(𝐵)𝜓(𝐵)𝑎𝑡 = 𝜃(𝐵)𝑎𝑡 (A4.1.17)

Now the terms on the left-hand side of (A4.1.17) may be set out as follows:

𝑎𝑡 + 𝜓1𝑎𝑡−1 + 𝜓2𝑎𝑡−2 +⋯ + 𝜓𝑡−𝑘−1𝑎𝑘+1
−𝜑1(𝑎𝑡−1 + 𝜓1𝑎𝑡−2 +⋯ + 𝜓𝑡−𝑘−2𝑎𝑘+1
−𝜑2( ⋯

⋮

−𝜑𝑝′ (𝑎𝑡−𝑝′ +⋯ + 𝜓𝑡−𝑘−𝑝′−1𝑎𝑘+1

+𝜓𝑡−𝑘𝑎𝑘 +⋯

+𝜓𝑡−𝑘−1𝑎𝑘 +⋯)
⋯)
⋮

+𝜓𝑡−𝑘−𝑝′𝑎𝑘 +⋯

(A4.1.18)

Since the right-hand side of (A4.1.17) is

𝑎𝑡 − 𝜃1𝑎𝑡−1 −⋯ − 𝜃𝑞𝑎𝑡−𝑞

it follows that the first 𝑞 + 1 columns in this array sum to 𝑎𝑡,−𝜃1𝑎𝑡−1,… ,−𝜃𝑞𝑎𝑡−𝑞. Now the
left-hand term in (A4.1.15), where 𝐼𝑘(𝑠 − 𝑘) is given by (A4.1.16), is equal to the sum of
the terms in the first (𝑡 − 𝑘) columns of the array, that is, those to the left of the vertical line.
Therefore, if 𝑡 − 𝑘 < 𝑞, that is, the vertical line is drawn after 𝑞 + 1 columns, the sum of
all terms up to the vertical line is equal to 𝜃(𝐵)𝑎𝑡. This shows that (A4.1.16) is a particular
integral of the difference equation.

Example. Consider the IMA(0, 1, 1) process

𝑧𝑡 − 𝑧𝑡−1 = 𝑎𝑡 − 𝜃𝑎𝑡−1 (A4.1.19)

for which 𝜓𝑗 = 1 − 𝜃 for 𝑗 ≥ 1. Then

𝐼𝑘(0) = 0
𝐼𝑘(1) = 𝑎𝑘+1

⋮ (A4.1.20)
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𝐼𝑘(𝑡 − 𝑘) = 𝑎𝑡 + (1 − 𝜃)
𝑡−𝑘−1∑
𝑗=1

𝑎𝑡−𝑗 𝑡 − 𝑘 > 1

Now if 𝑧𝑡 = 𝐼𝑘(𝑡 − 𝑘) is a solution of (A4.1.19), then

𝐼𝑘(𝑡 − 𝑘) − 𝐼𝑘(𝑡 − 𝑘 − 1) = 𝑎𝑡 − 𝜃𝑎𝑡−1

and as is easily verified, while this is not satisfied by (A4.1.20) for 𝑡 − 𝑘 = 1, it is satisfied
by (A4.1.20) for 𝑡 − 𝑘 > 1, that is, for 𝑡 − 𝑘 > 𝑞.

APPENDIX A4.2 IMA(0, 1, 1) PROCESS WITH DETERMINISTIC DRIFT

The general model 𝜙(𝐵)∇𝑑𝑧𝑡 = 𝜃0 + 𝜃(𝐵)𝑎𝑡 can also be written as

𝜙(𝐵)∇𝑑𝑧𝑡 = 𝜃(𝐵)𝜀𝑡

with the shocks 𝜀𝑡 having a nonzero mean 𝜉 = 𝜃0∕(1 − 𝜃1 −⋯ − 𝜃𝑞). For example, the
IMA(0, 1, 1) model is then

∇𝑧𝑡 = (1 − 𝜃𝐵)𝜀𝑡

with 𝐸[𝜀𝑡] = 𝜉 = 𝜃0∕(1 − 𝜃). In this form, 𝑧𝑡 could represent, for example, the outlet
temperature from a reactor when heat was being supplied from a heating element at a fixed
rate. Now if

𝜀𝑡 = 𝜉 + 𝑎𝑡 (A4.2.1)

where 𝑎𝑡 is white noise with zero mean, then with reference to a time origin 𝑘, the integrated
form of the model is

𝑧𝑡 = 𝑏
(𝑘)
0 + 𝜆

𝑡−𝑘−1∑
𝑗=1

𝜀𝑡−𝑗 + 𝜀𝑡 (A4.2.2)

with 𝜆 = 1 − 𝜃. Substituting for (A4.2.1) in (A4.2.2), the model written in terms of the 𝑎’s
is

𝑧𝑡 = 𝑏
(𝑘)
0 + 𝜆𝜉(𝑡 − 𝑘 − 1) + 𝜉 + 𝜆

𝑡−𝑘−1∑
𝑗=1

𝑎𝑡−𝑗 + 𝑎𝑡 (A4.2.3)

Thus, we see that 𝑧𝑡 contains a deterministic slope or drift due to the term 𝜆𝜉(𝑡 − 𝑘 − 1),
with the slope of the deterministic linear trend equal to 𝜆𝜉 = 𝜃0. Moreover, if we denote
the ‘‘level’’ of the process at time 𝑡 − 1 by 𝑙𝑡−1, where

𝑧𝑡 = 𝑙𝑡−1 + 𝑎𝑡

we see that the level is changed from time 𝑡 − 1 to time 𝑡, according to

𝑙𝑡 = 𝑙𝑡−1 + 𝜆𝜉 + 𝜆𝑎𝑡
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The change in the level, thus, contains a deterministic component 𝜆𝜉 = 𝜃0, as well as a
stochastic component 𝜆𝑎𝑡.

APPENDIX A4.3 ARIMA PROCESSES WITH ADDED NOISE

In this appendix, we consider the effect of added noise (e.g., measurement error) to a
general ARIMA(𝑝, 𝑑, 𝑞) process. The results are also relevant to determine the nature of
the reduced form ARIMA model of an observed process in structural component models
(see Section 9.4), in which an observed series𝑍𝑡 is presumed to be represented as the sum
of two unobservable component processes that follow specified ARIMA models.

A4.3.1 Sum of Two Independent Moving Average Processes

As a necessary preliminary to what follows, consider a stochastic process 𝑤𝑡, which is the
sum of two independentmoving average processes of orders 𝑞1 and 𝑞2, respectively. That
is,

𝑤𝑡 = 𝑤1𝑡 +𝑤2𝑡 = 𝜃1(𝐵)𝑎𝑡 + 𝜃2(𝐵)𝑏𝑡 (A4.3.1)

where 𝜃1(𝐵) and 𝜃2(𝐵) are polynomials in 𝐵, of orders 𝑞1 and 𝑞2, and the white noise
processes 𝑎𝑡 and 𝑏𝑡 have zero means, variances 𝜎2

𝑎
and 𝜎2

𝑏
, and are mutually independent.

Suppose that 𝑞 = max(𝑞1, 𝑞2); then since

𝛾𝑗(𝑤) = 𝛾𝑗(𝑤1) + 𝛾𝑗(𝑤2)

it is clear that the autocovariance function 𝛾𝑗(𝑤) for 𝑤𝑡 must be zero for 𝑗 > 𝑞. It follows
that there exists a representation of 𝑤𝑡 as a single MA(𝑞) process:

𝑤𝑡 = 𝜃(𝐵)𝑢𝑡 (A4.3.2)

where 𝑢𝑡 is a white noise process with mean zero and variance 𝜎2
𝑢
. Thus, the sum of two

independent moving average processes is another moving average process, whose order is
the same as that of the component process of higher order.

The parameters in the MA(𝑞) model can be deduced by equating the autocovariances
of 𝑤𝑡, as determined from the representation in (A4.3.1), with the autocovariances of the
basic MA(𝑞) model (A4.3.2), as given in Section 3.3.2. For an example, suppose that
𝑤1𝑡 = 𝜃1(𝐵)𝑎𝑡 = (1 − 𝜃1,1𝐵)𝑎𝑡 is MA(1) and 𝑤2𝑡 = 𝜃2(𝐵)𝑏𝑡 = (1 − 𝜃1,2𝐵 − 𝜃2,2𝐵2)𝑏𝑡 is
MA(2), so that 𝑤𝑡 = 𝜃(𝐵)𝑢𝑡 is MA(2) with

𝑤𝑡 = (1 − 𝜃1,1𝐵)𝑎𝑡 + (1 − 𝜃1,2𝐵 − 𝜃2,2𝐵2)𝑏𝑡
= (1 − 𝜃1𝐵 − 𝜃2𝐵2)𝑢𝑡

The parameters of the MA(2) model for 𝑤𝑡 can be determined by considering

𝛾0(𝑤) = (1 + 𝜃21,1)𝜎
2
𝑎
+ (1 + 𝜃21,2 + 𝜃

2
2,2)𝜎

2
𝑏
≡ (1 + 𝜃21 + 𝜃

2
2)𝜎

2
𝑢

𝛾1(𝑤) = −𝜃1,1𝜎2𝑎 + (−𝜃1,2 + 𝜃1,2𝜃2,2)𝜎2𝑏 ≡ (−𝜃1 + 𝜃1𝜃2)𝜎2𝑢
𝛾2(𝑤) = −𝜃2,2𝜎2𝑏 ≡ −𝜃2𝜎2𝑢
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and solving for 𝜃1, 𝜃2, and 𝜎
2
𝑢 in terms of given values for the autocovariances 𝛾0(𝑤), 𝛾1(𝑤),

𝛾2(𝑤) as determined from the left-hand-side expressions for these.

A4.3.2 Effect of Added Noise on the General Model

Correlated Noise. Consider the general nonstationary model for the process 𝑧𝑡 of order
(𝑝, 𝑑, 𝑞):

𝜙(𝐵)∇𝑑𝑧𝑡 = 𝜃(𝐵)𝑎𝑡 (A4.3.3)

Suppose that we cannot observe 𝑧𝑡 itself, but only 𝑍𝑡 = 𝑧𝑡 + 𝑏𝑡, where 𝑏𝑡 represents some
extraneous noise (e.g., measurement error) or simply some additional unobserved compo-
nent that together with 𝑧𝑡 forms the observed process𝑍𝑡, and 𝑏𝑡 may be autocorrelated.We
wish to determine the nature of the model for the observed process𝑍𝑡. In general, applying
𝜙(𝐵)∇𝑑 to both sides of 𝑍𝑡 = 𝑧𝑡 + 𝑏𝑡, we have

𝜙(𝐵)∇𝑑𝑍𝑡 = 𝜃(𝐵)𝑎𝑡 + 𝜙(𝐵)∇𝑑𝑏𝑡

If the noise 𝑏𝑡 follows a stationary ARMA process of order (𝑝1, 0, 𝑞1),

𝜙1(𝐵)𝑏𝑡 = 𝜃1(𝐵)𝛼𝑡 (A4.3.4)

where 𝛼𝑡 is a white noise process independent of the 𝑎𝑡 process, then

𝜙1(𝐵)𝜙(𝐵)∇𝑑
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝑝1+𝑝+𝑑

𝑍𝑡 = 𝜙1(𝐵)𝜃(𝐵)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑝1+𝑞

𝑎𝑡 + 𝜙(𝐵)𝜃1(𝐵)∇𝑑
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝑝+𝑞1+𝑑

𝛼𝑡 (A4.3.5)

where the values below the braces indicate the degrees of the various polynomials in 𝐵.
Now the right-hand side of (A4.3.5) is of the form (A4.3.1). Let 𝑃 = 𝑝1 + 𝑝 and𝑄 be equal
to whichever of (𝑝1 + 𝑞) and (𝑝 + 𝑞1 + 𝑑) is larger. Then we can write

𝜙2(𝐵)∇𝑑𝑍𝑡 = 𝜃2(𝐵)𝑢𝑡

with 𝑢𝑡 a white noise process, and the 𝑍𝑡 process is seen to be an ARIMA of order
(𝑃 , 𝑑,𝑄). The stationaryAR operator in theARIMAmodel for𝑍𝑡 is determined as𝜙2(𝐵) =
𝜙1(𝐵)𝜙(𝐵), and the parameters of theMAoperator 𝜃2(𝐵) and 𝜎2𝑢 are determined in the same
manner as described in Section A4.3.1, that is, by equating the nonzero autocovariances
from the representations:

𝜙1(𝐵)𝜃(𝐵)𝑎𝑡 + 𝜙(𝐵)𝜃1(𝐵)∇𝑑𝛼𝑡 = 𝜃2(𝐵)𝑢𝑡

Added White Noise. If, as might be true in some applications, the added noise is white,
then 𝜙1(𝐵) = 𝜃1𝐵 = 1 in (A4.3.4), and we obtain

𝜙(𝐵)∇𝑑𝑍𝑡 = 𝜃2(𝐵)𝑢𝑡 (A4.3.6)

with

𝜃2(𝐵)𝑢𝑡 = 𝜃(𝐵)𝑎𝑡 + 𝜙(𝐵)∇𝑑𝑏𝑡
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which is of order (𝑝, 𝑑, 𝑄) where 𝑄 is the larger of 𝑞 and (𝑝 + 𝑑). If 𝑝 + 𝑑 ≤ 𝑞, the order
of the process with error is the same as that of the original process. The only effect of the
added white noise is to change the values of the 𝜃’s (but not the 𝜙’s).

Effect of Added White Noise on an Integrated Moving Average Process. In particular, an
IMA process of order (0, 𝑑, 𝑞), with white noise added, remains an IMA of order (0, 𝑑, 𝑞) if
𝑑 ≤ 𝑞; otherwise, it becomes an IMA of order (0, 𝑑, 𝑑). In either case, the parameters of the
process are changed by the addition of noise, with the representation∇𝑑𝑍𝑡 = 𝜃2(𝐵)𝑢𝑡 as in
(A4.3.6). The nature of these changes can be determined by equating the autocovariances
of the 𝑑th differences of the process, with added noise, to those of the 𝑑th differences
of a simple IMA process, that is, as a special case of the above, by equating the nonzero
autocovariances in the representation

𝜃(𝐵)𝑎𝑡 + ∇𝑑𝑏𝑡 = 𝜃2(𝐵)𝑢𝑡

The procedure will now be illustrated with an example.

A4.3.3 Example for an IMA(0, 1, 1) Process with Added White Noise

Consider the properties of the process 𝑍𝑡 = 𝑧𝑡 + 𝑏𝑡 when

𝑧𝑡 = 𝑧𝑡−1 − (1 − 𝜆)𝑎𝑡−1 + 𝑎𝑡 (A4.3.7)

and the 𝑏𝑡 and 𝑎𝑡 are mutually independent white noise processes. The 𝑍𝑡 process has first
difference𝑊𝑡 = 𝑍𝑡 −𝑍𝑡−1 given by

𝑊𝑡 = [1 − (1 − 𝜆)𝐵]𝑎𝑡 + (1 − 𝐵)𝑏𝑡 (A4.3.8)

The autocovariances for the first differences𝑊𝑡 are

𝛾0 = 𝜎2𝑎[1 + (1 − 𝜆)2] + 2𝜎2
𝑏

𝛾1 = −𝜎2
𝑎
(1 − 𝜆) − 𝜎2

𝑏

𝛾𝑗 = 0 𝑗 ≥ 2
(A4.3.9)

The fact that the 𝛾𝑗 are zero beyond the first lag confirms that the process with added noise
is, as expected, an IMA process of order (0, 1, 1). To obtain explicitly the parameters of
the IMA that represents the noisy process, we suppose that it can be written as

𝑍𝑡 = 𝑍𝑡−1 − (1 − Λ)𝑢𝑡−1 + 𝑢𝑡 (A4.3.10)

where 𝑢𝑡 is a white noise process. The process (A4.3.10) has first differences𝑊𝑡 = 𝑍𝑡 −
𝑍𝑡−1 with autocovariances

𝛾0 = 𝜎2𝑢 [1 + (1 − Λ)2]
𝛾1 = −𝜎2

𝑢
(1 − Λ)

𝛾𝑗 = 0 𝑗 ≥ 2
(A4.3.11)
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Equating (A4.3.9) and (A4.3.11), we can solve for Λ and 𝜎2𝑢 explicitly. Thus

Λ2

1 − Λ2 = 𝜆
2

1 − 𝜆 + 𝜎2
𝑏
∕𝜎2

𝑎

𝜎2
𝑢
= 𝜎2

𝑎

𝜆2

Λ2 (A4.3.12)

Suppose, for example, that the original series has 𝜆 = 0.5 and 𝜎2
𝑏
= 𝜎2

𝑎
; then, Λ = 0.333

and 𝜎2
𝑢
= 2.25𝜎2

𝑎
.

A4.3.4 Relation between the IMA(0, 1, 1) Process and a RandomWalk

The process

𝑧𝑡 = 𝑧𝑡−1 + 𝑎𝑡 (A4.3.13)

which is an IMA(0, 1, 1) process, with 𝜆 = 1(𝜃 = 0), is called a random walk. If the 𝑎𝑡 are
steps taken forward or backward at time 𝑡, then 𝑧𝑡 will represent the position of the walker
at time 𝑡.

Any IMA(0, 1, 1) process can be thought of as a random walk buried in white noise
𝑏𝑡, uncorrelated with the shocks 𝑎𝑡 associated with the random walk process. If the noisy
process is 𝑍𝑡 = 𝑧𝑡 + 𝑏𝑡, where 𝑧𝑡 is defined by (A4.3.13), then using (A4.3.12), we have

𝑍𝑡 = 𝑍𝑡−1 − (1 − Λ)𝑢𝑡−1 + 𝑢𝑡

with

Λ2

1 − Λ2 =
𝜎2
𝑎

𝜎2
𝑏

𝜎2
𝑢
=
𝜎2
𝑎

Λ2 (A4.3.14)

A4.3.5 Autocovariance Function of the General Model with Added Correlated
Noise

Suppose that the basic process is an ARIMA process of order (𝑝, 𝑑, 𝑞):

𝜙(𝐵)∇𝑑𝑧𝑡 = 𝜃(𝐵)𝑎𝑡

and that𝑍𝑡 = 𝑧𝑡 + 𝑏𝑡 is observed,where the stationary process 𝑏𝑡, which has autocovariance
function 𝛾𝑗(𝑏), is independent of the process 𝑎𝑡, and hence of 𝑧𝑡. Suppose that 𝛾𝑗(𝑤) is the
autocovariance function for 𝑤𝑡 = ∇𝑑𝑧𝑡 = 𝜙−1(𝐵)𝜃(𝐵)𝑎𝑡 and that𝑊𝑡 = ∇𝑑𝑍𝑡. We require
the autocovariance function for𝑊𝑡. Now

∇𝑑 (𝑍𝑡 − 𝑏𝑡) = 𝜙−1(𝐵)𝜃(𝐵)𝑎𝑡
𝑊𝑡 = 𝑤𝑡 + 𝜐𝑡

where

𝜐𝑡 = ∇𝑑𝑏𝑡 = (1 − 𝐵)𝑑𝑏𝑡
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Hence

𝛾𝑗(𝑊 ) = 𝛾𝑗(𝑤) + 𝛾𝑗(𝜐)
𝛾𝑗(𝜐) = (1 − 𝐵)𝑑(1 − 𝐹 )𝑑𝛾𝑗(𝑏)

= (−1)𝑑(1 − 𝐵)2𝑑𝛾𝑗+𝑑(𝑏)

and

𝛾𝑗(𝑊 ) = 𝛾𝑗(𝑤) + (−1)𝑑(1 − 𝐵)2𝑑𝛾𝑗+𝑑 (𝑏) (A4.3.15)

For example, suppose that correlated noise 𝑏𝑡 is added to an IMA(0, 1, 1) process
defined by 𝑤𝑡 = ∇𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡. Then the autocovariances of the first difference𝑊𝑡 of
the ‘‘noisy’’ process will be

𝛾0(𝑊 ) = 𝜎2
𝑎
(1 + 𝜃2) + 2[𝛾0(𝑏) − 𝛾1(𝑏)]

𝛾1(𝑊 ) = −𝜎2
𝑎
𝜃 + [2𝛾1(𝑏) − 𝛾0(𝑏) − 𝛾2(𝑏)]

𝛾𝑗(𝑊 ) = [2𝛾𝑗(𝑏) − 𝛾𝑗−1(𝑏) − 𝛾𝑗+1(𝑏)] 𝑗 ≥ 2

In particular, if 𝑏𝑡 was first-order autoregressive, so that 𝑏𝑡 = 𝜙𝑏𝑡−1 + 𝛼𝑡,

𝛾0(𝑊 ) = 𝜎2
𝑎
(1 + 𝜃2) + 2𝛾0(𝑏)(1 − 𝜙)

𝛾1(𝑊 ) = −𝜎2
𝑎
𝜃 − 𝛾0(𝑏)(1 − 𝜙)2

𝛾𝑗(𝑊 ) = −𝛾0(𝑏)𝜙𝑗−1(1 − 𝜙)2 𝑗 ≥ 2

where 𝛾0(𝑏) = 𝜎2𝛼∕(1 − 𝜙
2). In fact, from (A4.3.5), the resulting noisy process𝑍𝑡 = 𝑧𝑡 + 𝑏𝑡

is in this case defined by

(1 − 𝜙𝐵)∇𝑍𝑡 = (1 − 𝜙𝐵)(1 − 𝜃𝐵)𝑎𝑡 + (1 − 𝐵)𝛼𝑡

which will be of order (1, 1, 2), and for the associated ARMA(1, 2) process𝑊𝑡 = ∇𝑍𝑡, we
know that the autocovariances satisfy 𝛾𝑗(𝑊 ) = 𝜙𝛾𝑗−1(𝑊 ) for 𝑗 ≥ 3 [e.g., see (3.4.3)] as is
shown explicitly above.

EXERCISES

4.1. For each of the models

(1) (1 − 𝐵)𝑧𝑡 = (1 − 0.5𝐵)𝑎𝑡
(2) (1 − 𝐵)𝑧𝑡 = (1 − 0.2𝐵)𝑎𝑡
(3) (1 − 0.5𝐵)(1 − 𝐵)𝑧𝑡 = 𝑎𝑡
(4) (1 − 0.2𝐵)(1 − 𝐵)𝑧𝑡 = 𝑎𝑡
(5) (1 − 0.2𝐵)(1 − 𝐵)𝑧𝑡 = (1 − 0.5𝐵)𝑎𝑡
(a) Obtain the first seven 𝜓𝑗 weights.

(b) Obtain the first seven 𝜋𝑗 weights.

(c) Classify as a member of the class of ARIMA(p, d, q) processes.
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4.2. For the five models of Exercise 4.1, and using where appropriate the results there
obtained,

(a) Write each model in random shock form.

(b) Write each model as a complementary function plus a particular integral in
relation to an origin 𝑘 = 𝑡 − 3.

(c) Write each model in inverted form.

4.3. Consider the IMA(0, 2, 2) process with parameters 𝜃1 = 0.8 and 𝜃2 = −0.4.
(a) Is the process invertible? If so, what is the expected pattern of the 𝜋 weights?

(b) Calculate and plot the first ten 𝜋 weights for the original series 𝑧𝑡 and comment.

(c) Calculate and plot the first ten 𝜋 weights for the differenced series 𝑤𝑡 =
(1 − 𝐵)2𝑧𝑡.

4.4 Given the following series of random shocks 𝑎𝑡, and given that 𝑧0 = 20, 𝑧−1 = 19,

t a𝑡 t a𝑡 t a𝑡

0 −0.3 5 −0.6 10 −0.4
1 0.6 6 1.7 11 0.9
2 0.9 7 −0.9 12 0.0
3 0.2 8 −1.3 13 −1.4
4 0.1 9 −0.6 14 −0.6

(a) Use the difference equation form of the model to obtain 𝑧1, 𝑧2,… , 𝑧14 for each
of the five models in Exercise 4.1.

(b) Plot the resulting series.

4.5. Using the inverted forms of each of the models in Exercise 4.1, obtain 𝑧12, 𝑧13, and
𝑧14, using only the values 𝑧1, 𝑧2,… , 𝑧11 derived in Exercise 4.4 and 𝑎12, 𝑎13, and
𝑎14. Confirm that the values agree with those obtained in Exercise 4.4.

4.6. Consider the IMA(0, 1, 1) model (1 − 𝐵)𝑧𝑡 = (1 − 𝜃)𝑎𝑡, where the 𝑎𝑡 are i.i.d.
N(0, 𝜎2

𝑎
).

(a) Derive the expected value and variance of 𝑧𝑡, 𝑡 = 1, 2,… , assuming that the
process starts at time 𝑡 = 1 with 𝑧0 = 10.

(b) Derive the correlation coefficient 𝜌𝑘 between 𝑧𝑡 and 𝑧𝑡−𝑘, conditioning on 𝑧0 =
10. Assume that 𝑡 is much larger than the lag 𝑘.

(c) Provide an approximate value for the autocorrelation coefficient 𝜌𝑘 derived in
part (c).

4.7. If �̄�𝑡 =
∑∞
𝑗=1 𝜋𝑗𝑧𝑡+1−𝑗 , then for models (1) and (2) of Exercise 4.1, which are of

the form (1 − 𝐵)𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡, �̄�𝑡 is an exponentially weighted moving average.
For these two models, by actual calculation, confirm that �̄�11, �̄�12, and �̄�13 satisfy
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the relations

𝑧𝑡 = �̄�𝑡−1 + 𝑎𝑡 (see Exercise 4.5)
�̄�𝑡 = �̄�𝑡−1 + (1 − 𝜃)𝑎𝑡

= (1 − 𝜃)𝑧𝑡 + 𝜃�̄�𝑡−1

4.8. If 𝑤1𝑡 = (1 − 𝜃1𝐵)𝑎1𝑡 and 𝑤2𝑡 = (1 − 𝜃2𝐵)𝑎2𝑡, show that 𝑤3𝑡 = 𝑤1𝑡 +𝑤2𝑡 may be
written as 𝑤3𝑡 = (1 − 𝜃3𝐵)𝑎3𝑡, and derive an expression for 𝜃3 and 𝜎2

𝑎3
in terms of

the parameters of the other two processes. State your assumptions.

4.9. Suppose that 𝑍𝑡 = 𝑧𝑡 + 𝑏𝑡, where 𝑧𝑡 is a first-order autoregressive process (1 −
𝜙𝐵)𝑧𝑡 = 𝑎𝑡 and 𝑏𝑡 is a white noise process with variance 𝜎2

𝑏
. What model does

the process 𝑍𝑡 follow? State your assumptions.

4.10. (a) Simulate a time series of𝑁 = 200 observations from an IMA(0, 2, 2) model with
parameters 𝜃1 = 0.8 and 𝜃2 = −0.4 using the arima.sim() function in R; type
help(arima.sim) for details. Plot the resulting series and comment on its behavior.

(b) Estimate and plot the autocorrelation function of the simulated time series.

(c) Estimate and plot the autocorrelation functions of the first and second differences
of the series.

(d) Comment on the patterns of the autocorrelation functions generated above. Are
the results consistent with what you would expect to see for this IMA(0, 2, 2)
process?

4.11. Download the daily S& P 500 Index stock price values for the period January 2, 2014
to present from the Internet (e.g., http://research.stlouisfed.org).

(a) Plot the series using R. Calculate and graph the autocorrelation and partial
autocorrelation functions for this series. Does the series appear to be stationary?

(b) Repeat the calculations in part (a) for the first and second differences of the
series. Describe the effects of differencing in this case. Can you suggest a model
that might be appropriate for this series?

(c) The return or relative gain on a stock can be calculated as (𝑧𝑡 − 𝑧𝑡−1)∕𝑧𝑡 or
log(𝑧𝑡) − log(𝑧𝑡−1). Perform this calculation and comment on the stationarity of
the resulting series.

4.12. Repeat the analysis in Exercise 11 for the Dow Jones Industrial Average, or for a
time series of your own choosing.
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FORECASTING

In Chapter 4, we discussed the properties of autoregressive integrated moving average
(ARIMA) models and examined in detail some special cases that appear to be common in
practice. We will now show how these models may be used to forecast future values of
an observed time series. In Part Two, we will consider the problem of selecting a suitable
model of this form and fitting it to actual data. For the present, however, we proceed as
if the model were known exactly, bearing in mind that estimation errors in the parameters
will not seriously affect the forecasts unless the time series is relatively short.

This chapter will focus on nonseasonal time series. The forecasting, as well as model
fitting, of seasonal time series is described in Chapter 9. We show how minimum mean
square error (MSE) forecasts may be generated directly from the difference equation form
of the model. A further recursive calculation yields probability limits for the forecasts. It is
emphasized that for practical computation of the forecasts, this approach via the difference
equation is the simplest and most elegant. However, to provide insight into the nature of
the forecasts, we also consider them from other viewpoints. As a computational tool, we
also demonstrate how to generate forecasts and associated probability limits using the R
software.

5.1 MINIMUM MEAN SQUARE ERROR FORECASTS AND THEIR
PROPERTIES

In Section 4.2, we discussed three explicit forms for the general ARIMA model:

𝜑(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡 (5.1.1)

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
○c 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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where 𝜑(𝐵) = 𝜙(𝐵)∇𝑑 . We begin by recalling these three forms since each one sheds light
on a different aspect of the forecasting problem.

We will consider forecasting a value 𝑧𝑡+𝑙 , 𝑙 ≥ 1, when we are currently at time 𝑡. This
forecast is said to be made at origin 𝑡 for lead time 𝑙. We now summarize the results of
Section 4.2, but writing 𝑡 + 𝑙 for 𝑡 and 𝑡 for 𝑘.

ThreeExplicit Forms for theModel. Anobservation 𝑧𝑡+𝑙 generated by theARIMAprocess
may be expressed as follows:

1. Directly in terms of the difference equation by

𝑧𝑡+𝑙 = 𝜑1𝑧𝑡+𝑙−1 +⋯ + 𝜑𝑝+𝑑𝑧𝑡+𝑙−𝑝−𝑑 − 𝜃1𝑎𝑡+𝑙−1 −⋯

− 𝜃𝑞𝑎𝑡+𝑙−𝑞 + 𝑎𝑡+𝑙 (5.1.2)

2. As an infinite weighted sum of current and previous shocks 𝑎𝑗:

𝑧𝑡+𝑙 =
∞∑
𝑗=0

𝜓𝑗𝑎𝑡+𝑙−𝑗 (5.1.3)

where 𝜓0 = 1 and, as in (4.2.5), the 𝜓 weights may be obtained by equating coeffi-
cients in

𝜑(𝐵)(1 + 𝜓1𝐵 + 𝜓2𝐵
2 +⋯) = 𝜃(𝐵) (5.1.4)

Equivalently, for positive 𝑙, with reference to origin 𝑘 < 𝑡, the model may be written
in the truncated form:

𝑧𝑡+𝑙 = 𝑎𝑡+𝑙 + 𝜓1𝑎𝑡+𝑙−1 +⋯ + 𝜓𝑙−1𝑎𝑡+1
+ 𝜓𝑙𝑎𝑡 +⋯ + 𝜓𝑡+𝑙−𝑘−1𝑎𝑘+1 + 𝐶𝑘(𝑡 + 𝑙 − 𝑘)

= 𝑎𝑡+𝑙 + 𝜓1𝑎𝑡+𝑙−1 +⋯ + 𝜓𝑙−1𝑎𝑡+1 + 𝐶𝑡(𝑙) (5.1.5)

where 𝐶𝑘(𝑡 + 𝑙 − 𝑘) is the complementary function relative to the finite origin 𝑘 of
the process. From (4.2.19), we recall that the complementary function relative to the
forecast origin 𝑡 can be expressed as 𝐶𝑡(𝑙) = 𝐶𝑘(𝑡 + 𝑙 − 𝑘) + 𝜓𝑙𝑎𝑡 + 𝜓𝑙+1𝑎𝑡−1 +⋯ +
𝜓𝑡+𝑙−𝑘−1𝑎𝑘+1. Informally, 𝐶𝑡(𝑙) is associated with the truncated infinite sum:

𝐶𝑡(𝑙) =
∞∑
𝑗=𝑙

𝜓𝑗𝑎𝑡+𝑙−𝑗 (5.1.6)

3. As an infinite weighted sum of previous observations, plus a random shock,

𝑧𝑡+𝑙 =
∞∑
𝑗=1

𝜋𝑗𝑧𝑡+𝑙−𝑗 + 𝑎𝑡+𝑙 (5.1.7)

Also, if 𝑑 ≥ 1,

�̄�𝑡+𝑙−1(𝜋) =
∞∑
𝑗=1

𝜋𝑗𝑧𝑡+𝑙−𝑗 (5.1.8)
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will be a weighted average, since then
∑∞

𝑗=1 𝜋𝑗 = 1. As in (4.2.22), the 𝜋 weights
may be obtained from

𝜑(𝐵) = (1 − 𝜋1𝐵 − 𝜋2𝐵
2 −⋯)𝜃(𝐵) (5.1.9)

5.1.1 Derivation of the Minimum Mean Square Error Forecasts

Now suppose, at origin 𝑡, that we are to make a forecast �̂�𝑡(𝑙) of 𝑧𝑡+𝑙, which is to be a linear
function of current and previous observations 𝑧𝑡, 𝑧𝑡−1, 𝑧𝑡−2,…. Then, it will also be a linear
function of current and previous shocks 𝑎𝑡, 𝑎𝑡−1, 𝑎𝑡−2,….

Suppose, then, that the best forecast is

�̂�𝑡(𝑙) = 𝜓∗
𝑙
𝑎𝑡 + 𝜓∗

𝑙+1𝑎𝑡−1 + 𝜓∗
𝑙+2𝑎𝑡−2 +⋯

where the weights 𝜓∗
𝑙
, 𝜓∗

𝑙+1,… are to be determined. Then, using (5.1.3), the mean square
error of the forecast is

𝐸[𝑧𝑡+𝑙 − �̂�𝑡(𝑙)]2 =(1 + 𝜓2
1 +⋯ + 𝜓2

𝑙−1)𝜎
2
𝑎

+
∞∑
𝑗=0

(𝜓𝑙+𝑗 − 𝜓∗
𝑙+𝑗)

2𝜎2
𝑎

(5.1.10)

which is minimized by setting 𝜓∗
𝑙+𝑗 = 𝜓𝑙+𝑗 . This conclusion is a special case of more

general results in prediction theory (Wold, 1938; Kolmogoroff (1939, 1941a, 1941b),
Wiener, 1949; Whittle, 1963). We then have

𝑧𝑡+𝑙 = (𝑎𝑡+𝑙 + 𝜓1𝑎𝑡+𝑙−1 +⋯ + 𝜓𝑙−1𝑎𝑡+1)
+ (𝜓𝑙𝑎𝑡 + 𝜓𝑙+1𝑎𝑡−1 +⋯) (5.1.11)

= 𝑒𝑡(𝑙) + �̂�𝑡(𝑙) (5.1.12)

where 𝑒𝑡(𝑙) is the error of the forecast �̂�𝑡(𝑙) at lead time 𝑙.
Certain important facts emerge. As before, denote 𝐸[𝑧𝑡+𝑙|𝑧𝑡, 𝑧𝑡−1,…], the conditional

expectation of 𝑧𝑡+𝑙 given the knowledge of all the 𝑧’s up to time 𝑡, by 𝐸𝑡[𝑧𝑡+𝑙]. We will
assume that 𝑎𝑡 are a sequence of independent random variables.

1. Then, 𝐸[𝑎𝑡+𝑗|𝑧𝑡, 𝑧𝑡−1,…] = 0, 𝑗 > 0, and so from (5.1.3),

�̂�𝑡(𝑙) = 𝜓𝑙𝑎𝑡 + 𝜓𝑙+1𝑎𝑡−1 +⋯ = 𝐸𝑡[𝑧𝑡+𝑙] (5.1.13)

Thus, the minimum mean square error forecast at origin 𝑡, for lead time 𝑙, is the
conditional expectation of 𝑧𝑡+𝑙 at time 𝑡. When �̂�𝑡(𝑙) is regarded as a function of 𝑙
for fixed 𝑡, it will be called the forecast function for origin 𝑡. We note that a minimal
requirement on the random shocks 𝑎𝑡 in the model (5.1.1) in order for the conditional
expectation 𝐸𝑡[𝑧𝑡+𝑙], which always equals the minimum mean square error forecast,
to coincide with the minimum mean square error linear forecast is that 𝐸𝑡[𝑎𝑡+𝑗] = 0,
𝑗 > 0. This property may not hold for certain types of nonlinear processes studied,
for example, by Priestley (1988), Tong (1983, 1990), and many subsequent authors.
Such processes may, in fact, possess a linear representation as in (5.1.1), but the
shocks 𝑎𝑡 will not be independent, only uncorrelated, and the best forecast 𝐸𝑡[𝑧𝑡+𝑙]
may not coincide with the best linear forecast �̂�𝑡(𝑙) as obtained in (5.1.11).
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2. The forecast error for lead time 𝑙 is

𝑒𝑡(𝑙) = 𝑎𝑡+𝑙 + 𝜓1𝑎𝑡+𝑙−1 +⋯ + 𝜓𝑙−1𝑎𝑡+1 (5.1.14)

Since

𝐸𝑡[𝑒𝑡(𝑙)] = 0 (5.1.15)

the forecast is unbiased. Also, the variance of the forecast error is

𝑉 (𝑙) = var[𝑒𝑡(𝑙)] = (1 + 𝜓2
1 + 𝜓2

2 +⋯ + 𝜓2
𝑙−1)𝜎

2
𝑎

(5.1.16)

3. It is readily shown that not only is �̂�𝑡(𝑙) the minimum mean square error forecast
of 𝑧𝑡+𝑙, but that any linear function

∑𝐿

𝑙=1𝑤𝑙�̂�𝑡(𝑙) of the forecasts is also a minimum

mean square error forecast of the corresponding linear function
∑𝐿

𝑙=1𝑤𝑙𝑧𝑡+𝑙 of the
future observations. For example, suppose that using (5.1.13),we have obtained, from
monthly data, minimummean square error forecasts �̂�𝑡(1), �̂�𝑡(2), and �̂�𝑡(3) of the sales
of a product 1, 2, and 3 months ahead. Then, it is true that �̂�𝑡(1) + �̂�𝑡(2) + �̂�𝑡(3) is the
minimum mean square error forecast of the sales 𝑧𝑡+1 + 𝑧𝑡+2 + 𝑧𝑡+3 during the next
quarter.

4. The Shocks as One-Step-Ahead Forecast Errors. Using (5.1.14), the one-step-ahead
forecast error is

𝑒𝑡(1) = 𝑧𝑡+1 − �̂�𝑡(1) = 𝑎𝑡+1 (5.1.17)

Hence, the shocks 𝑎𝑡, which generate the process, and which have been introduced
so far merely as a set of independent random variables or shocks, turn out to be the
one-step-ahead forecast errors.

It follows that for a minimum mean square error forecast, the one-step-ahead
forecast errorsmust be uncorrelated. Thismakes sense, for if the one-step-ahead errors
were correlated, the forecast error 𝑎𝑡+1 could, to some extent, be predicted from
available forecast errors 𝑎𝑡, 𝑎𝑡−1, 𝑎𝑡−2,…. If the prediction so obtained was �̂�𝑡+1, then
�̂�𝑡(1) + �̂�𝑡+1 would be a better forecast of 𝑧𝑡+1 than was �̂�𝑡(1).

5. Correlation between the Forecast Errors. Although the optimal forecast errors at lead
time 1 will be uncorrelated, the forecast errors for longer lead times in general will
be correlated. In Section A5.1.1, we derive a general expression for the correlation
between the forecast errors 𝑒𝑡(𝑙) and 𝑒𝑡−𝑗(𝑙), made at the same lead time 𝑙 from
different origins 𝑡 and 𝑡 − 𝑗.

Now, it is also true that forecast errors 𝑒𝑡(𝑙) and 𝑒𝑡(𝑙 + 𝑗), made at different lead
times from the same origin 𝑡, are correlated. One consequence of this is that there will
often be a tendency for the forecast function to lie either wholly above or below the
values of the series, when they eventually come to hand. In Section A5.1.2, we give a
general expression for the correlation between the forecast errors 𝑒𝑡(𝑙) and 𝑒𝑡(𝑙 + 𝑗),
made from the same origin.

5.1.2 Three Basic Forms for the Forecast

We have seen that the minimum mean square error forecast �̂�𝑡(𝑙) for lead time 𝑙 is the
conditional expectation𝐸𝑡[𝑧𝑡+𝑙], of 𝑧𝑡+𝑙, at origin 𝑡. Using this fact, we canwrite expressions
for the forecast in any one of three different ways, corresponding to the three ways of
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expressing the model summarized earlier in this section. To simplify the notation, we
will temporarily adopt the convention that square brackets imply that the conditional
expectation, at time 𝑡, is to be taken. Thus,

[𝑎𝑡+𝑙] = 𝐸𝑡[𝑎𝑡+𝑙] [𝑧𝑡+𝑙] = 𝐸𝑡[𝑧𝑡+𝑙]

For 𝑙 > 0, the following are three different ways of expressing the forecasts:

1. Forecasts from Difference Equation. Taking conditional expectations at time 𝑡 in
(5.1.2), we obtain

[𝑧𝑡+𝑙] = �̂�𝑡(𝑙) = 𝜑1[𝑧𝑡+𝑙−1] +⋯ + 𝜑𝑝+𝑑 [𝑧𝑡+𝑙−𝑝−𝑑] − 𝜃1[𝑎𝑡+𝑙−1]
−⋯ − 𝜃𝑞[𝑎𝑡+𝑙−𝑞] + [𝑎𝑡+𝑙] (5.1.18)

2. Forecasts in Integrated Form. Use of (5.1.3) gives

[𝑧𝑡+𝑙] = �̂�𝑡(𝑙) = [𝑎𝑡+𝑙] + 𝜓1[𝑎𝑡+𝑙−1] +⋯ + 𝜓𝑙−1[𝑎𝑡+𝑙]
+ 𝜓𝑙[𝑎𝑡] + 𝜓𝑙+1[𝑎𝑡−1] +⋯ (5.1.19)

yielding the form (5.1.13) discussed above. Alternatively, using the truncated form
of the model (5.1.5), we have

[𝑧𝑡+𝑙] = �̂�𝑡(𝑙) = [𝑎𝑡+𝑙] + 𝜓1[𝑎𝑡+𝑙−1] +⋯

+ 𝜓𝑡+𝑙−𝑘−1[𝑎𝑘+1] + 𝐶𝑘(𝑡 + 𝑙 − 𝑘)
= [𝑎𝑡+𝑙] + 𝜓1[𝑎𝑡+𝑙−1] +⋯ + 𝜓𝑙−1[𝑎𝑡+1] + 𝐶𝑡(𝑙) (5.1.20)

where 𝐶𝑡(𝑙) is the complementary function at origin 𝑡.

3. Forecasts as a Weighted Average of Previous Observations and Forecasts Made at
Previous Lead Times from the Same Origin. Finally, taking conditional expectations
in (5.1.7) yields

[𝑧𝑡+𝑙] = �̂�𝑡(𝑙) =
∞∑
𝑗=1

𝜋𝑗[𝑧𝑡+𝑙−𝑗] + [𝑎𝑡+𝑙] (5.1.21)

It is to be noted that the minimum mean square error forecast is defined in terms of
the conditional expectation

[𝑧𝑡+𝑙] = 𝐸𝑡[𝑧𝑡+𝑙] = 𝐸[𝑧𝑡+𝑙|𝑧𝑡, 𝑧𝑡−1,…]

which theoretically requires knowledge of the 𝑧’s stretching back into the infinite
past. However, the requirement of invertibility imposed on theARIMAmodel ensures
that the 𝜋 weights in (5.1.21) form a convergent series. Hence, for the computation of
a forecast, the dependence on 𝑧𝑡−𝑗 for 𝑗 > 𝑘 can typically be ignored. In practice, the
𝜋 weights usually decay rather quickly, so whatever form of the model is employed,
only a moderate length of series 𝑧𝑡, 𝑧𝑡−1,… , 𝑧𝑡−𝑘 is needed to calculate the forecasts
to sufficient accuracy. The methods we discuss are easily modified to calculate the
exact finite sample forecasts, 𝐸[𝑧𝑡+𝑙|𝑧𝑡, 𝑧𝑡−1,… , 𝑧1], based on the finite length of
data 𝑧𝑡, 𝑧𝑡−1,… , 𝑧1.



Box3G Date: May 21, 2015 Time: 9:26 am

134 FORECASTING

To calculate the conditional expectations in expressions (5.1.18--5.1.21), we note that if 𝑗
is a nonnegative integer,

[𝑧𝑡−𝑗] = 𝐸𝑡[𝑧𝑡−𝑗] = 𝑧𝑡−𝑗 𝑗 = 0, 1, 2,…
[𝑧𝑡+𝑗] = 𝐸𝑡[𝑧𝑡+𝑗] = �̂�𝑡(𝑗) 𝑗 = 1, 2,…
[𝑎𝑡−𝑗] = 𝐸𝑡[𝑎𝑡−𝑗] = 𝑎𝑡−𝑗 = 𝑧𝑡−𝑗 − �̂�𝑡−𝑗−1(1) 𝑗 = 0, 1, 2,…
[𝑎𝑡+𝑗] = 𝐸𝑡[𝑎𝑡+𝑗] = 0 𝑗 = 1, 2,…

(5.1.22)

Therefore, to obtain the forecast �̂�𝑡(𝑙), one writes down the model for 𝑧𝑡+𝑙 in any one of
the three explicit forms above and treats the terms on the right according to the following
rules:

1. The 𝑧𝑡−𝑗(𝑗 = 0, 1, 2,…), which have already occurred at origin 𝑡, are left unchanged.
2. The 𝑧𝑡+𝑗(𝑗 = 1, 2,…), which have not yet occurred, are replaced by their forecasts

�̂�𝑡(𝑗) at origin 𝑡.
3. The 𝑎𝑡−𝑗(𝑗 = 0, 1, 2,…), which have occurred, are available from 𝑧𝑡−𝑗 − �̂�𝑡−𝑗−1(1).
4. The 𝑎𝑡+𝑗(𝑗 = 1, 2,…), which have not yet occurred, are replaced by zeros.

For routine calculation, it is easiest to work directly with the difference equation form
(5.1.18). Hence, the forecasts for 𝑙 = 1, 2,… are calculated recursively as

�̂�𝑡(𝑙) =
𝑝+𝑑∑
𝑗=1

𝜑𝑗�̂�𝑡(𝑙 − 𝑗) −
𝑞∑
𝑗=𝑙

𝜃𝑗𝑎𝑡+𝑙−𝑗

where �̂�𝑡(−𝑗) = [𝑧𝑡−𝑗] denotes the observed value 𝑧𝑡−𝑗 for 𝑗 ≥ 0, and the moving average
terms are not present for lead times 𝑙 > 𝑞.

Example: Forecasting Using the Difference Equation Form. We will show in Chapter 7
that the viscosity data in Series C can be represented by the model

(1 − 0.8𝐵)(1 − 𝐵)𝑧𝑡+1 = 𝑎𝑡+1

that is,

(1 − 1.8𝐵 + 0.8𝐵2)𝑧𝑡+1 = 𝑎𝑡+1

or

𝑧𝑡+𝑙 = 1.8𝑧𝑡+𝑙−1 − 0.8𝑧𝑡+𝑙−2 + 𝑎𝑡+𝑙

The forecasts at origin 𝑡 are given by

�̂�𝑡(1) = 1.8𝑧𝑡 − 0.8𝑧𝑡−1
�̂�𝑡(2) = 1.8�̂�𝑡(1) − 0.8𝑧𝑡 (5.1.23)

�̂�𝑡(𝑙) = 1.8�̂�𝑡(𝑙 − 1) − 0.8�̂�𝑡(𝑙 − 2) 𝑙 = 3, 4,…

yielding in a simple recursive calculation.
There are no moving average terms in this model. However, such terms produce no

added difficulties. Later in this chapter, we have a series arising in a control problem, for
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which the model at time 𝑡 + 𝑙 is

∇2𝑧𝑡+𝑙 = (1 − 0.9𝐵 + 0.5𝐵2)𝑎𝑡+𝑙

or, equivalently, 𝑧𝑡+𝑙 = 2𝑧𝑡+𝑙−1 − 𝑧𝑡+𝑙−2 + 𝑎𝑡+𝑙 − 0.9𝑎𝑡+𝑙−1 + 0.5𝑎𝑡+𝑙−2. Then,

�̂�𝑡(1) = 2𝑧𝑡 − 𝑧𝑡−1 − 0.9𝑎𝑡 + 0.5𝑎𝑡−1
�̂�𝑡(2) = 2�̂�𝑡(1) − 𝑧𝑡 + 0.5𝑎𝑡
�̂�𝑡(𝑙) = 2�̂�𝑡(𝑙 − 1) − �̂�𝑡(𝑙 − 2) 𝑙 = 3, 4,…

In these expressions, we remember that 𝑎𝑡 = 𝑧𝑡 − �̂�𝑡−1(1), 𝑎𝑡−1 = 𝑧𝑡−1 − �̂�𝑡−2(1), and the
forecasting process may be started off initially by setting unknown 𝑎 values equal to their
unconditional expected values of zero. Thus, assuming by convention that data are available
starting from time 𝑠 = 1, the necessary 𝑎𝑠’s are computed recursively from the difference
equation form (5.1.2) of the model:

𝑎𝑠 = 𝑧𝑠 − �̂�𝑠−1(1) = 𝑧𝑠 −

(
𝑝+𝑑∑
𝑗=1

𝜑𝑗𝑧𝑠−𝑗 −
𝑞∑

𝑗=1
𝜃𝑗𝑎𝑠−𝑗

)
𝑠 = 𝑝 + 𝑑 + 1,… , 𝑡

setting initial 𝑎𝑠’s equal to zero, for 𝑠 < 𝑝 + 𝑑 + 1. Alternatively, it is possible to estimate
the necessary initial 𝑎𝑠’s, as well as the initial 𝑧𝑠’s, using back-forecasting. This technique,
which essentially determines the conditional expectations of the presample 𝑎𝑠’s and 𝑧𝑠’s,
given the available data, is discussed in Chapter 7 with regard to parameter estimation of
ARIMA models. However, provided that a sufficient length of data series 𝑧𝑡, 𝑧𝑡−1,… , 𝑧1
is available, the two different treatments of the initial values will have a negligible effect
on the forecasts �̂�1(𝑙).

5.2 CALCULATING FORECASTS AND PROBABILITY LIMITS

5.2.1 Calculation of 𝝍 Weights

It is often the case that forecasts are needed for several lead times 1, 2,… , 𝐿. As already
shown, the difference equation form of the model allows the forecasts to be generated
recursively in the order �̂�𝑡(1), �̂�𝑡(2), �̂�𝑡(3), and so on. To obtain probability limits for these
forecasts, it is necessary to calculate the weights 𝜓1, 𝜓2, … , 𝜓𝐿−1. This is accomplished
using the relation

𝜑(𝐵)𝜓𝐵 = 𝜃(𝐵) (5.2.1)

that is, by equating coefficients of powers of 𝐵 in

(1 − 𝜑1𝐵 −⋯ − 𝜑𝑝+𝑑𝐵
𝑝+𝑑) (1 + 𝜓1𝐵 + 𝜓2𝐵

2 +⋯)

= (1 − 𝜃1𝐵 − 𝜃2𝐵
2 −⋯ − 𝜃𝑞𝐵

𝑞) (5.2.2)
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Knowing the values of the 𝜑’s and the 𝜃’s, the values of 𝜓 may be obtained as follows:

𝜓1 = 𝜑1 − 𝜃1
𝜓2 = 𝜑1𝜓1 + 𝜑2 − 𝜃2

⋮ (5.2.3)

𝜓𝑗 = 𝜑𝑗𝜓𝑗−1 +⋯ + 𝜑𝑝+𝑑𝜓𝑗−𝑝−𝑑 − 𝜃𝑗

where 𝜓0 = 1, 𝜓𝑗 = 0 for 𝑗 < 0, and 𝜃𝑗 = 0 for 𝑗 > 𝑞. If 𝐾 is the greater of the integers
𝑝 + 𝑑 − 1 and 𝑞, then for 𝑗 > 𝐾 the 𝜓’s satisfy the difference equation:

𝜓𝑗 = 𝜑1𝜓𝑗−1 + 𝜑2𝜓𝑗−2 +⋯ + 𝜑𝑝+𝑑𝜓𝑗−𝑝−𝑑 (5.2.4)

Thus, the 𝜓’s are easily calculated recursively. For example, for the model (1 − 1.8𝐵 +
0.8𝐵2)𝑧𝑡 = 𝑎𝑡, appropriate to Series C, we have

(1 − 1.8𝐵 + 0.8𝐵2)(1 + 𝜓1𝐵 + 𝜓2𝐵
2 +⋯) = 1

Hence, with 𝜑1 = 1.8 and 𝜑2 = −0.8, we obtain

𝜓0 = 1
𝜓1 = 1.8
𝜓𝑗 = 1.8𝜓𝑗−1 − 0.8𝜓𝑗−2 𝑗 = 2, 3, 4,…

so that 𝜓2 = (1.8 × 1.8) − (0.8 × 1.0) = 2.44 and 𝜓3 = (1.8 × 2.44) − (0.8 × 1.8) = 2.95,
and so on.

Before proceeding to discuss the probability limits, we briefly mention the use of the 𝜓
weights for updating of forecasts as new data become available.

5.2.2 Use of the 𝝍 Weights in Updating the Forecasts

Using (5.1.13), we can express the forecasts �̂�𝑡+1(𝑙) and �̂�𝑡(𝑙 + 1) of the future observation
𝑧𝑡+𝑙+1 made at origins 𝑡 + 1 and 𝑡 as

�̂�𝑡+1(𝑙) = 𝜓𝑙𝑎𝑡+1 + 𝜓𝑙+1𝑎𝑡 + 𝜓𝑙+2𝑎𝑡−1 +⋯

�̂�𝑡(𝑙 + 1) = 𝜓𝑙+1𝑎𝑡 + 𝜓𝑙+2𝑎𝑡−1 +⋯

On subtraction, it follows that

�̂�𝑡+1(𝑙) = �̂�𝑡(𝑙 + 1) + 𝜓𝑙𝑎𝑡+1 (5.2.5)

Explicitly, the 𝑡-origin forecast of 𝑧𝑡+𝑙+1 can be updated to become the 𝑡 + 1 origin forecast
of the same 𝑧𝑡+𝑙+1, by adding a constant multiple of the one-step-ahead forecast error
𝑎𝑡+𝑙 ≡ 𝑧𝑡+𝑙 − �̂�𝑡(𝑙) with multiplier 𝜓𝑙.

This leads to a rather remarkable conclusion. Suppose that we currently have forecasts
at origin 𝑡 for lead times 1, 2,… , 𝐿. Then, as soon as 𝑧𝑡+𝑙 becomes available, we can
calculate 𝑎𝑡+1 ≡ 𝑧𝑡+𝑙 − �̂�𝑡(1) and proportionally update to obtain forecasts �̂�𝑡+1(𝑙) = �̂�𝑡(𝑙 +
1) + 𝜓𝑙𝑎𝑡+1 at origin 𝑡 + 1, for lead times 1, 2,… , 𝐿− 1. The new forecast �̂�𝑡+1(𝐿), for
lead time 𝐿, cannot be calculated by this means but is easily obtained from the forecasts at
shorter lead times, using the difference equation.
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TABLE 5.1 Variance Function for Series C

𝑙 1 2 3 4 5 6 7 8 9 10
𝑉 (𝑙)∕𝜎2

𝑎 1.00 4.24 10.19 18.96 30.24 43.86 59.46 76.79 95.52 115.41

5.2.3 Calculation of the Probability Limits at Different Lead Times

The expression (5.1.16) shows that the variance of the 𝑙-steps-ahead forecast error for any
origin 𝑡 is the expected value of

𝑒2
𝑡
(𝑙) = [𝑧𝑡+𝑙 − �̂�𝑡(𝑙)]2

and is given by

𝑉 (𝑙) =

(
1 +

𝑙−1∑
𝑗=1

𝜓2
𝑗

)
𝜎2
𝑎

For example, using the 𝜓 weights calculated above, the function 𝑉 (𝑙)∕𝜎2
𝑎
for Series C is

shown in Table 5.1.
Assuming that the 𝑎’s are normal, it follows that given information up to time 𝑡, the

conditional probability distribution 𝑝(𝑧𝑡+𝑙|𝑧𝑡, 𝑧𝑡−1,…) of a future value 𝑧𝑡+𝑙 of the process
will be normal with mean �̂�𝑡(𝑙) and standard deviation

𝜎(𝑙) =

(
1 +

𝑙−1∑
𝑗=1

𝜓2
𝑗

)1∕2

𝜎𝑎

Thus, the variate (𝑧𝑡+𝑙 − �̂�𝑡(𝑙))∕𝜎(𝑙) will have a unit normal distribution and so �̂�𝑡(𝑙) ±
𝑢𝜀∕2𝜎(𝑙) provides limits of an interval such that 𝑧𝑡+𝑙 will lie within the interval with
probability 1 − 𝜀, where 𝑢𝜀∕2 is the deviate exceeded by a proportion 𝜀∕2 of the unit normal
distribution. Figure 5.1 shows the conditional probability distributions of future values
𝑧21, 𝑧22, 𝑧23 for Series C, given information up to origin 𝑡 = 20.

We show in Chapter 7 how an estimate 𝑠2
𝑎
, of the variance 𝜎2

𝑎
, may be obtained from

time series data. When the number of observations on which this estimate is based is, say,
at least 50, 𝑠𝑎 may be substituted for 𝜎𝑎 and approximate 1 − 𝜀 probability limits 𝑧𝑡+𝑙(−)
and 𝑧𝑡+𝑙(+) for 𝑧𝑡+𝑙 will be given by

𝑧𝑡+𝑙(±) = �̂�𝑡(𝑙) ± 𝑢𝜀∕2

(
1 +

𝑙−1∑
𝑗=1

𝜓2
𝑗

)1∕2

𝑠𝑎 (5.2.6)

It follows from Table 7.6 that for Series C, 𝑠𝑎 = 0.134; hence, the 50 and 95% limits,
for 𝑧𝑡+2, for example, are given by

50% limits ∶ �̂�𝑡(2) ± (0.674)(1 + 1.82)1∕2(0.134) = �̂�𝑡(2) ± 0.19
95% limits ∶ �̂�𝑡(2) ± (1.960)(1 + 1.82)1∕2(0.134) = �̂�𝑡(2) ± 0.55

Figure 5.2 shows a section of Series C together with the several-steps-ahead forecasts
(indicated by crosses) from origins 𝑡 = 20 and 𝑡 = 67. Also shown are the 50 and 95%
probability limits for 𝑧20+𝑙, for 𝑙 = 1 to 14. The interpretation of the limits 𝑧𝑡+𝑙(−) and
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FIGURE 5.1 Conditional probability distributions of future values 𝑧21, 𝑧22, and 𝑧23 for Series C,
given information up to origin 𝑡 = 20.

𝑧𝑡+𝑙(+) should be noted carefully. These limits are such that given the information available
at origin 𝑡, there is a probability of 1 − 𝜀 that the actual value 𝑧𝑡+𝑙, when it occurs, will be
within them, that is,

P𝑟{𝑧𝑡+𝑙(−) < 𝑧𝑡+𝑙 < 𝑧𝑡+𝑙(+)} = 1 − 𝜀

Also, the probabilities quoted apply to individual forecasts and not jointly to the forecasts
at different lead times. For example, it is true that with 95% probability, the limits for lead
time 10 will include the value 𝑧𝑡+10 when it occurs. It is not true that the series can be
expected to remain within all the limits simultaneously with this probability.

5.2.4 Calculation of Forecasts Using R

Forecasts of future values of a time series that follows an ARIMA(𝑝, 𝑑, 𝑞) can be
calculated using R. A convenient option is to use the function sarima.for() in the
astsa package. For example, if 𝑧 represents the observed time series, the command

FIGURE 5.2 Forecasts for Series C and probability limits.
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FIGURE 5.3 Forecasts for Series C with ±2 prediction error limits generated using R.

sarima.for(z,n.ahead,p,d,q,no.constant=TRUE) will fit the ARIMA(𝑝, 𝑑, 𝑞) model
without a constant term to the series and generate forecasts from the fitted model. The
argument n.ahead specifies the number of forecasts to be generated. The output gives the
forecasts and the standard errors of the forecasts, and supplies a graph of the forecasts along
with their +∕− 2 prediction error limits. Thus, forecasts up to 20 steps ahead for Series C
based on the ARIMA(1, 1, 0) model (1 − 𝜙𝐵)(1 − 𝐵) = 𝑎𝑡 are generated as follows:

> library(astsa)
> seriesC=read.table("SeriesC.txt,header=TRUE)
> m1=sarima.for(seriesC,20,1,1,0,no.constant=FALSE)
> m1 % prints output from file m1

This code generates an output file ‘‘m1’’ that includes the forecasts (‘‘pred’’) and the
prediction errors (‘‘se’’) of the forecasts. These can be accessed as m1$pred and m1$se, if
needed for further analysis. Figure 5.3 shows a graph of the forecasts and their associated
±2 prediction error limits for Series C.We note that the limits becomewider as the lead time
increases, reflecting the increased uncertainty due to the fact that the series is nonstationary
and does not vary around a fixed mean level.

5.3 FORECAST FUNCTION AND FORECAST WEIGHTS

Forecasts are calculated most simply by direct use of the difference equation. From the
purely computational standpoint, the other model forms are less convenient. However,
from the point of view of studying the nature of the forecasts, it is useful to consider in
greater detail the alternative forms discussed in Section 5.1.2 and, in particular, to consider
the explicit form of the forecast function.
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5.3.1 Eventual Forecast Function Determined by the Autoregressive Operator

At time 𝑡 + 𝑙, the ARIMA model may be written as

𝑧𝑡+𝑙 − 𝜑1𝑧𝑡+𝑙−1 −⋯ − 𝜑𝑝+𝑑𝑧𝑡+𝑙−𝑝−𝑑 = 𝑎𝑡+𝑙 − 𝜃1𝑎𝑡+𝑙−1

−⋯ − 𝜃𝑞𝑎𝑡+𝑙−𝑞 (5.3.1)

Taking the conditional expectations at time 𝑡, we have, for 𝑙 > 𝑞,

�̂�𝑡(𝑙) − 𝜑1�̂�𝑡(𝑙 − 1) −⋯ − 𝜑𝑝+𝑑 �̂�𝑡(𝑙 − 𝑝 − 𝑑) = 0 𝑙 > 𝑞 (5.3.2)

where it is understood that �̂�𝑡(−𝑗) = 𝑧𝑡−𝑗 for 𝑗 ≥ 0. This difference equation has the solution

�̂�𝑡(𝑙) = 𝑏
(𝑡)
0 𝑓0(𝑙) + 𝑏

(𝑡)
1 𝑓1(𝑙) +⋯ + 𝑏

(𝑡)
𝑝+𝑑−1𝑓𝑝+𝑑−1(𝑙) (5.3.3)

for 𝑙 > 𝑞 − 𝑝 − 𝑑. Note that the forecast �̂�𝑡(𝑙) is the complementary function introduced
in Chapter 4. In (5.3.3), 𝑓0(𝑙), 𝑓1(𝑙),… , 𝑓𝑝+𝑑−1(𝑙) are functions of the lead time 𝑙. In
general, they could include polynomials, exponentials, sines and cosines, and products of
these functions. The functions 𝑓0(𝑙), 𝑓1(𝑙),… , 𝑓𝑝+𝑑−1(𝑙) consist of 𝑑 polynomial terms 𝑙𝑖,
𝑖 = 0,… , 𝑑 − 1, of degree𝑑 − 1, associatedwith the nonstationary operator∇𝑑 = (1 − 𝐵)𝑑 ,
and 𝑝 damped exponential and damped sinusoidal terms of the form𝐺𝑙 and𝐷𝑙 sin(2𝜋𝑓𝑙 +
𝐹 ), respectively, associated with the roots of 𝜙(𝐵) = 0 for the stationary autoregressive
operator. That is, the forecast function has the form

�̂�𝑡(𝑙) = 𝑏
(𝑡)
0 + 𝑏

(𝑡)
1 𝑙 +⋯ + 𝑏

(𝑡)
𝑑−1𝑙

𝑑−1 + 𝑏
(𝑡)
𝑑
𝑓𝑑(𝑙) + 𝑏

(𝑡)
𝑑+1𝑓𝑑+1(𝑙)

+⋯ + 𝑏
(𝑡)
𝑝+𝑑−1𝑓𝑝+𝑑−1(𝑙)

For instance, if 𝜙(𝐵) = 0 has 𝑝 distinct real roots 𝐺−1
1 ,… , 𝐺−1

𝑝
, then the last 𝑝 terms in

�̂�𝑡(𝑙) are 𝑏
(𝑡)
𝑑
𝐺𝑙
1 + 𝑏

(𝑡)
𝑑+1𝐺

𝑙
2 +⋯ + 𝑏

(𝑡)
𝑝+𝑑−1𝐺

𝑙
𝑝
. Since the operator 𝜙(𝐵) is stationary, we have

|𝐺| < 1 and𝐷 < 1 and the last 𝑝 terms in �̂�𝑡(𝑙) are transient and decay to zero as 𝑙 increases.
Hence, the forecast function is dominated by the remaining polynomial terms,

∑𝑑−1
𝑖=0 𝑏

(𝑡)
𝑖
𝑙𝑖,

as 𝑙 increases. For a given origin 𝑡, the coefficients 𝑏(𝑡)
𝑗

are constants applying to all lead
times 𝑙, but they change from one origin to the next, adapting themselves appropriately
to the particular part of the series being considered. From now on we call the function
defined by (5.3.3) the eventual forecast function; ‘‘eventual’’ because when it occasionally
happens that 𝑞 > 𝑝 + 𝑑, it supplies the forecasts only for lead times 𝑙 > 𝑞 − 𝑝 − 𝑑.

We see from (5.3.2) that it is the general autoregressive operator 𝜑(𝐵) that determines
the mathematical form of the forecast function, that is, the nature of the 𝑓 ’s in (5.3.3).
Specifically, it determines whether the forecast function is to be a polynomial, a mixture
of sines and cosines, a mixture of exponentials, or a combination of these functions.

5.3.2 Role of the Moving Average Operator in Fixing the Initial Values

While the autoregressive operator determines the nature of the eventual forecast function,
themoving average operator is influential in determining how that function is to be ‘‘fitted’’
to the data and hence how the coefficients 𝑏(𝑡)0 , 𝑏

(𝑡)
1 ,… , 𝑏

(𝑡)
𝑝+𝑑−1 in (5.3.3) are to be calculated

and updated.
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For example, consider the IMA(0, 2, 3) process:

𝑧𝑡+𝑙 − 2𝑧𝑡+𝑙−1 + 𝑧𝑡+𝑙−2 = 𝑎𝑡+𝑙 − 𝜃1𝑎𝑡+𝑙−1 − 𝜃2𝑎𝑡+𝑙−2 − 𝜃3𝑎𝑡+𝑙−3

Taking the conditional expectation, the forecast function becomes

�̂�𝑡(1) = 2𝑧𝑡 − 𝑧𝑡−1 − 𝜃1𝑎𝑡 − 𝜃2𝑎𝑡−1 − 𝜃3𝑎𝑡−2
�̂�𝑡(2) = 2�̂�𝑡(1) − 𝑧𝑡 − 𝜃2𝑎𝑡 − 𝜃3𝑎𝑡−1
�̂�𝑡(3) = 2�̂�𝑡(2) − �̂�𝑡(1) − 𝜃3𝑎𝑡
�̂�𝑡(𝑙) = 2�̂�𝑡(𝑙 − 1) − �̂�𝑡(𝑙 − 2) 𝑙 > 3

Therefore, since𝜑(𝐵) = (1 − 𝐵)2 in this model, the eventual forecast function is the unique
straight line

�̂�𝑡(𝑙) = 𝑏
(𝑡)
0 + 𝑏

(𝑡)
1 𝑙 𝑙 > 1

which passes through �̂�𝑡(2) and �̂�𝑡(3) as shown in Figure 5.4. However, note that if the 𝜃3
term had not been included in the model, then 𝑞 − 𝑝 − 𝑑 = 0, and the forecast would have
been given at all lead times by the straight line passing through �̂�𝑡(1) and �̂�𝑡(2).

In general, since only one function of the form (5.3.3) can pass through 𝑝 + 𝑑 points, the
eventual forecast function is that unique curve of the form required by 𝜑(𝐵), which passes
through the 𝑝 + 𝑑 ‘‘pivotal’’ values �̂�𝑡(𝑞), �̂�𝑡(𝑞 − 1),… , �̂�𝑡(𝑞 − 𝑝 − 𝑑 + 1), where �̂�𝑡(−𝑗) =
𝑧𝑡−𝑗 (𝑗 = 0, 1, 2,…). In the extreme case where 𝑞 = 0, so that the model is of the purely
autoregressive form𝜑(𝐵)𝑧𝑡 = 𝑎𝑡, the curve passes through the points 𝑧𝑡, 𝑧𝑡−1,… , 𝑧𝑡−𝑝−𝑑+1.
Thus, the pivotal values can consist of forecasts or of actual values of the series; they are
indicated in the figures by circled points.

The moving average terms help to decide the way in which we ‘‘reach back’’ into the
series to fit the forecast function determined by the autoregressive operator 𝜑(𝐵). Figure
5.5 illustrates the situation for the model of order (1,1,3) given by (1 − 𝜙𝐵)∇𝑧𝑡 = (1 −
𝜃1𝐵 − 𝜃2𝐵

2 − 𝜃3𝐵
3)𝑎𝑡. The (hypothetical) weight functions indicate the linear functional

dependence of the three forecasts, �̂�𝑡(1), �̂�𝑡(2), and �̂�𝑡(3), on 𝑧𝑡, 𝑧𝑡−1, 𝑧𝑡−2,…. Since the
forecast function contains 𝑝 + 𝑑 = 2 coefficients, it is uniquely determined by the forecasts
�̂�𝑡(3) and �̂�𝑡(2), that is, by �̂�𝑡(𝑞) and �̂�𝑡(𝑞 − 1). We next consider how the forecast weight
functions, referred to above, are determined.

FIGURE 5.4 Eventual forecast function for an IMA(0, 2, 3) process.
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FIGURE5.5 Dependence of forecast function on observations for a (1, 1, 3) process (1 − 𝜙𝐵)∇𝑧𝑡 =
(1 − 𝜃1𝐵 − 𝜃2𝐵

2 − 𝜃3𝐵
3)𝑎𝑡.

5.3.3 Lead l Forecast Weights

The fact that the general model may also be written in inverted form,

𝑎𝑡 = 𝜋(𝐵)𝑧𝑡 = (1 − 𝜋1𝐵 − 𝜋2𝐵
2 − 𝜋3𝐵

3 −⋯)𝑧𝑡 (5.3.4)

allows us to write the forecast as in (5.1.21).On substituting for the conditional expectations
in (5.1.21), we obtain

�̂�𝑡(𝑙) =
∞∑
𝑗=1

𝜋𝑗 �̂�𝑡(𝑙 − 𝑗) (5.3.5)

where, as before, �̂�𝑡(−ℎ) = 𝑧𝑡−ℎ for ℎ = 0, 1, 2,…. Thus, in general,

�̂�𝑡(𝑙) = 𝜋1�̂�𝑡(𝑙 − 1) +⋯ + 𝜋𝑙−1�̂�𝑡(1) + 𝜋𝑙𝑧𝑡 + 𝜋𝑙+1𝑧𝑡−1 +⋯ (5.3.6)

and, in particular,

�̂�𝑡(1) = 𝜋1𝑧𝑡 + 𝜋2𝑧𝑡−1 + 𝜋3𝑧𝑡−2 +⋯

The forecasts for higher lead times may also be expressed directly as linear functions of
the observations 𝑧𝑡, 𝑧𝑡−1, 𝑧𝑡−2,…. For example, the lead 2 forecast at origin 𝑡 is

�̂�𝑡(2) = 𝜋1�̂�𝑡(1) + 𝜋2𝑧𝑡 + 𝜋3𝑧𝑡−1 +⋯

= 𝜋1

∞∑
𝑗=1

𝜋𝑗𝑧𝑡+1−𝑗 +
∞∑
𝑗=1

𝜋𝑗+1𝑧𝑡+1−𝑗

=
∞∑
𝑗=1

𝜋
(2)
𝑗
𝑧𝑡+1−𝑗
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where

𝜋
(2)
𝑗

= 𝜋1𝜋𝑗 + 𝜋𝑗+1 𝑗 = 1, 2,… (5.3.7)

Proceeding in this way, it is readily shown that

�̂�𝑡(𝑙) =
∞∑
𝑗=1

𝜋
(𝑙)
𝑗
𝑧𝑡+1−𝑗 (5.3.8)

where

𝜋
(𝑙)
𝑗

= 𝜋𝑗+𝑙−1 +
𝑙−1∑
ℎ=1

𝜋ℎ𝜋
(𝑙−ℎ)
𝑗

𝑗 = 1, 2,… (5.3.9)

and 𝜋
(1)
𝑗

= 𝜋𝑗 . Alternative methods for computing these weights are given in
Appendix A5.2.

As seen earlier, the 𝜋𝑗’s themselves may be obtained explicitly by equating coefficients
in

𝜃(𝐵)(1 − 𝜋1𝐵 − 𝜋2𝐵
2 −⋯) = 𝜑(𝐵)

Given these values, the 𝜋(𝑙)
𝑗
’s may readily be obtained, if so desired, using (5.3.9) or the

results of Appendix A5.2. As an example, consider again the model

∇2𝑧𝑡 = (1 − 0.9𝐵 + 0.5𝐵2)𝑎𝑡

which was fitted to a series, a part of which is shown in Figure 5.6. Equating coefficients in

(1 − 0.9𝐵 + 0.5𝐵2)(1 − 𝜋1𝐵 − 𝜋2𝐵
2 −⋯) = 1 − 2𝐵 + 𝐵2

FIGURE5.6 Part of a series fitted by∇2𝑧𝑡 = (1 − 0.9𝐵 + 0.5𝐵2)𝑎𝑡 with forecast function for origin
𝑡 = 30, forecast weights, and probability limits.
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TABLE 5.2 𝝅Weights for the Model
𝛁𝟐
𝒛
𝒕
= (𝟏 − 𝟎.𝟗𝑩 + 𝟎.𝟓𝑩𝟐)𝒂

𝒕

j 𝜋
(1)
𝑗 𝜋

(2)
𝑗

1 1.100 1.700
2 0.490 0.430
3 −0.109 −0.463
4 −0.343 −0.632
5 −0.254 −0.336
6 −0.057 0.013
7 0.076 0.181
8 0.097 0.156
9 0.049 0.050
10 −0.004 −0.032
11 −0.028 −0.054
12 −0.023 −0.026

yields the weights 𝜋𝑗 = 𝜋
(1)
𝑗
, from which the weights 𝜋(2)

𝑗
may be computed using (5.3.7).

The two sets of weights are given for 𝑗 = 1, 2,… , 12 in Table 5.2. In this example, the lead
1 and lead 2 forecasts, expressed in terms of the observations 𝑧𝑡, 𝑧𝑡−1,…, are

�̂�𝑡(1) = 1.10𝑧𝑡 + 0.49𝑧𝑡−1 − 0.11𝑧𝑡−2 − 0.34𝑧𝑡−3 − 0.25𝑧𝑡−4 −⋯

and

�̂�𝑡(2) = 1.70𝑧𝑡 + 0.43𝑧𝑡−1 − 0.46𝑧𝑡−2 − 0.63𝑧𝑡−3 − 0.34𝑧𝑡−4 +⋯

In fact, the weights follow damped sine waves as shown in Figure 5.6.

5.4 EXAMPLES OF FORECAST FUNCTIONS AND THEIR UPDATING

The forecast functions for some special cases of the general ARIMA model will now
be considered. We exhibit these in the three forms discussed in Section 5.1.2. While the
forecasts are most easily computed from the difference equation itself, the other forms
provide insight into the nature of the forecast function in particular cases.

5.4.1 Forecasting an IMA(0, 1, 1) Process

Difference Equation Approach. We first consider the model ∇𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡. At time
𝑡 + 𝑙, the model may be written as

𝑧𝑡+𝑙 = 𝑧𝑡+𝑙−1 + 𝑎𝑡+𝑙 − 𝜃𝑎𝑡+𝑙−1

Taking conditional expectations at origin 𝑡 yields

�̂�𝑡(1) = 𝑧𝑡 − 𝜃𝑎𝑡

�̂�𝑡(𝑙) = �̂�𝑡(𝑙 − 1) 𝑙 ≥ 2 (5.4.1)



Box3G Date: May 21, 2015 Time: 9:26 am

EXAMPLES OF FORECAST FUNCTIONS AND THEIR UPDATING 145

Hence, for all lead times, the forecasts at origin 𝑡 will follow a straight line parallel to the
time axis. Using the fact that 𝑧𝑡 = �̂�𝑡−1(1) + 𝑎𝑡, we can write (5.4.1) in either of two useful
forms.

The first of these is

�̂�𝑡(𝑙) = �̂�𝑡−𝑙(𝑙) + 𝜆𝑎𝑡 (5.4.2)

where 𝜆 = 1 − 𝜃. This form is identical to the general updating form (5.2.5) for this model,
since 𝜓𝑙 ≡ 𝜆 and �̂�𝑡−1(𝑙 + 1) = �̂�𝑡−1(𝑙) for all 𝑙 ≥ 1. This form implies that having seen
that our previous forecast �̂�𝑡−1(𝑙) falls short of the realized value by 𝑎𝑡, we adjust it by an
amount 𝜆𝑎𝑡. It will be recalled from Section 4.3.1 that 𝜆 measures the proportion of any
given shock 𝑎𝑡, which is permanently absorbed by the ‘‘level’’ of the process. Therefore, it
is reasonable to increase the forecast by that part 𝜆𝑎𝑡 of 𝑎𝑡, which we expect to be absorbed.

The secondway of rewriting (5.4.1) is to write 𝑎𝑡 = 𝑧𝑡 − �̂�𝑡−1(1) = 𝑧𝑡 − �̂�𝑡−1(𝑙) in (5.4.2)
to obtain

�̂�𝑡(𝑙) = 𝜆𝑧𝑡 + (1 − 𝜆)�̂�𝑡−1(𝑙) (5.4.3)

This form implies that the new forecast is a linear interpolation at argument 𝜆 between old
forecast and new observation. Thus, if 𝜆 is very small, we rely principally on a weighted
average of past data and heavily discounting the new observation 𝑧𝑡. By contrast, if 𝜆 = 1
(𝜃 = 0), the evidence of past data is completely ignored, �̂�𝑡(𝑙) = 𝑧𝑡, and the forecast for
all future time is the current value. With 𝜆 > 1, we induce an extrapolation rather than an
interpolation between �̂�𝑡−1(𝑙) and 𝑧𝑡. The forecast error must now be magnified in (5.4.2)
to indicate the change in the forecast.

Forecast Function in Integrated Form. The eventual forecast function is the solution of
(1 − 𝐵)�̂�𝑡(𝑙) = 0. Thus, �̂�𝑡(𝑙) = 𝑏

(𝑡)
0 , and since 𝑞 − 𝑝 − 𝑑 = 0, it provides the forecast for all

lead times, that is,

�̂�𝑡(𝑙) = 𝑏
(𝑡)
0 𝑙 > 0 (5.4.4)

For any fixed origin, 𝑏(𝑡)0 is a constant, and the forecasts for all lead times will follow a

straight line parallel to the time axis. However, the coefficient 𝑏(𝑡)0 will be updated as a
new observation becomes available and the origin advances. Thus, the forecast function
can be thought of as a polynomial of degree zero in the lead time 𝑙, with a coefficient that
is adaptive with respect to the origin 𝑡.

A comparison of (5.4.4) with (5.4.1) shows that

𝑏
(𝑡)
0 = �̂�𝑡(𝑙) = 𝑧𝑡 − 𝜃𝑎𝑡

Equivalently, by referring to (4.3.4), since the truncated integrated form of the model,
relative to an initial origin 𝑘, is

𝑧𝑡 = 𝜆𝑆𝑡−𝑘−1𝑎𝑡−1 + 𝑎𝑡 + (𝑧𝑘 − 𝜃𝑎𝑘)
= 𝜆(𝑎𝑡−1 +⋯ + 𝑎𝑘+1) + 𝑎𝑡 + (𝑧𝑘 − 𝜃𝑎𝑘)

it follows that

�̂�𝑡(𝑙) = 𝑏
(𝑡)
0 = 𝜆𝑆𝑡−𝑘𝑎𝑡 + (𝑧𝑘 − 𝜃𝑎𝑘) = 𝜆(𝑎𝑡 +⋯ + 𝑎𝑘+1) + (𝑧𝑘 − 𝜃𝑎𝑘)
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Also, 𝜓𝑗 = 𝜆 (𝑗 = 1, 2,…) and hence the adaptive coefficient 𝑏(𝑡)0 can be updated from
origin 𝑡 to origin 𝑡 + 1 according to

𝑏
(𝑡+1)
0 = 𝑏

(𝑡)
0 + 𝜆𝑎𝑡+1 (5.4.5)

similar to (5.4.2).

Forecast as a Weighted Average of Previous Observations. Since, for this process, the
𝜋
(𝑙)
𝑗

weights of (5.3.8) are also the weights for the one-step-ahead forecast, we can also
write, using (4.3.6),

�̂�𝑡(𝑙) = 𝑏
(𝑡)
0 = 𝜆𝑧𝑡 + 𝜆(1 − 𝜆)𝑧𝑡−1 + 𝜆(1 − 𝜆)2𝑧𝑡−2 +⋯ (5.4.6)

Thus, for the IMA(0, 1, 1)model, the forecast for all future time is an exponentiallyweighted
moving average of current and past 𝑧’s.

Example: Forecasting Series A. It will be shown in Chapter 7 that Series A is closely
fitted by the model

(1 − 𝐵)𝑧𝑡 = (1 − 0.7𝐵)𝑎𝑡

In Figure 5.7, the forecasts at origins 𝑡 = 39, 40, 41, 42, and 43 and also at origin 𝑡 = 79 are
shown for lead times 1, 2,… , 20. The weights 𝜋𝑗 , which for this model are forecast weights
for any lead time, are given in Table 5.3. These weights are shown diagrammatically in
their appropriate positions for the forecast �̂�39(𝑙) in Figure 5.7.

Variance Functions. Since for this model, 𝜓𝑗 = 𝜆(𝑗 = 1, 2,…), the expression (5.1.16)
for the variance of the lead 𝑙 forecast errors is

𝑉 (𝑙) = 𝜎2
𝑎
[1 + (𝑙 − 1)𝜆2] (5.4.7)

Using the estimate 𝑠2
𝑎
= 0.101, appropriate for Series A, in (5.4.7). 50 and 95% proba-

bility limits were calculated and are shown in Figure 5.7 for origin 𝑡 = 79.

FIGURE 5.7 Part of Series A with forecasts at origins 𝑡 = 39, 40, 41, 42, 43 and at 𝑡 = 79.
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TABLE 5.3 Forecast Weights Applied to Previous z’s for Any Lead
Time Used in Forecasting Series A with Model 𝛁𝒛𝒕 = (𝟏 − 𝟎.𝟕𝑩)𝒂

𝒕

𝑗 𝜋𝑗 𝑗 𝜋𝑗

1 0.300 7 0.035
2 0.210 8 0.025
3 0.147 9 0.017
4 0.103 10 0.012
5 0.072 11 0.008
6 0.050 12 0.006

5.4.2 Forecasting an IMA(0, 2, 2) Process

Difference Equation Approach. We now consider the model∇2𝑧𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵
2)𝑎𝑡.

At time 𝑡 + 𝑙, the model may be written as

𝑧𝑡+𝑙 = 2𝑧𝑡+𝑙−1 − 𝑧𝑡+𝑙−2 + 𝑎𝑡+𝑙 − 𝜃1𝑎𝑡+𝑙−1 − 𝜃2𝑎𝑡+𝑙−2

On taking conditional expectations at time 𝑡, we obtain

�̂�𝑡(1) = 2𝑧𝑡 − 𝑧𝑡−1 − 𝜃1𝑎𝑡 − 𝜃2𝑎𝑡−1
�̂�𝑡(2) = 2�̂�𝑡(1) − 𝑧𝑡 − 𝜃2𝑎𝑡
�̂�𝑡(𝑙) = 2�̂�𝑡(𝑙 − 1) − �̂�𝑡(𝑙 − 2) 𝑙 ≥ 3

from which the forecasts may be calculated. Forecasting of the series of Figure 5.6 in this
way was illustrated in Section (5.1.2). An alternative way of generating the first 𝐿 − 1 of
𝐿 forecasts is via the updating formula (5.2.5),

�̂�𝑡+1(𝑙) = �̂�𝑡(𝑙 + 1) + 𝜓𝑙𝑎𝑡+1 (5.4.8)

The truncated integrated model, as in (4.3.15), is

𝑧𝑡 = 𝜆0𝑆𝑡−𝑘−1𝑎𝑡−1 + 𝜆1𝑆
(2)
𝑡−𝑘−1𝑎𝑡−1 + 𝑎𝑡 + 𝑏

(𝑘)
0 + 𝑏

(𝑘)
1 (𝑡 − 𝑘) (5.4.9)

where 𝜆0 = 1 + 𝜃2 and 𝜆1 = 1 − 𝜃1 − 𝜃2, so that 𝜓𝑗 = 𝜆0 + 𝑗𝜆1(𝑗 = 1, 2,…). Therefore,
the updating function for this model is

�̂�𝑡+1(𝑙) = �̂�𝑡(𝑙 + 1) + (𝜆0 + 𝑙𝜆1)𝑎𝑡+1 (5.4.10)

Forecast in Integrated Form. The eventual forecast function is the solution of (1 −
𝐵)2�̂�𝑡(𝑙) = 0, that is, �̂�𝑡(𝑙) = 𝑏

(𝑡)
0 + 𝑏

(𝑡)
1 𝑙. Since 𝑞 − 𝑝 − 𝑑 = 0, the eventual forecast function

provides the forecast for all lead times, that is,

�̂�𝑡(𝑙) = 𝑏
(𝑡)
0 + 𝑏

(𝑡)
1 𝑙 𝑙 > 0 (5.4.11)

Thus, the forecast function is a linear function of the lead time 𝑙, with coefficients that are
adaptive with respect to the origin 𝑡. The stochastic model in truncated integrated form is

𝑧𝑡+𝑙 = 𝜆0𝑆𝑡+𝑙−𝑘−1𝑎𝑡+𝑙−1 + 𝜆1𝑆
(2)
𝑡+𝑙−𝑘−1𝑎𝑡+𝑙−1 + 𝑎𝑡+𝑙 + 𝑏

(𝑘)
0 + 𝑏

(𝑘)
1 (𝑡 + 𝑙 − 𝑘)
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and taking expectations at origin 𝑡, we obtain

�̂�𝑡(𝑙) = 𝜆0𝑆𝑡−𝑘𝑎𝑡 + 𝜆1(𝑙𝑎𝑡 + (𝑙 + 1)𝑎𝑡−1 +⋯ + (𝑙 + 𝑡 − 𝑘 − 1)𝑎𝑘+1)

+ 𝑏
(𝑘)
0 + 𝑏

(𝑘)
1 (𝑡 + 𝑙 − 𝑘)

= [𝜆0𝑆𝑡−𝑘𝑎𝑡 + 𝜆1𝑆
(2)
𝑡−𝑘−1𝑎𝑡−1 + 𝑏

(𝑘)
0 + 𝑏

(𝑘)
1 (𝑡 − 𝑘)] + (𝜆1𝑆𝑡−𝑘𝑎𝑡 + 𝑏

(𝑘)
1 )𝑙

The adaptive coefficients may thus be identified as

𝑏
(𝑡)
0 = 𝜆0𝑆𝑡−𝑘𝑎𝑡 + 𝜆1𝑆

(2)
𝑡−𝑘−1𝑎𝑡−1 + 𝑏

(𝑘)
0 + 𝑏

(𝑘)
1 (𝑡 − 𝑘)

𝑏
(𝑡)
1 = 𝜆1𝑆𝑡−𝑘𝑎𝑡 + 𝑏

(𝑘)
1 (5.4.12)

or informally based on the infinite integrated form as 𝑏(𝑡)0 = 𝜆0𝑆𝑎𝑡 + 𝜆1𝑆
2𝑎𝑡−1 and 𝑏

(𝑡)
1 =

𝜆1𝑆𝑎𝑡. Hence, their updating formulas are

𝑏
(𝑡)
0 = 𝑏

(𝑡−1)
0 + 𝑏

(𝑡−1)
1 + 𝜆0𝑎𝑡

𝑏
(𝑡)
1 = 𝑏

(𝑡−1)
1 + 𝜆1𝑎𝑡 (5.4.13)

similar to relations (4.3.17). The additional slope term 𝑏
(𝑡−1)
1 , which occurs in the updating

formula for 𝑏(𝑡)0 , is an adjustment to change the location parameter 𝑏0 to a value appropriate
to the new origin. It will also be noted that 𝜆0 and 𝜆1 are the fractions of the shock 𝑎𝑡, which
are transmitted to the location parameter and the slope parameter, respectively.

Forecasts as a Weighted Average of Previous Observations. For this model, then, the
forecast function is a straight line that passes through the forecasts �̂�𝑡(1) and �̂�𝑡(2). This
is illustrated for the series in Figure 5.6, which shows the forecasts made at origin 𝑡 = 30,
with appropriate weight functions. It will be seen how dependence of the entire forecast
function on previous 𝑧’s in the series is a reflection of the dependence of �̂�𝑡(1) and �̂�𝑡(2)
on these values. The weight functions for �̂�𝑡(1) and �̂�𝑡(2), plotted in the figure, have been
given in Table 5.2.

The example illustrates once more that while the AR operator𝜑(𝐵) determines the form
of function to be used (a straight line in this case), the MA operator is of importance in
determining the way in which that function is ‘‘fitted’’ to previous data.

Dependence of the Adaptive Coefficients in the Forecast Function onPrevious z’s. Since
for the general model, the values of the adaptive coefficients in the forecast function are
determined by �̂�𝑡(𝑞), �̂�𝑡(𝑞 − 1),… , �̂�𝑡(𝑞 − 𝑝 − 𝑑 + 1), which can be expressed as functions
of the observations, it follows that the same is true for the adaptive coefficients themselves.

For instance, in the case of the model ∇2𝑧𝑡 = (1 − 0.9𝐵 + 0.5𝐵2)𝑎𝑡 of Figure 5.6,

�̂�𝑡(1) = 𝑏
(𝑡)
0 + 𝑏

(𝑡)
1 =

∞∑
𝑗=1

𝜋
(1)
𝑗
𝑧𝑡+1−𝑗

�̂�𝑡(2) = 𝑏
(𝑡)
0 + 2𝑏(𝑡)1 =

∞∑
𝑗=1

𝜋
(2)
𝑗
𝑧𝑡+1−𝑗
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FIGURE 5.8 Weights applied to previous 𝑧’s determining location and slope for the model ∇2𝑧𝑡 =
(1 − 0.9𝐵 + 0.5𝐵2)𝑎𝑡.

so that

𝑏
(𝑡)
0 = 2�̂�𝑡(1) − �̂�𝑡(2) =

∞∑
𝑗=1

(2𝜋(1)
𝑗

− 𝜋
(2)
𝑗
)𝑧𝑡+1−𝑗

and

𝑏
(𝑡)
1 = �̂�𝑡(2) − �̂�𝑡(1) =

∞∑
𝑗=1

(𝜋(2)
𝑗

− 𝜋
(1)
𝑗
)𝑧𝑡+1−𝑗

These weight functions are plotted in Figure 5.8.

Variance of the Forecast Error. Using (5.1.16) and the fact that 𝜓𝑗 = 𝜆0 + 𝑗𝜆1, the vari-
ance of the lead 𝑙 forecast error is

𝑉 (𝑙) = 𝜎2
𝑎
[1 + (𝑙 − 1)𝜆20 +

1
6
𝑙(𝑙 − 1)(2𝑙 − 1)𝜆21 + 𝜆0𝜆1𝑙(𝑙 − 1)] (5.4.14)

Using the estimate 𝑠2
𝑎
= 0.032, 𝜆0 = 0.5, and 𝜆1 = 0.6, the 50 and 95% limits are shown in

Figure 5.6 for the forecast at origin 𝑡 = 30.

5.4.3 Forecasting a General IMA(0, d, q) Process

As an example, consider the process of order (0, 1,3):

(1 − 𝐵)𝑧𝑡+𝑙 = (1 − 𝜃1𝐵 − 𝜃2𝐵
2 − 𝜃3𝐵

3)𝑎𝑡+1

Taking conditional expectations at time 𝑡, we obtain

�̂�𝑡(1) − 𝑧𝑡 = −𝜃1𝑎𝑡 − 𝜃2𝑎𝑡−1 − 𝜃3𝑎𝑡−2
�̂�𝑡(2) − �̂�𝑡(1) = −𝜃2𝑎𝑡 − 𝜃3𝑎𝑡−1
�̂�𝑡(3) − �̂�𝑡(2) = −𝜃3𝑎𝑡

�̂�𝑡(𝑙) − �̂�𝑡(𝑙 − 1) = 0 𝑙 = 4, 5, 6,…
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FIGURE 5.9 Forecast function for an IMA(0, 1, 3) process.

Hence, �̂�𝑡(𝑙) = �̂�𝑡(3) = 𝑏
(𝑡)
0 for all 𝑙 > 2, as expected, since 𝑞 − 𝑝 − 𝑑 = 2. As shown in

Figure 5.9, the forecast function makes two initial ‘‘jumps,’’ depending on previous 𝑎’s,
before leveling out to the eventual forecast function.

For the IMA(0, 𝑑, 𝑞) process, the eventual forecast function satisfies the difference
equation (1 − 𝐵)𝑑 �̂�𝑡(𝑙) = 0, and has for its solution, a polynomial in 𝑙 of degree 𝑑 − 1:

�̂�𝑡(𝑙) = 𝑏
(𝑡)
0 + 𝑏

(𝑡)
1 𝑙 + 𝑏

(𝑡)
2 𝑙

2 +⋯ + 𝑏
(𝑡)
𝑑−1𝑙

𝑑−1

Thiswill provide the forecasts �̂�𝑡(𝑙) for 𝑙 − 𝑞 − 𝑑. The coefficients𝑏(𝑡)0 , 𝑏(𝑡)1 ,… , 𝑏
(𝑡)
𝑑−1must be

updated progressively as the origin advances. The forecast for origin 𝑡willmake 𝑞− 𝑑 initial
‘‘jumps,’’ which depend on 𝑎𝑡, 𝑎𝑡−1,… , 𝑎𝑡−𝑞+1, and after this, will follow the polynomial
above.

5.4.4 Forecasting Autoregressive Processes

Consider a process of order (𝑝, 𝑑, 0), 𝜑(𝐵)𝑧𝑡 = 𝑎𝑡. The eventual forecast function is the
solution of 𝜑(𝐵)�̂�𝑡(𝑙) = 0. It applies for all lead times and passes through the last 𝑝 + 𝑑

available values of the series. For example, the model for the IBM stock series (Series B)
is very nearly

(1 − 𝐵)𝑧𝑡 = 𝑎𝑡

so that

�̂�𝑡(𝑙) ≈ 𝑧𝑡

The best forecast for all future time is very nearly the current value of the stock. The weight
function for �̂�𝑡(𝑙) is a spike at time 𝑡 and there is no averaging over past history.

Stationary Autoregressive Models. The stationary AR(𝑝) process𝜙(𝐵)�̃�𝑡 = 𝑎𝑡 will in gen-
eral produce a forecast function that is a mixture of exponentials and damped sines. In
particular, for 𝑝 = 1, the model

(1 − 𝜙𝐵)�̃�𝑡 = 𝑎𝑡 − 1 < 𝜙 < 1

has a forecast function that, for all 𝑙 > 0, is the solution of (1 − 𝜙𝐵) ̂̃𝑧𝑡(𝑙) = 0. Thus,

̂̃𝑧𝑡(𝑙) = 𝑏
(𝑡)
0 𝜙

𝑙 𝑙 > 0 (5.4.15)
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FIGURE 5.10 Forecast functions for (a) the AR(1) process (1 − 0.5𝐵)�̄�𝑡 = 𝑎𝑡, and (b) the AR(2)
process (1 − 0.75𝐵 + 0.5𝐵2)�̄�𝑡 = 𝑎𝑡 from a time origin 𝑡 = 14.

Also, ̂̃𝑧𝑡(1) = 𝜙�̃�𝑡, so that 𝑏
(𝑡)
0 = �̃�𝑡 and

̂̃𝑧𝑡(𝑙) = �̄�𝑡𝜙
𝑙

So, the forecasts for the original process 𝑧𝑡 are �̂�𝑡(𝑙) = 𝜇 + 𝜙𝑙(𝑧𝑡 − 𝜇).
Hence, the minimum mean square error forecast predicts the current deviation from

the mean decaying exponentially to zero. In Figure 5.10(a) a time series is shown that is
generated from the process (1 − 0.5𝐵)�̃�𝑡 = 𝑎𝑡, with the forecast function at origin 𝑡 = 14.
The course of this function is seen to be determined entirely by the single deviation
�̃�14. Similarly, the minimum mean square error forecast for a second-order autoregressive
process is such that the current deviation from the mean is predicted to decay to zero via
a damped sine wave or a mixture of two exponentials. Figure 5.10(b) shows a time series
generated from the process (1 − 0.75𝐵 + 0.50𝐵2)�̃�𝑡 = 𝑎𝑡 and the forecast at origin 𝑡 = 14.
Here the course of the forecast function at origin 𝑡 is determined entirely by the last two
deviations, �̃�14 and �̃�13.

Variance Function for the Forecast from an AR(1) Process. Since the AR(1) process at
time 𝑡 + 𝑙 may be written as

�̄�𝑡+𝑙 = 𝑎𝑡+𝑙 + 𝜙𝑎𝑡+𝑙−1 +⋯ + 𝜙𝑙−1𝑎𝑡+1 + 𝜙𝑙�̃�𝑡

it follows from (5.4.15) that

𝑒𝑡(𝑙) = �̃�𝑡+𝑙 − ̂̃𝑧𝑡(𝑙) = 𝑎𝑡+𝑙 + 𝜙𝑎𝑡+𝑙−1 +⋯ + 𝜙𝑙−1𝑎𝑡+1
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Hence,

𝑉 (𝑙) = var[𝑒𝑡(𝑙)] = 𝜎2
𝑎
(1 + 𝜙2 +⋯ + 𝜙2(𝑙−1))

=
𝜎2
𝑎
(1 − 𝜙2𝑙)
1 − 𝜙2 (5.4.16)

We see that for this stationary process, as 𝑙 tends to infinity the variance increases to a
constant value 𝛾0 = 𝜎2

𝑎
∕(1 − 𝜙2), associated with the variation of the process about the

ultimate forecast 𝜇. This is in contrast to the behavior of forecast variance functions for
nonstationary models that ‘‘blow up’’ for large lead times.

Nonstationary Autoregressive Models of Order (p, d, 0). For the model

𝜙(𝐵)∇𝑑𝑧𝑡 = 𝑎𝑡

the 𝑑th difference of the process decays back to its mean when projected several steps
ahead. The mean of ∇𝑑𝑧𝑡 will usually be assumed to be zero unless contrary evidence is
available. When needed, it is possible to introduce a nonzero mean by replacing ∇𝑑𝑧𝑡 by
the deviation (∇𝑑𝑧𝑡 − 𝜇𝑤) in the model. For example, consider the model

(1 − 𝜙𝐵)(∇𝑧𝑡 − 𝜇𝑤) = 𝑎𝑡 (5.4.17)

After substituting 𝑡 + 𝑗 for 𝑡 and taking conditional expectations at origin 𝑡, we readily
obtain [compare with (5.4.15) et seq.]

�̂�𝑡(𝑗) − �̂�𝑡(𝑗 − 1) − 𝜇𝑤 = 𝜙𝑗(𝑧𝑡 − 𝑧𝑡−1 − 𝜇𝑤)

or �̂�𝑡(𝑗) − 𝜇𝑤 = 𝜙𝑗(𝑤𝑡 − 𝜇𝑤), where𝑤𝑡 = ∇𝑧𝑡. This shows how the forecasted difference
decays exponentially from the initial value 𝑤𝑡 = 𝑧𝑡 − 𝑧𝑡−1 to its mean value 𝜇𝑤. On sum-
ming this expression from 𝑗 = 1 to 𝑗 = 𝑙, that is, using �̂�𝑡(𝑙) = �̂�𝑡(𝑙) +⋯ + �̂�𝑡(1) + 𝑧𝑡, we
obtain the forecast function

�̂�𝑡(𝑙) = 𝑧𝑡 + 𝜇𝑤𝑙 + (𝑧𝑡 − 𝑧𝑡−1 − 𝜇𝑤)
𝜙(1 − 𝜙𝑙)
1 − 𝜙

𝑙 ≥ 1

that approaches asymptotically the straight line

𝑓 (𝑙) = 𝑧𝑡 + 𝜇𝑤𝑙 + (𝑧𝑡 − 𝑧𝑡−1 − 𝜇𝑤)
𝜙

1 − 𝜙

with deterministic slope 𝜇𝑤. If the forecasts are generated using the function sarima.for()
in the astsa package in R, a deterministic slope can be incorporated into the forecast
function by setting the argument no.constant=FALSE. The treatment of the constant term
can have a big impact on the forecasts and should be considered carefully when a possible
trend might be present.

We now consider the forecasting of some important mixed models.
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5.4.5 Forecasting a (1, 0, 1) Process

Difference Equation Approach. Consider the stationary model

(1 − 𝜙𝐵)�̃�𝑡 = (1 − 𝜃𝐵)𝑎𝑡

The forecasts are readily obtained from

̂̃𝑧𝑡(1) = 𝜙�̃�𝑡 − 𝜃𝑎𝑡

̂̃𝑧𝑡(𝑙) = 𝜙 ̂̃𝑧𝑡(𝑙 − 1) 𝑙 ≥ 2
(5.4.18)

The forecasts decay geometrically to the mean, as in the first-order autoregressive process,
but with a lead 1 forecast modified by a factor depending on 𝑎𝑡 = 𝑧𝑡 − �̂�𝑡−1(1). The 𝜓

weights are

𝜓𝑗 = (𝜙 − 𝜃)𝜙𝑗−1 𝑗 = 1, 2,…

and hence, using (5.2.5), the updated forecasts for lead times 1, 2,… , 𝐿− 1 could be
obtained from previous forecasts for lead times 2, 3,… , 𝐿 according to

̂̃𝑧𝑡+1(𝑙) = ̂̃𝑧𝑡(𝑙 + 1) + (𝜙 − 𝜃)𝜙𝑙−1𝑎𝑡 + 1

Integrated Form. The eventual forecast function for all 𝑙 > 0 is the solution of (1 −
𝜙𝐵) ̂̃𝑧𝑡(𝑙) = 0, that is,

̂̃𝑧𝑡(𝑙) = 𝑏
(𝑡)
0 𝜙

𝑙 𝑙 > 0

However,

̂̃𝑧𝑡(𝑙) = 𝑏
(𝑡)
0 𝜙 = 𝜙�̃�𝑡 − 𝜃𝑎𝑡 =

[(
1 − 𝜃

𝜙

)
�̃�𝑡 +

𝜃

𝜙
̂̃𝑧𝑡−1(1)

]
𝜙

Thus,

̂̃𝑧𝑡(1) =
[(

1 − 𝜃

𝜙

)
�̃�𝑡 +

𝜃

𝜙
̂̃𝑧𝑡−1(1)

]
𝜙𝑙 (5.4.19)

Hence, the forecasted deviation at lead 𝑙 decays exponentially from an initial value, which
is a linear interpolation between the previous lead 1 forecasted deviation and the current
deviation. When 𝜙 is equal to unity, the forecast for all lead times becomes the familiar
exponentially weighted moving average and (5.4.19) becomes equal to (5.4.3).

Weights Applied to Previous Observations. The 𝜋 weights, and hence the weights applied
to previous observations to obtain the lead 1 forecasts, as

𝜋𝑗 = (𝜙 − 𝜃)𝜃𝑗−1 𝑗 = 1, 2,…

Note that the weights for this stationary process sum to (𝜙 − 𝜃)∕(1 − 𝜃) and not to unity.
If 𝜙 were equal to 1, the process would become a nonstationary IMA(0, 1, 1) process,
the weights would then sum to unity, and the behavior of the generated series would be
independent of the level of 𝑧𝑡.

For example, Series A is later fitted to a (1, 0, 1) model with 𝜙 = 0.9 and 𝜃 = 0.6,
and hence the weights are 𝜋1 = 0.30, 𝜋2 = 0.18, 𝜋3 = 0.11, 𝜋4 = 0.07,…, which sum to
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0.75. The forecasts (5.4.19) decay very slowly to the mean, and for short lead times are
practically indistinguishable from the forecasts obtained from the alternative IMA(0, 1, 1)
model ∇𝑧𝑡 = 𝑎𝑡 − 0.7𝑎𝑡−1, for which the weights are 𝜋1 = 0.30, 𝜋2,= 0.21, 𝜋3 = 0.15,
𝜋4 = 0.10, and so on, and sum to unity. The latter model has the advantage that it does not
tie the process to a fixed mean.

Variance Function. Since the 𝜓 weights are given by

𝜓𝑗 = (𝜙 − 𝜃)𝜙𝑗−1 𝑗 = 1, 2,…

it follows that the variance function is

𝑉 (𝑙) = 𝜎2
𝑎

[
1 + (𝜙 − 𝜃)2 1 − 𝜙2(𝑙−1)

1 − 𝜙2

]
(5.4.20)

which increases asymptotically to the value 𝜎2
𝑎
(1 − 2𝜙𝜃 + 𝜃2)∕(1 − 𝜙2), the variance 𝛾0 of

the process.

5.4.6 Forecasting a (1, 1, 1) Process

Another important mixed model is the nonstationary (1, 1, 1) process:

(1 − 𝜙𝐵)(1 − 𝐵)𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡

Difference Equation Approach. At time 𝑡 + 1, the model may be written

𝑧𝑡+1 = (1 + 𝜙)𝑧𝑡+𝑙−1 − 𝜙𝑧𝑡+𝑙−2 + 𝑎𝑡+𝑙 − 𝜃𝑎𝑡+𝑙−1

On taking conditional expectations, we obtain

�̂�𝑡(1) = (1 + 𝜙)𝑧𝑡 − 𝜙𝑧𝑡−1 − 𝜃𝑎𝑡

�̂�𝑡(𝑙) = (1 + 𝜙)�̂�𝑡(𝑙 − 1) − 𝜙�̂�𝑡(𝑙 − 2) 𝑙 > 1
(5.4.21)

IntegratedForm. Since 𝑞 < 𝑝 + 𝑑, the eventual forecast function for all 𝑙 > 0 is the solution
of (1 − 𝜙𝐵)(1 − 𝐵)�̂�𝑡(𝑙) = 0, which is

�̂�𝑡(𝑙) = 𝑏
(𝑡)
0 + 𝑏

(𝑡)
1 𝜙

𝑙

Substituting for �̂�𝑡(1) and �̂�𝑡(2) in (5.4.21), we find explicitly that

𝑏
(𝑡)
0 = 𝑧𝑡 +

𝜙

1 − 𝜙
(𝑧𝑡 − 𝑧𝑡−1) −

𝜃

1 − 𝜃
𝑎𝑡

𝑏
(𝑡)
1 =

𝜃𝑎𝑡 − 𝜙(𝑧𝑡 − 𝑧𝑡−1)
1 − 𝜙
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Thus, finally,

�̂�𝑡(𝑙) = 𝑧𝑡 + 𝜙
1 − 𝜙𝑙

1 − 𝜙
(𝑧𝑡 − 𝑧𝑡−1) − 𝜃

1 − 𝜙𝑙

1 − 𝜙
𝑎𝑡 (5.4.22)

It is evident that for large 𝑙, the forecast tends to 𝑏(𝑡)0 .

Weights Applied to Previous Observations. Eliminating 𝑎𝑡 from (5.4.22), we obtain the
alternative form for the forecast in terms of previous 𝑧’s:

�̂�𝑡(𝑙) =
[
1 − 𝜃 − 𝜙

1 − 𝜙
(1 − 𝜙𝑙)

]
𝑧𝑡 +

[
𝜃 − 𝜙

1 − 𝜙
(1 − 𝜙𝑙)

]
�̄�𝑡−1(𝜃) (5.4.23)

where �̄�𝑡−1(𝜃) is an exponentially weighted moving average with parameter 𝜃, that is,
�̄�𝑡−1(𝜃) = (1 − 𝜃)

∑∞
𝑗=1 𝜃

𝑗−1𝑧𝑡−𝑗 . Thus, the 𝜋 weights for the process consist of a ‘‘spike’’
at time 𝑡 and an EWMA starting at time 𝑡 − 1. If we refer to (1 − 𝛼)𝑥 + 𝛼𝑦 as a linear
interpolation between 𝑥 and 𝑦 at argument 𝛼, the forecast (5.4.23) is a linear interpolation
between 𝑧 and �̄�𝑡−1(𝜃). The argument for lead time 1 is 𝜃 − 𝜙, but as the lead time
is increased, the argument approaches (𝜃 − 𝜙)∕(1 − 𝜙). For example, when 𝜃 = 0.9 and
𝜙 = 0.5, the lead 1 forecast is

�̂�𝑡(1) = 0.6𝑧𝑡 + 0.4�̄�𝑡−1(𝜃)

and for long lead times, the forecast approaches

�̂�𝑡(∞) = 0.2𝑧𝑡 + 0.8�̄�𝑡−1(𝜃)

5.5 USE OF STATE-SPACE MODEL FORMULATION FOR EXACT
FORECASTING

5.5.1 State-Space Model Representation for the ARIMA Process

The use of state-space models for time series analysis began with the work of Kalman
(1960) and many of the early developments took place in the field of engineering. These
models consist of a state equation that describes the evolution of a dynamic system in time,
and a measurement equation that represents the observations as linear combinations of the
unobserved state variable corrupted by additive noise. In engineering applications, the state
variable generally represents a well-defined set of physical variables, but these variables
are not directly observable, and the state equation represents the dynamics that govern the
system. In statistical applications, the state-space model is a convenient form to represent
many types of models, including autoregressive--moving average (ARMA) models, struc-
tural component models of ‘‘signal-plus-noise’’ form, or time-varying parameter models.
In the literature, state-space models have been used for forecasting, maximum likelihood
estimation of parameters, signal extraction, seasonal adjustments, and other applications
(see, for example, Durbin andKoopman, 2012). In this section, we introduce the state-space
form of an ARIMA model and discuss its use in exact finite sample forecasting. Other ap-
plications involving the use of state-space models for likelihood calculations, estimation
of structural components, treatment of missing values, and applications related to vector
ARMA models will be discussed in Sections 7.4, 9.4, 13.3, and 14.6.
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For an ARIMA(𝑝, 𝑑, 𝑞) process𝜑(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡, define the forecasts �̂�𝑡(𝑗) = 𝐸𝑡[𝑧𝑡 + 𝑗]
as in Section 5.1, for 𝑗 = 0, 1,… , 𝑟, with 𝑟 = max(𝑝 + 𝑑, 𝑞 + 1), and �̂�𝑡(0) = 𝑧𝑡. From the
updating equations (5.2.5), we have �̂�𝑡(𝑗 − 1) = �̂�𝑡−1(𝑗) + 𝜓𝑗−1𝑎𝑡, 𝑗 = 1, 2,… , 𝑟− 1. Also
for 𝑗 = 𝑟 > 𝑞, recall from (5.3.2) that

�̂�𝑡(𝑗 − 1) = �̂�𝑡−1(𝑗) + 𝜓𝑗−1𝑎𝑡 =
𝑝+𝑑∑
𝑖=1

𝜑𝑖�̂�𝑡−1(𝑗 − 𝑖) + 𝜓𝑗−1𝑎𝑡

So we define the ‘‘state’’ vector at time 𝑡, 𝒀 𝑡, with 𝑟 components as 𝒀 𝑡 =
(𝑧𝑡, �̂�𝑡(1),… , �̂�𝑡(𝑟 − 1))′. Then from the relations above, we find that the vector 𝒀 𝑡 sat-
isfies the first-order system of equations:

𝒀 𝑡 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 ⋅ ⋅ 0
0 0 1 ⋅ ⋅ 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 ⋅ ⋅ ⋅ 1
𝜑𝑟 𝜑𝑟−1 ⋅ ⋅ ⋅ 𝜑1

⎤⎥⎥⎥⎥⎥⎥⎦

𝒀 𝑡−1 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
𝜓1
⋅

⋅

⋅

𝜓𝑟−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑎𝑡 (5.5.1)

where 𝜑𝑖 = 0 if 𝑖 > 𝑝 + 𝑑. So we have

𝒀 𝑡 = 𝚽𝒀 𝑡−1 +𝚿𝑎𝑡 (5.5.2)

together with the observation equation

𝑍𝑡 = 𝑧𝑡 +𝑁𝑡 = [1, 0,… , 0]𝒀 𝑡 +𝑁𝑡 = H𝒀 𝑡 +𝑁𝑡 (5.5.3)

where the additional noise𝑁𝑡 would be present only if the process 𝑧𝑡 is observed subject to
additional white noise; otherwise, we simply have 𝑧𝑡 = 𝐇𝒀 𝑡. The last two equations above
constitute what is known as a state-space representation of the model, which consists of a
state or transition equation (5.5.2) and an observation equation (5.5.3), and 𝒀 𝑡 is known as
the state vector. We note that there are many other constructions of the state vector 𝒀 𝑡 that
will give rise to state-space equations of the general form of (5.5.2) and (5.5.3); that is, the
state-space form of an ARIMA model is not unique. The two equations of the form above,
in general, represent what is known as a state-space model, with unobservable state vector
𝒀 𝑡 and observations𝑍𝑡, and can arise in time series settings more general than the context
of ARIMA models.

Consider a state-space model of a slightly more general form, with state equation

𝒀 𝑡 = 𝚽𝑡𝒀 𝑡−1 + 𝒂𝑡 (5.5.4)

and observation equation

𝑍𝑡 = 𝐇𝑡𝒀 𝑡 +𝑁𝑡 (5.5.5)

where it is assumed that 𝒂𝑡 and 𝑁𝑡 are independent white noise processes, 𝒂𝑡 is a vector
white noise process with covariance matrix 𝚺𝑎, and𝑁𝑡 has variance 𝜎

2
𝑁
. In this model, the

(unobservable) state vector 𝒀 𝑡 summarizes the state of the dynamic system through
time 𝑡, and the state equation (5.5.4) describes the evolution of the dynamic system in time,
while the measurement equation (5.5.5) indicates that the observations𝑍𝑡 consist of linear
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combinations of the state variables corrupted by additive white noise. The matrix 𝚽𝑡 in
(5.5.4) is an 𝑟 × 𝑟 transition matrix and𝐇𝑡 in (5.5.5) is a 1 × 𝒓 vector, which are allowed to
vary with time 𝑡. Often, in applications these are constant matrices, 𝚽𝒕 ≡ 𝚽 and 𝐇𝑡 ≡ 𝐇
for all 𝑡, that do not depend on 𝑡, as in the state-space form (5.5.2) and (5.5.3) of the
ARIMA model. In this case, the system or model is said to be time invariant. The minimal
dimension 𝑟 of the state vector 𝒀 𝑡 in a state-space model needs to be sufficiently large so
that the dynamics of the system can be represented by the simple Markovian (first-order)
structure as in (5.5.4).

5.5.2 Kalman Filtering Relations for Use in Prediction

For the general state-space model (5.5.4) and (5.5.5), define the finite sample optimal
(minimummean square errormatrix) estimate of the state vector𝒀 𝑡+𝑙 based on observations
𝑍𝑡,… , 𝑍1 over the finite past time period, as

�̂� 𝑡+𝑙|𝑡 = 𝐸[𝒀 𝑡+𝑙|𝑍𝑡,… , 𝑍1]

with

𝐕𝑡+1|𝑡 = 𝐸[(𝒀 𝑡+𝑙 − �̂� 𝑡+𝑙|𝑡)(𝒀 𝑡+𝑙 − �̂� 𝑡+𝑙|𝑡)′]

equal to the error covariance matrix. A convenient computational procedure, known as the
Kalman filter equations, is then available to obtain the current estimate �̂� 𝑡|𝑡, in particular.

It is known that, starting from some appropriate initial values 𝒀 0 ≡ �̂� 0|0 and 𝐕0 ≡ 𝐕0|0,
the optimal filtered estimate, �̂� 𝑡|𝑡, is given through the following recursive relations:

�̂� 𝑡|𝑡 = �̂� 𝑡|𝑡−1 +𝑲 𝑡

(
𝑍𝑡 −H𝑡�̂� 𝑡|𝑡−1

)
(5.5.6)

where

𝐊𝑡 = 𝐕𝑡|𝑡−1𝐇′
𝑡
[𝐇𝑡𝐕𝑡|𝑡−1𝐇′

𝑡
+ 𝜎2

𝑁
]−1 (5.5.7)

with

�̂� 𝑡|𝑡−1 = 𝚽𝑡�̂� 𝑡−1|𝑡−1 𝐕𝑡|𝑡−1 = 𝚽𝑡𝐕𝑡−1|𝑡−1𝚽′
𝑡
+ 𝚺𝑎 (5.5.8)

and

𝐕𝑡|𝑡 = [𝟏 −𝐊𝑡𝐇𝑡]𝐕𝑡|𝑡−1
= 𝐕𝑡|𝑡−1 − 𝐕𝑡|𝑡−1𝐇′

𝑡
[𝐇𝑡𝐕𝑡|𝑡−1𝐇′

𝑡
+ 𝜎2

𝑁
]−1𝐇𝑡𝐕𝑡|𝑡−1 (5.5.9)

for t = 1, 2,….
In (5.5.6), the quantity 𝑎𝑡|𝑡−1 = 𝑍𝑡 −𝐇𝑡�̂� 𝑡|𝑡−1 ≡ 𝑍𝑡 − �̂�𝑡|𝑡−1 is called the (finite sample)

innovation at time 𝑡, because it is the new information provided by the measurement 𝑍𝑡

that was not available from the previous observed (finite) history of the system. The
factor 𝐊𝑡 is called the Kalman gain matrix. The filtering procedure in (5.5.6) has the
recursive ‘‘prediction--correction’’ or ‘‘updating’’ form, and the validity of these equations
as representing the minimum mean square error predictor can readily be verified through
the principles of updating. For example, verification of (5.5.6) follows from the principle,
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for linear prediction, that

𝐸[𝒀 𝑡|𝑍𝑡,… , 𝑍1] = 𝐸[𝒀 𝑡|𝑍𝑡 − �̂�𝑡|𝑡−1, 𝑍𝑡−1,… , 𝑍1]
= 𝐸[𝒀 𝑡|𝑍𝑡−1,… , 𝑍1] + 𝐸[𝒀 𝑡|𝑍𝑡 − �̂�𝑡|𝑡−1]

since 𝑎𝑡|𝑡−1 = 𝑍𝑡 − �̂�𝑡|𝑡−1 is independent of 𝑍𝑡−1,… , 𝑍1. From (5.5.6), it is seen that the
estimate of 𝒀 𝑡 based on observations through time 𝑡 equals the prediction of 𝒀 𝑡 from obser-
vations through time 𝑡 − 1 updated by the factor 𝑲 𝑡 times the innovation 𝑎𝑡|𝑡−1. Equation
(5.5.7) indicates that𝑲 𝑡 can be interpreted as the regression coefficients of 𝒀 𝑡 on the inno-
vation 𝑎𝑡|𝑡−1, with var[𝑎𝑡|𝑡−1] = 𝐇𝑡𝐕𝑡|𝑡−1𝐇′

𝑡
+ 𝜎2

𝑁
and cov[𝒀 𝑡, 𝑎𝑡|𝑡−1] = 𝐕𝑡|𝑡−1𝐇′

𝑡
following

directly from (5.5.5) since 𝑎𝑡|𝑡−1 = 𝐇𝑡(𝑍𝑡 − �̂�𝑡|𝑡−1) +𝑁𝑡. Thus, the general updating rela-
tion is

�̂� 𝑡|𝑡 = �̂� 𝑡|𝑡−1 + cov[𝒀 𝑡, 𝑎𝑡|𝑡−1]{var[𝑎𝑡|𝑡−1]}−1𝑎𝑡|𝑡−1

where 𝑎𝑡|𝑡−1 = 𝑍𝑡 − �̂�𝑡|𝑡−1, and the relation in (5.5.9) is the usual updating of the error
covariance matrix to account for the new information available from the innovation 𝑎𝑡|𝑡−1,
while the prediction relations (5.5.8) follow directly from (5.5.4).

In general, forecasts of future state values are available directly as �̂� 𝑡+𝑙|𝑡 = 𝚽𝑡+𝑙�̂� 𝑡+𝑙−1|𝑡
for 𝑙 = 1, 2,…, with the covariance matrix of the forecast errors generated recursively
essentially through (5.5.8) as

𝐕𝑡+𝑙|𝑡 = 𝚽𝑡+𝑙𝐕𝑡+𝑙−1|𝑡𝚽′
𝑡+𝑙 + 𝚺𝑎

Finally, forecasts of future observations, 𝑍𝑡+𝑙 = 𝐇𝑡+𝑙𝒀 𝑡+𝑙 +𝑁𝑡+𝑙, are then available as
�̂�𝑡+𝑙|𝑡 = 𝐇𝑡+𝑙�̂� 𝑡+𝑙|𝑡 with forecast error variance

𝑣𝑡+𝑙|𝑡 = 𝐸[(𝑍𝑡+𝑙 − �̂�𝑡+𝑙|𝑡)2] = 𝐇𝑡+𝑙𝐕𝑡+𝑙|𝑡𝐇′
𝑡+𝑙 + 𝜎2

𝑁

Use for Exact Forecasting in ARIMA Models. For ARIMA models, with state-space
representation (5.5.2) and (5.5.3) and 𝑍𝑡 = 𝑧𝑡 = 𝐇𝒀 𝑡 with 𝐇 = [1, 0,… , 0], the Kalman
filtering procedure constitutes an alternative method to obtain exact finite sample fore-
casts, based on data 𝑧𝑡, 𝑧𝑡−1,… , 𝑧1, for future values in the ARIMA process, subject to
specification of appropriate initial conditions to use in (5.5.6) to (5.5.9). For stationary
zero-mean processes 𝑧𝑡, the appropriate initial values are �̂� 0|0 = 𝟎, a vector of zeros, and
𝐕0|0 = cov[𝒀 0] ≡ 𝐕∗, the covariance matrix of 𝒀 0, which can easily be determined under
stationarity through the definition of 𝒀 𝑡. Specifically, since the state vector 𝒀 𝑡 follows
the stationary vector AR(1) model 𝒀 𝑡 = 𝚽𝒀 𝑡−1 + Ψ𝑎𝑡, its covariancematrix𝐕∗ = cov[𝒀 𝑡]
satisfies 𝐕∗ = 𝚽𝐕∗𝚽′ + 𝜎2

𝑎
𝚿𝚿′, which can be readily solved for 𝐕∗. For nonstationary

ARIMA processes, additional assumptions need to be specified (see, for example, Ansley
and Kohn (1985) and Bell and Hillmer (1987)).

The forecasts of the ARIMA process 𝑧𝑡 are obtained recursively as indicated above,
with 𝑙-step-ahead forecast �̂�𝑡+𝑙|𝑡 = H�̂� 𝑡+𝑙|𝑡, the first element of the vector �̂� 𝑡+𝑙|𝑡, where

�̂� 𝑡+𝑙|𝑡 = 𝚽�̂� 𝑡+𝑙−1|𝑡
with forecast error variance 𝑣𝑡+𝑙|𝑡 = 𝐇𝐕𝑡+𝑙|𝑡𝐇′. The ‘‘steady-state’’ values of the Kalman
filtering procedure 𝑙-step-ahead forecasts �̂�𝑡+𝑙|𝑡 and their forecast error variances 𝑣𝑡+𝑙|𝑡,
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which are rapidly approached as 𝑡 increases, will be identical to the expressions given in
Sections 5.1 and 5.2, �̂�𝑡(𝑙) and 𝑉 (𝑙) = 𝜎2𝑎(1 +

∑𝑙−1
𝑗=1 𝜓

2
𝑗
).

In particular, for the ARIMA process in state-space form, we can obtain the exact (finite
sample) one-step-ahead forecasts:

�̂�𝑡|𝑡−1 = 𝐸[𝑧𝑡|𝑧𝑡−1,… , 𝑧1] = 𝐇𝒀 𝑡|𝑡−1
and their error variances 𝑣𝑡 ≡ 𝐇𝐕𝑡|𝑡−1𝐇′, conveniently through the Kalman filtering equa-
tions (5.5.6)--(5.5.9). This can be particularly useful for evaluation of the likelihood func-
tion, based on 𝑛 observations 𝑧1,… , 𝑧𝑛 from the ARIMA process, applied to the problem
of maximum likelihood estimation of model parameters (see, for example, Jones (1980)
and Gardner et al. (1980)). This will be discussed again in Section 7.4.

Innovations Form of State-Space Model and Steady State for Time-Invariant Models.
One particular alternative form of the general state variable model, referred to as the
innovations or prediction error representation, is worth noting. If we set 𝒀 ∗

𝑡
= �̂� 𝑡|𝑡−1 and

𝑎∗
𝑡
= 𝑎𝑡|𝑡−1 = 𝑍𝑡 −𝐇𝑡𝒀 𝑡|𝑡−1, then from (5.5.6) and (5.5.8) we have

𝒀
∗
𝑡+1 = 𝚽𝑡+1𝒀

∗
𝑡
+𝚽𝑡+𝑙𝐊𝑡𝑎

∗
𝑡
≡ 𝚽𝑡+1𝒀

∗
𝑡
+𝚿∗

𝑡
𝑎∗
𝑡

and 𝑍𝑡 = 𝐇𝑡𝒀
∗
𝑡
+ 𝑎∗

𝑡

which is also of the general form of a state-space model but with the same white noise
process 𝑎∗

𝑡
(the one-step-ahead prediction errors) involved in both the transition and obser-

vation equations.
In the ‘‘stationary case’’ (i.e., time-invariant and stable case) of the state-space model,

where𝚽𝑡 ≡ 𝚽 and𝐇𝑡 ≡ 𝐇 in (5.5.4) and (5.5.5) are constant matrices and𝚽 has all eigen-
values less than 1 in absolute value, we can obtain the steady-state form of the innovations
representation by setting 𝒀 ∗

𝑡
= 𝐸[𝒀 𝑡|𝑍𝑡−1, 𝑍𝑡−2,…], the projection of 𝒀 𝑡 based on the

infinite past of {𝑍𝑡}. In this case, in the Kalman filter relations (5.5.7) to (5.5.9), the error
covariance matrix 𝐕𝑡+1|𝑡 approaches the steady-state matrix 𝐕 = lim𝑡→∞ 𝐕𝑡+1|𝑡 as 𝑡 → ∞,
which satisfies

𝐕 = 𝚽𝐕𝚽′ −𝚽𝐕𝐇′[𝐇𝐕𝐇′ + 𝜎2
𝑁
]−1𝐇𝐕𝚽′ + 𝚺𝑎

Then, also, the Kalman gain matrix 𝐊𝑡 in (5.5.7) approaches the steady-state ma-
trix, 𝐊𝑡 → 𝐊, where 𝐊 = 𝐕𝐇′[𝐇𝐕𝐇′ + 𝜎2

𝑁
]−1, 𝑎∗

𝑡
= 𝑎𝑡|𝑡−1 tends to 𝑎𝑡 = 𝑍𝑡 −𝐇𝒀 ∗

𝑡
≡

𝑍𝑡 − 𝐸[𝑍𝑡|𝑍𝑡−1, 𝑍𝑡−2,…], the one-step-ahead prediction errors, and 𝜎2
𝑡|𝑡−1 = var[𝑎𝑡|𝑡−1] →

𝜎2
𝑎
= var[𝑎𝑡], where 𝜎2𝑎 = 𝐇𝐕𝐇′ + 𝜎2

𝑁
, as 𝑡 → ∞. These steady-state filtering results for

the time-invariant model case also hold under slightly weaker conditions than stability
of the transition matrix 𝚽 (e.g., Harvey (1989), Section 3.3), such as in the nonstation-
ary random walk plus noise model discussed in the example of Section 5.5.3. Hence, in
the time-invariant situation, the state variable model can be expressed in the steady-state
innovation or prediction error form as

𝒀
∗
𝑡+𝑙 = 𝚽𝒀 ∗

𝑡
+𝚽𝐊𝑎𝑡 ≡ 𝚽𝒀 ∗

𝑡
+𝚿∗𝑎𝑡 and 𝑍𝑡 = 𝐇𝒀 ∗

𝑡
+ 𝑎𝑡 (5.5.10)

In particular, for the ARIMA process 𝜑(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡 with no additional observa-
tion error so that 𝑍𝑡 = 𝑧𝑡, a prediction error form (5.5.10) of the state-space model can
be given with state vector 𝒀 ∗

𝑡+1 = (�̂�𝑡(1),… , �̂�𝑡(𝑟∗))′ of dimension 𝑟∗ = max(𝑝 + 𝑑, 𝑞),
𝚿∗ = (𝜓1,… , 𝜓𝑟∗)′, and observation equation 𝑧𝑡 = �̂�𝑡−1(1) + 𝑎𝑡. For example, consider
the ARMA(1, 1) process (1 − 𝜙𝐵)𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡. In addition to the state-space form
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with state equation given by (5.5.1) and 𝒀 𝑡 = (𝑧𝑡, �̂�𝑡(1))′, we have the innovations form
of its state-space representation simply as �̂�𝑡(1) = 𝜙�̂�𝑡−1(1) + 𝜓∗𝑎𝑡 and 𝑧𝑡 = �̂�𝑡−1(1) + 𝑎𝑡,
or 𝑌 ∗

𝑡+1 = 𝜙𝑌 ∗
𝑡 + 𝜓∗𝑎𝑡 and 𝑧𝑡 = 𝑌 ∗

𝑡 + 𝑎𝑡 with the (single) state variable 𝑌 ∗
𝑡+1 = �̂�𝑡(1) and

𝜓∗ = 𝜓1 = 𝜙 − 𝜃.

5.5.3 Smoothing Relations in the State Variable Model

Another problem of interest within the state variable model framework, particularly in
applications to economics and business, is to obtain ‘‘smoothed’’ estimates of past values
of the state vector 𝒀 𝑡 given the observations 𝑍1,… , 𝑍𝑛 through some fixed time 𝑛. One
convenient method to obtain the desired estimates, known as the fixed-interval smoothing
algorithm,makes use of the Kalman filter estimates �̂� 𝑡|𝑡 obtainable through (5.5.6)--(5.5.9).
The smoothing algorithm produces the minimum MSE estimator (predictor) of the state
value 𝒀 𝑡 given the observations through time 𝑛, �̂� 𝑡|𝑛 = 𝐸[𝒀 𝑡|𝑍1,… , 𝑍𝑛]. In general,

define �̂� 𝑡|𝑇 = 𝐸[𝒀 𝑡|𝑍1,… , 𝑍𝑇 ] and V𝑡|𝑇 = 𝐸[(𝒀 𝑡 − �̂� 𝑡|𝑇 )(𝒀 𝑡 − �̂� 𝑡|𝑇 )′]. We assume that

the filtered estimates �̂� 𝑡|𝑡 and their error covariance matrices 𝐕𝑡|𝑡, for 𝑡 = 1,… , 𝑛, have
already been obtained by theKalman filter equations. Then, the optimal smoothed estimates
are obtained by the (backward) recursive relations, in which the filtered estimate �̂� 𝑡|𝑡 is
updated, as

𝒀 𝑡|𝑛 = 𝒀 𝑡|𝑡 + 𝐀𝑡(𝒀 𝑡+1|𝑛 − 𝒀 𝑡+1|𝑡) (5.5.11)

where

𝐀𝑡 = 𝐕𝑡|𝑡𝚽′
𝑡+𝑙|𝑡𝐕−1

𝑡+1|𝑡 ≡ cov[𝒀 𝑡, 𝒀 𝑡+1 − 𝒀 𝑡+1|𝑡]{cov[𝒀 𝑡+1 − 𝒀 𝑡+1|𝑡]}−1 (5.5.12)

and

𝐕𝑡|𝑛 = 𝐕𝑡|𝑡 − 𝐀𝑡(𝐕𝑡+1|𝑡 − 𝐕𝑡+1|𝑛)𝐀′
𝑡

(5.5.13)

The result (5.5.11) is established from the following argument. First, consider 𝒖𝑡 =
𝐸[𝒀 𝑡|𝑍1,… , 𝑍𝑡, 𝒀 𝑡+1 − �̂� 𝑡+1|𝑡, 𝑁𝑡+1,𝒂𝑡+2, 𝑁𝑡+2,… ,𝒂𝑛,𝑁𝑛]. Then, because {𝜶𝑡+𝑗 , 𝑗 ≥
2) and {𝑁𝑡+𝑗 , 𝑗 ≥ 1} are independent of the other conditioning variables in the defini-

tion of 𝒖𝑡 and are also independent of 𝒀 𝑡, we have 𝒖𝑡 = �̂� 𝑡|𝑡 + 𝐸[𝒀 𝑡|𝒀 𝑡+1 − �̂� 𝑡+1|𝑡] =
�̂� 𝑡|𝑡 + 𝐀𝑡(𝒀 𝑡+1 − �̂� 𝑡+1|𝑡), where 𝐀𝑡 is given by (5.5.12). Thus, because the conditioning
variables in 𝒖𝑡 generate𝑍1,… , 𝑍𝑛, it follows that

�̂� 𝑡|𝑛 = 𝑬[𝒀 𝑡|𝑍1,… , 𝑍𝑛]

= 𝐸[𝒖𝑡|𝑍1,… , 𝑍𝑛] = �̂� 𝑡|𝑡 + 𝐀𝑡(�̂� 𝑡+1|𝑛 − �̂� 𝑡+1|𝑡)

as in (5.5.11). The relation (5.5.13) for the error covariance matrix follows from rather
straightforward calculations. This derivation of the fixed-interval smoothing relations is
given by Ansley and Kohn (1982).

Thus, it is seen from (5.5.11)--(5.5.13) that the optimal smoothed estimates �̂� 𝑡|𝑛 are

obtained by first obtaining the filtered values �̂� 𝑡|𝑡 through the forward recursion of the
Kalman filter relations, followed by the backward recursions of (5.5.11)--(5.5.13) for 𝑡 =
𝑛 − 1,… , l. This type of smoothing procedure has applications for estimation of trend and
seasonal components (seasonal adjustment) in economic time series, as will be discussed
in Section 9.4. When smoothed estimates �̂� 𝑡|𝑛 are desired only at a fixed time point (or
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only at a few fixed points), for example, in relation to problems that involve the estimation
of isolated missing values in a time series, then an alternative ‘‘fixed-point’’ smoothing
algorithm may be useful (e.g., see Anderson and Moore (1979) or Brockwell and Davis
(1991)).

Example. As a simple example of the state-space model and associated Kalman filtering
and smoothing, consider a basic structural model in which an observed series 𝑍𝑡 is viewed
as the sum of unobserved trend and noise components. To be specific, assume that the
observed process can be represented as

𝑍𝑡 = 𝜇𝑡 +𝑁𝑡 where 𝜇𝑡 = 𝜇𝑡−1 + 𝑎𝑡

so that 𝜇𝑡 is a random walk process and 𝑁𝑡 is an independent (white) noise process. This
is a simple example of a time-invariant state-space model with𝚽 = 1 andH = 1 in (5.5.4)
and (5.5.5) and with the state vector 𝒀 𝑡 = 𝜇𝑡 representing an underlying (unobservable)
‘‘trend or level’’ process (or ‘‘permanent’’ component). For this model, application of
the Kalman filter and associated smoothing algorithm can be viewed as the estimation of
the underlying trend process 𝜇𝑡 based on the observed process 𝑍𝑡. The Kalman filtering
relations (5.5.6)--(5.5.9) for this basic model reduce to

�̂�𝑡|𝑡 = �̂�𝑡−1|𝑡−1 +𝐾𝑡(𝑍𝑡 − �̂�𝑡−1|𝑡−1) = 𝐾𝑡𝑍𝑡 + (1 − 𝐾𝑡)�̂�𝑡−1|𝑡−1

where the gain is 𝐾𝑡 = 𝑉𝑡|𝑡−1[𝑉𝑡|𝑡 − 1 + 𝜎2
𝑁
]−1, with

𝑉𝑡+1|𝑡 = 𝑉𝑡|𝑡−1 − 𝑉𝑡|𝑡−1[𝑉𝑡|𝑡−1 + 𝜎2
𝑁
]−1𝑉𝑡|𝑡−1 + 𝜎2

𝑎

Then �̂�𝑡|𝑡 represents the current estimate of the trend component 𝜇𝑡 given the observations
𝑍1,… , 𝑍𝑡 through time 𝑡. The steady-state solution to theKalman filter relations is obtained
as 𝑡 → ∞ for 𝑉 (𝑉 = lim𝑡→∞ 𝑉𝑡+1|𝑡), which satisfies 𝑉 = 𝑉 − 𝑉 [𝑉 + 𝜎2

𝑁
]−1𝑉 + 𝜎2

𝑎
, that

is, 𝑉 [𝑉 + 𝜎2
𝑁
]−1𝑉 = 𝜎2

𝑎
, and the corresponding steady-state gain is 𝐾 = 𝑉 [𝑉 + 𝜎2

𝑁
]−1.

In addition, the recursion (5.5.11) for the smoothed estimate of the trend component 𝜇𝑡
becomes

�̂�𝑡|𝑛 = �̂�𝑡|𝑡 + 𝐴𝑡(�̂�𝑡+1|𝑛 − �̂�𝑡+1|𝑡)
= (1 − 𝐴𝑡)�̂�𝑡|𝑡 + 𝐴𝑡�̂�𝑡+1|𝑛 𝑡 = 𝑛 − 1,… , 1

noting that �̂�𝑡+1|𝑡 = �̂�𝑡|𝑡, where 𝐴𝑡 = 𝑉𝑡|𝑡𝑉 −1
𝑡+1|𝑟 = 𝑉𝑡|𝑡{𝑉𝑡|𝑡 + 𝜎2

𝑎
}−1 and 𝑉𝑡|𝑡 = (1 −

𝐾𝑡)𝑉𝑡|𝑡−1, with the recursion for the calculation of 𝑉𝑡|𝑡−1 being as given above. Thus,
the smoothed value is a weighted average of the filtered estimate �̂�𝑡|𝑡 at time 𝑡 and the
smoothed estimate �̂�𝑡+1|𝑛 at time 𝑡 + 1. The steady-state form of this smoothing recursion is
the same as above with a constant𝐴 = lim𝑡→∞ 𝐴𝑡, which can be found to equal𝐴 = 1 − 𝐾 .
Hence, the steady-state (backward) smoothing relation (5.5.11) for this example has the
same form as the steady-state filter relation already mentioned; that is, they both have the
form of an exponential weighted moving average (EWMA) with the same weight.
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5.6 SUMMARY

The results of this chapter may be summarized as follows: Let �̄�𝑡 be the deviation of an
observed time series from any known deterministic function of time 𝑓 (𝑡). In particular, for
a stationary series, 𝑓 (𝑡) could be equal to 𝜇, the mean of the series, or it could be equal to
zero, so that �̄�𝑡 was the observed series. Then, consider the general ARIMA model

𝜙(𝐵)∇𝑑�̃�𝑡 = 𝜃(𝐵)𝑎𝑡

or

𝜑(𝐵)�̃�𝑡 = 𝜃(𝐵)𝑎𝑡

Minimum Mean Square Error Forecast. Given the knowledge of the series up to some
origin 𝑡, the minimum mean square error forecast �̃�𝑡(𝑙)(𝑙 > 0) of �̄�𝑡+1 is the conditional
expectation

̂̃𝑧𝑡(𝑙) = [�̃�𝑡+𝑙] = 𝐸[�̃�𝑡+𝑙|�̃�𝑡, �̃�𝑡−1,…]

Lead 1 Forecast Errors. A necessary consequence is that the lead 1 forecast errors are the
generating 𝑎𝑡’s in the model and are uncorrelated.

Calculation of the Forecasts. It is usually simplest in practice to compute the forecasts
directly from the difference equation to give

̂̃𝑧1(𝑙) =𝜑1[�̃�𝑡+𝑙−1] +⋯ + 𝜑𝑝+𝑑[�̃�𝑡+𝑙−𝑝−𝑑] + [𝑎𝑡+𝑙] − 𝜃1[𝑎𝑡+𝑙−1]
−⋯ − 𝜃𝑞[𝑎𝑡 + 𝑙 − 𝑞] (5.6.1)

The conditional expectations in (5.6.1) are evaluated by inserting actual �̃�’s when these are
known, forecasted �̃�’s for future values, actual 𝑎’s when these are known, and zeros for
future 𝑎’s. The forecasting process may be initiated by approximating 𝑎’s by zeros and, in
practice, the appropriate form for the model and suitable estimates for the parameters are
obtained by methods set out in Chapters 6--8.

Probability Limits for Forecasts. The probability limits may be obtained as follows:

1. By first calculating the 𝜓 weights from

𝜓0 = 1
𝜓1 = 𝜑1 − 𝜃1
𝜓2 = 𝜑1𝜓1 + 𝜑2 − 𝜃2 (5.6.2)

⋮

𝜓𝑗 = 𝜑1𝜓𝑗−1 +⋯ + 𝜑𝑝+𝑑𝜓𝑗−𝑝−𝑑 − 𝜃𝑗

where 𝜃𝑗 = 0, 𝑗 > 𝑞.
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2. For each desired level of probability 𝜀, and for each lead time 𝑙, substituting in

�̃�𝑡+𝑙(±) = ̂̃𝑧𝑡(𝑙) ± 𝑢𝜀∕2

(
1 +

𝑙−1∑
𝑗=1

𝜓2
𝑗

)1∕2

𝜎𝑎 (5.6.3)

where in practice 𝜎𝑎 is replaced by an estimate 𝑠𝑎, of the standard deviation of the
white noise process 𝑎𝑡, and 𝑢𝜀∕2 is the deviate exceeded by a proportion 𝜀∕2 of the
unit normal distribution.

Updating the Forecasts. When a new deviation �̃�𝑡+1 comes to hand, the forecasts may
be updated to origin 𝑡 + 1, by calculating the new forecast error 𝑎𝑡+1 = �̃�𝑡+1 − �̃�𝑡(1) and
using the difference equation (5.6.1)with 𝑡 + 1 replacing 𝑡. However, an alternativemethod
is to use the forecasts ̂̃𝑧𝑡(1), ̂̃𝑧𝑡(2),… , ̂̃𝑧(𝐿) at origin 𝑡, to obtain the first 𝐿 − 1 forecasts
̂̃𝑧𝑡+1(1), ̂̃𝑧𝑡+1(2),… , ̂̃𝑧𝑡+1(𝐿 − 1) at origin 𝑡 + 1, from

̂̃𝑧𝑡+1(𝑙) = ̂̃𝑧𝑡(𝑙 + 1) + 𝜓𝑙𝑎𝑡+1 (5.6.4)

and then generate the last forecast ̂̃𝑧𝑡+1(𝐿) using the difference equation (5.6.1).

Other Ways of Expressing the Forecasts. The above is all that is needed for practical
utilization of the forecasts. However, the following alternative forms provide theoretical
insight into the nature of the forecasts generated by different models:

1. Forecasts in Integrated Form. For 𝑙 > 𝑞 − 𝑝 − 𝑑, the forecasts lie on the unique curve

̂̃𝑧𝑡(𝑙) = 𝑏
(𝑡)
0 𝑓0(𝑙) + 𝑏

(𝑡)
1 𝑓1(𝑙) +⋯ + 𝑏

(𝑡)
𝑝+𝑑−1𝑓𝑝+𝑑−1(𝑙) (5.6.5)

determined by the ‘‘pivotal’’ values ̂̃𝑧𝑡(𝑞), ̂̃𝑧𝑡(𝑞 − 1),… , ̂̃𝑧𝑡(𝑞 − 𝑝 − 𝑑 + 1), where
̂̃𝑧𝑡(−𝑗) = �̃�𝑡−𝑗 (𝑗 = 0, 1, 2,…). If 𝑞 > 𝑝 + 𝑑, the first 𝑞 − 𝑝 − 𝑑 forecasts do not lie
on this curve. In general, the stationary autoregressive operator contributes damped
exponential and damped sine wave terms to (5.6.5), and the nonstationary operator
∇𝑑 contributes polynomial terms up to degree 𝑑 − 1.

The adaptive coefficients 𝑏(𝑡)
𝑗

in (5.6.5) may be updated from origin 𝑡 to 𝑡 + 1 by
amounts depending on the last lead 1 forecast error 𝑎𝑡+1, according to the general
formula

𝐛(𝑡+1) = 𝐋′𝐛(𝑡) + 𝐠𝑎𝑡+1 (5.6.6)

given in Appendix A5.3. Specific examples of the updating are given in (5.4.5) and
(5.4.13) for the IMA(0, 1, 1) and IMA(0, 2, 2) processes, respectively.

2. Forecasts as a Weighted Sum of Past Observations. It is instructive from a theoretical
point of view to express the forecasts as a weighted sum of past observations. Thus,
if the model is written in inverted form,

𝑎𝑡 = 𝜋(𝐵)�̃�𝑡 = (1 − 𝜋1𝐵 − 𝜋2𝐵
2 −⋯)�̃�𝑡

the lead 1 forecast is

̂̃𝑧𝑡(l) = 𝜋1�̃�𝑡 + 𝜋2�̃�𝑡−1 +⋯ (5.6.7)
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and the forecasts for longer lead times may be obtained from

̂̃𝑧𝑡(𝑙) = 𝜋1[�̃�𝑡+𝑙−1] + 𝜋2[�̃�𝑡+𝑙−2] +⋯ (5.6.8)

where the conditional expectations in (5.6.8) are evaluated by replacing �̃�’s by actual
values when known, and by forecasted values when unknown.

Alternatively, the forecast for any lead time may be written as a linear function of
the available observations. Thus,

̂̃𝑧𝑡(𝑙) =
∞∑
𝑗=1

𝜋
(𝑙)
𝑗
�̃�𝑡+𝑙−𝑗

where the 𝜋(𝑙)
𝑗

are functions of the 𝜋𝑗’s.

Role of Constant Term in Forecasts. The forecasts will be impacted by the allowance
of a nonzero constant term 𝜃0 in the ARIMA(𝑝, 𝑑, 𝑞) model, 𝜑(𝐵)𝑧𝑡 = 𝜃0 + 𝜃(𝐵)𝑎𝑡, where
𝜑(𝐵) = 𝜙(𝐵)∇𝑑 . Then, in (5.3.3) and (5.6.5), an additional deterministic polynomial term
of degree 𝑑, (𝜇𝑤∕𝑑!)𝑙𝑑 with 𝑤𝑡 = ∇𝑑𝑧𝑡 and 𝜇𝑤 = 𝐸[𝑤𝑡] = 𝜃0∕(1 − 𝜙1 − 𝜙2 −⋯ − 𝜙𝑝),
will be present. This follows because in place of the relation 𝜑(𝐵)�̂�𝑡(𝑙) = 𝜃0 in (5.3.2),
the forecasts now satisfy 𝜑(𝐵)�̂�𝑡(𝑙) = 𝜃0, 1 > 𝑞, and the deterministic polynomial term
of degree 𝑑 represents a particular solution to this nonhomogeneous difference equation.
Hence, in the instance of a nonzero constant term 𝜃0, the ARIMAmodel is also expressible
as 𝜙(𝐵)(∇𝑑𝑧𝑡 − 𝜇𝑤) = 𝜃(𝐵)𝑎𝑡, 𝜇𝑤 ≠ 0, and the forecast in the form (5.6.5) may be viewed
as representing the forecast value of �̃�𝑡+𝑙 = 𝑧𝑡+𝑙 − 𝑓 (𝑡 + 𝑙), where 𝑓 (𝑡 + 𝑙) = (𝜇𝑤∕𝑑!)(𝑡 +
𝑙)𝑑 + 𝑔(𝑡 + 𝑙) and 𝑔(𝑡) is any fixed deterministic polynomial in 𝑡 of degree less than or
equal to 𝑑 − 1 (including the possibility 𝑔(𝑡) = 0). For example, in an ARIMA model with
𝑑 = 1 such as the ARIMA(1, 1, 1) model example of Section 5.4.6, but with 𝜃0 ≠ 0, the
eventual forecast function of the form �̂�𝑡(𝑙) = 𝑏

(𝑡)
0 + 𝑏

(𝑡)
1 𝜙

𝑙 will now contain the additional
deterministic linear trend term 𝜇𝑤𝑙, where 𝜇𝑤 = 𝜃0∕(1 − 𝜙), similar to the result in the
example for the ARIMA(1, 1, 0) model in (5.4.17). Note that in the special case of a
stationary process 𝑧𝑡, with 𝑑 = 0, the additional deterministic term in (5.3.3) reduces to the
mean of the process 𝑧𝑡, 𝜇 = 𝐸[𝑧𝑡].

APPENDIX A5.1 CORRELATION BETWEEN FORECAST ERRORS

A5.1.1 Autocorrelation Function of Forecast Errors at Different Origins

Although it is true that for an optimal forecast the forecast errors for lead time 1 will be
uncorrelated, this will not generally be true of forecasts at longer lead times. Consider
forecasts for lead times 𝑙, made at origins 𝑡 and 𝑡 − 𝑗, respectively, where 𝑗 is a positive
integer. Then, if 𝑗 = 𝑙, 𝑙 + 1, 𝑙 + 2,…, the forecast errors will contain no common compo-
nent, but for 𝑗 = 1, 2,… , 𝑙 − 1, certain of the 𝑎’s will be included in both forecast errors.
Specifically,

𝑒𝑡(𝑙) = 𝑧𝑡+𝑙 − �̂�𝑡(𝑙) = 𝑎𝑡+𝑙 + 𝜓1𝑎𝑡+𝑙−1 +⋯ + 𝜓𝑙−1𝑎𝑡+1
𝑒𝑡−𝑗(𝑙) = 𝑧𝑡−𝑗+𝑙 − �̂�𝑡−𝑗 (𝑙) = 𝑎𝑡−𝑗+𝑙 + 𝜓1𝑎𝑡−𝑗+𝑙−1 +⋯ + 𝜓𝑙−1𝑎𝑡−𝑗+1
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TABLE A5.1 Autocorrelations of Forecast Errors at Lead 6 for Series C

𝑗 0 1 2 3 4 5 6

𝜌[𝑒𝑡(6), 𝑒𝑡−𝑗(6)] 1.00 0.81 0.61 0.41 0.23 0.08 0.00

and for 𝑗 < 𝑙, the lag j autocovariance of the forecast errors for lead time 𝑙 is

𝐸[𝑒𝑡(𝑙)𝑒𝑡−𝑗(𝑙)] = 𝜎2
𝑎

𝑙−1∑
𝑖=𝑗

𝜓𝑖𝜓𝑖−𝑗 (A5.1.1)

where 𝜓0 = 1. The corresponding autocorrelations are

𝜌[𝑒𝑡(𝑙), 𝑒𝑡−𝑗(𝑙)] =
⎧⎪⎨⎪⎩

∑𝑙−1
𝑖=𝑗 𝜓𝑖𝜓𝑖−𝑗∑𝑙−1
𝑖=0 𝜓

2
𝑖

0 ≤ 𝑗 ≤ 𝑙

0 𝑗 ≥ 𝑙

(A5.1.2)

We show in Chapter 7 that Series C of Figure 4.1 is well fitted by the (1, 1, 0) model
(1 − 0.8𝐵)∇𝑧𝑡 = 𝑎𝑡. To illustrate (A5.1.2), we calculate the autocorrelation function of the
forecast errors at lead time 6 for this model. It follows from Section 5.2.1 that the𝜓 weights
𝜓1, 𝜓2,… , 𝜓5 for this model are 1.80, 2.44. 2.95, 3.36, and 3.69, respectively. Thus, for
example, the lag 1 autocovariance is

𝐸[𝑒𝑡(6)𝑒𝑡−1(6)] = 𝜎2
𝑎
[(1.80 × 1.00) + (2.44 × 1.80) +⋯ + (3.69 × 3.36)]

= 35.70𝜎2
𝑎

On dividing by 𝐸[𝑒2
𝑡
(6)] = 43.86𝜎2

𝑎
, we obtain 𝜌[𝑒𝑡(6), 𝑒𝑡−1(6)] = 0.81. The first six au-

tocorrelations are shown in Table A5.1 and plotted in Figure A5.l(a). As expected, the
autocorrelations beyond the fifth are zero.

A5.1.2 Correlation Between Forecast Errors at the Same Origin with Different
Lead Times

Suppose that we make a series of forecasts for different lead times from the same fixed
origin 𝑡. Then, the errors for these forecasts will be correlated. We have for 𝑗 = 1, 2, 3,…,

𝑒𝑡(𝑙) = 𝑧𝑡+1 − �̂�𝑡(𝑙) = 𝑎𝑡+𝑙 + 𝜓1𝑎𝑡+𝑙−1 +⋯ + 𝜓𝑙−1𝑎𝑡+1
𝑒𝑡(𝑙 + 𝑗) = 𝑧𝑡+𝑙+𝑗 − �̂�𝑡(𝑙 + 𝑗) = 𝑎𝑡+𝑙+𝑗 + 𝜓1𝑎𝑡+𝑙+𝑗−1 +⋯ + 𝜓𝑗−1𝑎𝑡+𝑙+1

+ 𝜓𝑗𝑎𝑡+𝑙 + 𝜓𝑗+1𝑎𝑡+𝑙−1 +⋯ + 𝜓𝑙+𝑗−1𝑎𝑡+1

so that the covariance between the 𝑡-origin forecast errors at lead times 𝑙 and 𝑙 + 𝑗 is
𝜎2
𝑎

∑𝑙−1
𝑖=0 𝜓𝑖𝜓𝑖+𝑗 , where 𝜓0 = 1.

Thus, the correlation coefficient between the 𝑡-origin forecast errors at lead times 𝑙 and
𝑙 + 𝑗 is

𝜌[𝑒𝑡(𝑙), 𝑒𝑡(𝑙 + 𝑗)] =
∑𝑙−1

𝑖=0 𝜓𝑖𝜓𝑖+𝑗(∑𝑙−1
ℎ=0 𝜓

2
ℎ

∑𝑙+𝑗−1
𝑔=0 𝜓2

𝑔

)1∕2 (A5.1.3)
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FIGURE A5.1 Correlations between various forecast errors for Series C. (a) Autocorrelations of
forecast errors for Series C from different origins at lead time 𝑙 = 6 (b) Correlations between forecast
errors for Series C from the same origin at lead time 3 and lead time 𝑗.

To illustrate (A5.1.3), we compute, for forecasts made from the same origin, the cor-
relation between the forecast error at lead time 3 and the forecast errors at lead times
𝑗 = 1, 2, 3, 4,… , 16 for Series C. For example, using (A5.1.3) and the 𝜓 weights given in
Section 5.2.2,

𝐸[𝑒𝑡(3)𝑒𝑡(5)] = 𝜎2
𝑎

2∑
𝑖=0

𝜓𝑖𝜓𝑖+2 = 𝜎2
𝑎
[𝜓0𝜓2 + 𝜓1𝜓3 + 𝜓2𝜓4]

= 𝜎2
𝑎
[(1.00 × 2.44) + (1.80 × 2.95) + (2.44 × 3.36)]

= 15.94𝜎2
𝑎

The correlations for lead times 𝑗 = 1, 2,… , 16 are shown in Table A5.2 and plotted in
Figure A5.1(b). As is to be expected, forecasts made from the same origin at different lead
times are highly correlated.

APPENDIX A5.2 FORECAST WEIGHTS FOR ANY LEAD TIME

In this appendix we consider an alternative procedure for calculating the forecast weights
𝜋
(𝑙)
𝑗

applied to previous 𝑧’s for any lead time 𝑙. To derive this result, we make use of the
identity (3.1.7), namely,

(1 + 𝜓1𝐵 + 𝜓2𝐵
2 +⋯)(1 − 𝜋1𝐵 − 𝜋2𝐵

2 −⋯) = 1

from which the 𝜋 weights may be obtained in terms of the 𝜓 weights, and vice versa.
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TABLE A5.2 Correlation Between Forecast Errors at Lead 3
and at Lead jMade from a Fixed Origin for Series C

𝑗 𝜌[𝑒
𝑡
(3), 𝑒

𝑡
(𝑗)] 𝑗 𝜌[𝑒

𝑡
(3), 𝑒

𝑡
(𝑗)]

1 0.76 9 0.71
2 0.94 10 0.67
3 1.00 11 0.63
4 0.96 12 0.60
5 0.91 13 0.57
6 0.85 14 0.54
7 0.80 15 0.52
8 0.75 16 0.50

On equating coefficients, we find, for 𝑗 ≥ 1,

𝜓𝑗 =
𝑗∑
𝑖=1

𝜋𝑖𝜓𝑗−𝑖 (𝜓0 = 1) (A5.2.1)

Thus, for example,

𝜓1 = 𝜋1 𝜋1 = 𝜓1
𝜓2 = 𝜋1𝜓1 + 𝜋2 𝜋2 = 𝜓2 − 𝜓1𝜋1
𝜓3 = 𝜋1𝜓2 + 𝜋2𝜓1 + 𝜋3 𝜋3 = 𝜓3 − 𝜓1𝜋2 − 𝜓2𝜋1

Now from (5.3.6),

�̂�𝑡(𝑙) = 𝜋1�̂�𝑡(𝑙 − 1) + 𝜋2�̂�𝑡(𝑙 − 2) +⋯ + 𝜋𝑙−1�̂�𝑡(1) + 𝜋𝑙𝑧𝑡 + 𝜋𝑙+1𝑧𝑡−1 +⋯ (A5.2.2)

Since each of the forecasts in (A5.2.1) is itself a function of the observations
𝑧𝑡, 𝑧𝑡−1, 𝑧𝑡−2,…, we can write

�̂�𝑡(𝑙) = 𝜋
(𝑙)
1 𝑧𝑡 + 𝜋

(𝑙)
2 𝑧𝑡−1 + 𝜋

(𝑙)
3 𝑧𝑡−2 +⋯

where the lead 𝑙 forecast weights may be calculated from the lead 1 forecast weights
𝜋𝑙
𝑗
= 𝜋𝑗 . We now show that the weights 𝜋(𝑙)

𝑗
can be obtained using the identity

𝜋
(𝑙)
𝑗

=
𝑙∑

𝑖=1
𝜓𝑙−𝑖𝜋𝑖+𝑗−1 = 𝜋𝑗+𝑙−1 + 𝜓1𝜋𝑗+𝑙−2 +⋯ + 𝜓𝑙−1𝜋𝑗 (A5.2.3)

For example, the weights for the forecast at lead time 3 are

𝜋
(3)
1 = 𝜋3 + 𝜓1𝜋2 + 𝜓2𝜋1

𝜋
(3)
2 = 𝜋4 + 𝜓1𝜋3 + 𝜓2𝜋2

𝜋
(3)
3 = 𝜋5 + 𝜓1𝜋4 + 𝜓2𝜋3
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and so on. To derive (A5.2.3), we write

�̂�𝑡(𝑙) = 𝜓𝑙𝑎𝑡 + 𝜓𝑙+1𝑎𝑡−1 +⋯

�̂�𝑡+𝑙−1(𝑙) = 𝜓1𝑎𝑡+𝑙−1 +⋯ + 𝜓𝑙𝑎𝑡 + 𝜓𝑙+1𝑎𝑡−1 +⋯

On subtraction, we obtain

�̂�𝑡(𝑙) = �̂�𝑡+𝑙−1(1) − 𝜓1𝑎𝑡+𝑙−1 − 𝜓2𝑎𝑡+𝑙−2 −⋯ − 𝜓𝑙−1𝑎𝑡+1

Hence,

�̂�𝑡(𝑙) =𝜋1𝑧𝑡+𝑙−1 + 𝜋2𝑧𝑡+𝑙−2 +⋯ + 𝜋𝑙−1𝑧𝑡+1 + 𝜋𝑙𝑧𝑡 + 𝜋𝑙+1𝑧𝑡−1 +⋯

+ 𝜓1(−𝑧𝑡+𝑙−1 + 𝜋1𝑧𝑡+𝑙−2 +⋯ + 𝜋𝑙−2𝑧𝑡+1 + 𝜋𝑙−1𝑧𝑡 + 𝜋𝑙𝑧𝑡−1 +⋯)
+ 𝜓2(−𝑧𝑡+𝑙−2 + 𝜋1𝑧𝑡+𝑙−3 +⋯ + 𝜋𝑙−3𝑧𝑡+1 + 𝜋𝑙−2𝑧𝑡 + 𝜋𝑙−1𝑧𝑡−1 +⋯)
+⋯

+ 𝜓𝑙−1(−𝑧𝑡+1 + 𝜋1𝑧𝑡 + 𝜋2𝑧𝑡−1 +⋯)

Using the relation (A5.2.1), each one of the coefficients of 𝑧𝑡+𝑙−1,… , 𝑧𝑡+1 is seen to
vanish, as they should, and on collecting terms, we obtain the required result (A5.2.3).
Alternatively, we may use the formula in the recursive form

𝜋
(𝑙)
𝑗

= 𝜋
(𝑙−1)
𝑗+1 + 𝜓𝑙−1𝜋𝑗 (A5.2.4)

Using the model∇2𝑧𝑡 = (1 − 0.9𝐵 + 0.5𝐵2)𝑎𝑡 for illustration, we calculate the weights for
lead time 2. Equation (A5.2.4) gives

𝜋
(2)
𝑗

= 𝜋𝑗+1 + 𝜓1𝜋𝑗

and using the weights in Table 5.2, with 𝜓1 = 1.1 we have, for example,

𝜋
(2)
1 = 𝜋2 + 𝜓1𝜋1 = 0.490 + (1.1)(1.1) = 1.700

𝜋
(2)
2 = 𝜋3 + 𝜓1𝜋2 = −0.109 + (1.1)(0.49) = 0.430

and so on. The first 12 weights have been given in Table 5.2.

APPENDIX A5.3 FORECASTING IN TERMS OF THE GENERAL
INTEGRATED FORM

A5.3.1 General Method of Obtaining the Integrated Form

We emphasize once more that for practical computation of the forecasts, the difference
equation procedure is by far the simplest. The following general treatment of the integrated
form is given only to elaborate further on the forecasts obtained. In this treatment, rather
than solving explicitly for the forecast function as we did in the examples given in Section
5.4, it will be appropriate to write down the general form of the eventual forecast function
involving 𝑝 + 𝑑 adaptive coefficients. We then show how the eventual forecast function
needs to be modified to deal with the first 𝑞 − 𝑝 − 𝑑 forecasts if 𝑞 > 𝑝 + 𝑑. Finally, we
show how to update the adaptive coefficients from origin 𝑡 to origin 𝑡 + 1.
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If it is understood that �̂�𝑡(−𝑗) = 𝑧𝑡−𝑗 for 𝑗 = 0, 1, 2,…, then using the conditional ex-
pectation argument of Section 5.1.1, the forecasts satisfy the difference equation:

�̂�𝑡(1) − 𝜑1�̂�𝑡(0) −⋯ − 𝜑𝑝+𝑑 �̂�𝑡(1 − 𝑝 − 𝑑) = −𝜃1𝑎𝑡 −⋯ − 𝜃𝑞𝑎𝑡−𝑞+1

�̂�𝑡(2) − 𝜑1�̂�𝑡(1) −⋯ − 𝜑𝑝+𝑑 �̂�𝑡(2 − 𝑝 − 𝑑) = −𝜃2𝑎𝑡 −⋯ − 𝜃𝑞𝑎𝑡−𝑞+2

⋮ (A5.3.1)

�̂�𝑡(𝑞) − 𝜑1�̂�𝑡(𝑞 − 1) −⋯ − 𝜑𝑝+𝑑 �̂�𝑡(𝑞 − 𝑝 − 𝑑) = −𝜃𝑞𝑎𝑡
�̂�𝑡(𝑙) − 𝜑1�̂�𝑡(𝑙 − 1) −⋯ − 𝜑𝑝+𝑑�̂�𝑡(𝑙 − 𝑝 − 𝑑) = 0 𝑙 > 𝑞

The eventual forecast function is the solution of the last equation and may be written as

�̂�𝑡(𝑙) = 𝑏
(𝑡)
0 𝑓0(𝑙) + 𝑏

(𝑡)
1 𝑓1(𝑙) +⋯ + 𝑏

(𝑡)
𝑝+𝑑−1𝑓𝑝+𝑑−1(𝑙) =

𝑝+𝑑−1∑
𝑖=0

𝑏
(𝑡)
𝑖
𝑓𝑖(𝑙)

𝑙 > 𝑞 − 𝑝 − 𝑑 (A5.3.2)

When 𝑞 is less than or equal to 𝑝 + 𝑑, the eventual forecast function will provide forecasts
�̂�𝑡(1), �̂�𝑡(2), �̂�𝑡(3),… for all lead times 𝑙 ≥ 1.

As an example of such a model with 𝑞 ≤ 𝑝 + 𝑑, suppose that

(1 − 𝐵)(1 −
√
3𝐵 + 𝐵2)2𝑧𝑡 = (1 − 0.5𝐵)𝑎𝑡

so that 𝑝 + 𝑑 = 5 and 𝑞 = 1. Then,

(1 − 𝐵)(1 −
√
3𝐵 + 𝐵2)2�̂�𝑡(𝑙) = 0 𝑙 = 2, 3, 4,…

where 𝐵 now operates on 𝑙 and not on 𝑡. Solution of this difference equation yields the
forecast function

�̂�𝑡(𝑙) = 𝑏
(𝑡)
0 + 𝑏

(𝑡)
1 cos

(2𝜋𝑙
12

)
+ 𝑏

(𝑡)
2 𝑙 cos

(2𝜋𝑙
12

)

+ 𝑏
(𝑡)
3 sin

(2𝜋𝑙
12

)
+ 𝑏

(𝑡)
4 𝑙 sin

(2𝜋𝑙
12

)
𝑙 = 1, 2,…

If 𝑞 is greater than 𝑝 + 𝑑, then for lead times 𝑙 ≤ 𝑞 − 𝑝 − 𝑑, the forecast function will have
additional terms containing 𝑎𝑡−𝑖’s. Thus,

�̂�𝑡(𝑙) =
𝑝+𝑑−1∑
𝑖=0

𝑏
(𝑡)
𝑖
𝑓𝑖(𝑙) +

𝑗∑
𝑖=0

𝑑𝑙𝑖𝑎𝑡−𝑖 𝑙 ≤ 𝑞 − 𝑝 − 𝑑 (A5.3.3)

where 𝑗 = 𝑞 − 𝑝 − 𝑑 − 𝑙 and the 𝑑’s may be obtained explicitly by substituting (A5.3.3) in
(A5.3.1). For example, consider the stochastic model

∇2𝑧𝑡 = (1 − 0.8𝐵 + 0.5𝐵2 − 0.4𝐵3 + 0.1𝐵4)𝑎𝑡

in which 𝑝 + 𝑑 = 2, 𝑞 = 4, 𝑞 − 𝑝 − 𝑑 = 2 and 𝜑1 = 2, 𝜑2 = −1, 𝜃1 = 0.8, 𝜃2 = −0.5, 𝜃3 =
0.4, and 𝜃4 = −0.1. Using the recurrence relation (5.2.3), we obtain 𝜓1 = 1.2, 𝜓2 = 1.9,
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𝜓3 = 2.2, and 𝜓4 = 2.6. Now, from (A5.3.3),

�̂�𝑡(1) = 𝑏
(𝑡)
0 + 𝑏

(𝑡)
1 + 𝑑10𝑎𝑡 + 𝑑11𝑎𝑡−1

�̂�𝑡(2) = 𝑏
(𝑡)
0 + 2𝑏(𝑡)1 + 𝑑20𝑎𝑡

�̂�𝑡(𝑙) = 𝑏
(𝑡)
0 + 𝑏

(𝑡)
1 𝑙 𝑙 > 2

(A5.3.4)

Using (A5.3.1) gives

�̂�𝑡(4) − 2�̂�𝑡(3) + �̂�𝑡(2) = 0.1𝑎𝑡

so that from (A5.3.4)

𝑑20𝑎𝑡 = 0.1𝑎𝑡

and hence 𝑑20 = 0.1. Similarly, from (A5.3.1),

�̂�𝑡(3) − 2�̂�𝑡(2) + �̂�𝑡(𝑙) = −0.4𝑎𝑡 + 0.1𝑎𝑡−1

and hence using (A5.3.4),

−0.2𝑎𝑡 + 𝑑10𝑎𝑡 + 𝑑11𝑎𝑡−1 = −0.4𝑎𝑡 + 0.1𝑎𝑡−1

yielding

𝑑10 = −0.2 𝑑11 = 0.1

Hence, the forecast function is

�̂�𝑡(1) = 𝑏
(𝑡)
0 + 𝑏

(𝑡)
1 − 0.2𝑎𝑡 + 0.1𝑎𝑡−1

�̂�𝑡(2) = 𝑏
(𝑡)
0 + 2𝑏(𝑡)1 + 0.1𝑎𝑡

�̂�𝑡(𝑙) = 𝑏
(𝑡)
0 + 𝑏

(𝑡)
1 𝑙 𝑙 > 2

A5.3.2 Updating the General Integrated Form

Updating formulas for the coefficients may be obtained using the identity (5.2.5) with 𝑡 + 1
replaced by 𝑡:

�̂�𝑡(𝑙) = �̂�𝑡−1(𝑙 + 1) + 𝜓𝑙𝑎𝑡

Then, for 𝑙 > 𝑞 − 𝑝 − 𝑑,

𝑝+𝑑−1∑
𝑖=0

𝑏
(𝑡)
𝑖
𝑓𝑖(𝑙) =

𝑝+𝑑−1∑
𝑖=0

𝑏
(𝑡−1)
𝑖

𝑓𝑖(𝑙 + 1) + 𝜓𝑙𝑎𝑡 (A5.3.5)

By solving 𝑝 + 𝑑 such equations for different values of 𝑙, we obtain the required updating
formula for the individual coefficients, in the form

𝑏
(𝑡)
𝑖

=
𝑝+𝑑−1∑
𝑗=0

𝐿𝑖𝑗𝑏
(𝑡−1)
𝑗

+ 𝑔𝑖𝑎𝑡
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Note that the updating of each of the coefficients of the forecast function depends only on
the lead 1 forecast error 𝑎𝑡 = 𝑧𝑡 − �̂�𝑡−1(1).

A5.3.3 Comparison with the Discounted Least-Squares Method

Although to work with the integrated form is an unnecessarily complicated way of comput-
ing forecasts, it allows us to compare the present mean square error forecast with another
type of forecast that has received considerable attention. Let us write

𝐅𝑙 =

⎡⎢⎢⎢⎢⎢⎣

𝑓0(𝑙) 𝑓1(𝑙) ⋯ 𝑓𝑝+𝑑−1(𝑙)
𝑓0(𝑙 + 1) 𝑓1(𝑙 + 1) ⋯ 𝑓𝑝+𝑑−1(𝑙 + 1)
⋮ ⋮ ⋯ ⋮

𝑓0(𝑙 + 𝑝 + 𝑑 − 1) 𝑓1(𝑙 + 𝑝 + 𝑑 − 1) ⋯ 𝑓𝑝+𝑑−1(𝑙 + 𝑝 + 𝑑 − 1)

⎤⎥⎥⎥⎥⎥⎦

𝐛(𝑡) =

⎡⎢⎢⎢⎢⎢⎣

𝑏
(𝑡)
0

𝑏
(𝑡)
1
⋮

𝑏
(𝑡)
𝑝+𝑑−1

⎤⎥⎥⎥⎥⎥⎦

𝝍 𝑙 =

⎡⎢⎢⎢⎢⎣

𝜓𝑙

𝜓𝑙+1
⋮

𝜓𝑙+𝑝+𝑑−1

⎤⎥⎥⎥⎥⎦
Then, using (A5.3.5) for 𝑙, 𝑙 + 1,… , 𝑙 + 𝑝 + 𝑑 + −1, we obtain for 𝑙 > 𝑞 − 𝑝 − 𝑑,

𝐅𝑙𝐛(𝑡) = 𝐅𝑙+1𝐛𝑡−1 + 𝝍 𝑙𝑎𝑡

yielding

𝐛(𝑡) = (𝐅−1
𝑙
𝐅𝑙+1)𝐛(𝑡−1) + (𝐅−1

𝑙
𝝍 𝑙)𝑎𝑡

or

𝐛(𝑡) = 𝐋′𝐛(𝑡−1) + 𝐠𝑎𝑡 (A5.3.6)

Equation (A5.3.6) is of the same algebraic form as the updating function given by the
‘‘discounted least-squares’’ procedure of Brown (1962) and Brown and Meyer (1961).
For comparison, if we denote the forecast error given by that method by 𝑒𝑡, then Brown’s
updating formula may be written as

𝜷
(𝑡) = L′

𝜷
(𝑡−1) + 𝐡𝑒𝑡 (A5.3.7)

where 𝜷(𝑡) is his vector of adaptive coefficients. The same matrixL appears in (A5.3.6) and
(A5.3.7). This is inevitable, for this first factor merely allows for changes in the coefficients
arising from translation to the new origin and would have to occur in any such formula.
For example, consider the straight line forecast function:

�̂�𝑡−1(𝑙) = 𝑏
(𝑡−1)
0 + 𝑏

(𝑡−1)
𝑙

𝑙

where 𝑏(𝑡−1)0 is the ordinate at time 𝑡 − 1, the origin of the forecast. This can equally well
be written as

�̂�𝑡−1(𝑙) = (𝑏(𝑡−1)0 + 𝑏
(𝑡−1)
1 ) + 𝑏

(𝑡−1)
1 (𝑙 − 1)
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where now (𝑏(𝑡−1)0 + 𝑏
(𝑡−1)
1 ) is the ordinate at time 𝑡. Obviously, if we update the forecast to

origin 𝑡, the coefficient 𝑏0 must be suitably adjusted even if the forecast function were to
remain unchanged.

In general, the matrix L does not change the forecast function, it merely relocates it.
The actual updating is done by the vector of coefficients g and h. We will see that the
coefficients g, which yield the minimum mean square error forecasts, and the coefficients
h given by Brown are in general completely different.

Brown’s Method of Forecasting.

1. A forecast function is selected from the general class of linear combinations and
products of polynomials, exponentials, and sines and cosines.

2. The selected forecast function is fitted to past values by a ‘‘discounted least-squares’’
procedure. In this procedure, the coefficients are estimated and updated so that the
sum of squares of weighted discrepancies

𝑠𝑤 =
∞∑
𝑗=0

𝜔𝑗[𝑧𝑡−𝑗 − ̂̂𝑧𝑡(−𝑗)]2 (A5.3.8)

between past values of the series and the value given by the forecast function at the
corresponding past time are minimized. The weight function 𝜔𝑗 is chosen arbitrarily
to fall off geometrically, so that 𝜔𝑗 = (1 − 𝛼)𝑗 , where the constant 𝛼, usually called
the smoothing constant, is (again arbitrarily) set equal to a value in the range 0.1--0.3.

Difference between the Minimum Mean Square Error Forecasts and those of Brown.
To illustrate these comments, consider the forecasting of IBM stock prices, discussed by
Brown (1962, p. 141). In this study, he used a quadratic model that would be, in the present
notation,

̂̂𝑧𝑡(𝑙) = 𝛽
(𝑡)
0 + 𝛽

(𝑡)
1 𝑙 + 1

2
𝛽
(𝑡)
2 𝑙2

With this model, he employed his method of discounted least squares to forecast stock
prices 3 days ahead. The results obtained from this method are shown for a section of the
IBM series in Figure A5.2, where they are compared with the minimum mean square error
forecasts.

The discounted least-squares method can be criticized on the following grounds:

1. The nature of the forecast function ought to be decided by the autoregressive operator
𝜑(𝐵) in the stochastic model, and not arbitrarily. In particular, it cannot be safely
chosen by visual inspection of the time series itself. For example, consider the IBM
stock prices plotted in Figure A5.2. It will be seen that a quadratic function might
well be used to fit short pieces of this series to values already available. If such fitting
were relevant to forecasting, we might conclude, as did Brown, that a polynomial
forecast function of degree 2 was indicated. The most general linear process for
which a quadratic function would produce minimum mean square error forecasts at
every lead time 𝑙 = 1, 2,… is defined by the (0, 3, 3)model

∇3𝑧𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵
2 − 𝜃3𝐵

3)𝑎𝑡
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FIGURE A5.2 IBM stock price series with comparison of lead 3 forecasts obtained from best
IMA(0, 1, 1) model and Brown’s quadratic forecast for a period beginning from July 11, 1960.

which, arguing as in Section 4.3.3, can be written as

∇3𝑧𝑡 = ∇3𝑎𝑡 + 𝜆0∇2𝑎𝑡−1 + 𝜆1∇𝑎𝑡−1 + 𝜆2𝑎𝑡−1

However, we show in Chapter 7 that if this model is correctly fitted, the least-
squares estimates of the parameters are 𝜆1 = 𝜆2 = 0 and 𝜆0 ≃ 1.0. Thus, ∇𝑧𝑡 =
(1 − 𝜃𝐵)𝑎𝑡, with 𝜃 = 1 − 𝜆0 close to zero, is the appropriate stochastic model, and
the appropriate forecasting polynomial is �̂�𝑡(𝑙) = 𝛽

(𝑡)
0 , which is of degree 0 in 𝑙 and

not of degree 2.

2. The choice of the weight function 𝜔𝑗 in (A5.3.8) must correspondingly be decided
by the stochastic model, and not arbitrarily. The use of the discounted least-squares
fitting procedure would produce minimum mean square error forecasts in the very
restricted case, where

a. the process was of order (0, 1, 1), so ∇𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡,
b. a polynomial of degree 0 was fitted, and

c. the smoothing constant 𝛼 was set equal to our 𝜆 = 1 − 𝜃.

In the present example, even if the correct polynomial model of degree 0 had been
chosen, the value 𝛼 = 𝜆 = 0.1, actually used by Brown, would have been quite
inappropriate. The correct value 𝜆 for this series is close to unity.

3. The exponentially discounted weighted least-squares procedure forces all the 𝑝 + 𝑑

coefficients in the updating vectorh to be functions of the single smoothing parameter
𝛼. In fact, they should be functions of the 𝑝 + 𝑞 independent parameters (𝝓, 𝜽).

Thus, the differences between the two methods are not trivial, and it is interesting to
compare their performances on the IBM data. The minimum mean square error forecast is
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TABLE A5.3 Comparison of Mean Square Error of Forecasts Obtained at Various Lead
Times Using Best IMA(𝟎, 𝟏, 𝟏) Model and Brown’s Quadratic Forecasts

Lead Time 𝑙

1 2 3 4 5 6 7 8 9 10

MSE (Brown) 102 158 218 256 363 452 554 669 799 944
MSE (𝜆 = 0.9) 42 91 136 180 282 266 317 371 427 483

�̂�𝑡(𝑙) = 𝑏0(𝑡), with updating 𝑏(𝑡)0 = 𝑏
(𝑡−1)
0 + 𝜆𝑎𝑡, where 𝜆 ≃ 1.0. If 𝜆 is taken to be exactly

equal to unity, this is equivalent to using

�̂�𝑡(𝑙) = 𝑧𝑡

which implies that the best forecast of the stock price for all future time is the present
price.1 The suggestion that stock prices behave in this way is, of course, not new and goes
back to Bachelier (1900). Since 𝑧𝑡 = 𝑆𝑎𝑡 when 𝜆 = 1, this implies that 𝑧𝑡 is a randomwalk.

To compare the minimummean square error forecast with Brown’s quadratic forecasts,
a direct comparison was made using the IBM stock price series from July 11, 1960 to
February 10, 1961, for 150 observations. For this stretch of the series, the minimum MSE
forecast is obtained using the model ∇𝑧𝑡 = 𝑎𝑡 − 𝜃𝑎𝑡−1, with 𝜃 = 0.1, or 𝜆 = 1 − 𝜃 = 0.9.
Figure A5.2 shows the minimum MSE forecasts for lead time 3 and the corresponding
values of Brown’s quadratic forecasts. It is seen that the minimum MSE forecasts, which
are virtually equivalent to using today’s price to predict that 3 days ahead, are considerably
better than those obtained using Brown’s more complicated procedure.

The mean square errors for the forecast at various lead times, computed by direct
comparison of the value of the series and their lead 𝑙 forecasts, are shown in Table A5.3
for the two types of forecasts. It is seen that Brown’s quadratic forecasts have mean square
errors that are much larger than those obtained by the minimummean square error method.

EXERCISES

5.1. For the models

(1) �̃�𝑡 − 0.5�̃�𝑡−1 = 𝑎𝑡

(2) ∇𝑧𝑡 = 𝑎𝑡 − 0.5𝑎𝑡−1
(3) (1 − 0.6𝐵)∇𝑧𝑡 = 𝑎𝑡

write down the forecasts for lead times 𝑙 = 1 and 𝑙 = 2:
(a) From the difference equation

(b) In integrated form (using the 𝜓𝑗 weights)

(c) As a weighted average of previous observations

1This result is approximately true supposing that no relevant information except past values of the series itself is
available and that fairly short forecasting periods are being considered. For longer periods, growth and inflationary
factors would become important.
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5.2. The following observations represent values 𝑧91, 𝑧92,… , 𝑧100 from a series fitted by
the model ∇𝑧𝑡 = 𝑎𝑡 − 1.1𝑎𝑡−1 + 0.28𝑎𝑡−2:

166, 172, 172, 169, 164, 168, 171, 167, 168, 172

(a) Generate the forecasts �̂�100(𝑙) for 𝑙 = 1, 2,… , 12 and draw a graph of the series
values and the forecasts (assume 𝑎90 = 0, 𝑎91 = 0).

(b) With �̂�2
𝑎
= 1.103, calculate the estimated standard deviations �̂�(𝑙) of the forecast

errors and use them to calculate 80% probability limits for the forecasts. Insert
these probability limits on the graph, on either side of the forecasts.

5.3. Suppose that the data of Exercise 5.2 represent monthly sales.

(a) Calculate the minimum mean square error forecasts for quarterly sales for 1, 2,
3, 4 quarters ahead, using the data up to 𝑡 = 100.

(b) Calculate 80% probability limits for these forecasts.

5.4. Using the data and forecasts of Exercise 5.2, and given the further observation
𝑧101 = 174:
(a) Calculate the forecasts �̂�101(𝑙) for 𝑙 = 1, 2,… , 11 using the updating formula

�̂�𝑡+1(𝑙) = �̂�𝑡(𝑙 + 1) + 𝜓𝑙𝑎𝑡+1

(b) Verify these forecasts using the difference equation directly.

5.5. For the model ∇𝑧𝑡 = 𝑎𝑡 − 1.1𝑎𝑡−1 + 0.28𝑎𝑡−2 of Exercise 5.2:
(a) Write down expressions for the forecast errors 𝑒𝑡(1), 𝑒𝑡(2),… , 𝑒𝑡(6), from the

same origin 𝑡.

(b) Calculate and plot the autocorrelations of the series of forecast errors 𝑒𝑡(3).
(c) Calculate and plot the correlations between the forecast errors 𝑒𝑡(2) and 𝑒𝑡(𝑗) for

𝑗 = 1, 2,… , 6.

5.6. Let the vector 𝒆′ = (𝑒1, 𝑒2,… , 𝑒𝐿) have for its elements the forecast errors made
1, 2,… , 𝐿 steps ahead, all from the same origin 𝑡. Then if 𝒂′ = (𝑎𝑡+1, 𝑎𝑡+2,… , 𝑎𝑡+𝐿)
are the corresponding uncorrelated random shocks, show that

𝒆 = 𝐌𝒂 where 𝐌 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 ⋯ 0
𝜓1 1 0 ⋯ 0
𝜓2 𝜓1 1 ⋯ 0
⋮ ⋮ ⋮ ⋯ ⋮

𝜓𝐿−1 𝜓𝐿−2 𝜓𝐿−3 ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎦
Also, show that (e.g., Box and Tiao, 1976; Tiao et al., 1975)𝚺𝑒, the covariancematrix
of the 𝑒’s, is 𝚺𝑒 = 𝜎2

𝑎
𝐌𝐌′ and hence that a test to determine if a set of subsequently

realized values 𝑧𝑡+1, 𝑧𝑡+2,… , 𝑧𝑡+𝐿 of the series taken jointly differ significantly from
the forecasts made at the origin 𝑡 is obtained by referring

𝒆
′𝚺−1
𝒆
𝒆 = 𝒆

′(𝐌𝐌′)−1𝒆
𝜎2
𝑎

= 𝒂
′
𝒂

𝜎2
𝑎

= 1
𝜎2
𝑎

𝐿∑
𝑗=1

𝑎2
𝑡+𝑗
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to a chi-square distribution with 𝐿 degrees of freedom. Note that 𝑎𝑡+𝑗 is the one-step-
ahead forecast error calculated from 𝑧𝑡+𝑗 − �̂�𝑡+𝑗−1(1).

5.7. Suppose that a quarterly economic time series is well represented by the model

∇𝑧𝑡 = 0.5 + (1 − 1.0𝐵 + 0.5𝐵2)𝑎𝑡

with 𝜎2
𝑎
= 0.04.

(a) Given 𝑧48 = 130, 𝑎47 = −0.3, 𝑎48 = 0.2, calculate and plot the forecasts �̂�48(𝑙)
for 𝑙 = 1, 2,… , 12.

(b) Calculate and insert the 80% probability limits on the graph.

(c) Express the series and forecasts in integrated form.

5.8. Consider the annual Wölfer sunspot numbers for the period 1770--1869 listed as
Series E in Part Five of this text. The same series is available for the longer period
1700--1988 as "sunspot.year" in the datasets package of R. You can use either
data set. Suppose that the series can be represented by an autoregressive model of
order 3.

(a) Plot the time series and comment. Does the series look stationary?

(b) Generate forecasts and associated probability limits for up to 20 time periods
ahead for the series.

(c) Perform a square root transformation of the data and repeat (a) and (b) above.

(d) Use the function BoxCox.ar() in the TSA package of R to show that the square
root transformation is appropriate for this series; see help(BoxCox.ar) for details.
(Note: Adding a small amount, for example, 1/2, to the series, eliminates zero
values and allows the program to consider a log transformation as an option).

5.9. A time series representing a global mean land--ocean temperature index from 1880
to 2009 is available in a file called ‘‘gtemp’’ in the astsa package of R. The data are
temperature deviations, measured in degree centigrades, from the 1951--1980 average
temperature, as described by Shumway and Stoffer (2011, p. 5). Assume that a third-
order autoregressive model is appropriate for the first differences𝑤𝑡 = (1 − 𝐵)𝑧𝑡 of
this series.

(a) Plot the time series 𝑧𝑡 and the differenced series 𝑤𝑡 using R.

(b) Generate forecasts and associated probability limits for up to 20 time periods
ahead for this series using the function sarima.for()without including a constant
term in the model.

(c) Generate the same forecasts and probability limits as in part (b) but with a
constant term now added to the model. Discuss your findings and comment on
the implications of including a constant in this case.

5.10. For the model (1 − 0.6𝐵)(1 − 𝐵)𝑧𝑡 = (1 + 0.3𝐵)𝑎𝑡, express explicitly in the state-
space form of (5.5.2) and (5.5.3), and write out precisely the recursive relations of
the Kalman filter for this model. Indicate how the (exact) forecasts �̂�𝑡+𝑙|𝑡 and their
forecast error variances 𝑣𝑡+𝑙|𝑡 are determined from these recursions.
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PART TWO

STOCHASTIC MODEL BUILDING

We have seen that an ARIMA model of order (𝑝, 𝑑, 𝑞) provides a class of models capable
of representing time series that, although not necessarily stationary, are homogeneous and
in statistical equilibrium in many respects.

The ARIMA model is defined by the equation

𝜙(𝐵)(1 − 𝐵)𝑑𝑧𝑡 = 𝜃0 + 𝜃(𝐵)𝑎𝑡

where 𝜙(𝐵) and 𝜃(𝐵) are operators in 𝐵 of degree 𝑝 and 𝑞, respectively, whose zeros lie
outside the unit circle. We have noted that the model is very general, including as spe-
cial cases autoregressive models, moving average models, mixed autoregressive--moving
average models, and the integrated forms of all three.

Iterative Approach toModel Building. The development of amodel of this kind to describe
the dependence structure in an observed time series is usually best achieved by a three-stage
iterative procedure based on identification, estimation, and diagnostic checking.

1. By identification we mean the use of the data, and of any information on how the
series was generated, to suggest a subclass of parsimonious models worthy to be
entertained.

2. By estimation we mean efficient use of the data to make inferences about the param-
eters conditional on the adequacy of the model entertained.

3. By diagnostic checking we mean checking the fitted model in its relation to the data
with intent to reveal model inadequacies and so to achieve model improvement.

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
○c 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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In Chapter 6, which follows, we discuss model identification, in Chapter 7 estimation of
parameters, and in Chapter 8 diagnostic checking of the fitted model. In Chapter 9 we
expand on the class of models developed in Chapters 3 and 4 to the seasonal ARIMA
models, and all the model building techniques of the previous chapters are illustrated
by applying them to modeling and forecasting seasonal time series. In Chapter 10 we
consider some additional topics that represent extensions beyond the linear ARIMA class
of models such as conditional heteroscedastic time series models, nonlinear time series
models, and fractionally integrated long memory processes, which allow for certain more
general features in the time series than are possible in the linear ARIMA models. Unit root
testing is also discussed in this chapter.
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6
MODEL IDENTIFICATION

In this chapter, we discuss methods for identifying nonseasonal autoregressive integrated
moving average (ARIMA) time series models. Identificationmethods are rough procedures
applied to a set of data to indicate the kind of model that is worthy of further investigation.
The specific aim here is to obtain some idea of the values of 𝑝, 𝑑, and 𝑞 needed in the
general linear ARIMAmodel and to obtain initial estimates for the parameters. The tentative
model specified provides a starting point for the application of the more formal and efficient
estimation methods described in Chapter 7. The examples used to demonstrate the model-
building process will include Series A--F that have been discussed in earlier chapters and
are listed in the Collection of Time Series in Part Five of this book. The series are also
available electronically at http://pages.stat.wisc.edu/ reinsel/bjr-data/.

6.1 OBJECTIVES OF IDENTIFICATION

It should first be said that identification and estimation necessarily overlap. Thus, we may
estimate the parameters of a model, which is more elaborate than the one we expect to
use, so as to decide at what point simplification is possible. Here we employ the estimation
procedure to carry out part of the identification. It should also be explained that identification
is necessarily inexact. It is inexact because the question of what types of models occur in
practice and in what specific cases depends on the behavior of the physical world and
therefore cannot be decided by purely mathematical argument. Furthermore, because at
the identification stage no precise formulation of the problem is available, statistically
‘‘inefficient’’ methods must necessarily be used. It is a stage at which graphical methods
are particularly useful and judgment must be exercised. However, it should be kept in mind

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
○c 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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that the preliminary identification commits us to nothing except tentative consideration of
a class of models that will later be efficiently fitted and checked.

6.1.1 Stages in the Identification Procedure

Our task, then, is to identify an appropriate subclass of models from the general ARIMA
family

𝜙(𝐵)∇𝑑𝑧𝑡 = 𝜃0 + 𝜃(𝐵)𝑎𝑡 (6.1.1)

which may be used to represent a given time series. Our approach will be as follows:

1. To assess the stationarity of the process 𝑧𝑡 and, if necessary, to difference 𝑧𝑡 as many
times as is needed to produce stationarity, hopefully reducing the process under study
to the mixed autoregressive--moving average process:

𝜙(𝐵)𝑤𝑡 = 𝜃0 + 𝜃(𝐵)𝑎𝑡

where

𝑤𝑡 = (1 − 𝐵)𝑑𝑧𝑡 = ∇𝑑𝑧𝑡

2. To identify the resulting autoregressive--moving average (ARMA) model for𝑤𝑡.

Our principal tools for putting steps 1 and 2 into effect will be the sample autocorrelation
function and the sample partial autocorrelation function. They are used not only to help
guess the form of the model but also to obtain approximate estimates of the parameters.
Such approximations are often useful at the estimation stage to provide starting values for
iterative procedures employed at that stage. Some additionalmodel identification tools may
also be employed and are discussed in Section 6.2.4.

6.2 IDENTIFICATION TECHNIQUES

6.2.1 Use of the Autocorrelation and Partial Autocorrelation Functions in
Identification

Identifying the Degree of Differencing. We have seen in Section 3.4.2 that for a stationary
mixed autoregressive--moving average process of order (𝑝, 0, 𝑞), 𝜙(𝐵)�̃�𝑡 = 𝜃(𝐵)𝑎𝑡, the
autocorrelation function satisfies the difference equation

𝜙(𝐵)𝜌𝑘 = 0, 𝑘 > 𝑞

Also, if 𝜙(𝐵) =
∏𝑝

𝑖=1(1 − 𝐺𝑖𝐵), the solution of this difference equation for the 𝑘th auto-
correlation is, assuming distinct roots, of the form

𝜌𝑘 = 𝐴1𝐺
𝑘
1 + 𝐴2𝐺

𝑘
2 +⋯ + 𝐴𝑝𝐺𝑘𝑝 𝑘 > 𝑞 − 𝑝 (6.2.1)

The stationarity requirement that the zeros of 𝜙(𝐵) lie outside the unit circle implies that
the roots 𝐺1, 𝐺2,… , 𝐺𝑝 lie inside the unit circle.
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This expression shows that in the case of a stationary model in which none of the roots
lie close to the boundary of the unit circle, the autocorrelation function will quickly ‘‘die
out’’ for moderate and large 𝑘. Suppose now that a single real root, say 𝐺1, approaches
unity, so that

𝐺1 = 1 − 𝛿

where 𝛿 is some small positive quantity. Then, since for 𝑘 large

𝜌𝑘 ≃ 𝐴1(1 − 𝑘𝛿)

the autocorrelation function will not die out quickly and will fall off slowly and very nearly
linearly. A similar argument may be applied if more than one of the roots approaches
unity.

Therefore, a tendency for the autocorrelation function not to die out quickly is taken as
an indication that a root close to unity may exist. The estimated autocorrelation function
tends to follow the behavior of the theoretical autocorrelation function. Therefore, failure
of the estimated autocorrelation function to die out rapidly might logically suggest that
we should treat the underlying stochastic process as nonstationary in 𝑧𝑡, but possibly as
stationary in ∇𝑧𝑡, or in some higher difference.

However, even though failure of the estimated autocorrelation function to die out rapidly
suggests nonstationarity, the estimated autocorrelations need not be extremely high even
at low lags. This is illustrated in Appendix A6.1, where the expected behavior of the
estimated autocorrelation function is considered for the nonstationary (0, 1, 1) process
∇𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡. The ratio 𝐸[𝑐𝑘]∕𝐸[𝑐0] of expected values falls off only slowly, but
depends initially on the value of 𝜃 and on the number of observations in the series, and
need not be close to unity if 𝜃 is close to 1. We illustrate this point again in Section 6.3.4
for Series A.

For the reasons given, it is assumed that the degree of differencing 𝑑, necessary to
achieve stationarity, has been reached when the autocorrelation function of𝑤𝑡 = ∇𝑑𝑧𝑡 dies
out fairly quickly. In practice, 𝑑 is normally 0, 1, or 2, and it is usually sufficient to inspect
the first 20 or so estimated autocorrelations of the original series, and of its first and second
differences, if necessary.

Overdifferencing. Once stationarity is achieved, further differencing should be avoided.
Overdifferencing introduces extra serial correlation and increases model complexity. To
illustrate this point, assume that the series 𝑧𝑡 follows a randomwalk so that the differenced
series𝑤𝑡 = (1 − 𝐵)𝑧𝑡 = 𝑎𝑡 is white noise and thus stationary. Further differencing of𝑤𝑡 leads
to (1 − 𝐵)𝑤𝑡 = (1 − 𝐵)𝑎𝑡, which is a MA(1) model for𝑤𝑡 with parameter 𝜃 = 1. Thus, the
resulting model for 𝑧𝑡 would be an ARIMA(0, 2, 1) model instead of the simpler ARIMA(0,
1, 0) model. The model with 𝜃 = 1 is noninvertible and the pure autoregressive representa-
tion does not exit. Noninvertibility also causes problems at the parameter estimation stage
in that approximate maximum likelihood methods tends to produce biased estimates in
this case.

Figure 6.1 shows the autocorrelation and partial autocorrelation functions of a time series
of length 200 generated from a randomwalkmodelwith innovations variance equal to 1. The
first 1000 observations were discarded to eliminate potential start-up effects. The estimated
autocorrelations up to lag 20 of the original series and its first and second differences are
shown in the graph. The autocorrelations of the original series fail to damp out quickly,
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FIGURE 6.1 Estimated autocorrelation and partial autocorrelation functions for a simulated ran-
dom walk process and its first (𝑑 = 1) and second (𝑑 = 2) differences.

indicating a need for differencing. The autocorrelations of 𝑤𝑡 = ∇𝑧𝑡, on the other hand,
are all small, demonstrating that stationarity has now been achieved. The autocorrelation
function of the second differences 𝑤𝑡 = ∇2𝑧𝑡 also indicates stationarity, but it has a spike
at lag 1 showing the extra correlation that has emerged because of overdifferencing. The
value of 𝑟1 is close to −0.5, which is consistent with the lag 1 autocorrelation coefficient
for an MA(1) model with 𝜃 = 1. Figure 6.1 can be reproduced in R as follows:

> RW=arima.sim(list(order=c(0,1,0)),n=200,n.start=1000)
> acf0=acf(RW,20)
> pacf0=pacf(RW,20)
> acf1=acf(diff(RW),20)
> pacf1=pacf(diff(RW),20)
> acf2=acf(diff(diff(RW)),20)
> pacf2=pacf(diff(diff(RW)),20)
> par(mfrow=c(3,2))
> plot(acf0,main=’d=0’)
> plot(pacf0,main=’d=0’)
> plot(acf1,ylim=c(-0.5,0.5),main=’d=1’)
> plot(pacf1,ylim=c(-0.5,0.5),main=’d=1’)
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> plot(acf2,ylim=c(-0.5,0.5),main=’d=2’)
> plot(pacf2,ylim=c(-0.5,0.5),main=’d=2’)

Identifying a Stationary ARMA Model for the Differenced Series. Having tentatively
decided on the degree of differencing 𝑑, we examine the patterns of the estimated autocor-
relation and partial autocorrelation functions of the differenced series, 𝑤𝑡 = (1 − 𝐵)𝑑𝑧𝑡, to
determine a suitable choice for the orders 𝑝 and 𝑞 of the autoregressive and moving average
operators. Here we recall the characteristic behavior of the theoretical autocorrelation and
partial autocorrelation functions for moving average, autoregressive, and mixed processes,
discussed in Chapter 3.

Briefly, whereas the autocorrelation function of an autoregressive process of order
𝑝 tails off, its partial autocorrelation function has a cutoff after lag 𝑝. Conversely, the
autocorrelation function of a moving average process of order 𝑞 has a cutoff after lag 𝑞,
while its partial autocorrelation function tails off. If both the autocorrelations and partial
autocorrelations tail off, a mixed process is suggested. Furthermore, the autocorrelation
function for a mixed process, containing a 𝑝th-order autoregressive component and a 𝑞th-
order moving average component, is a mixture of exponentials and damped sine waves
after the first 𝑞−𝑝 lags. Conversely, the partial autocorrelation function for a mixed process
is dominated by a mixture of exponentials and damped sine waves after the first 𝑝−𝑞 lags
(see Table 3.2).

In general, autoregressive (moving average) behavior, as measured by the autocorrela-
tion function, tends to mimic moving average (autoregressive) behavior as measured by the
partial autocorrelation function. For example, the autocorrelation function of a first-order
autoregressive process decays exponentially, while the partial autocorrelation function cuts
off after the first lag. Correspondingly, for a first-order moving average process, the au-
tocorrelation function cuts off after the first lag. Although not precisely exponential, the
partial autocorrelation function is dominated by exponential terms and has the general
appearance of an exponential.

Of particular importance are the autoregressive and moving average processes of first
and second order and the simple mixed (1, 𝑑, 1) process. The properties of the theoretical
autocorrelation and partial autocorrelation functions for these processes are summarized
in Table 6.1, which requires careful study and provides a convenient reference table. The
reader should also refer to Figures 3.2, 3.7, and 3.10, which show typical behavior of
the autocorrelation function and the partial autocorrelation function for the second-order
autoregressive process, the second-order moving average process, and the simple mixed
ARMA(1, 1) process.

6.2.2 Standard Errors for Estimated Autocorrelations and Partial Autocorrelations

Estimated autocorrelations can have rather large variances and can be highly autocorrelated
with each other. For this reason, detailed adherence to the theoretical autocorrelation func-
tion cannot be expected in the estimated function. In particular, moderately large estimated
autocorrelations can occur after the theoretical autocorrelation function has damped out,
and apparent ripples and trends can occur in the estimated function that have no basis in the
theoretical function. In employing the estimated autocorrelation function as a tool for iden-
tification, it is usually possible to be fairly sure about broad characteristics, but more subtle
indications may or may not represent real effects. For these reasons, two or more related
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models may need to be entertained and investigated further at the estimation and diagnostic
checking stages of model building.

In practice, it is important to have some indication of how far an estimated value may
differ from the corresponding theoretical value. In particular, we need some means for
judging whether the autocorrelations and partial autocorrelations are effectively zero after
some specific lag 𝑞 or 𝑝, respectively. For larger lags, on the hypothesis that the process is
moving average of order 𝑞, we can compute standard errors of estimated autocorrelations
from the simplified form of Bartlett’s formula (2.1.15), with sample estimates replacing
theoretical autocorrelations. Thus,

�̂�[𝑟𝑘] ≃
1
𝑛1∕2

[1 + 2(𝑟21 + 𝑟
2
2 +⋯ + 𝑟2

𝑞
)]1∕2 𝑘 > 𝑞 (6.2.2)

For the partial autocorrelations, we use the result quoted in (3.2.36) that, on the hypoth-
esis that the process is autoregressive of order 𝑝, the standard error for estimated partial
autocorrelations of order 𝑝 + 1 and higher is

�̂�[�̂�𝑘𝑘] ≃
1
𝑛1∕2

𝑘 > 𝑝 (6.2.3)

It was shown by Anderson (1942) that for moderate 𝑛, the distribution of an estimated
autocorrelation coefficient, whose theoretical value is zero, is approximately normal. Thus,
on the hypothesis that the theoretical autocorrelation 𝜌𝑘 is zero, the estimate 𝑟𝑘 divided
by its standard error will be approximately distributed as a unit normal variate. A similar
result is true for the partial autocorrelations. These facts provide an informal guide as to
whether theoretical autocorrelations and partial autocorrelations beyond a particular lag are
essentially zero.

6.2.3 Identification of Models for Some Actual Time Series

Series A--D. In this section, the model specification tools described above are applied to
some of the actual time series that we encountered in earlier chapters. We first discuss
potential models for Series A to D plotted in Figure 4.1. As remarked in Chapter 4 on
nonstationarity, we expect Series A, C, and D to possess nonstationary characteristics since
they represent the ‘‘uncontrolled’’ behavior of certain process outputs. Similarly, we would
expect the IBM stock price Series B to have no fixed level and to be nonstationary.

The estimated autocorrelations of 𝑧𝑡 and the first differences ∇𝑧𝑡 for Series A--D are
shown in Figure 6.2. Figure 6.3 shows the corresponding estimated partial autocorrelations.
The two figures were generated in R using commands similar to those used to produce
Figure 6.1. For the chemical process concentration readings in SeriesA, the autocorrelations
for∇𝑧𝑡 are small after the first lag. This suggests that this time series might be described by
an IMA(0, 1, 1)model. However, from the autocorrelation function of 𝑧𝑡, it is seen that after
lag 1 the correlations do decrease fairly regularly. Therefore, an alternative is that the series
follows a mixed ARMA(1, 0, 1)model. The partial autocorrelation function of 𝑧𝑡 seems to
support this possibility. We will see later that the two alternatives result in virtually the
same model. For the stock price Series B, the results confirm the nonstationarity of the
original series and suggest that a random walk model (1 − 𝐵)𝑧𝑡 = 𝑎𝑡 is appropriate for this
series.

The estimated autocorrelations of the temperature Series C also indicate nonstationarity.
The roughly exponential decay in the autocorrelations for the first difference suggests a
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FIGURE 6.2 Estimated autocorrelation functions of the original series (𝑑 = 0), and their first
differences (𝑑 = 1) for Series A--D.

process of order (1, 1, 0), with an autoregressive parameter 𝜙 around 0.8. Alternatively,
we notice that the autocorrelations of ∇𝑧𝑡 decay at a relatively slow rate, suggesting
that further differencing might be needed. The autocorrelation and partial autocorrelation
functions of the second differences∇2𝑧𝑡 (not shown) were rather small, suggesting a white
noise process for the second differences. This implies that an IMA(0, 2, 0) model might
also be appropriate for this series. Thus, the possibilities are

(1 − 0.8𝐵)(1 − 𝐵)𝑧𝑡 = 𝑎𝑡
(1 − 𝐵)2𝑧𝑡 = 𝑎𝑡

The second model is very similar to the first, differing only in the choice of 0.8 rather than
1.0 for the autoregressive coefficient.

Finally, the autocorrelation and partial autocorrelation functions for the viscosity
Series D suggest that an AR(1) model (1 − 𝜙𝐵)𝑧𝑡 = 𝑎𝑡 with 𝜙 around 0.8 might be ap-
propriate for this series. Alternatively, since the autocorrelation coefficients decay at a
relatively slow rate, we will also consider the model (1 − 𝐵)𝑧𝑡 = 𝑎𝑡 for this series.

Series E and F. Series E shown in the top graph of Figure 6.4 represents the annualWölfer
sunspot numbers over the period 1770--1869. This series is likely to be stationary since
the number of sunspots is expected to remain in equilibrium over long periods of time.
The autocorrelation and partial autocorrelation functions in Figure 6.4 show characteristics
similar to those of an AR(2) process. However, as will be seen later, a marginally better
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FIGURE 6.3 Estimated partial autocorrelation functions of the original series (𝑑 = 0), and their
first differences (𝑑 = 1) for Series A--D.

fit is obtained using an AR(3) model. The fit can be improved further using a square root
or log-transformation of the series. An autoregressive model of order nine is suggested by
the order selection routine ar() in the R package that selects AR order based on the Akaike
information criterion (AIC) to be discussed in Section 6.2.4. Other options considered in the
literature include nonlinear time series models, such as bilinear or threshold autoregressive
models, discussed briefly in Section 10.3.

Series F introduced in Chapter 2 represents the yields of a batch chemical process.
The series is expected to be stationary since the batches are processed under uniformly
controlled conditions. The stationarity is confirmed by Figure 6.5 that shows a graph of
the series along with the autocorrelation and partial autocorrelation functions of the series
and its first differences. The results for the undifferenced series suggest that a first-order
autoregressive model might be appropriate for this series.

A summary of the models tentatively identified for Series A to F is given in Table 6.2.
Note that for Series C and F, the alternative models suggested above have been made
slightly more general for further illustrations later on.

Notes on the identification procedure. The graphs of the autocorrelation and partial au-
tocorrelation functions shown above were generated using R. In assessing the estimated
correlation functions, it is very helpful to plot one or two standard error limits around zero
for the estimated coefficients. Limits from the R package are included in the graphs dis-
played above. These limits are approximate two standard error limits,±2∕

√
(𝑛), determined
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FIGURE 6.4 Estimated autocorrelation and partial autocorrelation functions of the sunspot series
(Series E) and its first differences.

under the assumption that all the theoretical autocorrelation coefficients are zero so that
the series is white noise. If a hypothesis about a specific model is postulated, alternative
limits could be determined from Bartlett’s formula as discussed above. When the calcula-
tions are performed in R, inclusion of the argument ci.type=‘ma’ in the acf() function

TABLE 6.2 Tentative Identification of Models for Series A--F

Degree of Identification
Series Differencing Apparent Nature of Differenced Series for 𝑧𝑡

A Either 0 Mixed first-order AR with first-order MA (1, 0, 1)
or 1 First-order MA (0, 1, 1)

B 1 First-order MA (0, 1, 1)
C Either 1 First-order AR (1, 1, 0)

or 2 Uncorrelated noise (0, 2, 2)𝑎
D Either 0 First-order AR (1, 0, 0)

or 1 Uncorrelated noise (0, 1, 1)𝑎
E Either 0 Second-order AR (2, 0, 0)

or 0 Third-order AR (3, 0, 0)
F 0 Second-order AR (2, 0, 0)
𝑎 The order of the moving average operator appears to be zero, but the more general form is retained for
subsequent consideration.
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FIGURE 6.5 Estimated autocorrelation and partial autocorrelation functions for the yield of a batch
chemical process (Series F) and its first differences.

yields confidence bounds computed based on the assumption that the true model is
MA(𝑘 − 1).

Three other points concerning this identification procedure need to be mentioned:

1. Simple differencing of the kind we have used will not produce stationarity in series
containing seasonal components. In Chapter 9, we discuss the appropriate modifica-
tions for such seasonal time series.

2. As discussed in Chapter 4, a nonzero value for 𝜃0 in (6.1.1) implies the existence of
a systematic polynomial trend of degree 𝑑. For the nonstationary models in Table
6.2, a value of 𝜃0 = 0 can perfectly well account for the behavior of the series.
Occasionally, however, there will be some real physical phenomenon requiring the
provision of such a component. In other cases, it might be uncertain whether or not
such a provision should be made. Some indication of the evidence supplied by the
data, for the inclusion of 𝜃0 in the model, can be obtained at the identification stage
by comparing the mean 𝑤 of 𝑤𝑡 = ∇𝑑𝑧𝑡 with its approximate standard error, using
𝜎2(𝑤) = 𝑛−1𝜎2

𝑤
[1 + 2𝜌1(𝑤) + 2𝜌2(𝑤) +⋯].

3. It was noted in Section 3.4.2 that, for any ARMA(𝑝, 𝑞) process with 𝑝 − 𝑞 > 0, the
whole positive half of the autocorrelation function will be a mixture of damped sine
waves and exponentials. This does not, of course, prevent us from tentatively identi-
fying 𝑞, because (a) the partial autocorrelation functionwill show 𝑝 − 𝑞 ‘‘anomalous’’
values before behaving like that of an MA(𝑞) process, and (b) 𝑞 must be such that the
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autocorrelation function could take, as starting values following the general pattern,
𝜌𝑞 back to 𝜌−(𝑝−𝑞−1).

6.2.4 Some Additional Model Identification Tools

Although the sample autocorrelation and partial autocorrelation functions are extremely
useful in model identification, there are sometimes cases involving mixed models where
they can provide ambiguous results. This may not be a serious problem since, as has been
emphasized, model specification is always tentative and subject to further examination,
diagnostic checking, and modification, if necessary. Nevertheless, there has been consider-
able interest in developing additional tools for use at the model identification stage. These
include the R and S array approach proposed by Gray et al. (1978), the generalized partial
autocorrelation function studied by Woodward and Gray (1981), the inverse autocorrela-
tion function considered by Cleveland (1972) and Chatfield (1979), the extended sample
autocorrelation function of Tsay and Tiao (1984), and the use of canonical correlation anal-
ysis as examined by Akaike (1976), Cooper and Wood (1982), and Tsay and Tiao (1985).
Model selection criteria such as the AIC criterion introduced by Akaike (1974a) and the
Bayesian Information Criterion (BIC) of Schwarz (1978) are also useful supplementary
tools.

Canonical Correlation Methods. For illustration, we briefly discuss the use of canonical
correlation analysis for model identification. In general, for two sets of random variables,
𝒀 1 = (𝑦11, 𝑦12,… , 𝑦1𝑘)′ and 𝒀 2 = (𝑦21, 𝑦22,… , 𝑦2𝑙)′, of dimensions 𝑘 and 𝑙 (assume 𝑘 ≤

𝑙), canonical correlation analysis involves determining linear combinations 𝑈𝑖 = 𝒂′𝑖𝒀 1
and 𝑉𝑖 = 𝒃′𝑖𝒀 2, 𝑖 = 1,… , 𝑘, and corresponding correlations 𝜌(𝑖) = corr[𝑈𝑖, 𝑉𝑖] with 𝜌(1) ≥
𝜌(2) ≥ ⋯ ≥ 𝜌(𝑘) ≥ 0. The linear combinationsare chosen so that the𝑈𝑖 and 𝑉𝑗 aremutually
uncorrelated for 𝑖 ≠ 𝑗, 𝑈1 and 𝑉1 have the maximum possible correlation 𝜌(1) among all
linear combinations of 𝒀 1 and 𝒀 2, 𝑈2 and 𝑉2 have the maximum possible correlation 𝜌(2)
among all linear combinations of 𝒀 1 and 𝒀 2 that are uncorrelated with 𝑈1 and 𝑉1, and so
on. The resulting correlations 𝜌(𝑖) are called the canonical correlations between 𝒀 1 and
𝒀 2, and the variables 𝑈𝑖 and 𝑉𝑖 are the corresponding canonical variates. If 𝛀 = cov[𝒀 ]
denotes the covariance matrix of 𝒀 = (𝒀 ′

1, 𝒀
′
2)

′, with 𝛀𝑖𝑗 = cov[𝒀 𝑖, 𝒀 𝑗], then it is known

that the values 𝜌2(𝑖) are the ordered eigenvalues of the matrix 𝛀−1
11𝛀12𝛀−1

22𝛀21 and the
vectors 𝒂𝑖, such that 𝑈𝑖 = 𝒂′𝑖𝒀 1, are the corresponding (normalized) eigenvectors; that is,
the 𝜌2(𝑖) and 𝒂𝑖 satisfy

[𝜌2(𝑖)I−𝛀−1
11𝛀12𝛀−1

22𝛀21]𝒂𝑖 = 0 𝑖 = 1,… , 𝑘 (6.2.4)

with 𝜌2(1) ≥ 𝜌2(2) ≥ ⋯ ≥ 𝜌2(𝑘) ≥ 0 (e.g., Anderson (1984), p. 490). Similarly, one can
define the notion of partial canonical correlations between 𝒀 1 and 𝒀 2, given another set
of variables 𝒀 3, as the canonical correlations between 𝒀 1 and 𝒀 2 after they have been
‘‘adjusted’’ for the effects of 𝒀 3 by linear regression on 𝑌3, analogous to the definition of
partial correlations as discussed in Section 3.2.5. A useful property to note is that if there
exist (at least) 𝑠 ≤ 𝑘 linearly independent linear combinations of 𝒀 1 that are completely
uncorrelated with 𝒀 2, say 𝑼 = 𝐀′

𝒀 1 such that cov[𝒀 2,𝑼 ] = 𝛀21𝐀 = 0, then there are (at
least) 𝑠 zero canonical correlations between 𝒀 1 and 𝒀 2. This follows easily from (6.2.4)
since there will be (at least) 𝑠 linearly independent eigenvectors satisfying (6.2.4) with
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corresponding 𝜌(𝑖) = 0. In effect, then, the number 𝑠 of zero canonical correlations is equal
to 𝑠 = 𝑘 − 𝑟, where 𝑟 = rank(𝛀21).

In theARMA time seriesmodel context, following the approach ofTsay andTiao (1985),
we consider 𝒀 𝑚,𝑡 = (�̃�𝑡, �̃�𝑡−1,… , �̃�𝑡−𝑚)′ and examine the canonical correlation structure
between the variables 𝒀 𝑚,𝑡 and

𝒀 𝑚,𝑡−𝑗−1 = (�̃�𝑡−𝑗−1, �̃�𝑡−𝑗−2,… , �̃�𝑡−𝑗−1−𝑚)′

for various combinations of 𝑚 = 0, 1,… and 𝑗 = 0, 1,… A key feature to recall is that the
autocovariance function 𝛾𝑘 of an ARMA(𝑝, 𝑞) process �̃�𝑡 satisfies (3.4.2), and, in particular,

𝛾𝑘 −
𝑝∑
𝑖=1
𝜙𝑖𝛾𝑘−𝑖 = 0 𝑘 > 𝑞

Thus, for example, if 𝑚 ≥ 𝑝, there is (at least) one linear combination of 𝒀 𝑚,𝑡,

�̃�𝑡 −
𝑝∑
𝑖=1
𝜙𝑖�̃�𝑡−1 = (1,−𝜙1,… ,−𝜙𝑝, 0,… , 0)𝒀 𝑚,𝑡 = 𝒂′𝒀 𝑚,𝑡 (6.2.5)

such that

𝒂
′
𝒀 𝑚,𝑡 = 𝑎𝑡 −

𝑞∑
𝑖=1
𝜃𝑖𝑎𝑡−𝑖

which is uncorrelatedwith 𝒀 𝑚,𝑡−𝑗−1 for 𝑗 ≥ 𝑞. In particular, then, for𝑚 = 𝑝 and 𝑗 = 𝑞, there
is one zero canonical correlation between 𝒀 𝑝,𝑡 and 𝒀 𝑝,𝑡−𝑞−1, as well as between 𝒀 𝑝,𝑡 and
𝒀 𝑝,𝑡−𝑗−1, 𝑗 > 𝑞, and between 𝒀 𝑚,𝑡 and 𝒀 𝑚,𝑡−𝑞−1,𝑚 > 𝑝, while in general it is not difficult to
establish that there are 𝑠 = min(𝑚 + 1 − 𝑝, 𝑗 + 1 − 𝑞) zero canonical correlations between
𝒀 𝑚,𝑡 and 𝒀 𝑚,𝑡−𝑗−1 for 𝑚 > 𝑝 and 𝑗 > 𝑞. Hence, one can see that determination of the
structure of the zero canonical correlations between 𝒀 𝑚,𝑡 and 𝒀 𝑚,𝑡−𝑗−1 for various values
of 𝑚 and 𝑗 will serve to characterize the orders 𝑝 and 𝑞 of the ARMA model, and so the
canonical correlations will be useful in model identification. We note the special cases of
these canonical correlations are as follows. First, when𝑚 = 0, we are simply examining the
autocorrelations 𝜌𝑗+1 between 𝑧𝑡 and 𝑧𝑡−𝑗−1, which will all equal zero in an MA(𝑞) process
for 𝑗 ≥ 𝑞. Second, when 𝑗 = 0, we are examining the partial autocorrelations 𝜙𝑚+1,𝑚+1
between 𝑧𝑡 and 𝑧𝑡−𝑚−1, given 𝑧𝑡−1,… , 𝑧𝑡−𝑚, and these will all equal zero in an AR(𝑝)
process for𝑚 ≥ 𝑝. Hence, the canonical correlation analysis can be viewed as an extension
of the analysis of the autocorrelation and partial autocorrelation functions of the process.

In practice, based on (6.2.4), one is led to consider the sample canonical correlations
�̂�(𝑖), which are determined from the eigenvalues of the matrix:

(∑
𝑡
𝒀 𝑚,𝑡𝒀

′
𝑚,𝑡

)−1 (∑
𝑡
𝒀 𝑚,𝑡𝒀

′
𝑚,𝑡−𝑗−1

)

×
(∑

𝑡
𝒀 𝑚,𝑡−𝑗−1𝒀

′
𝑚,𝑡−𝑗−1

)−1 (∑
𝑡
𝒀 𝑚,𝑡−𝑗−1𝒀

′
𝑚,𝑡

)

(6.2.6)

for various values of lag 𝑗 = 0, 1,… and 𝑚 = 0, 1,…. Tsay and Tiao (1985) use a chi-
squared test statistic approach based on the smallest eigenvalue (squared sample canonical
correlation) �̂�(𝑚, 𝑗) of (6.2.6). They propose the statistic 𝑐(𝑚, 𝑗) = −(𝑛 − 𝑚 − 𝑗) ln[1 −
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�̂�(𝑚, 𝑗)∕𝑑(𝑚, 𝑗)], where 𝑑(𝑚, 𝑗) = 1 + 2
∑𝑗

𝑖=1 𝑟
2
𝑖
(𝑤′), 𝑗 > 0, 𝑟𝑖(𝑤′) denotes the sample au-

tocorrelation at lag 𝑖 of 𝑤′
𝑡 = 𝑧𝑡 − �̂�

(𝑗)
1 𝑧𝑡−1 −⋯ − �̂�(𝑗)

𝑚 𝑧𝑡−𝑚, and the �̂�(𝑗)
𝑖

are estimates of
the 𝜙𝑖’s obtained from the eigenvector (see, for example, equation (6.2.5)) corresponding
to �̂�(𝑚, 𝑗). The statistic 𝑐(𝑚, 𝑗) has an asymptotic 𝜒2

1 distribution when 𝑚 = 𝑝 and 𝑗 ≥ 𝑞
or when 𝑚 ≥ 𝑝 and 𝑗 = 𝑞 and can be used to test whether there exists a zero canonical
correlation in theory. Hence if the sample statistics exhibit a pattern such that they are all
insignificant, relative to a 𝜒2

1 distribution, for𝑚 ≥ 𝑝 and 𝑗 ≥ 𝑞 for some 𝑝 and 𝑞 values, then
the model might reasonably be identified as an ARMA(𝑝, 𝑞) for the smallest values (𝑝, 𝑞)
such that this pattern holds. Tsay and Tiao (1985) also show that this procedure is valid for
nonstationary ARIMA models 𝜑(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡, in the sense that the overall order 𝑝 + 𝑑
of the generalized AR operator 𝜑(𝐵) can be determined by the procedure, without initially
deciding on differencing of the original series 𝑧𝑡.

Canonical correlation methods were previously also proposed for ARMA modeling by
Akaike (1976) and Cooper and Wood (1982). Their approach is to perform a canon-
ical correlation analysis between the vector of present and past values, 𝑷 𝑡 ≡ 𝒀 𝑚,𝑡 =
(�̃�𝑡, �̃�𝑡−1,… , �̃�𝑡−𝑚)′, and the vector of future values, 𝑭 𝑡+1 = (�̃�𝑡+1, �̃�𝑡+2,…)′. In practice,
the finite lag 𝑚 used to construct the vector of present and past values 𝑷 𝑡 may be fixed by
use of an order determination criterion such as Akaike information criteria to be discussed
a little later in this section, applied to fitting of AR models of various orders. The canonical
correlation analysis is performed sequentially by adding elements to 𝑭 𝑡+1 one at a time,
starting with 𝑭 ∗

𝑡+1 = (�̃�𝑡+1), until the first zero canonical correlation between 𝑷 𝑡 and the
𝑭 𝑡+1 is determined. Akaike (1976) uses an AIC-type criterion called deviance information
criterion (DIC) to judge whether the smallest sample canonical correlation can be taken
to be zero, while Cooper and Wood (1982) use a traditional chi-squared statistic approach
to assess the significance of the smallest canonical correlation, although as pointed out by
Tsay (1989a), to be valid in the presence of a moving average component, this statistic
needs to be modified.

At a given stage in the procedure, when the smallest sample canonical correlation
between 𝑷 𝑡 and 𝑭

∗
𝑡+1 is first judged to be 0 and �̃�𝑡+𝐾+1 is the most recent variable to be

included in 𝑭 ∗
𝑡+1, a linear combination of �̃�𝑡+𝐾+1 in terms of the remaining elements of

𝑭
∗
𝑡+1 is identified that is uncorrelated with the past. Specifically, the linear combination

�̃�𝑡+𝐾+1 −
∑𝐾

𝑗=1 𝜙𝑗�̃�𝑡+𝐾+1−𝑗 of the elements in the vector𝑭 ∗
𝑡+1 of future values is (in theory)

determined to be uncorrelated with the past 𝑷 𝑡. Hence, this canonical correlation analysis
procedure determines that the forecasts �̂�𝑡(𝐾 + 1) of the process satisfy

�̂�𝑡(𝐾 + 1) −
𝐾∑
𝑗=1

𝜙𝑗�̂�𝑡(𝐾 + 1 − 𝑗) = 𝜃0

By reference to the relation (5.3.2) in Section 5.3, for a stationary process, this implies that
an ARMA model is identified for the process, with 𝐾 = max{𝑝, 𝑞}.

As can be seen, in the notation of Tsay and Tiao (1985), the methods of Akaike and
Cooper and Wood represent canonical correlation analysis between 𝒀 𝑚,𝑡 and 𝒀 𝑛−1,𝑡+𝑛
for various 𝑛 = 1, 2,…. Since the Tsay and Tiao method considers canonical correlation
analysis between 𝒀 𝑚,𝑡 and 𝒀 𝑚,𝑡−𝑗−1 for various combinations of 𝑚 = 0, 1,… and 𝑗 =
0, 1,…, it is more general and, in principle, it is capable of providing information on the
orders 𝑝 and 𝑞 of theAR andMAparts of themodel separately, rather than just themaximum
of these two values. In practice, when using the methods of Akaike and Cooper and Wood,
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the more detailed information on the individual orders 𝑝 and 𝑞 would be determined at the
stage of maximum likelihood estimation of the parameters of the ARMA(𝐾,𝐾)model.

Use of Model Selection Criteria. Another approach to model selection involves the use
of information criteria such as AIC proposed by Akaike (1974a) or the Bayesian infor-
mation criteria of Schwarz (1978). In the implementation of this approach, a range of
potential ARMA models are estimated by maximum likelihood methods to be discussed
in Chapter 7, and for each model, a criterion such as AIC (normalized by sample size 𝑛),
given by

AIC𝑝,𝑞 =
−2 ln (maximized likelihood)+ 2𝑟

𝑛
≈ ln(�̂�2

𝑎
) + 𝑟2

𝑛
+ constant

or the related BIC given by

BIC𝑝,𝑞 = ln(�̂�2
𝑎
) + 𝑟 ln(𝑛)

𝑛

is evaluated. Here, �̂�2
𝑎
is the maximum likelihood estimate of 𝜎2

𝑎
, and 𝑟 = 𝑝 + 𝑞 + 1 is the

number of estimated parameters, including a constant term. In the above criteria, the first
term essentially corresponds to −2∕𝑛 times the log of the maximized likelihood, while the
second term is a ‘‘penalty factor’’ for inclusion of additional parameters in the model. In
the information criteria approach, models that yield a minimum value for the criterion are
to be preferred, and the AIC or BIC values are compared among various models as the
basis for selection of the model. Hence, since the BIC criterion imposes a greater penalty
for the number of estimated model parameters than does AIC, use of minimum BIC for
model selection would always result in a chosen model whose number of parameters is no
greater than that chosen under AIC.

Hannan and Rissanen (1982) proposed a two-step model selection procedure that avoids
the need to maximize the likelihood function for multiple combinations of 𝑝 and 𝑞. At the
first step, one fits an AR model of sufficiently high order 𝑚∗ to the series �̃�𝑡. The residuals
�̃�𝑡 from the fitted AR(𝑚∗) model provide estimates of the innovations 𝑎𝑡 in the ARMA(𝑝, 𝑞)
model. At the second step, one regresses �̃�𝑡 on �̃�𝑡−1,… , �̃�𝑡−𝑝 and �̃�𝑡−1,… , �̃�𝑡−𝑞, for various
combinations of 𝑝 and 𝑞. That is, one fits approximate models of the form

�̃�𝑡 =
𝑝∑
𝑗=1

𝜙𝑗�̃�𝑡−𝑗 −
𝑞∑
𝑗=1

𝜃𝑗�̃�𝑡−𝑗 + 𝑎𝑡 (6.2.7)

using ordinary least squares, and the estimated error variance, uncorrected for degrees of
freedom, is denoted by �̂�2

𝑝,𝑞
. Then, using the BIC criterion, the order (𝑝, 𝑞) of the ARMA

model is chosen as the one thatminimizes ln(�̂�2
𝑝,𝑞
) + (𝑝 + 𝑞) ln(𝑛)∕𝑛. Hannnan andRissanen

show that, under very general conditions, the estimators of 𝑝 and 𝑞 chosen in this manner
tend almost surely to the true values. The appeal of this procedure is that computation of
maximum likelihood estimates over a wide range of possible ARMA models is avoided.

While these order selection procedures are useful, they should be viewed as supple-
mentary tools to assist in the model selection process. In particular, they should not be
used as a substitute for careful examination of the estimated autocorrelation and partial
autocorrelation functions of the series, and critical examination of the residuals �̂�𝑡 from
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a fitted model should always be included as a major part of the overall model selection
process.

6.3 INITIAL ESTIMATES FOR THE PARAMETERS

6.3.1 Uniqueness of Estimates Obtained from the Autocovariance Function

While a given ARMAmodel has a unique autocovariance structure, the converse is not true
without additional conventions imposed for uniqueness, as we discuss subsequently. At
first sight this would seem to rule out the use of the estimated autocovariances as a means of
identification. However, we show in Section 6.4 that the estimated autocovariance function
may indeed be used for this purpose. The reason is that, although there exists a multiplicity
of ARMA models possessing the same autocovariance function, there exists only one that
expresses the current value of 𝑤𝑡 = ∇𝑑𝑧𝑡, exclusively in terms of previous history and in
stationary invertible form.

6.3.2 Initial Estimates for Moving Average Processes

As shown in Chapter 3, the first 𝑞 autocorrelations of a MA(𝑞) process are nonzero and can
be written in terms of the parameters of the model as

𝜌𝑘 =
−𝜃𝑘 + 𝜃1𝜃𝑘+1 + 𝜃2𝜃𝑘+2 +⋯ + 𝜃𝑞−𝑘𝜃𝑞

1 + 𝜃21 + 𝜃
2
2 +⋯ + 𝜃2

𝑞

𝑘 = 1, 2,… , 𝑞 (6.3.1)

The expression (6.3.1) for 𝜌1, 𝜌2,… , 𝜌𝑞, in terms of 𝜃1, 𝜃2,… , 𝜃𝑞 , supplies 𝑞 equations in
𝑞 unknowns. Preliminary estimates of the 𝜃’s can be obtained by substituting the estimates
𝑟𝑘 for 𝜌𝑘 in (6.3.1) and solving the resulting nonlinear equations. A preliminary estimate
of 𝜎2

𝑎
may then be obtained from

𝛾0 = 𝜎2𝑎(1 + 𝜃
2
1 +⋯ + 𝜃2

𝑞
)

by substituting the preliminary estimates of the 𝜃’s and replacing 𝛾0 = 𝜎2𝑤 by its estimate
𝑐0. The numerical values of the estimated autocorrelation coefficients 𝑟𝑘 for the series z
are conveniently obtained from R as follows:

> ac=acf(z)
> ac

Preliminary Estimates for a (0, d, 1) Process. Table A in Part Five relates 𝜌1 to 𝜃1, and by
substituting 𝑟1(𝑤) for 𝜌1 can be used to provide initial estimates for any (0, 𝑑, 1) process
𝑤𝑡 = (1 − 𝜃1𝐵)𝑎𝑡, where𝑤𝑡 = ∇𝑑𝑧𝑡.

Preliminary Estimates for a (0, d, 2) Process. Chart C in Part Five relates 𝜌1 and 𝜌2 to
𝜃1 and 𝜃2, and by substituting 𝑟1(𝑤) and 𝑟2(𝑤) for 𝜌1 and 𝜌2 can be used to provide initial
estimates for any (0, 𝑑, 2) process.

In obtaining preliminary estimates in this way, the following points should be kept in
mind:
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1. The autocovariances are second moments of the joint distribution of the 𝑤’s. Thus,
the parameter estimates are obtained by equating sample moments to their theoretical
values. It is well known that the method of moments is not necessarily efficient and
can produce poor estimates for models that include moving average terms. However,
the rough estimates obtained can be useful in obtaining fully efficient estimates,
because they supply an approximate idea of ‘‘where in the parameter space to look’’
for the most efficient estimates.

2. In general, the equation (6.3.1), obtained by equating moments, will have multiple
solutions. For instance, when 𝑞 = 1,

𝜌1 =
−𝜃1
1 + 𝜃21

(6.3.2)

and hence from 𝜃21 + (1∕𝜌1)𝜃1 + 1 = 0, we see that both

𝜃1 = − 1
2𝜌1

+

[
1

(2𝜌1)2
− 1

]1∕2

and

𝜃1 = − 1
2𝜌1

−

[
1

(2𝜌1)2
− 1

]1∕2

(6.3.3)

are possible solutions. For illustration, the first lag autocorrelation of the first dif-
ference of Series A is about −0.4. Substitution in (6.3.3) yields the pair of solutions
𝜃1 ≃ 0.5 and 𝜃′1 ≃ 2.0. However, the chosen value 𝜃1 ≃ 0.5 is the only value that
lies within the invertibility interval −1 < 𝜃1 < 1. In fact, it is shown in Section 6.4.1
that it is always true that only one of the multiple solutions of (6.3.1) can satisfy the
invertibility condition.

Examples. Series A, B, and D were all identified in Table 6.2 as possible IMA processes
of order (0, 1, 1). We have seen in Section 4.3.1 that this model may be written in following
the alternative forms:

∇𝑧𝑡 = (1 − 𝜃1𝐵)𝑎𝑡
∇𝑧𝑡 = 𝜆0𝑎𝑡−1 + ∇𝑎𝑡 (𝜆0 = 1 − 𝜃1)

𝑧𝑡 = 𝜆0
∞∑
𝑗=1

(1 − 𝜆0)𝑗−1𝑧𝑡−𝑗 + 𝑎𝑡

Using Table A in Part Five, the approximate estimates of the parameters shown in Table 6.3
were obtained.

Series C has been tentatively specified in Table 6.2 as an IMA(0, 2, 2) process:

∇2𝑧𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵2)𝑎𝑡

or equivalently,

∇2𝑧𝑡 = (𝜆0∇ + 𝜆1)𝑎𝑡−1 + ∇2𝑎𝑡
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TABLE 6.3 Initial Estimates of Parameters for Series A, B, and D

Series 𝑟1 �̂�1 �̂�0 = 1 − 𝜃1
A −0.41 0.5 0.5
B 0.09 −0.1 1.1
D −0.05 0.1 0.9

Since the first two sample autocorrelations of ∇2𝑧𝑡 are very close to zero, Chart C in Part
Five gives �̂�1 = 0, �̂�2 = 0, so that �̂�0 = 1 + �̂�2 = 1 and �̂�1 = 1 − �̂�1 − �̂�2 = 1. On this basis,
the series would be represented by

∇2𝑍𝑡 = 𝑎𝑡 (6.3.4)

This would mean that the second difference,∇2𝑧𝑡, was very nearly a random (white noise)
series.

6.3.3 Initial Estimates for Autoregressive Processes

For an assumed AR process of order 1 or 2, initial estimates for𝜙1 and𝜙2 can be calculated
by substituting estimates 𝑟𝑗 for the theoretical autocorrelations 𝜌𝑗 in the formulas of Table
6.1,which are obtained from theYule--Walker equations (3.2.6). In particular, for anAR(1),
�̂�11 = 𝑟1, and for an AR(2),

�̂�21 =
𝑟1(1 − 𝑟2)
1 − 𝑟21

�̂�22 =
𝑟2 − 𝑟21
1 − 𝑟21

(6.3.5)

where �̂�𝑝𝑗 denotes the estimated 𝑗th autoregressive parameter in a process of order 𝑝. The
corresponding formulas given by the Yule--Walker equations for higher order schemesmay
be obtained by substituting the 𝑟𝑗 for the 𝜌𝑗 in (3.2.7). Thus,

�̂� = 𝐑−1
𝑝
𝐫𝑝 (6.3.6)

where 𝐑𝑝 is an estimate of the 𝑝 × 𝑝 matrix 𝐏𝑝, as depicted following (3.2.6) in 3.2.2, of
autocorrelations up to order 𝑝 − 1, and 𝐫𝑝 = (𝑟1, 𝑟2,… , 𝑟𝑝)′. For example, if 𝑝 = 3, (6.3.6.)
becomes

⎡⎢⎢⎢⎣

�̂�31

�̂�32

�̂�33

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

1 𝑟1 𝑟2
𝑟1 1 𝑟1
𝑟2 𝑟1 1

⎤⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎣

𝑟1
𝑟2
𝑟3

⎤⎥⎥⎥⎦
(6.3.7)

A simple recursive method due to Levinson and Durbin for obtaining the estimates for an
AR(𝑝) from those of an AR(𝑝 − 1) was discussed in Appendix A3.2.

It will be shown in Chapter 7 that in contrast to the situation for MA processes, the
autoregressive parameters obtained from (6.3.6) approximate the fully efficient maximum
likelihood estimates.
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Example. Series E representing the sunspot data behaves in its undifferenced form like1

an autoregressive process of second order:

(1 − 𝜙1𝐵 − 𝜙2𝐵
2)𝑧𝑡 = 𝑎𝑡

Substituting the estimates 𝑟1 = 0.81 and 𝑟2 = 0.43, obtained using R, into (6.3.5), we have
�̂�1 = 1.32 and �̂�2 = −0.63.

As a second example, consider again Series C identified as either of order (1, 1, 0) or
possibly (0, 2, 2). The first possibility would give

(1 − 𝜙1𝐵)∇𝑍𝑡 = 𝑎𝑡

with �̂�1 = 0.81, since 𝑟1 for ∇𝑧𝑡 is 0.81.
This example is interesting because it makes clear that the two alternative models that

have been identified for this series are closely related. On the supposition that the series is
of order (0, 2, 2), we found in (6.3.4) that this simplifies to

(1 − 𝐵)(1 − 𝐵)𝑧𝑡 = 𝑎𝑡 (6.3.8)

The alternative

(1 − 0.81𝐵)(1 − 𝐵)𝑧𝑡 = 𝑎𝑡 (6.3.9)

is very similar.

6.3.4 Initial Estimates for Mixed Autoregressive--Moving Average Processes

It is often found, either initially or after suitable differencing, that 𝑤𝑡 = ∇𝑑𝑧𝑡 is most
economically represented by a mixed ARMA process:

𝜙(𝐵)𝑤𝑡 = 𝜃(𝐵)𝑎𝑡

As noted in Section 6.2.1, a mixed process is indicated if both the autocorrelation and partial
autocorrelation functions tail off rather than either having a cutoff feature. Another helpful
fact in identifying the mixed process is that after lag 𝑞 − 𝑝, the theoretical autocorrelations
of the mixed process behave like the autocorrelations of a pure autoregressive process
𝜙(𝐵)𝑤𝑡 = 𝑎𝑡 (see (3.4.3)). In particular, if the autocorrelation function of the 𝑑th difference
appears to be falling off exponentially from an aberrant first value 𝑟1, we would suspect
that we have a process of order (1, 𝑑, 1) that is,

(1 − 𝜙1𝐵)𝑤𝑡 = (1 − 𝜃1𝐵)𝑎𝑡 (6.3.10)

where 𝑤𝑡 = ∇𝑑𝑧𝑡.

1The sunspot series has been the subject of much investigation. Early references include Schuster (1906), Yule
(1927), and Moran (1954). The series does not appear to be adequately represented by a second-order autoregres-
sive process. A model related to the underlying mechanism at work would, of course, be the most satisfactory.
More recent work has suggested empirically that a second-order autoregressive model would provide a better fit
if a suitable transformation such as log or square root were first applied to 𝑧. Inclusion of a higher order term, at
lag 9, in the AR model also improves the fit. Other possibilities include the use of nonlinear time series models,
such as bilinear or threshold autoregressive models (e.g., see Section 10.3), as has been investigated by Subba
Rao and Gabr (1984), Tong and Lim (1980), and Tong (1983,1990).
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Approximate values for the parameters of the process (6.3.10) are obtained by substi-
tuting the estimates 𝑟1(𝑤) and 𝑟2(𝑤) for 𝜌1 and 𝜌2 in the expression (3.4.8). This gives

𝑟1 =
(1 − �̂�1�̂�1)(�̂�1 − �̂�1)
1 + �̂�21 − 2�̂�1�̂�1

𝑟2 = 𝑟1�̂�1

Chart D in Part Five relates 𝜌1 and 𝜌2 to 𝜙1 and 𝜃1 can be used to provide initial estimates
of the parameters for any (1, 𝑑, 1) process.

For example, using Figure 6.2, Series A was identified as of order (0, 1, 1), with 𝜃1
about 0.5. Looking at the autocorrelation function of 𝑧𝑡 rather than that of𝑤𝑡 = ∇𝑧𝑡, we see
from 𝑟1 onward the autocorrelations decay roughly exponentially, although slowly. Thus,
an alternative specification for Series A is that it is generated by a stationary process of
order (1, 0, 1). The estimated autocorrelations and the corresponding initial estimates of the
parameters are then

𝑟1 = 0.57 𝑟2 = 0.50 �̂�1 ≃ 0.87 �̂�1 ≃ 0.48

This identification yields the approximate model of order (1, 0, 1):

(1 − 0.9𝐵)𝑧𝑡 = (1 − 0.5𝐵)𝑎𝑡

whereas the previously identified model of order (0, 1, 1), given in Table 6.5, is

(1 − 𝐵)𝑧𝑡 = (1 − 0.5𝐵)𝑎𝑡

Again we see that the ‘‘alternative’’ models are nearly the same.

Compensation between Autoregressive and Moving Average Operators. The alternative
models identified above are even more alike than they appear. This is because small
changes in the autoregressive operator of a mixed model can be nearly compensated by
corresponding changes in the moving average operator. In particular, if we have a model

[1 − (1 − 𝛿)𝐵]𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡

where 𝛿 is small and positive, we can write

(1 − 𝐵)𝑧𝑡 = [1 − (1 − 𝛿)𝐵]−1(1 − 𝐵)(1 − 𝜃𝐵)𝑎𝑡
= {1 − 𝛿𝐵[1 + (1 − 𝛿)𝐵 + (1 − 𝛿)2𝐵2 +⋯]}(1 − 𝜃𝐵)𝑎𝑡
= [1 − (𝜃 + 𝛿)𝐵]𝑎𝑡 + terms in 𝑎𝑡−2, 𝑎𝑡−3,⋯ , of order 𝛿

6.3.5 Initial Estimate of Error Variance

For comparison with the more efficient methods of estimation to be described in Chapter 7,
it is interesting to see howmuch additional information about the model can be extracted at
the identification stage. We have already shown how to obtain initial estimates (�̂�, �̂�) of the
parameters (𝝓, 𝜽) in the ARMA model, identified for an appropriate difference𝑤𝑡 = ∇𝑑𝑧𝑡
of the series. In this section we show how to obtain preliminary estimates of the error
variance 𝜎2

𝑎
, and in Section 6.3.6 we show how to obtain an approximate standard error for

the sample mean 𝑤 of the appropriately differenced series.
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An initial estimate of the error variance may be obtained by substituting an estimate 𝑐0
in the expression for the variance 𝛾0 given in Chapter 3. Thus, substituting in (3.2.8), an
initial estimate of 𝜎2𝑎 for an AR process may be obtained from

�̂�2
𝑎
= 𝑐0(1 − �̂�1𝑟1 − �̂�2𝑟2 −⋯ − �̂�𝑝𝑟𝑝) (6.3.11)

Similarly, from (3.3.3), an initial estimate for a MA process may be obtained from

�̂�2
𝑎
=

𝑐0

1 + �̂�21 +⋯ + �̂�2
𝑞

(6.3.12)

The form of the estimate for a mixed process is, in general, more complicated. However,
for the important ARMA(1,1) process, it takes the form (see (3.4.7))

�̂�2
𝑎
=

1 − �̂�2
1

1 + �̂�21 − 2�̂�1�̂�1
𝑐0 (6.3.13)

For example, consider the (1, 0, 1) model identified for Series A. Using (6.3.13) with
�̂�1 = 0.87, �̂�1 = 0.48, and 𝑐0 = 0.1586, we obtain the estimate �̂�2

𝑎
= 0.098.

6.3.6 Approximate Standard Error for𝒘

The general ARIMA model, for which the mean 𝜇𝑤 of 𝑤𝑡 = ∇𝑑𝑧𝑡 is not necessarily zero,
may be written in any one of the three forms:

𝜙(𝐵)(𝑤𝑡 − 𝜇𝑤) = 𝜃(𝐵)𝑎𝑡 (6.3.14)

𝜙(𝐵)𝑤𝑡 = 𝜃0 + 𝜃(𝐵)𝑎𝑡 (6.3.15)

𝜃(𝐵)𝑤𝑡 = 𝜃(𝐵)(𝑎𝑡 + 𝜉) (6.3.16)

where

𝜇𝑤 =
𝜃0

1 − 𝜙1 − 𝜙2 −⋯ − 𝜙𝑝
=

(1 − 𝜃1 − 𝜃2 −⋯ − 𝜃𝑞)𝜉
1 − 𝜙1 − 𝜙2 −⋯ − 𝜙𝑝

Hence, if 1 − 𝜙1 − 𝜙2 −⋯ − 𝜙𝑝 ≠ 0 and 1 − 𝜃1 − 𝜃2 −⋯ − 𝜃𝑝 ≠ 0, 𝜇𝑤 = 0 implies that
𝜃0 = 0 and 𝜉 = 0. Now, in general, when 𝑑 = 0, 𝜇𝑧 will not be zero. However, consider
the eventual forecast function associated with the general model (6.3.14) when 𝑑 > 0.
With 𝜇𝑤 = 0, this forecast function already contains an adaptive polynomial component of
degree 𝑑 − 1. The effect of allowing 𝜇𝑤 to be nonzero is to introduce a fixed polynomial
term into this function of degree 𝑑. For example, if 𝑑 = 2 and 𝜇𝑤 is nonzero, the forecast
function 𝑧𝑡(𝑙) includes a quadratic component in 𝑙, in which the coefficient of the quadratic
term is fixed and does not adapt to the series. Because models of this kind are often
inapplicable when 𝑑 > 0, the hypothesis that 𝜇𝑤 = 0 will frequently not be contradicted by
the data. Indeed, as we have indicated, we usually assume that 𝜇𝑤 = 0 unless evidence to
the contrary presents itself.

At this, the identification stage of model building, an indication of whether or not a
nonzero value for 𝜇𝑤 is needed may be obtained by comparison of 𝑤 =

∑𝑛

𝑡=1𝑤𝑡∕𝑛 with
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its approximate standard error (see Section 2.1.5). With 𝑛 = 𝑁 − 𝑑 differences available,

𝜎
2(𝑤) = 𝑛−1𝛾0

∞∑
−∞
𝜌𝑗 = 𝑛

−1
∞∑
−∞
𝛾𝑗

that is,

𝜎2(𝑤) = 𝑛−1𝛾(1) (6.3.17)

where 𝛾(𝐵) is the autocovariance generating function defined in (3.1.10) and 𝛾(1) is its
value when 𝐵 = 𝐵−1 = 1 is substituted.

For illustration, consider the process of order (1, 𝑑, 0):

(1 − 𝜙𝐵)(𝑤𝑡 − 𝜇𝑤) = 𝑎𝑡

with 𝑤𝑡 = ∇𝑑𝑧𝑡. From (3.1.11), we obtain

𝛾(𝐵) =
𝜎2
𝑎

(1 − 𝜙𝐵)(1 − 𝜙𝐹 )
so

𝜎2(𝑤) = 𝑛−1(1 − 𝜙)−2𝜎2
𝑎

But 𝜎2
𝑎
= 𝜎2

𝑤
(1 − 𝜙2), so

𝜎2(𝑤) =
𝜎2
𝑤

𝑛

1 − 𝜙2

(1 − 𝜙)2
=
𝜎2
𝑤

𝑛

1 + 𝜙
1 − 𝜙

and

𝜎(𝑤) = 𝜎𝑤
[

1 + 𝜙
𝑛(1 − 𝜙)

]1∕2

Now 𝜙 and 𝜎2
𝑤
are estimated by 𝑟1 and 𝑐0, respectively, as defined in (2.1.11) and (2.1.12).

Thus, for a (1, 𝑑, 0) process, the required standard error is given by

�̂�(𝑤) =
[
𝑐0(1 + 𝑟1)
𝑛(1 − 𝑟1)

]1∕2

Proceeding in this way, the expressions for 𝜎(𝑤) given in Table 6.4 may be obtained.

Tentative Identification of Models A--F. Table 6.5 summarizes the models tentatively
identified for Series A to F, with the preliminary parameter estimates inserted. These
parameter values are used as initial guesses for the more efficient estimation methods to be
described in Chapter 7.

6.3.7 Choice Between Stationary and Nonstationary Models in Doubtful Cases

As the results in Tables 6.2 and 6.5 suggest, the preliminary identification of the need
for differencing and of the degree of differencing is not always easily determined. The
apparent ambiguity in identifying models for Series A, C, and D (particularly with regard
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TABLE6.4 Approximate StandardError for𝒘, where𝒘
𝒕
= 𝛁𝒅𝒛

𝒕
and 𝒛

𝒕
is anARIMAProcess

of Order (p, d, q)

(1, 𝑑, 0) (0, 𝑑, 1)
[
𝑐0(1 + 𝑟1)
𝑛(1 − 𝑟1)

]1∕2 [
𝑐0(1 + 2𝑟1)

𝑛

]1∕2

(2, 𝑑, 0) (0, 𝑑, 2)
[
𝑐0(1 + 𝑟1)(1 − 2𝑟21 + 𝑟2)
𝑛(1 − 𝑟1)(1 − 𝑟2)

]1∕2 [
𝑐0(1 + 2𝑟1 + 2𝑟2)

𝑛

]1∕2

(1, 𝑑, 1)
[
𝑐0

𝑛

(
1 +

2𝑟21
𝑟1 − 𝑟2

)]1∕2

to the degree of differencing) is, of course, more apparent than real. It arises whenever the
roots of 𝜙(𝐵) = 0 approach unity. When this happens, it becomes less and less important
whether a root near unity is included in 𝜙(𝐵) or an additional difference is included
corresponding to a unit root. A more precise evaluation is possible using the estimation
procedures discussed in Chapter 7 and, in particular, the more formal unit root testing
procedures to be discussed in Chapter 10. However, the following should be kept in mind:

1. From time series that are necessarily of finite length, it is never possible to prove that
a zero of the autoregressive operator is exactly equal to unity.

2. There is, of course, no sudden transition from stationary behavior to nonstationary
behavior. This can be understood by considering the behavior of the simple mixed

TABLE 6.5 Summary of Models Identified for Series A--F, with Initial Estimates Inserted

Series Differencing 𝑤 ± �̂�(𝑤)𝑎 �̂�2
𝑤
= 𝑐0 Identified Model �̂�2

𝑎

A Either 0 17.06 ± 0.10 0.1586 𝑧𝑡 − 0.87𝑧𝑡−1 = 2.45 0.098
+𝑎𝑡 − 0.48𝑎𝑡−1

or 1 0.002 ± 0.011 0.1364 ∇𝑧𝑡 = 𝑎𝑡 − 0.53𝑎𝑡−1 0.107
B 1 −0.28 ± 0.41 52.54 ∇𝑧𝑡 = 𝑎𝑡 + 0.09𝑎𝑡−1 52.2
C Either 1 −0.035 ± 0.047 0.0532 ∇𝑧𝑡 − 0.81∇𝑧𝑡−1 = 𝑎𝑡 0.019

or 2 −0.003 ± 0.008 0.0198 ∇2𝑧𝑡 = 𝑎𝑡 − 0.09𝑎𝑡−1 0.020
−0.07𝑎𝑡−2

D Either 0 9.13 ± 0.04 0.3620 𝑧𝑡 − 0.86𝑧𝑡−1 = 1.32 + 𝑎𝑡 0.093
or 1 0.004 ± 0.017 0.0965 ∇𝑧𝑡 = 𝑎𝑡 − 0.05𝑎𝑡−1 0.096

E Either 0 46.9 ± 5.4 1382.2 𝑧𝑡 − 1.32𝑧𝑡−1 + 0.63𝑧𝑡−2 289.0
= 14.9 + 𝑎𝑡

or 0 46.9 ± 5.4 1382.2 𝑧𝑡 − 1.37𝑧𝑡−1 + 0.74𝑧𝑡−2 287.0
−0.08𝑧𝑡−3 = 13.7 + 𝑎𝑡

F 0 51.1 ± 1.1 139.80 𝑧𝑡 + 0.32𝑧𝑡−1 − 0.18𝑧𝑡−2 115.0
= 58.3 + 𝑎𝑡

𝑎 When 𝑑 = 0, read 𝑧 for 𝑤.
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model

(1 − 𝜙1𝐵)(𝑧𝑡 − 𝜇) = (1 − 𝜃1𝐵)𝑎𝑡

Series generated by such amodel behave in amore nonstationarymanner as𝜙1 increases
toward unity. For example, a series with 𝜙1 = 0.99 can wander away from its mean 𝜇 and
not return for very long periods. It is as if the attraction that the mean exerts in the series
becomes less and less as 𝜙1 approaches unity, and finally, when 𝜙1 is equal to unity, the
behavior of the series is completely independent of 𝜇.

In doubtful cases, there may be an advantage in employing the nonstationary model
rather than the stationary alternative (e.g., in treating a 𝜙1, whose estimate is close to unity,
as being equal to unity). This is particularly true in forecasting and control problems.Where
𝜙1 is close to unity, we do not really know whether the mean of the series has meaning or
not. Therefore, it may be advantageous to employ the nonstationary model, which does not
include a fixed mean 𝜇. If we use such a model, forecasts of future behavior will not in any
way depend on an estimated mean, calculated from a previous period, which may have no
relevance to the future level of the series.

6.4 MODEL MULTIPLICITY

6.4.1 Multiplicity of Autoregressive--Moving Average Models

With the normal distribution assumption, knowledge of the first and second moments
of a probability distribution implies complete knowledge of the distribution. In partic-
ular, knowledge of the mean of 𝑤𝑡 = ∇𝑑𝑧𝑡 and of its autocovariance function uniquely
determines the probability structure or 𝑤𝑡. We now show that although this unique prob-
ability structure can be represented by a multiplicity of linear ARMA models, uniqueness
is achieved in the model when we introduce the appropriate stationarity and invertibility
restrictions.

Suppose that 𝑤𝑡, having autocovariance generating function 𝛾(𝐵), is represented by the
linear ARMA model

𝜙(𝐵)𝑤𝑡 = 𝜃(𝐵)𝑎𝑡 (6.4.1)

where the zeros of 𝜙(𝐵) and of 𝜃(𝐵) lie outside the unit circle. Then, this model may also
be written as

𝑝∏
𝑖=1

(1 − 𝐺𝑖𝐵)𝑤𝑡 =
𝑞∏
𝑗=1

(1 −𝐻𝑗𝐵)𝑎𝑡 (6.4.2)

where the𝐺−1 are the roots of 𝜙(𝐵) = 0 and𝐻−1
𝑗

are the roots of 𝜃(𝐵) = 0, and 𝐺𝑖,𝐻𝑗 lie
inside the unit circle. Using (3.1.11), the autocovariance generating function for 𝑤 is

𝛾(𝐵) =
𝑝∏
𝑖=1

(1 −𝐺𝑖𝐵)−1(1 −𝐺𝑖𝐹 )−1
𝑞∏
𝑗=1

(1 −𝐻𝑗𝐵)(1 −𝐻𝑗𝐹 )𝜎2𝑎
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Multiple Choice of Moving Average Parameters. Since

(1 −𝐻𝑗𝐵)(1 −𝐻𝑗𝐹 ) = 𝐻2
𝑗
(1 −𝐻−1

𝑗
𝐵)(1 −𝐻−1

𝑗
𝐹 )

it follows that any one of the stochastic models

𝑝∏
𝑖=1

(1 −𝐺𝑖𝐵)𝑤𝑡 =
𝑞∏
𝑗=1

(1 −𝐻±1
𝑗
𝐵)𝑘𝑎𝑡

can have the same autocovariance generating function if the constant 𝑘 is chosen appropri-
ately. In the above, it is understood that for complex roots, reciprocals of both members of
the conjugate pair will be taken (so as to always obtain real-valued coefficients in the MA
operator). However, if a real root 𝐻 is inside the unit circle, 𝐻−1 will lie outside, or if a
complex pair, say 𝐻1 and 𝐻2, are inside, then the pair 𝐻−1

1 and 𝐻−1
2 will lie outside. It

follows that there will be only one stationary invertible model of the form (6.4.2), which
has a given autocovariance function.

Backward Representations. Now 𝛾(𝐵) also remains unchanged if in (6.4.2) we replace
1 − 𝐺𝑖𝐵 by 1 −𝐺𝑖𝐹 or 1 −𝐻𝑗𝐵 by 1 −𝐻𝑗𝐹 . Thus, all the stochastic models

𝑝∏
𝑖=1

(1 −𝐺𝑖𝐵±1)𝑤𝑡 =
𝑞∏
𝑗=1

(1 −𝐻𝑗𝐵
±1)𝑎𝑡

have identical autocovariance structure. However, representations containing the operator
𝐵−1 = 𝐹 refer to future 𝑤’s and/or future 𝑎’s, so that although stationary and invertible
representations exist in which𝑤𝑡 is expanded in terms of future𝑤’s and 𝑎’s, only one such
representation, (6.4.2), exists that relates 𝑤𝑡 entirely to past history.

A model form that, somewhat surprisingly, is of practical interest is that in which all
𝐵’s are replaced by 𝐹 ’s in (6.4.1), so that

𝜙(𝐹 )𝑤𝑡 = 𝜃(𝐹 )𝑒𝑡

where 𝑒𝑡 is a sequence of independently distributed random variables having mean zero
and variance 𝜎2

𝑒
= 𝜎2

𝑎
. This then is a stationary invertible representation in which 𝑤𝑡 is

expressed entirely in terms of future 𝑤’s and 𝑒’s. We refer to it as the backward form of
the process, or more simply as the backward process.

Equation (6.4.2) is not the most general form of a stationary invertible linear ARMA
model having the autocovariance generating function 𝛾(𝐵). For example, the model (6.4.2)
may be multiplied on both sides by any factor 1 −𝑄𝐵. Thus, the process

(1 −𝑄𝐵)
𝑝∏
𝑖=1

(1 −𝐺𝑖𝐵)𝑤𝑡 = (1 −𝑄𝐵)
𝑞∏
𝑗=1

(1 −𝐻𝑗𝐵)𝑎𝑡

has the same autocovariance structure as (6.4.2). This fact will present no particular dif-
ficulty at the identification stage, since we will be naturally led to choose the simplest
representation, and so for uniqueness we require that there be no common factors between
the AR and MA operators in the model. However, as discussed in Chapter 7, we need to
be alert to the possibility of common factors in the estimated AR and MA operators when
fitting the process.
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Finally, we reach the conclusion that a stationary-invertible model, in which a cur-
rent value 𝑤𝑡 is expressed only in terms of previous history and which contains
no common factors between the AR and MA operators, is uniquely determined by the
autocovariance structure.

Proper understanding of model multiplicity is of importance for a number of reasons:

1. We are reassured by the foregoing argument that the autocovariance function can
logically be used to identify a linear stationary-invertibleARMAmodel that expresses
𝑤𝑡 in terms of previous history.

2. The nature of the multiple solutions for moving average parameters obtained by
equating moments is clarified.

3. The backward process

𝜙(𝐹 )𝑤𝑡 = 𝜃(𝐹 )𝑒𝑡

obtained by replacing 𝐵 by 𝐹 in the linear ARMA model, is useful in estimating
values of the series that have occurred before the first observation was made.

Now we consider reasons 2 and 3 in greater detail.

6.4.2 Multiple Moment Solutions for Moving Average Parameters

In estimating the 𝑞 parameters 𝜃1, 𝜃2,… , 𝜃𝑞 in the MAmodel by equating autocovariances,
we have seen that multiple solutions are obtained. To each combination of roots, there will
be a corresponding linear representation, but to only one such combination will there be an
invertible representation in terms of past history.

For example, consider the MA(1) process in 𝑤𝑡:

𝑤𝑡 = (1 − 𝜃1𝐵)𝑎𝑡

and suppose that 𝛾0(𝑤) and 𝛾1(𝑤) are known and we want to deduce the values of 𝜃1 and
𝜎2
𝑎
. Since

𝛾0 = (1 + 𝜃21)𝜎
2
𝑎

𝛾1 = −𝜃1𝜎2𝑎 𝛾𝑘 = 0 𝑘 > 1 (6.4.3)

then

−
𝛾0
𝛾1

= 𝜃−11 + 𝜃1

and if (𝜃1 = 𝜃, 𝜎2𝑎 = 𝜎
2) is a solution for given 𝛾0 and 𝛾1, so is (𝜃1 = 𝜃−1, 𝜎2𝑎 = 𝜃

2𝜎2).
Apparently, then, for given values of 𝛾0 and 𝛾1, there are a pair of possible models:

𝑤𝑡 = (1 − 𝜃𝐵)𝑎𝑡

and

𝑤𝑡 = (1 − 𝜃−1𝐵)𝛼𝑡 (6.4.4)
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with var[𝑎𝑡] = 𝜎2𝑎 and var[𝛼𝑡] = 𝜎
2
𝛼 = 𝜎

2
𝑎𝜃

2. If −1 < 𝜃 < 1, then (6.4.4) is not an invertible
representation. However, this model may be written as

𝑤𝑡 = [(1 − 𝜃−1𝐵)(−𝜃𝐹 )](−𝜃−1𝐵𝛼𝑡)

Thus, after setting 𝑒𝑡 = −𝛼𝑡−1∕𝜃, the model becomes

𝑤𝑡 = (1 − 𝜃𝐹 )𝑒𝑡 (6.4.5)

where 𝑒𝑡 has the same variance as 𝑎𝑡. Thus, (6.4.5) is simply the ‘‘backward’’ process,
which is dual to the forward process:

𝑤𝑡 = (1 − 𝜃𝐵)𝑎𝑡 (6.4.6)

Just as the shock 𝑎𝑡 in (6.4.6) is expressible as a convergent sum of current and previous
values of 𝑤,

𝑎𝑡 = 𝑤𝑡 + 𝜃𝑤𝑡−1 + 𝜃2𝑤𝑡−2 +⋯

the shock 𝑒𝑡 in (6.4.5) is expressible as a convergent sum of current and future values of𝑤:

𝑒𝑡 = 𝑤𝑡 + 𝜃𝑤𝑡+1 + 𝜃2𝑤𝑡+2 +⋯

Thus, the root 𝜃−1 would produce an ‘‘invertible’’ process, but only if a representation
of the shock 𝑒𝑡 in terms of future values of 𝑤 were permissible. The invertibility regions
shown in Table 6.1 delimit acceptable values of the parameters, given that we express the
shock in terms of previous history.

6.4.3 Use of the Backward Process to Determine Starting Values

Suppose that a time series 𝑤1, 𝑤2,… , 𝑤𝑛 is available from a process

𝜙(𝐵)𝑤𝑡 = 𝜃(𝐵)𝑎𝑡 (6.4.7)

In Chapter 7, problems arise where we need to estimate the values 𝑤0, 𝑤−1, 𝑤−2, and so
on, of the series that occurred before the first observation was made. This happens because
‘‘starting values’’ are needed for certain basic recursive calculations used for estimating the
parameters in the model. Now, suppose that we require to estimate 𝑤−𝑙, given𝑤1,… , 𝑤𝑛.
The discussion of Section 6.4.1 shows that the probability structure of𝑤1,… , 𝑤𝑛 is equally
explained by the forward model (6.4.7), or by the backward model

𝜙(𝐹 )𝑤𝑡 = 𝜃(𝐹 )𝑒𝑡 (6.4.8)

The value 𝑤−𝑙, thus, bears exactly the same probability relationship to the
sequence 𝑤1, 𝑤2,… , 𝑤𝑛, as does the value 𝑤𝑛+𝑙+1 to the sequence 𝑤𝑛,𝑤𝑛−1,
𝑤𝑛−2,… , 𝑤1. Thus, to estimate a value 𝑙 + 1 periods before observations started, we can
first consider what would be the optimal estimate or forecast 𝑙 + 1 periods after the series
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ended, and then apply this procedure to the reversed series. In other words, we ‘‘forecast’’
the reversed series. We call this ‘‘back forecasting.’’

APPENDIX A6.1 EXPECTED BEHAVIOR OF THE ESTIMATED
AUTOCORRELATION FUNCTION FOR A NONSTATIONARY PROCESS

Suppose that a series of 𝑁 observations 𝑧1, 𝑧2,… , 𝑧𝑁 is generated by a nonstationary
(0, 1, 1) process

∇𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡

and the estimated autocorrelations 𝑟𝑘 are computed, where

𝑟𝑘 =
𝑐𝑘

𝑐0
=

∑𝑁−𝑘
𝑡=1 (𝑧𝑡 − 𝑧)(𝑧𝑡+𝑘 − 𝑧)∑𝑁

𝑡=1 (𝑧𝑡 − 𝑧)
2

Some idea of the behavior of these estimated autocorrelationsmay be obtained by deriving
expected values for the numerator and denominator of this expression and considering the
ratio. We will write, following Wichern (1973),

E[𝑟𝑘] =
𝐸[𝑐𝑘]
𝐸[𝑐0]

=
∑𝑁−𝑘
𝑡=1 𝐸[(𝑧𝑡 − 𝑧)(𝑧𝑡+𝑘 − 𝑧]∑𝑁

𝑡=1𝐸[(𝑧𝑡 − 𝑧)
2]

After straightforward but tedious algebra, we find that

E[𝑟𝑘] =
(𝑁 − 𝑘)[(1 − 𝜃)2(𝑁2 − 1 + 2𝑘2 − 4𝑘𝑁) − 6𝜃]

𝑁(𝑁 − 1)[(𝑁 + 1)(1 − 𝜃)2 + 6𝜃]
(A6.1.1)

For 𝜃 close to zero, E[𝑟𝑘] will be close to unity, but for large values of 𝜃, it can be
considerably smaller than unity, even for small values of 𝑘. Figure A6.1 illustrates this
fact by showing values of E[𝑟𝑘] for 𝜃 = 0.8 with 𝑁 = 100 and 𝑁 = 200. Although, as
anticipated for a nonstationary process, the ratios E[𝑟𝑘] of expected values fail to damp out
quickly, it will be seen that they do not approach the value 1 even for small lags.

Similar effects may be demonstrated whenever the parameters approach values where
cancellation on both sides of the model would produce a stationary process. For instance,
in the example above we can write the model as

(1 − 𝐵)𝑧𝑡 = [(1 − 𝐵) + 𝛿𝐵]𝑎𝑡

where 𝛿 = 0.2. As 𝛿 tends to zero, the behavior of the process would be expected to come
closer and closer to that of the white noise process 𝑧𝑡 = 𝑎𝑡, for which the autocorrelation
function is zero for lags 𝑘 > 0.
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FIGURE A6.1 E[𝑟𝑘] = 𝐸[𝑐𝑘]∕𝐸[𝑐0] for series generated by ∇𝑧𝑡 = (1 − 0.8𝐵)𝑎𝑡.

EXERCISES

6.1. Given the five identified models and the corresponding values of the estimated auto-
correlations of 𝑤𝑡 = ∇𝑑𝑧𝑡 in the following table:

Identified Model

𝑝 𝑑 𝑞 Estimated Autocorrelations

(1) 1 1 0 𝑟1 = 0.72
(2) 0 1 1 𝑟1 = −0.41
(3) 1 0 1 𝑟1 = 0.40, 𝑟2 = 0.32
(4) 0 2 2 𝑟1 = 0.62, 𝑟2 = 0.13
(5) 2 1 0 𝑟1 = 0.93, 𝑟2 = 0.81

(a) Obtain preliminary estimates of the parameters analytically.

(b) Check these estimates using the charts and tables in Part Five of the book.

(c) Write down the identified models in backward shift operator notation with the
preliminary estimates inserted.

6.2. For the (2, 1, 0) process considered on line (5) of Exercise 6.1, the sample mean and
variance of 𝑤𝑡 = ∇𝑧𝑡 are 𝑤 = 0.23 and 𝑠2

𝑤
= 0.25. If the series contains 𝑁 = 101

observations,

(a) show that a constant term needs to be included in the model,
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(b) express the model in the form 𝑤𝑡 − 𝜙1𝑤𝑡−1 − 𝜙2𝑤𝑡−2 = 𝜃0 + 𝑎𝑡 with numerical
values inserted for the parameters, including an estimate of 𝜎2

𝑎
.

6.3. Consider the chemical process temperature readings referred to as Series C in this
book.

(a) Plot the original series and the series of first differences using R.

(b) Use the R package to calculate and plot the ACF and PACF of this series. Repeat
the calculation for the first and second differences of the series.

(c) Specify a suitable model, or models, for this series. Use the method of moments
to obtain preliminary parameter estimates for the series.

6.4. Quarterly measurements of the gross domestic product (GDP) in the United Kingdom
over the period 1955--1969 are included in Series P in Part Five of this book.

(a) Calculate and plot the ACF and PACF of this series.

(b) Repeat the analysis in part (a) for the first differences of the series.

(c) Identify a model for the series. Would a log transformation of the data be helpful?

(d) Obtain preliminary estimates for the parameters and for their standard errors.

(e) Obtain preliminary estimates for 𝜇𝑧 and 𝜎
2
𝑎
.

6.5. QuarterlyUKunemployment rate (in thousands) is part of Series P analyzed in Exercise
6.4. Repeat parts (a) to (e) of Exercise 6.4 for this series.

6.6. A time series defined by 𝑧𝑡 = 1000 log10(𝐻𝑡), where𝐻𝑡 is the price of hogs recorded
annually by the U.S. Census of Agriculture on January 1 for each of the 82 years, from
1867 to 1948 is listed as Series Q in the Collection of Time Series in Part Five. This
is a well-known time series analyzed by Quenouille (1957), and others.

(a) Plot the series. Compute and plot the ACF and PACF of the series.

(b) Identify a time series model for the series.

6.7. Measurements of the annual flow of the river Nile at Ashwan from 1871 to 1970 are
available as series ‘‘Nile’’ in the datasets package in R; type help(Nile) for details.

(a) Plot the series and compute the ACF and PACF for the series.

(b) Repeat the analysis in part (a) for the differenced series.

(c) Identify a model for the series. Are there any unusual features worth noting.

6.8. The file ‘‘EuStockMarkets’’ in the R datasets package contains the daily closing
prices of four major European stock indices: Germany DAX (Ibis), Switzerland SMI,
France CAC, and UK FTSE. The data are sampled in business time, so weekends and
holidays are omitted.

(a) Plot each of the four series and compute the ACF and PACF for the series.

(b) Repeat the analysis in part (a) for the differenced series.

(c) Identify a model for the series. Are there any unusual features worth noting.

6.9. Download a time series of your choice from the Internet. Plot the time series and
identify a suitable model for the series.
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7
PARAMETER ESTIMATION

This chapter deals with the estimation of the parameters in ARIMA models and provides a
general account of likelihood and Bayesian methods for parameter estimation. It is assumed
that a suitable model of this form has been selected using the model specification tools
described in Chapter 6. After the parameters have been estimated, the fitted model will be
subjected to diagnostic checks and goodness-of-fit tests to be described in the next chapter.
As pointed out by R. A. Fisher, for tests of goodness of fit to be relevant, it is necessary
that efficient use of data should have been made in the fitting process. If this is not so,
inadequacy of fit may simply arise because of the inefficient fitting and not because the
form of the model is inadequate. This chapter examines in detail maximum likelihood
estimation under the normality assumption and describes least-squares approximations that
are suitable for many series.

It is assumed that the reader is familiar with certain basic ideas in estimation theory.
AppendicesA7.1 and A7.2 summarize some important results in normal distribution theory
and linear least-squares that are useful for this chapter. Throughout the chapter, bold type
is used to denote vectors and matrices. Thus, X = {𝑥𝑖𝑗} is a matrix with 𝑥𝑖𝑗 an element in
the 𝑖th row and 𝑗th column, and X′ is the transpose of the matrix X.

7.1 STUDY OF THE LIKELIHOOD AND SUM-OF-SQUARES FUNCTIONS

7.1.1 Likelihood Function

Suppose that we have a sample of 𝑁 observations, z with which we associate an
𝑁-dimensional random variable, whose known probability distribution 𝑝(z|𝝃) depends
on some unknown parameters 𝝃. We use the vector 𝝃 to denote a general set of parameters
and, in particular, it could refer to the 𝑝 + 𝑞 + 1 parameters (𝝓, 𝜽, 𝜎2

𝑎
) of the ARIMAmodel.

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
○c 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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Before the data are available, 𝑝(z|𝝃)will associate a density with each different outcome
z of the experiment, for fixed 𝝃. After the data have become available, we are led to
contemplate the various values of 𝝃 thatmight have given rise to the fixed set of observations
z actually obtained. The appropriate function for this purpose is the likelihood function
𝐿(𝝃|z), which is of the same form as 𝑝(z|𝝃), but in which z is now fixed but 𝝃 is variable.
It is only the relative value of 𝐿(𝝃|z) that is of interest, so that the likelihood function is
usually regarded as containing an arbitrary multiplicative constant.

It is often convenient to work with the log-likelihood function ln[𝐿(𝝃|z)] = 𝑙(𝝃|z),
which contains an arbitrary additive constant. One reason that the likelihood function is of
fundamental importance in estimation theory is because of the likelihood principle, urged
on somewhat different grounds by Fisher (1956), Barnard (1949), and Birnbaum (1962).
This principle says that, given that the assumed model is correct, all that the data have to
tell us about the parameters is contained in the likelihood function, all other aspects of the
data being irrelevant. From a Bayesian point of view, the likelihood function is equally
important, since it is the component in the posterior distribution of the parameters that
comes from the data.

For a complete understanding of the parameter estimation in a specific case, it is nec-
essary to carefully study of the likelihood function, or in the Bayesian framework, the
posterior distribution of the parameters, which in the cases we consider, is dominated by
the likelihood. In many examples, for moderate and large samples, the log-likelihood func-
tion will be unimodal and can be approximated adequately over a sufficiently extensive
region near the maximumby a quadratic function. In such cases, the log-likelihood function
can be described by its maximum and its second derivatives at the maximum. The values
of the parameters that maximize the likelihood function, or equivalently the log-likelihood
function, are called maximum likelihood (ML) estimates. The second derivatives of the
log-likelihood function provide measures of ‘‘spread’’ of the likelihood function and can
be used to calculate approximate standard errors for the estimates.

The limiting properties of maximum likelihood estimates are usually established for
independent observations. But as was shown by Whittle (1953), they may be extended
to cover stationary time series. Other early literature on the parameter estimation in time
series models includes Barnard et al. (1962), Bartlett (1955), Durbin (1960), Grenander
and Rosenblatt (1957), Hannan (1960), and Quenouille (1942, 1957).

7.1.2 Conditional Likelihood for an ARIMA Process

Let us suppose that the 𝑁 = 𝑛+ 𝑑 original observations z form a time series that we
denote by 𝑧−𝑑+1,… , 𝑧0, 𝑧1, 𝑧2,… , 𝑧𝑛. We assume that this series is generated by an
ARIMA(𝑝, 𝑑, 𝑞)model. From these observations, we can generate a series w of 𝑛 = 𝑁 − 𝑑

differences 𝑤1, 𝑤2,… , 𝑤𝑛 where 𝑤𝑡 = ∇𝑑𝑧𝑡. Thus, the general problem of fitting the pa-
rameters 𝝓 and 𝜽 of the ARIMA model (6.1.1) is equivalent to fitting to the 𝑤𝑡’s, the
stationary and invertible1 ARMA(𝑝, 𝑞)model, which may be written as

𝑎𝑡 = �̃�𝑡 − 𝜙1�̃�𝑡−1 − 𝜙2�̃�𝑡−2 −⋯ − 𝜙𝑝�̃�𝑡−𝑝 + 𝜃1𝑎𝑡−1

+ 𝜃2𝑎𝑡−2 +⋯ + 𝜃𝑞𝑎𝑡−𝑞 (7.1.1)

where �̃�𝑡 = 𝑤𝑡 − 𝜇 are the mean-centered observations.

1Special care is needed to ensure that estimate lies in the invertible region. See Appendix A7.7.



Box3G Date: May 21, 2015 Time: 9:59 am

STUDY OF THE LIKELIHOOD AND SUM-OF-SQUARES FUNCTIONS 211

For 𝑑 > 0, it is often appropriate to assume that 𝜇 = 0. When this is not appropriate, we
assume that the series mean �̄� =

∑𝑛

𝑡=1𝑤𝑡∕𝑛 is substituted for 𝜇. For many sample sizes
common in practice, this approximation will be adequate. However, if desired, 𝜇 can be
included as an additional parameter to be estimated.

The 𝑎𝑡’s cannot be calculated immediately from (7.1.1) because of the difficulty of
starting up the difference equation. However, suppose that the 𝑝 values w∗ of the 𝑤𝑡’s and
the 𝑞 values a∗ of the 𝑎𝑡’s prior to the start of the𝑤𝑡 series were given. Then, for any choice
of parameters (𝝓, 𝜽), we could calculate successively a set of values 𝑎𝑡(𝝓, 𝜽|w∗, a∗,w), 𝑡 =
1, 2,… , 𝑛. Now, assuming that the 𝑎𝑡’s are normally distributed, their probability
density is

𝑝(𝑎1, 𝑎2,… , 𝑎𝑛) ∝ (𝜎2
𝑎
)−𝑛∕2 exp

[
−

(
𝑛∑

𝑡=1

𝑎2
𝑡

2𝜎2
𝑎

)]

Given the data w, the log-likelihood associated with the parameter values (𝝓, 𝜽, 𝜎2
𝑎
), con-

ditional on the choice of (w∗, a∗), would then be

𝑙∗(𝝓, 𝜽, 𝜎2𝑎) = −𝑛

2
ln(𝜎2

𝑎
) −

𝑆∗(𝝓, 𝜽)
2𝜎2

𝑎

(7.1.2)

where

𝑆∗(𝝓, 𝜽) =
𝑛∑
𝑡=1

𝑎2
𝑡
(𝝓, 𝜽|w∗, a∗,w) (7.1.3)

In the above equations, a subscript asterisk is used on the likelihood and sum-of-squares
functions to emphasize that they are conditional on the choice of the starting values. We
notice that the conditional log-likelihood 𝑙∗ involves the data only through the conditional
sum-of-squares function. It follows that contours of 𝑙∗ for any fixed value of 𝜎

2
𝑎
in the space

of (𝝓, 𝜽, 𝜎2
𝑎
) are contours of 𝑆∗, that these maximum likelihood estimates are the same as

the least-squares estimates, and that in general, we can, on the normal assumption, study the
behavior of the conditional likelihood by studying the conditional sum-of-squares function.
In particular for any fixed 𝜎2

𝑎
, 𝑙∗ is a linear function of 𝑆∗. The parameter values obtained

by minimizing the conditional sum-of-squares function 𝑆∗(𝝓, 𝜽) will be called conditional
least-squares estimates.

7.1.3 Choice of Starting Values for Conditional Calculation

We will shortly discuss the calculation of the unconditional likelihood, which, strictly, is
what we need for parameter estimation. However, when 𝑛 is moderate or large, a sufficient
approximation to the unconditional likelihood is often obtained by using the conditional
likelihood with suitable values substituted for the elements of w∗ and a∗ in (7.1.3). One
procedure is to set the elements of w∗ and of a∗ equal to their unconditional expectations.
The unconditional expectations of the elements of a∗ are zero, and if the model contains no
deterministic part, and in particular if 𝜇 = 0, the unconditional expectations of the elements
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TABLE 7.1 Sum-of-Squares Functions for the Model 𝛁𝒛
𝒕
= (𝟏 − 𝜽𝑩)𝒂

𝒕
Fitted to the IBM

Data

𝜃 𝜆 = 1 − 𝜃 𝑆∗(𝜃) 𝑆(𝜃) 𝜃 𝜆 = 1 − 𝜃 𝑆∗(𝜃) 𝑆(𝜃)

−0.5 1.5 23,929 23,928 0.1 0.9 19,896 19,896
−0.4 1.4 21,595 21,595 0.2 0.8 20,851 20,851
−0.3 1.3 20,222 20,222 0.3 0.7 22,315 22,314
−0.2 1.2 19,483 19,483 0.4 0.6 24,471 24,468
−0.1 1.1 19,220 19,220 0.5 0.5 27,694 27,691
0.0 1.0 19,363 19,363

of w∗ will also be zero2. However, this approximation can be poor if some of the roots
of 𝜙(𝐵) = 0 are close to the boundary of the unit circle, so that the process approaches
nonstationarity. This is also true if some of the roots of 𝜃(𝐵) = 0 are close to the boundary
of the invertibility region. Setting the presample values equal to zero could in these cases
introduce a large transient, which is slow to die out. For a pureAR(𝑝) model, a more reliable
approximation procedure, and one we employ sometimes, is to use (7.1.1) to calculate the
𝑎𝑡’s from 𝑎𝑝+1 onward, thus using actual values of the𝑤𝑡’s throughout. Using this method,
we have only 𝑛 − 𝑝 = 𝑁 − 𝑝 − 𝑑 values of 𝑎𝑡, but the slight loss of information will be
unimportant for long series.

For seasonal series, discussed in Chapter 9, the conditional approximation is not always
satisfactory and the unconditional calculation becomes necessary. Inclusion of the deter-
minant in the unconditional likelihood function can also be important for seasonal time
series.

Example: IMA(0, 1, 1) Process. To illustrate the recursive calculation of the conditional
sum of squares 𝑆∗, we consider the IMA(0, 1, 1) model tentatively identified in Section 6.4
for the IBM data in Series B. The model is

∇𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡 − 1 < 𝜃 < 1 (7.1.4)

so that 𝑎𝑡 = 𝑤𝑡 + 𝜃𝑎𝑡−1, where𝑤𝑡 = ∇𝑧𝑡 and𝐸[𝑤𝑡] = 0. Thus, for the particular parameter
value 𝜃 = 0.5, the 𝑎𝑡’s are calculated recursively from

𝑎𝑡 = 𝑤𝑡 + 0.5𝑎𝑡−1

setting the initial value 𝑎0 equal to zero. Proceeding in this way, we find that

𝑆∗(0.5) =
368∑
𝑡=1

𝑎2
𝑡
(𝜃 = 0.5|𝑎0 = 0) = 27, 694

The conditional sums of squares 𝑆∗(𝜃) are shown in Table 7.1 for values of 𝜃 from −0.5 to
+0.5 in steps of 0.1. We note that 𝑆∗(𝜃) has its minimum for 𝜃 = −0.1. This is consistent
with the preliminary moment estimate of −0.09 derived for this series in Chapter 6.

2If the assumption 𝐸|𝑤𝑡| = 𝜇 ≠ 0 is appropriate, we can substitute �̄� for each of the elements of w∗.
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7.1.4 Unconditional Likelihood, Sum-of-Squares Function, and Least-Squares
Estimates

Assuming that the𝑁 = 𝑛 + 𝑑 observations are generated by an ARIMAmodel, the uncon-
ditional log-likelihood is given by

𝑙(𝝓, 𝜽, 𝜎2
𝑎
) = 𝑓 (𝝓, 𝜽) − 𝑛

2
ln(𝜎2

𝑎
) − 𝑆(𝝓, 𝜽)

2𝜎2
𝑎

(7.1.5)

where 𝑓 (𝝓, 𝜽) involves the determinant in the joint density of the 𝑤𝑡’s and is a function of
𝝓 and 𝜽. The unconditional sum-of-squares function is given by

𝑆(𝝓, 𝜽) =
𝑛∑

𝑡=1
[𝑎𝑡|w,𝝓, 𝜽]2 + [e∗]′Ω−1[e∗] (7.1.6)

where [𝑎𝑡|w,𝝓, 𝜽] = 𝐸[𝑎𝑡|w,𝝓, 𝜽] denotes the expectation of 𝑎𝑡 conditional on w,𝝓, and
𝜽. When the meaning is clear from the context, we will further abbreviate this conditional
expectation to [𝑎𝑡]. In (7.1.6),

e∗ = (�̄�1−𝑝,… , �̄�0, 𝑎1−𝑞,… , 𝑎0)′

represents the 𝑝 + 𝑞 initial values of the �̄�𝑡 and 𝑎𝑡 prior to 𝑡 = 1,𝛀𝜎2
𝑎
= cov[e∗] is the

covariance matrix of e∗, and

[e∗] = ([�̃�1−𝑝],… , [�̃�0], [𝑎1−𝑞],… , [𝑎0])′

denotes the vector of conditional expectations (‘‘back-forecasts’’) of the initial values,
given w,𝝓, and 𝜽. An alternative way to represent 𝑆(𝝓, 𝜽) is as

𝑆(𝝓, 𝜽) =
𝑛∑

𝑡=−∞
[𝑎𝑡]2

which in comparison with (7.1.6) indicates that Σ0
𝑡=−∞[𝑎𝑡]2 = [e∗]′𝛀−1[e∗].

Usually, 𝑓 (𝝓, 𝜽) is of importance only for small 𝑛. For moderate and large values
of 𝑛, (7.1.5) is dominated by 𝑆(𝝓, 𝜽)∕2𝜎2

𝑎
, and thus the contours of the unconditional

sum-of-squares function in the space of the parameters (𝝓, 𝜽) are very nearly contours
of the likelihood and log-likelihood. It follows, in particular, that the parameter estimates
obtained by minimizing the sum of squares (7.1.6), which we call (unconditional or exact)
least-squares estimates, will usually provide very close approximations to the maximum
likelihood estimates. From a Bayesian viewpoint, on assumptions discussed in Section 7.5,
for all AR(𝑝) and MA(𝑞), essentially the posterior density is a function only of 𝑆(𝝓, 𝜽).
Hence, very nearly the least-squares estimates are those with maximum posterior density.
In the remainder of this section and in Section 7.1.5, the main emphasis will be on the
unconditional sum-of-squares function 𝑆(𝝓, 𝜽) in (7.1.6), and its use in calculating least-
squares estimates. An alternate method for calculation of the unconditional sum of squares
and likelihood functions based on the state-space model and innovations approach will be
discussed in Section 7.4.

In the calculation of the unconditional sumof squares, the [𝑎𝑡]’s are computed recursively
by taking conditional expectations in (7.1.1). A preliminary back-calculation provides the
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values [𝑤−𝑗] and [𝑎−𝑗], 𝑗 = 0, 1, 2,… (i.e., the back-forecasts) needed to start off the
forward recursion.

Calculation of the Unconditional Sum of Squares for a Moving Average Process. For
illustration, we reconsider the IBM stock price example using only the first 10 values of
the series.3 For the IMA(0, 1, 1) model, the only back-forecast that is needed for 𝑆(𝜃) is
[𝑎0]. We begin by describing an approximate, but nevertheless accurate, method to obtain
[𝑎0]. Recall from Section 6.4.3 that the model for 𝑤𝑡 may be written in either the forward
or backward forms:

𝑤𝑡 = (1 − 𝜃𝐵)𝑎𝑡 𝑤𝑡 = (1 − 𝜃𝐹 )𝑒𝑡

and where again 𝜇 = 𝐸[𝑤𝑡] is assumed equal to zero. Hence, we can write

[𝑒𝑡] = [𝑤𝑡] + 𝜃[𝑒𝑡+1] (7.1.7)

[𝑎𝑡] = [𝑤𝑡] + 𝜃[𝑎𝑡−1] (7.1.8)

where [𝑤𝑡] = 𝑤𝑡 for 𝑡 = 1, 2,… , 𝑛 and is the back-forecast of 𝑤𝑡 for 𝑡 ≤ 0. These are
the two basic equations that we need in the computations. A convenient format for the
calculations is shown in Table 7.2. We begin by entering in the table what we know:

1. The data values 𝑧0, 𝑧1,… , 𝑧9, from which we can calculate the first differences
𝑤1, 𝑤2,… , 𝑤9.

2. The values [𝑒0], [𝑒−1],… , which are zero, since 𝑒0, 𝑒−1,… are distributed indepen-
dently of w.

3. The values [𝑎−1], [𝑎−2],… , which are zero, because for any MA(𝑞) pro-
cess, 𝑎−𝑞, 𝑎−𝑞−1,… are distributed independently of w. However, note that
[𝑎0], [𝑎−1],… , [𝑎−𝑞+1] will be nonzero and can be obtained by back-forecasting.
Thus, in the present example, [𝑎0] is computed this way.

Beginning at the end of the series, (7.1.7) is now used to compute the [𝑒𝑡]’s for
𝑡 = 9, 8, 7,… , 1. We start the backward process by setting [𝑒10] = 0. The effect of this
approximationwill be to introduce a transient into the system. However, for series of mod-
erate length, the effect will typically be negligible by the time the beginning of the series is
reached and thus will not affect the calculation of the 𝑎𝑡’s. If desired, the adequacy of this
approximation can be checked in any given case by performing a second iterative cycle.

Thus, to start the recursion in Table 7.2, in the row corresponding to 𝑡 = 9, we enter a
zero in the sixth column for the unknown value 0.5[𝑒10]. Then, using (7.1.7), we obtain

[𝑒9] = [𝑤9] + 0.5[𝑒10]
= 𝑤9 + 0 = −3

3In practice, of course, useful parameter estimates could not be obtained from as few as 10 observations. We
utilize this data subset merely to illustrate the calculations.
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TABLE 7.2 Calculation of the [𝒂]’s from the First 10 Values of Series B, Using 𝜽 = 𝟎.𝟓

𝑡 𝑧
𝑡

[𝑎
𝑡
] 0.5[𝑎

𝑡−1] [𝑤
𝑡
] 0.5[𝑒

𝑡+1] [𝑒
𝑡
] 𝑢

𝑡

−1 [458.4] 0 0 0 0 0
0 460 1.6 0 1.6 −1.6 0 −2.1
1 457 −2.2 0.8 −3.0 −0.1 −3.1 −4.1
2 452 −6.1 −1.1 −5.0 4.8 −0.2 −2.3
3 459 3.9 −3.0 7.0 2.6 9.6 8.5
4 462 5.0 2.0 3.0 2.3 5.3 9.5
5 459 −0.5 2.5 −3.0 7.6 4.6 9.2
6 463 3.7 −0.2 4.0 11.1 15.1 19.4
7 479 17.9 1.9 16.0 6.2 22.2 31.4
8 493 22.9 9.0 14.0 −1.5 12.5 27.5
9 490 8.5 11.5 −3.0 0 −3.0 8.5

so 0.5[𝑒9] = −1.5 can be entered in the line 𝑡 = 8, which enables us to compute [𝑒8], and
so on. Finally, we obtain

[𝑒0] = [𝑤0] + 𝜃[𝑒1]

that is, 0 = [𝑤0] − 1.6, which gives [𝑤0] = 1.6, and thereafter [𝑤−ℎ] = 0, ℎ = 1, 2, 3,… .

Now, using (7.1.8) with 𝑡 = 0, we obtain

[𝑎0] = [𝑤0] + 𝜃[𝑎−1] = 1.6 + (0.5)(0) = 1.6

and we can then continue the forward calculations of the remaining [𝑎𝑡]’s, leading to
𝑆(0.5) = Σ9

𝑡=0[𝑎𝑡|0.5,w]2 = 1016.406.
An alternative method that yields exact estimates of the presample values is presented

in Appendix A7.3. For the model considered above, this method involves first com-
puting the values 𝑎𝑡(𝑎0 = 0), which we abbreviate as 𝑎0

𝑡
, by the conditional method as

𝑎0
𝑡
= 𝑤𝑡 + 𝜃𝑎0

𝑡−1, 𝑡 = 1, 2,… , 𝑛, using 𝑎00 = 0 as the initial value. Then a backward re-

cursion is performed to obtain 𝑢𝑡 = 𝑎0
𝑡
+ 𝜃𝑢𝑡+1, beginning from 𝑡 = 𝑛, down to 𝑡 = 0,

with 𝑢𝑛+1 = 0 as the starting value. Finally, then, the exact estimate of [𝑎0] is given by
[𝑎0] = −𝑢0(1 − 𝜃2)∕(1 − 𝜃2(𝑛+1)). Using this starting value, the [𝑎𝑡] are computed from the
forward recursion [𝑎𝑡] = 𝑤𝑡 + 𝜃[𝑎𝑡−1], 𝑡 = 1, 2,… , 𝑛, as in (7.1.8) and the exact sum of
squares becomes 𝑆(𝜃) = Σ𝑛

𝑡=0[𝑎𝑡]
2.

In the above example, by first computing the 𝑎0
𝑡
using a forward recursion setting 𝑎0

= 0, we obtain the values of 𝑢𝑡 by the backward recursion for 𝑡 = 9, 8,… , 0, displayed
in the final column of Table 7.2. Hence, we obtain the exact estimate of 𝑎0 as [𝑎0] =
−𝑢0(1 − 𝜃2)∕(1 − 𝜃2(𝑛+1)) = 1.549. This value is very close to the approximate value of
1.545 obtained by the backward model approach, and the small difference has essentially
no effect on the calculation of the remaining values [𝑎𝑡]. Using the exact method for the
entire series, we find that the unconditional sum of squares for 𝜃 = 0.5 is

𝑆(0.5) =
368∑
𝑡=0

[𝑎𝑡|0.5,w]2 = 27, 691
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which for this particular example is very close to the conditional value 𝑆∗(0.5) = 27, 694.
The unconditional sum of squares 𝑆(𝜃), for values of 𝜃 between −0.5 and +0.5, have been
added to Table 7.1 and are very close to the conditional values 𝑆∗(𝜃) computed earlier.

7.1.5 General Procedure for Calculating the Unconditional Sum of Squares

In the above example, 𝑤𝑡 was a first-order moving average process, with zero mean. It
followed that all forecasts for lead times greater than 1were zero and consequently that only
one preliminary value (the back-forecast [𝑤0] = 1.6) was required to start the recursive cal-
culations using the approximate approach, and only one value [𝑎0] in the exact approach. For
a 𝑞th-order moving average process, 𝑞 nonzero preliminary values [𝑤0], [𝑤−1],… , [𝑤1−𝑞]
would be needed, or equivalently, the 𝑞 values [𝑎0], [𝑎−1],… , [𝑎1−𝑞] in the exact approach,
with 𝑆(𝜽) =

∑𝑛

𝑡=1−𝑞[𝑎𝑡]
2. Special procedures, which we discuss in Section 7.3.1, are avail-

able for estimating parameters in autoregressive models. However, we show in Appendix
A7.3 that the procedure described in this section can supply the unconditional sum of
squares for any ARIMA model.

Specifically, suppose that the 𝑤𝑡’s are generated by the stationary forward model

𝜙(𝐵)�̃�𝑡 = 𝜃(𝐵)𝑎𝑡 (7.1.9)

where𝑤𝑡 = ∇𝑑𝑧𝑡 and �̃�𝑡 = 𝑤𝑡 − 𝜇. Then, they could equally well have been generated by
the backward model

𝜙(𝐹 )�̃�𝑡 = 𝜃(𝐹 )𝑒𝑡 (7.1.10)

As before, in the approximate method that utilizes the backward model, we could first
employ (7.1.10) to supply back-forecasts [�̃�−𝑗|w,𝝓, 𝜽]. Theoretically, the presence of
the autoregressive operator ensures a series of such estimates that is infinite in extent.
However, assuming stationarity, the estimates [�̃�𝑡] at and beyond some point 𝑡 = −𝑄, with
𝑄 of moderate size, become essentially equal to zero. Thus, to a sufficient approximation,
we can write

�̃�𝑡 = 𝜙−1(𝐵)𝜃(𝐵)𝑎𝑡 =
∞∑
𝑗=0

𝜓𝑗𝑎𝑡−𝑗 ≃
𝑄∑
𝑗=0

𝜓𝑗𝑎𝑡−𝑗

This means that the original mixed process could be replaced by a moving average process
of order𝑄, and the procedure for moving averages outlined in Section 7.1.4 may be used.

Thus, in general, the dual set of equations for generating the conditional expectations
[𝑎𝑡|𝝓, 𝜽,w] is obtained by taking conditional expectations in (7.1.10) and (7.1.9). That is,

𝜙(𝐹 )[�̃�𝑡] = 𝜃(𝐹 )[𝑒𝑡] (7.1.11)

is first used to generate the backward forecasts and then

𝜙(𝐵)[�̃�𝑡] = 𝜃(𝐵)[𝑎𝑡] (7.1.12)
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is used to generate the [𝑎𝑡]’s. If we find that the forecasts are negligible in magnitude
beyond some lead time 𝑄, the recursive calculation goes forward with

[𝑒−𝑗|𝝓, 𝜽,w] = 0 𝑗 = 0, 1, 2,…
[𝑎−𝑗|𝝓, 𝜽,w] = 0 𝑗 > 𝑄 − 1 (7.1.13)

and the sum of squares is approximated by 𝑆(𝝓, 𝜽) =
∑𝑛

𝑡=1−𝑄[𝑎𝑡]
2. As mentioned earlier,

a second iterative cycle in this approximate method could be used, if desired.
Alternatively, for the general model (7.1.9), the exact method discussed in Appendix

A7.3 can be used to obtain the sum of squares as

𝑆(𝝓, 𝜽) =
𝑛∑

𝑡=1−𝑞
[𝑎𝑡]2 + ([w∗] − C′[a∗])′K−1([w∗] − C′[a∗]) (7.1.14)

Here, the vectors [w∗]′ = ([�̃�1−𝑝],… , [�̃�0]) and [a∗]′ = ([𝑎1−𝑞],… , [𝑎0]) are the exact
back-forecasted values obtained as in (A7.3.12). They are given by [e∗] = ([w∗]′, [a∗]′)′ =
D−1F′u, where the values 𝑢𝑡, 𝑡 = 1,… , 𝑛 of the vector u are obtained through the backward
recursion 𝑢𝑡 = 𝑎0

𝑡
+ 𝜃1𝑢𝑡+1 +⋯ + 𝜃𝑞𝑢𝑡+𝑞 with zero initial values 𝑢𝑛+1 = ⋯ = 𝑢𝑛+𝑞 = 0, and

the 𝑎0
𝑡
are the conditional values of the 𝑎𝑡 computed from (7.1.12) using zero initial values,

𝑎01−𝑞 = ⋯ = 𝑎00 = 0 and �̃�0
1−𝑝 = ⋯ = �̃�0

0 = 0. After solving the equationsD[e∗] = F′u, as
described in (A7.3.12), the exact [𝑎𝑡]’s are then calculated through the recursion

[𝑎𝑡] = [�̃�𝑡] − 𝜙1[�̃�𝑡−1] −⋯ − 𝜙𝑝[�̃�𝑡−𝑝] + 𝜃1[𝑎𝑡−1] +⋯ + 𝜃𝑞[𝑎𝑡−𝑞] (7.1.15)

for 𝑡 = 1, 2,… , 𝑛 using the exact back-forecasts as starting values, with [�̃�𝑡] = �̃�𝑡 for
1 ≤ 𝑡 ≤ 𝑛. The matrices C, K, D, and F necessary for the computation in (7.1.14) are
defined explicitly in Appendix A7.3.

Comment on the Approximation. We saw that for the IMA(0, 1, 1) model fitted to the
IBM Series B, the conditional sums of squares provides a very close approximation to
the unconditional value. This will generally be the case for sufficiently long nonseasonal
time series. However, as is discussed further in Chapter 9, for seasonal series, in particu-
lar, the conditional approximation becomes less satisfactory and the unconditional sum of
squares should ordinarily be computed. Moreover, including the determinant in the like-
lihood function to obtain exact maximum likelihood estimates of the parameters can be
beneficial if the roots of the moving average operator are close to the unit circle.

Simulation studies have been performed by Dent and Min (1978) and Ansley and
Newbold (1980) to empirically investigate and compare the performance of the conditional
least-squares, unconditional least-squares, and maximum likelihood estimators for ARMA
models. Generally, the conditional and unconditional least-squares estimators serve as
satisfactory approximations to the maximum likelihood estimator for large-sample sizes.
However, the simulation evidence suggests a preference for the maximum likelihood esti-
mator for small- or moderate-sample sizes, especially if the moving average operator has
a root close to the boundary of the invertibility region. Some additional information on the
relative performance of the different estimators was provided by Hillmer and Tiao (1979)
and Osborn (1982), who examined the expected values of the conditional sum of squares,
the unconditional sum of squares, and the log-likelihood for an MA(1) model, as functions
of the unknown parameter 𝜃, for different sample sizes 𝑛. These studies provide an idea of
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FIGURE 7.1 Plot of 𝑆(𝜃) for Series B.

how the corresponding estimators will behave for various sample sizes, and the results are
consistent with those obtained from simulation studies.

7.1.6 Graphical Study of the Sum-of-Squares Function

The sum-of-squares function 𝑆(𝜃) for the IBM data given in Table 7.1 is plotted in
Figure 7.1. The overall minimum sum of squares is at about 𝜃 = −0.09 (𝜆 = 1.09), which
is the least-squares estimate and, on the assumption of normality, a close approximation to
the maximum likelihood estimate of the parameter 𝜃.

The graphical study of the sum-of-squares functions is readily extended to two parame-
ters by evaluating the sum of squares over a suitable grid of parameter values and plotting
contours. As discussed earlier, on the assumption of normality, the contours are very nearly
likelihood contours. Figure 7.2 shows a grid of 𝑆(𝜆0, 𝜆1) values for Series B fitted with the
IMA(0, 2, 2) model:

∇2𝑧𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵
2)𝑎𝑡

= [1 − (2 − 𝜆0 − 𝜆1)𝐵 − (𝜆0 − 1)𝐵2]𝑎𝑡 (7.1.16)

or in the form

∇2𝑧𝑡 = (𝜆0∇ + 𝜆1)𝑎𝑡−1 + ∇2𝑎𝑡

The minimum sum of squares in Figure 7.2 is at about �̂�0 = 1.09 and �̂�1 = 0.0. The plot
thus confirms that the preferred model in this case is an IMA(0, 1, 1) process. The device
illustrated here, of fitting a model somewhat more elaborate than that expected to be
needed, can provide a useful confirmation of the original identification. The elaboration of
the model should be made, of course, in the direction ‘‘feared’’ to be necessary.
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λ1

λ0

FIGURE 7.2 Values of 𝑆(𝜆0, 𝜆1) × 10−2 for Series B on a grid of (𝜆0, 𝜆1) values and approximate
contours.

Three Parameters. Whenwewish to studymodelswith three parameters, two-dimensional
contour diagrams for a number of values of the third parameter can be drawn. For illustra-
tion, part of such a series of diagrams is shown in Figure 7.3 for Series A, C, and D. In
each case, the ‘‘elaborated’’ model

∇2𝑧𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵
2 − 𝜃3𝐵

3)𝑎𝑡
= [1 − (2 − 𝜆−1 − 𝜆0 − 𝜆1)𝐵 − (𝜆0 + 2𝜆−1 − 1)𝐵2 + 𝜆−1𝐵

3]𝑎𝑡

or

∇2𝑧𝑡 = (𝜆−1∇2 + 𝜆0∇ + 𝜆1)𝑎𝑡−1 + ∇2𝑎𝑡

has been fitted, leading to the conclusion that the best-fitting models of this type4 are as
shown in Table 7.3.

The inclusion of additional parameters (particularly 𝜆−1) in this fitting process is not
strictly necessary, but we have included them to illustrate the effect of overfitting and to
show how closely our identification seems to be confirmed for these series.

4We show later in Section 7.2.5 that slightly better fits are obtained in some cases with closely related models
containing ‘‘stationary’’ autoregressive terms.
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FIGURE 7.3 Sum-of-squares contours for Series A, C, and D (shaded lines indicate boundaries of
the invertibility regions).

TABLE 7.3 IMAModels Fitted to Series A, C, and D

Series �̂�−1 �̂�0 �̂�1 Fitted Series

A 0 0.3 0.0 ∇𝑧𝑡 = 0.3𝑎𝑡−1 + ∇𝑎𝑡
C 0 1.1 0.8 ∇2𝑧𝑡 = 1.1∇𝑎𝑡−1 + 0.8𝑎𝑡−1 + ∇2𝑎𝑡
D 0 0.9 0.0 ∇𝑧𝑡 = 0.9𝑎𝑡−1 + ∇𝑎𝑡

7.1.7 Examination of the Likelihood Function and Confidence Regions

The likelihood function is not, of course, plotted merely to indicate maximum likelihood
values. The graph of this function contains the totality of information that comes from the
data. In some fields of study, cases can occur where the likelihood function has two or more
peaks and also where the likelihood function contains sharp ridges and spikes. In each such
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case, the likelihood function is trying to tell us something that we need to know. Thus, the
existence of two peaks of approximately equal heights implies that there are two sets of
parameter values that might explain the data. The existence of obliquely oriented ridges
means that a value of one parameter, considerably different from its maximum likelihood
value, could explain the data if accompanied by a value of the other parameter, which
deviated appropriately. To understand the estimation fully, it is thus useful to examine the
likelihood function both analytically and graphically.

Need for Care in Interpreting the Likelihood Function. Care is needed in interpreting
the likelihood function. For example, results discussed later, which assume that the log-
likelihood is approximately quadratic near its maximum, will clearly not apply to the
three-parameter cases depicted in Figure 7.3. However, these examples are exceptional
because here we are deliberately overfitting the model. If the simpler model is justified,
we should expect to find the likelihood function contours truncated near its maximum by a
boundary in the higher dimensional parameter space. However, quadratic approximations
could be used if the simpler identified model rather than the overparameterized model was
fitted.

Special care is needed when the maximum of the likelihood function may be on or near
a boundary. Consider the situation shown in Figure 7.4 and suppose we know a priori that
a parameter 𝛽 > 𝛽0. The maximum likelihood within the permissible range of 𝛽 is at 𝐵,
where 𝛽 = 𝛽0, not at 𝐴 or at 𝐶 . It will be noticed that the first derivative of the likelihood is
in this case nonzero at the maximum likelihood value and that the quadratic approximation
is certainly not an adequate representation of the likelihood.

When a class of estimation problems are examined initially, it is important to plot the
likelihood function to identify potential issues. After the behavior of a potential model is
well understood, and knowledge of the situation indicates that it is appropriate to do so, we
may take certain shortcuts, which we now consider. We begin by considering expressions
for the variances and covariances of maximum likelihood estimates, appropriate when the
log-likelihood is approximately quadratic and the sample size is moderately large.

In what follows, it is convenient to define a vector 𝜷 whose 𝑘 = 𝑝 + 𝑞 elements are
the autoregressive and moving average parameters 𝝓 and 𝜽. Thus, the complete set of

FIGURE 7.4 Hypothetical likelihood function with a constraint 𝛽 > 𝛽0.
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𝑝 + 𝑞 + 1 = 𝑘 + 1 parameters of the ARMA process may be written as 𝝓, 𝜽, 𝜎2𝑎 ; or as 𝜷, 𝜎
2
𝑎;

or simply as 𝝃.

Variances andCovariances ofMLEstimates. For the appropriately parameterizedARMA
model, it will often happen that over the relevant5 region of the parameter space, the log-
likelihood is approximately quadratic in the elements of 𝜷 (i.e., of 𝝓 and 𝜽), so that

𝑙(𝝃) = 𝑙(𝜷, 𝜎2
𝑎
) ≃ 𝑙(�̂�, 𝜎2

𝑎
) + 1

2

𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑙𝑖𝑗 (𝛽𝑖 − 𝛽𝑖)(𝛽𝑗 − 𝛽𝑗) (7.1.17)

where, to the approximation considered, the derivatives

𝑙𝑖𝑗 =
𝜕2𝑙(𝜷, 𝜎2

𝑎
)

𝜕𝛽𝑖𝜕𝛽𝑗
(7.1.18)

are constant. For large 𝑛, the influence of the term 𝑓 (𝝓, 𝜽) in (7.1.5) can be ignored in most
cases. Hence, 𝑙(𝜷, 𝜎2

𝑎
)will be essentially quadratic in 𝜷 if this is true for𝑆(𝜷). Alternatively,

𝑙(𝜷, 𝜎2
𝑎
)will be essentially quadratic in 𝜷 if the conditional expectations [𝑎𝑡|𝜷,w] in (7.1.6)

are approximately locally linear in the elements of 𝜷. Thus, for moderate- and large-sample
sizes 𝑛, when the local quadratic approximation (7.1.17) is adequate, useful approximations
to the variances and covariances of the estimates and approximate confidence regions may
be obtained.

Information Matrix for the Parameters 𝜷. The (𝑘 × 𝑘) matrix −{𝐸[𝑙𝑖𝑗]} = I (𝜷) is re-
ferred to (Fisher, 1956; Whittle, 1953) as the information matrix for the parameters 𝜷,
where the expectation is taken over the distribution of w. For a given value of 𝜎2

𝑎
, the

variance--covariance matrix V(𝜷) for the ML estimates 𝜷 is, for large samples, given by
the inverse of this information matrix, that is,

V(𝜷) ≃ {−𝐸[𝑙𝑖𝑗]}−1 ≡ I−1(𝜷) (7.1.19)

For example, if 𝑘 = 2, the large-sample variance--covariance matrix is

V(𝜷) =

[
𝑉 (𝛽1) cov[𝛽1, 𝛽2]

cov[𝛽1, 𝛽2] 𝑉 (𝛽2)

]
≃ −

[
𝐸[𝑙11] 𝐸[𝑙12]
𝐸[𝑙12] 𝐸[𝑙22]

]−1

In addition, the ML estimates 𝜷 obtained from a stationary invertible ARMA process
were shown to be asymptotically distributed as multivariate normal with mean vector 𝜷
and covariance matrix I−1(𝜷) (e.g., Mann and Wald, 1943; Whittle, 1953; Hannan, 1960;
Walker, 1964) in the sense that 𝑛1∕2(𝜷 − 𝜷) converges in distribution to the multivariate
normal 𝑁{0, I−1∗ (𝜷)} as 𝑛 → ∞, where I∗(𝜷) = lim 𝑛−1I(𝜷). The specific form of the
informationmatrix I(𝜷) and the limitingmatrix I∗(𝜷) for ARMA(𝑝, 𝑞)models are described
in Section 7.2.6, and details on the asymptotic normality of the estimator 𝜷 are examined
for the special case of AR models in Appendix A7.5.

5Say over a 95% confidence region.
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Now, using (7.1.5), we have

𝑙𝑖𝑗 ≃
−𝑆𝑖𝑗

2𝜎2
𝑎

(7.1.20)

where

𝑆𝑖𝑗 =
𝜕2𝑆(𝜷|w)
𝜕𝛽𝑖𝜕𝛽𝑗

Furthermore, if for large samples, we approximate the expected values of 𝑙𝑖𝑗 or of 𝑆𝑖𝑗 by
the values actually observed, then, using (7.1.19), we obtain

V(𝜷) ≃ {−𝐸[𝑙𝑖𝑗 ]}−1 ≃ 2𝜎2
𝑎
{𝐸[𝑆𝑖𝑗]}−1 ≃ 2𝜎2

𝑎
{𝑆𝑖𝑗}−1 (7.1.21)

Thus, for 𝑘 = 2,

V(𝜷) ≃ 2𝜎2
𝑎

⎡⎢⎢⎢⎢⎢⎢⎣

𝜕2𝑆(𝜷)
𝜕𝛽21

𝜕2𝑆(𝜷)
𝜕𝛽1𝜕𝛽2

𝜕2𝑆(𝜷)
𝜕𝛽1𝜕𝛽2

𝜕2𝑆(𝜷)
𝜕𝛽22

⎤⎥⎥⎥⎥⎥⎥⎦

−1

If 𝑆(𝜷) were exactly quadratic in 𝜷 over the relevant region of the parameter space, then
all the derivatives 𝑆𝑖𝑗 would be constant over this region. In practice, the 𝑆𝑖𝑗 will vary
somewhat, and we will usually assume that the derivatives are determined at or near the
point 𝜷. Now, it is shown in the Appendices A7.3 and A7.4 that an estimate6 of 𝜎2

𝑎
is

provided by

�̂�2
𝑎
= 𝑆(𝜷)

𝑛
(7.1.22)

and that for large samples, �̂�2
𝑎
and 𝜷 are uncorrelated. Finally, the elements of (7.1.21) may

be estimated from

cov[𝛽𝑖, 𝛽𝑗] ≃ 2�̂�2
𝑎
𝑆𝑖𝑗 (7.1.23)

where the (𝑘 × 𝑘) matrix {𝑆𝑖𝑗} is given by {𝑆𝑖𝑗} = {𝑆𝑖𝑗}−1 and the expression (7.1.23) is
understood to define the variance 𝑉 (𝛽𝑖) when 𝑗 = 𝑖.

Approximate Confidence Regions for the Parameters. In particular, these results allow
us to obtain the approximate variances of our estimates. By taking the square root of these
variances, we obtain approximate standard errors (SE) of the estimates. The standard error
of an estimate 𝛽𝑖 is denoted by SE[𝛽𝑖]. When we have to consider several parameters
simultaneously, we need some means of judging the precision of the estimates jointly.
One means of doing this is to determine a confidence region. If, for given 𝜎2

𝑎
, 𝑙(𝜷, 𝜎2

𝑎
)

is approximately quadratic in 𝜷 in the neighborhood of 𝜷, then using (7.1.19) (see also

6Arguments can be advanced for using the divisor 𝑛 − 𝑘 = 𝑛 − 𝑝 − 𝑞 rather than 𝑛 in (7.1.22), but for moderate-
sample sizes, this modification does not make much difference.
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TABLE 7.4 𝑺(𝝀) and Its First and Second
Differences for Various Values of 𝝀 for Series B

𝜆 = 1 − 𝜃 𝑆(𝜆) ∇(𝑆) ∇2(𝑆)

1.5 23,928 2,333 960
1.4 21,595 1,373 634
1.3 20,222 739 476
1.2 19,483 263 406
1.1 19,220 −143 390
1.0 19,363 −533 422
0.9 19,896 −955 508
0.8 20,851 −1,463 691
0.7 22,314 −2,154 1069
0.6 24,468 −3,223
0.5 27,691

Appendix A7.1), an approximate 1 − 𝜀 confidence region will be defined by

−
∑
𝑖

∑
𝑗

𝐸[𝑙𝑖𝑗 ](𝛽𝑖 − 𝛽𝑖)(𝛽𝑗 − 𝛽𝑗) < 𝜒2
𝜀
(𝑘) (7.1.24)

where 𝜒2
𝜀
(𝑘) is the significance point exceeded by a proportion 𝜀 of the 𝜒2 distribution,

having 𝑘 degrees of freedom.
Alternatively, using the approximation (7.1.21) and substituting the estimate of (7.1.22)

for 𝜎2
𝑎
, the approximate confidence region is given by7

∑
𝑖

∑
𝑗

𝑆𝑖𝑗 (𝛽𝑖 − 𝛽𝑖)(𝛽𝑗 − 𝛽𝑗) < 2�̂�2
𝑎
𝜒2
𝜀
(𝑘) (7.1.25)

However, for a quadratic 𝑆(𝜷) surface

𝑆(𝜷) − 𝑆(𝜷) = 1
2
∑
𝑖

∑
𝑗

𝑆𝑖𝑗(𝛽𝑖 − 𝛽𝑖)(𝛽𝑗 − 𝛽𝑗) (7.1.26)

Thus, using (7.1.22) and (7.1.25), we finally obtain the result that the approximate 1 − 𝜀

confidence region is bounded by the contour on the sum-of-squares surface, for which

𝑆(𝜷) = 𝑆(𝜷)

[
1 +

𝜒2
𝜀
(𝑘)
𝑛

]
(7.1.27)

Examples of the Calculation of Approximate Confidence Intervals and Regions.

1. Example: Series B. For Series B, values of 𝑆(𝜆) and of its differences are shown
in Table 7.4. The second difference of 𝑆(𝜆) is not constant, and thus 𝑆(𝜆) is not
strictly quadratic. However, in the range from 𝜆 = 0.85 to 𝜆 = 1.35,∇2(𝑆) does not
change greatly, so that (7.1.27) can be expected to provide a reasonably close approx-

7A somewhat closer approximation based on the F distribution, which takes account of the approximate sampling
distribution of �̂�2

𝑎
, may be employed. For moderate-sample sizes this refinement does not make much practical

difference.
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imation. With a minimum value 𝑆(�̂�) = 19, 216, the critical value 𝑆(𝜆), defining an
approximate 95% confidence interval, is then given by

𝑆(𝜆) = 19, 216
(
1 + 3.84

368

)
= 19, 416

Reading off the values of 𝜆 corresponding to 𝑆(𝜆) = 19, 416 in Figure 7.1, we obtain
an approximate confidence interval 0.98 < 𝜆 < 1.19.

Alternatively, we can employ (7.1.25). Using the second difference at 𝜆 = 1.1,
given in Table 7.4, to approximate the derivative, we obtain

𝑆11 =
𝜕2𝑆

𝜕𝜆2
≃ 390

(0.1)2

Also, using (7.1.22), �̂�2
𝑎
= 19, 216∕368 = 52.2. Thus, the 95% confidence interval,

defined by (7.1.25), is

390
(0.1)2

(𝜆 − 1.09)2 < 2 × 52.2 × 3.84

that is, |𝜆 − 1.09| < 0.10. Thus, the interval is 0.99 < 𝜆 < 1.19, which agrees closely
with the previous calculation.

In this example, where there is only a single parameter 𝜆, the use of (7.1.24) and
(7.1.25) is equivalent to using an interval �̂� ± 𝑢𝜀∕2�̂�(�̂�), where 𝑢𝜀∕2 is the value, which
excludes a proportion 𝜀∕2 in the upper tail of the standard normal distribution. An

approximate standard error for �̂�, �̂�(�̂�) =
√

2�̂�2
𝑎
𝑆−1
11 , is obtained from (7.1.23). In the

present example,

𝑉 (�̂�) = 2�̂�2
𝑎
𝑆−1
11 = 2 × 52.2 × 0.12

390
= 0.00268

and the approximate standard error is �̂�(�̂�) =
√
0.00268 = 0.052. Thus, the approxi-

mate 95% confidence interval is �̂� ± 1.96�̂�(�̂�) = 1.09 ± 0.10, as before.
Finally, we show later in Section 7.2.6 that it is possible to evaluate (7.1.19)

analytically, for large samples from an MA(1) process, yielding

𝑉 (�̂�) ≃ 𝜆(2 − 𝜆)
𝑛

For the present example, substituting �̂� = 1.09 for 𝜆, we find that 𝑉 (�̂�) ≃ 0.00269,
which agrees closely with the previous estimate and so yields the same standard error
of 0.052 and the same confidence interval.

2. Example: Series C. In the identification of Series C, one model that was entertained
was a (0, 2, 2) process. To illustrate the application of (7.1.27) for more than one
parameter, Figure 7.5 shows an approximate 95% confidence region (shaded) for 𝜆0
and 𝜆1 of Series C. For this example, 𝑆(�̂�) = 4.20, 𝑛 = 224, and 𝜒2

0.05(2) = 5.99,
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FIGURE 7.5 Sum-of-squares contours with shaded 95% confidence region for Series C, assuming
a model of order (0, 2, 2).

so that the approximate 95% confidence region is bounded by the contour for
which

𝑆(𝜆0, 𝜆1) = 4.20
(
1 + 5.99

224

)
= 4.31

7.2 NONLINEAR ESTIMATION

7.2.1 General Method of Approach

The plotting of the sum-of-squares function is of particular importance in the study of new
estimation problems because it ensures that any peculiarities in the estimation situation
show up. When we are satisfied that anomalies are unlikely, other methods may be used.

We have seen that for most cases, the maximum likelihood estimates are closely ap-
proximated by the least-squares estimates, which minimize

𝑆(𝝓, 𝜽) =
𝑛∑
𝑡=1

[𝑎𝑡]2 + [e∗]′𝛀−1[e∗]

and in practice, this function can be approximated by a finite sum
∑𝑛

𝑡=1−𝑄[𝑎𝑡]
2.

In general, considerable simplification occurs in the minimization with respect to 𝜷,
of a sum of squares Σ𝑛

𝑡=1[𝑓𝑡(𝜷)]
2, if each 𝑓𝑡(𝜷) (𝑡 = 1, 2,… , 𝑛) is a linear function of the

parameters𝜷. We now show that the autoregressive andmoving averagemodels differ with
respect to the linearity of the [𝑎𝑡]. For the purely autoregressive process, [𝑎𝑡] = 𝜙(𝐵)[�̃�𝑡] =
[�̃�𝑡] − Σ𝑝

𝑖=1𝜙𝑖[�̃�𝑡−𝑖] and

𝜕[𝑎𝑡]
𝜕𝜙𝑖

= −[�̃�𝑡−𝑖] + 𝜙(𝐵)
𝜕[�̃�𝑡]
𝜕𝜙𝑖
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Now for 𝑢 > 0, [�̃�𝑢] = �̃�𝑢 and 𝜕[�̃�𝑢]∕𝜕𝜙𝑖 = 0, while for 𝑢 ≤ 0, [�̃�𝑢] and 𝜕[�̃�𝑢]∕𝜕𝜙𝑖 are
both functions of 𝝓. Thus, except for the effect of ‘‘starting values,’’ [𝑎𝑡] is linear in the
𝜙’s. By contrast, for the pure moving average process,

[𝑎𝑡] = 𝜃−1(𝐵)[�̃�𝑡]
𝜕[𝑎𝑡]
𝜕𝜃𝑗

= 𝜃−2(𝐵)[�̃�𝑡−𝑗] + 𝜃−1(𝐵)
𝜕[�̃�𝑡]
𝜕𝜃𝑗

so that the [𝑎𝑡]’s are always nonlinear functions of the moving average parameters.
We will see in Section 7.3 that special simplifications occur in obtaining least-squares

and maximum likelihood estimates for the autoregressive process. We show in the present
section how, by iterative application of linear least-squares, estimates may be obtained for
any ARMA process.

Linearization of the Model. In what follows, we continue to use 𝜷 as a general symbol for
the 𝑘 = 𝑝 + 𝑞 parameters (𝝓, 𝜽). We need, then, to minimize

𝑆(𝝓, 𝜽) ≃
𝑛∑

𝑡=1−𝑄
[𝑎𝑡|�̃�, 𝜷]2 =

𝑛∑
𝑡=1−𝑄

[𝑎𝑡]2

Expanding [𝑎𝑡] in a Taylor series about its value corresponding to some guessed set of
parameter values 𝜷′0 = (𝛽1,0, 𝛽2,0,… , 𝛽𝑘,0), we have approximately

[𝑎𝑡] = [𝑎𝑡,0] −
𝑘∑
𝑖=1

(𝛽𝑖 − 𝛽𝑖,0)𝑥𝑡,𝑖 (7.2.1)

where [𝑎𝑡,0] = [𝑎𝑡|w, 𝜷0] and

𝑥𝑡,𝑖 = −
𝜕[𝑎𝑡]
𝜕𝛽𝑖

||||𝜷=𝜷0
Now, ifX is the (𝑛+𝑄) × 𝑘matrix {𝑥𝑡,𝑖}, then the 𝑛+𝑄 equations (7.2.1)may be expressed
as

[a0] = X(𝜷 − 𝜷0) + [a]

where [a0] and [a] are column vectors with 𝑛 +𝑄 elements.
The adjustments 𝜷 − 𝜷0, which minimize 𝑆(𝜷) = 𝑆(𝝓, 𝜽) = [a]′[a], may now be ob-

tained by linear least-squares, that is, by ‘‘regressing’’ the [𝑎𝑜]’s onto the 𝑥’s. This gives the
usual linear least-squares estimates, as presented in Appendix A7.2.1, of the adjustments
as 𝜷 − 𝜷0 = (X′X)−1X′[a0], hence, 𝜷 = 𝜷0 + (X′X)−1X′[a0]. Because the [𝑎𝑡]’s will not
be exactly linear in the parameters 𝜷, a single adjustment will not immediately produce the
final least-squares values. Instead, the adjusted values 𝜷 are substituted as new guesses and
the process is repeated until convergence occurs. Convergence is faster if reasonably good
guesses, such as may be obtained at the identification stage, are used initially. If sufficiently
bad initial guesses are used, the process may not converge at all.

7.2.2 Numerical Estimates of the Derivatives

The derivatives 𝑥𝑡,𝑖 may be obtained directly, as we illustrate later. They can also
be computed numerically using a general nonlinear least-squares routine. This is done
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by perturbing the parameters ‘‘one at a time.’’ Thus, for a given model, the val-
ues [𝑎𝑡|w, 𝛽1,0, 𝛽2,0,… , 𝛽𝑘,0] for 𝑡 = 1 −𝑄,… , 𝑛 are calculated recursively, using what-
ever preliminary ‘‘back-forecasts’’ may be needed. The calculation is then repeated for
[𝑎𝑡|w, 𝛽1,0 + 𝛿1, 𝛽2,0,… , 𝛽𝑘,0], then for [𝑎𝑡|w, 𝛽1,0, 𝛽2,0 + 𝛿2,… , 𝛽𝑘,0], and so on. The neg-
ative of the required derivative is then given to sufficient accuracy using

𝑥𝑡,𝑖 =
[𝑎𝑡|w, 𝛽1,0,… , 𝛽𝑖,0,… , 𝛽𝑘,0] − [𝑎𝑡|w, 𝛽1,0,… , 𝛽𝑖,0 + 𝛿𝑖,… , 𝛽𝑘,0]

𝛿𝑖
(7.2.2)

The numerical method described above has the advantage of universal applicability and
requires us to program the calculation of the [𝑎𝑡]’s only, not their derivatives. General
nonlinear estimation routines, which essentially require only input instructions on how to
compute the [𝑎𝑡]’s, are generally available. In some versions, it is necessary to choose the
𝛿’s in advance. In others, the program itself carries through a preliminary iteration to find
suitable 𝛿’s. Many programs include special features to avoid overshoot and to speed up
convergence.

Provided that the least-squares solution is not on or near a constraining boundary, the
value of X = X

𝜷
from the final iteration may be used to compute approximate variances,

covariances, and confidence intervals. Thus, similar to the usual linear least-squares results
in Appendix A7.2.3,

(𝐗′
𝜷
𝐗
𝜷
)−1𝜎2

𝑎

will approximate the variance--covariance matrix of the 𝛽’s, and 𝜎2
𝑎
will be estimated by

�̂�2
𝑎
= 𝑆(𝜷)∕𝑛.

7.2.3 Direct Evaluation of the Derivatives

We now show that it is also possible to obtain derivatives directly, but additional re-
cursive calculations are needed. To illustrate the method, it is sufficient to consider an
ARMA(1, 1) process, which can be written in either of the forms as

𝑒𝑡 = 𝑤𝑡 − 𝜙𝑤𝑡+1 + 𝜃𝑒𝑡+1
𝑎𝑡 = 𝑤𝑡 − 𝜙𝑤𝑡−1 + 𝜃𝑎𝑡−1

We have seen in Section 7.1.4, how the two versions of the model may be used in al-
ternation, one providing initial values with which to start off a recursion with the other.
We assume that a first computation has already been made yielding values of [𝑒𝑡], of [𝑎𝑡],
and of [𝑤0], [𝑤−1],… , [𝑤1−𝑄], as in Section 7.1.5, and that [𝑤−𝑄], [𝑤−𝑄−1],… and hence
[𝑎−𝑄], [𝑎−𝑄−1],… are negligible.We now show that a similar dual calculation may be used
in calculating derivatives.

Using the notation 𝑎(𝜙)
𝑡

to denote the partial derivative 𝜕[𝑎𝑡]∕𝜕𝜙, we obtain

𝑒
(𝜙)
𝑡

= 𝑤
(𝜙)
𝑡

− 𝜙𝑤
(𝜙)
𝑡+1 + 𝜃𝑒

(𝜙)
𝑡+1 − [𝑤𝑡+1] (7.2.3)

𝑎
(𝜙)
𝑡

= 𝑤
(𝜙)
𝑡

− 𝜙𝑤
(𝜙)
𝑡−1 + 𝜃𝑎

(𝜙)
𝑡−1 − [𝑤𝑡−1] (7.2.4)

𝑒
(𝜃)
𝑡

= 𝑤
(𝜃)
𝑡

− 𝜙𝑤
(𝜃)
𝑡+1 + 𝜃𝑒

(𝜃)
𝑡+1 + [𝑒𝑡+1] (7.2.5)
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𝑎
(𝜃)
𝑡

= 𝑤
(𝜃)
𝑡

− 𝜙𝑤
(𝜃)
𝑡−1 + 𝜃𝑎

(𝜃)
𝑡−1 + [𝑎𝑡−1] (7.2.6)

Now,

[𝑤𝑡] = 𝑤𝑡

𝑤
(𝜙)
𝑡

= 𝑤
(𝜃)
𝑡

= 0

}
𝑡 = 1, 2,… , 𝑛 (7.2.7)

and

[𝑒−𝑗] = 0 𝑗 = 0, 1,… , 𝑛 (7.2.8)

Consider equations (7.2.3) and (7.2.4). By setting 𝑒
(𝜙)
𝑛+1 = 0 in (7.2.3), we can begin a

back recursion, which using (7.2.7) and (7.2.8) eventually allows us to compute 𝑤(𝜙)
−𝑗 for

𝑗 = 0, 1,… , 𝑄− 1. Since 𝑎(𝜙)−𝑄, 𝑎
(𝜙)
−𝑄−1,… can be taken to be zero, we can now use (7.2.4)

to compute recursively the required derivatives 𝑎(𝜙)
𝑡

. In a similar way, (7.2.5) and (7.2.6)

can be used to calculate the derivatives 𝑎(𝜃)
𝑡
.

7.2.4 General Least-Squares Algorithm for the Conditional Model

An approximation that we have sometimes used with long series is to set starting values for
the 𝑎𝑡’s, and hence for the derivatives in the 𝑥𝑡’s, equal to their unconditional expectations
of zero and then to proceed directly with the forward recursions. The effect is to introduce
a transient into both the 𝑎𝑡 and the 𝑥𝑡 series, the latter being slower to die out since the 𝑥𝑡’s
depend on the 𝑎𝑡’s. In some instances, where there is an abundance of data (say, 200 or
more observations), the effect of the approximation can be nullified at the expense of some
loss of information, by discarding, say, the first 10 calculated values.

If we adopt the approximation, an interesting general algorithm for this conditional
model results. The ARMA(𝑝, 𝑞) model can be written as

𝑎𝑡 = 𝜃−1(𝐵)𝜙(𝐵)�̃�𝑡

where 𝑤𝑡 = ∇𝑑𝑧𝑡, �̃�𝑡 = 𝑤𝑡 − 𝜇 and

𝜃(𝐵) = 1 − 𝜃1𝐵 −⋯ − 𝜃𝑖𝐵
𝑖 −⋯ 𝜃𝑞𝐵

𝑞

𝜙(𝐵) = 1 − 𝜙1𝐵 −⋯ − 𝜙𝑗𝐵
𝑗 −⋯𝜙𝑝𝐵

𝑝

If the first guesses for the parameters 𝜷 = (𝝓, 𝜽) are 𝜷0 = (𝝓0, 𝜽0), then

𝑎𝑡,0 = 𝜃−10 (𝐵)𝜙0(𝐵)�̃�𝑡

and

−
𝜕𝑎𝑡

𝜕𝜙𝑗

|||||𝛽0
= 𝑢𝑡,𝑗 = 𝑢𝑡−𝑗 −

𝜕𝑎𝑡

𝜕𝜃𝑖

||||𝛽0
= 𝑣𝑡,𝑖 = 𝑣𝑡−𝑖

where

𝑢𝑡 = 𝜃−10 (𝐵)�̃�𝑡 = 𝜙−1
0 (𝐵)𝑎𝑡,0 (7.2.9)

𝑣𝑡 = −𝜃−20 (𝐵)𝜙0(𝐵)�̃�𝑡 = −𝜃−10 (𝐵)𝑎𝑡,0 (7.2.10)
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The 𝑎𝑡’s, 𝑢𝑡’s, and 𝑣𝑡’s may be calculated recursively, with starting values for 𝑎𝑡’s, 𝑢𝑡’s,
and 𝑣𝑡’s set equal to zero, as follows:

𝑎𝑡,0 = �̃�𝑡 − 𝜙1,0�̃�𝑡−1 −⋯ − 𝜙𝑝,0�̃�𝑡−𝑝 + 𝜃1,0𝑎𝑡−1,0
+⋯ + 𝜃𝑞,0𝑎𝑡−𝑞,0 (7.2.11)

𝑢𝑡 = 𝜃1,0𝑢𝑡−1 +⋯ + 𝜃𝑞,0𝑢𝑡−𝑞 + �̃�𝑡 (7.2.12)

= 𝜙1,0𝑢𝑡−1 +⋯ + 𝜙𝑝,0𝑢𝑡−𝑝 + 𝑎𝑡,0 (7.2.13)

𝑣𝑡 = 𝜃1,0𝑣𝑡−1 +⋯ + 𝜃𝑞,0𝑣𝑡−𝑞 − 𝑎𝑡,0 (7.2.14)

Corresponding to (7.2.1), the approximate linear regression equation becomes

𝑎𝑡,0 =
𝑝∑

𝑗=1
(𝜙𝑗 − 𝜙𝑗,0)𝑢𝑡−𝑗 +

𝑞∑
𝑖=1

(𝜃𝑖 − 𝜃𝑖,0)𝑣𝑡−𝑖 + 𝑎𝑡 (7.2.15)

The adjustments are then the regression coefficients of 𝑎𝑡,0 on the 𝑢𝑡−𝑗 and the 𝑣𝑡−𝑖. By
adding the adjustments to the first guesses (𝝓0, 𝜽0), a set of ‘‘second guesses’’ are formed
and these now take the place of (𝝓0, 𝜽0) in a second iteration, in which new values of
𝑎𝑡,0, 𝑢𝑡, and 𝑣𝑡 are computed, until convergence eventually occurs.

Alternative Form for the Algorithm. The approximate linear expansion (7.2.15) can be
written in the form

𝑎𝑡,0 =
𝑝∑

𝑗=1
(𝜙𝑗 − 𝜙𝑗,0)𝐵𝑗𝜙−1

0 (𝐵)𝑎𝑡,0 −
𝑞∑
𝑖=1

(𝜃𝑖 − 𝜃𝑖,0)𝐵𝑖𝜃−10 (𝐵)𝑎𝑡,0 + 𝑎𝑡

= −[𝜙(𝐵) − 𝜙0(𝐵)]𝜙−1
0 (𝐵)𝑎𝑡,0 + [𝜃(𝐵) − 𝜃0(𝐵)]𝜃−10 (𝐵)𝑎𝑡,0 + 𝑎𝑡

that is,

𝑎𝑡,0 = −𝜙(𝐵)[𝜃−10 (𝐵)𝑎𝑡,0] + 𝜃(𝐵)[𝜃−10 (𝐵)𝑎𝑡,0] + 𝑎𝑡 (7.2.16)

which presents the algorithm in an interesting form.

Application to an IMA(0, 2, 2) process. To illustrate the calculation with the conditional
approximation, consider the estimation of least-squares values �̂�1, �̂�2 for Series C using the
model of order (0, 2, 2):

𝑤𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵
2)𝑎𝑡

with 𝑤𝑡 = ∇2𝑧𝑡,

𝑎𝑡,0 = 𝑤𝑡 + 𝜃1,0𝑎𝑡−1,0 + 𝜃2,0𝑎𝑡−2,0
𝑣𝑡 = −𝑎𝑡,0 + 𝜃1,0𝑣𝑡−1 + 𝜃2,0𝑣𝑡−2

Using the initial values 𝜃1,0 = 0.1 and 𝜃2,0 = 0.1, the first adjustments to 𝜃1,0 and 𝜃2,0
are found by ‘‘regressing’’ 𝑎𝑡,0 on 𝑣𝑡−1 and 𝑣𝑡−2. The process is repeated until convergence
occurs. Successive parameter estimates are shown in Table 7.5.
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TABLE 7.5 Convergence of Parameter
Estimates for IMA(0, 2, 2) Process

Iteration 𝜃1 𝜃2

0 0.1000 0.1000
1 0.1247 0.1055
2 0.1266 0.1126
3 0.1286 0.1141
4 0.1290 0.1149
5 0.1292 0.1151
6 0.1293 0.1152
7 0.1293 0.1153
8 0.1293 0.1153

7.2.5 ARIMA Models Fitted to Series A--F

In Table 7.6, we summarize the models fitted by the iterative least-squares procedure of
Sections 7.2.1 and 7.2.2 to Series A--F. The models fitted were identified in Chapter 6 and
summarized in Tables 6.2 and 6.5. In the case of Series A, C, and D, two possible models
were identified and subsequently fitted. For Series A and D, the alternative models involve
the use of a stationary autoregressive operator (1 − 𝜙𝐵) instead of the unit-root operator
(1 − 𝐵). Examination of Table 7.6 shows that in both cases the autoregressivemodel results
in a slightly smaller residual variance although the models are very similar. Even though
a slightly better fit is possible with a stationary model, the IMA(0, 1, 1) model might be

TABLE 7.6 Summary of Models Fitted to Series A--F𝒂

Series Number of Fitted Models Residual Variance𝑏

Observations

A 197 𝑧𝑡 − 0.92𝑧𝑡−1 = 1.45 + 𝑎𝑡 − 0.58𝑎𝑡−1 0.097
(±0.04) (±0.08)

∇𝑧𝑡 = 𝑎𝑡 − 0.70𝑎𝑡−1 0.101
(±0.05)

B 369 ∇𝑧𝑡 = 𝑎𝑡 + 0.09𝑎𝑡−1 52.2
(±0.05)

C 226 ∇𝑧𝑡 − 0.82∇𝑧𝑡−1 = 𝑎𝑡 0.018
(±0.04)

∇2𝑧𝑡 = 𝑎𝑡 − 0.13𝑎𝑡−1 − 0.12𝑎𝑡−2 0.019
(±0.07) (±0.07)

D 310 𝑧𝑡 − 0.87𝑧𝑡−1 = 1.17 + 𝑎𝑡 0.090
(±0.03)

∇𝑧𝑡 = 𝑎𝑡 − 0.06𝑎𝑡−1 0.096
(±0.06)

E 100 𝑧𝑡 = 14.35 + 1.42𝑧𝑡−1 − 0.73𝑧𝑡−2 + 𝑎𝑡 227.8
(±0.07) (±0.07)

𝑧𝑡 = 11.31 + 1.57𝑧𝑡−1 − 1.02𝑧𝑡−2 + 0.21𝑧𝑡−3 + 𝑎𝑡 218.1
(±0.10) (±0.15) (±0.10)

F 70 𝑧𝑡 = 58.87 − 0.342𝑧𝑡−1 + 0.19𝑧𝑡−2 + 𝑎𝑡 112.7
(±0.12) (±0.12)

𝑎 The values (±) under each estimate denote the standard errors of those estimates.
𝑏 Obtained from 𝑆(�̂�, �̂�)∕𝑛.
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preferable in these cases on the grounds that unlike the stationary model, it does not assume
that the series has a fixed mean. This is especially important in predicting future values
of the series. For if the level does change, a model with 𝑑 > 0 will continue to track it,
whereas a model for which 𝑑 = 0 will be tied to a mean level that may have become out of
date. It must be noted, however, that for Series D formal unit root testing to be discussed
further in Section 10.1 does not support the need for differencing and suggests a preference
for the stationary AR(1) model. Also, unit root testing for Series C indicates a preference
for the ARIMA(1, 1, 0) model over a model in terms of second differences. Unit root
testing for Series A within the ARMA(1, 1) model, though, does not reject the need for the
nonstationary operator (1 − 𝐵) for the autoregressive part.

The limits under the coefficients inTable 7.6 represent the standard errors of the estimates
obtained from the covariance matrix (𝐗′

𝜷
𝐗
𝜷
)−1�̂�2

𝑎
, as described in Section 7.2.1. Note that

the estimate �̂�3 in the AR(3) model, fitted to the sunspot Series E, is 2.1 times its standard
error, indicating that a marginally better fit is obtained by the third-order autoregressive
process, as compared with the second-order autoregressive process. This is in agreement
with a conclusion reached by Moran (1954).

Parameter Estimation Using R. Parameter estimation for ARIMA models based on the
methods described above is available in the R software package. The relevant tools in-
clude the arima() command in the stats package and the sarima() command in the astsa
package. Details of the commands are obtained by typing help(arima) and help(sarima)
in R. Using the arima() command, the order of the model is specified using the argument
order=c(p,d,q), and the estimation method is specified by method=c("CSS") for condi-
tional least-squares and method=c("ML") for the full maximum likelihood method. The
sarima() fits the ARIMA(𝑝, 𝑑, 𝑞) model to a series z by maximum likelihood using the
command sarima(z,p,d,q).

For illustration, we first use the arima() routine in the stats package to estimate the
parameters the ARIMA(3, 0, 0) model for the sunspot data in Series E. The relevant
command and a partial model output are provided below.

> arima(ts(seriesE),order=c(3,0,0),method=c("CSS"))

Coefficients:
ar1 ar2 ar3 intercept

1.5519 -1.0069 0.2076 46.7513
s.e. 0.0980 0.1540 0.0981 5.9932

sigmaˆ2 estimated as 219.3: log-likelihood = -411.42, aic = NA

We see that the estimates of the autoregressive parameters are very close to the values
provided in Table 7.6. However, using this routine, the intercept reported in the output is
the mean of the series, so that the constant term in the model needs to be calculated as
�̂�0 = �̂�(1 − �̂�1 − �̂�2 − �̂�3). This gives an estimate for the constant of 11.57.

The commands and a partial output from performing the analysis using sarima() are as
follows:

> library(astsa}
> sarima(ts(seriesE),3,0,0)



Box3G Date: May 21, 2015 Time: 9:59 am

NONLINEAR ESTIMATION 233

Coefficients:
ar1 ar2 ar3 xmean

1.5531 -1.0018 0.2063 48.4443
s.e. 0.0981 0.1544 0.0989 6.0706

sigmaˆ2 estimated as 218.2: log-likelihood=-412.49, aic 834.99
$AIC: [1] 6.465354, $AICc: [1] 6.491737, $BIC: [1] 5.569561

The results are close to the earlier ones. The sarima() command has an advantage in that
model diagnostics of the type discussed in Chapter 8 below are provided automatically
as part of the output (see, e.g., Figures 8.2 and 8.3). This allows the user to efficiently
evaluate the adequacy of a fitted model and make comparisons between alternative models.
For example, by fitting both the AR(2) and the AR(3) models to the sunspot series, it is
readily seen that the AR(3) model provides a better fit to the data. Moreover, the fit can be
improved by using a square root or log transformation of the series, although a Q--Q plot
still indicates a departure from normality of the standardized residuals.

7.2.6 Large-Sample Information Matrices and Covariance Estimates

In this section, we examine in more detail the informationmatrix and the covariancematrix
of the parameter estimates. Denote byX = [U : V], the 𝑛 × (𝑝 + 𝑞)matrix of the time lagged
𝑢′
𝑡
𝑠 and 𝑣′

𝑡
𝑠 defined in (7.2.13) and (7.2.14), when the elements of 𝜷0 are the true values of

the parameters, for a sample size n sufficiently large for end effects to be ignored. Then,
since 𝑥𝑡,𝑖 = −𝜕[𝑎𝑡]∕𝜕𝛽𝑖 and using (7.1.20),

𝐸[𝑙𝑖𝑗] ≃ − 1
2𝜎2

𝑎

𝐸

[
𝜕2𝑆(𝜷)
𝜕𝛽𝑖𝜕𝛽𝑗

]
= − 1

𝜎2
𝑎

𝐸

[
𝑛∑
𝑡=1

𝜕[𝑎𝑡]
𝜕𝛽𝑖

𝜕[𝑎𝑡]
𝜕𝛽𝑗

]
= − 1

𝜎2
𝑎

𝐸

[
𝑛∑
𝑡=1

𝑥𝑡,𝑖𝑥𝑡,𝑗

]

the information matrix for (𝝓, 𝜽) for the mixed ARMA model is

𝐈(𝝓, 𝜽) = 𝐸[𝐗′𝐗]𝜎−2
𝑎

= 𝐸

[
𝐔′𝐔 𝐔′𝐕
𝐕′𝐔 𝐕′𝐕

]
𝜎−2
𝑎

(7.2.17)

that is,

= 𝑛𝜎−2
𝑎

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛾𝑢𝑢(0) 𝛾𝑢𝑢(1) ⋯ 𝛾𝑢𝑢(𝑝 − 1) 𝛾𝑢𝑣(0) 𝛾𝑢𝑣(−1) ⋯ 𝛾𝑢𝑣(1 − 𝑞)
𝛾𝑢𝑢(1) 𝛾𝑢𝑢(0) ⋯ 𝛾𝑢𝑢(𝑝 − 2) 𝛾𝑢𝑣(1) 𝛾𝑢𝑣(0) ⋯ 𝛾𝑢𝑣(2 − 𝑞)
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝛾𝑢𝑢(𝑝 − 1) 𝛾𝑢𝑢(𝑝 − 2) ⋯ 𝛾𝑢𝑢(0) 𝛾𝑢𝑣(𝑝 − 1) 𝛾𝑢𝑣(𝑝 − 2) ⋯ 𝛾𝑢𝑣(𝑝 − 𝑞)
𝛾𝑢𝑣(0) 𝛾𝑢𝑣(1) ⋯ 𝛾𝑢𝑣(𝑝 − 1) 𝛾𝑣𝑣(0) 𝛾𝑣𝑣(1) ⋯ 𝛾𝑣𝑣(𝑞 − 1)
𝛾𝑢𝑣(−1) 𝛾𝑢𝑣(0) ⋯ 𝛾𝑢𝑣(𝑝 − 2) 𝛾𝑣𝑣(1) 𝛾𝑣𝑣(0) ⋯ 𝛾𝑣𝑣(𝑞 − 2)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝛾𝑢𝑣(1 − 𝑞) 𝛾𝑢𝑣(2 − 𝑞) ⋯ 𝛾𝑢𝑣(𝑝 − 𝑞) 𝛾𝑣𝑣(𝑞 − 1) 𝛾𝑣𝑣(𝑞 − 2) ⋯ 𝛾𝑣𝑣(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.2.18)
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where 𝛾𝑢𝑢(𝑘) and 𝛾𝑣𝑣(𝑘) are the autocovariances for the 𝑢𝑡’s and the 𝑣𝑡’s, and 𝛾𝑢𝑣(𝑘) are the
cross-covariances defined by

𝛾𝑢𝑣(𝑘) = 𝛾𝑣𝑢(−𝑘) = 𝐸[𝑢𝑡𝑣𝑡+𝑘] = 𝐸[𝑣𝑡𝑢𝑡−𝑘]

The large-sample covariancematrix for the maximum likelihood estimates may be obtained
using

𝐕(�̂�, �̂�) ≃ I−1(𝝓, 𝜽)

Estimates of I(𝝓, 𝜽) and hence of V(�̂�, �̂�) may be obtained by evaluating the 𝑢𝑡’s and
𝑣𝑡’s with 𝜷0 = 𝜷 and omitting the expectation sign in (7.2.17) leading to 𝑽 (�̂�, �̂�) =
(𝑿′
𝜷
𝑿
𝜷
)−1�̂�2

𝑎
, or by substituting standard sample estimates of the autocovariances and

cross-covariances in (7.2.18). Theoretical large-sample results can be obtained by noticing
that, with the elements of 𝜷0 equal to the true values of the parameters, equations (7.2.13)
and (7.2.14) imply that the derived series 𝑢𝑡 and 𝑣𝑡 follow autoregressive processes defined
by

𝜙(𝐵)𝑢𝑡 = 𝑎𝑡 𝜃(𝐵)𝑣𝑡 = −𝑎𝑡

It follows that the autocovariances that appear in (7.2.18) are those for pure autoregressive
processes, and the cross-covariances are the negative of those between two such processes
generated by the same 𝑎𝑡’s.

We illustrate the use of this result with a few examples.

Covariance Matrix of Parameter Estimates for AR(p) and MA(q) Processes. Let 𝚪𝑝(𝝓)
be the 𝑝 × 𝑝 autocovariance matrix of p successive observations from an AR(𝑝) process
with parameters𝝓′ = (𝜙1, 𝜙2,… , 𝜙𝑝). Then, using (7.2.18), the 𝑝 × 𝑝 covariancematrix of

the estimates �̂� is given by

V(�̂�) ≃ 𝑛−1𝜎2
𝑎
𝚪−1
𝑝
(𝝓) (7.2.19)

Let 𝚪𝑞(𝜽) be the 𝑞 × 𝑞 autocovariance matrix of 𝑞 successive observations from an AR(𝑞)
process with parameters 𝜽′ = (𝜃1, 𝜃2,… , 𝜃𝑞). Then, using (7.2.18), the 𝑞 × 𝑞 covariance

matrix of the estimates �̂� in an MA(𝑞) model is

V(�̂�) ≃ 𝑛−1𝜎2
𝑎
𝚪−1
𝑞
(𝜽) (7.2.20)

Covariances for the Zeros of an ARMA Process. It is occasionally useful to parameterize
an ARMA process in terms of the zeros of𝜙(𝐵) and 𝜃(𝐵). In this case, a particularly simple
form is obtained for the covariance matrix of the parameter estimates.

Consider the ARMA(𝑝, 𝑞) process parameterized in terms of its zeros (assumed to be
real and distinct), so that

𝑝∏
𝑖=1

(1 − 𝐺𝑖𝐵)�̃�𝑡 =
𝑞∏

𝑗=1
(1 −𝐻𝑗𝐵)𝑎𝑡
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or

𝑎𝑡 =
𝑝∏
𝑖=1

(1 − 𝐺𝑖𝐵)
𝑞∏

𝑗=1
(1 −𝐻𝑗𝐵)

−1
�̃�𝑡

The derivatives of the 𝑎𝑡’s are then such that

𝑢𝑡,𝑖 = −
𝜕𝑎𝑡

𝜕𝐺𝑖

= (1 − 𝐺𝑖𝐵)−1𝑎𝑡−1

𝑣𝑡,𝑗 = −
𝜕𝑎𝑡

𝜕𝐻𝑗

= −(1 −𝐻𝑗𝐵)−1𝑎𝑡−1

Hence, using (7.2.18), for large samples, the information matrix for the roots is such that

𝑛−1I(G, H)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 −𝐺2
1)

−1 (1 − 𝐺1𝐺2)
−1 ⋯ (1 −𝐺1𝐺𝑝)

−1 −(1 − 𝐺1𝐻1)
−1 ⋯ −(1 −𝐺1𝐻𝑞)

−1

⋮ ⋮ ⋮ ⋮ ⋮

(1 −𝐺1𝐺𝑝)−1 (1 −𝐺2𝐺𝑝)−1 ⋯ (1 −𝐺2
𝑝
)−1 −(1 −𝐺𝑝𝐻1)−1 ⋯ −(1 − 𝐺𝑝𝐻𝑞)−1

−(1 − 𝐺1𝐻1)
−1 −(1 −𝐺2𝐻1)

−1 ⋯ −(1 −𝐺𝑝𝐻1)
−1 (1 −𝐻2

1 )
−1

⋯ (1 −𝐻1𝐻𝑞)
−1

⋮ ⋮ ⋮ ⋮ ⋮

−(1 − 𝐺1𝐻𝑞)−1 −(1 − 𝐺2𝐻𝑞)−1 ⋯ −(1 −𝐺𝑝𝐻𝑞)−1 (1 −𝐻1𝐻𝑞)−1 ⋯ (1 −𝐻2
𝑞
)−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.2.21)

Examples: For an AR(2) process (1 −𝐺1𝐵)(1 −𝐺2𝐵)�̃�𝑡 = 𝑎𝑡, we have

𝐕(�̂�1, �̂�2) ≃ 𝑛−1
⎡⎢⎢⎣

(1 − 𝐺2
1)

−1 (1 −𝐺1𝐺2)−1

(1 −𝐺1𝐺2)−1 (1 − 𝐺2
2)

−1

⎤⎥⎥⎦

−1

= 1
𝑛

1 −𝐺1𝐺2
(𝐺1 −𝐺2)2

[
(1 −𝐺2

1)(1 −𝐺1𝐺2) −(1 −𝐺2
1)(1 −𝐺2

2)
−(1 − 𝐺2

1)(1 −𝐺2
2) (1 −𝐺2

2)(1 − 𝐺1𝐺2)

]
(7.2.22)

Exactly parallel results will be obtained for a second-order moving average process.
Similarly, for the ARMA(1,1) process (1 − 𝜙𝐵)�̃�𝑡 = (1 − 𝜃𝐵)𝑎𝑡, on setting 𝜙 = 𝐺1 and

𝜃 = 𝐻1 in (7.2.21), we obtain

𝐕(�̂�, �̂�) ≃ 𝑛−1

[
(1 − 𝜙2)−1 −(1 − 𝜙𝜃)−1

−(1 − 𝜙𝜃)−1 (1 − 𝜃2)−1

]−1

= 1
𝑛

1 − 𝜙𝜃

(𝜙 − 𝜃)2

[
(1 − 𝜙2)(1 − 𝜙𝜃) (1 − 𝜙2)(1 − 𝜃2)
(1 − 𝜙2)(1 − 𝜃2) (1 − 𝜃2)(1 − 𝜙𝜃)

]
(7.2.23)

The results for these two processes illustrate a duality property between the information
matrices for the autoregressivemodel and the generalARMA(𝑝, 𝑞)model. Namely, suppose
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that the information matrix for parameters (G, H) of the ARMA(𝑝, 𝑞) model

𝑝∏
𝑖=1

(1 − 𝐺𝑖𝐵)�̃�𝑡 =
𝑞∏

𝑗=1
(1 −𝐻𝑗𝐵)𝑎𝑡

is denoted as I{𝐆,𝐇|(𝑝, 𝑞)}, and suppose, correspondingly, that the information matrix for
the parameters (G, H) in the pure AR(𝑝 + 𝑞) model

𝑝∏
𝑖=1

(1 − 𝐺𝑖𝐵)
𝑞∏

𝑗=1
(1 −𝐻𝑗𝐵)�̃�𝑡 = 𝑎𝑡

is denoted as

𝐈{𝐆,𝐇|(𝑝 + 𝑞, 0)} =

[
𝐈𝐺𝐺 𝐈𝐺𝐻

𝐈′𝐺𝐻 𝐈𝐻𝐻

]

where the matrix is partitioned after the 𝑝th row and column. Then, for moderate and large
samples, we can see directly from (7.2.21) that

𝐈{𝐆,𝐇|(𝑝, 𝑞)} ≃ 𝐈{𝐆,−𝐇|(𝑝 + 𝑞, 0)} =

[
𝐈𝐺𝐺 −𝐈𝐺𝐻

−𝐈′𝐺𝐻 𝐈𝐻𝐻

]
(7.2.24)

Hence, since formoderate and large samples, the inverse of the informationmatrix provides
a close approximation to the covariance matrix 𝐕(�̂�, �̂�) of the parameter estimates, we
have, correspondingly,

𝐕{�̂�, �̂�|(𝑝, 𝑞)} ≃ 𝐕{�̂�,−�̂�|(𝑝 + 𝑞, 0)} (7.2.25)

7.3 SOME ESTIMATION RESULTS FOR SPECIFIC MODELS

In Appendices A7.3, A7.4, and A7.5, some estimation results for special cases are derived.
These, and results obtained earlier in this chapter, are summarized here for reference.

7.3.1 Autoregressive Processes

It is possible to obtain estimates of the parameters of a pure autoregressive process by
solving certain linear equations. We show in Appendix A7.4:

1. How exact least-squares estimates may be obtained by solving a linear system of
equations (see also Section 7.5.3).

2. How, by slight modification of the coefficients in these equations, a close approxi-
mation to the exact maximum likelihood equations may be obtained.

3. How conditional least-squares estimates, as defined in Section 7.1.3,may be obtained
by solving a system of linear equations of the form of the standard linear regression
model normal equations.
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4. How estimates that are approximations to the least-squares estimates and to the
maximum likelihood estimates may be obtained using the estimated autocorrelations
as coefficients in the linear Yule--Walker equations.

The estimates obtained in item 1 are, of course, identical with those given by direct
minimization of 𝑆(𝝓), as described in general terms in Section 7.2. The estimates in 4 are
the well-known approximations due to Yule and Walker. They are useful as first estimates
at the identification stage but can differ appreciably from estimates 1, 2, or 3, in some cases.
For instance, differences can occur for an AR(2) model if the parameter estimates �̂�1 and
�̂�2 are highly correlated, as is the case for the AR(2) model fitted to Series E in Table 7.6.

Yule--Walker Estimates. The Yule--Walker estimates (6.3.6) are

�̂� = 𝐑−1
𝒓

where

R =

⎡⎢⎢⎢⎢⎢⎣

1 𝑟1 ⋯ 𝑟𝑝−1

𝑟1 1 ⋯ 𝑟𝑝−2
⋮ ⋮ ⋮

𝑟𝑝−1 𝑟𝑝−2 ⋯ 1

⎤⎥⎥⎥⎥⎥⎦

r =

⎡⎢⎢⎢⎢⎣

𝑟1
𝑟2
⋮

𝑟𝑝

⎤⎥⎥⎥⎥⎦
(7.3.1)

In particular, the estimates for the AR(1) and the AR(2) processes are

AR(1) ∶ �̂�1 = 𝑟1

AR(2) ∶ �̂�1 =
𝑟1(1 − 𝑟2)
1 − 𝑟21

�̂�2 =
𝑟2 − 𝑟21

1 − 𝑟21

(7.3.2)

It is shown in Appendix A7.4 that an approximation to 𝑆(�̂�) is provided by

𝑆(�̂�) =
𝑛∑
𝑡=1

�̃�2
𝑡
(1 − r′�̂�) (7.3.3)

so that

�̂�2
𝑎
=

𝑆(�̂�)
𝑛

= 𝑐0(1 − r′�̂�) (7.3.4)

where 𝑐0 is the sample variance of the 𝑤𝑡’s. A parallel expression relates 𝜎2
𝑎
and 𝛾0, the

theoretical variance of the 𝑤𝑡’s [see (3.2.8)], namely,

𝜎2
𝑎
= 𝛾0(1 − 𝝆′𝝓)

where the elements of 𝝆 and of 𝝓 are the theoretical values. Thus, from (7.2.19) and
Appendix A7.5, the covariance matrix for the estimates �̂� is

𝑽 (�̂�) ≃ 𝑛−1𝜎2
𝑎
𝚪−1 = 𝑛−1(1 − 𝝆′𝝓)𝑷 −1 (7.3.5)

where 𝚪 and 𝑷 = (1∕𝛾0)𝚪 are the autocovariance and autocorrelation matrices of 𝑝 succes-
sive values of the AR(𝑝) process.
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In particular, for the AR(1) and AR(2) processes, we find that

AR(1) ∶ 𝑉 (�̂�) ≃ 𝑛−1(1 − 𝜙2) (7.3.6)

AR(2) ∶ 𝑽 (𝜙1, 𝜙2) ≃ 𝑛−1

[
1 − 𝜙2

2 −𝜙1(1 + 𝜙2)
−𝜙1(1 + 𝜙2) 1 − 𝜙2

2

]
(7.3.7)

Estimates of the variances and covariances are obtained by substituting estimates of the
parameters in (7.3.5). Thus,

𝑽 (�̂�) = 𝑛−1(1 − 𝒓′�̂�)𝑹−1 (7.3.8)

Using (7.3.7) it is readily shown that the correlation between the estimates of the AR(2)
parameters is approximately equal to −𝜌1. This implies, in particular, that a large lag-
1 correlation in the series can give rise to unstable estimates, which may explain the
differences between the Yule--Walker and the least squares estimates noted above.

7.3.2 Moving Average Processes

Maximum likelihood estimates �̂� for moving average processes may, in simple cases, be
obtained graphically, as illustrated in Section 7.1.6, or more generally, by the iterative
calculation described in Section 7.2.1. From (7.2.20), it follows that for moderate and large
samples, the covariance matrix for the estimates of the parameters of a 𝑞th-order moving
average process is of the same form as the correspondingmatrix for an autoregressive pro-
cess of the same order. Thus, for the MA(1) and MA(2) processes, we find, corresponding
to (7.3.6) and (7.3.7)

MA(1) ∶ V(�̂�) ≃ 𝑛−1(1 − 𝜃2) (7.3.9)

MA(2) ∶ V(�̂�1, �̂�2) ≃ 𝑛−1

[
1 − 𝜃22 −𝜃(1 + 𝜃2)

−𝜃1(1 + 𝜃2) 1 − 𝜃22

]
(7.3.10)

7.3.3 Mixed Processes

Maximum likelihood estimates (�̂�, �̂�) formixed processes, as formoving average processes,
may be obtained graphically in simple cases, and more generally, by iterative calculation.
For moderate and large samples, the covariance matrix may be obtained by evaluating and
inverting the information matrix (7.2.18). In the important special case of the ARMA(1, 1)
process

(1 − 𝜙𝐵)�̃�𝑡 = (1 − 𝜃𝐵)𝑎𝑡

we obtain, as in (7.2.23),

V (�̂�, �̂�) ≃ 𝑛−1
1 − 𝜙𝜃

(𝜙 − 𝜃)2

[
(1 − 𝜙2)(1 − 𝜙𝜃) (1 − 𝜙2)(1 − 𝜃2)
(1 − 𝜙2)(1 − 𝜃2) (1 − 𝜃2)(1 − 𝜙𝜃)

]
(7.3.11)

It is noted that when 𝜙 = 𝜃, the variances of �̂� and �̂� are infinite. This is to be expected,
for in this case the factor (1 − 𝜙𝐵) = (1 − 𝜃𝐵) cancels on both sides of the model, which
becomes

�̃�𝑡 = 𝑎𝑡
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This is a particular case of parameter redundancy, which we discuss further in Section
7.3.5.

7.3.4 Separation of Linear and Nonlinear Components in Estimation

It is occasionally of interest to make an analysis in which the estimation of the parameters of
the mixed model is separated into its basic linear and nonlinear parts. Consider the general
mixed model 𝜙(𝐵)�̃�𝑡 = 𝜃(𝐵)𝑎𝑡, which we write as 𝑎𝑡 = 𝜙(𝐵)𝜃−1(𝐵)�̃�𝑡, or

𝑎𝑡 = 𝜙(𝐵)(𝜀𝑡|𝜽) (7.3.12)

where

(𝜀𝑡|𝜽) = 𝜃−1(𝐵)�̃�𝑡

that is,

�̃�𝑡 = 𝜃(𝐵)(𝜀𝑡|𝜽) (7.3.13)

For any given set of 𝜃’s, the 𝜀𝑡’s may be calculated recursively from (7.3.13), which may
be written as

𝜀𝑡 = �̃�𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +⋯ + 𝜃𝑞𝜀𝑡−𝑞

The recursion may be started by setting unknown 𝜀𝑡’s equal to zero. Having calculated
the 𝜀𝑡’s, the conditional estimates �̂�

𝜽
may readily be obtained. These are the estimated

autoregressive parameters in the linear model (7.3.12), which may be written as

𝑎𝑡 = 𝜀𝑡 − 𝜙1𝜀𝑡−1 − 𝜙2𝜀𝑡−2 −⋯ − 𝜙𝑝𝜀𝑡−𝑝 (7.3.14)

As discussed in Section 7.3.1, the least-squares estimates of the autoregressive param-
eters may be found by direct solution of a set of linear equations. In simple cases, we can
examine the behavior of 𝑆(�̂�

𝜽
, 𝜽) and find its minimum by computing 𝑆(�̂�

𝜽
, 𝜽) on a grid

of 𝜽 values and plotting contours.

Example Using Series C. One possible model for Series C considered earlier is the
ARIMA(1, 1, 0) model (1 − 𝜙𝐵)𝑤𝑡 = 𝑎𝑡 with 𝑤𝑡 = ∇𝑧𝑡 and 𝐸[𝑤𝑡] = 0. Consider now
the somewhat more elaborate model (1 − 𝜙𝐵)𝑤𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵

2)𝑎𝑡. Following the ar-
gument given above, the process may be thought of as resulting from a combination of the
nonlinear model 𝜀𝑡 = 𝑤𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 and the linear model 𝑎𝑡 = 𝜀𝑡 − 𝜙𝜀𝑡−1.

For each choice of the nonlinear parameters 𝜽 = (𝜃1, 𝜃2) within the invertibility region,
a set of 𝜀𝑡’s was calculated recursively. Using the Yule--Walker approximation, an estimate
�̂�
𝜽
= 𝑟1(𝜀) could now be obtained together with

𝑆(�̂�
𝜽
, 𝜽) ≃

𝑛∑
𝑡=1

𝜀2
𝑡
[1 − 𝑟21(𝜀)]

This sum of squares was plotted for a grid of values of 𝜃1 and 𝜃2 and its contours are shown
in Figure 7.6. We see that a minimum close to 𝜃1 = 𝜃2 = 0 is indicated, at which point
𝑟1(𝜀) = 0.805. Thus, within the whole class of models of order (1, 1, 2), the simple (1, 1,
0) model (1 − 0.8𝐵)∇𝑧𝑡 = 𝑎𝑡 is confirmed to provide an adequate representation.
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FIGURE 7.6 Counters of 𝑆(�̂�
𝜽
,𝜽) for Series C plotted over the admissible parameter space for

the 𝜃’s.

7.3.5 Parameter Redundancy

The model 𝜙(𝐵)�̃�𝑡 = 𝜃(𝐵)𝑎𝑡 is identical to the model

(1 − 𝛼𝐵)𝜙(𝐵)�̃�𝑡 = (1 − 𝛼𝐵)𝜃(𝐵)𝑎𝑡

in which both autoregressive and moving average operators are multiplied by the same
factor, 1 − 𝛼𝐵. Serious difficulties in the estimation procedurewill arise if a model is fitted
that contains a redundant factor. Therefore, care is needed in avoiding the situation where
redundant or near-redundant common factors occur. The existence of redundancy is not
always obvious. For example, one can see the common factor in the ARMA(2, 1) model

(1 − 1.3𝐵 + 0.4𝐵2)�̃�𝑡 = (1 − 0.5𝐵)𝑎𝑡

only after factoring the left-hand side to obtain

(1 − 0.5𝐵)(1 − 0.8𝐵)�̃�𝑡 = (1 − 0.5𝐵)𝑎𝑡

that is, (1 − 0.8𝐵)�̃�𝑡 = 𝑎𝑡.
In practice, it is not just exact cancellation that causes difficulties, but also near-

cancellation. For example, suppose that the true model was

(1 − 0.4𝐵)(1 − 0.8𝐵)�̃�𝑡 = (1 − 0.5𝐵)𝑎𝑡 (7.3.15)

If an attemptwasmade to fit thismodel as ARMA(2, 1), extreme instability in the parameter
estimates could arise because of near-cancellation of the factors (1 − 0.4𝐵) and (1 − 0.5𝐵),
on the left- and right-hand sides. In this case, combinations of parameter values yielding
similar [𝑎𝑡]’s and so similar likelihoods can be found, and a change of parameter value on
the left can be nearly compensated by a suitable change on the right. The sum-of-squares
contour surfaces in the three-dimensional parameter space will thus approach obliquely
oriented cylinders, and a line of ‘‘near least-squares’’ solutions rather than a clearly defined
point minimum will be found.

From a slightly different viewpoint, we can write the model (7.3.15) in terms of an
infinite autoregressive operator. Making the necessary expansion, we find that

(1 − 0.700𝐵 − 0.030𝐵2 − 0.015𝐵3 − 0.008𝐵4 −⋯)�̃�𝑡 = 𝑎𝑡
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Thus, very nearly, the model is

(1 − 0.7𝐵)�̃�𝑡 = 𝑎𝑡 (7.3.16)

The instability of the estimates, obtained by attempting to fit an ARMA(2, 1) model, would
occur because we would be trying to fit three parameters in a situation that could almost be
represented by one.

A principal reason for going through the identification procedure prior to fitting the
model is to avoid difficulties arising from parameter redundancy and to achieve parsimony
in parameterization.

Redundancy in the ARMA(1,1) Model. The simplest model where the possibility occurs
for direct cancellation of factors is the ARMA(1, 1) process:

(1 − 𝜙𝐵)�̃�𝑡 = (1 − 𝜃𝐵)𝑎𝑡

In particular, if 𝜙 = 𝜃, then whatever common value they have, �̃�𝑡 = 𝑎𝑡, so that �̃�𝑡 is
generated by a white noise process. The data then cannot supply information about the
common parameter, and using (7.3.11), �̂� and �̂� have infinite variances. Furthermore,
whatever the values of 𝜙 and 𝜃, 𝑆(𝜙, 𝜃) must be constant on the line 𝜙 = 𝜃. This is
illustrated in Figure 7.7, which shows a sum-of-squares plot for the data of Series A.
However, for these data, the least-squares values �̂� = 0.92 and �̂� = 0.58 correspond to
a point that is not particularly close to the line 𝜙 = 𝜃, and no difficulties occur in the
estimation of these parameters.

In practice, if the identification technique we have recommended is adopted, these
difficulties will be avoided. An ARMA(1, 1) process in which 𝜙 is very nearly equal to 𝜃

will normally be identified as white noise, or if the difference is nonnegligible, as an AR(1)
or MA(1) process with a single small coefficient.

In summary:

1. We should avoid mixed models containing near common factors, and we should be
alert to the difficulties that can result.

FIGURE 7.7 Sum-of-squares plot for Series A.
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2. We will automatically avoid such models if we use identification and estimation
procedures intelligently.

7.4 LIKELIHOOD FUNCTION BASED ON THE STATE-SPACE MODEL

In Section 5.5, we introduced the state-spacemodel formulation of theARMAprocess along
with Kalman filtering and described its use for prediction. This approach also provides a
convenient method to evaluate the exact likelihood function for an ARMA model. The use
of this approach has been suggested by Jones (1980), Gardner et al. (1980), and others.

The state-space model form of the ARMA(𝑝, 𝑞)model given in Section 5.5 is

𝒀 𝑡 = 𝚽𝒀 𝑡−1 +𝚿𝑎𝑡 and 𝑤𝑡 = H𝒀 𝑡 (7.4.1)

where 𝒀 ′
𝑡
= (𝑤𝑡, �̂�𝑡(1),… , �̂�𝑡(𝑟 − 1)), 𝑟 = max(𝑝, 𝑞 + 1), H = (1, 0,… , 0),

𝚽 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋯ ⋮

0 0 0 … 1
𝜙𝑟 𝜙𝑟−1 ⋯ ⋯ 𝜙1

⎤⎥⎥⎥⎥⎥⎥⎦
and 𝚿′ = (1, 𝜓1,… , 𝜓𝑟−1). The Kalman filter equations (5.5.6)--(5.5.9) provide one-step-
ahead forecasts �̂� 𝑡|𝑡−1 = 𝐸[𝒀 𝑡|𝑤𝑡−1,… , 𝑤1] of the state vector 𝒀 𝑡 and the error covariance

matrixV𝑡|𝑡−1 = 𝐸[(𝒀 𝑡 − �̂� 𝑡|𝑡−1)(𝒀 𝑡 − �̂� 𝑡|𝑡−1)′]. Specifically, for the state--space formof the
ARMA(𝑝, 𝑞)model, these recursive equations are

�̂� 𝑡|𝑡 = �̂� 𝑡|𝑡−1 +K𝑡(𝑤𝑡 − �̂�𝑡|𝑡−1) with K𝑡 = V𝑡|𝑡−1H′[HV𝑡|𝑡−1H′]−1 (7.4.2)

where �̂�𝑡|𝑡−1 = H�̂� 𝑡|𝑡−1, and

�̂� 𝑡|𝑡−1 = 𝚽�̂� 𝑡−1|𝑡−1 V𝑡|𝑡−1 = 𝚽V𝑡−1|𝑡−1𝚽′ + 𝜎2
𝑎
𝚿𝚿′ (7.4.3)

with

V𝑡|𝑡 = [I −K𝑡H]V𝑡|𝑡−1 (7.4.4)

for 𝑡 = 1, 2,… , 𝑛. In particular, then, the first component of the forecast vector is
�̂�𝑡|𝑡−1 = H𝒀 𝑡|𝑡−1 = 𝐸[𝑤𝑡|𝑤𝑡−1,… , 𝑤1], 𝑎𝑡|𝑡−1 = 𝑤𝑡 − �̂�𝑡|𝑡−1 is the one-step innovation,
and the element 𝜎2

𝑎
𝜐𝑡 = HV𝑡|𝑡−1H′ = 𝐸[(𝑤𝑡 − �̂�𝑡|𝑡−1)2] is the one-step forecast error vari-

ance.
To obtain the exact likelihood function of the vector of 𝑛 observations w′ =

(𝑤1, 𝑤2,… , 𝑤𝑛) using the above results, we note that the joint distribution of w can
be factored as

𝑝(w|𝝓, 𝜽, 𝜎2
𝑎
) =

𝑛∏
𝑡=1

𝑝(𝑤𝑡|𝑤𝑡−1,… , 𝑤1;𝝓, 𝜽, 𝜎2𝑎) (7.4.5)
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where 𝑝(𝑤𝑡|𝑤𝑡−1,… , 𝑤1;𝝓, 𝜽, 𝜎2𝑎) denotes the conditional distribution of 𝑤𝑡 given
𝑤𝑡−1,… , 𝑤𝑡. Under normality of 𝑎𝑡, this conditional distribution is normal with conditional
mean �̂�𝑡|𝑡−1 = 𝐸[𝑤𝑡|𝑤𝑡−1,…… , 𝑤1] and conditional variance 𝜎2𝑎𝜐𝑡 = 𝐸[(𝑤𝑡 − �̂�𝑡|𝑡−1)2].
Hence, the joint distribution of w can be conveniently expressed as

𝑝(w|𝝓, 𝜽, 𝜎2
𝑎
) =

𝑛∏
𝑡=1

(2𝜋𝜎2
𝑎
𝜐𝑡)−1∕2 exp

[
− 1
2𝜎2

𝑎

𝑛∑
𝑡=1

(𝑤𝑡 − �̂�𝑡|𝑡−1)2
𝜐𝑡

]
(7.4.6)

where the quantities �̂�𝑡|𝑡−1 and 𝜎2
𝑎
𝜐𝑡 are easily determined recursively from the Kalman

filter procedure. The initial values needed to start the Kalman filter recursions are given
by �̂� 0|0 = 0, an 𝑟-dimensional vector of zeros, and V0|0 = cov[𝒀 0]. The elements of V0|0
can readily be determined as a function of the autocovariances 𝛾𝑘 and the weights 𝜓𝑘 of
the ARMA(𝑝, 𝑞) process 𝑤𝑡, making use of the relation 𝑤𝑡+𝑗 = �̂�𝑡(𝑗) +

∑𝑗−1
𝑘=0 𝜓𝑘𝑎𝑡+𝑗−𝑘

from Chapter 5. See Jones (1980) for further details. For example, in the case of an
ARMA(1, 1) model for 𝑤𝑡, we have 𝒀

′
𝑡
= (𝑤𝑡, �̂�𝑡(1)), so

𝐕0|0 = cov[𝒀 0] =

[
𝛾0 𝛾1

𝛾1 𝛾0 − 𝜎2
𝑎

]
= 𝜎2

𝑎

[
𝜎−2
𝑎
𝛾0 𝜎−2

𝑎
𝛾1

𝜎−2
𝑎
𝛾1 𝜎−2

𝑎
𝛾0 − 1

]

It also is generally the case that the one-step-ahead forecasts �̂�𝑡|𝑡−1 and the corresponding
error variances 𝜎2

𝑎
𝜐𝑡 rather quickly approach their steady-state forms, in which case the

Kalman filter calculations at some stage (beyond time 𝑡0, say) could be switched to the
simpler form �̂�𝑡|𝑡−1 =

∑𝑝

𝑖=1 𝜙𝑖𝑤𝑡−𝑖 −
∑𝑞

𝑖=1 𝜃𝑖𝑎𝑡−𝑖|𝑡−𝑖−1, and 𝜎2
𝑎
𝜐𝑡 = var[𝑎𝑡|𝑡−1] = 𝜎2

𝑎
, for

𝑡 > 𝑡0, where 𝑎𝑡|𝑡−1 = 𝑤𝑡 − �̂�𝑡|𝑡−1. For example, refer to Gardner et al. (1980) for further
details. On comparison of (7.4.6) with expressions given earlier in (7.1.5) and (7.1.6), and
also (A7.3.11) and (A7.3.13), the unconditional sum-of-squares function can be represented
in two equivalent forms as

𝑆(𝝓, 𝜽) =
𝑛∑

𝑡=1
[𝑎𝑡]2 + ê′∗𝛀

−1ê∗ =
𝑛∑
𝑡=1

𝑎2
𝑡|𝑡−1
𝜐𝑡

where 𝑎𝑡|𝑡−1 = 𝑤𝑡 − �̂�𝑡|𝑡−1, and also |M(𝑝,𝑞)
𝑛

|−1 = |𝛀||D| =∏𝑛

𝑡=1 𝜐𝑡.

Innovations Method. The likelihood function expressed in the form of (7.4.6) is generally
referred to as the innovations form, and the quantities 𝑎𝑡|𝑡−1 = 𝑤𝑡 − �̂�𝑡|𝑡−1, 𝑡 = 1,… , 𝑛,
are the (finite-sample) innovations. Calculation of the likelihood function in this form,
based on the state-space representation of the ARMA process and associated Kalman
filtering algorithms, has been proposed by many authors including Gardner et al. (1980),
Harvey and Phillips (1979), and Jones (1980). The innovations form of the likelihood can
also be obtained without directly using the state-space representation through the use of
an ‘‘innovations algorithm’’ (e.g., see Ansley, 1979; Brockwell and Davis, 1991). This
method essentially involves a Cholesky decomposition of an 𝑛 × 𝑛 band covariance matrix
of the derived MA(𝑞) process:

𝑤′
𝑡
= 𝑤𝑡 − 𝜙1𝑤𝑡−1 −⋯ − 𝜙𝑝𝑤𝑡−𝑝 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 −⋯ − 𝜃𝑞𝑎𝑡−𝑞

More specifically, using the notation of Appendix A7.3, we write the ARMA model
relations for 𝑛 observations as L𝜙w = L𝜃a + Fe∗, where a′ = (𝑎1, 𝑎2,… , 𝑎𝑛) and e′∗ =
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(𝑤1−𝑝,… , 𝑤0, 𝑎1−𝑞,… , 𝑎0) is the (𝑝 + 𝑞)-dimensional vector of pre-sample values. Then,
the covariance matrix of the vector of derived variables L𝜙w is

𝚪𝑤′ = cov[L𝜙w] = cov[L𝜃a + Fe∗] = 𝜎2
𝑎
(L𝜃L

′
𝜃
+ F𝛀F′) (7.4.7)

which is a band matrix. That is, 𝚪𝑤′ is a matrix with nonzero elements only in a band
about the main diagonal of maximum bandwidth 𝑚 = max(𝑝, 𝑞), and of bandwidth 𝑞 after
the first 𝑚 rows since cov[𝑤′

𝑡
, 𝑤′

𝑡+𝑗] = 0 for 𝑗 > 𝑞. The innovations algorithm obtains the

(square-root-free) Cholesky decomposition of the band matrix L𝜃L
′
𝜃
+ F𝛀F′ as GDG′,

where G is a lower triangular band matrix with bandwidth corresponding to that of 𝚪𝑤′

and with ones on the diagonal, and D is a diagonal matrix with positive diagonal elements
𝜐𝑡, 𝑡 = 1,… , 𝑛. Hence, cov[w] = 𝜎2

𝑎
L−1
𝜙
GDG′L′

𝜙

−1
and the quadratic form in the exponent

of the likelihood function (7.4.6) is

w′{cov[w]}−1w = 1
𝜎2
𝑎

w′(L−1
𝜙
GDG′L′

𝜙

−1)−1w

= 1
𝜎2
𝑎

e′D−1e = 1
𝜎2
𝑎

𝑛∑
𝑡=1

𝑎2
𝑡|𝑡−1
𝜐𝑡

(7.4.8)

where e = G−1L𝜙w = (𝑎1|0, 𝑎2|1,… , 𝑎𝑛|𝑛−1)′ is the vector of innovations, which are
computed recursively from Ge = L𝜙w. Thus, the innovations can be obtained re-

cursively as 𝑎1|0 = 𝑤1, 𝑎2|1 = 𝑤2 − 𝜙1𝑤1 + 𝜃1,1𝑎1|0,… , 𝑎𝑚|𝑚−1 = 𝑤𝑚 −
∑𝑚−1

𝑖=1 𝜙𝑖𝑤𝑚−𝑖 +∑𝑚−1
𝑖=1 𝜃𝑖,𝑚−1𝑎𝑚−𝑖|𝑚−𝑖−1, and

𝑎𝑡|𝑡−1 = 𝑤𝑡 −
𝑝∑
𝑖=1

𝜙𝑖𝑤𝑡−𝑖 +
𝑞∑
𝑖=1

𝜃𝑖,𝑡−1𝑎𝑡−𝑖|𝑡−𝑖−1 (7.4.9)

for 𝑡 > 𝑚, where the tth row of the matrix G has the form

[0,… , 0,−𝜃𝑞,𝑡−1,… ,−𝜃1,𝑡−1, 1, 0,… , 0]

with the 1 in the 𝑡th (i.e., diagonal) position. In addition, the coefficients 𝜃𝑖,𝑡−1 in (7.4.9)
and the diagonal (variance) elements 𝜐𝑡 are obtained recursively through the Cholesky
decomposition procedure. In particular, the 𝜐𝑡 are given by the recursion

𝜐𝑡 =
𝛾0(𝑤′)
𝜎2
𝑎

−
𝑞∑

𝑗=1
𝜃2
𝑗,𝑡−1𝜐𝑡−𝑗 for 𝑡 > 𝑚 (7.4.10)

where 𝛾0(𝑤′)∕𝜎2
𝑎
= var[𝑤′

𝑡
]∕𝜎2

𝑎
= 1 +

∑𝑞

𝑗=1 𝜃
2
𝑗
.

The ‘‘innovations’’ state-space approach to evaluating the exact likelihood function has
also been shown to be quite useful in dealing with estimation problems for ARMA models
when the series has missing values; see, for example, Jones (1980), Harvey and Pierse
(1984), and Wincek and Reinsel (1986).

The exact likelihood function calculated using the Kalman filtering approach can be
maximized using numerical optimization algorithms. These typically require the first partial
derivatives of the log-likelihood with respect to the unknown parameters, and it is often
beneficial to use analytical derivatives. From the form of the likelihood in (7.4.6), it is
seen that this involves obtaining partial derivatives of the one-step predictions �̂�𝑡|𝑡−1 and
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of the error variances 𝜎2𝑎𝜐𝑡 for each 𝑡 = 1,… , 𝑛. Wincek and Reinsel (1986) show how the
exact derivatives of 𝑎𝑡|𝑡−1 = 𝑤𝑡 − �̂�𝑡|𝑡−1 and 𝜎2𝑎𝜐𝑡 = var[𝑎𝑡|𝑡−1] with respect to the model
parameters𝝓, 𝜽, and 𝜎2

𝑎 can be obtained recursively through differentiation of the updating
and prediction equations. This in turn leads to an explicit form of iterative calculations for
the maximum likelihood estimation associated with the likelihood (7.4.6), similar to the
nonlinear least-squares procedures detailed in Section 7.2.

7.5 ESTIMATION USING BAYES’ THEOREM

7.5.1 Bayes’ Theorem

In this section,we again use the symbol 𝝃 to represent a general vector of parameters.Bayes’
theorem tells us that if 𝑝(𝝃) is the probability distribution for 𝝃 prior to the collection of the
data, then 𝑝(𝝃|𝐳), the distribution of 𝝃 posterior to the data 𝐳, is obtained by combining the
prior distribution 𝑝(𝝃) and the likelihood 𝐿(𝝃|𝐳) in the following way:

𝑝(𝝃|𝐳) = 𝑝(𝝃)𝐿(𝝃|𝐳)
∫ 𝑝(𝝃)𝐿(𝝃|𝐳)𝑑𝝃 (7.5.1)

The denominator merely ensures that 𝑝(𝝃|z) integrates to 1. The important part of the
expression is the numerator, fromwhichwe see that the posterior distribution is proportional
to the prior distribution multiplied by the likelihood. Savage (1962) showed that prior and
posterior probabilities can be interpreted as subjective probabilities. In particular, often
before the data are available, we have very little knowledge about 𝝃, and we would be
prepared to agree that over the relevant region, it would have appeared a priori just as likely
that 𝝃 had one value as another. In this case, 𝑝(𝝃) could be taken as locally uniform, and
hence 𝑝(𝝃|𝐳) would be proportional to the likelihood.

It should be noted that for this argument to hold, it is not necessary for the prior density
of 𝝃 to be uniform over its entire range (which for some parameters could be infinite). By
requiring that it be locally uniform, we mean that it be approximately uniform in the region
in which the likelihood is appreciable and that it does not take an overwhelmingly large
value outside that region.

Thus, if 𝜉 were the weight of a chair, we could certainly say a priori that it weighed more
than an ounce and less than a ton. It is also likely that when we obtained an observation 𝑧 by
weighing the chair on a weighing machine, which had an error standard deviation 𝜎, we
could honestly say that we would have been equally happy with a priori values in the range
𝑧 ± 3𝜎. The exceptionwould be if theweighingmachine said that an apparently heavy chair
weighed, say, 10 ounces. In this case, the likelihood and the prior would be incompatible,
and we should not, of course, use Bayes’ theorem to combine them but would check the
weighing machine and, if this turned out to be accurate, inspect the chair more closely.

There is, of course, some arbitrariness in this idea. Suppose that we assumed the
prior distribution of 𝜉 to be locally uniform. This then implies that the distribution of
any linear function of 𝜉 is also locally uniform. However, the prior distribution of some
nonlinear transformation 𝛼 = 𝛼(𝜉) (such as 𝛼 = log 𝜉) could not be exactly locally uniform.
This arbitrariness will usually have very little effect if we are able to obtain fairly precise
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estimates of 𝜉. We will then be considering 𝜉 only over a small range, and over such a
range the transformation from 𝜉 to, say, log 𝜉 would often be very nearly linear.

Jeffreys (1961) has argued that it is best to choose the metric 𝛼(𝜉) so that Fisher’s
measure of information 𝐼𝛼 = −𝐸[𝜕2𝑙∕𝜕𝛼2] is independent of the value of 𝛼, and hence
of 𝜉. This is equivalent to choosing 𝛼(𝜉) so that the limiting variance of its maximum
likelihood estimate is independent of 𝜉 and is achieved by choosing the prior distribution
of 𝜉 to be proportional to

√
𝐼𝜉 .

Jeffreys justified this choice of prior on the basis of its invariance to the parameterization
employed.Specifically, with this choice, the posterior distributions for𝛼(𝜉) and for 𝜉, where
𝛼(𝜉) and 𝜉 are connected by a one-to-one transformation, are such that 𝑝(𝜉|𝐳) = 𝑝(𝛼|𝐳)
𝑑𝛼∕𝑑𝜉. The same result may be obtained (Box and Tiao, 1973) by the following argument.
If for large samples, the expected likelihood function for 𝛼(𝜉) approaches a normal curve,
then the mean and variance of the curve summarize the information to be expected from the
data. Suppose, now, that a transformation 𝛼(𝜉) can be found in which the approximating
normal curve has nearly constant variance whatever the true values of the parameter. Then,
in this parameterization, the only information in prospect from the data is conveyed by the
location of the expected likelihood function. To say that we know essentially nothing a
priori relative to this prospective observational information is to say that we regard different
locations of 𝛼 as equally likely a priori. Equivalently, we say that 𝛼 should be taken as
locally uniform.

The generalization of Jeffreys’ rule to deal with several parameters is that the joint prior
distribution of parameters 𝝃 be taken proportional to

|𝐈
𝝃
|1∕2 =

|||||
−𝐸

[
𝜕2𝑙

𝜕𝜉𝑖𝜕𝜉𝑗

]|||||
1∕2

(7.5.2)

It has been urged (e.g., Jenkins, 1964) that the likelihood itself is best considered and plotted
in that metric 𝛼 for which 𝐼𝛼 is independent of 𝛼. If this is done, it will be noted that the
likelihood function and the posterior density function with uniform prior are proportional.

7.5.2 Bayesian Estimation of Parameters

We now consider the estimation of the parameters in an ARIMA model from a Bayesian
point of view. It is shown in Appendix A7.3 that the exact likelihood of a time series z of
length𝑁 = 𝑛 + 𝑑 from an ARIMA(𝑝, 𝑑, 𝑞) process is of the form

𝐿(𝝓, 𝜽|𝐳) = 𝜎−𝑛
𝑎
𝑓 (𝝓, 𝜽) exp

[
−
𝑆(𝝓, 𝜽)
2𝜎2

𝑎

]
(7.5.3)

where

𝑆(𝝓, 𝜽) =
𝑛∑
𝑡=1

[𝑎𝑡|𝐰,𝝓, 𝜽]2 + [𝐞∗]′𝛀−1[𝐞∗] (7.5.4)

If we have no prior information about 𝜎𝑎,𝝓, or 𝜽, and since information about 𝜎𝑎 would
supply no information about 𝝓 and 𝜽, it is sensible, following Jeffreys, to employ a prior
distribution for 𝝓, 𝜽, and 𝜎𝑎 of the form

𝑝(𝝓, 𝜽, 𝜎𝑎) ∝ |𝐈(𝝓, 𝜽)|1∕2𝜎−1
𝑎
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It follows that the posterior distribution is

𝑝(𝝓, 𝜽, 𝜎𝑎|𝐳) ∝ 𝜎−(𝑛+1)
𝑎

|𝐈(𝝓, 𝜽)|1∕2𝑓 (𝝓, 𝜽) exp
[
−𝑆(𝝓, 𝜽)

2𝜎2
𝑎

]
(7.5.5)

If we now integrate (7.5.5) from zero to infinity with respect to 𝜎𝑎, we obtain the exact
joint posterior distribution of the parameters 𝝓 and 𝜽 as

𝑝(𝝓, 𝜽|𝐳) ∝ |𝐈(𝝓, 𝜽)|1∕2𝑓 (𝝓, 𝜽){𝑆(𝝓, 𝜽)}−𝑛∕2 (7.5.6)

7.5.3 Autoregressive Processes

If 𝑧𝑡 follows an ARIMA(𝑝, 𝑑, 0) process, then 𝑤𝑡 = ∇𝑑𝑧𝑡 follows a pure AR(𝑝) process. It
is shown in Appendix A7.4 that for such a process, the factors |𝐈(𝝓)|1∕2 and 𝑓 (𝝓), which in
any case are dominated by the term in 𝑆(𝝓), essentially cancel. This yields the remarkably
simple result that given the assumptions, the parameters𝝓 of the AR(𝑝) process in𝑤𝑡 have
the posterior distribution

𝑝(𝝓|𝐳) ∝ {𝑆(𝝓)}−𝑛∕2 (7.5.7)

By this argument, then, the sum-of-squares contours, which are approximate likelihood
contours, are, when nothing is known a priori, also contours of posterior probability.

Joint Distribution of the Autoregressive Parameters. It is shown in Appendix A7.4 that
for the pureARprocess, the least-squares estimates of the𝜙’s thatminimize𝑆(𝝓) = 𝝓′

𝑢
𝐃𝝓𝑢

are given by

�̂� = 𝐃−1
𝑝

𝐝 (7.5.8)

where 𝝓′
𝑢
= (1,𝝓′),

𝐝 =

⎡⎢⎢⎢⎢⎣

𝐷12
𝐷13
⋮

𝐷1,𝑝+1

⎤⎥⎥⎥⎥⎦
𝐃𝑝 =

⎡⎢⎢⎢⎢⎢⎣

𝐷22 𝐷23 ⋯ 𝐷2,𝑝+1

𝐷23 𝐷33 ⋯ 𝐷3,𝑝+1
⋮ ⋮ ⋮ ⋮

𝐷2,𝑝+1 𝐷3,𝑝+1 ⋯ 𝐷𝑝+1,𝑝+1

⎤⎥⎥⎥⎥⎥⎦

𝐃 =

[
𝐷11 −𝐝′

−𝐝 𝐃𝑝

]
(7.5.9)

and

𝐷𝑖𝑗 = 𝐷𝑗𝑖 = �̃�𝑖�̃�𝑗 + �̃�𝑖+1�̃�𝑗+1 +⋯ + �̃�𝑛+1−𝑗�̃�𝑛+1−𝑖 (7.5.10)

It follows that

𝑆(𝝓) = 𝜈𝑠2
𝑎
+ (𝝓 − �̂�)′𝐃𝑝(𝝓 − �̂�) (7.5.11)
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where

𝑠2
𝑎
=

𝑆(�̂�)
𝜈

𝜈 = 𝑛 − 𝑝 (7.5.12)

and

𝑆(�̂�) = �̂�′
𝑢
𝐃�̂�𝑢 = 𝐷11 − �̂�′𝐃𝑝�̂� = 𝐷11 − 𝐝′𝐃−1

𝑝
𝐝 (7.5.13)

Thus, we can write

𝑝(𝝓|𝐳) ∝
[
1 +

(𝝓 − �̂�)′𝐃𝑝(𝝓 − �̂�)
𝜐𝑠2

𝑎

]−𝑛∕2

(7.5.14)

Equivalently,

𝑝(𝝓|𝐳) ∝
⎡⎢⎢⎣
1 +

1
2
∑

𝑖

∑
𝑗 𝑆𝑖𝑗(𝜙𝑖 − �̂�𝑖)(𝜙𝑗 − �̂�𝑗)

𝜐𝑠2
𝑎

⎤⎥⎥⎦

−𝑛∕2

(7.5.15)

where

𝑆𝑖𝑗 =
𝜕2𝑆(𝝓)
𝜕𝜙𝑖𝜕𝜙𝑗

= 2𝐷𝑖+1,𝑗+1

It follows that, a posteriori, the parameters of an autoregressive process have a multiple 𝑡
distribution (A7.1.13), with 𝜐 = 𝑛 − 𝑝 degrees of freedom.

In particular, for the special case 𝑝 = 1, (𝜙 − �̂�)∕𝑠
�̂�
is distributed exactly in a Student 𝑡

distribution with 𝑛 − 1 degrees of freedom where, using the general results given above, �̂�
and 𝑠

�̂�
are given by

�̂� =
𝐷12
𝐷22

𝑠
�̂�
=

[
1

𝑛 − 1
𝐷11
𝐷22

(
1 −

𝐷2
12

𝐷11𝐷22

)]1∕2

(7.5.16)

The quantity 𝑠
�̂�
, for large samples, tends to [(1 − 𝜙2)∕𝑛]1∕2 and in the sampling theory

framework is identical with the large-sample ‘‘standard error’’ for �̂�. However, when using
this and similar expressions within the Bayesian framework, it is to be remembered that it
is the parameters (𝜙 in this case) that are random variables. Quantities such as �̂� and 𝑠

�̂�
,

which are functions of data that have already occurred, are regarded as fixed.

Normal Approximation. For samples of size 𝑛 > 50, in which we are usually interested,
the normal approximation to the 𝑡 distribution is adequate. Thus, very nearly, 𝝓 has a joint
𝑝-variate normal distribution𝑁{�̂�,𝐃−1

𝑝
𝑠2
𝑎
} havingmean vector �̂� and variance--covariance

matrix 𝐃−1
𝑝
𝑠2
𝑎
.

Bayesian Regions of Highest Probability Density. In summarizing what the posterior
distribution has to tell us about the probability of various 𝝓 values, it is useful to indicate a
region of highest probability density, called for short an HPD region (Box and Tiao, 1965).
A Bayesian 1 − 𝜀 HPD region has the following properties:



Box3G Date: May 21, 2015 Time: 9:59 am

ESTIMATION USING BAYES’ THEOREM 249

1. Any parameter point inside the region has higher probability density than any point
outside.

2. The total posterior probability mass within the region is 1 − 𝜀.

Since 𝝓 has a multiple 𝑡 distribution, it follows, using the result (A7.1.4), that

Pr{(𝝓 − �̂�′)𝐃𝑝(𝝓 − �̂�) < 𝑝𝑠2
𝑎
𝐹𝜀(𝑝, 𝜐)} = 1 − 𝜀 (7.5.17)

defines the exact 1 − 𝜀 HPD region for 𝝓. Now, for 𝜐 = 𝑛 − 𝑝 > 100,

𝑝𝐹𝜀(𝑝, 𝜐) ≃ 𝜒2
𝜀
(𝑝)

Also,

(𝝓 − �̂�)′𝐃𝑝(𝝓 − �̂�) = 1
2
∑
𝑖

∑
𝑗

𝑆𝑖𝑗 (𝜙𝑖 − �̂�𝑖)(𝜙𝑗 − �̂�𝑗)

Thus, approximately, the HPD region defined in (7.5.17) is such that
∑
𝑖

∑
𝑗

𝑆𝑖𝑗 (𝜙𝑖 − �̂�𝑖)(𝜙𝑗 − �̂�𝑗) < 2𝑠2
𝑎
𝜒2
𝜀
(𝑝) (7.5.18)

which if we set �̂�2
𝑎
= 𝑠2

𝑎
is identical with the confidence region defined by (7.1.25).

Although these approximate regions are identical, it will be remembered that their
interpretation is different. From a sampling theory viewpoint, we say that if a confidence
region is computed according to (7.1.25), then for each of a set of repeated samples, a
proportion 1 − 𝜀 of these regions will include the true parameter point. From the Bayesian
viewpoint, we are concerned only with the single sample 𝐳, which has actually been
observed. Assuming the relevance of the noninformative prior distribution that we have
taken, theHPD region includes that proportion1 − 𝜀 of the resulting probability distribution
of 𝝓, given 𝐳, which has the highest density. In other words, the probability that the value
of 𝝓, which gave rise to the data 𝐳, lies in the HPD region is 1 − 𝜀.

Using (7.5.11), (7.5.12), and (7.5.18), for large samples the approximate 1 − 𝜀 Bayesian
HPD region is bounded by a contour for which

𝑆(𝝓) = 𝑆(�̂�)

[
1 +

𝜒2
𝜀
(𝑝)
𝑛

]
(7.5.19)

which corresponds exactly with the confidence region defined by (7.1.27).

7.5.4 Moving Average Processes

If 𝑧𝑡 follows an ARIMA(0, 𝑑, 𝑞) process, then 𝑤𝑡 = ∇𝑑𝑧𝑡 follows a pure MA(𝑞) process.
Because of the duality in estimation results and in the information matrices, in particular,
between the autoregressive model and the moving average model, it follows that in the
moving average case the factors |𝐈(𝜽)|1∕2 and 𝑓 (𝜽) in (7.5.6), which in any case are
dominated by 𝑆(𝜽), also cancel for large samples. Thus, corresponding to (7.5.7), we find
that the parameters 𝜽 of the MA(𝑞) process in 𝑤𝑡 have the posterior distribution

𝑝(𝜽|𝐳) ∝ [𝑆(𝜽)]−𝑛∕2 (7.5.20)
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Again the sum-of-squares contours are, for moderate samples, essentially exact contours
of posterior density. However, because [𝑎𝑡] is not a linear function of the 𝜃’s, 𝑆(𝜽) will
not be exactly quadratic in 𝜽, though for large samples it will often be nearly so within the
relevant ranges. In that case, we have approximately

𝑆(𝜽) = 𝜈𝑠2
𝑎
+ 1

2
∑
𝑖

∑
𝑗

𝑆𝑖𝑗 (𝜃𝑖 − �̂�𝑖)(𝜃𝑗 − �̂�𝑗)

where 𝜐𝑠2
𝑎
= 𝑆(�̂�) and 𝜐 = 𝑛 − 𝑞. It follows, after substituting for𝑆(𝜽) in (7.5.20) and using

the exponential approximation, that the following holds:

1. For large samples, 𝜽 is approximately distributed in amultivariate normal distribution
𝑁{�̂�, 2{𝑆𝑖𝑗}−1𝑠2𝑎}.

2. An approximate HPD region is defined by (7.5.18) or (7.5.19), with 𝑞 replacing 𝑝,
and 𝜽 replacing 𝝓.

Example: Posterior Distribution of 𝝀 = 𝟏 − 𝜽 for an IMA(0, 1, 1) Process. To illustrate,
Figure 7.8 shows the approximate posterior density distribution 𝑝(𝜆|𝐳) from the data of
Series B. It is seen to be approximately normal with its mode at �̂� = 1.09 and having a
standard deviation of about 0.05. A 95%Bayesian HPD interval covers essentially the same
range, 0.98 < 𝜆 < 1.19, as did the 95% confidence interval. Note that the density has been
normalized to have unit area under the curve.

7.5.5 Mixed Processes

If 𝑧𝑡 follows an ARIMA(𝑝, 𝑑, 𝑞) process, then 𝑤𝑡 = ∇𝑑𝑧𝑡 follows an ARMA (𝑝, 𝑞) process

𝜙(𝐵)�̃�𝑡 = 𝜃(𝐵)𝑎𝑡

FIGURE 7.8 Posterior density 𝑝(𝜆|𝐳) for Series B.
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It can be shown that for such a process the factors |𝐈(𝝓, 𝜽)|1∕2 and 𝑓 (𝝓, 𝜽) in (7.5.5) do not
exactly cancel. Instead we can show, based on (7.2.24), that

|𝐈(𝝓, 𝜽)|1∕2𝑓 (𝝓, 𝜽) = 𝐽 (𝝓∗|𝝓, 𝜽) (7.5.21)

In (7.5.21), the 𝜙∗’s are the 𝑝 + 𝑞 parameters obtained by multiplying the autoregressive
and moving average operators:

(1 − 𝜙∗
1𝐵 − 𝜙∗

2𝐵
2 −⋯ − 𝜙∗

𝑝+𝑞𝐵
𝑝+𝑞) = (1 − 𝜙1𝐵 −⋯ − 𝜙𝑝𝐵

𝑝) × (1 − 𝜃1𝐵 −⋯ − 𝜃𝑞𝐵
𝑞)

and 𝐽 is the Jacobian of the transformation from 𝝓
∗ to (𝝓, 𝜽), that is,

𝑝(𝝓, 𝜽|𝐳) ∝ 𝐽 (𝝓∗|𝝓, 𝜃)[𝑆(𝝓, 𝜽)]−𝑛∕2 (7.5.22)

In particular, for the ARMA(1, 1) process, 𝜙∗
1 = 𝜙 + 𝜃, 𝜙∗

2 = −𝜙𝜃, 𝐽 = |𝜙 − 𝜃|, and

𝑝(𝜙, 𝜃|𝐳) ∝ |𝜙 − 𝜃|[𝑆(𝜙, 𝜃)]−𝑛∕2 (7.5.23)

In this case, we see that the Jacobian will dominate in a region close to the line 𝜙 = 𝜃 and
will produce zero density on the line. This is sensible because the sum of squares 𝑆(𝜙, 𝜃)
will take the finite value

∑𝑛

𝑡=1 �̃�
2
𝑡
for any 𝜙 = 𝜃 and corresponds to our entertaining the

possibility that �̃�𝑡 is white noise. However, in our derivation, we have not constrained the
range of the parameters. The possibility that 𝜙 = 𝜃 is thus associated with unlimited ranges
for the (equal) parameters. The effect of limiting the parameter space by, for example,
introducing the requirements for stationarity and invertibility (−1 < 𝜙 < 1,−1 < 𝜃 < 1)
would be to produce a small positive value for the density, but this refinement seems
scarcely worthwhile.

The Bayesian analysis reinforces the point made in Section 7.3.5 that estimation diffi-
culties will be encounteredwith the mixedmodel and, in particular, with iterative solutions,
when there is near redundancy in the parameters (i.e., near common factors between the
AR and MA parts). We have already seen that the use of preliminary identification will
usually ensure that these situations are avoided.

APPENDIX A7.1 REVIEW OF NORMAL DISTRIBUTION THEORY

A7.1.1 Partitioning of a Positive-Definite Quadratic Form

Consider the positive-definite quadratic form 𝑄𝑝 = 𝐱′Σ−1𝐱. Suppose that the 𝑝 × 1
vector 𝐱 is partitioned after the 𝑝1th element, so that 𝐱′ = (𝐱′1 ∶ 𝐱′2) = (𝑥1, 𝑥2,… , 𝑥𝑝1

∶
𝑥𝑝1+1,… , 𝑥𝑝), and suppose that the 𝑝 × 𝑝matrix𝚺 is also partitioned after the 𝑝1th row and
column, so that

𝚺 =

[
𝚺11 𝚺12

𝚺′
12 𝚺22

]
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It is readily verified that 𝚺−1 can be represented as

𝚺−1 =

[
𝐈 −𝚺−1

11𝚺12

𝟎 𝐈

][
𝚺−1
11 𝟎
𝟎 (𝚺22 − 𝚺′

12𝚺
−1
11𝚺12)−1

][
𝐈 𝟎

−𝚺′
12𝚺

−1
11 𝐈

]

Then, since

𝐱′𝚺−1𝐱 = (𝐱′1 ∶ 𝐱′2 − 𝐱′1𝚺
−1
11𝚺12) ×

[
𝚺−1
11 𝟎

𝟎 (𝚺22 − 𝚺′
12𝚺

−1
11𝚺12)

−1

](
𝐱1

𝐱2 − 𝚺′
12𝚺

−1
11 𝐱1

)

𝑄𝑝 = 𝐱′𝚺−1𝐱 can always be written as a sum of two quadratic forms 𝑄𝑝1
and 𝑄𝑝2

,
containing 𝑝1 and 𝑝2 elements, respectively, where

𝑄𝑝 = 𝑄𝑝1
+𝑄𝑝2

𝑄𝑝1
= 𝐱′1𝚺

−1
11 𝐱1 (A7.1.1)

𝑄𝑝2
= (𝐱2 − 𝚺′

12𝚺
−1
11 𝐱1)

′(𝚺22 − 𝚺′
12𝚺

−1
11𝚺12)

−1(𝐱2 − 𝚺′
12𝚺

−1
11 𝐱1)

We may also write for the determinant of 𝚺

|𝚺| = |𝚺11||𝚺22 − 𝚺′
12𝚺

−1
11𝚺12| (A7.1.2)

A7.1.2 Two Useful Integrals

Let 𝐳′𝐂𝐳 be a positive-definite quadratic form in 𝐳, which has 𝑞 elements, so that 𝐳′ =
(𝑧1, 𝑧2,… , 𝑧𝑞), where −∞ < 𝑧𝑖 < ∞, 𝑖 = 1, 2,… , 𝑞, and let 𝑎, 𝑏, and 𝑚 be positive real
numbers. Then, it may be shown that

∫𝑅

(
𝑎 + 𝐳′𝐂𝐳

𝑏

)−(𝑚+𝑞)∕2
𝑑𝐳 =

(𝑏𝜋)𝑞∕2Γ(𝑚∕2)
𝑎𝑚∕2|𝐂|1∕2Γ[(𝑚 + 𝑞)∕2]

(A7.1.3)

where the 𝑞-fold integral extends over the entire 𝐳 space 𝑅, and

∫𝐳′𝐂𝐳>𝑞𝐹0
(1 + 𝐳′𝐂𝐳∕𝑚)−(𝑚+𝑞)∕2𝑑𝐳

∫
𝑅
(1 + 𝐳′𝐂𝐳∕𝑚)−(𝑚+𝑞)∕2𝑑𝐳

=
∫

∞

𝐹0

𝑝(𝐹 |𝑞, 𝑚) 𝑑𝐹 (A7.1.4)

where the function 𝑝(𝐹 |𝑞, 𝑚) is the probability density of the 𝐹 distribution with 𝑞 and 𝑚

degrees of freedom and is defined by

𝑝(𝐹 |𝑞, 𝑚) = (𝑞∕𝑚)𝑞∕2Γ[(𝑚 + 𝑞)∕2]
Γ(𝑞∕2)Γ(𝑚∕2)

𝐹 (𝑞−2)∕2
(
1 + 𝑞

𝑚
𝐹

)−(𝑚+𝑞)∕2
𝐹 > 0 (A7.1.5)

If 𝑚 tends to infinity, then

(
1 + 𝐳′𝐂𝐳

𝑚

)−(𝑚+𝑞)∕2
tends to 𝑒−(𝐳

′𝐂𝐳)∕2
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and writing 𝑞𝐹 = 𝜒2, we obtain from (A7.1.4) that

∫𝐳′𝐂𝐳>𝜒2
0
𝑒−(𝐳

′𝐂𝐳)∕2𝑑𝐳

∫
𝑅
𝑒−(𝐳′𝐂𝐳)∕2𝑑𝐳

=
∫

∞

𝜒
2
0

𝑝(𝜒2|𝑞)𝑑𝜒2 (A7.1.6)

where the function 𝑝(𝜒2|𝑞) is the probability density of the 𝜒2 distribution with 𝑞 degrees
of freedom, and is defined by

𝑝(𝜒2|𝑞) = 1
2𝑞∕2Γ(𝑞∕2)

(𝜒2)(𝑞−2)∕2𝑒−𝜒2∕2 𝜒2 > 0 (A7.1.7)

Here and elsewhere 𝑝(𝑥) is used as a general notation to denote a probability density
function for a random variable 𝑥.

A7.1.3 Normal Distribution

The random variable 𝑥 is normally distributed with mean 𝜇 and standard deviation 𝜎, or
𝑁(𝜇, 𝜎2), if its probability density is

𝑝(𝑥) = (2𝜋)−1∕2(𝜎2)−1∕2𝑒−(𝑥−𝜇)
2∕2𝜎2 (A7.1.8)

Thus, the unit normal variate 𝑢 = (𝑥 − 𝜇)∕𝜎 has a distribution𝑁(0, 1). Table E in Part Five
shows ordinates 𝑝(𝑢𝜀) and values 𝑢𝜀 such that Pr{𝑢 > 𝑢𝜀} = 𝜀 for chosen values of 𝜀.

Multinormal Distribution. The vector 𝐱′ = (𝑥1, 𝑥2,… , 𝑥𝑝) of random variables has a joint
𝑝-variate normal distribution𝑁{𝝁,𝚺} if its probability density function is

𝑝(𝐱) = (2𝜋)−𝑝∕2|𝚺|−1∕2𝑒−(𝐱−𝜇)′𝚺−1(𝐱−𝜇)∕2 (A7.1.9)

The multinormal variate 𝐱 has mean vector 𝝁 = 𝐸[𝐱] and variance--covariance matrix 𝚺 =
cov[𝐱]. The probability density contours are ellipsoids defined by (𝐱 − 𝝁)′𝚺−1(𝐱 − 𝝁) =
constant. For illustration, the elliptical contours for a bivariate (𝑝 = 2) normal distribution
are shown in Figure A7.1.

At the point 𝐱 = 𝝁, the multivariate normal distribution has its maximum density

max 𝑝(𝐱) = 𝑝(𝝁) = (2𝜋)−𝑝∕2|𝚺|−1∕2

The 𝝌𝟐 Distribution as the Probability Mass Outside a Density Contour of the Multivari-
ate Normal. For the 𝑝-variate normal distribution, (A7.1.9), the probability mass outside
the density contour defined by

(𝐱 − 𝜇)′𝚺−1(𝐱 − 𝜇) = 𝜒2
0

is given by the 𝜒2 integral with 𝑝 degrees of freedom:

∫

∞

𝜒2
0

𝑝(𝜒2|𝑝)𝑑𝜒2

where the 𝜒2 density function is defined as in (A7.1.7). Table F in Part Five shows values
of 𝜒2

𝜀
(𝑝), such that Pr{𝜒2 > 𝜒2

𝜀
(𝑝)} = 𝜀 for chosen values of 𝜀.
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FIGUREA7.1 Contours of a bivariate normal distribution showing the marginal distribution 𝑝(𝑥1)
and the conditional distribution 𝑝(𝑥2|𝑥10) at 𝑥1 = 𝑥10.

Marginal and Conditional Distributions for the Multivariate Normal Distribution. Sup-
pose that the vector of 𝑝 = 𝑝1 + 𝑝2 randomvariables is partitioned after the first 𝑝1 elements,
so that

𝐱′ = (𝐱′1 ∶ 𝐱′2) = (𝑥1, 𝑥2,… , 𝑥𝑝1
∶ 𝑥𝑝1+1,… , 𝑥𝑝1+𝑝2)

and that the variance--covariance matrix is

𝚺 =

[
𝚺11 𝚺12

𝚺′
12 𝚺22

]

Then using (A7.1.1) and (A7.1.2), we can write the multivariate normal distribution for
the 𝑝 = 𝑝1 + 𝑝2 variates as the marginal distribution of 𝐱1 multiplied by the conditional
distribution of 𝐱2 given 𝐱1, that is,

𝑝(𝐱) = 𝑝(𝐱1, 𝐱2) = 𝑝(𝐱1)𝑝(𝐱2|𝐱1)
= (2𝜋)−𝑝1∕2|𝚺11|−1∕2 exp

[
−
(𝐱1 − 𝜇1)′𝚺−𝟏

11(𝐱1−𝜇1)
2

]

× (2𝜋)−𝑝2∕2|𝚺22.11|−1∕2 exp
[
−
(𝐱2 − 𝜇2.1)′𝚺−1

22.11(𝐱2 − 𝜇2.1)
2

]

(A7.1.10)

where

𝚺22.11 = 𝚺22 − 𝚺′
12𝚺

−1
11𝚺12 (A7.1.11)
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and 𝝁2.1 = 𝝁2 + 𝜷2.1(𝐱1 − 𝝁1) = 𝐸[𝐱2|𝐱1] define regression hyperplanes in (𝑝1 + 𝑝2)-
dimensional space, tracing the loci of the (conditional) means of the 𝑝2 elements of 𝐱2
as the 𝑝1 elements of 𝐱1 vary. The 𝑝2 × 𝑝1 matrix of regression coefficients is given by
𝜷2.1 = 𝚺′

12𝚺
−1
11 .

Both marginal and conditional distributions for the multivariate normal are therefore
multivariate normal distributions. It is seen that for the multivariate normal distribution,
the conditional distribution 𝑝(𝐱2|𝐱1) is, except for location (i.e., mean value), identical
whatever the value of 𝐱1 (i.e., multivariate normal with identical variance--covariance
matrix 𝚺22.11).

Univariate Marginals. In particular, the marginal density for a single element 𝑥𝑖 (𝑖 =
1, 2,… , 𝑝) is𝑁(𝜇𝑖, 𝜎2𝑖 ), a univariate normal with mean 𝜇𝑖 equal to the 𝑖th element of 𝝁 and
variance 𝜎2

𝑖
equal to the 𝑖th diagonal element of 𝚺.

BivariateNormal. For illustration, themarginal and conditional distributions for a bivariate
normal are shown in Figure A7.1. In this case, the marginal distribution of 𝑥1 is𝑁(𝜇1, 𝜎21),
while the conditional distribution of 𝑥2 given 𝑥1 is

𝑁

{
𝜇2 + 𝜌

𝜎2
𝜎1

(𝑥1 − 𝜇1), 𝜎2
2(1 − 𝜌2)

}

where 𝜌 = (𝜎1∕𝜎2)𝛽2.1 is the correlation coefficient between 𝑥1 and 𝑥2 and 𝛽2.1 = 𝜎12∕𝜎2
1

is the regression coefficient of 𝑥2 on 𝑥1.

A7.1.4 Student’s 𝒕 Distribution

The random variable 𝑥 is distributed as a scaled 𝑡 distribution with mean 𝜇 and scale
parameter 𝑠 and with 𝜈 degrees of freedom, denoted as 𝑡(𝜇, 𝑠2, 𝜈), if its probability density
is

𝑝(𝑥) = (2𝜋)−1∕2(𝑠2)−1∕2
(
𝜈

2

)−1∕2
Γ
(
𝜈 + 1
2

)
Γ−1

(
𝜈

2

)[
1 + (𝑥 − 𝜇)2

𝜈𝑠2

]−(𝜈+1)∕2
(A7.1.12)

Thus, the standardized 𝑡 variate 𝑡 = (𝑥 − 𝜇)∕𝑠 has distribution 𝑡(0, 1, 𝜈). Table G in Part
Five shows values 𝑡𝜀 such that Pr{𝑡 > 𝑡𝜀} = 𝜀 for chosen values of 𝜀.

Approach to Normal Distribution. For large 𝜈, the product

(
𝜈

2

)−1∕2
Γ
(
𝜈 + 1
2

)
Γ−1

(
𝜈

2

)

tends to unity, while the right-hand bracket in (A7.1.12) tends to 𝑒−(1∕2𝑠
2)(𝑥−𝜇)2 . Thus, if

for large 𝜈 we write 𝑠2 = 𝜎2, the 𝑡 distribution tends to the normal distribution (A7.1.8).

Multiple t Distribution. Let 𝝁′ = (𝜇1, 𝜇2,… , 𝜇𝑝) be a 𝑝 × 1 vector and S a 𝑝 × 𝑝 positive-
definite matrix. Then, the vector random variable 𝐱 has a scaled multivariate 𝑡 distribution
𝑡(𝝁, 𝐒, 𝜈), with mean vector 𝝁, scaling matrix S, and 𝜈 degrees of freedom if its probability
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density is

𝑝(𝐱) = (2𝜋)−𝑝∕2|𝐒|−1∕2
(
𝜈

2

)−𝑝∕2
Γ
(
𝜈 + 𝑝

2

)
Γ−1

(
𝜈

2

)

×
[
1 +

(𝐱 − 𝝁)′𝐒−1(𝐱 − 𝝁)
𝜈

]−(𝜈+𝑝)∕2
(A7.1.13)

The probability contours of the multiple 𝑡 distribution are ellipsoids defined by (𝐱 −
𝝁)′S−1(𝐱 − 𝝁) = constant.

Approach to the Multinormal Form. For large 𝜈, the product

(
𝜈

2

)−𝑝∕2
Γ
(
𝜈 + 𝑝

2

)
Γ−1

(
𝜈

2

)

tends to unity; also, the right-hand bracket in (A7.1.13) tends to 𝑒−(𝐱−𝝁)
′S−1(𝐱−𝝁)∕2. Thus,

if for large 𝑣 we write S = 𝚺, the multiple 𝑡 tends to the multivariate normal distribution
(A7.1.9).

APPENDIX A7.2 REVIEW OF LINEAR LEAST-SQUARES THEORY

A7.2.1 Normal Equations and Least Squares

The linear regression model is assumed to be

𝑤𝑖 = 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯ + 𝛽𝑘𝑥𝑖𝑘 + 𝑒𝑖 (A7.2.1)

where the 𝑤𝑖 (𝑖 = 1, 2,… , 𝑛) are observations on a response or dependent vari-
able obtained from an experiment in which the independent variables 𝑥𝑖1, 𝑥𝑖2,…,
𝑥𝑖𝑘 take on known fixed values, the 𝛽𝑖 are unknown parameters to be estimated from the
data, and the 𝑒𝑖 are uncorrelated random errors having zero means and the same common
variance 𝜎2.

The relations (A7.2.1) may be expressed in matrix form as

⎡⎢⎢⎢⎢⎣

𝑤1
𝑤2
⋮

𝑤𝑛

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

𝑥11 𝑥12 … 𝑥1𝑘
𝑥21 𝑥22 … 𝑥2𝑘
⋮ ⋮ ⋮

𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑘

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

𝛽1
𝛽2
⋮

𝛽𝑘

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣

𝑒1
𝑒2
⋮

𝑒𝑛

⎤⎥⎥⎥⎥⎦
or

w = 𝐗𝜷 + e (A7.2.2)

where the 𝑛 × 𝑘 matrix 𝐗 is assumed to be of full rank 𝑘. Gauss’s theorem of least-squares
may be stated (Barnard, 1963) in the following form: The estimates 𝜷 ′ = (𝛽1, 𝛽2,… , 𝛽𝑘)
of the parameters 𝜷, which are linear in the observations and unbiased for 𝜷 and which
minimize the mean square error among all such estimates of any linear function 𝜆1𝛽1 +
𝜆2𝛽2 +⋯ + 𝜆𝑘𝛽𝑘 of the parameters, are obtained by minimizing the sum of squares

𝑆(𝜷) = e′e = (w − 𝐗𝜷)′(w − 𝐗𝜷) (A7.2.3)
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To establish the minimum of 𝑆(𝜷), we note that the vectorw − 𝐗𝜷 may be decomposed
into two vectors w − 𝐗𝜷 and 𝐗(𝜷 − 𝜷) according to

w − 𝐗𝜷 = w − 𝐗𝜷 + 𝐗(𝜷 − 𝜷) (A7.2.4)

Hence, provided that we choose 𝜷 so that 𝐗′(w − 𝐗𝜷) = 0, that is,

(𝐗′𝐗)𝜷 = 𝐗′w (A7.2.5)

it follows that

𝑆(𝜷) = 𝑆(𝜷) + (𝜷 − 𝜷)′𝐗′𝐗(𝜷 − 𝜷) (A7.2.6)

and the vectors w − 𝐗𝜷 and 𝐗(𝜷 − 𝜷) are orthogonal. Since the second term on the right-
hand side of (A7.2.6) is a positive-definite quadratic form, it follows that the minimum is
attained when 𝜷 = 𝜷, where

𝜷 = (𝐗′𝐗)−1𝐗′w

is the least-squares estimate of 𝜷 given by the solution to the normal equation (A7.2.5).

A7.2.2 Estimation of Error Variance

Using (A7.2.3) and (A7.2.5), the sum of squares at the minimum is

𝑆(𝜷) = (w − 𝐗𝜷)′(w − 𝐗𝜷) = w′w − 𝜷′𝐗′𝐗𝜷 (A7.2.7)

Furthermore, if we define

𝑠2 = 𝑆(𝜷)
𝑛 − 𝑘

(A7.2.8)

it may be shown that 𝐸[𝑠2] = 𝜎2, and hence 𝑠2 provides an unbiased estimate of the error
variance 𝜎2.

A7.2.3 Covariance Matrix of Least-Squares Estimates

The covariance matrix of the least-squares estimates 𝜷 is defined by

V(𝜷) = cov[𝜷, 𝜷′]
= cov[(𝐗′𝐗)−1𝐗′w,w′𝐗(𝐗′𝐗)−1]
= (𝐗′𝐗)−1𝐗′cov[w,w′]𝐗(𝐗′𝐗)−1

= (𝐗′𝐗)−1𝜎2 (A7.2.9)

since cov[w,w′] = I𝜎2.

A7.2.4 Confidence Regions

Assuming normality, the quadratic forms 𝑆(𝜷) and (𝜷 − 𝜷)′𝐗′𝐗(𝜷 − 𝜷) in (A7.2.6) are
independently distributed as 𝜎2 times chi-squared random variables with 𝑛 − 𝑘 and 𝑘
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degrees of freedom, respectively. Hence,

(𝜷 − 𝜷)′𝐗′𝐗(𝜷 − 𝜷)
𝑆(𝜷)

𝑛 − 𝑘

𝑘

is distributed as 𝐹 (𝑘, 𝑛 − 𝑘). Using (A7.2.8), it follows that

(𝜷 − 𝜷)′𝐗′𝐗(𝜷 − 𝜷) ≤ 𝑘𝑠2𝐹𝜀(𝑘, 𝑛 − 𝑘) (A7.2.10)

defines a 1 − 𝜀 confidence region for 𝜷.

A7.2.5 Correlated Errors

Suppose that the errors e in (A7.2.2) have a known covariance matrix V, and let P be an
𝑛 × 𝑛 nonsingularmatrix such thatV−1 = PP′∕𝜎2, so thatP′VP = I𝜎2. Then, (A7.2.2)may
be transformed into

P′w = P′𝐗𝜷 + P′e

or

w∗ = 𝐗∗
𝜷 + e∗ (A7.2.11)

where w∗ = P′w and 𝐗∗ = P′𝐗. The covariance matrix of e∗ = P′e in (A7.2.11) is

cov[P′e, e′P] = P′cov[e, e′]P = P′VP = I𝜎2

Hence, we may apply ordinary least-squares theory withV = I𝜎2 to the transformedmodel
(A7.2.11), in which w is replaced by w∗ = P′w and 𝐗 by 𝐗∗ = P′𝐗. Thus, we obtain the
estimates

𝜷𝐺 = (𝐗∗′𝐗∗)−1𝐗∗′w∗

with V(𝜷𝐺) = cov[𝜷G] = 𝜎2(𝐗∗′𝐗∗)−1. In terms of the original variables 𝐗 and w of the
regression model, since PP′ = 𝜎2V−1, the estimate is

𝜷𝐺 = (𝐗′PP′𝐗)−1𝐗′PP′w = (𝐗′V−1𝐗)−1𝐗′V−1w (A7.2.12)

with

V(𝜷𝐺) = cov[𝜷𝐺] = (𝐗′V−1𝐗)−1

The estimator 𝜷𝐺 in (A7.2.12) is generally referred to as the generalized least-squares
(GLS) estimator, and it follows that this is the estimate of 𝜷 obtained by minimizing the
generalized sum of squares function

𝑆(𝜷|V) = (w − 𝐗𝜷)′V−1(w − 𝐗𝜷)
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APPENDIX A7.3 EXACT LIKELIHOOD FUNCTION FORMOVING
AVERAGE AND MIXED PROCESSES

To obtain the required likelihood function for an MA(𝑞) model, we have to derive the
probability density function for a series w′ = (𝑤1, 𝑤2,… , 𝑤𝑛) assumed to be generated by
an invertible moving average model of order 𝑞:

�̃�𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 −…− 𝜃𝑞𝑎𝑡−𝑞 (A7.3.1)

where �̃�𝑡 = 𝑤𝑡 − 𝜇, with 𝜇 = 𝐸[𝑤𝑡]. Under the assumption that the 𝑎𝑡’s and the �̃�𝑡’s are
normally distributed, the joint density may be written as

𝑝(w|𝜽, 𝜎2
𝑎
, 𝜇) = (2𝜋𝜎2

𝑎
)−𝑛∕2|M(0,𝑞)

𝑛
|1∕2 exp

[
−w̃′M(0,𝑞)

𝑛
w̃

2𝜎2
𝑎

]
(A7.3.2)

where (M(𝑝,𝑞)
𝑛

)−1𝜎2
𝑎
denotes the 𝑛 × 𝑛 covariance matrix of the 𝑤𝑡’s for an ARMA(𝑝, 𝑞)

process. We now consider a convenient way of evaluating w̃′M(0,𝑞)
𝑛

w̃, and for simplicity,
we suppose that 𝜇 = 0, so that 𝑤𝑡 = �̃�𝑡.

Using the model (A7.3.1), we can write down the 𝑛 equations:

𝑤𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 −…− 𝜃𝑞𝑎𝑡−𝑞 (𝑡 = 1, 2,… , 𝑛)

These 𝑛 equations can be conveniently expressed in matrix form in terms of the
𝑛-dimensional vectors w′ = (𝑤1, 𝑤2,… , 𝑤𝑛) and a′ = (𝑎1, 𝑎2,… , 𝑎𝑛), and the
𝑞-dimensional vector of preliminary values a′∗ = (𝑎1−𝑞, 𝑎2−𝑞,… , 𝑎0) as

w = L𝜃a + Fa∗

where L𝜃 is an 𝑛 × 𝑛 lower triangular matrix with l’s on the leading diagonal, −𝜃1 on the
first subdiagonal,−𝜃2 on the second subdiagonal, and so on, with 𝜃𝑖 = 0 for 𝑖 > 𝑞. Further,
F is an 𝑛 × 𝑞 matrix with the form F = (B′

𝑞
, 0′)′ where B𝑞 is 𝑞 × 𝑞 equal to

B𝑞 = −

⎡⎢⎢⎢⎢⎢⎣

𝜃𝑞 𝜃𝑞−1 … 𝜃1
0 𝜃𝑞 … 𝜃2
⋮ ⋮ ⋮

0 0 … 𝜃𝑞

⎤⎥⎥⎥⎥⎥⎦
Now the joint distribution of the 𝑛 + 𝑞 values, which are the elements of (a′, a′∗), is

𝑝(a, a∗|𝜎2𝑎) = (2𝜋𝜎2
𝑎
)−(𝑛+𝑞)∕2 exp

[
− 1
2𝜎2

𝑎

(a′a + a′∗a∗)

]

Noting that the transformation from (a, a∗) to (w, a∗) has unit Jacobian and a = L−1
𝜃
(w −

Fa∗), the joint distribution of w = L𝜃a + Fa∗ and a∗ is

𝑝(w, a∗|𝜽, 𝜎2𝑎) = (2𝜋𝜎2
𝑎
)−(𝑛+𝑞)∕2 exp

[
− 1
2𝜎2

𝑎

𝑆(𝜽, a∗)

]
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where

𝑆(𝜽, a∗) = (w − Fa∗)
′L′

𝜃

−1L−1
𝜃
(w − Fa∗) + a′∗a∗ (A7.3.3)

Now, let â∗ be the vector of values that minimize 𝑆(𝜽, a∗), which from generalized least-
squares theory can be shown to equal â∗ = D−1F′L′−1

𝜃
L−1
𝜃
w, whereD = I𝑞 + F′L′−1

𝜃
L−1
𝜃
F.

Then, using the result (A7.2.6), we have

𝑆(𝜽, a∗) = 𝑆(𝜽) + (a∗ − â∗)′D(a∗ − â∗)

where

𝑆(𝜽) = 𝑆(𝜽, â∗) = (w − Fâ∗)′L′−1
𝜃

L−1
𝜃
(w − Fâ∗) + â′∗â∗ (A7.3.4)

is a function of the observationsw but not of the preliminary values a∗. Thus,

𝑝(w, a∗|𝜽, 𝜎2
𝑎
) = (2𝜋𝜎2

𝑎
)−(𝑛+𝑞)∕2exp

{
− 1
2𝜎2

𝑎

[𝑆(𝜽) + (a∗ − â∗)′D(a∗ − â∗)]

}

However, since the joint distribution of w and a∗ can be factored as

𝑝(w, a∗|𝜽, 𝜎2
𝑎
) = 𝑝(w|𝜽, 𝜎2

𝑎
)𝑝(a∗|w, 𝜽, 𝜎2𝑎)

it follows, similar to (A7.1.10), that

𝑝(a∗|w, 𝜽, 𝜎2𝑎) = (2𝜋𝜎2
𝑎
)−𝑞∕2 ∣ D ∣1∕2 exp

[
− 1
2𝜎2

𝑎

(a∗ − â∗)′D(a∗ − â∗)

]
(A7.3.5)

𝑝(w|𝜽, 𝜎2
𝑎
) = (2𝜋𝜎2

𝑎
)−𝑛∕2 ∣ D ∣−1∕2 exp

[
− 1
2𝜎2

𝑎

𝑆(𝜽)

]
(A7.3.6)

We can now deduce the following:

1. From (A7.3.5), we see that â∗ is the conditional expectation of a∗ given w and 𝜽.
Thus, using the notation introduced in Section 7.1.4, we obtain

â∗ = [a∗|w, 𝜽] = [a∗]

where [a] = L−1
𝜃
(w − F[a∗]) is the conditional expectation of a given w and 𝜽, and

using (A7.3.4):

𝑆(𝜽) = [a]′[a] + [a∗]′[a∗] =
𝑛∑

𝑡=1−𝑞
[𝑎𝑡]2 (A7.3.7)

To compute 𝑆(𝜽), the quantities [𝑎𝑡] = [𝑎𝑡|w, 𝜽] may be obtained by using the es-
timates [a∗]′ = ([𝑎1−𝑞], [𝑎2−𝑞],… , [𝑎0]) obtained as above by back-forecasting for
preliminary values, and computing the elements [𝑎1], [𝑎2],… , [𝑎𝑛] of [a] recursively
from the relation L𝜃[a] = w − F[a∗] as

[𝑎𝑡] = 𝑤𝑡 + 𝜃1[𝑎𝑡−1] +… + 𝜃𝑞[𝑎𝑡−𝑞] (𝑡 = 1, 2,… , 𝑛)
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Note that if the expression for â∗ is utilized in (A7.3.4), after rearranging we obtain

𝑆(𝜽) = w′L′−1
𝜃
(I𝑛 − L−1

𝜃
FD−1F′L′

𝜃

−1)L−1
𝜃
w = a0

′
a0 − â′∗Dâ∗

where a0 = L−1
𝜃
w denotes the vectorwhose elements 𝑎0

𝑡
can be calculated recursively

from 𝑎0
𝑡
= 𝑤𝑡 + 𝜃1𝑎

0
𝑡−1 +⋯ + 𝜃𝑞𝑎

0
𝑡−𝑞, 𝑡 = 1, 2,… , 𝑛, by setting the initial values a∗

equal to zero. Hence, the first term described above, 𝑆∗(𝜽) = a0
′
a0 =

∑𝑛

𝑡=1(𝑎
0
𝑡
)2, is

the conditional sum-of-squares function, given a∗ = 𝟎, as discussed in Section 7.1.2.
2. In addition, we find that

M(0,𝑞)
𝑛

= L′−1
𝜃

(I𝑛 − L−1
𝜃
FD−1F′L′−1

𝜃
)L−1

𝜃

and 𝑆(𝜽) = w′M(0,𝑞)
𝑛

w. Also, by comparing (A7.3.6) and (A7.3.2), we have

|D|−1 = |M(0,𝑞)
𝑛

|

3. The back-forecasts â∗ = [a∗] can be calculatedmost conveniently from â∗ = D−1F′u
(i.e., by solvingDâ∗ = F′u), whereu = L′−1

𝜃
L−1
𝜃
w = L′−1

𝜃
a0 = (𝑢1, 𝑢2,… , 𝑢𝑛)′. Note

that the elements 𝑢𝑡 of u are calculated through a backward recursion as

𝑢𝑡 = 𝑎0
𝑡
+ 𝜃1𝑢𝑡+1 +… + 𝜃𝑞𝑢𝑡+𝑞

from 𝑡 = 𝑛 down to 𝑡 = 1, using zero starting values 𝑢𝑛+1 = … = 𝑢𝑛+𝑞 = 0, where
the 𝑎0

𝑡
denote the estimates of the 𝑎𝑡 conditional on the zero starting values a∗ = 𝟎.

Also, the vector h = F′u consists of the elements ℎ𝑗 = −
∑𝑗

𝑖=1 𝜃𝑞−𝑗+𝑖𝑢𝑖, 𝑗 = 1,… , 𝑞.

4. Finally, using (A7.3.6) and (A7.3.7), the unconditional likelihood is given exactly by

𝐿(𝜽, 𝜎2
𝑎
|w) = (𝜎2

𝑎
)−𝑛∕2|D|−1∕2exp

{
− 1
2𝜎2

𝑎

𝑛∑
𝑡=1−𝑞

[𝑎𝑡]2
}

(A7.3.8)

For example, in theMA(1)modelwith 𝑞 = 1, we haveF′ = −(𝜃, 0,… , 0), an n-dimensional
vector, and L𝜃 is such that L

−1
𝜃

has first column equal to (1, 𝜃, 𝜃2,… , 𝜃𝑛−1)′, so that

D = 1 + F′L′−1
𝜃

L−1
𝜃
F = 1 + 𝜃2 + 𝜃4 +…+ 𝜃2𝑛 = 1 − 𝜃2(𝑛+1)

1 − 𝜃2

In addition, the conditional values 𝑎0
𝑡
are computed recursively as 𝑎0

𝑡
= 𝑤𝑡 + 𝜃𝑎0

𝑡−1, 𝑡 =
1, 2,… , 𝑛, using the zero initial value 𝑎00 = 0, and the values of the vector u = L′−1

𝜃
a0 are

computed in the backward recursion as 𝑢𝑡 = 𝑎0
𝑡
+ 𝜃𝑢𝑡+1, from 𝑡 = 𝑛 to 𝑡 = 1, with 𝑢𝑛+1 = 0.

Then,

â∗ = [𝑎0] = −D−1𝜃𝑢1 = −D−1𝑢0 = −
𝑢0(1 − 𝜃2)
1 − 𝜃2(𝑛+1)
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where 𝑢0 = 𝑎00 + 𝜃𝑢1 = 𝜃𝑢1, and the exact likelihood for the MA(1) process is

𝐿(𝜃, 𝜎2
𝑎
|w) = (𝜎2

𝑎
)−𝑛∕2 (1 − 𝜃2)1∕2

(1 − 𝜃2(𝑛+1))1∕2
exp

{
− 1
2𝜎2

𝑎

𝑛∑
𝑡=0

[𝑎𝑡]2
}

(A7.3.9)

Extension to the Autoregressive and Mixed Processes. The method outlined above may
be readily extended to provide the unconditional likelihood for the general mixed model

𝜙(𝐵)�̃�𝑡 = 𝜃(𝐵)𝑎𝑡 (A7.3.10)

which, with 𝑤𝑡 = ∇𝑑𝑧𝑡, defines the general ARIMA process. Details of the derivation
have been presented by Newbold (1974) and Ljung and Box (1979), while an alternative
approach to obtain the exact likelihood that uses the Cholesky decomposition of a band
covariance matrix (i.e., the innovations method as discussed in Section 7.4) was given by
Ansley (1979). First, assuming a zero mean for the process, the relations for the ARMA
model may be written in matrix form, similar to before, as

L𝜙w = L𝜃a + Fe∗

where L𝜙 is an 𝑛 × 𝑛 matrix of the same form as L𝜃 but with 𝜙𝑖’s in place of 𝜃𝑖’s, e
′
∗ =

(w′
∗, a

′
∗) = (𝑤1−𝑝,… , 𝑤0, 𝑎1−𝑞,… , 𝑎0) is the (𝑝 + 𝑞)-dimensional vector of initial values,

and

F =

[
A𝑝 B𝑞

𝟎 𝟎

]

with

A𝑝 =

⎡⎢⎢⎢⎢⎢⎣

𝜙𝑝 𝜙𝑝−1 … 𝜙1

0 𝜙𝑝 … 𝜙2
⋮ ⋮ ⋮

0 0 … 𝜙𝑝

⎤⎥⎥⎥⎥⎥⎦

and B𝑞 = −

⎡⎢⎢⎢⎢⎢⎣

𝜃𝑞 𝜃𝑞−1 … 𝜃1

0 𝜃𝑞 … 𝜃2
⋮ ⋮ ⋮

0 0 … 𝜃𝑞

⎤⎥⎥⎥⎥⎥⎦
Let 𝛀𝜎2

𝑎
= 𝐸[e∗e′∗] denote the covariance matrix of e∗. This matrix has the form

𝛀𝜎2
𝑎
=

[
𝜎−2
𝑎

𝚪𝑝 C
′

C I𝑞

]
𝜎2
𝑎

where 𝚪𝑝 = 𝐸[w∗w
′
∗] is a 𝑝 × 𝑝 matrix with (𝑖, 𝑗)th element 𝛾𝑖−𝑗 , and 𝜎2

𝑎
C = 𝐸[a∗w′

∗]
has elements defined by 𝐸[𝑎𝑖−𝑞𝑤𝑗−𝑝] = 𝜎2

𝑎
𝜓𝑗−𝑖−𝑝+𝑞 for 𝑗 − 𝑖 − 𝑝 + 𝑞 ≥ 0 and 0 other-

wise. The 𝜓𝑘 are the coefficients in the infinite MA operator 𝜓(𝐵) = 𝜙−1(𝐵)𝜃(𝐵) =∑∞
𝑘=0 𝜓𝑘𝐵

𝑘, 𝜓0 = 1, and are easily determined recursively through equations in Section
3.4. The autocovariances 𝛾𝑘 in 𝚪𝑝 can directly be determined in terms of the coefficients
𝜙𝑖, 𝜃𝑖, and 𝜎2

𝑎
, through use of the first (𝑝 + 1) equations (3.4.2) (see, e.g., Ljung and Box,

1979).
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Similar to the result in (A7.3.3), since a = L−1
𝜃
(L𝜙w − Fe∗) and e∗ are independent, the

joint distribution of w and e∗ is

𝑝(w, e∗|𝝓, 𝜽,𝝈2
𝑎
) = (2𝜋𝜎2

𝑎
)−(𝑛+𝑝+𝑞)∕2 ∣𝛀 ∣−1∕2 exp

[
− 1
2𝜎2

𝑎

𝑆(𝝓, 𝜽, e∗)

]

where

𝑆(𝝓, 𝜽, e∗) = (L𝜙w − Fe∗)′L′−1
𝜃

L−1
𝜃
(L𝜙w − Fe∗) + e′∗𝛀

−1e∗

Again, by generalized least-squares theory, we can show that

𝑆(𝝓, 𝜽, e∗) = 𝑆(𝝓, 𝜽) + (e∗ − ê∗)′D(e∗ − ê∗)

where

𝑆(𝝓, 𝜽) = 𝑆(𝝓, 𝜽, ê∗) = â′â + ê′∗𝛀
−1ê∗ (A7.3.11)

is the unconditional sum-of-squares function and

𝒆∗ = 𝐸[e∗|w,𝝓, 𝜽] = [e∗] = D−1F′L′−1
𝜃

L−1
𝜃
L𝜙w (A7.3.12)

represents the conditional expectation of the preliminary values e∗, with D = 𝛀−1 +
F′L′−1

𝜃
L−1
𝜃
F, and â = [a] = L−1

𝜃
(L𝜙w − Fê∗). By factorization of the joint distribution

of w and e∗, we can obtain

𝑝(w|𝝓, 𝜽, 𝜎2
𝑎
) = (2𝜋𝜎2

𝑎
)−𝑛∕2|𝛀|−1∕2|D|−1∕2exp

[
− 1
2𝜎2

𝑎

𝑆(𝝓, 𝜽)

]
(A7.3.13)

as the unconditional likelihood. It follows immediately from (A7.3.13) that the maximum
likelihood estimate for 𝜎2

𝑎
is given by �̂�2

𝑎
= 𝑆(�̂�, �̂�)∕𝑛, where �̂� and �̂� denote maximum

likelihood estimates.
Again, we note that 𝑆(𝝓, 𝜽) =

∑𝑛

𝑡=1[𝑎𝑡]
2 + ê′∗𝛀

−1ê∗, and the elements [𝑎1], [𝑎2],… ,

[𝑎𝑛] of â = [a] are computed recursively from the relation L𝜃[a] = L𝜙w − F[e∗] as

[𝑎𝑡] = 𝑤𝑡 − 𝜙1[𝑤𝑡−1] −… − 𝜙𝑝[𝑤𝑡−𝑝] + 𝜃1[𝑎𝑡−1] +… + 𝜃𝑞[𝑎𝑡−𝑞]

for 𝑡 = 1, 2,… , 𝑛, using the back-forecasted values [e∗] for the preliminary values, with
[𝑤𝑡] = 𝑤𝑡 for 𝑡 = 1, 2,… , 𝑛. In addition, the back-forecasts ê∗ = [e∗] can be calculated from
ê∗ = D−1F′u, where u = L′−1

𝜃
L−1
𝜃
L𝜙w = L′−1

𝜃
a0, and the elements 𝑢𝑡 of u are calculated

through the backward recursion as

𝑢𝑡 = 𝑎0
𝑡
+ 𝜃1𝑢𝑡+1 +…+ 𝜃𝑞𝑢𝑡+𝑞

with starting values 𝑢𝑛+1 = … = 𝑢𝑛+𝑞 = 0, and the 𝑎0
𝑡
are the elements of a0 = L−1

𝜃
L𝜙w

and denote the estimates of the 𝑎𝑡 conditional on zero starting values e∗ = 0. Also, the
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vector h = F′u consists of the 𝑝 + 𝑞 elements:

ℎ𝑗 =

⎧⎪⎪⎨⎪⎪⎩

𝑗∑
𝑖=1

𝜙𝑝−𝑗+𝑖𝑢𝑖 𝑗 = 1,… , 𝑝

−
𝑗−𝑝∑
𝑖=1

𝜃𝑞−𝑗+𝑝+𝑖𝑢𝑖 𝑗 = 𝑝 + 1,… , 𝑝 + 𝑞

Finally, using (A7.1.1) and (A7.1.2), in 𝑆(𝝓, 𝜽) we may write ê′∗𝛀
−1ê∗ = â′∗â∗ + (ŵ∗ −

C′â∗)′K−1(ŵ∗ − C′â∗), so that we have

𝑆(𝝓, 𝜽) =
𝑛∑

𝑡=1−𝑞
[𝑎𝑡]2 + (ŵ∗ − C′â∗)′K−1(ŵ∗ − C′â∗) (A7.3.14)

whereK = 𝜎−2
𝑎
Γ𝑝 − C′C, as well as ∣𝛀∣=∣K ∣.

Therefore, in general, the likelihood associated with a series z of 𝑛 + 𝑑 values generated
by any ARIMA process is given by

𝐿(𝝓, 𝜽, 𝜎2
𝑎
|z) = (2𝜋𝜎2

𝑎
)−𝑛∕2 ∣M(𝑝,𝑞)

𝑛
∣1∕2 exp

[
−
𝑆(𝝓, 𝜽)
2𝜎2

𝑎

]
(A7.3.15)

where

𝑆(𝝓, 𝜽) =
𝑛∑
𝑡=1

[𝑎𝑡]2 + ê′∗𝛀
−1ê∗

and |M(𝑝,𝑞)
𝑛

| = |𝛀|−1|D|−1 = |K|−1|D|−1. Also, by expressing the mixed ARMA model
as an infinite moving average �̃�𝑡 = (1 + 𝜓1𝐵 + 𝜓2𝐵

2 + …)𝑎𝑡, and referring to results for
the pure MA model, it follows that in the unconditional sum-of-squares function for the
mixed model, we have the relation that ê′∗𝛀

−1ê∗ =
∑0

𝑡=−∞[𝑎𝑡]2. Hence, we also have the
representation 𝑆(𝝓, 𝜽) =

∑𝑛

𝑡=−∞[𝑎𝑡]2, and in practice the values [𝑎𝑡] may be computed
recursively with the summation proceeding from some point 𝑡 = 1 −𝑄, beyond which the
[𝑎𝑡]’s are negligible.

Special Case: AR(𝒑). In the special case of a pureAR(𝑝) model, the results described above
simplify somewhat. We then have e∗ = w∗,𝛀 = 𝜎−2

𝑎
𝚪𝑝, L𝜃 = I𝑛,D = 𝜎2

𝑎
𝚪−1
𝑝

+ F′F =
𝜎2
𝑎
𝚪−1
𝑝

+ A′
𝑝
A𝑝, and ŵ∗ = D−1F′L𝜙w = D−1A′

𝑝
L11w𝑝, where w

′
𝑝
= (𝑤1, 𝑤2,… , 𝑤𝑝) and

L11 is the 𝑝 × 𝑝 upper left submatrix of L𝜙. It can then be shown that the back-forecasts �̂�𝑡

are determined from the relations �̂�𝑡 = 𝜙1�̂�𝑡+1 +⋯ + 𝜙𝑝�̂�𝑡+𝑝, 𝑡 = 0,−1,… , 1 − 𝑝, with
�̂�𝑡 = 𝑤𝑡 for 1 ≤ 𝑡 ≤ 𝑛, and hence these are the same as values obtained from the use of
the backward model approach, as discussed in Section 7.1.4, for the special case of the AR
model. Thus, we obtain the exact sum of squares as 𝑆(𝝓) =

∑𝑛

𝑡=1[𝑎𝑡]
2 + 𝜎2

𝑎
ŵ′
∗𝚪

−1
𝑝
ŵ∗.

To illustrate, consider the first-order autoregressive process in 𝑤𝑡,

𝑤𝑡 − 𝜙𝑤𝑡−1 = 𝑎𝑡 (A7.3.16)
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where 𝑤𝑡 might be the 𝑑th difference ∇𝑑𝑧𝑡 of the actual observations and a series z of
length 𝑛 + 𝑑 observations is available. To compute the likelihood (A7.3.15), we require

𝑆(𝜙) =
𝑛∑
𝑡=1

[𝑎𝑡]2 + (1 − 𝜙2)�̂�2
0

=
𝑛∑
𝑡=2

(𝑤𝑡 − 𝜙𝑤𝑡−1)2 + (𝑤1 − 𝜙�̂�0)2 + (1 − 𝜙2)�̂�2
0

since Γ1 = 𝛾0 = 𝜎2
𝑎
(1 − 𝜙2)−1. Now, because D = 𝜎2

𝑎
Γ−11 + A′

1A1 = 𝜎2
𝑎
𝛾−10 + 𝜙2 = 1, and

hence �̂�0 = 𝜙𝑤1, substituting this into the last two terms of 𝑆(𝜙) above, it reduces to

𝑆(𝜙) =
𝑛∑
𝑡=2

(𝑤𝑡 − 𝜙𝑤𝑡−1)2 + (1 − 𝜙2)𝑤2
1 (A7.3.17)

as a result that may be obtained more directly by methods discussed in Appendix A7.4.

Special case: ARMA(1,1). As an example for the mixed model, consider the ARMA(1, 1)
model

𝑤𝑡 − 𝜙𝑤𝑡−1 = 𝑎𝑡 − 𝜃𝑎𝑡−1 (A7.3.18)

Then, we have e′∗ = (𝑤0, 𝑎0),A1 = 𝜙, 𝐵1 = −𝜃, and

𝜎2
𝑎
𝛀 = 𝜎2

𝑎

[
𝜎−2
𝑎
𝛾0 1

1 1

]

with 𝜎−2
𝑎
𝛾0 = (1 + 𝜃2 − 2𝜙𝜃)∕(1 − 𝜙2). Thus, we have

D = 𝛀−1 + F′L
′−1
𝜃

L−1
𝜃
F = 1

𝜎−2
𝑎
𝛾0 − 1

[
1 −1
−1 𝜎−2

𝑎
𝛾0

]

+ 1 − 𝜃2𝑛

1 − 𝜃2

[
𝜙2 −𝜙𝜃
−𝜙𝜃 𝜃2

]

and the estimates of the initial values are obtained as 𝒆∗ = D−1h, where h′ =
(ℎ1, ℎ2) = (𝜙,−𝜃)𝑢1, the 𝑢𝑡 are obtained from the backward recursion 𝑢𝑡 = 𝑎0

𝑡
+ 𝜃𝑢𝑡+1,

𝑢𝑛+1 = 0, and 𝑎0
𝑡
= 𝑤𝑡 − 𝜙𝑤0

𝑡−1 + 𝜃𝑎0
𝑡−1, 𝑡 = 1, 2,… , 𝑛, are obtained using the zero initial

values𝑤0
0 = 𝑎00 = 0, with𝑤0

𝑡
= 𝑤𝑡 for 1 ≤ 𝑡 ≤ 𝑛. Thus, the exact sum of squares is obtained

as

𝑆(𝜙, 𝜃) =
𝑛∑
𝑡=0

[𝑎𝑡]2 +
(�̂�0 − �̂�0)2

𝜎−2
𝑎
𝛾0 − 1

(A7.3.19)

with [𝑎𝑡] = 𝑤𝑡 − 𝜙[𝑤𝑡−1] + 𝜃[𝑎𝑡−1], 𝑡 = 1, 2,… , 𝑛, and 𝜎−2
𝑎
𝛾0 − 1 = K = (𝜙 − 𝜃)2∕(1 −

𝜙2). In addition, we have ∣ M(1,1)
𝑛

∣= {∣ K ∣∣ D ∣}−1, with

|K||D| = 1 + 1 − 𝜃2𝑛

1 − 𝜃2
(𝜙 − 𝜃)2

1 − 𝜙2
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APPENDIX A7.4 EXACT LIKELIHOOD FUNCTION FOR AN
AUTOREGRESSIVE PROCESS

We now suppose that a given series w′ = (𝑤1, 𝑤2,… , 𝑤𝑛) is generated by the pth-order
stationary autoregressive model:

𝑤𝑡 − 𝜙1𝑤𝑡−1 − 𝜙2𝑤𝑡−2 −⋯ − 𝜙𝑝𝑤𝑡−𝑝 = 𝑎𝑡

where, temporarily, the 𝑤𝑡’s are assumed to have mean 𝜇 = 0, but as before, the argument
can be extended to the case where 𝜇 ≠ 0. Assuming normality for the 𝑎𝑡’s and hence for
the 𝑤𝑡’s, the joint probability density function of the 𝑤𝑡’s is

𝑝(w|𝝓, 𝜎2
𝑎
) = (2𝜋𝜎2

𝑎
)−𝑛∕2|M(𝑝,0)

𝑛
|1∕2exp

[
−
w′M(𝑝,0)

𝑛
w

2𝜎2
𝑎

]
(A7.4.1)

and because of the reversible character of the general process, the 𝑛 × 𝑛 matrix M(𝑝,0)
𝑛

is symmetric about both of its principal diagonals. Such a matrix is said to be doubly
symmetric. Now,

𝑝(w|𝝓, 𝜎2
𝑎
) = 𝑝(𝑤𝑝+1, 𝑤𝑝+2,… , 𝑤𝑛|w𝑝,𝝓, 𝜎

2
𝑎
)𝑝(w𝑝, |𝝓, 𝜎2

𝑎
)

where w′
𝑝
= (𝑤1, 𝑤2,… , 𝑤𝑝). The first factor on the right may be obtained by making use

of the distribution

𝑝(𝑎𝑝+1,… , 𝑎𝑛) = (2𝜋𝜎2
𝑎
)−(𝑛−𝑝)∕2exp

[
− 1
2𝜎2

𝑎

𝑛∑
𝑡=𝑝+1

𝑎2
𝑡

]
(A7.4.2a)

For fixed w𝑝, (𝑎𝑝+1,… , 𝑎𝑛) and (𝑤𝑝+1,… , 𝑤𝑛) are related by the transformation

𝑎𝑝+1 = 𝑤𝑝+1 − 𝜙1𝑤𝑝 −⋯ − 𝜙𝑝𝑤1

⋮

𝑎𝑛 = 𝑤𝑛 − 𝜙1𝑤𝑛−1 −⋯ − 𝜙𝑝𝑤𝑛−𝑝

which has unit Jacobian. Thus, we obtain

𝑝(𝑤𝑝+1,… , 𝑤𝑛 ∣ w𝑝, 𝜙, 𝜎
2
𝑎
)

= (2𝜋𝜎2
𝑎
)−(𝑛−𝑝)∕2exp

[
− 1
2𝜎2

𝑎

𝑛∑
𝑡=𝑝+1

(𝑤𝑡 − 𝜙1𝑤𝑡−1 −⋯ − 𝜙𝑝𝑤𝑡−𝑝)2
]

(A7.4.2b)

Also,

𝑝(w𝑝, |𝝓, 𝜎2
𝑎
) = (2𝜋𝜎2

𝑎
)−𝑝∕2|M(𝑝,0)

𝑝
|1∕2 exp

[
− 1
2𝜎2

𝑎

w′
𝑝
M(𝑝,0)

𝑝
w𝑝

]

Thus,

𝑝(w|𝝓, 𝜎2
𝑎
) = (2𝜋𝜎2

𝑎
)−𝑛∕2|M(𝑝,0)

𝑝
|1∕2 exp

[
−𝑆(𝝓)
2𝜎2

𝑎

]
(A7.4.3)
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where

𝑆(𝝓) =
𝑝∑

𝑖=1

𝑝∑
𝑗=1

𝑚
(𝑝)
𝑖𝑗
𝑤𝑖𝑤𝑗 +

𝑛∑
𝑡=𝑝+1

(𝑤𝑡 − 𝜙1𝑤𝑡−1 −⋯ − 𝜙𝑝𝑤𝑡−𝑝)2 (A7.4.4)

Also,

M(𝑝,0)
𝑝

= {𝑚(𝑝)
𝑖𝑗
} = {𝛾∣𝑖−𝑗∣}−1𝜎2𝑎 =

⎡⎢⎢⎢⎢⎢⎣

𝛾0 𝛾1 ⋯ 𝛾𝑝−1
𝛾1 𝛾0 ⋯ 𝛾𝑝−2

⋮ ⋮ ⋮

𝛾𝑝−1 𝛾𝑝−2 ⋯ 𝛾0

⎤⎥⎥⎥⎥⎥⎦

−1

𝜎2
𝑎

(A7.4.5)

where 𝛾0, 𝛾1,… , 𝛾𝑝−1 are the theoretical autocovariances of the process, and

|M(𝑝,0)
𝑝

| = |M(𝑝,0)
𝑛

|.
Now, let 𝑛 = 𝑝 + 1, so that

w′
𝑝+1M

(𝑝,0)
𝑝+1 w𝑝+1 =

𝑝∑
𝑖=1

𝑝∑
𝑗=1

𝑚
(𝑝)
𝑖𝑗
𝑤𝑖𝑤𝑗 +

(
𝑤𝑝+1 − 𝜙1𝑤𝑝 − 𝜙2𝑤𝑝−1 −⋯ − 𝜙𝑝𝑤1

)2

Then,

𝐌(𝑝)
𝑝+1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0
0

M(𝑝)
𝑝

⋮

⋮

0 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜙2
𝑝

𝜙𝑝𝜙𝑝−1 ⋯ −𝜙𝑝

𝜙𝑝𝜙𝑝−1 𝜙2
𝑝−1 ⋯ −𝜙𝑝−1

⋮ ⋮ ⋮

⋮ ⋮ −𝜙1

−𝜙𝑝 −𝜙𝑝−1 ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and the elements of 𝐌(𝑝)

𝑝 = 𝐌(𝑝,0)
𝑝 can now be deduced from the consideration that both

𝐌(𝑝)
𝑝 and𝐌(𝑝)

𝑝+1 are doubly symmetric. Thus, for example,

𝐌(1)
2 =

[
𝑚
(1)
11 + 𝜙2

1 −𝜙1

−𝜙1 1

]
=

[
1 −𝜙1

−𝜙1 𝑚
(1)
11 + 𝜙2

1

]

and after equating elements in the two matrices, we have

𝐌(1)
1 = 𝑚

(1)
11 = 1 − 𝜙2

1

Proceeding in this way, we find for processes of orders 1 and 2:

𝐌(1)
1 = 1 − 𝜙2

1 |𝐌(1)
1 | = 1 − 𝜙2

1

𝐌(2)
2 =

[
1 − 𝜙2

2 −𝜙1(1 + 𝜙2)
−𝜙1(1 + 𝜙2) 1 − 𝜙2

2

]

|𝐌(2)
2 | = (1 + 𝜙2)2[(1 − 𝜙2)2 − 𝜙2

1]



Box3G Date: May 21, 2015 Time: 9:59 am

268 PARAMETER ESTIMATION

For example, when 𝑝 = 1,

𝑝(w|𝜙, 𝜎2
𝑎
) = (2𝜋𝜎2

𝑎
)−𝑛∕2(1 − 𝜙2)1∕2exp

{
− 1
2𝜎2

𝑎

[
(1 − 𝜙2)𝑤2

1 +
𝑛∑
𝑡=2

(𝑤𝑡 − 𝜙𝑤𝑡−1)
2

]}

which checks with the result obtained in (A7.3.17). The process of generation must lead to
matrices 𝐌(𝑝)

𝑝 , whose elements are quadratic in the 𝜙’s.

Thus, it is clear from (A7.4.4) that not only is 𝑆(𝝓) = 𝐰′𝐌(𝑝)
𝑛 w a quadratic form in

the 𝑤𝑡’s, but it is also quadratic in the parameters 𝝓. Writing 𝝓′
𝑢
= (1, 𝜙1, 𝜙2,… , 𝜙𝑝), it is

clearly true that for some (𝑝 + 1) × (𝑝 + 1)matrix𝐃whose elements are quadratic functions
of the 𝑤𝑡’s,

𝐰′𝐌(𝑝)
𝑛

𝐰 = 𝝓′
𝑢
𝐃𝝓𝑢

Now, write

𝐃 =

⎡⎢⎢⎢⎢⎢⎣

𝐷11 −𝐷12 −𝐷13 ⋯ −𝐷1,𝑝+1
−𝐷12 𝐷22 𝐷23 ⋯ 𝐷2,𝑝+1

⋮ ⋮ ⋮ ⋮

−𝐷1,𝑝+1 𝐷2,𝑝+1 𝐷3,𝑝+1 ⋯ 𝐷𝑝+1,𝑝+1

⎤⎥⎥⎥⎥⎥⎦

(A7.4.6)

Inspection of (A7.4.4) shows that the elements 𝐷𝑖𝑗 are ‘‘symmetric’’ sums of squares and
lagged products, defined by

𝐷𝑖𝑗 = 𝐷𝑗𝑖 = 𝑤𝑖𝑤𝑗 +𝑤𝑖+1𝑤𝑗+1 +⋯ +𝑤𝑛+1−𝑗𝑤𝑛+1−𝑖 (A7.4.7)

where the sum 𝐷𝑖𝑗 contains 𝑛 − (𝑖 − 1) − (𝑗 − 1) terms.
Finally, we can write the exact probability density, and hence the exact likelihood, as

𝑝(𝐰|𝝓, 𝜎2
𝑎
) = 𝐿(𝝓, 𝜎2

𝑎
|𝐰) = (2𝜋𝜎2

𝑎
)−𝑛∕2|𝐌(𝑝)

𝑝
|1∕2exp

[
−𝑆(𝝓)
2𝜎2

𝑎

]
(A7.4.8)

where

𝑆(𝝓) = 𝐰′
𝑝
𝐌(𝑝)

𝑝
𝐰𝑝 +

𝑛∑
𝑡=𝑝+1

(𝑤𝑡 − 𝜙1𝑤𝑡−1 −⋯ − 𝜙𝑝𝑤𝑡−𝑝)2 = 𝝓′
𝑢
𝐃𝝓𝑢 (A7.4.9)

and the log-likelihood is

𝑙(𝝓, 𝜎2
𝑎
|𝐰) = −𝑛

2
ln(𝜎2

𝑎
) + 1

2
ln|𝐌(𝑝)

𝑝
| − 𝑆(𝝓)

2𝜎2
𝑎

(A7.4.10)

For example, when 𝑝 = 1, we have

𝑆(𝜙) = (1 − 𝜙2)𝑤2
1 +

𝑛∑
𝑡=2

(𝑤𝑡 − 𝜙𝑤𝑡−1)2

=
𝑛∑
𝑡=1

𝑤2
𝑡
− 2𝜙

𝑛∑
𝑡=2

𝑤𝑡−1𝑤𝑡 + 𝜙2
𝑛−1∑
𝑡=2

𝑤2
𝑡
≡ 𝐷11 − 2𝜙𝐷12 + 𝜙2𝐷22
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Maximum Likelihood Estimates. Differentiating with respect to 𝜎2𝑎 and each of the 𝜙’s in
(A7.4.10), we obtain

𝜕𝑙

𝜕𝜎2
𝑎

= − 𝑛

2𝜎2
𝑎

+
𝑆(𝝓)
2(𝜎2

𝑎
)2

(A7.4.11)

𝜕𝑙

𝜕𝜙𝑗

= 𝑀𝑗 + 𝜎−2
𝑎
(𝐷1,𝑗+1 − 𝜙1𝐷2,𝑗+1 −⋯ − 𝜙𝑝𝐷𝑝+1,𝑗+1)

𝑗 = 1, 2,… , 𝑝 (A7.4.12)

where

𝑀𝑗 =
𝜕( 12 ln|𝐌(𝑝)

𝑝 |)
𝜕𝜙𝑗

Hence, maximum likelihood estimates may be obtained by equating these expressions to
zero and solving the resultant equations.

We have at once from (A7.4.11)

�̂�2
𝑎
= 𝑆(�̂�)

𝑛
(A7.4.13)

Estimates of 𝝓. A difficulty occurs in dealing with equation (A7.4.12) since, in general,
the quantities𝑀𝑗 (𝑗 = 1, 2,… , 𝑝) are complicated functions of the 𝜙’s.We consider briefly
four alternative approximations.

1. Least-Squares Estimates. Since the expected value of𝑆(𝝓) is proportional to 𝑛, while
the value of |𝐌(𝑝)

𝑝 | is independent of 𝑛, (A7.4.8) is for moderate or large sample sizes

dominated by the term in 𝑆(𝝓) and the term in |𝐌(𝑝)
𝑝 | is, by comparison, small.

If we ignore the influence of this term, then

𝑙(𝝓, 𝜎2
𝑎
|𝐰) ≃ −𝑛

2
ln(𝜎2

𝑎
) −

𝑆(𝝓)
2𝜎2

𝑎

(A7.4.14)

and the estimates �̂� of𝝓 obtained by maximization of (A7.4.14) are the least-squares
estimates obtained by minimizing𝑆(𝝓). Now, from (A7.4.9),𝑆(𝝓) = 𝝓′

𝑢
𝐃𝝓𝑢, where

𝐃 is a (𝑝 + 1) × (𝑝 + 1) matrix of symmetric sums of squares and products, defined
in (A7.4.7). Thus, on differentiating, the minimizing values are

𝐷12 = �̂�1𝐷22 + �̂�2𝐷23 +⋯ + �̂�𝑝𝐷2,𝑝+1

𝐷13 = �̂�1𝐷23 + �̂�2𝐷33 +⋯ + �̂�𝑝𝐷3,𝑝+1 (A7.4.15)

⋮

𝐷1,𝑝+1 = �̂�1𝐷2,𝑝+1 + �̂�2𝐷3,𝑝+1 +⋯ + �̂�𝑝𝐷𝑝+1,𝑝+1

which, in an obvious matrix notation, can be written as

d = D𝑝�̂�
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so that

�̂� = 𝐃−1
𝑝
d

These least-squares estimates also maximize the posterior density (7.5.15).

2. ApproximateMaximum Likelihood Estimates. We now recall an earlier result (3.2.3),
which may be written as

𝛾𝑗 − 𝜙1𝛾𝑗−1 − 𝜙2𝛾𝑗−2 −⋯ − 𝜙𝑝𝛾𝑗−𝑝 = 0 𝑗 > 0 (A7.4.16)

Also, on taking expectations in (A7.4.12) and using the fact that 𝐸[𝜕𝑙∕𝜕𝜙𝑗 ] = 0, we
obtain

𝑀𝑗𝜎
2
𝑎
+ (𝑛 − 𝑗)𝛾𝑗 − (𝑛 − 𝑗 − 1)𝜙1𝛾𝑗−1 − (𝑛 − 𝑗 − 2)𝜙2𝛾𝑗−2

−⋯ − (𝑛 − 𝑗 − 𝑝)𝜙𝑝𝛾𝑗−𝑝 = 0 (A7.4.17)

After multiplying (A7.4.16) by 𝑛 and subtracting the result from (A7.4.17), we obtain

𝑀𝑗𝜎
2
𝑎
= 𝑗𝛾𝑗 − (𝑗 + 1)𝜙1𝛾𝑗−1 −⋯ − (𝑗 + 𝑝)𝜙𝑝𝛾𝑗−𝑝

Therefore, on using 𝐷𝑖+1,𝑗+1∕(𝑛 − 𝑗 − 𝑖) as an estimate of 𝛾|𝑗−𝑖|, a natural estimate
of𝑀𝑗𝜎

2
𝑎
is

𝑗
𝐷1,𝑗+1

𝑛 − 𝑗
− (𝑗 + 1)𝜙1

𝐷2,𝑗+1

𝑛 − 𝑗 − 1
−⋯ − (𝑗 + 𝑝)𝜙𝑝

𝐷𝑝+1,𝑗+1

𝑛 − 𝑗 − 𝑝

Substituting this estimate in (A7.4.12) yields

𝜕𝑙

𝜕𝜙𝑗

≃ 𝑛𝜎−2
𝑎

(
𝐷1,𝑗+1

𝑛 − 𝑗
− 𝜙1

𝐷2,𝑗+1

𝑛 − 𝑗 − 1
−⋯ − 𝜙𝑝

𝐷𝑝+1,𝑗+1

𝑛 − 𝑗 − 𝑝

)

𝑗 = 1, 2,… , 𝑝 (A7.4.18)

leading to a set of linear equations of the form (A7.4.15), but now with

𝐷∗
𝑖𝑗
=

𝑛𝐷𝑖𝑗

𝑛 − (𝑖 − 1) − (𝑗 − 1)

replacing𝐷𝑖𝑗 .

3. Conditional Least-Squares Estimates. For moderate and relatively large 𝑛, we might
also consider the conditional sum-of-squares function, obtained by adopting the
procedure in Section 7.1.3. This yields the sum of squares given in the exponent of
the expression in (A7.4.2),

𝑆∗(𝝓) =
𝑛∑

𝑡=𝑝+1
(𝑤𝑡 − 𝜙1𝑤𝑡−1 −⋯ − 𝜙𝑝𝑤𝑡−𝑝)2

and is the sum of squares associatedwith the conditional distribution of𝑤𝑝+1,… , 𝑤𝑛,
given 𝐰′

𝑝
= (𝑤1, 𝑤2,… , 𝑤𝑝). Conditional least-squares estimates are obtained by

minimizing 𝑆∗(𝝓), which is a standard linear least-squares regression problem
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associated with the linear model 𝑤𝑡 = 𝜙1𝑤𝑡−1 + 𝜙2𝑤𝑡−2 +⋯ + 𝜙𝑝𝑤𝑡−𝑝 + 𝑎𝑡, 𝑡 =
𝑝 + 1,… , 𝑛. This results in the familiar least-squares estimates �̂� = �̃�−1

𝑝 d̃, as in

(A7.2.5), where D̃𝑝 has (𝑖, 𝑗) th element �̃�𝑖𝑗 =
∑𝑛

𝑡=𝑝+1𝑤𝑡−𝑖𝑤𝑡−𝑗 and d̃ has 𝑖th ele-

ment 𝑑𝑖 =
∑𝑛

𝑡=𝑝+1𝑤𝑡−𝑖𝑤𝑡.

4. Yule--Walker Estimates. Finally, if 𝑛 is moderate or large, as an approximation, we
may replace the symmetric sums of squares and products in (A7.4.15) by 𝑛 times
the appropriate autocovariance estimate. For example,𝐷𝑖𝑗 , where |𝑖 − 𝑗| = 𝑘, would

be replaced by 𝑛𝑐𝑘 =
∑𝑛−𝑘

𝑡=1 �̃�𝑡�̃�𝑡+𝑘. On dividing by 𝑛𝑐0 throughout in the resultant
equations, we obtain the following relations expressed in terms of the estimated
autocorrelations 𝑟𝑘 = 𝑐𝑘∕𝑐0:

𝑟1 = �̂�1 + 𝜙2𝑟1 +⋯ + �̂�𝑝𝑟𝑝−1

𝑟2 = �̂�1𝑟1 + �̂�2 +⋯ + �̂�𝑝𝑟𝑝−2

⋮

𝑟𝑝 = �̂�1𝑟𝑝−1 + �̂�2𝑟𝑝−2 +⋯ + �̂�𝑝

These are the well-known Yule--Walker equations.

In the matrix notation (7.3.1), they can be written r = 𝐑�̂�, so that

�̂� = 𝐑−1r (A7.4.19)

which corresponds to equations (3.2.7), with r substituted for 𝝆𝑝 and 𝐑 for 𝐏𝑝.
To illustrate the differences among the four estimates, take the case 𝑝 = 1. Then,𝑀1𝜎

2
𝑎
=

−𝛾1 and, corresponding to (A7.4.12), the exact maximum likelihood estimate of 𝜙 is the
solution of

−𝛾1 +𝐷12 − 𝜙𝐷22 ≡ −𝛾1 +
𝑛∑

𝑡=2
𝑤𝑡𝑤𝑡−1 − 𝜙

𝑛−1∑
𝑡=2

𝑤2
𝑡
= 0

Note that 𝛾1 = 𝜎2
𝑎
𝜙∕(1 − 𝜙2) and the maximum likelihood solution for 𝜎2

𝑎
, �̂�2

𝑎
= 𝑆(𝜙)∕𝑛

from (A7.4.13), can be substituted in the expression for 𝛾1 in the likelihood equation above,
where 𝑆(𝜙) = 𝐷11 − 2𝜙𝐷12 + 𝜙2𝐷22 as in (A7.4.9). This results in a cubic equation in 𝜙,
whose solution yields the maximum likelihood estimate of 𝜙. Upon rearranging, the cubic
equation for �̂� can be written as

(𝑛 − 1)𝐷22�̂�
3 − (𝑛 − 2)𝐷12�̂�

2 − (𝑛𝐷22 +𝐷11)�̂� + 𝑛𝐷12 = 0 (A7.4.20)

and there is a single unique solution to this cubic equation such that −1 < �̂� < 1 (e.g.,
Anderson, 1971, p. 354).

Approximation 1 corresponds to ignoring the term 𝛾1 altogether, yielding

�̂� =
∑𝑛

𝑡=2𝑤𝑡𝑤𝑡−1∑𝑛−1
𝑡=2 𝑤2

1

=
𝐷12
𝐷22
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Approximation 2 corresponds to substituting the estimate
∑𝑛

𝑡=2 𝑤𝑡𝑤𝑡−1∕(𝑛 − 1) for 𝛾1,
yielding

�̂� =
∑𝑛

𝑡=2 𝑤𝑡𝑤𝑡−1∕(𝑛 − 1)
∑𝑛−1

𝑡=2 𝑤
2
𝑡
∕(𝑛 − 2)

= 𝑛 − 2
𝑛 − 1

𝐷12
𝐷22

Approximation 3 corresponds to the standard linear model least-squares estimate obtained
by regression of 𝑤𝑡 on 𝑤𝑡−1 for 𝑡 = 2, 3,… , 𝑛, so that

�̂� =
∑𝑛

𝑡=2𝑤𝑡𝑤𝑡−1∑𝑛

𝑡=2 𝑤
2
𝑡−1

=
𝐷12

𝐷22 +𝑤2
1

In effect, this can be viewed as obtained by substituting 𝜙𝑤2
1 for 𝛾1 in the likelihood

equation above for 𝜙.
Approximation 4 replaces the numerator and denominator by standard autocovariance
estimates (2.1.12), yielding

�̂� =
∑𝑛

𝑡=2 𝑤𝑡𝑤𝑡−1∑𝑛

𝑡=1 𝑤
2
1

=
𝑐1
𝑐0

= 𝑟1 =
𝐷12
𝐷11

Usually, as in this example, for moderate and large samples, the differences between
the estimates given by the various approximations will be small. We have often employed
the least-squares estimates given by approximation 1 which can be computed directly from
(A7.4.15). However, for computer calculations, it is often simplest, even when the fitted
model is autoregressive, to use the general iterative algorithm described in Section 7.2.1,
which computes least-squares estimates for any ARMA process.

Estimate of 𝝈2a. Using approximation 4 with (A7.4.9) and (A7.4.13),

�̂�2
𝑎
=

𝑆(�̂�)
𝑛

= 𝑐0
[
1 ∶ �̂�′]

[
1 −r′

−r 𝐑

][
1
�̂�

]

On multiplying out the right-hand side and recalling that r − 𝐑�̂� = 0, we find that

�̂�2
𝑎
= 𝑐0(1 − r′�̂�) = 𝑐0(1 − r′𝐑−1r) = 𝑐0(1 − �̂�′𝐑�̂�) (A7.4.21a)

It is readily shown that 𝜎2
𝑎
can be similarly written in terms of the theoretical autocorrela-

tions:

𝜎2
𝑎
= 𝛾0(1 − 𝝆′𝝓) = 𝛾0(1 − 𝝆′𝐏−1

𝑝
𝝆) = 𝛾0(1 − 𝝓′𝐏𝑝𝝓) (A7.4.21b)

agreeing with the result (3.2.8).
Parallel expressions for �̂�2

𝑎
may be obtained for approximations 1, 2, and 3.

Information Matrix. Differentiating for a second time in (A7.4.11) and (A7.4.18), we
obtain

− 𝜕2𝑙

𝜕(𝜎2
𝑎
)2

= − 𝑛

2(𝜎2
𝑎
)2

+
𝑆(𝝓)
(𝜎2

𝑎
)3

(A7.4.22a)
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𝜕2𝑙

𝜕(𝜎2
𝑎
)𝜕𝜙𝑗

≃ −𝜎−2
𝑎

𝜕𝑙

𝜕𝜙𝑗

(A7.4.22b)

− 𝜕2𝑙
𝜕𝜙𝑖𝜕𝜙𝑗

≃ 𝑛

𝜎2
𝑎

𝐷𝑖+1,𝑗+1

𝑛 − 𝑖 − 𝑗
(A7.4.22c)

Now, since

𝐸

[
𝜕𝑙

𝜕𝜙𝑗

]
= 0

it follows that for moderate or large samples,

𝐸

[
− 𝜕2𝑙

𝜕(𝜎2
𝑎
)𝜕𝜙𝑗

]
≃ 0

and

|𝐈(𝝓, 𝜎2
𝑎
)| ≃ |𝐈(𝝓)|𝐼(𝜎2

𝑎
)

where

𝐼(𝜎2
𝑎
) = 𝐸

[
− 𝜕2𝑙

𝜕(𝜎2
𝑎
)2

]
= 𝑛

2(𝜎2
𝑎
)2

Now, using (A7.4.22c), we have

𝐈(𝝓) = −𝐸
[

𝜕2𝑙
𝜕𝜙𝑖𝜕𝜙𝑗

]
≃ 𝑛

𝜎2
𝑎

𝚪𝑝 =
𝑛𝜸0
𝜎2
𝑎

𝐏𝑝 = 𝑛(𝐌(𝑝)
𝑝
)−1 (A7.4.23)

Hence,

|𝐈(𝝓, 𝜎2
𝑎
)| ≃ 𝑛𝑝+1

2(𝜎2
𝑎
)2
|𝐌(𝑝,0)

𝑝
|−1

Variances and Covariances of Estimates of Autoregressive Parameters. Now, in circum-
stances fully discussed byWhittle (1953), the inverse of the informationmatrix supplies the
asymptotic variance--covariancematrix of the maximum likelihood (ML) estimates. More-
over, if the log-likelihood is approximately quadratic and the maximum is not close to a
boundary, even if the sample size is onlymoderate, the elements of thismatrix will normally
provide adequate approximations to the variances and covariances of the estimates.

Thus, using (A7.4.23) and (A7.4.21b) gives

𝐕(�̂�) = 𝐈−1(𝝓) ≃ 𝑛−1𝐌(𝑝)
𝑝

= 𝑛−1𝜎2
𝑎
𝚪−1
𝑝

= 𝑛−1(1 − 𝝆′𝐏−1
𝑝
𝝆)𝐏−1

𝑝

= 𝑛−1(1 − 𝝓′𝐏𝑝𝝓)𝐏−1
𝑝

= 𝑛−1(1 − 𝝆′𝝓)𝐏−1
𝑝

(A7.4.24)
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In particular, for autoregressive process of first and second order,

𝑉 (�̂�) ≃ 𝑛−1(1 − 𝜙2)

𝑉 (𝜙1, 𝜙2) ≃ 𝑛−1

[
1 − 𝜙2

2 −𝜙1(1 + 𝜙2)
−𝜙1(1 + 𝜙2) 1 − 𝜙2

2

]
(A7.4.25)

Estimates of the variances and covariances may be obtained by substituting estimates for
the parameters in (A7.4.25). For example, we may substitute 𝑟𝑗’s for 𝜌𝑗’s and �̂� for 𝝓 in
(A7.4.24) to obtain

�̂�(�̂�) = 𝑛−1(1 − 𝐫′�̂�)𝐑−1 (A7.4.26)

APPENDIX A7.5 ASYMPTOTIC DISTRIBUTION OF ESTIMATORS FOR
AUTOREGRESSIVE MODELS

We provide details on the asymptotic distribution of least-squares estimator of the param-
eters 𝝓 = (𝜙1,… , 𝜙𝑝)′ for a stationary AR(𝑝) model [i.e., all roots of 𝜙(𝐵) = 0 lie outside
the unit circle],

𝑤𝑡 =
𝑝∑
𝑖=1

𝜙𝑖𝑤𝑡−𝑖 + 𝑎𝑡

based on a sample of 𝑛 observations, where the 𝑤𝑡 are assumed to have mean 𝜇 = 0 for
simplicity, and the 𝑎𝑡 are assumed to be independent random variates, with zero means,
variances 𝜎2

𝑎
, and finite fourth moments. It is then established that

𝑛1∕2(�̂� − 𝝓)
D
←←←←←←←←→ 𝑁{0, 𝜎2

𝑎
𝚪−1
𝑝
(𝝓)} (A7.5.1)

as 𝑛 → ∞, where 𝚪𝑝(𝝓) is the 𝑝 × 𝑝 autocovariance matrix of 𝑝 successive values from the

AR(𝑝) process. Hence, for large 𝑛 the distribution of �̂� is approximately normal with mean
vector 𝝓 and covariance matrix 𝐕(�̂�) ≃ 𝑛−1𝜎2

𝑎
𝚪−1
𝑝
(𝝓), that is, 𝑁{𝝓, 𝑛−1𝜎2

𝑎
𝚪−1
𝑝
(𝝓)}.

We can write the AR(p) model as

𝑤𝑡 = 𝐰′
𝑡−1𝝓 + 𝑎𝑡 (A7.5.2)

where 𝐰′
𝑡−1 = (𝑤𝑡−1,… , 𝑤𝑡−𝑝). For convenience, assume that observations 𝑤1−𝑝,… , 𝑤0

are available in addition to 𝑤1,… , 𝑤𝑛, so that the (conditional) least-squares estimator of
𝝓 is obtained by minimizing the sum of squares:

𝑆(𝝓) =
𝑛∑
𝑡=1

(𝑤𝑡 − 𝐰′
𝑡−1𝝓)

2

As 𝑛 → ∞, the treatment of the 𝑝 initial observations becomes negligible, so that conditional
and unconditional LS estimators are asymptotically equivalent. From the standard results
on LS estimates for regression models, we know that the LS estimate of 𝝓 in the AR(p)



Box3G Date: May 21, 2015 Time: 9:59 am

ASYMPTOTIC DISTRIBUTION OF ESTIMATORS FOR AUTOREGRESSIVE MODELS 275

model (A7.5.2) is then given by

�̂� =

(
𝑛∑
𝑡=1

𝐰𝑡−1𝐰′
𝑡−1

)−1 𝑛∑
𝑡=1

𝐰𝑡−1𝑤𝑡 (A7.5.3)

Substituting the expression for𝑤𝑡 from (A7.5.2) in (A7.5.3), we see that

�̂� = 𝝓 +

(
𝑛∑
𝑡=1

𝐰𝑡−1𝐰′
𝑡−1

)−1 𝑛∑
𝑡=1

𝐰𝑡−1𝑎𝑡

so that

𝑛1∕2(�̂� − 𝝓) =

(
𝑛−1

𝑛∑
𝑡=1

𝐰𝑡−1𝐰′
𝑡−1

)−1

𝑛−1∕2
𝑛∑

𝑡=1
𝐰𝑡−1𝑎𝑡 (A7.5.4)

Notice that the information matrix for this model situation is simply

𝐈(𝝓) = − 1
2𝜎2

𝑎

𝐸

[
𝜕2𝑆(𝝓)
𝜕𝝓𝜕𝝓′

]
= 1

𝜎2
𝑎

𝑛∑
𝑡=1

𝐸[𝐰𝑡−1𝐰′
𝑡−1] =

𝑛

𝜎2
𝑎

𝚪𝑝(𝝓)

so that 𝑛𝐈−1(𝝓) ≡ 𝐈−1∗ (𝝓) = 𝜎2
𝑎
𝚪−1
𝑝
(𝝓) as appears in (A7.5.1).

We let 𝑈𝑡 = w𝑡−1𝑎𝑡 and argue that these terms have zero mean, covariance matrix
𝜎2
𝑎
𝚪𝑝(𝝓), and are mutually uncorrelated. That is, noting that w𝑡−1 and 𝑎𝑡 are indepen-

dent (e.g., elements of w𝑡−1 are functions of 𝑎𝑡−1, 𝑎𝑡−2,… , independent of 𝑎𝑡), we have
𝐸[w𝑡−1𝑎𝑡] = 𝐸[w𝑡−1]𝐸[𝑎𝑡] = 0, and again by independence of the terms 𝑎2

𝑡
and w𝑡−1w

′
𝑡−1,

cov[𝐰𝑡−1𝑎𝑡] = 𝐸[w𝑡−1𝑎𝑡𝑎𝑡𝐰′
𝑡−1] = 𝐸[𝑎2

𝑡
]𝐸[𝐰𝑡−1𝐰′

𝑡−1] = 𝜎2
𝑎
𝚪𝑝(𝝓)

In addition, for any 𝑙 > 0,

cov[𝐰𝑡−1𝑎𝑡,𝐰𝑡+𝑙−1𝑎𝑡+𝑙] = 𝐸[𝐰𝑡−1𝑎𝑡𝑎𝑡+𝑙𝐰′
𝑡+𝑙−1]

= 𝐸[𝑎𝑡𝐰𝑡−1𝐰′
𝑡+𝑙−1]𝐸[𝑎𝑡+𝑙] = 0

because 𝑎𝑡+𝑙 is independent of the other terms. By similar reasoning,

cov[𝐰𝑡−1𝑎𝑡,𝐰𝑡+𝑙−1𝑎𝑡+𝑙] = 0

for any 𝑙 < 0. Hence, the quantity
∑𝑛

𝑡=1 𝐰𝑡−1𝑎𝑡 in (A7.5.4) is the sum of 𝑛 uncorrelated
terms each with zero mean and covariance matrix 𝜎2

𝑎
𝚪𝑝(𝝓).

Now, in fact, the partial sums

S𝑛 =
𝑛∑

𝑡=1
U𝑡 ≡

𝑛∑
𝑡=1

w𝑡−1𝑎𝑡 𝑛 = 1, 2,…

form a martingale sequence (with respect to the 𝜎 fields generated by the collection of
random variables {𝑎𝑛, 𝑎𝑛−1,…}), characterized by the property that𝐸[S𝑛+1|𝑎𝑛, 𝑎𝑛−1,…] =
S𝑛. This clearly holds since S𝑛+1 = 𝐰𝑛𝑎𝑛+1 + S𝑛,

𝐸[𝐰𝑛𝑎𝑛+1|𝑎𝑛, 𝑎𝑛−1,…] = 𝐰𝑛𝐸[𝑎𝑛+1|𝑎𝑛, 𝑎𝑛−1,…] = 𝐰𝑛𝐸[𝑎𝑛+1] = 0
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and S𝑛 =
∑𝑛

𝑡=1 𝐰𝑡−1𝑎𝑡 is a function of 𝑎𝑛, 𝑎𝑛−1,… so that 𝐸[S𝑛|𝑎𝑛, 𝑎𝑛−1,…] = S𝑛. In this
context, the terms U𝑡 = 𝐰𝑡−1𝑎𝑡 are referred to as a martingale difference sequence. Then,
by a martingale central limit theorem (e.g., Billingsley, 1999),

𝑛−1∕2c′S𝑛
D
←←←←←←←←→ 𝑁{0, 𝜎2

𝑎
c′𝚪𝑝(𝝓)c}

for any vector or constants 𝐜′ = (𝑐1,… , 𝑐𝑝), and by use of the Cramer--Wold device, it
follows that

𝑛−1∕2S𝑛 ≡ 𝑛−1∕2
𝑛∑
𝑡=1

𝐰𝑡−1𝑎𝑡
D
←←←←←←←←→ 𝑁{0, 𝜎2

𝑎
𝚪𝑝(𝝓)} (A7.5.5)

as 𝑛 → ∞. Also, we know that the matrix 𝑛−1
∑𝑛

𝑡=1 𝐰𝑡−1𝐰′
𝑡−1

P
←←←←←←←→ 𝚪𝑝(𝝓), as an 𝑛 → ∞,

by a weak law of large numbers, since the (𝑖, 𝑗) th element of the matrix is �̂�(𝑖 − 𝑗) =
𝑛−1

∑𝑛

𝑡=1 𝑤𝑡−1𝑤𝑡−𝑗 , which converges in probability to 𝛾(𝑖 − 𝑗) by consistency of sample
autocovariances �̂�(𝑖 − 𝑗). Hence, it follows by continuity that

(
𝑛−1

𝑛∑
𝑡=1

𝐰𝑡−1𝐰′
𝑡−1

)−1
P
←←←←←←←→ 𝚪−1

𝑝
(𝝓) (A7.5.6)

Therefore, by a standard limit theory result, applying (A7.5.5) and (A7.5.6) in (A7.5.4), we
obtain that

𝑛1∕2(�̂� − 𝝓)
D
←←←←←←←←→ 𝚪−1

𝑝
(𝝓)𝑁{0, 𝜎2

𝑎
𝚪𝑝(𝝓)} (A7.5.7)

which leads to the result (A7.5.1).
In addition, it is easily shown that theYule--Walker (YW) estimator �̃� = 𝐑−1r, discussed

in Section 7.3.1, is asymptotically equivalent to the LS estimator considered here, in the
sense that

𝑛1∕2(�̂� − �̃�)
P
←←←←←←←→ 0

as 𝑛 → ∞. For instance, we can write the YW estimate as �̃� = �̃�−1
𝑝
�̃�𝑝 where �̃�𝑝 = �̂�0𝐑 and

�̃�𝑝 = �̂�0𝐫. For notational convenience, we write the LS estimate in (A7.5.3) as �̂� = �̂�−1
𝑝
𝜸𝑝

where we denote �̂�𝑝 = 𝑛−1
∑𝑛

𝑡=1 𝐰𝑡−1𝐰′
𝑡−1 and �̂�𝑝 = 𝑛−1

∑𝑛

𝑡=1 𝐰𝑡−1𝑤𝑡. Then, we have

𝑛1∕2(�̂� − �̃�) = 𝑛1∕2(�̂�−1
𝑝
�̂�𝑝 − �̃�−1

𝑝
�̃�𝑝)

= 𝑛1∕2�̂�−1
𝑝
(�̂�𝑝 − �̃�𝑝) + 𝑛1∕2(�̂�−1

𝑝
− �̃�−1

𝑝
)�̃�𝑝 (A7.5.8)

and we can readily determine that both 𝑛1∕2(�̂�𝑝 − �̃�𝑝)
P
←←←←←←←→ 0 and 𝑛1∕2(�̂�𝑝 − �̃�𝑝)

P
←←←←←←←→ 0 as

𝑛 → ∞, and consequently also

𝑛1∕2(�̂�−1
𝑝

− �̃�−1
𝑝
) = �̃�−1

𝑝
𝑛1∕2(�̃�𝑝 − �̂�𝑝)�̂�

−1
𝑝

P
←←←←←←←→ 0

Therefore, 𝑛1∕2(�̂� − �̃�)
P
←←←←←←←→ 0 follows directly from (A7.5.8).
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APPENDIX A7.6 EXAMPLES OF THE EFFECT OF PARAMETER
ESTIMATION ERRORS ON VARIANCES OF FORECAST ERRORS
AND PROBABILITY LIMITS FOR FORECASTS

The variances and probability limits for the forecasts given in Section 5.2.4 are based on the
assumption that the parameters (𝝓, 𝜽) in the ARIMAmodel are known exactly. In practice,
it is necessary to replace these by their estimates (�̂�, �̂�). To gain some insight into the effect
of estimation errors on the variance of the forecast errors, we consider the special cases of
the nonstationary IMA(0, 1, 1) and the stationary first-order autoregressive processes. It
is shown that for these processes and for parameter estimates based on series of moderate
length, the effect of such estimation errors is small.

IMA(0, 1, 1) Processes. Writing the model ∇𝑧𝑡 = 𝑎𝑡 − 𝜃𝑎𝑡−1 for 𝑡 + 𝑙, 𝑡 + 𝑙 − 1,… , 𝑡+ 1,
and summing, we obtain

𝑧𝑡+𝑙 − 𝑧𝑡 = 𝑎𝑡+𝑙 + (1 − 𝜃)(𝑎𝑡+𝑙−1 +⋯ + 𝑎𝑡+1) − 𝜃𝑎𝑡

Denote by �̂�𝑡(𝑙|𝜃) the lead 𝑙 forecast when the parameter 𝜃 is known exactly. On taking
conditional expectations at time 𝑡, for 𝑙 = 1, 2,… , we obtain

�̂�𝑡(1|𝜃) = 𝑧𝑡 − 𝜃𝑎𝑡

�̂�𝑡(𝑙|𝜃) = �̂�𝑡(1|𝜃) 𝑙 ≥ 2

Hence, the lead 𝑙 forecast error is

𝑒𝑡(𝑙|𝜃) = 𝑧𝑡+𝑙 − �̂�𝑡(𝑙|𝜃)
= 𝑎𝑡+𝑙 + (1 − 𝜃)(𝑎𝑡+𝑙−1 +⋯ + 𝑎𝑡+1)

and the variance of the forecast error at lead time 𝑙 is

𝑉 (𝑙) = 𝐸𝑡[𝑒2𝑡 (𝑙|𝜃)] = 𝜎2
𝑎
[1 + (𝑙 − 1)𝜆2] (A7.6.1)

where 𝜆 = 1 − 𝜃.
However, if 𝜃 is replaced by its estimate �̂�, obtained from a time series consisting of 𝑛

values of 𝑤𝑡 = ∇𝑧𝑡, then,

�̂�𝑡(1|�̂�) = 𝑧𝑡 − �̂��̂�𝑡

�̂�𝑡(𝑙|�̂�) = �̂�𝑡(1|�̂�) 𝑙 ≥ 2

where �̂�𝑡 = 𝑧𝑡 − �̂�𝑡−1(1|�̂�). Hence, the lead 𝑙 forecast error using �̂� is

𝑒𝑡(𝑙|�̂�) = 𝑧𝑡+𝑙 − �̂�(𝑙|�̂�)
= 𝑧𝑡+𝑙 − 𝑧𝑡 + �̂��̂�𝑡

= 𝑒𝑡(𝑙|𝜃) − (𝜃𝑎𝑡 − �̂��̂�𝑡) (A7.6.2)

Since ∇𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡 = (1 − �̂�𝐵)�̂�𝑡, it follows that

𝑎𝑡 =
(
1 − 𝜃𝐵

1 − �̂�𝐵

)
𝑎𝑡
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and on eliminating �̂�𝑡 from (A7.6.2), we obtain

𝑒𝑡(𝑙|�̂�) = 𝑒𝑡(𝑙|𝜃) − 𝜃 − �̂�

1 − �̂�𝐵
𝑎𝑡

Now,

𝜃 − �̂�

1 − �̂�𝐵
𝑎𝑡 =

𝜃 − �̂�

1 − 𝜃𝐵

[
1 + (𝜃 − �̂�)𝐵

1 − 𝜃𝐵

]−1
𝑎𝑡

≃ 𝜃 − �̂�

1 − 𝜃𝐵

[
1 − (𝜃 − �̂�)𝐵

1 − 𝜃𝐵

]
𝑎𝑡

= (𝜃 − �̂�)(𝑎𝑡 + 𝜃𝑎𝑡−1 + 𝜃2𝑎𝑡−2 +⋯)
− (𝜃 − �̂�)2(𝑎𝑡−1 + 2𝜃𝑎𝑡−2 + 3𝜃2𝑎𝑡−3 +⋯) (A7.6.3)

On the assumption that the forecast and the estimate �̂� are based on essentially nonover-
lapping data, �̂� and 𝑎𝑡, 𝑎𝑡−1,… are independent. Also, �̂� will be approximately normally
distributed about 𝜃 with variance (1 − 𝜃2)∕𝑛, for moderate-sized samples. On these as-
sumptions the variance of the expression in (A7.6.3) may be shown to be

𝜎2
𝑎

𝑛

(
1 + 3

𝑛

1 + 𝜃2

1 − 𝜃2

)

Thus, provided that |𝜃| is not close to unity,

var[𝑒𝑡(𝑙|�̂�)] ≃ 𝜎2
𝑎
[1 + (𝑙 − 1)𝜆2] +

𝜎2
𝑎

𝑛
(A7.6.4)

Clearly, the proportional change in the variance will be greatest for 𝑙 = 1, when the exact
forecast error variance reduces to 𝜎2

𝑎
. In this case, for parameter estimates based on a series

of moderate length, the probability limits will be increased by a factor (𝑛 + 1)∕𝑛.

First-Order Autoregressive Processes. Writing the AR(1) model �̃�𝑡 = 𝜙�̄�𝑡−1 + 𝑎𝑡 at time
𝑡 + 𝑙 and taking conditional expectations at time 𝑡, the lead 𝑙 forecast, given the true value
of the parameter 𝜙, is

̂̃𝑧𝑡(𝑙|𝜙) = 𝜙 ̂̃𝑧𝑡(𝑙 − 1|𝜙) = 𝜙𝑙�̃�𝑡

Similarly,

̂̃𝑧𝑡(𝑙|�̂�) = �̂� ̂̃𝑧𝑡(𝑙 − 1|�̂�) = �̂�𝑙�̃�𝑡

and hence

𝑒𝑡(𝑙|�̂�) = �̃�𝑡+𝑙 − ̂̃𝑧𝑡(𝑙|�̂�) = 𝑒𝑡(𝑙|𝜙) + (𝜙𝑙 − �̂�𝑙)�̃�𝑡 (A7.6.5)

Because 𝑒𝑡(𝑙|𝜙) = �̃�𝑡+1 − ̂̃𝑧𝑡(𝑙|𝜙) = 𝑎𝑡+1 + 𝜙𝑎𝑡+𝑙−1 +⋯ + 𝜙𝑙−1𝑎𝑡+1 is independent of �̂�

and 𝑧𝑡, it follows from (A7.6.5) that

𝐸[𝑒2
𝑡
(𝑙|�̂�)] = 𝐸[𝑒2

𝑡
(𝑙|𝜙)] + 𝐸[�̃�2

𝑡
(𝜙𝑙 − �̂�𝑙)2]
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Again, as in the MA(1) case, the estimate �̂� is assumed to be essentially independent of
𝑧𝑡, and for sufficiently large 𝑛, �̂� will be approximately normally distributed about a mean
𝜙 with variance (1 − 𝜙2)∕𝑛. So using (5.4.16) and 𝐸[�̃�2𝑡 (𝜙

𝑙 − �̂�𝑙)2] ≃ 𝐸[�̃�2𝑡 ]𝐸[(𝜙𝑙 − �̂�𝑙)2],
with 𝐸[�̃�2𝑡 ] = 𝛾0 = 𝜎2

𝑎
∕(1 − 𝜙2), on the average

var[𝑒𝑡(𝑙|�̂�)] ≃ 𝜎2
𝑎

1 − 𝜙2𝑙

1 − 𝜙2
+ 𝜎2

𝑎

𝐸[(𝜙𝑙 − �̂�𝑙)2]
1 − 𝜙2

(A7.6.6)

When 𝑙 = 1, using 𝐸[(𝜙 − �̂�)2] ≃ (1 − 𝜙2)∕𝑛,

var[𝑒𝑡(1|�̂�)] ≃ 𝜎2
𝑎
+

𝜎2
𝑎

1 − 𝜙2
1 − 𝜙2

𝑛

= 𝜎2
𝑎
(1 + 1

𝑛
) (A7.6.7)

For 𝑙 > 1, we have

𝜙𝑙 − �̂�𝑙 = 𝜙𝑙 − {𝜙 − (𝜙 − �̂�)}𝑙 ≃ 𝜙𝑙 − {𝜙𝑙 − 𝑙𝜙𝑙−1(𝜙 − �̂�)} = 𝑙𝜙𝑙−1(𝜙 − �̂�)

since the remaining terms involving (𝜙 − �̂�)𝑗 for 𝑗 = 2,… , 𝑙 are of smaller order. Thus, on
the average, from (A7.6.6) we obtain

var[𝑒𝑡(𝑙|�̂�)] ≃ var[𝑒𝑡(𝑙|𝜙)] +
𝜎2
𝑎

1 − 𝜙2𝐸[𝑙2𝜙2(𝑙−1)(𝜙 − �̂�)2]

= var[𝑒𝑡(𝑙|𝜙)] + 𝑙2𝜙2(𝑙−1)

𝑛
𝜎2
𝑎

and the discrepancy is again of order 𝑛−1.

General-Order Autoregressive Processes. Related approximation results for the effect of
parameter estimation errors on forecast error variances have been given by Yamamoto
(1976) for the general AR(𝑝) model. In particular, we briefly consider the approximation
for one-step-ahead forecasts in the AR(𝑝) case. Write the model at time 𝑡 + 1 as

�̃�𝑡+1 = 𝜙1�̃�𝑡 + 𝜙2�̃�𝑡−1 +⋯ + 𝜙𝑝�̃�𝑡+1−𝑝 + 𝑎𝑡+1 = z̃′
𝑡
𝝓 + 𝑎𝑡+1

where z̃′
𝑡
= (�̃�𝑡, �̃�𝑡−1,… , �̃�𝑡+1−𝑝) and 𝝓′ = (𝜙1, 𝜙2,… , 𝜙𝑝). Then,

̂̃𝑧𝑡(1|𝝓) = 𝜙1�̃�𝑡 + 𝜙2�̃�𝑡−1 +⋯ + 𝜙𝑝�̃�𝑡+1−𝑝 = z̃′
𝑡
𝝓

and similarly, ̂̃𝑧𝑡(1|�̂�) = z̃′
𝑡
�̂�, where �̂� is the ML estimate of 𝝓 based on 𝑛 observations.

Hence,

𝑒𝑡(1|�̂�) = 𝑒𝑡(1|𝝓) + z̃′
𝑡
(𝝓 − �̂�) (A7.6.8)

Using similar independence properties as above, as well as cov[z̃𝑡] = 𝚪𝑝 and the asymptotic

distribution approximation for �̂�(see, e.g., [7.2.19] and [A7.4.23]) that cov[�̂�] ≃ 𝑛−1𝜎2
𝑎
𝚪−1
𝑝
,



Box3G Date: May 21, 2015 Time: 9:59 am

280 PARAMETER ESTIMATION

it follows that

𝐸[𝑒2𝑡 (1|�̂�)] = 𝐸[𝑒2
𝑡
(1|𝝓)] + 𝐸[{z̃′

𝑡
(𝝓 − �̂�)}2]

= 𝜎2
𝑎
+ tr{𝐸[z̃𝑡z̃′𝑡]𝐸[(𝝓 − �̂�)(𝝓 − �̂�)′]}

= 𝜎2
𝑎
+ tr{𝚪𝑝𝑛

−1𝜎2
𝑎
𝚪−1
𝑝
}

Thus, the approximation for one-step-ahead forecast error variance,

var[𝑒𝑡(1|�̂�)] ≃ 𝜎2
𝑎

(
1 + 𝑝

𝑛

)
(A7.6.9)

is readily obtained for the AR model of order 𝑝.

APPENDIX A7.7 SPECIAL NOTE ON ESTIMATION OF MOVING AVERAGE
PARAMETERS

If the least-squares iteration that involves moving average parameters is allowed to stray
outside the invertibility region, parameter values can readily be found that apparently
provide sums of squares smaller than the true minimum. However, these do not provide
appropriate estimates and are quite meaningless. To illustrate, suppose that a series has
been generated by the first-ordermoving averagemodel𝑤𝑡 = (1 − 𝜃𝐵)𝑎𝑡 with−1 < 𝜃 < 1.
Then, the series could equally well have been generated by the corresponding backward
process 𝑤𝑡 = (1 − 𝜃𝐹 )𝑒𝑡 with 𝜎2

𝑒
= 𝜎2

𝑎
. Now, the latter process can also be written as

𝑤𝑡 = (1 − 𝜃−1𝐵)𝛼𝑡, where now 𝜃−1 is outside the invertibility region. However, in this
representation 𝜎2

𝛼
= 𝜎2

𝑎
𝜃2 and is itself a function of 𝜃. Therefore, a valid estimate of 𝜃−1

will not be provided by minimizing
∑

𝑡 𝛼
2
𝑡
= 𝜃2

∑
𝑡 𝑎

2
𝑡
. Indeed, this has its minimum at

𝜃−1 = ∞.
The difficulty may be avoided:

1. By using as starting values rough preliminary estimates within the invertibility region
obtained at the identification stage.

2. By checking that all moving average estimates, obtained after convergence has ap-
parently occurred, lie within the invertibility region.

It is also possible to write least-squares programs such that estimates are constrained to
lie within the invertibility region, and to check that moving average estimates lie within the
invertibility region after each step of the iterative least-squares estimation procedure.

EXERCISES

7.1. The following table shows calculations for an (unrealistically short) series 𝑧𝑡 for
which the (0, 1, 1) model𝑤𝑡 = ∇𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡 is being considered with 𝜃 = −0.5
and with an unknown starting value 𝑎0.
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𝑡 𝑧𝑡 𝑤𝑡 = ∇𝑧𝑡 𝑎𝑡 = 𝑤𝑡 − 0.5𝑎𝑡−1
0 40 𝑎0
1 42 2 2 − 0.50𝑎0
2 47 5 4 + 0.25𝑎0
3 47 0 −2 − 0.13𝑎0
4 52 5 6 + 0.06𝑎0
5 51 −1 −4 − 0.03𝑎0
6 57 6 8 + 0.02𝑎0
7 59 2 −2 − 0.01𝑎0

(a) Confirm the entries in the table.

(b) Show that the conditional sum of squares is
7∑
𝑡=1

(𝑎𝑡| − 0.5, 𝑎0 = 0)2 = 𝑆∗(−0.5|0) = 144.00

7.2. Using the data in Exercise 7.1:
(a) Show (using least-squares) that the value �̂�0 of 𝑎0 that minimizes 𝑆∗(−0.5|0) is

�̂�0 =
(2)(0.50) + (4)(−0.25) +⋯ + (−2)(0.0078)

12 + 0.52 +⋯ + 0.00782
=

−
∑𝑛

𝑡=0 𝜃
𝑡𝑎0

𝑡∑𝑛

𝑡=0 𝜃
2𝑡

where 𝑎0
𝑡
= (𝑎𝑡|𝜃, 𝑎0 = 0) are the conditional values. Compare this expression

for �̂�0 with that for the exact back-forecast [𝑎0] in the MA(1) model, where the
expression for [𝑎0] is given preceding the equation (A7.3.9) in Appendix A7.3,
and verify that the two expressions are identical.

(b) By first writing this model in the backward form𝑤𝑡 = (1 − 𝜃𝐹 )𝑒𝑡 and recursively
computing the 𝑒’s, show that the value of 𝑎0 obtained in (a) is the same as that
obtained by the back-forecasting method.

7.3. Using the value of �̂�0 calculated in Exercise 7.2:
(a) Show that the unconditional sum of squares 𝑆(−0.5) is 143.4.
(b) Show that for the (0, 1, 1) model, for large 𝑛,

𝑆(𝜃) = 𝑆∗(𝜃|0) −
�̂�20

1 − 𝜃2

7.4. For the process 𝑤𝑡 = 𝜇𝑤 + (1 − 𝜃𝐵)𝑎𝑡 show that for long series the variance--
covariance matrix of the maximum likelihood estimates �̂�𝑤, �̂� is approximately

𝑛−1

[
(1 − 𝜃)2𝜎2

𝑎
0

0 1 − 𝜃2

]

7.5. (a) Problems were experienced in obtaining a satisfactory fit to a series, the last 16
values of which were recorded as follows:

129, 135, 130, 130, 127, 126, 131, 152,
123, 124, 131, 132, 129, 127, 126, 124

Plot the series and suggest where the difficulty might lie.
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(b) In fitting a model of the form (1 − 𝜙1𝐵 − 𝜙2𝐵
2)𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡 to a set of

data, convergencewas slow and the coefficient estimates in successive iterations
oscillated wildly. Final estimates having large standard errors were obtained as
follows: �̂�1 = 1.19, �̂�2 = −0.34, �̂� = 0.52. Can you suggest an explanation for
the unstable behavior of the model? Why should preliminary identification have
eliminated the problem?

(c) In fitting the model ∇2𝑧𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵
2)𝑎𝑡 convergence was not obtained.

The last iteration yielded the values �̂�1 = 1.81, �̂�2 = 0.52. Can you explain the
difficulty?

7.6. For the ARIMA(1, 1, 1) model (1 − 𝜙𝐵)𝑤𝑡 = (1 − 𝜃𝐵)𝑎𝑡, where 𝑤𝑡 = ∇𝑧𝑡:
(a) Write down the linearized form of the model.

(b) Set out how you would start off the calculation of the conditional nonlinear
least-squares algorithm with start values 𝜙 = 0.5 and 𝜃 = 0.4 for a series whose
first nine values are shown below.

𝑡 𝑧𝑡 𝑡 𝑧𝑡

0 149 5 150
1 145 6 147
2 152 7 142
3 144 8 146
4 150

7.7. (a) Show that the second-order autoregressive model �̃�𝑡 = 𝜙1�̃�𝑡−1 + 𝜙2�̃�𝑡−2
+ 𝑎𝑡 may be written in orthogonal form as

�̃�𝑡 =
𝜙1

1 − 𝜙2
�̃�𝑡−1 + 𝜙2

(
�̃�𝑡−2 −

𝜙1
1 − 𝜙2

�̃�𝑡−1

)
+ 𝑎𝑡

suggesting that the approximate estimates

𝑟1 of
𝜙1

1 − 𝜙2
and �̂�2 =

𝑟2 − 𝑟21

1 − 𝑟21

of 𝜙2

are uncorrelated for long series.
(b) Starting from the variance--covariance matrix of �̂�1 and �̂�2 or otherwise, show

that the variance--covariance matrix of 𝑟1 and �̂�2 for long series is given approx-
imately by

𝑛−1

[
(1 − 𝜙2

2)(1 − 𝜌21) 0
0 1 − 𝜙2

2

]

7.8. The preliminarymodel identification performed in Chapter 6 suggested that either an
ARIMA(1, 1, 0) or an ARIMA(0, 2, 2) model might be appropriate for the chemical
process temperature readings in Series C. The series is available for download from
http://pages.stat.wisc.edu/ reinsel/bjr-data/.

(a) Estimate the parameters of the ARIMA(1, 1, 0) for this series using R.

(b) Estimate the parameters of the ARIMA(0, 2, 2) model and compare the results
with those in part (a).

http://pages.stat.wisc.edu/reinsel/bjr-data/
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7.9. Repeat the analysis in Exercise 7.8 by fitting (a) an AR(1) and (b) an ARMA(0, 1, 1)
model to the chemical process viscosity readings in Series D.

7.10. Daily air quality measurements in New York, from May to September 1973, are
available in a file called ‘airquality’ in the R datasets package. The file provides
data on four air quality variables: mean ozone levels at Roosevelt Island, solar
radiation at Central Park, maximum daily temperature at La Guardia Airport, and
average wind speeds at La Guardia Airport.

(a) Identify suitable models for the daily temperature and wind speed series.

(b) Estimate the parameters of selected models and comment.

7.11. Consider the solar radiation series that is part of the New York airquality data file
described in Problem 7.10. This series has a few missing values.

(a) Impute suitable estimates of the missing values. (Note: A formal procedure for
estimating missing values is described in Chapter 13, but is not needed here).

(b) Identify a model for the resulting series.

(c) Estimate the parameters of selected model and comment.

7.12. Refer to the annual river flow measurements in the time series ‘Nile’ analyzed in
Exercise 6.7. Estimate the parameters of the model or models identified for this time
series and comment.
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8
MODEL DIAGNOSTIC CHECKING

The model having been identified and the parameters estimated, diagnostic checks are then
applied to the fitted model. One useful method of checking a model is to overfit, that is, to
estimate the parameters in a model somewhat more general than that which we believe to be
true. This method assumes that we can guess the direction in which the model is likely to be
inadequate. Therefore, it is necessary to supplement this approach by less specific checks
applied to the residuals from the fitted model. These allow the data themselves to suggest
modifications to the model. In this chapter, we describe two such checks that employ
(1) the autocorrelation function of the residuals and (2) the cumulative periodogram of the
residuals. Some alternative diagnostic procedures are also discussed. Numerical examples
are included to demonstrate the results.

8.1 CHECKING THE STOCHASTIC MODEL

8.1.1 General Philosophy

Suppose that using a particular time series, themodel has been identified and the parameters
estimated using themethods described inChapters 6 and 7. The question remains of deciding
whether this model is adequate. If there is evidence of serious inadequacy,we need to know
how themodel should bemodified in the next iterative cycle.What we are doing is described
only partially by the words ‘‘testing goodness of fit.’’ We need to discover in what way a
model is inadequate, so as to suggest appropriate modification. To illustrate, by reference
to familiar procedures outside time series analysis, the scrutiny of residuals for the analysis
of variance, described by Anscombe (1961) and Anscombe and Tukey (1963), and the

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
○c 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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criticism of factorial experiments, leading to normal plotting and other methods, described
by Daniel (1959), would be called diagnostic checks.

Allmodels are approximations and nomodel form can ever represent the truth absolutely.
Given sufficient data, statistical tests can discreditmodels that could nevertheless be entirely
adequate for the purpose at hand. Alternatively, tests can fail to indicate serious departures
from assumptions because of small sample sizes or because these tests are insensitive to the
types of discrepancies that occur. The best policy is to devise the most sensitive statistical
procedures possible but be prepared to employ models that exhibit slight lack of fit. If
diagnostic checks, which have been thoughtfully devised, are applied to a model fitted to
a reasonably large body of data and fail to show serious discrepancies, then we should feel
comfortable using that model.

8.1.2 Overfitting

One technique that can be used for diagnostic checking is overfitting. Having identified
what is believed to be a correct model, we actually fit a more elaborate one. This puts
the identified model in jeopardy because the more elaborate model contains additional
parameters covering feared directions of discrepancy. Careful thought should be given to
the question of how the model should be augmented. In particular, in accordance with the
discussion on model redundancy in Section 7.3.5, it would not make sense to add factors
simultaneously to both sides of the ARMA model. Moreover, if the analysis fails to show
that the additions are needed, we have, of course, not proved that our model is correct. A
model is only capable of being ‘‘proved’’ in the biblical sense of being put to the test. As
was recommended by Saint Paul in his first epistle to the Thessalonians, what we can do is
to ‘‘Prove all things; hold fast to that which is good.’’

Example of Overfitting. As an example, we consider again some IBM stock price data.
For this analysis, data were employed that are listed as Series B′ in the Collection of Time
Series in Part Five of this book. This series consists of IBM stock prices for the period1

June 29, 1959--June 30, 1960. The (0, 1, 1) model

∇𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡

with �̂�0 = 1 − �̂� = 0.90, was identified and fitted to the 255 available observations.
The (0, 1, 1) model can equally well be expressed in the form

∇𝑧𝑡 = 𝜆0𝑎𝑡−1 + ∇𝑎𝑡

The extended model that was considered in the overfitting procedure was the (0, 3, 3)
process

∇3𝑧𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵
2 − 𝜃3𝐵

3)𝑎𝑡

or using (4.3.21), in the form

∇3𝑧𝑡 = (𝜆0∇2 + 𝜆1∇ + 𝜆2)𝑎𝑡−1 + ∇3𝑎𝑡

1The IBM stock data previously considered, referred to as Series B, cover a different period, May 17,
1961--November 2, 1962.
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While this model may seem overly elaborate, the immediate motivation for extending the
model in this particular way was to test a suggestion made by Brown (1962) that the series
should be forecasted by an adaptive quadratic forecast function. Now, it was shown in
Chapter 5 that an IMA(0, 𝑞, 𝑞) process has for its optimal forecasting function an adaptive
polynomial of degree 𝑞 − 1. Thus, for the extended (0, 3, 3) model above, the optimal lead
𝑙 forecast function is the quadratic polynomial in 𝑙:

�̂�𝑡(𝑙) = 𝑏
(𝑡)
0 + 𝑏

(𝑡)
1 𝑙 + 𝑏

(𝑡)
2 𝑙2

where the coefficients 𝑏(𝑡)0 , 𝑏(𝑡)1 , and 𝑏
(𝑡)
2 are adjusted as each new piece of data becomes

available.
By comparison, the model we have identified is an IMA(0, 1, 1) process, which yields

a forecast function

�̂�𝑡(𝑙) = 𝑏
(𝑡)
0 (8.1.1)

This is a ‘‘polynomial in 𝑙’’ of degree zero. Hence, the model implies that the forecast
�̂�𝑡(𝑙) is independent of 𝑙, that is, the forecast at any particular time 𝑡 is the same for one
step ahead, two steps ahead, and so on. In other words, the series contains information
only on the future level of the series, and nothing about slope or curvature. At first sight,
this is somewhat surprising because, using hindsight, quite definite linear and curvilinear
trends appear to be present in the series. Therefore, it is worthwhile to check whether
nonzero values of 𝜆1 and 𝜆2, which would produce predictable trends, actually occur.
Sum-of-squares grids for 𝑆(𝜆1, 𝜆2|𝜆0) similar to those shown in Figure 7.2 were produced
for 𝜆0 = 0.7, 0.9, and 1.1, which showed a minimum close to �̂�0 = 0.9, �̂�1 = 0, and �̂�2 = 0.
It was clear that values of 𝜆1 > 0 and 𝜆2 > 0 lead to higher sum of squares, and do not
support augmenting the identified IMA(0, 1, 1) model in these directions. This implies, in
particular, that a quadratic forecast function would give worse instead of better forecasts
than those obtained from (8.1.1), as was indeed shown to be the case in Section A5.3.3.

Computations in R. Estimation of the parameters in the more elaborate IMA(0, 3, 3)
models for the IBM series using R also shows that the model can be simplified. The
relevant commands along with a partial model output are provided below:

>library(astsa}
>ibm2=read.table("ibm2.txt",header=TRUE}
>ibm.ts=ts(ibm2)
>sarima(ibm.ts,0,3,3)

Coefficients:
ma1 ma2 ma3

-2.0215 1.0686 -0.0469
s.e. 0.0705 0.1370 0.0692 sigmaˆ2 estimated as 25.5

> polyroot(c(1,-2.0215,1.0686,-0.0469))
1.013484+0.005832i 1.013484-0.005832i 20.757680+0.000000i

>sarima(ibm.ts,0,1,1)

Coefficients:
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ma1 constant
-0.0848 0.3028

s.e. 0.0634 0.2878 sigmaˆ2 estimated as 25.1

We note that the parameter estimates �̂�1 and �̂�2 in the IMA(0, 3, 3) model are highly sig-
nificant. However, the large estimates are introduced as compensation for overdifferencing
by setting 𝑑 = 3 in this model. This is confirmed by finding the roots of the moving average
polynomial using the command polyroot() in R. The results, which are included above,
show that two of the roots are very close to one. Hence, cancellation is possible, reducing
the IMA(0, 3, 3) model to a IMA(0, 1, 1) model. The IMA(0, 1, 1) model also provides a
slightly better fit to the data as can be seen from the smaller value of �̂�2 in the R output for
this model.

8.2 DIAGNOSTIC CHECKS APPLIED TO RESIDUALS

The method of overfitting, by extending the model in a particular direction, assumes that
we knowwhat kind of discrepancies are to be feared. Procedures less dependent upon such
knowledge are based on the analysis of residuals. It cannot be too strongly emphasized that
visual inspection of a plot of the residuals themselves is an indispensable first step in the
checking process.

8.2.1 Autocorrelation Check

Suppose that a model 𝜙(𝐵)�̃�𝑡 = 𝜃(𝐵)𝑎𝑡 has been fitted to the observed time series with
ML estimates (�̂�, �̂�) obtained for the parameters. The quantities

�̂�𝑡 = �̂�−1(𝐵)�̂�(𝐵)�̃�𝑡 (8.2.1)

are then referred to as the residuals. The residuals are computed recursively from �̂�(𝐵)�̂�𝑡 =
�̂�(𝐵)�̃�𝑡 as

�̂�𝑡 = �̃�𝑡 −
𝑝∑

𝑗=1
�̂�𝑗�̃�𝑡−𝑗 +

𝑞∑
𝑗=1

�̂�𝑗 �̂�𝑡−𝑗 𝑡 = 1, 2,… , 𝑛

using either zero initial values (conditional method) or back-forecasted initial values (exact
method) for the initial �̂�𝑡’s and �̃�𝑡’s. Now, it is possible to show that, if the model is
adequate,

�̂�𝑡 = 𝑎𝑡 +𝑂

(
1√
𝑛

)

As the series length increases, the �̂�𝑡’s become close to the white noise 𝑎𝑡’s. Therefore,
one might expect that study of the �̂�𝑡’s could indicate the existence and nature of model
inadequacy. In particular, recognizable patterns in the estimated autocorrelation function
of the �̂�𝑡’s could point to appropriate modifications in the model. This point is discussed
further in Section 8.3.

Now, suppose that the formof the modelwas correct and that we knew the true parameter
values 𝝓 and 𝜽. Then, using (2.1.13) and a result of Anderson (1942), the estimated
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autocorrelations 𝑟𝑘(𝑎), of the 𝑎𝑡’s, would be uncorrelated and distributed approximately
normally about zero with variance 𝑛−1, and hence with a standard error of 𝑛−1∕2. We could
use these facts to assess approximately the statistical significance of apparent departures of
these autocorrelations from zero.

Now, in practice, we do not know the true parameter values. We have only the esti-
mates (�̂�, �̂�), from which, using (8.2.1), we can calculate not the 𝑎𝑡’s but the �̂�𝑡’s. The
autocorrelations 𝑟𝑘(�̂�) of the �̂�𝑡’s can yield valuable evidence concerning lack of fit and
the possible nature of model inadequacy. However, it was pointed out by Durbin (1970)
that it might be dangerous to assess the statistical significance of apparent discrepancies
of these autocorrelations 𝑟𝑘(�̂�) from their theoretical zero values on the basis of a standard
error 𝑛−1∕2, appropriate to the 𝑟𝑘(𝑎)’s. Durbin was able to show, for example, that for the
AR(1) process with parameter 𝜙, the variance of 𝑟1(�̂�) is 𝜙2𝑛−1, which can be substantially
smaller than 𝑛−1. The large-sample variances and covariances for all the autocorrelations
of the �̂�𝑡’s from any ARMA process were subsequently derived by Box and Pierce (1970).
They showed that while in all cases, a reduction in variance can occur for low lags, and that
at these low lags the 𝑟𝑘(�̂�)’s can be highly correlated, these effects usually disappear rather
quickly at high lags. Thus, the use of 𝑛−1∕2 as the standard error for 𝑟𝑘(�̂�) would underes-
timate the statistical significance of apparent departures from zero of the autocorrelations
at low lags but could usually be employed for moderate or high lags.

For illustration, the large-sample one- and two-standard-error limits of the residual
autocorrelations 𝑟𝑘(�̂�)’s, for two AR(1) processes and two AR(2) processes, are shown in
Figure 8.1. These also supply the corresponding approximate standard errors for moving
average processes with the same parameters as indicated in the figure. It is evident that,
except at moderately high lags, 𝑛−1∕2 provides an upper bound for the standard errors of
the 𝑟𝑘(�̂�)’s rather than the standard errors themselves. If for low lags we use the standard

FIGURE 8.1 Standard-error limits for residual autocorrelations 𝑟𝑘(�̂�).
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error 𝑛−1∕2 for the 𝑟𝑘(�̂�)’s, we may seriously underestimate the significance of apparent
discrepancies.

8.2.2 Portmanteau Lack-of-Fit Test

In addition to considering the 𝑟𝑘(�̂�)’s individually, an indication is often needed of whether,
say, the first 10--20 autocorrelations of the �̂�𝑡’s taken as a whole indicate inadequacy of the
model. Suppose that we have the first𝐾 autocorrelations2 𝑟𝑘(�̂�) (𝑘 = 1, 2,… , 𝐾) from any
ARIMA(𝑝, 𝑑, 𝑞)model, then it is possible to show (Box and Pierce, 1970) that if the fitted
model is appropriate,

𝑄 = 𝑛

𝐾∑
𝑘=1

𝑟2
𝑘
(�̂�) (8.2.2)

is approximately distributed as 𝜒2(𝐾 − 𝑝 − 𝑞), where 𝑛 = 𝑁 − 𝑑 is the number of𝑤’s used
to fit the model. On the other hand, if the model is inappropriate, the average values of 𝑄
will be inflated. Therefore, an approximate ‘‘portmanteau’’ test of the hypothesis of model
adequacy, designed to take account of the difficulties discussed above, may be made by
referring an observed value of 𝑄 to the percentage points of this 𝜒2 distribution.

However, Ljung and Box (1978) later showed that, for sample sizes common in practice,
the chi-squared distribution may not provide an adequate approximation to the distribution
of the statistic 𝑄 under the null hypothesis, with the values of 𝑄 tending to be somewhat
smaller than what is expected under the chi-squared distribution. Empirical evidence to
support this was also presented by Davies et al. (1977). Ljung and Box (1978) proposed a
modified form of the statistic,

�̃� = 𝑛(𝑛 + 2)
𝐾∑
𝑘=1

(𝑛 − 𝑘)−1𝑟2
𝑘
(�̂�) (8.2.3)

such that the modified statistic has, approximately, the mean 𝐸[�̃�] ≈ 𝐾 − 𝑝 − 𝑞 of the
𝜒2(𝐾 − 𝑝 − 𝑞) distribution. The motivation for (8.2.3) is that a more accurate value for
the variance of 𝑟𝑘(𝑎) from a white noise series is (𝑛 − 𝑘)∕𝑛(𝑛 + 2), rather than 1∕𝑛 used in
(8.2.2). This modified form of the portmanteau test statistic has been recommended for use
as having a null distribution that is much closer to the 𝜒2(𝐾 − 𝑝 − 𝑞) distribution for typical
sample sizes 𝑛. Because of its computationally convenient form, this statistics has been
implemented in many software packages and has become widely used in applied work.
We emphasize, however, that this statistic should not be used as a substitute for careful
examination of the residuals and their individual autocorrelation coefficients, and for other
diagnostic checks on the fitted model.

Remark. Diagnostic checks based on the residuals and their autocorrelation coefficients
are conveniently performed using R. Having fitted a modelm1 to the observed series, the
command tsdiag(m1$residuals, gof.lag=20) provides a plot of the standardized residuals,
a plot of the first 20 residual autocorrelation coefficients, and a plot of the 𝑝-values for the

2It is assumed here that 𝐾 is taken sufficiently large so that the weights 𝜓𝑗 in the model, written in the form
�̃�𝑡 = 𝜙−1(𝐵)𝜃(𝐵)𝑎𝑡 = 𝜓(𝐵)𝑎𝑡 will be negligibly small after 𝑗 = 𝐾 .
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portmanteau statistic �̃� for increasing values of 𝐾 . However, while these diagnostics are
useful, it appears that the command tsdiag(), at present, determines 𝑝-values for �̃� using
a chi-square distribution with 𝐾 rather than 𝐾 − 𝑝 − 𝑞 degrees of freedom. An alternative
is to use diagnostic tools in the R package astsa, where this problem does not appear. An
illustration of the use of this package is provided below.

An Empirical Example. In Chapter 7, we examined two potential models for a time series
of chemical temperature readings referred to as Series C. The two models were (1) the
IMA(0, 2, 2) model ∇2𝑧𝑡 = (1 − 0.13𝐵 − 0.12𝐵2)𝑎𝑡 and (2) the ARIMA(1, 1, 0) model
(1 − 0.82𝐵)∇𝑧𝑡 = 𝑎𝑡. It was decided that the secondmodel gave a preferable representation
of the series. Model diagnostics for the IMA(0, 2, 2) model generated using R are provided
in Figure 8.2. These include graphs of the standardized residuals, the residual autocor-
relation coefficients 𝑟(�̂�𝑘), for lags 𝑘 = 1,… , 25, a normal Q--Q plot of the standardized
residuals, and a plot of the 𝑝-values for the portmanteau statistic �̃� in (8.2.3) determined
for increasing values of 𝐾 . The graph of the standardized residuals reveals some large
residuals around 𝑡 = 60, but apart from that there are no issues. The Q--Q plot confirms
the presence of three large residuals but indicates that the normal approximation is adequate
otherwise.

Approximate two-standard-error upper bounds on the residual autocorrelation coeffi-
cients are included in the graph of the autocorrelation function. Since there are 𝑛 = 224
observations after differencing the series, the approximate upper bound for the standard
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FIGURE 8.2 Model diagnostics for the ARIMA(0, 2, 2) model fitted to the temperature readings
in Series C.
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error of a single autocorrelation is 1∕
√
224 ≈ 0.07. While most of the individual autocor-

relations fall within the two-standard-error bounds, several values including 𝑟3(�̂�), 𝑟9(�̂�),
𝑟11(�̂�), 𝑟17(�̂�), 𝑟22(�̂�), and 𝑟25(�̂�) are close to these bounds. Of course, occasional large devi-
ations occur even in random series, but taking these results as a whole, there is a suspicion
of some lack of fit. This is confirmed by examining the 𝑝-values of the portmanteau statistic
shown in the bottom graph of Figure 8.2. We note that most of the 𝑝-values are at or near
the 5% level indicating some lack of fit. This is especially the case for the larger values of
𝐾 , where the chi-squared distribution is expected to provide a valid approximation.

Model diagnostics for the ARIMA(1, 1, 0) model (1 − 0.82𝐵)∇𝑧𝑡 = 𝑎𝑡 fitted to the
same time series are displayed in Figure 8.3. The graph of the residual autocorrelation
function shows fewer large values for this model. This is also reflected in the 𝑝-values of
the portmanteau statistic shown at the bottom of the graph. These diagnostic checks show
a clear improvement over the IMA(0, 2, 2) model examined in Figure 8.2. The graph of
the standardized residuals and the normal Q--Q plot reveal that outliers are still present,
however. Methods for outlier detection and adjustments will be discussed in Section 13.2,
where the ARIMA(1, 1, 0) model for Series C is refitted allowing the outliers at 𝑡 = 58, 59,
and 60. Allowing these outliers in the parameter estimation changes the estimate �̂� only
slightly from 0.82 to 0.85. However, a larger change occurs in the estimate of the residual
variance, which is reduced by about 26% when the outliers are accounted for in the model.

Before proceeding, we note that Figures 8.2 and 8.3 can be reproduced in R using the
following commands:
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FIGURE 8.3 Model diagnostics for the ARIMA(1, 1, 0) model fitted to the temperature readings
in Series C.
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>library(astsa)
>seriesC=read.table("seriesC.txt",header=T)
>sarima(seriesC,0,2,2,no.constant=TRUE) % Figure 8.2
>sarima(seriesC,1,1,0,no.constant=TRUE) % Figure 8.3

Portmanteau Tests for Series A--F. Table 8.1 summarizes the values of the criterion �̃� in
(8.2.3) based on 𝐾 = 25 residual autocorrelations for the models fitted to Series A--F in
Table 7.11. However, in regards to the choice of K, a somewhat smaller value would be
recommended for use in practice, especially for shorter series such as Series E and F, since
the asymptotic theory involved in the distribution of the statistic �̃� relies on 𝐾 growing
(but only slowly, such that𝐾∕𝑛 → 0) as the series length 𝑛 increases. In addition, as noted
by Ljung (1986), smaller values of 𝐾 also have advantages in terms of increased power.
This is particularly true for nonseasonal series, where the lack of fit is expected to be most
evident in residual autocorrelations at the first few lags.

Inspection of Table 8.1 shows that only two suspiciously large values of �̃� occur.
One is the value �̃� = 36.2 obtained after fitting the IMA(0, 2, 2) model to Series C,
which we have discussed already. The other is the value �̃� = 38.8 obtained after fitting an
IMA(0, 1, 1) model to Series B. This suggests some model inadequacy since the 5 and
2.5% points for 𝜒 2 with 24 degrees of freedom are 36.4 and 39.3, respectively. The nature
of possible model inadequacy for Series B will be examined further in Section 8.2.3.

Other Portmanteau Statistics to Test Model Adequacy. Instead of a portmanteau statistic
based on residual autocorrelations, as in (8.2.3), one could alternatively consider a test for
model adequacy based on residual partial autocorrelations. If the model fitted is adequate,
the associated error process 𝑎𝑡 is white noise and one should expect the residual partial
autocorrelation at any lag 𝑘, which we denote as �̂�𝑘𝑘(�̂�), not to be significantly different
from zero. Therefore, a test for model adequacy can be based on the statistic

𝑄∗ = 𝑛(𝑛 + 2)
𝐾∑
𝑘=1

(𝑛 − 𝑘)−1�̂�2
𝑘𝑘
(�̂�) (8.2.4)

TABLE 8.1 Summary of Results of Portmanteau Test Applied to Residuals of VariousModels
Fitted to Series A--F

Series 𝑛 = Fitted Model �̃� Degrees
𝑁 − 𝑑 of

Freedom

A 197 𝑧𝑡 − 0.92𝑧𝑡−1 = 1.45 + 𝑎𝑡 − 0.58𝑎𝑡−1 28.4 23
196 ∇𝑧𝑡 = 𝑎𝑡 − 0.70𝑎𝑡−1 31.9 24

B 368 ∇𝑧𝑡 = 𝑎𝑡 + 0.09𝑎𝑡−1 38.8 24
C 225 ∇𝑧𝑡 − 0.82∇𝑧𝑡−1 = 𝑎𝑡 31.3 24

224 ∇2𝑧𝑡 = 𝑎𝑡 − 0.13𝑎𝑡−1 − 0.12𝑎𝑡−2 36.2 23
D 310 𝑧𝑡 − 0.87𝑧𝑡−1 = 1.17 + 𝑎𝑡 11.5 24

309 ∇𝑧𝑡 = 𝑎𝑡 − 0.06𝑎𝑡−1 18.8 24
E 100 𝑧𝑡 − 1.42𝑧𝑡−1 + 0.73𝑧𝑡−2 = 14.35 + 𝑎𝑡 26.8 23

100 𝑧𝑡 − 1.57𝑧𝑡−1 + 1.02𝑧𝑡−2 − 0.21𝑧𝑡−3 = 11.31 + 𝑎𝑡 20.0 22
F 70 𝑧𝑡 + 0.34𝑧𝑡−1 − 0.19𝑧𝑡−2 = 58.87 + 𝑎𝑡 14.7 23
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Under the hypothesis ofmodel adequacy,Monti (1994) argued that the statistic𝑄∗ in (8.2.4)
is asymptotically distributed as 𝜒2(𝐾 − 𝑝 − 𝑞), analogous to the asymptotic distribution of
the statistic �̃� in (8.2.3).Hence, a test ofmodel adequacy can be based on referring the value
of 𝑄∗ to the upper critical value determined from this distribution. The test based on 𝑄∗

has been found to be typically at least as powerful as �̃� in detecting departures from model
adequacy, and it seems to be particularly sensitive when the alternative model includes a
higher order moving average term. In practice, since residual partial autocorrelations are
routinely available, we could consider using both the statistic �̃� in (8.2.3) and𝑄∗ in (8.2.4)
simultaneously in standard model checking procedures.

Another portmanteau goodness-of-fit test statistic based on a general measure of mul-
tivariate dependence was proposed by Peña and Rodrı́guez (2002). Denote the correlation
matrix up to order (lag) 𝐾 of the residuals �̂�𝑡 from the fitted ARIMA(𝑝, 𝑑, 𝑞)model by

�̂�𝐾 (�̂�) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 𝑟1(�̂�) 𝑟2(�̂�) … 𝑟𝐾 (�̂�)
𝑟1(�̂�) 1 𝑟1(�̂�) … 𝑟𝐾−1(�̂�)
𝑟2(�̂�) 𝑟1(�̂�) 1 … 𝑟𝐾−2(�̂�)
⋮ ⋮ ⋮ … ⋮

𝑟𝐾 (�̂�) 𝑟𝐾−1(�̂�) 𝑟𝐾−2(�̂�) … 1

⎤⎥⎥⎥⎥⎥⎥⎦
The proposed statistic is based on the determinant of this correlation matrix, a general
measure of dependence in multivariate analysis, and is given by

�̂�𝐾 = 𝑛(1 − |�̂�𝐾 (�̂�)|1∕𝐾) (8.2.5)

An alternate interpretation for the statistic is obtained from the following relation given by
Peña and Rodrı́quez (2002)

|�̂�𝐾 (�̂�)|1∕𝐾 =
𝐾∏
𝑘=1

[1 − �̂�2
𝑘𝑘
(�̂�)](𝐾+1−𝑘)∕𝐾

where the �̂�𝑘𝑘(�̂�) are the residual partial autocorrelations as in (8.2.4). This expression
shows that |�̂�𝐾 (�̂�)|1∕𝐾 is also a weighted function of the first 𝐾 partial autocorrelations of
the residuals. However, in comparison to the statistics (8.2.3) and (8.2.4), relatively more
weight is given to the lower lag residual correlations in the statistic (8.2.5). The asymptotic
distribution of �̂�𝐾 is shown to be a linear combination of 𝐾-independent 𝜒2(1) random
variates, which can be approximated by a gamma distribution (see Peña and Rodrı́guez,
2002). The authors also proposed and recommended a modification of the statistic �̂�𝐾 ,
here denoted as �̃�𝐾 , in which the residual autocorrelations 𝑟𝑘(�̂�) used to form �̂�𝐾 (�̂�) are
replaced by the modified values

√
(𝑛 + 2)∕(𝑛 − 𝑘)𝑟𝑘(�̂�), similar to the modifications used

in the �̃� and𝑄∗ statistics. Simulation evidence indicates that the statistic �̃�𝐾 may provide
considerable increase in power over the statistics �̃� and𝑄∗ in many cases, due to its greater
sensitivity to the lower lag residual correlations. Application of this procedure to detection
of several types of nonlinearity, by using sample autocorrelations of squared residuals �̂�2

𝑡
,

was also explored in Peña and Rodrı́guez (2002). (For discussion of nonlinearities, see
Sections 10.2 and 10.3).

Peña and Rodrı́guez (2006) proposed a modification of their earlier test that
has the same asymptotic distribution as �̂�𝐾 but better performance in finite sam-
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ples. The modified test statistics has the form 𝐷∗
𝐾
= −𝑛

∑𝐾

𝑘=1 𝑤𝑘ln[1 − �̂�2
kk(â)], where

𝑤𝑘 = (𝐾 + 1 − 𝑘)∕(𝐾 + 1). The statistic is thus proportional to a weighted average of
the squared partial autocorrelation coefficients with larger weights given to low-order
coefficients and smaller weights to high-order coefficients. The authors considered two
approximations to the asymptotic distribution of this statistic, and demonstrated using sim-
ulation that the test performs well. Several other authors have extended the work of Peña
and Rodrı́guez (2002) and proposed portmanteau statistics that are asymptotically similar
to their statistics; for a discussion and references, see Fisher and Gallagher (2012). See also
Li (2004) for a more detailed discussion of diagnostic testing.

8.2.3 Model Inadequacy Arising from Changes in Parameter Values

Another form of model inadequacy occurs when the form of the model remains the same
but the parameters change over a prolonged period of time. In fact, it appears that this can
explain the possible inadequacy of the (0, 1, 1) model fitted to the IBM data.

Table 8.2 shows the results obtained by fitting (0, 1, 1) models separately to the first
and second halves of Series B as well as to the complete series. Denoting the estimates of
𝜆 = 1 − 𝜃 obtained from the two halves by �̂�1 and �̂�2, we find that the standard error of

�̂�1 − �̂�2 is
√
(0.070)2 + (0.074)2 = 0.102. Since the difference �̂�1 − �̂�2 = 0.26 is 2.6 times

its standard error, it is likely that a real change in 𝜆 has occurred. Inspection of the �̃� values
suggests that the (0, 1, 1) model, with parameters appropriately modified for different
time periods, might explain the series more exactly. The estimation results for the residual
variances �̂�2

𝑎
also strongly indicate that a real change in variability has occurred between

the two halves of the series.
This is confirmed by Figure 8.4 that shows the standardized residuals and other model

diagnostics for the IMA(0, 1, 1) model fitted to Series B. An increase in the standardized
residuals around time 𝑡 = 236 indicates a change in the characteristics of the series around
that time. In fact, fitting the IMA(0, 1, 1) model separately to the first 235 observations
and to the remaining 134 observations yields the estimates �̂�1 = −0.26, �̂�2

𝑎1
= 24.55, and

�̂�2 = −0.02, �̂�2
𝑎2

= 99.49, respectively. Hence, a substantial increase in variability during
the latter portion of the series is clearly indicated. Additional approaches to explain and
account for inadequacy in the overall IMA(0, 1, 1) model for Series B, which include al-
lowance for conditional heteroscedasticity in the noise, nonlinearity, and mixture transition
distributions, have been discussed by Tong (1990) and Le et al. (1996), among others.
Some of these modeling approaches will be surveyed in general in Chapter 10.

TABLE 8.2 Comparison of IMA(0, 1, 1) Models Fitted to First and Second Halves of Series B

Residual Degrees
�̂�(�̂�) = Variance of

n �̂� �̂� = 1 − 𝜃 [ �̂�(2−�̂�)
𝑛

]1∕2 �̂�2
𝑎

�̃� Freedom

First half 184 −0.29 1.29 ±0.070 26.3 24.6 24
Second half 183 −0.03 1.03 ±0.074 77.3 37.1 24
Complete 368 −0.09 1.09 ±0.052 52.2 38.8 24
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FIGURE 8.4 Model diagnostics for the IMA(0, 1, 1) model fitted to the IBM daily closing stock
prices in Series B.

8.2.4 Score Tests for Model Checking

An alternative to the direct use of overfitting in model checking is provided by the Lagrange
multiplier or score test procedure, which is also closely related to the portmanteau test
procedure. The general score test procedure was presented by Silvey (1959), and its use
in diagnostic checking for ARIMA models was discussed initially by Godfrey (1979) and
Poskitt and Tremayne (1980). A computational advantage of the score test procedure is that
it requires maximum likelihood estimation of parameters only under the null model under
test, but it yields tests asymptotically equivalent to the corresponding likelihood ratio tests
obtained by directly overfitting the model. Furthermore, the score test statistic is easily
computed in the form of the sample size 𝑛 times a coefficient of determination from a
particular ‘‘auxiliary’’ regression.

Hence,we assume that anARMA(𝑝, 𝑞)model has been fitted by themaximumlikelihood
method to the observations �̃�𝑡, and we want to assess the adequacy of the model by testing
this null model against the alternative of anARMA(𝑝+ 𝑟, 𝑞)model or of anARMA(𝑝, 𝑞+ 𝑟)
model. That is, for the ARMA(𝑝 + 𝑟, 𝑞) alternative, we test 𝐻0∶𝜙𝑝+1 = ⋯ = 𝜙𝑝+𝑟 = 0,
while for the ARMA(𝑝, 𝑞 + 𝑟) alternative, we test 𝐻0∶ 𝜃𝑞+1 = ⋯ = 𝜃𝑞+𝑟 = 0. The score
test procedure is based on the first partial derivatives, or scores, of the log-likelihood
function with respect to the model parameters of the alternative model, but evaluated at
the ML estimates obtained under the null model. The log-likelihood function is essentially
given by 𝑙 = −(𝑛∕2) ln(𝜎2

𝑎
) − ( 12𝜎

−2
𝑎
)
∑𝑛

𝑡=1 𝑎
2
𝑡
. So, the partial derivatives of 𝑙 with respect
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to the parameters (𝝓, 𝜽) are

𝜕𝑙

𝜕𝜙𝑗

= − 1
𝜎2
𝑎

𝑛∑
𝑡=1

𝜕𝑎𝑡

𝜕𝜙𝑗

𝑎𝑡

𝜕𝑙

𝜕𝜃𝑗
= − 1

𝜎2
𝑎

𝑛∑
𝑡=1

𝜕𝑎𝑡

𝜕𝜃𝑗
𝑎𝑡

As in (7.2.9) and (7.2.10), we have

−
𝜕𝑎𝑡

𝜕𝜙𝑗

= 𝑢𝑡−𝑗 −
𝜕𝑎𝑡

𝜕𝜃𝑗
= 𝑣𝑡−𝑗

where 𝑢𝑡 = 𝜃−1(𝐵)�̃�𝑡 = 𝜙−1(𝐵)𝑎𝑡, and 𝜈𝑡 = −𝜃−1(𝐵)𝑎𝑡. Given residuals �̂�𝑡, obtained from
ML fitting of the null model, as

�̂�𝑡 = �̃�𝑡 −
𝑝∑

𝑗=1
�̂�𝑗�̃�𝑡−𝑗 +

𝑞∑
𝑗=1

�̂�𝑗 �̂�𝑡−𝑗 𝑡 = 1, 2,… , 𝑛

the 𝑢𝑡’s and 𝜈𝑡’s evaluated under the ML estimates of the null model can be calculated
recursively, starting with initial values set equal to zero, for example, as

𝑢𝑡 = �̃�𝑡 + �̂�1𝑢𝑡−1 +⋯ + �̂�𝑞𝑢𝑡−𝑞

𝑣𝑡 = −�̂�𝑡 + �̂�1𝑣𝑡−1 +⋯ + �̂�𝑞𝑣𝑡−𝑞

The score vector of first partial derivatives with respect to all the model parameters 𝜷
can be expressed as

𝜕𝑙

𝜕𝜷
= 1

𝜎2
𝑎

𝐗′a (8.2.6)

where 𝐚 = (𝑎1,… , 𝑎𝑛)′ and X denotes the 𝑛 × (𝑝 + 𝑞 + 𝑟) matrix whose 𝑡th row consists of
(𝑢𝑡−1,… , 𝑢𝑡−𝑝−𝑟, 𝜈𝑡−1,… , 𝜈𝑡−𝑞) in the case of the ARMA(𝑝 + 𝑟, 𝑞) alternative model and
(𝑢𝑡−1,… , 𝑢𝑡−𝑝, 𝜈𝑡−1,… , 𝜈𝑡−𝑞−𝑟) in the case of the ARMA(𝑝, 𝑞 + 𝑟) alternative model. Then,
similar to (7.2.17), since the large-sample information matrix for 𝜷 can be consistently
estimated by �̂�−2

𝑎
𝐗′𝐗, where �̂�2

𝑎
= 𝑛−1

∑𝑛

𝑡=1 �̂�
2
𝑡
= 𝑛−1�̂�′�̂�, it follows that the score test

statistic for testing that the additional 𝑟 parameters are equal to zero is

Λ = �̂�′𝐗(𝐗′𝐗)−1𝐗′�̂�
𝜎2
𝑎

(8.2.7)

Godfrey (1979) noted that the computation of the test statistic in (8.2.7) can be given the
interpretation as being equal to n times the coefficient of determination in an auxiliary
regression equation. That is, if the alternative model is ARMA(𝑝 + 𝑟, 𝑞), we consider the
auxiliary regression equation

�̂�𝑡 = 𝛼1𝑢𝑡−1 +⋯ + 𝛼𝑝+𝑟𝑢𝑡−𝑝−𝑟 + 𝛽1𝑣𝑡−1 +⋯ + 𝛽𝑞𝑣𝑡−𝑞 + 𝜀𝑡

while if the alternative model is ARMA(𝑝, 𝑞 + 𝑟), we consider the regression equation

�̂�𝑡 = 𝛼1𝑢𝑡−1 +⋯ + 𝛼𝑝𝑢𝑡−𝑝 + 𝛽1𝑣𝑡−1 +⋯ + 𝛽𝑞+𝑟𝑣𝑡−𝑞−𝑟 + 𝜀𝑡



Box3G Date: May 21, 2015 Time: 10:9 am

DIAGNOSTIC CHECKS APPLIED TO RESIDUALS 297

Let �̂�𝑡 denote the residuals from the ordinary least-squares estimation of this regression
equation. Then from (8.2.7), it is seen that Λ can be expressed, essentially, as

Λ =
𝑛(
∑𝑛

𝑡=1 �̂�
2
𝑡 −

∑𝑛

𝑡=1 �̂�
2
𝑡 )∑𝑛

𝑡=1 �̂�
2
𝑡

= 𝑛

(
1 −

∑𝑛

𝑡=1 �̂�
2
𝑡∑𝑛

𝑡=1 �̂�
2
𝑡

)

which is n times the coefficient of determination of the regression of the �̂�𝑡’s on the 𝑢𝑡−𝑗’s
and the 𝜈𝑡−𝑗’s. Under the null hypothesis that the fitted ARMA(𝑝, 𝑞) model is correct, the
statistic Λ has an asymptotic 𝜒2 distribution with 𝑟 degrees of freedom, and the null model
is rejected as inadequate for large values of Λ.

As argued by Godfrey (1979) and others, rejection of the null model by the score test
procedure should not be taken as evidence to adopt the specific alternative model involved,
but simply as evidence against the adequacy of the fitted model. Similarly, the score test
is expected to have reasonable power even when the alternative model is not correctly
specified. Poskitt and Tremayne (1980) showed, for example, that the score test against
an ARMA(𝑝 + 𝑟, 𝑞) model alternative is asymptotically identical to a test against an
ARMA(𝑝, 𝑞 + 𝑟) alternative. Hence, the score test procedure may not be sensitive to the
particular model specified under the alternative, but its performancewill, of course, depend
on the choice of the number 𝑟 of additional parameters specified.

We also note an alternative form for the score statistic Λ. By the ML estimation
procedure, it follows that the first partial derivatives, 𝜕𝑙∕𝜕𝜙𝑗 , 𝑗 = 1,… , 𝑝, and 𝜕𝑙∕𝜕𝜃𝑗 ,
𝑗 = 1,… , 𝑞, will be identically equal to zero when evaluated at the ML estimates. Hence,
the score vector, 𝜕𝑙∕𝜕𝜷 , will contain only 𝑟 nonzero elements when evaluated at the ML
estimates from the null model, these being the partial derivatives with respect to the addi-
tional 𝑟 parameters of the alternative model. Thus, the score statistic in (8.2.7) can also be
viewed as a quadratic form in these 𝑟 nonzero values, whose matrix in the quadratic form
is a consistent estimate of the inverse of the covariance matrix of these 𝑟 score values when
evaluated at the ML estimates obtained under the null model. Since these 𝑟 score values are
asymptotically normal with zero means under the null model, the validity of the asymptotic
𝜒2(𝑟) distribution under the null hypothesis is easily seen.

Newbold (1980) noted that a score test against the alternative of 𝑟 additional parameters
is closely related to an appropriate test statistic based on the first 𝑟 residual autocorrelations
𝑟𝑘(�̂�) from the fitted model. The test statistic is essentially a quadratic form in these first
𝑟 residual autocorrelations, but of a more complex form than the portmanteau statistic
in (8.2.2). As a direct illustration, suppose that the fitted or null model is a pure AR(𝑝)
model, and the alternative is an ARMA(𝑝, 𝑟) model. Then, it follows from above that the
variables 𝜈𝑡−𝑗 are identical to −�̂�𝑡−𝑗 , since 𝜃(𝐵) ≡ 1 under the null model. Hence, the
nonzero elements of the score vector in (8.2.6) are equal to −𝑛 times the first 𝑟 residual
autocorrelations, 𝑟1(�̂�),… , 𝑟𝑟(�̂�) from the fitted model, and the score test is thus directly
seen to be a quadratic form in these first 𝑟 residual autocorrelations.

8.2.5 Cumulative Periodogram Check

In some situations, particularly in the fitting of seasonal time series, which are discussed
in Chapter 9, it may be feared that we have not adequately taken into account the periodic
characteristics of the series. Therefore, we are on the lookout for periodicities in the
residuals. The autocorrelation function will not be a sensitive indicator of such departures
from randomness because periodic effects will typically dilute themselves among several
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autocorrelations. The periodogram, on the other hand, is specifically designed for the
detection of periodic patterns in a background of white noise.

The periodogram of a time series 𝑎𝑡, 𝑡 = 1, 2,… , 𝑛, as defined in Section 2.2.1, is

𝐼(𝑓𝑖) =
2
𝑛

⎡⎢⎢⎣

(
𝑛∑

𝑡=1
𝑎𝑡 cos(2𝜋𝑓𝑖𝑡)

)2

+

(
𝑛∑

𝑡=1
𝑎𝑡 sin(2𝜋𝑓𝑖𝑡)

)2⎤⎥⎥⎦
(8.2.8)

where 𝑓𝑖 = 𝑖∕𝑛 is the frequency. Thus, it is a device for correlating the 𝑎𝑡’s with sine and
cosine waves of different frequencies. A pattern with given frequency 𝑓𝑖 in the residuals
is reinforced when correlated with a sine or cosine wave at that same frequency, and so
produces a large value of 𝐼(𝑓𝑖).

Cumulative Periodogram. Bartlett (1955) and other authors have shown that the cumula-
tive periodogram provides an effective means for the detection of periodic nonrandomness.

The power spectrum 𝑝(𝑓 ) for white noise has a constant value 2𝜎2
𝑎
over the frequency

domain 0--0.5 cycle. Consequently, the cumulative spectrum for white noise

𝑃 (𝑓 ) =
∫

𝑓

0
𝑝(𝑔) 𝑑𝑔 (8.2.9)

plotted against 𝑓 is a straight-line running from (0, 0) to (0.5, 𝜎2
𝑎
), that is, 𝑃 (𝑓 )∕𝜎2

𝑎
is a

straight-line running from (0, 0) to (0.5, 1).
The periodogram 𝐼(𝑓 ) provides an estimate of the power spectrum at frequency 𝑓 . In

fact, for white noise, 𝐸[𝐼(𝑓 )] = 2𝜎2
𝑎
, and hence the estimate is unbiased. It follows that

(1∕𝑛)
∑𝑗

𝑖=1 𝐼(𝑓𝑖) provides an unbiased estimate of the integrated spectrum 𝑃 (𝑓𝑗 ), and

𝐶(𝑓𝑗) =
∑𝑗

𝑖=1 𝐼(𝑓𝑖)
𝑛𝑠2

(8.2.10)

an estimate of 𝑃 (𝑓𝑗)∕𝜎2
𝑎
, where 𝑠2 is an estimate of 𝜎2

𝑎
. We will refer to 𝐶(𝑓𝑗) as the

normalized cumulative periodogram.
Now, if the model was adequate and the parameters known exactly, the 𝑎𝑡’s could be

computed from the data and would yield a white noise series. For a white noise series, the
plot of 𝐶(𝑓𝑗) against 𝑓𝑗 would be scattered about a straight-line joining the points (0, 0)
and (0.5, 1). On the other hand, model inadequacies would produce nonrandom 𝑎𝑡’s, whose
cumulative periodogram could show systematic deviations from this line. In particular,
periodicities in the 𝑎𝑡’s would tend to produce a series of neighboring values of 𝐼(𝑓𝑗) that
were large. These large ordinates would reinforce each other in 𝐶(𝑓𝑗) and form a bump on
the expected straight line.

In practice, we do not know the exact values of the parameters, but only their es-
timated values. Hence, we do not have the 𝑎𝑡’s, but only the estimated residuals �̂�𝑡’s.
However, for large samples, the periodogram for the �̂�𝑡’s will have similar properties to
that for the 𝑎𝑡’s. Thus, careful inspection of the periodogram of the �̂�𝑡’s can provide a
useful additional diagnostic check, particularly for indicating periodicities taken account of
inadequately.
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Example: Series C. We have seen that Series C is well fitted by the (1, 1, 0)model:

(1 − 0.82𝐵)∇𝑧𝑡 = 𝑎𝑡

and somewhat less well by the IMA(0, 2, 2)model:

∇2𝑧𝑡 = (1 − 0.13𝐵 − 0.12𝐵2)𝑎𝑡

which is rather similar to it. We illustrate the cumulative periodogram test by showing
what happens when we analyze the residual 𝑎’s after fitting to the series an inadequate
IMA(0, 1, 1)model:

∇𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡

where the least squares estimate of 𝜃 is found to be −0.65. The normalized cumulative
periodogram plot of the residuals from this model is shown in Figure 8.5(a). We see im-
mediately that there are marked departures from linearity in the cumulative periodogram.
These departures are very pronounced at low frequencies, as might be expected, for ex-
ample, if the degree of differencing is insufficient. Figure 8.5(b) shows the corresponding
plot for the best-fitting IMA(0, 2, 2) model. The points of the cumulative periodogram now
cluster more closely about the expected line, although, as we have seen in Table 8.1 and
Figure 8.2, other evidence points to the inadequacy of this model.

It is wise to indicate on the diagram the period as well as the frequency. This makes
for easy identification of the bumps that occur when residuals contain periodicities. For
example, in monthly sales data, bumps near periods 12, 24, 36, and so on might indicate
that seasonal effects were accounted for inadequately.

The probability relationship between the cumulative periodogram and the integrated
spectrum is precisely the same as that between the empirical cumulative frequency func-
tion and the cumulative distribution function. For this reason we can assess deviations
of the periodogram from that expected if the �̂�𝑡’s were white noise, by use of the
Kolmogorov--Smirnov test. Using this test, we can place limit lines about the theoreti-
cal line. The limit lines are such that if the �̂�𝑡 series were white noise, the cumulative
periodogram would deviate from the straight line sufficiently to cross these limits only
with the stated probability. Now, because the �̂�𝑡’s are fitted values and not the true �̂�𝑡’s,
we know that even when the model is correct, they will not precisely follow a white noise
process. Thus, as a test for model inadequacy, application of the Kolmogorov--Smirnov
limits will indicate only approximate probabilities. However, it is worthwhile to show these
limits on the cumulative periodogram to provide a rough guide as to what deviations to
regard with skepticism and what to take more note of.

The limit lines are such that for a truly random or white noise series, they would be
crossed a proportion 𝜀 of the time. They are drawn at distances ±𝐾𝜀∕

√
𝑞 above and below

the theoretical line, where 𝑞 = (𝑛 − 2)∕2 for 𝑛 even and (𝑛 − 1)∕2 for 𝑛 odd. Approximate
values for 𝐾𝜀 are given in Table 8.3.

TABLE 8.3 Coefficients for Calculating Approximate Probability Limits for Cumulative Pe-
riodogram Test

𝜀 0.01 0.05 0.10 0.25
𝐾𝜀 1.63 1.36 1.22 1.02



Box3G Date: May 21, 2015 Time: 10:9 am

300 MODEL DIAGNOSTIC CHECKING

FIGURE 8.5 Series C: cumulative periodograms of residuals from best-fitting models (a) of order
(0, 1, 1) and (b) of order (0, 2, 2).

For Series C, 𝑞 = (224 − 2)∕2 = 111, and the 5% limit lines inserted on Figure 8.5

deviate from the theoretical line by amounts ±1.36∕
√
111 = ±0.13. Similarly, the 25%

limit lines deviate by ±1.02∕
√
111 = ±0.10.

Conclusions. Each of the model checking procedures described above has essential ad-
vantages and disadvantages. Checks based on the study of the estimated autocorrelation
function and the cumulative periodogram, although they can point out unsuspected pecu-
liarities of the series, may not be particularly sensitive. Tests for specific departures by
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overfitting are more sensitive but may fail to warn of trouble other than that specifically
anticipated. Portmanteau tests based on the residual autocorrelation and partial autocorre-
lations, while not always sensitive, provide convenient summary measures that are easy to
use. As a result, they are now available in many software packages.

8.3 USE OF RESIDUALS TO MODIFY THE MODEL

8.3.1 Nature of the Correlations in the Residuals When an Incorrect Model Is Used

When the autocorrelation function of the residuals from a fitted model indicates that the
model is inadequate, it is necessary to consider in what way the model should be modified.
In Section 8.3.2, we show how the autocorrelations of the residuals can be used to suggest
such modifications. As an introduction, we consider the effect of fitting an incorrect model
on the autocorrelation function of the residuals.

Suppose that the correct model is

𝜙(𝐵)�̃�𝑡 = 𝜃(𝐵)𝑎𝑡

but that an incorrect model

𝜙0(𝐵)�̃�𝑡 = 𝜃0(𝐵)𝑏𝑡

is used. Then the residuals 𝑏𝑡, in the incorrect model, will be correlated and since

𝑏𝑡 = 𝜃−10 (𝐵)𝜃(𝐵)𝜙0(𝐵)𝜙−1(𝐵)𝑎𝑡 (8.3.1)

the autocovariance generating function of the 𝑏𝑡’s will be

𝜎2
𝑎
[𝜃−10 (𝐵)𝜃−10 (𝐹 )𝜃(𝐵)𝜃(𝐹 )𝜙0(𝐵)𝜙0(𝐹 )𝜙−1(𝐵)𝜙−1(𝐹 )] (8.3.2)

For example, suppose that in an IMA(0, 1, 1) process, instead of the correct value 𝜃, we
use some other value 𝜃0. Then the residuals 𝑏𝑡 would follow the mixed process of order
(1, 0, 1):

(1 − 𝜃0𝐵)𝑏𝑡 = (1 − 𝜃𝐵)𝑎𝑡

and using (3.4.8), we have

𝜌1 =
(1 − 𝜃𝜃0)(𝜃0 − 𝜃)
1 + 𝜃2 − 2𝜃𝜃0

𝜌𝑗 = 𝜌1𝜃0
𝑗−1 𝑗 = 2, 3,…

For example, suppose that in the IMA(0, 1, 1) process,

∇𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡

we took 𝜃0 = 0.8 when the correct value was 𝜃 = 0. Then

𝜃0 = 0.8 𝜃 = 0.0
𝜌1 = 0.8 𝜌𝑗 = 0.8𝑗
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Thus, the 𝑏𝑡’s would be highly autocorrelated and, since (1 − 0.8𝐵)𝑏𝑡 = ∇𝑧𝑡 = 𝑎𝑡, 𝑏𝑡 would
follow the autoregressive process

(1 − 0.8𝐵)𝑏𝑡 = 𝑎𝑡

8.3.2 Use of Residuals to Modify the Model

Suppose that the residuals 𝑏𝑡 from the model

𝜙0(𝐵)∇𝑑0𝑧𝑡 = 𝜃0(𝐵)𝑏𝑡 (8.3.3)

appear to be nonrandom, that is, to deviate from white noise behavior. Using the auto-
correlation function of 𝑏𝑡, the methods of Chapter 6 may now be applied to identify a
model:

𝜙1(𝐵)∇𝑑1𝑏𝑡 = 𝜃1(𝐵)𝑎𝑡 (8.3.4)

for the 𝑏𝑡 series.On eliminating 𝑏𝑡 between (8.3.3) and (8.3.4), we arrive at a new model:

𝜙0(𝐵)𝜙1(𝐵)∇𝑑0∇𝑑1𝑧𝑡 = 𝜃0(𝐵)𝜃1(𝐵)𝑎𝑡 (8.3.5)

which can now be fitted and diagnostically checked.
For example, suppose that a series had been wrongly identified as an IMA(0, 1, 1)

process and fitted to give the model:

∇𝑧𝑡 = (1 + 0.6𝐵)𝑏𝑡 (8.3.6)

Also, suppose that a model

∇𝑏𝑡 = (1 + 0.8𝐵)𝑎𝑡 (8.3.7)

was identified for this residual series. Then on eliminating 𝑏𝑡 between (8.3.6) and (8.3.7),
we would obtain

∇2𝑧𝑡 = (1 + 0.6𝐵)∇𝑏𝑡

= (1 + 0.6𝐵)(1 − 0.8𝐵)𝑎𝑡
= (1 − 0.2𝐵 − 0.48𝐵2)𝑎𝑡

which would suggest that an IMA(0, 2, 2) process should now be entertained.
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EXERCISES

8.1. The following are the first 30 residuals obtained when a tentative model was fitted
to a time series:

𝑡 Residuals

1--6 0.78 0.91 0.45 −0.78 −1.90 −2.10
7--12 −0.54 −1.05 0.68 −3.77 −1.40 −1.77
13--18 1.18 0.02 1.29 −1.30 −6.20 −1.89
19--24 0.95 1.49 1.08 0.80 2.02 1.25
25--30 0.52 2.31 1.64 0.78 1.99 1.36

Plot the values and state any reservations you have concerning the adequacy of
the model.

8.2. The residuals from a model∇𝑧𝑡 = (1 − 0.6𝐵)𝑎𝑡 fitted to a series of𝑁 = 82 observa-
tions yielded the following residual autocorrelations:

𝑘 𝑟𝑘(�̂�) 𝑘 𝑟𝑘(�̂�)

1 0.39 6 −0.13
2 0.20 7 −0.05
3 0.09 8 0.06
4 0.04 9 0.11
5 0.09 10 0.02

(a) Plot the residual ACF and determine whether there are any abnormal values
relative to white noise behavior.

(b) Calculate the chi-square statistic �̃� for lags up to 𝐾 = 10 and check whether the
residual autocorrelation function as a whole is indicative of model inadequacy.

(c) What modified model would you now tentatively entertain, fit, and check?

8.3. A long series containing 𝑁 = 326 observations was split into two halves and a
(1, 1, 0) model (1 − 𝜙𝐵)∇𝑧𝑡 = 𝑎𝑡 identified, fitted, and checked for each half. If the
estimates of the parameter𝜙 for the two halves are �̂�(1) = 0.5 and �̂�(2) = 0.7, is there
any evidence that the parameter 𝜙 has changed?

8.4. (a) Show that the variance of the sample mean 𝑧 of 𝑛 observations from a stationary
AR(1) process (1 − 𝜙𝐵)�̃�𝑡 = 𝑎𝑡 is given by

var[𝑧] ≃
𝜎2
𝑎

𝑛(1 − 𝜙)2

(b) The yields from consecutive batches of a chemical process obtained under fairly
uniform conditions of process control were shown to follow a stationary AR(1)
process (1 + 0.5𝐵)�̃�𝑡 = 𝑎𝑡. A technical innovation is made at a given point in time
leading to 85 data points with mean 𝑧1 = 41.0 and residual variance 𝑠2

𝑎1 = 0.1012
before the innovation is made and 60 data points with 𝑧2 = 43.5 and 𝑠2

𝑎2 = 0.0895
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after the innovation. Is there any evidence that the innovation has improved
(increased) the yield?

8.5. Suppose that a (0, 1, 1) model ∇𝑧𝑡 = (1 − 𝜃𝐵)𝑒𝑡, corresponding to the use of an
exponentially weighted moving average forecast, with 𝜃 arbitrarily chosen to be
equal to 0.5, was used to forecast a series that was, in fact, well represented by the
(0, 1, 2) model ∇𝑧𝑡 = (1 − 0.9𝐵 + 0.2𝐵2)𝑎𝑡.
(a) Calculate the autocorrelation function of the lead 1 forecast errors 𝑒𝑡 obtained

from the (0, 1, 1) model.

(b) Show how this ACF could be used to identify a model for the 𝑒𝑡 series, leading
to the identification of a (0, 1, 2) model for the 𝑧𝑡 series.

8.6. Two time series models, AR(2) and AR(3), were fitted to the yearly time series
of sunspot numbers for the period 1770--1869 in Chapter 7. The sunspot data are
available for the slightly longer time period 1700--1988 as series ‘sunspot.year’ in
the datasets package in R; type help(sunspot.year) for details. Perform diagnostic
checking to determine the adequacy of the AR(2) and AR(3) models for this longer
time period. Are there alternative models that you would consider for this series?
Would you recommend that a data transformation be used in this case?

8.7. Monthly sales, {𝑌𝑡}, of a company over a period of 150 months are provided as part
of Series M in Part 5 of this book. This series is also available as series 𝐵𝐽𝑠𝑎𝑙𝑒𝑠

along with a related series 𝐵𝐽𝑠𝑎𝑙𝑒𝑠.𝑙𝑒𝑎𝑑 in the datasets package in R.

(a) Plot the data and comment.

(b) Perform a statistical analysis to determine a suitable model for this series. Esti-
mate the parameters using the maximum likelihood method.

(c) Repeat the analysis for the series of leading indicator 𝐵𝐽𝑠𝑎𝑙𝑒𝑠.𝑙𝑒𝑎𝑑 that is part
of the same dataset.

(d) Perform diagnostic checking to determine if there is any lack of fit in the models
selected for the two series?

8.8 Global mean surface temperature deviations (from the 1951--1980 average level) are
available for the period 1880--2009 as series ’gtemp2’ in the astsa package in R.

(a) Plot the data and comment. Are there any unusual features worth noting?

(b) Perform a statistical analysis to determine a suitable model for this series. Esti-
mate the parameters using the maximum likelihood method.

(c) Is there evidences of any lack of fit in the models selected for this series?

(d) Can you suggest an alternative way to analyze this time series? How might an
analysis of model generated forecasts impact your choice of model?

8.9 Refer to the daily air quality measurements for New York, May to September 1973,
analyzed in Problem 7.10 of Chapter 7. Perform diagnostic checks to determine the
adequacy of the models fitted to average daily temperature and wind speed series.

8.10 Repeat the analysis in Problem 8.9 by performing diagnostic checks on the model,
or models, considered for the solar radiation series in Problem 7.11.
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9
ANALYSIS OF SEASONAL TIME SERIES

In Chapters 3--8, we have considered the properties of a class of linear stochastic models,
which are of value in representing stationary and nonstationary time series, and we have
seen how these models may be used for forecasting. We then considered the practical
problems of identification, fitting, and diagnostic checking that arise when relating these
models to actual data. In this chapter, we apply these methods to analyzing and forecasting
seasonal time series. A key focus is on seasonal multiplicative time series models that
account for time series dependence across seasons as well as between adjacent values
in the series. These models are extensions of the ARIMA models discussed in earlier
chapters. The methodology is illustrated using a time series commonly referred to as the
airline data in the time series literature. We also describe an alternate structural component
model approach to representing stochastic seasonal and trend behavior that includes the
possibility of the components being deterministic. The chapter concludes with a brief
discussion of regression models with autocorrelated errors. These models could include
deterministic sine or cosine terms to describe the seasonal behavior of the series.

9.1 PARSIMONIOUS MODELS FOR SEASONAL TIME SERIES

Figure 9.1 shows monthly totals of international airline passengers for the 12-year period
from January 1949 to December 1960. This series was discussed by Brown (1962) and is
listed as Series G in Part Five of this book. The series is also included as series ‘‘AirPassen-
gers’’ in the R datasets package and is conveniently downloaded from there. The series
shows a marked seasonal pattern since travel is at its highest in the late summer months,
while a secondary peak occurs in the spring. Many other series, particularly sales data,
show similar seasonal characteristics.

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
○c 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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FIGURE 9.1 Totals of international airline passengers in thousands (Series G).

In general, we say that a series exhibits periodic behaviorwith period 𝑠, when similarities
in the series occur after 𝑠 basic time intervals. In the above example, the basic time interval
is 1 month and the period is 𝑠 = 12 months. However, examples occur when 𝑠 can take on
other values. For example, 𝑠 = 4 for quarterly data showing seasonal effects within years.
It sometimes happens that there is more than one period. Thus, because bills tend to be paid
monthly, we would expect weekly business done by a bank to show a periodicity of about
4 within months, while monthly business shows a periodicity of 12.

9.1.1 Fitting Versus Forecasting

A common method of analyzing seasonal time series in the past was to decompose the
series arbitrarily into three components: a trend, a seasonal component, and a random
component. The trend might be fitted by a polynomial and the seasonal component by a
Fourier series. A forecast was then made by projecting these fitted functions. However,
such methods could give misleading results if applied indiscriminately. For example, we
have seen that the behavior of IBM stock prices in Series B is closely approximated by the
random walk model ∇𝑧𝑡 = 𝑎𝑡, that is,

𝑧𝑡 = 𝑧0 +
𝑡−1∑
𝑗=0

𝑎𝑡−𝑗 (9.1.1)

This implies that �̂�𝑡(𝑙) = 𝑧𝑡. In other words, the best forecast of future values of the stock is
very nearly today’s price.While it is true that short segments of SeriesB look as if theymight
be fitted by quadratic curves, this simply reflects the fact that a sum of random deviates
can sometimes have this appearance. There is no basis for the use of a quadratic forecast
function, which would produce very poor forecasts for this particular series. Similarly,
while deterministic trend and seasonal components can provide a good fit to the data, they
are often too rigid when it comes to forecasting. In this section, we introduce a seasonal
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time series model that requires very few parameters and avoids the assumption of a trend
and seasonal component that remains fixed over time.

9.1.2 Seasonal Models Involving Adaptive Sines and Cosines

The general linear model

�̃�𝑡 =
∞∑
𝑗=1

𝜋𝑗�̃�𝑡−𝑗 + 𝑎𝑡 =
∞∑
𝑗=1

𝜓𝑗𝑎𝑡−𝑗 + 𝑎𝑡 (9.1.2)

with suitable values for the coefficients 𝜋𝑗 and 𝜓𝑗 can be used to describe many seasonal
time series. The problem is to choose a suitable parsimonious parameterization for such
models. We have seen that for nonseasonal series, it is usually possible to obtain a useful
and parsimonious representation in the form

𝜑(𝐵)�̃�𝑡 = 𝜃(𝐵)𝑎𝑡 (9.1.3)

Moreover, the generalized autoregressive operator 𝜑(𝐵) determines the eventual forecast
function, which is the solution of the difference equation

𝜑(𝐵)�̂�𝑡(𝑙) = 0

where 𝐵 is understood to operate on 𝑙. In representing seasonal behavior, we want the
forecast function to trace out a periodic pattern. A first thought might be that 𝜑(𝐵) should
produce a forecast function consisting of a mixture of sines and cosines, and possibly
mixed with polynomial terms, to allow changes in the level of the series and changes in
the seasonal pattern. Such a forecast function could arise naturally within the structure of
the general model (9.1.3). For example, with monthly data, a forecast function that is a sine
wave with a 12-month period, adaptive in phase and amplitude, will satisfy the difference
equation

(1 −
√
3𝐵 + 𝐵2)�̂�𝑡(𝑙) = 0

whereB is understood to operate on 𝑙. However, periodic behaviormay not be economically
represented by mixtures of sines and cosines. Many sine--cosine components would, for
example, be needed to represent sales data affected by Christmas, Easter, and other seasonal
buying. To take an extreme case, sales of fireworks in Britain are largely confined to the
weeks immediately before November 5, when the abortive attempt of Guy Fawkes to blow
up the Houses of Parliament is celebrated. An attempt to represent the ‘‘single spike’’ of
fireworks sales data directly by sines and cosines might be unprofitable. It is clear that a
more careful consideration of the problem is needed.

Now, in our previous analysis, we have not necessarily estimated all the components
of 𝜑(𝐵). Where differencing 𝑑 times was needed to induce stationarity, we have written
𝜑(𝐵) = 𝜙(𝐵)(1 − 𝐵)𝑑 , which is equivalent to setting 𝑑 roots of the equation 𝜑(𝐵) = 0
equal to unity. When such a representation proved adequate, we could proceed with the
simpler analysis of𝑤𝑡 = ∇𝑑𝑧𝑡. Thus, we have used∇ = 1 − 𝐵 as a simplifying operator. In
other problems, different types of simplifying operatorsmight be appropriate. For example,
the consumption of fuel oil for heat is highly dependent on ambient temperature, which,
because the Earth rotates around the sun, is known to follow approximately a sine wavewith
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period of 12 months. In analyzing sales of fuel oil, it might then make sense to introduce

1 −
√
3𝐵 + 𝐵2 as a simplifying operator, constituting one of the contributing components

of the generalized autoregressive operator𝜑(𝐵). If such a representation proved useful, we
could then proceed with the simpler analysis of 𝑤𝑡 = (1 −

√
3𝐵 + 𝐵2)𝑧𝑡. This operator is

of the homogeneous nonstationary variety, having zeros 𝑒±(𝑖2𝜋∕12) on the unit circle.

9.1.3 General Multiplicative Seasonal Model

Simplifying Operator 1−Bs. The fundamental fact about seasonal time series with period
𝑠 is that observations that are 𝑠 intervals apart are similar. Therefore, one can expect that
the operation 𝐵𝑠𝑧𝑡 = 𝑧𝑡−𝑠 will play a particularly important role in the analysis of seasonal
series. Furthermore, since nonstationarity is to be expected in the series 𝑧𝑡, 𝑧𝑡−𝑠, 𝑧𝑡−2𝑠,… ,

the simplifying operation

∇𝑠𝑧𝑡 = (1 − 𝐵𝑠)𝑧𝑡 = 𝑧𝑡 − 𝑧𝑡−𝑠

should be useful. This nonstationary operator 1 − 𝐵𝑠 has 𝑠 zeros 𝑒𝑖(2𝜋𝑘∕𝑠)(𝑘 = 0, 1,… , 𝑠−
1) evenly spaced on the unit circle. Moreover, the eventual forecast function satisfies
(1 − 𝐵𝑠)�̂�𝑡(𝑙) = 0 and so may (but need not) be represented by a full complement of sines
and cosines:

�̂�𝑡(𝑙) = 𝑏
(𝑡)
0 +

[𝑠∕2]∑
𝑗=1

[
𝑏
(𝑡)
1𝑗 cos

(
2𝜋𝑗𝑙
𝑠

)
+ 𝑏

(𝑡)
2𝑗 sin

(
2𝜋𝑗𝑙
𝑠

)]

where the 𝑏’s are adaptive coefficients, and where [𝑠∕2] = 1
2𝑠 if 𝑠 is even and [𝑠∕2] =

1
2 (𝑠 − 1) if 𝑠 is odd.

Multiplicative Model. When a series exhibits seasonal behavior with known periodicity s,
it is useful to display the data in the form of a table containing 𝑠 columns, such as Table 9.1,
which shows the logarithms of the airline data. For seasonal data, special care is needed in
selecting an appropriate transformation. In this example, data analysis supports the use of
the logarithm (see Section 9.3.5).

The arrangement of Table 9.1 emphasizes the fact that, in periodic data, there are not one
but two time intervals of importance. For this example, these intervals correspond tomonths
and years. Specifically, we expect relationships to occur (a) between the observations for
successive months in a particular year and (b) between the observations for the samemonth
in successive years. The situation is somewhat like that in a two-way analysis of variance
model, where similarities can be expected between observations in the same column and
between observations in the same row.

For the airline data, the seasonal effect implies that an observation for a particular
month, say April, is related to the observations for previous Aprils. Suppose that the 𝑡-th
observation 𝑧𝑡 is for the month of April. We might be able to link this observation 𝑧𝑡 to
observations in previous Aprils by a model of the form

Φ(𝐵𝑠)∇𝐷
𝑠
𝑧𝑡 = Θ(𝐵𝑠)𝛼𝑡 (9.1.4)
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where 𝑠 = 12,∇𝑠 = 1 − 𝐵𝑠, and Φ(𝐵𝑠),Θ(𝐵𝑠) are polynomials in 𝐵𝑠 of degrees P and Q,
respectively, and satisfying stationarity and invertibility conditions. Similarly, a model

Φ(𝐵𝑠)∇𝐷
𝑠
𝑧𝑡−1 = Θ(𝐵𝑠)𝛼𝑡−1 (9.1.5)

might be used to link the current behavior for March with previous March observations,
and so on, for each of the 12 months. Moreover, it is usually reasonable to assume that the
parameters𝚽 and 𝚯 contained in these monthly models would be approximately the same
for each month.

Now the error components, 𝛼𝑡, 𝛼𝑡−1,…, in these models would not in general be uncor-
related. For example, the total of airline passengers in April 1960, while related to previous
April totals, would also be related to totals in March 1960, February 1960, January 1960,
and so on. Thus, we would expect that 𝛼𝑡 in (9.1.4) would be related to 𝛼𝑡−1 in (9.1.5) and to
𝛼𝑡−2, and so on. Therefore, to account for such relationships, we introduce a second model

𝜙(𝐵)∇𝑑𝛼𝑡 = 𝜃(𝐵)𝑎𝑡 (9.1.6)

where now 𝑎𝑡 is a white noise process and 𝜙(𝐵) and 𝜃(𝐵) are polynomials in B of degrees p
and q, respectively, and satisfying stationarity and invertibility conditions, and ∇ = ∇1 =
1 − 𝐵.

Substituting (9.1.6) in (9.1.4), we obtain a general multiplicative model

𝜙𝑝(𝐵)Φ𝑃 (𝐵𝑠)∇𝑑∇𝐷
𝑠
𝑧𝑡 = 𝜃𝑞(𝐵)Θ𝑄(𝐵𝑠)𝑎𝑡 (9.1.7)

where, for this particular example, 𝑠 = 12. Also, the subscripts 𝑝, 𝑃 , 𝑞, and 𝑄 have been
added to indicate the orders of the various operators. The resulting multiplicative process
will be said to be of order (𝑝, 𝑑, 𝑞) × (𝑃 ,𝐷,𝑄)𝑠. A similar argument can be used to obtain
models with three or more periodic components to take care of multiple seasonalities.

In the next two sections, we examine some basic forms of the seasonal model introduced
above and demonstrate their potential for forecasting. We also consider the problems of
identification, estimation, and diagnostic checking that arise in relating suchmodels to data.
No new principles are needed to do this, merely an application of the procedures and ideas
already discussed in Chapters 6--8. This is illustrated in the next section where a seasonal
ARIMA model of order (0, 1, 1) × (0, 1, 1)12 is used to represent the airline data.

9.2 REPRESENTATION OF THE AIRLINE DATA BY AMULTIPLICATIVE
(0, 1, 1) × (0, 1, 1)12 MODEL

9.2.1 Multiplicative (0, 1, 1) × (0, 1, 1)12 Model

We have seen that a simple and widely applicable stochastic model for the analysis of
nonstationary time series, which contains no seasonal component, is the IMA(0, 1, 1)
process. Suppose, following the argument presented above, that we have a seasonal time
series and employ the model

∇12𝑧𝑡 = (1 − Θ𝐵12)𝛼𝑡
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for linking 𝑧’s 1-year apart. Suppose further that we employ a similar model

∇𝛼𝑡 = (1 − 𝜃𝐵)𝑎𝑡

for linking 𝛼’s 1-month apart, where in general 𝜃 and Θ will have different values. Then,
on combining these expressions, we obtain the seasonal multiplicative model

∇∇12𝑧𝑡 = (1 − 𝜃𝐵)(1 − Θ𝐵12)𝑎𝑡 (9.2.1)

of order (0, 1, 1) × (0, 1, 1)12. The model written explicitly is

𝑧𝑡 − 𝑧𝑡−1 − 𝑧𝑡−12 + 𝑧𝑡−13 = 𝑎𝑡 − 𝜃𝑎𝑡−1 − Θ𝑎𝑡−12 + 𝜃Θ𝑎𝑡−13 (9.2.2)

The invertibility region for this model, required by the condition that the roots of (1 −
𝜃𝐵)(1 − Θ𝐵12) = 0 lie outside the unit circle, is defined by the inequalities −1 < 𝜃 < 1
and −1 < Θ < 1. Note that the moving average operator (1 − 𝜃𝐵)(1 − Θ𝐵12) = 1 − 𝜃𝐵 −
Θ𝐵12 + 𝜃Θ𝐵13, on the right-hand side of (9.2.1), is of order 𝑞 + 𝑠𝑄 = 1 + 12(1) = 13.

We will show below that the logged airline data are well represented by a model of
this form, where to a sufficient approximation, �̂� = 0.4, Θ̂ = 0.6, and �̂�2

𝑎
= 1.34 × 10−3.

However, as a preliminary, we first consider how this model and with these parameter
values inserted can be used to forecast future values of the series.

9.2.2 Forecasting

In Chapter 4, we saw that there are three basically different ways of considering the
general model, each giving rise to a different way of viewing the forecast in Chapter 5. We
consider now these three approaches for the forecasting of the seasonal model introduced
above.

Difference Equation Approach. Forecasts are best computed directly from the difference
equation itself. Thus, since

𝑧𝑡+𝑙 = 𝑧𝑡+𝑙−1 + 𝑧𝑡+𝑙−12 − 𝑧𝑡+𝑙−13 + 𝑎𝑡+𝑙 − 𝜃𝑎𝑡+𝑙−1 − Θ𝑎𝑡+𝑙−12 + 𝜃Θ𝑎𝑡+𝑙−13 (9.2.3)

after setting 𝜃 = 0.4, Θ = 0.6, the minimum mean square error forecast at lead time l and
origin t is given immediately by

�̂�𝑡(𝑙) = [𝑧𝑡+𝑙−1 + 𝑧𝑡+𝑙−12 − 𝑧𝑡+𝑙−13 + 𝑎𝑡+𝑙 − 0.4𝑎𝑡+𝑙−1 − 0.6𝑎𝑡+𝑙−12 + 0.24𝑎𝑡+𝑙−13]
(9.2.4)

where

[𝑧𝑡+𝑙] = 𝐸[𝑧𝑡+𝑙|𝑧𝑡, 𝑧𝑡−1,⋯ ; 𝜃,Θ]

is the conditional expectation of 𝑧𝑡+𝑙 taken at origin t. In this expression, the parameters are
assumed to be known, and knowledge of the series 𝑧𝑡, 𝑧𝑡−1,… is assumed to extend into
the remote past.

Practical application depends upon the following facts:

1. Invertible models fitted to actual data usually yield forecasts that depend appreciably
only on recent values of the series.



Box3G Date: May 21, 2015 Time: 10:14 am

312 ANALYSIS OF SEASONAL TIME SERIES

2. The forecasts are insensitive to small changes in parameter values such as are intro-
duced by estimation errors.

Now

[𝑧𝑡+𝑗] =

{
𝑧𝑡+𝑗 𝑗 ≤ 0
�̂�𝑡(𝑗) 𝑗 > 0 (9.2.5)

[𝑎𝑡+𝑗] =
{

𝑎𝑡+𝑗 𝑗 ≤ 0
0 𝑗 > 0

(9.2.6)

Thus, to obtain the forecasts, we simply replace unknown 𝑧’s by forecasts and unknown
𝑎’s by zeros. The known 𝑎’s are, of course, the one-step-ahead forecast errors already
computed, that is, 𝑎𝑡 = 𝑧𝑡 − �̂�𝑡−1(1).

For example, to obtain the 3-months-ahead forecast, we have

𝑧𝑡+3 = 𝑧𝑡+2 + 𝑧𝑡−9 − 𝑧𝑡−10 + 𝑎𝑡+3 − 0.4𝑎𝑡+2 − 0.6𝑎𝑡−9 + 0.24𝑎𝑡−10

Taking conditional expectations at the origin t gives

�̂�𝑡(3) = �̂�𝑡(2) + 𝑧𝑡−9 − 𝑧𝑡−10 − 0.6𝑎𝑡−9 + 0.24𝑎𝑡−10

Substituting 𝑎𝑡−9 = 𝑧𝑡−9 − �̂�𝑡−10(1) and 𝑎𝑡−10 = 𝑧𝑡−10 − �̂�𝑡−11(1) on the right-hand side also
yields

�̂�𝑡(3) = �̂�𝑡(2) + 0.4𝑧𝑡−9 − 0.76𝑧𝑡−10 + 0.6�̂�𝑡−10(1) − 0.24�̂�𝑡−11(1) (9.2.7)

which expresses the forecast in terms of previous 𝑧’s and previous forecasts of 𝑧’s.
Figure 9.2 shows the forecasts for lead times up to 36 months, all made at the arbitrarily

selected origin, July 1957. We see that the simple model, containing only two parameters,
faithfully reproduces the seasonal pattern and supplies excellent forecasts. It is to be
remembered, of course, that like all predictions obtained from the general linear stochastic
model, the forecast function is adaptive. When changes occur in the seasonal pattern, these
will be appropriately projected into the forecast. It will be noticed that when the 1-month-
ahead forecast is too high, there is a tendency for all future forecasts from the point to
be high. This is to be expected because, as has been noted in Appendix A5.1, forecast
errors from the same origin, but for different lead times, are highly correlated. Of course,
a forecast for a long lead time, such as 36 months, may necessarily contain a fairly large
error. However, in practice, an initially remote forecast will be updated continually, and as
the lead shortens, greater accuracy will be possible.

The preceding forecasting procedure is robust to moderate changes in the parameter
values. Thus, if we used 𝜃 = 0.5 andΘ = 0.5, instead of 𝜃 = 0.4 andΘ = 0.6, the forecasts
would not be greatly affected. This is true even for forecasts made several steps ahead
(e.g., 12 months). The approximate effect on the one-step-ahead forecasts of modifying
the values of the parameters can be seen by studying the sum-of-squares surface. Thus, we
know that the approximate confidence region for the 𝑘 parameters 𝜷 is bounded, in general,
by the contour 𝑆(𝜷) = 𝑆(𝜷)[1 + 𝜒2

𝜀
(𝑘)∕𝑛], which includes the true parameter point with

probability 1 − 𝜀. Therefore, we know that, had the true parameter values been employed,
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FIGURE 9.2 Airline data with forecasts for 1, 2, 3,…, 36 months ahead, all made from an arbitrary
selected origin, July 1957.

with this same probability the mean square of the one-step-ahead forecast errors could not
have been increased by a factor greater than 1 + 𝜒2

𝜀
(𝑘)∕𝑛.

Forecast Function, Its Updating, and the Forecast Error Variance. In practice, the
difference equation procedure is by far the simplest and most convenient way for actually
computing forecasts and updating them. However, the difference equation itself does not
reveal very much about the nature of the forecasts and their updating. To cast light on these
aspects, we now consider the forecasts from other points of view.

Forecast Function. Using (5.1.12) yields 𝑧𝑡+𝑙 = �̂�𝑡(𝑙) + 𝑒𝑡(𝑙), where

𝑒𝑡(𝑙) = 𝑎𝑡+𝑙 + 𝜓1𝑎𝑡+𝑙−1 +⋯ + 𝜓𝑙−1𝑎𝑡+1 (9.2.8)

Now, the moving average operator on the right-hand side of (9.2.1) is of order 13. Hence,
for 𝑙 > 13, the forecasts satisfy the difference equation

(1 − 𝐵)(1 − 𝐵12)�̂�𝑡(𝑙) = 0 𝑙 > 13 (9.2.9)

where, in this equation, 𝐵 operates on the lead time 𝑙.
We now write 𝑙 = (𝑟, 𝑚) = 12𝑟 + 𝑚, 𝑟 = 0, 1, 2,… and 𝑚 = 1, 2,… , 12, to represent a

lead time of 𝑟 years and 𝑚 months, so that, for example, 𝑙 = 15 = (1, 3). Then, the forecast
function, which is the solution of (9.2.9), with starting conditions given by the first 13
forecasts, is of the form

�̂�𝑡(𝑙) = �̂�𝑡(𝑟, 𝑚) = 𝑏
(𝑡)
0,𝑚 + 𝑟𝑏

(𝑡)
1 𝑙 > 0 (9.2.10)

This forecast function contains 13 adjustable coefficients 𝑏
(𝑡)
0,1, 𝑏

(𝑡)
0,2,… , 𝑏

(𝑡)
0,12, 𝑏

(𝑡)
1 . These

represent 12 monthly contributions and 1 yearly contribution and are determined by the



Box3G Date: May 21, 2015 Time: 10:14 am

314 ANALYSIS OF SEASONAL TIME SERIES

FIGURE 9.3 Seasonal forecast function generated by the model ∇∇12𝑧𝑡 = (1 − 𝜃𝐵)(1 − Θ𝐵𝑠)𝑎𝑡,
with 𝑠 = 5.

first 13 forecasts. The nature of this function is more clearly understood from Figure 9.3,
which shows a forecast function of this kind, but with period 𝑠 = 5, so that there are six
adjustable coefficients 𝑏(𝑡)0,1, 𝑏

(𝑡)
0,2,… , 𝑏

(𝑡)
0,5, 𝑏

(𝑡)
1 .

Equivalently, since �̂�𝑡(𝑙) satisfies (9.2.9) and the roots of (1 − 𝐵)(1 − 𝐵12) = 0 are
1, 1,−1, 𝑒±(𝑖2𝜋𝑘∕12), 𝑘 = 1,… , 5, on the unit circle, the forecast function, as in (5.3.3), can
be represented as

�̂�𝑡(𝑙) =
5∑

𝑗=1

[
𝑏
(𝑡)
1𝑗 cos

(
2𝜋𝑗𝑙
12

)
+ 𝑏

(𝑡)
2𝑗 sin

(
2𝜋𝑗𝑙
12

)]
+ 𝑏

(𝑡)
16(−1)

𝑙 + 𝑏
(𝑡)
0 + 𝑏

∗(𝑡)
1 𝑙

This shows that �̂�𝑡(𝑙) consists of a mixture of sinusoids at the seasonal frequencies
2𝜋𝑗∕12, 𝑗 = 1,… , 6, plus a linear trend with slope 𝑏

∗(𝑡)
1 . The coefficients 𝑏

(𝑡)
1𝑗 , 𝑏

(𝑡)
2𝑗 , 𝑏

(𝑡)
0 ,

and 𝑏
∗(𝑡)
1 in the expression above are all adaptive with regard to the forecast origin t, being

determined by the first 13 forecasts. In comparison to (9.2.10), it is clear, for example, that
𝑏
(𝑡)
1 = 12𝑏∗(𝑡)1 , and represents the annual rate of change in the forecasts �̂�𝑡(𝑙), whereas 𝑏

∗(𝑡)
1

is the monthly rate of change.

The 𝜓 Weights. To determine updating formulas and to obtain the variance of the forecast
error 𝑒𝑡(𝑙) in (9.2.8), we need the 𝜓 weights in the form 𝑧𝑡 =

∑∞
𝑗=0 𝜓𝑗𝑎𝑡−𝑗 of the model.

We can write the moving average operator in (9.2.1) in the form

(1 − 𝜃𝐵)(1 − Θ𝐵12) = (∇ + 𝜆𝐵)(∇12 + Λ𝐵12)

where 𝜆 = 1 − 𝜃,Λ = 1 − Θ,∇12 = 1 − 𝐵12. Hence, the model may be written as

∇∇12𝑧𝑡 = (∇ + 𝜆𝐵)(∇12 + Λ𝐵12)𝑎𝑡
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By equating coefficients in ∇∇12𝜓(𝐵) = (∇ + 𝜆𝐵)(∇12 + Λ𝐵12), it can be seen that the
𝜓 weights satisfy 𝜓0 = 1, 𝜓1 − 𝜓0 = 𝜆 − 1, 𝜓12 − 𝜓11 − 𝜓0 = Λ − 1, 𝜓13 − 𝜓12 − 𝜓1 +
𝜓0 = (𝜆 − 1)(Λ − 1), and 𝜓𝑗 − 𝜓𝑗−1 − 𝜓𝑗−12 + 𝜓𝑗−13 = 0 otherwise. Thus, the 𝜓 weights
for this process are

𝜓1 = 𝜓2 = ⋯ = 𝜓11 = 𝜆 𝜓12 = 𝜆 + Λ
𝜓13 = 𝜓14 = ⋯ = 𝜓23 = 𝜆(1 + Λ) 𝜓24 = 𝜆(1 + Λ) + Λ
𝜓25 = 𝜓26 = ⋯ = 𝜓35 = 𝜆(1 + 2Λ) 𝜓36 = 𝜆(1 + 2Λ) + Λ

and so on. Writing 𝜓𝑗 as 𝜓𝑟,𝑚 = 𝜓12𝑟+𝑚, where 𝑟 = 0, 1, 2,… and 𝑚 = 1, 2,… , 12, refer,
respectively, to years and months, we obtain

𝜓𝑟,𝑚 = 𝜆(1 + 𝑟Λ) + 𝛿Λ (9.2.11)

where

𝛿 =
{ 1 when 𝑚 = 12

0 when 𝑚 ≠ 12

Updating. The general updating formula (5.2.5) is

�̂�𝑡+1(𝑙) = �̂�𝑡(𝑙 + 1) + 𝜓𝑙𝑎𝑡+1

Thus, if 𝑚 ≠ 𝑠 = 12,

𝑏
(𝑡+1)
0,𝑚 + 𝑟𝑏

(𝑡+1)
1 = 𝑏

(𝑡)
0,𝑚+1 + 𝑟𝑏

(𝑡)
1 + (𝜆 + 𝑟𝜆Λ)𝑎𝑡+1

and on equating coefficients of r, the updating formulas are

𝑏
(𝑡+1)
0,𝑚 = 𝑏

(𝑡)
0,𝑚+1 + 𝜆𝑎𝑡+1

𝑏
(𝑡+1)
1 = 𝑏

(𝑡)
1 + 𝜆Λ𝑎𝑡+1 (9.2.12)

Alternatively, if 𝑚 = 𝑠 = 12,

𝑏
(𝑡+1)
0,12 + 𝑟𝑏

(𝑡+1)
1 = 𝑏

(𝑡)
0,1 + (𝑟 + 1)𝑏(𝑡)1 + (𝜆 + Λ + 𝑟𝜆Λ)𝑎𝑡+1

and in this case,

𝑏
(𝑡+1)
0,12 = 𝑏

(𝑡)
0,1 + 𝑏

(𝑡)
1 + (𝜆 + Λ)𝑎𝑡+1

𝑏
(𝑡+1)
1 = 𝑏

(𝑡)
1 + 𝜆Λ𝑎𝑡+1 (9.2.13)

In studying these relations, it should be remembered that 𝑏(𝑡+1)0,𝑚 will be the updated

version of 𝑏(𝑡)0,𝑚+1. Thus, if the origin t was January of a particular year, 𝑏(𝑡)0,2 would be the
coefficient for March. After a month had elapsed, we should move the forecast origin to
February and the updated version for the March coefficient would now be 𝑏(𝑡+1)0,1 .

Forecast Error Variance. Knowledge of the𝜓 weights enables us to calculate the variance
of the forecast errors at any lead time l, using the result (5.1.16), namely

𝑉 (𝑙) = (1 + 𝜓2
1 +⋯ + 𝜓2

𝑙−1)𝜎
2
𝑎

(9.2.14)
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Thus, setting 𝜆 = 0.6,Λ = 0.4, 𝜎2𝑎 = 1.34 × 10−3 in (9.2.11) and (9.2.14), the estimated
standard deviations �̂�(𝑙) of the forecast errors of the log airline data are readily calculated
for different lead times.

Forecasts as a Weighted Average of Previous Observations. If we write the model in the
form

𝑧𝑡 =
∞∑
𝑗=1

𝜋𝑗𝑧𝑡−𝑗 + 𝑎𝑡

the one-step-ahead forecast is

�̂�𝑡(1) =
∞∑
𝑗=1

𝜋𝑗𝑧𝑡+1−𝑗

The 𝜋 weights may be obtained by equating coefficients in

(1 − 𝐵)(1 − 𝐵12) = (1 − 𝜃𝐵)(1 − Θ𝐵12)(1 − 𝜋1𝐵 − 𝜋2𝐵
2 −⋯)

Thus,

𝜋𝑗 = 𝜃𝑗−1(1 − 𝜃) 𝑗 = 1, 2,… , 11

𝜋12 = 𝜃11(1 − 𝜃) + (1 − Θ)
𝜋13 = 𝜃12(1 − 𝜃) − (1 − 𝜃)(1 − Θ) (9.2.15)

𝜋𝑗 − 𝜃𝜋𝑗−1 − Θ𝜋𝑗−12 + 𝜃Θ𝜋𝑗−13 𝑗 ≥ 14

These weights are plotted in Figure 9.4 for the parameter values 𝜃 = 0.4 and Θ = 0.6.
The reason that the weight function takes the particular form shown in the figure may

be understood as follows: the process (9.2.1) may be written as

𝑎𝑡+1 =
(
1 − 𝜆𝐵

1 − 𝜃𝐵

)(
1 − Λ𝐵12

1 − Θ𝐵12

)
𝑧𝑡+1 (9.2.16)

FIGURE 9.4 The 𝜋 weights for (0, 1, 1) × (0, 1, 1)12 process fitted to the airline data (𝜃 = 0.4,Θ =
0.6).
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We now use the notation EWMA𝜆(𝑧𝑡) to mean an exponentially weighted moving average,
with parameter 𝜆 = 1 − 𝜃 of values 𝑧𝑡, 𝑧𝑡−1, 𝑧𝑡−2,… , so that

EWMA𝜆(𝑧𝑡) =
𝜆

1 − 𝜃𝐵
𝑧𝑡 = 𝜆𝑧𝑡 + 𝜆𝜃𝑧𝑡−1 + 𝜆𝜃2𝑧𝑡−2 +⋯

Similarly, we use EWMAΛ(𝑧𝑡) to mean an exponentially weighted moving average, with
parameter Λ = 1 − Θ, of values 𝑧𝑡, 𝑧𝑡−12, 𝑧𝑡−24,… , so that

EWMAΛ(𝑧𝑡) =
Λ

1 − Θ𝐵12 𝑧𝑡 = Λ𝑧𝑡 + ΛΘ𝑧𝑡−12 + ΛΘ2𝑧𝑡−24 +⋯

Substituting �̂�𝑡(1) = 𝑧𝑡+1 − 𝑎𝑡+1, in (9.2.16), we obtain

�̂�𝑡(1) = EWMA𝜆(𝑧𝑡) + EWMAΛ(𝑧𝑡−11 − EWMA𝜆(𝑧𝑡−12)) (9.2.17)

Thus, the forecast is an EWMA taken over previous months, modified by a second EWMA
of discrepancies found between similar monthly EWMAs and actual performance in pre-
vious years. As a particular case, if 𝜃 = 0 (𝜆=1), (9.2.17) would reduce to

�̂�𝑡(1) = 𝑧𝑡 + EWMAΛ(𝑧𝑡−11 − 𝑧𝑡−12)
= 𝑧𝑡 + Λ[(𝑧𝑡−11 − 𝑧𝑡−12) + Θ(𝑧𝑡−23 − 𝑧𝑡−24) +⋯]

which shows that first differences are forecast as the seasonal EWMA of first differences
for similar months from previous years.

For example, suppose that we were attempting to predict December sales for a depart-
ment store. These sales would include a heavy component fromChristmas buying. The first
term on the right-hand side of (9.2.17) would be an EWMA taken over previous months up
to November. However, we know this will be an underestimate, so we correct it by taking
a second EWMA over previous years of the discrepancies between actual December sales
and the corresponding monthly EWMAs taken over previous months in those years.

The forecasts for lead times 𝑙 > 1 can be generated from the 𝜋 weights by substituting
forecasts of shorter lead time for unknown values, as displayed in the general expression
(5.3.6) of Section 5.3.3. Alternatively, explicit values for the weights applied directly to
𝑧𝑡, 𝑧𝑡−1, 𝑧𝑡−2,… may be computed, for example, from (5.3.9) or from (A5.2.3).

Calculation of Forecasts in R. Forecasts of future values of a time series that follows a
multiplicative seasonal model can be calculated using R. A convenient option available in
R is the command sarima.for() in the astsa package. For a series 𝑧𝑡 that follows a mul-
tiplicative model with period 𝑠, the command is sarima.for(z,n.ahead,p,d,q,P,D,Q,s),
where n.ahead is the lead time. Thus, to generate forecasts up to 24 steps ahead for the
logged airline series using the model ∇∇12𝑧𝑡 = (1 − 𝜃𝐵)(1 − Θ𝐵12)𝑎𝑡, the commands are

> library(astsa)
> ap=ts(seriesG,start=c(1949,1),frequency=12)
> log.AP=log(ap)
> m1=sarima.for(log.AP,24,0,1,1,0,1,1,12)
> m1 % retrieves output from a file

The output includes the forecasts (‘‘pred’’) and the prediction errors (‘‘se’’) of the forecasts.
A graph of the forecasts with ±2 prediction error limits attached is provided as part of the
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FIGURE 9.5 Forecasts along with ±2 prediction error limits for the logarithm of the airline data
generated from the model ∇∇12𝑧𝑡 = (1 − 𝜃𝐵)(1 − Θ𝐵12)𝑎𝑡.

output. Figure 9.5 shows the forecasts generated for the logged airline data using these
commands.

9.2.3 Model Identification

The identification of the nonseasonal IMA(0, 1, 1) process depends upon the fact that,
after taking first differences, the autocorrelations for all lags beyond the first are zero. For
the multiplicative (0, 1, 1) × (0, 1, 1)12 process (9.2.1), the only nonzero autocorrelations of
∇∇12𝑧𝑡 are those at lags 1, 11, 12, and 13. In fact, from (9.2.2) the model is viewed as

𝑤𝑡 = 𝑎𝑡 − 𝜃𝑎𝑡−1 − Θ𝑎𝑡−12 + 𝜃Θ𝑎𝑡−13

which is an MA model of order 13 for 𝑤𝑡 = ∇∇12𝑧𝑡. The autocovariances of 𝑤𝑡 are thus
given by

𝛾0 = [1 + 𝜃2 + Θ2 + (𝜃Θ)2]𝜎2
𝑎
= (1 + 𝜃2)(1 + Θ2)𝜎2

𝑎

𝛾1 = [−𝜃 − Θ(𝜃Θ)]𝜎2
𝑎
= −𝜃(1 + Θ2)𝜎2

𝑎

𝛾11 = 𝜃Θ𝜎2
𝑎

(9.2.18)

𝛾12 = [−Θ − 𝜃(𝜃Θ)]𝜎2
𝑎
= −Θ(1 + 𝜃2)𝜎2

𝑎

𝛾13 = 𝜃Θ𝜎2
𝑎

In particular, these expressions imply that

𝜌1 =
−𝜃

1 + 𝜃2
and 𝜌12 =

−Θ
1 + Θ2
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FIGURE 9.6 Estimated autocorrelation function of logged airline data: (a) undifferenced series,
(b) first differenced series, (c) seasonally differenced series, and (d) series with regular and seasonal
differencing.

so that the value 𝜌1 is unaffected by the presence of the seasonal MA factor (1 − Θ𝐵12) in
the model (9.2.1), while the value of 𝜌12 is unaffected by the nonseasonal or regular MA
factor (1 − 𝜃𝐵).

Figure 9.6 shows the estimated autocorrelations of the airline data for (a) the logged
series, 𝑧𝑡, (b) the logged series differenced with respect to months only, ∇𝑧𝑡, (c) the
logged series differenced with respect to years only, ∇12𝑧𝑡, and (d) the logged series
differenced with respect to months and years,∇∇12𝑧𝑡. The autocorrelations for 𝑧𝑡 are large
and fail to die out at higher lags. While simple differencing reduces the correlations in
general, a very heavy periodic component remains. This is evidenced particularly by very
large correlations at lags 12, 24, 36, and 48. Simple differencing with respect to period 12
results in correlations which are first persistently positive and then persistently negative.
By contrast, the differencing∇∇12 markedly reduces correlations throughout.

The autocorrelations of ∇∇12𝑧𝑡 exhibit spikes at lags 1 and 12, compatible with the
theoretical autocovariances in (9.2.18) for model (9.2.1). As an alternative, however, the
autocorrelations for∇12𝑧𝑡 might be viewed as dying out at a slow exponential rate beginning
from lag one. Hence, there is also the possibility that ∇12𝑧𝑡 may follow a nonseasonal
ARMA(1, 1) model with 𝜙 relatively close to one, rather than a nonstationary IMA(0, 1, 1)
model as in (9.2.1).However, in practice, the distinction between these twomodelsmay not
be substantial and the latter model will not be explored further here. The choice between the
nonstationary and stationaryAR(1) factor could, in fact, be tested using unit root procedures
similar to those described in Section 10.1 of the next chapter.
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The autocorrelation functions shown in Figure 9.6was generated inRusing the following
commands:

> library(astsa)
> log.AP=log(ts(seriesG))
> par(mfrow=c(2,2))
> acf(log.AP,50,main=’(a)’)
> acf(diff(log.AP),50,main=’(b)’)
> acf(diff(log.AP,12),50,main=’(c)’)
> acf(diff(diff(log.AP,12)),50,main=’(d)’)

On the assumption that the model is of the form (9.2.1), the variances for the estimated
higher lag autocorrelations are approximated by Bartlett’s formula (2.1.15), which in this
case becomes

var[𝑟𝑘] ≃
1 + 2(𝜌21 + 𝜌211 + 𝜌212 + 𝜌213)

𝑛
𝑘 > 13 (9.2.19)

Substituting estimated correlations for the 𝜌’s and setting 𝑛 = 144 − 13 = 131 in (9.2.19),
where 𝑛 = 131 is the number of differences∇∇12𝑧𝑡, we obtain a standard error �̂�(𝑟) ≃ 0.11.
The dashed lines shown in Figure 9.6 are approximate two-standard-error limits computed
under the assumption that there is no autocorrelation in the series so that var[𝑟𝑘] = 1/n.

Preliminary Estimates. As with the nonseasonal model, by equating appropriate observed
sample correlations to their expected values, approximate values can be obtained for the
parameters 𝜃 and Θ. On substituting the sample estimates 𝑟1 = −0.34 and 𝑟12 = −0.39 in
the expressions

𝜌1 =
−𝜃

1 + 𝜃2
𝜌12 =

−Θ
1 + Θ2

we obtain rough estimates �̂� ≃ 0.39 and Θ̂ ≃ 0.48. A table summarizing the behavior of the
autocorrelation function for some specimen seasonal models, useful in identification and
in obtaining preliminary estimates of the parameters, is given in Appendix A9.1.

9.2.4 Parameter Estimation

Contours of the sum-of-squares function 𝑆(𝜃,Θ) for the model (9.2.1) fitted to the airline
data are shown in Figure 9.7, together with the appropriate 95% confidence region. The
least-squares estimates (LE) are seen to be very nearly �̂� = 0.4 and Θ̂ = 0.6. The grid of
values for 𝑆(𝜃,Θ) was computed using the technique described in Chapter 7. It was shown
there that given 𝑛 observationsw from a linear process defined by

𝜙(𝐵)𝑤𝑡 = 𝜃(𝐵)𝑎𝑡

the quadratic form w′M𝑛w, which appears in the exponent of the likelihood, can always
be expressed in terms of a sum of squares of the conditional expectation of 𝑎’s
and a quadratic function of the conditional expectation of the 𝑝 + 𝑞 initial values
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FIGURE 9.7 Contours of 𝑆(𝜃,Θ) with shaded 95% confidence region for the model ∇∇12𝑧𝑡 =
(1 − 𝜃𝐵)(1 − Θ𝐵12)𝑎𝑡 fitted to the airline data.

𝐞∗ = (𝑤1−𝑝,… , 𝑤0, 𝑎1−𝑞,… , 𝑎0)′, that is,

w′M𝑛w = 𝑆(𝝓, 𝜽) =
𝑛∑

𝑡=−∞
[𝑎𝑡]2 =

𝑛∑
𝑡=1

[𝑎𝑡]2 + [e∗]′𝛀−1[𝐞∗]

where [𝑎𝑡] = [𝑎𝑡|w,𝝓, 𝜽], [e∗] = [e∗|w,𝝓, 𝜽], and cov[e∗] = 𝜎2
𝑎
𝛀. Furthermore, 𝑆(𝝓, 𝜽)

plays a central role in the estimation of the parameters𝝓 and 𝜽 from both a sampling theory
and a likelihood or Bayesian point of view.

The computation for seasonal models follows precisely the course described in Section
7.1.5 for nonseasonal models. The airline series has 𝑁 = 144 observations. This reduces
to 𝑛=131 observations after the differencing 𝑤𝑡 = ∇∇12𝑧𝑡. The [𝑎𝑡] in 𝑆(𝜃,Θ) can be
calculated recursively using an approximate approach that iterates between the forward
and backward versions of the (0, 1, 1) × (0, 1, 1)12 model. Alternatively, an exact method
discussed in AppendixA7.3 and also used in Section 7.1.5 can be employed. For the present
model, this involves first computing the conditional estimates of the 𝑎𝑡, using zero initial
values 𝑎0−12 = 𝑎0−11 = ⋯ = 𝑎00 = 0, through a recursive calculation as

𝑎0
𝑡
= 𝑤𝑡 + 𝜃𝑎0

𝑡−1 + Θ𝑎0
𝑡−12 − 𝜃Θ𝑎0

𝑡−13 𝑡 = 1,… , 𝑛 (9.2.20)

Then a backward recursion is used to obtain a series 𝑢𝑡 as

𝑢𝑡 = 𝑎0
𝑡
+ 𝜃𝑢𝑡+1 + Θ𝑢𝑡+12 − 𝜃Θ𝑢𝑡+13 𝑡 = 𝑛,… , 1

using zero initial values 𝑢𝑛+1 = ⋯ = 𝑢𝑛+13 = 0. Finally, the exact estimate for the vector
of initial values a′∗ = (𝑎−12,… , 𝑎𝑜) is obtained by solving the equations D[a∗] = F′u,
as described in (A7.3.12) of Appendix A7.3. Letting h = F′u = (ℎ−12, ℎ−11,… , ℎ0)′, the
values ℎ−𝑗 are computed as

ℎ−𝑗 = −(𝜃𝑢−𝑗+1 + Θ𝑢−𝑗+12 − 𝜃Θ𝑢−𝑗+13)
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with 𝑢−𝑗 = 0, 𝑗 ≥ 0. Once the initial values are estimated, the remaining [𝑎𝑡] values for
𝑡 = 1, 2,… , 𝑛 are calculated recursively as in (9.2.20), and hence the exact sum of squares
𝑆(𝜃,Θ) =

∑131
𝑡=−12[𝑎𝑡]2 is obtained.

Iterative Calculation of Least-Squares Estimates �̂�, �̂�. While it is essential to plot
sums-of-squares surfaces in a new situation, or whenever difficulties arise, an iterative lin-
earization technique may be used in straightforward situations to supply the least-squares
estimates and their approximate standard errors. The procedure has been set out in Section
7.2.1, and no new difficulties arise in estimating the parameters of seasonal models.

For the present example, we can write approximately

𝑎𝑡,0 = (𝜃 − 𝜃0)𝑥𝑡,1 + (Θ − Θ0)𝑥𝑡,2 + 𝑎𝑡

where

𝑥𝑡,1 = −
𝜕𝑎𝑡

𝜕𝜃

||||𝜃0,Θ0

𝑥𝑡,2 = −
𝜕𝑎𝑡

𝜕Θ
||||𝜃0,Θ0

and where 𝜃0 andΘ0 are guessed values and 𝑎𝑡,0 = [𝑎𝑡|𝜃0,Θ0]. As explained and illustrated
in Section 7.2.2, the derivatives are most easily computed numerically. Alternatively, the
derivatives could be obtained to any degree of accuracy by recursive calculation.

Proceeding thisway and using as starting values, the preliminary estimates �̂� = 0.39, Θ̂ =
0.48 obtained above, parameter estimates correct to two decimals are available in three
iterations. The estimated variance of the residuals is �̂�2

𝑎
= 1.34 × 10−3. From the inverse

of the matrix of sums of squares and products of the 𝑥′s on the last iteration, the standard
errors of the estimates may now be calculated. The least-squares estimates followed by
their standard errors are then

�̂� = 0.40 ± 0.08
Θ̂ = 0.61 ± 0.07

agreeing closely with the values obtained from the sum-of-squares plot.

Large-Sample Variances and Covariances for the Estimates. As in Section 7.2.6, large-
sample formulas for the variances and covariances of the parameter estimates may be
obtained. In this case, from the model equation 𝑤𝑡 = 𝑎𝑡 − 𝜃𝑎𝑡−1 − Θ𝑎𝑡−12 + 𝜃Θ𝑎𝑡−13, the
derivatives 𝑥𝑡,1 = −𝜕𝑎𝑡∕𝜕𝜃 are seen to satisfy

𝑥𝑡,1 − 𝜃𝑥𝑡−1,1 − Θ𝑥𝑡−12,1 + 𝜃Θ𝑥𝑡−13,1 + 𝑎𝑡−1 − Θ𝑎𝑡−13 = 0

hence (1 − 𝜃𝐵)(1 − Θ𝐵12)𝑥𝑡,1 = −(1 − Θ𝐵12)𝑎𝑡−1, or simply (1 − 𝜃𝐵)𝑥𝑡,1 = −𝑎𝑡−1. Thus,
using a similar derivation for 𝑥𝑡,2 = −𝜕𝑎𝑡∕𝜕Θ, we obtain that

𝑥𝑡,1 ≃ −(1 − 𝜃𝐵)−1𝑎𝑡−1 = −
∞∑
𝑗=0

𝜃𝑗𝐵𝑗𝑎𝑡−1

𝑥𝑡,2 ≃ −(1 − Θ𝐵12)−1𝑎𝑡−12 = −
∞∑
𝑖=0

Θ𝑖𝐵12𝑖𝑎𝑡−12
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Therefore, for large samples, the information matrix is

I(𝜃,Θ) = 𝑛

[
(1 − 𝜃2)−1 𝜃11(1 − 𝜃12Θ)−1

𝜃11(1 − 𝜃12Θ)−1 (1 − Θ2)−1

]

Provided that |𝜃| is not close to unity, the off-diagonal term is negligible, and approximate
values for the variances and covariances of �̂� and Θ̂ are

𝑉 (�̂�) ≃ 𝑛−1(1 − 𝜃2) 𝑉 (Θ̂) ≃ 𝑛−1(1 − Θ2)
cov[�̂�, Θ̂] ≃ 0 (9.2.21)

In the present example, substituting the values �̂� = 0.40, Θ̂ = 0.61, and 𝑛 = 131, we obtain

𝑉 (�̂�) ≃ 0.0064 𝑉 (Θ̂) ≃ 0.0048

and

𝜎(�̂�) ≃ 0.08 𝜎(Θ̂) ≃ 0.07

which, to this accuracy, are identical with the values obtained directly from the iteration.
It is also interesting to note that the parameter estimates �̂� and Θ̂, associated with months
and years, respectively, are virtually uncorrelated.

Parameter Estimation in R. The parameters of the model

∇∇12𝑧𝑡 = 𝑤𝑡 = (1 − 𝜃𝐵)(1 − Θ𝐵12)𝑎𝑡

can be estimated in R using the command sarima(log.AP,p,d,q,P,D,Q,S=12) in the
astsa package as demonstrated below. The resulting estimates of the two parameters 𝜃
and Θ are 0.40 and 0.56, respectively, with corresponding standard errors of 0.09 and 0.07.
The full likelihood function, including the determinant, is used for parameter estimation,
which accounts for the difference between the parameter estimates derived above and those
obtained in R. Also, in viewing the output, it should be noted that R defines the moving
average operators with positive signs, in contrast to the negative signs used in this text.

> library(astsa)
> log.AP=log(ts(seriesG))
> m1.AP=sarima(log.AP, 0,1,1,0,1,1,S=12)
> m1.AP % Retrieves output from file

OUTPUT:
Call:
stats:arima(x=xdata,order=c(p,d,q),seasonal= list(order=c(P,D,Q),
period=S),optim.control=list(trace=trc,REPORT=1,reltol=tol))

Coefficients:
ma1 sma1

-0.4018 -0.5569
s.e. 0.0896 0.0731

sigmaˆ2 estimated as 0.001348: log likelihood=244.7, aic=-483.4
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9.2.5 Diagnostic Checking

Before proceeding further, we check the adequacy of fit of the model by examining the
residuals from the fitted model.

Autocorrelation Checks. The standardized residuals calculated from the fitted model and
the estimated autocorrelations of the residuals are shown in Figure 9.8. The figure is
generated as part of the output from the estimation command ‘‘sarima’’ in R. The residual
autocorrelations do not present evidence of any lack of fit, since none of the values fall
outside the approximate two-standard-error limits of 0.18. This conclusion is also supported
by the 𝑝 values of the portmanteau statistics �̃� = 𝑛(𝑛 + 2)

∑𝐾

𝑘=1 𝑟
2
𝑘
(�̂�)∕(𝑛 − 𝑘) which are

shown for different values of 𝐾 in the last part of the graph.

Periodogram Check. The cumulative periodogram (see Section 8.2.5) for the residuals is
shown in Figure 9.9. The Kolmogorov--Smirnov 5 and 25% probability limits, which as
we have seen in Section 8.2.5 supply a very rough guide to the significance of apparent
deviations, fail in this instance to indicate any significant departure from the assumed
model.
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FIGURE 9.8 Diagnostic checks on the residuals from the fitted model.
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FIGURE 9.9 Cumulative periodogram check on residuals from the model ∇∇12𝑧𝑡 = (1 −
0.40𝐵)(1 − 0.61𝐵12)𝑎𝑡, fitted to the airline data.

9.3 SOME ASPECTS OF MORE GENERAL SEASONAL ARIMA MODELS

9.3.1 Multiplicative and Nonmultiplicative Models

In previous sections, we discussed methods of dealing with seasonal time series, and in
particular, we examined an example of a multiplicative model. We have seen how this
model can provide a useful representation with remarkably few parameters. It now remains
to study other seasonal models of this kind, and insofar as new considerations arise, the
associated processes of identification, estimation, diagnostic checking, and forecasting.

Suppose, in general, that we have a seasonal effect associated with period s. Then, the
general class of multiplicative models may be typified in the manner shown in Figure 9.10.
In the multiplicative model, it is assumed that the ‘‘between periods’’ development of the
series is represented by some model

Φ𝑃 (𝐵𝑠)∇𝐷
𝑠
𝑧𝑟,𝑚 = Θ𝑄(𝐵𝑠)𝛼𝑟,𝑚

while ‘‘within periods’’ the 𝛼’s are related by

𝜙𝑝(𝐵)∇𝑑𝛼𝑟,𝑚 = 𝜃𝑞(𝐵)𝑎𝑟,𝑚

Obviously, we could change the order in which we considered the two types of models and
in either case obtain the general multiplicative model

𝜙𝑝(𝐵)Φ𝑃 (𝐵𝑠)∇𝑑∇𝐷
𝑠
𝑧𝑟,𝑚 = 𝜃𝑞(𝐵)Θ𝑄(𝐵𝑠)𝑎𝑟,𝑚 (9.3.1)

where 𝑎𝑟,𝑚 is awhite noise processwith zeromean. In practice, the usefulness ofmodels such
as (9.3.1) depends on how far it is possible to parameterize actual time series parsimoniously
in these terms. In fact, experience has shown that this is possible for a variety of seasonal
time series coming from widely different sources. While the multiplicative model (9.2.1)
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FIGURE 9.10 Two-way table for multiplicative seasonal model.

has been found to fit many time series, other models of the form (9.3.1) have also been
found to be useful in practise.

It is not possible to obtain a completely adequate fit with multiplicativemodels for all se-
ries. One modification that is sometimes useful allows the mixed moving average operator
to be nonmultiplicative. By this is meant that we replace the operator 𝜃𝑞(𝐵)Θ𝑄(𝐵𝑠) on the
right-hand side of (9.3.1) by a more general moving average operator 𝜃∗

𝑞∗ (𝐵). Alternatively,
or in addition, it may be necessary to replace the autoregressive operator 𝜙𝑝(𝐵)Φ𝑃 (𝐵𝑠)
on the left by a more general autoregressive operator 𝜙∗

𝑝∗ (𝐵). Some examples of nonmul-
tiplicative models are given in Appendix A9.1. These are numbered 4, 4a, 5, and 5a.

In those cases where a nonmultiplicative model is found necessary, experience suggests
that the best-fitting multiplicative model can provide a good starting point from which to
construct a better nonmultiplicative model. The situation is reminiscent of the problems
encountered in analyzing two-way analysis of variance tables, where additivity of row and
column constants may or may not be an adequate assumption, but may provide a good
point of departure.

Our general strategy for relating multiplicative or nonmultiplicative models to data is
that which we have already discussed and illustrated in some detail in Section 9.2. Using
the autocorrelation function for guidance:

1. The series is differenced with respect to ∇ and/or ∇𝑠, so as to produce stationarity.

2. By inspection of the autocorrelation function of the suitably differenced series, a
tentative model is selected.

3. From the values of appropriate autocorrelations of the differenced series, preliminary
estimates of the parameters are obtained. These can be used as starting values in the
search for the least-squares or maximum likelihood estimates.

4. After fitting, the diagnostic checking process applied to the residuals either may lead
to the acceptance of the tentative model or, alternatively, may suggest ways in which
it can be improved, leading to refitting and repetition of the diagnostic checks.

As a few practical guidelines for model specification, we note that for seasonal series
the order of seasonal differencing 𝐷 needed would almost never be greater than one, and
especially for monthly series with 𝑠 = 12, the orders 𝑃 and 𝑄 of the seasonal AR and MA
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operators Φ(𝐵𝑠) and Θ(𝐵𝑠) would rarely need to be greater than 1. This is particularly so
when the series length of available data is not sufficient to warrant a more complicated
form of model with 𝑃 > 1 or 𝑄 > 1.

9.3.2 Model Identification

Auseful aid inmodel identification is the list inAppendixA9.1 that gives the autocovariance
structure of𝑤𝑡 = ∇𝑑∇𝐷

𝑠
𝑧𝑡 for a number of simple seasonal models. This list makes no claim

to be comprehensive. However, it does include some frequently encountered models, and
the reader should have no difficulty in discovering the characteristics of others that may
seem useful. It should be emphasized that rather simple models, such as models 1 and 2 in
the appendix, have provided adequate representations for many seasonal series.

Since the multiplicative seasonal ARMA models for the differences 𝑤𝑡 = ∇∇𝑠𝑧𝑡 may
be viewed as special forms of ARMA models with orders 𝑝 + 𝑠𝑃 and 𝑞 + 𝑠𝑄, their auto-
covariances can be derived from the principles of Chapter 3, as was done in the previous
section for the MA model 𝑤𝑡 = 𝑎𝑡 − 𝜃𝑎𝑡−1 − Θ𝑎𝑡−12 + 𝜃Θ𝑎𝑡−13. For further illustration,
consider the model

(1 − 𝜙𝐵)𝑤𝑡 = (1 − Θ𝐵𝑠)𝑎𝑡

which is a special form of ARMA model with AR order 1 and MA order 𝑠. First, since
the 𝜓 weights for this model for 𝑤𝑡 satisfy 𝜓𝑗 − 𝜙𝜓𝑗−1 = 0, 𝑗 = 1,… , 𝑠− 1, we have
𝜓𝑗 = 𝜙𝑗, 𝑗 = 1,… , 𝑠− 1, as well as 𝜓𝑠 = 𝜙𝑠 − Θ and 𝜓𝑗 = 𝜙𝜓𝑗−1, 𝑗 > 𝑠. It is then easy to
see that the autocovariances for 𝑤𝑡 will satisfy

𝛾0 = 𝜙𝛾1 + 𝜎2
𝑎
(1 − Θ𝜓𝑠)

𝛾𝑗 = 𝜙𝛾𝑗−1 − 𝜎2
𝑎
Θ𝜓𝑠−𝑗 𝑗 = 1,… , 𝑠 (9.3.2)

𝛾𝑗 = 𝜙𝛾𝑗−1 𝑗 > 𝑠

Solving the first two equations for 𝛾0 and 𝛾1, we obtain

𝛾0 = 𝜎2
𝑎

1 − Θ(𝜙𝑠 − Θ) − 𝜙𝑠Θ
1 − 𝜙2 = 𝜎2

𝑎

1 + Θ2 − 2𝜙𝑠Θ
1 − 𝜙2

𝛾1 = 𝜎2
𝑎

𝜙[1 − Θ(𝜙𝑠 − Θ)] − 𝜙𝑠−1Θ
1 − 𝜙2 = 𝜎2

𝑎

𝜙(1 + Θ2 − 𝜙𝑠Θ) − 𝜙𝑠−1Θ
1 − 𝜙2

with 𝛾𝑗 = 𝜙𝛾𝑗−1 − 𝜎2
𝑎
Θ𝜙𝑠−𝑗 = 𝜙𝑗𝛾0 − 𝜎2

𝑎
Θ𝜙𝑠−𝑗(1 − 𝜙2𝑗)∕(1 − 𝜙2), 𝑗 = 1,… , 𝑠 and 𝛾𝑗 =

𝜙𝛾𝑗−1 = 𝜙𝑗−𝑠𝛾𝑠, 𝑗 > 𝑠. Hence, in particular, for monthly data with 𝑠 = 12 and |𝜙| not
too close to one, the autocorrelation function 𝜌𝑗 for this process will behave, for low lags,
similarly to that of a regular AR(1) process, 𝜌𝑗 ≃ 𝜙𝑗 for small 𝑗, while the value of 𝜌12 will
be close to −Θ∕(1 + Θ2).

A fact of considerable utility in deriving autocovariances of a multiplicative process is
that for such a process, the autocovariance generating function (3.1.11) is the product or
the generating functions of the components. Thus, in (9.3.1) if the component models for
∇𝑑𝑧𝑡 and ∇𝐷

𝑠
𝛼𝑡,

𝜙𝑝(𝐵)∇𝑑𝑧𝑡 = 𝜃𝑞(𝐵)𝛼𝑡 Φ𝑃 (𝐵𝑠)∇𝐷
𝑠
𝛼𝑡 = Θ𝑄(𝐵)𝑎𝑡
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have autocovariance generating function 𝛾(𝐵) and Γ(𝐵𝑠), the autocovariance generating
function for 𝑤𝑡 = ∇𝑑∇𝐷

𝑠 𝑧𝑡 in (9.3.1) is

𝛾(𝐵)Γ(𝐵𝑠)

Another point to be remembered is that it may be useful to parameterize more general
models in terms of their departures from related multiplicative forms in a manner now
illustrated.

The three-parameter nonmultiplicative operator

1 − 𝜃1𝐵 − 𝜃12𝐵
12 − 𝜃13𝐵

13 (9.3.3)

employed in models 4 and 5 in the appendix may be written as

(1 − 𝜃1𝐵)(1 − 𝜃12𝐵
12) − 𝑘𝐵13

where

𝑘 = 𝜃1𝜃12 − (−𝜃13)

An estimate of 𝑘 that was large comparedwith its standard error would indicate the need for
a nonmultiplicative model in which the value of 𝜃13 is not tied to the values of 𝜃1 and 𝜃12.
On the other hand, if 𝑘 is small, then on writing 𝜃1 = 𝜃, 𝜃12 = Θ, the model approximates
the multiplicative (0, 1, 1) × (0, 1, 1)12 model.

9.3.3 Parameter Estimation

No new problems arise in the estimation of the parameters of general seasonal models.
The unconditional sum of squares is computed quite generally by the methods set out
fully in Section 7.1.5 and illustrated further in Section 9.2.4. As always, contour plotting
can illuminate difficult situations. In well-behaved situations, iterative least-squares with
numerical determination of derivatives yield rapid convergence to the least-squares esti-
mates, together with approximate variances and covariances of the estimates. Recursive
procedures can be derived in each case, which allow direct calculation of derivatives, if
desired.

Large-Sample Variances and Covariances of the Estimates. The large-sample informa-
tion matrix I(𝝓, 𝜽,𝚽,𝚯) is given by evaluating 𝐸[X′X], where, as in Section 7.2.6, X is
the 𝑛 × (𝑝 + 𝑞 + 𝑃 +𝑄) matrix of derivatives with reversed signs. Thus, for the general
multiplicative model

𝑎𝑡 = 𝜃−1(𝐵)Θ−1(𝐵𝑠)𝜙(𝐵)Φ(𝐵𝑠)𝑤𝑡

where𝑤𝑡 = ∇𝑑∇𝐷
𝑠
𝑧𝑡, the required derivatives are

𝜕𝑎𝑡

𝜕𝜃𝑖
= 𝜃−1(𝐵)𝐵𝑖𝑎𝑡

𝜕𝑎𝑡

𝜕Θ𝑖

= Θ−1(𝐵𝑠)𝐵𝑠𝑖𝑎𝑡

𝜕𝑎𝑡

𝜕𝜙𝑗

= −𝜙−1(𝐵)𝐵𝑗𝑎𝑡
𝜕𝑎𝑡

𝜕Φ𝑗

= −Φ−1(𝐵𝑠)𝐵𝑠𝑗𝑎𝑡
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Approximate variances and covariances of the estimates are obtained as before, by inverting
the matrix I(𝝓, 𝜽,𝚽,𝚯).

9.3.4 Eventual Forecast Functions for Various Seasonal Models

We now consider the characteristics of the eventual forecast functions for a number of
seasonal models. For a seasonal model with single periodicity 𝑠, the eventual forecast
function at origin 𝑡 for lead time 𝑙 is the solution of the difference equation

𝜙(𝐵)Φ(𝐵𝑠)∇𝑑∇𝐷
𝑠
�̂�𝑡(𝑙) = 0

Table 9.2 shows this solution for various choices of the difference equation; also shown is
the number of initial values on which the behavior of the forecast function depends.

In Figure 9.11, the behavior of each forecast function is illustrated for 𝑠 = 4. It will
be convenient to regard the lead time 𝑙 = 𝑟𝑠 + 𝑚 as referring to a forecast 𝑟 years and 𝑚

quarters ahead. In the diagram, an appropriate number of initial values (required to start the
forecast off and indicated by bold dots) has been set arbitrarily and the course of the forecast

FIGURE9.11 Behavior of the seasonal forecast function for various choices of the general seasonal
autoregressive operator.
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TABLE 9.2 Eventual Forecast Functions for Various Generalized Autoregressive Operators

Generalized Number of Initial
Autoregressive Eventual Forecast Function Values on which
Operator �̂�(𝑟, 𝑚)𝑎 Forecast Function Depends

(1) 1 − Φ𝐵𝑠 𝜇 + (𝑏0,𝑚 − 𝜇)Φ𝑟 𝑠

(2) 1 − 𝐵𝑠 𝑏0,𝑚 𝑠

(3) (1 − 𝐵)(1 − Φ𝐵𝑠) 𝑏0 + (𝑏0,𝑚 − 𝑏0)Φ𝑟 + 𝑏1

{1 − Φ𝑟

1 − Φ

}
𝑠 + 1

(4) (1 − 𝐵)(1 − 𝐵𝑠) 𝑏0,𝑚 + 𝑏1𝑟 𝑠 + 1

(5) (1 − 𝜙𝐵)(1 − 𝐵𝑠) 𝑏0,𝑚 + 𝑏1𝜙
𝑚−1

{
1 − 𝜙𝑠𝑟

1 − 𝜙𝑠

}
𝑠 + 1

(6) (1 − 𝐵)(1 − 𝐵𝑠)2 𝑏0,𝑚 + 𝑏1,𝑚𝑟 +
1
2
𝑏2𝑟(𝑟 − 1) 2𝑠 + 1

(7) (1 − 𝐵)2(1 − 𝐵𝑠) 𝑏0,𝑚 + [𝑏1 + (𝑚 − 1)𝑏2]𝑟 +
1
2
𝑏2𝑠𝑟(𝑟 − 1) 𝑠 + 2

aCoefficients 𝑏 are all adaptive and depend upon forecast origin 𝑡.

function traced to the end of the fourth period. When the difference equation involves an
autoregressive parameter, its value has been set equal to 0.5.

The constants 𝑏0,𝑚, 𝑏1, and so on, appearing in the solutions in Table 9.2, should strictly

be indicated by 𝑏
(𝑡)
0,𝑚, 𝑏

(𝑡)
1 , and so on, since each one depends on the origin 𝑡 of the forecast,

and these constants are adaptively modified each time the origin changes. The superscript
𝑡 has been omitted temporarily to simplify notation.

The operator labeled (1) in Table 9.2 is stationary, with the model containing a fixed
mean 𝜇. It is autoregressive in the seasonal pattern, and the forecast function decays with
each period, approaching closer and closer to the mean.

Operator (2) in Table 9.2 is nonstationary in the seasonal component. The forecasts for
a particular quarter are linked from year to year by a polynomial of degree 0. Thus, the
basic forecast of the seasonal component is exactly reproduced in forecasts of future years.

Operator (3) in Table 9.2 is nonstationary with respect to the basic time interval but
stationary in the seasonal component. Operator (3) in Figure 9.11 shows the general level
of the forecast approaching asymptotically the new level

𝑏0 +
𝑏1

1 − Φ
where, at the same time, the superimposed predictable component of the stationary seasonal
effect dies out exponentially.

In Table 9.2, operator (4) is the limiting case of the operator (3) as Φ approaches unity.
The operator is nonstationary with respect to both the basic time interval and the periodic
component. The basic initial forecast pattern is reproduced, as is the incremental yearly
increase. This is the type of forecast function given by themultiplicative (0, 1, 1)× (0, 1, 1)12
process fitted to the airline data.

Operator (5) is nonstationary in the seasonal pattern but stationary with respect to the
basic time interval. The pattern approaches exponentially an asymptotic basic pattern

�̂�𝑡(∞, 𝑚) = 𝑏0,𝑚 +
𝑏1𝜙

𝑚−1

1 − 𝜙𝑠
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Operator (6) is nonstationary in both the basic time interval and the seasonal component.
An overall quadratic trend occurs over years, and a particular kind of modification occurs
in the seasonal pattern. Individual quarters not only have their own level 𝑏0,𝑚 but also
their own rate of change of level 𝑏1,𝑚. Therefore, when this kind of forecast function is
appropriate, we can have a situation where, for example, as the lead time is increased, the
difference in summer over spring sales can be forecast to increase from one year to the
next, while at the same time, the difference in autumn over summer sales can be forecast
to decrease.

In Table 9.2, operator (7) is again nonstationary in both the basic time interval and in the
seasonal component, and there is again a quadratic tendency over yearswith the incremental
changes in the forecasts from one quarter to the next changing linearly. However, in this
case, they are restricted to have a common rate of change.

9.3.5 Choice of Transformation

It is particularly true for seasonal models that the weighted averages of previous data
values, which comprise the forecasts, may extend far back into the series. Care is therefore
needed in choosing a transformation in terms or which a parsimonious linear model will
closely apply over a sufficient stretch of the series. Simple graphical analysis can often
suggest such a transformation. Thus, an appropriate transformation may be suggested by
determining in what metric the amplitude of the seasonal component is roughly independent
of the level of the series. To illustrate how a data-based transformationmay be chosenmore
exactly, denote the untransformed airline data by 𝑥, and let us assume that some power
transformation [𝑧 = 𝑥𝜆 for 𝜆 ≠ 0, 𝑧 = ln(𝑥) for 𝜆 = 0] may be needed to make the model
(9.2.1) appropriate. Then, as suggested in Section 4.1.3, the approach of Box and Cox
(1964) may be followed, and the maximum likelihood value obtained by fitting the model
to 𝑥(𝜆) = (𝑥𝜆 − 1)∕𝜆�̇�𝜆−1 for various values of 𝜆, and choosing the value of 𝜆 that results
in the smallest residual sum of squares 𝑠𝜆. In this expression, �̇� is the geometric mean of
the series 𝑥, and it is easily shown that 𝑥(0) = �̇� ln(𝑥). For the airline data, we find

𝜆 𝑆𝜆 𝜆 𝑆𝜆 𝜆 𝑆𝜆

−0.4 13,825.5 −0.1 11,627.2 0.2 11,784.3
−0.3 12,794.6 0.0 11,458.1 0.3 12,180.0
−0.2 12,046.0 0.1 11,554.3 0.4 12,633.2

The maximum likelihood value is thus close to 𝜆 = 0, confirming the appropriateness of
the logarithmic transformation for the airline series.

9.4 STRUCTURAL COMPONENTMODELS AND DETERMINISTIC
SEASONAL COMPONENTS

A traditional method to represent a seasonal time series has been to decompose the series
into trend, seasonal, and noise components, as 𝑧𝑡 = 𝑇𝑡 + 𝑆𝑡 +𝑁𝑡, where the trend 𝑇𝑡 and
seasonal component𝑆𝑡 are represented as deterministic functions of time using polynomial
and sinusoidal functions, respectively. However, as noted in Section 9.1.1, the deterministic
nature of the trend and seasonal components limits the applicability of these models.
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Subsequently, models that permit random variation in the trend and seasonal components,
referred to as structural component models, have become increasingly popular for time
series modeling (e.g., Harvey, 1989; Harvey and Todd, 1983; Gersch and Kitagawa, 1983;
Kitagawa and Gersch, 1984; Hillmer and Tiao, 1982; and Durbin and Koopman, 2012).
We discuss these models briefly in the following sections.

9.4.1 Structural Component Time Series Models

In general, a univariate structural component time series model is one in which an observed
series 𝑧𝑡 is formulated as the sum of unobservable component or "signal" time series.
Although the components are unobservable and cannot be uniquely specified, they will
usually have direct meaningful interpretation, such as representing the seasonal behavior
or the long-term trend of an economic time series or a physical signal that is corrupted
by measurement noise in the engineering setting. Thus, the models attempt to describe
the main features of the series as well as provide a basis for forecasting, signal extrac-
tion, seasonal adjustments, and other applications. For a monthly time series, the trend 𝑇𝑡
might be assumed to follow a simple random walk model or some extension such as the
ARIMA(0, 1, 1)model (1 − 𝐵)𝑇𝑡 = (1 − 𝜃𝐵)𝑎𝑡, or theAIRMA(0, 2, 2) model (1 − 𝐵)2𝑇𝑡 =
(1 − 𝜃1𝐵 − 𝜃2𝐵

2)𝑎𝑡, while the seasonal component might be specified as a ‘‘seasonal ran-
dom walk’’ (1 − 𝐵12)𝑆𝑡 = 𝑏𝑡, where 𝑎𝑡 and 𝑏𝑡 are independent white noise processes.

An appeal of this structural modeling approach, especially for seasonal adjustments
and signal extraction, is that Kalman filtering and smoothing methods based on state-
space formulations of the model, as discussed in Section 5.5, can be employed. The exact
likelihood function can be constructed based on the state-space model form, as described
in Section 7.4, and used for parameter estimation. The Kalman filtering and smoothing
procedures can then be used to obtain estimates of the unobservable component series
such as the trend {𝑇𝑡} and seasonal {𝑆𝑡} components, which are now included as elements
within the state vector 𝑌𝑡 in the general state-space model (5.5.4) and (5.5.5).

Basic Structural Model. As a specific illustration, consider the basic structural model
(BSM) for seasonal time series with period s as formulated by Harvey (1989). The model
is defined by 𝑧𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝜀𝑡, where 𝑇𝑡 follows the ‘‘local linear trend model’’ defined
by

𝑇𝑡 = 𝑇𝑡−1 + 𝛽𝑡−1 + 𝜂𝑡 𝛽𝑡 = 𝛽𝑡−1 + 𝜉𝑡 (9.4.1)

and 𝑆𝑡 follows the ‘‘dummy variable seasonal component model’’ defined by

(1 + 𝐵 + 𝐵2 +… + 𝐵𝑠−1)𝑆𝑡 = 𝜔𝑡 (9.4.2)

where 𝜂𝑡, 𝜉𝑡, 𝜔𝑡, and 𝜀𝑡 are mutually uncorrelated white noise processes with zero means
and variances 𝜎2

𝜂
, 𝜎2

𝜉
, 𝜎2

𝜔
, and 𝜎2

𝜀
, respectively.

This local linear trend model is a stochastic generalization of the deterministic linear
trend 𝑇𝑡 = 𝛼 + 𝛽𝑡, where 𝛼 and 𝛽 are constants. In (9.4.1), the effect of the random distur-
bance 𝜂𝑡 is to allow the level of the trend to shift up and down, while 𝜉𝑡 allows the slope
to change. As special limiting cases, if 𝜎2

𝜉
= 0, then 𝛽𝑡 = 𝛽𝑡−1 and so 𝛽𝑡 is a fixed constant

𝛽 for all t and the trend follows the random walk with drift (1 − 𝐵)𝑇𝑡 = 𝛽 + 𝜂𝑡. If 𝜎
2
𝜂
= 0

in addition, then (9.4.1) collapses to the deterministic model 𝑇𝑡 = 𝑇𝑡−1 + 𝛽 or 𝑇𝑡 = 𝛼 + 𝛽𝑡.
The seasonal component model (9.4.2) requires the seasonal effects 𝑆𝑡 to sum to zero over
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𝑠 consecutive values of a seasonal period, subject to a random disturbance with mean zero
which allows the seasonal effects to change gradually over time. Again, a special limiting
case of deterministic seasonal components with a fixed seasonal pattern about an average
of zero, 𝑆𝑡 = 𝑆𝑡−𝑠 with 𝑆𝑡 + 𝑆𝑡−1 +…+ 𝑆𝑡−𝑠+1 = 0, occurs when 𝜎2𝜔 = 0. Thus, one at-
traction of a model such as (9.4.1) and (9.4.2) is that it generalizes a regression-type in
which the trend is represented by a fixed straight line and the seasonality by fixed seasonal
effects using indicator variables, by allowing the trend and seasonality to vary over time,
and still yields the deterministic components as special limiting cases.

We illustrate the state-space representation of the model (9.4.1) and (9.4.2) for the case
of quarterly time series with 𝑠 = 4. For this, we define the state vector as

Y𝑡 = (𝑇𝑡, 𝛽𝑡, 𝑆𝑡, 𝑆𝑡−1, 𝑆𝑡−2)′

and let a𝑡 = (𝜂𝑡, 𝜉𝑡, 𝜔𝑡)′. Then we have the transition equation

𝑌𝑡 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑇𝑡

𝛽𝑡

𝑆𝑡

𝑆𝑡−1
𝑆𝑡−2

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0
0 1 0 0 0
0 0 −1 −1 −1
0 0 1 0 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

𝑇𝑡−1
𝛽𝑡−1
𝑆𝑡−1
𝑆𝑡−2
𝑆𝑡−3

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣

𝜂𝑡

𝜉𝑡

𝜔𝑡

⎤⎥⎥⎥⎦
(9.4.3)

or 𝒀 𝑡 = 𝚽𝑌𝑡−1 + Ψ𝐚𝑡, together with the observation equation 𝑧𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝜀𝑡 ≡

[1 0 1 0 0]Y𝑡 + 𝜀𝑡 = HY𝑡 + 𝜀𝑡. Hence, the variance component parameters of the
structural model can be estimated by maximum likelihood methods using the state-space
representation and innovations form of the likelihood function, as discussed in Sections
5.5 and 7.4. Once these estimates are obtained, the desired optimal smoothed estimates
�̂�𝑡|𝑛 = 𝐸[𝑇𝑡|𝑧1,… , 𝑧𝑛] and �̂�𝑡|𝑛 = 𝐸[𝑆𝑡|𝑧1,… , 𝑧𝑛] of the trend and seasonal components
based on the observed series 𝑧1,… , 𝑧𝑛 can readily be obtained by applying the Kalman
filtering and smoothing techniques to the state-space representation.

Relation to ARIMA Model. It should be noted from general results of Appendix A4.3
that structural models such as the BSM have an equivalent ARIMA model representation,
which is sometimes referred to as its reduced form in this context. For instance, the process
𝑇𝑡 defined by the local linear trend model (9.4.1) satisfies

(1 − 𝐵)2𝑇𝑡 = (1 − 𝐵)𝛽𝑡−1 + (1 − 𝐵)𝜂𝑡 = 𝜉𝑡−1 + (1 − 𝐵)𝜂𝑡

It follows from Appendix A4.3.1 that 𝜉𝑡−1 + (1 − 𝐵)𝜂𝑡 can be represented as an MA(1)
process (1 − 𝜃𝐵)𝑎𝑡, so that (1 − 𝐵)2𝑇𝑡 = (1 − 𝜃𝐵)𝑎𝑡 and 𝑇𝑡 has the ARIMA(0, 2, 1) model
as a reduced form. For another illustration, consider 𝑧𝑡 = 𝑇𝑡 + 𝑆𝑡 +𝑁𝑡, where it is assumed
that

(1 − 𝐵)𝑇𝑡 = (1 − 𝜃𝑇𝐵)𝑎𝑡 (1 − 𝐵12)𝑆𝑡 = (1 − Θ𝑠𝐵
12)𝑏𝑡

and 𝑁𝑡 = 𝑐𝑡 is white noise. Then, we have

(1 − 𝐵)(1 − 𝐵12)𝑧𝑡
= (1 − 𝐵12)(1 − 𝜃𝑇𝐵)𝑎𝑡 + (1 − 𝐵)(1 − Θ𝑠𝐵

12)𝑏𝑡 + (1 − 𝐵)(1 − 𝐵12)𝑐𝑡
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and according to the developments in AppendixA4.3, the right-hand-side expression above
can be represented as the MA model (1 − 𝜃1𝐵 − 𝜃12𝐵

12 − 𝜃13𝐵
13)𝜀𝑡, where 𝜀𝑡 is white

noise, since the right-hand side will have nonzero autocovariances only at the lags 0, 1,
11, 12, and 13. Under additional structure, the MA operator could have the multiplicative
form, but in general we see that the foregoing structural model, 𝑧𝑡 = 𝑇𝑡 + 𝑆𝑡 +𝑁𝑡, has an
equivalent ARIMA model representation as

(1 − 𝐵)(1 − 𝐵12)𝑧𝑡 = (1 − 𝜃1𝐵 − 𝜃12𝐵
12 − 𝜃13𝐵

13)𝜀𝑡

Example: Airline Data. Harvey (1989, Sec. 4.5) reported results of maximum likelihood
estimation of the BSM defined by (9.4.1) and (9.4.2) for the logged monthly airline pas-
senger data, using the data period from 1949 to 1958. The ML estimates were such that
�̂�2
𝜉
= 0 and �̂�2

𝜔
was very small relative to �̂�2

𝜂
and �̂�2

𝜀
. The zero estimate �̂�2

𝜉
= 0 implies

that the model (9.4.1) for the trend 𝑇𝑡 reduces to the random walk with constant drift,
(1 − 𝐵)𝑇𝑡 = 𝛽 + 𝜂𝑡, while the seasonal component model is (1 + 𝐵 +…+ 𝐵11)𝑆𝑡 = 𝜔𝑡.
Differencing the series 𝑧𝑡 thus implies that

𝑤𝑡 = (1 − 𝐵)(1 − 𝐵12)𝑧𝑡 = (1 − 𝐵)(1 − 𝐵12)𝑇𝑡 + (1 − 𝐵)(1 − 𝐵12)𝑆𝑡

+ (1 − 𝐵)(1 − 𝐵12)𝜀𝑡
= (1 − 𝐵12)𝜂𝑡 + (1 − 𝐵)2𝜔𝑡 + (1 − 𝐵)(1 − 𝐵12)𝜀𝑡

It readily follows that the autocovariances of the differenced series 𝑤𝑡 = ∇∇12𝑧𝑡 for this
model are

𝛾0 = 2𝜎2
𝜂
+ 6𝜎2

𝜔
+ 4𝜎2

𝜀

𝛾1 = −4𝜎2
𝜔
− 2𝜎2

𝜀

𝛾2 = 𝜎2
𝜔

(9.4.4)

𝛾11 = 𝜎2
𝜀
= 𝛾13

𝛾12 = −𝜎2
𝜂
− 2𝜎2

𝜀

and 𝛾𝑗 = 0 otherwise. In particular, these give the autocorrelations

𝜌1 = −
𝜎2
𝜀
+ 2𝜎2

𝜔

2𝜎2
𝜀
+ 𝜎2

𝜂
+ 3𝜎2

𝜔

𝜌12 =
2𝜎2

𝜀
+ 𝜎2

𝜂

2(2𝜎2
𝜂
+ 𝜎2

𝜂
+ 3𝜎2

𝜔
)

and 𝜌11 = 𝜌13 = 𝜎2
𝜀
∕[2(2𝜎2

𝜀
+ 𝜎2

𝜂
+ 3𝜎2

𝜔
)].

The autocorrelations calculated using estimates of the variance components given in
Table 4.5.3 of Harvey (1989) are shown in Table 9.3 for the logged airline data. Also
shown in Table 9.3 are the autocorrelations for the differenced series 𝑤𝑡 = ∇∇12𝑧𝑡 in
the seasonal (0, 1, 1) × (0, 1, 1)12 model. These were calculated from (9.2.18) using the
parameter estimates �̂� = 0.396, Θ̂ = 0.614, and �̂�2

𝑎
= 1.34 × 10−3 reported in Section 9.2.4.

Table 9.3 shows a close agreement between the two sets of autocorrelations. Hence, for the
logged airline data, both modeling approaches provide very similar representations of the
basic trend and seasonality in the series.
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TABLE 9.3 Comparison of the Autocorrelations of 𝒘
𝒕
= 𝛁𝛁𝟏𝟐𝒛𝒕 for the Basic Structural

Model and the Seasonal ARIMAModel (𝟎, 𝟏, 𝟏) × (𝟎, 𝟏, 𝟏)𝟏𝟐 for Logged Airline Data

Model 𝜌1 𝜌2 𝜌11 𝜌12 𝜌13

Basic structural model −0.26 0.00 0.12 −0.49 0.12
ARIMA (0, 1, 1) × (0, 1, 1)12 −0.34 0.00 0.15 −0.45 0.15

9.4.2 Deterministic Seasonal and Trend Components and Common Factors

Now in some applications, particularly in the physical sciences, a seasonal or trend com-
ponent could be nearly deterministic. For example, suppose the seasonal component can
be approximated as

𝑆𝑡 = 𝛽0 +
6∑

𝑗=1

[
𝛽1𝑗 cos

(
2𝜋𝑗𝑡
12

)
+ 𝛽2𝑗 sin

(
2𝜋𝑗𝑡
12

)]

where the 𝛽 coefficients are constants. We note that this can be viewed as a special
case of the previous examples, since 𝑆𝑡 satisfies (1 + 𝐵 + 𝐵2 +…+ 𝐵11)𝑆𝑡 = 12𝛽0 or
(1 − 𝐵12)𝑆𝑡 = 0. Now, ignoring the trend component for the present and assuming that
𝑧𝑡 = 𝑆𝑡 +𝑁𝑡, where (1 − 𝐵12)𝑆𝑡 = 0 and 𝑁𝑡 = (1 − 𝜃𝑁𝐵)𝑎𝑡, say, we find that 𝑧𝑡 follows
the seasonal ARIMA model

(1 − 𝐵12)𝑧𝑡 = (1 − 𝜃𝑁𝐵)(1 − 𝐵12)𝑎𝑡

However, we nownotice the presence of a common factor of 1 − 𝐵12 in both the generalized
AR operator and the MA operator of this model; equivalently, we might say that Θ = 1
for the seasonal MA operator Θ(𝐵12) = (1 − Θ𝐵12). This is caused by and, in fact, is
indicative of the presence of the deterministic seasonal component 𝑆𝑡 in the original form
of the model.

In general, the presence of deterministic seasonal or trend components in the structure
of a time series 𝑧𝑡 is characterized by common factors of (1 − 𝐵𝑠) or (1 − 𝐵) in the
generalized AR operator and the MA operator of the model. We can state the result
more formally as follows. Suppose that 𝑧𝑡 follows the model 𝜑(𝐵)𝑧𝑡 = 𝜃0 + 𝜃(𝐵)𝑎𝑡, and
the operators 𝜑(𝐵) and 𝜃(𝐵) contain a common factor 𝐺(𝐵), so that 𝜑(𝐵) = 𝐺(𝐵)𝜑1(𝐵)
and 𝜃(𝐵) = 𝐺(𝐵)𝜃1(𝐵). Hence, the model is

𝐺(𝐵)𝜑1(𝐵)𝑧𝑡 = 𝜃0 +𝐺(𝐵)𝜃1(𝐵)𝑎𝑡 (9.4.5)

Let𝐺(𝐵) = 1 − 𝑔1𝐵 −⋯ − 𝑔𝑟𝐵
𝑟 and suppose that this polynomial has roots𝐺−1

1 ,… , 𝐺−1
𝑟

which are distinct. Then, the common factor 𝐺(𝐵) can be canceled from both sides of the
above model, but a term of the form

∑𝑟

𝑖=1 𝑐𝑖𝐺
𝑡
𝑖
needs to be added. Thus, the model (9.4.5)

can be expressed in the equivalent form as

𝜑1(𝐵)𝑧𝑡 = 𝑐0𝑡 +
𝑟∑

𝑖=1
𝑐𝑖𝐺

𝑡
𝑖
+ 𝜃1(𝐵)𝑎𝑡 (9.4.6)

where the 𝑐𝑖 are constants, and 𝑐0𝑡 is a term that satisfies 𝐺(𝐵)𝑐0𝑡 = 𝜃0. Modifications of
the result for the case where some of the roots 𝐺−1

𝑖
are repeated are straightforward.
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Thus, it is seen that an equivalent representation for the above model is

𝜑1(𝐵)𝑧𝑡 = 𝑥𝑡 + 𝜃1(𝐵)𝑎𝑡

where 𝑥𝑡 is a deterministic function of 𝑡 that satisfies 𝐺(𝐵)𝑥𝑡 = 𝜃0. Note that roots in 𝐺(𝐵)
corresponding to ‘‘stationary factors,’’ such that |𝐺𝑖| < 1, will make a contribution to the
component𝑥𝑡 that is only transient and so negligible, and hence these termsmay be ignored.
Thus, only those factors whose roots correspond to nonstationary ‘‘differencing’’ and other
‘‘simplifying’’ operators, such as (1 − 𝐵) and (1 − 𝐵𝑠), with roots |𝐺𝑖| = 1 need to be in-
cluded in the deterministic component𝑥𝑡. These common factorswill, of course, give rise to
deterministic functions in 𝑥𝑡 that are of the form of polynomials, sine and cosine functions,
and products of these, depending on the roots of the common factor 𝐺(𝐵).

Examples. For a few simple examples, the model (1 − 𝐵)𝑧𝑡 = 𝜃0 + (1 − 𝐵)𝜃1(𝐵)𝑎𝑡 has an
equivalent form 𝑧𝑡 = 𝑐1 + 𝜃0𝑡 + 𝜃1(𝐵)𝑎𝑡, which occurs upon cancellation of the common

factor (1 − 𝐵), while the model (1 −
√
3𝐵 + 𝐵2)𝑧𝑡 = 𝜃0 + (1 −

√
3𝐵 + 𝐵2)𝜃1(𝐵)𝑎𝑡 has

an equivalent model form as 𝑧𝑡 = 𝑐0 + 𝑐1 cos(2𝜋𝑡∕12) + 𝑐2 sin(2𝜋𝑡∕12) + 𝜃1(𝐵)𝑎𝑡, where
(1 −

√
3 + 1)𝑐0 = 𝜃0.

Detection of a deterministic component such as 𝑥𝑡 above in a time series 𝑧𝑡 may occur
after an ARIMA model is estimated and common or near-common factors are identified.
Hence, the ARIMA time series methodology, in a sense, can indicate when a time series
may contain deterministic seasonal or trend components. The presence of a deterministic
component is characterized by a factor in the MA operator with roots on, or very near to the
unit circle, which correspond to a differencing factor that has been applied to the original
series in the formulation of the ARIMA model. When this situation occurs, the series is
sometimes said to be ‘‘over-differenced’’. Formal tests for the presence of a unit root in the
MA operator implying the presence of a deterministic component, have been developed by
Saikkonen and Luukkonen (1993), Leybourne and McCabe (1994), and Tam and Reinsel
(1997, 1998), among others. These tests can also be viewed as tests for unit roots in the
generalized AR operator 𝜑(𝐵) in the sense that if one performs the differencing and then
concludes that the MA operator does not have a unit root, then the unit root in the AR
operator is supported.

Deterministic components implied by the cancellation of factors could be estimated
directly by a combination of regression models and ARIMA time series methods, as will
be discussed in Section 9.5. An additional consequence of the presence of deterministic
factors for forecasting is that at least some of the coefficients 𝑏(𝑡)

𝑗
in the general forecast

function �̂�𝑡(𝑙) for 𝑧𝑡+𝑙 in (5.3.3) will not be adaptive but will be deterministic (fixed)
constants. Results such as those described above concerning the relationship between
common factors in the generalized AR and the MA operators of ARIMA models and the
presence of deterministic polynomial and sinusoidal components have been discussed by
Abraham and Box (1978), Harvey (1981), and Bell (1987).

9.4.3 Estimation of Unobserved Components in Structural Models

A commonproblemof interest for the structuralmodel is the estimation of the unobservable
series 𝑆𝑡 from values of the observed series 𝑧𝑡. We suppose that 𝑆𝑡 and 𝑧𝑡 are stationary
processes with zero means and autocovariance functions 𝛾𝑠(𝑙) = 𝐸[𝑆𝑡𝑆𝑡+1] and 𝛾𝑧(𝑙) =
𝐸[𝑧𝑡𝑧𝑡+1], and cross-covariance function 𝛾𝑠𝑧(𝑙) = 𝐸[𝑆𝑡𝑧𝑡+1]. Then, specifically, suppose
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we observe the values 𝑧𝑡, 𝑡 ≤ 𝜏 , and want to determine the linear filter

�̂�𝑡 =
∞∑
𝑢=0

𝜐(𝜏)
𝑢
𝑧𝜏−𝑢 ≡ 𝜐(𝜏)(𝐵)𝑧𝜏 (9.4.7)

of {𝑧𝑡} such that the value �̂�𝑡 is close to 𝑆𝑡 in the mean square error sense, that is,
𝐸[(𝑆𝑡 − �̂�𝑡)2] is a minimum among all possible linear filters. A typical model for which
this problem arises is the ‘‘signal extraction’’model, in which there is a signal𝑆𝑡 of interest,
but what is observed is a noise-corrupted version of the signal so that

𝑧𝑡 = 𝑆𝑡 +𝑁𝑡

where𝑁𝑡 is a noise component.The problem then is to estimate values of the signal series𝑆𝑡

given values on the observed series 𝑧𝑡. Often, the filtering and smoothing algorithms for the
state-space model, as discussed in Section 5.5.3, can be applied to this situation. However,
while these algorithms are computationally attractive in practice, explicit expressions for
the coefficients 𝜐

(𝜏)
𝑢 in (9.4.7) cannot usually be obtained directly from the state-space

algorithms. These expressions can be derived more readily in the ‘‘classical’’ approach,
which assumes that an infinite extent of observations is available for filtering or smoothing.
This section provides a brief overview of some classical filtering and smoothing results
that can be used to study the coefficients in (9.4.7). Typically, from a practical point of
view, the classical results provide a good approximation to exact filtering and smoothing
results that are based on a finite sample of observations 𝑧1,… , 𝑧𝑛.

Smoothing and Filtering for Time Series. We suppose that {𝑧𝑡} has the infinite MA
representation

𝑧𝑡 = 𝜓(𝐵)𝑎𝑡 =
∞∑
𝑗=0

𝜓𝑗𝑎𝑡−𝑗

where the 𝑎𝑡 are white noise with variance 𝜎2
𝑎
. Also, let 𝑔𝑧𝑠(𝐵) =

∑∞
𝑗=−∞ 𝛾𝑧𝑠(𝑗)𝐵𝑗 be the

cross-covariance generating function between 𝑧𝑡 and 𝑆𝑡. Then, it can be derived (e.g.,
Whittle, 1963, Chapters 5 and 6; Priestley, 1981, Chapter 10) that the optimal linear filter
for the estimate �̂�𝑡 =

∑∞
𝑢=0 𝜐

(𝜏)
𝑢 𝑧𝜏−𝑢 = 𝜐(𝜏)(𝐵)𝑧𝜏 , where 𝜐(𝜏)(𝐵) =

∑∞
𝑢=0 𝜐

(𝜏)
𝑢 𝐵𝑢, is given by

𝜐(𝜏)(𝐵) = 1
𝜎2
𝑎
𝜓(𝐵)

[
𝐵𝜏−𝑡𝑔𝑧𝑠(𝐵)
𝜓(𝐵−1)

]
+

(9.4.8)

Here, for a general operator 𝜐(𝐵) =
∑∞

𝑗=−∞ 𝜐𝑗𝐵
𝑗 , the notation [𝜐(𝐵)]+ is used to denote∑∞

𝑗=0 𝜐𝑗𝐵
𝑗 .

To derive the result (9.4.8) for the optimal linear filter, note that, since 𝑧𝑡 = 𝜓(𝐵)𝑎𝑡, the
linear filter can be expressed as

�̂�𝑡 = 𝜐(𝜏)(𝐵)𝑧𝜏 = 𝜐(𝜏)(𝐵)𝜓(𝐵)𝑎𝜏 = ℎ(𝜏)(𝐵)𝑎𝜏

where ℎ(𝜏)(𝐵) = 𝜐(𝜏)(𝐵)𝜓(𝐵) =
∑∞

𝑗=0 ℎ
(𝜏)
𝑗
𝐵𝑗 . Then, we can determine the coefficients ℎ(𝜏)

𝑗

to minimize the mean squared error 𝐸[(𝑆𝑡 − �̂�𝑡)2] = 𝐸[(𝑆𝑡 −
∑∞

𝑗=0 ℎ
(𝜏)
𝑗
𝑎𝜏−𝑗)2]. Since the

{𝑎𝑡} are mutually uncorrelated, by standard linear least-squares arguments the values of
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the coefficients that minimize this mean squared error are

ℎ
(𝜏)
𝑗

=
cov[𝑎𝜏−𝑗, 𝑆𝑡]
var[𝑎𝜏−𝑗]

=
𝛾𝑎𝑠(𝑗 + 𝑡 − 𝜏)

𝜎2
𝑎

𝑗 ≥ 0

Hence, the optimal linear filter is

ℎ(𝜏)(𝐵) = 1
𝜎2
𝑎

∞∑
𝑗=0

𝛾𝑎𝑠(𝑗 + 𝑡 − 𝜏)𝐵𝑗 = 1
𝜎2
𝑎

[𝐵𝜏−𝑡𝑔𝑎𝑠(𝐵)]+ (9.4.9)

where 𝑔𝑎𝑠(𝐵) denotes the cross-covariance generating function between 𝑎𝑡 and 𝑆𝑡.
Also, note that 𝛾𝑧𝑠(𝑗) = cov[

∑∞
𝑖=0 𝜓𝑖𝑎𝑡−𝑖, 𝑆𝑡+𝑗] =

∑∞
𝑖=0 𝜓𝑖𝛾𝑎𝑠(𝑖 + 𝑗), so it follows that

𝑔𝑧𝑠(𝐵) = 𝜓(𝐵−1)𝑔𝑎𝑠(𝐵). Therefore, the optimal linear filter in (9.4.9) is ℎ(𝜏)(𝐵) =
(1∕𝜎2

𝑎
)[𝐵𝜏−𝑡𝑔𝑧𝑠(𝐵)∕𝜓(𝐵−1)]+, and, hence, the optimal filter in terms of �̂�𝑡 = 𝜐(𝜏)(𝐵)𝑧𝜏

is 𝜐(𝜏)(𝐵) = ℎ(𝜏)(𝐵)∕𝜓(𝐵), which yields the result (9.4.8). The mean squared error of the
optimal filter, since �̂�𝑡 =

∑∞
𝑗=0 ℎ

(𝜏)
𝑗
𝑎𝜏−𝑗 , is easily seen from the above derivation to be

𝐸[(𝑆𝑡 − �̂�𝑡)2] = 𝐸[𝑆2
𝑡
] − 𝐸[�̂�2

𝑡
] = var[𝑆𝑡] − 𝜎2

𝑎

∞∑
𝑗=0

{ℎ(𝜏)
𝑗
}
2

In the smoothing case where 𝜏 = +∞, that is, we estimate 𝑆𝑡 based on the infinite record
of observations 𝑧𝑢, −∞ < 𝑢 < ∞, by a linear filter �̂�𝑡 =

∑∞
𝑢=−∞ 𝜐𝑢𝑧𝑡−𝑢 = 𝜐(𝐵)𝑧𝑡, the result

(9.4.8) for the optimal filter reduces to

𝜐(𝐵) =
𝑔𝑧𝑠(𝐵)
𝑔𝑧𝑧(𝐵)

=
𝑔𝑧𝑠(𝐵)

𝜎2
𝑎
𝜓(𝐵)𝜓(𝐵−1)

(9.4.10)

For the signal extraction problem, we have 𝑧𝑡 = 𝑆𝑡 +𝑁𝑡, where it is usually assumed that
the signal {𝑆𝑡} and the noise process {𝑁𝑡} are independent. Thus, in this case we have
𝑔𝑧𝑠(𝐵) = 𝑔𝑠𝑠(𝐵), and so in the smoothing case 𝜏 = +∞, we have 𝜐(𝐵) = 𝑔𝑠𝑠(𝐵)∕𝑔𝑧𝑧(𝐵) or
𝜐(𝐵) = 𝑔𝑠𝑠(𝐵)∕[𝑔𝑠𝑠(𝐵) + 𝑔𝑛𝑛(𝐵)].

Smoothing Relations for the Signal Plus Noise or Structural Components Model. The
preceding results can be applied specifically to the model 𝑧𝑡 = 𝑆𝑡 +𝑁𝑡, where we assume
that the signal process {𝑆𝑡} and the noise process {𝑁𝑡} are independent and satisfy ARMA
models,𝜙𝑠(𝐵)𝑆𝑡 = 𝜃𝑠(𝐵)𝑏𝑡 and𝜙𝑛(𝐵)𝑁𝑡 = 𝜃𝑛(𝐵)𝑐𝑡, where 𝑏𝑡 and 𝑐𝑡 are independent white
noise processes with variances 𝜎2

𝑏
and 𝜎2

𝑐
. It follows fromAppendix A4.3 that the observed

process 𝑧𝑡 also satisfies an ARMA model 𝜙(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡, where 𝜙(𝐵) = 𝜙𝑠(𝐵)𝜙𝑛(𝐵),
assuming no common factors in the AR operators. It then follows that the optimal lin-
ear ‘‘smoother’’ �̂�𝑡 =

∑∞
𝑢=−∞ 𝜐𝑢𝑧𝑡−𝑢 = 𝜐(𝐵)𝑧𝑡 of 𝑆𝑡, based on the infinite set of values

𝑧𝑢,−∞ < 𝑢 < ∞, has a filter given by

𝜐(𝐵) =
𝑔𝑠𝑠(𝐵)
𝑔𝑧𝑧(𝐵)

=
𝜎2
𝑏
𝜙(𝐵)𝜙(𝐵−1)𝜃𝑠(𝐵)𝜃𝑠(𝐵−1)

𝜎2
𝑎
𝜃(𝐵)𝜃(𝐵−1)𝜙𝑠(𝐵)𝜙𝑠(𝐵−1)

(9.4.11)

In practice, since the series𝑆𝑡 and𝑁𝑡 are not observable, themodels for𝑆𝑡 and𝑁𝑡 would
usually not be known. Thus, the optimal filter would not be known in practice. However, by
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developing a model for the observed series 𝑧𝑡 and placing certain restrictions on the form of
the models for 𝑆𝑡 and𝑁𝑡 beyond those implied by the model for 𝑧𝑡, e.g., by assuming𝑁𝑡 is
white noise with the largest possible variance, one may obtain reasonable approximations
to the optimal filter 𝜐(𝐵). While optimal smoothing results, such as (9.4.10), have been
derived for the case where 𝑆𝑡 and𝑁𝑡 are stationary processes, Bell (1984) showed that the
results extend to the nonstationary case under reasonable assumptions for the nonstationary
signal 𝑆𝑡 and noise𝑁𝑡 processes.

As noted earlier, an alternative to the classical filtering approach in the structural com-
ponents models is to express the model in state-space form and use Kalman filtering and
smoothing techniques to estimate the components, as illustrated, for example, by Kitagawa
and Gersch (1984). For further discussion of this approach, see also Harvey (1989) and
Durbin and Koopman (2012).

Seasonal Adjustments. The filtering and smoothing methods described above have appli-
cations to seasonal adjustments of economic and business time series (i.e., estimating and
removing the seasonal component from the series). Approaches of the type discussed were
used by Hillmer and Tiao (1982) to decompose a time series uniquely into mutually inde-
pendent seasonal, trend, and irregular components. A model-based approach to seasonal
adjustments was also considered by Cleveland and Tiao (1976). Seasonal adjustments are
commonly performed by statistical agencies in the U.S. and elsewhere, and the methods
used have received considerable attention in the literature. For an overview and further dis-
cussion, see, for example, Ghysels and Osborn (2001, Chapter 4), Bell and Sotiris (2010),
Chu, Tiao, and Bell (2012), and Bell, Chu, and Tiao (2012).

9.5 REGRESSION MODELS WITH TIME SERIES ERROR TERMS

The previous discussion of deterministic components in Section 9.4.2 motivates considera-
tion of time seriesmodels that include regression terms such as deterministic sine and cosine
functions to represent seasonal behavior or stochastic predictor variables, in addition to a
serially correlated ‘‘noise’’ or error term. We will assume that the noise series 𝑁𝑡 follows
a stationary ARMA process; otherwise, differencing may be need to be considered. Thus,
letting 𝑤𝑡 be a ‘‘response’’ series of interest, we wish to represent𝑤𝑡 in terms of its linear
dependence on 𝑘 explanatory or predictor time series variables 𝑥𝑡1,… , 𝑥𝑡𝑘 as follows:

𝑤𝑡 = 𝛽1𝑥𝑡1 + 𝛽2𝑥𝑡2 +⋯ + 𝛽𝑘𝑥𝑡𝑘 +𝑁𝑡 𝑡 = 1,… , 𝑛 (9.5.1)

where the errors𝑁𝑡 follow a zero-mean ARMA(𝑝, 𝑞)model, 𝜙(𝐵)𝑁𝑡 = 𝜃(𝐵)𝑎𝑡. The tradi-
tional linear regression model was reviewed briefly in Appendix A7.2. Using similar nota-
tions with w = (𝑤1,… , 𝑤𝑛)′,𝑵 = (𝑁1,… , 𝑁𝑛)′, and 𝜷 = (𝛽1,… , 𝛽𝑘)′, the model (9.5.1)
may be written in matrix form as w = X𝜷 +𝑵 , and with covariance matrix V = cov[𝑵].
In the standard regression model, the errors 𝑁𝑡 are assumed to be uncorrelated with
common variance 𝜎2

𝑁
, so that V = 𝜎2

𝑁
I, and the ordinary least squares (LS) estimator

𝜷 = (X′X)−1X′w has well-known properties such as cov[𝜷] = 𝜎2
𝑁
(X′X)−1. However, in

the case of autocorrelated errors, this property no longer holds and the ordinary least-squares
estimator has covariance matrix

cov[𝜷] = (X′X)−1X′VX(X′X)−1

Moreover, standard inference procedures based on the 𝑡 and 𝐹 distributions are no longer
valid due to the lack of independence.
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When cov[𝑵] = V ≠ 𝜎2
𝑁
I, the best linear unbiased estimator of 𝜷 is the generalized

least-squares (GLS) estimator given by

𝜷𝐺 = (X′V−1X)−1X′V−1w (9.5.2)

which has cov[𝜷𝐺] = (X′V−1X)−1. The estimator 𝜷𝑮 is the best linear unbiased estimator
in the sense that var[𝒄′𝜷

𝑮
] is a minimum among all possible linear unbiased estimators

of 𝜷, for every arbitrary 𝑘-dimensional vector of constants 𝑐′ = (𝑐1,… , 𝑐𝑘); in particular,
var[c′𝜷𝐺] ≤ var[c′𝜷] holds relative to the ordinary LS estimator 𝜷. It follows that 𝜷𝑮
in (9.5.2) is the estimate of 𝜷 obtained by minimizing the generalized sum of squares
𝑆(𝜷;V) = (w − X𝜷)′V−1(w − X𝜷) with V given. This estimator also corresponds to the
maximum likelihood estimator under the assumption of normality of the errors when the
covariance matrix V is known. Of course, a practical limitation to use of the GLS estimate
𝜷𝐺 is that the ARMA noise model and its parameters𝝓 and 𝜽 needed to determineV must
be known, which is typically not true in practice. This motivates an iterative model building
and estimation procedure discussed below.

9.5.1 Model Building, Estimation, and Forecasting Procedures for Regression
Models

When a regression model is fitted to time series data, one should always consider the
possibility that the errors are autocorrelated. Often, a reasonable approach to identify an
appropriate model for the error 𝑁𝑡 is first to obtain the least-squares estimate 𝜷, and then
compute the corresponding regression model residuals

�̂�𝑡 = 𝑤𝑡 − 𝛽1𝑥𝑡1 − 𝛽2𝑥𝑡2 −⋯ − 𝛽𝑘𝑥𝑡𝑘 (9.5.3)

This residual series can be examined by the usual time series methods, such as inspection
of its sample ACF and PACF, to identify an appropriate ARMA model for𝑁𝑡. This would
typically be adequate to specify a tentative model for the error term 𝑁𝑡, especially when
the explanatory variables 𝑥𝑡𝑖 are deterministic functions such as sine and cosine functions,
or polynomial terms. In such cases, it is known (e.g., Anderson, 1971, Section 10.2) that
the least-squares estimator for 𝜷 is an asymptotically efficient estimator relative to the
best linear estimator. In addition, it is known that the sample autocorrelations and partial
autocorrelations calculated using the residuals from the preliminary least-squares fit are
asymptotically equivalent to those obtained from the actual noise series𝑁𝑡 (e.g., Anderson,
1971, Section 10.3; Fuller, 1996, Section 9.3).

Hence, the complete model that we consider is

𝑤𝑡 = 𝒙′𝑡𝜷 +𝑁𝑡 𝜙(𝐵)(1 − 𝐵)𝑑𝑁𝑡 = 𝜃(𝐵)𝑎𝑡 𝑡 = 1,… , 𝑛 (9.5.4)

where 𝒙𝑡 = (𝑥𝑡1,… , 𝑥𝑡𝑘)′. Estimates of all parameters can be obtained by maximum like-
lihood methods. The resulting estimate for 𝜷 has the GLS form

𝜷𝐺 = (X′V̂
−1
X)

−1
X′V̂

−1
w

but where 𝑉 is replaced by the estimate V̂ obtained from the MLEs �̂�1,… , �̂�𝑝, �̂�1,… , �̂�𝑞

of the ARMA parameters for 𝑁𝑡. Also, cov[𝜷𝐺] ≃ (X′V̂
−1
X)−1. The estimation can be
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performed iteratively, alternating between calculation of 𝜷𝐺 for given estimates �̂� and �̂�,
and reestimation of 𝝓 and 𝜽, given 𝜷𝐺 and the estimated noise series �̂�𝑡 = 𝑤𝑡 − 𝒙′𝑡𝜷𝐺.

Transformed Model. With the ARMA model specified for 𝑁𝑡, the computation of the
generalized least-squares estimator of 𝜷 can be carried out in a computationally convenient
manner as follows. Let P′ be a lower triangular matrix, such that P′VP = 𝜎2

𝑎
I, that is,

V−1 = PP′∕𝜎2
𝑎
. Then, as in Appendix A7.2.5, the GLS estimator can be obtained from the

transformed regression model

P′w = P′X𝜷 + P′
𝑵 (9.5.5)

orw∗ = X∗
𝜷 + 𝒂, where the transformedvariables arew∗ = P′w,X∗ = P′X, and𝒂 = P′

𝑵 .
Since the covariance matrix of the error vector 𝒂 = P′

𝑵 in the transformed model is

cov[𝒂] = P′cov[𝑵]P = P′VP = 𝜎2
𝑎
I

we can now use ordinary least-squares to estimate 𝜷 in the transformed model. That is, the
GLS estimator of 𝜷 is obtained as the LS estimator in terms of the transformed variables
w∗ and X∗ as

𝜷𝐺 = (X∗′X∗)−1X∗′w∗ with cov[𝜷𝐺] = 𝜎2
𝑎
(X∗′X∗)−1 (9.5.6)

However, since the ARMA parameters for 𝑁𝑡 are not known in practice, one must
still iterate between the computation of 𝜷𝐺 using the current estimates of 𝝓 and 𝜽 to

form the transformation matrix P̂
′
, and estimation of the ARMA parameters based on

�̂�𝑡 = 𝑤𝑡 − 𝒙′𝑡𝜷𝐺 constructed from the current estimate of 𝜷. The computational procedure
used to determine the exact sum-of-squares function for the specified ARMA model will
also essentially determine the nature of the transformation matrix P′. For instance, the
innovations algorithm described in Section 7.4 gives the sum of squares for an ARMA
model as 𝑆(𝝓, 𝜽) = 𝜎2

𝑎
w′V−1w = e′D−1𝐞, where e = G−1L𝜙w and D = diag(𝜐1,… , 𝜐𝑛),

and G and L𝜙 are specific lower triangular matrices. Hence, the innovations algo-

rithm can be viewed as providing the transformation matrix P′ = D−1∕2G−1L𝜙 such that

w∗ = D−1∕2G−1L𝜙w ≡ P′w has covariance matrix of the ‘‘standard’’ form

cov[w∗] = P′cov[w]P = D−1∕2G−1L𝜙 cov[w]L′
𝜙
G′−1D−1∕2 = 𝜎2

𝑎
I

Therefore, the required transformed variables w∗ = P′w and X∗ = P′X in (9.5.6) can
be obtained by applying the innovations algorithm recursive calculations (e.g.,(7.4.9)) to
the series w = (𝑤1,… , 𝑤𝑛)′ and to each column, x′

𝑖
= (𝑥1𝑖,… , 𝑥𝑛𝑖)′, 𝑖 = 1,… , 𝑘, of the

matrix X.

Example. We take the simple example of an AR(1) model, (1 − 𝜙𝐵)𝑁𝑡 = 𝑎𝑡, for the noise
𝑁𝑡, for illustration. Then the covariance matrix V of 𝑵 has (𝑖, 𝑗)th element given by
𝛾𝑖−𝑗 = 𝜎2

𝑎
𝜙|𝑖−𝑗|∕(1 − 𝜙2). The 𝑛 × 𝑛 matrix P′ such that P′VP = 𝜎2

𝑎
I has its (1, 1) element

equal to (1 − 𝜙2)1∕2, its remaining diagonal elements equal to 1, its first subdiagonal
elements equal to −𝜙, and all remaining elements equal to zero. Hence, the transformed
variables are 𝑤∗

1 = (1 − 𝜙2)1∕2𝑤1 and 𝑤∗
𝑡
= 𝑤𝑡 − 𝜙𝑤𝑡−1, 𝑡 = 2, 3,… , 𝑛, and similarly for

the transformed explanatory variables 𝑥∗
𝑡𝑖
. In effect, with AR(1) errors, the original model
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(9.5.1) has been transformed by applying the AR(1) operator (1 − 𝜙𝐵) throughout the
equation to obtain

𝑤𝑡 − 𝜙𝑤𝑡−1 = 𝛽1(𝑥𝑡1 − 𝜙𝑥𝑡−1,1) + 𝛽2(𝑥𝑡2 − 𝜙𝑥𝑡−1,2) +⋯

+ 𝛽𝑘(𝑥𝑡𝑘 − 𝜙𝑥𝑡−1,𝑘) + 𝑎𝑡 (9.5.7)

or, equivalently,𝑤∗
𝑡
= 𝛽1𝑥

∗
𝑡1 + 𝛽2𝑥

∗
𝑡2 +⋯ + 𝛽𝑘𝑥

∗
𝑡𝑘
+ 𝑎𝑡, where the errors 𝑎𝑡 now are uncor-

related. Thus, ordinary least-squares applies to the transformed regression model, and the
resulting estimator is the same as the GLS estimator in the original regression model.

Generalization of the transformation procedure to higher order AR models is
straightforward. Apart from special treatment for the initial 𝑝 observations, the trans-
formed variables are 𝑤∗

𝑡
= 𝜙(𝐵)𝑤𝑡 = 𝑤𝑡 − 𝜙1𝑤𝑡−1 −⋯ − 𝜙𝑝𝑤𝑡−𝑝 and 𝑥∗

𝑡𝑖
= 𝜙(𝐵)𝑥𝑡𝑖 =

𝑥𝑡𝑖 − 𝜙1𝑥𝑡−1,𝑖 −⋯ − 𝜙𝑝𝑥𝑡−𝑝,𝑖, 𝑖 = 1,… , 𝑘. The exact form of the transformation in the
case of mixed ARMA models will be more complicated [an approximate form is
𝑤∗

𝑡
≃ 𝜃−1(𝐵)𝜙(𝐵)𝑤𝑡, and so on] but can be determined through the same procedure as

is used to construct the exact sum-of-squares function for the ARMA model.

Forecasting. Forecasting for regression models with time series errors is straightforward
when future values 𝑥𝑡+𝑙,𝑖 of the explanatory variables are known, as would be the case
for deterministic functions such as sine and cosine functions, for example. Then, based on
forecast origin 𝑡, the lead 𝑙 forecast of

𝑤𝑡+𝑙 = 𝛽1𝑥𝑡+𝑙,1 +⋯ + 𝛽𝑘𝑥𝑡+𝑙,𝑘 +𝑁𝑡+𝑙

based on past values through time 𝑡, is

�̂�𝑡(𝑙) = 𝛽1𝑥𝑡+𝑙,1 + 𝛽2𝑥𝑡+𝑙,2 +⋯ + 𝛽𝑘𝑥𝑡+𝑙,𝑘 + �̂�𝑡(𝑙) (9.5.8)

where �̂�𝑡(𝑙) is the usual 𝑙-step-ahead forecast of 𝑁𝑡+𝑙 from the ARMA(𝑝, 𝑞) model,
𝜙(𝐵)𝑁𝑡 = 𝜃(𝐵)𝑎𝑡, based on the past values of the noise series 𝑁𝑡. The forecast error
is

𝑒𝑡(𝑙) = 𝑤𝑡+𝑙 − �̂�𝑡(𝑙) = 𝑁𝑡+𝑙 − �̂�𝑡(𝑙) =
𝑙−1∑
𝑖=0

𝜓𝑖𝑎𝑡+𝑙−𝑖 (9.5.9)

with𝑉 (𝑙) = var[𝑒𝑡(𝑙)] = 𝜎2
𝑎

∑𝑙−1
𝑖=0 𝜓

2
𝑖
, just the forecast error and its variance from theARMA

model for the noise series𝑁𝑡, where the 𝜓𝑖 are the coefficients in 𝜓(𝐵) = 𝜙−1(𝐵)𝜃(𝐵) for
the noise model.

Example. For the model

𝑤𝑡 = 𝛽0 + 𝛽1 cos
(2𝜋𝑡
12

)
+ 𝛽2 sin

(2𝜋𝑡
12

)
+𝑁𝑡

where (1 − 𝜙𝐵)𝑁𝑡 = 𝑎𝑡, the forecasts are

�̂�𝑡(𝑙) = 𝛽0 + 𝛽1 cos
[
2𝜋(𝑡 + 𝑙)

12

]
+ 𝛽2 sin

[
2𝜋(𝑡 + 𝑙)

12

]
+ �̂�𝑡(𝑙)

with �̂�𝑡(𝑙) = 𝜙𝑙𝑁𝑡. Note that these forecasts are similar in functional form to those that
would be obtained in an ARMA(1, 3) model (with zero constant term) for the series
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(1 − 𝐵)(1 −
√
3𝐵 + 𝐵2)𝑤𝑡, except that the 𝛽 coefficients in the forecast function for the

regression model case are deterministic, not adaptive, as was noted at the end of Section
9.4.2.

In practice, estimates of 𝜷 and the time series model parameters would be used to obtain
the estimated noise series �̂�𝑡 from which forecasts of future values would be made. The
effect of parameter estimation errors on the variance of the corresponding forecast errorwas
investigated byBaillie (1979) for regressionmodelswith autoregressive errors, generalizing
a similar study by Yamamoto (1976) conducted for pure autoregressive models.

More detailed discussions of regression analysis with time series errors are given by
Harvey and Phillips (1979) and by Wincek and Reinsel (1986), who also consider the
possibility of missing data. A state-space approach with associated Kalman filtering calcu-
lations, as discussed in Section 7.4, can be employed for the regression model with time
series errors, and this corresponds to one particular choice for the transformation matrix
P′ in the above discussion. A specific application of the use of regression models with
time series errors to model calendar effects in seasonal time series was given by Bell and
Hillmer (1983), while Reinsel and Tiao (1987) used regression models with time series
errors to model atmospheric ozone data for estimation of trends.

One common application of regression models for seasonal time series is where season-
ality can be modeled as a deterministic seasonal mean model. Then, for monthly seasonal
data, for example, we might consider a model of the form

𝑧𝑡 = 𝛽0 +
6∑

𝑗=1

[
𝛽1𝑗 cos

(
2𝜋𝑗𝑡
12

)
+ 𝛽2𝑗 sin

(
2𝜋𝑗𝑡
12

)]
+𝑁𝑡 (9.5.10)

where 𝑁𝑡 is modeled as an ARIMA process. As an example, Reinsel and Tiao (1987)
consider the time series 𝑧𝑡 ofmonthly averages of atmospheric total columnozonemeasured
at the station Aspendale, Australia, for the period from 1958 to 1984. This series is highly
seasonal, and so in terms of ARIMA modeling, the seasonal differences𝑤𝑡 = (1 − 𝐵12)𝑧𝑡,
were considered. Based on the sample ACF and PACF of 𝑤𝑡, the following model was
specified and estimated,

(1 − 0.48𝐵 − 0.22𝐵2)(1 − 𝐵12)𝑧𝑡 = (1 − 0.99 𝐵12)𝑎𝑡

and the model was found to be adequate. We see that this model contains a near-common
seasonal difference factor (1 − 𝐵12), and consequently, it is equivalent to the model that
contains a deterministic seasonal component, 𝑧𝑡 = 𝑆𝑡 +𝑁𝑡, of exactly the form given
in (9.5.10), and where 𝑁𝑡 follows the AR(2) model, (1 − 0.48𝐵 − 0.22𝐵2)𝑁𝑡 = 𝑎𝑡. This
model was estimated using regression methods similar to those discussed above.

Sometimes, the effects of a predictor variable {𝑥𝑡} on 𝑧𝑡 are not confined to a single time
period 𝑡, but the effects are more dynamic over time and are ‘‘distributed’’ over several
time periods. With a single predictor variable, this would lead to models of the form

𝑧𝑡 = 𝛽0 + 𝛽1𝑥𝑡 + 𝛽2𝑥𝑡−1 + 𝛽3𝑥𝑡−2 +⋯ +𝑁𝑡

where𝑁𝑡 might be an ARIMA process. For parsimonious modeling, the regression coeffi-
cients 𝛽𝑖 can be formulated as specific functions of a small number or unknown parameters.
Such models are referred to as transfer functionmodels or dynamic regressionmodels, and
will be considered in detail in Chapters 11 and 12.
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Remark. Note that regression models with autocorrelated errors can be fitted to data using
the arima() function in R with an argument xreg added to account for regression terms;
type help(arima) for details. For further discussion, see also Venables and Ripley (2002).
An alternative available in the MTS package of R is the function tfm1() that can be used
to fit a regression model with a single input variable 𝑋𝑡. We demonstrate the use of this
function to develop a dynamic regression model in Chapter 12. A similar function which
allows for two input series is also available in the MTS package of R.

9.5.2 Restricted Maximum Likelihood Estimation for Regression Models

A detracting feature of the maximum likelihood estimator (MLE) of the ARMA parameters
in the linear regression model (9.5.1) is that the MLE can produce a nonnegligible bias for
small to moderate sample sizes. This bias could have significant impact on inferences of the
regression parameters 𝜷 based on the GLS estimation, through the approximation
cov[�̂�𝐺] ≃ (X′V̂−1X)−1, where V̂ involves theMLestimates of theARMAparameters. One
‘‘preventive’’ approach for reducing the bias is to use the restricted maximum likelihood
(REML) estimation procedure, also known as the residual maximum likelihood estimation
procedure, for the ARMA model parameters.

The REML method has been popular and commonly used in the estimation of variance
components in mixed-effects linear models. For ARMA models, this procedure has been
used by Cooper and Thompson (1977) and Tunnicliffe Wilson (1989), among others.
Cheang and Reinsel (2000, 2003) compared the ML and REML estimation methods, and
bias characteristics in particular, for time series regression models with AR and ARMA
noise (as well as fractional ARIMA noise, see Section 10.4). They established approximate
bias characteristics for these estimators, and confirmed empirically that REML typically
reduces the bias substantially over ML estimation. Consequently, the REML approach
leads to more accurate inferences about the regression parameters.

The REML estimation of the parameters in the ARMA noise models differs from the
ML estimation in that it explicitly takes into account the fact that the regression parameters
𝜷 are unknown and must be estimated (i.e., estimation of ARMA parameters relies on
the residuals �̂�𝑡 = 𝑤𝑡 − 𝒙′𝑡�̂�𝐺 rather than the ‘‘true’’ noise 𝑁𝑡 = 𝑤𝑡 − 𝒙′𝑡𝜷). In the REML
estimation method, the estimates of 𝝓, 𝜽, and 𝜎2

𝑎
are determined so as to maximize the

restricted likelihood function. This is the likelihood function based on observation of
the ‘‘residual vector’’ of error contrasts u = H′w only, whose distribution is free of the
regression parameters𝜷, rather than the likelihood based on the ‘full’ vector of observations
w. Here,H′ is any (𝑛 − 𝑘) × 𝑛 full rank matrix such thatH′X = 0, so the regression effects
are eliminated in u = H′w and its distribution is free of the parameters 𝜷.

Assuming normality, the distribution of w is normal with mean vector 𝐸(w) = X𝜷 and
covariance matrix cov[w] = V, which we write as V = 𝜎2

𝑎
V∗ for convenience of notation.

Then, u = H′w has normal distribution with zero mean vector and covariance matrix
cov[u] = 𝜎2

𝑎
H′V∗H. Thus, the likelihood of 𝝓, 𝜽, and 𝜎2

𝑎
based on u, that is, the density of

u, is

𝑝(u|𝝓, 𝜽, 𝜎2
𝑎
) = (2𝜋𝜎2

𝑎
)−(𝑛−𝑘)∕2|H′V∗H|−1∕2 exp

[
− 1
2𝜎2

𝑎

u′(H′V∗H)−1u

]



Box3G Date: May 21, 2015 Time: 10:14 am

AUTOCOVARIANCES FOR SOME SEASONAL MODELS 345

It has been established (e.g., Harville, 1974, 1977), however, that this likelihood (i.e.,
density) can be expressed in an equivalent form that does not involve the particular choice
of error contrast matrix H′ as

L∗(𝝓, 𝜽, 𝜎2
𝑎
) ≡ 𝑝(u|𝝓, 𝜽, 𝜎2

𝑎
)

= (2𝜋𝜎2
𝑎
)−(𝑛−𝑘)∕2|X′X|1∕2|V∗|−1∕2

×|X′V−1
∗ X|−1∕2 exp

[
− 1
2𝜎2

𝑎

𝑆(𝜷𝐺,𝝓, 𝜽)

]
(9.5.11)

where

𝑆(𝜷𝐺,𝝓, 𝜽) = (w − X𝜷𝐺)′V−1
∗ (w − X𝜷𝐺)

≡ w′(V−1
∗ − V−1

∗ X(X′V−1
∗ X)−1X′V−1

⋆
)w

and 𝜷𝐺 = (X′V−1
∗ X)−1X′V−1

∗ w. Evaluation of the restricted likelihood (9.5.11) requires
little additional computational effort beyond that of the ‘‘full’’ likelihood, only the ad-
ditional factor |X′V−1

∗ X|. Therefore, numerical determination of the REML estimates of
𝝓, 𝜽, and 𝜎2

𝑎
is very similar to methods for ML estimation of the ARMAmodel parameters.

However, one difference is that the REML estimate of 𝜎2
𝑎
takes into account the loss in

degrees of freedom that results from estimating the regression parameters and is given
by �̂�2

𝑎
= 𝑆(𝜷𝐺, �̂�, �̂�)∕(𝑛 − 𝑘) as opposed to 𝑆(𝜷𝐺, �̂�, �̂�)∕𝑛 for the ML estimate, although

arguments can be put forth for use of the divisor 𝑛 − 𝑘 − 𝑝 − 𝑞 rather than 𝑛 − 𝑘 in the
REML estimate �̂�2

𝑎
. For further discussion and details related to REML estimation, see

Tunnicliffe Wilson (1989) and Cheang and Reinsel (2000, 2003).

APPENDIX A9.1 AUTOCOVARIANCES FOR SOME SEASONAL MODELS

See the following Table A9.1:
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EXERCISES

9.1. Show that the seasonal difference operator 1 − 𝐵12, often useful in the analysis of
monthly data, may be factorized as follows:

(1 − 𝐵12) = (1 + 𝐵)(1 −
√
3𝐵 + 𝐵2)(1 − 𝐵 + 𝐵2)(1 + 𝐵2)(1 + 𝐵 + 𝐵2)

× (1 +
√
3𝐵 + 𝐵2)(1 − 𝐵)

Plot the zeros of this expression in the unit circle and show by actual numerical
calculation and plotting of the results that the factors in the order given above
correspond to sinusoidswith frequencies (in cycles per year) of 6, 5, 4, 3, 2, 1, together
with a constant term. [For example, the difference equation (1 − 𝐵 + 𝐵2)𝑥𝑡 = 0 with
arbitrary starting values 𝑥1 = 0, 𝑥2 = 1 yields 𝑥3 = 1, 𝑥4 = 0, 𝑥5 = −1, and so on,
generating a sine wave of frequency 2 cycles per year.]

9.2. A method that has sometimes been used for ‘‘deseasonalizing’’ monthly time series
employs an equally weighted 12-month moving average:

𝑧𝑡 =
1
12

(𝑧𝑡 + 𝑧𝑡−1 +⋯ + 𝑧𝑡−11)

(a) Using the decomposition (1 − 𝐵12) = (1 − 𝐵)(1 + 𝐵 + 𝐵2 +⋯ + 𝐵11), show
that 12(𝑧𝑡 − 𝑧𝑡−1) = (1 − 𝐵12)𝑧𝑡.

(b) The exceedance for a given month over the previous moving average may be
computed as 𝑧𝑡 − 𝑧𝑡−1. A quantity 𝑢𝑡 may then be calculated that compares the
current exceedancewith the average of similar monthly exceedances experienced
over the last 𝑘 years. Show that 𝑢𝑡 may be written as

𝑢𝑡 =
(
1 − 𝐵

12
1 − 𝐵12

1 − 𝐵

)(
1 − 𝐵12

𝑘

1 − 𝐵12𝑘

1 − 𝐵12

)
𝑧𝑡

9.3. It has been shown (Tiao et al., 1975) that monthly averages for the (smog-producing)
oxidant level in Azusa, California, may be represented by the model

(1 − 𝐵12)𝑧𝑡 = (1 + 0.2𝐵)(1 − 0.9𝐵12)𝑎𝑡 𝜎2
𝑎
= 1.0

(a) Compute and plot the 𝜓𝑗 weights of this model.

(b) Compute and plot the 𝜋𝑗 weights of this model.

(c) Calculate the standard deviations of the forecast errors 3 months and 12 months
ahead.

(d) Obtain the eventual forecast function.
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9.4. The monthly oxidant averages in parts per hundred million in Azusa from January
1969 to December 1972 were as follows:

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

1969 2.1 2.6 4.1 3.9 6.7 5.1 7.8 9.3 7.5 4.1 2.9 2.6
1970 2.0 3.2 3.7 4.5 6.1 6.5 8.7 9.1 8.1 4.9 3.6 2.0
1971 2.4 3.3 3.3 4.0 3.6 6.2 7.7 6.8 5.8 4.1 3.0 1.6
1972 1.9 3.0 4.5 4.2 4.8 5.7 7.1 4.8 4.2 2.3 2.1 1.6

Using the model of Exercise 9.3, compute the forecasts for the next 24 months.
(Approximate unknown 𝑎’s by zeros.)

9.5. Thompson and Tiao (1971) have shown that the outward station movements of
telephones (logged data) in Wisconsin are well represented by the model

(1 − 0.5𝐵3)(1 − 𝐵12)𝑧𝑡 = (1 − 0.2𝐵9 − 0.3𝐵12 − 0.2𝐵13)𝑎𝑡

Obtain and plot the autocorrelation function of𝑤𝑡 = (1 − 𝐵12)𝑧𝑡 for lags 1, 2,… , 24.

9.6. Consider the airline series analyzed earlier in this chapter. We have seen that the
logarithm of the series is well represented by the multiplicative model 𝑤𝑡 = (1 −
𝜃𝐵)(1 − Θ12𝐵

12)𝑎𝑡
(a) Compute and plot the 36-step-ahead forecasts and associated ±2 forecast error

limits for the logged series.

(b) Use the results in part (a) to obtain 12-step-ahead forecasts and associated forecast
error limits for the original series. Plot the results.

9.7. Quarterly earnings per share of the U.S. company Johnson & Johnson are available
for the period 1960--1980 as series ’JohnsonJohnson’ in the R datasets package.

(a) Plot the time series using the graphics capabilities in R.

(b) Determine a variance stabilizing transformation for the series.

(c) Plot the autocorrelation functions and identify a suitable model (or models) for
the series.

(d) Estimate the parameters of the model (or models) identified in part (𝐜) and assess
the statistical significance of the estimated parameters.

(e) Perform diagnostic checks to determine the adequacy of the fitted model.

(f) Compute and plot the 𝑙-step-ahead forecasts and associated two-standard-error
prediction limits, 𝑙 = 1,… , 4, for this series.

9.8. Monthly Mauna Loa atmospheric CO2 concentration readings for the period
1959--1997 are available as series ‘co2’ in the R datasets package.
(a) Plot the time series and comment on the pattern in the data.

(b) Examine the autocorrelation structure and develop a suitable time series model
for this series.

(c) Compute and plot the 12-step-ahead forecasts and associated two-standard-error
prediction limits.
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9.9. A time series representing the total monthly electricity generated in the United States
(in millions of kilowatt-hours) for the period January 1970 to December 2005 is
available as series ‘electricity’ in the R TSA package.

(a) Plot the series and comment. Is a variance stabilizing transformation needed for
this case?

(b) Determine a suitable model for the series following the iterative three-stage pro-
cedure of model identification, parameter estimation, and diagnostics checking.

(c) Is there evidence of a deterministic seasonal pattern in this series? If so, how
would this impact your choice of model for this series?

9.10. Consider the time series model 𝑤𝑡 = 𝛽0 +𝑁𝑡 where 𝑁𝑡 follows the AR(1) model
𝑁𝑡 = 𝜙𝑁𝑡−1 + 𝑎𝑡. Assume that a series of length 𝑛 is available for analysis.

(a) Assuming that the parameter 𝜙 is known, derive the generalized least-squares
estimator of the constant 𝛽0 in this model.

(b) Repeat the derivation in part (𝐚) assuming that𝑁𝑡 follows the seasonal ARmodel
𝑁𝑡 = 𝜙4𝑁𝑡−4 + 𝑎𝑡.

9.11. Suppose the quarterly seasonal process {𝑧𝑡} is represented as 𝑧𝑡 = 𝑆𝑡 + 𝑎2𝑡, where
𝑆𝑡 follows a ‘‘seasonal random walk’’ model (1 − 𝐵4)𝑆𝑡 = 𝜃0 + 𝑎1𝑡, and 𝑎1𝑡 and
𝑎2𝑡 are independent white noise processes with variances 𝜎2

𝑎1
and 𝜎2

𝑎2
, respectively.

Show that 𝑧𝑡 follows the seasonal ARIMA model (1 − 𝐵4)𝑧𝑡 = 𝜃0 + (1 − Θ𝐵4)𝑎𝑡,
and determine expressions for Θ and 𝜎2

𝑎
in terms of the variance parameters of the

other two processes. Discuss the implication if the resulting value of Θ is equal (or
very close) to one, with regard to deterministic seasonal components.

9.12. Monthly averages of hourly ozone readings in downtown Los Angeles for the period
from January 1955 to December 1972 are included as Series R in Part 5 of this book;
see also http://pages.stat.wisc.edu/reinsel/bjr-data/.

(a) Plot the time series and comment.

(b) Develop a suitable time model for this time series. Discuss the adequacy of the
selected model.
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10
ADDITIONAL TOPICS AND EXTENSIONS

In previous chapters, the properties of linear autoregressive--moving average models have
been examined extensively and it has been shown how these models can be used to
represent stationary and nonstationary time series that arise in practice. This chapter will
discuss additional topics that either supplement or extend the material presented in earlier
chapters. We begin by discussing unit root tests that can be used as a supplementary tool
to determine whether a time series is unit root nonstationary and can be transformed to a
stationary series through differencing. This topic is discussed in Section 10.1. Unit root
testing has received considerable attention in the econometrics literature, in particular,
since it appears to be a common starting point for applied research in macroeconomics. For
example, unit root tests are an integral part of the methodology used to detect long-term
equilibrium relationships among nonstationary economic time series, commonly referred
to as cointegration. In Section 10.2, we consider models for conditional heteroscedastic
time series, which exhibit periods of differing degrees of volatility or variability depending
on the past history of the series. Such behavior is common in many economic and financial
time series, in particular. In Section 10.3, we introduce several classes of nonlinear time
series models, which are capable of capturing some distinctive features in the behavior of
processes that deviate from linearGaussian time series. Finally, Section 10.4 looks atmodels
for long memory processes, which are characterized by the much slower convergence to
zero of their autocorrelation function 𝜌𝑘 as 𝑘 → ∞ comparedwith the dependence structure
of ARMA processes.

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
○c 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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10.1 TESTS FOR UNIT ROOTS IN ARIMA MODELS

As discussed in earlier chapters, the initial decision concerning the need for differencing
is based, informally, on characteristics of the time series plot of 𝑧𝑡 and of its sample
autocorrelation function. In particular, a failure of the autocorrelations 𝑟𝑘 to dampen out
sufficiently quickly would indicate that the time series is nonstationary and needs to
be differenced. This can be evaluated further using formal tests for unit roots in the
autoregressive operator of the model. Testing for unit roots has received considerable
attention in the time series literature motivated by econometric applications, in particular.
Early contributions to this area include work by Dickey and Fuller (1979, 1981). These
authors proposed tests based on the conditional least-squares estimator for an autoregressive
process and the corresponding ‘‘𝑡-statistic.’’ While the underlying concepts are fairly
straightforward, a number of challenges arise in practice. In particular, the distribution
theory for parameter estimates and associated test statistics developed for stationary time
series do not apply when a unit root is present in the model. The asymptotic distributions
are functions of standard Brownian motions and do not have convenient closed-form
expressions. As a result, the percentiles of the distributions needed to perform the tests
have to be evaluated using numerical approximations or by simulation. Moreover, the form
of the test statistics and their asymptotic distributions are impacted by the presence of
deterministic terms such as constants or time trends in the model. The size and power
characteristics of unit root tests can also be a concern for shorter time series. This section
provides a brief description of the tests proposed by Dickey and Fuller and summarizes
some of the subsequent developments. For a more detailed discussion of unit root testing,
see, for example, Hamilton (1994) and Fuller (1996). Reviews of unit root tests and their
applications are provided by Dickey et al. (1986), Pantula et al. (1994), Phillips and Xiao
(1998), and Haldrup et al. (2013), among others.

10.1.1 Tests for Unit Roots in AR Models

Simple AR(1) Model. To introduce unit root testing, we first examine the simple AR(1)
model 𝑧𝑡 = 𝜙𝑧𝑡−1 + 𝑎𝑡, 𝑡 = 1, 2,… , 𝑛, with 𝑧0 = 0 and no constant term. We are interested
in testing the hypothesis that𝜙 = 1 so that the series follows a randomwalk. The conditional
least-squares (CLS) estimator of 𝜙 is given by

�̂� =
∑𝑛

𝑡=2 𝑧𝑡−1𝑧𝑡∑𝑛

𝑡=2 𝑧2
𝑡−1

= 𝜙 +
∑𝑛

𝑡=2 𝑧𝑡−1𝑎𝑡∑𝑛

𝑡=2 𝑧2
𝑡−1

In the stationary case with |𝜙| < 1, the statistic 𝑛1∕2(�̂� − 𝜙) has an approximate normal
distribution with zero mean and variance (1 − 𝜙2). However, when 𝜙 = 1, so that 𝑧𝑡 =∑𝑡−1

𝑗=0 𝑎𝑡−𝑗 + 𝑧0 in the integrated form, it can be shown that

𝑛(�̂� − 1) =
𝑛−1

∑𝑛

𝑡=2 𝑧𝑡−1𝑎𝑡

𝑛−2
∑𝑛

𝑡=2 𝑧2
𝑡−1

= 𝑂𝑝(1)

bounded in probability as 𝑛 → ∞, with both the numerator and denominator possessing
nondegenerate and nonnormal limiting distributions. Hence, in the nonstationary case the
estimator �̂� approaches its true value 𝜙 = 1 with increasing sample size 𝑛 at a faster rate
than in the stationary case.
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The limiting distribution of 𝑛(�̂� − 1) was studied by Dickey and Fuller (1979) who
showed that under the null hypothesis 𝜙 = 1

𝑛(�̂� − 1)
D
←←←←←←←←→

1
2 (Λ

2 − 1)
Γ

(10.1.1)

where (Γ,Λ) = (
∑∞

𝑖=1 𝛾2
𝑖
𝑍2

𝑖
,
∑∞

𝑖=1 2
1∕2𝛾𝑖𝑍𝑖), with 𝛾𝑖 = 2(−1)𝑖+1∕[(2𝑖 − 1)𝜋], and the𝑍𝑖 are

iid N(0, 1) distributed random variables. An equivalent representation for the distribution
is given by

𝑛(�̂� − 1)
D
←←←←←←←←→

∫
1
0 𝐵(𝑢)𝑑𝐵(𝑢)

∫
1
0 𝐵(𝑢)2𝑑𝑢

=
1
2(𝐵(1)2 − 1)

∫
1
0 𝐵(𝑢)2𝑑𝑢

(10.1.2)

where 𝐵(𝑢) is a (continuous-parameter) standard Brownian motion process on [0, 1]; see
Chan and Wei (1988). Such a process is characterized by the properties that 𝐵(0) = 0, in-
crements over nonoverlapping intervals are independent, and𝐵(𝑢 + 𝑠) − 𝐵(𝑠) is distributed
as normal 𝑁(0, 𝑢). Basically, 𝐵(𝑢) is the limit as 𝑛 → ∞ of the process

𝑛−1∕2

𝜎𝑎

𝑧[𝑛𝑢] =
𝑛−1∕2

𝜎𝑎

[𝑛𝑢]∑
𝑡=1

𝑎𝑡

where [𝑛𝑢] denotes the largest integer part of 𝑛𝑢, 0 < 𝑢 < 1.
By the functional central limit theorem (Billingsley, 1999; Hall and Heyde, 1980,

Section 4.2), 𝑛−1∕2𝑧[𝑛𝑢]∕𝜎𝑎 converges in law as 𝑛 → ∞ to the standard Brownian motion
process {𝐵(𝑢), 0 < 𝑢 < 1}. The randomwalk model 𝑧𝑡 = 𝑧𝑡−1 + 𝑎𝑡 with 𝑧0 = 0 implies that
𝑧𝑡−1𝑎𝑡 =

1
2(𝑧

2
𝑡
− 𝑧2

𝑡−1 − 𝑎2
𝑡
), so that

𝑛−1
𝑛∑

𝑡=2
𝑧𝑡−1𝑎𝑡 =

1
2

[
𝑛−1𝑧2

𝑛
− 𝑛−1

𝑛∑
𝑡=1

𝑎2
𝑡

]
D
←←←←←←←←→

𝜎2
𝑎

2
[𝐵(1)2 − 1] (10.1.3)

since 𝑛−1𝑧2
𝑛
= 𝜎2

𝑎
(𝑛−1∕2𝑧𝑛∕𝜎𝑎)2

D
←←←←←←←←→ 𝜎2

𝑎
𝐵(1)2 while 𝑛−1

∑𝑛

𝑡=1 𝑎2
𝑡

P
←←←←←←←→ 𝜎2

𝑎
by the law of large

numbers. In addition,

𝑛−2
𝑛∑

𝑡=2
𝑧2

𝑡−1 = 𝜎2
𝑎 ∫

1

0

(
𝑛−1∕2𝑧[𝑛𝑢]

𝜎𝑎

)2

𝑑𝑢 + 𝑜𝑝(1)
D
←←←←←←←←→ 𝜎2

𝑎 ∫

1

0
𝐵(𝑢)2𝑑𝑢 (10.1.4)

by the continuous mapping theorem (Billingsley, 1999; Hall and Heyde, 1980, p. 276).
Hence, these last two results establish the representation (10.1.2).

The limiting distribution of 𝑛(�̂� − 1) described above does not have a closed-form rep-
resentation but it can be evaluated numerically using simulation. Tables for the percentiles
of the limiting distribution are given by Fuller (1996, Appendix 10.A). Fuller also provides
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tables for the limiting distribution of the ‘‘Studentized’’ statistic

𝜏 = �̂� − 1
𝑠𝑎(

∑𝑛

𝑡=2 𝑧2
𝑡−1)

−1∕2
(10.1.5)

where 𝑠2
𝑎
= (𝑛 − 2)−1(

∑𝑛

𝑡=2 𝑧2
𝑡
− �̂�

∑𝑛

𝑡=2 𝑧𝑡−1𝑧𝑡) is the residual mean square. These results
can be used to test the randomwalk hypothesis that 𝜙 = 1. Since the alternative hypothesis
of stationarity is one-sided, the test rejects 𝜙 = 1 when 𝜏 is sufficiently negative. The test
based on 𝜏 is commonly referred to as the Dickey--Fuller (DF) test in the literature.

Higher Order ARModels. To extend the results to higher ordermodels, we consider a gen-
eralized AR(𝑝 + 1) process 𝑧𝑡 =

∑𝑝+1
𝑗=1 𝜑𝑗𝑧𝑡−𝑗 + 𝑎𝑡, or 𝜑(𝐵)𝑧𝑡 = 𝑎𝑡, where 𝜑(𝐵) contains

a single unit root so that 𝜑(𝐵) = 𝜙(𝐵)(1 − 𝐵) and 𝜙(𝐵) = 1 −
∑𝑝

𝑗=1 𝜙𝑗𝐵
𝑗 is a stationary

AR operator of order 𝑝. Hence,

𝜑(𝐵)𝑧𝑡 = 𝜙(𝐵)(1 − 𝐵)𝑧𝑡 = 𝑧𝑡 − 𝑧𝑡−1 −
𝑝∑

𝑗=1
𝜙𝑗(𝑧𝑡−𝑗 − 𝑧𝑡−𝑗−1) + 𝑎𝑡

Testing for a unit root in 𝜑(𝐵) is then equivalent to testing 𝜌 = 1 in the model

𝑧𝑡 = 𝜌𝑧𝑡−1 +
𝑝∑

𝑗=1
𝜙𝑗(𝑧𝑡−𝑗 − 𝑧𝑡−𝑗−1) + 𝑎𝑡

or equivalently testing 𝜌 − 1 = 0 in the model

(𝑧𝑡 − 𝑧𝑡−1) = (𝜌 − 1)𝑧𝑡−1 +
𝑝∑

𝑗=1
𝜙𝑗(𝑧𝑡−𝑗 − 𝑧𝑡−𝑗−1) + 𝑎𝑡

In fact, for any generalized AR(𝑝 + 1) model 𝑧𝑡 =
∑𝑝+1

𝑗=1 𝜑𝑗𝑧𝑡−𝑗 + 𝑎𝑡, it is seen that the
model can be written in an equivalent form as

𝑤𝑡 = (𝜌 − 1)𝑧𝑡−1 +
𝑝∑

𝑗=1
𝜙𝑗𝑤𝑡−𝑗 + 𝑎𝑡 (10.1.6)

where 𝑤𝑡 = 𝑧𝑡 − 𝑧𝑡−1, 𝜌 − 1 = −𝜑(1) =
∑𝑝+1

𝑗=1 𝜑𝑗 − 1, and 𝜙𝑗 =
∑𝑝

𝑖=1 𝜑𝑖 − 1. Hence, the
existence of a unit root in the AR operator 𝜑(𝐵) is equivalent to 𝜌 =

∑𝑝+1
𝑗=1 𝜑𝑗 = 1.

Based on this last form of the model, let (�̂� − 1, �̂�1,… , �̂�𝑝) denote the usual condi-
tional least-squares estimates of the parameters in (10.1.6) obtained by regressing 𝑤𝑡 on
𝑧𝑡−1, 𝑤𝑡−1,… , 𝑤𝑡−𝑝 . Then, under the unit root model where 𝜌 = 1 and 𝜙(𝐵) is stationary,
it follows from Fuller (1996, Theorem 10.1.2 and Corollary 10.1.2.1) that

(�̂� − 1)∕
⎧⎪⎨⎪⎩

𝑠𝑎

(
𝑛∑

𝑡=𝑝+2
𝑧2

𝑡−1

)−1∕2⎫⎪⎬⎪⎭
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has the same limiting distribution as the Studentized statistic 𝜏 in (10.1.5) for the AR(1)
model, while (𝑛 − 𝑝 − 1)(�̂� − 1)𝑐, where 𝑐 =

∑∞
𝑗=0 𝜓𝑗 with 𝜓(𝐵) = 𝜙−1(𝐵), has approxi-

mately the same distribution as the statistic 𝑛(�̂� − 1) for the AR(1) model. Also, it follows
that the statistic, denoted as 𝜏, formed by dividing (�̂� − 1) by its estimated standard er-
ror from the least-squares regression will be asymptotically equivalent to the statistic
(�̂� − 1)∕{𝑠𝑎(

∑𝑛

𝑡=𝑝+2 𝑧2
𝑡−1)

−1∕2}, and hence will have the same limiting distribution as the
statistic 𝜏 for the AR(1) case; see Said and Dickey (1984).

The test statistic 𝜏 formed from the regression of𝑤𝑡 on 𝑧𝑡−1, 𝑤𝑡−1,… , 𝑤𝑡−𝑝 as described
above can thus be used to test for a unit root in the AR(𝑝 + 1) model 𝜑(𝐵)𝑧𝑡 = 𝑎𝑡. This
is the well-known augmented Dickey--Fuller (ADF) test. Furthermore, as shown by Fuller
(1996, Theorem 10.1.2), the limiting distribution of the least-squares estimates (�̂�1,… , �̂�𝑝)
for the parameters of the stationary operator 𝜙(𝐵) in the model is the same as the standard
asymptotic distribution for least-squares estimates obtained by regressing the stationary
differenced series𝑤𝑡 on𝑤𝑡−1,… , 𝑤𝑡−𝑝. The estimation results for the stationary ARmodel
discussed earlier in Section 7.2.6 are therefore valid in this case.

Inclusion of a Constant Term. The results described above extend with suitable modifi-
cations to the more practical case where a constant term 𝜃0 is included in the least-squares
regression. Under stationarity, the constant is related to the mean of the process and equals
𝜃0 = (1 − 𝜑1 − · · · − 𝜑𝑝+1)𝜇 = (1 − 𝜌)𝜇. The least-squares regression yields a test statistic
analogous to 𝜏 above denoted by 𝜏𝜇 , although the limiting distribution of this test statistic
is derived under the assumption that 𝜃0 = 0 under the null hypothesis 𝜙 = 1. For example,
for the AR(1) model 𝑧𝑡 = 𝜙𝑧𝑡−1 + 𝜃0 + 𝑎𝑡 with 𝜃0 = (1 − 𝜙)𝜇, the least-squares estimator
for 𝜙 is

�̂�𝜇 =
∑𝑛

𝑡=2(𝑧𝑡−1 − �̄�(1))(𝑧𝑡 − �̄�(0))∑𝑛

𝑡=2(𝑧𝑡−1 − �̄�(1))2
(10.1.7)

where �̄�(𝑖) = (𝑛 − 1)−1
∑𝑛

𝑡=2 𝑧𝑡−𝑖, 𝑖 = 0, 1, so that �̂�𝜇 = 𝜙 +
∑𝑛

𝑡=2(𝑧𝑡−1 − �̄�(1))𝑎𝑡∕∑𝑛

𝑡=2 (𝑧𝑡−1 − �̄�(1))2. When 𝜙 = 1, the representation for the limiting distribution of

𝑛(�̂�𝜇 − 1) analogous to (10.1.2) is given by

𝑛(�̂�𝜇 − 1)
D
←←←←←←←←→

∫
1
0 𝐵(𝑢)𝑑𝐵(𝑢) − 𝜉𝐵(1)

∫
1
0 𝐵(𝑢)2𝑑𝑢 − 𝜉2

(10.1.8)

where 𝜉 = ∫
1
0 𝐵(𝑢)𝑑𝑢, and it is assumed that 𝜃0 = (1 − 𝜙)𝜇 = 0 when 𝜙 = 1. The corre-

sponding Studentized test statistic for 𝜙 = 1 in the AR(1) case is

𝜏𝜇 =
�̂�𝜇 − 1

𝑠𝑎[
∑𝑛

𝑡=2 (𝑧𝑡−1 − �̄�(1))2]−1∕2
(10.1.9)

The limiting distribution of 𝜏𝜇 readily follows from the result in (10.1.8). Tables of per-
centiles of the distribution of 𝜏𝜇 when 𝜙 = 1 are provided by Fuller (1996, p. 642). Note

that under 𝜙 = 1, since 𝑧𝑡 =
∑𝑡−1

𝑗=0 𝑎𝑡−𝑗 + 𝑧0 in the truncated random shock or integrated
form, the terms 𝑧𝑡 − �̄�(0) and 𝑧𝑡−1 − �̄�(1) do not involve the initial value 𝑧0. Therefore, the

distribution theory for the least-squares estimator �̂�𝜇 does not depend on any assumption
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concerning 𝑧0. Also, the results for the first-order AR(1) model with a constant term extend
to higher order autoregressive models in much the same way as it does when the constant
term 𝜃0 is absent from the model. The tables developed for the percentiles of the limiting
distribution of statistic 𝜏𝜇 can thus be used for higher order AR models as well.

The procedures described above are based on conditional LS estimation or equivalently
on the conditional likelihood assuming that the noise term 𝑎𝑡 follows a normal distribution.
Pantula et al. (1994) studied unconditional likelihood estimation for the AR model with a
unit root. They showed that the limiting distributions of estimators and test statistics for unit
root based on the unconditional likelihood are different from those based on the conditional
approach. For example, in the simple AR(l) model 𝑧𝑡 = 𝜙𝑧𝑡−1 + 𝑎𝑡 with no constant term
included in the estimation, the unconditional log-likelihood is

𝑙(𝜙, 𝜎2
𝑎
) = −𝑛

2
ln(𝜎2

𝑎
) + 1

2
ln(1 − 𝜙2)

− 1
2𝜎2

𝑎

[
𝑛∑

𝑡=2
(𝑧𝑡 − 𝜙𝑧𝑡−1)2 + (1 − 𝜙2)𝑧21

]

as shown in AppendixA7.4. The unconditionalML estimator �̂�, which maximizes 𝑙(𝜙, 𝜎2
𝑎
),

is a root of the cubic equation in �̂� given by (A7.4.20). Pantula et al. (1994) derived the
asymptotic distribution of 𝑛(�̂�1 − 1) and concluded, using Monte Carlo studies, that tests
for unit root in AR models based on the unconditional maximum likelihood estimator
are more powerful than those based on the conditional maximum likelihood estimator for
moderate values of 𝑛.

Processes with Deterministic Linear Trend. The asymptotic distribution theory related
to the least-squares estimator �̂�𝜇 in (10.1.7) depends heavily on the condition that the
constant term 𝜃0 is zero under the null hypothesis 𝜙 = 1, since the behavior of the process
𝑧𝑡 = 𝑧𝑡−1 + 𝜃0 + 𝑎𝑡 differs fundamentally between the cases 𝜃0 = 0 and 𝜃0 ≠ 0. When
𝜃0 = 0, the process is a randomwalk with zero drift. When 𝜃0 ≠ 0, the model can be written
as 𝑧𝑡 = 𝜃0𝑡 + 𝑧0 + 𝑢𝑡, where 𝑢𝑡 = 𝑢𝑡−1 + 𝑎𝑡. The process {𝑧𝑡} is now a random walk with
drift and its long-term behavior in many respects is dominated by the deterministic linear
trend term 𝜃0𝑡 contained in 𝑧𝑡. If 𝜃0 has a nonzero value under the hypothesis 𝜙 = 1, then
𝑛3∕2(�̂�𝜇 − 1) converges in distribution to 𝑁(0, 12𝜎2

𝑎
∕𝜃20) as 𝑛 → ∞. Thus, when 𝜃0 ≠ 0 the

asymptotic normal distribution theory applies to the least-squares estimator �̂�𝜇 and to the
corresponding test statistic 𝜏𝜇. For details, see Fuller (1996, Section 10.1.2) and Hamilton
(1994, Section 17.4).

For a time series that exhibits a persistent trend, it is often of interest to determinewhether
the trend arises from the drift term of a randomwalk or it is due to a deterministic trend added
to a stationary AR(1) model, for example. The previous formulation of the AR(1) model
with nonzero constant 𝑧𝑡 = 𝜙𝑧𝑡−1 + 𝜃0 + 𝑎𝑡 does not allow this, since when ∣ 𝜙 ∣< 1 this
model implies a process with constant mean 𝜇 = 𝐸[𝑧𝑡] = 𝜃0∕(1 − 𝜙), independent of time.
An alternate formulation of the AR(1) model that allows for a deterministic linear time
trend that is not linked to 𝜙 is

𝑧𝑡 = 𝛼 + 𝜃0𝑡 + 𝑢𝑡 where 𝑢𝑡 = 𝜙𝑢𝑡−1 + 𝑎𝑡 𝑡 = 1,… , 𝑛 (10.1.10)

This model has a linear trend with slope 𝜃0 ≠ 0 regardless of whether 𝜙 = 1 or 𝜙 ≠ 1. It
is of interest to note the relation between parameters in this form relative to the previous
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form. Applying the operator (1 − 𝜙𝐵) to (10.1.10), the model can be expressed as

𝑧𝑡 = 𝜙𝑧𝑡−1 + 𝛼0 + 𝛿0𝑡 + 𝑎𝑡 (10.1.11)

where 𝛼0 = 𝛼(1 − 𝜙) + 𝜙𝜃0 and 𝛿0 = 𝜃0(1 − 𝜙). Hence, in this form 𝛼0 = 𝜃0 and 𝛿0 = 0
are obtained under 𝜙 = 1, so that 𝑧𝑡 = 𝑧𝑡−1 + 𝜃0 + 𝑎𝑡. The presence of the linear time trend
in (10.1.10) thus leads to a model with a nonzero constant but a zero coefficient for the
time trend under the null hypothesis 𝜙 = 1. The constant 𝜃0 is referred to as a drift term
and measures the expected change in the series when the time increases by one unit.

A common procedure to test for a unit root in this model is to perform least-squares
estimation with the linear trend term 𝑡 in addition to the constant included in the regression.
The resulting estimator of 𝜙, denoted as �̂�𝜏 , is such that the limiting distribution of 𝑛(�̂�𝜏 −
1), under 𝜙 = 1, does not depend on the value of the constant 𝛼0 = 𝜃0 but still requires
the coefficient 𝛿0 of the time variable 𝑡 to be zero under the null hypothesis. Hence, this
estimator �̂�𝜏 can be used as the basis of a valid test of 𝜙 = 1 regardless of the value
of the constant 𝜃0. Tables of percentiles of the null distribution of 𝑛(�̂�𝜏 − 1) and of the
corresponding Studentized statistic 𝜏𝜏 are available in Fuller (1996, p. 642).

Alternative procedures to test 𝜙 = 1 in the presence of a possible deterministic linear
trend, which are valid regardless of the value of the constant term, have been proposed by
several authors. Bhargava (1986) developed a locally most powerful invariant test for unit
roots. Schmidt and Phillips (1992) used a score (or Lagrange multiplier (LM)) test for the
model (10.1.10), andAhn (1993) extended this approach to allow for a more generalARMA
model for the noise process 𝑢𝑡. Elliott et al. (1996) used a point optimal testing approach
with maximum power against a local alternative for the same model. The power gains were
obtained by a preliminary generalized least-squares (GLS) detrending procedure using a
local alternative to𝜙 = 1, followed by use of the least-squares estimate �̂� and corresponding
test statistic 𝜏 obtained from the detrended series. Subsequent contributions to this area
include work by Ng and Perron (2001), Perron and Qu (2007), and Harvey et al. (2009),
among others.

10.1.2 Extensions of Unit Root Testing to Mixed ARIMA Models

The test procedures described above and other similar ones have been extended to testing
for unit roots in mixed ARIMA(𝑝, 1, 𝑞) models (e.g., see Said and Dickey (1984, 1985)
and Solo (1984b)), as well as models with higher order differencing (e.g., see Dickey
and Pantula (1987)). Said and Dickey (1984) showed that the Dickey--Fuller procedure,
which was originally developed for autoregressive models of known order 𝑝, remains valid
asymptotically for an ARIMA(𝑝, 1, 𝑞) model where 𝑝 and 𝑞 are unknown. The authors
approximated the mixed model by an autoregressive model of sufficiently high order and
applied the ADF test to the resulting AR model. The approximation assumes that the
lag length of the autoregression increases with the length of the series, 𝑛, at a controlled
rate less than 𝑛1∕3. Phillips (1987) and Phillips and Perron (1988) proposed a number of
unit root tests that have become popular in the econometrics literature. These tests differ
from the ADF tests in how they deal with serial correlation and heteroscedasticity in the
error process. Thus, while the ADF tests approximate the ARMA structure by a high-
order autoregression, the Phillips and Perron tests deal with serial correlation by directly
modifying the test statistics to account for serial correlation. Likelihood ratio type of unit
root tests have also been considered for the mixedARIMAmodel based on both conditional
and unconditional normal distribution likelihoods by Yap and Reinsel (1995) and Shin and
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Fuller (1998), among others. Simulation studies suggest that these tests often performbetter
than 𝜏-type test statistics for mixed ARIMA models.

Motivated by problems inmacroeconomics and related fields, the literature has continued
to grow andmany other extensions have been developed. These include the use of bootstrap
methods for statistical inference as discussed, for example, by Palm et al. (2008). The use
of Bayesian methods for unit root models has also been considered. The problem of
distinguishing unit root nonstationary series from series with structural breaks such as level
shifts or trend changes has been considered by many researchers. The methodology has
also been extended andmodified to deal with more complex series involving nonlinearities,
time-varying volatility, and fractionally integrated processes with long-range dependence.
Tests with a null hypothesis of stationarity, rather than unit root nonstationarity, have also
been proposed in the literature. For further discussion and references, see, for example,
Phillips and Xiao (1998) and Haldrup et al. (2013).

Example: Series C. To illustrate unit root testing, consider the series of temperature
readings referred to as Series C. Two potential models identified for this series in Chapter 6
were the ARIMA(1, 1, 0) and the ARIMA(0, 2, 0). Since there is some doubt about the need
for the second differencing in the ARIMA(0, 2, 0) model, with the alternative model being
a stationary AR(1) for the first differences, we investigate this more formally. The AR(1)
model∇𝑧𝑡 = 𝜙∇𝑧𝑡−1 + 𝑎𝑡 for the first differences can be written as∇2𝑧𝑡 = (𝜙 − 1)∇𝑧𝑡−1 +
𝑎𝑡, and in this form the conditional least-squares regression estimate �̂� − 1 = −0.187 is
obtained, with an estimated standard error of 0.038, and �̂�2

𝑎
= 0.018. Note that this implies

�̂� = 0.813 similar to results in Tables 6.5 and 7.6. The Studentized statistic to test 𝜙 = 1
is 𝜏 = −4.87, which is far more negative than the lower one percentage point of −2.58 for
the distribution of 𝜏 in the tables of Fuller (1996). Also, 𝜏𝜇 = −4.96 was obtained when a
constant term is included in the AR(1) model for ∇𝑧𝑡. Hence, these estimation results do
not support the need for second differencing and point to a preference for the ARIMA(1,
1, 0) model.

Implementation in R. Tests for unit roots can be performed using the package fUnitRoots
available in the FinTS package in R. If z represents the time series of interest, the command
used to perform the augmented Dickey--Fuller test is

> adfTest(z,lags,type=c("nc","c","ct")

where lags denotes the number of lags in the autoregressive model and type indicates
whether or not a constant or trend should be included in the fitted model. The argument
‘‘nc’’ specifies that no constant should be included in the model, ‘‘c’’ is used for con-
stant only, and ‘‘ct’’ specifies a trend plus a constant. For lags equal to 0, the test is the
original Dickey--Fuller test. Otherwise, lags represents the order of the stationary autore-
gressive polynomial in (10.1.6). For a mixed ARMA model, it represents the order of the
autoregressive approximation to this model.

The calculations for Series C described above can be performed in R as follows:

> library(fUnitRoots)
> adfTest(diff(ts(seriesC)),0,type=c("nc"))

Title: Augmented Dickey-Fuller Test
Test Results:
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PARAMETER:
Lag Order: 0
STATISTIC: Dickey-Fuller: -4.8655
P VALUE: 0.01

> adfTest(diff(ts(seriesC)),0,type=c("c"))

Title: Augmented Dickey-Fuller Test
Test Results:
PARAMETER:
Lag Order: 0
STATISTIC: Dickey-Fuller: -4.962
P VALUE: 0.01

The values of the test statistics agree in both cases with those quoted in the example. Note
that the output shows the 𝑝 value but does not give the critical value for the test. If the
critical values are needed, they can be obtained in R using the command

>adfTable(trend=c("nc","c","ct"), statistic=c("nc","c","ct"))

Example: Series A. For further illustration, consider Series A that represents concentra-
tion readings of a chemical process at 2-hour intervals and has 𝑛 = 197 observations. In
Chapters 6 and 7, two possible ARMA/ARIMA models were proposed for this series.
One is the nearly nonstationary ARMA(1, 1) model, (1 − 𝜙𝐵)𝑧𝑡 = 𝜃0 + (1 − 𝜃𝐵)𝑎𝑡, with
estimates �̂� = 0.92, �̂� = 0.58, �̂�0 = 1.45, and �̂�2

𝑎
= 0.0974. The second is the nonstationary

ARIMA(0, 1, 1) model, (1 − 𝐵)𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡, with estimates �̂� = 0.71 and �̂�2
𝑎
= 0.1004.

Belowwe use theADF test to test the hypothesis that differencing is needed so that the series
follows the ARIMA(0, 1, 1) model. To determine the order 𝑘 of the autoregressive approx-
imation to this model, we first use the R command ar(z) to select a suitable value for 𝑘

based on the AIC criterion. The output suggests an AR(6) model, which is then used for
the test. A slightly different choice of 𝑘 does not alter the conclusion.

> library(fUnitRoots)
> ar(diff(ts(seriesA)),aic=TRUE)

Call: ar(x = diff(ts(seriesA)), aic = TRUE)
Coefficients:
1 2 3 4 5 6
-0.6098 -0.3984 -0.3585 -0.3175 -0.3142 -0.2139
Order selected 6 sigmaˆ2 estimated as 0.09941

> adfTest(ts(seriesA),6,type=c("nc"))

Title: Augmented Dickey-Fuller Test
Test Results:
PARAMETER:
Lag Order: 6
STATISTIC: Dickey-Fuller: 0.6271
P VALUE: 0.8151
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The 𝑝 values are large and the test does not reject the null hypothesis that the series
needs to be differenced, suggesting that ARIMA(0, 1, 1) is the preferred model. A similar
conclusion was reached by Solo (1984b) who used a Lagrange multiplier test to determine
the need for differencing.

10.2 CONDITIONAL HETEROSCEDASTIC MODELS

This section presents an overview of some models that have been developed to describe
time-varying variability or volatility in a time series. To first introduce some notation, we
note that the ARMA(𝑝, 𝑞) process 𝜙(𝐵)𝑧𝑡 = 𝜃0 + 𝜃(𝐵)𝑎𝑡 can be written as the sum of a
predictable part and a prediction error as

𝑧𝑡 = 𝐸[𝑧𝑡|𝐹𝑡−1] + 𝑎𝑡

where 𝐹𝑡−1 represents the past information available at time 𝑡 − 1 and 𝑎𝑡 represents the
prediction error. For theARMAmodel,𝐹𝑡−1 is a function of past observations and past error
terms, but could more generally include external regression variables 𝑋𝑡. The assumption
made thus far is that the prediction errors 𝑎𝑡 are independent random variables with a
constant variance Var[𝑎𝑡] = 𝜎2

𝑎
that is independent of the past. However, this assumption

appears inconsistent with the heteroscedasticity often seen for time series in business and
economics, in particular. For example, financial time series such as stock returns often
exhibit periods when the volatility is high and periods when it is lower. This characteristic
feature, or stylized fact, is commonly referred to as volatility clustering. For illustration,
Figure 10.1(a) shows the weekly S&P 500 Index over the period January 3, 2000 to
May 27, 2014 for a total of 751 observations. The log returns calculated as ln(𝑝𝑡∕𝑝𝑡−1) =
ln(𝑝𝑡) − ln(𝑝𝑡−1), where 𝑝𝑡 represents the original time series, are shown in Figure 10.1(b).
We note that while the original time series is nonstationary, the returns fluctuate around a
stable mean level. However, the variability around the mean changes and volatility clusters
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FIGURE 10.1 (a) Time plot of the weekly S&P 500 Index from January 3, 2000 to May 27, 2014,
and (b) the weekly log returns on the S&P 500 Index.
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are clearly visible. Note the high volatility during and following the 2008 financial crisis, in
particular.Another common feature of financial time series is that themarginal distributions
are leptokurtic and tend to have heavier tails than those of a normal distribution.A number of
other stylized facts have been documented and investigated for financial data (for discussion
and references, see, for example, Teräsvirta et al., 2010, Chapter 8).

The autoregressive conditional heteroscedastic (ARCH) model was introduced by Engle
(1982) to describe time-varying variability in a series of inflation rates. An extension of this
model called the generalized conditional heteroscedastic (GARCH)modelwas proposed by
Bollerslev (1986). These models are capable of describing not only volatility clustering but
also features such as heavy-tailed behavior that is common in many economic and financial
time series. Still, there are other features related to volatility that are not captured by the
basic ARCH and GARCH models. This has led to a number of extensions and alternative
formulations aimed at addressing these issues. This section presents a brief description of
the ARCH and GARCH models along with some extensions proposed in the literature.
The literature in this area is extensive and only a select number of developments will be
discussed. A more complete coverage can be found in survey papers by Bollerslev et al.
(1992, 1994), Bera and Higgins (1993), Li et al. (2003), and Teräsvirta (2009), among
others. Volatility modeling is also discussed in several time series texts, including Franses
and van Dijk (2000),Mills andMarkellos (2008), Teräsvirta et al. (2010), and Tsay (2010).
Textbooks devoted to volatility modeling include Francq and Zakoı̈an (2010) and Xekalaki
and Degiannakis (2010).

10.2.1 The ARCHModel

For a stationary ARMA process, the unconditional mean of the series is constant over time
while the conditional mean 𝐸[𝑧𝑡|𝐹𝑡−1] varies as a function of past observations. Parallel
to this, the ARCH model assumes that the unconditional variance of the error process is
constant over time but allows the conditional variance of 𝑎𝑡 to vary as a function of past
squared errors. Letting 𝜎2

𝑡
= var[𝑎𝑡|𝐹𝑡−1] denote the conditional variance of 𝑎𝑡, given the

past 𝐹𝑡−1, the basic ARCH(𝑠) model can be formulated as

𝑎𝑡 = 𝜎𝑡𝑒𝑡 (10.2.1)

where {𝑒𝑡} is a sequence of iid random variables with mean zero and variance 1, and

𝜎2
𝑡
= 𝛼0 + 𝛼1𝑎

2
𝑡−1 + · · · + 𝛼𝑠𝑎

2
𝑡−𝑠

(10.2.2)

with 𝛼0 > 0, 𝛼𝑖 ≥ 0, for 𝑖 = 1,… , 𝑠− 1, and 𝛼𝑠 > 0. The parameter constraints are
imposed to ensure that the conditional variance 𝜎2

𝑡
is positive. The additional constraint∑𝑠

𝑖=1 𝛼𝑖 < 1 ensures that the 𝑎𝑡 are covariance stationary with finite unconditional variance
𝜎2

𝑎
. For some time series, such as stock returns, the original observations are typically

serially uncorrelated and the 𝑎𝑡 are observed directly. Alternatively, the 𝑎𝑡 can be the noise
sequence associated with an ARMA or regression-type model. For modeling purposes, the
𝑒𝑡 in (10.2.1) are usually assumed to follow a standard normal or a Student 𝑡-distribution.

The ARCH model was used by Engle (1982) to study the variance of UK inflation rates
and by Engle (1983) to describe the variance of U.S. inflation rates. The ARCH model
and its later extensions by Bollerslev (1986) and others quickly found other applications.
For example, Diebold and Nerlove (1989) showed that the ARCH model may be used to
generate statistically and economically meaningful measures of exchange rate volatility.
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Bollerslev (1987) used the GARCH extension of the ARCH model to analyze the condi-
tional volatility of financial returns observed at a monthly or higher frequency. In Weiss
(1984),ARMAmodelswith ARCH errorswere used tomodel the time series behavior of 13
different U.S. macroeconomic time series. Bollerslev et al. (1992) describe a large number
of other applications in their review of volatility models. While a majority of applications
have been in finance and economics, the models have also been used in other fields. For
example, Campbell and Diebold (2005) used volatility models in their analysis of the daily
average temperatures for four U.S. cities. The models have also been used for variables
such as wind speeds, air quality measurements, earthquake series, and in the analysis of
speech signals. For selected references, see Francq and Zekoı̈an (2010, p. 12).

Some Properties of the ARCH Model. To establish some properties of the ARCH model,
we first examine the ARCH(1) model where

𝜎2
𝑡
= var[𝑎𝑡|𝐹𝑡−1] = 𝐸[𝑎2

𝑡
∣ 𝐹𝑡−1] = 𝛼0 + 𝛼1𝑎

2
𝑡−1 (10.2.3)

with 𝛼0 > 0 and 𝛼1 > 0. The form of the model shows that the conditional variance 𝜎2
𝑡
will

be large if 𝑎𝑡−1 was large in absolute value and vice versa. A large (small) value of 𝜎2
𝑡
will

in turn tend to generate a large (small) value of 𝑎𝑡, thus giving rise to volatility clustering.
It follows from (10.2.1) that 𝐸 [𝑎𝑡 ∣ 𝐹𝑡−1] = 0. The unconditionalmean of 𝑎𝑡 is also zero

since

𝐸[𝑎𝑡] = 𝐸
[
𝐸[𝑎𝑡 ∣ 𝐹𝑡−1]

]
= 0

Furthermore, the 𝑎𝑡 are serially uncorrelated since for 𝑗 > 0,

𝐸[𝑎𝑡𝑎𝑡−𝑗] = 𝐸
[
𝐸[𝑎𝑡𝑎𝑡−𝑗 ∣ 𝐹𝑡−1]

]
= 𝐸

[
𝑎𝑡−𝑗𝐸[𝑎𝑡 ∣ 𝐹𝑡−1]

]
= 0

But the 𝑎𝑡 are not mutually independent since they are interrelated through their conditional
variances. The lack of serial correlation is an important property that makes the ARCH
model suitable for modeling asset returns that are expected to be uncorrelated by the
efficient market hypothesis.

We also assume that the 𝑎𝑡 have equal unconditional variances, var[𝑎𝑡] = 𝐸[𝑎2
𝑡
] = 𝜎2

𝑎
,

for all 𝑡, so that the process is weakly stationary. If 𝛼1 < 1, the unconditional variance exists
and equals

𝜎2
𝑎
= var[𝑎𝑡] =

𝛼0
1 − 𝛼1

(10.2.4)

This follows since

𝜎2
𝑎
= 𝐸[𝑎2

𝑡
] = 𝐸

[
𝐸[𝑎2

𝑡
∣ 𝐹𝑡−1]

]
= 𝐸[𝛼0 + 𝛼1𝑎

2
𝑡−1] = 𝛼0 + 𝛼1𝜎

2
𝑎

Further substituting 𝛼0 = 𝜎2
𝑎
(1 − 𝛼1) from (10.2.4) into (10.2.3), we see that

𝜎2
𝑡
= 𝜎2

𝑎
+ 𝛼1(𝑎2𝑡−1 − 𝜎2

𝑎
) (10.2.5)

or, equivalently, 𝜎2
𝑡
− 𝜎2

𝑎
= 𝛼1(𝑎2𝑡−1 − 𝜎2

𝑎
). Hence, the conditional variance of 𝑎𝑡 will

be above the unconditional variance whenever 𝑎2
𝑡−1 is larger than the unconditional

variance 𝜎2
𝑎
.
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To study the tail behavior of 𝑎𝑡, we examine the fourth moment 𝜇4 = 𝐸[𝑎4𝑡 ]. If 𝑎𝑡 is
normally distributed, conditional on the past, then

𝐸[𝑎4𝑡 ∣ 𝐹𝑡−1] = 3𝜎4
𝑡
= 3(𝛼0 + 𝛼1𝑎

2
𝑡−1)

2

Therefore, the fourth unconditional moment of 𝑎𝑡 satisfies

𝐸[𝑎4
𝑡
] = 𝐸

[
𝐸[𝑎4

𝑡
∣ 𝐹𝑡−1]

]
= 3

[
𝛼2
0 + 2𝛼0𝛼1𝐸[𝑎2

𝑡−1] + 𝛼2
1𝐸[𝑎4

𝑡−1]
]

Thus, if {𝑎𝑡} is fourth-order stationary so that 𝜇4 = 𝐸[𝑎4
𝑡
] = 𝐸[𝑎4

𝑡−1], then

𝜇4 =
3(𝛼2

0 + 2𝛼0𝛼1𝜎2
𝑎
)

1 − 3𝛼2
1

≡

3𝛼2
0(1 − 𝛼2

1)

(1 − 𝛼1)2(1 − 3𝛼2
1)

(10.2.6)

Since 𝜇4 = 𝐸[𝑎4
𝑡
] > 0, this expression shows that 𝛼1 must satisfy 0 < 𝛼1 < 1∕

√
3 in order

for 𝑎𝑡 to have finite fourth moment. Further, if 𝜅 denotes the unconditional kurtosis of 𝑎𝑡,
then

𝜅 =
𝐸[𝑎4

𝑡
]

(
𝐸[𝑎2

𝑡
]
)2 =

3(1 − 𝛼2
1)

1 − 3𝛼2
1

This value exceeds 3, the kurtosis of the normal distribution. Hence, the marginal distri-
bution of 𝑎𝑡 has heavier tails than those of the normal distribution. This is an additional
feature of the ARCH model that makes it useful for modeling financial asset returns where
heavy-tailed behavior is the norm.

To derive an alternative form of the ARCH process, we let 𝑣𝑡 = 𝑎2
𝑡
− 𝜎2

𝑡
, so that 𝑎2

𝑡
=

𝜎2
𝑡
+ 𝑣𝑡. The random variables 𝑣𝑡 then have zero mean and they are serially uncorrelated

since

𝐸[(𝑎2
𝑡
− 𝜎2

𝑡
)(𝑎2

𝑡−𝑗
− 𝜎2

𝑡−𝑗
)] = 𝐸[𝐸{(𝑎2

𝑡
− 𝜎2

𝑡
)(𝑎2

𝑡−𝑗
− 𝜎2

𝑡−𝑗
) ∣ 𝐹𝑡−1}]

=𝐸[(𝑎2
𝑡−𝑗

− 𝜎2
𝑡−𝑗

)𝐸{(𝑎2
𝑡
− 𝜎2

𝑡
) ∣ 𝐹𝑡−1}] = 0

Further, since 𝜎2
𝑡
= 𝛼0 + 𝛼1𝑎

2
𝑡−1, we find that the ARCH(1) model can be written as

𝑎2
𝑡
= 𝛼0 + 𝛼1𝑎

2
𝑡−1 + 𝑣𝑡 (10.2.7)

This form reveals that the process of squared errors 𝑎2
𝑡
can be viewed as anAR(1)modelwith

uncorrelated innovations 𝑣𝑡. The innovations are heteroscedastic and also non-Gaussian in
this case, however.

For the ARCH(𝑠) model in (10.2.2), we similarly have

𝑎2
𝑡
= 𝛼0 + 𝛼1𝑎

2
𝑡−1 + · · · + 𝛼𝑠𝑎

2
𝑡−𝑠

+ 𝑣𝑡

so that the 𝑎2
𝑡
has the form of an AR(𝑠) process. Other results related to the moments and the

kurtosis of the ARCH(1) model also extend to higher order ARCH models. In particular, if∑𝑠

𝑖=1 𝛼𝑖 < 1, then the unconditional variance is

𝜎2
𝑎
=

𝛼0
1 −

∑𝑠

𝑖=1 𝛼𝑖
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as shown by Engle (1982). Necessary and sufficient conditions for the existence of higher
order even moments of the ARCH(𝑠) process were given by Milhøj (1985).

Forecast Errors for the ARCH Model. Forecasts of a future value 𝑧𝑡+𝑙 generated from
ARMA models with iid errors 𝑎𝑡 have forecast errors that depend on the lead time 𝑙

but are independent of the time origin 𝑡 from which the forecasts are made. Baillie and
Bollerslev (1992) showed that the minimum mean square error forecasts of 𝑧𝑡+𝑙 are the
same irrespective ofwhether the shocks 𝑎𝑡 are heteroscedastic or not. For anARMAprocess
with ARCH errors, this implies, in particular, that the one-step-ahead forecast error equals
𝑎𝑡+1 while the l-step-ahead forecast error can be written as 𝑒𝑡(𝑙) =

∑𝑙−1
𝑗=0 𝜓𝑗𝑎𝑡+𝑙−𝑗 with 𝜓0

= 1. The presence of conditional heteroscedasticity will, however, impact the variance of
the forecast errors.

For an ARCH(1) process, the conditional variance of the one-step-ahead forecast error
𝑎𝑡+1 is given by (10.2.5) as

𝐸[𝑒2
𝑡
(1)|𝐹𝑡] = 𝜎2

𝑡+1 = 𝜎2
𝑎
+ 𝛼1(𝑎2𝑡 − 𝜎2

𝑎
) (10.2.8)

The conditional variance of the one-step-ahead forecast error can thus be smaller or larger
than the unconditional variance depending on the difference between the last squared error
𝑎2

𝑡
and 𝜎2

𝑎
.

Conditional variances of multistep-ahead forecast errors 𝑒𝑡(𝑙) can also be shown to
depend on the past squared errors based on

𝐸[𝑒2
𝑡
(𝑙) ∣ 𝐹𝑡] =

𝑙−1∑
𝑗=0

𝜓2
𝑗
𝐸[𝑎2

𝑡+𝑙−𝑗
∣ 𝐹𝑡]

where for the ARCH(1) model

𝐸[𝑎2
𝑡+ℎ

|𝐹𝑡] = 𝐸[𝐸(𝑎2
𝑡+ℎ

∣ 𝐹𝑡)]

= 𝛼0 + 𝛼1𝐸[𝑎2
𝑡+ℎ−1 ∣ 𝐹𝑡]

= 𝛼0(1 + 𝛼1 +⋯ + 𝛼ℎ−1
1 ) + 𝛼ℎ

1𝑎2
𝑡

for ℎ > 0

From this and using (10.2.4) it can be verified that

𝐸[𝑒2
𝑡
(𝑙) ∣ 𝐹𝑡] = 𝜎2

𝑎

𝑙−1∑
𝑗=0

𝜓2
𝑗
+

𝑙−1∑
𝑗=0

𝜓2
𝑗
𝛼

𝑙−𝑗

1 (𝑎2
𝑡
− 𝜎2

𝑎
) (10.2.9)

which simplifies to (10.2.8), for 𝑙 = 1. The first term on the right-hand side of this expression
is the conventional prediction error variance assuming that the errors 𝑎𝑡 are homoscedastic
while the second term reflects the impact of the ARCH effects. This term varies over time
and can again be positive or negative depending on the difference 𝑎2

𝑡
− 𝜎2

𝑎
. The variance

of the predicted values thus varies over time and can be larger or smaller than that under
homoscedasticity. For the general ARCH(𝑠) model, the second term on the right-hand side
will be a function of 𝑠 past values 𝑎2

𝑡
,… , 𝑎2

𝑡−𝑠+1.

If the time series 𝑧𝑡 follows an AR(1) model, the 𝜓 weights are given by 𝜓𝑗 = 𝜙𝑗−1.
If 𝜙 equals zero, so that the mean of the series is a constant independent of the past,
expression (10.2.9) simplifies to 𝜎2

𝑎
+ 𝛼𝑙

1(𝑎
2
𝑡
− 𝜎2

𝑎
). We note that this is the conditional

𝑙-step-ahead forecast of the conditional variance 𝜎2
𝑡+𝑙

for the ARCH(1) model. This forecast
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could be calculatedmore directly as𝐸[𝜎2
𝑡+𝑙

|𝐹𝑡] = 𝛼0 + 𝛼1𝐸[𝑎2
𝑡+𝑙−1|𝐹𝑡], where𝐸[𝑎2

𝑡+𝑙−1|𝐹𝑡]
can be generated recursively from the AR model for 𝑎2

𝑡
. The result follows by setting

𝛼0 = 𝜎2
𝑎
(1 − 𝛼1).

10.2.2 The GARCHModel

TheARCHmodel has a disadvantage in that it often requires a high lag order 𝑠 to adequately
describe the evolution of volatility over time. An extension of the ARCH model called the
generalized ARCH, or GARCH, model was introduced by Bollerslev (1986) to overcome
this issue. The GARCH(𝑠, 𝑟) model assumes that 𝑎𝑡 = 𝜎𝑡𝑒𝑡, where the {𝑒𝑡} again are iid
random variables with mean zero and variance 1, and where 𝜎𝑡 is given by

𝜎2
𝑡
= 𝛼0 +

𝑠∑
𝑖=1

𝛼𝑖𝑎
2
𝑡−𝑖

+
𝑟∑

𝑗=1
𝛽𝑗𝜎

2
𝑡−𝑗

(10.2.10)

with 𝛼0 > 0, 𝛼𝑖 ≥ 0, 𝑖 = 1,… , 𝑠− 1, 𝛼𝑠 > 0, 𝛽𝑗 ≥ 0, 𝑗 = 1,… , 𝑟− 1, and 𝛽𝑟 > 0. These
parameter constraints are sufficient for the conditional variance 𝜎2

𝑡
to be positive. Nelson

and Cao (1992) showed that these constraints can be relaxed slightly to allow some of
the parameters to be negative while the conditional variance still remains positive. The
additional constraint

∑𝑚

𝑖=1(𝛼𝑖 + 𝛽𝑖) < 1, where 𝑚 = max(𝑠, 𝑟) with 𝛼𝑖 = 0, for 𝑖 > 𝑠, and
𝛽𝑗 = 0, for 𝑗 > 𝑟, ensures that the unconditional variance 𝜎2

𝑎
is finite.

The simplest and most widely used model in this class is the GARCH(1, 1)model where

𝜎2
𝑡
= 𝐸[𝑎2

𝑡
∣ 𝐹𝑡−1] = 𝛼0 + 𝛼1𝑎

2
𝑡−1 + 𝛽1𝜎

2
𝑡−1

Since the constants 𝛼1 and 𝛽1 are positive, we see that a large value of 𝑎2
𝑡−1 or 𝜎2

𝑡−1 results in

a large value of 𝜎2
𝑡
. As for the ARCH process, this model therefore accounts for volatility

clustering.
Assuming that 𝛼1 + 𝛽1 < 1, the unconditional variance of 𝑎𝑡 is

𝜎2
𝑎
= var[𝑎𝑡] = 𝛼0∕[1 − (𝛼1 + 𝛽1)]

Also, assuming that the conditional distributions are normal, the fourth unconditional
moment of 𝑎𝑡 is finite provided that (𝛼1 + 𝛽1)2 + 2𝛼2

1 < 1 (Bollerslev, 1986). In addition,
the kurtosis of the marginal distribution of 𝑎𝑡 equals

𝜅 =
𝐸(𝑎4

𝑡
)

[𝐸(𝑎2
𝑡
)]2

=
3[1 − (𝛼1 + 𝛽1)2]

1 − (𝛼1 + 𝛽1)2 − 2𝛼2
1

> 3

As in the ARCH case, the unconditional distribution of 𝑎𝑡 thus has heavier tails than
the normal distribution and is expected to give rise to a higher frequency of extreme
observations or ‘‘outliers’’ than would be the case under normality.

Now let 𝑣𝑡 = 𝑎2
𝑡
− 𝜎2

𝑡
so that 𝜎2

𝑡
= 𝑎2

𝑡
− 𝑣𝑡, where the 𝑣𝑡 have zero mean and are serially

uncorrelated. We then see that the GARCH(1, 1) model can be rearranged as 𝑎2
𝑡
− 𝑣𝑡 =

𝛼0 + 𝛼1𝑎
2
𝑡−1 + 𝛽1(𝑎2𝑡−1 − 𝑣𝑡−1), or

𝑎2
𝑡
= 𝛼0 + (𝛼1 + 𝛽1)𝑎2𝑡−1 + 𝑣𝑡 − 𝛽1𝑣𝑡−1 (10.2.11)
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The process of squared errors thus has the form of an ARMA(1, 1)model with uncorrelated
innovations 𝑣𝑡. The 𝑣𝑡 are in general heteroscedastic, however. In the special case of 𝛽1 = 0,
the model reduces to 𝑎2𝑡 = 𝛼0 + 𝛼1𝑎

2
𝑡−1 + 𝑣𝑡, which is the AR(1) form of the ARCH(1)

model. For the general GARCH(𝑠, 𝑟) process, expression (10.2.11) generalizes to

𝑎2
𝑡
= 𝛼0 +

𝑚∑
𝑖=1

(𝛼𝑖 + 𝛽𝑖)𝑎2𝑡−𝑖
+ 𝑣𝑡 −

𝑠∑
𝑖=1

𝛽𝑖𝑣𝑡−𝑖

which has the form of an ARMA process for 𝑎2
𝑡
with AR order equal to 𝑚 =max(𝑟, 𝑠). The

autocorrelation structure of 𝑎2
𝑡
also mimics that of the ARMA process provided that fourth

unconditional moment of 𝑎𝑡 is finite (Bollerslev, 1988).
The necessary and sufficient condition for second-order stationarity of the GARCH(𝑠, 𝑟)

process is

𝑠∑
𝑖=1

𝛼𝑖 +
𝑟∑

𝑖=1
𝛽𝑖 =

𝑚∑
𝑖=1

(𝛼𝑖 + 𝛽𝑖) < 1

When this condition is met, the unconditional variance is

𝜎2
𝑎
= var[𝑎𝑡] = 𝛼0

/[
1 −

𝑚∑
𝑖=1

(𝛼𝑖 + 𝛽𝑖)

]

This was shown by Bollerslev (1986) who also gave necessary and sufficient conditions for
the existence of all higher order moments for the GARCH(1, 1) model and the fourth-order
moments for GARCH(1, 2) and GARCH(2, 1) models. Extensions of these results have
been given by He and Teräsvirta (1999) and Ling and McAleer (2002), among others. The
expressions for the higher order moments and the constraints on the parameters needed
to ensure their existence become more complex for the higher order models. The model
specification also becomesmore difficult. On the other hand, numerous studies have shown
that low-order models such as the GARCH(1, 1), GARCH(2, 1), and GARCH(1, 2) models
are often adequate in practice, with the GARCH(1, 1) model being the most popular.

10.2.3 Model Building and Parameter Estimation

Testing for ARCH/GARCH Effects. The preceding results motivate the use of the ACF
and PACF of the squares 𝑎2

𝑡
for model specification and for basic preliminary checking

for the presence of ARCH/GARCH effects in the errors 𝑎𝑡. For an ARMA model with
heteroscedastic errors, a starting point for the analysis is an examination of the sample
ACF and PACF of the squared residuals �̂�2

𝑡
obtained from fitting an ARMA model to the

observed series. In particular, let 𝑟𝑘(�̂�2) denote the sample autocorrelations of the squared
residuals �̂�2

𝑡
so that

𝑟𝑘(�̂�2) =
𝑛−𝑘∑
𝑡=1

(�̂�2
𝑡
− �̂�2

𝑎
)(�̂�2

𝑡+𝑘
− �̂�2

𝑎
)

/
𝑛∑

𝑡=1
(�̂�2

𝑡
− �̂�2

𝑎
)2

where �̂�2
𝑎
= 𝑛−1

∑𝑛

𝑡=1 �̂�2
𝑡
is the residual variance estimate. Analogous to the modified

portmanteau statistic described in Section 8.2.2, McLeod and Li (1983) proposed the
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portmanteau statistic

�̃�(�̂�2) = 𝑛(𝑛 + 2)
𝐾∑

𝑘=1
𝑟2
𝑘
(�̂�2)∕(𝑛 − 𝑘) (10.2.12)

to detect departures from the ARMA assumptions. As a portmanteau test, this test does
not assume a specific alternative, but the type of departures for which �̃�(�̂�2) can be useful
includes conditional heteroscedasticity in the form of ARCH/GARCH effects, and bilinear
type of nonlinearity in the conditionalmean of the process (see Section 10.3 for discussion of
bilinear models). McLeod and Li (1983) showed that the statistic �̃�(�̂�2) has approximately
the 𝜒2 distribution with 𝐾 degrees of freedom under the assumption that the ARMAmodel
alone is adequate. The distribution is similar to that of the usual portmanteau statistic �̃�

based on the residuals �̂�𝑡, with the exception that the degrees of freedom in the case of
(10.2.12) are not affected by the fact that 𝑝 + 𝑞 ARMA parameters have been estimated.
The potentially more powerful portmanteau statistics by Peña and Rodrı́guez (2002, 2006)
discussed in Section 8.2 could also be applied to the squared residuals �̂�2

𝑡
.

An alternative test for ARCH effects is the score or Lagrangemultiplier test proposed by
Engle (1982). The score statistic Λ for testing the null hypothesis 𝐻0: 𝛼𝑖 = 0, 𝑖 = 1,… , 𝑠,

has a convenient form and can be expressed as 𝑛 times the coefficient of determination in
the least-squares fitting of the auxiliary regression equation

�̂�2
𝑡
= 𝛼0 + 𝛼1�̂�

2
𝑡−1 + 𝛼2�̂�

2
𝑡−2 +⋯ + 𝛼𝑠�̂�

2
𝑡−𝑠

+ 𝜀𝑡

Assuming normality of the 𝑎𝑡’s, the score statistic Λ has an asymptotic 𝜒2 distribution
with s degrees of freedom under the null model of no ARCH effects. The test procedure is
thus to fit a time series model to the observed series, save the residuals �̂�𝑡, and regress the
squared residuals on a constant and 𝑠 lagged values of the �̂�2

𝑡
. The resulting value of 𝑛𝑅2

is then referred to a 𝜒2 distribution with 𝑠 degrees of freedom. Even though this test was
derived for the ARCH(𝑠) model, it has been shown to be useful for detecting other forms
of conditional heteroscedasticity as well. Also, the test is asymptotically equivalent to the
McLeod--Li portmanteau test based on the autocorrelations of the squared residuals (see
Luukkonen et al., 1988b). Thus, although the latter was derived as a pure significance test,
it is also a LM test against ARCH effects.

Parameter Estimation. The parameter estimation for models with ARCH or GARCH
errors is typically performed using the conditional maximum likelihood method. For
estimation of an ARMA model 𝜙(𝐵)𝑧𝑡 = 𝜃0 + 𝜃(𝐵)𝑎𝑡 with ARCH or GARCH errors
𝑎𝑡, we assume that 𝑎𝑡 is conditionally normally distributed as 𝑁(0, 𝜎2

𝑡
). The 𝑧𝑡 are

then conditionally normal, given 𝑧𝑡−1, 𝑧𝑡−2,…, and from the joint density function
𝑝(𝒛) =

∏𝑛

𝑡=1 𝑝(𝑧𝑡 ∣ 𝑧𝑡−1,… , 𝑧1) we obtain the log-likelihood function

𝑙 = log(𝐿) = −𝑛

2
log(2𝜋) − 1

2

𝑛∑
𝑡=1

log(𝜎2
𝑡
) − 1

2

𝑛∑
𝑡=1

𝑎2
𝑡
∕𝜎2

𝑡
(10.2.13)

where 𝑎𝑡 = 𝑧𝑡 −
∑𝑝

𝑖=1 𝜙𝑖𝑧𝑡−𝑖 − 𝜃0 +
∑𝑞

𝑖=1 𝜃𝑖𝑎𝑡−𝑖 and 𝜎2
𝑡
is given by (10.2.2) or (10.2.10).

A discussion of the iterative maximization of the likelihood function along with other
results related to the parameter estimation can be found, for example, in Engle (1982),Weiss
(1984, 1986), and Bollerslev (1986).When anARMAmodel with ARCH orGARCH errors
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is fitted to the series, the information matrix of the log-likelihood is block diagonal with
respect to the conditional mean and variance parameters, so that iterations can be carried
out separately with respect to the two sets of parameters. The so-called BHHH algorithm
by Berndt, Hall, Hall, and Hausman (1974) provides a convenient method to perform
the calculations. This algorithm has the advantage that only first-order derivatives are
needed for the optimization. These derivatives can be evaluated numerically or analytically.
Use of analytical first derivatives is often recommended as they improve the precision of
the parameter estimates. Provided that the fourth-order moment of the process is finite,
the resulting estimates of the ARMA--ARCH parameters are consistent and asymptotically
normal as shown by Weiss (1986).

The normal distribution was originally proposed by Engle (1982) to model the con-
ditional distribution of the disturbances 𝑎𝑡. As discussed earlier, the conditional normal
distribution results in a leptokurtic unconditional distribution. Nevertheless, in financial
applications the normal distribution sometimes fails to capture the excess kurtosis that is
present in stock returns and other variables. To overcome this drawback, Bollerslev (1987)
suggested using a standardized Student 𝑡-distribution with 𝜈 > 2 degrees of freedom for the
estimation. The density function of the 𝑡-distribution is

𝑓 (𝑥|𝜈) = Γ((𝜈 + 1)∕2)
Γ(𝜈∕2)

√
𝜋(𝜈 − 2)

(
1 + 𝑥2

(𝜈 − 2)

)−(𝜈+1)∕2

where Γ(𝜈) = ∫
∞
0 𝑒−𝑥𝑥𝜈−1𝑑𝑥 is the Gamma function and 𝜈 measures the tail thickness.

As is well known, the distribution is symmetric around zero and approaches a normal
distribution as 𝜈 → ∞. For 𝜈 > 4, the fourth moment exists and the conditional kurtosis
equals 3(𝜈 − 2)/(𝜈 − 4). Since this value exceeds 3, the tails are heavier than those of the
normal distribution. The log-likelihood function based on the 𝑡-distribution is given by

𝑙 = log(𝐿) = 𝑛

[
log Γ

(
𝜈 + 1)
2

)
− log

(
𝜈

2

)
− 1

2
log(𝜋(𝜈 − 2))

]

−1
2

𝑛∑
𝑡=1

[
log(𝜎2

𝑡
) + (1 + 𝜈) log

(
1 +

𝑎2
𝑡

(𝜈 − 2)𝜎2
𝑡

)]

Here, 𝜈 is either prespecified or estimated jointly with other parameters. If 𝜈 is specified
in advance, values between 5 and 8 are often used; see Tsay (2010). With 𝜈 prespecified,
the conditional likelihood function is maximized by minimizing the second term of the
likelihood function given above.

Nelson (1991) suggested using the generalized error distribution (GED) for the estima-
tion. The density function of a GED random variable normalized to have mean zero and
variance one is given by

𝑓 (𝑥|𝜂) = 𝜂 exp(−0.5|𝑥∕𝜆|𝜂)
𝜆2(1+1∕𝜂)Γ(1∕𝜂)

where 𝜆 = [2(−2∕𝜂)Γ(1∕𝜂)∕Γ(3∕𝜂)]1∕2. For the tail thickness parameter 𝜂 = 2, the
distribution equals the normal distribution used in (10.2.13). For 𝜂 < 2, the distribution
has thicker tails than the normal distribution. The reverse is true for 𝜂 > 2. Box and Tiao
(1973) call the GED distribution an exponential power distribution.
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In addition to having excess kurtosis, the distribution of 𝑎𝑡 may also be skewed. A
discussion of potential sources for skewness can be found in He et al. (2008). To allow for
skewness as well as heavy tails, the likelihood calculations can be based on skewed versions
for the Student 𝑡-distribution and the GED distributions available in software packages such
as R. Other forms of skewed distributions have also been considered.

In practice, it is often difficult to knowwhether the specified probability distribution is the
correct one. An alternative approach is to continue to base the parameter estimation on the
normal likelihood function in (10.2.13). This method is commonly referred to as the quasi-
maximum likelihood (QML) estimation. The asymptotic properties of the resulting QML
estimator for the ARCH, GARCH, and ARMA--GARCH models have been studied by
many authors with early contributions provided by Weiss (1986) and Bollerslev and
Wooldridge (1992). For further discussion and references, see, for example, Francq
and Zakoı̈an (2009, 2010).

Diagnostic Checking. Methods for model checking include informal graphical checks us-
ing time series plots and 𝑄--𝑄 plots of the residuals along with a study of their dependence
structure. The assumption underlying the ARCH and GARCH models is that the standard-
ized innovations 𝑎𝑡∕𝜎𝑡 are independent and identically distributed. Having estimated the
parameters ofmodel, the adequacy of themean value function can be checked by examining
the autocorrelation and partial autocorrelation functions of the standardized residuals �̂�𝑡∕𝜎𝑡.
Similar checks on the autocorrelation and partial autocorrelations of the squared standard-
ized residuals are useful for examining the adequacy of the volatility model. These checks
are often supplemented by the portmanteau test proposed by McLeod and Li (1983) or the
score test proposed by Engle (1982). However, while these statistics can provide useful
indications of lack of fit, their asymptotic distributions are impacted by the estimation of the
ARCHorGARCHparameters. Li andMak (1994) derived an alternative portmanteau statis-
tic that asymptotically follows the correct 𝜒2

𝐾
distribution. This statistic is a quadratic form

in the first 𝑚 autocorrelations of the squared standardized residuals but has a more complex
form than the �̃� statistic in (10.2.12). Analogous modifications of Engle’s score test based
on ARCH residuals were discussed by Lundbergh and Teräsvirta (2002). More recent
contributions to model checking include work by Wong and Ling (2005), Ling and Tong
(2011), Fisher and Gallagher (2012), and many others.

10.2.4 An Illustrative Example: Weekly S&P 500 Log Returns

To demonstrate the model building process, we consider the weekly log returns on the
S&P 500 Index displayed in Figure 10.1(b) for the period January 3, 2000 to May 27,
2014. Figure 10.2 shows the ACF of the returns along with the ACF of the squared returns.
We note that there is little, if any, serial correlation in the returns themselves. The mean
value function 𝜇𝑡 will thus be taken as a constant. However, the squared returns are clearly
correlated and show a pattern consistent with that of an ARCH or a GARCH model. The
PACF of the squared returns (not shown) has a pattern that persists over several lags
suggesting that a GARCH may be appropriate for the volatility.

The parameters can be estimated in R using the function garchFit() in the fGarch
package. The normal distribution is the default error distribution for the ARCH or GARCH
models. Other options include the Student 𝑡-distribution and the GED distributions along
with skewed versions of these distributions. For demonstration, we will fit a GARCH(1, 1)



Box3G Date: May 21, 2015 Time: 10:19 am

CONDITIONAL HETEROSCEDASTIC MODELS 371

105 15 20
−

0
.2

0
.1

0
.4

Lag

A
C

F

(a)

105 15 20

−
0
.2

0
.1

0
.4

Lag

A
C

F

(b)

FIGURE10.2 Autocorrelation functions for (a) the S&P 500 weekly log returns and (b) the squared
weekly log returns.

model with normal errors to the returns. The R commands and a partial model output are
provided below, where the log returns are denoted by SPrtn:

>library(fGarch)
>m1=garchFit(˜garch(1,1),data=SPrtn,trace=F)
>summary(m1) % Retrieve model output

Title: GARCH Modelling
Call: garchFit(formula=˜garch(1,1),data=SPrtn, trace=F)

Mean and Variance Equation: data ˜ garch(1,1)
Conditional Distribution: norm

Coefficient(s):
mu omega alpha1 beta1

2.1875e-03 3.5266e-05 2.1680e-01 7.3889e-01

Error Analysis:
Estimate Std. Error t value Pr(>|t|)

mu 2.187e-03 6.875e-04 3.182 0.00146 **
omega 3.527e-05 1.153e-05 3.058 0.00223 **
alpha1 2.168e-01 4.189e-02 5.176 2.27e-07 ***
beta1 7.389e-01 4.553e-02 16.230 < 2e-16 ***

Standardised Residuals Tests:
Statistic p-Value

Jarque-Bera Test Chiˆ2 77.92548 0
Shapiro-Wilk Test R W 0.9815283 3.990011e-08
Ljung-Box Test R Q(10) 6.910052 0.7339084
Ljung-Box Test R Q(20) 16.43491 0.689303
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Ljung-Box Test Rˆ2 Q(10) 12.64346 0.244295
Ljung-Box Test Rˆ2 Q(20) 18.15442 0.5772367
LM Arch Test R TRˆ2 14.05565 0.297169

Information Criterion Statistics:
AIC BIC SIC HQIC

-4.751772 -4.727132 -4.751829 -4.742278

Letting 𝑤𝑡 denote the log returns, the fitted model is

𝑤𝑡 = 0.002187 + 𝑎𝑡, 𝜎2
𝑡
= 0.000035 + 0.2168𝑎2

𝑡−1 + 0.7389𝜎2
𝑡−1

where all the parameter estimates are statistically significant. The portmanteau tests for
serial correlation in the standardized residuals and in their squared values indicate no
lack of fit. However, the Jarque--Bera and Shapiro--Wilk tests for normality suggest that
the model is not fully adequate. To examine this issue, the Student 𝑡-distribution and
its skewed version were tested by adding the argument cond.dist="std" and cond.dist
="sstd", respectively, to the garchFit command. The GED distribution and its skewed
version were also tested. Although these modifications improved the fit, the results are for
simplicity not shown here.

The standardized residuals from the fittedmodel and theACFof the squared standardized
residuals are shown in Figure 10.3. A normal 𝑄--𝑄 plot is also included in this graph.
Visual inspection of the standardized residuals and the 𝑄--𝑄 plot confirms the results of
the normality tests discussed above. The ACF of the squared residuals indicates no lack
of fit although a marginally significant correlation is present at lag 1. This value would be
reduced by fitting a GARCH(1, 2) model to the data. But this potential refinement is not
pursued here. Finally, estimates of the conditional standard deviation 𝜎𝑡 are displayed in
Figure 10.4(a). Figure 10.4(b) displays the volatility shown earlier in Figure 10.1(b) with
two standard deviation limits now superimposed around the series. A variety of other graphs
can be generated using the R command plot(m1), where m1 refers to the fitted model.
In addition, 𝑙-step-ahead forecasts of future volatility based on the conditional standard
deviations shown in Figure 10.4 can be generated using the R command predict(m1,l).

10.2.5 Extensions of the ARCH and GARCHModels

While the ARCH and GARCH models allow for volatility clustering and capture thick-
tailed behavior of the underlying unconditional distributions, they do not account for certain
other features that are commonly observed in financial data. For example, so-called leverage
effects are often observed in stock returns, where a negative innovation tends to increase
the volatility more than a positive innovation of the same magnitude. In symmetric ARCH
and GARCH models, on the other hand, the variance depends on the magnitude of the
innovations but not their signs. Another limitation of the basic ARCH and GARCH models
is the assumption that the conditional mean of the process is unaffected by the volatility.
This assumption ignores the so-called risk premium that relates to the fact that investors
expect to receive higher returns as compensation for taking on riskier assets. The presence
of this feature would generate a positive relationship between expected return and volatility.
Below we describe some extensions and modifications of the ARCH and GARCH models
that have been proposed to address such issues.
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FIGURE 10.3 Model diagnostics for the GARCH(1, 1) model fitted to the S&P 500 weekly log
returns: (a) standardized residuals, (b) autocorrelation function of the squared standardized residuals,
and (c) a normal 𝑄--𝑄 plot of the standardized residuals.
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Exponential GARCH Models. The earliest model that allows for an asymmetric response
due to leverage effects is the exponential GARCH, or EGARCH, model introduced by
Nelson (1991). The EGARCH(1, 1) model is defined as 𝑎𝑡 = 𝜎𝑡𝑒𝑡, where

ln(𝜎2
𝑡
) = 𝛼0 + 𝑔(𝑒𝑡−1) + 𝛽1ln(𝜎2

𝑡−1)

The function 𝑔(𝑒𝑡−1) determines the asymmetry and is defined as the weighted innovation

𝑔(𝑒𝑡−1) = 𝛼1𝑒𝑡−1 + 𝛾1[|𝑒𝑡−1| − 𝐸(|𝑒𝑡−1|)]
where 𝛼1 and 𝛾1 are real constants. The model then becomes

ln(𝜎2
𝑡
) = 𝛼0 + 𝛼1𝑒𝑡−1 + 𝛾1|𝑒𝑡−1| − 𝛾1𝐸(|𝑒𝑡−1|) + 𝛽1ln(𝜎2

𝑡−1)

From here it is easy to see that a positive shock has the effect (𝛼1 + 𝛾1)𝑒𝑡−1 while a negative
shock has the effect (𝛼1 − 𝛾1)𝑒𝑡−1. The use of 𝑔(𝑒𝑡−1) thus allows the model to respond
asymmetrically to ‘‘good news’’ and ‘‘bad news.’’ Since bad news typically has a larger
impact on volatility than good news, the value of 𝛼1 is expected to be negative when
leverage effects are present. Note that since the EGARCH model describes the relation
between the logarithm of the conditional variance 𝜎2

𝑡
and past information, the model does

not require any restrictions on the parameters to ensure that 𝜎2
𝑡
is nonnegative. The general

EGARCH(𝑠, 𝑟) model has the form

ln(𝜎2
𝑡
) = 𝛼0 +

𝑠∑
𝑖=1

𝑔𝑖(𝑒𝑡−𝑖) +
𝑟∑

𝑗=1
𝛽𝑗 ln(𝜎2

𝑡−𝑗
)

with

𝑔𝑖(𝑒𝑡−𝑖) = 𝛼𝑖𝑒𝑡−𝑖 + 𝛾𝑖(|𝑒𝑡−𝑖| − 𝐸(|𝑒𝑡−𝑖|)
However, as in the GARCH case, the first-order model is the most popular in practice.

Nelson (1991) specified the likelihood function assuming that the errors follow a gener-
alized error distribution that includes the normal distribution as a special case. Properties of
the QML estimator based on the normality assumption for the EGARCH(1, 1) model were
studied by Straumann and Mikosch (2006) who verified the conditions for consistency of
this estimator. Further properties and details related to the model building process can be
found in Tsay (2010) and Teräsvirta et al. (2010), for example.

The GJR and Threshold GARCHModels. The so-called GJR-GARCHmodel of Glosten,
Jagannathan, and Runkle (1993) and the threshold GARCH model of Zakoı̈an (1994)
provide an alternativeway to allow for asymmetric effects of positive and negative volatility
shocks. Starting from the GARCH(1, 1) model, the GJR model assumes that the parameter
associated with 𝑎2

𝑡−1 depends on the sign of the shock so that

𝜎2
𝑡
= 𝛼0 + (𝛼1 + 𝛾1𝐼𝑡−1)𝑎2𝑡−1 + 𝛽1𝜎

2
𝑡−1

where the indicator variable 𝐼𝑡−1 assumes the value 1 if 𝑎𝑡−1 is negative and zero if it is
positive. The constraints on the parameters needed to ensure that the conditional variance
𝜎2

𝑡
is nonnegative are readily derived from those of the GARCH(1, 1) process. Using this

formulation, the noise term 𝑎𝑡−1 has a coefficient 𝛼1 + 𝛾1 when it is negative, and 𝛼1 when
it is positive. This allows negative shocks to have a larger impact on the volatility. The
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GJR model is relatively simple and empirical studies have shown that the model performs
well in practice. For general GARCH(𝑠, 𝑟), the model generalizes to

𝜎2
𝑡
= 𝛼0 +

𝑠∑
𝑖=1

(𝛼𝑖 + 𝛾𝑖𝐼𝑡−𝑖)𝑎2𝑡−𝑖
+

𝑟∑
𝑗=1

𝛽𝑗𝜎
2
𝑡−𝑗

although applications with 𝑟 and 𝑠 greater than 1 seem to be very rare. Zakoı̈an (1994)
introduced a model with the same functional form as the GJR model, but instead of
modeling the conditional variance, Zakoı̈an models the conditional standard deviation.
Since the coefficient associated with 𝑎𝑡−1 changes its value as 𝑎𝑡−1 crosses the threshold
zero, Zakoı̈an referred to this model as a threshold GARCH, or TGARCH, model.

Nonlinear Smooth Transition Models. For the threshold model described above, the
impact of past shocks changes abruptly as 𝑎𝑡−𝑖 crosses the zero threshold. Attempts have
been made in the literature to develop nonlinear extensions of ARCH and GARCH models
that allow for more flexibility and a smoother transition as a lagged value 𝑎𝑡−𝑖 crosses a
specified threshold. These extensions include the logistic smooth transition GARCHmodel
proposed by Hagerud (1997), and a similar model proposed independently by González-
Rivera (1998). This model assumes that the model parameters 𝛼𝑖 in the ARCH or GARCH
model are not constant but functions of the lagged 𝑎𝑡−𝑖 so that 𝛼𝑖 = 𝛼1𝑖 + 𝛼2𝑖𝐹 (𝑎𝑡−𝑖), 𝑖 =
1,… , 𝑠, where 𝐹 (⋅) is a transition function. Hagerud considered two transition functions,
the logistic and the exponential. The GARCH(𝑠, 𝑟) model with a logistic transition function
has the form

𝜎2
𝑡
= 𝛼0 +

𝑠∑
𝑖=1

[𝛼1𝑖 + 𝛼2𝑖𝐹 (𝑎𝑡−𝑖)]𝑎2𝑡−𝑖
+

𝑟∑
𝑗=1

𝛽𝑗𝜎
2
𝑡−𝑗

where

𝐹 (𝑎𝑡−𝑖) =
1

1 + exp(−𝜃𝑎𝑡−𝑖)
− 1

2

with 𝜃 > 0. In contrast to the GJR model that follows one process when the innovations
are positive and another process when the innovations are negative, the transition between
the two states is smooth in the present model. Hagerud provided conditions for stationarity
and nonnegativity of the conditional variances.

Lanne and Saikkonen (2005) proposed a smooth transition GARCH process that uses
the lagged conditional variance 𝜎2

𝑡−1 as the transition variable, and is suitable for describing
high persistence in the conditional variance. The first-order version of this model can be
written as

𝜎2
𝑡
= 𝛼0 + 𝛼1𝑎

2
𝑡−1 + 𝛿1𝐺1(𝜃; 𝜎2

𝑡−1) + 𝛽1𝜎
2
𝑡−1

where the transition function𝐺1(𝜃; 𝜎2
𝑡−1) is a continuous, monotonically increasing bounded

function of 𝜎2
𝑡−1. Lanne and Saikkonen used the cumulative distribution function of the

gamma distribution as the transition function. The original purpose for introducing this
model was to remedy a tendency of GARCH models to exaggerate the persistence in
volatility as evidenced byΣ(𝛼𝑖 + 𝛽𝑖) often being very close to one.Using empirical examples
involving exchange rates, the authors showed that this formulation alleviates the problem
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of exaggerated persistence. For further discussion of these and related models, see, for
example, Mills and Markellos (2008) and Teräsvirta (2009).

GARCH-M Models. Many theories in finance postulate a direct relationship between the
expected return on an investment and its risk. To account for this, the GARCH-in-mean,
or GARCH-M, model, allows the conditional mean of a GARCH process to depend on
the conditional variance 𝜎2

𝑡
. This model originates from the ARCH-M model proposed by

Engle et al. (1987). The mean value function is specified as

𝜇𝑡 = 𝛽0 + 𝛽1𝑔(𝜎2
𝑡
)

where 𝑔(𝜎2
𝑡
) is a positive-valued function and 𝛽1 is a positive constant called the risk

premium parameter. An increase or decrease in the conditional mean is here associated
with the sign of the partial derivative of the function 𝑔(𝜎2

𝑡
) with respect to 𝜎2

𝑡
. In many

applications, 𝑔(𝜎2
𝑡
) is taken to be the identity function or the square root function so that

𝑔(𝜎2
𝑡
) = 𝜎2

𝑡
or 𝑔(𝜎2

𝑡
) = 𝜎𝑡. The parameters of the GARCH-Mmodel can be estimated using

the maximum likelihood method. However, because of the dependence of the conditional
mean on the conditional variance, the information matrix is no longer block diagonal with
respect to the conditional mean and variance parameters. This makes joint maximization
of the likelihood function with respect to the two sets of parameters necessary. Also,
consistent estimation of the parameters in the GARCH-M models requires the full model
be correctly specified. Applications of the GARCH-M model to stock returns, exchange
rates, and interest rates were discussed by Bollerslev et al. (1992).

IGARCH andFIGARCHModels. As noted earlier, theGARCH(1, 1)model is weakly sta-
tionary assuming that (𝛼1 + 𝛽1) < 1. When the GARCHmodel is applied to high-frequency
financial data, it is often found that 𝛼1 + 𝛽1 is close to or equal to1. Engle and Bollerslev
(1986) refer to a model with 𝛼1 + 𝛽1 = 1 as an integrated GARCH, or IGARCH, model.
The motivation is that this implies a unit root in the autoregressive part of the ARMA(1, 1)
representation of the GARCH(1, 1) model for 𝑎2

𝑡
in (10.2.11).With 𝛼1 + 𝛽1 = 1, the model

becomes (1 − 𝐵)𝑎2
𝑡
= 𝛼0 + 𝜈𝑡 − 𝛽1𝜈𝑡−1. Similar to a random walk process, this process is

not mean reverting since the unconditional variance of the process is not finite. Also, the
impact of a large shock on the forecasts of future valueswill not diminish for increasing lead
times. But while the GARCH(1,1) process is not weakly stationary, Nelson (1990) showed
that the process has time-invariant probability distributions and is thus strictly stationary. A
necessary condition for strict stationarity is 𝐸[𝑙𝑛(𝛼1𝑎2𝑡−1 + 𝛽1)] < 0. For further discussion
of this model, see, for example, Teräsvirta (2009).

Fractionally integrated GARCH, or FIGARCH, models have also been proposed in the
literature. These differ from the IGARCH model in that the degree of differencing 𝑑 is
allowed to be a fraction rather than a constant. The FIGARCH(1, 1) model, in particular,
is of the form (1 − 𝐵)𝑑𝑎2

𝑡
= 𝛼0 + 𝜈𝑡 − 𝛽1𝜈𝑡−1, where 𝑑 is a constant such that 0 < 𝑑 < 0.5.

For the FIGARCH model, the empirical autocorrelations of 𝑎2
𝑡
need not be very large but

they decay very slowly as the lag 𝑘 increases. This is indicative of so-called long memory
behavior in the series. Models involving fractional differencing will be discussed further
in Section 10.4 in relation to long-range dependence in the conditional mean 𝜇𝑡.

Other Models. Numerous other models have been proposed to account for conditional
heteroscedasticity. For example, a natural extension of the ARCH(𝑠) model specified in
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(10.2.1) is to let 𝜎2
𝑡 = 𝛼0 + 𝒂′𝑡−1𝛀𝒂𝑡−1, where 𝒂𝑡−1 = (𝑎𝑡−1,… , 𝑎𝑡−𝑠)′ and 𝛀 is a 𝑠 × 𝑠

nonnegative definite matrix. The ARCH(𝑠) model is then a special case that requires
that 𝛀 be diagonal. One way that the above form can arise is through the conditional
heteroscedastic ARMA (CHARMA) model specification discussed by Tsay (1987). Other
approaches to volatility modeling include the random coefficient autoregressive model of
Nicholls and Quinn (1982) and the stochastic volatility models of Melino and Turnbull
(1990), Jacquier et al. (1994), and Harvey et al. (1994). A brief description of the stochastic
volatility models is provided below.

10.2.6 Stochastic Volatility Models

Stochastic volatility models are similar to GARCH models but introduce a stochastic
innovation term to the equation that describes the evolution of the conditional variance 𝜎2

𝑡
.

To ensure positiveness of the conditional variances, stochastic volatility models are defined
in terms of ln(𝜎2

𝑡
) instead of 𝜎2

𝑡
. A basic version of a stochastic volatility model is defined

by 𝑎𝑡 = 𝜎𝑡𝑒𝑡 as in (10.2.1) with ln(𝜎2
𝑡
) satisfying

ln(𝜎2
𝑡
) = 𝛼0 + 𝛽1 ln(𝜎2

𝑡−1) +⋯ + 𝛽𝑟 ln(𝜎2
𝑡−𝑟

) + 𝑣𝑡 (10.2.14)

where 𝑒𝑡 are iid normal 𝑁(0, 1), 𝑣𝑡 are iid normal 𝑁(0, 𝜎2
𝑣
), {𝑒𝑡} and {𝑣𝑡} are independent

processes, and the roots of the characteristic equation 1−
∑𝑟

𝑗=1 𝛽𝑖𝐵
𝑗 = 0 are outside the unit

circle. Note, for example, the stochastic volatilitymodel equation for 𝑟 = 1 is ln(𝜎2
𝑡
) = 𝛼0 +

𝛽1 ln(𝜎2
𝑡−1) + 𝑣𝑡, which is somewhat analogous to the GARCH(1, 1) model equation, 𝜎2

𝑡
=

𝛼0 + 𝛽1𝜎
2
𝑡−1 + 𝛼1𝑎

2
𝑡−1. Alternatively, replacing 𝑔(𝑒𝑡−1) by 𝑣𝑡 in the EGARCH(1, 1) model,

we obtain (10.2.14) with 𝑟 = 1. Some properties of the stochastic volatility model for
𝑟 = 1 are provided by Jacquier et al. (1994). Also note that we may write 𝑎2

𝑡
= 𝜎2

𝑡
𝑒2
𝑡
so that

ln(𝑎2
𝑡
) = ln(𝜎2

𝑡
) + ln(𝑒2

𝑡
). This allows the stochastic volatility model to be viewed as a state-

space model, with the last relation representing the observation equation and the transition
equation being developed from (10.2.14). Difficulty in parameter estimation is increased
for stochastic volatility models, however, since likelihoods based on the state-space model
are non-Gaussian. Quasi-likelihood methods may thus be needed. Jacquier et al. (1994)
give a good summary of estimation techniques, including quasi-likelihood methods with
Kalman filtering and the expectation maximization (EM) algorithm and Markov chain
Monte Carlo (MCMC) methods. They also provide a comparison of estimation results
between the different methods.

A discussion and examples of the use of Markov chain Monte Carlo methods for
parameter estimation can also be found in Tsay (2010, Chapter 12). A general overview of
the stochastic volatility literature is given by a collection of articles in the books edited by
Shephard (2005) and Andersen et al. (2009).

10.3 NONLINEAR TIME SERIES MODELS

Many processes occurring in the natural sciences, engineering, finance, and economics
exhibit some form of nonlinear behavior. This includes features that can not be modeled
using Gaussian linear processes such as lack of time reversibility evidenced, for exam-
ple, by pseudocyclical patterns where the values slowly rise to a peak and then quickly
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decline to a trough. Time series that exhibit occasional bursts of outlying values are also
unlikely under the linear Gaussian assumption. The prevalence of such series has led to
an interest in developing nonlinear time series models that can account for such behavior.
Nonlinear models proposed in the literature include bilinear models, threshold autore-
gressive (TAR) models, exponential autoregressive (EXPAR) models, and stochastic or
random coefficient models. These models describe nonlinearities in the conditional mean
as opposed to nonlinearities in the conditional variance as discussed in Section 10.2. When
nonlinearities are present, model identification and estimation become more complicated,
including the fundamental problem of which type of nonlinear model might be useful for
a particular time series. This section presents a brief description of some nonlinear models
that have been proposed in the literature. More comprehensive discussions are available in
texts such as Tong (1983, 1990), Priestley (1988), Franses and van Dijk (2000), Fan and
Yao (2003), Tsay (2010, Chapter 4), and Teräsvirta et al. (2010).

10.3.1 Classes of Nonlinear Models

Many nonlinear ARMA models can be viewed as special cases of the following general
form:

𝑧𝑡 − 𝜙1(𝒀 𝑡−1)𝑧𝑡−1 −⋯ − 𝜙𝑝(𝒀 𝑡−1)𝑧𝑡−𝑝

= 𝜃0(𝒀 𝑡−1) + 𝑎𝑡 − 𝜃1(𝒀 𝑡−1)𝑎𝑡−1 −⋯ − 𝜃𝑞(𝒀 𝑡−1)𝑎𝑡−𝑞 (10.3.1)

where

𝒀 𝑡−1 = (𝑧𝑡−1,… , 𝑧𝑡−𝑝, 𝑎𝑡−1,… , 𝑎𝑡−𝑞)′

and 𝜙𝑖(𝒀 𝑡−1) and 𝜃𝑖(𝒀 𝑡−1) are functions of the ‘‘state vector’’ 𝒀 𝑡−1 at time 𝑡 − 1. For
specific cases, we mention the following models.

1. BilinearModels. Let the𝜙𝑖 be constants, and set 𝜃𝑗 (𝒀 𝑡−1) = 𝑏𝑗 + Σ𝑘
𝑖=1𝑏𝑖𝑗𝑧𝑡−𝑖. Then

we have the model

𝑧𝑡 − 𝜙1𝑧𝑡−1 −⋯ − 𝜙𝑝𝑧𝑡−𝑝 = 𝜃0 + 𝑎𝑡 −
𝑞∑

𝑗=1
𝑏𝑗𝑎𝑡−𝑗 −

𝑘∑
𝑖=1

𝑞∑
𝑗=1

𝑏𝑖𝑗𝑧𝑡−𝑖𝑎𝑡−𝑗 (10.3.2)

Equivalently, with the notations 𝑝∗ = max(𝑝, 𝑘), 𝜙𝑖 = 0, 𝑖 > 𝑝, 𝑏𝑖𝑗 = 0, 𝑖 > 𝑘, and
𝛼𝑖(𝑡) = Σ𝑞

𝑗=1𝑏𝑖𝑗𝑎𝑡−𝑗 , (10.3.2) can be expressed in the form

𝑧𝑡 −
𝑝∗∑
𝑖=1

[𝜙𝑖 − 𝛼𝑖(𝑡)]𝑧𝑡−𝑖 = 𝜃0 + 𝑎𝑡 −
𝑞∑

𝑗=1
𝑏𝑗𝑎𝑡−𝑗

and be viewed in the form of an ARMA model with random coefficients for the AR
parameters, which are linear functions of past values of the innovations process 𝑎𝑡.
The statistical properties of bilinear models were studied extensively by Granger and
Anderson (1978). Methods for analysis and parameter estimation were also studied
by Subba Rao (1981) and Subba Rao and Gabr (1984), and various special cases of
these models have been examined by subsequent authors.
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Conditions for stationarity and other properties have been studied for the gen-
eral bilinear model by Tuan (1985, 1986) and Liu and Brockwell (1988), in par-
ticular. For example, consider the simple first-order bilinear model 𝑧𝑡 − 𝜙1𝑧𝑡−1 =
𝑎𝑡 − 𝑏11𝑧𝑡−1𝑎𝑡−1. It is established that a condition for second-order stationarity of
such a process {𝑧𝑡} is 𝜙2

1 + 𝜎2
𝑎
𝑏211 < 1, and that the autocovariances of 𝑧𝑡 under sta-

tionarity will satisfy 𝛾𝑗 = 𝜙1𝛾𝑗−1 for 𝑗 > 1. Thus, this process will have essentially
the same autocovariance structure as an ARMA(1, 1) process. This example high-
lights the fact that moments higher than the second order are typically needed in
order to distinguish between linear and nonlinear models.

2. Amplitude-Dependent Exponential AR Models. Let 𝜃𝑖 = 0, and set 𝜙𝑖(𝒀 𝑡−1) =
𝑏𝑖 + 𝜋𝑖𝑒

−𝑐𝑧2
𝑡−1 , where 𝑐 > 0 is a constant. Then we have

𝑧𝑡 −
𝑝∑

𝑖=1
(𝑏𝑖 + 𝜋𝑖𝑒

−𝑐𝑧2
𝑡−1)𝑧𝑡−𝑖 = 𝑎𝑡 (10.3.3)

This class of models was introduced by Haggan and Ozaki (1981), with an aim to
construct models that reproduce features of nonlinear random vibration theory.

3. Threshold AR, or TAR, Models. Let 𝜃𝑖 = 0, 𝑖 ≥ 1, and for some integer time lag 𝑑

and some ‘‘threshold’’ constant 𝑐, let

𝜙𝑖(𝒀 𝑡−1) =

{
𝜙
(1)
𝑖

if 𝑧𝑡−𝑑 ≤ 𝑐

𝜙
(2)
𝑖

if 𝑧𝑡−𝑑 > 𝑐

𝜃0(𝒀 𝑡−1) =

{
𝜃
(1)
0 if 𝑧𝑡−𝑑 ≤ 𝑐

𝜙
(2)
0 if 𝑧𝑡−𝑑 > 𝑐

Then we have the model

𝑧𝑡 =

⎧⎪⎪⎨⎪⎪⎩

𝜃
(1)
0 +

𝑝∑
𝑖=1

𝜙
(1)
𝑖

𝑧𝑡−𝑖 + 𝑎
(1)
𝑡

if 𝑧𝑡−𝑑 ≤ 𝑐

𝜃
(2)
0 +

𝑝∑
𝑖=1

𝜙
(2)
𝑖

𝑧𝑡−𝑖 + 𝑎
(2)
𝑡

if 𝑧𝑡−𝑑 > 𝑐

(10.3.4)

where {𝑎(1)
𝑡
} and {𝑎(2)

𝑡
} are each white noise processes with variances 𝜎2

1 and 𝜎2
2 ,

respectively (e.g., we can take 𝑎
(𝑗)
𝑡

= 𝜎𝑗𝑎𝑡). The value 𝑐 is called the threshold pa-
rameter and 𝑑 is the delay parameter. A special case arises when the parameter 𝑐

is replaced by a lagged value of the series itself, resulting in a model called the
self-exciting TAR (SETAR) model.

The model (10.3.4) readily extends to an ‘‘𝑙-threshold’’ model of the form

𝑧𝑡 = 𝜃
(𝑗)
0 +

𝑝∑
𝑖=1

𝜙
(𝑗)
𝑖

𝑧𝑡−𝑖 + 𝑎
(𝑗)
𝑡

if 𝑐𝑗−1 < 𝑧𝑡−𝑑 ≤ 𝑐𝑗 𝑗 = 1,… , 𝑙
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with threshold parameters 𝑐1 < 𝑐2 < ⋯ < 𝑐𝑙−1 (and 𝑐0 = −∞, 𝑐𝑙 = +∞), which de-
fine a partition of the real line into 𝑙 subintervals. The first-order threshold model,

𝑧𝑡 = 𝜃
(𝑗)
0 + 𝜙(𝑗)𝑧𝑡−1 + 𝑎

(𝑗)
𝑡

if 𝑐𝑗−1 < 𝑧𝑡−1 ≤ 𝑐𝑗

for example, may thus be regarded as a piecewise linear approximation to a general
nonlinear first-order model 𝑧𝑡 = 𝑔(𝑧𝑡−1) + 𝑎𝑡, where 𝑔(⋅) is some general nonlinear
function.

The TAR models were introduced by Tong (1978) and Tong and Lim (1980) and
discussed in detail by Tong (1983, 1990). Tong (2007) gives a brief discussion of their
origin. The basic threshold AR model can be seen as a piecewise linear AR model, with a
somewhat abrupt change from one equation or ‘‘regime’’ to another dependent on whether
or not a threshold value 𝑐𝑗 is exceeded by 𝑧𝑡−𝑑 . A generalization that allows for less abrupt
transition from one regime to another has been developed as a class of models known as
smooth transition AR (STAR) models; see, for example, Teräsvirta (1994) and Teräsvirta
et al. (2010). For the case of a single threshold 𝑙 = 1, the basic form of a STAR model is

𝑧𝑡 = 𝜃
(1)
0 +

𝑝∑
𝑖=1

𝜙
(1)
𝑖

𝑧𝑡−𝑖 +

(
𝜃
(2)
0 +

𝑝∑
𝑖=1

𝜙
(2)
𝑖

𝑧𝑡−𝑖

)
𝐹 (𝑧𝑡−𝑑 ) + 𝑎𝑡

where 𝐹 (𝑧) = 1∕[1 + exp{−𝛾(𝑧 − 𝑐)}] in the case of a logistic STAR model and in the
normal STAR model 𝐹 (𝑧) = Φ(𝛾(𝑧 − 𝑐)), with Φ(⋅) equal to the cumulative distribution
function of the standard normal distribution. By letting 𝛾 → ∞, we see that 𝐹 (𝑧) tends
to the indicator function, and the usual two-regime TAR model (10.3.4) is obtained as a
special case. The TARmodel and its extensions have been used to model nonlinear series in
many diverse areas such as finance and economics, the environmental sciences, hydrology,
neural science, population dynamics, and physics; for selected references, see Fan and Yao
(2003, p. 126).

Other types of nonlinear models include the stochastic or random coefficient models.
For example, in the simple AR(1) model we consider 𝑧𝑡 = 𝜙𝑡𝑧𝑡−1 + 𝑎𝑡, where 𝜙𝑡 is not a
constant but is a stochastic parameter. Possible assumptions on the mechanism generating
the 𝜙𝑡 include (i) the 𝜙𝑡 are iid random variables with mean𝜙 and variance 𝜎2

𝜙
, independent

of the process {𝑎𝑡}, and (ii) the 𝜙𝑡 follow an AR(1) process themselves,

𝜙𝑡 − 𝜙 = 𝛼(𝜙𝑡−1 − 𝜙) + 𝑒𝑡

where 𝜙 is the mean of the 𝜙𝑡 process and the 𝑒𝑡 are iid random variables with mean 0
and variance 𝜎2

𝑒
, independent of 𝑎𝑡. Estimation for the first case was considered in detail

by Nicholls and Quinn (1982), while the second case may in principle be estimated using
state-space methods (e.g., Ledolter, 1981).

Additional classes of nonlinear models include the general state-dependent model form
(10.3.1) examined extensively by Priestley (1980, 1988), or more general nonparametric
autoregressive model forms such as nonlinear additive autoregressive models considered
by Chen and Tsay (1993), and adaptive spline threshold autoregressive models used by
Lewis and Stevens (1991). Nonparametric and semiparametric methods such as kernel
regression and artificial neural networks have also been used to model nonlinearity. A
review of nonlinear time series models with special emphasis on nonparametric methods
was provided by Tjøstheim (1994). More recent discussions of the developments in this
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area can be found in Fan and Yao (2003), Gao (2007), and Teräsvirta et al. (2010). A
discussion of nonlinear models with applications to finance is provided by Tsay (2010,
Chapter 4).

10.3.2 Detection of Nonlinearity

Many methods have been proposed to detect nonlinearity of a time series. In addition to
informal graphical methods and inspection of higher order moments, such as third- and
fourth-order moments, these include more formal test procedures by Hinich (1982), Subba
Rao and Gabr (1980), McLeod and Li (1983), Keenan (1985), Tsay (1986a), Petruccelli
and Davies (1986), Luukkonen et al. (1988a), and others. Some of these tests exploit the
nonlinear dependence structure that is reflected in the higher order moments, and many
of the tests are developed as portmanteau tests based on a linear model, with an alterna-
tive not explicitly specified. Other tests are Lagrange multiplier or score-type procedures
against specified alternative models. For example, the tests of Luukkonen et al. (1988a)
are score-type tests against STAR alternatives. The tests of Subba Rao and Gabr (1980)
and Hinich (1982) are nonparametric tests that use a bispectral approach, while the test of
Petruccelli and Davies (1986) is based on cumulative sums of standardized residuals from
autoregressive fitting to the data. The portmanteau test statistic (10.2.12) of McLeod and
Li (1983) is based on sample autocorrelations of squared residuals �̂�2

𝑡
from a fitted linear

ARMA model. This test was introduced as a test for nonlinearity, although simulations
suggest that it may be more powerful against ARCH alternatives. A modest gain in power
may be possible by basing the nonlinearity checks on the portmanteau statistics proposed
by Peña and Rodrı́guez (2002, 2006).

Keenan (1985) proposed an 𝐹 -test for nonlinearity using an analogue of Tukey’s single-
degree-of-freedom test for nonadditivity. The test is also similar to the regression specifi-
cation error test (RESET) proposed by Ramsey (1969) for linear regression models. The
test can be implemented by first fitting an AR(𝑚) model to the observed series 𝑧𝑡, where
𝑚 is a suitably selected order. The fitted values are retained and their squares are added
as a predictor variable to the AR(𝑚) model. This model is then refitted and the coeffi-
cient associated with the predictor variable is tested for significance. This procedure thus
amounts to determining whether inclusion of the squared predicted values helps improve
the prediction.

Tsay (1986a) proposed an extension based on testing whether second-order terms have
additional predictive ability. The procedure can be carried out as follows: First fit a linear
AR(𝑚) model and obtain the residuals �̂�𝑡 from this fit. Then consider the 𝑀 = 1

2𝑚(𝑚 + 1)
component vector

𝒁 𝑡 = (𝑧2
𝑡−1,… , 𝑧2

𝑡−𝑚
, 𝑧𝑡−1𝑧𝑡−2,… , 𝑧𝑡−𝑚+1𝑧𝑡−𝑚)′

consisting of all squares and distinct cross-products of the lagged values 𝑧𝑡−1,… , 𝑧𝑡−𝑚. Now
perform amultivariate least-squares regression of the elements of𝑍𝑡 on the set of regressors
{1, 𝑧𝑡−1,… , 𝑧𝑡−𝑚} and obtain the multivariate residual vectors �̂� 𝑡, for 𝑡 = 𝑚 + 1,… , 𝑛.

Finally, perform a least-squares regression �̂�𝑡 = �̂�
′
𝑡
𝜷 + 𝑒𝑡 of the AR(𝑚) model residuals �̂�𝑡

on the 𝑀-dimensional vectors �̂� 𝑡 as regressor variables, and let 𝐹 be the 𝐹 ratio of the
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regression mean square to the error mean square from that regression, so that

𝐹 =
(
∑

𝑡 �̂�𝑡�̂�
′
𝑡 )(

∑
𝑡 �̂�𝑡�̂�

′
𝑡 )
−1(

∑
𝑡 �̂�𝑡�̂�𝑡)∕𝑀∑𝑛

𝑡=𝑚+1 𝑒2
𝑡
∕(𝑛 − 𝑚 − 𝑀 − 1)

(10.3.5)

Under the assumption of linearity, 𝐹 has, for large 𝑛, an approximate 𝐹 distribution with
𝑀 and 𝑛 − 𝑚 − 𝑀 − 1 degrees of freedom, and the null hypothesis of linearity is rejected
for large values of 𝐹 . Extension to a procedure for residuals �̂�𝑡 from a fitted ARMA(𝑝, 𝑞)
model was also mentioned by Tsay (1986a).

If one aggregates or condenses the information in the 𝑀-dimensional vector 𝒁 𝑡 into
a single variable �̂�2

𝑡
= (�̂�0 + Σ𝑚

𝑖=1�̂�𝑖𝑧𝑡−𝑖)2, which is the square of the fitted value from the
AR(𝑚) model, and performs the remaining steps outlined above, one obtains the earlier test
by Keenan (1985). The associated test statistic is

𝐹 =
(
∑

𝑡 �̂�𝑡�̂�𝑡)2∕(
∑

𝑡 �̂�
2
𝑡
)∑𝑛

𝑡=𝑚+1 𝑒2
𝑡
∕(𝑛 − 2𝑚 − 2)

with 1 and 𝑛 − 2𝑚 − 2 degrees of freedom. Luukkonen et al. (1988b) and Tong (1990,
Section 5.3) noted a score test interpretation of the procedures proposed by Keenan (1985)
and Tsay (1986a).Both tests are available in theTSA package of R and can be implemented
using the commands Keenan.test(z) and Tsay.test(z). For further discussion, see Tsay
(2010, Chapter 4).

10.3.3 An Empirical Example

For illustration, we consider modeling of the Canadian lynx dataset, consisting of annual
numbers of Canadian lynx trapped in the MacKenzie River district for the period 1821
to 1934. The series is available in the R datasets package. For several reasons, the
log10 transformation of the data is used in the analysis, denoted as 𝑧𝑡, 𝑡 = 1,… , 𝑛, with
𝑛 = 114. Examination of the time series plot of 𝑧𝑡 in Figure 10.5 shows a very strong
cyclical behavior, with period around 10 years. It also shows an asymmetry or lack of time
reversibility in that the sample values rise to their peak or maximum values more slowly
than they fall away to their minimum values (typically, about 6-year segments of rising and
4-year segments of falling). This is a feature exhibited by many nonlinear processes. There
are biological/population reasons that would also support a nonlinear process, especially
one involving a threshold mechanism; see, for example, Tong (1990).

The sample ACF and PACF of the series {𝑧𝑡} are shown in Figure 10.6. The ACF
exhibits the cyclic feature clearly, and based on features of the sample PACF a linear
AR(4) model is initially fitted to the series, with �̂�2

𝑎
= 0.0519. The presence of some

moderate autocorrelation at higher lags, around lags 10 and 12, in the residuals from the
fitted AR(4) model suggested the following more refined model that was estimated by
conditional LS:

𝑧𝑡 = 1.149 + 1.038𝑧𝑡−1 − 0.413𝑧𝑡−2 + 0.252𝑧𝑡−3 − 0.229𝑧𝑡−4
+ 0.188𝑧𝑡−9 − 0.232𝑧𝑡−12 + 𝑎𝑡 (10.3.6)

with residual variance estimate �̂�2
𝑎
= 0.0380.
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(a)

(b)

FIGURE10.5 Logarithms (base 10) of the Canadian lynx time series for 1821--1934, with forecasts
for 90 periods ahead from (a) the TAR model and (b) the linear subset AR(12) model.

Some diagnostics of this fitted model suggest possible nonlinearity. Specifically, there
is strong autocorrelation in the squared residuals �̂�2

𝑡
at lag 2, with 𝑟2(�̂�2) = 0.401, and

nonlinear features exist in scatter plots of the ‘‘fitted values’’ �̂�𝑡 ≡ �̂�𝑡−1(1) and residuals
�̂�𝑡 = 𝑧𝑡 − �̂�𝑡−1(1) versus lagged values 𝑧𝑡−𝑗 , for lags 𝑗 = 2, 3, 4. But the tests by Keenan
(1985) and Tsay (1986a), implemented in the TSA package of R, are inconclusive in that
the Keenan test rejects linearity whereas the Tsay test does not (see the output below).
However, it appears that the failure of the Tsay test to detect the nonlinearity may be due
to the way the package computes the Tsay statistic. This computation uses 77 parameters
and results in an observation/parameter ratio of 114/77 < 2, which is too small for valid
inference.
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FIGURE 10.6 Autocorrelation and partial autocorrelation functions for the logarithm of the
Canadian lynx series.

> library(TSA)
> data(lynx)
> z=log10(lynx)
> Keenan.test(z)

$test.stat: 11.66997
$p.value: 0.000955
$order: 11

> Tsay.test(z)
$test.stat: 1.316
$p.value: 0.2256
$order: 11

Tong (1990) specified a TARmodel, with time delay of 𝑑 = 2 and threshold value of about
𝑐 ≈ 3.10 for this series. A threshold version of the AR model in (10.3.6), with two phases
and terms at lags 1, 2, 3, 4, 9, and 12, was estimated by conditional LS. After eliminating
nonsignificant parameter estimates, we arrived at the following estimated threshold AR
model:

𝑧𝑡 = 1.3206 + 0.9427𝑧𝑡−1 − 0.2161𝑧𝑡−4

− 0.1411𝑧𝑡−12 + 𝑎
(1)
𝑡

if 𝑧𝑡−2 ≤ 3.10
= 1.8259 + 1.1971𝑧𝑡−1 − 0.7266𝑧𝑡−2 + 0.1667𝑧𝑡−9

− 0.2229𝑧𝑡−12 + 𝑎
(2)
𝑡

if 𝑧𝑡−2 > 3.10

with residual variance estimates �̂�2
1 = 0.0249 and �̂�2

2 = 0.0386 (pooled �̂�2 = 0.0328).
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The approximate ‘‘eventual’’ forecast function from this model will lead to periodic
limit cycle behavior with an approximate period of 9 years (see Tong (1990) for discussion
of limit cycles). Although exact minimumMSE forecasts �̂�𝑛(𝑙) for lead times 𝑙 > 2 are not
easily computed for the fitted threshold AR model, approximate forecasts for larger 𝑙 can
be obtained by projecting series values forward with future white noise terms 𝑎

(𝑖)
𝑡

set to 0
(see Teräsvirta et al. (2010, Chapter 14) for other options). Values obtained in this way for
the eventual forecast function from the TARmodel are depicted for 90 years, 𝑙 = 1,… , 90,
in Figure 10.5(a). These values exhibit a limit cycle with a period of essentially 9 years
(in fact, the period is 28 years with 3 ‘‘subcycles’’), and the asymmetric feature of slower
rise to peak values and faster fall to minimum values is visible. In contrast, the stationary
linear AR model will give a forecast function in the form of very slowly damped sinusoidal
oscillations that will eventually decay to the mean value of the process, 2.90. This forecast
function is shown in Figure 10.5(b).

Other nonlinear models have been considered for the Canadian lynx data. For examples,
Subba Rao and Gabr (1984) have estimated a bilinear model for these data, an AR(2)
model with randomcoefficientswas fitted by Nicholls andQuinn (1982), and an amplitude-
dependent exponential AR model of order 11 was fitted to the mean-adjusted log lynx data
by Haggan and Ozaki (1981).

10.4 LONGMEMORY TIME SERIES PROCESSES

The autocorrelation function 𝜌𝑘 of a stationary ARMA(𝑝, 𝑞) process decreases rapidly as
𝑘 → ∞, since the autocorrelation function is geometrically bounded so that

|𝜌𝑘| ≤ 𝐶𝑅𝑘, 𝑘 = 1, 2,…

where 𝐶 > 0 and 0 < 𝑅 < 1. Processes with this property are often referred to as short
memory processes. Stationary processes with muchmore slowly decreasing autocorrelation
function, known as long memory processes, have

𝜌𝑘 ∼ 𝐶𝑘2𝑑−1 as 𝑘 → ∞ (10.4.1)

where𝐶 > 0 and−0.5 < 𝑑 < 0.5. Empirical evidence suggests that longmemory processes
are common in fields as diverse as hydrology (e.g., Hurst, 1951; McLeod and Hipel, 1978),
geophysics, and financial economics. The sample autocorrelations of such processes are
not necessarily large, but tend to persist over a long period. The latter could suggest a
need for differencing to achieve stationarity, although taking a first difference may be too
extreme. This motivates the notion of fractional differencing and consideration of the class
of fractionally integrated processes.

10.4.1 Fractionally Integrated Processes

Anotable class of stationary longmemory processes 𝑧𝑡 is the fractionally integrated ARMA,
or ARFIMA, processes defined for −0.5 < 𝑑 < 0.5 by the relation

𝜙(𝐵)(1 − 𝐵)𝑑𝑧𝑡 = 𝜃(𝐵)𝑎𝑡 (10.4.2)
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where {𝑎𝑡} is a white noise sequence with zero mean and variance 𝜎2
𝑎 , and 𝜙(𝐵) = 0 and

𝜃(𝐵) = 0 have all roots greater than one in absolute value. The class of models in (10.4.2)
was initially proposed and studied by Granger and Joyeux (1980) and Hosking (1981) as an
intermediate compromise between fully integrated ARIMA processes and short memory
ARMA processes. More comprehensive treatments of these models can be found in texts
by Beran (1994), Robinson (2003), and Palma (2007).

For 𝑑 > −1, the operator (1 − 𝐵)𝑑 in (10.4.2) is defined by the binomial expansion

(1 − 𝐵)𝑑 =
∞∑

𝑗=0
𝜋𝑗𝐵

𝑗 (10.4.3)

where 𝜋0 = 1 and

𝜋𝑗 =
Γ(𝑗 − 𝑑)

Γ(𝑗 + 1)Γ(−𝑑)
=

∏
0<𝑘≤𝑗

𝑘 − 1 − 𝑑

𝑘
𝑗 = 1, 2,… (10.4.4)

and Γ(𝑥) is the gamma function. Hence, the 𝜋𝑗 follow the simple recursion

𝜋𝑗 =
(

𝑗 − 1 − 𝑑

𝑗

)
𝜋𝑗−1

A particular special case is the fractionally integrated white noise process 𝑤𝑡, defined
by

(1 − 𝐵)𝑑𝑤𝑡 = 𝑎𝑡

For −0.5 < 𝑑 < 0.5, since the power series expansion of 𝜓(𝐵) = (1 − 𝐵)−𝑑 ≡ Σ∞
𝑗=0𝜓𝑗𝐵

𝑗

converges for |𝐵| ≤ 1, it follows that such a process {𝑤𝑡} is stationary and has the infinite
MA representation

𝑤𝑡 = (1 − 𝐵)−𝑑𝑎𝑡 =
∞∑

𝑗=0
𝜓𝑗𝑎𝑡−𝑗 (10.4.5)

where

𝜓𝑗 =
Γ(𝑗 + 𝑑)

Γ(𝑗 + 1)Γ(𝑑)
=

∏
0<𝑘≤𝑗

𝑘 − 1 + 𝑑

𝑘
∼ 1

Γ(𝑑)
𝑗𝑑−1 as 𝑗 → ∞ (10.4.6)

It can also be shown (Hosking, 1981; Brockwell and Davis, 1991, Chapter 12) that the
fractionally integrated white noise process has variance

𝛾0(𝑤) = var[𝑤𝑡] =
𝜎2

𝑎Γ(1 − 2𝑑)
[Γ(1 − 𝑑)]2

and ACF

𝜌ℎ(𝑤) = Γ(ℎ + 𝑑)Γ(1 − 𝑑)
Γ(ℎ − 𝑑 + 1)Γ(𝑑)

=
∏

0<𝑘≤ℎ

𝑘 − 1 + 𝑑

𝑘 − 𝑑
ℎ = 1, 2,… (10.4.7)

In particular, we have 𝜌1(𝑤) = 𝑑∕(1 − 𝑑), and 𝜌ℎ(𝑤) = [(ℎ − 1 + 𝑑)∕(ℎ − 𝑑)]𝜌ℎ−1(𝑤). It
follows, using Stirling’s formula Γ(𝑥) ∼

√
2𝜋𝑒−𝑥+1(𝑥 − 1)𝑥−1∕2 as 𝑥 → ∞, that the ACF
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behaves like

𝜌ℎ(𝑤) ∼ ℎ2𝑑−1 Γ(1 − 𝑑)
Γ(𝑑)

as ℎ → ∞

the characteristic feature of the ACF of a long memory process. In addition, by use of the
Levinson--Durbin recursion algorithm described in Appendix A3.2, values for the partial
autocorrelations of the fractionally integrated white noise process can be determined by
induction and shown to be 𝜙𝑘𝑘 = 𝑑∕(𝑘 − 𝑑), 𝑘 = 1,….

The fractionally integrated white noise process itself may be of limited use in modeling
long memory behavior since the single parameter 𝑑 can allow for only a restrictive class
of autocorrelation function forms. This process can be useful, however, in building of the
more general class of long memory processes. In fact, we can see from the above definition
that a fractionally integrated ARMA(𝑝, 𝑑, 𝑞) process, 𝜙(𝐵)(1 − 𝐵)𝑑𝑧𝑡 = 𝜃(𝐵)𝑎𝑡, can be
interpreted as an ‘‘ARMA(𝑝, 𝑞) process driven by fractionally integrated white noise,’’
that is, {𝑧𝑡} satisfies 𝜙(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑤𝑡, with (1 − 𝐵)𝑑𝑤𝑡 = 𝑎𝑡. From general results on
linear filtering, we see that the exact autocovariance function of {𝑧𝑡} can be expressed
in terms of the autocovariance function of the fractionally integrated white noise process
{𝑤𝑡} as

𝛾ℎ(𝑧) =
∞∑

𝑗=0

∞∑
𝑘=0

𝜓𝑗𝜓𝑘𝛾ℎ+𝑗−𝑘(𝑤) (10.4.8)

where the 𝜓𝑗 are the coefficients in 𝜓(𝐵) = 𝜙(𝐵)−1𝜃(𝐵) =
∑∞

𝑗=0 𝜓𝑗𝐵
𝑗 and

𝛾ℎ(𝑤) = 𝛾0(𝑤)𝜌ℎ(𝑤) = 𝜎2
𝑎

Γ(1 − 2𝑑)Γ(ℎ + 𝑑)
Γ(ℎ − 𝑑 + 1)Γ(𝑑)Γ(1 − 𝑑)

≡ 𝜎2
𝑎

(−1)ℎΓ(1 − 2𝑑)
Γ(ℎ − 𝑑 + 1)Γ(1 − ℎ − 𝑑)

is the autocovariance function of the fractionally integrated white noise process {𝑤𝑡}.
In terms of the spectrum, from (3.1.12) the spectrum of a fractionally integratedARIMA

(𝑝, 𝑑, 𝑞) process {𝑧𝑡} is

𝑝𝑧(𝑓 ) = 2𝜎2
𝑎
|1 − 𝑒−𝑖2𝜋𝑓 |−2𝑑 |𝜃(𝑒−𝑖2𝜋𝑓 )|2

|𝜙(𝑒−𝑖2𝜋𝑓 )|2 0 ≤ 𝑓 ≤
1
2

(10.4.9)

where 𝑝𝑤(𝑓 ) = 2𝜎2
𝑎
|1 − 𝑒−𝑖2𝜋𝑓 |−2𝑑 ≡ 2𝜎2

𝑎
[2 sin(𝜋𝑓 )]−2𝑑 is the spectrum of the fractionally

integrated white noise process. In particular, we see that 𝑝𝑧(𝑓 ) does not remain finite as
𝑓 → 0 for 0 < 𝑑 <

1
2 . Since sin(𝑥) ∼ 𝑥 as 𝑥 → 0, we have the behavior that

𝑝𝑧(𝑓 ) ∼ 2𝜎2
𝑎

[ |𝜃(1)|2
|𝜙(1)|2

]
(2𝜋𝑓 )−2𝑑 ≡ 𝐶∗𝑓−2𝑑 as 𝑓 → 0

which is a distinguishing feature of the spectrum of long memory processes, for 0 < 𝑑 <
1
2 .

Two Simple Special Cases. In practice, ARIMA(𝑝, 𝑑, 𝑞)models are likely to bemost useful
for small values of 𝑝 and 𝑞. So, we mention a few specific details given by Hosking (1981)
about characteristics of two of the simplest such models. First, consider the fractional
ARIMA(1, 𝑑, 0) model, (1 − 𝜙𝐵)(1 − 𝐵)𝑑𝑧𝑡 = 𝑎𝑡, with AR parameter −1 < 𝜙 < 1. Then
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(1 − 𝜙𝐵)𝑧𝑡 = 𝑤𝑡 or 𝑧𝑡 = (1 − 𝜙𝐵)−1𝑤𝑡 =
∑∞

𝑗=0 𝜙𝑗𝑤𝑡−𝑗 , so using (10.4.7) and (10.4.8)with

𝜓𝑗 = 𝜙𝑗 it follows that the autocorrelation function of {𝑧𝑡} is

𝜌𝑙(𝑧) =
𝜌𝑙(𝑤)
1 − 𝜙

𝐹 (𝑑 + 𝑙, 1; 1 − 𝑑 + 𝑙;𝜙) + 𝐹 (𝑑 − 𝑙, 1; 1 − 𝑑 − 𝑙;𝜙) − 1
𝐹 (1 + 𝑑, 1; 1 − 𝑑;𝜙)

where 𝐹 (𝑎, 𝑏; 𝑐; 𝑥) is the hypergeometric function defined by

𝐹 (𝑎, 𝑏; 𝑐; 𝑥) = 1 + 𝑎𝑏

𝑐 ⋅ 1
𝑥 + 𝑎(𝑎 + 1)𝑏(𝑏 + 1)

𝑐(𝑐 + 1) ⋅ 1 ⋅ 2
𝑥2 +⋯

= Γ(𝑐)
Γ(𝑎)Γ(𝑏)

∞∑
𝑘=0

Γ(𝑎 + 𝑘)Γ(𝑏 + 𝑘)
Γ(𝑐 + 𝑘)𝑘!

𝑥𝑘

and

𝛾0(𝑧) = 𝛾0(𝑤)
∞∑

𝑗=0

∞∑
𝑘=0

𝜙𝑗+𝑘𝜌𝑗−𝑘(𝑤)

=
𝛾0(𝑤)
1 − 𝜙2 [2𝐹 (𝑑, 1; 1 − 𝑑;𝜙) − 1] =

𝜎2
𝑎
Γ(1 − 2𝑑)
Γ(1 − 𝑑)2

𝐹 (1 + 𝑑, 1; 1 − 𝑑;𝜙)
1 + 𝜙

Given 𝜙 and 𝑑, values of 𝐹 (𝑑 + 𝑙, 1; 1 − 𝑑 + 𝑙;𝜙) required in computing the 𝛾𝑙(𝑧) =
𝛾0(𝑧)𝜌𝑙(𝑧) may be obtained more conveniently using the recurrence relation

𝐹 (𝑑 + 𝑙 − 1, 1; 1 − 𝑑 + 𝑙 − 1;𝜙) = 𝑑 + 𝑙 − 1
1 − 𝑑 + 𝑙 − 1

𝜙𝐹 (𝑑 + 𝑙, 1; 1 − 𝑑 + 𝑙;𝜙) + 1

Second, for the fractional ARIMA(0, 𝑑, 1)model, (1 − 𝐵)𝑑𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡, with−1 < 𝜃 <

1, we have 𝑧𝑡 = (1 − 𝜃𝐵)𝑤𝑡. So again using (10.4.7) and (10.4.8), now with 𝜓0 = 1, 𝜓1 =
−𝜃, and 𝜓𝑗 = 0 for 𝑗 > 1, we find that

𝛾𝑙(𝑧) = 𝛾0(𝑤)[(1 + 𝜃2)𝜌𝑙(𝑤) − 𝜃𝜌𝑙+1(𝑤) − 𝜃𝜌𝑙−1(𝑤)]

and the ACF of {𝑧𝑡} is

𝜌𝑙(𝑧) = 𝜌𝑙(𝑤)𝑎𝑙2 − (1 − 𝑑)2

𝑙2 − (1 − 𝑑)2

where

𝑎 = (1 − 𝜃)2
[
1 + 𝜃2 − 2𝜃𝑑

1 − 𝑑

]−1

with

𝛾0(𝑧) = 𝛾0(𝑤)[1 + 𝜃2 − 2𝜃𝜌1(𝑤)] =

[
𝜎2

𝑎
Γ(1 − 2𝑑)
Γ(1 − 𝑑)2

] [
1 + 𝜃2 − 2𝜃𝑑

1 − 𝑑

]
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10.4.2 Estimation of Parameters

We first briefly mention the sampling properties of the sample mean

�̄� =
(1

𝑛

) 𝑛∑
𝑡=1

𝑧𝑡

for estimation of the mean 𝜇 = 𝐸[𝑧𝑡] from a fractionally integrated ARMA process. From
the general result that var[�̄�] = (𝛾0(𝑧)∕𝑛)[1 + 2

∑𝑛−1
ℎ=1{(𝑛 − ℎ)∕𝑛}𝜌ℎ(𝑧)] and the property

that 𝜌ℎ(𝑧) ∼ 𝐶ℎ2𝑑−1 as ℎ → ∞, it follows that

𝑛1−2𝑑var[�̄�] → 𝐶∗

for −0.5 < 𝑑 < 0.5, where 𝐶∗ > 0 is a certain constant. Hence, we see that var[�̄�] ≃
𝐶∗∕𝑛1−2𝑑 , whereas for short memory processes (𝑑 = 0), the variance of the sample mean
behaves like var[�̄�] ≃ 𝐶∗∕𝑛. Thus, for 0 < 𝑑 < 0.5, the process mean 𝜇 can be much less
accurately estimated by the sample mean. Equivalently, a much longer series length n is
required for accurate estimation of 𝜇 for long memory processes. Hosking (1996) derived
asymptotic distribution results for sample autocorrelations �̂�𝑙(𝑧) of longmemory processes.

Estimation of the parameters 𝑑,𝝓, 𝜽, and 𝜎2
𝑎
in a fractionally integratedARIMA (𝑝, 𝑑, 𝑞)

process can be performed by maximum likelihood (e.g., Sowell, 1992). However, direct
evaluation of the exact likelihood function is rather slow due partly to the complicated
nature of the autocovariance function of the process. Therefore, approximateML estimation
methods have been considered by Beran (1994, 1995) and others. Another convenient
approach is to obtain an estimate of the parameter 𝑑 initially by certain methods (e.g., using
a frequency-domain nonparametric approach; see Geweke and Porter-Hudak (1983)), and
then estimate 𝝓, 𝜽, and 𝜎2

𝑎
by relatively standard ML methods for the given estimate of

𝑑. Asymptotic normality and the form of limiting covariance matrix of (approximate) ML
estimators have been established by Beran (1995) and argued by Li and McLeod (1986).
Notice that for 𝑑 ≥ 0.5, the fractionally integrated ARMA process is nonstationary. For
such cases, in practice the typical procedure is to first difference the nonstationary process
in the usual way, thus reducing it to a fractionally integrated process with a parameter 𝑑 in
the ‘‘stationary’’ range −0.5 ≤ 𝑑 < 0.5.

One approximate maximum likelihood estimation method is suggested by expressing
the general fractional ARIMA process 𝑧𝑡 in (10.4.2) in the infinite AR form as

𝑧𝑡 −
∞∑

𝑗=1
𝜋∗

𝑗
𝑧𝑡−𝑗 = 𝑎𝑡 (10.4.10)

where

𝜋∗(𝐵) = 1 −
∞∑

𝑗=1
𝜋∗

𝑗
𝐵𝑗 = 𝜃−1(𝐵)𝜙(𝐵)(1 − 𝐵)𝑑

The 𝜋∗
𝑗

coefficients can be obtained recursively based on the relation 𝜃(𝐵)𝜋∗(𝐵) =
𝜙(𝐵)(1 − 𝐵)𝑑 ≡ 𝜑(𝐵), similar to Section 4.2.3, as

𝜋∗
𝑗
− 𝜃1𝜋

∗
𝑗−1 −⋯ − 𝜃𝑞𝜋

∗
𝑗−𝑞

= 𝜑𝑗 𝑗 = 1, 2,…



Box3G Date: May 21, 2015 Time: 10:19 am

390 ADDITIONAL TOPICS AND EXTENSIONS

where𝜑(𝐵) = 𝜙(𝐵)(1 − 𝐵)𝑑 = 1 −
∑∞

𝑗=1 𝜑𝑗𝐵
𝑗 . For example, in anARIMA(1, 𝑑, 1)model,

the 𝜋∗
𝑗
satisfy 𝜋∗

𝑗
− 𝜃1𝜋

∗
𝑗−1 = 𝜑𝑗 , with 𝜑𝑗 = 𝜋𝑗 − 𝜙1𝜋𝑗−1 for 𝑗 ≥ 1, where the 𝜋𝑗 are the

coefficients in (10.4.3) and (10.4.4). In the approximate maximum likelihood or least-
squares method, the truncated errors

𝜀𝑡(𝜷) = 𝑧𝑡 −
𝑡−1∑
𝑗=1

𝜋∗
𝑗
𝑧𝑡−𝑗 𝑡 = 1,… , 𝑛 (10.4.11)

are considered as a function of 𝜷 = (𝝓′, 𝜽′, 𝑑)′, and the estimate 𝜷 is determined by
minimizing the sum of squares 𝑆(𝜷) =

∑𝑛

𝑡=1 𝜀2
𝑡
(𝜷). The corresponding approximate ML

estimate of 𝜎2
𝑎
is then taken as �̂�2

𝑎
= 𝑆(𝜷)∕𝑛. For very long time series, it might be advisable

to discard the first several 𝜀2
𝑡
(𝜷) terms in the sum-of-squares function to be minimized (e.g.,

the first 10--20 values), to avoid the effects of the inaccuracy in the approximation (10.4.11)
for small values of 𝑡.

For practical implementation of the approximatemaximum likelihoodmethod,wemight
consider the following modification suggested because the series (1 − 𝐵)𝑑𝑧𝑡 follows the
ARMA(𝑝, 𝑞)model. Construct the series of truncated values of (1 − 𝐵)𝑑𝑧𝑡 ≡ 𝜋(𝐵)𝑧𝑡 as

𝑧𝑡(𝑑) = 𝑧𝑡 +
𝑡−1∑
𝑗=1

𝜋𝑗(𝑑)𝑧𝑡−𝑗 𝑡 = 1,… , 𝑛

for each 𝑑 a grid of values within −0.5 ≤ 𝑑 < 0.5, where the 𝜋𝑗(𝑑) are the coefficients in
(10.4.3) and (10.4.4). Then for each (fixed) value of 𝑑 on the grid, obtain ML estimates
of the ARMA parameters 𝝓, 𝜽, and 𝜎2

𝑎
, for the time series �̃�𝑡(𝑑),… , �̄�𝑛(𝑑), by the usual

likelihood and sum-of-squares methods of Chapter 7. The estimate 𝑑 is then taken as the
value of 𝑑 that gives the minimum �̂�2

𝑎
or the maximum of the likelihood, and the estimates

�̂�, �̂� associated with this value of 𝑑 are the corresponding approximate ML estimates.
Estimation procedures directly extend to themore practical case of the fractionalARIMA

model with an unknown nonzero mean 𝜇,

𝜙(𝐵)(1 − 𝐵)𝑑(𝑧𝑡 − 𝜇) = 𝜃(𝐵)𝑎𝑡

Although asymptotic theory is established to show that estimation of the additional un-
knownmean parameter 𝜇 does not affect the limiting distribution of the ARIMA parameter
estimates �̂�, �̂�, 𝑑, empirical simulation evidence (e.g., Hauser, 1999; Cheang and Reinsel,
2003) suggests that sampling properties of these estimates can be adversely affected even
for moderately large sample lengths. This behavior may be related to previous discussion
concerning the lower accuracy in estimation of the mean 𝜇 of a fractional ARIMA pro-
cess. A possible remedy to obtain improved estimates of the ARIMA model parameters in
the case of an unknown mean 𝜇, or in situations of more general regression models with
fractional ARIMA noise, is use of the restricted maximum likelihood estimation method
as discussed in Section 9.5.2.

Forecasting. As with parameter estimation, forecasting for fractionally integrated ARMA
processes (10.4.2) is not as convenient as for ARIMA processes with nonnegative inte-
ger value of 𝑑, because of the higher complexity of the differencing operator (1 − 𝐵)𝑑
in the fractional case. Unlike the standard ARIMA model, forecasts cannot be obtained
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conveniently directly from a finite-order difference equation form. For the fractional
ARIMA model, it is simpler to consider forecasts based on the infinite AR form (10.4.10).
Then, similar to (5.3.5) and (5.3.6), from this form we obtain that the 𝑙-step-ahead forecast
of 𝑧𝑡+𝑙 based on the infinite past observations through origin 𝑡, 𝑧𝑡, 𝑧𝑡−1,…, is

�̂�𝑡(𝑙) =
∞∑

𝑗=1
𝜋∗

𝑗
�̂�𝑡(𝑙 − 𝑗) (10.4.12)

where �̂�𝑡(𝑙 − 𝑗) = 𝑧𝑡+𝑙−𝑗 for 𝑗 ≥ 𝑙 as usual. For practical use, with forecasts based on a finite
series of 𝑛 available observations 𝑧1,… , 𝑧𝑛 and 𝑛 sufficiently large, the sum in (10.4.12)
must be truncated as �̂�𝑛(𝑙) =

∑𝑛+𝑙−1
𝑗=1 𝜋∗

𝑗
�̂�𝑛(𝑙 − 𝑗).

Conversely, the process 𝑧𝑡 has the infinite MA form

𝑧𝑡 = 𝜓(𝐵)𝑎𝑡 =
∞∑

𝑗=0
𝜓𝑗𝑎𝑡−𝑗

where 𝜓(𝐵) = Σ∞
𝑗=0𝜓𝑗𝐵

𝑗 = 𝜙−1(𝐵)(1 − 𝐵)−𝑑𝜃(𝐵) ≡ 𝜑−1(𝐵)𝜃(𝐵). From the same reason-
ing as in Chapter 5, we also have the equivalent representation of the lead-𝑙 forecast in
(10.4.12) as

𝑧𝑡(𝑙) =
∞∑
𝑗=𝑙

𝜓𝑗𝑎𝑡+𝑙−𝑗 (10.4.13)

So the forecast error is 𝑒𝑡(𝑙) = 𝑧𝑡+𝑙 − �̂�𝑡(𝑙) =
∑𝑙−1

𝑗=0 𝜓𝑗𝑎𝑡+𝑙−𝑗 , with variance

𝜎2(𝑙) = var[𝑒𝑡(𝑙)] = 𝜎2
𝑎

𝑙−1∑
𝑗=0

𝜓2
𝑗

Example: Series A. Consider again Series A, which is a time series of chemical process
concentration readings with 𝑛 = 197 observations. Two possible models were proposed for
this series in Chapters 6 and 7. One was the ‘‘nearly nonstationary’’ ARMA(1, 1) model,
(1 − 𝜙𝐵)𝑧𝑡 = 𝜃0 + (1 − 𝜃𝐵)𝑎𝑡, with estimates �̂� = 0.92, �̂� = 0.58, �̂�0 = 1.45, and �̂�2

𝑎
=

0.0974. The second was the nonstationary IMA(0, 1, 1) model, (1 − 𝐵)𝑧𝑡 = (1 − 𝜃𝐵)𝑎𝑡,
with estimates �̂� = 0.71 and �̂�2

𝑎
= 0.1004. The unit root test performed in Section 10.1

suggests that the nonstationary IMA(0, 1, 1) model may be more appropriate. Beran (1995)
also examined these data and found that an ARIMA(0, 𝑑, 0) model, that is, a fractionally
integrated white noise model, (1 − 𝐵)𝑑(𝑧𝑡 − 𝜇) = 𝑎𝑡, fits the series well, with estimates
𝑑 = 0.41 and �̂�2

𝑎
= 0.0978. Notice that the estimate of d is less than, but close to, the

nonstationary boundary of 𝑑 < 0.5 for an ARIMA(0, 𝑑, 0) process, giving further support
to the notion that it is very difficult to determine whether this process is stationary or not
based on the series length of only 𝑛 = 197 observations. In certain respects, especially in
terms of longmemory characteristics, the fractionalARIMA(0, 𝑑, 0)model of Beran (1995)
may be viewed as intermediate between the two models suggested earlier. For comparison,
in Table 10.1 we display the first 30𝜓𝑗 coefficients of the ‘‘infinite’’MA representation for
each of the three models considered. Notice that while the 𝜓𝑗 , for ≥ 2, are initially smaller
for the ARIMA(0, 𝑑, 0)model than for the ARMA(1, 1)model, they decay relatively more
slowly and become larger than those of the ARMA(1, 1) for all lags 𝑗 ≥ 18. In contrast,
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TABLE 10.1 Coefficients𝝍
𝒋
of the ‘‘Infinite’’MARepresentations for Three ARIMAModels

Fitted to the Chemical Process Concentration Readings in Series A.

𝑗 ARMA IMA ARMA 𝑗 ARMA IMA ARMA
(1, 1) (0, 1, 1) (0, 𝑑, 0) (1, 1) (0, 1, 1) (0, 𝑑, 0)

1 0.34000 0.290 0.41000 16 0.09734 0.290 0.08938
2 0.31280 0.290 0.28905 17 0.08955 0.290 0.08628
3 0.28778 0.290 0.23220 18 0.08239 0.290 0.08345
4 0.26475 0.290 0.19795 19 0.07580 0.290 0.08086
5 0.24357 0.290 0.17460 20 0.06974 0.290 0.07848
6 0.22409 0.290 0.15743 21 0.06416 0.290 0.07627
7 0.20616 0.290 0.14416 22 0.05902 0.290 0.07423
8 0.18967 0.290 0.13353 23 0.05430 0.290 0.07232
9 0.17449 0.290 0.12477 24 0.04996 0.290 0.07054
10 0.16054 0.290 0.11741 25 0.04596 0.290 0.06888
11 0.14769 0.290 0.11111 26 0.04228 0.290 0.06732
12 0.13588 0.290 0.10565 27 0.03890 0.290 0.06585
13 0.12501 0.290 0.10086 28 0.03579 0.290 0.06446
14 0.11501 0.290 0.09661 29 0.03293 0.290 0.06315
15 0.10581 0.290 0.09281 30 0.03029 0.290 0.06190

for the IMA(0, 1, 1)model we know that the 𝜓𝑗 = 1 − 𝜃, for all 𝑗 > 1, do not decay, which
may not be an appropriate feature of a model for this process.

Remark. The parameters of the ARIMA(0, 𝑑, 0)model can be estimated using the fracdiff
package in R as shown below. From the partial output included, we see that the estimates
𝑑 = 0.40 and �̂�2

𝑎
= (0.3123734)2 = 0.0976 are close to the values quoted above.

> library(fracdiff)
> fracdiff(seriesA, nar=0, nma=0, M=30)

Call: fracdiff(x = numA, nar=0, nma=0, M=30)
Coefficients: d = 0.4001903
sigma[eps] = 0.3123734

EXERCISES

10.1 Download from the Internet the daily stock prices of a company of your choosing.

(a) Plot the data using the graphics capabilities in R. Are there any unusual features
worth noting? Perform a statistical test to determine the presence of a unit root
in the series.

(b) Compute and plot the series of daily log returns. Does the graph show evidence
of volatility clustering? Perform a statistical analysis to determine whether an
AR--ARCH model would be appropriate for your series. If so, fit the model to
the returns.
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10.2 Daily closing prices of four major European stock indices are available for the
period 1991--1998 in the file ‘‘EuStockMarkets’’ in the R datasets package; see
help(EuStockMarkets) for details.

(a) Select two series and plot the data using R. Are there any unusual features worth
noting? Perform a statistical test to determine the presence of a unit root in these
series.

(b) Compute and plot the series of daily log returns. Do the graphs show evi-
dence of volatility clustering? Perform a statistical analysis to determinewhether
AR--ARCH models would be appropriate for your series. State the final models
selected.

10.3 Consider the ARCH(1) process {𝑎𝑡} defined by 𝑎𝑡 = 𝜎𝑡𝑒𝑡, with 𝜎2
𝑡
= 𝛼0 + 𝛼1𝑎

2
𝑡−1,

where the 𝑒𝑡 are independent, identically distributed variates with mean 0 and vari-
ance 1, and assume that 0 < 𝛼1 < 1.

(a) Verify that 𝑎2
𝑡
= 𝛼0

∑∞
𝑗=0 𝛼

𝑗

1𝑒
2
𝑡
𝑒2
𝑡−1⋯ 𝑒2

𝑡−𝑗
= 𝑒2

𝑡
𝛼0

(
1 +

∑∞
𝑗=1 𝛼

𝑗

1𝑒
2
𝑡−1⋯ 𝑒2

𝑡−𝑗

)
or

𝑎𝑡 = 𝑒𝑡

{
𝛼0

(
1 +

∞∑
𝑗=1

𝛼
𝑗

1𝑒
2
𝑡−1⋯ 𝑒2

𝑡−𝑗

)}1∕2

provides a causal (strictly) stationary representation (solution) of the ARCH

model equations, that is, such that 𝜎2
𝑡
= 𝛼0

(
1 +

∑∞
𝑗=1 𝛼

𝑗

1𝑒
2
𝑡−1⋯ 𝑒2

𝑡−𝑗

)
satisfies

𝜎2
𝑡
= 𝛼0 + 𝛼1𝑎

2
𝑡−1 ≡ 𝛼0 + 𝛼1𝑒

2
𝑡−1𝜎

2
𝑡−1.

(b) Use the representation for 𝑎𝑡 in (a) to show that 𝐸[𝑎𝑡] = 0, 𝐸[𝑎2
𝑡
] = var[𝑎𝑡] =

𝛼0∕(1 − 𝛼1), and 𝐸[𝑎𝑡𝑎𝑡−𝑘] = cov[𝑎𝑡, 𝑎𝑡−𝑘] = 0 for 𝑘≠ 0.
(c) Define 𝑋𝑡 = 𝑎2

𝑡
and assume, in addition, that 𝛼2

1 <
1
3 , so that 𝐸[𝑎4

𝑡
] < ∞,

that is, 𝐸[𝑋2
𝑡
] < ∞. Show that the process {𝑋𝑡} satisfies the relation 𝑋𝑡 =

𝑒2
𝑡
(𝛼0 + 𝛼1𝑋𝑡−1), and deduce from this that the autocovariances of {𝑋𝑡} satisfy

cov[𝑋𝑡, 𝑋𝑡−𝑘] = 𝛼1cov[𝑋𝑡−1, 𝑋𝑡−𝑘] for 𝑘≥ 1. Hence, conclude that {𝑋𝑡} has the
same autocorrelation function as an AR(1) process with AR parameter 𝜙 = 𝛼1.

10.4 Consider the GARCH(1, 1) model 𝑎𝑡 = 𝜎𝑡𝑒𝑡, where the 𝑒𝑡 are iid random variables
with mean 0 and variance 1, and 𝜎2

𝑡
= 𝛼0 + 𝛼1𝑎

2
𝑡−1 + 𝛽1𝜎

2
𝑡−1. Show that the uncon-

ditional variance of 𝑎𝑡 equals var[𝑎𝑡] = 𝛼0∕[1 − (𝛼1 + 𝛽1)].

10.5 Derive the five-step-ahead forecast of the conditional variance 𝜎2
𝑡
from a time origin

ℎ for the GARCH(1, 1) process. Repeat the derivation for a GARCH(2, 1) process.

10.6 Suppose that a time series of stock returns {𝑟𝑡} can be represented using an
ARCH(1)-M process 𝑟𝑡 = 𝛿𝜎2

𝑡
+ 𝑎𝑡, 𝑎𝑡 = 𝜎𝑡𝑒𝑡, and 𝜎2

𝑡
= 𝛼0 + 𝛼1𝑎

2
𝑡−1, where the 𝑒𝑡

are iid Normal(0, 1).

(a) Derive the conditional and unconditional mean of the series.

(b) Show that the ARCH-in-mean effect makes the {𝑟𝑡} serially correlated and
calculate the ACF 𝜌𝑘, 𝑘 = 1, 2,… .

10.7 Assume that {𝑧𝑡} is a stationary, zero mean, Gaussian process with autocovariance
function 𝛾𝑘(𝑧) and autocorrelation function 𝜌𝑘(𝑧). Use the property that for zero
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mean Gaussian variates,

𝐸[𝑧𝑡𝑧𝑡+𝑖𝑧𝑡+𝑗𝑧𝑡+𝑘] = 𝐸[𝑧𝑡𝑧𝑡+𝑖]𝐸[𝑧𝑡+𝑗𝑧𝑡+𝑘] + 𝐸[𝑧𝑡𝑧𝑡+𝑗 ]𝐸[𝑧𝑡+𝑖𝑧𝑡+𝑘]
+𝐸[𝑧𝑡𝑧𝑡+𝑘]𝐸[𝑧𝑡+𝑖𝑧𝑡+𝑗 ]

to show that cov[𝑧2𝑡 , 𝑧
2
𝑡+𝑘

] = 2𝛾2
𝑘
(𝑧) and hence that the autocorrelation function of

the process of squared values 𝑋𝑡 = 𝑧2
𝑡
is 𝜌𝑘(𝑋) = 𝜌2

𝑘
(𝑧).

10.8 Consider the first-order bilinear model 𝑧𝑡 = 𝜙𝑧𝑡−1 + 𝑎𝑡 − 𝑏𝑧𝑡−1𝑎𝑡−1, where the 𝑎𝑡

are independent variates with mean 0 and variance 𝜎2
𝑎
. Assume the process {𝑧𝑡} is

stationary, which involves the condition that 𝜙2 + 𝜎2
𝑎
𝑏2 < 1, and assume that {𝑧𝑡}

has a causal stationary representation of the form 𝑧𝑡 = 𝑎𝑡 + 𝑓 (𝑎𝑡−1, 𝑎𝑡−2,…).
(a) Verify that 𝐸[𝑧𝑡𝑎𝑡] = 𝜎2

𝑎
, and so also that 𝜇𝑧 = 𝐸[𝑧𝑡] satisfies (1 − 𝜙)𝜇𝑧 =

−𝑏𝜎2
𝑎
.

(b) Establish that the autocovariances 𝛾𝑘 of {𝑧𝑡} satisfy 𝛾𝑘 = 𝜙𝛾𝑘−1 for𝑘 > 1, so that
the process has the same autocovariance structure as an ARMA(1, 1) process.

10.9 Consider the annual sunspot series referred to as Series E in this text. The series is
also available for a slightly longer time period as series ‘‘sunspot.year’’ in the R
datasets package.
(a) Plot the time series and fit an AR(3) model to the series.

(b) Use the procedure described by McLeod and Li (1983) to test for nonlinearity
in the series.

(c) Repeat part (b) using the Keenan and Tsay tests for nonlinearity.

(d) Describe how you might fit a nonlinear time series model to this series.

10.10 Measurements of the annual flow of the river Nile at Aswan from 1871 to 1970 are
provided as series ‘‘Nile’’ in the R datasets package; type help(Nile) for details.

(a) Plot the data along with the ACF and PACF of the series. Fit an appropriate
ARIMA model to this series and comment.

(b) Perform a statistical analysis to determine whether there is evidence of long
memory dependence in this series.

(c) If the answer in (b) is affirmative, develop a fractionallly integrated ARMA
(i.e. ARFIMA) model for the series.
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PART THREE

TRANSFER FUNCTION AND
MULTIVARIATE MODEL BUILDING

Suppose that𝑋 measures the level of an input to a dynamic system. For example,𝑋 might
be the concentration of some constituent in the feed to a chemical process. Suppose that
the level of 𝑋 influences the level of a system output 𝑌 . For example, 𝑌 might be the
yield of product from the chemical process. It will usually be the case that because of the
inertia of the system, a change in𝑋 from one level to another will have no immediate effect
on the output but, instead, will produce delayed response with 𝑌 eventually coming to
equilibrium at a new level. We refer to such a change as a dynamic response. A model that
describes this dynamic response is called a transfer function model. We shall suppose that
observations of input and output are made at equispaced intervals of time. The associated
transfer function model will then be called a discrete transfer function model.

Models of this kind can describe not only the behavior of industrial processes but also that
of economic and business systems. Transfer function model building is important because
it is only when the dynamic characteristics of a system are understood that intelligent
direction, manipulation, and control of the system is possible.

Even under carefully controlled conditions, influences other than 𝑋 will affect 𝑌 . We
refer to the combined effect on 𝑌 of such influences as the disturbance or the noise. Such
model that can be related to real data must take account of not only the dynamic relationship
associating𝑋 and 𝑌 but also the noise infecting the system. Such joint models are obtained
by combining a deterministic transfer function model with a stochastic noise model.

In Chapter 11 we introduce a class of linear transfer function models capable of rep-
resenting many of the dynamic relationships commonly met in practice. In Chapter 12
we show how, taking account of corrupting noise, they may be related to data. Given the
observed series 𝑋 and 𝑌 , the development of the combined transfer function and noise
model is accomplished by procedures of identification, estimation, and diagnostic checking,

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
○c 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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which closely parallel those already described for univariate time series. In Chapter 13 we
describe how simple pulse and step indicator variables can be used as inputs in transfer
function models to represent and assess the effects of unusual intervention events on the
behavior of a time series 𝑌 . In Chapter 14 the concepts andmethods of bivariate time series
analysis and transfer function modeling are extended to the general study of dynamic rela-
tionships among several time series through development of statistical models andmethods
of multivariate time series analysis.
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11
TRANSFER FUNCTION MODELS

In this chapter, we introduce a class of discrete linear transfer function models. These
models take advantage of the dynamic relationship between two time series for prediction,
control, and other applications. The models considered can be used to represent commonly
occurring dynamic situations and are parsimonious in their use of parameters.

11.1 LINEAR TRANSFER FUNCTION MODELS

We assume that pairs of observations (𝑋𝑡, 𝑌𝑡) are available at equispaced intervals of time
of an input𝑋 and an output 𝑌 from some dynamic system, as illustrated in Figure 11.1. In
some situations, both𝑋 and 𝑌 are essentially continuous but are observed only at discrete
times. It then makes sense to consider not only what the data has to tell us about the model
representing transfer from one discrete series to another, but also what the discrete model
might be able to tell us about the corresponding continuous model. In other examples,
the discrete series are all that exist, and there is no underlying continuous process. Where
we relate continuous and discrete systems, we shall use the basic sampling interval as
the unit of time. That is, periods of time will be measured by the number of sampling
intervals they occupy. Also, a discrete observation 𝑋𝑡 will be deemed to have occurred
‘‘at time 𝑡.’’

When we consider the value of a continuous variable, say 𝑌 at time 𝑡, we denote it by
𝑌 (𝑡). If 𝑡 happens to be a time at which a discrete variable 𝑌 is observed, its value is denoted
by 𝑌𝑡. When we wish to emphasize the dependence of a discrete output 𝑌 , not only on time
but also on the level of the input𝑋, we write 𝑌𝑡(𝑋).

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
○c 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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FIGURE 11.1 Input to, and output from, a dynamic system.

11.1.1 Discrete Transfer Function

With suitable inputs and outputs, which are left to the imagination of the reader, the dynamic
system of Figure 11.1 might represent an industrial process, the economy of a country, or
the behavior of a particular corporation or government agency.

From time to time, we refer to the steady-state level of the output obtained when the
input is held at some fixed value. By this, we mean that the value 𝑌∞(𝑋) at which the
discrete output from a stable system eventually comes to equilibriumwhen the input is held
at the fixed level𝑋. Very often, over the range of interest, the relationship between 𝑌∞(𝑋)
and 𝑋 will be approximately linear. Hence, if we use 𝑌 and 𝑋 to denote deviations from
convenient origins situated on the line, we can write the steady-state relationship as

𝑌∞ = 𝑔𝑋 (11.1.1)

where 𝑔 is called the steady-state gain, and it is understood that 𝑌∞ is a function of 𝑋.
Now, suppose the level of the input is being varied and that𝑋𝑡 and 𝑌𝑡 represent deviations

at time 𝑡 from equilibrium. Then, it frequently happens that to an adequate approximation,
the inertia of the system can be represented by a linear filter of the form

𝑌𝑡 = 𝜐0𝑋𝑡 + 𝜐1𝑋𝑡−1 + 𝜐2𝑋𝑡−2 +⋯

= (𝜐0 + 𝜐1𝐵 + 𝜐2𝐵2 +⋯)𝑋𝑡

= 𝜐(𝐵)𝑋𝑡 (11.1.2)

in which the output deviation at some time 𝑡 is represented as a linear aggregate of input
deviations at times 𝑡, 𝑡 − 1,…. The operator 𝑣(𝐵) is called the transfer function of the filter.

Impulse Response Function. The weights 𝜐0, 𝜐1, 𝜐2,… in (11.1.2) are called the impulse
response function of the system. This is because the 𝜐𝑗 may be regarded as the output or
response at times 𝑗 ≥ 0 to a unit pulse input at time 0, that is, an input𝑋𝑡 such that 𝑋𝑡 = 1
if 𝑡 = 0, 𝑋𝑡 = 0 otherwise. The impulse response function is shown in Figure 11.1 in the
form of a bar chart. When there is no immediate response, one or more of the initial 𝜐’s,
say 𝜐0, 𝜐1,… , 𝜐𝑏−1, will be equal to zero.

According to (11.1.2), the output deviation can be regarded as a linear aggregate of a
series of superimposed impulse response functions scaled by the deviations 𝑋𝑡. This is
illustrated in Figure 11.2, which shows a hypothetical impulse response function and the
transfer it induces from the input to the output. In the situation illustrated, the input and
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FIGURE 11.2 Linear transfer from input 𝑋𝑡 to output 𝑌𝑡.

output are initially in equilibrium. The deviations that occur in the input at times 𝑡 = 1,
𝑡 = 2, and 𝑡 = 3 produce impulse response patterns of deviations in the output, which add
together to produce the overall output response.

Relation Between the Incremental Changes. Denote by

𝑦𝑡 = 𝑌𝑡 − 𝑌𝑡−1 = ∇𝑌𝑡

and by

𝑥𝑡 = 𝑋𝑡 −𝑋𝑡−1 = ∇𝑋𝑡

the incremental changes in 𝑌 and𝑋. We often wish to relate such changes. On differencing
(11.1.2), we obtain

𝑦𝑡 = 𝜐(𝐵)𝑥𝑡

Thus, we see that the incremental changes 𝑦𝑡 and 𝑥𝑡 satisfy the same transfer functionmodel
as do 𝑌𝑡 and 𝑋𝑡.

Stability. If the infinite series 𝜐0 + 𝜐1𝐵 + 𝜐2𝐵2 +⋯ converges for |𝐵| ≤ 1, or equivalently,
if the 𝜐𝑗 are absolutely summable, so that

∑∞
𝑗=0 |𝜐𝑗| < ∞, then the system is said to be

stable. We shall be concerned here only with stable systems and consequently, impose this
condition on the models we study. The stability condition implies that a finite incremental
change in the input results in a finite incremental change in the output.
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Now, suppose that𝑋 is held indefinitely at the value +1. Then, according to (11.1.1), 𝑌
will adjust and maintain itself at the value 𝑔. On substituting in (11.1.2) the values 𝑌𝑡 = 𝑔,
1 = 𝑋𝑡 = 𝑋𝑡−1 = 𝑋𝑡−2 = …, we obtain

∞∑
𝑗=0

𝜐𝑗 = 𝑔 (11.1.3)

Thus, for a stable system the sum of the impulse response weights converges and is equal
to the steady-state gain of the system.

Parsimony. It would often be unsatisfactory to parameterize the system in terms of the
𝜐𝑗’s of (11.1.2). The use of that many parameters could, at the estimation stage, lead
to inaccurate and unstable estimation of the transfer function. Furthermore, it is usually
inappropriate to estimate the weights 𝜐𝑗 directly because for many real situations the 𝜐𝑗’s
would be functionally related, as we now see.

11.1.2 Continuous Dynamic Models Represented by Differential Equations

First-Order Dynamic System. Consider Figure 11.3. Suppose that at time 𝑡, 𝑋(𝑡) is the
volume of water in tank A and 𝑌1(𝑡) the volume of water in tank B, which is connected to A
by a pipe. For the time being we ignore tank C, shown by dashed lines. Now suppose that
water can be forced in or out of A through pipe P and that mechanical devices are available
that make it possible to force the level and hence the volume𝑋 in A to follow any desired
pattern irrespective of what happens in B.

Now if the volume 𝑋 in the first tank is held at some fixed level, water will flow from
one tank to the other until the levels are equal. If we now reset the volume 𝑋 to some
other value, again a flow between the tanks will occur until equilibrium is reached. The
volume in B at equilibrium as a function of the fixed volume in A yields the steady-state

FIGURE 11.3 Representation of a simple dynamic system.
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relationship

𝑌1∞ = 𝑔1𝑋 (11.1.4)

In this case the steady-state gain 𝑔1 physically represents the ratio of the cross-sectional
areas of the two tanks. If the levels are not in equilibrium at some time 𝑡, it is to be noted
that the difference in the water level between the tanks is proportional to 𝑔1𝑋(𝑡) − 𝑌1(𝑡).

Suppose now that by forcing liquid in and out of pipe P, the volume 𝑋(𝑡) is made to
follow a pattern like that labeled ‘‘Input𝑋(𝑡)’’ in Figure 11.3. Then, the volume 𝑌1(𝑡) in B
will correspondingly change in some pattern such as that labeled on the figure as ‘‘Output
𝑌1(𝑡).’’ In general, the function𝑋(𝑡) that is responsible for driving the system is called the
forcing function.

To relate output to input, we note that to a close approximation, the rate of flow through
the pipe will be proportional to the difference in head. That is,

𝑑𝑌1
𝑑𝑡

= 1
𝑇1

[𝑔1𝑋(𝑡) − 𝑌1(𝑡)] (11.1.5)

where 𝑇1 is a constant. The differential equation (11.1.5) may be rewritten in the form

(1 + 𝑇1𝐷)𝑌1(𝑡) = 𝑔1𝑋(𝑡) (11.1.6)

where𝐷 = 𝑑∕𝑑𝑡. The dynamic system so represented by a first-order differential equation is
often referred to as a first-order dynamic system. The constant 𝑇1 is called the time constant
of the system. The same first-ordermodel can approximately represent the behavior ofmany
simple systems. For example, 𝑌1(𝑡) might be the outlet temperature of water from a water
heater, and𝑋(𝑡) the flow rate of water into the heater.

It is possible to show (see, e.g., Jenkins and Watts, 1968) that the solution of a linear
differential equation such as (11.1.6) can be written in the form

𝑌1(𝑡) =
∫

∞

0
𝜐(𝑢)𝑋(𝑡− 𝑢)𝑑𝑢 (11.1.7)

where in general 𝜐(𝑢) is the (continuous) impulse response function. We see that 𝑌1(𝑡) is
generated from𝑋(𝑡) as a continuously weighted aggregate, just as 𝑌𝑡 is generated from𝑋𝑡

as a discretely weighted aggregate in (11.1.2). Furthermore, we see that the role of weight
function played by 𝜐(𝑢) in the continuous case is precisely parallel to that played by 𝜐𝑗 in
the discrete situation. For the particular first-order system defined by (11.1.6),

𝜐(𝑢) = 𝑔1𝑇
−1
1 𝑒−𝑢∕𝑇1

Thus, the impulse response in this case undergoes simple exponential decay, as indicated
in Figure 11.3.

In the continuous case, determination of the output for a completely arbitrary forcing
function, such as shown in Figure 11.3, is normally accomplished by simulation on an
analog computer, or by using numerical procedures on a digital machine. Solutions are
available analytically only for special forcing functions. Suppose, for example, that with
the hydraulic system empty, 𝑋(𝑡) was suddenly raised to a level 𝑋(𝑡) = 1 and maintained
at that value. Then, we shall refer to the forcing function, which was at a steady level of
zero and changed instantaneously to a steady level of unity, as a (unit) step function. The
response of the system to such a function, called the step response to the system, is derived
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FIGURE 11.4 Response of a first-order system to a unit step change.

by solving the differential equation (11.1.6) with a unit step input, to obtain

𝑌1(𝑡) = 𝑔1(1 − 𝑒−𝑡∕𝑇1 ) (11.1.8)

Thus, the level in tank B rises exponentially in the manner shown in Figure 11.4. Now,
when 𝑡 = 𝑇1, 𝑌1(𝑡) = 𝑔1(1 − 𝑒−1) = 0.632𝑔1. Thus, the time constant 𝑇1 is the time required
after the initiation of a step input for the first-order system (11.1.6) to reach 63.2% of its
final equilibrium level.

Sometimes there is an initial period of pure delay or dead time before the response to
a given input change begins to take effect. For example, if there were a long length of
pipe between A and B in Figure 11.3, a sudden change in level in A could not begin to
take effect until liquid had flowed down the pipe. Suppose that the delay thus introduced
occupies 𝜏 units of time. Then, the response of the delayed system would be represented by
a differential equation like (11.1.6), but with 𝑡 − 𝜏 replacing 𝑡 on the right-hand side, so that

(1 + 𝑇1𝐷)𝑌1(𝑡) = 𝑔1𝑋(𝑡 − 𝜏) (11.1.9)

The corresponding impulse and step response functions for this system would be of
precisely the same shape as for the undelayed system, but the functions would be translated
along the horizontal axis a distance 𝜏 .

Second-Order Dynamic System. Consider Figure 11.3 once more. Imagine a three-tank
system in which a pipe leads from tank B to a third tank C, the volume of liquid in which is
denoted by 𝑌2(𝑡). Let 𝑇2 be the time constant for the additional system and 𝑔2 its steady-state
gain. Then, 𝑌2(𝑡) and 𝑌1(𝑡) are related by the differential equation

(1 + 𝑇2𝐷)𝑌2(𝑡) = 𝑔2𝑌1(𝑡)

After substitution in (11.1.6), we obtain a second-order differential equation linking the
output from the third tank and the input to the first:

[1 + (𝑇1 + 𝑇2)𝐷 + 𝑇1𝑇2𝐷2]𝑌2(𝑡) = 𝑔𝑋(𝑡) (11.1.10)

where 𝑔 = 𝑔1𝑔2. For such a system, the impulse response function is a mixture of two
exponentials

𝜐(𝑢) = 𝑔(𝑒−𝑢∕𝑇1 − 𝑒−𝑢∕𝑇2)
𝑇1 − 𝑇2

(11.1.11)
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and the response to a unit step is given by

𝑌2(𝑡) = 𝑔

(
1 −

𝑇1𝑒
−𝑡∕𝑇1 − 𝑇2𝑒−𝑡∕𝑇2
𝑇1 − 𝑇2

)
(11.1.12)

The continuous curve R in Figure 11.5 shows the response to a unit step for the system

(1 + 3𝐷 + 2𝐷2)𝑌2(𝑡) = 5𝑋(𝑡)

for which 𝑇1 = 1, 𝑇2 = 2, 𝑔 = 5. Note that unlike the first-order system, the second-order
system has a step response that has zero slope initially.

A more general second-order system is defined by

(1 + Ξ1𝐷 + Ξ2𝐷
2)𝑌 (𝑡) = 𝑔𝑋(𝑡) (11.1.13)

where

Ξ1 = 𝑇1 + 𝑇2 Ξ2 = 𝑇1𝑇2 (11.1.14)

and the constants 𝑇1 and 𝑇2 may be complex. If we write

𝑇1 =
1
𝜁
𝑒𝑖𝜆 𝑇2 =

1
𝜁
𝑒−𝑖𝜆 (11.1.15)

then (11.1.13) becomes
(
1 + 2 cos𝜆

𝜁
𝐷 + 1

𝜁2
𝐷2

)
𝑌 (𝑡) = 𝑔𝑋(𝑡) (11.1.16)

The impulse response function (11.1.11) then reduces to

𝜐(𝑢) = 𝑔
𝜁𝑒−𝜁𝑢 cos 𝜆 sin(𝜁𝑢 sin 𝜆)

sin 𝜆
(11.1.17)

FIGURE 11.5 Step responses of coincident, discrete, and continuous second-order systems having
characteristic equations with real roots (curve R) and complex roots (curve C).
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and the response (11.1.12) to a unit step, to

𝑌 (𝑡) = 𝑔
[
1 − 𝑒−𝜁𝑡 cos 𝜆sin(𝜁𝑡 sin 𝜆 + 𝜆)

sin 𝜆

]
(11.1.18)

The continuous curve C in Figure 11.5 shows the response to a unit step for the system

(1 +
√
2𝐷 + 2𝐷2)𝑌 (𝑡) = 5𝑋(𝑡)

for which 𝜆 = 𝜋∕3 and 𝜁 =
√
2∕2. It will be noticed that the response overshoots the value

𝑔 = 5 and then comes to equilibrium as a damped sine wave. This behavior is typical of
underdamped systems, as they are called. In general, a second-order system is said to be
overdamped, critically damped, or underdamped, depending on whether the constants 𝑇1
and 𝑇2 are real, real and equal, or complex. The overdamped system has a step response
that is a mixture of two exponentials, given by (11.1.12), and will always remain below the
asymptote 𝑌 (∞) = 𝑔. As with the first-order system, the response can be made subject to a
period of dead time by replacing 𝑡 on the right-hand side of (11.1.13) by 𝑡 − 𝜏 . Many quite
complicated dynamic systems can be closely approximated by such second-order systems
with delay.

More elaborate linear dynamic systems can be represented by allowing not only the level
of the forcing function 𝑋(𝑡) but also its rate of change 𝑑𝑋∕𝑑𝑡 and higher derivatives to
influence the behavior of the system. Thus, a general model for representing (continuous)
dynamic systems is the linear differential equation

(1 + Ξ1𝐷 +⋯ + Ξ𝑅𝐷𝑅)𝑌 (𝑡) = 𝑔(1 +𝐻1𝐷 +⋯ +𝐻𝑆𝐷
𝑆 )𝑋(𝑡− 𝜏) (11.1.19)

11.2 DISCRETE DYNAMIC MODELS REPRESENTED BY DIFFERENCE
EQUATIONS

11.2.1 General Form of the Difference Equation

Corresponding to the continuous representation (11.1.19), discrete dynamic systems are
often parsimoniously represented by the general linear difference equation

(1 + 𝜉1∇ +⋯ + 𝜉𝑟∇𝑟)𝑌𝑡 = 𝑔(1 + 𝜂1∇ +⋯ + 𝜂𝑠∇𝑠)𝑋𝑡−𝑏 (11.2.1)

which we refer to as a transfer function model of order (𝑟, 𝑠). The difference equation
(11.2.1) may also be written in terms of the backward shift operator B, with ∇ = 1 − 𝐵, as

(1 − 𝛿1𝐵 −⋯ − 𝛿𝑟𝐵𝑟)𝑌𝑡 = (𝜔0 − 𝜔1𝐵 −⋯ − 𝜔𝑠𝐵𝑠)𝑋𝑡−𝑏 (11.2.2)

or as

𝛿(𝐵)𝑌𝑡 = 𝜔(𝐵)𝑋𝑡−𝑏

Equivalently, writing Ω(𝐵) = 𝜔(𝐵)𝐵𝑏, the model becomes

𝛿(𝐵)𝑌𝑡 = Ω(𝐵)𝑋𝑡 (11.2.3)



Box3G Date: May 21, 2015 Time: 11:2 am

DISCRETE DYNAMIC MODELS REPRESENTED BY DIFFERENCE EQUATIONS 405

Comparing (11.2.3) with (11.1.2) we see that the transfer function for this model is

𝜐(𝐵) = 𝛿−1(𝐵)Ω(𝐵) (11.2.4)

Thus, the transfer function is represented by the ratio of two polynomial operators in 𝐵.

Dynamics of ARIMA Stochastic Models. The ARIMA model

𝜑(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡

used for the representation of a time series {𝑧𝑡} relates 𝑧𝑡 and 𝑎𝑡 by the linear filtering
operation

𝑧𝑡 = 𝜑−1(𝐵)𝜃(𝐵)𝑎𝑡

where 𝑎𝑡 is white noise. Thus, the ARIMA model postulates that a time series can be
usefully represented as an output from a dynamic system to which the input is white noise
and for which the transfer function can be parsimoniously expressed as the ratio of two
polynomial operators in 𝐵.

Stability of the Discrete Models. The requirement of stability for the discrete transfer
function models exactly parallels that of stationarity for the ARMA stochastic models. In
general, for stability we require that the roots of the characteristic equation

𝛿(𝐵) = 0

with 𝐵 regarded as a variable, lie outside the unit circle. In particular, this implies that for
the first-order model with 𝛿(𝐵) = 1 − 𝛿1𝐵, the parameter 𝛿1 satisfies

−1 < 𝛿1 < 1

and for the second-order model (see, e.g., Fig. 11.5), the parameters 𝛿1, 𝛿2 satisfy

𝛿2 + 𝛿1 < 1

𝛿2 − 𝛿1 < 1

−1 < 𝛿2 < 1

On writing (11.2.2) in full as

𝑌𝑡 = 𝛿1𝑌𝑡−1 +⋯ + 𝛿𝑟𝑌𝑡−𝑟 + 𝜔0𝑋𝑡−𝑏 − 𝜔1𝑋𝑡−𝑏−1 −⋯ − 𝜔𝑠𝑋𝑡−𝑏−𝑠

we see that if 𝑋𝑡 is held indefinitely at a value +1, 𝑌𝑡 will eventually reach the value

𝑔 =
𝜔0 − 𝜔1 −⋯ − 𝜔𝑠
1 − 𝛿1 −⋯ − 𝛿𝑟

(11.2.5)

which expresses the steady-state gain in terms of the parameters of the model.
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11.2.2 Nature of the Transfer Function

If we employ a transfer function model defined by the difference equation (11.2.2), then
substituting

𝑌𝑡 = 𝜐(𝐵)𝑋𝑡 (11.2.6)

in (11.2.2), we obtain the identity

(1 − 𝛿1𝐵 − 𝛿2𝐵2 −⋯ − 𝛿𝑟𝐵𝑟)(𝜐0 + 𝜐1𝐵 + 𝜐2𝐵2 +⋯)
= (𝜔0 − 𝜔1𝐵 −⋯ − 𝜔𝑠𝐵𝑠)𝐵𝑏 (11.2.7)

On equating coefficients of B, we find

𝜐𝑗 =

⎧⎪⎪⎨⎪⎪⎩

0 𝑗 < 𝑏

𝛿1𝜐𝑗−1 + 𝛿2𝜐𝑗−2 +⋯ + 𝛿𝑟𝜐𝑗−𝑟 + 𝜔0 𝑗 = 𝑏

𝛿1𝜐𝑗−1 + 𝛿2𝜐𝑗−2 +⋯ + 𝛿𝑟𝜐𝑗−𝑟 − 𝜔𝑗−𝑏 𝑗 = 𝑏 + 1, 𝑏+ 2,… , 𝑏+ 𝑠
𝛿1𝜐𝑗−1 + 𝛿2𝜐𝑗−2 +⋯ + 𝛿𝑟𝜐𝑗−𝑟 𝑗 > 𝑏 + 𝑠

(11.2.8)

The weights 𝜐𝑏+𝑠, 𝜐𝑏+𝑠−1,… , 𝜐𝑏+𝑠−𝑟+1 supply 𝑟 starting values for the homogeneous dif-
ference equation

𝛿(𝐵)𝜐𝑗 = 0 𝑗 > 𝑏 + 𝑠

The solution 𝜐𝑗 = 𝑓 (𝜹,𝝎, 𝑗) of this difference equation applies to all values 𝜐𝑗 for which
𝑗 ≥ 𝑏 + 𝑠 − 𝑟 + 1.

Thus, in general, the impulse response weights 𝜐𝑗 consist of:

1. 𝑏 zero values 𝜐0, 𝜐1,… , 𝜐𝑏−1.

2. A further 𝑠 − 𝑟 + 1 values 𝜐𝑏, 𝜐𝑏+1,… , 𝜐𝑏+𝑠−𝑟 following no fixed pattern (no such
values occur if 𝑠 < 𝑟).

3. Values 𝜐𝑗 with 𝑗 ≥ 𝑏 + 𝑠 − 𝑟 + 1 following the pattern dictated by the
𝑟th-order difference equation, which has 𝑟 starting values 𝜐𝑏+𝑠, 𝜐𝑏+𝑠−1,…,
𝜐𝑏+𝑠−𝑟+1. Starting values 𝜐𝑗 for 𝑗 < 𝑏 will, of course, be zero.

Step Response. We now write 𝑉 (𝐵) for the generating function of the step response
weights 𝑉𝑗 , which represent the response at times 𝑗 ≥ 0 to a unit step at time 0, 𝑋𝑡 = 1 if

𝑡 ≥ 0, 𝑋𝑡 = 0 if 𝑡 < 0, so that 𝑉𝑗 =
∑𝑗

𝑖=0 𝜐𝑖 for 𝑗 ≥ 0. Thus,

𝑉 (𝐵) = 𝑉0 + 𝑉1𝐵 + 𝑉2𝐵2 +⋯

= 𝜐0 + (𝜐0 + 𝜐1)𝐵 + (𝜐0 + 𝜐1 + 𝜐2)𝐵2 +⋯ (11.2.9)

and

𝜐(𝐵) = (1 − 𝐵)𝑉 (𝐵) (11.2.10)
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Substitution of (11.2.10) in (11.2.7) yields the identity

(1 − 𝛿∗1𝐵 − 𝛿∗2𝐵
2 −⋯ − 𝛿∗

𝑟+1𝐵
𝑟+1)(𝑉0 + 𝑉1𝐵 + 𝑉2𝐵2 +⋯)

= (𝜔0 − 𝜔1𝐵 −⋯ − 𝜔𝑠𝐵𝑠)𝐵𝑏 (11.2.11)

with

(1 − 𝛿∗1𝐵 − 𝛿∗2𝐵
2 −⋯ − 𝛿∗

𝑟+1𝐵
𝑟+1) = (1 − 𝐵)(1 − 𝛿1𝐵 −⋯ − 𝛿𝑟𝐵𝑟) (11.2.12)

The identity (11.2.11) for the step responseweights 𝑉𝑗 exactly parallels the identity (11.2.7)
for the impulse response weights, except that the left-hand operator 𝛿∗(𝐵) is of order 𝑟 + 1
instead of 𝑟.

Using the results (11.2.8), it follows that the step response function is defined by:

1. 𝑏 zero values 𝑉0, 𝑉1,… , 𝑉𝑏−1.

2. A further 𝑠 − 𝑟 values 𝑉𝑏, 𝑉𝑏+1,… , 𝑉𝑏+𝑠−𝑟−1 following no fixed pattern (no such
values occur if 𝑠 < 𝑟 + 1).

3. Values𝑉𝑗 , with 𝑗 ≥ 𝑏 + 𝑠 − 𝑟, which follow the pattern dictated by the (𝑟 + 1)th-order
difference equation 𝛿∗(𝐵)𝑉𝑗 = 0, which has 𝑟 + 1 starting values 𝑉𝑏+𝑠,
𝑉𝑏+𝑠−1,… , 𝑉𝑏+𝑠−𝑟. Starting values 𝑉𝑗 for 𝑗 < 𝑏 will, of course, be zero.

11.2.3 First- and Second-Order Discrete Transfer Function Models

Details of transfer function models for all combinations of 𝑟 = 0, 1, 2 and 𝑠 = 0, 1, 2 are
shown in Table 11.1. Specific examples of themodels, with bar charts showing step response
and impulse response, are given in Figure 11.6. The equations at the end of Table 11.1
allow the parameters 𝜉, 𝑔, 𝜂 of the ∇ form of the model to be expressed in terms of the
parameters 𝜹,𝝎 of the𝐵 form. These equations are given for the most general of the models
considered, namely that for which 𝑟 = 2 and 𝑠 = 2. All the other models are special cases
of this one, and the corresponding equations for these are obtained by setting appropriate
parameters to zero. For example, if 𝑟 = 1 and 𝑠 = 1, 𝜉2 = 𝜂2 = 𝛿2 = 𝜔2 = 0, then

𝛿1 =
𝜉1

1 + 𝜉1
𝜔0 =

𝑔(1 + 𝜂1)
1 + 𝜉1

𝜔1 =
𝑔𝜂1

1 + 𝜉1
In Figure 11.6, the starting values for the difference equations satisfied by the impulse and
step responses, respectively, are indicated by circles on the bar charts.

Discussion of the Models in Table 11.1. The models, whose properties are summarized in
Table 11.1 and Figure 11.6, will require careful study, since they are useful in representing
many commonly met dynamic systems. In all the models the operator 𝐵𝑏 on the right
ensures that the first nonzero term in the impulse response function is 𝑣𝑏. In the examples
in Figure 11.6, the value of 𝑔 is assumed to equal 1, and 𝑏 is assumed to equal 3.

Models with 𝑟 = 0. With 𝑟 and 𝑠 both equal to zero, the impulse response consists of a single
nonzero value 𝜐𝑏 = 𝜔0 = 𝑔. The output is proportional to the input but is displaced by 𝑏 time
intervals. More generally, if we have an operator of order 𝑠 on the right, the instantaneous
input will be delayed 𝑏 intervals and will be spread over 𝑠 + 1 values in proportion to 𝜐𝑏 =
𝜔0, 𝜐𝑏+1 = −𝜔1,… , 𝜐𝑏+𝑠 = −𝜔𝑠. The step response is obtained by summing the impulse
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V

FIGURE 11.6 Examples of impulse and step response functions with gain 𝑔 = 1.

response and eventually satisfies the difference equation (1 − 𝐵)𝑉𝑗 = 0with starting values
𝑉𝑏+𝑠 = 𝑔 = 𝜔0 − 𝜔1 −⋯ − 𝜔𝑠.

Models with 𝑟 = 1. With 𝑠 = 0, the impulse response tails off exponentially (geo-
metrically) from the initial starting value 𝜐𝑏 = 𝜔0 = 𝑔∕(1 + 𝜉1) = 𝑔(1 − 𝛿1). The step re-



Box3G Date: May 21, 2015 Time: 11:2 am

DISCRETE DYNAMIC MODELS REPRESENTED BY DIFFERENCE EQUATIONS 411

sponse increases exponentially until it attains the value 𝑔 = 1. If the exponential step
response is extrapolated backwards as indicated by the dashed line, it cuts the time axis at
time 𝑏 − 1. This corresponds to the fact that 𝑉𝑏−1 = 0 as well as 𝑉𝑏 = 𝜐𝑏 are starting values
for the appropriate difference equation (1 − 𝛿1𝐵)(1 − 𝐵)𝑉𝑗 = 0.

With 𝑠 = 1, there is an initial value 𝜐𝑏 = 𝜔0 = 𝑔(1 + 𝜂1)∕(1 + 𝜉1) of the impulse re-
sponse, which does not follow a pattern. The exponential pattern induced by the differ-
ence equation 𝜐𝑗 = 𝛿1𝜐𝑗−1 associated with the left-hand operator begins with the starting

value 𝜐𝑏+1 = (𝛿1𝜔0 − 𝜔1) = 𝑔(𝜉1 − 𝜂1)∕(1 + 𝜉1)2. The step response function follows an
exponential curve, determined by the difference equation (1 − 𝛿1𝐵)(1 − 𝐵)𝑉𝑗 = 0, which
approaches 𝑔 asymptotically from the starting value 𝑉𝑏 = 𝜐𝑏 and 𝑉𝑏+1 = 𝜐𝑏 + 𝜐𝑏+1. An
exponential curve projected by the dashed line backwards through the points will, in gen-
eral, cut the time axis at some intermediate point in the time interval. We show in Section
11.3 that certain discrete models, which approximate continuous first-order systems having
fractional periods of delay, may in fact be represented by a first-order difference equation
with an operator of order 𝑠 = 1 on the right.

With 𝑠 = 2, there are two values 𝜐𝑏 and 𝜐𝑏+1 for the impulse response that do not follow
a pattern, followed by exponential fall off beginning with 𝜐𝑏+2. Correspondingly, there is a
single preliminary value 𝑉𝑏 in the step response that does not coincide with the exponential
curve projected by the dashed line. This curve is, as before, determined by the difference
equation (1 − 𝛿1𝐵)(1 − 𝐵)𝑉𝑗 = 0 but with starting values 𝑉𝑏+1 and 𝑉𝑏+2.

Models with r = 2. The flexibility of the model with 𝑠 = 0 is limited because the first
starting value of the impulse response is fixed to be zero. More useful models are obtained
for 𝑠 = 1 and 𝑠 = 2. The use of these models in approximating continuous second-order
systems is discussed in Section 11.3 and in Appendix A11.1.

The behavior of the dynamic weights 𝜐𝑗 , which eventually satisfy

𝜐𝑗 − 𝛿1𝜐𝑗−1 − 𝛿2𝜐𝑗−2 = 0 𝑗 > 𝑏 + 𝑠 (11.2.13)

depends on the nature of the roots 𝑆−1
1 and 𝑆−1

2 , of the characteristic equation

1 − 𝛿1𝐵 − 𝛿2𝐵2 = (1 − 𝑆1𝐵)(1 − 𝑆2𝐵) = 0

This dependence is shown in Table 11.2. As in the continuous case, the model may be
overdamped, critically damped, or underdamped, depending on the nature of the roots of
the characteristic equation.

When the roots are complex, the solution of (11.2.13) will follow a damped sine wave,
as in the examples of second-order systems in Figure 11.6. When the roots are real, the
solution will be the sum of two exponentials. As in the continuous case considered in

TABLE 11.2 Dependence of Nature of Second-Order System on the Roots of 𝟏 − 𝜹𝟏𝑩 −
𝜹𝟐𝑩

𝟐 = 𝟎

Roots (𝑆−1
1 , 𝑆

−1
2 ) Condition Damping

Real 𝛿21 + 4𝛿2 > 0 Overdamped
Real and equal 𝛿21 + 4𝛿2 = 0 Critically damped
Complex 𝛿21 + 4𝛿2 < 0 Underdamped
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Section 11.1.2, the system can then be thought of as equivalent to two discrete first-order
systems arranged in series and having parameters 𝑆1 and 𝑆2.

The weights 𝑉𝑗 for the step response eventually satisfy a difference equation

(𝑉𝑗 − 𝑔) − 𝛿1(𝑉𝑗−1 − 𝑔) − 𝛿2(𝑉𝑗−2 − 𝑔) = 0

which is of the same form as (11.2.13). Thus, the behavior of the step response 𝑉𝑗 about
its asymptotic value 𝑔 parallels the behavior of the impulse response about the time axis.
In the situation where there are complex roots, the step response ‘‘overshoots’’ the value
𝑔 and then oscillates about this value until it reaches equilibrium. When the roots are real
and positive, the step response, which is the sum of two exponential terms, approaches its
asymptote 𝑔 without crossing it. However, if there are negative real roots, the step response
may overshoot and oscillate as it settles down to its equilibrium value.

In Figure 11.5, the dots indicate two discrete step responses, labeled 𝑅 and 𝐶 , respec-
tively, in relation to a discrete step input indicated by dots at the bottom of the figure. The
difference equation models1 corresponding to 𝑅 and 𝐶 are

R : (1 − 0.97𝐵 + 0.22𝐵2)𝑌𝑡 = 5(0.15 + 0.09𝐵)𝑋𝑡−1

C : (1 − 1.15𝐵 + 0.49𝐵2)𝑌𝑡 = 5(0.19 + 0.15𝐵)𝑋𝑡−1

Also shown in Figure 11.5 is a diagram of the stability region with the parameter points
(𝛿1, 𝛿2) marked for each of the two models. Note that the system described by model 𝑅,
which has real positive roots, has no overshoot while that for model 𝐶 , which has complex
roots, does have overshoot.

11.2.4 Recursive Computation of Output for Any Input

It would be extremely tedious if it were necessary to use the impulse response form (11.1.2)
of the model to compute the output for a given input. Fortunately, this is not necessary.
Instead, we may employ the difference equation model directly. In this way it is a simple
matter to compute the output recursively for any input. For example, consider the model
with 𝑟 = 1, 𝑠 = 0, 𝑏 = 1, and with 𝜉 = 1 and 𝑔 = 5. Thus,

(1 + ∇)𝑌𝑡 = 5𝑋𝑡−1

or equivalently,

(1 − 0.5𝐵)𝑌𝑡 = 2.5𝑋𝑡−1 (11.2.14)

Table 11.3 shows the calculation of 𝑌𝑡 when the input 𝑋𝑡 is (a) a unit pulse input, (b) a
unit step input, and (c) a ‘‘general’’ input. In all cases, it is assumed that the output has the
initial value 𝑌0 = 0. To perform the recursive calculation, the difference equation is written
out with 𝑌𝑡 on the left. Thus,

𝑌𝑡 = 0.5𝑌𝑡−1 + 2.5𝑋𝑡−1

1The parameters in these models were in fact selected, in a manner to be discussed in Section 11.3.2, so that at the
discrete points, the step responses exactly matched those of the continuous systems introduced in Section 11.1.2.
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TABLE 11.3 Calculation of Output from Discrete First-Order System for Impulse, Step,
and General Input

(a) (b) (c)
Impulse Input Step Input General Input

Input Output Input Output Input Output
𝑡 𝑋𝑡 𝑌𝑡 𝑋𝑡 𝑌𝑡 𝑋𝑡 𝑌𝑡

0 0 0 0 0 0 0
1 1 0 1 0 1.5 0
2 0 2.50 1 2.50 0.5 3.75
3 0 1.25 1 3.75 2.0 3.12
4 0 0.62 1 4.38 1.0 6.56
5 0 0.31 1 4.69 −2.5 5.78
6 0 0.16 1 4.84 0.5 −3.36

and, for example, in the case of the ‘‘general’’ input

𝑌1 = 0.5 × 0 + 2.5 × 0 = 0
𝑌2 = 0.5 × 0 + 2.5 × 1.5 = 3.75
𝑌3 = 0.5 × 3.75 + 2.5 × 0.5 = 3.125

and so on. These inputs and outputs are plotted in Figure 11.7(a), (b), and (c).
In general, we see that having written the transfer function model in the form

𝑌𝑡 = 𝛿1𝑌𝑡−1 +⋯ + 𝛿𝑟𝑌𝑡−𝑟 + 𝜔0𝑋𝑡−𝑏 − 𝜔1𝑋𝑡−𝑏−1 −⋯ − 𝜔𝑠𝑋𝑡−𝑏−𝑠

it is an easy matter to compute the discrete output for any discrete input. To start off the
recursion, we need to know certain initial values. This need is not, of course, a shortcoming
of the method of calculation but comes about because with a transfer function model, the
initial values of 𝑌 will depend on values of𝑋 that occurred before observation was begun.
In practice, when the necessary initial values are not known, we can substitute mean values
for unknown 𝑌 ’s and 𝑋’s (zeros if these quantities are considered as deviations from
their means). The early calculated values will then depend upon this choice of the starting
values. However, for a stable system, the effect of this choice will be negligible after a
period sufficient for the impulse response to become negligible. If this period is 𝑝𝑜 time
intervals, an alternative procedure is to compute 𝑌𝑝𝑜 , 𝑌𝑝𝑜+1,… directly from the impulse
response until enough values are available to set the recursion going.

11.2.5 Transfer Function Models with Added Noise

In practice, the output 𝑌 could not be expected to follow exactly the pattern determined
by the transfer function model, even if that model were entirely adequate. Disturbances of
various kinds other than 𝑋 normally corrupt the system. A disturbance might originate at
any point in the system, but it is often convenient to consider it in terms of its net effect
on the output 𝑌 , as indicated in Figure 1.5. If we assume that the disturbance, or noise
𝑁𝑡, is independent of the level of 𝑋 and is additive with respect to the influence of 𝑋,
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FIGURE 11.7 Response of a first-order system to (a) an impulse, (b) a step, and (c) a ‘‘general’’
input.

we can write

𝑌𝑡 = 𝛿−1(𝐵)𝜔(𝐵)𝑋𝑡−𝑏 +𝑁𝑡 (11.2.15)

If the noise process𝑁𝑡 can be represented by an ARIMA(𝑝, 𝑑, 𝑞)model

𝑁𝑡 = 𝜑−1(𝐵)𝜃(𝐵)𝑎𝑡

where 𝑎𝑡 is white noise, the model (11.2.15) can be written finally as

𝑌𝑡 = 𝛿−1(𝐵)𝜔(𝐵)𝑋𝑡−𝑏 + 𝜑−1(𝐵)𝜃(𝐵)𝑎𝑡 (11.2.16)

In Chapter 12, we describe methods for identifying, fitting, and checking combined transfer
function--noise models of the form (11.2.16).

11.3 RELATION BETWEEN DISCRETE AND CONTINUOUS MODELS

The discrete dynamicmodel, defined by a linear difference equation, is of importance in its
own right. It provides a sensible class of transfer functions and needs no other justification.
In many examples, no question will arise of attempting to relate the discrete model to a
supposed underlying continuous model because no underlying continuous series properly
exists. However, in some cases, for example, where instantaneous observations are taken
periodically on a chemical reactor, the discrete record can be used to tell us something
about the continuous system. In particular, control engineers are used to thinking in terms
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of the time constants and dead times of continuous systems and may best understand the
results of the discrete model analysis when so expressed.

As before, we denote a continuous output and input at time 𝑡 by 𝑌 (𝑡) and 𝑋(𝑡), respec-
tively. Suppose that the output and input are related by the linear filtering operation

𝑌 (𝑡) =
∫

∞

0
𝜐(𝑢)𝑋(𝑡 − 𝑢)𝑑𝑢

Suppose now that only discrete observations (𝑋𝑡, 𝑌𝑡), (𝑋𝑡−1, 𝑌𝑡−1),… of output and input
are available at equispaced intervals of time 𝑡, 𝑡 − 1,… and that the discrete output and
input are related by the discrete linear filter

𝑌𝑡 =
∞∑
𝑗=0

𝑣𝑗𝑋𝑡−𝑗

Then, for certain special cases, and with appropriate assumptions, useful relationships may
be established between the discrete and continuous models.

11.3.1 Response to a Pulsed Input

A special case, which is of importance in the design of the discrete control schemes
discussed in Part Four, arises when the opportunity for adjustment of the process occurs
immediately after observation of the output, so that the input variable is allowed to remain
at the same level between observations. The typical appearance of the resulting square
wave, or pulsed input as we shall call it, is shown in Figure 11.8. We denote the fixed level
at which the input is held during the period 𝑡 − 1 < 𝜏 < 𝑡 by 𝑋𝑡−1+.

Consider a continuous linear system that has b whole periods of delay plus a fractional
period c of further delay. Thus, in terms of previous notation, 𝑏 + 𝑐 = 𝜏 . Then, we can
represent the output from the system as

𝑌 (𝑡) =
∫

∞

0
𝜐(𝑢)𝑋(𝑡 − 𝑢)𝑑𝑢

FIGURE 11.8 Example of a pulsed input.
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FIGURE 11.9 Transfer to output from a pulsed input.

where the impulse response function 𝜐(𝑢) is zero for 𝑢 < 𝑏 + 𝑐. Now for a pulsed input, as
shown in Figure 11.9, the output at time 𝑡 will be given exactly by

𝑌 (𝑡) =

[
∫

𝑏+1

𝑏+𝑐
𝜐(𝑢)𝑑𝑢

]
𝑋𝑡−𝑏−1+ +

[
∫

𝑏+2

𝑏+1
𝜐(𝑢)𝑑𝑢

]
𝑋𝑡−𝑏−2+ +⋯

Thus,

𝑌 (𝑡) = 𝑌𝑡 = 𝜐𝑏𝑋𝑡−𝑏−1+ + 𝜐𝑏+1𝑋𝑡−𝑏−2+ +⋯

Therefore, for a pulsed input, there exists a discrete linear filter that is such that at times
𝑡, 𝑡 − 1, 𝑡− 2,… , the continuous output 𝑌 (𝑡) exactly equals the discrete output.
Given a pulsed input, consider the output 𝑌𝑡 from a discrete model

𝜉(∇)𝑌𝑡 = 𝜂(∇)𝑋𝑡−𝑏−1+ (11.3.1)

of order (r, r) in relation to the continuous output from the 𝑅th-order model

(1 + Ξ1𝐷 + Ξ2𝐷
2 +⋯ + Ξ𝑅𝐷𝑅)𝑌 (𝑡) = 𝑋(𝑡 − 𝑏 − 𝑐) (11.3.2)

subject to the same input. It is shown in Appendix A11.1 that for suitably chosen values
of the parameters (𝚵, 𝑐), the outputs will coincide exactly if 𝑅 = 𝑟. Furthermore, if 𝑐 = 0,
the output from the continuous model (11.3.2) will be identical at the discrete times with
that of a discrete model (11.3.1) of order (𝑟, 𝑟 − 1). We refer to the related continuous and
discrete models as discretely coincident systems. If, then, a discrete model of the form
(11.3.1) of order (𝑟, 𝑟) has been obtained, then on the assumption that the continuous model
would be represented by the 𝑟th-order differential equation (11.3.2), the parameters, and
in particular the time constants for the discretely coincident continuous system, may be
written explicitly in terms of the parameters of the discrete model.

The parameter relationships for a delayed second-order system have been derived in
Appendix A11.1. From these, the corresponding relationships for simpler systems may be
obtained by setting appropriate constants equal to zero, as we shall now discuss.
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11.3.2 Relationships for First- and Second-Order Coincident Systems

Undelayed First-Order System.

B Form. The continuous system satisfying

(1 + 𝑇𝐷)𝑌 (𝑡) = 𝑔𝑋(𝑡) (11.3.3)

is, for a pulsed input, discretely coincident with the discrete system satisfying

(1 − 𝛿𝐵)𝑌𝑡 = 𝜔0𝑋𝑡−1+ (11.3.4)

where

𝛿 = 𝑒−1∕𝑇 𝑇 = (−ln 𝛿)−1 𝜔0 = 𝑔(1 − 𝛿) (11.3.5)

𝛁 Form. Alternatively, the difference equation may be written

(1 + 𝜉∇)𝑌𝑡 = 𝑔𝑋𝑡−1+ (11.3.6)

where

𝜉 = 𝛿

1 − 𝛿
(11.3.7)

To illustrate, we reconsider the example of Section 11.2.4 for the ‘‘general’’ input. The
output for this case is calculated in Table 11.3(c) and plotted in Figure 11.7(c). Suppose
that, in fact, we had a continuous system:

(1 + 1.44𝐷)𝑌 (𝑡) = 5𝑋(𝑡)

Then this would be discretely coincident with the discrete model (11.2.14) actually consid-
ered, namely,

(1 − 0.5𝐵)𝑌𝑡 = 2.5𝑋𝑡−1+

If the input and output were continuous and the input were pulsed, the actual course
of the response would be that shown by the continuous lines in Figure 11.10. The output
would in fact follow a series of exponential curves. Each dashed line shows the further
course that the response would take if no further change in the input were made. The curves
correspond exactly at the discrete sample points with the discrete output already calculated
in Table 11.3(c) and plotted in Figure 11.7(c).

FIGURE 11.10 Continuous response of the system (1 + 1.44𝐷)𝑌 (𝑡) = 5𝑋(𝑡) to a pulsed input.
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Delayed First-Order System.

B Form. The continuous system satisfying

(1 + 𝑇𝐷)𝑌 (𝑡) = 𝑔𝑋(𝑡 − 𝑏 − 𝑐) (11.3.8)

is, for a pulsed input, discretely coincident with the discrete system satisfying

(1 − 𝛿𝐵)𝑌𝑡 = (𝜔0 − 𝜔1𝐵)𝑋𝑡−𝑏−1+ (11.3.9)

where

𝛿 = 𝑒−1∕𝑇 𝜔0 = 𝑔(1 − 𝛿1−𝑐) 𝜔1 = 𝑔(𝛿 − 𝛿1−𝑐 ) (11.3.10)

𝛁 Form. Alternatively, the difference equation may be written

(1 + 𝜉∇)𝑌𝑡 = 𝑔(1 + 𝜂∇)𝑋𝑡−𝑏−1+ (11.3.11)

where

𝜉 = 𝛿

1 − 𝛿
− 𝜂 = 𝛿(𝛿−𝑐 − 1)

1 − 𝛿
(11.3.12)

Now

(1 + 𝜂∇)𝑋𝑡−𝑏−1+ = (1 + 𝜂)𝑋𝑡−𝑏−1+ − 𝜂𝑋𝑡−𝑏−2+ (11.3.13)

can be regarded as an interpolation at an increment (−𝜂) between 𝑋𝑡−𝑏−1+ and 𝑋𝑡−𝑏−2+.
Table 11.4 allows the corresponding parameters (𝜉,−𝜂) and (𝑇 , 𝑐) of the discrete and
continuous models to be determined for a range of alternatives.

Undelayed Second-Order System.

B Form. The continuous system satisfying

(1 + 𝑇1𝐷)(1 + 𝑇2𝐷)𝑌 (𝑡) = 𝑔𝑋(𝑡) (11.3.14)

TABLE 11.4 Values of−𝜼 for Various Values of T and c for a First-Order System with Delay;
Corresponding Values of 𝝃 and 𝜹

−𝜂 for

𝛿 𝜉 𝑇 𝑐 = 0.9 𝑐 = 0.7 𝑐 = 0.5 𝑐 = 0.3 𝑐 = 0.1

0.9 9.00 9.49 0.90 0.69 0.49 0.29 0.10
0.8 4.00 4.48 0.89 0.68 0.47 0.28 0.09
0.7 2.33 2.80 0.88 0.66 0.46 0.26 0.09
0.6 1.50 1.95 0.88 0.64 0.44 0.25 0.08
0.5 1.00 1.44 0.87 0.62 0.41 0.23 0.07
0.4 0.67 1.09 0.85 0.60 0.39 0.21 0.06
0.3 0.43 0.83 0.84 0.57 0.35 0.19 0.05
0.2 0.25 0.62 0.82 0.52 0.31 0.15 0.04
01 0.11 0.43 0.77 0.45 0.24 0.11 0.03
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is, for a pulsed input, discretely coincident with the system

(1 − 𝛿1𝐵 − 𝛿2𝐵
2)𝑌𝑡 = (𝜔0 − 𝜔1𝐵)𝑋𝑡−1+ (11.3.15)

or equivalently, with the system

(1 − 𝑆1𝐵)(1 − 𝑆2𝐵)𝑌𝑡 = (𝜔0 − 𝜔1𝐵)𝑋𝑡−1+ (11.3.16)

where

𝑆1 = 𝑒−1∕𝑇1 𝑆2 = 𝑒−1∕𝑇2

𝜔0 = 𝑔(𝑇1 − 𝑇2)−1[𝑇1(1 − 𝑆1) − 𝑇2(1 − 𝑆2)] (11.3.17)

𝜔1 = 𝑔(𝑇1 − 𝑇2)−1[𝑇1𝑆2(1 − 𝑆1) − 𝑇2𝑆1(1 − 𝑆2)]

𝛁 Form. Alternatively, the difference equation may be written

(1 + 𝜉1∇ + 𝜉2∇2)𝑌𝑡 = 𝑔(1 + 𝜂1∇)𝑋𝑡−1+ (11.3.18)

where

−𝜂1 = (1 − 𝑆1)−1(1 − 𝑆2)−1(𝑇1 − 𝑇2)−1[𝑇2𝑆1(1 − 𝑆2) − 𝑇1𝑆2(1 − 𝑆1)] (11.3.19)

may be regarded as the increment of an interpolation between𝑋𝑡−1+ and𝑋𝑡−2+. Values for
𝜉1 and 𝜉2 in terms of the 𝛿’s can be obtained directly using the results given in Table 11.1.

As a specific example, Figure 11.5 shows the step response for two discrete systems
we have considered before, together with the corresponding continuous responses from the
discretely coincident systems.

The pair of models are, for curve 𝐶 ,

Continuous ∶ (1 + 1.41𝐷 + 2𝐷2)𝑌 (𝑡) = 5𝑋(𝑡)
Discrete ∶ (1 − 1.15𝐵 + 0.49𝐵2)𝑌𝑡 = 5(0.19 + 0.15𝐵)𝑋𝑡−1+

and for curve 𝑅,

Continuous ∶ (1 + 2𝐷)(1 +𝐷)𝑌 (𝑡) = 5𝑋(𝑡)
Discrete ∶ (1 − 0.97𝐵 + 0.22𝐵2)𝑌𝑡 = 5(0.15 + 0.09𝐵)𝑋𝑡−1+

The continuouscurveswere drawn using (11.1.18)and (11.1.12),which give the continuous
step responses for second-order systems having, respectively, complex and real roots.

The discrete representation of the response of a second-order continuous system with
delay to a pulsed input is given in Appendix A11.1.

11.3.3 Approximating General Continuous Models by Discrete Models

Perhaps we should emphasize once more that the discrete transfer function models do not
need to be justified in terms of, or related to, continuous systems. They are of importance
in their own right in allowing a discrete output to be calculated from a discrete input.
However, in some instances, such relationships are of interest.

For continuous systems, the pulsed input arises of itself in control problems when the
convenient way to operate is to make an observation on the output 𝑌 and then immediately
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tomake any adjustment thatmay be needed on the input variable𝑋. Thus, the input variable
stays at a fixed level between observations, and we have a pulsed input. The relationships
established in the previous sections may then be applied immediately. In particular, these
relationships indicate that with the notation we have used, the undelayed discrete system
is represented by

𝜉(∇)𝑌𝑡 = 𝜂(∇)𝑋𝑡−1+

in which the subscript 𝑡 − 1+ on 𝑋 is one step behind the subscript 𝑡 on 𝑌 .

Use of Discrete Models When Continuous Records Are Available. Even though we have
a continuous record of input and output, it may be convenient to determine the dynamic
characteristics of the system by discrete methods, as we describe in Chapter 12. Thus, if
pairs of values are read off with a sufficiently short sampling interval, very little is lost by
replacing the continuous record by the discrete one.

One way in which the discrete results may then be used to approximate the continuous
transfer function is to treat the input as though it were pulsed, that is, to treat the input
record as if the discrete input observed at time 𝑗 extended from just after 𝑗 − 1

2 to 𝑗 + 1
2 .

Thus, 𝑋(𝑡) = 𝑋𝑗(𝑗 −
1
2 < 𝑡 ≤ 𝑗 + 1

2). We can then relate the discrete result to that of the
continuous record by using the pulsed input equations with 𝑋𝑡 replacing 𝑋𝑡+ and with
𝑏 + 𝑐 − 1

2 replacing 𝑏 + 𝑐, that is, with one half a time period subtracted from the delay.
The continuous recordwill normally be read at a sufficiently small sampling interval so that
sudden changes do not occur between the sampled points. In this case, the approximation
will be very close.

APPENDIX A11.1 CONTINUOUS MODELS WITH PULSED INPUTS

We showed in Section 11.3.1 (see also Fig. 11.9) that for a pulsed input, the output from
any delayed continuous linear system

𝑌 (𝑡) =
∫

∞

0
𝜐(𝑢)𝑋(𝑡 − 𝑢)𝑑𝑢

where 𝜐(𝑢) = 0, 𝑢 < 𝑏 + 𝑐, exactly given at the discrete times 𝑡, 𝑡− 1, 𝑡 − 2,… by the discrete
linear filter

𝑌𝑡 = 𝜐(𝐵)𝑋𝑡−1+

where the weights 𝜐0, 𝜐1,… , 𝜐𝑏−1 are zero and the weights 𝜐𝑏, 𝜐𝑏+1,… are given by

𝜐𝑏 =
∫

𝑏+1

𝑏+𝑐
𝜐(𝑢)𝑑𝑢 (A11.1.1)

𝜐𝑏+𝑗 =
∫

𝑏+𝑗+1

𝑏+𝑗
𝜐(𝑢)𝑑𝑢 𝑗 ≥ 1 (A11.1.2)
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Now suppose that the dynamics of the continuous system is represented by the𝑅th-order
linear differential equation

Ξ(𝐷)𝑌 (𝑡) = 𝑔𝑋(𝑡− 𝑏 − 𝑐) (A11.1.3)

which may be written in the form

𝑅∏
ℎ=1

(1 + 𝑇ℎ𝐷)𝑌 (𝑡) = 𝑔𝑋(𝑡− 𝑏 − 𝑐)

where 𝑇1, 𝑇2,… , 𝑇𝑅 may be real or complex. We now show that for a pulsed input,
the output from this continuous system is discretely coincident with that from a discrete
difference equation model of order (𝑟, 𝑟), or of order (𝑟, 𝑟 − 1) if 𝑐 = 0. Now 𝜐(𝑢) is zero
for 𝑢 < 𝑏 + 𝑐 and for 𝑢 ≥ 𝑏 + 𝑐 is in general nonzero and satisfies the differential equation

𝑅∏
ℎ=1

(1 + 𝑇ℎ𝐷)𝜐(𝑢 − 𝑏 − 𝑐) = 0 𝑢 ≥ 𝑏 + 𝑐

Thus,

𝜐(𝑢) = 0 𝑢 < 𝑏 + 𝑐
𝜐(𝑢) = 𝛼1𝑒

−(𝑢−𝑏−𝑐)∕𝑇1 + 𝛼2𝑒−(𝑢−𝑏−𝑐)∕𝑇2 +⋯ + 𝛼𝑅𝑒−(𝑢−𝑏−𝑐)∕𝑇𝑅 𝑢 ≥ 𝑏 + 𝑐

Hence, using (A11.1.1) and (A11.1.2),

𝜐𝑏 =
𝑅∑
ℎ=1

𝛼ℎ𝑇ℎ[1 − 𝑒−(1−𝑐)∕𝑇ℎ] (A11.1.4)

𝜐𝑏+𝑗 =
𝑅∑
ℎ=1

𝛼ℎ𝑇ℎ(1 − 𝑒−1∕𝑇ℎ)𝑒𝑐∕𝑇ℎ𝑒−𝑗∕𝑇ℎ 𝑗 ≥ 1 (A11.1.5)

It will be noted that in the particular case when 𝑐 = 0, the weights 𝜐𝑏+𝑗 are given by
(A11.1.2) for 𝑗 = 0 as well as for 𝑗 > 0.

Now consider the difference equation model of order (𝑟, 𝑠),

𝛿(𝐵)𝑌𝑡 = 𝜔(𝐵)𝐵𝑏𝑋𝑡−1+ (A11.1.6)

If we write

Ω(𝐵) = 𝜔(𝐵)𝐵𝑏

the discrete transfer function 𝜐(𝐵) for this model satisfies

𝛿(𝐵)𝜐(𝐵) = Ω(𝐵) (A11.1.7)

As we have observed in (11.2.8), by equating coefficients in (A11.1.7) we obtain 𝑏 zero
weights 𝜐0, 𝜐1,… , 𝜐𝑏−1, and if 𝑠 ≥ 𝑟, a further 𝑠 − 𝑟 + 1 values 𝜐𝑏, 𝜐𝑏+1,… , 𝜐𝑏+𝑠−𝑟 which
do not follow a pattern. The weights 𝜐𝑗 eventually satisfy

𝛿(𝐵)𝜐𝑗 = 0 𝑗 > 𝑏 + 𝑠 (A11.1.8)
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with 𝜐𝑏+𝑠, 𝜐𝑏+𝑠−1,… , 𝜐𝑏+𝑠−𝑟+1 supplying the required 𝑟 starting values. Now write

𝛿(𝐵) =
𝑟∏

ℎ=1
(1 − 𝑆ℎ𝐵)

where 𝑆−1
1 , 𝑆−1

2 ,… , 𝑆−1
𝑟

are the roots of the equation 𝛿(𝐵) = 0. Then, the solution of
(A11.1.8) is of the form

𝜐𝑗 = 𝐴1(𝝎)𝑆
𝑗

1 + 𝐴2(𝝎)𝑆
𝑗

2 +⋯ + 𝐴𝑟(𝝎)𝑆𝑗𝑟 𝑗 > 𝑏 + 𝑠 − 𝑟 (A11.1.9)

where the coefficients𝐴ℎ(𝝎) are suitably chosen so that the solutions of (A11.1.9) for 𝑗 =
𝑠 − 𝑟 + 1, 𝑠 − 𝑟 + 2,… , 𝑠 generate the starting values 𝜐𝑏+𝑠−𝑟+1,… , 𝜐𝑏+𝑠, and the notation
𝐴ℎ(𝝎) is used as a reminder that the 𝐴ℎ’s are functions of 𝜔0, 𝜔1, … , 𝜔𝑠. Thus, if we set
𝑠 = 𝑟, for given parameters (𝝎, 𝜹) in (A11.1.6), and hence for given parameters (𝝎, S), there
will be a corresponding set of values 𝐴ℎ(𝝎) (ℎ = 1, 2,… , 𝑟) that produce the appropriate 𝑟
starting values 𝜐𝑏+1, 𝜐𝑏+2,… , 𝜐𝑏+𝑟. Furthermore, we know that 𝜐𝑏 = 𝜔0. Thus,

𝜐𝑏 = 𝜔0 (A11.1.10)

𝜐𝑏+𝑗 =
𝑟∑

ℎ=1
𝐴ℎ(𝝎)𝑆

𝑗

ℎ
(A11.1.11)

and we can equate the values of the weights in (A11.1.4) and (A11.1.5), which come from
the differential equation, to those in (A11.1.10) and (A11.1.11), which come from the
difference equation. To do this, we must set

𝑅 = 𝑟 𝑆ℎ = 𝑒−1∕𝑇ℎ

and the remaining 𝑟 + 1 equations

𝜔0 =
𝑟∑

ℎ=1
𝛼ℎ𝑇ℎ(1 − 𝑆1−𝑐

ℎ
)

𝐴ℎ(𝝎) = 𝛼ℎ𝑇ℎ(1 − 𝑆ℎ)𝑆−𝑐
ℎ

determine 𝑐, 𝛼1, 𝛼2,… , 𝛼𝑟 in terms of the 𝑆ℎ’s and 𝜔𝑗’s.
When 𝑐 = 0, we set 𝑠 = 𝑟 − 1, and for given parameters (𝝎, S) in the difference equation,

there will then be a set of 𝑟 values 𝐴ℎ(𝝎) that are functions of 𝜔0, 𝜔1,… , 𝜔𝑟−1, which
produce the 𝑟 starting values 𝜐𝑏, 𝜐𝑏+1,… , 𝜐𝑏+𝑟−1 and which can be equated to the values
given by (A11.1.5) for 𝑗 = 0, 1,… , 𝑟− 1. To do this, we set

𝑅 = 𝑟 𝑆ℎ = 𝑒−1∕𝑇ℎ

and the remaining 𝑟 equations

𝐴ℎ(𝝎) = 𝛼ℎ𝑇ℎ(1 − 𝑆ℎ)

determine 𝛼1, 𝛼2,… , 𝛼𝑟, in terms of the 𝑆ℎ’s and 𝜔𝑗’s.
It follows, in general, that for a pulsed input the output at times 𝑡, 𝑡 − 1,… from the

continuous 𝑟th-order dynamic system defined by

Ξ(𝐷)𝑌 (𝑡) = 𝑔𝑋(𝑡 − 𝑏 − 𝑐) (A11.1.12)
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is identical to the output from a discrete model

𝜉(∇)𝑌𝑡 = 𝑔𝜂(∇)𝑋𝑡−𝑏−1+ (A11.1.13)

of order (𝑟, 𝑟)with the parameters suitably chosen. Furthermore, if 𝑐 = 0, the output from the
continuousmodel (A11.1.12) is identical at the discrete times to that of a model (A11.1.13)
of order (𝑟, 𝑟 − 1).

We now derive the discrete model corresponding to the second-order system with delay,
from which the results given in Section 11.3.2 may be obtained as special cases.

Second-Order System with Delay. Suppose that the differential equation relating input and
output for a continuous system is given by

(1 + 𝑇1𝐷)(1 + 𝑇2𝐷)𝑌 (𝑡) = 𝑔𝑋(𝑡 − 𝑏 − 𝑐) (A11.1.14)

Then, the continuous impulse response function is

𝜐(𝑢) = 𝑔(𝑇1 − 𝑇2)−1(𝑒−(𝑢−𝑏−𝑐)∕𝑇1 − 𝑒−(𝑢−𝑏−𝑐)∕𝑇2) 𝑢 > 𝑏 + 𝑐 (A11.1.15)

For a pulsed input, the output at discrete times 𝑡, 𝑡 − 1, 𝑡 − 2,… will be related to the
input by the difference equation

(1 + 𝜉1∇ + 𝜉2∇2)𝑌𝑡 = 𝑔(1 + 𝜂1∇ + 𝜂2∇2)𝑋𝑡−𝑏−1+ (A11.1.16)

with suitably chosen values of the parameters. This difference equation can also be written

(1 − 𝛿1𝐵 − 𝛿2𝐵2)𝑌𝑡 = (𝜔0 − 𝜔1𝐵 − 𝜔2𝐵
2)𝑋𝑡−𝑏−1+

or

(1 − 𝑆1𝐵)(1 − 𝑆2𝐵)𝑌𝑡 = (𝜔0 − 𝜔1𝐵 − 𝜔2𝐵
2)𝑋𝑡−𝑏−1+ (A11.1.17)

Using (A11.1.1) and (A11.1.2) and writing

𝑆1 = 𝑒−1∕𝑇1 𝑆2 = 𝑒−1∕𝑡2

we obtain

𝜐𝑏 =
∫

𝑏+1

𝑏+𝑐
𝜐(𝑢) 𝑑𝑢 = 𝑔(𝑇1 − 𝑇2)−1[𝑇1(1 − 𝑆1−𝑐

1 ) − 𝑇2(1 − 𝑆1−𝑐
2 )]

𝜐𝑏+𝑗 =
∫

𝑏+𝑗+1

𝑏+𝑗
𝜐(𝑢) 𝑑𝑢 = 𝑔(𝑇1 − 𝑇2)−1[𝑇1𝑆−𝑐

1 (1 − 𝑆1)𝑆
𝑗

1 − 𝑇2𝑆
−𝑐
2 (1 − 𝑆2)𝑆

𝑗

2] 𝑗 ≥ 1

Thus,

(𝑇1 − 𝑇2)𝜐(𝐵) = 𝑔𝐵𝑏𝑇1[1 − 𝑆1−𝑐
1 + 𝑆−𝑐

1 (1 − 𝑆1)(1 − 𝑆1𝐵)−1𝑆1𝐵]

− 𝑔𝐵𝑏𝑇2[1 − 𝑆1−𝑐
2 + 𝑆−𝑐

2 (1 − 𝑆2)(1 − 𝑆2𝐵)−1𝑆2𝐵]

But from (A11.1.17),

𝜐(𝐵) =
𝐵𝑏(𝜔0 − 𝜔1𝐵 − 𝜔2𝐵

2)
(1 − 𝑆1𝐵)(1 − 𝑆2𝐵)
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Hence, we obtain

𝜔0 = 𝑔(𝑇1 − 𝑇2)
−1[𝑇1(1 − 𝑆

1−𝑐
1 ) − 𝑇2(1 − 𝑆

1−𝑐
2 )]

𝜔1 = 𝑔(𝑇1 − 𝑇2)−1[(𝑆1 + 𝑆2)(𝑇1 − 𝑇2) + 𝑇2𝑆1−𝑐
2 (1 + 𝑆1) − 𝑇1𝑆1−𝑐

1 (1 + 𝑆2)]
(A11.1.18)

𝜔2 = 𝑔𝑆1𝑆2(𝑇1 − 𝑇2)−1[𝑇2(1 − 𝑆−𝑐
2 ) − 𝑇1(1 − 𝑆−𝑐

1 )]

and

𝛿1 = 𝑆1 + 𝑆2 = 𝑒−1∕𝑇1 + 𝑒−1∕𝑇2 𝛿2 = −𝑆1𝑆2 = −𝑒−(1∕𝑇1)−(1∕𝑇2) (A11.1.19)

Complex Roots. If 𝑇1 and 𝑇2 are complex, corresponding expressions are obtained by
substituting

𝑇1 = 𝜁−1𝑒𝑖𝜆 𝑇2 = 𝜁−1𝑒−𝑖𝜆 (𝑖2 = −1)

yielding

𝜔0 = 𝑔

{
1 − 𝑒−𝜁(1−𝑐) cos𝜆 sin[𝜁(1 − 𝑐) sin 𝜆 + 𝜆]

sin 𝜆

}

𝜔2 = 𝑔𝛿2

[
1 − 𝑒𝜁𝑐 cos𝜆 sin(−𝜁𝑐 sin 𝜆 + 𝜆)

sin 𝜆

]
(A11.1.20)

𝜔1 = 𝜔0 − 𝜔2 − (1 − 𝛿1 − 𝛿2)𝑔

where

𝛿1 = 2𝑒−𝜁 cos 𝜆 cos(𝜁 sin 𝜆) (A11.1.21)

𝛿2 = −𝑒−2𝜁 cos𝜆

APPENDIX A11.2 NONLINEAR TRANSFER FUNCTIONS
AND LINEARIZATION

The linearity (or additivity) of the transfer function models we have considered implies that
the overall response to the sum of a number of individual inputs will be the sum of the
individual responses to those inputs. Specifically, that if 𝑌 (1)

𝑡
is the response at time 𝑡 to

an input history {𝑋(1)
𝑡
} and {𝑌 (2)

𝑡
} is the response at time 𝑡 to an input history {𝑋(2)

𝑡
} the

response at time 𝑡 to an input history {𝑋(1)
𝑡

+𝑋(2)
𝑡
} would be 𝑌 (1)

𝑡
+ 𝑌 (2)

𝑡
, and similarly

for continuous inputs and outputs. In particular, if the input level is multiplied by some
constant, the output level is multiplied by this same constant. In practice, this assumption
is probably never quite true, but it supplies a useful approximation for many practical
situations.

Models for nonlinear systems may sometimes be obtained by allowing the parameters
to depend upon the level of the input in some prescribed manner. For example, suppose
that a system were being studied over a range where 𝑌 had a maximum 𝜂, and for any 𝑋
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the steady-state relation could be approximated by the quadratic expression

𝑌∞ = 𝜂 − 1
2
𝑘(𝜇 −𝑋)2

where 𝑌 and𝑋 are, as before, deviations from a convenient origin. Then,

𝑔(𝑋) =
𝑑𝑌∞
𝑑𝑋

= 𝑘(𝜇 −𝑋)

and the dynamic behavior of the system might then be capable of representation by the
first-order difference equation (11.3.4) but with variable gain proportional to 𝑘(𝜇 −𝑋).
Thus,

𝑌𝑡 = 𝛿𝑌𝑡−1 + 𝑘(𝜇 −𝑋𝑡−1+)(1 − 𝛿)𝑋𝑡−1+ (A11.2.1)

Dynamics of a Simple Chemical Reactor. It sometimes happens that we can make
a theoretical analysis of a physical problem that will yield the appropriate form for the
transfer function. In particular, this allows us to see very specifically what is involved in
the linearized approximation.

As an example, suppose that a pure chemical A is continuously fed through a stirred
tank reactor, and in the presence of a catalyst a certain proportion of it is changed to a
product B, with no change of overall volume; hence the material continuously leaving the
reactor consists of a mixture of B and unchanged A.

Suppose that initially the system is in equilibrium and that with quantities measured in
suitable units:

1. 𝜇 is the rate at which A is fed to the reactor (and consequently is also the rate at
which the mixture of A and B leaves the reactor).

2. 𝜂 is the proportion of unchanged A at the outlet, so that 1 − 𝜂 is the proportion of the
product B at the outlet.

3. 𝑉 is the volume of the reactor.

4. 𝑘 is a constant determining the rate at which the product B is formed.

Suppose that the reaction is ‘‘first order’’ with respect to A, which means that the rate
at which B is formed and A is used up is proportional to the amount of A present. Then,
the rate of formation of B is 𝑘𝑉 𝜂, but the rate at which B is leaving the outlet is 𝜇(1 − 𝜂),
and since the system is in equilibrium,

𝜇(1 − 𝜂) = 𝑘𝑉 𝜂 (A11.2.2)

Now, suppose that the equilibrium of the system is disturbed, the rate of feed to the
reactor at time 𝑡 being 𝜇 +𝑋(𝑡) and the corresponding concentration of A in the outlet
being 𝜂 + 𝑌 (𝑡). Now, the rate of chemical formation of B, which now equals 𝑘𝑉 [𝜂 + 𝑌 (𝑡)],
will in general no longer exactly balance the rate at which B is flowing out of the system,
which now equals [𝜇 +𝑋(𝑡)][1 − 𝜂 − 𝑌 (𝑡)]. The difference in these two quantities is the
rate of increase in the amount of B within the reactor, which equals −𝑉 [𝑑𝑌 (𝑡)∕𝑑𝑡]. Thus,

−𝑉 𝑑𝑌 (𝑡)
𝑑𝑡

= 𝑘𝑉 [𝜂 + 𝑌 (𝑡)] − [𝜇 +𝑋(𝑡)][1 − 𝜂 − 𝑌 (𝑡)] (A11.2.3)
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Using (A11.2.2) and rearranging, (A11.2.3) may be written

(𝑘𝑉 + 𝜇 + 𝑉 𝐷)𝑌 (𝑡) = 𝑋(𝑡)[1 − 𝜂 − 𝑌 (𝑡)]

or

(1 + 𝑇𝐷)𝑌 (𝑡) = (1 − 𝑌 (𝑡)
1 − 𝜂

)𝑋(𝑡) (A11.2.4)

where

𝑇 = 𝑉

𝑘𝑉 + 𝜇
𝑔 = 1 − 𝜂

𝑘𝑉 + 𝜇
(A11.2.5)

Now (A11.2.4) is a nonlinear differential equation, since it contains a term𝑋(𝑡)multiplied
by 𝑌 (𝑡). However, in some practical circumstances, it could be adequately approximated
by a linear differential equation, as we now show.

Processes operate under a wide range of conditions, but certainly a not unusual situation
might be one where 100(1 − 𝜂), the percentage conversion of feed A to product B was,
say, 80%, and 100𝑌 (𝑡), the percentage fluctuation that was of practical interest, was 4%.
In this case, the factor 1 − 𝑌 (𝑡)∕(1 − 𝜂) would vary from 0.95 to 1.05 and, to a good
approximation, could be replaced by unity. The nonlinear differential equation (A11.2.4)
could then be replaced by the linear first-order differential equation

(1 + 𝑇𝐷)𝑌 (𝑡) = 𝑔𝑋(𝑡)

where 𝑇 and 𝑔 are as defined in Section 11.1.2. If the system was observed at discrete
intervals of time, this equation could be approximated by a linear difference equation.

Situations can obviously occurwhen nonlinearities are of importance. This is particularly
true of optimization studies, where the range of variation for the variables may be large. A
device that is sometimes useful when the linear assumption is not adequate is to represent the
dynamics by a set of linear models applicable over different ranges of the input variables.
This approach could lead to nonlinear transfer function models similar in spirit to the
threshold AR stochastic models considered in Section 10.3. However, for discrete systems
it is often less clumsy to work directly with a nonlinear difference equation that can be
‘‘solved’’ recursively rather than analytically. For example, we might replace the nonlinear
differential equation (A11.2.4) by the nonlinear difference equation

(1 + 𝜉1∇)𝑌𝑡 = 𝑔(1 + 𝜂12𝑌𝑡−1)𝑋𝑡−1

which has a form analogous to a particular case of the bilinear stochastic models discussed
in Section 10.3.

EXERCISES

11.1. In the following transfer function models, 𝑋𝑡 is the methane gas feed rate to a gas
furnace, measured in cubic feet per minute, and 𝑌𝑡 the percent carbon dioxide in the
outlet gas:

(1) 𝑌𝑡 = 10 + 25
1 − 0.7𝐵

𝑋𝑡−1
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(2) 𝑌𝑡 = 10 + 22 − 12.5𝐵
1 − 0.85𝐵

𝑋𝑡−2

(3) 𝑌𝑡 = 10 + 20 − 8.5𝐵
1 − 1.2𝐵 + 0.4𝐵2

𝑋𝑡−3

(a) Verify that the models are stable.

(b) Calculate the steady-state gain 𝑔, expressing it in the appropriate units.

11.2. For each of the models of Exercise 11.1, calculate from the difference equation and
plot the responses to:

(a) A unit impulse (0, 1, 0, 0, 0, 0,…) applied at time 𝑡 = 0
(b) A unit step (0, 1, 1, 1, 1, 1,…) applied at time 𝑡 = 0
(c) A ramp input (0, 1, 2, 3, 4, 5,…) applied at time 𝑡 = 0
(d) A periodic input (0, 1, 0,−1, 0, 1,…) applied at time 𝑡 = 0
Estimate the period and damping factor of the step response to model (3).

11.3. Use equation (11.2.8) to obtain the impulse weights 𝑣𝑗 for each of the models of
Exercise 11.1, and check that they are the same as the impulse response obtained in
Exercise 11.2(a).

11.4. Express the models of Exercise 11.1 in ∇ form.

11.5. (a) Calculate and plot the response of the two-input system

𝑌𝑡 = 10 + 6
1 − 0.7𝐵

𝑋1,𝑡−1 +
8

1 − 0.5𝐵
𝑋2,𝑡−2

to the orthogonal and randomized input sequences shown below.

𝑡 𝑋1𝑡 𝑋2𝑡 𝑡 𝑋1𝑡 𝑋2𝑡

0 0 0 5 1 −1
1 −1 1 6 1 1
2 1 −1 7 −1 −1
3 −1 −1 8 −1 1
4 1 1

(b) Calculate the gains 𝑔1 and 𝑔2 of 𝑌 with respect to 𝑋1 and 𝑋2, respectively, and
express the model in ∇ form.
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12
IDENTIFICATION, FITTING, AND
CHECKING OF TRANSFER FUNCTION
MODELS

In Chapter 11, a parsimonious class of discrete linear transfer function models was intro-
duced:

𝑌𝑡 − 𝛿1𝑌𝑡−1 −⋯ − 𝛿𝑟𝑌𝑡−𝑟 = 𝜔0𝑋𝑡−𝑏 − 𝜔1𝑋𝑡−𝑏−1 −⋯ − 𝜔𝑠𝑋𝑡−𝑏−𝑠

or

𝑌𝑡 = 𝛿−1(𝐵)𝜔(𝐵)𝑋𝑡−𝑏

where𝑋𝑡 and 𝑌𝑡 are deviations from equilibriumof the system input and output. In practice,
the system will be infected by disturbances, or noise, whose net effect is to corrupt the
output predicted by the transfer function model by an amount 𝑁𝑡. The combined transfer
function--noise model may then be written as

𝑌𝑡 = 𝛿−1(𝐵)𝜔(𝐵)𝑋𝑡−𝑏 +𝑁𝑡

In this chapter, methods are described for identifying, fitting, and checking
transfer function--noise models when simultaneous pairs of observations (𝑋1, 𝑌1),
(𝑋2, 𝑌2),… , (𝑋𝑁, 𝑌𝑁 ) of the input and output are available at discrete equispaced times
1, 2,… , 𝑁 .

Engineering methods for estimating transfer functions are usually based on the choice
of special inputs to the system, for example, step and sine wave inputs (Young, 1955)
and ‘‘pulse’’ inputs (Hougen, 1964). These methods have been useful when the system is
affected by small amounts of noise but are less satisfactory otherwise. In the presence of

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
○c 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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appreciable noise, it is necessary to use statistical methods for estimating the transfer func-
tion. Two previous approaches that have been tried for this problem are direct estimation
of the impulse response in the time domain and direct estimation of the gain and phase
characteristics in the frequency domain, as described, for example, by Briggs et al. (1965),
Hutchinson and Shelton (1967), and Jenkins and Watts (1968). These methods are often
unsatisfactory because they involve the estimation of too many parameters. For example,
to determine the gain and phase characteristics, it is necessary to estimate two parame-
ters at each frequency. The approach adopted in this chapter is to estimate the parameters
in parsimonious difference equation models. Throughout most of the chapter we assume
that the input 𝑋𝑡 is itself a stochastic process. Models of the kind discussed are useful in
representing and forecasting certain multiple time series.

12.1 CROSS-CORRELATION FUNCTION

In the same way that the autocorrelation function was used to identify stochastic models
for univariate time series, the data analysis tool employed for the identification of transfer
function models is the cross-correlation function between the input and output. In this
section, we describe the basic properties of the cross-correlation function and in the next
section show how it can be used to identify transfer function models.

12.1.1 Properties of the Cross-Covariance and Cross-Correlation Functions

Bivariate Stochastic Processes. We have seen in Chapter 2 that to analyze a time series,
it is useful to regard it as a realization of a hypothetical population of time series called a
stochastic process. Now, suppose that we want to describe an input time series 𝑋𝑡 and the
corresponding output time series 𝑌𝑡 from some physical system. For example, Figure 12.1
shows continuous data representing the (coded) input gas feed rate and corresponding
output CO2 concentration from a gas furnace. Then we can regard this pair of time series as
realizations of a hypothetical population of pairs of time series, called a bivariate stochastic
process (𝑋𝑡, 𝑌𝑡).Wewill assume that the data are read off at equispaced times yielding a pair
of discrete time series, generated by a discrete bivariate process, and that values of the time
series at times 𝑡0 + ℎ, 𝑡0 + 2ℎ,… , 𝑡0 +𝑁ℎ are denoted by (𝑋1, 𝑌1), (𝑋2, 𝑌2),… , (𝑋𝑁, 𝑌𝑁 ).

In this chapter, we will use the gas furnace data read at intervals of 9 seconds for
illustration. The resulting time series (𝑋𝑡, 𝑌𝑡) consist of 296 observations and are listed as
Series J in the Collection of Time Series section in Part Five. Further details about the data
will be given in Section 12.2.2.

Cross-Covariance and Cross-Correlation Functions. We have seen in Chapter 2 that a
stationary Gaussian stochastic process can be described by its mean 𝜇 and autocovariance
function 𝛾𝑘, or, equivalently, by its mean 𝜇, variance 𝜎2, and autocorrelation function 𝜌𝑘.
Moreover, since 𝛾𝑘 = 𝛾−𝑘 and 𝜌𝑘 = 𝜌−𝑘, the autocovariance and autocorrelation functions
need to be considered only for nonnegative values of the lag 𝑘 = 0, 1, 2,….

In general, a bivariate stochastic process (𝑋𝑡, 𝑌𝑡) need not be stationary. However, as in
Chapter 4, we assume that the appropriately differenced process (𝑥𝑡, 𝑦𝑡), where 𝑥𝑡 = ∇𝑑𝑥𝑋𝑡
and 𝑦𝑡 = ∇𝑑𝑦𝑌𝑡, is stationary. The stationarity assumption implies in particular that the two
processes 𝑥𝑡 and 𝑦𝑡 have constant means 𝜇𝑥 and 𝜇𝑦 and constant variances 𝜎2

𝑥
and 𝜎2

𝑦
. If,

in addition, it is assumed that the bivariate process is Gaussian, or normal, it is uniquely
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FIGURE 12.1 Input gas rate and output CO2 concentration from a gas furnace.

characterized by its means 𝜇𝑥 and 𝜇𝑦 and its covariance matrix. Figure 12.2 shows the
different kinds of covariances that need to be considered.

The autocovariance coefficients of each of the two series at lag 𝑘 are defined by the
usual formula:

𝛾𝑥𝑥(𝑘) = 𝐸[(𝑥𝑡 − 𝜇𝑥)(𝑥𝑡+𝑘 − 𝜇𝑥)] = 𝐸[(𝑥𝑡 − 𝜇𝑥)(𝑥𝑡−𝑘 − 𝜇𝑥)]
𝛾𝑦𝑦(𝑘) = 𝐸[(𝑦𝑡 − 𝜇𝑦)(𝑦𝑡+𝑘 − 𝜇𝑦)] = 𝐸[(𝑦𝑡 − 𝜇𝑦)(𝑦𝑡−𝑘 − 𝜇𝑦)]

where we now use the extended notation 𝛾𝑥𝑥(𝑘) and 𝛾𝑦𝑦(𝑘) for the autocovariances of the
𝑥𝑡 and 𝑦𝑡 series. The only other covariances that can appear in the covariance matrix are
the cross-covariance coefficients between 𝑥𝑡 and 𝑦𝑡 series at lag+𝑘:

𝛾𝑥𝑦(𝑘) = 𝐸[(𝑥𝑡 − 𝜇𝑥)(𝑦𝑡+𝑘 − 𝜇𝑦)] 𝑘 = 0, 1, 2,… (12.1.1)

FIGURE 12.2 Autocovariances and cross-covariances of a bivariate stochastic process.
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and the cross-covariance coefficients between the 𝑦𝑡 and 𝑥𝑡 series at lag +k:

𝛾𝑦𝑥(𝑘) = 𝐸[(𝑦𝑡 − 𝜇𝑦)(𝑥𝑡+𝑘 − 𝜇𝑥)] 𝑘 = 0, 1, 2,… (12.1.2)

Under (bivariate) stationarity, these cross-covariances must be the same for all t and hence
are functions only of the lag 𝑘.

Note that, in general, 𝛾𝑥𝑦(𝑘) will not be the same as 𝛾𝑦𝑥(𝑘). However, since

𝛾𝑥𝑦(𝑘) = 𝐸[(𝑥𝑡−𝑘 − 𝜇𝑥)(𝑦𝑡 − 𝜇𝑦)] = 𝐸[(𝑦𝑡 − 𝜇𝑦)(𝑥𝑡−𝑘 − 𝜇𝑥)] = 𝛾𝑦𝑥(−𝑘)

we need to define only one function 𝛾𝑥𝑦(𝑘) for 𝑘 = 0,±1,±2,…. The function 𝛾𝑥𝑦(𝑘) =
cov[𝑥𝑡, 𝑦𝑡+𝑘], as defined in (12.1.1) for 𝑘 = 0,±1,±2,…, is called the cross-covariance
function of the stationary bivariate process. Similarly, the correlation between 𝑥𝑡 and 𝑦𝑡+𝑘,
which is the dimensionless quantity given by

𝜌𝑥𝑦(𝑘) =
𝛾𝑥𝑦(𝑘)
𝜎𝑥𝜎𝑦

𝑘 = 0,±1,±2,… (12.1.3)

is called the cross-correlation coefficient at lag 𝑘, and the function 𝜌𝑥𝑦(𝑘), defined for
𝑘 = 0,±1,±2,…, the cross-correlation function of the stationary bivariate process.

Since 𝜌𝑥𝑦(𝑘) is not in general equal to 𝜌𝑥𝑦(−𝑘), the cross-correlation function, in contrast
to the autocorrelation function, is not symmetric about 𝑘 = 0. In fact, it will sometimes
happen that the cross-correlation function is zero over some range −∞ to 𝑖 or i to +∞.
For example, consider the cross-covariance function between the series 𝑎𝑡 and 𝑧𝑡 for the
‘‘delayed’’ first-order autoregressive process:

(1 − 𝜙𝐵)�̃�𝑡 = 𝑎𝑡−𝑏 − 1 < 𝜙 < 1 𝑏 > 0

where 𝑎𝑡 is white noise with zero mean and variance 𝜎2
𝑎
. Then since

�̃�𝑡+𝑘 = 𝑎𝑡+𝑘−𝑏 + 𝜙𝑎𝑡+𝑘−𝑏−1 + 𝜙2𝑎𝑡+𝑘−𝑏−2 +⋯

the cross-covariance function between the series 𝑎𝑡 and 𝑧𝑡 is

𝛾𝑎𝑧(𝑘) = 𝐸[𝑎𝑡�̃�𝑡+𝑘] =
{
𝜙𝑘−𝑏𝜎2

𝑎
𝑘 ≥ 𝑏

0 𝑘 < 𝑏

Hence, for the delayed autoregressive process, the cross-correlation function is

𝜌𝑎𝑧(𝑘) =
⎧⎪⎨⎪⎩

𝜙𝑘−𝑏
𝜎𝑎

𝜎𝑧
= 𝜙𝑘−𝑏(1 − 𝜙2)1∕2 𝑘 ≥ 𝑏

0 𝑘 < 𝑏

Figure 12.3 shows this cross-correlation function when b = 2 and 𝜙 = 0.6.

12.1.2 Estimation of the Cross-Covariance and Cross-Correlation Functions

We assume that after differencing the original input and output time series 𝑑 times, there
are 𝑛 = 𝑁 − 𝑑 pairs of values (𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑛, 𝑦𝑛) available for analysis. Then
it is shown, for example, in Jenkins and Watts (1968), that an estimate 𝑐𝑥𝑦(𝑘) of the
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FIGURE 12.3 Cross-correlation function between 𝑎𝑡 and 𝑧𝑡 for delayed autoregressive process
�̃�𝑡 − 0.6�̃�𝑡−1 = 𝑎𝑡−2.

cross-covariance coefficient at lag 𝑘 is provided by

𝑐𝑥𝑦(𝑘) =

⎧⎪⎪⎨⎪⎪⎩

1
𝑛

𝑛−𝑘∑
𝑡=1

(𝑥𝑡 − �̄�)(𝑦𝑡+𝑘 − �̄�) 𝑘 = 0, 1, 2,…

1
𝑛

𝑛+𝑘∑
𝑡=1

(𝑦𝑡 − �̄�)(𝑥𝑡−𝑘 − �̄�) 𝑘 = 0,−1,−2,…
(12.1.4)

where �̄� and �̄� are the sample means of the 𝑥𝑡 series and 𝑦𝑡 series, respectively. Similarly,
the estimate 𝑟𝑥𝑦(𝑘) of the cross-correlation coefficient 𝜌𝑥𝑦(𝑘) at lag 𝑘 may be obtained

by substituting in (12.1.3) the estimates 𝑐𝑥𝑦(𝑘) for 𝛾𝑥𝑦(𝑘), 𝑠𝑥 =
√
𝑐𝑥𝑥(0) for 𝜎𝑥, and 𝑠𝑦 =√

𝑐𝑦𝑦(0) for 𝜎𝑦, yielding

𝑟𝑥𝑦(𝑘) =
𝑐𝑥𝑦(𝑘)
𝑠𝑥𝑠𝑦

𝑘 = 0,±1,±2,… (12.1.5)

The top graph in Figure 12.4 shows the estimated cross-correlation function 𝑟𝑥𝑦(𝑘)
between the input and output series for the discrete gas furnace data obtained by reading
the continuous data of Figure 12.1 at intervals of 9 seconds. Note that the cross-correlation
function is not symmetrical about zero and has a well-defined peak at 𝑘 = +5, indicating
that the output lags behind the input. The cross-correlations are negative. This is to be
expected since an increase in the coded input produces a decrease in the output as seen
from Figure 12.1. The autocorrelation functions of the input and output variables are also
included in Figure 12.4. Both variables are highly autocorrelated and the slowly decaying
patterns are indicative of an autoregressive dependence structure in these series.

Figure 12.4 can be reproduced in R as follows:

> gasfur = read.table(’SeriesJ.txt’,header=T)
> X = gasfur[,1]
> Y = gasfur[,2]
> CCF=ccf(Y,X)
> ACF.y=acf(Y)
> ACF.x=acf(X)
> par(mfrow=c(3,1))
> plot(CCF,ylab="CCF",main="Cross Correlation Between
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FIGURE 12.4 Estimated cross-correlation function between input and output for coded gas furnace
data read at 9-second intervals along with the autocorrelation functions for the individual series.

Input and Output")
> plot(ACF.x,main="ACF for Input")
> plot(ACF.y,main="ACF for Output")

12.1.3 Approximate Standard Errors of Cross-Correlation Estimates

A crude check as to whether certain values of the cross-correlation function 𝜌𝑥𝑦(𝑘) could be
effectively zero may be made by comparing the corresponding cross-correlation estimates
with their approximate standard errors. Bartlett (1955) showed that the covariance between
two cross-correlation estimates 𝑟𝑥𝑦(𝑘) and 𝑟𝑥𝑦(𝑘 + 𝑙) is, on the normal assumption, and
𝑘 ≥ 0, given by

cov[𝑟𝑥𝑦(𝑘), 𝑟𝑥𝑦(𝑘 + 𝑙)]

≃ (𝑛 − 𝑘)−1
∞∑

𝜐=−∞
{𝜌𝑥𝑥(𝜐)𝜌𝑦𝑦(𝜐 + 𝑙) + 𝜌𝑥𝑦(−𝜐)𝜌𝑥𝑦(𝜐 + 2𝑘 + 𝑙)

+ 𝜌𝑥𝑦(𝑘)𝜌𝑥𝑦(𝑘 + 𝑙)[𝜌2𝑥𝑦(𝜐) +
1
2𝜌

2
𝑥𝑥
(𝜐) + 1

2𝜌
2
𝑦𝑦
(𝜐)]

− 𝜌𝑥𝑦(𝑘)[𝜌𝑥𝑥(𝜐)𝜌𝑥𝑦(𝜐 + 𝑘 + 𝑙) + 𝜌𝑥𝑦(−𝜐)𝜌𝑦𝑦(𝜐 + 𝑘 + 𝑙)]
− 𝜌𝑥𝑦(𝑘 + 𝑙)[𝜌𝑥𝑥(𝜐)𝜌𝑥𝑦(𝜐 + 𝑘) + 𝜌𝑥𝑦(−𝜐)𝜌𝑦𝑦(𝜐 + 𝑘)]} (12.1.6)
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In particular, setting 𝑙 = 0,

var[𝑟𝑥𝑦(𝑘)]

≃ (𝑛 − 𝑘)−1
∞∑

𝜐=−∞
{𝜌𝑥𝑥(𝜐)𝜌𝑦𝑦(𝜐) + 𝜌𝑥𝑦(𝑘 + 𝜐)𝜌𝑥𝑦(𝑘 − 𝜐)

+ 𝜌2
𝑥𝑦
(𝑘)[𝜌2

𝑥𝑦
(𝜐) + 1

2𝜌
2
𝑥𝑥
(𝜐) + 1

2𝜌
2
𝑦𝑦
(𝜐)]

− 2𝜌𝑥𝑦(𝑘)[𝜌𝑥𝑥(𝜐)𝜌𝑥𝑦(𝜐 + 𝑘) + 𝜌𝑥𝑦(−𝜐)𝜌𝑦𝑦(𝜐 + 𝑘)]} (12.1.7)

Formulas that apply to important special cases can be derived from these general ex-
pressions. For example, if we assume that 𝑥𝑡 ≡ 𝑦𝑡, it becomes appropriate to set

𝜌𝑥𝑥(𝜐) = 𝜌𝑦𝑦(𝜐) = 𝜌𝑥𝑦(𝜐) = 𝜌𝑥𝑦(−𝜐)

On making this substitution in (12.1.6) and (12.1.7), we obtain an expression for the
covariance between two autocorrelation estimates and, more particularly, the expression
for the variance of an autocorrelation estimate given earlier in (2.1.13).

It is often the case that two processes are appreciably cross-correlated only over some
rather narrow range of lags. Suppose it is postulated that 𝜌𝑥𝑦(𝜐) is nonzero only over some
range𝑄1 ≤ 𝜐 ≤ 𝑄2. Then,

1. If neither 𝑘, 𝑘 + 𝑙, nor 𝑘 + 1
2 𝑙 are included in this range, all terms in (12.1.6) except

the first are zero, and

cov[𝑟𝑥𝑦(𝑘), 𝑟𝑥𝑦(𝑘 + 𝑙)] ≃ (𝑛 − 𝑘)−1
∞∑

𝜐=−∞
𝜌𝑥𝑥(𝜐)𝜌𝑦𝑦(𝜐 + 𝑙) (12.1.8)

2. If 𝑘 is not included in this range, then in a similar way (12.1.7) reduces to

var[𝑟𝑥𝑦(𝑘)] ≃ (𝑛 − 𝑘)−1
∞∑

𝜐=−∞
𝜌𝑥𝑥(𝜐)𝜌𝑦𝑦(𝜐) (12.1.9)

In particular, on the hypothesis that the two processes have no cross-correlation, that
is, cross-correlations are zero for all lags, it follows that the simple formulas (12.1.8) and
(12.1.9) apply for all lags 𝑘 and 𝑘 + 𝑙.

Another special case of some interest occurswhen two processes are not cross-correlated
and one is white noise. Suppose that 𝑥𝑡 = 𝑎𝑡 is generated by a white noise process but 𝑦𝑡 is
autocorrelated. Then from (12.1.8),

cov[𝑟𝑎𝑦(𝑘), 𝑟𝑎𝑦(𝑘 + 𝑙)] ≃ (𝑛 − 𝑘)−1𝜌𝑦𝑦(𝑙) (12.1.10)

var[𝑟𝑎𝑦(𝑘)] ≃ (𝑛 − 𝑘)−1 (12.1.11)

Hence, it follows that

𝜌[𝑟𝑎𝑦(𝑘), 𝑟𝑎𝑦(𝑘 + 𝑙)] ≃ 𝜌𝑦𝑦(𝑙) (12.1.12)

Thus, in this case the cross-correlations have the same autocorrelation function as the
process generating the output 𝑦𝑡. Thus, even though 𝑎𝑡 and 𝑦𝑡 are not cross-correlated,
the sample cross-correlation function can be expected to vary about zero with standard
deviation (𝑛 − 𝑘)−1∕2 in a systematic pattern typical of the behavior of the autocorrelation
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function 𝜌𝑦𝑦(𝑙). Finally, if two processes are both white noise and are not cross-correlated,
the covariance between cross-correlation estimates at different lags will be zero.

12.2 IDENTIFICATION OF TRANSFER FUNCTION MODELS

We now show how to identify a combined transfer function--noise model

𝑌𝑡 = 𝛿−1(𝐵)𝜔(𝐵)𝑋𝑡−𝑏 +𝑁𝑡

for a linear system corrupted by noise𝑁𝑡 at the output and assumed to be generated by an
ARIMA process that is statistically independent1 of the input𝑋𝑡. Specifically, the objective
at this stage is to obtain some idea of the orders 𝑟 and 𝑠 of the denominator and numerator
operators in the transfer functionmodel and to derive initial guesses for the parameters 𝜹,𝝎,
and the delay parameter 𝑏. In addition, we aim to make initial guesses of the orders 𝑝, 𝑑, 𝑞
of the ARIMA process describing the noise at the output and to obtain initial estimates of
the parameters 𝝓 and 𝜽 in that model. The tentative transfer function and noise models
so obtained can then be used as a starting point for more efficient estimation methods
described in Section 12.3.

Outline of the Identification Procedure. Suppose that the transfer function model

𝑌𝑡 = 𝜐(𝐵)𝑋𝑡 +𝑁𝑡 (12.2.1)

may be parsimoniously parameterized in the form

𝑌𝑡 = 𝛿−1(𝐵)𝜔(𝐵)𝑋𝑡−𝑏 +𝑁𝑡 (12.2.2)

where 𝛿(𝐵) = 1 − 𝛿1𝐵 − 𝛿2𝐵2 −⋯ − 𝛿𝑟𝐵𝑟 and 𝜔(𝐵) = 𝜔0 − 𝜔1𝐵 − 𝜔2𝐵
2 −⋯ − 𝜔𝑠𝐵𝑠.

The identification procedure is as follows:

1. Derive rough estimates �̂�𝑗 of the impulse response weights 𝜐𝑗 in (12.2.1).

2. Use the estimates �̂�𝑗 so obtained to make guesses of the orders 𝑟 and 𝑠 of the
denominator and numerator operators in (12.2.2) and of the delay parameter 𝑏.

3. Substitute the estimates �̂�𝑗 in equations (11.2.8) with values of 𝑟, 𝑠, and 𝑏 obtained
from step 2 to obtain initial estimates of the parameters 𝜹 and 𝝎 in (12.2.2).

Knowing the �̂�𝑗 , values of 𝑏, 𝑟, and 𝑠may be guessed using the following facts established
in Section 11.2.2. For a model of the form of (12.2.2), the impulse response weights 𝜐𝑗
consist of:

1. 𝑏 zero values 𝜐0, 𝜐1,… , 𝜐𝑏−1.

2. A further 𝑠 − 𝑟 + 1 values 𝜐𝑏, 𝜐𝑏+1,… , 𝜐𝑏+𝑠−𝑟 following no fixed pattern (no such
values occur if 𝑠 < 𝑟).

1When the input is at our choice, we can guarantee that it is independent of 𝑁𝑡 by generating 𝑋𝑡 according to
some random process.
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3. Values 𝜐𝑗 with 𝑗 ≥ 𝑏 + 𝑠 − 𝑟 + 1 that follow the pattern dictated by an 𝑟th-order
difference equation that has 𝑟 starting values 𝜐𝑏+𝑠,… , 𝜐𝑏+𝑠−𝑟+1. Starting values 𝜐𝑗
for 𝑗 < 𝑏 will, of course, be zero.

Differencing of the Input and Output. The basic tool that is employed here in the iden-
tification procedure is the cross-correlation function between input and output. When the
processes are nonstationary, it is assumed that stationarity can be induced by suitable dif-
ferencing. Nonstationary behavior is suspected if the estimated auto- and cross-correlation
functions of the (𝑋𝑡, 𝑌𝑡) series fail to damp out quickly. We assume that a degree of differ-
encing2 𝑑 necessary to induce stationarity has been achieved when the estimated auto- and
cross-correlations 𝑟𝑥𝑥(𝑘), 𝑟𝑦𝑦(𝑘), and 𝑟𝑥𝑦(𝑘) of 𝑥𝑡 = ∇𝑑𝑋𝑡 and 𝑦𝑡 = ∇𝑑𝑌𝑡 damp out quickly.
In practice, 𝑑 is usually 0, 1, or 2.

Identification of the Impulse Response Function Without Prewhitening. Suppose that
after differencing 𝑑 times, the model (12.2.1) can be written in the form

𝑦𝑡 = 𝜐0𝑥𝑡 + 𝜐1𝑥𝑡−1 + 𝜐2𝑥𝑡−2 +⋯ + 𝑛𝑡 (12.2.3)

where 𝑦𝑡 = ∇𝑑𝑌𝑡, 𝑥𝑡 = ∇𝑑𝑋𝑡, and 𝑛𝑡 = ∇𝑑𝑁𝑡 are stationary processes with zero means.
Then, on multiplying throughout in (12.2.3) by 𝑥𝑡−𝑘 for 𝑘 ≥ 0, we obtain

𝑥𝑡−𝑘𝑦𝑡 = 𝜐0𝑥𝑡−𝑘𝑥𝑡 + 𝜐1𝑥𝑡−𝑘𝑥𝑡−1 +⋯ + 𝑥𝑡−𝑘𝑛𝑡 (12.2.4)

If we make the further assumption that 𝑥𝑡−𝑘 is uncorrelated with 𝑛𝑡 for all 𝑘, taking
expectations in (12.2.4) yields the set of equations

𝛾𝑥𝑦(𝑘) = 𝜐0𝛾𝑥𝑥(𝑘) + 𝜐1𝛾𝑥𝑥(𝑘 − 1) +⋯ 𝑘 = 0, 1, 2,… (12.2.5)

Suppose that the weights 𝜐𝑗 are effectively zero beyond 𝑘 = 𝐾 . Then the first 𝐾 + 1 of
the equations (12.2.5) can be written as

𝜸𝑥𝑦 = 𝚪𝑥𝑥𝐯 (12.2.6)

where

𝜸𝑥𝑦 =

⎡⎢⎢⎢⎢⎢⎣

𝛾𝑥𝑦(0)
𝛾𝑥𝑦(1)
⋮

𝛾𝑥𝑦(𝐾)

⎤⎥⎥⎥⎥⎥⎦

𝐯 =

⎡⎢⎢⎢⎢⎣

𝜐0
𝜐1
⋮

𝜐𝐾

⎤⎥⎥⎥⎥⎦

𝚪𝑥𝑥 =

⎡⎢⎢⎢⎢⎣

𝛾𝑥𝑥(0) 𝛾𝑥𝑥(1) ⋯ 𝛾𝑥𝑥(𝐾)
𝛾𝑥𝑥(1) 𝛾𝑥𝑥(0) ⋯ 𝛾𝑥𝑥(𝐾 − 1)
⋮ ⋮ ⋱ ⋮

𝛾𝑥𝑥(𝐾) 𝛾𝑥𝑥(𝐾 − 1) ⋯ 𝛾𝑥𝑥(0)

⎤⎥⎥⎥⎥⎦

2The procedures outlined can equally well be used when different degrees of differencing are employed for input
and output.
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Substituting estimates 𝑐𝑥𝑥(𝑘) of the autocovariance function of the input 𝑥𝑡 and estimates
𝑐𝑥𝑦(𝑘) of the cross-covariance function between the input𝑥𝑡 and output 𝑦𝑡, (12.2.6) provides
𝐾 + 1 linear equations for the first 𝐾 + 1 weights. However, these equations, which do
not in general provide efficient estimates, are cumbersome to solve for large 𝐾 and in
any case require knowledge of the point 𝐾 beyond which the 𝜐𝑗 are effectively zero. The
sample version of equations (12.2.6) represents essentially, apart from ‘‘end effects,’’ the
least-squares normal equations from linear regression of 𝑦𝑡 on 𝑥𝑡, 𝑥𝑡−1,… , 𝑥𝑡−𝐾 , in which
it is assumed, implicitly, that the noise 𝑛𝑡 in (12.2.3) is not autocorrelated. This is one
source of the inefficiency in this identification method, which may be called the regression
method. To improve the efficiency of this method, Liu and Hanssens (1982) (see also
Pankratz (1991, Chapter 5)) suggest performing generalized least-squares estimation of the
regression equation 𝑦𝑡 = 𝜐0𝑥𝑡 + 𝜐1𝑥𝑡−1 +⋯ + 𝜐𝐾𝑥𝑡−𝐾 + 𝑛𝑡 assuming the noise 𝑛𝑡 follows
some autocorrelated time series ARMA model. They also discuss generalization of this
method of identification of impulse response functions to the case with multiple input
processes𝑋1,𝑡, 𝑋2,𝑡,… , 𝑋𝑚,𝑡 in the model, that is, 𝑌𝑡 = 𝜐1(𝐵)𝑋1,𝑡 +⋯ + 𝜐𝑚(𝐵)𝑋𝑚,𝑡 +𝑁𝑡.

12.2.1 Identification of Transfer Function Models by Prewhitening the Input

Considerable simplification in the identification process would occur if the input to the
system were white noise. Indeed, as discussed in more detail in Section 12.5, when the
choice of the input is at our disposal, there is much to recommend such an input. When
the original input follows some other stochastic process, simplification is possible by
prewhitening.

Suppose that the suitably differenced input process 𝑥𝑡 is stationary and is capable
of representation by some member of the general linear class of autoregressive--moving
average models. Then, given a set of data, we can carry out our usual identification and
estimation methods to obtain a model for the 𝑥𝑡 process:

𝜃−1
𝑥
(𝐵)𝜙𝑥(𝐵)𝑥𝑡 = 𝛼𝑡 (12.2.7)

which, to a close approximation, transforms the correlated input series𝑥𝑡 to the uncorrelated
white noise series 𝛼𝑡. At the same time, we can obtain an estimate 𝑠2

𝛼
of 𝜎2

𝛼
from the sum

of squares of the �̂�𝑡’s. If we now apply this same transformation to 𝑦𝑡 to obtain

𝛽𝑡 = 𝜃−1𝑥 (𝐵)𝜙𝑥(𝐵)𝑦𝑡

then the model (12.2.3) may be written as

𝛽𝑡 = 𝜐(𝐵)𝛼𝑡 + 𝜀𝑡 (12.2.8)

where 𝜀𝑡 is the transformed noise series defined by

𝜀𝑡 = 𝜃−1𝑥 (𝐵)𝜙𝑥(𝐵)𝜂𝑡 (12.2.9)

On multiplying (12.2.8) on both sides by 𝛼𝑡−𝑘 and taking expectations, we obtain

𝛾𝛼𝛽 (𝑘) = 𝜐𝑘𝜎2𝛼 (12.2.10)
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where 𝛾𝛼𝛽(𝑘) = 𝐸[𝛼𝑡−𝑘𝛽𝑡] is the cross-covariance at lag +𝑘 between the series 𝛼𝑡 and 𝛽𝑡.
Thus,

𝜐𝑘 =
𝛾𝛼𝛽(𝑘)
𝜎2
𝛼

or, in terms of the cross-correlations,

𝜐𝑘 =
𝜌𝛼𝛽 (𝑘)𝜎𝛽
𝜎𝛼

𝑘 = 0, 1, 2,… (12.2.11)

Hence, after prewhitening the input, the cross-correlation function between the prewhitened
input and correspondingly transformed output is directly proportional to the impulse re-
sponse function. We note that the effect of prewhitening is to convert the nonorthogonal
set of equation (12.2.6) into the orthogonal set (12.2.10).

In practice, we do not know the theoretical cross-correlation function 𝜌𝛼𝛽 (𝑘), so we must
substitute estimates in (12.2.11) to give

�̂�𝑘 =
𝑟𝛼𝛽 (𝑘)𝑠𝛽
𝑠𝛼

𝑘 = 0, 1, 2,… (12.2.12)

The preliminary estimates �̂�𝑘 so obtained are again, in general, statistically inefficient but
can provide a rough basis for selecting suitable operators 𝛿(𝐵) and 𝜔(𝐵) in the transfer
function model. An additional feature of the prewhitening method is that because the
prewhitened input series 𝛼𝑡 is white noise, so that 𝜌𝛼𝛼(𝑘) = 0 for all 𝑘 ≠ 0, there are
considerable simplifications in formulas (12.1.7) and (12.1.9) for var[𝑟𝛼𝛽(𝑘)]. In particular,
on the assumption that the series 𝛼𝑡 and 𝛽𝑡 are not cross correlated, the result (12.1.11)
applies to give simply var[𝑟𝛼𝛽(𝑘)] ≃ (𝑛 − 𝑘)−1. We now illustrate this identification and
preliminary estimation procedure with an actual example.

12.2.2 Example of the Identification of a Transfer Function Model

In an investigation on adaptive optimization (Kotnour et al., 1966), a gas furnace was
employed in which air and methane combined to form a mixture of gases containing CO2
(carbon dioxide). The air feed was kept constant, but the methane feed rate could be varied
in any desired manner, and the resulting CO2 concentration in the off-gases measured. The
continuous data of Figure 12.1 were collected to provide information about the dynamics
of the system over a region of interest where it was known that an approximately linear
steady-state relationship applied. The continuous stochastic input series 𝑋(𝑡) shown in the
top half of Figure 12.1 was generated by passing white noise through a linear filter. The
process had mean zero and, during the realization that was used for this experiment, varied
from−2.5 to+2.5. It was desired that the actual methane gas feed rate should cover a range
from 0.5 to 0.7 ft3/min. To ensure this, the input gas feed rate was caused to follow the
process:

Methane gas input feed = 0.60 − 0.04𝑋(𝑡)

For simplicity, we will work throughout with the ‘‘coded’’ input 𝑋(𝑡). The final transfer
function expressed in terms of the actual feed rate is readily obtained by substitution.
Series 𝐽 in the Collection of Time Series section in Part Five shows 296 successive pairs
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TABLE 12.1 Estimated Cross-Correlation Function After Prewhitening and Approximate
Impulse Response Function for Gas Furnace Data

𝑘 𝑟
𝛼𝛽
(𝑘) �̂�(𝑟) �̂�

𝑘
𝑟
𝛽𝛽
(𝑘) 𝑘 𝑟

𝛼𝛽
(𝑘) �̂�(𝑟) �̂�

𝑘
𝑟
𝛽𝛽
(𝑘)

0 −0.00 0.06 −0.02 1.00 6 −0.27 0.06 −0.52 0.12
1 0.05 0.06 0.10 0.23 7 −0.17 0.06 −0.32 0.05
2 −0.03 0.06 −0.06 0.36 8 −0.03 0.06 −0.06 0.09
3 −0.29 0.05 −0.53 0.13 9 0.03 0.06 0.06 0.01
4 −0.34 0.06 −0.63 0.08 10 −0.06 0.06 −0.10 0.10
5 −0.46 0.05 −0.88 0.01

of observations (𝑋𝑡, 𝑌𝑡) read off from the continuous records at 9-second intervals. In
this particular experiment, the nature of the input disturbance was known because it was
deliberately induced. However, we proceed as if it were not known. As shown in Figure
12.4, the estimated auto- and cross-correlation functions of 𝑋𝑡 and 𝑌𝑡 damp out fairly
quickly, confirming that no differencing is necessary. The usual model identification and
fitting procedures applied to the input series 𝑋𝑡 indicate that it is well described by a
third-order autoregressive process

(1 − 𝜙1𝐵 − 𝜙2𝐵2 − 𝜙3𝐵3)𝑋𝑡 = 𝛼𝑡

with �̂�1 = 1.97, �̂�2 = −1.37, �̂�3 = 0.34, and 𝑠2
𝛼
= 0.0353. Hence, the transformations

𝛼𝑡 = (1 − 1.97𝐵 + 1.37𝐵2 − 0.34𝐵3)𝑋𝑡
𝛽𝑡 = (1 − 1.97𝐵 + 1.37𝐵2 − 0.34𝐵3)𝑌𝑡

are applied to the input and output series to yield the series 𝛼𝑡 and 𝛽𝑡 with 𝑠𝛼 = 0.188
and 𝑠𝛽 = 0.358. The estimated cross-correlation function between 𝛼𝑡 and 𝛽𝑡 is listed in
Table 12.1 and plotted in Figure 12.5. Table 12.1 also includes the estimate (12.2.12) of
the impulse response function,

�̂�𝑘 =
0.358
0.188

𝑟𝛼𝛽(𝑘)

The approximate standard errors �̂�(𝑟) for the estimated cross-correlations 𝑟𝛼𝛽 (𝑘) shown in
Table 12.1 are the square roots of the variances obtained from expression (12.1.7):

1. With cross-correlations up to lag +2 and from lag +8 onward assumed equal to zero

2. With autocorrelations 𝜌𝛼𝛼(𝑘) assumed zero for 𝑘 > 0
3. With autocorrelations 𝜌𝛽𝛽(𝑘) assumed zero for 𝑘 > 4
4. With estimated correlations 𝑟𝛼𝛽(𝑘) and 𝑟𝛽𝛽 (𝑘) from Table 12.1 replacing theoretical

values.

For this example, the standard errors �̂�(𝑟) differ very little from the approx-
imate values (𝑛 − 𝑘)−1∕2, or as a further approximation 𝑛−1∕2 = 0.06, appropri-
ate under the hypothesis that the series are uncorrelated. The estimated cross-
correlations along with the approximate two standard error limits are plotted in
Figure 12.5.
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FIGURE 12.5 Estimated cross-correlation function for coded gas furnace data after prewhitening.

The values �̂�0, �̂�1, and �̂�2 are small compared with their standard errors, suggesting that
𝑏 = 3 (that there are two whole periods of delay). Using the results of Section 12.1.1, the
subsequent pattern of the �̂�’s might be accounted for by a model with (𝑟, 𝑠, 𝑏) equal to either
(1, 2, 3) or (2, 2, 3). The first model would imply that 𝜐3 and 𝜐4 were preliminary values
following no fixed pattern and that 𝜐5 provided the starting value for an exponential decay
determined by the difference equation 𝜐𝑗 − 𝛿𝜐𝑗−1 = 0, 𝑗 > 5. The second model would
imply that 𝜐3 was a single preliminary value and that 𝜐4 and 𝜐5 provided the starting values
for a pattern of double exponential decay or damped sinusoidal decay determined by the
difference equation 𝜐𝑗 − 𝛿1𝜐𝑗−1 − 𝛿2𝜐𝑗−2 = 0, 𝑗 > 5. Thus, the preliminary identification
suggests a transfer function model

(1 − 𝛿1𝐵 − 𝛿2𝐵2)𝑌𝑡 = (𝜔0 − 𝜔1𝐵 − 𝜔2𝐵
2)𝑋𝑡−𝑏 (12.2.13)

or some simplification of it, probably with 𝑏 = 3.

Calculations in R. The prewhitening, the calculation of 𝑟𝛼𝛽 (𝑘), �̂�𝑘, and 𝑟𝛽𝛽(𝑘) in Table
12.1, and the creation of Figure 12.5 can be performed using the R code provided below.
Note, however, that the results from R differ very slightly from those shown in Table 12.1,
possibly due to round-off and differences in the treatment of initial values in the series.

> mm1=arima(X,order=c(3,0,0))
> mm1 % Prints the AR(3) coefficients for X

Call: arima(x = X, order = c(3, 0, 0))
Coefficients:

ar1 ar2 ar3 intercept
1.9691 -1.3651 0.3394 -0.0606
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s.e. 0.0544 0.0985 0.0543 0.1898
sigmaˆ2 estimated as 0.0353:log likelihood=72.6,aic=-135.1

> f1=c(1,-mm1$coef[1:3]) % Creates a filter to transform Y
> f1 ar1 ar2 ar3

1.000 -1.9691 1.3651 -0.3394

> Yf=filter(Y,f1,method=c("convolution"),sides=1)
> yprev=Yf[4:296] % transformed Y
> xprev=mm1$residuals[4:296] % transformed X
> CCF=ccf(yprev,xprev) % computes the cross-correlations
> CCF % retrieves the cross-correlations
> vk=(sd(yprev)/sd(xprev))*CCF$acf % impulse response function
> ACF=acf(yprev) % autocorrelations of transformed Y
> plot(CCF,ylab=’CCF’,main=’Cross-correlations after prewhitening’)

Preliminary Estimates. Assuming the model (12.2.13) with 𝑏 = 3, the equations (11.2.8)
for the impulse response function are

𝜐𝑗 = 0 𝑗 < 3
𝜐3 = 𝜔0
𝜐4 = 𝛿1𝜐3 − 𝜔1
𝜐5 = 𝛿1𝜐4 + 𝛿2𝜐3 − 𝜔2 (12.2.14)

𝜐6 = 𝛿1𝜐5 + 𝛿2𝜐4
𝜐7 = 𝛿1𝜐6 + 𝛿2𝜐5

Substituting the estimates �̂�𝑘 from Table 12.1 in the last two of these equations, we obtain

− 0.88𝛿1 − 0.63𝛿2 = −0.52
− 0.52𝛿1 − 0.88𝛿2 = −0.32

which give preliminary estimates 𝛿1 = 0.57 and 𝛿2 = 0.02. If these values are now substi-
tuted in the second, third, and fourth of equations (12.2.14), we obtain

�̂�0 = �̂�3 = −0.53
�̂�1 = 𝛿1�̂�3 − �̂�4 = (0.57)(−0.53)+ 0.63 = 0.33
�̂�2 = 𝛿1�̂�4 + 𝛿2�̂�3 − �̂�5 = (0.57)(−0.63)+ (0.02)(−0.53)+ 0.88 = 0.51

Thus, the preliminary identification suggests a tentative transfer function model:

(1 − 0.57𝐵 − 0.02𝐵2)𝑌𝑡 = −(0.53 + 0.33𝐵 + 0.51𝐵2)𝑋𝑡−3

The estimates so obtained can be used as starting values for the more efficient iterative
estimation methods, which will be described in Section 12.3. Note that the estimate 𝛿2 is
very small and suggests that this parameter may be omitted, but we will retain it for the
time being.
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12.2.3 Identification of the Noise Model

Reverting to the general case, suppose that (where necessary, after suitable differencing)
the model could be written as

𝑦𝑡 = 𝜐(𝐵)𝑥𝑡 + 𝑛𝑡

where 𝑛𝑡 = ∇𝑑𝑁𝑡. Given that a preliminary estimate �̂�(𝐵) of the transfer function has
been obtained in the manner discussed in Section 12.2.2, an estimate of the noise series is
provided by

�̂�𝑡 = 𝑦𝑡 − �̂�(𝐵)𝑥𝑡

that is,

�̂�𝑡 = 𝑦𝑡 − �̂�0𝑥𝑡 − �̂�1𝑥𝑡−1 − �̂�2𝑥𝑡−2 −⋯

Alternatively, �̂�(𝐵) may be replaced by the tentative transfer function model estimate
𝛿−1(𝐵)�̂�(𝐵)𝐵𝑏 determined by preliminary identification. Thus,

�̂�𝑡 = 𝑦𝑡 − 𝛿−1(𝐵)�̂�(𝐵)𝑥𝑡−𝑏

and �̂�𝑡 may be computed by first calculating ̂𝑡 = 𝛿−1(𝐵)�̂�(𝐵)𝑥𝑡−𝑏 recursively through
𝛿(𝐵)̂𝑡 = �̂�(𝐵)𝑥𝑡−𝑏 as

̂𝑡 = 𝛿1̂𝑡−1 +⋯ + 𝛿𝑟̂𝑡−𝑟 + �̂�0𝑥𝑡−𝑏 − �̂�1𝑥𝑡−𝑏−1 −⋯ − �̂�𝑠𝑥𝑡−𝑏−𝑠 (12.2.15)

and then computing the noise series from �̂�𝑡 = 𝑦𝑡 − ̂𝑡. In either case, study of the estimated
autocorrelation function and partial autocorrelation function of �̂�𝑡 can lead to identification
of the noise model.

It is also possible to identify the noise using the correlation functions for the input and
output, after prewhitening, in the following way. Suppose that the input could be exactly
prewhitened to give

𝛽𝑡 = 𝜐(𝐵)𝛼𝑡 + 𝜀𝑡 (12.2.16)

where the known relationship

𝜀𝑡 = 𝜃−1𝑥 (𝐵)𝜙𝑥(𝐵)𝑛𝑡 (12.2.17)

would link 𝜀𝑡 and 𝑛𝑡. If a stochastic model could be found for 𝜀𝑡, then, using (12.2.17),
a model could be deduced for 𝑛𝑡 and hence for 𝑁𝑡. If we now write 𝜐(𝐵)𝛼𝑡 = 𝑢𝑡, so that
𝛽𝑡 = 𝑢𝑡 + 𝜀𝑡, and provided that our independence assumption concerning 𝑥𝑡 and 𝑛𝑡, and
hence concerning 𝑢𝑡 and 𝜀𝑡, is justified, we can write

𝛾𝛽𝛽(𝑘) = 𝛾𝑢𝑢(𝑘) + 𝛾𝜀𝜀(𝑘) (12.2.18)

Since 𝛼𝑡 is white noise, 𝛾𝑢𝑢(𝑘) may be obtained using the result (3.1.8), which gives the
autocorrelation function of a linear process. Thus,

𝛾𝑢𝑢(𝑘) = 𝜎2𝛼
∞∑
𝑗=0
𝜐𝑗𝜐𝑗+𝑘 =

1
𝜎2
𝛼

∞∑
𝑗=0
𝛾𝛼𝛽 (𝑗)𝛾𝛼𝛽(𝑗 + 𝑘)
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TABLE 12.2 Estimated Autocorrelation and Partial Autocorrelation Functions of the Noise
in Gas Furnace Data

𝑘 𝑟𝑘 �̂�𝑘𝑘 𝑘 𝑟𝑘 �̂�𝑘𝑘

1 0.89 0.89 7 0.01 −0.02
2 0.71 −0.43 8 −0.03 0.01
3 0.51 −0.13 9 −0.05 −0.01
4 0.32 0.02 10 −0.04 0.08
5 0.17 0.04 11 −0.03 −0.06
6 0.07 −0.02 12 −0.03 −0.10

using (12.2.10). Hence, using (12.2.18), the autocovariances of 𝜀𝑡 may be obtained from
𝛾𝜀𝜀(𝑘) = 𝛾𝛽𝛽(𝑘) − 𝛾𝑢𝑢(𝑘), with autocorrelations

𝜌𝜀𝜀(𝑘) =
𝛾𝜀𝜀(𝑘)
𝛾𝜀𝜀(0)

=
𝜌𝛽𝛽(𝑘) − 𝛾𝑢𝑢(𝑘)∕𝛾𝛽𝛽(0)

1 − 𝛾𝑢𝑢(0)∕𝛾𝛽𝛽(0)

=
𝜌𝛽𝛽(𝑘) −

∑∞
𝑗=0 𝜌𝛼𝛽 (𝑗)𝜌𝛼𝛽(𝑗 + 𝑘)

1 −
∑∞
𝑗=0 𝜌

2
𝛼𝛽
(𝑗)

Now, in practice, it is necessary to estimate the prewhitening transformation. Having made
the approximate prewhitening transformation, rough values for 𝜌𝜀𝜀(𝑘) could be obtained
by substituting the estimates 𝑟𝛼𝛽 (𝑗) of the cross-correlation function between transformed
input and output and 𝑟𝛽𝛽 (𝑗) of the autocorrelation function of the transformed output.

Application to the Gas Furnace Example. Table 12.2 shows the first 12 values of
the sample autocorrelations and partial autocorrelations of the noise series �̂�𝑡 = 𝑌𝑡 − ̂𝑡,
where ̂𝑡 = 𝛿−1(𝐵)�̂�(𝐵)𝑋𝑡−3 is computed as in (12.2.15) using the preliminary estimates
for the transfer function model obtained previously. That is, the values are computed as

̂𝑡 = 0.57̂𝑡−1 − (0.53𝑋𝑡−3 + 0.33𝑋𝑡−4 + 0.51𝑋𝑡−5)

The partial autocorrelations of �̂�𝑡 indicate that a second-order autoregressive model might
be an adequate representation, and the least-squares estimates obtained from the �̂�𝑡 values
for the AR(2) model yield

(1 − 1.54𝐵 + 0.64𝐵2)𝑁𝑡 = 𝑎𝑡 (12.2.19)

with �̂�2
𝑎
= 0.057.

Thus, the analysis of this section and Section 12.1.2 suggests the identification

𝑌𝑡 =
𝜔0 − 𝜔1𝐵 − 𝜔2𝐵

2

1 − 𝛿1𝐵 − 𝛿2𝐵2 𝑋𝑡−3 +
1

1 − 𝜙1𝐵 − 𝜙2𝐵2 𝑎𝑡 (12.2.20)

for the gas furnace model. Furthermore, the initial estimates �̂�0 = −0.53, �̂�1 = 0.33, �̂�2 =
0.51, 𝛿1 = 0.57, 𝛿2 = 0.02, �̂�1 = 1.54, and �̂�2 = −0.64 can be used as rough starting values
for the nonlinear estimation procedures that we describe in Section 12.3.
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12.2.4 Some General Considerations in Identifying Transfer Function Models

Some general remarks can now be made concerning the procedure for identifying transfer
function and noise models that we have just described.

1. For many practical situations, when the effect of noise is appreciable, a delayed first-
or second-order system such as that given by (12.2.13), or some simplification of it,
would often provide as elaborate a model as could be justified for the data.

2. Efficient estimation is only possible assuming the model form to be known. The
estimates �̂�𝑘 given by (12.2.12) are in general necessarily inefficient therefore. They
are employed at the identification stage because they are easily computed and can
indicate a form of model worthy to be fitted by more elaborate means.

3. Even if these were efficient estimates, the number of �̂�’s required to trace out the
impulse response function fully would typically be considerably larger than the
number of parameters in a transfer function model. In cases where the 𝛿’s and 𝜔’s
in an adequate transfer function model could be estimated accurately, nevertheless,
the estimates of the corresponding 𝜐’s could have large variances and be highly
correlated.

4. The variance of

𝑟𝛼𝛽(𝑘) = �̂�𝑘
𝑠𝛼

𝑠𝛽

is of order 1∕𝑛. Thus, we can expect that the estimates 𝑟𝛼𝛽 (𝑘) and hence the �̂�𝑘 will
be buried in noise unless 𝜎𝛼 is reasonably large compared with the residual noise,
or unless 𝑛 is large. Thus, the identification procedure requires the variation in the
input𝑋𝑡 to be reasonably large compared with the variation due to the noise and/or a
large volume of data is available. These requirements are satisfied by the gas furnace
data for which, as we show in Section 12.3, the initial identification is remarkably
good. When these requirements are not satisfied, the identification procedure may
fail. Usually, this will mean that only very rough estimates are possible with the
available data. However, some kind of rudimentary modeling may be possible by
postulating a plausible but simple transfer function/noisemodel, fitting directly by the
least-squares procedures of the next section, and applying diagnostic checks leading
to elaboration of the model when this proves necessary.

5. It should, perhaps, be emphasized that the prewhitened series 𝛼𝑡 and 𝛽𝑡, and their
cross-correlation function, 𝑟𝛼𝛽(𝑘), in particular, are used only for the purpose of
identification of the form of the transfer function model. Once the model form is
identified, the original series 𝑋𝑡 and 𝑌𝑡, not the prewhitened series, are used for
parameter estimation, forecasting, and so on.

6. An alternative method for identification of the transfer function--noise model was
proposed byHaugh andBox (1977), and similar ideaswere also discussed by Priestley
(1981, Chapter 9). The method, which might be referred to as ‘‘double prewhiten-
ing,’’ involves prewhitening both input and output series. That is, separate univariate
ARIMA models are built for both the input and the output processes, and then the
cross-correlation structure of the resulting (univariate white noise) residuals from
these models is examined. However, while sometimes useful, this procedure can
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become overly complicated in terms of the final model specified, due to the use of
two sets of prewhitening factors.

7. The above discussion has focused on transfer function models with a single input
variable 𝑋𝑡. An alternative method of identifying transfer function models, which
readily generalizes to deal with multiple inputs, is given in AppendixA12.1. Transfer
function models can also be specified using methods developed for multivariate time
series analysis as demonstrated byTiao andBox (1981).A discussion of suchmethods
is given in Chapter 14.

Lack of Uniqueness of theModel. Suppose that a particular dynamic system is represented
by the model

𝑌𝑡 = 𝛿−1(𝐵)𝜔(𝐵)𝑋𝑡−𝑏 + 𝜑−1(𝐵)𝜃(𝐵)𝑎𝑡 (12.2.21)

Then it could equally well be represented by

𝐿(𝐵)𝑌𝑡 = 𝐿(𝐵)𝛿−1(𝐵)𝜔(𝐵)𝑋𝑡−𝑏 + 𝐿(𝐵)𝜑−1(𝐵)𝜃(𝐵)𝑎𝑡 (12.2.22)

where𝐿(𝐵) could be an arbitrary common factor, and hencewould be redundant. Similar to
the discussion in Section 7.3.5 on parameter redundancy for ARMAmodels, for uniqueness
of model parameterization in (12.2.21) it is clear that the possibility of common factors
in the operators 𝛿(𝐵) and 𝜔(𝐵), or in the 𝜑(𝐵) and 𝜃(𝐵) operators, must be avoided. The
chance that we may iterate toward a model of unnecessarily complicated form is reduced
if we base our strategy on the following considerations:

1. Since rather simple transfer function models of first or second order, with or without
delay, are often adequate, iterative model building should begin with a fairly simple
model, looking for further simplification if this is possible, and reverting to more
complicated models only as the need is demonstrated.

2. One should be always on the look out for the possibility of removing a factor common
to two or more of the operators on 𝑌𝑡, 𝑋𝑡, and 𝑎𝑡. In practice, we will be dealing with
estimated coefficients, which may be subject to rather large sampling errors, so that
only approximate common factors in the factorizations can be expected. Thus, a very
careful analysis may be needed to detect such factors. Of course, having removed
what appears to be a common factor, the model can be refitted and checked to show
whether the simplification can be justified.

3. When simplification by factorization is possible, but is overlooked, the least-squares
estimation procedure may become extremely unstable since the minimum will tend
to lie on a line or surface in the parameter space rather than at a point. Conversely,
instability in the solution can point to the possibility of simplification of the model.
As noted earlier, one reason for carrying out the identification procedure before
fitting the model is to avoid redundancy or, conversely, to achieve parsimony in
parameterization.

Remark. If the operator 𝐿(𝐵) in (12.2.22) were set equal to 𝜑(𝐵)𝛿(𝐵), we would obtain

𝜑(𝐵)𝛿(𝐵)𝑌𝑡 = 𝜑(𝐵)𝜔(𝐵)𝑋𝑡−𝑏 + 𝛿(𝐵)𝜃(𝐵)𝑎𝑡 (12.2.23)
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which can be written as

𝛿∗(𝐵)𝑌𝑡 = 𝜔∗(𝐵)𝑋𝑡−𝑏 + 𝜃∗(𝐵)𝑎𝑡 (12.2.23a)

Models of the general form of (12.2.23a) have been referred to as ARMAX models in
the econometric literature (e.g., Hannan and Deistler, 1988; Hannan et al., 1979; Reinsel,
1979). As can be seen, care is needed to avoid the occurrence of common factors among
the operators in this form.

12.3 FITTING AND CHECKING TRANSFER FUNCTION MODELS

12.3.1 Conditional Sum-of-Squares Function

We now consider the problem of efficiently and simultaneously estimating the parameters
𝑏, 𝜹, 𝝎, 𝝓, and 𝜽 in the tentatively identified model

𝑦𝑡 = 𝛿−1(𝐵)𝜔(𝐵)𝑥𝑡−𝑏 + 𝑛𝑡 (12.3.1)

where 𝑦𝑡 = ∇𝑑𝑌𝑡, 𝑥𝑡 = ∇𝑑𝑋𝑡, and 𝑛𝑡 = ∇𝑑𝑁𝑡 are all stationary processes and

𝑛𝑡 = 𝜙−1(𝐵)𝜃(𝐵)𝑎𝑡 (12.3.2)

It is assumed that 𝑛 = 𝑁 − 𝑑 pairs of values are available for the analysis and that 𝑌𝑡 and
𝑋𝑡 (𝑦𝑡 and 𝑥𝑡 if 𝑑 > 0) denote deviations from expected values. These expected values may
be estimated along with the other parameters, but for the lengths of time series normally
worth analyzing it will usually be sufficient to use the sample means as estimates. When
𝑑 > 0, it will frequently be true that expected values for 𝑦𝑡 and 𝑥𝑡 are zero.

If starting values x0, y0, and a0 prior to the commencement of the series were available,
then given the data, for any choice of the parameters (𝑏, 𝜹, 𝝎, 𝝓, 𝜽) and of the starting values
(x0, y0, a0) we could calculate, successively, values of

𝑎𝑡 = 𝑎𝑡(𝑏, 𝜹, 𝝎, 𝝓, 𝜽|x0, y0, a0)
for 𝑡 = 1, 2,… , 𝑛. Under the normal assumption for the 𝑎𝑡’s, a close approximation to
the maximum likelihood estimates of the parameters can be obtained by minimizing the
conditional sum-of-squares function,

𝑆0(𝑏, 𝜹, 𝝎, 𝝓, 𝜽) =
𝑛∑
𝑡=1
𝑎2
𝑡
(𝑏, 𝜹, 𝝎, 𝝓, 𝜽|x0, y0, a0) (12.3.3)

Three-Stage Procedure for Calculating the 𝒂’s. Given appropriate starting values, the
generation of the 𝑎𝑡’s for any particular choice of the parameter values may be accom-
plished using the following three-stage procedure.

First, the output 𝑡 from the transfer function model may be computed from

𝑡 = 𝛿−1(𝐵)𝜔(𝐵)𝑥𝑡−𝑏

that is, from

𝛿(𝐵)𝑡 = 𝜔(𝐵)𝑥𝑡−𝑏
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or from

𝑡 − 𝛿1𝑡−1 −⋯ − 𝛿𝑟𝑡−𝑟 = 𝜔0𝑥𝑡−𝑏 − 𝜔1𝑥𝑡−𝑏−1 −⋯ − 𝜔𝑠𝑥𝑡−𝑏−𝑠 (12.3.4)

Having calculated the 𝑡 series, then using (12.3.1), the noise series 𝑛𝑡 can be obtained
from

𝑛𝑡 = 𝑦𝑡 − 𝑡 (12.3.5)

Finally, the 𝑎𝑡’s can be obtained from (12.3.2) written in the form

𝜃(𝐵)𝑎𝑡 = 𝜙(𝐵)𝑛𝑡

that is,

𝑎𝑡 = 𝜃1𝑎𝑡−1 +⋯ + 𝜃𝑞𝑎𝑡−𝑞 + 𝑛𝑡 − 𝜙1𝑛𝑡−1 −⋯ − 𝜙𝑝𝑛𝑡−𝑝 (12.3.6)

Starting Values. As discussed in Section 7.1.3 for stochastic model estimation, the effect
of transients can beminimized if the difference equations are started off from a value of 𝑡 for
which all previous 𝑥𝑡’s and 𝑦𝑡’s are known. Thus, 𝑡 in (12.3.4) is calculated from 𝑡 = 𝑢 + 1
onward, where 𝑢 is the larger of 𝑟 and 𝑠 + 𝑏. This means that 𝑛𝑡 will be available from
𝑛𝑢+1 onward; hence, if unknown 𝑎𝑡’s are set equal to their unconditional expected values of
zero, the 𝑎𝑡’s may be calculated from 𝑎𝑢+𝑝+1 onward. Thus, the conditional sum-of-squares
function is

𝑆0(𝑏, 𝜹,𝝎,𝝓, 𝜽) =
𝑛∑

𝑡=𝑢+𝑝+1
𝑎2
𝑡
(𝑏, 𝜹,𝝎,𝝓, 𝜽|x0, y0, a0) (12.3.7)

Example Using the Gas Furnace Data. For these data, the model (12.2.20), namely

𝑌𝑡 =
𝜔0 − 𝜔1𝐵 − 𝜔2𝐵

2

1 − 𝛿1𝐵 − 𝛿2𝐵2 𝑋𝑡−3 +
1

1 − 𝜙1𝐵 − 𝜙2𝐵2 𝑎𝑡

has been identified. Equations (12.3.4), (12.3.5), and (12.3.6) then become

𝑡 = 𝛿1𝑡−1 + 𝛿2𝑡−2 + 𝜔0𝑋𝑡−3 − 𝜔1𝑋𝑡−4 − 𝜔2𝑋𝑡−5 (12.3.8)

𝑁𝑡 = 𝑌𝑡 − 𝑡 (12.3.9)

𝑎𝑡 = 𝑁𝑡 − 𝜙1𝑁𝑡−1 − 𝜙2𝑁𝑡−2 (12.3.10)

Thus, (12.3.8) can be used to generate 𝑡 from 𝑡 = 6 onward and (12.3.10) to generate 𝑎𝑡
from 𝑡 = 8 onward. The slight loss of information that results will not be important for a
sufficiently long length of series. For example, since𝑁 = 296 for the gas furnace data, the
loss of seven values at the beginning of the series is of little practical consequence.

In the example above, we have assumed that 𝑏 = 3. To estimate 𝑏, the values of 𝜹,𝝎,𝝓,
and 𝜽, which minimize the conditional sum of squares, can be calculated for each value of
𝑏 in the likely range and the overall minimum with respect to 𝑏, 𝜹,𝝎,𝝓, and 𝜽 obtained.

12.3.2 Nonlinear Estimation

A nonlinear least-squares algorithm, analogous to that given for fitting the stochastic model
in Section 7.2.4, can be used to obtain the least-squares estimates and their approximate
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standard errors. The algorithm will behave well when the sum-of-squares function is
roughly quadratic. However, the procedure can sometimes run into trouble, in particular if
the parameter estimates are very highly correlated (if, for example, the model approaches
singularity due to near-common factors in the factorizations of the operators), or, in some
cases, if estimates are near a boundary of the permissible parameter space. In difficult cases,
the estimation situation may be clarified by plotting sum-of-squares contours for selected
two-dimensional sections of the parameter space.

The nonlinear least-squares algorithm can be implemented as follows: At any stage
of the iteration, and for some fixed value of the delay parameter 𝑏, let the best guesses
available for the remaining parameters be denoted by

𝜷
′
0 = (𝛿1,0,… , 𝛿𝑟,0; 𝜔0,0,… , 𝜔𝑠,0;𝜙1,0,… , 𝜙𝑝,0; 𝜃1,0,… , 𝜃𝑞,0)

Now let 𝑎𝑡,0 denote that value of 𝑎𝑡 computed from the model, as in Section 12.3.1, for the
guessed parameter values 𝜷0 and denote the negative of the derivatives of 𝑎𝑡 with respect
to the parameters as follows:

𝑑
(𝛿)
𝑖,𝑡

= −
𝜕𝑎𝑡

𝜕𝛿𝑖

||||𝜷0
𝑑
(𝜔)
𝑗,𝑡

= −
𝜕𝑎𝑡

𝜕𝜔𝑗

|||||𝜷0
𝑑
(𝜙)
𝑔,𝑡

= −
𝜕𝑎𝑡

𝜕𝜙𝑔

|||||𝜷0
𝑑
(𝜃)
ℎ,𝑡

= −
𝜕𝑎𝑡

𝜕𝜃ℎ

||||𝜷0
(12.3.11)

Then a Taylor series expansion of 𝑎𝑡 = 𝑎𝑡(𝜷) about parameter values 𝜷 = 𝜷0 can be rear-
ranged in the form

𝑎𝑡,0 ≃
𝑟∑
𝑖=1

(𝛿𝑖 − 𝛿𝑖,0)𝑑
(𝛿)
𝑖,𝑡

+
𝑠∑
𝑗=0

(𝜔𝑗 − 𝜔𝑗,0)𝑑
(𝜔)
𝑗,𝑡

+
𝑝∑
𝑔=1

(𝜙𝑔 − 𝜙𝑔,0)𝑑
(𝜙)
𝑔,𝑡

+
𝑞∑
ℎ=1

(𝜃ℎ − 𝜃ℎ,0)𝑑
(𝜃)
ℎ,𝑡

+ 𝑎𝑡 (12.3.12)

We proceed as in Section 7.2 to obtain adjustments 𝛿𝑖 − 𝛿𝑖,0, 𝜔𝑗 − 𝜔𝑗,0, and so on, by fitting
this linearized equation by standard linear least-squares. By adding the adjustments to the
first guesses 𝜷0, a set of second guesses can be formed and the procedure repeated until
convergence is reached.

The derivatives in (12.3.11) may be computed recursively. However, it seems simplest
to work with a standard nonlinear least-squares computer program in which derivatives are
determined numerically and an option is available of ‘‘constrained iteration’’ to prevent
instability. It is then necessary only to program the computation of 𝑎𝑡 itself.

The covariance matrix of the estimates may be obtained from the converged value of
the matrix

(X′
𝜷
X
𝜷
)−1�̂�2

𝑎
≃ ̂cov[𝜷]

as described in Section 7.2.2; in addition, the least-squares estimates 𝜷 have been shown
to have a multivariate normal asymptotic distribution (e.g., Pierce, 1972a; Reinsel, 1979).
If the delay 𝑏, which is an integer, needs to be estimated, the iteration may be run to
convergence for a series of values of 𝑏 and the value of 𝑏 giving the minimum sum of
squares selected. One special feature (see, for example, Pierce, 1972a) of the covariance
matrix of the least-squares estimates 𝜷 is that it will be approximately a block diag-
onal matrix whose two blocks on the diagonal consist of the covariance matrices of the
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parameters (�̂�′, �̂�′) = (𝛿1,… , 𝛿𝑟, �̂�0,… , �̂�𝑠) and (�̂�′, �̂�′) = (�̂�1,… , �̂�𝑝, �̂�1,… , �̂�𝑞), respec-
tively. Thus, the parameter estimates of the transfer function part of the model are approx-
imately uncorrelated with the estimates of the noise part of the model, which results from
the assumed independence between the input𝑋𝑡 and the white noise 𝑎𝑡 in the model.

More exact sum-of-squares and exact likelihood function methods could also be em-
ployed in the estimation of the transfer function--noise models, as in the case of the ARMA
models discussed in Chapter 7 (see, e.g. Newbold, 1973). The state-space model Kalman
filtering and innovations algorithm approach to the exact likelihood evaluation discussed
in Section 7.4 could also be used. However, for moderate and large 𝑛 and nonseasonal data,
there will generally be little difference between the conditional and exact methods.

Remark. Commercially available software packages such as SAS and SCA include al-
gorithms for estimating the parameters in transfer function--noise models. The software
package R can also be used for model fitting. In particular, the newly released package
MTS for multivariate time series analysis that we will use in Chapter 14 has a function
tfm1() that fits a transfer function--noise model to a dataset with a single input variable𝑋.
A demonstration of this package is given in Section 12.4.1. A second function tfm2() fits
a model with two input variables to the data.

12.3.3 Use of Residuals for Diagnostic Checking

Serious model inadequacy can usually be detected by examining

1. The autocorrelation function 𝑟�̂��̂�(𝑘) of the residuals �̂�𝑡 = 𝑎𝑡(�̂�, �̂�, �̂�, �̂�, �̂�) from the
fitted model.

2. Certain cross-correlation functions involving input and residuals: in particular, the
cross-correlation function 𝑟𝛼�̂�(𝑘) between prewhitened input 𝛼𝑡 and the residuals �̂�𝑡.

Suppose, if necessary after suitable differencing, that the model can be written as

𝑦𝑡 = 𝛿−1(𝐵)𝜔(𝐵)𝑥𝑡−𝑏 + 𝜙−1(𝐵)𝜃(𝐵)𝑎𝑡
= 𝜐(𝐵)𝑥𝑡 + 𝜓(𝐵)𝑎𝑡 (12.3.13)

Now, suppose that we select an incorrect model leading to residuals 𝑎0𝑡, where

𝑦𝑡 = 𝜐0(𝐵)𝑥𝑡 + 𝜓0(𝐵)𝑎0,𝑡

Then

𝑎0𝑡 = 𝜓−1
0 (𝐵)[𝜐(𝐵) − 𝜐0(𝐵)]𝑥𝑡 + 𝜓−1

0 (𝐵)𝜓(𝐵)𝑎𝑡 (12.3.14)

Thus, it is apparent in general that if a wrong model is selected, the 𝑎0𝑡’s will be autocor-
related and the 𝑎0𝑡’s will be cross-correlated with the 𝑥𝑡’s and hence with the 𝛼𝑡’s, which
generate the 𝑥𝑡’s.

Now consider what happens in two special cases: (1) when the transfer function model
is correct but the noise model is incorrect, and (2) when the transfer function model is
incorrect.
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Transfer Function Model Correct, Noise Model Incorrect. If 𝑣0(𝐵) = 𝑣(𝐵) but 𝜓0(𝐵) ≠
𝜓(𝐵), then (12.3.14) becomes

𝑎0𝑡 = 𝜓−1
0 (𝐵)𝜓(𝐵)𝑎𝑡 (12.3.15)

Therefore, the 𝑎0𝑡’s would not be cross-correlated with 𝑥𝑡’s or with 𝛼𝑡’s. However, the
𝑎0𝑡 process would be autocorrelated, and the form of the autocorrelation function could
indicate appropriatemodification of the noise structure, as discussed for univariate ARIMA
models in Section 8.3.

Transfer Function Model Incorrect. From (12.3.14) it is apparent that if the transfer
function model were incorrect, not only would the 𝑎0𝑡’s be cross-correlated with the 𝑥𝑡’s
(and 𝛼𝑡’s), but also the 𝑎0𝑡’s would be autocorrelated. This would be true even if the noise
model were correct, for then (12.3.14) would become

𝑎0𝑡 = 𝜓−1(𝐵)[𝜐(𝐵) − 𝜐0(𝐵)]𝑥𝑡 + 𝑎𝑡 (12.3.16)

Whether or not the noise model was correct, a cross-correlation analysis could indicate the
modifications needed in the transfer function model. This aspect is clarified by considering
the model after prewhitening. If the output and the input are assumed to be transformed so
that the input is white noise, then, as in (12.2.8), we may write the model as

𝛽𝑡 = 𝑣(𝐵)𝛼𝑡 + 𝜀𝑡

where 𝛽𝑡 = 𝜃−1𝑥 (𝐵)𝜙𝑥(𝐵)𝑦𝑡 and 𝜀𝑡 = 𝜃−1𝑥 (𝐵)𝜙𝑥(𝐵)𝑛𝑡. Now, consider the quantities

𝜀0𝑡 = 𝛽𝑡 − 𝜐0(𝐵)𝛼𝑡

Since 𝜀0𝑡 = [𝜐(𝐵) − 𝑣0(𝐵)]𝛼𝑡 + 𝜀𝑡, arguing as in Section 12.1.1, the cross-correlations be-
tween the 𝜀0𝑡’s and the 𝛼𝑡’s measure the discrepancy between the correct and incorrect
impulse functions. Specifically, as in (12.2.11),

𝜐𝑘 − 𝜐0𝑘 =
𝜌𝛼𝜀0

(𝐾)𝜎𝜀0
𝜎𝛼

𝑘 = 0, 1, 2,… (12.3.17)

12.3.4 Specific Checks Applied to the Residuals

In practice, we do not know the process parameters exactly but must apply our checks
to the residuals �̂�𝑡 computed after least-squares fitting. Even if the functional form of the
fitted model were adequate, the parameter estimates would differ somewhat from the true
values and the distribution of the autocorrelations of the residuals �̂�𝑡’s would also differ
to some extent from that of the autocorrelations of the 𝑎𝑡’s. Therefore, some caution is
necessary in using the results of the previous sections to suggest the behavior of residual
correlations. The brief discussion that follows is based in part on a more detailed study by
Pierce (1972b).

Autocorrelation Checks. Suppose that a transfer function--noise model having been fitted
by least-squares and the residuals �̂�𝑡’s calculated by substituting least-squares estimates
for the parameters and the estimated autocorrelation function 𝑟�̂��̂�(𝑘) of these residuals is
computed. Then, as we have seen
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1. If the autocorrelation function 𝑟�̂��̂�(𝑘) showsmarked correlation patterns, this suggests
model inadequacy.

2. If the cross-correlation checks do not indicate inadequacy of the transfer function
model, the inadequacy is probably in the fitted noise model 𝑛𝑡 = 𝜓0(𝐵)�̂�0𝑡.

In the latter case, identification of a subsidiary model

�̂�0𝑡 = 𝑇 (𝐵)𝑎𝑡

to represent the correlation of the residuals from the primary model can, in accordance with
(12.3.15), indicate roughly the form

𝑛𝑡 = 𝜓0(𝐵)𝑇 (𝐵)𝑎𝑡

to take for the modified noise model. However, in making assessments of whether an
apparent discrepancy of estimated autocorrelations from zero is, or is not, likely to point
to a nonzero theoretical value, certain facts must be borne in mind analogous to those
discussed in Section 8.2.1.

Suppose that after allowing for starting values, 𝑚 = 𝑛 − 𝑢 − 𝑝 values of the �̂�𝑡’s are
actually available for this computation. Then if the model was correct in functional form
and the true parameter values were substituted, the residuals would be white noise and the
estimated autocorrelations would be distributed mutually independently about zero with
variance 1∕𝑚. When estimates are substituted for the parameter values, the distributional
properties of the estimated autocorrelations at low lags are affected. In particular, the
variance of these estimated low-lag autocorrelations can be considerably less than 1∕𝑚,
and the values can be highly correlated. Thus, with 𝑘 small, comparison of an estimated
autocorrelation 𝑟�̂��̂�(𝑘) with a ‘‘standard error’’ 1∕

√
𝑚 could greatly underestimate its sig-

nificance.Also, ripples in the estimated autocorrelation function at low lags can arise simply
because of the high induced correlation between these estimates. If the amplitude of such
low-lag ripples is small compared with 1∕

√
𝑚, they could have arisen by chance alone and

need not be indicative of some real pattern in the theoretical autocorrelations.
A helpful overall check, which takes account of these distributional effects produced by

fitting, is as follows. Consider the first𝐾 estimated autocorrelations 𝑟�̂��̂�(1),… , 𝑟�̂��̂�(𝐾) and
let 𝐾 be taken sufficiently large so that if the model is written as 𝑦𝑡 = 𝜐(𝐵)𝑥𝑡 + 𝜓(𝐵)𝑎𝑡,
the weights 𝜓𝑗 can be expected to be negligible for 𝑗 > 𝐾 . Then if the functional form of
the model is adequate, the quantity

𝑄 = 𝑚
𝐾∑
𝑘=1
𝑟2
�̂��̂�
(𝑘) (12.3.18)

is approximately distributed as 𝜒2 with 𝐾 − 𝑝 − 𝑞 degrees of freedom. Note that the
degrees of freedom in 𝜒2 depend on the number of parameters in the noise model but not
on the number of parameters in the transfer function model. By referring 𝑄 to a table of
percentage points of 𝜒2, we can obtain an approximate test of the hypothesis of model
adequacy. However, in practice, the modified statistic

�̃� = 𝑚(𝑚 + 2)
𝐾∑
𝑘=1

(𝑚 − 𝑘)−1𝑟2
�̂��̂�
(𝑘) (12.3.18a)
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analogous to (8.2.3) of Section 8.2.2 for theARIMAmodel, would be recommended instead
of (12.3.18) because �̃� provides a closer approximation to the chi-squared distribution than
𝑄 under the null hypothesis of model adequacy.

Cross-Correlation Check. As we have seen in Section 12.3.3,

1. A pattern of markedly nonzero cross-correlations 𝑟𝑥�̂�(𝑘) suggests inadequacy of the
transfer function model.

2. A somewhat different cross-correlation analysis can suggest the type of modification
needed in the transfer function model. Specifically, if the fitted transfer function
is �̂�0(𝐵) and we consider the cross-correlations between the quantities �̂�0𝑡 = 𝛽𝑡 −
�̂�0(𝐵)𝛼𝑡 and 𝛼𝑡, rough estimates of the discrepancies 𝜐𝑘 − 𝜐0𝑘 are given by

𝑟𝛼�̂�0
(𝑘)𝑠�̂�0
𝑠𝛼

Suppose that the model were of the correct functional form and true parameter values
had been substituted. The residuals would be white noise uncorrelated with the 𝑥𝑡’s and,
using (12.1.11), the variance of the 𝑟𝑥𝑎(𝑘) for an effective length of series 𝑚 would be
approximately 1∕𝑚. However, unlike the autocorrelations 𝑟𝑎𝑎(𝑘), these cross-correlations
will not be approximately uncorrelated. In general, if the 𝑥𝑡’s are autocorrelated, so are the
cross-correlations 𝑟𝑥𝑎(𝑘). In fact, as has been seen in (12.1.12), on the assumption that the
𝑥𝑡’s and the 𝑎𝑡’s have no cross-correlation, the correlation coefficient between 𝑟𝑥𝑎(𝑘) and
𝑟𝑥𝑎(𝑘 + 𝑙) is

𝜌[𝑟𝑥𝑎(𝑘), 𝑟𝑥𝑎(𝑘 + 𝑙)] ≃ 𝜌𝑥𝑥(𝑙) (12.3.19)

That is, approximately, the cross-correlations have the same autocorrelation function as does
the original input series 𝑥𝑡. Thus, when the 𝑥𝑡’s are autocorrelated, a perfectly adequate
transfer functionmodelwill give rise to estimated cross-correlations 𝑟𝑥�̂�(𝑘), which, although
small in magnitude, may show pronounced patterns. This effect is eliminated if the check
is made by computing cross-correlations 𝑟𝛼�̂�(𝑘) with the prewhitened input 𝛼𝑡.

As with the autocorrelations, when estimates are substituted for parameter values, the
distributional properties of the estimated cross-correlations are affected. However, a rough
overall test of the hypothesis of model adequacy, similar to the autocorrelation test, can be
obtained based on themagnitudes of the estimated cross-correlations. To employ the check,
the cross-correlations 𝑟𝛼�̂�(𝑘) for 𝑘 = 0, 1, 2,… , 𝐾 between the input 𝛼𝑡 in prewhitened form
and the residuals �̂�𝑡 are estimated, and 𝐾 is chosen sufficiently large so that the weights 𝜐𝑗
and 𝜓𝑗 in (12.3.13) can be expected to be negligible for 𝑗 > 𝐾 . The effects resulting from
the use of estimated parameters in calculating residuals are, as before, principally confined
to cross-correlations of low order whose variances are considerably less than 𝑚−1 and that
may be highly correlated even when the input is white noise.

For an overall test, Pierce (1972b) showed that

𝑆 = 𝑚
𝐾∑
𝑘=0
𝑟2
𝛼�̂�
(𝑘) (12.3.20)
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is approximately distributed as 𝜒2 with 𝐾 + 1 − (𝑟 + 𝑠 + 1) degrees of freedom, where
(𝑟 + 𝑠 + 1) is the number of parameters fitted in the transfer function model. Note that the
number of degrees of freedom is independent of the number of parameters fitted in the
noise model. Based on studies of the behavior of the 𝑄 statistic discussed in Chapter 8,
the modified statistic, �̃� = 𝑚(𝑚 + 2)

∑𝐾

𝑘=0(𝑚 − 𝑘)−1𝑟2
𝛼�̂�
(𝑘), might be suggested for use in

practice because it may more accurately approximate the 𝜒2 distribution under the null
model, although detailed investigations of its performance have not been made (however,
see empirical results in Poskitt and Tremayne, 1981).

12.4 SOME EXAMPLES OF FITTING AND CHECKING TRANSFER
FUNCTION MODELS

12.4.1 Fitting and Checking of the Gas Furnace Model

We now illustrate the approach described in Section 12.2 to the fitting of the model

𝑌𝑡 =
𝜔0 − 𝜔1𝐵 − 𝜔2𝐵

2

1 − 𝛿1𝐵 − 𝛿2𝐵2 𝑋𝑡−3 +
1

1 − 𝜙1𝐵 − 𝜙2𝐵2 𝑎𝑡

which was identified for the gas furnace data in Sections 12.2.2 and 12.2.3.

Nonlinear Estimation. Using the initial estimates �̂�0 = −0.53, �̂�1 = 0.33, �̂�2 = 0.51, 𝛿1 =
0.57, 𝛿2 = 0.02, �̂�1 = 1.54, and �̂�2 = −0.64 derived in Sections 12.2.2 and 12.2.3 with the
conditional least-squares algorithm described in Section 12.3.2, least-squares values, to
two decimals, were achieved in four iterations. However, to test whether the results would
converge in much less favorable circumstances, Table 12.3 shows the iterations produced
with all starting values taken to be either+0.1 or−0.1. The fact that, even then, convergence
was achieved in 10 iterationswith as many as seven parameters in themodel is encouraging.

The last line in Table 12.3 shows the rough preliminary estimates obtained at the
identification stage in Sections 12.2.2 and 12.2.3. It is seen that for this example, they are in
close agreement with the least-squares estimates given on the previous line. Thus, the final
fitted transfer function model is

(1 − 0.57𝐵 − 0.01𝐵2)𝑌𝑡 = −(0.53 + 0.37𝐵 + 0.51𝐵2)𝑋𝑡−3 (12.4.1)

(±0.21)(±0.14) (±0.08)(±0.15)(±0.16)

and the fitted noise model is

(1 − 1.53𝐵 + 0.63𝐵2)𝑁𝑡 = 𝑎𝑡 (12.4.2)

(±0.05)(±0.05)

with �̂�2
𝑎
= 0.0561, where the limits in parentheses are the ±1 standard error limits obtained

from the nonlinear least-squares estimation procedure.

Diagnostic Checking. Before accepting the model above as an adequate representation of
the system, autocorrelation and cross-correlation checks should be applied, as described in
Section 12.3.4. The first 36 lags of the residual autocorrelations are given in Table 12.4(a)
and plotted in Figure 12.6(a), together with their approximate two standard error limits
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TABLE 12.3 Convergence of Nonlinear Least-Squares Fit of Gas Furnace Data

Sum of
Iteration 𝜔0 𝜔1 𝜔2 𝛿1 𝛿2 𝜙1 𝜙2 Squares

0 0.10 −0.10 −0.10 0.10 0.10 0.10 0.10 13,601.00
1 −0.46 0.63 0.60 0.14 0.27 1.33 −0.27 273.10
2 −0.52 0.45 0.31 0.40 0.52 1.37 −0.43 92.50
3 −0.63 0.60 0.01 0.12 0.73 1.70 −0.76 31.80
4 −0.54 0.50 0.29 0.24 0.42 1.70 −0.81 19.70
5 −0.50 0.31 0.51 0.63 0.09 1.56 −0.68 16.84
6 −0.53 0.38 0.53 0.54 0.01 1.54 −0.64 16.60
7 −0.53 0.37 0.51 0.56 0.01 1.53 −0.63 16.60
8 −0.53 0.37 0.51 0.56 0.01 1.53 −0.63 16.60
9 −0.53 0.37 0.51 0.57 0.01 1.53 −0.63 16.60
Preliminary −0.53 0.33 0.51 0.57 0.02 1.54 −0.64
estimates

±2∕
√
𝑚 ≃ 0.12 (𝑚 = 289) under the assumption that the model is adequate. There seems

to be no evidence of model inadequacy from the behavior of individual autocorrelations.
This is confirmed by calculating the �̃� criterion in (12.3.18a), which is

�̃� = (289)(291)
36∑
𝑘=1

(289 − 𝑘)−1𝑟2
�̂��̂�
(𝑘) = 43.8

Comparison of �̃� with the 𝜒2 table for 𝐾 − 𝑝 − 𝑞 = 36 − 2 − 0 = 34 degrees of freedom
provides no grounds for questioning model adequacy.

The first 36 lags of the cross-correlation function 𝑟𝑥�̂�(𝑘) between the input 𝑋𝑡 and the
residuals �̂�𝑡 are given Table 12.4(b) and shown in Figure 12.6(b), togetherwith their approx-
imate two standard error limits±2∕

√
𝑚. It is seen that although the cross-correlations 𝑟𝑥�̃�(𝑘)

do not exceed their two standard error limits, they are themselves highly autocorrelated.
This is to be expected because as indicated by (12.3.19), the estimated cross-correlations
follow the same stochastic process as does the input 𝑋𝑡, and as we have already seen, for
this example the input was highly autocorrelated.

The corresponding cross-correlations between the prewhitened input 𝛼𝑡 and the residuals
�̂�𝑡 are given in Table 12.4(c) and shown in Figure 12.6(c). The �̃� criterion yields

�̃� = (289)(291)
35∑
𝑘=0

(289 − 𝑘)−1𝑟2
𝑎�̂�
(𝑘) = 32.1

Comparison of �̃� with the 𝑋2 table for 𝐾 + 1 − (𝑟 + 𝑠 + 1) = 36 − 5 = 31 degrees of
freedom again provides no evidence that the model is inadequate.

Parameter Estimation Using R. Wewill now use the R software to fit the model employed
in (12.4.1) and (12.4.2) to the gas furnace data. The parameter estimation can be performed
using the function tfm1() in the MTS package developed for multivariate time series anal-
ysis. The arguments of this function are tfm1(Y, X,orderX=c(r,s,b),orderN=c(p,d,q)).
The function call and the resulting output are shown below:
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FIGURE 12.6 (a) Estimated autocorrelations of the residuals 𝑟�̂��̂�(𝑘) from the fitted gas furnace
model, (b) estimated cross-correlations 𝑟𝑥�̂�(𝑘) between the input and the output residuals 𝑟𝑥𝑎(𝑘), and
(c) estimated cross-correlations 𝑟𝛼�̂�(𝑘) between the prewhitened input and the output residuals.

> library(MTS)
> m1=tfm1(Y,X,orderX=c(2,2,3),orderN=c(2,0,0))

Model Output:
Delay: 3
Transfer function coefficients & s.e.:
in the order: constant, omega, and delta: 1 3 2

[,1] [,2] [,3] [,4] [,5] [,6]
v 53.371 -0.5302 -0.371 -0.511 0.565 -0.0119
se.v 0.142 0.0745 0.146 0.149 0.200 0.1415
ARMA order: [1] 2 0 0
ARMA coefficients & s.e.:

[,1] [,2]
coef.arma 1.5315 -0.6321
se.arma 0.0472 0.0502

> names(m1) % check contents of output
[1] "estimate" "sigma2" "residuals" "varcoef" "Nt"

> m1$sigma2
[1] 0.0576 % residual variance

> acf(m1$residuals) % acf of the residuals
> ccf(m1$residuals,X) % cross-correlation
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between input series and residuals
> ccf(m1$residuals,xprev) % cross-correlation

between prewhitened input and residuals

Using the output from R and allowing for sign differences in the definition of 𝜔(𝐵), the
estimated transfer function--noise model is

𝑌𝑡 =
−(0.53 + 0.37𝐵 + 0.51𝐵2)

1 − 0.57𝐵 + 0.01𝐵2 𝑋𝑡−3 +
1

1 − 1.53𝐵 + 0.63𝐵2 𝑎𝑡

We see that the parameter estimates for the transfer function and noise models are nearly
identical to those shown in (12.4.1) and (12.4.2). The estimate of the residual variance is
0.0576, which is also close to the value 0.0561 quoted in the text. In addition, the residual
autocorrelations, the cross-correlations between the input 𝑋𝑡 and the residuals, and the
cross-correlations between the prewhitened input and the residuals (not shown) were small
and close to those displayed in Figure 12.6 although some minor differences were seen in
the patterns.

Step and Impulse Responses. The estimate 𝛿2 = 0.01 in (12.4.1) is very small compared
with its standard error ±0.14, and the parameter 𝛿2 can in fact be omitted from the model
without affecting the estimates of the remaining parameters to the accuracy considered.
The final form of the combined transfer function--noise model for the gas furnace data is

𝑌𝑡 =
−(0.53 + 0.37𝐵 + 0.51𝐵2)

1 − 0.57𝐵
𝑋𝑡−3 +

1
1 − 1.53𝐵 + 0.63𝐵2 𝑎𝑡

The step and impulse response functions corresponding to the transfer function model

(1 − 0.57𝐵)𝑌𝑡 = −(0.53 + 0.37𝐵 + 0.51𝐵2)𝑋𝑡−3

are given in Figure 12.7. Using (11.2.5), the steady-state gain of the coded data is

𝑔 = −(0.53 + 0.37 + 0.51)
1 − 0.57

= −3.3

The results agree very closely with those obtained by cross-spectral analysis (Jenkins and
Watts, 1968).

Choice of Sampling Interval. When a choice is available, the sampling interval should
be taken as fairly short compared with the time constants expected for the system. When
in doubt, the analysis can be repeated with several trial sampling intervals. In the choice
of sampling interval, it is the noise at the output that is important, and its variance should
approach a minimum value as the interval is shortened. Thus, in the gas furnace example
that we have used for illustration, a pen recorder was used to provide a continuous record
of input and output. The discrete data that we have actually analyzed were obtained by
reading off values from this continuous record at points separated by 9-second intervals.
This interval was chosen because inspection of the traces shown in Figure 12.1 suggested
that it ought to be adequate to allow all the variation (apart from slight pen chatter) that
occurred in input and output to be taken account of. The use of this kind of common
sense is usually a reliable guide in choosing the interval. The estimated mean square error
for the gas furnace data, obtained by dividing

∑
𝑡(𝑌𝑡 − 𝑌𝑡)2 by the appropriate number of
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FIGURE 12.7 Impulse and step responses for transfer function model (1 − 0.57𝐵)𝑌𝑡 = −(0.53 +
0.37𝐵 + 0.51𝐵2)𝑋𝑡−3 fitted to coded gas furnace data.

TABLE 12.5 Mean Square Error at the Output for Various Choices of the Sampling Interval
for Gas Furnace Data

Interval (Seconds)

9 18 27 36 45 54 72

Number of data points N 296 148 98 74 59 49 37
MS error 0.71 0.78 0.74 0.95 0.97 1.56 7.11

degrees of freedom, is shown for various time intervals in Table 12.5. These values are also
plotted in Figure 12.8. Little change in mean square error occurs until the interval is almost
40 seconds, when a very rapid rise occurs. There is little difference in the mean square
error, or indeed the plotted step response, for the 9-, 18-, and 27-second intervals, but a
considerable change occurs when the 36-second interval is used. It will be seen that the
9-second interval we have used in this example is, in fact, conservative.

12.4.2 Simulated Example with Two Inputs

The fitting ofmodels involvingmore than one input series involves no difficulty in principle,
except for the increase in the number of parameters that has to be handled. For example,
for two inputs we can write the model as

𝑦𝑡 = 𝛿−11 (𝐵)𝜔1(𝐵)𝑥1,𝑡−𝑏1 + 𝛿
−1
2 (𝐵)𝜔2(𝐵)𝑥2,𝑡−𝑏2 + 𝑛𝑡
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FIGURE 12.8 Mean square error at the output for various choices of sampling interval.

with

𝑛𝑡 = 𝜙−1(𝐵)𝜃(𝐵)𝑎𝑡

where 𝑦𝑡 = ∇𝑑𝑌𝑡, 𝑥1,𝑡 = ∇𝑑𝑋1,𝑡, 𝑥2,𝑡 = ∇𝑑𝑋2,𝑡, and 𝑛𝑡 = ∇𝑑𝑁𝑡 are stationary processes.
To compute the 𝑎𝑡’s, we first calculate for specific values of the parameters 𝑏1, 𝜹1,𝝎1,

1,𝑡 = 𝛿−11 (𝐵)𝜔1(𝐵)𝑥1,𝑡−𝑏1 (12.4.3)

and for specific values of 𝑏2, 𝜹2,𝝎2,

2,𝑡 = 𝛿−12 (𝐵)𝜔2(𝐵)𝑥2,𝑡−𝑏2 (12.4.4)

Then the noise 𝑛𝑡 can be calculated from

𝑛𝑡 = 𝑦𝑡 − 1,𝑡 − 2,𝑡 (12.4.5)

and finally, 𝑎𝑡 from

𝑎𝑡 = 𝜃−1(𝐵)𝜙(𝐵)𝑛𝑡 (12.4.6)

Simulated Example. It is clear that even simple situations can lead to the estimation of
a large number of parameters. The example below, with two input variables and delayed
first-order models, has eight unknown parameters. To illustrate the behavior of the iterative
nonlinear least-squares procedure described in Section 12.3.2when used to obtain estimates
of the parameters in such models, an experiment was performed using manufactured data,
details of which are given in Box et al. (1967b). The data were generated from the model
written in ∇ form as

𝑌𝑡 = 𝛽 + 𝑔1
1 + 𝜂1∇
1 + 𝜉1∇

𝑋1,𝑡−1 + 𝑔2
1 + 𝜂2∇
1 + 𝜉2∇

𝑋2,𝑡−1 +
1

1 − 𝜙1𝐵
𝑎𝑡 (12.4.7)
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FIGURE 12.9 Data for simulated two-input example (Series K).

with 𝛽 = 60, 𝑔1 = 13.0, 𝜂1 = −0.6, 𝜉1 = 4.0, 𝑔2 = −5.5, 𝜂2 = −0.6, 𝜉2 = 4.0, 𝜙1 = 0.5, and
𝜎2
𝑎
= 9.0. The input variables 𝑋1 and 𝑋2 were changed according to a randomized 22

factorial design replicated three times. Each input condition was supposed to be held
fixed for 5 minutes and output observations taken every minute. The data are plotted in
Figure 12.9 and appear as Series K in the Collection of Time Series section in Part Five.

The constrained iterative nonlinear least-squares program, described in Chapter 7, was
used to obtain the least-squares estimates, so that it was only necessary to set up the
calculation of the 𝑎𝑡’s. Thus, for specified values of the parameters 𝑔1, 𝑔2, 𝜉1, 𝜉2, 𝜂1, and 𝜂2,
the values 1,𝑡 and 2,𝑡 can be obtained from

(1 + 𝜉1∇)1,𝑡 = 𝑔1(1 + 𝜂1∇)𝑋1,𝑡−1
(1 + 𝜉2∇)2,𝑡 = 𝑔2(1 + 𝜂2∇)𝑋2,𝑡−1

and can be used to calculate

𝑁𝑡 = 𝑌𝑡 − 1,𝑡 − 2,𝑡

Finally, for a specified value of 𝜙1, 𝑎𝑡 can be calculated from

𝑎𝑡 = 𝑁𝑡 − 𝜙1𝑁𝑡−1

It was assumed that the process inputs had been maintained at their center conditions for
some time before the start of the experiment, so that 1,𝑡, 2,𝑡, and 𝑁𝑡 may be computed
from 𝑡 = 0 onward and 𝑎𝑡 from 𝑡 = 1.

Two runs were made of the nonlinear least-squares procedure using two different sets
of initial values. In the first, the parameters were chosen as representing what a per-
son reasonably familiar with the process might guess for initial values. In the second,
the starting value for 𝛽 was chosen to be the sample mean 𝑌 of all observations and all
other starting values were set equal to 0.1. Thus, the second run represents a much more
extreme situation than would normally arise in practice. Convergence with the first set of
initial values occurred after five iterations, while convergencewith the second set occurred
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after nine iterations. These results suggest that in realistic circumstances, multiple inputs
can be handled without serious estimation difficulties.

12.5 FORECASTINGWITH TRANSFER FUNCTIONMODELS USING
LEADING INDICATORS

Frequently, forecasts of a time series 𝑌𝑡, 𝑌𝑡−1,… may be considerably improved by using
information coming from some associated series 𝑋𝑡,𝑋𝑡−1,…. This is particularly true if
changes in 𝑌 tend to be anticipated by changes in 𝑋, in which case economists call 𝑋 a
‘‘leading indicator’’ for 𝑌 .

To obtain an optimal forecast using information from both series 𝑌𝑡 and 𝑋𝑡, we first
build a transfer function--noise model connecting the series 𝑌𝑡 and𝑋𝑡 in the manner already
outlined. Suppose, using previous notations, that an adequate model is

𝑌𝑡 = 𝛿−1(𝐵)𝜔(𝐵)𝑋𝑡−𝑏 + 𝜑−1(𝐵)𝜃(𝐵)𝑎𝑡 𝑏 ≥ 0 (12.5.1)

In general, the noise component of this model, which is assumed statistically independent
of the input𝑋𝑡, is nonstationarywith 𝜑(𝐵) = 𝜙(𝐵)∇𝑑 , so that if 𝑦𝑡 = ∇𝑑𝑌𝑡 and 𝑥𝑡 = ∇𝑑𝑋𝑡,

𝑦𝑡 = 𝛿−1(𝐵)𝜔(𝐵)𝑋𝑡−𝑏 + 𝜙−1(𝐵)𝜃(𝐵)𝑎𝑡

Also, we will assume that an adequate stochastic model for the input or leading series𝑋𝑡 is

𝑋𝑡 = 𝜑−1𝑥 (𝐵)𝜃𝑥(𝐵)𝛼𝑡 (12.5.2)

so that with 𝜑𝑥(𝐵) = 𝜙𝑥(𝐵)∇𝑑 ,

𝑥𝑡 = 𝜙−1𝑥 (𝐵)𝜃𝑥(𝐵)𝛼𝑡

12.5.1 Minimum Mean Square Error Forecast

Now (12.5.1) may be written as

𝑌𝑡 = 𝑣(𝐵)𝛼𝑡 + 𝜓(𝐵)𝑎𝑡 (12.5.3)

with the 𝑎𝑡’s and the 𝛼𝑡’s statistically independent white noise, and

𝑣(𝐵) = 𝛿−1(𝐵)𝜔(𝐵)𝐵𝑏𝜑−1
𝑥
(𝐵)𝜃𝑥(𝐵)

Arguing as in Section 5.1.1, suppose that the forecast 𝑌𝑡(𝑙) of 𝑌𝑡+𝑙 made at origin 𝑡 is of the
form

𝑌𝑡(𝑙) =
∞∑
𝑗=0
𝜈0
𝑙+𝑗𝛼𝑡−𝑗 +

∞∑
𝑗=0
𝜓0
𝑙+𝑗𝑎𝑡−𝑗
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Then

𝑌𝑡+𝑙 − 𝑌𝑡(𝑙) =
𝑙−1∑
𝑖=0

(𝜈𝑖𝛼𝑡+𝑙−𝑖 + 𝜓𝑖𝑎𝑡+𝑙−𝑖)

+
∞∑
𝑗=0

[(𝜈𝑙+𝑗 − 𝜈0𝑙+𝑗)𝛼𝑡−𝑗 + (𝜓𝑙+𝑗 − 𝜓0
𝑙+𝑗)𝑎𝑡−𝑗]

and

𝐸[(𝑌𝑡+𝑙 − 𝑌𝑡(𝑙))2] = (𝜈20 + 𝜈
2
1 +⋯ + 𝜈2

𝑙−1)𝜎
2
𝛼
+ (1 + 𝜓2

1 +⋯ + 𝜓2
𝑙−1)𝜎

2
𝑎

+
∞∑
𝑗=0

[(𝜈𝑙+𝑗 − 𝜈0𝑙+𝑗)
2𝜎2
𝛼
+ (𝜓𝑙+𝑗 − 𝜓0

𝑙+𝑗)
2𝜎2
𝑎
]

which is minimized only if 𝑣0
𝑙+𝑗 = 𝑣𝑙+𝑗 and 𝜓

0
𝑙+𝑗 = 𝜓𝑙+𝑗 for 𝑗 = 0, 1, 2…. Thus, the min-

imum mean square error forecast 𝑌𝑡(𝑙) of 𝑌𝑡+𝑙 at origin 𝑡 is given by the conditional
expectation of 𝑌𝑡+𝑙 at time 𝑡, based on the past history of information on both series 𝑌𝑡 and
𝑋𝑡 through time 𝑡. Theoretically, this expectation is conditional on knowledge of the series
from the infinite past up to the present origin 𝑡. As in Chapter 5, such results are of practical
use because, usually, the forecasts depend appreciably only on recent past values of the
series𝑋𝑡 and 𝑌𝑡.

Computation of the Forecast. Now (12.5.1) may be written as

𝜑(𝐵)𝛿(𝐵)𝑌𝑡 = 𝜑(𝐵)𝜔(𝐵)𝑋𝑡−𝑏 + 𝛿(𝐵)𝜃(𝐵)𝑎𝑡

which we will write as

𝛿∗(𝐵)𝑌𝑡 = 𝜔∗(𝐵)𝑋𝑡−𝑏 + 𝜃∗(𝐵)𝑎𝑡

Then, using square brackets to denote conditional expectations at time 𝑡, and writing
𝑝∗ = 𝑝 + 𝑑, we have for the lead 𝑙 forecast

𝑌𝑡(𝑙) = [𝑌𝑡+𝑙] = 𝛿∗1 [𝑌𝑡+𝑙−1] +⋯ + 𝛿∗
𝑝∗+𝑟[𝑌𝑡+𝑙−𝑝∗−𝑟] + 𝜔

∗
0[𝑋𝑡+𝑙−𝑏]

−⋯ − 𝜔∗
𝑝∗+𝑠[𝑋𝑡+𝑙−𝑏−𝑝∗−𝑠] + [𝑎𝑡+𝑙] − 𝜃∗1 [𝑎𝑡+𝑙−1]

−⋯ − 𝜃∗
𝑞+𝑟[𝑎𝑡+𝑙−𝑞−𝑟] (12.5.4)

where

[𝑌𝑡+𝑗 ] =

{
𝑌𝑡+𝑗 𝑗 ≤ 0
𝑌𝑡(𝑗) 𝑗 > 0

[𝑋𝑡+𝑗] =

{
𝑋𝑡+𝑗 𝑗 ≤ 0
�̂�𝑡(𝑗) 𝑗 > 0

(12.5.5)

[𝑎𝑡+𝑗] =
{
𝑎𝑡+𝑗 𝑗 ≤ 0
0 𝑗 > 0
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and 𝑎𝑡 is calculated from (12.5.1), which if 𝑏 ≥ 1 is equivalent to

𝑎𝑡 = 𝑌𝑡 − 𝑌𝑡−1(1)

Thus, by appropriate substitutions, the minimum mean square error forecast is readily
computed directly using (12.5.4) and (12.5.5). The forecasts �̂�𝑡(𝑗) are obtained in the usual
way (see Section 5.2) utilizing the univariate ARIMA model (12.5.2) for the input series
𝑋𝑡.

It is important to note that the conditional expectations in (12.5.4) and (12.5.5) are taken
with respect to values in both series 𝑌𝑡 and 𝑋𝑡 through time 𝑡, but because of the assumed
independence between input 𝑋𝑡 and noise 𝑁𝑡 in (12.5.1), it follows in particular that we
will have

�̂�𝑡(𝑗) = 𝐸[𝑋𝑡+𝑗|𝑋𝑡,𝑋𝑡−1,… , 𝑌𝑡, 𝑌𝑡−1,…] = 𝐸[𝑋𝑡+𝑗|𝑋𝑡,𝑋𝑡−1,…]

That is, given the past values of the input series 𝑋𝑡, the optimal forecasts of its future
values depend only on the past𝑋’s and cannot be improved by the additional knowledge of
the past 𝑌 ’s; hence, the optimal values �̂�𝑡(𝑗) can be obtained directly from the univariate
model (12.5.2).

Variance of the Forecast Error. The 𝑣𝑗 weights and the 𝜓𝑗 weights of (12.5.3) may be
obtained explicitly by equating coefficients in

𝛿(𝐵)𝜑𝑥(𝐵)𝑣(𝐵) = 𝜔(𝐵)𝜃𝑥(𝐵)𝐵𝑏

and in

𝜑(𝐵)𝜓(𝐵) = 𝜃(𝐵)

The variance of the lead 𝑙 forecast error is then given by

𝑉 (𝑙) = 𝐸[(𝑌𝑡+𝑙 − 𝑌𝑡(𝑙))2] = 𝜎2𝛼
𝑙−1∑
𝑗=𝑏
𝜈2
𝑗
+ 𝜎2

𝑎

𝑙−1∑
𝑗=0
𝜓2
𝑗

(12.5.6)

Forecasts as a Weighted Aggregate of Previous Observations. For any given example, it
is instructive to consider precisely how the forecasts of future values of the series 𝑌𝑡 utilize
the previous values of the𝑋𝑡 and 𝑌𝑡 series. We have seen in Section 5.3.3 how the forecasts
may be written as linear aggregates of previous values of the series. Thus, for forecasts of
the input or leading indicator, we could write

�̂�𝑡(𝑙) =
∞∑
𝑗=1
𝜋
(𝑙)
𝑗
𝑋𝑡+1−𝑗 (12.5.7)

The weights 𝜋(1)
𝑗

= 𝜋𝑗 arise when the model (12.5.2) is written in the infinite autoregressive
form

𝛼𝑡 = 𝜃−1𝑥 (𝐵)𝜑𝑥(𝐵)𝑋𝑡 = 𝑋𝑡 − 𝜋1𝑋𝑡−1 − 𝜋2𝑋𝑡−2 −⋯

and may thus be obtained by explicitly equating coefficients in

𝜑𝑥(𝐵) = (1 − 𝜋1𝐵 − 𝜋2𝐵2 −⋯)𝜃𝑥(𝐵)
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Also, using (5.3.9),

𝜋
(𝑙)
𝑗

= 𝜋𝑗+𝑙−1 +
𝑙−1∑
ℎ=1
𝜋ℎ𝜋

(𝑙−ℎ)
𝑗

(12.5.8)

In a similar way, we can write the transfer function model (12.5.1) in the form

𝑎𝑡 = 𝑌𝑡 −
∞∑
𝑗=1
𝑃𝑗𝑌𝑡−𝑗 −

∞∑
𝑗=0
𝑄𝑗𝑋𝑡−𝑗 (12.5.9)

It should be noted that if the transfer function between the input or leading indicator series
𝑋𝑡 and the output 𝑌𝑡 is such that 𝑏 > 0, then 𝜈𝑗 = 0 for 𝑗 < 𝑏, and so 𝑄0, 𝑄1,… , 𝑄𝑏−1 in
(12.5.9) will also be zero.

Now (12.5.9) may be written as

𝑎𝑡 =

(
1 −

∞∑
𝑗=1
𝑃𝑗𝐵

𝑗

)
𝑌𝑡 −

( ∞∑
𝑗=0
𝑄𝑗𝐵

𝑗

)
𝑋𝑡

Comparison with (12.5.1) shows that the 𝑃𝑗 and 𝑄𝑗 weights may be obtained by equating
coefficients in the expressions

𝜃(𝐵)

(
1 −

∞∑
𝑗=1
𝑃𝑗𝐵

𝑗

)
= 𝜑(𝐵)

𝜃(𝐵)𝛿(𝐵)

( ∞∑
𝑗=0
𝑄𝑗𝐵

𝑗

)
= 𝜑(𝐵)𝜔(𝐵)𝐵𝑏

On substituting 𝑡 + 𝑙 for 𝑡 in (12.5.9), and taking conditional expectations at origin 𝑡, we
have the lead 𝑙 forecast in the form

𝑌𝑡(𝑙) =
∞∑
𝑗=1
𝑃𝑗[𝑌𝑡+𝑙−𝑗] +

∞∑
𝑗=0
𝑄𝑗[𝑋𝑡+𝑙−𝑗] (12.5.10)

Now the lead 1 forecast is 𝑌𝑡(1) = Σ∞
𝑗=1𝑃𝑗𝑌𝑡+1−𝑗 +𝑄0[𝑋𝑡+1] + Σ∞

𝑗=1𝑄𝑗𝑋𝑡+1−𝑗 , which for
𝑏 > 0 becomes

𝑌𝑡(1) =
∞∑
𝑗=1
𝑃𝑗𝑌𝑡+1−𝑗 +

∞∑
𝑗=1
𝑄𝑗𝑋𝑡+1−𝑗

Also, the quantities in square brackets in (12.5.10) are either known values of the 𝑋𝑡 and
𝑌𝑡 series or forecasts that are linear functions of these known values.

Thus, we can write the lead 𝑙 forecast in terms of the values of the series that have
already occurred at time 𝑡 in the form

𝑌𝑡(𝑙) =
∞∑
𝑗=1
𝑃
(𝑙)
𝑗
𝑌𝑡+1−𝑗 +

∞∑
𝑗=1
𝑄

(𝑙)
𝑗
𝑋𝑡+1−𝑗 (12.5.11)
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where, for 𝑏 > 0, the coefficients 𝑃 (𝑙)
𝑗

and 𝑄(𝑙)
𝑗

may be computed recursively as follows:

𝑃
(1)
𝑗

= 𝑃𝑗 𝑄
(1)
𝑗

= 𝑄𝑗

𝑃
(𝑙)
𝑗

= 𝑃𝑗+𝑙−1 +
𝑙−1∑
ℎ=1
𝑃ℎ𝑃

(𝑙−ℎ)
𝑗

(12.5.12)

𝑄
(𝑙)
𝑗

= 𝑄𝑗+𝑙−1 +
𝑙−1∑
ℎ=1

{
𝑃ℎ𝑄

(𝑙−ℎ)
𝑗

+𝑄ℎ𝜋
(𝑙−ℎ)
𝑗

}

12.5.2 Forecast of CO𝟐 Output from Gas Furnace

For illustration, consider the gas furnace data shown in Figure 12.1. For this example, the
fitted model (see Section 12.4.1) was

𝑌𝑡 =
−(0.53 + 0.37𝐵 + 0.51𝐵2

1 − 0.57𝐵
𝑋𝑡−3 +

1
1 − 1.53𝐵 + 0.63𝐵2

𝑎𝑡

and (1 − 1.97𝐵 + 1.37𝐵2 − 0.34𝐵3)𝑋𝑡 = 𝛼𝑡. The forecast function, written in the form
(12.5.4), is thus

𝑌𝑡(𝑙) = [𝑌𝑡+𝑙] = 2.1[𝑌𝑡+𝑙−1] − 1.5021[𝑌𝑡+𝑙−2] + 0.3591[𝑌𝑡+𝑙−3]
− 0.53[𝑋𝑡+𝑙−3] + 0.4409[𝑋𝑡+𝑙−4] − 0.2778[𝑋𝑡+𝑙−5]
+ 0.5472[𝑋𝑡+𝑙−6] − 0.3213[𝑋𝑡+𝑙−7]
+ [𝑎𝑡+𝑙] − 0.57[𝑎𝑡+𝑙−1]

Figure 12.10 shows the forecasts for lead times 𝑙 = 1, 2,… , 12made at origin 𝑡 = 206. The
𝜋𝑗 , 𝑃𝑗, and 𝑄𝑗 weights for the model are given in Table 12.6.

Figure 12.10 shows the weights 𝑃 (5)
𝑗

and 𝑄(5)
𝑗

appropriate to the lead 5 forecast. The

weights 𝜈𝑖 and𝜓𝑖 of (12.5.3) are listed in Table 12.7. Using estimates �̂�2
𝛼
= 0.0353 and �̂�2

𝑎
=

0.0561, obtained in Sections 12.2.2 and 12.4.1, respectively, (12.5.6) may be employed
to obtain variances of the forecast errors and the 50 and 95% probability limits shown in
Figure 12.10.

To illustrate the advantages of using an input or leading indicator series𝑋𝑡 in forecasting,
assume that only the 𝑌𝑡 series is available. The usual identification and fitting procedure

TABLE 12.6 𝝅
𝒋
, 𝑷

𝒋
, and 𝑸

𝒋
Weights for Gas Furnace Model

𝑗 𝜋𝑗 𝑃𝑗 𝑄𝑗 𝑗 𝜋𝑗 𝑃𝑗 𝑄𝑗

1 1.97 1.53 0 7 0 0 −0.07
2 −1.37 −0.63 0 8 0 0 −0.04
3 0.34 0 −0.53 9 0 0 −0.02
4 0 0 0.14 10 0 0 −0.01
5 0 0 −0.20 11 0 0 −0.01
6 0 0 0.43
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FIGURE 12.10 Forecast of CO2 output from a gas furnace using input and output series.

TABLE 12.7 𝝂
𝒊
and 𝝍

𝒊
Weights for Gas Furnace Model

𝑖 𝜈𝑖 𝜓𝑖 𝑖 𝜈𝑖 𝜓𝑖

0 0 1 6 −5.33 0.89
1 0 1.53 7 −6.51 0.62
2 0 1.71 8 −6.89 0.39
3 −0.53 1.65 9 −6.57 0.20
4 −1.72 1.45 10 −5.77 0.06
5 −3.55 1.18 11 −4.73 −0.03

applied to this series indicated that it is well described by an ARMA(4, 2) process,

(1 − 2.42𝐵 + 2.388𝐵2 − 1.168𝐵3 + 0.23𝐵4)𝑌𝑡 = (1 − 0.31𝐵 + 0.47𝐵2)𝜀𝑡

with 𝜎2
𝜀
= 0.1081. Table 12.8 shows estimated standard deviations of forecast errors made

with and without the leading indicator series𝑋𝑡. As might be expected, for short lead times
use of the leading indicator can produce forecasts of considerably greater accuracy.

Univariate Modeling Check. To further confirm the univariate modeling results for the
series 𝑌𝑡, we can use results from Appendix A4.3 to obtain the nature of the univariate
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TABLE 12.8 Estimated Standard Deviations of Forecast Errors Made With and Without the
Leading Indicator for Gas Furnace Data

With Without With Without
Leading Leading Leading Leading

𝑙 Indicator Indicator 𝑙 Indicator Indicator

1 0.23 0.33 7 1.52 2.74
2 0.43 0.77 8 1.96 2.86
3 0.59 1.30 9 2.35 2.95
4 0.72 1.82 10 2.65 3.01
5 0.86 2.24 11 2.87 3.05
6 1.12 2.54 12 3.00 3.08

ARIMA model for 𝑌𝑡 that is implied by the transfer function--noise model between 𝑌𝑡 and
𝑋𝑡 and the univariate AR(3) model for 𝑋𝑡. These models imply that

(1 − 0.57𝐵)(1 − 1.53𝐵 + 0.63𝐵2)𝑌𝑡
= −(0.53 + 0.37𝐵 + 0.51𝐵2)(1 − 1.53𝐵 + 0.63𝐵2)𝑋𝑡−3
+ (1 − 0.57𝐵)𝑎𝑡 (12.5.13)

But since

𝜑𝑥(𝐵) = 1 − 1.97𝐵 + 1.37𝐵2 − 0.34𝐵3 ≃ (1 − 1.46𝐵 + 0.60𝐵2)(1 − 0.52𝐵)

in the AR(3) model for 𝑋𝑡, the right-hand side of (12.5.13) reduces approximately to
−(0.53 + 0.37𝐵 + 0.51𝐵2)(1 − 0.52𝐵)−1𝛼𝑡−3 + (1 − 0.57𝐵)𝑎𝑡, and hence we obtain

(1 − 0.52𝐵)(1 − 0.57𝐵)(1 − 1.53𝐵 + 0.63𝐵2)𝑌𝑡
= −(0.53 + 0.37𝐵 + 0.51𝐵2)𝛼𝑡−3 + (1 − 0.52𝐵)(1 − 0.57𝐵)𝑎𝑡

The results of Appendix A4.3 imply that the right-hand side of this last equation has an
MA(2) model representation as (1 − 𝜃1𝐵 − 𝜃2𝐵2)𝜀𝑡, and the nonzero autocovariances of
the MA(2) are determined from the right-hand side expression above to be

𝜆0 = 0.1516 𝜆1 = −0.0657 𝜆2 = 0.0262

Hence, the implied univariate model for 𝑌𝑡 would be ARMA(4, 2), with approximate
AR operator equal to (1 − 2.62𝐵 + 2.59𝐵2 − 1.14𝐵3 + 0.19𝐵4), and from methods of
Appendix A6.2, the MA(2) operator would be (1 − 0.44𝐵 + 0.21𝐵2), with 𝜎2

𝜀
= 0.1220;

that is, the univariate model for 𝑌𝑡 would be

(1 − 2.62𝐵 + 2.59𝐵2 − 1.14𝐵3 + 0.19𝐵4)𝑌𝑡 = (1 − 0.44𝐵 + 0.21𝐵2)𝜀𝑡

This model result is in good agreement with the univariate model actually identified and
fitted to the series 𝑌𝑡, which gives an additional check and provides further support to the
transfer function--noise model that has been specified for the gas furnace data.
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FIGURE 12.11 Sales data with leading indicator.

12.5.3 Forecast of Nonstationary Sales Data Using a Leading Indicator

As a second illustration, consider the data on sales 𝑌𝑡 in relation to a leading indicator 𝑋𝑡,
plotted in Figure 12.11 and listed as Series M in the Collection of Time Series section in
Part Five. The data are typical of that arising in business forecasting and are well fitted by
the nonstationary model3

𝑦𝑡 = 0.035 + 4.82
1 − 0.72𝐵

𝑥𝑡−3 + (1 − 0.54𝐵)𝑎𝑡
𝑥𝑡 = (1 − 0.32𝐵)𝛼𝑡

with 𝑦𝑡 and 𝑥𝑡 first differences of the series. The forecast function, in the form (12.54), is
then

𝑌𝑡(𝑙) = [𝑌𝑡+𝑙] = 1.72[𝑌𝑡+𝑙−1] − 0.72[𝑌𝑡+𝑙−2] + 0.0098 + 4.82[𝑋𝑡+𝑙−3]
− 4.82[𝑋𝑡+𝑙−4] + [𝑎𝑡+𝑙] − 1.26[𝑎𝑡+𝑙−1]
+ 0.3888[𝑎𝑡+𝑙−2]

Figure 12.12 shows the forecasts for lead times 𝑙 = 1, 2,… , 12 made at origin 𝑡 = 89.
The weights 𝜈𝑗 and 𝜓𝑗 are given in Table 12.9.

Using the estimates �̂�2
𝛼
= 0.0676 and �̂�2

𝑎
= 0.0484, obtained in fitting the above

model, the variance of the forecast error may be found from (12.5.6). In particular,
𝑉 (𝑙) = 𝜎2

𝑎
Σ𝑙−1
𝑗=0𝜓

2
𝑗
for 𝑙 = 1, 2, and 3 in this specific case (note the delay of 𝑏 = 3 in

the transfer function model). The 50 and 95% probability limits are shown in Figure 12.12.
It will be seen that in this particular example, the use of the leading indicator allows very
accurate forecasts to be obtained for lead times 𝑙 = 1, 2, and 3.

The 𝜋𝑗 , 𝑃𝑗 , and 𝑄𝑗 weights for this model are given in Table 12.10. The weights 𝑝(5)
𝑗

and 𝑄(5)
𝑗

appropriate to the lead 5 forecast are shown in Figure 12.12.

3Using data the latter part of which is listed as Series M.
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FIGURE 12.12 Forecast of sales at origin 𝑡 = 89 with 𝑃 and 𝑄 weights for lead 5 forecast.

TABLE 12.9 𝒗
𝒋
and 𝝍

𝒋
Weights for Nonstationary Model for Sales Data

𝑗 𝑣𝑗 𝜓𝑗 𝑗 𝑣𝑗 𝜓𝑗

0 0 1 6 9.14 0.46
1 0 0.46 7 9.86 0.46
2 0 0.46 8 10.37 0.46
3 4.82 0.46 9 10.75 0.46
4 6.75 0.46 10 11.02 0.46
5 8.14 0.46 11 11.21 0.46

12.6 SOME ASPECTS OF THE DESIGN OF EXPERIMENTS TO ESTIMATE
TRANSFER FUNCTIONS

In some engineering applications, the form of the input 𝑋𝑡 can be deliberately chosen so
as to obtain good estimates of the parameters in the transfer function--noise model:

𝑌𝑡 = 𝛿−1(𝐵)𝜔(𝐵)𝑋𝑡−𝑏 +𝑁𝑡

The estimation of the transfer function is equivalent to estimation of a dynamic ‘‘regres-
sion’’ model, and the methods that can be used are very similar to those used in ordinary
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TABLE 12.10 𝝅
𝒋
, 𝑷

𝒋
, and 𝑸

𝒋
Weights for Nonstationary Model for Sales Data

𝑗 𝜋𝑗 𝑃𝑗 𝑄𝑗 𝑗 𝜋𝑗 𝑃𝑗 𝑄𝑗

1 0.68 0.46 0 9 0.00 0.00 −0.74
2 0.22 0.25 0 10 0.00 0.00 −0.59
3 0.07 0.13 4.82 11 0.00 0.00 −0.29
4 0.02 0.07 1.25 12 0.00 0.00 −0.13
5 0.01 0.04 −0.29 13 0.00 0.00 −0.06
6 0.00 0.02 −0.86 14 0.00 0.00 −0.02
7 0.00 0.01 −0.97 15 0.00 0.00 0.00
8 0.00 0.01 −0.89

nondynamic regression. As might be expected, the same problems (see e.g. Box, 1966)
face us.

As with static regression, it is very important to be clear on the objective of the investiga-
tion. In some situations, we want to answer the question: If the input𝑋 is merely observed
(but not interfered with), what can this tell us of the present and future behavior of the
output 𝑌 under normal conditions of process operation? In other situations, the appropriate
question is: If the input 𝑋 is changed in some specific way, what change will be induced
in the present and future behavior of the output Y? The types of data we need to answer
these two questions are different.

To answer the first question unambiguously, we must use data obtained by observing,
but not interfering with, the normal operation of the system. In contrast, the second question
can only be answered unambiguously from data in which deliberate changes have been
induced into the input of the system; that is, the data must be specially generated by a
designed experiment.

Clearly, if 𝑋 is to be used as a control variable, that is, a variable that may be used
to manipulate the output, we need to answer the second question. To understand how we
can design experiments to obtain valid estimates of the parameters of a cause-and-effect
relationship, it is necessary to examine the assumptions of the analysis.

A critical assumption is that the 𝑋𝑡’s are distributed independently of the 𝑁𝑡’s. When
this assumption is violated, the following issues arise:

1. The estimates we obtain are, in general, not even consistent. Specifically, as the
sample size is made large, the estimates converge not on the true values but on other
values differing from the true values by an unknown amount.

2. The violation of this assumption is not detectable by examining the data. Therefore,
the possibility that in any particular situation the independence assumption may not
be true is a particularly disturbing one. The only way it is possible to guarantee its
truth is by deliberately designing the experiment rather than using data that have
simply ‘‘happened.’’ Specifically, we must deliberately generate and feed into the
process an input 𝑋𝑡, which we know to be uncorrelated with 𝑁𝑡 because we have
generated it by some external random process.

The input 𝑋𝑡 can, of course, be autocorrelated; it is necessary only that it should not be
cross-correlated with𝑁𝑡. To satisfy this requirement, we could, for example, draw a set of
random variates 𝛼𝑡 and use them to generate any desired input process𝑋𝑡 = 𝜓𝑋(𝐵)𝛼𝑡.
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Alternatively, we can choose a fixed ‘‘design,’’ for example, the factorial design used
in Section 12.4.2, and randomize the order in which the runs are made. Appendix A12.2
contains a preliminarydiscussion of some elementary design problems, and it is sufficient to
expose some of the difficulties in the practical selection of the ‘‘optimal’’ stochastic input.
In particular, as is true in a wider context: (1) it is difficult to decide what is a sensible
criterion for optimality, and (2) the choice of ‘‘optimal’’ input depends on the values of the
unknown parameters that are to be optimally estimated. In general, a white noise input has
distinct advantages in simplifying identification, and if nothing very definite were known
about the system under study, it would provide a sensible initial choice of input.

APPENDIX A12.1 USE OF CROSS-SPECTRAL ANALYSIS FOR TRANSFER
FUNCTION MODEL IDENTIFICATION

In this appendix, we show that an alternative method for identifying transfer function
models, which does not require prewhitening of the input, can be based on spectral analysis.
Furthermore, it is easily generalized to multiple inputs.

A12.1.1 Identification of Single-Input Transfer Function Models

Suppose that the transfer function 𝑣(𝐵) is defined so as to allow the possibility of nonzero
impulse response weights 𝑣𝑗 for 𝑗 a negative integer, so that

𝑣(𝐵) =
∞∑

𝑘=−∞
𝑣𝑘𝐵

𝑘

Then if, corresponding to (12.2.3), the transfer function--noise model is

𝑦𝑡 = 𝑣(𝐵)𝑥𝑡 + 𝑛𝑡

equations (12.2.5) become

𝛾𝑥𝑦(𝑘) =
∞∑

𝑗=−∞
𝑣𝑗𝛾𝑥𝑥(𝑘 − 𝑗) 𝑘 = 0,±1,±2,… (A12.1.1)

We now define a cross-covariance generating function

𝛾𝑥𝑦(𝐵) =
∞∑

𝑘=−∞
𝛾𝑥𝑦(𝑘)𝐵𝑘 (A12.1.2)

which is analogous to the autocovariance generating function (3.1.10). On multiplying
throughout in (A12.1.1) by 𝐵𝑘 and summing, we obtain

𝛾𝑥𝑦(𝐵) = 𝑣(𝐵)𝛾𝑥𝑥(𝐵) (A12.1.3)

If we now substitute𝐵 = 𝑒−𝑖2𝜋𝑓 in (A12.1.2),we obtain the cross-spectrum 𝑝𝑥𝑦(𝑓 ) between
input 𝑥𝑡 and output 𝑦𝑡. Making the same substitution in (A12.1.3) yields

𝑣(𝑒−𝑖2𝜋𝑓 ) =
𝑝𝑥𝑦(𝑓 )

𝑝𝑥𝑥(𝑓 )
− 1

2
≤ 𝑓 <

1
2

(A12.1.4)
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where

𝑣(𝑒−𝑖2𝜋𝑓 ) = 𝐺(𝑓 )𝑒𝑖2𝜋𝜙(𝑓 ) =
∞∑

𝑘=−∞
𝑣𝑘𝑒

−𝑖2𝜋𝑓𝑘 (A12.1.5)

is called the frequency response function of the system transfer function relationship and
is the Fourier transform of the impulse response function. Since 𝑣(𝑒−𝑖2𝜋𝑓 ) is complex
valued, we write it as a product involving a gain function 𝐺(𝑓 ) =∣ 𝑣(𝑒𝑖2𝜋𝑓 ) ∣ and a phase
function𝜙(𝑓 ). Equation (A12.1.4) shows that the frequency response function is the ratio of
the cross-spectrum to the input spectrum. Methods for estimating the frequency response
function 𝑣(𝑒−𝑖2𝜋𝑓 ) are described by Jenkins and Watts (1968). Knowing 𝑣(𝑒−𝑖2𝜋𝑓 ), the
impulse response function 𝑣𝑘 can then be obtained from

𝑣𝑘 =
∫

1∕2

−1∕2
𝑣(𝑒−𝑖2𝜋𝑓 )𝑒𝑖2𝜋𝑓𝑘𝑑𝑓 (A12.1.6)

Using a similar approach, the autocovariance generating function of the noise 𝑛𝑡 is

𝛾𝑛𝑛(𝐵) = 𝛾𝑦𝑦(𝐵) − 𝛾
𝑥𝑦(𝐵)𝛾𝑥𝑦(𝐹 )
𝛾𝑥𝑥(𝐵)

(A12.1.7)

On substituting 𝐵 = 𝑒−𝑖2𝜋𝑓 in (A12.1.7), we obtain the expression

𝑝𝑛𝑛(𝑓 ) = 𝑝𝑦𝑦(𝑓 )[1 − 𝑘2𝑥𝑦(𝑓 )] (A12.1.8)

for the spectrum of the noise process, where

𝑘2
𝑥𝑦
(𝑓 ) =

∣ 𝑝𝑥𝑦(𝑓 ) ∣2

𝑝𝑥𝑥(𝑓 )𝑝𝑦𝑦(𝑓 )

and 𝑘𝑥𝑦(𝑓 ) is the coherency spectrum between the series 𝑥𝑡 and 𝑦𝑡. The coherency spectrum
𝑘𝑥𝑦(𝑓 ) at each frequency 𝑓 behaves like a correlation coefficient between the random
components at frequency 𝑓 in the spectral representations of 𝑥𝑡 and 𝑦𝑡. Knowing the noise
spectrum, the noise autocovariance function 𝛾𝑛𝑛(𝑘) may then be obtained from

𝛾𝑛𝑛(𝑘) = 2
∫

1∕2

0
𝑝𝑛𝑛(𝑓 ) cos(2𝜋𝑓𝑘)𝑑𝑓

By substituting estimates of the spectra such as those described in Jenkins and Watts
(1968), estimates of the impulse response weights 𝜐𝑘 and noise autocorrelation function
are obtained. These can be used to identify the transfer function model and noise model as
described in Sections 12.2.1 and 6.2.1.

A12.1.2 Identification of Multiple-Input Transfer Function Models

We now generalize the model

𝑌𝑡 = 𝜐(𝐵)𝑋𝑡 +𝑁𝑡
= 𝛿−1(𝐵)𝜔(𝐵)𝑋𝑡−𝑏 +𝑁𝑡
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to allow for several inputs 𝑋1,𝑡, 𝑋2,𝑡,… , 𝑋𝑚,𝑡. Thus,

𝑌𝑡 = 𝜐1(𝐵)𝑋1,𝑡 +⋯ + 𝜈𝑚(𝐵)𝑋𝑚,𝑡 +𝑁𝑡 (A12.1.9)

= 𝛿−11 (𝐵)𝜔1(𝐵)𝑋1,𝑡−𝑏1 +⋯ + 𝛿−1
𝑚
(𝐵)𝜔𝑚(𝐵)𝑋𝑚,𝑡−𝑏𝑚 +𝑁𝑡 (A12.1.10)

where 𝜐𝑗(𝐵) = 𝛿−1𝑗 (𝐵)𝜔𝑗(𝐵)𝐵𝑏𝑗 is the generating function of the impulse response weights
relating𝑋𝑗,𝑡 to the output 𝑌𝑡. We assume, as before, that after differencing, (A12.1.9) may
be written as

𝑦𝑡 = 𝜐1(𝐵)𝑥1,𝑡 +⋯ + 𝜐𝑚(𝐵)𝑥𝑚,𝑡 + 𝑛𝑡

where 𝑦𝑡, 𝑥1,𝑡,… , 𝑥𝑚,𝑡, and 𝑛𝑡 are all jointly stationary processes.Multiplying throughoutby
𝑥1,𝑡−𝑘, 𝑥2,𝑡−𝑘,… , 𝑥𝑚,𝑡−𝑘 in turn, taking expectations, and forming the generating functions,
we obtain

𝛾𝑥1𝑦(𝐵) = 𝜐1(𝐵)𝛾𝑥1𝑥1 (𝐵) + 𝜐2(𝐵)𝛾𝑥1𝑥2 (𝐵) +⋯ + 𝜐𝑚(𝐵)𝛾𝑥1𝑥𝑚 (𝐵)
𝛾𝑥2𝑦(𝐵) = 𝜐1(𝐵)𝛾𝑥2𝑥1 (𝐵) + 𝜐2(𝐵)𝛾𝑥2𝑥2 (𝐵) +⋯ + 𝜐𝑚(𝐵)𝛾𝑥2𝑥𝑚 (𝐵)

⋮ ⋮ ⋮ ⋮ (A12.1.11)

𝛾𝑥𝑚𝑦(𝐵) = 𝜐1(𝐵)𝛾𝑥𝑚𝑥1 (𝐵) + 𝜐2(𝐵)𝛾𝑥𝑚𝑥2 (𝐵) +⋯ + 𝜐𝑚(𝐵)𝛾𝑥𝑚𝑥𝑚 (𝐵)

On substituting 𝐵 = 𝑒−𝑖2𝜋𝑓 , the spectral equations are obtained. For example, with 𝑚 = 2,

𝑝𝑥1𝑦
(𝑓 ) = 𝐻1(𝑓 )𝑝𝑥1𝑥1 (𝑓 ) +𝐻2(𝑓 )𝑝𝑥1𝑥2 (𝑓 )

𝑝𝑥2𝑦
(𝑓 ) = 𝐻1(𝑓 )𝑝𝑥2𝑥1 (𝑓 ) +𝐻2(𝑓 )𝑝𝑥2𝑥2 (𝑓 )

and the frequency response functions𝐻1(𝑓 ) = 𝜐1(𝑒−𝑖2𝜋𝑓 ) and𝐻2(𝑓 ) = 𝜐2(𝑒−𝑖2𝜋𝑓 ) can be
calculated as described in Jenkins and Watts (1968). The impulse response weights can
then be obtained using the inverse transformation (A12.1.6).

APPENDIX A12.2 CHOICE OF INPUT TO PROVIDE OPTIMAL
PARAMETER ESTIMATES

Suppose that the input to a dynamic system can be made to follow an imposed stochastic
process that is our choice. For example, it might be an autoregressive process, a moving
average process, or white noise. To illustrate the problems involved in the optimal selection
of this stochastic process, it is sufficient to consider an elementary example.

A12.2.1 Design of Optimal Inputs for a Simple System

Suppose that a system is under study forwhich the transfer function--noisemodel is assumed
to be

𝑌𝑡 = 𝛽1𝑌𝑡−1 + 𝛽2𝑋𝑡−1 + 𝑎𝑡 |𝛽1| < 1 (A12.2.1)

where 𝑎𝑡 is white noise. It is also assumed that the input and output processes are stationary
and that 𝑋𝑡 and 𝑌𝑡 denote deviations of these processes from their respective means. For
large samples, and associated with any fixed probability, the approximate area of the
Bayesian HPD region for 𝛽1 and 𝛽2, and also of the corresponding confidence region, is
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proportional to Δ−1∕2, where Δ is the determinant

Δ =
||||||
𝐸[𝑌 2

𝑡 ] 𝐸[𝑌𝑡𝑋𝑡]
𝐸[𝑌𝑡𝑋𝑡] 𝐸[𝑋2

𝑡
]

||||||
We will proceed by attempting to find the design minimizing the area of the HPD or
confidence region and thus maximizing Δ. Now

𝐸[𝑌 2
𝑡
] = 𝜎2

𝑌
= 𝜎2

𝑋
𝛽22

1 + 2𝑞
1 − 𝛽21

+
𝜎2
𝑎

1 − 𝛽21

𝐸[𝑌𝑡𝑋𝑡] = 𝜎2𝑋
𝛽2
𝛽1
𝑞 (A12.2.2)

𝐸[𝑋2
𝑡
] = 𝜎2

𝑋

where

𝑞 =
∞∑
𝑖=1
𝛽𝑖1𝜌𝑖 𝜎2

𝑋
𝜌𝑖 = 𝐸[𝑋𝑡𝑋𝑡−𝑖]

The value of the determinant may be written in terms of 𝜎2
𝑋
as

Δ =
𝜎2
𝑋
𝜎2
𝑎

1 − 𝛽21
+

𝛽22𝜎
4
𝑋

(1 − 𝛽21 )
2
−
𝜎4
𝑋
𝛽22

𝛽21

(
𝑞 −

𝛽21

1 − 𝛽21

)2

(A12.2.3)

Thus, as might be expected, the area of the region can be made small by making 𝜎2
𝑋
large

(i.e., by varying the input variable over a wide range). In practice, there may be limits to
the amount of variation that can be allowed in𝑋. Let us proceed by first supposing that 𝜎2

𝑋
is held fixed at some specified value.

Solution with 𝝈𝟐
𝑿
Fixed. With (1 − 𝛽21 ) > 0 and for any fixed 𝜎2

𝑋
, we see from (A12.2.3)

that Δ is maximized by setting

𝑞 =
𝛽21

1 − 𝛽21

that is,

𝛽1𝜌1 + 𝛽21𝜌2 + 𝛽
3
1𝜌3 +⋯ = 𝛽21 + 𝛽

4
1 + 𝛽

6
1 +⋯

There are an infinite number of ways in which, for given 𝛽1, this equality could be achieved.
One obvious solution is

𝜌𝑖 = 𝛽𝑖1
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Thus, one way to maximize Δ for fixed 𝜎2
𝑋

would be to force the input to follow the
autoregressive process

(1 − 𝛽1𝐵)𝑋𝑡 = 𝛼𝑡

where 𝛼𝑡 is a white noise process with variance 𝜎
2
𝛼
= 𝜎2

𝑋
(1 − 𝛽21 ).

Solution with 𝝈𝟐
𝒀
Fixed. So far we have supposed that 𝜎2

𝑌
is unrestricted. In some cases,

we might wish to avoid too great a variation in the output rather than in the input. Suppose
that 𝜎2

𝑌
is held equal to some fixed acceptable value but that 𝜎2

𝑋
is unrestricted. Then the

value of the determinantΔ can be written in terms of 𝜎2
𝑌
as

Δ =
𝜎4
𝑌

𝛽22

[
𝜎2
𝑌
− 𝜎2

𝑎

𝜎2
𝑌

−
𝛽21
𝑠2

(
𝑞 + 𝑠
1 + 2𝑞

)2
]

(A12.2.4)

where

𝑠 =
𝛽21𝑟

1 + 𝛽21𝑟
(A12.2.5)

and

𝑟 =
𝜎2
𝑌

𝜎2
𝑌
− 𝜎2

𝑎

(A12.2.6)

The maximum is achieved by setting

𝑞 = −𝑠 =
−𝛽21𝑟

1 + 𝛽21𝑟
(A12.2.7)

that is,

𝛽1𝜌1 + 𝛽21𝜌2 + 𝛽
3
1𝜌3 +⋯ = −𝛽21 𝑟 + 𝛽

4
1𝑟

2 − 𝛽61𝑟
3 +⋯

There are again infinite ways of satisfying this equality. In particular, one solution is

𝜌𝑖 = (−𝛽1𝑟)𝑖 (A12.2.8)

which can be obtained by forcing the input to follow the autoregressive process

(1 + 𝛽1𝑟𝐵)𝑋𝑡 = 𝛼𝑡 (A12.2.9)

where 𝛼𝑡 is a white noise process with variance 𝜎2
𝛼
= 𝜎2

𝑋
(1 − 𝛽21𝑟

2). Since 𝑟 is essentially
positive, the sign of the parameter (−𝛽1𝑟) of this autoregressive process is opposite to that
obtained for the optimal input with 𝜎2

𝑋
fixed.

Solution with 𝝈𝟐
𝒀
× 𝝈𝟐

𝑿
Fixed. In practice, it might happen that excessive variations in

input and output were both to be avoided. If it were true that a given 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 decrease in
the variance of𝑋 was equally as desirable as the same 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 decrease in the variance
of 𝑌 , it would be sensible to maximize Δ subject to a fixed value of the product 𝜎2

𝑋
× 𝜎2

𝑌
.
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The determinant is

Δ = 𝜎2
𝑋
𝜎2
𝑌
−
𝜎4
𝑋
𝛽22𝑞

2

𝛽21

(A12.2.10)

which is maximized for fixed 𝜎2
𝑋
𝜎2
𝑌
only if 𝑞 = 0. Once again there are an infinite number

of solutions. However, by using a white noise input,Δ is maximized whatever the value of
𝛽1. For such an input, using (A12.2.2), 𝜎

2
𝑋
is the positive root of

𝜎4
𝑋
𝛽22 + 𝜎

2
𝑋
𝜎2
𝑎
− 𝑘(1 − 𝛽21 ) = 0 (A12.2.11)

where 𝑘 = 𝜎2
𝑋
𝜎2
𝑌
, which is fixed.

A12.2.2 Numerical Example

Suppose that we were studying the first-order dynamic system (A12.2.1) with 𝛽1 = 0.50
and 𝛽2 = 1.00, so that

𝑌𝑡 = 0.50𝑌𝑡−1 + 1.00𝑋𝑡−1 + 𝛼𝑡

where 𝜎2
𝛼
= 0.2.

𝝈
𝟐
𝑿
Fixed, 𝝈𝟐

𝒀
Unrestricted. Suppose at first that the design is chosen to maximize Δ with

𝜎2
𝑋
= 1.0. Then one optimal choice for the input 𝑋𝑡 will be the autoregressive process

(1 − 0.5𝐵)𝑋𝑡 = 𝛼𝑡

where the white noise process 𝛼𝑡 would have variance 𝜎2
𝛼
= 𝜎2

𝑋
(1 − 𝛽21 ) = 0.75. Using

(A12.2.2), the variance 𝜎2
𝑌
of the output would be 2.49, and the scheme will achieve a

Bayesian region for 𝛽1 and 𝛽2 whose area is proportional to Δ−1∕2 = 0.70.

𝝈
𝟐
𝒀
Fixed, 𝝈𝟐

𝑿
Unrestricted. The above scheme is optimal under the assumption that the

input variance is 𝜎2
𝑋
= 1 and the output variance is unrestricted. This output variance then

turns out to be 𝜎2
𝑌
= 2.49. If, instead, the input variance were unrestricted, then with a

fixed output variance of 2.49, we could, of course, do considerably better. In fact, using
(A12.2.6), 𝑟 = 1.087 and hence 𝛽1𝑟 ≃ 0.54, so that from (A12.2.9) one optimal choice for
the unrestricted input would be the autoregressive process

(1 + 0.54𝐵)𝑋𝑡 = 𝛼𝑡

where in this case 𝛼𝑡 is a white noise process with 𝜎2
𝛼
= 𝜎2

𝑋
(1 − 𝛽21𝑟

2). Using (A12.2.2)

with 𝜎2
𝑌
= 2.49 fixed and 𝑞 = −0.214 from (A12.2.7), the variance 𝜎2

𝑋
of the input would

now be increased to 2.91, so that 𝜎2
𝛼
= 2.05, and Δ−1∕2, which measures the area of the

Bayesian region, would be reduced to Δ−1∕2 = 0.42.

Product 𝝈𝟐
𝒀
× 𝝈𝟐

𝑿
Fixed. Finally, we consider a scheme that attempts to control both 𝜎2

𝑌

and 𝜎2
𝑋
by maximizing Δ with 𝜎2

𝑌
× 𝜎2

𝑋
fixed. In the previous example in which 𝜎2

𝑌
was

fixed, we found that Δ−1∕2 = 0.42 with 𝜎2
𝑋
= 2.91 and 𝜎2

𝑌
= 2.49, so that the product is
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2.91 × 2.49 = 7.25. If our objective had been to minimizeΔ−1∕2 while keeping this product
equal to 7.25,we could havemade an optimal choicewithout knowledge of 𝛽1 by choosing a
white noise input𝑋𝑡 = 𝛼𝑡. Using (A12.2.11), 𝜎2𝑋 = 𝜎2𝛼 = 2.29, 𝜎2

𝑌
= 3.16, and in this case,

as expected, Δ−1∕2 = 0.37, slightly smaller than that in the previous example.
It is worth considering this example in terms of spectral ideas. To optimize with 𝜎2

𝑋
fixed, we have used an autoregressive input with 𝜙𝑥 positive that has high power at
low frequencies. Since the gain of the system is high at low frequencies, this achieves
maximum transfer from 𝑋 to 𝑌 and so induces large variations in 𝑌 . When 𝜎2

𝑌
is fixed,

we have introduced an input that is an autoregressive process with 𝜙𝑥 negative. This has
high power at high frequencies. Since there is minimum transfer from 𝑋 to 𝑌 at high
frequencies, the disturbance in 𝑋 must now be made large at these frequencies. When the
product 𝜎2

𝑋
× 𝜎2

𝑌
is fixed, the ‘‘compromise’’ input white noise is indicated and does not

require knowledge of 𝛽1. This final maximization of Δ is equivalent to minimizing the
(magnitude of the) correlation between the estimates 𝛽1 and 𝛽2, and in fact the correlation
between these estimates is zero when a white noise input is used.

Conclusions. This investigation shows the following:

1. The optimal choice of design rests heavily on how we define ‘‘optimal.’’

2. Both in the case where 𝛼2
𝑋

is held fixed and in the case where 𝛼2
𝑌
is held fixed,

the optimal choices require specific stochastic processes for the input 𝑋𝑡 whose
parameters are functions of the unknown dynamic parameters. Thus, we are in the
familiar paradoxical situation where we can do a better job of data gathering only to
the extent that we already know something about the answer we seek. A sequential
approach, where we improve the design as we find out more about the parameters,
is a possibility worth further investigation. In particular, a pilot investigation using
a possibly nonoptimal input, say white noise, could be used to generate data from
which preliminary estimates of the dynamic parameters could be obtained. These
estimates could then be used to specify a further input using one of our previous
criteria.

3. The use of white noise is shown, for the simple case investigated, to be optimal for a
sensible criterion of optimality, and its use as an input requires no prior knowledge
of the parameters.

EXERCISES

12.1. Estimate of the cross-correlation function at lags −1, 0, and +1 for the following
series of five pairs of observations:

𝑡 1 2 3 4 5

𝑥𝑡 11 7 8 12 14
𝑦𝑡 7 10 6 7 10

12.2. If two series may be represented in 𝜓-weight form as

𝑦𝑡 = 𝜓𝑦(𝐵)𝑎𝑡 𝑥𝑡 = 𝜓𝑥(𝐵)𝑎𝑡
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(a) Show that their cross-covariance generating function

𝛾𝑥𝑦(𝐵) =
∞∑

𝑘=−∞
𝛾𝑥𝑦(𝑘)𝐵

𝑘

is given by 𝜎2
𝑎
𝜓𝑦(𝐵)𝜓𝑥(𝐹 ).

(b) Use the above result to obtain the cross-covariance function between 𝑦𝑡 and 𝑥𝑡
when

𝑦𝑡 = (1 − 𝜃𝐵)𝑎𝑡 𝑥𝑡 = (1 − 𝜃′1𝐵 − 𝜃′2𝐵
2)𝑎𝑡

12.3. After estimating a prewhitening transformation 𝜃−1
𝑥
(𝐵)𝜙𝑥(𝐵)𝑥𝑡 = 𝛼𝑡 for an input

series 𝑥𝑡 and then computing the transformed output 𝛽𝑡 = 𝜃−1𝑥 (𝐵)𝜙𝑥(𝐵)𝑦𝑡, cross-
correlations 𝑟𝛼𝛽(𝑘) were obtained as follows:

𝑘 𝑟𝛼𝛽 (𝑘) 𝑘 𝑟𝛼𝛽 (𝑘)

0 0.05 5 0.24
1 0.31 6 0.07
2 0.52 7 −0.03
3 0.43 8 0.10
4 0.29 9 0.07

with �̂�𝛼 = 1.26, �̂�𝛽 = 2.73, and 𝑛 = 187.
(a) Obtain approximate standard errors for the cross-correlations.

(b) Calculate rough estimates for the impulse response weights 𝜐𝑗 of a transfer
function between 𝑦𝑡 and 𝑥𝑡.

(c) Suggest a model form for the transfer function and give rough estimates of its
parameters.

12.4. It is frequently the case that the user of an estimated transfer function--noise model
𝑦𝑡 = 𝛿−1(𝐵)𝜔(𝐵)𝐵𝑏𝑥𝑡 + 𝑛𝑡 will want to establish whether the steady-state gain
𝑔 = 𝛿−1(1)𝜔(1)makes good sense.

(a) For the first-order transfer function system

𝑦𝑡 =
𝜔0

1 − 𝛿𝐵
𝑥𝑡−1

show that an approximate standard error �̂�(�̂�) of the estimate �̂� = �̂�0∕(1 − 𝛿) is
given by

�̂�2(�̂�)
�̂�2

≃
var[�̂�0]
�̂�2
0

+ var[𝛿]
(1 − 𝛿)2

+
2cov[�̂�0, 𝛿]
�̂�0(1 − 𝛿)

(b) Calculate �̂� and an approximate value for �̂�(�̂�) when �̂�0 = 5.2, 𝛿 =
0.65, �̂�(�̂�0) = 0.5, �̂�(𝛿) = 0.1, and cov[�̂�0, 𝛿] = 0.025.
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12.5. Consider the regression model

𝑌𝑡 = 𝛽1𝑋1,𝑡 + 𝛽2𝑋2,𝑡 +𝑁𝑡

where 𝑁𝑡 is a nonstationary error term following an IMA(0, 1, 1) process ∇𝑁𝑡 =
𝑎𝑡 − 𝜃𝑎𝑡−1. Show that the regression model may be rewritten in the form

𝑌𝑡 − 𝑌𝑡−1 = 𝛽1(𝑋1,𝑡 − �̄�1,𝑡−1) + 𝛽2(𝑋2,𝑡 − �̄�2,𝑡−1) + 𝑎𝑡

where 𝑌𝑡−1, �̄�1,𝑡−1, and �̄�2,𝑡−1 are exponentially weighted moving averages so that,
for example,

𝑌𝑡−1 = (1 − 𝜃)(𝑌𝑡−1 + 𝜃𝑌𝑡−2 + 𝜃2𝑌𝑡−3 +⋯)

It will be seen that the fitting of this regression model with nonstationary noise
by maximum likelihood is equivalent to fitting the deviations of the independent
and dependent variables from local updated exponentially weighted moving aver-
ages by ordinary least-squares. (Refer to Section 9.5.1 for related ideas regarding
transformation of regression models with autocorrelated noise𝑁𝑡.)

12.6. Quarterly measurements of unemployment and the gross domestic product (GDP)
in the United Kingdom over the period 1955--1969 are included in Series P in Part
Five of this book; see also http://pages.stat.wisc.edu/ reinsel/bjr-data/.

(a) Plot the two time series using R.

(b) Calculate and plot the autocorrelation and partial autocorrelation functions
of the two series. Repeat the calculations for the first differences of the
two series. Would a variance stabilizing transformation be helpful for model
development?

(c) Calculate and plot the cross-correlation function between the two series.

12.7. Refer to Exercise 12.6. Build (identify, estimate, and check) a transfer
function--noise model that uses the GDP series𝑋𝑡 as input to help explain variations
in the logged unemployment series 𝑌𝑡.

12.8. Consider the transfer function--noise model fitted to the gas furnace data in (12.4.1)
and (12.4.2). Note that the estimate of 𝛿2 is very close to zero. Re-estimate the
parameters of this model setting 𝛿2 equal to zero. Describe the resulting impact on
the estimate of the residual variance and other model parameters.

12.9. A bivariate time series consisting of sales data and a leading indicator is listed as
Series M in Part Five of this book. The series is also available as ‘‘BJsales’’ in the
datasets package of R.

(a) Plot the two time series using R.

(b) Calculate and plot the autocorrelation and partial autocorrelation functions of
the two series. Find a suitable model for the leading indicator series.

(c) Calculate and plot the cross-correlation function between the two variables.

(d) Calculate and plot the cross-correlation function after prewhitening the series
using the time series model developed in part (b).

(e) Estimate the impulse response function 𝑣𝑘 for the two series.

http://pages.stat.wisc.edu/reinsel/bjr-data/
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12.10. Refer to Exercise 12.9. A bivariate transfer function--noise model was given for
these series in Section 12.5.3.

(a) Use the results from Exercise 12.9 to justify the choice of transfer function
model. Derive preliminary estimates of the parameters in this model.

(b) Justify the choice of the noise model given in Section 12.5.3.

(c) Estimate the parameters of the combined transfer function--noise model and
perform the appropriate diagnostic checks on the fitted model.
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13
INTERVENTION ANALYSIS, OUTLIER
DETECTION, AND MISSING VALUES

Time series are often affected by special events or conditions such as policy changes, strikes,
advertising promotions, environmental regulations, and similar events, which we will refer
to as intervention events. In Section 13.1, we describe the method of intervention analysis,
which can account for the expected effects of these interventions. For this, the transfer
function models of the previous chapters are used, but in the intervention analysis model,
the input series will be in the form of a simple pulse or step indicator function to signal
the presence or absence of the event. The timing of the intervention event is assumed to
be known in this analysis. Section 13.2 considers the related problem of detecting outlying
or unusual behavior in a time series at an unknown point of time. Depending on how the
outlier enters and its likely impact on the time series, two types of outlier models, additive
outlier (AO) and innovational outlier (IO) models, are considered. A somewhat related
problem of missing values in a time series is discussed in Section 13.3. The key focus
of this section is on parameter estimation and evaluation of the likelihood function of an
ARMA model for time series with missing values. However, consideration is also given to
estimation of the missing values in the series.

13.1 INTERVENTION ANALYSIS METHODS

13.1.1 Models for Intervention Analysis

In the setting of intervention analysis, it is assumed that an intervention event has occurred
at a known point in time 𝑇 of a time series. It is of interest to determine whether there is

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
○c 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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any evidence of a change or effect, of an expected kind, on the time series 𝑌𝑡 associated
with the event. We consider the use of transfer function models to model the nature of
and estimate the magnitude of the effects of the intervention, and hence to account for the
possible unusual behavior in the time series related to the event. Based on the study by Box
and Tiao (1975), the type of model we consider has the form

𝑌𝑡 =
𝜔(𝐵)𝐵𝑏

𝛿(𝐵)
𝜉𝑡 +𝑁𝑡 (13.1.1)

where the term 𝑡 = 𝛿−1(𝐵)𝜔(𝐵)𝐵𝑏𝜉𝑡 represents the effects of the intervention event in
terms of the deterministic input series 𝜉𝑡, and 𝑁𝑡 is the noise series that represents the
underlying time series without the intervention effects. It is assumed that 𝑁𝑡 follows
an ARIMA(𝑝, 𝑑, 𝑞) model, 𝜑(𝐵)𝑁𝑡 = 𝜃(𝐵)𝑎𝑡, with 𝜑(𝐵) = 𝜙(𝐵)(1 − 𝐵)𝑑 . Multiplicative
seasonal ARIMAmodels as presented in Chapter 9 can also be included for𝑁𝑡, but special
note of the seasonal models will not be made in this chapter.

There are two common types of deterministic input variables 𝜉𝑡 that have been found
useful to represent the impact of intervention events on a time series. Both of these are indi-
cator variables taking only the values 0 and 1 to denote the nonoccurrence and occurrence
of the intervention. One type is a step function at time 𝑇 , given by

𝑆
(𝑇 )
𝑡

=

{
0 𝑡 < 𝑇

1 𝑡 ≥ 𝑇
(13.1.2)

which would typically be used to represent the effects of an intervention that are expected
to remain permanently after time 𝑇 to some extent. The other type is a pulse function at 𝑇 ,
given by

𝑃
(𝑇 )
𝑡

=

{
0 𝑡 ≠ 𝑇

1 𝑡 = 𝑇
(13.1.3)

which could represent the effects of an intervention that are temporary or transient and will
die out after time 𝑇 . These indicator input variables are used in many situations where the
effects of the intervention cannot be represented as the response to a quantitative variable
because such a quantitative variable does not exist or it is impractical or impossible to
obtain measurements on such a variable.

Because of the deterministic nature of the indicator input series 𝜉𝑡 in (13.1.1), unlike
the transfer function model situation of Chapter 12, identification of the structure of the
intervention model operator 𝑣(𝐵) = 𝛿−1(𝐵)𝜔(𝐵)𝐵𝑏 cannot be based on the technique of
prewhitening. Instead, it is necessary to postulate the form of the intervention model by
considering the mechanisms that might cause the change or effect and the implied form
of the change that would be expected. In addition, the identification may be aided by
direct inspection of the data to suggest the form of effect due to the known event, and
supplementary evidence may sometimes be available from examination of the residuals
from a model fitted before the intervention term is introduced.
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FIGURE 13.1 Responses to a step and a pulse input: (a--c) Response to a step input for various
simple transfer function models, and (d--f) Response to a pulse input for some common models of
interest.

Response Patterns Useful in Intervention Analysis. Several different response patterns

𝑡 = 𝛿−1(𝐵)𝜔(𝐵)𝐵𝑏𝜉𝑡

are possible through different choices of the transfer function. Figure 13.1 shows the
responses for various simple transfer functions with both step and pulse indicators as
input. For example, the model 𝑡 = 𝜔𝐵𝑆

(𝑇 )
𝑡

in Figure 13.1(a) can be used to represent a
permanent step change in level of unknown magnitude 𝜔 after time 𝑇 , while the form

𝑡 =
𝜔𝐵

1 − 𝛿𝐵
𝑆
(𝑇 )
𝑡

0 < 𝛿 < 1 (13.1.4)

in Figure 13.1(b), which implies that 𝑡 = 𝜔(1 − 𝛿𝑡−𝑇 )∕(1 − 𝛿), 𝑡 ≥ 𝑇 , corresponds to a
gradual change with rate 𝛿 that eventually approaches the long-run change in level equal
to 𝜔∕(1 − 𝛿). Similarly, the model

𝑡 =
𝜔1𝐵

1 − 𝛿𝐵
𝑃
(𝑇 )
𝑡

0 < 𝛿 < 1 (13.1.5)

in Figure 13.1(d), which implies that 𝑡 = 𝜔1𝛿
𝑡−𝑇−1, 𝑡 > 𝑇 , would represent a sudden

‘‘pulse’’ change after time 𝑇 of unknown magnitude 𝜔1, followed by a gradual decay of
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rate 𝛿 back to the original preintervention level with no permanent effect. More complex
response patterns can be obtained by various linear combinations of the simpler forms,
such as in the case of Figure 13.1(f). It is also noted that since (1 − 𝐵)𝑆 (𝑇 )

𝑡
= 𝑃

(𝑇 )
𝑡

, any

of the transfer function models that involve 𝑆
(𝑇 )
𝑡

could equally well be represented in

terms 𝑃 (𝑇 )
𝑡

.
The following additional points concerning the intervention models are worthy of note.

The function 𝑡 represents the additional effect of the intervention event over the noise or
‘‘background’’ series 𝑁𝑡. Hence, when possible, the model 𝑁𝑡 = [𝜃(𝐵)∕𝜑(𝐵)]𝑎𝑡 for the
noise is identified based on the usual procedures applied to the time series observations
available before the date of the intervention, that is, 𝑌𝑡, 𝑡 < 𝑇 . Also, it is assumed in model
(13.1.1) that only the level of the series is affected by the intervention and, in particular,
that the form and the parameters of the time series model for 𝑁𝑡 are the same before and
after the intervention. One should also recognize that there can be considerable differences
in the accuracy with which the intervention model parameters can be estimated depending
on whether the noise𝑁𝑡 is stationary or nonstationary, as well as on whether permanent or
transitory effects are postulated.

In general, the parameter estimates and their standard errors for the intervention model

𝑌𝑡 =
𝜔(𝐵)𝐵𝑏

𝛿(𝐵)
𝜉𝑡 +

𝜃(𝐵)
𝜑(𝐵)

𝑎𝑡 (13.1.6)

are obtained by the least-squares method of estimation for transfer function--noise models,
as described in Section 12.3. Diagnostic checking based on the residuals �̂�𝑡 from the fitted
model can also be performed using methods similar to those previously employed to assess
the adequacy of a fitted model.

13.1.2 Example of Intervention Analysis

Box and Tiao (1975) considered the monthly time series consisting of the rate of change
in the U.S. consumer price index (CPI) for the period July 1953 through December 1972.
Beginning in September 1971, phase I economic control went into effect for 3 months, and
after that phase II was in effect. The problem was to investigate the possible effect of the
phase I and II controls on the rate of change in the CPI.

Inspection of the sample autocorrelation functions of the rate of change of the CPI and
its first differences for the 218 monthly observations prior to phase I suggested a noise
model of the form

(1 − 𝐵)𝑁𝑡 = (1 − 𝜃𝐵)𝑎𝑡 (13.1.7)

withmaximum likelihood estimates �̂� = 0.84 and �̂�𝑎 = 0.0019. Examination of the residuals
and their autocorrelations reveals no obvious inadequacies in this model.

Then, to address the question of the possible effects of phase I and II controls, it is
assumed that phase I and II are expected to produce changes in the level of the rate of
change of the CPI, and that the form of the noise model remains the same. Based on these
assumptions, the appropriate model to assess the impact of the controls is

𝑌𝑡 = 𝜔1𝜉1𝑡 + 𝜔2𝜉2𝑡 +
1 − 𝜃𝐵

1 − 𝐵
𝑎𝑡 (13.1.8)
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where

𝜉1𝑡 =

{
1 𝑡 = September, October, or November 1971

0 otherwise

𝜉2𝑡 =

{
1 𝑡 ≥ December 1971

0 otherwise

The nonlinear least-squares estimates of the parameters in model (13.1.8) were obtained,
with standard errors in parentheses, as

�̂� = 0.85(0.05) �̂�1 = −0.0022(0.0010) �̂�2 = −0.0008(0.0009)

Hence, the analysis suggests that a drop in the rate of increase of the CPI is associated with
phase I, but the effect of phase II is much less certain.

Many other examples of the use of intervention analysis have appeared in the literature.
These include studies of the effects of regulations for engine design changes in new cars
on oxidant pollution levels in the Los Angeles area (Box and Tiao, 1975), the effect of
a change in policy in relation to debt collection on bad debt collections (Jenkins, 1979),
the effectiveness of seat belt legislation on road deaths (Bhattacharyya and Layton, 1979),
and the impact of the Arab oil embargo on electricity consumption in the United States
(Montgomery and Weatherby, 1980).

13.1.3 Nature of the ML Estimator for a Simple Level Change Model

It is instructive to consider the nature of the maximum likelihood estimator of the inter-
vention parameters, such as those in (13.1.8), for some relatively simple situations. We
consider the simple model

𝑌𝑡 = 𝜔𝜉𝑡 +𝑁𝑡 (13.1.9)

where 𝑁𝑡 = 𝜙−1(𝐵)𝜃(𝐵)𝑎𝑡. This model can be written, formally, as

𝜋(𝐵)𝑌𝑡 = 𝜔𝜋(𝐵)𝜉𝑡 + 𝑎𝑡 (13.1.10)

where 𝜋(𝐵) = 𝜃−1(𝐵)𝜙(𝐵) = 1 −
∑∞

𝑖=1 𝜋𝑖𝐵
𝑖. Letting 𝑤𝑡 = 𝜋(𝐵)𝑌𝑡 and 𝑥𝑡 = 𝜋(𝐵)𝜉𝑡, we

can write (13.1.10) in the form of a simple linear model 𝑤𝑡 = 𝑤𝑥𝑡 + 𝑎𝑡, 𝑡 = 1, 2,… , 𝑛.
Hence, the maximum likelihood estimator of 𝜔 is approximately

�̂� =
∑𝑛

𝑡=1 𝑥𝑡𝑤𝑡∑𝑛

𝑡=1 𝑥
2
𝑡

(13.1.11)

with var[�̂�] = 𝜎2
𝑎
∕
∑𝑛

𝑡=1 𝑥
2
𝑡
.

Example with a Step Change Input and Nonstationary Noise. Let us consider a spe-
cial case of (13.1.9) where 𝜉𝑡 = 𝐵𝑆

(𝑇 )
𝑡

represents a step change after time 𝑇 . Then,

𝑥𝑡 = 𝜋(𝐵)𝐵𝑆
(𝑇 )
𝑡

= 1 −
∑𝑡−𝑇−1

𝑖=1 𝜋𝑖, 𝑡 > 𝑇 + 1, with 𝑥𝑇+1 = 1 and 𝑥𝑡 = 0 for 𝑡 ≤ 𝑇 . For
the discussion that follows, we suppose that 𝑛 is large, and that a relatively large number
of observations are available before and after the intervention time 𝑇 .
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Now suppose that the noise𝑁𝑡 in (13.1.9) is nonstationary with generalized autoregres-
sive operator 𝜑(𝐵) = 𝜙(𝐵)(1 − 𝐵) so that

𝜋(𝐵) = 𝜃−1(𝐵)𝜙(𝐵)(1 − 𝐵) = �̃�(𝐵)(1 − 𝐵)

with �̃�(𝐵) = 𝜃−1(𝐵)𝜙(𝐵) = 1 −
∑∞

𝑗=1 �̃�𝑗𝐵
𝑗 . Then,𝑥𝑡 = �̃�(𝐵)𝐵(1 − 𝐵)𝑆(𝑇 )

𝑡
= �̃�(𝐵)𝑃 (𝑇 )

𝑡−1 =
�̃�𝑡−𝑇−1, 𝑡 ≥ 𝑇 + 1, and hence

𝑛∑
𝑡=1

𝑥2
𝑡
=

𝑛∑
𝑡=𝑇+1

�̃�2
𝑡−𝑇−1 ≃

∞∑
𝑖=0

�̃�2
𝑖
≡ 𝜂0

Also,𝑤𝑡 = 𝜋(𝐵)𝑌𝑡 = 𝑌𝑡 − 𝑌 𝑡−1, where 𝑌 𝑡−1 =
∑∞

𝑖=1 𝜋𝑖𝑌𝑡−𝑖 is a weighted average of values
prior to 𝑡 (since

∑∞
𝑖=1 𝜋𝑖 = 1 when 𝑑 = 1). Following the results in Box and Tiao (1975), it

can then be shown that

𝑛∑
𝑡=1

𝑥𝑡𝑤𝑡 =
𝑛∑

𝑡=𝑇+1
�̃�𝑡−𝑇−1𝑤𝑡 ≃ �̃�(𝐵)�̃�(𝐹 )(1 − 𝐵)𝑌𝑇+1

=
∞∑
𝑠=0

𝛼𝑠𝑌𝑇+1+𝑠 −
∞∑
𝑠=0

𝛼𝑠𝑌𝑇−𝑠

where 𝑎𝑠 = 𝜂𝑠 − 𝜂𝑠+1 and the 𝜂𝑠 are coefficients in �̃�(𝐵)�̃�(𝐹 ) = 𝜂0 +
∑∞

𝑠=1 𝜂𝑠(𝐵
𝑠 + 𝐹 𝑠),

such that
∑∞

𝑠=0 𝛼𝑠 = 𝜂0 ≡
∑∞

𝑖=0 �̃�
2
𝑖
. Therefore, in this situation, the maximum likelihood

estimator of 𝜔 is

�̂� =
∑𝑛

𝑡=1 𝑥𝑡𝑤𝑡∑𝑛

𝑡=1 𝑥
2
𝑡

≃ (𝜂0)−1
( ∞∑

𝑠=0
𝛼𝑠𝑌𝑇+1+𝑠 −

∞∑
𝑠=0

𝛼𝑠𝑌𝑇−𝑠

)
(13.1.12)

with var[�̂�] ≃ 𝜎2
𝑎
(𝜂0)−1. The estimator �̂� can thus be interpreted as a contrast between

two weighted moving averages, one consisting of the observations after the intervention
and the other for the observations before the intervention, where the weights (𝛼𝑠∕𝜂0) are
symmetrical.

For example, consider the case where 𝑁𝑡 follows the IMA(0, 1, 1)model, (1 − 𝐵)𝑁𝑡 =
(1 − 𝜃𝐵)𝑎𝑡, so that �̃�(𝐵) = (1 − 𝜃𝐵)−1 with �̃� = 𝜃𝑖, 𝑖 ≥ 1. Then, 𝜂𝑠 = 𝜃𝑠∕(1 − 𝜃2), 𝑠 =
0, 1,…, and so 𝛼𝑠 = (𝜃𝑠 − 𝜃𝑠+1)∕(1 − 𝜃2) = 𝜃𝑠∕(1 + 𝜃). Hence, the estimator in (13.1.12)
becomes

�̂� ≃ (1 − 𝜃)−1
( ∞∑

𝑠=0
𝜃𝑠𝑌𝑇+1+𝑠 −

∞∑
𝑠=0

𝜃𝑠𝑌𝑇−𝑠

)
(13.1.12a)

with var[�̂�] ≃ 𝜎2
𝑎
(1 − 𝜃2). The estimator �̂� is thus a contrast between two exponentially

weighted moving averages, one consisting of the observations after the intervention and
the other for the observations before the intervention.

Now, as a second case, suppose that the noise instead follows the ARIMA(1, 1, 0)
model, so that �̃�(𝐵) = (1 − 𝜙𝐵)with �̃�1 = −𝜙 and �̃�𝑖 = 0 for 𝑖 > 1. Then 𝜂0 = 1 + 𝜙2, 𝜂1 =
−𝜙, and 𝜂𝑠 = 0, 𝑠 > 1. Hence,

∑𝑛

𝑡=1 𝑥
2
𝑡
= 1 + 𝜙2 = 𝜂0, 𝛼0 = 1 + 𝜙 + 𝜙2, 𝛼1 = −𝜙, and it
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follows that

𝑛∑
𝑡=1

𝑥𝑡𝑤𝑡 = (1 − 𝜙𝐵)(1 − 𝜙𝐹 )(1 − 𝐵)𝑌𝑇+1

= [(1 + 𝜙 + 𝜙2)𝑌𝑇+1 − 𝜙𝑌𝑇+2] − [(1 + 𝜙 + 𝜙2)𝑌𝑇 − 𝜙𝑌𝑇−1]

Thus, for this case we have

�̂� =
∑𝑛

𝑡=1 𝑥𝑡𝑤𝑡∑𝑛

𝑡=1 𝑥
2
𝑡

= (1 + 𝜙2)−1{[(1 + 𝜙 + 𝜙2)𝑌𝑇+1 − 𝜙𝑌𝑇+2]
− [(1 + 𝜙 + 𝜙2)𝑌𝑇 − 𝜙𝑌𝑇−1]} (13.1.13)

with var[�̂�] = 𝜎2
𝑎
∕(1 + 𝜙2). Again, the estimator �̂� can be viewed as a contrast between

two weighted averages of the same form, one of the postintervention observations 𝑌𝑇+1
and 𝑌𝑇+2 and the other of the preintervention observations 𝑌𝑇 and 𝑌𝑇−1, but the weighted
averages are only finite in extent because the noise model contains only an AR factor
(1 − 𝜙𝐵) and no MA factor as in the previous case.

Comparison with a Case with StationaryNoise. Finally, we consider a simpler situation of
model (13.1.9), inwhich the noise is stationary, for example, anAR(1)model (1− 𝜙𝐵)𝑁𝑡 =
𝑎𝑡. In this situation we obtain 𝑥𝑡 = (1 − 𝜙𝐵)𝐵𝑆

(𝑇 )
𝑡

= 1 − 𝜙 for 𝑡 > 𝑇 + 1 with 𝑥𝑇+1 = 1
and 𝑤𝑡 = (1 − 𝜙𝐵)𝑌𝑡 = 𝑌𝑡 − 𝜙𝑌𝑡−1. Then, it readily follows that

�̂� =
∑𝑛

𝑡=1 𝑥𝑡𝑤𝑡∑𝑛

𝑡=1 𝑥
2
𝑡

≃
(1 − 𝜙)

∑𝑛

𝑡=𝑇+1 (𝑌𝑡 − 𝜙𝑌𝑡−1)

(𝑛 − 𝑇 )(1 − 𝜙)2
≃ 𝑌 2 (13.1.14)

where 𝑌 2 = (𝑛 − 𝑇 )−1
∑𝑛

𝑡=𝑇+1 𝑌𝑡 denotes an unweighted average of all observations after
the intervention, with var[�̂�] = 𝜎2

𝑎
∕[1 + (𝑛 − 𝑇 − 1)(1 − 𝜙)2] ≃ 𝜎2

𝑎
∕[(𝑛 − 𝑇 )(1 − 𝜙)2].

Notice that because of the stationarity of the noise, we have an unweighted average of
postintervention observations and also that there is no adjustment for the preintervention
observations because they are assumed to be stationary about a known mean of zero. Also
note that in the stationary case, the variance of �̂� decreases proportionally with 1∕(𝑛 − 𝑇 ),
whereas in the previous nonstationary noise situations, var[�̂�] is essentially a constant not
dependent on the sample size. This reflects the differing degrees of accuracy in the esti-
mators of intervention model parameters, such as the level shift parameter 𝜔, that can be
expected in large samples between the nonstationary noise and the stationary noise model
situations.

Specifically, in the model (13.1.9), with 𝜉𝑡 = 𝐵𝑆
(𝑇 )
𝑡

equal to a step input, suppose that
the noise process𝑁𝑡 is nonstationaryARIMAwith 𝑑 = 1, so that𝜙(𝐵)(1 − 𝐵)𝑁𝑡 = 𝜃(𝐵)𝑎𝑡.
Then, by applying the differencing operator (1 − 𝐵), the model

𝑌𝑡 = 𝜔𝐵𝑆
(𝑇 )
𝑡

+𝑁𝑡 (13.1.15)
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can also be expressed as

𝑦𝑡 = 𝜔𝐵𝑃
(𝑇 )
𝑡

+ 𝑛𝑡 (13.1.16)

where 𝑦𝑡 = (1 − 𝐵)𝑌𝑡 and 𝑛𝑡 = (1 − 𝐵)𝑁𝑡, and hence 𝑛𝑡 is a stationaryARMA(𝑝, 𝑞) process.
Therefore, the MLE of 𝜔 for the original model (13.1.15) with a (permanent) step input
effect and nonstationary noise (𝑑 = 1) will have features similar to the MLE in the model
(13.1.16), which has a (transitory) pulse input effect and stationary noise.

Of course, the model (13.1.9) can be generalized to allow for an unknown nonzero mean
𝜔0 before the intervention, 𝑌𝑡 = 𝜔0 + 𝜔𝜉𝑡 +𝑁𝑡, with 𝜉𝑡 = 𝐵𝑆

(𝑇 )
𝑡

, so that 𝜔 represents the
change in mean level after the intervention. Then, for the stationary AR(1) noise model
case, for example, similar to (13.1.14), it can be shown that the MLE of 𝜔 is �̂� ≃ 𝑌 2 − 𝑌 1,
where 𝑌 1 = 𝑇 −1∑𝑇

𝑡=1 𝑌𝑡 denotes the sample mean of all preintervention observations.

13.2 OUTLIER ANALYSIS FOR TIME SERIES

Time series observations may sometimes be affected by isolated events, disturbances,
or errors that create spurious effects in the series and result in unusual patterns in the
observations that are not consistent with the overall behavior of the time series. Such
unusual observations may be referred to as outliers. They may be the result of unusual
external events such as strikes, sudden political or economic changes, unusual weather
events, sudden changes in a physical system, and so on, or simply due to recording or gross
errors in measurement. The presence of such outliers in a time series can have substantial
effects on the behavior of sample autocorrelations, partial autocorrelations, estimates of
ARMA model parameters, and forecasting, and can even affect the specification of the
model. If the time of occurrence 𝑇 of an event that results in the outlying behavior is
known, the unusual effects can often be accounted for by the use of intervention analysis
techniques discussed in Section 13.1. However, since in practice the presence of outliers is
often not known at the start of the analysis, additional procedures for detection of outliers
and assessment of their possible impacts are important. In this section we discuss some
useful models for representing outliers and correspondingmethods, similar to the methods
of intervention analysis, for detection of outliers. Some relevant references that deal with
the topics of outlier detection, influence of outliers, and robust methods of estimation
include Bruce and Martin (1989), Chang et al. (1988), Chen and Liu (1993), Martin and
Yohai (1986), and Tsay (1986).

13.2.1 Models for Additive and Innovational Outliers

Following the work of Fox (1972),we consider two simple interventionmodels to represent
two different types of outliers that might occur in practice. These are the additive outlier
(AO) and the innovational outlier (IO) models. Let 𝑧𝑡 denote the underlying time series
process that is free of the impact of outliers, and let 𝑌𝑡 denote the observed time series.
We assume that 𝑧𝑡 follows the ARIMA(𝑝, 𝑑, 𝑞) model 𝜑(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡. Then, an additive
outlier at time 𝑇 , or ‘‘observational outlier,’’ is modeled as

𝑌𝑡 = 𝜔𝑃
(𝑇 )
𝑡

+ 𝑧𝑡 = 𝜔𝑃
(𝑇 )
𝑡

+ 𝜃(𝐵)
𝜑(𝐵)

𝑎𝑡 (13.2.1)
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where 𝑃
(𝑇 )
𝑡

= 1 if 𝑡 = 𝑇 , 𝑃 (𝑇 )
𝑡

= 0 if 𝑡 ≠ 𝑇 , denotes the pulse indicator at time 𝑇 . An
innovational outlier at time 𝑇 , or ‘‘innovational shock,’’ is modeled as

𝑌𝑡 =
𝜃(𝐵)
𝜑(𝐵)

(𝜔𝑃
(𝑇 )
𝑡 + 𝑎𝑡) = 𝜔

𝜃(𝐵)
𝜑(𝐵)

𝑃
(𝑇 )
𝑡 + 𝑧𝑡 (13.2.2)

Hence, an AO affects the level of the observed time series only at time 𝑇 , 𝑌𝑇 = 𝜔 + 𝑧𝑇 ,
by an unknown additive amount 𝜔, while an IO represents an extraordinary random shock
at time 𝑇 , 𝑎𝑇 + 𝜔 = 𝑎∗

𝑇
, which affects all succeeding observations 𝑌𝑇 , 𝑌𝑇+1,… through

the dynamics of the system described by 𝜓(𝐵) = 𝜃(𝐵)∕𝜑(𝐵), such that 𝑌𝑡 = 𝜔𝜓𝑖 + 𝑧𝑡 for
𝑡 = 𝑇 + 𝑖 ≥ 𝑇 . For a stationary series, the effect of the IO is temporary since 𝜓𝑖 decay
exponentially to 0, but for nonstationary series with 𝑑 ≥ 1, there can be permanent effects
that approach a level shift or even ramp effect since 𝜓𝑖 do not decay to 0. More generally,
an observed time series 𝑌𝑡 might be affected by outliers of different types at several points
of time 𝑇1, 𝑇2,… , 𝑇𝑘, and the multiple outlier model of the following general form

𝑌𝑡 =
𝑘∑

𝑗=1
𝜔𝑗𝜈𝑗(𝐵)𝑃

(𝑇𝑗 )
𝑡

+ 𝑧𝑡 (13.2.3)

could be considered for use, where 𝜈𝑗(𝐵) = 1 for an AO at time 𝑇𝑗 and 𝜈𝑗(𝐵) = 𝜃(𝐵)∕𝜑(𝐵)
for an IO at time 𝑇𝑗 . Problems of interest associated with these outlier models are to identify
the timing and the type of outliers and to estimate the magnitude 𝜔 of the outlier effect, so
that the analysis of the time series will adjust for these outlier effects.

Tsay (1988), Chen and Tiao (1990), and Chen and Liu (1993), among others, also
consider allowance in (13.2.3) for level shift type of outlier effect at unknown time of the
form 𝜔𝑆

(𝑇 )
𝑡

. The occurrence of such an effect is often encountered in series where the
underlying process 𝑧𝑡 that is nonstationary, and such that there is a factor (1 − 𝐵) in the
AR operator𝜑(𝐵) of the ARIMAmodel for 𝑧𝑡. Then recall that (1 − 𝐵)𝑆(𝑇 )

𝑡
= 𝑃

(𝑇 )
𝑡

so that
a level shift type of outlier effect for the nonstationary observed series 𝑌𝑡 is equivalent to
an AO effect for the first differenced series (1 − 𝐵)𝑌𝑡.

13.2.2 Estimation of Outlier Effect for Known Timing of the Outlier

We first consider the estimation of the impact 𝜔 of an AO in (13.2.1) and that of an IO in
(13.2.2), respectively, in the situation where the parameters of the time series model for
the underlying process 𝑧𝑡 are assumed known. To motivate iterative procedures that have
been proposed for the general case, it will also be assumed that the timing 𝑇 of the outlier
is given.

Let 𝜋(𝐵) = 𝜃−1(𝐵)𝜑(𝐵) = 1 −
∑∞

𝑖=1 𝜋𝑖𝐵
𝑖 and define 𝑒𝑡 = 𝜋(𝐵)𝑌𝑡 for 𝑡 = 1, 2,… , 𝑛, in

terms of the observed series 𝑌𝑡. Then we can write the above outlier models, (13.2.2) and
(13.2.1), respectively, as

IO ∶ 𝑒𝑡 = 𝜔𝑃
(𝑇 )
𝑡

+ 𝑎𝑡 (13.2.4a)

AO ∶ 𝑒𝑡 = 𝜔𝜋(𝐵)𝑃 (𝑇 )
𝑡

+ 𝑎𝑡 = 𝜔𝑥1𝑡 + 𝑎𝑡 (13.2.4b)

where for the AO model, 𝑥1𝑡 = 𝜋(𝐵)𝑃 (𝑇 )
𝑡

= −𝜋𝑖 if 𝑡 = 𝑇 + 𝑖 ≥ 𝑇 , 𝑥𝑙𝑡 = 0 if 𝑡 < 𝑇 , with
𝜋0 = −1. Thus, we see from (13.2.4) that the information about an IO is contained solely
in the ‘‘residual’’ 𝑒𝑇 at the particular time 𝑇 , whereas that for an AO is spread over the
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stretch of residuals 𝑒𝑇 , 𝑒𝑇+1, 𝑒𝑇+2,…, with generally decreasing weights 1,−𝜋1,−𝜋2,…,
because the 𝜋𝑖 are absolutely summable due to the invertibility of the MA operator 𝜃(𝐵).
Equivalently, when an AO is present at time 𝑇 , we can see that the residuals constructed
from the observed series 𝑌𝑡, for 𝑡 ≥ 𝑇 , will be affected as 𝑒𝑡 = 𝜋(𝐵)𝑌𝑡 = 𝑎𝑡 − 𝜔𝜋𝑖 for
𝑡 = 𝑇 + 𝑖. Hence, in the presence of an AO, a relatively high proportion of the constructed
residuals could be influenced and distorted relative to the underlying white noise series 𝑎𝑡.
Consequently, the presence of AOs that are unaccounted for typically tend to have a much
more substantial adverse effect on estimates of the autocorrelations and parameters of the
ARMA model for 𝑧𝑡 compared to the presence of innovational outliers.

From least-squares principles, the least-squares estimator of the outlier impact 𝜔 in the
IO model is simply the residual at time 𝑇 ,

IO∶ �̂�𝐼,𝑇 = 𝑒𝑇 (13.2.5a)

with var[�̂�𝐼,𝑇 ] = 𝜎2
𝑎
, while that in the AO model is the linear combination of 𝑒𝑇 , 𝑒𝑇+1,…,

AO∶ �̂�𝐴,𝑇 =
𝑒𝑇 −

∑𝑛−𝑇

𝑖=1 𝜋𝑖𝑒𝑇+𝑖∑𝑛−𝑇

𝑖=0 𝜋2
𝑖

=
𝜋∗(𝐹 )𝑒𝑇

𝜏2
(13.2.5b)

with var[�̂�𝐴,𝑇 ] = 𝜎2
𝑎
∕𝜏2, where 𝜏2 =

∑𝑛−𝑇

𝑖=0 𝜋2
𝑖

and 𝜋∗(𝐹 ) = 1 − 𝜋1𝐹 − 𝜋2𝐹
2 −⋯ −

𝜋𝑛−𝑇 𝐹
𝑛−𝑇 . The notation in (13.2.5) reflects the fact that the estimates depend upon

the time 𝑇 . Note that in an underlying autoregressive model 𝜑(𝐵)𝑧𝑡 = 𝑎𝑡, since then
𝜋∗(𝐵) = 𝜋(𝐵) = 𝜑(𝐵) for 𝑇 < 𝑛 − 𝑝 − 𝑑, and 𝑒𝑡 = 𝜑(𝐵)𝑌𝑡, in terms of the observations 𝑌𝑡,
the estimate �̂�𝐴,𝑇 in (13.2.5b) can be written as

�̂�𝐴,𝑇 =
𝜑(𝐹 )𝜑(𝐵)𝑌𝑇

𝜏2

Since 𝜏2 ≥ 1, it is seen in general that var[�̂�𝐴,𝑇 ] ≤ var[�̂�𝐼,𝑇 ] = 𝜎2
𝑎
, and in some cases

var[�̂�𝐴,𝑇 ] can be much smaller than 𝜎2
𝑎
. For example, in an MA(1) model for 𝑧𝑡, the

variance of �̂�𝐴,𝑇 would be 𝜎2
𝑎
(1 − 𝜃2)∕(1 − 𝜃2(𝑛−𝑇+1)) ≃ 𝜎2

𝑎
(1 − 𝜃2) when 𝑛 − 𝑇 is large.

Significance tests for the presence of an outlier of type AO or IO at the given time 𝑇

can be formulated as a test of 𝜔 = 0 in either model (13.2.1) or (13.2.2), against 𝜔 ≠ 0.
The likelihood ratio test criteria can be derived for both situations and essentially take the
form of the standardized statistics

𝜆𝐼,𝑇 =
�̂�𝐼,𝑇

𝜎𝑎

and 𝜆𝐴,𝑇 =
𝜏�̂�𝐴,𝑇

𝜎𝑎

(13.2.6)

respectively, for IO and AO types. Under the null hypothesis that 𝜔 = 0, both statistics in
(13.2.6) will have the standard normal distribution.

For the level-shift-type outlier model 𝑌𝑡 = 𝜔𝑆
(𝑇 )
𝑡

+ 𝑧𝑡, we have 𝑒𝑡 = 𝜔𝜋(𝐵)𝑆(𝑇 )
𝑡

+ 𝑎𝑡
and

𝜋(𝐵)𝑆 (𝑇 )
𝑡

=
[
𝜋(𝐵)
1 − 𝐵

]
𝑃
(𝑇 )
𝑡

≡ �̃�(𝐵)𝑃 (𝑇 )
𝑡
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with �̃�(𝐵) = 𝜋(𝐵)∕(1 − 𝐵) = 1 −
∑∞

𝑗=1 �̃�𝑗𝐵
𝑗 . So it follows from the estimation results in

(13.2.4b) and (13.2.5b) that the MLE of 𝜔 in the level shift model is �̂�𝐿,𝑇 = �̃�∗(𝐹 )𝑒𝑇 ∕𝜏2
with

�̃�
∗(𝐹 ) = 1 − �̃�1𝐹 − �̃�2𝐹

2 −⋯ − �̃�𝑛−𝑇 𝐹
𝑛−𝑇

and 𝜏2 = 1 + �̃�2
1 +⋯ + 𝜋�̃�2

𝑛−𝑇
. When 𝑑 = 1 in the ARIMA model, 𝜑(𝐵) = 𝜙(𝐵)(1 − 𝐵)

and �̃�(𝐵) = 𝜃−1(𝐵)𝜙(𝐵), and, as discussed earlier, the results for this situation are the same
as for the AO in terms of the model for the first differences:

(1 − 𝐵)𝑌𝑡 = 𝜔(1 − 𝐵)𝑆 (𝑇 )
𝑡

+ (1 − 𝐵)𝑧𝑡 = 𝜔𝑃
(𝑇 )
𝑡

+ 𝜃(𝐵)
𝜙(𝐵)

𝑎𝑡

13.2.3 Iterative Procedure for Outlier Detection

In practice, the time 𝑇 of a possible outlier as well as the model parameters are unknown.
To address the problem of detection of outliers at unknown times, iterative procedures that
are relatively convenient computationally have been proposed by Chang et al. (1988), Tsay
(1986), and Chen and Liu (1993) to identify and adjust for the effects of outliers.

At the first stage of this procedure, the ARIMA model is estimated for the observed
time series 𝑌𝑡 in the usual way, assuming that the series contains no outliers. The residuals
𝑒𝑡 from the model are obtained as 𝑒𝑡 = 𝜃−1(𝐵)�̂�(𝐵)𝑌𝑡 = �̂�(𝐵)𝑌𝑡, and �̂�2

𝑎
= 𝑛−1

∑𝑛

𝑡=1 𝑒
2
𝑡
is

obtained. Then the statistics, as in (13.2.6),

�̂�𝐼,𝑡 =
�̂�𝐼,𝑡

�̂�𝑎

and �̂�𝐴,𝑡 =
𝜏�̂�𝐴,𝑡

�̂�𝑎

are computed for each time 𝑡 = 1, 2,… , 𝑛, as well as

�̂�𝑇 = max
𝑡
[max(|�̂�𝐼,𝑡|, |�̂�𝐴,𝑡|)]

where 𝑇 denotes the time when this maximum occurs. The possibility of an outlier of
type IO is identified at time 𝑇 if �̂� = |�̂�𝐼,𝑇 | > 𝑐, where 𝑐 is a prespecified constant with
typical values for 𝑐 of 3.0, 3.5, or 4.0. The effect of this IO can be eliminated from the
residuals by defining 𝑒𝑇 = 𝑒𝑇 − �̂�𝐼,𝑇 = 0 at 𝑇 . If �̂�𝑇 = |�̂�𝐴,𝑇 | > 𝑐, the possibility of an AO
is identified at 𝑇 , and its impact is estimated by �̂�𝐴,𝑇 as in (13.2.5b). The effect of this AO

can be removed from the residuals by defining 𝑒𝑡 = 𝑒𝑡 − �̂�𝐴,𝑇 �̂�(𝐵)𝑃
(𝑇 )
𝑡

= 𝑒𝑡 + �̂�𝐴,𝑇 �̂�𝑡−𝑇

for 𝑡 ≥ 𝑇 . In either case, a new estimate �̃�2
𝑎
is computed from the modified residuals 𝑒𝑡.

If any outliers are identified, the modified residuals 𝑒𝑡 and modified estimate �̃�2
𝑎
, but

the same parameters �̂�(𝐵) = �̂�−1(𝐵)�̂�(𝐵), are used to compute new statistics �̂�𝐼,𝑡 and �̂�𝐴,𝑡.
The preceding steps are then repeated until all outliers are identified. Suppose that this
procedure identifies outliers at 𝑘 time points 𝑇1, 𝑇2,… , 𝑇𝑘. Then the overall outlier model,
as in (13.2.3),

𝑌𝑡 =
𝑘∑

𝑗=1
𝜔𝑗𝜈𝑗(𝐵)𝑃

(𝑇𝑗 )
𝑡

+ 𝜃(𝐵)
𝜑(𝐵)

𝑎𝑡 (13.2.7)
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is estimated for the observed series 𝑌𝑡, where 𝑣𝑗(𝐵) = 1 for an AO and 𝑣𝑗(𝐵) = 𝜃(𝐵)∕𝜑(𝐵)
for an IO at time 𝑇𝑗 . A revised set of residuals

𝑒𝑡 = �̂�−1(𝐵)�̂�(𝐵)

[
𝑌𝑡 −

𝑘∑
𝑗=1

�̂�𝑗 �̂�𝑗(𝐵)𝑃
(𝑇𝑗 )
𝑡

]

and a new �̂�2
𝑎
are obtained from this fitted model. The previous steps of the procedure can

then be repeated with new residuals, until all outliers are identified and a final model of
the general form of (13.2.7) is estimated. If desired, a modified time series of observations
in which the effects of the outliers have been removed can be constructed as �̃�𝑡 = 𝑌𝑡 −∑𝑘

𝑗=1 �̂�𝑗 �̂�𝑗(𝐵)𝑃
(𝑇𝑗 )
𝑡

.
The procedure above can be implemented, with few modifications, to any existing

software capable of estimation of ARIMA and transfer function--noise models. An imple-
mentation in the R package will be demonstrated below. The technique can be a useful
tool in the identification of potential time series outliers that if undetected could have a
negative impact on the effectiveness of modeling and estimation. However, there should
be some cautions concerning the systematic use of such ‘‘outlier adjustment’’ procedures,
particularly with regard to the overall interpretation of results, the appropriateness of a
general model specification for ‘‘outliers’’ such as (13.2.7), which treats the outliers as
deterministic constants, and the possibilities for ‘‘overspecification’’ in the number of
outliers. Whenever possible, it would always be highly desirable to search for the causes
or sources of the outliers that may be identified by the foregoing procedure, so that the
outlying behavior can be better understood and properly accounted for in the analysis.
Also, although the foregoing procedures should perform well when the series has only a
few relatively isolated outliers, there could be difficulties due to ‘‘masking effects’’ when
the series has multiple outliers that occur in patches, especially when they are in the form
of additive outliers and level shift effects. Modifications to the basic procedure to help
remedy these difficulties associated with multiple outliers, including joint estimation of
all identified outlier effects and the model parameters within the iteration stages, were
proposed by Chen and Liu (1993).

13.2.4 Examples of Analysis of Outliers

We consider two numerical examples to illustrate the application of the outlier analysis
procedures, discussed in the previous sections. For computational convenience, conditional
least-squares estimation methods are used throughout in these examples.

Series D. The first example involves Series D, which represents ‘‘uncontrolled" viscosity
readings every hour from a chemical process. In Chapter 7, an AR(1) model (1 − 𝜙𝐵)𝑧𝑡 =
𝜃0 + 𝑎𝑡 has been suggested and fitted to this series. In the outlier detection procedure, the
model is first estimated assuming that no outliers are present, and the results are given in
Table 13.1(a). Then the AO and IO statistics as in (13.2.6) are computed for each time
point 𝑡, using �̂�2

𝑎
= 0.08949. Based on a critical value of 𝑐 = 3.5, we lead to identification

of an IO of rather large magnitude at time 𝑇 = 217. The effect of this IO is removed by
modifying the residual at 𝑇 , a new estimate �̃�2

𝑎
= 0.08414 is obtained, and new outlier

statistics are computed using �̃�𝑎. At this stage, no outliers are identified. Then, the time
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series parameters and the outlier parameter 𝜔 in model (13.2.2), that is, in the model

𝑌𝑡 =
1

1 − 𝜙𝐵
[𝜃0 + 𝜔𝑃

(𝑇 )
𝑡

+ 𝑎𝑡]

are estimated simultaneously, and the estimates are given in Table 13.1(a). Repeating the
outlier detection procedure based on these new parameter estimates and corresponding
residuals does not reveal any other outliers. Hence, only one extreme IO is identified, and
adjusting for this IO does not result in much change in the estimate �̂� of the time series
model parameter, but gives about a 6% reduction in the estimate of 𝜎2

𝑎
. Several other

potential outliers, at times 𝑡 = 29, 113, 115, 171, 268, and 272, were also suggested during
the outlier procedure as having values of the test statistics �̂� slightly greater than 3.0 in
absolute value, but adjustment for such values did not affect the estimates of the model
substantially.

Series C. The second example we consider is Series C, the ‘‘uncontrolled’’ temperature
readings every minute in a chemical process. The model previously identified and fitted to
this series is the ARIMA(1, 1, 0)model, (1 − 𝜙𝐵)(1 − 𝐵)𝑧𝑡 = 𝑎𝑡. The estimation results for
this model obtained assuming there are no outliers are given in Table 13.1(b). Proceeding
with the sequence of calculations of the outlier test statistics and using the critical value
of 𝑐 = 3.5, we first identify an IO at time 58. The residual at time 58 is modified, we
obtain a new estimate �̃�2

𝑎
= 0.01521, and next an IO at time 59 is identified. This residual

is modified, a new estimate �̃�2
𝑎
= 0.01409 is obtained, and then another IO at time 60 is

indicated. After this, no further outliers are identified. These innovational outliers at times
58, 59, and 60 are rather apparent in Figure 13.2(a), which shows a time series plot of the
residuals from the initial model fit before any adjustment for outliers.

Then the time series outlier model

(1 − 𝐵)𝑌𝑡 =
1

1 − 𝜙𝐵
[𝜔1𝑃

(58)
𝑡

+ 𝜔2𝑃
(59)
𝑡

+ 𝜔3𝑃
(60)
𝑡

+ 𝑎𝑡]

is estimated for the series, and the results are presented in Table 13.1(b). The residuals
are shown in Figure 13.2(b). No other outliers are detected when the outlier procedure
is repeated with the new model parameter estimates. In this example we see that ad-
justment for the outliers has a little more effect on the estimate �̂� of the time series
parameter than in the previous case, and it reduces the estimate of 𝜎2

𝑎
substantially by

about 26%. Figure 13.2(b) clearly shows the reduction in variability due to the outlier
adjustment.

Calculations Using R. The detection and adjustment for outliers in time series can be
performed using the TSA package in R. The code needed to do the analysis for Series C
and D is as follows:

> library(TSA)
> m1.C=arima(seriesC,order=c(1,1,0))
> m1.C
> detectAO(m1.C); detectIO(m1.C)
> m2.C=arimax(seriesC,order=c(1,1,0),io=c(58,59,60))
> m2.C
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(a) Residuals before outlier adjustment
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(b) Residuals after outlier adjustment
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FIGURE 13.2 Residuals from the ARIMA(1, 1, 0) model fitted to Series C before and after
adjustment for innovational outliers at 𝑡 = 58, 59, and 60.

> m1.D=arima(seriesD,order=c(1,0,0))
> m1.D
> detectAO(m1.D); detectIO(m1.D)
> m2.D=arimax(seriesD,order=c(1,0,0),io=c(217))
> m2.D

Figure 13.2 that shows the residuals for Series C before and after the outlier adjustment
can be reproduced in R as follows:

> par(mfrow=c(2,1))
> plot(m1.C$residuals,ylim=c(-0.5,0.8),

main=’(a) Residuals before outlier adjustment’)
> plot(m2.C$residuals,ylim=c(-0.5,0.8),

main=’(b) Residuals after outlier adjustment’)

13.3 ESTIMATION FOR ARMA MODELS WITH MISSING VALUES

In some situations in practice, the values of a time series 𝑧𝑡 may not be observed at equally
spaced times because there may be ‘‘missing values’’ corresponding to certain time points.
In this section we discuss briefly the maximum likelihood estimation of parameters in an
ARIMA(𝑝, 𝑑, 𝑞) model for such situations, through consideration of the calculation of the
exact Gaussian likelihood function for the observed data. It is shown that for series with
missing observations, the likelihood function can conveniently be constructed using the
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state-space form of the model and associated Kalman filtering procedures, as discussed in
Sections 5.5 and 7.4, but modified to accommodate the missing data. These methods for
evaluation of the likelihood in cases of irregularly spaced observations have been examined
by Jones (1980), Harvey and Pierse (1984), Ansley and Kohn (1983, 1985), and Wincek
and Reinsel (1986), among others. We also address briefly the related issue of estimation
of the missing values in the time series.

13.3.1 State-Space Model and Kalman Filter with Missing Values

We suppose 𝑛 observations are available at integer times 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛, not equally
spaced, from an ARIMA(𝑝, 𝑑, 𝑞) process, which follows the model 𝜙(𝐵)(1 − 𝐵)𝑑𝑧𝑡 =
𝜃(𝐵)𝑎𝑡. From Section 5.5.1, the process 𝑧𝑡 has the state-space formulation given by

𝑌𝑡 = 𝚽𝑌𝑡−1 +𝚿𝑎𝑡 (13.3.1)

with 𝑧𝑡 = 𝐇𝑌𝑡 = [1, 0,… , 0]𝑌𝑡, where 𝑌𝑡 is the 𝑟-dimensional state vector and 𝑟 = max(𝑝 +
𝑑, 𝑞 + 1). Let Δ𝑖 = 𝑡𝑖 − 𝑡𝑖−1 denote the time difference between successive observations
𝑧𝑡𝑖−1

and 𝑧𝑡𝑖
, 𝑖 = 2,… , 𝑛. By successive substitutions, Δ𝑖 times, on the right-hand side of

(13.3.1), we obtain

𝑌𝑡𝑖
= 𝚽Δ𝑖𝑌𝑡𝑖−1

+
Δ𝑖−1∑
𝑗=0

𝚽𝑗𝚿𝑎𝑡𝑖−𝑗 ≡ 𝚽∗
𝑖
𝑌𝑡𝑖−1

+ 𝑎∗
𝑡𝑖

(13.3.2)

where𝚽∗
𝑖
= 𝚽Δ𝑖 and 𝑎∗

𝑡𝑖
=
∑Δ𝑖−1

𝑗=0 𝚽𝑗𝚿𝑎𝑡𝑖−𝑗 , with

cov
[
𝑎∗
𝑡𝑖

]
= 𝚺𝑖 = 𝜎2

𝑎

Δ𝑖−1∑
𝑗=0

𝚽𝑗𝚿𝚿′𝚽′𝑗

Thus, (13.3.2) together with the observation equation 𝑧𝑡𝑖
= 𝐇𝑌𝑡𝑖

constitutes a state-space
model form for the observed time series data 𝑧𝑡𝑖

, 𝑧𝑡2
,… , 𝑧𝑡𝑛

.
Therefore, the Kalman filter recursive equations as in (5.5.6) to (5.5.9) can be directly

employed to obtain the state predictors 𝑌𝑡𝑖|𝑡𝑖−1 and their error covariance matrices 𝐕𝑡𝑖|𝑡𝑖−1 .
So we can obtain the predictors

�̂�𝑡𝑖|𝑡𝑖−1 = 𝐸[𝑧𝑡𝑖 |𝑧𝑡𝑖−1 ,… , 𝑧𝑡1
] = 𝐇𝑌𝑡𝑖|𝑡𝑖−1 (13.3.3)

for the observations 𝑧𝑡𝑖 based on the previous observed data and their error variances

𝜎2
𝑎
𝑣𝑖 = 𝐇𝐕𝑡𝑖|𝑡𝑖−1𝐇

′ = 𝐸[(𝑧𝑡𝑖 − �̂�𝑡𝑖|𝑡𝑖−1 )
2] (13.3.4)

readily from the recursive Kalman filtering procedure. More specifically, the updating
equations (5.5.6) and (5.5.7) in this missing data setting take the form

𝑌𝑡𝑖|𝑡𝑖 = 𝑌𝑡𝑖|𝑡𝑖−1 +𝐊𝑖(𝑧𝑡𝑖 −𝐇𝑌𝑡𝑖|𝑡𝑖−1 ) (13.3.5)

with

𝐊𝑖 = 𝐕𝑡𝑖|𝑡𝑖−1𝐇
′[𝐇𝐕𝑡𝑖|𝑡𝑖−1𝐇

′]−1 (13.3.6)
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while the prediction equations (5.5.8) are given by

𝑌𝑡𝑖|𝑡𝑖−1 = 𝚽∗
𝑖
𝑌𝑡𝑖−1 |𝑡𝑖−1 = 𝚽Δ𝑖𝑌𝑡𝑖−1 |𝑡𝑖−1 𝐕𝑡𝑖|𝑡𝑖−1 = 𝚽∗

𝑖
𝐕𝑡𝑖−1|𝑡𝑖−1𝚽

∗′
𝑖
+ 𝚺𝑖 (13.3.7)

with

𝐕𝑡𝑡|𝑡𝑖 = [𝐈 −𝐊𝑖𝐇]𝐕𝑡𝑖|𝑡𝑖−1 (13.3.8)

Notice that the calculation of the prediction equations (13.3.7) can be interpreted as com-
putation of the successive one-step-ahead predictions:

𝒀 𝑡𝑖−1+𝑗|𝑡𝑖−1 = 𝚽𝒀 𝑡𝑖−1+𝑗−1|𝑡𝑖−1
𝐕𝑡𝑖−1+𝑗|𝑡𝑖−1 = 𝚽𝐕𝑡𝑖−1+𝑗−1|𝑡𝑖−1𝚽

′ + 𝜎2
𝑎
𝚿𝚿′

for 𝑗 = 1,… ,Δ𝑖, without any updating since there are no observations available between
the time points 𝑡𝑖−1 and 𝑡𝑖 to provide any additional information for updating.

Exact Likelihood Function with Missing Values. The exact likelihood for the vector of
observations 𝐳′ = (𝑧𝑡1 , 𝑧𝑡2 ,… , 𝑧𝑡𝑛

) is obtained directly from the quantities in (13.3.3) and
(13.3.4) because the joint density of 𝐳 can be expressed as the product of the conditional
densities of the 𝑧𝑡𝑖

, given 𝑧𝑡𝑖−1
,… , 𝑧𝑡1

, for 𝑖 = 2,… , 𝑛, which are Gaussian with condi-
tional means and variances given by (13.3.3) and (13.3.4). Hence, the joint density of the
observations 𝐳 can be expressed as

𝑝(𝐳|𝜙, 𝜽, 𝜎2
𝑎
) =

𝑛∏
𝑖=1

(2𝜋𝜎2
𝑎
𝑣𝑖)

−1∕2 exp

[
− 1
2𝜎2

𝑎

𝑛∑
𝑖=1

(𝑧𝑡𝑖 − �̂�𝑡𝑖|𝑡𝑖−1 )
2

𝑣𝑖

]
(13.3.9)

In (13.3.9), the quantities �̂�𝑡𝑖|𝑡𝑖−1 and 𝜎
2
𝑎
𝑣𝑖 are directly determined from the recursive filtering

calculations (13.3.5)--(13.3.8). In the case of a stationary ARMA(𝑝, 𝑞) model, the initial
conditions required to start the filtering procedure can be determined readily (see, for
example, Jones, (1980) and Section 5.5.2). However, for the nonstationary ARIMA model
situation, some additional assumptions need to be specified concerning the process and the
initial conditions. Appropriate methods for such cases have been examined by Ansley and
Kohn (1985).

As a simple example to illustrate the missing data methods, consider the stationary
AR(1) model (1 − 𝜙𝐵)𝑧𝑡 = 𝑎𝑡. Then, (13.3.2) directly becomes (see, for example, Reinsel
and Wincek, 1987)

𝑧𝑡𝑖
= 𝜙Δ𝑖𝑧𝑡𝑖−1

+
Δ𝑖−1∑
𝑗=0

𝜙𝑗𝑎𝑡𝑖−𝑗 (13.3.10)

and it is readily determined that

�̂�𝑡𝑖|𝑡𝑖−1 = 𝜙Δ𝑖𝑧𝑡𝑖−1
and 𝜎2

𝑖
= 𝜎2

𝑎
𝑣𝑖 =

𝜎2
𝑎
(1 − 𝜙2Δ𝑖)
1 − 𝜙2 (13.3.11)

Hence, the likelihood for the observed data in the first-order autoregressive model with
missing values is as given in (13.3.9), with these expressions for �̂�𝑡𝑖|𝑡𝑖−1 and 𝜎2

𝑎
𝑣𝑖.
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13.3.2 Estimation of Missing Values of an ARMA Process

A related problemof interest that often arises in the context ofmissing values for time series
is that of estimating the missing values. Studies based on interpolation of missing values
for ARIMA time series from a least-squares viewpoint were performed by Brubacher and
Tunnicliffe Wilson (1976), Damsleth (1980), and Abraham (1981). Within the framework
of the state-space formulation, estimates of missing values and their corresponding error
variances can be derived conveniently through the use of recursive smoothing methods
associated with the Kalman filter, which were discussed briefly in Section 5.5.3 and are
described in general terms in Anderson and Moore (1979), for example. These methods
have been considered more specifically for the ARIMA model with missing values by
Harvey and Pierse (1984) and by Kohn and Ansley (1986).

For the special case of a pure autoregressive model, 𝜙(𝐵)𝑧𝑡 = 𝑎𝑡, some rather simple
and explicit interpolation results are available. For example, in an AR(𝑝) process with a
single missing value at time 𝑇 surrounded by at least 𝑝 consecutive observed values both
before and after time 𝑇 , it is well known (see, for example, Brubacher and Tunnicliffe
Wilson, 1976) that the optimal interpolation of the missing value 𝑧𝑇 is given by

�̂�𝑇 = −𝑑−1
0

𝑝∑
𝑗=1

𝑑𝑗(𝑧𝑇−𝑗 + 𝑧𝑇+𝑗) (13.3.12)

where 𝑑𝑗 =
∑𝑝

𝑖=𝑗
𝜙𝑖𝜙𝑖−𝑗 , 𝜙0 = −1, and 𝑑0 = 1 +

∑𝑝

𝑖=1 𝜙
2
𝑖
, with 𝐸[(𝑧𝑇 − �̂�𝑇 )2] = 𝜎2

𝑎
𝑑−1
0 =

𝜎2
0(1 +

∑𝑝

𝑖=1 𝜙
2
𝑖
)−1. Notice that the value in (13.3.12) can be expressed as �̂�𝑇 = 𝑧𝑇 −

[𝜙(𝐹 )𝜙(𝐵)𝑧𝑇∕𝑑0], with interpolation error equal to

𝑒𝑇 = 𝑧𝑇 − �̂�𝑇 =
𝜙(𝐹 )𝜙(𝐵)𝑧𝑇

𝑑0
(13.3.13)

As one way to establish the result (13.3.12), for convenience of discussion, suppose
that 𝑧𝑇 is the only missing value among times 𝑡 = 1,… , 𝑛, with 𝑝 + 1 ≤ 𝑇 ≤ 𝑛 − 𝑝.
Using a normal distribution assumption, the optimal (minimum MSE) estimate of 𝑧𝑇
is �̂�𝑇 = 𝐸[𝑧𝑇 |𝑧1,… , 𝑧𝑇−1, 𝑧𝑇+1,… , 𝑧𝑛], which is also the best linear estimate without the
normality assumption. Then, by writing the joint density of 𝐳 = (𝑧1,… , 𝑧𝑛)′ in the form

𝑝(𝑧1,… , 𝑧𝑇−1, 𝑧𝑇+1,… , 𝑧𝑛)𝑝(𝑧𝑇 |𝑧1,… , 𝑧𝑇−1, 𝑧𝑇+1,… , 𝑧𝑛)

from basic properties of the multivariate normal distribution and its conditional distribu-
tions, it is easily deduced that the estimate �̂�𝑇 , the conditional mean, is identical to the
value of 𝑧𝑇 that minimizes the ‘‘sum-of-squares’’ function in the exponent of the joint
multivariate normal density of z. Thus, since 𝑧𝑇 occurs only in 𝑝 + 1 terms of the exponent
sum of squares, this reduces to finding the value of 𝑧𝑇 to minimize 𝑆 =

∑𝑝

𝑖=0 𝑎
2
𝑇+𝑖

, where
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𝑎𝑡 = 𝑧𝑡 −
∑𝑝

𝑙=1 𝜙𝑙𝑧𝑡−𝑙 . Now we obtain

𝜕𝑆

𝜕𝑧𝑇
= 2

[(
𝑧𝑇 −

𝑝∑
𝑙=1

𝜙𝑙𝑧𝑇−𝑙

)
−

𝑝∑
𝑖=1

𝜙𝑖

(
𝑧𝑇+𝑖 −

𝑝∑
𝑙=1

𝜙𝑙𝑧𝑇+𝑖−𝑙

)]

= 2

[(
1 +

𝑝∑
𝑖=1

𝜙2
𝑖

)
𝑧𝑇 +

𝑝∑
𝑖=0

𝜙𝑖

{
𝑝∑
𝑙≠𝑖

𝜙𝑙𝑧𝑇+𝑖−𝑙

}]

= 2

[(
1 +

𝑝∑
𝑖=1

𝜙2
𝑖

)
𝑧𝑇 +

𝑝∑
𝑗=1

(
𝑝∑

𝑖=𝑗

𝜙𝑖𝜙𝑖−𝑗

)
(𝑧𝑇−𝑗 + 𝑧𝑇+𝑗)

]

where 𝜙0 = −1. Setting this partial derivative to zero and solving for 𝑧𝑇 , we find that
the estimate is given by �̂�𝑇 = −𝑑−1

0
∑𝑝

𝑗=1 𝑑𝑗(𝑧𝑇−𝑗 + 𝑧𝑇+𝑗), where 𝑑𝑗 =
∑𝑝

𝑖=𝑗
𝜙𝑖𝜙𝑖−𝑗 and

𝑑0 = 1 +
∑𝑝

𝑖=1 𝜙
2
𝑖
. Notice that the estimate �̂�𝑇 can be seen to be determined from the

solution for 𝑧𝑇 to the relation 𝜙(𝐹 )𝜙(𝐵)𝑧𝑇 = 0, where 𝜙(𝐵) = 1 −
∑𝑝

𝑖=1 𝜙𝑖𝐵
𝑖 is the AR(𝑝)

operator. It can also be established that the error variance of the missing data estimate is
given by 𝐸[(𝑧𝑇 − �̂�𝑇 )2] = 𝜎2

𝑎
𝑑−1
0 .

In the general ARMA model situation, Bruce and Martin (1989) and Ljung (1993),
among others, have noted a close connection between the likelihood function construction
in the case of missing values and the formulation of the consecutive data model likelihood
with AOs specified for each time point that corresponds to a missing value. Hence, in effect,
in such a time series AO model for consecutive data, for given values of the ARMA model
parameters, the estimate of the outlier effect parameter 𝜔 corresponds to the interpolation
error in the missing data situation. For example, in the autoregressive model situation,
compare the result in (13.3.13) with the result given following (13.2.5b) for the AO model.
Specifically, since 𝜋(𝐵) = 𝜙(𝐵) in the AR(𝑝) model, 𝑒𝑇 = 𝜙(𝐵)𝑌𝑇 and the estimate in
(13.2.5b) reduces to �̂�𝐴,𝑇 = [𝜙(𝐹 )𝜙(𝐵)𝑌𝑇 ]∕𝑑0 ≡ 𝑌𝑇 − 𝑌𝑇 = 𝑒𝑇 , the interpolation error
given in (13.3.13). Furthermore, the sum-of-squares function in the likelihood (13.3.9) for
the missing data situation is equal to the sum of squares obtained from a complete set of
consecutive observations in which an AO has been assumed at each time point where a
missing value occurs and for which the likelihood is evaluated at the maximum likelihood
estimates for each of the corresponding AO effect parameters 𝜔, for given values of the
time series model parameters 𝜙 and 𝜽. As an illustration, for the simple AR(1) model
situation with a single isolated missing value at time 𝑇 , from (13.3.11) the relevant term in
the missing data sum-of-squares function is

(𝑧𝑇+1 − 𝜙2𝑧𝑇−1)2

1 + 𝜙2 ≡ [(𝑧𝑇 − �̂�) − 𝜙𝑧𝑇−1]2 + [𝑧𝑇+1 − 𝜙(𝑧𝑇 − �̂�)]2

= (�̂�𝑇 − 𝜙𝑧𝑇−1)2 + (𝑧𝑇+1 − 𝜙�̂�𝑇 )2 (13.3.14)

where

�̂� = 𝑧𝑇 − 𝜙

1 + 𝜙2 (𝑧𝑇−1 + 𝑧𝑇+1) = 𝑧𝑇 − �̂�𝑇



Box3G Date: May 21, 2015 Time: 11:15 am

500 INTERVENTION ANALYSIS, OUTLIER DETECTION, AND MISSING VALUES

is the maximum likelihood estimate of the outlier effect 𝜔 in the AO model (13.2.1), and
the latter expressions in (13.3.14) represent the sum-of-squares terms in the consecutive
data situation but with an AO modeled at time 𝑇 .

Treating missing data as additive outliers does have an impact on estimation of the
ARMA model parameters 𝜙 and 𝜽, however, and ML estimates of these parameters in the
missing data case are not identical to estimates that maximize a complete data likelihood
for which an AO has been assumed at each time point where a missing value occurs. In fact,
Basu and Reinsel (1996) established that MLEs of 𝜙 and 𝜽 for the missing data situation
are the same as estimates obtained from a model that assumes complete data with an AO
at each time point where a missing value occurs when the method of restricted maximum
likelihood estimation (e.g., as discussed in Section 9.5.2) is employed for this latter model
formulation. We provide the following argument to establish this result.

Connection Between Exact Likelihood Function for Missing Data Situation and Re-
stricted Likelihood. Let 𝐳𝑛 = (𝑧𝑡1 , 𝑧𝑡2 ,… , 𝑧𝑡𝑛

)′ denote the 𝑛 × 1 vector of observations
from the ARMA(𝑝, 𝑞) process 𝜙(𝐵)𝑧𝑡 = 𝜃(𝐵)𝑎𝑡 with 𝑡1 ≡ 1 and 𝑡𝑛 = 𝑇 . Let 𝐳0 denote
the 𝑇 × 1 vector consisting of the observations 𝐳𝑛 with 0’s inserted for values of times
where observations are missing, and for convenience arrange as 𝐳0 = (𝐳′

𝑛
, 0′)′. Also, let

𝐳 = (𝐳′
𝑛
, 𝐳′

𝑚
)′ denote the corresponding vector of (complete) values of the process, where

𝐳𝑚 is the 𝑚 × 1 vector of the ‘‘missing values,’’ with 𝑇 = 𝑛 + 𝑚. We can write

𝐳0 = 𝐗𝝎 + 𝐳 (13.3.15)

where 𝐗 is a 𝑇 × 𝑚 matrix with columns that are ‘‘pulse’’ unit vectors to indicate the
𝑚 missing values, specifically, 𝐗 = [𝟎, 𝐈𝑚]′ under the rearrangement of the data. Thus,
(13.3.15) can be interpreted as a model that allows for AOs, with parameters 𝝎, at all time
points where a missing value occurs. Note that 𝐳𝑛 = 𝐇′𝐳 ≡ 𝐇′𝐳0 where 𝐇′ = [𝐈𝑛, 𝟎] is the
𝑛 × 𝑇 matrix whose rows are pulse unit vectors to indicate the 𝑛 observed values.

From one perspective, (13.3.15)can be viewed as a ‘‘regressionmodel’’ for the extended
data vector 𝐳0 with 𝝎 treated as unknown parameters and ARMA noise process {𝑧𝑡}. (Note
in fact that 𝝎 = −𝐳𝑚 by actual definition.) Let 𝜎2

𝑎
𝐕∗ = cov[𝐳] denote the 𝑇 × 𝑇 covariance

matrix of the complete series of values. Then, the form of the restricted likelihood function
for the extended data vector 𝐳0 under this regression model is given as in (9.5.11) of
Section 9.5.2,

𝐿∗
(
𝝓, 𝜽, 𝜎2

𝑎
; 𝐳0

)
∝
(
𝜎2
𝑎

)−𝑛∕2 |𝐕∗|−1∕2|𝐗′𝐕−1
∗ 𝐗|−1∕2

× exp

[
− 1
2𝜎2

𝑎

(𝐳0 − 𝐗�̂�)′𝐕−1
∗ (𝐳0 − 𝐗�̂�)

]
(13.3.16)

where �̂� = (𝐗′𝐕−1
∗ 𝐗)−1𝐗′𝐕−1

∗ 𝐳0. Recall from discussion in Section 9.5.2, however, that
(13.3.16) has an equivalent representation as the density of the ‘‘error contrast vector’’
𝐇′𝐳0, since 𝐇′ is a full rank (𝑇 − 𝑚) × 𝑇 matrix such that 𝐇′𝐗 = 𝟎. Then noting that
𝐇′𝐳0 = 𝐳𝑛, the observed data vector, expression (13.3.16) also represents the density of 𝐳𝑛
and hence represents the exact likelihood based on the observed data vector 𝐳𝑛, essentially
by definition. However, we would now like to directly verify the equivalence between
(13.3.16) and the exact likelihood (density) function of the observed data vector 𝐳𝑛.
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For this, we express the covariance matrix of 𝐳 = (𝐳′𝑛, 𝐳
′
𝑚)

′ in partitioned form as

cov[𝐳] = 𝜎2
𝑎
𝐕∗ = 𝜎2

𝑎

[𝐕11 𝐕12
𝐕21 𝐕22

]

where 𝜎2
𝑎
𝐕11 = cov[𝐳𝑛] in particular. We let 𝐕𝑖𝑗 , 𝑖, 𝑗 = 1, 2, denote the block matrices

of 𝐕−1
∗ corresponding to the above partitioning of 𝐕∗. Then using basic results for

partitioned matrices (e.g., Rao (1965), or Appendix A7.1.1), we can readily derive that
the restricted likelihood expression in (13.3.16) is the same as the likelihood (density) for
the observed data vector 𝐳𝑛. That is, from results on partitioned matrices, we first have that

𝐗′𝐕−1
∗ 𝐗 ≡ 𝐕22 =

(
𝐕22 − 𝐕21𝐕−1

11𝐕12
)−1

(13.3.17)

and |𝐕∗| = |𝐕11||𝐕22 − 𝐕21𝐕−1
11𝐕12|. Hence, the determinant factor in (13.3.16) is

|𝐕∗|−1∕2|𝐗′𝐕−1
∗ 𝐗|−1∕2 = |𝐕11|−1∕2. Also, the quadratic form in (13.3.16) is expressible as

𝐳′0[𝐕
−1
∗ − 𝐕−1

∗ 𝐗(𝐗′𝐕−1
∗ 𝐗)−1𝐗′𝐕−1

∗ ]𝐳0
= 𝐳′

𝑛
[𝐕11 − 𝐕12(𝐕22)−1𝐕21]𝐳𝑛 = 𝐳′

𝑛
𝐕−1
11 𝐳𝑛

again using a basic result on the inverse of a partitioned matrix. Therefore, expression
(13.3.16) is equal to

𝑝(𝐳𝑛) ∝
(
𝜎2
𝑎

)−𝑛∕2 |𝐕11|−1∕2 exp
[
− 1
2𝜎2

𝑎

𝐳′
𝑛
𝐕−1
11 𝐳𝑛

]
(13.3.18)

which, since 𝐳𝑛 is distributed as normal𝑁(𝟎, 𝜎2
𝑎
𝐕11), is the likelihood based on the observed

data vector 𝐳𝑛.
This equivalence establishes a device for obtaining ML estimates in ARMA models

with missing values by using an REML estimation routine for the extended data vector 𝐳0
by setting up a regression component𝐗𝝎 that includes an indicator variable (AO term) for
each missing observation. Estimation of the ‘‘extended data’’ regression model (13.3.15)
with ARMA errors by the method of REML then results in ML estimates of the ARMA
model parameters based on the observed data 𝐳𝑛. Finally, we note that the GLS estimate of
𝝎 in model (13.3.15) is

�̂� = (𝐗′𝐕−1
∗ 𝐗)−1𝐗′𝐕−1

∗ 𝐳0
= (𝐕22)−1𝐕21𝐳𝑛 ≡ −𝐕21𝐕−1

11 𝐳𝑛 = −𝐸[𝐳𝑚|𝐳𝑛] (13.3.19)

so the estimates of the missing values 𝐳𝑚 are obtained as �̂�𝑚 = −�̂� immediately as
a by-product of the fitting of the model (13.3.15), with estimation error covariance
matrix cov[�̂� − 𝝎] ≡ cov[𝐳𝑚 − �̂�𝑚] = 𝜎2

𝑎
(𝐗′𝐕−1

∗ 𝐗)−1 directly available as well. In addi-
tion, for a complete data vector situation, if there were additive outliers specified at the
given times corresponding to 𝐳𝑚, thenmodel (13.3.15) could be used to estimate ‘‘smoothed
values’’ of the observations at all times where an AO is proposed to occur, �̂�𝑚 = −�̂� as
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given in (13.3.19), and magnitudes of the outliers can be estimated by the differences
between the observed values and the interpolated values, 𝐳𝑚 − �̂�𝑚.

EXERCISES

13.1. In an analysis (Box and Tiao, 1975) of monthly data 𝑌𝑡 on smog-producing oxidant,
allowance was made for two possible ‘‘interventions’’ 𝐼1 and 𝐼2 as follows:

𝐼1: In early 1960, diversion of traffic from the opening of theGolden State Freeway
and the coming into effect of a law reducing reactive hydrocarbons in gasoline
sold locally.

𝐼2: In 1966, the coming into effect of a law requiring all new cars to have modified
engine design. In the case of this intervention, allowance was made for the
well-known fact that the smog phenomenon is different in summer and winter
months.

In a pilot analysis of the data, the following intervention model was used:

𝑌𝑡 = 𝜔1𝜉1𝑡 +
𝜔2

1 − 𝐵12 𝜉2𝑡 +
𝜔3

1 − 𝐵12 𝜉3𝑡 +
(1 − 𝜃𝐵)(1 − Θ𝐵12)

1 − 𝐵12 𝑎𝑡

where

𝜉1𝑡 =

{
0 𝑡 < Jan. 1960

1 𝑡 ≥ Jan. 1960
𝜉2𝑡 =

{
0 𝑡 < Jan. 1966

1 𝑡 ≥ Jan. 1966
𝜉3𝑡 =

{
0 𝑡 < Jan. 1966

1 𝑡 ≥ Jan. 1966

(summer months) (winter months)

(a) Show that the model allows for the following:

(1) A possible step change in January 1960 of size 𝜔1, possibly produced by 𝐼1.

(2) A ‘‘staircase function’’ of annual step size 𝜔2 to allow for possible summer
effect of cumulative influx of cars with new engine design.

(3) A ‘‘staircase function’’ of annual step size 𝜔3 to allow for possible winter
effect of cumulative influx of cars with new engine design.

(b) Describe what steps you would take to check the representational adequacy of
the model.

(c) Assuming youwere satisfied with the checking after (b), what conclusionswould
you draw from the following results? (Estimates are shown with their standard
errors below in parentheses.)

�̂�1 = −1.09 �̂�2 = −0.25 �̂�3 = −0.07 �̂� = −0.24 Θ̂ = 0.55
(±0.13) (±0.07) (±0.06) (±0.03) (±0.04)

(d) The data for this analysis are listed as Series R in the Collection of Time Series
in Part Five. Use these data to perform your own intervention analysis.
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13.2. A general transfer function model of the form

𝑌𝑡 =
𝑘∑

𝑗=1
𝛿−1
𝑗
(𝐵)𝜔𝑗(𝐵)𝜉𝑗𝑡 + 𝜙−1(𝐵)𝜃(𝐵)𝑎𝑡 ≡ Y𝑡 +𝑁𝑡

can include input variables 𝜉𝑗 , which are themselves time series, and other inputs
𝜉𝑖, which are indicator variables. The latter can estimate (and eliminate) the effects
of interventions of the kind described in Exercise 13.1 and, in particular, are often
useful in the analysis of sales data.

Let 𝜉(𝑇 )
𝑡

be an indicator variable that takes the form of a unit pulse at time 𝑇 ,
that is

𝜉
(𝑇 )
𝑡

=

{
0 𝑡 ≠ 𝑇

1 𝑡 = 𝑇

For illustration, consider the models

(1) Y𝑡 =
𝜔1𝐵

1 − 𝛿𝐵
𝜉
(𝑇 )
𝑡

(with𝜔1 = 1.0, 𝛿 = 0.5)

(2) Y𝑡 =
(

𝜔1𝐵

1 − 𝛿𝐵
+

𝜔2𝐵

1 − 𝐵

)
𝜉
(𝑇 )
𝑡

(with𝜔1 = 1.0, 𝛿 = 0.5, 𝜔2 = 0.3)

(3) Y𝑡 =
(
𝜔0 +

𝜔1𝐵

1 − 𝛿𝐵
+

𝜔2𝐵

1 − 𝐵

)
𝜉
(𝑇 )
𝑡

(with𝜔0 = 1.5, 𝜔1 = −1.0,
𝛿 = 0.5, 𝜔2 = −0.5)

Compute recursively the response Y𝑡 for each of these models at times 𝑡 =
𝑇 , 𝑇 + 1, 𝑇 + 2,… and comment on their possible usefulness in the estimation and/or
elimination of effects due to such phenomena as advertising campaigns, promotions,
and price changes.

13.3. Figure 13.2 shows the residuals before and after an outlier adjustment for the
temperature data in Series C. Construct a similar graph for the viscosity data in
Series D.

13.4. A time series defined as 𝑧𝑡 = 1000 log10(𝐻𝑡), where𝐻𝑡 is the price of hogs recorded
annually by the U.S. Census of Agriculture over the period 1867--1948, was consid-
ered in Exercise 6.6.

(a) Estimate the parameters of themodel identified for this series. Performdiagnostic
check to determine the adequacy of the fitted model.

(b) Are additive or innovational outliers present in this series?

(c) If outliers are found, perform the appropriate adjustments to the basic ARIMA
model and evaluate the results.

13.5. Daily air quality measurements in New York, May--September 1973, are available
in the data file ‘‘airquality’’ in the R datasets package. The file provides data on
four air quality variables, including the solar radiation measured from 8 a.m. to 12
noon at Central Park. The solar radiation series has a few missing values.
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(a) Assuming that an AR(1) is appropriate for the series, derive an expression for
the conditional expectation of the missing values, given the available data.

(b) Repeat the derivation in part (a) assuming that an AR(2) model is appropriate for
the series.

(c) How would you evaluate the AR assumptions and proceed to develop a suitable
model for this series?
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14
MULTIVARIATE TIME SERIES ANALYSIS

Multivariate time series analysis involves the use of stochastic models to describe and
analyze the relationships among several time series. While the focus in most of the earlier
chapters has been on univariate methods, we will now assume that 𝑘 time series, denoted
as 𝑧1𝑡, 𝑧2𝑡,… , 𝑧𝑘𝑡, are to be analyzed, and we let𝒁 𝑡 = (𝑧1𝑡,… , 𝑧𝑘𝑡)′ denote the time series
vector at time 𝑡, for 𝑡 = 0,±1,…. Such multivariate processes are of interest in a variety of
fields such as economics, business, the social sciences, earth sciences (e.g., meteorology
and geophysics), environmental sciences, and engineering. For example, in an engineering
setting, onemay be interested in the study of the simultaneous behavior over time of current
and voltage, or of pressure, temperature, and volume. In economics, we may be interested
in the variations of interest rates, money supply, unemployment, and so on, while sales
volume, prices, and advertising expenditures for a particular commodity may be of interest
in a business context. Multiple time series of this type may be contemporaneously related,
some series may lead other series, or there may exist feedback relationships between the
series.

In the study of multivariate processes, a framework is needed for describing not only
the properties of the individual series but also the possible cross relationships among the
series. Two key purposes for analyzing and modeling the series jointly are:

1. To understand the dynamic relationships over time among the series.

2. To improve accuracy of forecasts for individual series by utilizing the additional
information available from the related series in the forecasts for each series.

With these objectives in mind, we begin this chapter by introducing some basic concepts
and tools that are needed for modelingmultivariate time series. We then describe the vector
autoregressive, or VAR, models that are widely used in applied work. The properties of

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
○c 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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thesemodels are examined andmethods formodel identification, parameter estimation, and
model checking are described. This is followed by a discussion of vector moving average
and mixed vector autoregressive--moving average models, along with associated modeling
tools. A brief discussion of nonstationary unit-root models and cointegration among vector
time series is also included. We find that most of the basic concepts and results from
univariate time series analysis extend to the multivariate case. However, new problems and
challenges arise in the modeling of multivariate time series due to the greater complexity
of models and parametrizations in the vector case. Methods designed to overcome such
challenges are discussed. For a more detailed coverage of various aspects of multivariate
time series analysis, see for example, Reinsel (1997), Lütkepohl (2006), and Tsay (2014).

14.1 STATIONARY MULTIVARIATE TIME SERIES

Let 𝒁 𝑡 = (𝑧1𝑡,… , 𝑧𝑘𝑡)′, 𝑡 = 0,±1,±2,…, denote a 𝑘-dimensional time series vector of
random variables of interest. The choice of the univariate component time series 𝑧𝑖𝑡 that
are included in 𝒁 𝑡 will depend on the subject matter area and an understanding of the
system under study, but it is implicit that the component series will be interrelated both
contemporaneously and across time lags. The representation andmodeling of these dynamic
interrelationships is of main interest in multivariate time series analysis. Similar to the
univariate case, an important concept in the model representation and analysis, which
enables useful modeling results to be obtained from a finite sample realization of the series,
is that of stationarity.

The vector process {𝒁𝑡} is (strictly) stationary if the probability distributions of the
randomvectors (𝒁𝑡1 ,𝒁𝑡2 ,… ,𝒁𝑡𝑚 ) and (𝒁𝑡1+𝑙,𝒁 𝑡2+𝑙,… ,𝒁 𝑡𝑚+𝑙) are the same for arbitrary
times 𝑡1, 𝑡2,… , 𝑡𝑚, all 𝑚, and all lags or leads 𝑙 = 0,±1,±2,…. Thus, the probability
distribution of observations from a stationary vector process is invariant with respect to
shifts in time. Hence, assuming finite first and second moments exist, for a stationary
process we must have 𝐸[𝒁𝑡] = 𝝁, constant for all 𝑡, where 𝝁 = (𝜇1, 𝜇2,… , 𝜇𝑘)′ is the
mean vector of the process. Also, the vectors 𝒁 𝑡 must have a constant covariance matrix
for all 𝑡, whichwe denote by𝚺𝑧 ≡ 𝚪(0) = 𝐸[(𝒁𝑡 − 𝝁)(𝒁𝑡 − 𝝁)′]. A less stringent definition
of second-order, or covariance stationarity will be provided below.

14.1.1 Cross-Covariance and Cross-Correlation Matrices

For a stationary process {𝒁𝑡} the covariance between 𝑧𝑖𝑡 and 𝑧𝑗,𝑡+𝑙 must depend only on
the lag 𝑙, not on time 𝑡, for 𝑖, 𝑗 = 1,… , 𝑘, 𝑙 = 0,±1,±2,…. Hence, similar to definitions
used in Section 12.1.1, we define the cross-covariance between the series 𝑧𝑖𝑡 and 𝑧𝑗𝑡 at lag
𝑙 as

𝛾𝑖𝑗(𝑙) = cov[𝑧𝑖𝑡, 𝑧𝑗,𝑡+𝑙] = 𝐸[(𝑧𝑖𝑡 − 𝜇𝑖)(𝑧𝑗,𝑡+𝑙 − 𝜇𝑗)]

and denote the 𝑘 × 𝑘 matrix of cross-covariances at lag 𝑙 as

𝚪(𝑙) = 𝐸[(𝒁𝑡 − 𝝁)(𝒁𝑡+𝑙 − 𝝁)′] =

⎡⎢⎢⎢⎢⎣

𝛾11(𝑙) 𝛾12(𝑙) … 𝛾1𝑘(𝑙)
𝛾21(𝑙) 𝛾22(𝑙) … 𝛾2𝑘(𝑙)
⋮ ⋮ ⋱ ⋮

𝛾𝑘1(𝑙) 𝛾𝑘2(𝑙) … 𝛾𝑘𝑘(𝑙)

⎤⎥⎥⎥⎥⎦
(14.1.1)
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for 𝑙 = 0,±1,±2,… . The corresponding cross-correlations at lag 𝑙 are

𝜌𝑖𝑗(𝑙) = corr[𝑧𝑖𝑡, 𝑧𝑗,𝑡+𝑙] =
𝛾𝑖𝑗(𝑙)

{𝛾𝑖𝑖(0)𝛾𝑗𝑗(0)}1∕2

with 𝛾𝑖𝑖(0) = var[𝑧𝑖𝑡]. Thus, for 𝑖 = 𝑗, 𝜌𝑖𝑖(𝑙) = 𝜌𝑖𝑖(−𝑙) denotes the autocorrelation function
of the 𝑖th series 𝑧𝑖𝑡, and for 𝑖 ≠ 𝑗, 𝜌𝑖𝑗(𝑙) = 𝜌𝑗𝑖(−𝑙) denotes the cross-correlation function
between the series 𝑧𝑖𝑡 and 𝑧𝑗𝑡. The 𝑘 × 𝑘 cross-correlationmatrix 𝝆(𝑙) at lag 𝑙, with (𝑖, 𝑗)th
element equal to 𝜌𝑖𝑗 (𝑙), is given by

𝝆(𝑙) = 𝐕−1∕2𝚪(𝑙)𝐕−1∕2 = {𝜌𝑖𝑗 (𝑙)} (14.1.2)

for 𝑙 = 0,±1,±2,…, where 𝐕−1∕2 = diag{𝛾11(0)−1∕2,… , 𝛾𝑘𝑘(0)−1∕2}. Note that 𝚪(𝑙)′ =
𝚪(−𝑙) and 𝝆(𝑙)′ = 𝝆(−𝑙), since 𝛾𝑖𝑗(𝑙) = 𝛾𝑗𝑖(−𝑙). In addition, the cross-covariance matrices
𝚪(𝑙) and cross-correlation matrices 𝝆(𝑙) are nonnegative definite, since

var

[
𝑛∑
𝑖=1

𝒃
′
𝑖
𝒁𝑡−𝑖

]
=
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝒃
′
𝑖
𝚪(𝑖 − 𝑗)𝒃𝑗 ≥ 0

for all positive integers 𝑛 and all 𝑘-dimensional constant vectors 𝒃1, … , 𝒃𝑛.

14.1.2 Covariance Stationarity

The definition of stationarity given above is usually referred to as strict or strong stationarity.
In general, a process {𝒁𝑡} that possesses finite first and second moments and that satisfies
the conditions that 𝐸[𝒁 𝑡] = 𝝁 does not depend on 𝑡 and 𝐸[(𝒁 𝑡 − 𝝁)(𝒁𝑡+𝑙 − 𝝁)′] depends
only on 𝑙 is referred to as weak, second-order, or covariance stationary. In this chapter, the
term stationary will generally be used in this latter sense of weak stationarity. For a sta-
tionary vector process, the cross-covariance and cross-correlation matrices provide useful
summary information on the dynamic interrelations among the components of the pro-
cess. However, because of the higher dimensionality 𝑘 > 1 of the vector process, the
cross-correlation matrices generally have more complicated structures and can be much
more difficult to interpret than the autocorrelation functions in the univariate case. In
Sections 4.2-4.4, we will examine the covariance properties implied by vector autoregres-
sive, moving average, and mixed autoregressive-moving average models.

14.1.3 Vector White Noise Process

The simplest example of a stationary vector process is the vector white noise process,
which plays a fundamental role as a building block for general vector processes. The
vector white noise process is defined as a sequence of random vectors … ,𝒂1,… ,𝒂𝑡,…
with 𝒂𝑡 = (𝑎1𝑡,… , 𝑎𝑘𝑡)′, such that 𝐸[𝒂𝑡] = 𝟎, 𝐸[𝒂𝑡𝒂′𝑡] = 𝚺, and 𝐸[𝒂𝑡𝒂

′
𝑡+𝑙] = 𝟎, for 𝑙 ≠ 0.

Hence, its covariance matrices 𝚪(𝑙) are given by

𝚪(𝑙) = 𝐸[𝒂𝑡𝒂′𝑡+𝑙] =
{
𝚺 for 𝑙 = 0
𝟎 for 𝑙 ≠ 0 (14.1.3)
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The 𝑘 × 𝑘 covariance matrix 𝚺 is assumed to be positive definite, since the dimension 𝑘 of
the process could be reduced otherwise. Sometimes, additional properties will be assumed
for the 𝒂𝑡, such as normality or mutual independence over different time periods.

14.1.4 Moving Average Representation of a Stationary Vector Process

A multivariate generalization of Wold’s theorem states that if {𝒁 𝑡} is a purely nondeter-
ministic (i.e., 𝒁 𝑡 does not contain a purely deterministic component process whose future
values can be perfectly predicted from the past values) stationary process with mean vector
𝝁, then 𝒁𝑡 can be represented as an infinite vector moving average (MA) process,

𝒁𝑡 = 𝝁 +
∞∑
𝑗=0
𝚿𝑗𝒂𝑡−𝑗 = 𝝁 +𝚿(𝐵)𝒂𝑡 𝚿0 = 𝐈 (14.1.4)

where 𝚿(𝐵) =
∑∞
𝑗=0𝚿𝑗B

𝑗 is a 𝑘 × 𝑘 matrix in the backshift operator 𝐵 such that 𝐵𝑗𝒂𝑡 =
𝒂𝑡−𝑗 and the 𝑘 × 𝑘 coefficient matrices 𝚿𝑗 satisfy the condition

∑∞
𝑗=0 ‖𝚿𝑗‖2 < ∞, where

‖𝚿𝑗‖ denotes the norm of 𝚿𝑗 . The 𝒂𝑡 form a vector white noise process with mean 𝟎 and
covariances given by (14.1.3). The covariance matrix of 𝒁 𝑡 is then given by

Cov(𝒁𝑡) =
∞∑
𝑗=0
𝚿𝑗𝚺𝚿

′
𝑗

The Wold representation in (14.1.4) is obtained by defining 𝒂𝑡 as the error 𝒂𝑡 =
𝒁 𝑡 − �̂� 𝑡−1(1) of the best (i.e., minimum mean square error) one-step-ahead linear pre-
dictor �̂� 𝑡−1(1) of 𝒁 𝑡 based on the infinite past 𝒁 𝑡−1,𝒁 𝑡−2,… . Thus, the 𝒂𝑡 are mutually
uncorrelated by construction since 𝒂𝑡 is uncorrelated with 𝒁 𝑡−𝑗 for all 𝑗 ≥ 1 and, hence,
is uncorrelated with 𝒂𝑡−𝑗 for all 𝑗 ≥ 1, and the 𝒂𝑡 have a constant covariance matrix by
stationarity of the process {𝒁𝑡}. The best one-step-ahead linear predictor can be expressed
as

�̂�𝑡−1(1) = 𝝁 +
∞∑
𝑗=1
𝚿𝑗{𝒁 𝑡−𝑗 − �̂�𝑡−𝑗−1(1)} = 𝝁 +

∞∑
𝑗=1
𝚿𝑗𝒂𝑡−𝑗

Consequently, the coefficient matrices 𝚿𝑗 in (14.1.4) have the interpretation of the linear
regression matrices of 𝒁 𝑡 on the 𝒂𝑡−𝑗 in that𝚿𝑗 = cov[𝒁𝑡, 𝒂𝑡−𝑗]𝚺−𝟏.

In what follows, we will assume that𝚿(𝐵) can be represented (at least approximately, in
practice) as the product𝚽−1(𝐵)𝚯(𝐵), where𝚽(𝐵) and 𝚯(𝐵) are finite autoregressive and
moving average matrix polynomials of orders 𝑝 and 𝑞, respectively. This leads to a class of
linear models for vector time series 𝒁 𝑡 defined by a relation of the form𝚽(𝐵)(𝒁𝑡 − 𝜇) =
𝚯(𝐵)𝐚𝑡, or

(𝒁𝑡 − 𝝁) −
𝑝∑
𝑗=1
𝚽𝑗(𝒁𝑡−𝑗 − 𝝁) = 𝒂𝑡 −

𝑞∑
𝑗=1
𝚯𝑗𝒂𝑡−𝑗 (14.1.5)

A process {𝒁𝑡} is referred to as a vector autoregressive--moving average, orVARMA(𝑝, 𝑞),
process if it satisfies the relations (14.1.5) for a given white noise sequence {𝒂𝑡}.

We begin the discussion of this class of vector models by examining the special case
when 𝑞 is zero so that the process follows a pure vector autoregressive model of order 𝑝.
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The discussion will focus on time-domain methods for analyzing vector time series and
spectral methods will not be used. However, a brief summary of the spectral characteristics
of stationary vector processes is provided in Appendix A14.1.

14.2 VECTOR AUTOREGRESSIVE MODELS

Among multivariate time series models, vector autoregressive models are the most widely
used in practice. A major reason for this is their similarity to ordinary regression models
and the relative ease of fitting these models to actual time series. For example, the param-
eters can be estimated using least-squares methods that yield closed-form expressions for
the estimates. Other methods from multivariate regression analysis can be used at other
steps of the analysis. Vector autoregressive models are widely used in econometrics, for
example, to describe the dynamic behavior of economic and financial time series and to
produce forecasts. This section examines the properties of vector autoregressive models
and describes methods for order specification, parameter estimation, and model checking
that can be used to develop these models in practice.

14.2.1 VAR(𝒑) Model

A vector autoregressive model of order 𝑝, or VAR(𝑝) model, is defined as

𝚽(𝐵)(𝒁𝑡 − 𝝁) = 𝒂𝑡

where 𝚽(𝐵) = 𝐈 −𝚽1𝐵 −𝚽2𝐵
2 −⋯ −𝚽𝑝𝐵𝑝, 𝚽𝑖 is a 𝑘 × 𝑘 parameter matrix, and 𝒂𝑡 is

a white noise sequence with mean 𝟎 and covariance matrix 𝚺. The model can equivalently
be written as

(𝒁 𝑡 − 𝝁) =
𝑝∑
𝑗=1
𝚽𝑗(𝒁𝑡−𝑗 − 𝝁) + 𝒂𝑡 (14.2.1)

The behavior of the process is determined by the roots of the determinantal equation
det{𝚽(𝐵)} = 0. In particular, the process is stationary if all the roots of this equation are
greater than one in absolute value; that is, lie outside the unit circle (e.g., Reinsel,1997,
Chapter 2).When this condition is met, {𝒁𝑡} has the infinitemoving average representation

𝒁 𝑡 = 𝝁 +
∞∑
𝑗=0
𝚿𝑗𝒂𝑡−𝑗 (14.2.2)

or 𝒁 𝑡 = 𝝁 +𝚿(𝐵)𝒂𝑡, where 𝚿(𝐵) = 𝚽−1(𝐵) and the coefficient matrices 𝚿𝑗 satisfy the
condition

∑∞
𝑗=0 ‖𝚿𝑗‖ < ∞. Then, since 𝚽(𝐵)𝚿(𝐵) = 𝐈, the coefficient matrices can be

calculated recursively from

𝚿𝑗 = 𝚽1𝚿𝑗−1 + · · · +𝚽𝑝𝚿𝑗−𝑝 (14.2.3)

with 𝚿0 = 𝐈 and 𝚿𝑗 = 𝟎, for 𝑗 < 0.
The moving average representation (14.2.2) is useful for examining the covariance

properties of the process and it has a number of other applications. As in the univariate
case, it is useful for studying forecast errorswhen the VAR(𝑝) model is used for forecasting.
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It is also used in impulse response analysis to determine how current or future values of
the series are impacted by past changes or ‘‘shocks’’ to the system. The coefficient matrix
𝚿𝑗 shows the expected impact of a past shock𝒂𝑡−𝑗 on the current value𝒁𝑡. The response of a
specific variable to a shock in another variable is often of interest in appliedwork.However,
since the components of 𝒂𝑡−𝑗 are typically correlated, the individual elements of the 𝚿𝑗
can be difficult to interpret. To aid the interpretation, the covariance matrix 𝚺 of 𝒂𝑡 can
be diagonalized using a Cholesky decomposition 𝚺 = 𝑳𝑳

′, where 𝑳 is a lower triangular
matrix with positive diagonal elements. Then, letting 𝒃𝑡 = 𝑳

−𝟏
𝒂𝑡, we have Cov(𝒃𝑡) = 𝐈𝑘,

and the model can be rewritten as

𝒁 𝑡 = 𝝁 +
∞∑
𝑗=0
𝚿∗
𝑗
𝒃𝑡−𝑗

where𝚿∗
0 = 𝑳 and𝚿∗

𝑗
= 𝚿𝑗𝑳 for 𝑗 > 0. The matrices𝚿∗

𝑗
are called the impulse response

weightswith respect to the orthogonal innovations 𝒃𝑡. Since 𝑳 is a lower triangular matrix,
the ordering of the variables will, however, matter in this case. For further discussion and
for applications of impulse response analysis, see Lütkepohl (2006, Chapter 2) and Tsay
(2014, Chapter 2).

Reduced and Structural Forms. It is sometimes useful to express the VAR(𝑝) process in
(14.2.1) in the following slightly different form. Since the matrix 𝚺 = 𝐸[𝒂𝑡𝒂′𝑡] is assumed
to be positive definite, there exists a lower triangular matrix 𝚽#

0 with ones on the diagonal

such that 𝚽#
0𝚺𝚽

#
0
′ = 𝚺# is a diagonal matrix with positive diagonal elements. Hence, by

premultiplying (14.2.1) by𝚽#
0, we obtain the following representation:

𝚽#
0(𝒁𝑡 − 𝝁) =

𝑝∑
𝑗=1
𝚽#
𝑗
(𝒁𝑡−𝑗 − 𝝁) + 𝒃𝑡 (14.2.4)

where𝚽#
𝑗
= 𝚽#

0𝚽𝑗 and 𝒃𝑡 = 𝚽
#
0𝒂𝑡 with Cov[𝒃𝑡] = 𝚺

#. This model displays the concurrent

dependence among the components of 𝒁𝑡 through the lower triangular matrix 𝚽#
0 and is

sometimes referred to as the structural form of the VAR(𝑝) model. The model (14.2.1) that
includes the concurrent relationships in the covariance matrix 𝚺 of the errors and does not
show them explicitly is referred to as the standard or reduced form of the VAR(𝑝) model.
Note that a diagonalizing transformation of this type was already used in the impulse
response analysis described above, where the innovations 𝒃𝑡’s were further normalized to
have unit variance.

14.2.2 Moment Equations and Yule--Walker Estimates

For the VAR(𝑝) model, the covariance matrices 𝚪(𝑙) = Cov(𝒁𝑡,𝒁𝑡+𝑙) = Cov(𝒁𝑡−𝑙,𝒁 𝑡) =
𝐸[(𝒁𝑡−𝑙 − 𝝁)(𝒁𝑡 − 𝝁)′ ] satisfy the matrix equations

𝚪(𝑙) =
𝑝∑
𝑗=1
𝚪(𝑙 − 𝑗)𝚽′

𝑗
(14.2.5)
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for 𝑙 = 1, 2, …, with 𝚪(0) =
∑𝑝
𝑗=1 𝚪(−𝑗)𝚽

′
𝑗
+ 𝚺. This result is readily derived using

(14.2.1), noting that 𝐸[(𝒁𝑡−𝑙 − 𝝁)𝒂′
𝑡−𝑗] = 𝟎, for 𝑗 < 𝑙. The matrix equations (14.2.5) are

commonly referred to as the multivariate Yule--Walker equations for the VAR(𝑝) model.
For 𝑙 = 0,… , 𝑝, these equations can be used to solve for the 𝚪(𝑙) simultaneously in terms
of the AR parameter matrices𝚽𝑗 and 𝚺.

Conversely, the AR coefficient matrices 𝚽1,… ,𝚽𝑝 and 𝚺 can also be determined
from the 𝚪’s by first solving the Yule--Walker equations, for 𝑙 = 1,… , 𝑝, to obtain the
parameters 𝚽𝑗 . These equations can be written in matrix form as 𝚪𝑝𝚽(𝑝) = 𝚪(𝑝), with
solution𝚽(𝑝) = 𝚪−1𝑝 𝚪(𝑝), where

𝚽(𝑝) = [𝚽1,… ,𝚽𝑝]′ 𝚪(𝑝) = [𝚪(1)′,… ,𝚪(𝑝)′]′

and 𝚪𝑝 is a 𝑘𝑝 × 𝑘𝑝 matrix with (𝑖, 𝑗)th block of elements equal to 𝚪(𝑖 − 𝑗). Once the 𝚽𝑗
are determined from this, 𝚺 can be obtained as

𝚺 = 𝚪(0) −
𝑝∑
𝑗=1
𝚪(−𝑗)𝚽′

𝑗
≡ 𝚪(0) − 𝚪′(𝑝)𝚽(𝑝) = 𝚪(0) −𝚽′

(𝑝)𝚪𝑝𝚽(𝑝)

In practical applications, these results can be used to derive Yule--Walker estimates of the
parameters in the VAR(𝑝) model by replacing the variance and covariancematrices by their
estimates.

14.2.3 Special Case: VAR(1) Model

To examine the properties of VAR models in more detail, we will consider the VAR(1)
model,

𝒁𝑡 = 𝚽𝒁 𝑡−1 + 𝒂𝑡

where the mean vector 𝝁 is assumed to be zero for convenience. For 𝑘 = 2, we have the
bivariate VAR(1) process

𝒁 𝑡 =
[
𝜙11 𝜙12
𝜙21 𝜙22

]
𝒁𝑡−1 +

[
𝑎1𝑡
𝑎2𝑡

]

or equivalently

𝑧1𝑡 = 𝜙11𝑧1,𝑡−1 + 𝜙12𝑧2,𝑡−1 + 𝑎1𝑡
𝑧2𝑡 = 𝜙21𝑧1,𝑡−1 + 𝜙22𝑧2,𝑡−1 + 𝑎2𝑡

where𝜙11 and𝜙22 reflect the dependenceof each componenton its own past. The parameter
𝜙12 shows the dependence of 𝑧1𝑡 on 𝑧2,𝑡−1 in the presence of 𝑧1,𝑡−1, while 𝜙21 shows the
dependence of 𝑧2𝑡 on 𝑧1,𝑡−1 in the presence of 𝑧2,𝑡−1. Thus, if 𝜙12 ≠ 0 and 𝜙21 ≠ 0, then
there is a feedback relationship between the two components. On the other hand, if the off-
diagonal elements of the parameter matrix Φ are zero, that is, 𝜙12 = 𝜙21 = 0, then 𝑧1𝑡 and
𝑧2𝑡 are not dynamically correlated. However, they are still contemporaneously correlated
unless 𝚺 is a diagonal matrix.
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Relationship to Transfer Function Model. If 𝜙12 = 0, but 𝜙21 ≠ 0, then 𝑧1𝑡 does not
depend on past values of 𝑧2𝑡 but 𝑧2𝑡 depends on past values of 𝑧1𝑡. A transfer function
relationship then exists with 𝑧1𝑡 acting as an input variable and 𝑧2𝑡 as an output variable.
However, unless 𝑧1𝑡 is uncorrelated with 𝑎2𝑡, the resulting model is not in the standard
transfer function form discussed in Chapter 12. To obtain the standard transfer function
model, we let 𝑎1𝑡 = 𝑏1𝑡 and 𝑎2𝑡 = 𝛽𝑎1𝑡 + 𝑏2𝑡, where 𝛽 is the regression coefficient of 𝑎2𝑡 on
𝑎1𝑡. Under normality, the error term 𝑏2𝑡 is then independent of 𝑎1𝑡 and hence of 𝑏1𝑡. The
unidirectional transfer function model is obtained by rewriting the equations for 𝑧1𝑡 and 𝑧2𝑡
above in terms of the orthogonal innovations 𝑏1𝑡 and 𝑏2𝑡. This yields

(1 − 𝜙22𝐵)𝑧2𝑡 = {𝛽 + (𝜙21 − 𝛽𝜙11)𝐵}𝑧1,𝑡−1 + 𝑏2𝑡

where the input variable 𝑧1𝑡 does not depend on the noise term 𝑏2𝑡.
Hence, the bivariate transfer function model emerges as a special case of the bivariate

AR model, in which a unidirectional relationship exists between the variables. In general,
for a VAR(1) model in higher dimensions, 𝑘 > 2, if the 𝑘 series can be arranged so that the
matrix𝚽 is lower triangular, then the VAR(1) model can also be expressed in the form of
unidirectional transfer function equations.

Stationarity Conditions for VAR(1) Model. The VAR(1) process is stationary if the roots
of det{𝐈 −𝚽𝐵} = 0 exceed one in absolute value. Since det{𝐈 −𝚽𝐵} = 0 if and only
if det{𝜆𝐈 −𝚽} = 0 with 𝜆 = 1∕𝐵, it follows that the stationarity condition for the AR(1)
model is equivalent to requiring that the eigenvalues of𝚽 be less than one in absolute value.
When this condition is met, the process has the convergent infinite MA representation
(14.2.2) with MA coefficient matrices 𝚿𝑗 = 𝚽𝑗 , since from (14.2.3) the 𝚿𝑗 now satisfy

𝚿𝑗 = 𝚽𝚿𝑗−1 ≡ 𝚽𝑗𝚿0

To look at the stationarity for a 𝑘-dimensional VAR(1) model further, we note that for
arbitrary 𝑛 > 0, by 𝑡 + 𝑛 successive substitutions in the right-hand side of𝒁 𝑡 = 𝚽𝒁𝑡−1 + 𝒂𝑡

we obtain

𝒁𝑡 =
𝑡+𝑛∑
𝑗=0
𝚽𝑗𝒂𝑡−𝑗 +𝚽𝑡+𝑛+1𝒁−𝑛−1

Hence, provided that all eigenvalues of 𝚽 are less than one in absolute value, as
𝑛→ ∞ this will converge to the infinite MA representation 𝒁 𝑡 =

∑∞
𝑗=0𝚽

𝑗
𝒂𝑡−𝑗 , with∑∞

𝑗=0 ‖𝚽𝑗‖ < ∞, which is stationary. For example, suppose that 𝚽 has 𝑘 distinct eigen-

values 𝜆1,… , 𝜆𝑘, so there is a 𝑘 × 𝑘 nonsingular matrix P such that 𝐏−1𝚽𝐏 = 𝚲 =
diag(𝜆1,… , 𝜆𝑘). Then 𝚽 = 𝐏𝚲𝐏−1 and 𝚽𝑗 = P𝚲𝑗P−1, where 𝚲𝑗 = diag(𝜆𝑗1,… , 𝜆

𝑗

𝑘
), so

when all |𝜆𝑖| < 1,
∑∞
𝑗=0 ‖𝚽𝑗‖ < ∞ since then

∑∞
𝑗=0 ‖𝚲𝑗‖ < ∞.

Moment Equations. For the VAR(1) model, the matrix Yule--Walker equations (14.2.5)
simplify to

𝚪(𝑙) = 𝚪(𝑙 − 1)𝚽′ for 𝑙 ≥ 1
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so 𝚪(1) = 𝚪(0)𝚽′, in particular, with

𝚪(0) = 𝚪(−1)𝚽′ + Σ = 𝚽𝚪(0)𝚽′ + 𝚺

Hence, 𝚽′ can be determined from 𝚪(0) and 𝚪(1) as 𝚽′ = 𝚪(0)−1𝚪(1) and also 𝚪(𝑙) =
𝚪(0)𝚽′𝑙. This last relation illustrates that the behavior of all correlations in 𝝆(𝑙), ob-
tained using (14.1.2), will be controlled by the behavior of the 𝜆𝑙

𝑖
, 𝑖 = 1,… , 𝑘, where

𝜆1,… , 𝜆𝑘 are the eigenvalues of 𝚽, and shows that even the simple VAR(1) model is
capable of fairly general correlation structures (e.g., mixtures of exponential decaying and
damping sinusoidal terms) for dimensions 𝑘 > 1. (For more details, see Reinsel, 1997,
Section 2.2.3).

14.2.4 Numerical Example

Consider the bivariate (𝑘 = 2) AR(1) model (𝐈 −𝚽𝐵)𝒁 𝑡 = 𝒂𝑡 with

𝚽 =
[ 0.8 0.7
−0.4 0.6

]
𝚺 =

[ 4 1
1 2

]

The roots of det{𝜆𝐈 −𝚽} = 𝜆2 − 1.4𝜆 + 0.76 = 0 are 𝜆 = 0.7 ± 0.5196𝑖, with absolute
value equal to (0.76)1∕2; hence, the AR(1) model is stationary. Since the roots are complex,
the correlations of this AR(1) process will exhibit damped sinusoidal behavior. The co-
variance matrix 𝚪(0) is determined by solving the linear equations 𝚪(0) −𝚽𝚪(0)𝚽′ = 𝚺.
Together with 𝚪(𝑙) = 𝚪(𝑙 − 1)𝚽′, these lead to the covariance matrices

𝚪(0) =
[ 18.536 −1.500
−1.500 8.884

]
𝚪(1) =

[ 13.779 −8.315
5.019 5.931

]

𝚪(2) =
[ 5.203 −10.500
8.166 1.551

]
𝚪(3) =

[ −3.188 −8.381
7.619 −2.336

]

𝚪(4) =
[ −8.417 −3.754

4.460 −4.449

]
𝚪(5) =

[ −9.361 1.115
0.453 −4.453

]

The corresponding correlation matrices are obtained from 𝝆(𝑙) = 𝐕−1∕2𝚪(𝑙)𝐕−1∕2, where
V−1∕2 = diag(18.536−1∕2, 8.884−1∕2). The autocorrelations and cross-correlations of this
process are displayed up to 18 lags in Figure 14.1. We note that the correlation patterns are
rather involved and correlations do not die out very quickly. The coefficients𝚿𝑗 = Φ𝑗 , 𝑗 ≥
1, in the infinite MA representation for this AR(1) process are

𝚿1 =
[ 0.80 0.70
−0.40 0.60

]
𝚿2 =

[ 0.36 0.98
−0.56 0.08

]
𝚿3 =

[−0.10 0.84
−0.48 −0.34

]

𝚿4 =
[−0.42 0.43
−0.25 −0.54

]
𝚿5 =

[−0.51 −0.03
0.02 −0.50

]
𝚿6 =

[−0.39 −0.38
0.22 −0.28

]

So the elements of the 𝚿𝑗 matrices are also persistent and exhibit damped sinusoidal
behavior similar to that of the correlations.
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FIGURE 14.1 Theoretical autocorrelations and cross-correlations, 𝜌𝑖𝑗 (𝑙), for the bivariate VAR(1)
process example: (a) autocorrelations 𝜌11(𝑙) and 𝜌22(𝑙) and (b) cross-correlations 𝜌12(𝑙).

Finally, since det{𝜆𝐈 −𝚽} = 𝜆2 − 1.4𝜆 + 0.76 = 0, it follows from Reinsel (1997,
Section 2.2.4) that each individual series 𝑧𝑖𝑡 has a univariate ARMA(2, 1) model rep-
resentation as (1 − 1.4𝐵 + 0.76𝐵2)𝑧𝑖𝑡 = (1 − 𝜂𝑖𝐵)𝜀𝑖𝑡, 𝜎2𝜀𝑖 = var[𝜀𝑖𝑡], where 𝜂𝑖 and 𝜎2𝜀𝑖 are
readily determined. For a 𝑘-dimensional VAR(𝑝) model, it can be shown that each indi-
vidual component 𝑧𝑖𝑡 follows a univariate ARMA of maximum order (𝑘𝑝, (𝑘− 1)𝑝). The
order can be much less if the AR and MA polynomials have common factors (e.g., Wei,
2006, Chapter 16).

Computations in R. The covariance matrices 𝚪(𝑙) and the𝚿matrices shown above can be
reproduced using the MTS package in R as follows:

> library(MTS)
> phi1=matrix(c(0.8,-0.4,0.7,0.6),2,2)
> sig=matrix(c(4,1,1,2),2,2)
> eigen(phi1)
> m1=VARMAcov(Phi=phi1, Sigma=sig, lag=5)
> names(m1)

[1] "autocov" "ccm"
> autocov=t(m1$autocov)



Box3G Date: May 21, 2015 Time: 11:28 am

VECTOR AUTOREGRESSIVE MODELS 515

> m2=PSIwgt(Phi=phi1)
> names(m2)

[1] "psi.weight" "irf"
> m2$psi.weight

The commandVARMAcov() computes the covariance and cross-correlationmatrices up to
12 lags by default. These matrices need to be transposed using the command t() since MTS
defines the lag 𝑙 covariance matrix 𝚪(𝑙) as 𝐸[(𝒁 𝑡−𝝁)(𝒁 𝑡−𝑙 − 𝝁)′ ], whereas the definition
𝐸[(𝒁 𝑡−𝑙−𝝁)(𝒁𝑡−𝝁)

′ ] is used in this chapter. Transposing the matrices makes the results
from R consistent with our definition. The command eigen(phi1) included in the code
gives the eigenvalues of the matrix 𝚽.

14.2.5 Initial Model Building and Least-Squares Estimation for VAR Models

Given an observed vector time series 𝒁1,𝒁2,… ,𝒁𝑁 of length 𝑁 from a multivariate
process, the development of an appropriate VAR model for the series can be performed
iteratively using a three-stage procedure of model specification, parameter estimation, and
diagnostic checking. In the VAR case, the model specification involves choosing a suit-
able value for the order 𝑝. Some useful tools at this stage include the sample covariance
and correlation matrices described below and the sample partial autoregression matrices
discussed, for example, by Tiao and Box (1981). The latter quantities are analogous to the
partial autocorrelations used in the univariate case and are estimated as the last autoregres-
sive matrix,𝚽𝑚, in a VAR(𝑚) model with 𝑚 = 1, 2,… . The estimates �̂�𝑚 can be derived
from the Yule--Walker equations or by least-squares estimation of the parameter matrices.
Statistical tests are used to determine the significance of the estimates for each value
of 𝑚. The partial autoregression matrices are zero for all lags greater than 𝑝 and are thus
particularly useful for identifying the autoregressive model order. Additional methods for
model selection include the use of information criteria such as AIC, BIC, and HC, as well
as methods based on canonical correlation analysis described later in this chapter.

Sample Covariance and Correlation Matrices. Given an observed time series, the sample
covariance matrix of the 𝒁 𝑡 at lag 𝑙 is defined as

�̂�(𝑙) = 𝐂(𝑙) = 1
𝑁

𝑁−𝑙∑
𝑡=1

(𝒁𝑡 −𝒁)(𝒁𝑡+𝑙 −𝒁)′ 𝑙 = 0, 1, 2,… (14.2.6)

where 𝒁 = (𝑧1,… , 𝑧𝑘)′ = 𝑁−1∑𝑁
𝑡=1𝒁𝑡 is the sample mean vector, which is a natural

estimator of the process mean vector 𝝁 = 𝐸[𝒁 𝑡] in the stationary case. In particular,
�̂�(0) = 𝐂(0) = 𝑁−1∑𝑁

𝑡=1(𝒁𝑡 −𝒁)(𝒁𝑡 −𝒁)′ is the sample covariance matrix of the 𝒁 𝑡.

The (𝑖, 𝑗)th element of �̂�(𝑙) is given by

�̂�𝑖𝑗(𝑙) = 𝑐𝑖𝑗(𝑙) =
1
𝑁

𝑁−𝑙∑
𝑡=1

(𝑧𝑖𝑡 − 𝑧𝑖)(𝑧𝑗,𝑡+𝑙 − 𝑧𝑗)

The sample cross-correlations are defined as

�̂�𝑖𝑗(𝑙) = 𝑟𝑖𝑗(𝑙) =
𝑐𝑖𝑗 (𝑙)

{𝑐𝑖𝑖(0)𝑐𝑗𝑗(0)}1∕2
𝑖, 𝑗 = 1,… , 𝑘
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For a stationary series, the �̂�𝑖𝑗(𝑙) are sample estimates of the theoretical 𝜌𝑖𝑗 (𝑙). The
asymptotic sampling properties of sample correlations �̂�𝑖𝑗(𝑙) were discussed earlier in
Section 12.1.3. The expressions for the asymptotic variances and covariances of the esti-
mates are complicated but simplify in certain cases. For example, in the special case where
𝒁 𝑡 is a white noise process, the results give var[�̂�𝑖𝑗(𝑙)] ≃ 1∕(𝑁 − 𝑙).

The sample cross-correlation matrices are important tools for the initial specification
of a model for the series 𝒁𝑡. They are particularly useful in the model specification for
a low-order pure vector moving average model, which has the property that 𝜌𝑖𝑗 (𝑙) = 0
for all 𝑙 > 𝑞, as discussed in Section 14.3 below. However, similar to the univariate case,
a slowly decaying pattern in the estimated autocorrelation and cross-correlation matrices
would indicate that autoregressive terms are needed.

Estimation of the Partial Autoregression Matrices. Consider the vector autoregressive
model of order 𝑚, 𝒁𝑡 = 𝜹 +

∑𝑚
𝑗=1𝚽𝑗𝒁 𝑡−𝑗 + 𝒂𝑡, where 𝜹 = (𝟏 − 𝚽𝟏 − · · · − 𝚽𝒎

)𝝁 ac-
counts for the non-zero mean vector. Estimates of the partial autoregressive matrices can
be obtained from the Yule--Walker equations in (14.2.5) as

�̂�(𝑚) = [�̂�1𝑚,… , �̂�𝑚𝑚]′ = �̂�
−1
𝑚
�̂�(𝑚)

The estimate of the error covariance matrix estimate is �̂�𝑚 = �̂�(0) −
∑𝑚
𝑗=1 �̂�(−𝑗)�̂�

′
𝑗𝑚
. The

estimation is performed for 𝑚 = 1, 2,… , yielding a sequence of estimates �̂�𝑚𝑚 of the
last parameter matrix in the VAR(𝑚) model. These matrices are referred to as partial
autoregression matrices by Tiao and Box (1981).

An asymptotically equivalent procedure is to estimate the partial autoregressionmatrices
using multivariate linear least-squares (LS) estimation described, for example, by Johnson
andWichern (2007).Using this approach, the components of𝒁 𝑡 are regressed on the lagged
vector values𝒁𝑡−1,… ,𝒁 𝑡−𝑚, by first writing the VAR(𝑚) model in regression form as

𝒁 𝑡 = 𝜹 +
𝑚∑
𝑗=1
𝚽𝑗𝒁𝑡−𝑗 + 𝒂𝑡 = 𝜹 +𝚽′

(𝑚)𝑿𝑡 + 𝒂𝑡 (14.2.7)

with 𝑿𝑡 = (𝒁′
𝑡−1,… ,𝒁

′
𝑡−𝑚)

′. The LS estimates for the AR parameters are then given by

�̂�(𝑚) = [�̂�1𝑚,… , �̂�𝑚𝑚]′ = (�̃�′�̃�)−1�̃�′
�̃� (14.2.8)

where the matrices �̃� and �̃�, respectively, have typical rows (𝒁𝑡 −𝒁(0))′ and

[(𝒁𝑡−1 −𝒁(1))′,… , (𝒁𝑡−𝑚 −𝒁(𝑚))′] 𝑡 = 𝑚 + 1,… , 𝑁

with 𝒁(𝑖) = 𝑛−1
∑𝑁
𝑡=𝑚+1𝒁 𝑡−𝑖 and 𝑛 = 𝑁 − 𝑚. The estimate of the error covariance matrix

𝚺 is

�̂�𝑚 = [𝑛 − (𝑘𝑚 + 1)]−1𝐒𝑚 (14.2.9)

where

𝐒𝑚 =
𝑁∑
𝑡=𝑚+1

�̂�𝑡�̂�
′
𝑡
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is the residual sum-of-squares matrix and

�̂�𝑡 = (𝒁𝑡 −𝒁(0)) −
𝑚∑
𝑗=1
�̂�𝑗(𝒁𝑡−𝑗 −𝒁(𝑗))

are the residual vectors. These LS estimators �̂�𝑗 are also the conditional maximum likeli-
hood (ML) estimators under the normality assumption. Asymptotic distribution theory for
the LS estimators in the stationary VARmodel was provided by Hannan (1970, Chapter 6).
Under a stationaryVAR(𝑚)model, the distribution of vec[�̂�(𝑚)] is approximatelymultivari-

ate normal with mean vector vec[𝚽(𝑚)] and covariancematrix estimated by �̂�𝑚 ⊗ (�̃�′�̃�)−1,
where⊗ denotes the Kronecker product of �̂�𝑚 and (�̃�′�̃�)−1.

Sequential Likelihood Ratio Tests. The estimation of the partial autoregression matrices
is supplemented by likelihood ratio tests that are applied sequentially to help determine the
model order 𝑝. (e.g., see Tiao and Box (1981) and Reinsel (1997, Chapter 4)). Thus, after
fitting a VAR(𝑚) model, we test the null hypothesis 𝐻0: 𝚽𝑚𝑚 = 𝟎 against the alternative
𝚽𝑚𝑚 ≠ 𝟎, using the likelihood ratio (LR) statistic

𝑀𝑚 = −
(
𝑛 − 𝑚𝑘 − 1

2

)
ln
[ |𝐒𝑚|
|𝐒𝑚−1|

]
(14.2.10)

where 𝐒𝑚 is the residual sum-of-squares matrix defined above, and 𝑛 = 𝑁 − 𝑚 − 1 is the
effective number of observations assuming that the model includes a constant term. For
large 𝑛, when 𝐻0: 𝚽𝑚𝑚 = 𝟎 is true, the statistic 𝑀𝑚 has an approximate 𝜒2 distribution
with 𝑘2 degrees of freedom, and we reject𝐻0 for large values of𝑀𝑚. The LR test statistic
in (14.2.10) is asymptotically equivalent to a Wald statistic formed in terms of the LS
estimator �̂�𝑚𝑚 of𝚽𝑚𝑚.

This procedure is a natural extension of the use of the samplePACF �̂�𝑚𝑚 for identification
of the order of an AR model in the univariate case as described in Section 6.2. However,
unlike the univariate case, the partial autoregressionmatrices are not partial autocorrelation
matrices (or correlations of any kind) in the vector case. Similar tests based on the sample
partial autocorrelation matrices, whose elements are proper correlation coefficients, are
described by Reinsel (1997, Chapter 4) and Wei (2006, Chapter 16).

Use of Information Criteria. Model selection criteria such as AIC, BIC, and HQ can also
be employed for model specification. Here, AIC represents Akaike’s information criterion
(Akaike, 1974a), BIC is the Bayesian information criterion due to Schwarz (1978), and
HQ is the model selection criterion proposed by Hannan and Quinn (1979); see also Quinn
(1980). These criteria are likelihood based and include under normality the determinant
of the innovations covariance matrix that reflects the goodness of fit of the model. A
second term is a function of the number of fitted parameters and penalizes models that are
unnecessarily complex. For the VAR model, we have

AIC𝑚 = ln{|�̃�𝑚|} + 2𝑚𝑘2∕𝑁
BIC𝑚 = ln{|�̃�𝑚|} + 𝑚𝑘2 ln(𝑁)∕𝑁

HQ𝑚 = ln{|�̃�𝑚|} + 2𝑚𝑘2 ln(ln(𝑁))∕𝑁
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where𝑁 is the sample size, 𝑚 is the VAR order, and �̃�𝑚 is the correspondingML residual
covariancematrix estimate of 𝚺. It can be seen that BIC imposes a greater ‘‘penalty factor’’
for the number of estimated parameters than does AIC, while HQ is intermediate between
AIC and BIC. Other similar measures include the final prediction error (FPE) criterion
suggested by Akaike (1971). These criteria can be used to compare models fitted using
maximum likelihood and the model that gives the lowest value for a given criterion would
be selected. For a discussion of the properties and performance of different model selection
criteria, see, for example, Quinn (1980) and Lütkepohl (2006).

14.2.6 Parameter Estimation and Model Checking

Parameter Estimation. With the order of the VAR model specified, the model parame-
ters can be estimated using the least-squares procedure described above. For a stationary
process, the Yule--Walker estimates are asymptotically equivalent to the least-squares esti-
mates. However, when the process is nonstationary or near nonstationary, it is known that
the least-squares estimator still performs consistently, whereas the Yule--Walker estimator
may have a considerable bias. Hence, the least-squares method is generally to be pre-
ferred (e.g., Reinsel, 1997, Section 4.4). Under the normality assumption, the least-squares
estimates are equivalent to conditional maximum likelihood estimates. Exact maximum
likelihood estimates can be derived using the unconditional likelihood function described
for VARMAmodels in Section 14.4.5. However, use of the conditional likelihood function
simplifies the calculations and is often adequate for VAR models in practice.

Model Checking. Model diagnostics of the estimated VAR model are primarily based on
examination of the residual vectors �̂�𝑡 from the estimatedmodel and their sample covariance
matrices. The residuals �̂�𝑡 are calculated from (14.2.1)with the parameters replaced by their
estimates �̂�𝑗 . Useful diagnostic checks include plots of the residuals against time and/or
against other variables, and detailed examination of the cross-correlation matrices of the
residuals. Approximate two-standard-error limits can be imposed to assess the statistical
significance of the residual correlations.

In addition, overall portmanteau or ‘‘goodness-of-fit’’ tests based on the residual co-
variance matrices at several lags can be employed for model checking; see, for example,
Hosking (1980), Li and McLeod (1981), Poskitt and Tremayne (1982), and Ali (1989).
Specifically, using 𝑠 lags, an overall goodness-of-fit test statistic, analogous to that pro-
posed by Ljung and Box (1978) for the univariate case, is given by

𝑄𝑠 = 𝑁2
𝑠∑
𝑙=1

(𝑁 − 𝑙)−1tr[�̂��̂�(𝑙)�̂�
−1�̂��̂�(𝑙)′�̂�

−1] (14.2.11)

where

�̂�
�̂�
(𝑙) = 𝑁−1

𝑁−𝑙∑
𝑡=1

�̂�𝑡�̂�
′
𝑡+𝑙 𝑙 = 0, 1,… , 𝑠

with �̂�
�̂�
(0) ≈ �̂�. Under the null hypothesis of model adequacy, the test statistic 𝑄𝑠 is

approximately distributed as chi-squared with 𝑘2(𝑠 − 𝑝) degrees of freedom. The fitted
model is rejected as inadequate for large values of𝑄𝑠. Mahdi andMcLeod (2012) extended
the portmanteau test of Peña and Rodrı́guez (2002, 2006) described in Chapter 8 to the
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multivariate case and proposed a test based on the determinant of the autocorrelationmatrix
of the multivariate residuals. Alternative tests such as score or Lagrange multiplier (LM)
tests have also been proposed in the literature. For a discussion of the LM tests and their
relationship to portmanteau tests, see, for example, Reinsel (1997) and Lütkepohl (2006).

14.2.7 An Empirical Example

To illustrate the model building procedure for a vector process outlined above, we consider
the bivariate time series of U.S. fixed investment and change in business inventories.
These data are quarterly, seasonally adjusted, and are given in Lütkepohl (2006). The
fixed investment data for the time period 1947 to 1971 are shown in Figure 14.2, and the
changes in business inventories series for the same period are shown in Figure 14.3(b).
Since the investment series is clearly nonstationary, the first differences of this series,
which are displayed in Figure 14.3(a), are considered as series 𝑧1𝑡 together with the change
in business inventories as series 𝑧2𝑡, resulting in 𝑁 = 99 quarterly observations.

Sample cross-correlation matrices of the series𝒁𝑡 = (𝑧1𝑡, 𝑧2𝑡)′ for lags 1 through 12 are
shown in Table 14.1, and these sample autocorrelations and cross-correlations �̂�𝑖𝑗(𝑙) are
also displayed up to 18 lags in Figure 14.4. Included in Figure 14.4 are the rough guidelines

of the two-standard-error limits ±2∕
√
𝑁 ≃ ±0.2, which are appropriate for the �̂�𝑖𝑗 (𝑙) from

a vector white noise process as noted in Section 14.2.5. These sample correlations show
exponentially decaying and damped sinusoidal behavior as a function of lag 𝑙, indicative
of autoregressive dependence structure in the series.

To select a suitable model, we apply the sequential likelihood ratio test and the
three information criteria discussed above to the data. The calculations are performed
using theMTS package in R and the results are summarized in Table 14.2. We note that the
three criteria AIC𝑚, BIC𝑚, and HQ𝑚 all attain a minimum at 𝑚 = 2. The likelihood ratio
statistic𝑀𝑚 also supports the value 𝑚 = 2, although a slight discrepancy occurs at 𝑚 = 4.
These results therefore indicate that, among pure autoregressive models, a second-order
VAR(2) model may be the most appropriate for these data.

FIGURE 14.2 Quarterly (seasonally adjusted) U.S. fixed investment data for 1947 through 1971.
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FIGURE 14.3 Quarterly (seasonally adjusted) first differences of U.S. fixed investment data and
changes in business inventories data (in billions) for the period 1947 through 1971: (a) 𝑧1𝑡: first
differences of investment series, 𝑧1𝑡 = 𝑧∗1𝑡 − 𝑧

∗
1,𝑡−1; and (b) 𝑧2𝑡: changes in business inventories series.
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TABLE 14.1 Sample Correlation Matrices �̂�(𝒍) for the Bivariate Quarterly Series of First
Differences of U.S. Fixed Investment and U.S. Changes in Business Inventories

𝑙 1 2 3 4 5 6

�̂�(𝑙) 0.47 0.27 0.10 0.35 −0.12 0.29 −0.31 0.27 −0.30 0.19 −0.21 0.04
−0.06 0.68 −0.33 0.50 −0.29 0.32 −0.21 0.07 −0.10 0.07 0.10 0.01

𝑙 7 8 9 10 11 12

�̂�(𝑙) −0.14 −0.04 −0.09 −0.11 0.13 −0.03 0.19 0.07 0.13 0.12 0.02 0.20
0.15 0.04 0.20 0.05 0.12 0.05 0.05 0.11 0.01 0.09 −0.04 0.05

FIGURE 14.4 Sample auto- and cross-correlations �̂�𝑖𝑗(𝑙) for the bivariate series of first differences
of U.S. fixed investment and U.S. changes in business inventories: (a) sample autocorrelations �̂�11(𝑙)
and �̂�22(𝑙) and (b) sample cross-correlations �̂�12(𝑙).
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TABLE 14.2 Order Selection Statistics for the U.S. Business Investment and Inventories Data

𝑚 (VAR Order) AIC
𝑚

BIC
𝑚

HQ
𝑚

𝑀
𝑚

𝑝-Value

0 5.539 5.539 5.539 0.000 0.000
1 4.723 4.828 4.766 73.997 0.000
2 4.597 4.807 4.682 16.652 0.002
3 4.659 4.974 4.786 1.483 0.830
4 4.614 5.033 4.784 9.628 0.047
5 4.624 5.148 4.836 5.283 0.260
6 4.703 5.332 4.958 0.113 0.999
7 4.759 5.493 5.056 1.785 0.775
8 4.785 5.623 5.124 3.755 0.440

The LS estimates from the AR(2) model (with estimated standard errors in parentheses),
as well as the ML estimate of 𝚺, are given as

�̂�1 =

⎡⎢⎢⎢⎢⎣

0.504 0.108
(0.096) (0.056)
0.345 0.531
(0.177) (0.103)

⎤⎥⎥⎥⎥⎦
�̂�2 =

⎡⎢⎢⎢⎢⎣

−0.146 −0.205
(0.099) (0.054)
0.256 0.139
(0.181) (0.099)

⎤⎥⎥⎥⎥⎦

�̃� =
[ 5.0270 1.6958
1.6958 16.9444

]

with |�̃�| = 82.3032. The estimates of the two constant terms are 1.217 and 1.527, with
respective standard errors of 0.354 and 0.650. In the matrix �̂�2, the coefficient estimate
in the (1, 2) position is statistically significant, while the rest are insignificant and might
perhaps be omitted.

We now examine the residuals �̂�𝑡 from the fitted VAR(2) model. The residual
autocorrelations and cross-correlations are displayed in Figure 14.5. The approximate
two-standard-error limits are also included in the graphs. The individual elements of the
residual correlation matrices are generally quite small for all lags through 𝑙 = 12, with
|�̂��̂�,𝑖𝑗(𝑙)|≪ 2∕

√
𝑁 = 0.2 in nearly all cases. One notable feature of these residual correla-

tions, however, is the (marginally) significant correlation of �̂��̂�,22(4) = −0.20 at lag 4 for
the second residual series �̂�2𝑡 (see lower right panel of Figure 14.5). This feature, which
also appears visible from the 𝑝-values of the portmanteau test shown in Figure 14.6, may be
a consequence of the seasonal adjustment procedure, related to a weak seasonal structure
that may still exist in the quarterly (‘‘seasonally adjusted’’) series 𝒁 𝑡. To accommodate
this feature, we could consider a modification to the VAR(2) model by inclusion of an MA
coefficient matrix 𝚯4 at the quarterly seasonal lag of 4 in the model. Although this could
lead to a small improvement, we do not pursue this modification here.

As a benchmark for comparison against the bivariate AR(2) model fitted above, com-
parable univariatemodels for 𝑧1𝑡 and 𝑧2𝑡 that were found to be adequate, estimated by the
conditional ML method, were obtained as

(1 − 1.275𝐵 + 0.545𝐵2)𝑧1𝑡 = 0.251 + (1 − 0.769𝐵)𝜀1𝑡
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FIGURE 14.5 Cross-correlation matrices for the residuals from the VAR(2) model fitted to the
U.S. business investment and inventories data.

with �̂�2
𝜀1

= 5.44, and (1 − 0.690𝐵)𝑧2𝑡 = 1.808 + 𝜀2𝑡, with �̂�2𝜀2 = 19.06. Note that the resid-
ual variances are slightly larger in this case. The fitted bivariate models imply that the
changes in business inventories series 𝑧2𝑡 have a modest but significant influence on the
(first differences of) investments 𝑧1𝑡, but there appears to be less influence in the feedback
from investments to the changes in inventories series. In addition, there is only a small de-
gree of contemporaneous correlation suggested, since the correlation between the residual
series �̂�1𝑡 and �̂�2𝑡 in the bivariate models estimated from �̃� equals 0.184.

Remark. The bivariate analysis described abovewas performedusing themultivariate time
series package MTS in R. Letting zz denote the data after differencing the investments
series, the relevant commands are

> ccm(zz) % Cross-correlation analysis
> m1=VARorder(zz) % Order selection
> m2=VAR(zz,2) % Estimation of VAR(2) model
> MTSdiag(m2) % Model checking
> ccm(m2$residuals) % Residual cross-correlation analysis

For more detailed discussion and for demonstrations of the analysis capabilities of theMTS
package in R, see Tsay (2014). Multivariate time series tools are also available in other
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FIGURE 14.6 Plot of 𝑝-values of the multivariate portmanteau statistic applied to the residuals
from the fitted VAR(2) model.

packages such as the SCA package released by Scientific Computing Associates Corp.,
and the S-Plus software package available from TIBCO Software, Inc.

14.3 VECTOR MOVING AVERAGE MODELS

The vector autoregressive models described above provide an adequate representation to
many applied time series and are widely used in practice. However, pure autoregressive
models have a disadvantage in that the model order needed to obtain a satisfactory rep-
resentation can in some cases be rather high. Analogous to the univariate case, a more
parsimonious representation can sometimes be achieved by adding moving average terms
to the model. This would result in the vector ARMA (or VARMA) model form mentioned
briefly in Section 14.1.4. Aggregation of vector series across time or in space also creates
a need for VARMA models as noted e.g. by Lütkepohl and Poskitt (1996). In addition,
trend or seasonal adjustments may change the dependence structure and make a pure VAR
model inadequate (e.g., Maravall, 1993). Prior to discussing the VARMA model in more
detail, we will briefly examine the special case when no autoregressive terms are present
and the series follows a pure moving average model.

14.3.1 Vector MA(𝒒) Model

A vector moving average model of order 𝑞, or VMA(𝑞) model, is defined as

𝒁 𝑡 = 𝝁 + 𝒂𝑡 −
𝑞∑
𝑗=1
𝚯𝑗𝒂𝑡−𝑗 (14.3.1)
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or equivalently,𝒁 𝑡 = 𝝁 +𝚯(𝐵)𝒂𝑡, where 𝝁 is the mean of the process,𝚯(𝐵) = 𝐈 −𝚯1𝐵 −
· · · −𝚯𝑞𝐵𝑞 is a matrix polynomial of order 𝑞, and the𝚯𝑖 are 𝑘 × 𝑘 matrices with 𝚯𝑞 ≠ 0 .

Invertibility. A vector MA(𝑞) process is said to be invertible if it can be represented in the
form

(𝒁 𝑡 − 𝝁) −
∞∑
𝑗=1
𝚷𝑗(𝒁𝑡−𝑗 − 𝝁) = 𝒂𝑡 (14.3.2)

or equivalently as 𝚷(𝐵)(𝒁𝑡 − 𝝁) = 𝒂𝑡 where 𝚷(𝐵) = 𝐈 −
∑∞
𝑗=1𝚷𝑗𝐵

𝑗 , with
∑∞
𝑗=1 ‖𝚷𝑗‖ <

∞. The process is invertible if all the roots of det{𝚯(𝐵)} = 0 are greater than one in
absolute value. The process then has the infinite VAR representation given by (14.3.2) with
𝚷(𝐵) = 𝚯−1(𝐵) so that 𝚯(𝐵)𝚷(𝐵) = 𝐈. As in the univariate case, this form is particularly
useful for determining how forecasts of future observations depend on current and past
values of the 𝑘 series.

Moment Equations. For the VMA(𝑞) model, the covariance matrices 𝚪(𝑙) are given by

𝚪(𝑙) =
𝑞−𝑙∑
ℎ=0
𝚯ℎ𝚺𝚯′

ℎ+𝑙 (14.3.3)

for 𝑙 = 0, 1,… , 𝑞, with𝚯0 = −𝐈, and 𝚪(𝑙) = 𝟎, for 𝑙 > 𝑞. The result is readily verified since
the {𝒂𝑡} form a white noise sequence and Cov[𝚯𝒂𝑡] = 𝚯𝚺𝚯

′
.

14.3.2 Special Case: Vector MA(1) Model

To examine the properties further, we consider the VMA(1) model,𝒁 𝑡 − 𝝁 = 𝒂𝑡 −𝚯𝒂𝑡−1.
From the same reasoning as given concerning the stationarity condition for the VAR(1)
process, the invertibility condition for the VMA(1) model is equivalent to all eigenvalues
of 𝚯 being less than one in absolute value. Then we have the convergent infinite VAR
representation (14.3.2) with infinite VAR coefficient matrices 𝚷𝑗 = −𝚯𝑗 , 𝑗 ≥ 1. This
follows since𝚯(𝐵)𝚷(𝐵) = 𝐈 now simplifies to 𝚷𝑗 = 𝚯𝚷𝑗−𝑙 ≡ 𝚯𝑗𝚷0 with 𝚷0 = −𝐈. Also,
from (14.3.3) the covariance matrices of the VMA(1) process simplify to

𝚪(0) = 𝚺 +𝚯𝚺𝚯′, 𝚪(1) = −𝚺𝚯′ = 𝚪(−1)′

and 𝚪(𝑙) = 𝟎 for |𝑙| > 1. Thus, as in the univariate MA(1) case, all covariances are zero for
lags greater than one.

14.3.3 Numerical Example

Consider the bivariate (𝑘 = 2) VMA(1) model𝒁 𝑡 = (𝐈 −𝚯𝐵)𝒂𝑡 with

𝚯 =
[ 0.8 0.7
−0.4 0.6

]
and Σ =

[ 4 1
1 2

]

Similar to results for the VAR(1) example, the roots of det{𝜆𝐈 −𝚯} = 𝜆2 − 1.4𝜆 + 0.76 =
0 are 𝜆 = 0.7 ± 0.5196𝑖, with absolute value equal to (0.76)1∕2; hence, the VMA(1) model
is invertible. The coefficient matrices 𝚷𝑗 = −𝚯𝑗 in the infinite VAR form are of the same
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magnitudes as the𝚿𝑗 coefficient matrices in the previous AR(1) example. The covariance
matrices of the MA(1) at lags 0 and 1 are

𝚪(0) = 𝚺 +𝚯𝚺𝚯′ =
[8.66 0.76
0.76 2.88

]
and 𝚪(1) = −𝚺𝚯′ =

[−3.9 1.0
−2.2 −0.8

]

with corresponding correlation matrices

𝝆(0) = 𝐕−1∕2𝚪(0)𝐕−1∕2 =
[1.000 0.152
0.152 1.000

]
and 𝝆(1) =

[−0.450 0.200
−0.441 −0.278

]

The above calculations are conveniently performed in R as follows:

> library(MTS)
> theta1=matrix(c(0.8,-0.4,0.7,0.6),2,2)
> sig=matrix(c(4,1,1,2),2,2)
> eigen(theta1)
> PIwgt(Theta=theta1)
> m1=VARMAcov(Theta=theta1, Sigma=sig, lag=1)
> names(m1)

[1] "autocov" "ccm"
> autocov=t(m1$autocov)
> autocorr=t(m1$ccm)

For the bivariateMA(1) model, it follows from the autocovariance structure that each series
has a univariate MA(1) model representation as 𝑧𝑖𝑡 = (1 − 𝜂𝑖𝐵)𝜀𝑖𝑡, 𝜎2𝜀𝑖 = var(𝜀𝑖𝑡). From
Appendix A4.3, the parameter values 𝜂𝑖 and 𝜎

2
𝜀𝑖
of the component series can be determined

directly by solving the relations 𝜌𝑖𝑖(1) = −𝜂𝑖∕(1 + 𝜂2𝑖 ), 𝛾𝑖𝑖(0) = 𝜎
2
𝜀𝑖
(1 + 𝜂2

𝑖
), 𝑖 = 1, 2, which

lead to the values 𝜂1 = 0.628, 𝜎2
𝜀1 = 6.211, and 𝜂2 = 0.303, 𝜎2

𝜀2 = 2.637, respectively.

14.3.4 Model Building for Vector MA Models

The model building tools discussed for VAR models in Section 14.2 extend in a
straightforward way to moving average models. As noted, the estimated cross-covariance
and cross-correlation matrices are particularly useful for specifying the model order 𝑞
since from (14.3.3) the corresponding theoretical quantities are zero for lags greater than
𝑞. The partial autoregression matrices, on the other hand, would show a decaying pattern
for a moving average process. The parameter estimates can be obtained using the least-
squares method that is equivalent to conditional likelihood method under the normality
assumption. However, analogous to the univariate case, the unknown presample values
can have a larger impact on the parameter estimates for VMA models. In particular, if the
true parameter values are close to the boundary of the invertibility region, the conditional
likelihood approach can result in biased estimates, especially for relatively short series.
Because of this, the use of the unconditional likelihood function is typically recommended
for models with moving average terms. We return to the parameter estimation in Section
14.4.5 where the exact likelihood function is discussed for the general VARMA case.
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14.4 VECTOR AUTOREGRESSIVE--MOVING AVERAGE MODELS

We now assume that the matrix 𝚿(𝐵) can be represented as the product 𝚿(𝐵) =
𝚽−1(𝐵)𝚯(𝐵), where 𝚽(𝐵) and 𝚯(𝐵) are the autoregressive and moving average matrix
polynomials defined above. This leads to the vector model

(𝒁𝑡 − 𝝁) −
𝑝∑
𝑗=1
𝚽𝑗(𝒁𝑡−𝑗 − 𝝁) = 𝒂𝑡 −

𝑞∑
𝑗=1
𝚯𝑗𝒂𝑡−𝑗 (14.4.1)

where 𝒂𝑡 again is a vector white noise process with mean vector 0 and covariance matrix
𝚺 = 𝐸[𝒂𝑡𝒂′𝑡]. The resulting process {𝒁𝑡} is referred to as a vector autoregressive--moving
average, or VARMA(𝑝, 𝑞), process regardless of whether {𝒁 𝑡} is stationary or not.

As for the VAR(𝑝) model, the VARMA(𝑝, 𝑞) process can be expressed in structural
form by premultiplying both sides of (14.4.1) by a lower triangular matrix𝚽#

0 with ones on

the diagonal such that𝚽#
0𝚺𝚽

#
0
′ = 𝚺# is a diagonal matrix with positive diagonal elements.

This gives the following representation:

𝚽#
0(𝒁𝑡 − 𝝁) −

𝑝∑
𝑗=1
𝚽#
𝑗
(𝒁𝑡−𝑗 − 𝝁) = 𝒃𝑡 −

𝑞∑
𝑗=1
𝚯#
𝑗
𝒃𝑡−𝑗 (14.4.2)

where𝚽#
𝑗
= 𝚽#

0𝚽𝑗 ,𝚯
#
𝑗
= 𝚽#

0𝚯𝑗𝚽
#−1
0 , and 𝒃𝑡 = 𝚽#

0𝒂𝑡. This model displays the concurrent

dependence among the components of𝒁 𝑡 through the lower triangular matrix𝚽#
0, with di-

agonal elements for𝚺#, whereas the standard or reduced form (14.4.1) places the concurrent
relationships in the covariance matrix 𝚺 of the errors. More generally, premultiplication
of (14.4.1) by an arbitrary nonsingular matrix 𝚽#

0 yields a form similar to (14.4.2) that is
useful in some cases. For example, representation of a VARMAmodel in this general form,
but with a special structure imposed on the parameter matrices, will sometimes be more
useful for model specification than the standard form (14.4.1). This is discussed further in
Section 14.7.

14.4.1 Stationarity and Invertibility Conditions

The stationarity conditions for a VARMA(𝑝, 𝑞) process are the same as for the VAR(𝑝)
process discussed in Section 14.2. Hence it can be shown that the process is stationary
and has an infinite moving average representation 𝒁 𝑡 = 𝝁 +

∑∞
𝑗=0𝚿𝑗𝒂𝑡−𝑗 if all the roots

of det{𝚽(𝐵)} = 0 are greater than one in absolute value. The coefficient matrices 𝚿𝑗 are
determined from the relation𝚽(𝐵)𝚿(𝐵) = 𝚯(𝐵), and satisfy the recursion

𝚿𝑗 = 𝚽1𝚿𝑗−1 +𝚽2𝚿𝑗−2 +⋯ +𝚽𝑝𝚿𝑗−𝑝 −𝚯𝑗 𝑗 = 1, 2,… (14.4.3)

where 𝚿0 = 𝐈,𝚿𝑗 = 𝟎 for 𝑗 < 0, and 𝚯𝑗 = 𝟎 for 𝑗 > 𝑞.
Conversely, the VARMA(𝑝, 𝑞) process is invertible with an infinite AR representation

similar to (14.3.2) if all the roots of det{𝚯(𝐵)} = 0 are greater than one in absolute value.
The coefficient weights 𝚷𝑗 in the infinite AR representation are given by the relation
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𝚯(𝐵)𝚷(𝐵) = 𝚽(𝐵), and satisfy the recursion

𝚷𝑗 = 𝚯1𝚷𝑗−1 +𝚯2𝚷𝑗−2 +⋯ +𝚯𝑞𝚷𝑗−𝑞 +𝚽𝑗 𝑗 = 1, 2,… (14.4.4)

where𝚷0 = −𝐈,𝚷𝑗 = 𝟎 for 𝑗 < 0, and𝚽𝑗 = 𝟎 for 𝑗 > 𝑝.
In addition, using the moving average representation, the covariance matrices for 𝒁 𝑡

can be written as 𝚪(𝑙) =
∑∞
𝑗=0𝚿𝑗𝚺𝚿

′
𝑗+𝑙, 𝑙 ≥ 0. From this it follows that the covariance

matrix-generating function is given by 𝐆(𝑧) =
∑∞
𝑙=−∞ 𝚪(𝑙)𝑧

𝑙 = 𝚿(𝑧−1)𝚺𝚿(𝑧)′; hence, the
spectral density matrix of the VARMA(𝑝, 𝑞) process is given as in (A14.1.7) with 𝚿(𝑧) =
𝚽−1(𝑧)𝚯(𝑧).

14.4.2 Covariance Matrix Properties of VARMA Models

For the general stationary VARMA(𝑝, 𝑞) process {𝒁 𝑡}, it follows from the infinite MA
representation𝒁 𝑡 = 𝝁 +

∑∞
𝑗=0𝚿𝑗𝒂𝑡−𝑗 that

𝐸[𝒁 𝑡−𝑙𝒂′𝑡−𝑗 ] =
{ 𝟎 for 𝑗 < 𝑙
𝚿𝑗−𝑙𝚺 for 𝑗 ≥ 𝑙

Therefore, it is easy to determine from (14.4.1) that the covariance matrices 𝚪(𝑙) =
𝐸[(𝒁𝑡−𝑙 − 𝝁)(𝒁𝑡 − 𝝁)′] of {𝒁𝑡} satisfy the relations

𝚪(𝑙) =
𝑝∑
𝑗=1
𝚪(𝑙 − 𝑗)𝚽′

𝑗
−
𝑞∑
𝑗=1
𝚿𝑗−𝑙𝚺𝚯′

𝑗
𝑙 = 0, 1,… , 𝑞 (14.4.5)

and 𝚪(𝑙) = ∑𝑝
𝑗=1 𝚪(𝑙 − 𝑗)𝚽

′
𝑗
for 𝑙 > 𝑞, with the convention that 𝚯0 = −𝐈 . Thus, the 𝚪(𝑙)

can be evaluated in terms of the AR and MA parameter matrices𝚽𝑗 and 𝚯𝑗 , and 𝚺, using
these recursions.

14.4.3 Nonuniqueness and Parameter Identifiability for VARMAModels

Although the VARMA(𝑝, 𝑞) model appears to be a straightforward extension of the univari-
ate ARMA(𝑝, 𝑞) model, a number of issues are associated with this extension. For example,
since each AR or MA term contributes 𝑘 × 𝑘 parameters, the total number of parameters
in the model increases rapidly as the order increases. The overflow of parameters, whose
estimates can be highly correlated, makes the interpretation of the modeled results very
difficult. An additional problem that arises in the VARMA case relates to the nonunique-
ness of the parameters and the lack of an identifiable model representation. This issue
does not arise for the pure VAR(𝑝) model or the pure VMA(𝑞) model discussed earlier
in this chapter. But in the vector case it is possible to have two ARMA representations,
𝚽(𝐵)𝒁𝑡 = 𝚯(𝐵)𝒂𝑡 and 𝚽∗(𝐵)𝒁𝑡 = 𝚯∗(𝐵)𝒂𝑡 with different parameters, that give rise to
the same coefficients𝚿𝑗 in the infinite MA representation, such that

𝚿(𝐵) = 𝚽−1(𝐵)𝚯(𝐵) = 𝚽−1
∗ (𝐵)𝚯∗(𝐵)

Thus, the two models also give rise to the same covariance matrix structure {𝚪(𝑙)} and
hence the same process.

Two VARMA models with this property are said to be observationally equivalent, or
the models are said to be exchangeable. As a basic example, the bivariate VARMA(1, 1)
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model (𝐈 −𝚽∗𝐵)𝒁𝑡 = (𝐈 −𝚯∗𝐵)𝒂𝑡 with parameters

𝚽∗ =
[ 0 𝛼

0 0

]
𝚯∗ =

[0 𝛽

0 0

]

is observationally equivalent to both a VAR(1) model (𝐈 −𝚽𝐵)𝒁𝑡 = 𝒂𝑡 and a VMA(1)
model 𝒁𝑡 = (𝐈 −𝚯𝐵)𝒂𝑡, with

𝚽 ≡ −𝚯 =
[ 0 (𝛼 − 𝛽)
0 0

]

since, for example, (𝐈 −𝚽∗𝐵)−1(𝐈 −𝚯∗𝐵) = (𝐈 +𝚽∗𝐵)(𝐈 −𝚽∗𝐵) = (𝐈 −𝚯𝑩). Hence,
the parameters 𝚽∗ and 𝚯∗ in the ARMA(1, 1) model representation are not identifiable,
since the properties of the process depend only on the value of 𝛼 − 𝛽.

In general, observationally equivalent ARMA(𝑝, 𝑞) representations can exist because
matrix AR and MA operators could be related by a common left matrix factor U(𝐵) as

𝚽∗(𝐵) = 𝐔(𝐵)𝚽(𝐵) and 𝚯∗(𝐵) = 𝐔(𝐵)𝚯(𝐵)

but such that the orders of 𝚽∗(𝐵) and 𝚯∗(𝐵) are not increased over those of 𝚽(𝐵) and
𝚯(𝐵). This common left factorU(𝐵)would cancel when𝚽−1

∗ (𝐵)𝚯∗(𝐵) is formed, resulting
in the same parameter matrices in 𝚿(𝑩). A particular ARMA model specification and its
parameters are said to be identifiable if the 𝚽𝑗 and the 𝚯𝑗 are uniquely determined by the
set of impulse response matrices 𝚿𝑗 in the infinite MA representation, or equivalently by
the set of covariance matrices 𝚪(𝑙) in the stationary case.

For the mixed VARMA(𝑝, 𝑞)model, certain conditions are needed on the matrix opera-
tors 𝚽(𝐵) and 𝚯(𝐵) to ensure uniqueness of the parameters in the ARMA representation.
In addition to the stationarity and invertibility conditions, the following two conditions are
sufficient for identifiability:

1. The matrices 𝚽(𝐵) and 𝚯(𝐵) have no common left factors other than unimodular
ones. That is, if 𝚽(𝐵) = 𝐔(𝐵)𝚽1(𝐵) and 𝚯(𝐵) = 𝐔(𝐵)𝚯1(𝐵), then the common
factor𝐔(𝐵)must be unimodular, that is, det{𝐔(𝐵)} is a nonzero constant. When this
property holds,𝚽(𝐵) and 𝚯(𝐵) are called left-coprime.

2. With 𝑞 as small as possible and 𝑝 as small as possible for that 𝑞, the joint matrix
[𝚽𝑝,𝚯𝑞] must be of rank 𝑘, the dimension of 𝒁𝑡.

Notice that through the relation𝐔(𝐵)−1 = [1∕ det{𝐔(𝐵)}]adj{𝐔(𝐵)}, the operator𝐔(𝐵)
is a unimodular matrix if and only if 𝐔(𝐵)−1 is a matrix polynomial of finite order. The
operator 𝐔(𝐵) = 𝐈 −𝚽∗𝐵 in the simple ARMA(1, 1) example above is an illustration
of a unimodular matrix. For further discussion of the identifiability conditions for the
VARMA(𝑝, 𝑞) model, see, for example, Hannan and Deistler (1988, Chapter 2) and Reinsel
(1997, Chapter 2).

14.4.4 Model Specification for VARMA Processes

The model specification tools discussed for VAR(𝑝) models in Section 14.2 extend in
principle to the VARMA case. This includes the examination of the cross-correlation and
partial autoregression matrices as discussed by Tiao and Box (1981). Additional tools
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include the information criteria for model specification examined earlier, and the use
of extended cross-correlation matrices for VARMA models discussed by Tiao and Tsay
(1983). However, because of the identifiability issue and the overflow of parameters in the
vector case, additional model specification tools focusing on the parameter structure of the
VARMA representation are now needed.

Kronecker Indices. Beyond the specification of overall orders 𝑝 and 𝑞, the structure of the
VARMA(𝑝, 𝑞) model can be characterized by a set of Kronecker indices 𝐾1,… , 𝐾𝑘 and
the McMillan degree𝑀 =

∑𝑘
𝑖=1𝐾𝑖 of the process. The Kronecker indices, also known as

structural indices, represent the maximal row degrees of the individual equations of the
VARMAmodel. The use of these indices leads to the specification of a VARMA process of
order 𝑝 = 𝑞 = max{𝐾𝑖}with certain simplifying structure in the parameter matrices𝚽𝒋 and
𝚯
𝒋
. A Kronecker index equal to 𝐾𝑖, in particular, implies that a VARMA representation

can be constructed for the process such that the 𝑖th rows of the matrices 𝚽
𝒋
and 𝚯

𝒋
are

zero for 𝑗 > 𝐾𝑖 and with zero constraints imposed on certain other elements of 𝚽
𝒋
. The

resulting model is referred to as the echelon canonical form of the VARMAmodel. The set
of Kronecker indices is unique for a given VARMA process and the identifiability issue
discussed above is thus avoided. The echelon form structure and identifiability conditions
in terms of the echelon form have been examined extensively by Hannan and Deistler
(1988) and others.

The Kronecker indices can be estimated using canonical correlation analysis methods
introduced by Akaike (1976) and further elaborated upon by Cooper andWood (1982) and
Tsay (1989a). These methods, which are extensions of the canonical correlation analysis
procedures discussed for the univariate case in Section 6.2.4, are employed to determine
the nonzero canonical correlations between the past and present values of the process,
{𝒁 𝑡−𝑗 , 𝑗 ≥ 0}, and the future values {𝒁𝑡+𝑗 , 𝑗 > 0}. In this way, the Kronecker indices
𝐾𝑖 can be deduced, which then provide the overall model order as well as the maximum
order of the AR and MA polynomials for each individual component. Further details of
this approach will be given in Section 14.7. More extensive accounts of the Kronecker
index approach to model specification have been provided by Solo (1986), Reinsel (1997),
Lütkepohl (2006), and Tsay (1989b, 1991, 2014), among others.

Scalar Component Models. Tiao and Tsay (1989) proposed an alternative way to identify
the order structure of the VARMAmodel based on the concept of scalar componentmodels
(SCMs). This approach examines linear combinations of the observed series with the goal
of arriving at a parsimonious model representation that overcomes the identification issue
and that may reveal meaningful structures in the data. Using this approach, 𝑘 independent
linear combinations𝑦𝑖𝑡 = 𝒗

′
𝑖
𝒁 𝑡 of orders (𝑝𝑖, 𝑞𝑖), 𝑖 = 1,… , 𝑘, are sought such that the orders

𝑝𝑖 + 𝑞𝑖 are as small as possible. Given a 𝑘-dimensional VARMA(𝑝, 𝑞) process, a nonzero
linear combination 𝑦𝑡 = 𝒗

′
𝒁 𝑡 follows SCM(𝑝1, 𝑞1) if

𝑦𝑡 −
𝑝1∑
𝑗=1

𝒗
′𝚽𝑗𝒁 𝑡−𝑗 = 𝒗

′
𝒂𝑡 −

𝑞1∑
𝑗=1

𝒗
′𝚯𝑗𝑎𝑡−𝑗

where 0 ≤ 𝑝1 ≤ 𝑝, 0 ≤ 𝑞1 ≤ 𝑞, and 𝑢𝑡 = 𝑦𝑡 −
∑𝑝1
𝑗=1 𝒗

′𝚽𝑗𝒁 𝑡−𝑗 is uncorrelated with 𝒂𝑡−𝑗 for
𝑗 > 𝑞1. Notice that the scalar component 𝑦𝑡 depends only on lags 1 to 𝑝1 of all variables
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𝒁 𝑡, and lags 1 to 𝑞1 of all the innovations 𝒂𝑡. Starting from SCM(0, 0), the SCM method
uses a sequence of canonical correlation tests to discover 𝑘 such linear combinations.

Once such a set has been found, the specification of the ARMA structure for 𝒁𝑡 can be
determined through the relations

𝑻𝒁 𝑡 −
𝑝∑
𝑗=1

𝑮𝑗𝒁𝑡−𝑗 = 𝑻𝒂𝑡 +
𝑞∑
𝑗=1

𝑯 𝑗𝒂𝑡−𝑗 (14.4.6)

where 𝑻 = [𝒗1,… , 𝒗𝑘]
′
is a 𝑘 × 𝑘 nonsingular matrix, 𝑮𝑗 = 𝑻𝚽𝑗 , 𝑗 = 1,… , 𝑝, 𝑯 𝑗 =

𝑻𝚯𝑗 , 𝑗 = 1,… , 𝑞, 𝑝 = max{𝑝𝑖} and 𝑞 = max{𝑞𝑖}. Moreover, the 𝑖th row of 𝑮𝑗 is specified
to be zero for 𝑗 > 𝑝𝑖 and the 𝑖th row of𝑯 𝑗 is zero for 𝑗 > 𝑞𝑖. Premultiplication of (14.4.6)

by 𝑻 −1 thus leads to a VARMA(𝑝, 𝑞) model for𝒁𝑡 in standard form but such that the coef-
ficient matrices𝚽𝑗 and 𝚯𝑗 have a reduced-rank structure. On the other hand, inserting the
factor 𝑻 −1

𝑻 in front of the𝒁 𝑡−𝑗 and 𝒂𝑡−𝑗 in (14.4.6) yields a VARMA(𝑝, 𝑞) representation
for the transformed process 𝒀 𝑡 = 𝑻𝒁 𝑡 as

𝒀 𝑡 −
𝑝∑
𝑗=1
𝚽∗
𝑗
𝑌𝑡−𝑗 = 𝒆𝑡 −

𝑞∑
𝑗=1
𝚯∗
𝑗
𝑒𝑡−𝑗

where 𝚽∗
𝑗
= 𝑮𝑗 𝑻

−1 = 𝑻𝚽𝑗 𝑻 −1,𝚯∗
𝑗
= 𝑯 𝑗 𝑻

−1 = 𝑻𝚯𝑗 𝑻 −1, and 𝒆𝑡 = 𝑻 𝒂𝑡. This
VARMA representation for the transformed process is parsimonious in the sense that
the 𝑖th row of 𝚽∗

𝑗
is zero for 𝑗 > 𝑝𝑖 and the 𝑖th row of 𝚯∗

𝑗
is zero for 𝑗 > 𝑞𝑖. In addition,

some elements of the 𝑖th row of 𝚯∗
𝑗
, for 𝑖 = 1,… , 𝑞𝑖, are specified to be zero to remove

possible redundancy of the parameters in the AR and MA matrices. The method used to
identify and eliminate redundant parameters is referred to as the rule of elimination.

The approach of Tiao and Tsay (1989) thus identifies the scalar component processes
𝒀 𝑡 = 𝑻𝒁 𝑡 and their associated orders (𝑝𝑗, 𝑞𝑗) through canonical correlation methods, and
then estimates aVARMAprocess for the transformedvariables𝒀 𝑡 with zero constraints im-
posed on some of the parameters. By comparison, the Kronecker index approach estimates
Kronecker indices that lead to the echelon model form for the original series 𝒁𝑡 directly.
Also, the scalar component allows the orders of the AR andMA polynomials to differ while
the orders are the same for the Kronecker index approach. The scalar component approach
may in this regard be viewed as a refinement over the Kronecker index approach.

More detailed comparisons of the Kronecker index and the SCM model specification
methods are provided by Reinsel (1997) and Tsay (1989b, 1991, 2014). A comparison of
the forecasting performance of models specified by the two approaches was reported by
Athanasopoulos et al. (2012), who found the results for SCM more favorable. Software
modeling tools are available for both methods in the MTS package in R; for details and
demonstrations, see Tsay (2014).

Order Determination Using Linear Least Squares. Before we proceed to discuss parame-
ter estimation in the next section, we will mention another method that has been considered
for VARMA model specification. This is a multivariate extension of the two-stage linear
least-squares regression approach presented for the univariate case by Hannan and Rissa-
nen (1982) and briefly discussed in Section 6.2.4. At the first stage of this procedure, the
VARMA model is approximated by a high-order pure VAR model and the least squares
method is used to obtain an estimate �̂�𝑡 of the white noise error process 𝒂𝑡. In the second
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stage, one regresses 𝒁 𝑡 on the lagged 𝒁𝑡−𝑗 and lagged �̂�𝑡−𝑗 for various combinations of 𝑝
and 𝑞. A model selection criterion such as BIC is then employed to help select appropriate
orders for the VARMA model. Use of this procedure may lead to one or two models that
seem highly promising, which are later estimated by more efficient procedures such as the
maximum likelihood method. Similar linear estimation methods have been proposed by
Hannan and Kavalieris (1984), Poskitt (1992), and Lütkepohl and Poskitt (1996), among
others, for determining the Kronecker index structure of the VARMA model.

14.4.5 Estimation and Model Checking for VARMA Models

Once a well-definedVARMAmodel has been specified, the estimation of the parameters is
typically performed using maximum likelihood methods assuming normality. In the past,
conditional likelihood approaches were often employed for computational convenience. In
the VARMA(𝑝, 𝑞) model, this corresponds to treating the unknown presample values of𝒁 𝑡
and 𝒂𝑡 as fixed constants with the 𝒂𝑡, 𝑡 = 0,… , 1 − 𝑞, typically set equal to zero. However,
for many mixed models with an MA operator 𝚯(𝐵) having roots near the unit circle, the
conditional likelihood approach has been shown to produce estimates with poorer finite
sample properties than the unconditional, or exact, ML estimates.

Various approaches to the construction of the exact Gaussian likelihood function have
been considered in the literature. Earlier classical approaches to evaluate the exact like-
lihood were presented by Hillmer and Tiao (1979) and Nicholls and Hall (1979). Given
𝑁 observations 𝒁1,… ,𝒁𝑁 , the exact likelihood of a stationary VARMA(𝑝, 𝑞) model
𝚽(𝐵)𝒁𝑡 = 𝚯(𝐵)𝒂𝑡 has the form

𝐿 = |𝚺|−𝑁∕2|𝛀|−1∕2|𝐃|−1∕2 exp
{

−
(1
2

)[ 𝑁∑
𝑡=1

�̂�
′
𝑡
𝚺−1�̂�𝑡 + �̂�′∗𝛀

−1�̂�∗

]}
(14.4.7)

where 𝐚∗ = (𝒁′
1−𝑝,… ,𝒁

′
0,𝒂

′
1−𝑞,… ,𝒂

′
0)

′ denotes the vector of presample values, �̂�∗ =
𝐸[𝐚∗|𝒁1,… ,𝒁𝑁 ] represents the conditional expectation of 𝐚∗ given the data,𝛀 = cov[𝐚∗]
denotes the covariance matrix of 𝐚∗, and 𝐃−1 = cov[𝐚∗ − �̂�∗]. The �̂�𝑡 satisfy the recursion

�̂�𝑡 = 𝒁𝑡 −
𝑝∑
𝑗=1
𝚽𝑗𝒁 𝑡−𝑗 +

𝑞∑
𝑗=1
𝚯𝑗 �̂�𝑡−𝑗 𝑡 = 1,… , 𝑁 (14.4.8)

where the presample values are the estimated values �̂�𝑡, 𝑡 = 1 − 𝑝,… , 0, and �̂�𝑡, 𝑡 = 1 −
𝑞,… , 0. Details of the calculations are given in the papers referenced above. Explicit
expressions for the quantities 𝛀,𝑫, and �̂�∗ are also provided by Reinsel (1997, Section
5.3.1).

Other approaches to likelihood evaluation emphasize the innovations form of the exact
likelihood and the use of the state-space model representation of the VARMA model and
the associated Kalman filtering methods; see, for example, Ansley and Kohn (1983), Solo
(1984a), and Shea (1987). The innovations form of the exact likelihood is

𝐿 =

(
𝑁∏
𝑡=1

|𝚺𝑡|𝑡−1|−1∕2
)
exp

{
−
(1
2

) 𝑁∑
𝑡=1

𝒂
′
𝑡|𝑡−1𝚺

−1
𝑡|𝑡−1𝒂𝑡|𝑡−1

}
(14.4.9)
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where 𝒂𝑡|𝑡−1 = 𝒁 𝑡 − �̂� 𝑡|𝑡−1 is the one-step prediction error, or innovation,

�̂� 𝑡|𝑡−1 = 𝐸[𝒁𝑡|𝒁 𝑡−1,… ,𝒁1]

denotes the linear predictor of 𝒁 𝑡 based on 𝒁 𝑡−1,… ,𝒁1, and 𝚺𝑡|𝑡−1 = cov[𝒂𝑡|𝑡−1] is
the one-step prediction error covariance matrix. The 𝒂𝑡|𝑡−1 and 𝚺𝑡|𝑡−1, for 𝑡 = 1,… , 𝑁 ,
can be computed recursively using the innovations algorithm described by Brockwell
and Davis (1991) and Reinsel (1997). Equivalently, the quantities 𝒂𝑡|𝑡−1 = 𝒁𝑡 − �̂�𝑡|𝑡−1 and
𝚺𝑡|𝑡−1 are also obtained naturally as outputs from the Kalman filtering algorithm applied
to the state-space representation of the VARMA model, which is discussed in more detail
in Section 14.6. Asymptotic theory of the resulting maximum likelihood estimators for
VARMA models has been studied by Dunsmuir and Hannan (1976), Deistler et al. (1978),
and Hannan and Deistler (1988).

Diagnostic Checking. The checking of the fitted model can be performed using the tools
described for VAR models in Section 14.2.6. These include plots of the residuals against
time and/or against other variables and detailed examination of the autocorrelation and
cross-correlation functions of the residuals. These tools can provide valuable information
about possible lack of fit and suggest directions for model improvement. Useful sup-
plementary tools include the portmanteau test and similar statistical tests. These tools also
extend to fitted models with constraints imposed on the parameter coefficient matrices (i.e.,
structured parameterizations), such as echelon canonical form and reduced-rank models
discussed inmore detail in Section 14.7. For example, the statistic𝑄𝑠 will then have 𝑘

2𝑠 − 𝑏
degrees of freedom in its limiting chi-squared distribution, where 𝑏 denotes the number of
unconstrained parameters involved in the estimation of the ARMA model coefficients𝚽𝑗
and 𝚯𝑗 .

14.4.6 Relation of VARMA Models to Transfer Function and ARMAX Models

The relationship between a bivariate VAR(1) model and a transfer function model was
mentioned in Section 14.2.1. We will now briefly examine the relationship between
subcomponents in a more general VARMA(𝑝, 𝑞) process. We begin by partitioning the
𝑘-dimensional vector process 𝒁𝑡 into two groups of subcomponents of dimensions 𝑘1 and
𝑘2, respectively, as 𝒁𝑡 = (𝒁′

1𝑡, 𝒁
′
2𝑡)

′
. The innovations vector 𝒂𝑡 and the AR and MA

matrix polynomials are partitioned accordingly as 𝒂𝑡 = (𝒂′1𝑡, 𝒂
′
2𝑡)

′ and

𝚽(𝐵) =
[𝚽11(𝐵) 𝚽12(𝐵)
𝚽21(𝐵) 𝚽22(𝐵)

]
𝚯(𝐵) =

[𝚯11(𝐵) 𝚯12(𝐵)
𝚯21(𝐵) 𝚯22(𝐵)

]

Suppose now that 𝚽12(𝐵) and 𝚯12(𝐵) are both identically zero, and for convenience also
assume that 𝚯21(𝐵) = 0. The equations for the VARMA model can then be expressed in
two distinct groups as

𝚽11(𝐵)𝒁1𝑡 = 𝚯11(𝐵)𝒂1𝑡 (14.4.10a)

and

𝚽22(𝐵)𝒁2𝑡 = −𝚽21(𝐵)𝒁1𝑡 +𝚯22(𝐵)𝒂2𝑡 (14.4.10b)
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We see from these expressions that future values of the process𝒁1𝑡 are only influenced by
its own past and not by the past of𝒁2𝑡, whereas future values of𝒁2𝑡 are influenced by the
past of both 𝒁1𝑡 and 𝒁2𝑡. Notice that even if 𝚯21(𝐵) ≠ 0, this conclusion still holds since
the additional term in (14.4.10b) would then be 𝚯21(𝐵)𝒂1𝑡 = 𝚯21(𝐵)𝚯−1

11 (𝐵)𝚽11(𝐵)𝒁1𝑡.
In the terminology of causality from econometrics, under (14.4.10a) and (14.4.10b),

the variables 𝒁1𝑡 are said to cause 𝒁2𝑡, but 𝒁2𝑡 do not cause 𝒁1𝑡. The variables 𝒁1𝑡 are
referred to as exogenous variables, and (14.4.10b) is often referred to as an ARMAXmodel
or ARMAX system for the output variables 𝒁2𝑡 with 𝒁1𝑡 serving as input variables. The
X in ARMAX stands for exogenous. The model (14.4.10b) can be rewritten as

𝒁2𝑡 = 𝚿∗(𝐵)𝒁1𝑡 +𝚿22(𝐵)𝐚2𝑡

where

𝚿∗(𝐵) = −𝚽−1
22 (𝐵)𝚽21(𝐵) and 𝚿22(𝐵) = 𝚽−1

22 (𝐵)𝚯22(𝐵)

This equation provides a representation for the output process 𝒁2𝑡 as a causal linear filter
of the input process𝒁1𝑡 with added unobservable noise, that is,

𝒁2𝑡 = 𝚿∗(𝐵)𝒁1𝑡 +𝑵 𝑡 (14.4.11)

where the noise process 𝑵 𝑡 follows a VARMA model 𝚽22(𝐵)𝐍𝑡 = 𝚯22(𝐵)𝐚2𝑡. Since the
ARMAX model can be viewed as a special case of the VARMA model, the methods for
model building are quite similar to those used for the VARMAmodel. These include the use
of model selection criteria and least-squares estimation methods for model specification
and examination of the residuals from the fitted model for model checking. For further
discussion, see, for example, Hannan and Deistler (1988, Chapter 4) and Reinsel (1997,
Chapter 8).

In the special case of bivariate time series, 𝒁1𝑡 ≡ 𝑧1𝑡 and𝒁2𝑡 ≡ 𝑧2𝑡 are each univariate
time series. Then we see from the above that whenΦ12(𝐵) = 0 and Θ12(𝐵) = 0, the model
reduces to the structure of the ‘‘unidirectional’’ instantaneous transfer function model with
𝑧1𝑡 as the ‘‘input’’ process and 𝑧2𝑡 as the output, assuming independence between 𝑧2𝑡 and
the noise term of 𝑧1𝑡. More generally, assuming independence between𝒁1𝑡 and𝑵 𝑡 above,
(14.4.11) can be viewed as a multivariate generalization of the univariate (single-equation)
transfer function model discussed in Chapters 11 and 12.

14.5 FORECASTING FOR VECTOR AUTOREGRESSIVE--MOVING
AVERAGE PROCESSES

14.5.1 Calculation of Forecasts from ARMA Difference Equation

For forecasting in the VARMA(𝑝, 𝑞) model

𝒁𝑡 =
𝑝∑
𝑗=1
𝚽𝑗𝒁 𝑡−𝑗 + 𝜹 + 𝒂𝑡 −

𝑞∑
𝑗=1
𝚯𝑗𝒂𝑡−𝑗 (14.5.1)

where 𝜹 = (𝐈 −𝚽1 −⋯ −𝚽𝑝)𝝁 for stationary processes, we assume that the white noise
series 𝒂𝑡 are mutually independent random vectors. From general principles of prediction,
the predictor of a future value 𝒁𝑡+𝑙, 𝑙 = 1, 2,…, based on observations available at time
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𝑡, {𝒁𝑠, 𝑠 ≤ 𝑡}, that yields the minimum mean squared error (MSE) matrix is given by
�̂� 𝑡(𝑙) = 𝐸[𝒁𝑡+𝑙|𝒁 𝑡,𝒁 𝑡−1,…]. So from a computational view, forecasts are determined by
applying conditional expectations to both sides of the VARMA(𝑝, 𝑞) relation

𝚽(𝐵)𝒁𝑡+𝑙 = 𝜹 +𝚯(𝐵)𝒂𝑡+𝑙

using the result that 𝐸[𝒂𝑡+ℎ|𝒁𝑡,𝒁 𝑡−1,…] = 𝟎, ℎ > 0, since 𝒂𝑡+ℎ is independent of present
and past values of the series. Thus, forecasts �̂� 𝑡(𝑙) can be computed recursively from the
VARMA model difference equation as

�̂� 𝑡(𝑙) =
𝑝∑
𝑗=1
𝚽𝑗�̂� 𝑡(𝑙 − 𝑗) + 𝜹 −

𝑞∑
𝑗=𝑙
𝚯𝑗𝒂𝑡+𝑙−𝑗 𝑙 = 1, 2,… , 𝑞 (14.5.2)

with �̂�𝑡(𝑙) =
∑𝑝
𝑗=1𝚽𝑗�̂� 𝑡(𝑙 − 𝑗) + 𝜹, for 𝑙 > 𝑞, where �̂�𝑡(𝑙 − 𝑗) = 𝒁 𝑡+𝑙−𝑗 for 𝑙 ≤ 𝑗. Note

that for pure VAR models with 𝑞 = 0

�̂� 𝑡(𝑙) =
𝑝∑
𝑗=1
𝚽𝑗�̂� 𝑡(𝑙 − 𝑗) + 𝜹, for all 𝑙 = 1, 2,…

So the 𝑝 initial forecast values are completely determined by the last 𝑝 observations
𝒁 𝑡,𝒁 𝑡−1,… ,𝒁 𝑡−𝑝+1; hence, for AR models all forecasts depend only on these last 𝑝
observations in the series.

For models that involve an MA term, in practice it is necessary to generate the white
noise sequence 𝒂𝑡 recursively from the past data 𝒁1,𝒁2,… ,𝒁𝑡, as

𝒂𝑠 = 𝒁𝑠 −
𝑝∑
𝑗=1
𝚽𝑗𝒁𝑠−𝑗 − 𝜹 +

𝑞∑
𝑗=1
𝚯𝑗𝒂𝑠−𝑗 𝑠 = 1, 2,… , 𝑡

using appropriate starting values for 𝒂0,… ,𝒂1−𝑞 and 𝒁0,… ,𝒁1−𝑝. One way to es-
timate the starting values is to use the backcasting technique described earlier for
evaluation of the exact likelihood function for ARMA models. This method yields
�̂�1−𝑗 = 𝐸[𝒂1−𝑗|𝒁𝑡,… ,𝒁1], 𝑗 = 1,… , 𝑞, and �̂�1−𝑗 = 𝐸[𝒁1−𝑗|𝒁 𝑡,… ,𝒁1], 𝑗 = 1,… , 𝑝.
The resulting forecasts �̂� 𝑡(𝑙) are then equal to

�̂�𝑡(𝑙) ≡ 𝐸[𝒁𝑡+𝑙|𝒁 𝑡,… ,𝒁1]

These are optimal forecasts based on the finite past history𝒁 𝑡,𝒁𝑡−1,… ,𝒁1, although the
analysis of forecast properties given below assumes that the forecasts are based on the
infinite past history 𝒁𝑠, all 𝑠 ≤ 𝑡. However, these two forecasts will be nearly identical
for any moderate or large value of 𝑡, the number of past values available for forecasting.
Alternative methods to obtain the ‘‘exact’’ finite sample forecasts, as well as the exact
covariance matrices of the forecast errors, based on the finite sample data 𝒁1,… ,𝒁𝑡, in
a convenient computational manner are through an innovations approach or through the
closely related state-space model and Kalman filter approach that will be discussed briefly
in Section 14.6.
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14.5.2 Forecasts from Infinite VMA Form and Properties of Forecast Errors

To establish the theoretical MSE properties of the forecast errors, we use the ‘‘infinite’’
moving average representation 𝒁 𝑡 = 𝚿(𝐵)𝒂𝑡 of the VARMA(𝑝, 𝑞) model, where 𝚿(𝐵) =
𝚽−1(𝐵)𝚯(𝐵) =

∑∞
𝑗=0𝚿𝑗𝐵

𝑗 . A future value𝒁 𝑡+𝑙, relative to the forecast origin 𝑡, can then
be expressed as

𝒁 𝑡+𝑙 =
∞∑
𝑗=0
𝚿𝑗𝒂𝑡+𝑙−𝑗 = 𝒂𝑡+𝑙 +𝚿1𝒂𝑡+𝑙−1 +⋯ +𝚿𝑙−1𝒂𝑡+1 +𝚿𝑙𝒂𝑡 +⋯

Thus, since 𝐸[𝒂𝑡+ℎ|𝒁 𝑡,𝒁𝑡−1,…] = 0, ℎ > 0, the minimumMSE matrix predictor of 𝒁 𝑡+𝑙
based on 𝒁𝑡,𝒁 𝑡−1,… can be represented as

�̂�𝑡(𝑙) = 𝐸[𝒁𝑡+𝑙|𝒁 𝑡,𝒁𝑡−1,…] =
∞∑
𝑗=𝑙
𝚿𝑗𝒂𝑡+𝑙−𝑗 (14.5.3)

The 𝑙-step-ahead forecast error is 𝒆𝑡(𝑙) = 𝒁 𝑡+𝑙 − �̂� 𝑡(𝑙) =
∑𝑙−1
𝑗=0𝚿𝑗𝒂𝑡+𝑙−𝑗 has zero mean

and covariance matrix:

𝚺(𝑙) = cov[𝒆𝑡(𝑙)] = 𝐸[𝒆𝑡(𝑙)𝒆𝑡(𝑙)′] =
𝑙−1∑
𝑗=0
𝚿𝑗𝚺𝚿′

𝑗
𝚿0 = 𝐈 (14.5.4)

In particular, for one step ahead, 𝒆𝑡(1) = 𝒁 𝑡+1 − �̂� 𝑡(1) = 𝒂𝑡+1 with error covariancematrix
𝚺, so that the white noise series 𝒂𝑡 can be interpreted as a sequence of one-step-ahead
forecast errors for the process.

It follows from the infinite MA representation of the forecasts given by (14.5.3) that we
obtain the multivariate version of the updating formula (5.2.5) as

�̂� 𝑡+1(𝑙) = 𝐸[𝒁𝑡+𝑙+1|𝒁𝑡+1, 𝒁𝑡,…] =
∞∑
𝑗=𝑙
𝚿𝑗𝒂𝑡+𝑙+1−𝑗 = �̂� 𝑡(𝑙 + 1) +𝚿𝑙𝒂𝑡+1 (14.5.5)

where 𝒂𝑡+1 = 𝒁 𝑡+1 − �̂�𝑡(1) is the one-step-ahead forecast error. This provides a simple
relationship to indicate how the forecast �̂�𝑡(𝑙) with forecast origin 𝑡 is adjusted or updated
to incorporate the information available from a new observation𝒁 𝑡+1 at time 𝑡 + 1.

For the case of unit-root nonstationary processes to be discussed in Section 14.8, similar
forecasting topics as presented above can also be developed and results such as (14.5.2)
and (14.5.4) continue to apply.

14.6 STATE-SPACE FORMOF THE VARMA MODEL

The state-space model was introduced for univariate ARMAmodels in Section 5.5. Similar
to the univariate case, the VARMA model can be represented in the equivalent state-space
form, which is of interest for purposes of prediction as well as for model specification
and maximum likelihood estimation of parameters. The state-space model consists of a
transition or state equation

𝒀 𝑡 = 𝚽𝒀 𝑡−1 + 𝜺𝑡



Box3G Date: May 21, 2015 Time: 11:28 am

STATE-SPACE FORM OF THE VARMA MODEL 537

and an observation equation

𝒁 𝑡 = 𝐇𝒀 𝑡 +𝑵 𝑡

where 𝒀 𝑡 is an 𝑟 × 1 (unobservable) time series vector called the state vector, and 𝜺𝑡

and 𝑵 𝑡 are independent white noise processes. In this representation, the state vector 𝒀 𝑡
conceptually contains all information from the past of the process 𝒁𝑡, which is relevant
for the future of the process, and, hence, the dynamics of the system can be represented
in the simple first-order or Markovian transition equation for the state vector. The above
state-space model is said to be stable if all the eigenvalues of the matrix𝚽 are less than one
in absolute value, and conversely, it can be shown that any stationary process 𝒁𝑡 that has
a stable state-space representation of the above form can also be represented in the form
of a stationary VARMA(𝑝, 𝑞) model; see, for example, Akaike (1974b). Hence, it follows
that any process 𝒁 𝑡 that satisfies a stable state-space representation can be expressed in
the causal convergent infinite moving average form 𝒁 𝑡 = 𝚿(𝐵)𝒂𝑡. The stability condition
for the matrix 𝚽 in the state-space model is equivalent to the stability condition for the
matrix coefficients 𝚿𝑗 of the linear filter 𝚿(𝐵) (see Appendix A14.1.2), since it ensures
that

∑∞
𝑗=0 ||𝚿𝑗 || < ∞ in the representation𝒁 𝑡 = 𝚿(𝐵)𝒂𝑡.

For the VARMA(𝑝, 𝑞) model (14.5.1) (with 𝜹 = 𝟎), define the predictors �̂� 𝑡(𝑗) =
𝐸[𝒁 𝑡+𝑗|𝒁 𝑡,𝒁 𝑡−1,…] as in Section 14.5.1 for 𝑗 = 0, 1,… , 𝑟− 1, with 𝑟 = max(𝑝, 𝑞 + 1),
and �̂�𝑡(0) = 𝒁 𝑡. From the updating equations (14.5.5), we have �̂�𝑡(𝑗 − 1) = �̂� 𝑡−1(𝑗) +
𝚿𝑗−1𝒂𝑡, 𝑗 = 1, 2,… , 𝑟− 1. Also, for 𝑗 = 𝑟 > 𝑞 we find using (14.5.2) that

�̂�𝑡(𝑗 − 1) = �̂�𝑡−1(𝑗) +𝚿𝑗−1𝒂𝑡 =
𝑝∑
𝑖=1
𝚽𝑖�̂� 𝑡−1(𝑗 − 𝑖) +𝚿𝑗−1𝒂𝑡

Let us define the ‘‘state’’ vector at time 𝑡, with 𝑟 vector components, as 𝒀 𝑡 =
[�̂� 𝑡(0)′, �̂� 𝑡(1)′,… , �̂�𝑡(𝑟 − 1)′]′. Then, from the relations above, the state vector 𝒀 𝑡 satis-
fies the state-space (transition) equations

𝒀 𝑡 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝟎 𝐈 𝟎 ⋯ 𝟎
𝟎 𝟎 𝐈 ⋯ 𝟎
⋮ ⋮ ⋮ ⋱ ⋮

𝟎 𝟎 ⋅ ⋯ 𝐈
𝚽𝑟 𝚽𝑟−1 ⋅ ⋯ 𝚽1

⎤⎥⎥⎥⎥⎥⎥⎦

𝒀 𝑡−1 +

⎡⎢⎢⎢⎢⎢⎢⎣

𝐈
𝚿1
⋮

𝚿𝑟−2
𝚿𝑟−1

⎤⎥⎥⎥⎥⎥⎥⎦

𝒂𝑡 (14.6.1)

where𝚽𝑖 = 𝟎 if 𝑖 > 𝑝. Thus, we have

𝒀 𝑡 = 𝚽𝒀 𝑡−1 +𝚿𝒂𝑡 (14.6.2)

together with the observation equation

𝒁
∗
𝑡
= 𝒁𝑡 +𝑵 𝑡 = [𝐈, 𝟎,… , 𝟎]𝒀 𝑡 +𝑵 𝑡 = 𝐇𝒀 𝑡 +𝑵 𝑡 (14.6.3)

where the vector noise 𝑵 𝑡 would be present only if the process 𝒁𝑡 is observed subject to
additional white noise error; otherwise, we simply have𝒁𝑡 = 𝒁

∗
𝑡
= 𝐇𝒀 𝑡. For convenience,

we assume in the remainder of this section that the additional white noise is not present.
The state or transition equation (14.6.2) and the observation equation (14.6.3) constitute

a state-space representation of the VARMA model. There are many other constructions
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of the state vector 𝒀 𝑡 that will give rise to state-space equations of the general form
(14.6.2) and (14.6.3); that is, the state-space form of the VARMA model is not unique.

Specifically, if we transform the state vector 𝒀 𝑡 into 𝒀 𝑡 = 𝐏𝒀 𝑡, where 𝐏 is an arbitrary
nonsingular matrix, then models (14.6.2) and (14.6.3) can be written in a similar form in

terms of 𝒀 𝑡 with �̄� = 𝐏𝚽𝐏−1,𝐇 = 𝐇𝐏−1, and 𝚿 = 𝐏𝚿. The particular form given above
has the state vector 𝒀 𝑡, which can be viewed as generating the space of predictions of all
future values of the process𝒁 𝑡, since �̂�𝑡(𝑙) =

∑𝑟
𝑖=1𝚽𝑖�̂� 𝑡(𝑙 − 𝑖) for 𝑙 > 𝑟 − 1.

In the state-space model, the unobservable state vector 𝒀 𝑡 constitutes a summary of the
state of the dynamic system through time 𝑡, and the state equation (14.6.2) describes the evo-
lution of the dynamic system in time. Theminimal dimension of the state vector𝒀 𝑡 in a state-
space representation needs to be sufficiently large so that the dynamics of the system can
be represented by the simple Markovian first-order structure. State-space representations
for the VARMA model can exist with a state vector of minimal dimension smaller than
the dimension in (14.6.1). This minimal dimension is the dimension of the set of basis
predictors that generate the linear space of predictors of all future values; it is of smaller
dimension than in (14.6.1) whenever the state vector 𝒀 𝑡 can be represented linearly in
terms of a smaller number of basis elements. Specifically, suppose that 𝒀 𝑡 in (14.6.1) can
be expressed as 𝒀 𝑡 = 𝐀𝒀 ∗

𝑡
, where 𝒀 ∗

𝑡
is an𝑀 × 1 vector whose elements form a subset of

the elements of 𝒀 𝑡, with𝑀 < 𝑟𝑘 being the smallest possible such dimension. Then 𝐀 is a
𝑟𝑘 ×𝑀 matrix of full rank𝑀 , with 𝒀 ∗

𝑡
= (𝐀′𝐀)−1𝐀′

𝒀 𝑡, and we assume the first 𝑘 ×𝑀
block row of 𝐀 is [𝐈, 𝟎,… , 𝟎]. Thus, multiplying (14.6.2) on the left by (𝐀′𝐀)−1𝐀′, we ob-
tain the equivalent representation ofminimal dimension𝑀 given by 𝒀 ∗

𝑡
= 𝚽∗

𝒀
∗
𝑡−1 +𝚿

∗
𝒂𝑡,

where𝚽∗ = (𝐀′𝐀)−1𝐀′𝚽𝐀 and 𝚿∗ = (𝐀′𝐀)−1𝐀′𝚿, with 𝒁 𝑡 = 𝐇𝐀𝒀 ∗
𝑡
≡ 𝐇𝒀 ∗

𝑡
. This min-

imal dimension 𝑀 is in fact the McMillan degree of the process {𝒁𝑡} as described in
Section 14.7.1 below.

One important use of the state-space form of the VARMA model is that it enables exact
finite sample forecasts of the process {𝒁 𝑡} to be obtained through Kalman filtering and
the associated prediction algorithm. This provides a convenient computational procedure
to obtain the minimumMSE matrix estimate of the state vector 𝒀 𝑡+𝑙 based on observations
𝒁1,… ,𝒁𝑡 as 𝒀 𝑡+𝑙|𝑡 = 𝐸[𝒀 𝑡+𝑙|𝒁1,… ,𝒁𝑡], with

𝐏𝑡+𝑙|𝑡 = 𝐸[(𝒀 𝑡+𝑙 − 𝒀 𝑡+𝑙|𝑡)(𝒀 𝑡+𝑙 − 𝒀 𝑡+𝑙|𝑡)′]

equal to the error covariance matrix. The recursions for the Kalman filter procedure have
been presented as equations (5.5.6) to (5.5.9) in Section 5.5.2. It follows that optimal
forecasts �̂� 𝑡+𝑙|𝑡 = 𝐸[𝒁 𝑡+𝑙|𝒁1,… ,𝒁𝑡] of future observations 𝒁 𝑡+𝑙 are then available as

�̂� 𝑡+𝑙|𝑡 = 𝐇𝒀 𝑡+𝑙|𝑡, since 𝒁 𝑡+𝑙 = 𝐇𝒀 𝑡+𝑙, with forecast error covariance matrix

𝚺𝑡+𝑙|𝑡 = 𝐸[(𝒁 𝑡+𝑙 − �̂�𝑡+𝑙|𝑡)(𝒁𝑡+𝑙 − �̂� 𝑡+𝑙|𝑡)′] = 𝐇𝐏𝑡+𝑙|𝑡𝐇′

The ‘‘steady-state’’ values of the Kalman filtering lead 𝑙 forecast error covariance ma-
trices, obtained as 𝑡 increases, equal the expressions in (14.5.4) of Section 14.5.2,
𝚺(𝑙) =

∑𝑙−1
𝑗=0𝚿𝑗𝚺𝚿

′
𝑗
. That is, 𝚺𝑡+𝑙|𝑡 approaches 𝚺(𝑙) as 𝑡 → ∞.

Thus, the Kalman filtering procedure provides a convenient method to obtain exact fi-
nite sample forecasts for future values in the VARMA process, based on observations
𝒁1,… ,𝒁𝑡, subject to specification of appropriate initial conditions to use in (5.5.6)
to (5.5.9). In particular, for the VARMA process represented in state-space form, the
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exact finite-sample one-step-ahead forecasts �̂� 𝑡|𝑡−1 = 𝐇𝒀 𝑡|𝑡−1, and their error covariance
matrices 𝚺𝑡|𝑡−1 = 𝐇𝐏𝑡|𝑡−1𝐇′, can be obtained conveniently through the Kalman filtering
equations. This can be particularly useful for evaluation of the exact Gaussian likelihood
function, based on 𝑁 vector observations 𝒁1,… ,𝒁𝑁 from the VARMA process, as
mentioned earlier in Section 14.4.5.

14.7 FURTHER DISCUSSION OF VARMAMODEL SPECIFICATION

In this section, we return to the issue of model specification for a vector ARMA process.
As noted in Section 14.4.4, extending the ARMA model to the vector case involves some
difficulties that are not present in the univariate case. One problem in the vector case is
the overflow of parameters, whose estimates can be highly correlated. A second issue is
that of identifiability, which refers to the fact that two different sets of parameters can give
rise to the same probability structure and hence the same process. This causes problems at
the parameter estimation stage, in particular, since the likelihood function will not have a
uniquely defined maximum in this case. Two methods designed to overcome these issues
are the Kronecker index approach that originates in the engineering literature and the
SCM method developed by Tiao and Tsay (1989). Both methods make use of canonical
correlation analysis methods to arrive at a parsimonious and well-defined VARMAmodel.

In this section, we will discuss the VARMAmodel specification in more detail focusing
on the Kronecker index approach to model specification. We first discuss the estimation of
the Kronecker indices and the McMillan degree of a vector process. We then describe the
specification of the echelon canonical form of the VARMA model through the Kronecker
indices. A brief discussion of the use of partial canonical correlation analysis to identify
models with reduced rank structure is also included.

14.7.1 Kronecker Structure for VARMA Models

The VARMA(𝑝, 𝑞) model (14.4.1) can always be expressed in the equivalent form

𝚽#
0(𝒁𝑡 − 𝝁) −

𝑝∑
𝑗=1
𝚽#
𝑗
(𝒁𝑡−𝑗 − 𝝁) = 𝚯#

0𝒂𝑡 −
𝑞∑
𝑗=1
𝚯#
𝑗
𝒂𝑡−𝑗 (14.7.1)

where𝚽#
0 is an arbitrary nonsingular matrix,𝚽#

𝑗
= 𝚽#

0𝚽𝑗 ,𝚯
#
0 = 𝚽

#
0, and𝚯

#
𝑗
= 𝚽#

0𝚯𝑗 . For
purposes of parsimony, we are interested in model forms that lead to the simplest structure
in some sense, such as in terms of the number of unknown parameters in the matrices
𝚽#

0,𝚽
#
1,… ,𝚽

#
𝑝
, 𝚯#

1,… ,𝚯
#
𝑞
. For unique identifiability of the parameters, it is necessary to

normalize the form of𝚽#
0 at least to be lower triangular with ones on the diagonal.

As discussed in detail by Hannan and Deistler (1988, Chapter 2), a representation of
a VARMA model in a certain special form of (14.7.1) can sometimes be more useful for
model specification than the standard or reduced VARMA form (14.4.1), and this form of
(14.7.1) is referred to as the echelon canonical form of the VARMA model. To specify
the echelon canonical form, 𝑘 Kronecker indices or structural indices, 𝐾1,… , 𝐾𝑘, must
be determined beyond the overall orders 𝑝 and 𝑞. The echelon (canonical) form is such
that [𝚽#(𝐵), 𝚯#(𝐵)] has the smallest possible row degrees, and 𝐾𝑖 denotes the degree of
the 𝑖th row of [𝚽#(𝐵), 𝚯#(𝐵)], that is, the maximum of the degrees of the polynomials
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in the 𝑖th row of [𝚽#(𝐵), 𝚯#(𝐵)], for 𝑖 = 1,… , 𝑘, and with 𝑝 = 𝑞 = max{𝐾1,… , 𝐾𝑘}.
The specification of these Kronecker indices or ‘‘row orders’’ {𝐾𝑖}, which are unique for
any given equivalence class of ARMA models, that is, models with the same infinite MA
operator 𝚿(𝐵), then determines a unique echelon canonical form of the VARMA model
(14.7.1) in which the unknown parameters are uniquely identifiable.

Kronecker Indices and McMillan Degree of VARMA Process. For any stationary vec-
tor process {𝒁 𝑡} with covariance matrices 𝚪(𝑙) = cov[𝒁𝑡,𝒁𝑡+𝑙], we define the infinite-
dimensional (block) Hankel matrix of the covariances as

𝐇 =

⎡⎢⎢⎢⎢⎣

𝚪(1)′ 𝚪(2)′ 𝚪(3)′ ⋯
𝚪(2)′ 𝚪(3)′ 𝚪(4)′ ⋯
𝚪(3)′ 𝚪(4)′ 𝚪(5)′ ⋯

⋮ ⋮ ⋮ ⋮

⎤⎥⎥⎥⎥⎦
(14.7.2)

Then, in particular, the McMillan degree M of the process is defined as the rank of the
Hankel matrixH. The process {𝒁𝑡} follows a finite-orderVARMAmodel if and only if the
rank of H is finite. For a stationary VARMA(𝑝, 𝑞) process, the moment relations (14.4.5)
yield that

𝚪(𝑙)′ −
𝑝∑
𝑗=1
𝚽𝑗𝚪(𝑙 − 𝑗)′ = 0 for 𝑙 > 𝑞 (14.7.3)

It can be seen directly from this that the rank ofH, theMcMillan degreeM, will then satisfy
𝑀 ≤ 𝑘𝑠, where 𝑠 = max{𝑝, 𝑞}, since all the 𝑘 × 𝑘 block rows of H beyond the 𝑠th block
row will be linearly dependent on the preceding block rows. But the McMillan degree𝑀
of a VARMA(𝑝, 𝑞) could be considerably smaller than 𝑘𝑠 due to rank deficiencies in the
AR and MA coefficient matrices.

The McMillan degree𝑀 has the interpretation as the number of linearly independent
linear combinations of the present and past vectors𝒁𝑡,𝒁𝑡−1,… that are needed for optimal
prediction of all future vectors within the ARMA structure. Note that

𝐇 = cov[𝐅𝑡+1,𝐏𝑡] = cov[𝐅𝑡+1|𝑡,𝐏𝑡] (14.7.4)

is the covariance between the collection of all present and past vectors,𝐏𝑡 = (𝒁′
𝑡
,𝒁′
𝑡−1,…)′,

and the collection of all future vectors𝐅𝑡+1 = (𝒁′
𝑡+1,𝒁

′
𝑡+2,…)′ or the collection of predicted

values of all future vectors, 𝐅𝑡+1|𝑡 = 𝐸[𝐅𝑡+1|𝐏𝑡]. Hence, if the rank of H is equal to 𝑀 ,
then the (linear) predictor space formed from the collection 𝐅𝑡+1|𝑡 of predicted values

�̂� 𝑡(𝑙) = 𝐸[𝒁 𝑡+𝑙|𝐏𝑡], 𝑙 > 0, of all future vectors is of finite dimension𝑀 . Sometimes (e.g.,
Hannan and Deistler, 1988, Chapter 2) the Hankel matrix 𝐇 is defined in terms of the
coefficients 𝚿𝑗 in the infinite MA form 𝒁𝑡 − 𝝁 =

∑∞
𝑗=0𝚿𝑗𝐚𝑡−𝑗 of the ARMA process,

instead of the covariance matrices 𝚪(𝑗)′, but all main conclusions hold in either case.
In addition, the 𝑖th Kronecker index𝐾𝑖, 𝑖 = 1,… , 𝑘, of the process {𝒁 𝑡} is the smallest

value such that the (𝑘𝐾𝑖 + 𝑖)th row of H, that is, the 𝑖th row in the (𝐾𝑖 + 1)th block of
rows of H, is linearly dependent on the previous rows of H. This also implies, through
the structure of the Hankel matrix H, that all rows 𝑘𝑙 + 𝑖, for every 𝑙 ≥ 𝐾𝑖, will also be
linearly dependent on the rows preceding the (𝑘𝐾𝑖 + 𝑖)th row. The set of Kronecker in-
dices {𝐾1,… , 𝐾𝑘} is unique for any given VARMA process; hence, it is not dependent
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on any one particular form of the observationally equivalent ARMA model representa-
tions of the process. As indicated in Section 14.6, the VARMA model can be repre-
sented in its equivalent minimal dimension state-space form, with minimal dimension, the
McMillan degree

𝑀 =
𝑘∑
𝑖=1
𝐾𝑖 = 𝐾1 +𝐾2 +⋯ +𝐾𝑘

being the number of linearly independent predictors required to generate the linear pre-
diction space {�̂� 𝑡(𝑙), 𝑙 ≥ 1} of all future vectors {𝒁𝑡+𝑙 , 𝑙 ≥ 1}. This minimal dimension
state-space representation is one way to reveal the special structure of the VARMA pa-
rameters associated with the Kronecker indices. Canonical correlation analysis methods
between past and future vectors of a VARMA process {𝒁𝑡} are useful as a means to
determine the Kronecker indices of the process. We will now indicate, in particular, the
direct connections that the Kronecker indices have with the second moment equations as in
(14.4.5) and (14.7.3), since these equations exhibit the row dependencies among the covari-
ance matrices 𝚪(𝑗)′. Hence, knowledge of these Kronecker indices can be used to deduce
special structure among the AR and MA parameter matrices and lead to specification of
the special (echelon) form of the VARMA model.

Echelon CanonicalForm Implied by Kronecker Indices. Specifically, if VARMAmodels
similar to the form in (14.7.1) are considered, with 𝚽#

0 = 𝚯
#
0 lower triangular (and having

ones on the diagonal), then equations similar to (14.4.5) for the cross-covariance matrices
𝚪(𝑙) of the process are obtained as

𝚽#
0𝚪(𝑙)

′ −
𝑝∑
𝑗=1
𝚽#
𝑗
𝚪(𝑙 − 𝑗)′ = −

𝑞∑
𝑗=𝑙
𝚯#
𝑗
𝚺𝚿′
𝑗−𝑙 (14.7.5)

Thus, if 𝜙𝑗(𝑖)′ denotes the 𝑖th row of𝚽#
𝑗
, then the 𝑖th Kronecker index equal to 𝐾𝑖 implies

the linear dependence in the rows of the Hankel matrix 𝐇 of the form

𝜙0(𝑖)′𝚪(𝑙)′ −
𝐾𝑖∑
𝑗=1
𝜙𝑗(𝑖)′𝚪(𝑙 − 𝑗)′ = 𝟎′ for all 𝑙 ≥ 𝐾𝑖 + 1 (14.7.6)

that is, 𝒃′
𝑖
𝐇 = 𝟎′ with 𝒃′

𝑖
= (−𝜙𝐾𝑖(𝑖)

′,… ,−𝜙1(𝑖)′, 𝜙0(𝑖)′, 𝟎′,…). Note that by definition of
the 𝑖th Kronecker index 𝐾𝑖, the row vector 𝜙0(𝑖)′ in (14.7.6) can be taken to have a one in
the 𝑖th position and zeros for positions greater than the 𝑖th. Therefore, a Kronecker index
equal to 𝐾𝑖 implies, in particular, that an ARMA model representation of the form (14.7.1)
can be constructed for the process such that the 𝑖th rows of the matrices𝚽#

𝑗
and 𝚯#

𝑗
will be

zero for 𝑗 > 𝐾𝑖.
In addition to these implications from (14.7.6), additional zero constraints on certain

elements in the 𝑖th rows of the matrices 𝚽#
𝑗
for 𝑗 ≤ 𝐾𝑖 can be specified. Specifically, the

𝑙th element of the 𝑖th row 𝜙𝑗(𝑖)′ can be specified to be zero whenever 𝑗 + 𝐾𝑙 ≤ 𝐾𝑖 because
for 𝐾𝑙 ≤ 𝐾𝑖 the rows 𝑘(𝐾𝑙 + 𝑗) + 𝑙, 𝑗 = 0, … , (𝐾𝑖 −𝐾𝑙), of the Hankel matrix H are all
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linearly dependent on the previous rows ofH. Hence, the (𝑖, 𝑙)th element of the AR operator

𝚽#(𝐵) = 𝚽#
0 −

𝑝∑
𝑗=1
𝚽#
𝑗𝐵
𝑗

in model (14.7.1) can be specified to have nonzero coefficients only for the lags 𝑗 =
𝐾𝑖 −𝐾𝑖𝑙 + 1,… , 𝐾𝑖, with zero coefficients specified for any lower lags of 𝑗 (when 𝑖 ≠ 𝑙),
where we define

𝐾𝑖𝑙 =

{
min(𝐾𝑖 + 1, 𝐾𝑙) for 𝑖 > 𝑙

min(𝐾𝑖, 𝐾𝑙) for 𝑖 ≤ 𝑙
(14.7.7)

(so that whenever𝐾𝑙 ≤ 𝐾𝑖 we have𝐾𝑖𝑙 = 𝐾𝑙). Thus, the corresponding number of unknown
AR parameters in the (𝑖, 𝑙)th element of 𝚽#(𝐵) is equal to 𝐾𝑖𝑙. Hence, the AR operator
𝚽#(𝐵) in model (14.7.1) can be specified such that the total number of unknownparameters
of 𝚽#(𝐵) is equal to

∑𝑘
𝑖=1

∑𝑘
𝑙=1 𝐾𝑖𝑙 =𝑀 +

∑∑𝑘
𝑖≠𝑙
𝐾𝑖𝑙, while the number of unknown

parameters in the MA operator𝚯#(𝐵), excluding those parameters in𝚯#
0 = 𝚽

#
0, is equal to∑𝑘

𝑖=1 𝑘𝐾𝑖 = 𝑘𝑀 .
In summary, for a stationary linear process {𝒁𝑡} with Kronecker indices 𝐾1,… , 𝐾𝑘, a

VARMA representation as in (14.7.1) with 𝑝 = 𝑞 = {max𝐾𝑖} can be specified to describe
the process, with the matrices 𝚽#

𝑗
and 𝚯#

𝑗
possessing the structure that their 𝑖th rows are

zero for 𝑗 > 𝐾𝑖 and the additional zero constraints structure noted above. Moreover, for a
stationary vector process with given covariance matrix structure 𝚪(𝑙), or equivalently with
given infinite MA coefficients𝚿𝑗 , Hannan and Deistler (1988, Theorem 2.5.1) have shown
that this model provides a unique VARMA representation, with AR and MA operators
𝚽#(𝐵) and 𝚯#(𝐵) being left-coprime, and where all unknown parameters are identified.
This (canonical) ARMA representation is referred to as a (reversed) echelon ARMA form.
In particular, the VAR coefficient matrices 𝚽#

𝑗
in the echelon canonical representation

(14.7.1) are uniquely determined from the 𝚪(𝑙) by the requirement that their 𝑖th rows
𝜙𝑗(𝑖)′, 𝑗 = 0,… , 𝐾𝑖, 𝑖 = 1,… , 𝑘, satisfy the conditions (14.7.6).

Examples. For simple illustrative examples, consider a bivariate (𝑘 = 2) process {𝒁𝑡}.
When this process has Kronecker indices 𝐾1 = 𝐾2 = 1, then a general VARMA(1, 1) rep-
resentation 𝒁𝑡 −𝚽1𝒁 𝑡−1 = 𝒂𝑡 −𝚯1𝒂𝑡−1 is implied. However, notice that a pure VAR(1)
process with full-rank VAR matrix 𝚽1 and a pure VMA(1) process with full-rank VMA
matrix 𝚯1 would both also possess Kronecker indices equal to 𝐾1 = 𝐾2 = 1. This simple
example thus illustrates that specification of the Kronecker indices alone does not necessar-
ily lead to the specification of a VARMA representation where all the simplifying structure
in the parameters is directly revealed. For a second case, suppose the bivariate process
has Kronecker indices 𝐾1 = 1 and 𝐾2 = 0. Then, the implied structure for the process is
VARMA(1, 1) as in (14.7.1), with (note, in particular, that 𝐾12 = 0 in (14.7.7))

𝚽#
0 =

[ 1 0
𝑋 1

]
𝚽#

1 =
[
𝑋 0
0 0

]
𝚯#

1 =
[
𝑋 𝑋

0 0

]

where the𝑋’s denote unknown parameters that need estimation and 0’s indicate values that
are known to be specified as zero. On multiplication of the VARMA(1, 1) relation𝚽#

0𝒁𝑡 −
𝚽#

1𝒁 𝑡−1 = 𝚯
#
0𝒂𝑡 −𝚯

#
1𝒂𝑡−1 on the left by 𝚽#−1

0 , we obtain a VARMA(1, 1) representation
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𝒁 𝑡 −𝚽1𝒁𝑡−1 = 𝒂𝑡 −𝚯1𝒂𝑡−1 in the standard VARMA form (14.4.1), but with a reduced-
rank structure for the coefficientmatrices such that rank [𝚽1, 𝚯1] = 1. For a third situation,
suppose the bivariate process has Kronecker indices𝐾1 = 2 and𝐾2 = 1. Then, the echelon
form structure for the process is VARMA(2, 2) as in (14.7.1), with (note 𝐾12 = 1 in
this case)

𝚽#
0 =

[ 1 0
𝑋 1

]
𝚽#

1 =
[
𝑋 0
𝑋 𝑋

]
𝚽#

2 =
[
𝑋 𝑋

0 0

]
𝚯#

1 =
[
𝑋 𝑋

𝑋 𝑋

]
𝚯#

2 =
[
𝑋 𝑋

0 0

]

Again, on multiplication of the echelon form VARMA(2, 2) relation on the left by 𝚽#−1
0 ,

we obtain a VARMA(2, 2) representation in standard form, but with reduced-rank structure
for the coefficient matrices such that rank [𝚽2, 𝚯2] = 1.

Software Implementation. In practical applications, the Kronecker index approach to
model specification can be implemented using the commands Kronid, Kronfit, and re-
fKronfit available in the MTS package of R. The specification of the Kronecker indices is
performed using the commandKronid and is based on canonical correlation analysis. With
the Kronecker indices specified, the VARMA parameters are estimated using the command
Kronfit. Parameters with nonsignificant estimates can be removed using the command re-
fKronfit. For further discussion and for demonstrations of the individual commands, see
Tsay (2014).

14.7.2 An Empirical Example

To illustrate model specification approach described above, we return to the bivariate
time series of U.S. fixed investment and change in business inventories analyzed earlier
in this chapter. A bivariate VAR(2) model was fitted to the series in Section 14.2.7. As
an alternative, we now consider the possibility of a mixed VARMA model for these data
through determination of the echelon canonical ARMA model for the two series. The
Kronecker indices {𝐾𝑖} for the process are determined using the canonical correlation
method suggested by Akaike (1976) and Cooper and Wood (1982); see also Tsay (2014,
Section 4.4). For the vector of present and past values, we use a maximum of three time-
lagged vector variables and set 𝐏𝑡 = (𝒁′

𝑡
,𝒁′
𝑡−1,𝒁

′
𝑡−2)

′. Then, for various vectors 𝐅∗
𝑡+1

of future variables, the squared sample canonical correlations between 𝐅∗
𝑡+1 and 𝐏𝑡 are

determined as the eigenvalues of the matrix similar to the matrix in (6.2.6) of Section
6.2.4. The canonical correlation analysis calculations are performed sequentially by adding
variables to 𝐅∗

𝑡+1 one at a time, starting with 𝐅∗
𝑡+1 = (𝑧1,𝑡+1), until 𝑘 = 2 near zero sample

canonical correlations between 𝐏𝑡 and 𝐅∗𝑡+1 are determined. At each step, a likelihood ratio
test is used to determine the significance of the smallest squared canonical correlation.

The calculations can be performed using the MTS package in R. If 𝑧𝑧 denotes the two
time series, the command for determining the Kronecker indices is Kronfit(zz, plag=3),
where plag represents the number of elements in 𝐏𝑡. The resulting squared sample canon-
ical correlations between 𝐏𝑡 and various future vectors 𝐅∗

𝑡+1 are presented in Table 14.3.
From these results, we note that the first occurrence of a small squared sample canonical
correlation value (0.044), indicative of a zero canonical correlation between the future and
the present and past, is obtained when 𝐅∗

𝑡+1 = (𝑧1,𝑡+1, 𝑧2,𝑡+1, 𝑧1,𝑡+2)′. This indicates that the
Kronecker index𝐾1 = 1, since it implies that a linear combination involving 𝑧1,𝑡+2 in terms
of the remaining variables in 𝐅∗

𝑡+1, that is, of the form 𝑧1,𝑡+2 − 𝜙1(1)
′
𝒁𝑡+1, is uncorrelated
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TABLE 14.3 Specification of Kronecker Indices for First Differences of U.S. Fixed Investment
Data and Changes in Business Inventories Data

Smallest Squared LR Degrees Kronecker
Future Vector 𝐅∗

𝑡+1 Canonical Correlation Test of Freedom 𝑝-Value Index

𝑧1,𝑡+1 0.371 44.02 6 0.000
𝑧1,𝑡+1, 𝑧2,𝑡+1 0.369 43.50 5 0.000
𝑧1,𝑡+1, 𝑧2,𝑡+1, 𝑧1,𝑡+2 0.044 4.13 4 0.389 𝐾1 = 1
𝑧1,𝑡+1, 𝑧2,𝑡+1, 𝑧2,𝑡+2 0.069 6.20 4 0.185 𝐾2 = 1

with the present and past vector 𝐏𝑡. An additional small squared canonical correlation
value of 0.069 occurs when 𝐅∗

𝑡+1 = (𝑧1,𝑡+1, 𝑧2,𝑡+1, 𝑧2,𝑡+2)′, and this implies that we may
have 𝐾2 = 1. Hence, this leads to specification of a VARMA(1, 1) model in the echelon
form of equation (14.7.1) with Kronecker indices 𝐾1 = 𝐾2 = 1. This echelon model form
is, in fact, the same as the standard VARMA(1, 1) model in (14.4.1); that is, 𝐾1 = 𝐾2 = 1
implies that we have𝚽#

0 = 𝚯
#
0 = 𝐈 in (14.7.1).

The canonical correlation analysis suggests that a VARMA(1, 1) model might be essen-
tially equivalent to the VAR(2) model in terms of fit, and that these two models are likely
superior to other models considered. The parameters of the VARMA(1, 1) model were
estimated using the Kronfit routine available in the MTS package of R, and the results are
given as

�̂�1 =

⎡⎢⎢⎢⎢⎣

0.440 −0.200
(0.176) (0.063)
0.637 0.775
(0.210) (0.076)

⎤⎥⎥⎥⎥⎦
�̂�1 =

⎡⎢⎢⎢⎢⎣

−0.030 −0.309
(0.209) (0.081)
0.313 0.227
(0.284) (0.129)

⎤⎥⎥⎥⎥⎦

�̃� =
[ 5.0239 1.6697
1.6697 16.8671

]

with |�̃�| = 81.9498, andAIC = 4.608. Again, the coefficient estimate in the (1, 1) position
of the matrix �̂�1, as well as estimates in the second row of �̂�1, is not significant and might
be omitted from the model.

It is clear from these estimation results, particularly from the estimates �̃� and associated
summary measures, that the VARMA(1, 1) model provides a nearly equivalent fit to the
VAR(2) model. For instance, we consider the coefficient matrices𝚿𝑗 in the infinite VMA
representation for 𝒁 𝑡 implied by the VAR(2) and VARMA(1, 1) models. For the VAR(2)
model, the 𝚿𝑗 are determined from𝚿1 = 𝚽1:

𝚿𝑗 = 𝚽1𝚿𝑗−1 +𝚽2𝚿𝑗−2 for 𝑗 > 1 (𝚿0 = 𝐈)

hence, the 𝚿𝑗 are given as

𝚿1 =

[
0.50 0.11
0.34 0.53

]
𝚿2 =

[
0.15 −0.09
0.61 0.46

]
𝚿3 =

[
−0.00 −0.12
0.55 0.31

]

𝚿4 =

[
−0.09 −0.11
0.41 0.16

]
𝚿5 =

[
−0.11 −0.08
0.26 0.06

]
𝚿6 =

[−0.10 −0.05
0.14 −0.00

]
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and so on, while those for the VARMA(1, 1) model are determined from 𝚿1 = 𝚽1 −
𝚯1,𝚿𝑗 = 𝚽1𝚿𝑗−1, 𝑗 > 1, and so are given as

𝚿1 =

[
0.47 0.11
0.32 0.55

]
𝚿2 =

[
0.14 −0.06
0.55 0.49

]
𝚿3 =

[
−0.05 −0.13
0.52 0.34

]

𝚿4 =

[
−0.12 −0.12
0.37 0.19

]
𝚿5 =

[
−0.13 −0.09
0.21 0.07

]
𝚿6 =

[
−0.10 −0.05
0.08 −0.01

]

Thus, we see that the 𝚿𝑗 coefficient matrices are very similar for both models, implying,

in particular, that forecasts �̂�𝑡(𝑙) and the covariance matrices 𝚺(𝑙) +
∑𝑙−1
𝑗=0𝚿𝑗Σ𝚿

′
𝑗
of the

𝑙-step-ahead forecast errors 𝑒𝑡(𝑙) = 𝒁 𝑡+𝑙 − �̂� 𝑡(𝑙) obtained from the two models, VAR(2)
and VARMA(1, 1), are nearly identical.

14.7.3 Partial Canonical Correlation Analysis for Reduced-Rank Structure

Another approach to allow for simplifying structure in the parameterization of the VAR
and VARMA models is to incorporate certain reduced-rank structure in the coefficient
matrices. For the VAR(𝑝) model (14.2.1), Ahn and Reinsel (1988) proposed a particular
nested reduced-rank model structure, such that

rank(𝚽𝑗) = 𝑟𝑗 ≥ rank (𝚽𝑗+1) = 𝑟𝑗+1 𝑗 = 1, 2,… , 𝑝− 1

and it is also specified that range(𝚽𝑗) ⊃ range(𝚽𝑗+1). Then the 𝚽𝑗 can be represented in
reduced-rank factorization form as 𝚽𝑗 = 𝐀𝑗𝐁𝑗 , where 𝐀𝑗 and 𝐁𝑗 are full-rank matrices
of dimensions 𝑘 × 𝑟𝑗 and 𝑟𝑗 × 𝑘, respectively, with range(𝐀𝑗) ⊃ range(𝐀𝑗+1). One funda-
mental consequence for this model is that there then exists a full-rank (𝑘 − 𝑟𝑗) × 𝑘 matrix
𝐅′
𝑗
, such that 𝐅′

𝑗
𝚽𝑗 = 𝟎 and hence 𝐅′

𝑗
𝚽𝑖 = 𝟎 for all 𝑖 ≥ 𝑗 because of the nested structure.

Therefore, the vector

𝐅′
𝑗

(
𝒁𝑡 −

𝑗−1∑
𝑖=1
𝚽𝑖𝒁𝑡−𝑖

)
= 𝐅′

𝑗

(
𝒁𝑡 −

𝑝∑
𝑖=1
𝚽𝑖𝒁𝑡−𝑖

)
≡ 𝐅′

𝑗
𝜹 + 𝐅′

𝑗
𝒂𝑡

is uncorrelated with the past values 𝒁𝑗−1,𝑡−1 = (𝒁′
𝑡−1,… ,𝒁

′
𝑡−𝑗)

′ and consists of 𝑘 − 𝑟𝑗
linear combinations of𝒁𝑗−1,𝑡 = (𝒁′

𝑡
,… ,𝒁′

𝑡−𝑗+1)
′. Thus, it follows that 𝑘 − 𝑟𝑗 zero partial

canonical correlations will occur between 𝒁 𝑡 and 𝒁 𝑡−𝑗 , given 𝒁𝑡−1,… ,𝒁 𝑡−𝑗+1. Hence,
performing a (partial) canonical correlation analysis for the various values of 𝑗 = 1, 2,…
can identify the simplifying nested reduced-rank structure, as well as the overall order 𝑝,
of the VAR model.

The sample statistic that can be used to (tentatively) specify the ranks is

𝐶(𝑗, 𝑟) = −(𝑁 − 𝑗 − 𝑗𝑘 − 1)
𝑘∑

𝑡=𝑟+1
ln[1 − �̂�2

𝑖
(𝑗)] (14.7.8)

for 𝑟 = 𝑘 − 1, 𝑘− 2,… , 0, where 1 ≥ �̂�1(𝑗) ≥ ⋯ ≥ �̂�𝑘(𝑗) > 0 are the sample partial canon-
ical correlations between 𝒁 𝑡 and 𝒁𝑡−𝑗 , given 𝒁 𝑡−1,… ,𝒁 𝑡−𝑗+1. (Calculation of sample
canonical correlationswas discussed previously in Section 6.2.4.)Under the null hypothesis
that rank(𝚽𝑗) ≤ 𝑟 within the nested reduced-rank model framework, the statistic 𝐶(𝑗, 𝑟) is
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asymptotically distributed as chi-squared with (𝑘 − 𝑟)2 degrees of freedom. Hence, if the
value of the test statistic is not ‘‘significantly’’ large,wewould not reject the null hypothesis
andmight conclude that𝚽𝑗 has reduced rank equal to the smallest value 𝑟𝑗 for which the test
does not reject the null hypothesis. Note, in particular, thatwhen 𝑟 = 0 the statistic in (14.7.8)
is (essentially) the same as the LR test statistic given in (14.2.10) for testing 𝐻0∶ 𝚽𝑗 = 𝟎
in an VAR(𝑗) model, since it can be verified that ln[|𝐒𝑗|∕|𝐒𝑗−1|] = ∑𝑘

𝑖=1 ln[1 − �̂�
2
𝑖
(𝑗)].

Once the ranks in the nested reduced-rank VAR model have been specified, the pa-
rameters in the restricted model can be estimated by maximum likelihood methods. Some
normalization conditions on the𝐀𝑗 and𝐁𝑗 in𝚽𝑗 = 𝐀𝑗𝐁𝑗 are required to ensure a unique set
of parameters. Assuming the components of𝒁 𝑡 are arranged suitably, this parameterization
can be obtained as 𝚽𝑗 = 𝐀1𝐃𝑗𝐁j, where 𝐀1 is 𝑘 × 𝑟1 lower triangular with ones on the
main diagonal and may have certain other elements ‘‘normalized’’ to fixed values of zero,
𝐁𝑗 contains unrestricted parameters, and 𝐃𝑗 = [𝐈𝑟𝑗 , 𝟎]

′ is 𝑟1 × 𝑟𝑗 . Asymptotic distribution
theory for the ML estimators of parameters of this model extends from theory for the LS
estimators in a stationary VAR(𝑝) model in a fairly direct manner.

The structure of the reduced-rank VAR model relates directly to the concepts of Kro-
necker indices,McMillan degree, and echelon canonical formofVARMAmodels discussed
earlier. In particular, it can be easily verified that the McMillan degree of a nested reduced-
rank AR process is equal to 𝑀 =

∑𝑝
𝑗=1 𝑟𝑗 , the sum of the ranks of the AR coefficient

matrices𝚽𝑗 . In addition, from the nested reduced-rank structure it follows that the model
can also be represented as

𝚽#
0𝒁 𝑡 −

𝑝∑
𝑗=1
𝚽#
𝑗
𝒁 𝑡−𝑗 = 𝜹

# +𝚽#
0𝒂𝑡

with 𝚽#
0 = 𝐀

−𝟏, where 𝐀 is the 𝑘 × 𝑘 matrix formed by augmenting the 𝑘 × 𝑟1 matrix 𝐀1
with the last 𝑘 − 𝑟1 columns of the 𝑘 × 𝑘 identity matrix, and

𝚽#
𝑗
= 𝐀−1𝚽𝑗 = 𝐀−1𝐀1𝐃𝑗𝐁𝑗 ≡ [𝐁′

𝑗
, 𝟎′]′

having its last 𝑘 − 𝑟𝑗 rows equal to zero. This relation can be viewed as an echelon
canonical form representation, as in (14.7.1), for the nested reduced-rank vector VAR(𝑝)
model. Also, as noted by Reinsel (1997, p. 66), the notion of a nested reduced-rank model
and its relationship to the echelon form representation can be directly extended to the
VARMA model leading to the specification of a reduced-rank VARMA model for the
vector process.

14.8 NONSTATIONARITY AND COINTEGRATION

14.8.1 Vector ARIMA Models

Time series encountered in practice will frequently exhibit nonstationary behavior. To
generalize stationaryVARMAmodels to nonstationary processes, we can consider a general
formof theVARMAmodel,𝚽(𝐵)𝒁 𝑡 = 𝚯(𝐵)𝐚𝑡, where some of the roots of det{𝚽(𝐵)} = 0
are allowed to have absolute value equal to one.More specifically, because of the prominent
role of the differencing operator (1 − 𝐵) in univariate models, for nonseasonal time series
we might only allow some roots to equal one (unit roots) while the remaining roots are all
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greater than one in absolute value. A particular restrictive class of models of this type for
nonstationary series are of the form

𝚽1(𝐵)𝑫(𝐵)𝒁 𝑡 = 𝚯(𝐵)𝐚𝑡 (14.8.1)

where 𝐃(𝐵) = diag[(1 − 𝐵)𝑑1 ,… , (1 − 𝐵)𝑑𝑘] is a diagonal matrix, 𝑑1,… , 𝑑𝑘 are nonnega-
tive integers, and det{𝚽1(𝐵)} = 0 has all roots greater than one in absolute value. Thus, this
model, which is referred to as a vector ARIMAmodel, simply states that after each series 𝑧𝑖𝑡
is individually differenced an appropriate number (𝑑𝑖) of times to reduce it to a stationary
series, the resulting vector series𝐖𝑡 = 𝐃(𝐵)𝒁𝑡 is a stationary VARMA(𝑝, 𝑞) process. For
vector time series, however, simultaneous differencing of all component series can lead to
unnecessary complications in modeling and estimation as a result of ‘‘overdifferencing,’’
including noninvertible model representations, so differencing needs to be examined with
particular care in the vector case.

14.8.2 Cointegration in Nonstationary Vector Processes

The nonstationary unit-root aspects of a vector process 𝒁 𝑡 become more complicated in
the multivariate case compared with the univariate case, due in part to the possibility of
cointegration among the component series 𝑧𝑖𝑡 of a nonstationary vector process 𝒁𝑡. For
instance, the possibility exists for each component series 𝑧𝑖𝑡 to be nonstationary with its
first difference (1 − 𝐵)𝑧𝑖𝑡 stationary (in which case 𝑧𝑖𝑡 is said to be integrated of order
one), but such that certain linear combinations 𝑦𝑖𝑡 = 𝒃

′
𝑖
𝒁𝑡 of 𝒁 𝑡 will be stationary. That

this possibility exists was demonstrated by Box and Tiao (1977) in their analysis of a
five-dimensional dataset from Quenouille (1957). A process𝒁 𝑡 that displays this behavior
is said to be cointegrated with cointegrating vectors 𝒃𝑖 (e.g., Engle and Granger, 1987).
An interpretation of cointegrated vector processes 𝒁𝑡 is that the individual components
𝑧𝑖𝑡 share some common nonstationary components or ‘‘common trends’’; hence, they tend
to have certain similar movements in their longer term behavior. These common trend
components will be eliminated upon taking suitable linear combinations of the components
of the process 𝒁𝑡. A related interpretation is that the component series 𝑧𝑖𝑡, although they
may exhibit nonstationary behavior, satisfy a long-run equilibrium relation 𝒃′

𝑖
𝒁 𝑡 ≃ 0 such

that the process 𝑦𝑖𝑡 = 𝒃
′
𝑖𝒁𝑡, which represents the deviation from the equilibrium, exhibits

stable behavior and so forms a stationary process. Properties of nonstationary cointegrated
systems have been investigated by Engle and Granger (1987) and Johansen (1988), among
others.

An Error Correction Form. A specific nonstationary VARMA model structure for which
cointegration occurs is the model 𝚽(𝐵)𝒁𝑡 = 𝚯(𝐵)𝒂𝑡, where det{𝚽(𝐵)} = 0 has 𝑑 < 𝑘
roots equal to one and all other roots are greater than one in absolute value, and also the
matrix

𝚽(1) = 𝐈 −𝚽1 −⋯ −𝚽𝑝

has rank 𝑟 = 𝑘 − 𝑑. Because the process has unit roots fewer than the number of compo-
nents, this type of process is called partially nonstationary by Ahn and Reinsel (1990).
For such a process, it can be established that 𝑟 linearly independent vectors 𝒃𝑖 exist such
that 𝒃′

𝑖
𝒁 𝑡 is stationary, and 𝒁𝑡 is said to have cointegrating rank 𝑟. A useful approach to

the investigation of this model is to express it in its equivalent error correction (EC) form
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given by

𝑾 𝑡 = 𝐂𝒁 𝑡−1 +
𝑝−1∑
𝑗=1
𝚽∗
𝑗
𝑾 𝑡−𝑗 + 𝒂𝑡 −

𝑞∑
𝑗=1
𝚯𝑗𝒂𝑡−𝑗 (14.8.2)

where𝑾 𝑡 = (1 − 𝐵)𝒁 𝑡,𝚽∗
𝑗
= −

∑𝑝
𝑖=𝑗+1𝚽𝑖, and

𝐂 = −𝚽(1) = −

(
𝑰 −

𝑝∑
𝑗=1
𝚽𝑗

)
(14.8.3)

For instance, by subtracting𝒁 𝑡−1 from both sides of the VAR(1) model𝒁 𝑡 = 𝚽𝒁 𝑡−1 + 𝒂𝑡,
we see that the model can be expressed as (𝒁 𝑡 −𝒁𝑡−1) = −(𝐈 −𝚽)𝒁𝑡−1 + 𝒂𝑡 ≡ 𝐂𝒁 𝑡−1 +
𝒂𝑡, with 𝐂 = −(𝐈 −𝚽). The VAR(2) model can be expressed as

(𝒁𝑡 −𝒁 𝑡−1) = −(𝐈 −𝚽1 −𝚽2)𝒁𝑡−1 −𝚽2(𝒁𝑡−1 −𝒁𝑡−2) + 𝒂𝑡

≡ 𝐂𝒁𝑡−1 +𝚽∗
1(𝒁𝑡−1 −𝒁𝑡−2) + 𝒂𝑡

with 𝐂 = −(𝐈 −𝚽1 −𝚽2) and𝚽∗
1 = −𝚽2, and similarly for higher order VAR models.

We note that the error correction form (14.8.2) has an invertiblemoving average operator
but introduces 𝐂𝒁 𝑡−1 on the right-hand side of the model. Since the moving average
operator remains unchanged, problems associated with noninvertibility are now avoided.
The term 𝐂𝒁 𝑡−1 is referred to as the error correction term and the rank 𝑟 = 𝑘 − 𝑑 of the
coefficient matrix 𝐂 represents the number of cointegrating vectors in the system.

To derive an alternative form, we note that the reduced-rank matrix C can be written
as 𝐂 = 𝐀𝐁, where A and B are full-rank matrices of dimensions 𝑘 × 𝑟 and 𝑟 × 𝑘, respec-
tively. We can also determine a full-rank 𝑘 × (𝑘 − 𝑟) matrix 𝐐1 such that 𝐐′

1𝐀 = 𝟎, hence
also 𝐐′

1𝐂 = 𝟎. Hence, it can be established that the 𝑟 linear combinations 𝒀 2𝑡 = 𝐁𝒁 𝑡
are stationary, the 𝑟 rows of B are linearly independent cointegrating vectors, whereas the
𝑑 = 𝑘 − 𝑟 components𝒀1𝑡 = 𝐐′

1𝒁𝑡 are ‘‘purely’’ nonstationary and are often referred to as
the ‘‘common trends’’ among the components of the nonstationary process𝒁 𝑡. Therefore,
the error correction form (14.8.2) can also be expressed as

𝑾 𝑡 = 𝐀𝐁𝐙𝑡−1 +
𝑝−1∑
𝑗=1
𝚽∗
𝑗
𝑾 𝑡−𝑗 + 𝒂𝑡 −

𝑞∑
𝑗=1
𝚯𝑗𝒂𝑡−𝑗

≡ 𝐀𝒀 2,𝑡−1 +
𝑝−1∑
𝑗=1
𝚽∗
𝑗
𝑾 𝑡−𝑗 + 𝒂𝑡 −

𝑞∑
𝑗=1
𝚯𝑗𝒂𝑡−𝑗 (14.8.4)

Issues of estimation of cointegrated VARmodels and testing for the rank 𝑟 of cointegration
will be discussed briefly in Section 14.8.3.

Illustration: Nonstationary VAR(1) Model. To illustrate some of the preceding points,
consider the VAR(1) process𝒁 𝑡 = 𝚽𝒁 𝑡−1 + 𝒂𝑡 with 𝑑 eigenvalues of𝚽 equal to one and
the remaining 𝑟 = 𝑘 − 𝑑 eigenvalues less than one in absolute value, and suppose the 𝑑 unit
eigenvalues have 𝑑 linearly independent eigenvectors. Then there is a 𝑘 × 𝑘 nonsingular



Box3G Date: May 21, 2015 Time: 11:28 am

NONSTATIONARITY AND COINTEGRATION 549

matrix 𝐏 such that 𝐏−1𝚽𝐏 = 𝚲with𝚲 = diag(𝐈𝑑,𝚲2), where𝚲2 = diag(𝜆𝑑+1,… , 𝜆𝑘) is an
𝑟 × 𝑟 diagonal matrix with |𝜆𝑖| < 1. Letting 𝐏 = [𝐏1,𝐏2] and 𝐐 = 𝐏−1 = [𝐐1,𝐐2]′, where
𝐏1 and 𝐐1 are 𝑘 × 𝑑 matrices, define 𝒀 𝑡 = 𝐐𝒁𝑡 = (𝒀 ′

1𝑡, 𝒀
′
2𝑡)

′, that is, 𝒀 1𝑡 = 𝐐′
1𝒁𝑡 and

𝒀 2𝑡 = 𝐐′
2𝒁 𝑡, and similarly 𝜺𝑡 = 𝐐𝒂𝑡 = (𝜺′1𝑡, 𝜺

′
2𝑡)

′. Then we have

𝐐𝒁 𝑡 = 𝐐𝚽𝐏𝐐𝒁𝑡−1 +𝐐𝒂𝑡

or 𝒀 𝑡 = 𝚲𝒀 𝑡−1 + 𝜺𝑡. Therefore, the model in terms of 𝒀 𝑡 reduces to

(1 − 𝐵)𝒀 1𝑡 = 𝜺1𝑡 and (𝐈 − 𝚲2𝐵)𝒀 2𝑡 = 𝜺2𝑡

so {𝒀 1𝑡} is a 𝑑-dimensional purely nonstationary series, whereas {𝒀 2𝑡} is an 𝑟-dimensional
stationary series. Thus, {𝒁 𝑡} is nonstationary but has 𝑟 linearly independent linear combi-
nations 𝒀 2𝑡 = 𝐐′

2𝒁𝑡, which are stationary, so 𝒁 𝑡 is cointegrated with cointegrating rank 𝑟
and linearly independent cointegrating vectors, which are the rows of𝐐′

2. Conversely, since
𝒁 𝑡 = 𝐏𝒀 𝑡 = 𝐏1𝒀 1𝑡 + 𝐏2𝒀 2𝑡, the components of the vector 𝒁 𝑡 are linear combinations of
a nonstationary vector (randomwalk) component 𝒀 1𝑡 and a stationary VAR(1) component
𝒀 2𝑡. Also notice that the error correction form of this VAR(1) model as in (14.8.2) is

𝑾 𝑡 = 𝒁𝑡 −𝒁 𝑡−1 = 𝐂𝒁𝑡−1 + 𝒂𝑡

where

𝐂 = −(𝐈 −𝚽) = −𝐏(𝐈 − 𝚲)𝐐 = −𝐏2(𝐈𝑟 − 𝚲2)𝐐′
2

which is clearly of reduced rank 𝑟.

14.8.3 Estimation and Inferences for Cointegrated VARModels

As noted above, when the vector series𝒁 𝑡 is unit-root nonstationary but with cointegration
features, it is not appropriate to difference all component series and model the resulting
series𝐖𝑡 = (1 − 𝐵)𝒁 𝑡 by a VAR orVARMAmodel. Instead, wemay prefer to incorporate
the unit-root and cointegration features into the analysis using the model (14.8.2). This
can provide a better understanding on the nature of the nonstationarity and improve the
forecasting performance of the model. This section examines the estimation and statistical
inference for this model focusing on the special case of an error correction VAR(𝑝) model

𝑾 𝑡 = 𝐂𝒁𝑡−1 +
𝑝−1∑
𝑗=1
𝚽∗
𝑗
𝑾 𝑡−𝑗 + 𝒂𝑡 (14.8.5)

where𝑾 𝑡 = 𝒁 𝑡 −𝒁 𝑡−1 with rank(𝐂) = 𝑟 < 𝑘. Note that a special case of (14.8.5), at one
extreme, occurs with 𝑟 = 0 (i.e., 𝑑 = 𝑘 unit roots and 𝐂 = 𝟎) and leads to a usual VAR
model of order 𝑝 − 1 for the series of first differences𝑾 𝑡.

The least-squares and Gaussian maximum likelihood estimation of cointegrated VAR
models and likelihood ratio testing for the rank of cointegration, generally utilizing the error
correction form (14.8.5) of the model, have been examined by several authors including
Johansen (1988, 1991), Johansen and Juselius (1990), Ahn and Reinsel (1990), and Reinsel
and Ahn (1992). Estimation of the cointegrated model, which imposes the restriction on
the number 𝑑 of unit roots in 𝚽(𝐵) (or the number 𝑟 = 𝑘 − 𝑑 of cointegrating relations),
is equivalent to reduced-rank estimation, which imposes the restriction on the rank 𝑟 of
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the coefficient matrix 𝐂, which can be written as 𝐂 = 𝐀𝐁 as noted in Section 14.8.2. So
techniques from reduced-rank estimation of multivariate regression models can be utilized.

When there are no additional constraints on the coefficient matrices 𝚽∗
𝑗
in (14.8.5),

that is, the only parameter constraints involved in the model are rank(𝐂) ≤ 𝑟, it follows
from the original work by Anderson (1951) on reduced-rank regression that the Gaussian
(ML) reduced-rank estimation can be obtained explicitly through the partial canonical
correlation analysis between 𝑾 𝑡 and 𝒁 𝑡−1, given 𝑾 𝑡−1,… ,𝑾 𝑡−𝑝+1. When there are
additional constraints, however, iterative numerical techniques are needed for the Gaussian
ML estimation. Specifically, in the partial canonical correlation analysis approach, let �̃� 𝑡

and �̃� 𝑡−1 denote the residual vectors from least-squares regressions of 𝑾 𝑡 and 𝒁𝑡−1,
respectively, on the lagged values𝑾 𝑡−1,… ,𝑾 𝑡−𝑝+1, and let

𝐒�̃��̃� =
𝑁∑
𝑡=1

�̃� 𝑡�̃�
′
𝑡
𝐒�̃��̃� =

𝑁∑
𝑡=1

�̃� 𝑡�̃�
′
𝑡−1 𝐒�̃��̃� =

𝑁∑
𝑡=1

�̃�𝑡−1�̃�
′
𝑡−1

Then the Gaussian reduced-rank estimator of 𝐂 in model (14.8.5) can be expressed ex-
plicitly as

�̃� = �̂��̂��̂�′�̂� (14.8.6)

where �̂� = 𝐒�̃��̃�𝐒−1�̃��̃� is the full-rank LS estimator of 𝐂, �̂� is the corresponding residual
covariancematrix estimate of𝚺 = cov[𝐚𝑡] from the full-rank LS estimation of (14.8.5), and
�̂� = [𝑽 1,… ,𝑽 𝑟] are the vectors corresponding to the 𝑟 largest partial canonical correlations
�̂�𝑖(𝑝), 𝑖 = 1,… , 𝑟. The vectors 𝑽 𝑖 are normalized so that �̂�′�̂��̂� = 𝐈𝑟. Note that the form of
the estimator (14.8.6) provides the reduced-rank factorization as �̃� = (�̂��̂�)(�̂�′�̂�) ≡ �̂��̂�,
with �̂� = �̂��̂� satisfying the normalization �̂�′�̂�−1�̂� = 𝐈𝑟.

The asymptotic distribution theory of the LS and reduced-rank estimators, �̂� and �̃�, and
of LR test statistics for rank has been established and the limiting distributions represented
as functionals of vector Brownian motion processes, extending the ‘‘nonstandard’’ unit-
root asymptotic distribution theory for univariate AR models as outlined in Section 10.1.
In particular, we discuss the LR statistic for the test of the hypothesis𝐻0∶rank(𝐂) ≤ 𝑟 for
model (14.8.5). The LR test statistic is given by

−𝑁 ln(𝑈 ) = −𝑁 ln
( |𝐒|
|𝐒0|

)

where 𝐒 denotes the residual sum-of-squares matrix in the full-rank LS estimation (such
that �̂� = 𝑁−1𝐒), while 𝐒0 is the residual sum-of-squares matrix obtained under the
reduced-rank restriction that rank(𝐂) = 𝑟. Again from the work of Anderson (1951), it is
established that

𝐒0 = 𝐒 + (�̂� − �̃�)𝐒�̃��̃�(�̂� − �̃�)′

and it follows that

|𝐒0| = |𝐒|
𝑘∏

𝑖=𝑟+1
[1 − �̂�2

𝑖
(𝑝)]−1
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where the �̂�𝑖(𝑝) are the 𝑑 = 𝑘 − 𝑟 smallest sample partial canonical correlations between
𝑾 𝑡 and 𝒁 𝑡−1, given 𝑾 𝑡−1… ,𝑾 𝑡−𝑝+1. Therefore, the LR statistic can be expressed
equivalently as

−𝑁 ln(𝑈 ) = −𝑁
𝑘∑

𝑖=𝑟+1
ln[1 − �̂�2

𝑖
(𝑝)] (14.8.7)

The limiting distribution for the LR statistic has been derived, based on limiting distribution
properties for the LS and reduced-rank estimators �̂� and �̃�, and its limiting distribution is
represented by

−𝑁 ln(𝑈 ) 
→ tr

⎧⎪⎨⎪⎩

[
∫

1

0
𝐁𝑑(𝑢)𝑑𝐁𝑑 (𝑢)′

]′ [
∫

1

0
𝐁𝑑(𝑢)𝐁𝑑(𝑢)′𝑑𝑢

]−1

×

[
∫

1

0
𝐁𝑑(𝑢)𝑑𝐁𝑑(𝑢)′

]⎫⎪⎬⎪⎭
(14.8.8)

where 𝐁𝑑(𝑢) is a 𝑑-dimensional standard Brownian motion process, with 𝑑 = 𝑘 − 𝑟. The
limiting distribution of the LR statistic under𝐻0 depends only on 𝑑 and not on any nuisance
parameters or the order 𝑝 of the VAR model. Note that in the special case of testing for (at
least) one unit root, 𝑑 = 1, the limiting distribution in (14.8.8) reduces to

−𝑁 ln(𝑈 ) 
→

[
∫
1
0 𝐵1(𝑢)𝑑𝐵1(𝑢)

]2

∫
1
0 𝐵1(𝑢)2𝑑𝑢

which is the asymptotic distribution for the (univariate) unit root statistic 𝜏2 in the univariate
AR(1) model as discussed in Section 10.1.1.

Critical values of the limiting distribution in (14.8.8) have been obtained by simulation
by Johansen (1988) and Reinsel and Ahn (1992) and can be used in the test of𝐻0. Similar
to other LR testing procedures in multivariate linear models, it is suggested that the LR
statistic in (14.8.7) bemodified to−(𝑁 − 𝑘𝑝)

∑𝑘
𝑖=𝑟+1 ln[1 − �̂�

2
𝑖
(𝑝)] for practical use in finite

samples, as this may provide a test statistic whose finite sample distribution is closer to the
limiting distribution in (14.8.8) than the ‘‘unmodified’’LR test statistic. TheML estimation
and LR testing procedures and asymptotic theory are also extended to the more practical
case where a constant term 𝜹 is included in the estimation of the VAR(𝑝) model in error
correction form, 𝑾 𝑡 = 𝐂𝒁𝑡−1 +

∑𝑝−1
𝑗=1𝚽

∗
𝑗
𝑾 𝑡−𝑗 + 𝜹 + 𝐚𝑡. A recommended procedure to

be used in specification of the rank 𝑟 or 𝐂 in model (14.8.5) is thus based on performing
LR tests of 𝐻0∶rank(𝐂) ≤ 𝑟 for a sequence of values of 𝑟 = 𝑘 − 1, 𝑘 − 2,… , 1, 0, and an
appropriate value of 𝑟 can be chosen as the smallest value for which𝐻0 is not rejected. For
further discussion of the model building process and for software demonstrations using the
R package, the readers are referred to Tsay (2014).
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APPENDIX A14.1 SPECTRAL CHARACTERISTICS AND LINEAR
FILTERING RELATIONS FOR STATIONARY MULTIVARIATE PROCESSES

A14.1.1 Spectral Characteristics for Stationary Multivariate Processes

The covariance-generating matrix function (provided
∑∞
𝑙=−∞ |𝛾𝑖,𝑗(𝑙)| < ∞, 𝑖, 𝑗 = 1,… , 𝑘)

is defined as𝐆(𝑧) =
∑∞
𝑙=−∞ 𝚪(𝑙)𝑧

𝑙, and the spectral densitymatrix of the stationary process
{𝒁 𝑡} as a function of frequency 𝑓 is defined as

𝐏(𝑓 ) = 2𝐆(𝑒−𝑖2𝜋𝑓 ) = 2
∞∑
𝑙=−∞

𝚪(𝑙)𝑒−𝑖2𝜋𝑓𝑙 0 ≤ 𝑓 ≤
1
2

(A14.1.1)

The (ℎ, 𝑗)th element of 𝐏(𝑓 ), denoted as 𝑝ℎ𝑗(𝑓 ), is

𝑝ℎ𝑗(𝑓 ) = 2
∞∑
𝑙=−∞

𝛾ℎ𝑗(𝑙)𝑒−𝑖2𝜋𝑓𝑙

For ℎ = 𝑗, 𝑝𝑗𝑗(𝑓 ) is the (auto)spectral density function of the series 𝑧𝑗𝑡, while for ℎ ≠
𝑗, 𝑝ℎ𝑗(𝑓 ) is the cross-spectral density function of 𝑧ℎ𝑡 and 𝑧𝑗𝑡. Notice that 𝑝𝑗𝑗(𝑓 ) is real
valued and nonnegative, but since 𝛾ℎ𝑗(𝑙) ≠ 𝛾ℎ𝑗(−𝑙) for ℎ ≠ 𝑗, the cross-spectral density
function 𝑝ℎ𝑗(𝑓 ) is in general complex valued, with 𝑝ℎ𝑗(𝑓 ) being equal to 𝑝𝑗ℎ(−𝑓 ), the
complex conjugate of 𝑝𝑗ℎ(𝑓 ). Therefore, the spectral density matrix 𝐏(𝑓 ) is Hermitian,
that is, 𝐏(𝑓 ) = 𝐏(−𝑓 )′. Moreover, 𝐏(𝑓 ) is a nonnegative-definite matrix in the sense that
𝒃
′𝐏(𝑓 )𝒃 ≥ 0 for any 𝑘-dimensional (real-valued) vector 𝒃, since 𝒃′𝐏(𝑓 )𝒃 is the spectral

density function of the linear combination 𝒃′𝒁𝑡 and hence must be nonnegative. Note also
that

𝚪(𝑙) = 1
2 ∫

1∕2

−1∕2
𝑒𝑖2𝜋𝑓𝑙𝐏(𝑓 ) df 𝑙 = 0,±1,±2,… (A14.1.2)

that is, 𝛾ℎ𝑗(𝑙) =
1
2 ∫

1∕2
−1∕2 𝑒

𝑖2𝜋𝑓𝑙𝑝ℎ𝑗(𝑓 ) df.
The real part of 𝑝ℎ𝑗(𝑓 ), denoted as 𝑐ℎ𝑗(𝑓 ) = Re{𝑝ℎ𝑗(𝑓 )}, is called the co-spectrum,

and the negative of the imaginary part, denoted as 𝑞ℎ𝑗(𝑓 ) = −Im{𝑝ℎ𝑗(𝑓 )}, is called the

quadrature spectrum. We can also express 𝑝ℎ𝑗(𝑓 ) in polar form as 𝑝ℎ𝑗(𝑓 ) = 𝛼ℎ𝑗(𝑓 )𝑒𝑖𝜙ℎ𝑗 (𝑓 ),
where

𝛼ℎ𝑗(𝑓 ) = |𝑝ℎ𝑗(𝑓 )| = {𝑐2
ℎ𝑗
(𝑓 ) + 𝑞2

ℎ𝑗
(𝑓 )}1∕2

and 𝜙ℎ𝑗(𝑓 ) = tan−1{−𝑞ℎ𝑗(𝑓 )∕𝑐ℎ𝑗(𝑓 )}. The function 𝛼ℎ𝑗(𝑓 ) is called the cross-amplitude
spectrum and 𝜙ℎ𝑗(𝑓 ) is the phase spectrum.

Similar to the univariate case, the spectral density matrix 𝐏(𝑓 ) represents the covariance
matrix of the random vector of components at frequency 𝑓 in the theoretical spectral
representations of the components 𝑧𝑗𝑡 of the vector process {𝒁𝑡} corresponding to the
finite-sample Fourier representations of the time series 𝑧𝑗𝑡 as in (2.2.1). The (squared)
coherency spectrum of a pair of series 𝑧ℎ𝑡 and 𝑧𝑗𝑡 is defined as

𝑘2
ℎ𝑗
(𝑓 ) =

|𝑝ℎ𝑗(𝑓 )|2
{𝑝ℎℎ(𝑓 )𝑝𝑗𝑗(𝑓 )}
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The coherency 𝑘ℎ𝑗(𝑓 ) at frequency 𝑓 can thus be interpreted as the correlation coefficient
between the random components at frequency 𝑓 in the theoretical spectral representations
of 𝑧ℎ𝑡 and 𝑧𝑗𝑡. Hence, 𝑘ℎ𝑗(𝑓 ) as a function of 𝑓 measures the extent to which the two
processes 𝑧ℎ𝑡 and 𝑧𝑗𝑡 are linearly related in terms of the degree of linear association of their
random components at different frequencies 𝑓 . When spectral relations that involve more
than two time series are considered, the related concepts of partial coherency and multiple
coherency are also of interest. Detailed accounts of the spectral theory and analysis of
multivariate time series may be found in the books by Jenkins and Watts (1968), Hannan
(1970), Priestley (1981), and Bloomfield (2000).

A14.1.2 Linear Filtering Relations for Stationary Multivariate Processes

The representation of dynamic linear relationships through the formulation of linear filters
is fundamental to the study of stationary multivariate time series. An important example
is the moving average representation of the 𝑘-dimensional process 𝑍𝑡 in (14.1.4). More
generally, a multivariate linear (time-invariant) filter relating an 𝑟-dimensional input series
𝑿 𝑡 to a 𝑘-dimensional output series 𝒁 𝑡 is given by the form

𝒁𝑡 =
∞∑
𝑗=−∞

𝚿𝑗𝑿𝑡−𝑗 (A14.1.3)

where the 𝚿𝑗 are 𝑘 × 𝑟 matrices. The filter is physically realizable or causal when the
𝚿𝑗 = 0 for 𝑗 < 0, so that 𝒁 𝑡 =

∑∞
𝑗=0𝚿𝑗𝑋𝑡−𝑗 is expressible in terms of only present and

past values of the input process {𝑿𝑡}. The filter is said to be stable if
∑∞
𝑗=−∞ ‖𝚿𝑗‖ < ∞,

where ‖𝐀‖ denotes a norm for the matrix A such as ‖𝐀‖2 = tr{𝐀′𝐀}. When the filter
is stable and the input series 𝑿 𝑡 is stationary with cross-covariance matrices 𝚪𝑥𝑥(𝑙), the
output 𝒁 𝑡 =

∑∞
𝑗=−∞𝚿𝑗𝑿𝑡−𝑗 is a stationary process. The cross-covariance matrices of the

stationary process {𝒁𝑡} are then given by

𝚪𝑧𝑧(𝑙) = cov[𝑍𝑡,𝒁 𝑡+𝑙] =
∞∑
𝑖=−∞

∞∑
𝑗=−∞

𝚿𝑖𝚪𝑥𝑥(𝑙 + 𝑖 − 𝑗)𝚿′
𝑗

(A14.1.4)

It also follows, from (A14.1.1), that the spectral density matrix of the output 𝒁 𝑡 has the
representation

𝐏𝑧𝑧(𝑓 ) = 𝚿(𝑒𝑖2𝜋𝑓 )𝐏𝑥𝑥(𝑓 )𝚿(𝑒−𝑖2𝜋𝑓 )′ (A14.1.5)

where 𝐏𝑥𝑥(𝑓 ) is the spectral density matrix of𝑿𝑡, and𝚿(𝑧) =
∑∞
𝑗=−∞𝚿𝑗𝑧

𝑗 is the transfer
function (matrix) of the linear filter. In addition, the cross-covariancematrices between𝒁 𝑡
and 𝑿𝑡 are

𝚪𝑧𝑥(𝑙) = cov[𝒁𝑡, 𝑿𝑡+𝑙] =
∞∑
𝑗=−∞

𝚿𝑗𝚪𝑥𝑥(𝑙 + 𝑗)

and the cross-spectral density matrix between𝒁 𝑡 and𝑿𝑡 is

𝐏𝑧𝑥(𝑓 ) = 2
∞∑
𝑙=−∞

𝚪𝑧𝑥(𝑙)𝑒−𝑖2𝜋𝑓
𝑙 = 𝚿(𝑒𝑖2𝜋𝑓 )𝐏𝑥𝑥(𝑓 )
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so the transfer function𝚿(𝑧) satisfies the relation𝚿(𝑒𝑖2𝜋𝑓 ) = 𝐏𝑧𝑥(𝑓 )𝐏𝑥𝑥(𝑓 )−1. In practice,
when a causal linear filter is used to represent the relation between an observable input
process𝑿𝑡 and an output process𝒁𝑡 in a dynamic system, there will be added unobserved
noise𝑵 𝑡 in the system and a dynamic model of the form𝒁𝑡 =

∑∞
𝑗=0𝚿𝑗𝑿𝑡−𝑗 +𝑵 𝑡 will be

useful.
For a special example of the above linear filtering results, consider the basic station-

ary vector white noise process {𝒂𝑡} defined in Section 14.1.3, with the properties that
𝐸[𝒂𝑡] = 0, 𝐸[𝒂𝑡𝒂′𝑡] = 𝚺, and 𝐸[𝒂𝑡𝒂

′
𝑡+𝑙] = 0 for 𝑙 ≠ 0. Hence, 𝒂𝑡 has spectral density ma-

trix𝐏𝑎𝑎(𝑓 ) = 2𝚺. Then the process𝒁𝑡 =
∑∞
𝑗=0𝚿𝑗𝒂𝑡−𝑗 , with

∑∞
𝑗=0 ‖𝚿𝑗‖ < ∞, is stationary

and has cross-covariance matrices

𝚪𝑧𝑧(𝑙) =
∞∑
𝑗=0
𝚿𝑗𝚺𝚿′

𝑗+𝑙 (A14.1.6)

and spectral density matrix

𝐏𝑧𝑧(𝑓 ) = 2𝚿(𝑒𝑖2𝜋𝑓 )𝚺𝚿(𝑒−𝑖2𝜋𝑓 )′ (A14.1.7)

and the cross-covariancematrices between {𝒁 𝑡} and {𝒂𝑡} are 𝚪𝑧𝑎(𝑙) = 𝚿−𝑙𝚺 for 𝑙 ≤ 0 and
zero for 𝑙 > 0.

In addition, for the stationary VARMA(𝑝, 𝑞) process with infinite MA representation
(14.1.4), the covariance matrix-generating function is given by 𝐆(𝑧) =

∑∞
𝑙=−∞ 𝚪(𝑙)𝑧

𝑙 =
𝚿(𝑧−1)𝚺𝚿(𝑧)′; hence, the spectral density matrix of the VARMA(𝑝, 𝑞) process is given as
in (A14.1.7) with 𝚿(𝑧) = 𝚽−1(𝑧)𝚯(𝑧).

EXERCISES

14.1. Consider the bivariate VMA(1) process𝒁 𝑡 = (𝐈 −𝚯𝐵)𝒂𝑡, with

𝚯 =

[
0.4 0.3
−0.5 0.8

]
𝚺 =

[
4 1
1 2

]

(a) Find the lag 0 and lag 1 autocorrelations and cross-correlations of 𝒁𝑡; that is,
find the matrices 𝚪(0),𝚪(1), and 𝝆(0),𝝆(1).

(b) Find the individual univariate MA(1) models for 𝑧1𝑡 and 𝑧2𝑡; that is, in the
models 𝑧𝑖𝑡 = (1 − 𝜂𝑖𝐵)𝜀𝑖𝑡, 𝑖 = 1, 2, find the values of the parameters 𝜂𝑖 and
𝜎2
𝜀𝑖
= var[𝜀𝑖𝑡], from 𝚪(0) and 𝚪(1).

(c) Show that the bivariate VMA(1) model above is invertible, state the matrix
difference equation satisfied by the matrix weights 𝚷𝑗 in the infinite AR form
of the VMA(1) model, and explicitly evaluate the 𝚷𝑗 for 𝑗 = 1, 2, 3, 4.

(d) It follows from Section 14.5.2 that the diagonal elements of 𝚺 represent the
one-step-ahead forecast error variances for the two series when each series is
forecast from the past history of both series, that is, when each series is forecast
based on the bivariate model. Compare these one-step forecast error variances
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in the bivariate model with the one-step forecast error variances 𝜎2𝜀𝑖 based on
the individual univariate models in (b).

14.2. For the stationary multivariate VAR(1) model (𝐈 −𝚽𝐵)𝒁 𝑡 = 𝒂𝑡, it is known
that 𝚪(0) −𝚽𝚪(0)𝚽′ = 𝚺. Hence, if the model parameters 𝚽 and 𝚺 are
given, this matrix equation may be solved to determine 𝚪(0). In the bivari-
ate case, this leads to three linear equations in the unknowns 𝛾11(0), 𝛾12(0),
and 𝛾22(0). If these equations are expressed in matrix form as 𝑨[𝛾11(0),
𝛾12(0), 𝛾22(0)]′ = 𝒃, give explicitly the expressions for𝑨and 𝒃. Consider the specific
case

𝚽 =

[
0.2 0.3
−0.6 1.1

]
𝚺 =

[
4 1
1 1

]

(a) Show that

𝚪(0) =
[
5.667 4.000
4.000 10.667

]

Also, determine the stationarity of the VAR(1) model above, state the differ-
ence equation satisfied by the 𝚪(𝑗), 𝑗 ≥ 1, and find the values of 𝚪(1),𝚪(2),
and 𝚪(3). In addition, compute the cross-correlation matrices 𝝆(0),𝝆(1),
𝝆(2), and 𝝆(3).

(b) Find thematrix coefficients𝚿𝟏,𝚿𝟐, and𝚿𝟑 in the infiniteMA representation for
𝒁 𝑡, and hence, compute the covariance matrix of the bivariate lead 𝑙 forecast
errors from the bivariate model using the formula 𝚺(𝑙) = ∑𝑙−1

𝑗=0𝚿𝑗𝚺𝚿
′
𝑗
, for

𝑙 = 1, 2, 3.
(c) For a bivariate VAR(1) model, indicate what simplifications occur in the model

when𝚽 is lower triangular (i.e.,𝜙12 = 0). In particular, show in this case that the
bivariate system can be expressed equivalently in the formof a ‘‘unidirectional’’
transfer function model, as in Chapter 12, with 𝑧1𝑡 as input series and 𝑧2𝑡 as
output. In addition, indicate the specific nature of the univariate ARMA model
for the series 𝑧2𝑡 implied by this situation.

(d) For a bivariate VAR(1) model, show that the case det(𝚽) = 0 implies that
there exists a linear combination of 𝑧1𝑡 and 𝑧2𝑡, 𝑌1𝑡 = 𝑐11𝑧1𝑡 + 𝑐12𝑧2𝑡, which
is a white noise series, and a second linear combination 𝑌2𝑡 = 𝑐21𝑧1𝑡 + 𝑐22𝑧2𝑡,
which is again a univariate AR(1) process.

Hint: If det(𝚽) = 0, then𝚽 has rank at most one and can be written as

𝚽 =

[
𝜙11 𝜙12
𝛼𝜙11 𝛼𝜙12

]
=

[
1
𝛼

] [
𝜙11 𝜙12

]

14.3. Consider the VAR(𝑝) model

𝒁𝑡 = 𝚽1𝒁 𝑡−1 +𝚽2𝒁 𝑡−2 +⋯ +𝚽𝑝𝒁𝑡−𝑝 + 𝒂𝑡
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Verify that the model can be expressed as a VAR(1) model in terms of the kp-
dimensional vector𝒀 𝑡 = (𝒁′

𝑡
,𝒁′
𝑡−1,… ,𝒁

′
𝑡−𝑝+1)

′, 𝒀 𝑡 = 𝚽𝒀 𝑡−1 + 𝒆𝑡, using the 𝑘𝑝 ×
𝑘𝑝 companion matrix𝚽 for the VAR(𝑝) operator𝚽(𝐵) = 𝑰 −𝚽1𝐵 −⋯ −𝚽𝑝𝐵𝑝,

𝚽 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝚽1 𝚽2 ⋯ ⋯ 𝚽𝑝
𝐈 0 ⋯ ⋯ 𝟎
𝟎 𝐈 ⋯ ⋯ 𝟎
⋮ ⋮ ⋱ ⋮ ⋅

𝟎 𝟎 ⋯ 𝐈 𝟎

⎤⎥⎥⎥⎥⎥⎥⎦
In addition, show that det{𝐈 −𝚽𝐵} = det{𝐈 −𝚽1𝐵 −⋯ −𝚽𝑝𝐵𝑝}, and hence the
stationarity condition for the VAR(𝑝) process is equivalent to the condition that all
eigenvalues of the companion matrix 𝚽 be less than one in absolute value. (Hint:
To evaluate det{𝐈 −𝚽𝐵}, multiply the 𝑖th column of 𝐈 −𝚽𝐵 by 𝐵 and add to the
(𝑖 − 1)st column, successively, for 𝑖 = 𝑝, 𝑝 − 1,… , 2.)

14.4. For a bivariate VAR(2) model 𝒁𝑡 = 𝚽1𝒁 𝑡−1 +𝚽2𝒁𝑡−2 + 𝒂𝑡, with

𝚽1 =

[
1.5 −0.6
0.3 0.2

]
𝚽2 =

[
−0.5 0.3
0.7 −0.2

]
𝚺 =

[
4 1
1 2

]

(a) Verify that this model is stationary based on the nature of the roots of det{𝐈 −
𝚽1𝐵 −𝚽2𝐵

2} = 0. (Note that you may want to make use of the result of
Exercise 14.3 for computational convenience.)

(b) Calculate forecasts �̂�𝑛(𝑙) for 𝑙 = 1,… , 5 steps ahead, given that 𝒁𝑛 =
(1.2, 0.6)′ and 𝒁𝑛−1 = (0.5, 0.9)′.

(c) Find the coefficient matrices𝚿𝑗 , 𝑗 = 1,… , 4, in the infinite MA representation
of the process, and find the forecast error covariance matrices 𝚺(𝑙) for 𝑙 =
1,… , 5.

14.5. Consider the simple transfer function model

(1 − 𝐵)𝑧1𝑡 = 𝜀1𝑡 − 𝜃𝜀1,𝑡−1 𝑧2𝑡 = 𝜔𝑧1𝑡 + 𝜀2𝑡

where 𝜀1𝑡 and 𝜀2𝑡 are independent white noise processes.

(a) Determine the univariate ARIMAmodel for 𝑧2𝑡, and note that 𝑧2𝑡 is nonstation-
ary.

(b) Express the bivariate model for𝒁 𝑡 = (𝑧1𝑡, 𝑧2𝑡)′ in the general form of a ‘‘gener-
alized’’ ARMA(1, 1) model, (𝐈 −𝚽1𝐵)𝒁 𝑡 = (𝐈 −𝚯1𝐵)𝒂𝑡, and determine that
one of the eigenvalues of𝚽1 is equal to one.

(c) Determine the bivariate model for the first differences (1 − 𝐵)𝒁𝑡, and show
that it has the form of a bivariate IMA(1, 1) model, (1 − 𝐵)𝒁𝑡 = (𝐈 −𝚯∗𝐵)𝒂𝑡,
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where theMAoperator (𝐈 −𝚯∗𝐵) is not invertible.Hence, thismodel represents
an ‘‘overdifferencing’’ of the bivariate series 𝑍𝑡.

14.6. Suppose 𝒁1,… ,𝒁𝑁 , with 𝑁 = 60, is a sample from a bivariate VAR(1) process,
with sample covariance matrices obtained as

�̂�(0) =
[
1.0 1.0
1.0 2.0

]
�̂�(1) =

[
0.6 0.4
0.7 1.2

]
�̂�(2) =

[
0.30 0.10
0.42 0.64

]

(a) Obtain the corresponding estimated correlation matrices �̂�(0), �̂�(1), and
�̂�(2).

(b) Find the sample Yule--Walker estimates for𝚽 and 𝚺 in the VAR(1) model, and
find an estimate for the approximate covariance matrix of the estimator �̂�, that
is, for the covariance matrix of vec[�̂�′].

(c) Based on the results in (b), test whether the matrix 𝚽 has a lower triangular
structure; that is, test whether 𝜙12 = 0.

14.7. Suppose that a three-dimensional VARMA process 𝒁 𝑡 has Kronecker
indices 𝐾1 = 3, 𝐾2 = 1, and 𝐾3 = 2.
(a) Write the form of the coefficient matrices 𝚽#

𝑗
and 𝚯#

𝑗
in the echelon canonical

ARMA model structure of equation (14.7.1) for this process.

(b) For this process {𝒁𝑡}, describe the nature of the zero canonical corre-
lations that occur in the canonical correlation analysis of the past vector
𝑷 𝑡 = (𝒁′

𝑡
,𝒁′
𝑡−1,…)′ and various future vectors 𝑭 ∗

𝑡+1.

(c) Write the form of the minimal dimension echelon state-space model corre-
sponding to the echelon canonical ARMA model for this process.

14.8. Verify that any VAR(𝑝) model 𝒁𝑡 =
∑𝑝
𝑗=1𝚽𝑗𝒁𝑡−𝑗 + 𝒂𝑡 can be

expressed equivalently in the error correction form of equation (14.8.2) as
𝑾 𝑡 = 𝑪𝒁𝑡−1 +

∑𝑝−1
𝑗=1𝚽

∗
𝑗
𝑾 𝑡−𝑗 + 𝑎𝑡, where𝑾 𝑡 = 𝒁𝑡 −𝒁𝑡−1,𝚽∗

𝑗
= −

∑𝑝
𝑖=𝑗+1𝚽𝑖,

and 𝑪 = −𝚽(1) = −
(
𝑰 −

∑𝑝
𝑗=1𝚽𝑗

)
.

14.9. Express the model for the nonstationary bivariate process 𝒁𝑡 given in Exercise
14.5 in an error correction form, similar to equation (14.8.2), as 𝑾 𝑡 = 𝐂𝒁𝑡−1 +
𝒂𝑡 −𝚯𝑎𝑡−1, where𝑾 𝑡 = (1 − 𝐵)𝒁 𝑡. Determine the structure (and the ranks) of the
matrices 𝑪 and 𝚯 explicitly.

14.10. Consider analysis of the logarithms of monthly flour price indices from three U.S.
cities. The raw (unlogged) datawere given and analyzed byTiao andTsay (1989). To
first investigate a VAR model for these data, with possible reduced-rank structure,
the results of the partial canonical correlation analysis of Section 14.7.3, in terms
of the (squared) partial canonical correlations �̂�2

𝑖
(𝑗) between 𝒁𝑡 and 𝒁 𝑡−𝑗 for lags

𝑗 = 1,… , 6, and the associated test statistic values computed using (14.7.8) are
displayed in the following table:
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C(j, r)
j Squared Correlations 𝑟 = 2 𝑟 = 1 𝑟 = 0

1 0.747, 0.814, 0.938 129.93 288.89 551.67
2 0.003, 0.081, 0.274 0.29 7.97 36.91
3 0.001, 0.007, 0.035 0.07 0.69 3.76
4 0.000, 0.015, 0.047 0.03 1.29 5.31
5 0.017, 0.036, 0.073 1.36 4.24 10.22
6 0.000, 0.020, 0.077 0.00 1.51 7.49

In addition, values of |�̃�𝑗| and of the AIC𝑗 and HQ𝑗 model selection criteria for
the full-rank VAR(𝑗) models are given as follows:

j (AR order) 1 2 3 4 5 6
|�̃�𝑗|(×10−10) 1.66213 1.12396 1.10523 1.06784 0.88963 0.81310
AIC𝑗 −22.336 −22.542 −22.369 −22.210 −22.195 −22.084
HQ𝑗 −22.240 −22.350 −22.079 −21.822 −21.707 −21.494

Interpret the preliminary model specification information above, and specify
the structure (order and possible reduced ranks) of a VAR model that may seem
appropriate for these data based on these results.
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PART FOUR

DESIGN OF DISCRETE CONTROL
SCHEMES

In earlier chapters we studied the modeling of discrete univariate time series and dynamic
systems involving two or more time series. We saw how once adequate models have been
developed, they can be used to generate forecasts of future observations, to characterize
the transfer function of a dynamic system, and to represent the interrelationships among
several time series of a multivariate dynamic system. Examples involving real-world ap-
plications have been used for illustration. However, the models and the methodology are of
much wider importance than even these applications indicate. The ideas we have outlined
are of importance in the analysis of a wide class of stochastic--dynamic systems occur-
ring, for example, in economics, engineering, commerce, hydrology, meteorology, and in
organizational studies.

It is obviously impossible to illustrate every application. Rather, it is hoped that the theory
and examples of this bookwill help the reader to adapt the generalmethodology to their own
particular problems. In doing this, the dynamic and stochastic models we have discussed
will often act as building blocks that can be linked together to represent the particular system
under study. The techniques of identification, estimation, and diagnostic checking, similar
to those we have illustrated, should be useful to establish the model. Finally, recursive
calculations and the ideas considered under the general heading of forecasting will have
wider application in evaluating the adequacy and the usefulness of a model for a specific
purpose once the model has been fitted.

We shall conclude this book by illustrating these possibilities in one further
application---the design of feedback and feedforward control schemes. In working through
Chapter 15, it is the task of bringing together the previously discussed ideas in a fresh
application, quite as much as the detailed results, that we hope will be of value.

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
○c 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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15
ASPECTS OF PROCESS CONTROL

The term process control is used in differentways. Shewhart charts and other quality control
charts are frequently employed in industries concerned with the manufacture of discrete
‘‘parts’’ in what is called statistical process control (SPC). By contrast, various forms of
feedback and feedforward adjustment are used, particularly in the process and chemical
industries, in what we call engineering process control (EPC). Because the adjustments
made by engineering process control are usually computed and applied automatically,
this type of control is sometimes called automatic process control (APC). However, the
manner in which adjustments are applied is a matter of convenience, so we will not use
that terminology here. The object of this chapter is to draw on the earlier discussions in
this book to provide insight into the statistical aspects of these control methods and to
appreciate better their relationships and objectives.

We first discuss process monitoring using, for example, Shewhart control charts and
contrast this with techniques for process adjustment. In particular, a common adjustment
problem is to maintain an output variable close to a target value in a dynamic system subject
to disturbances by manipulation of an input variable, to obtain feedback control. Feedback
control schemes use only the observed deviation of the output from target as a basis for
adjustment of the input variable. We consider this problem first in a purely intuitive way
and then relate this to some of the previously discussed stochastic and transfer function
models to yield feedback control schemes producingminimummean square error (MMSE)
at the output. This leads to a discussion of discrete schemes, which are analogs of the
proportional--integral (PI) schemes of engineering control, and we show how simple charts
may be devised for manually adjusting processes with PI control.

It turns out that minimum mean square error control often requires excessively large
adjustments of the input variable. ‘‘Optimal’’ constrained schemes are, therefore, intro-
duced that require much smaller adjustments at the expense of only minor increases in

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
○c 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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the output mean square error. These constrained schemes are generally not PI schemes,
but in certain important cases it turns out that appropriately chosen PI schemes can often
closely approximate their behavior. Particularly, in industries concerned with the manu-
facture of parts, there may be a fixed cost associated with adjusting the process and, in
some cases, a monitoring cost associated with obtaining an observation. We therefore also
discuss bounded adjustment schemes for feedback control that minimize overall cost in
these circumstances.

In some instances, one or more sources of disturbance may be measured, and these
measurements may be used to compensate potential deviations in the output. This type of
adjustment action is called feedforward control, as compared to feedback control where
only the observed deviation of output from target is used as a basis for adjustment. In certain
instances it may also be desirable to use a combination of these two modes of control, and
this is referred to as feedforward--feedback control. We therefore also present feedforward
and feedforward--feedback types of control schemes for a general dynamic system that
yield minimum mean square error at the output. Finally, we consider a general procedure
for monitoring control schemes for possible changes in parameter values using Cuscore
charts. More general discussion is given in the appendices and references.

15.1 PROCESS MONITORING AND PROCESS ADJUSTMENT

Process control is no less than an attempt to cancel out the effect of a fundamental physical
law---the second law of thermodynamics, which implies that if left to itself, the entropy
or disorganization of any system can never decrease and will usually increase. SPC and
EPC are two complementary approaches to combat this law. SPC attempts to remove
disturbances using process monitoring, while EPC attempts to compensate them using
process adjustment (see also Box and Kramer, 1992).

15.1.1 Process Monitoring

The SPC strategy for stabilization of a process is to standardize procedures and raw
materials and to use hypothesis-generating devices (such as graphs, check sheets, Pareto
charts, cause--effect diagrams, etc.) to track down and eliminate causes of trouble (see, for
example, Ishikawa, 1976). Since searching for assignable causes is tedious and expensive,
it usually makes sense to wait until ‘‘statistically significant’’ deviations from the stable
model occur before instituting this search. This is achieved by the use of processmonitoring
charts such as Shewhart charts, Cusum charts, and Roberts’ EWMA charts. The philosophy
is ‘‘don’t fix it when it ain’t broke’’---don’t needlessly tamper with the process (see, for
example, Deming, 1986).

Figure 15.1 shows an example of process monitoring using a Shewhart control chart.
Condomswere tested by taking a sample of 50 items every 2 hours from routine production,
inflating them to a very high fixed pressure, and noting the proportion that burst. Figure 15.1
shows data taken during the startup of a machinemaking these articles. Studies from similar
machines had shown that a high-quality product was produced if the proportion failing this
very severe test was 𝑝 = 0.20.

The reference distribution indicated by the bars on the right of Figure 15.1(a) charac-
terizes desired process behavior. It is a binomial distribution showing the probabilities of
getting various proportions failing in random samples of 𝑛 = 50 when 𝑝 stays constant at a
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value of 0.20. If the data behaved like a random sequence from this reference distribution,
we should say the process appeared to be in a state of control and no action would be called
for. By contrast, if the data did not have this appearance, showing outliers or suspicious
patterns, we might have reason to suppose that something else was going on. In practice,
the whole reference distribution would not usually be shown. Instead, upper and lower
control limits and warning lines would be set. When, as in this case, a normal curve (shown
as a continuous line) provides a close approximation to the reference distribution, these are
usually set at ±2𝜎 and ±3𝜎 with 𝜎 =

√
𝑝(1 − 𝑝)∕𝑛, the standard deviation of the sample

proportion from a binomial distribution. In this example, with 𝑝 = 0.20 and 𝑛 = 50, this
gives 𝜎 = 0.057. Figure 15.1(a) shows that during the startup phase, the process was badly
out of control, with the proportion of items failing the test initially as high as 50%. A
process adjustment made after 12 hours of operation brought the proportion of defectives
down to around 40%, but further changes were needed to get the process to a state of
control at the desired level of 𝑝 = 0.20. By a series of management actions, this was
eventually achieved and Figure 15.1(b) shows the operation of the process at a later stage
of development.Although for the most part the system now appears to be in the desired state
of control, notice that the 10th point on the chart fell below the lower ±3𝜎 line. Subsequent
investigation showed that the testing procedure was responsible for this aberrant point.
A fault in the air line had developed and the condoms tested at about this time were
inadvertently submitted to a much reduced air pressure, resulting in a falsely low value of
the proportion defective. Corrective action was taken and the system was modified so that
the testing machine would not function unless the air pressure was at the correct setting,
ensuring that this particular fault could not occur again.

Monitoring procedures of this kind are obviously of great value. Following Shewhart
(1931) and Deming (1986), we refer to the natural variation in the process when in state
of control (binomial variation for a sample of 𝑛 = 50 with 𝑝 = 0.20 in this case) as due to
common causes. The common cause system can only be changed by management action
that alters the system. Thus, a new type of testing machine might be introduced for which
the acceptable proportion of defects should be 10%. Common cause variation would then
be binomial about the value 𝑝 = 0.10.

The fault in the air line that was discovered by using the chart is called a special1 cause.
By suitable ‘‘detective’’ work, it is often possible for the plant operators to track down
and eliminate special causes. The objectives of process monitoring are thus (1) to establish
and continually confirm that the desired common cause system remains in operation and
(2) to look for deviations unlikely to be due to chance that can lead to the tracking and
elimination of assignable causes of trouble.

15.1.2 Process Adjustment

Although we must always make a dedicated endeavor to remove causes of variation such
as unsatisfactory testing methods, differences in raw materials, differences in operators,
and so on, some processes cannot be fully brought to a satisfactory state of stability in
this way. Despite our best efforts, there remains a tendency for the process to wander off

1Also called an ‘‘assignable’’ cause. However, we are sometimes faced with a system that is demonstrably not in
a state of control and yet no causative reason can be found. So we will stay with Deming in his less optimistic
word ‘‘special.’’
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FIGURE15.2 Onehundred successive values of the thickness of ametallic filmwhen no adjustment
was applied.

target. This may be due to known but uncontrollable phenomena such as variations in
ambient temperature, humidity, and feedstock quality, or due to causes currently unknown.
In such circumstances, some system of process adjustment or regulationmay be necessary
in which manipulation of some additional variable is used to compensate for deviations in
the quality characteristic.

To fix ideas, we first introduce a simple feedback adjustment scheme relying on a
purely empirical argument and leave theoretical justification until later. Consider the mea-
surements shown in Figure 15.2 of the thickness of a very thin metallic film taken at equally
spaced units of time. The quality characteristic was badly out of control, but standard pro-
cedures failed to stabilize it (Box, 1991a). Suppose that the disturbance 𝑁𝑡 is defined as
the deviation of this quality characteristic from its target value 𝑇 when no adjustment is
made; that is, 𝑁𝑡 is the underlying noise process. Suppose also that there is a manipulable
variable---deposition rate 𝑋---which can be used conveniently to adjust the thickness, and
that a unit change in 𝑋 will produce 𝑔 units of change in thickness and will take full effect
in one time interval. If at time 𝑡, 𝑋 was set equal to 𝑋𝑡, then at time 𝑡 + 1 the deviation
from target, 𝜀𝑡+1 = 𝑌𝑡+1 − 𝑇 , after adjustment would be

𝜀𝑡+1 = 𝑔𝑋𝑡 +𝑁𝑡+1 (15.1.1)

Now suppose that at time t you can, in someway or the other, compute an estimate (forecast)
�̂�𝑡(1) of 𝑁𝑡+1 and that this forecast has an error 𝑒𝑡(1), so that

𝑁𝑡+1 = �̂�𝑡(1) + 𝑒𝑡(1) (15.1.2)

Then using (15.1.1) and (15.1.2),

𝜀𝑡+1 = 𝑔𝑋𝑡 + �̂�𝑡(1) + 𝑒𝑡(1) (15.1.3)

If, in particular,𝑋 can be adjusted so that at time 𝑡,

𝑋𝑡 = −1
𝑔
�̂�𝑡(1) (15.1.4)
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then for the adjusted process

𝜀𝑡+1 = 𝑒𝑡(1) (15.1.5)

Thus, the deviation from target 𝜀𝑡+1 for the adjusted process would now be the error 𝑒𝑡(1) in
forecasting𝑁𝑡+1, instead of the deviation𝑁𝑡+1 measured when the process is not adjusted.

If we used measurements of one or more of the known disturbing input factors (e.g.,
ambient temperature) to calculate the estimate �̂�𝑡(1) of𝑁𝑡+1, we would have an example of
feedforward control. If the estimate �̂�𝑡(1) of 𝑁𝑡+1 directly or indirectly used only present
and past values of the output disturbance 𝑁𝑡,𝑁𝑡−1, 𝑁𝑡−2,…, equation (15.1.4) would
define a system of feedback control. A system of mixed feedback--feedforward control
would employ both kinds of data. For simplicity, we will focus on the feedback case in the
next three sections, and consider feedforward and mixed control in Section 15.5.

15.2 PROCESS ADJUSTMENT USING FEEDBACK CONTROL

Empirical Introduction. It might often be reasonable to use for the estimate �̂�𝑡(l) in
(15.1.4) some kind of weighted average of past values 𝑁𝑡,𝑁𝑡−1, 𝑁𝑡−2,…. In particular,
an exponentially weighted moving average (EWMA) has intuitive appeal since recently
occurring data are given most weight. Suppose, then, that �̂�𝑡(l) is an EWMA,

�̂�𝑡(l) = 𝜆(𝑁𝑡 + 𝜃𝑁𝑡−1 + 𝜃2𝑁𝑡−2 +⋯) 0 ≤ 𝜃 ≤ 1 (15.2.1)

where 𝜃 is the smoothing constant and 𝜆 = 1 − 𝜃,
We first consider the situation where, as has usually been the case in the process

industries, adjustments are continually made as each observation comes to hand. Then
using equation (15.1.4), the adjustment (change in deposition rate) made at time 𝑡 would
be given by

𝑋𝑡 −𝑋𝑡−𝑙 = −1
𝑔
[�̂�𝑡(l) − �̂�𝑡−1(1)] (15.2.2)

Now with 𝑒𝑡−1(1) = 𝑁𝑡 − �̂�𝑡−1(1) the forecast error, the updating formula for an EWMA
forecast can be written as

�̂�𝑡(1) − �̂�𝑡−1(1) = 𝜆𝑒𝑡−1(1) (15.2.3)

Therefore, for any feedback scheme in which the compensatory variable 𝑋 was set so as
to cancel out an EWMA of the noise {𝑁𝑡}, the required adjustment should be such that

𝑋𝑡 −𝑋𝑡−1 = −𝜆

𝑔
𝑒𝑡−1(1) = −𝜆

𝑔
𝜀𝑡 (15.2.4)

For the metal deposition process, 𝑔 = 1.2, 𝜆 = 0.2, and 𝑇 = 80, so that the adjustment
equation is

𝑋𝑡 −𝑋𝑡−1 = −1
6
𝜀𝑡 (15.2.5)
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FIGURE 15.3 Manual adjustment chart for thickness that allows the operator to read off the
appropriate change in deposition rate.

15.2.1 Feedback Adjustment Chart

This kind of adjustment is very easily applied, as is shown in Figure 15.3. This shows a
manual feedback adjustment chart (Box and Jenkins, 1976) for the metallic thickness
example given previously. To use it, the operator records the latest value of thickness
and reads off on the adjustment scale the appropriate amount by which he or she should
now increase or decrease the deposition rate. For example, the first recorded thickness of
80 is on target, so no action is called for. The second value of 92 is 12 units above the
target, so 𝜀2 = 12, corresponding on the left-hand scale to a deposition rate adjustment of
𝑋2 −𝑋1 = −2. Thus, the operator should now reduce the deposition rate by 2 units from
its previous level.

Notice that the successive recorded thickness values shown on this chart are the readings
that would actually occur after adjustment; the underlying disturbance is, of course, not
seen on this chart. In this example, over the recorded period of observation, the chart
produces a more than fivefold reduction in mean square error; the standard deviation of the
adjusted thickness being now only about 𝜎𝜀 = 11. Notice the following:

1. The chart is no more difficult to use than a Shewhart chart.

2. While the ‘‘intuitive’’ adjustment would be −(1∕𝑔)𝜀𝑡 = −(5∕6)𝜀𝑡 (corresponding
to what Deming called ‘‘tinkering’’), the adjustment given by equation (15.2.4) is
−(𝜆∕𝑔)𝜀𝑡 = −(1∕6)𝜀𝑡. Thus, it uses a discounted or ‘‘damped’’ estimate 𝜆𝜀𝑡 of the
deviation from target to determine the appropriate adjustment, where the discount
factor 𝜆 is 1 − 𝜃, with 𝜃 being the smoothing constant of the EWMA estimate of the
noise.

3. By summing equation (15.2.4), we see that the total adjustment at time 𝑡 is

𝑋𝑡 = 𝑘0 + 𝑘𝐼

𝑡∑
𝑡=1

𝜀𝑖 (15.2.6)

with 𝑘0 = 𝑋0 and 𝑘𝐼 = −𝜆∕𝑔. This adjustment procedure thus depends on the cumu-
lative sum of the adjustment errors 𝜀𝑖 and the constant 𝑘𝐼 determines how much the
‘‘intuitive’’ adjustment is discounted.
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FIGURE 15.4 Dashes indicate the total adjustment �̂�𝑡(1) = −𝑔𝑋𝑡 achieved by the manual adjust-
ment chart of Figure 15.3.

4. It follows from the previous argument that the adjustment is also equivalent to
estimating at each time 𝑡 the next value of the total unadjusted disturbance𝑁𝑡+1 by
an exponentially weighted average of its past values and using this estimate to make
an appropriate adjustment. This is illustrated for the metallic thickness example in
Figure 15.4.Notice that in this preliminary discussionwe have not explicitly assumed
any particular time series model or claimed any particular optimal properties for the
procedure. That the procedure can be discussed in such terms accounts, to some
extent, for its remarkable robustness, which we discuss later.

In summary, then:

1. By process monitoring we mean the use of, for example, Shewhart charts and/or
Cusum or Cuscore charts, as discussed by Box and Ramı́rez (1992). These are
devices for continually checking a model that represents the desired ideal stable state
of the system: for example, normal, independent, identically distributed (iid) variation
about a fixed target 𝑇 . The use of such charts can lead to the elimination of special
causes pointed to by discrepant behavior. The judgment that behavior is sufficiently
discrepant to merit attention is decided by a process analogous to hypothesis testing.
Its properties are described in terms of probabilities (e.g., the probability of a point
falling outside the 3𝜎 limits of a Shewhart chart).

2. By process adjustment we mean the use of feedback and feedforward control or
some combination of these to maintain the process as close as possible to some
desired target value. Process adjustment employs a system of statistical estimation
(forecasting) rather than of hypothesis testing, and its properties are described, for
example, by output mean square error. Process monitoring and process adjustment
are complementary rather than competitive corresponding to the complementary roles
of hypothesis testing and estimation (see, for example, Box, 1980). We discuss this
point more fully later in the chapter.
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FIGURE 15.5 Feedback control loop.

15.2.2 Modeling the Feedback Loop

A somewhat more general system of feedback control is shown in Figure 15.5. The process
is affected by a disturbance that in the absence of compensatory action would cause the
output quality characteristic to deviate from target by an amount 𝑁𝑡. Thus, {𝑁𝑡} is a time
series exemplifying what would happen at the output if no control were applied. In fact, a
compensating variable 𝑋𝑡 (deposition rate in our example) can be manipulated to cancel
out this disturbance as far as possible. Changes in 𝑋 will pass through the process and be
acted on by its dynamics to produce at time 𝑡 an amount or compensation 𝑡 at the output
(again measured as a deviation from target). To the extent that this compensation𝑡 fails to
cancel out the disturbance 𝑁𝑡, there will be an error, or deviation from target 𝜀𝑡 = 𝑌𝑡 − 𝑇 ,
equal to 𝜀𝑡 = 𝑁𝑡 + 𝑡. The controller is some means (automatic or manual) that brings
into effect the control equation𝑋𝑡 = 𝑓 (𝜀𝑡, 𝜀𝑡−1,…), which adjusts the output depending on
present and past errors.

A device that has been used in the process industries for many years is the three-
term controller. Controllers of this kind are usually operated automatically and employ
continuous rather than discrete measurement and adjustment. If 𝜀𝑡 is the error at the output
at time 𝑡, control action could, in particular, be made proportional to 𝜀 itself, to its integral
with respect to time, or to its derivative with respect to time. A three-term controller uses a
linear combination of these modes of control action, so that if 𝑋𝑡 indicates the level of the
manipulated variable at time 𝑡, the control equation is of the form

𝑋𝑡 = 𝑘0 + 𝑘𝐷
𝑑𝜀𝑡

𝑑𝑡
+ 𝑘𝑃 𝜀𝑡 + 𝑘𝐼

∫
𝜀𝑡 𝑑𝑡 (15.2.7)

where 𝑘𝐷, 𝑘𝑃 , and 𝑘𝐼 are constants.
Frequently, only one or two of these three modes of action are used. In particular, if only

𝑘𝐼 is nonzero (𝑘𝐷 = 0, 𝑘𝑃 = 0), we have integral control. If only 𝑘𝐼 and 𝑘𝑃 are nonzero
(𝑘𝐷 = 0), we have proportional--integral (PI) control.

Notice that in the example we have just discussed, where the result of any adjustment
fully takes effect at the output in one time interval, the dynamics of the process are
represented by𝑡 = 𝑔𝑋𝑡−1 = 𝑔𝐵𝑋𝑡. The control equation𝑋𝑡 = 𝑘0 + 𝑘𝐼

∑𝑡

𝑖=1 𝜀𝑖 in (15.2.6)
is then the discrete analog of the control engineer’s integral control.
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In general, the discrete analog of (15.2.7) is

𝑋𝑡 = 𝑘0 + 𝑘𝐷∇𝜀𝑡 + 𝑘𝑃 𝜀𝑡 + 𝑘𝐼

𝑡∑
𝑖=1

𝜀𝑖

or in terms of the adjustment to be made,

𝑥𝑡 = 𝑋𝑡 −𝑋𝑡−1 = 𝑘𝐷∇2𝜀𝑡 + 𝑘𝑃∇𝜀𝑡 + 𝑘𝐼𝜀𝑡

= 𝑐1𝜀𝑡 + 𝑐2𝜀𝑡−1 + 𝑐3𝜀𝑡−2

where 𝑐1, 𝑐2, and 𝑐3 are suitable constants. Not unexpectedly, control equations of this type
are of considerable practical value.

15.2.3 Simple Models for Disturbances and Dynamics

So far we introduced a simple system of feedback control on purely empirical grounds. The
efficiency of any such system will depend on the nature of the disturbance and the dynamics
of the process. From a theoretical point of view, we can consider very general models for
noise and dynamics and then proceed to find the control equation that ‘‘optimizes’’ the sys-
tem in accordancewith some criterion. However, the practical effectiveness of such models
is usually determined bywhether they, and the ‘‘optimization’’ criterion,make broad scien-
tific sense and by their robustness to likely deviations from the ideal. We have already kept
this in mind when discussing control procedures from a purely commonsense point of view
and we will continue to do so when choosing models for the disturbance and for process
dynamics.

Characterizing Appropriate Disturbance Models with a Variogram. A tool that helps
to characterize process disturbances is the standardized variogram, which measures the
variance of the difference between observations 𝑚 steps apart compared to the variance of
the difference of observations one step apart:

𝐺𝑚 =
var[𝑁𝑡+𝑚 −𝑁𝑡]
var[𝑁𝑡+1 −𝑁𝑡]

≡
𝑉𝑚

𝑉1
(15.2.8)

For a stationary process,𝐺𝑚 is a simple function of the autocorrelation function. In fact, then,
𝐺𝑚 = (1 − 𝜌𝑚)∕(1 − 𝜌1). However, the variogramcan be used to characterize nonstationary
as well as stationary behavior. Figure 15.6 shows realizations of 100 observations initially
on target generated by (a) a white noise process, (b) a first-order autoregressive process, and
(c)--(f) IMA(0, 1, 1) processes with 𝜆 = 0.1, 0.2, 0.3, 0.4, respectively. The corresponding
theoretical standardized variograms for these time series models are also shown.

In some imaginary world we might, once and for all, set the controls of a machine and
give a set of instructions to an ever-alert and never-forgetting operator, and this would
yield a perfectly stable process from that point on. In such a case the disturbance might
be represented by a ‘‘white noise’’ series, and its corresponding standardized variogram
𝐺𝑚 would be independent of 𝑚 and equal to 1. But, in reality, left to themselves, ma-
chines involved in production are slowly losing adjustment and wearing out, and left to
themselves, people tend, gradually, to forget instructions and miscommunicate. Thus, for
an uncontrolled disturbance, some kind of monotonically increasing variogram would be
expected. We cannot obtain such a variogram from a linear stationary model, for although
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(a) (b)

(c)

IMA

IMA IMA

IMA

(e)

Stationary
autoregressive

(f)

Nonstationary
IMA

White noise

(d)

First-order 
autoregressiveWhite

noise ϕ = 0.9

λ = 0.1

λ = 0.1

λ = 0.2

λ = 0.2

λ = 0.4

λ = 0.4

λ = 0.3

λ = 0.3

FIGURE 15.6 Realization of white noise, autoregressive, and IMA(0, 1, 1) time series with theo-
retical variograms.

𝐺𝑚 can initially increase with 𝑚, it will always approach an asymptote for such a process.
That this can happen quite quickly, evenwhen successive observations are highly positively
correlated, is illustrated by the variogram shown in the figure for the first-order stationary
autoregressive time series model𝑁𝑡 = 0.9𝑁𝑡−1 + 𝑎𝑡. In this example, even though succes-
sive deviations𝑁𝑡 from the target value have autocorrelation 0.9,𝐺𝑚 is already within 5%
of its asymptotic value after only 20 lags. This implies that, for example, when generated
by such a model, observations 100 steps apart differ little more than those 20 steps apart.

A model that can approximate the behavior of an uncontrolled system that continuously
increases its entropy may be arrived at by thinking of the disturbance as containing two
parts, a transitory part 𝑏𝑡 and a nontransitory part 𝑧𝑡:

𝑁𝑡 = 𝑏𝑡 + 𝑧𝑡 (15.2.9)

The transitory part 𝑏𝑡 is associated only with the 𝑡th observation and is supposed inde-
pendent of observations taken at every other time. Typical sources contributing to 𝑏𝑡 are
measurement and sampling errors. We represent this transitory part by random drawings
from a distribution having mean zero and variance 𝜎2

𝑏
, that is, {𝑏𝑡} is a white noise process.

Sticky Innovation Model. The evolving nontransitory part 𝑧𝑡 represents innovations that
enter the system from time to time and get stuck there. These ‘‘sticky’’ innovations can
arise from a multitude of causes, such as wear, corrosion, and human miscommunication.
Thus, a car tire hits a sharp stone and from that point onward the tread is slightly damaged;
a tiny crater caused by corrosion appears on the surface of a driving shaft and remains
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there; certain details in the standard procedure for taking blood pressure in a hospital are
forgotten and from that point on permanently omitted or changed. It is these nontransitory
or sticky innovations that constitute the unwanted ‘‘signal’’ we wish to cancel out. Every
system is subject to such influences. They continuously drive the increase in entropy if
nothing is done to combat them. Such a sticky innovation model was suggested by Barnard
(1959) and has a variogram that increases linearly with 𝑚. A special case of this model,
which may also be used to approximate it, is the IMA(0, 1, 1)model:

𝑁𝑡 −𝑁𝑡−1 = 𝑎𝑡 − 𝜃𝑎𝑡−1 (15.2.10)

Recall, also, from Appendix A4.3 that if the nontransitory process 𝑍𝑡 is an IMA(0, 1, 1)
process, then the disturbance process 𝑁𝑡 = 𝑏𝑡 + 𝑧𝑡 in (15.2.9) with the added white noise
𝑏𝑡, will again follow an IMA(0, 1, 1)model. Since for the IMAmodel (15.2.10) the EWMA
of equation (15.2.1) with smoothing parameter 𝜃 provides a minimum mean square error
(MMSE) forecast with forecast error 𝑒𝑡−1(1) = 𝑎𝑡, the corresponding discrete ‘‘integral’’
controller of (15.2.6) with 𝑘𝐼 = −𝜆∕𝑔 producesMMSE control with 𝜀𝑡 = 𝑎𝑡. As we discuss
later more formally, this is then a special case of the general MMSE linear feedback control
scheme.

Dynamics. In discussion of the integral control scheme of equation (15.2.6), we assumed
that any change made at the input of the system would have its full effect at the output in
one time interval. The assumed dynamic equation for the response 𝑡 was, therefore,

𝑡 = 𝑔𝐵𝑋𝑡+ (15.2.11)

where we now denote the fixed level of the ‘‘pulsed’’ input 𝑋 in the time interval from 𝑡

until 𝑡 + 1 by𝑋𝑡+. A somewhatmore general assumption is that the system can be described
by the first-order difference equation

(1 + 𝜉∇)𝑡 = 𝑔𝐵𝑋𝑡+ (15.2.12)

(see, for example, (11.3.6)) or, equivalently,

(1 − 𝛿𝐵)𝑡 = (1 − 𝛿)𝑔𝐵𝑋𝑡+ − 1 < 𝛿 < 1 (15.2.13)

where 𝜉 = 𝛿∕(1 − 𝛿) or, equivalently, 𝛿 = 𝜉∕(1 + 𝜉). In that case at time 𝑡 + 1 [cf. (15.1.1)],
the deviation from target after adjustment is

𝜀𝑡+1 = 𝑡+1 +𝑁𝑡+1

so that

𝜀𝑡+1 =
(1 − 𝛿)𝑔
1 − 𝛿𝐵

𝑋𝑡+ + �̂�𝑡(1) + 𝑒𝑡(1)

where �̂�𝑡(1) is some forecast of 𝑁𝑡+1 made at time 𝑡 with forecast error 𝑒𝑡(1). Then, if we
use the adjustment equation

𝑋𝑡+ −𝑋𝑡−1+ = 𝑥𝑡 = − 1 − 𝛿𝐵

(1 − 𝛿)𝑔
[�̂�𝑡(1) − �̂�𝑡−1(1)]

the deviation 𝜀𝑡+1 from the target is equal to the forecast error 𝑒𝑡(1). Thus, again we
substitute the error in forecasting𝑁𝑡+1 for the deviation𝑁𝑡+1 itself. In particular, if �̂�𝑡(1)
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is an EWMA forecast with smoothing parameter 𝜃 and if 𝜆 = 1 − 𝜃, then using (15.2.3)

𝑥𝑡 = (1 − 𝐵)𝑋𝑡+ = −𝜆(1 − 𝛿𝐵)
𝑔(1 − 𝛿)

𝜀𝑡 = −𝜆(1 − 𝛿) + 𝜆𝛿∇
𝑔(1 − 𝛿)

𝜀𝑡 (15.2.14)

Finally, if𝑁𝑡 can be represented by an IMA(0, 1, 1) process with parameter 𝜃, then 𝜀𝑡 = 𝑎𝑡,
and this adjustment will yield MMSE control. After summing (15.2.14), we obtain

𝑋𝑡 = 𝑘0 + 𝑘𝑃 𝜀𝑡 + 𝑘𝐼

𝑡∑
𝑖=1

𝜀𝑖 (15.2.15)

in which

𝑘𝑃 = −𝜆

𝑔
𝜉 and 𝑘𝐼 = −𝜆

𝑔

The control equation (15.2.15) yields the discrete analog of continuous PI controlmentioned
earlier and will hereafter be referred to as (discrete) PI control.

Notice that despite their interesting ramifications, the adjustment equations correspond-
ing to discrete integral control and PI control are extremely simple and intuitive. For discrete
integral control

𝑥𝑡 = 𝑐1𝜀𝑡 (with 𝑐1 = 𝑘𝐼 )

and for PI control

𝑥𝑡 = 𝑐1𝜀𝑡 + 𝑐2𝜀𝑡−1 (with 𝑐1 = 𝑘𝐼 + 𝑘𝑃 and 𝑐2 = −𝑘𝑃 )

They, thus, make the adjustment 𝑥𝑡 depend linearly on the last error and the last two errors,
respectively.

15.2.4 General Minimum Mean Square Error Feedback Control Schemes

Arguing as earlier, it is not difficult to derive theoretical minimum mean square error
feedback control schemes for the more general stochastic and linear dynamic models
discussed in Chapters 4 and 11. Suppose the response to the series of adjustments in the
manipulable input variable 𝑋𝑡 is represented by the dynamic transfer function relation
(11.2.3), written as

𝑡 = 𝐿−1
1 (𝐵)𝐿2(𝐵)𝐵𝑓+1𝑋𝑡+

where 𝐿1(𝐵) and 𝐿2(𝐵) are polynomials in 𝐵. This relation allows for 𝑓 periods of pure
dead time in the response. In addition, assume the noise or process disturbances {𝑁𝑡}may
be represented by the linear stochastic ARIMA process defined by

𝑁𝑡 = 𝜑−1(𝐵)𝜃(𝐵)𝑎𝑡 =

(
1 +

∞∑
𝑖=1

𝜓𝑖𝐵
𝑖

)
𝑎𝑡

where 𝑎𝑡 is a white noise process. Then the error at the output, 𝜀𝑡+𝑓+1 = 𝑌𝑡+𝑓+1 − 𝑇 , at
time 𝑡 + 𝑓 + 1 can be written

𝜀𝑡+𝑓+1 = 𝑡+𝑓+1 +𝑁𝑡+𝑓+1 = 𝐿−1
1 (𝐵)𝐿2(𝐵)𝑋𝑡+ +𝑁𝑡+𝑓+1
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Clearly, the effect of the disturbance at time 𝑡 + 𝑓 + 1 would be canceled if it were
possible to set 𝑋𝑡+ = −𝐿1(𝐵)𝐿−1

2 (𝐵)𝑁𝑡+𝑡+1. Since 𝑓 + 1 is positive, this is not possible,
but intuitivelywe can obtainminimummean square error control by replacing𝑁𝑡+𝑓+1 by its

optimal forecast �̂�𝑡(𝑓 + 1) at origin 𝑡. Nowwe can write𝑁𝑡+𝑓+1 = �̂�𝑡(𝑓 + 1) + 𝑒𝑡(𝑓 + 1),
where �̂�𝑡(𝑓 + 1) is the forecast at time 𝑡 of𝑁𝑡+𝑓+1 and 𝑒𝑡(𝑓 + 1) is the error of the forecast
for𝑓 + 1 steps ahead. The noise𝑁𝑡+𝑓+1 is not known at time 𝑡, but itsminimummean square

error forecast �̂�𝑡(𝑓 + 1) can be deduced from the error sequence 𝜀𝑡, 𝜀𝑡−1, 𝜀𝑡−2 …, which is
observed. Thus, it follows that the control equation 𝑋𝑡+ = −𝐿1(𝐵)𝐿−1

2 (𝐵)�̂�𝑡(𝑓 + 1) will
produce at time 𝑡 + 𝑓 + 1 a level at the output that will cancel out the forecast of the noise
𝑓 + 1 periods ahead, and the error at the output will then be 𝜀𝑡+𝑓+1 = 𝑒𝑡(𝑓 + 1), the error
of the forecast. To express the control equation in terms of the error sequence 𝜀𝑡’s, we can
write

𝜀𝑡 = 𝑒𝑡−𝑓−1(𝑓 + 1) = 𝑎𝑡 + 𝜓1𝑎𝑡−1 +⋯ + 𝜓𝑓𝑎𝑡−𝑓 = 𝐿4(𝐵)𝑎𝑡

and

�̂�𝑡(𝑓 + 1) = 𝜓𝑓+1𝑎𝑡 + 𝜓𝑓+2𝑎𝑡−1 +⋯ = 𝐿3(𝐵)𝑎𝑡

where the operators 𝐿3(𝐵) and 𝐿4(𝐵) are determined from knowledge of the model𝑁𝑡 =
𝜑−1(𝐵)𝜃(𝐵)𝑎 = 𝜓(𝐵)𝑎𝑡 for the noise process. Hence, we have

�̂�𝑡(𝑓 + 1) = 𝐿3(𝐵)𝐿−1
4 (𝐵)𝜀𝑡

Therefore, the MMSE feedback control equation is then

𝑋𝑡+ = −
𝐿1(𝐵)𝐿3(𝐵)
𝐿2(𝐵)𝐿4(𝐵)

𝜀𝑡 (15.2.16)

Alternatively, as is usually convenient, we can define the control action in terms of the
adjustment 𝑥𝑡 = 𝑋𝑡+ −𝑋𝑡−1+ to be made at time 𝑡 as

𝑥𝑡 = −
𝐿1(𝐵)𝐿3(𝐵)(1 − 𝐵)

𝐿2(𝐵)𝐿4(𝐵)
𝜀𝑡

Example: Model with Dead Time. In particular, one more general dynamic model used
above allows for ‘‘dead time’’---that is, pure delay in response to adjustment. To illustrate
the application of equation (15.2.16), consider a first-order system affected by between 𝑓

and 𝑓 + 1 unit intervals of pure delay so that

(1 − 𝛿𝐵)𝑡 = 𝑔(1 − 𝛿)[(1 − 𝑣) + 𝑣𝐵]𝐵𝑓𝑋𝑡−1 (15.2.17)

Combining this with the IMA(0, 1, 1) disturbance model of equation (15.2.10), we can use
the general derivation above to obtain the MMSE control scheme. In terms of the general
model, we have 𝐿2(𝐵)∕𝐿1(𝐵) = 𝑔(1 − 𝛿)(1 − 𝑣∇)∕(1 − 𝛿𝐵), and the IMA noise model
yields �̂�(𝑓 + 1) − �̂�𝑡−1(𝑓 + 1) = 𝜆𝑎𝑡, so that 𝐿3(𝐵) = 𝜆∕(1 − 𝐵), and also

𝑒𝑡−𝑓−1(𝑓 + 1) = [1 + 𝜆(𝐵 + 𝐵2 +⋯ + 𝐵𝑓 )]𝑎𝑡 ≡ 𝐿4(𝐵)𝑎𝑡

Hence, for the adjustment 𝑥𝑡, we have the relation

𝐿2(𝐵)𝐿4(𝐵)𝑥𝑡 = −𝐿1(𝐵)𝐿3(𝐵)(1 − 𝐵)𝜀𝑡
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and we obtain the MMSE control equation as

(1 − 𝜈∇)[1 + 𝜆(𝐵 + 𝐵2 +⋯ + 𝐵𝑓 )]𝑥𝑡 = − 𝜆

𝑔(1 − 𝛿)
(1 − 𝛿𝐵)𝜀𝑡

Thus, this optimal control scheme is not PI but is of the form

𝑥𝑡 = 𝑐1𝑥𝑡−1 + 𝑐3𝑥𝑡−2 +⋯ + 𝑐𝑓 𝑥𝑡−𝑓−1 + 𝑐(𝜀𝑡 − 𝛿𝜀𝑡−1) (15.2.18)

where 𝑐 = −𝜆∕[𝑔(1 − 𝛿)] = 𝑘𝐼 + 𝑘𝑃 .
An interesting example by Fearn and Maris (1991) describes an MMSE scheme of this

kind applied to the control of gluten addition to bread-making flour in a flour mill where
the object was to maintain the protein content of the flour as close as possible to the target
value. A careful process study showed that to an adequate approximation for this process
𝛿 = 0, 𝜈 = 0, 𝑓 = 1, and 𝜆 = 0.25 (𝜃 = 0.75). The adjustment equation was thus

𝑥𝑡 = −0.25𝑥𝑡−1 −
0.25
𝑔

𝜀𝑡 (15.2.19)

The schemewas tested extensively and the authors remarked that it workedwell over a wide
range of manufacturing conditions and was robust to moderate changes in the parameters.

The flour milling example does not yield a PI scheme. Notice, however, that the adjust-
ment equation can be written 𝑥𝑡 = −(1 + 𝜆𝐵)−1(𝜆∕𝑔)𝜀𝑡 = −(1 − 𝜆𝐵 + 𝜆2𝐵2 −⋯)(𝜆∕𝑔)𝜀𝑡.
For the rather small value 𝜆 = 0.25, if we truncate the expansion after the first-order term,
we obtain the PI scheme 𝑥𝑡 = 𝑐1𝜀𝑡 + 𝑐2𝜀𝑡−1 with 𝑐1 = −𝜆∕𝑔 and 𝑐2 = 𝜆2∕𝑔. In practice, the
behavior of this PI scheme will be almost identical to that of (15.2.19). More generally, we
will find that PI schemes have an importance in addition to that conferred on them by their
producing MMSE schemes for certain simple models. We therefore next consider how PI
schemes can be put in effect using simple feedback control charts.

15.2.5 Manual Adjustment for Discrete Proportional--Integral Schemes

The equation for the adjustment 𝑥𝑡 = 𝑋𝑡 −𝑋𝑡−1 for the discrete PI scheme (15.2.15) may
also be written

𝑥𝑡 = −𝐺(1 + 𝑃∇)𝜀𝑡 (15.2.20)

where

−𝐺 = 𝑘𝐼 and 𝑃 =
𝑘𝑃

𝑘𝐼
(15.2.21)

or equivalently, 𝑘𝐼 = −𝐺 and 𝑘𝑃 = −𝑃𝐺, and 𝑃 is zero for pure integral control. In
the special case where the stochastic and dynamic models are defined by (15.2.10) and
(15.2.12), respectively, the PI control equation (15.2.15) yields MMSE when𝐺 = 𝜆∕𝑔 and
𝑃 = 𝜉.

Equation (15.2.20) shows howwe can make a manual adjustment chart to put PI control
into effect. We have already illustrated the use of such a chart for the metallic thickness
example in Figure 15.3. For further illustration, we adapt an example discussed by Box
et al. (1978). In a dyeing process, the quality characteristic of interest was the color index.
Deviations 𝜀𝑡 from the desired target value of 𝑇 = 9 were compensated by changing the
dye addition rate𝑋. For this example, the disturbance in the color index was approximated
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by an IMA(0, 1, 1) model with 𝜆 = 0.3, and a change of 1 unit in the dye addition rate X
eventually produced a change of 0.06 unit in the color index so that 𝑔 = 0.06.

Suppose at first that 𝜉 were zero so that the dynamic model was simply 𝑡 = 𝑔𝐵𝑋𝑡+,
implying that a change in the input𝑋𝑡 was fully effective at the output in one time interval.
Then,

−𝐺 = 𝑘𝐼 = −𝜆

𝑔
= −0.30

0.06
= −5 and 𝑘𝑃 = 0 (15.2.22)

The MMSE integral feedback equation would be

𝑋𝑡 = 𝑘0 −𝐺

𝑡∑
𝑖=1

𝜀𝑡 = 𝑘0 − 5
𝑡∑

𝑖=1
𝜀𝑖 (15.2.23)

and at time 𝑡 the corresponding adjustment would be

𝑥𝑡 = −𝐺𝜀𝑡 = −5𝜀𝑡 (15.2.24)

Appropriate action is read off the manual adjustment chart in Figure 15.7 with scales such
that one unit deviation in the color index corresponds to −𝐺 = −5 units of adjustment of
the dye addition rate. Action is taken after each observation by recording the value of the
color index (indicated by a filled dot) and reading off on the left-hand scale the required
adjustment to the dye addition rate. Thus, in the diagram at time 1:30 p.m., the color index
was 9.14 calling for a reduction of −0.7 in the dye addition rate.

Now consider the case where, due perhaps to incomplete mixing of the dye, the pro-
cess was subject to inertia, which was approximated by a first-order dynamic system
as in (15.2.13) with 𝛿 = 0.2 and consequently 𝜉 = 𝛿∕(1 − 𝛿) = 0.25. Thus, as before,
𝐺 = 0.3∕0.06 = 5 and now 𝑃 = 𝜉 = 0.25. Thus, the appropriate MMSE control equation
(15.2.15) would call for proportional--integral action such that

𝑋𝑡 = 𝑘0 − 1.25𝜀𝑡 − 5
𝑡∑

𝑖=1
𝜀𝑖 (15.2.25)

FIGURE 15.7 Manual adjustment chart for discrete integral control.
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FIGURE 15.8 Manual adjustment chart putting into effect discrete integral plus proportional
control.

The corresponding adjustment equation is

𝑥𝑡 = −5(1 + 0.25∇)𝜀𝑡 (15.2.26)

To put this into effect manually, the chart in Figure 15.8 may be employed with the vertical
dashed lines placed at a fraction 𝑃 = 𝑘𝑃∕𝑘𝐼 = 0.25within each sampling interval. At each
step the operator extrapolates the line through the last two points to the next dashed line
and reads off the appropriate adjustment. Thus, in this figure, the last two readings, at 1:15
and 1:30 p.m., were 9.06 and 9.14. The projected value of 9.16 requires reduction of the
dye addition rate by −0.8 unit. No exactness is required. A line extrapolated by eye is good
enough. As we later explore other uses of PI charts, we will sometimes use schemes in
which 𝑃 is negative. This calls for interpolation between the last two points rather than
extrapolation.

Rounded Adjustment. The feedback schemes as so far discussed require that we take some
action at every opportunity---in this example, every 15 minutes. In practice, usually little
is lost if the ‘‘rounded’’ adjustment chart indicated in Figure 15.9 is used. Such a chart
is easily constructed from the original chart by dividing the action scale into bands. The
adjustment made when an observation falls within the band is that appropriate to the middle
point of the band on an ordinary chart. Figure 15.9 shows a rounded chart in which possible
action is limited to −2-, −1-, 0-, 1-, or 2-unit catalyst formulation changes. The increase in
mean square error (usually small), which results from using the rounded scheme, is often
outweighed by the convenience of working with a small number of standard adjustments.
A convenient width for the rounded bands is about one standard deviation 𝜎𝜀 or a little
less. Justification for the use of such charts was provided by Box and Jenkins (1976,
Section 13.1), where consideration is given to the effects of errors in the adjustment 𝑥𝑡.
Note that the use of all these manual adjustment charts requires no calculation---they are
simple and entirely graphical.
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FIGURE 15.9 Rounded adjustment chart for proportional--integral control.

15.2.6 Complementary Roles of Monitoring and Adjustment

It is sometimes complained that feedback control can conceal the nature of a compensated
disturbance that otherwise might be eliminated. However, when combinedwith appropriate
monitoring, this need not happen. Adjustment schemes and monitoring schemes are com-
plementary and should be used in consort. Figure 15.10 illustrates the point. This shows
the behavior of a simulated feedback scheme in which the disturbance is an IMA(0, 1, 1)
process with 𝜆 = 0.2 and the process dynamics are represented by a first-order system
(15.2.13) with 𝛿 = 0.5 and 𝑔 = 1.0. The calculations were made assuming that the system
is controlled by the PI controller,

−𝑋𝑡 = constant + 0.20𝜀𝑡 + 0.20
𝑡∑

𝑖=1
𝜀𝑖 (15.2.27)

which, for these stated parameter values, produces MMSE. Although this is not usu-
ally done, the control action 𝑋𝑡 in Figure 15.10(b), as well as the deviation from target
{𝜀𝑡} in Figure 15.10(d), can be charted (or better still, displayed on the screen of a pro-
cess computer). Assuming the dynamics known, the exact compensation 𝑡 shown in
Figure 15.10(c) can also be computed and hence the original disturbance 𝑁𝑡 of
Figure 15.10(a) can be reconstructed.

Examination of these monitoring displays motivates a generalized concept of common
and special causes. The disturbance and the dynamic system together define the common
cause system, which is taken account of in the design of the controller. But management
action could change the system and hence the appropriate form of control. For example,
suppose it was discovered that in the operation of the system, the pattern of the feed-
back control action 𝑋𝑡 shown in Figure 15.10(b) mirrored that of a particular impurity in
the feedstock. If this correlation checked out as a causative relation, management might
decide to change the control system either by removing the impurity from the feedstock
before it reached the process, or if that were impossible or too expensive, by measuring it
and compensating for it by appropriate feedforward control.
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FIGURE 15.10 (a) Disturbance 𝑁𝑡, (b) feedback control action 𝑋𝑡, (c) compensation of the dis-
turbance 𝑡, and (d) resulting deviation 𝜀𝑡 from the target value.

In addition, a special cause producing a temporary deviation from the underlying system
model, induced perhaps by misoperation of the controller or a mistake by the operator, can
be evidenced in the residual sequence {𝜀𝑡} leading to remedial action. To illustrate this, we
have added a deviation of size 3𝜎𝑎 to the 30th value of the disturbance𝑁𝑡 in Figure 15.10(a).
After the disturbance has been subjected to feedback control, this outlier is clearly visible
in the record of the deviations 𝜀𝑡 from target plotted as a Shewhart chart in Figure 15.10(d).
The control limits can be calculated directly from the models used to design the controller
or from the record of the 𝜀𝑡’s during stable operation. Also, as noted later in Section 15.6,
more specific checks may be applied to detect possible changes in the system parameters.

Assuming the models correct, in this particular example the residual 𝜀𝑡’s will be a
white noise sequence. For control schemes that are not MMSE or that allow for dead time,
however, the sequence {𝜀𝑡} will, in general, be autocorrelated. One way to allow for this is
to filter {𝜀𝑡} suitably to produce a sequence that, given the assumed model, will be white
noise. Appropriate checks may then be applied to that series.
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15.3 EXCESSIVE ADJUSTMENT SOMETIMES REQUIRED BY MMSE
CONTROL

One rationalization for the use of integral control and proportional--integral control is that
for perhaps the simplest models for disturbance [equation (15.2.10)] and dynamics [equa-
tions (15.2.12) and (15.2.13)], which approximate reality, these forms of feedback adjust-
ment can produce minimummean square error.2 Unfortunately,MMSE control sometimes
requires unacceptably largemanipulationsof the compensating variable𝑋𝑡. For illustration,
consider again the situation where to an adequate approximation the disturbance model is
the IMA(0, 1, 1) model of equation (15.2.10) with parameter 𝜃 and the dynamic model is
the first-order difference equation (15.2.13) with parameters 𝛿 and 𝑔. Then, the MMSE
feedback control adjustment scheme can be written (see (15.2.14)) as

𝑥𝑡 = −𝜆

𝑔

1 − 𝛿𝐵

1 − 𝛿
𝜀𝑡 = − 𝜆

𝑔(1 − 𝛿)
(𝜀𝑡 − 𝛿𝜀𝑡−1) (15.3.1)

where 𝜆 = 1 − 𝜃 and 𝜀𝑡 = 𝑎𝑡. If 𝛿 is negligibly small, MMSE control will be obtained with
𝑥𝑡 = −(𝜆∕𝑔)𝜀𝑡 and let us then write

𝜎2
𝑥
= var[𝑥𝑡] =

𝜆2

𝑔2
𝜎2
𝑎
= 𝑘 (15.3.2)

But then, when 𝛿 is not negligible,

𝜎2
𝑥
= 𝑘

[
1 + 𝛿2

(1 − 𝛿)2

]

Thus, if 𝛿 were near its upper limit of unity, 𝜎2
𝑥
could become very large. For example, with

𝛿 = 0.9 (so that only 1/10 of the eventual change produced by a step input is experienced
in the first interval), 𝜎2

𝑥
= 181𝑘. In fact, as 𝛿 approaches unity, the MMSE control action

in equation (15.3.1) takes on more and more of an ‘‘alternating’’ character,3 the adjust-
ment made at time 𝑡 reversing a substantial portion of the adjustment made at time 𝑡 − 1.
The reason for such alternating and variable adjustment can also be understood from the
consideration that with 𝛿 = 0.9, the constant 𝑃 = 𝜉 = 9 of the manual adjustment chart for
MMSE control would call for extrapolation of the line joining 𝜀𝑡−1 and 𝜀𝑡 by nine sampling
intervals! In practice, constrained schemes can be used that at the expense of rather small
increases in MSE at the output require much less compensatory manipulation.

2This theoretical formulation, which results in a discrete PI controller yielding MMSE, is, however, not unique. For
example, a PI controller givingMMSEcan beobtained from themodels𝑡 = 𝑔𝐵𝑋𝑡 and𝑁𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵

2)𝑎𝑡,
as well as the dynamics model (15.2.13) with IMA(0, 1, 1) noise model (15.2.10).
3A value of 𝛿 = 0.9 corresponds to a time constant for the system of over nine sampling intervals. The occurrence
of such a value would immediately raise the question as to whether the sampling interval being taken was too
short; whether in fact the inertia of the process was so large that little would be lost by less frequent surveillance.
Now (see Appendix A15.2) the question of the choice of sampling interval must depend on the nature of the noise
that infects the system. Because the properties of the noise usually reflect system inertia as well, in many cases it
would be concluded that the sampling interval should be increased.
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15.3.1 Constrained Control

When the adjustments 𝑥𝑡 form a stationary time series, such constrained control schemes
can be obtained by finding an unconstrained minimum of the expression

𝜎2
𝜀
+ 𝛼𝜎2

𝑥
(15.3.3)

where 𝛼 can be regarded as an undeterminedmultiplier that allocates the relative quadratic
costs of variations of 𝜀𝑡 and 𝑥𝑡. Such a scheme will be called a constrained MMSE scheme
or CMMSE scheme. In particular, we have seen that for an IMA(0, 1, 1) disturbance and
first-order dynamics, the unconstrainedMMSE scheme calls for an adjustment of

𝑥𝑡 = −𝜆

𝑔
(1 + 𝜉∇)𝜀𝑡 = −𝜆(1 − 𝛿𝐵)

𝑔(1 − 𝛿)
𝜀𝑡 (15.3.4)

It is shown inAppendixA15.1 (see equation (A15.1.27)) that the correspondingCMMSE
is of the form

𝑥𝑡 = [𝑘1 + (1 − 𝜆)𝑘0]𝑥𝑡−1 − (1 − 𝜆)𝑘1𝑥𝑡−2 −
𝜆(1 − 𝑘0)(1 − 𝛿𝐵)

𝑔(1 − 𝛿)
𝜀𝑡 (15.3.5)

where 𝑘0 and 𝑘1 are fairly complicated functions of the parameters 𝑔, 𝜆, 𝛿, and 𝛼. A table
for applying such control is also given in Appendix A15.1.

For illustration suppose that 𝜆 = 0.6, 𝛿 = 0.5, and 𝑔 = 1; then the optimal unconstrained
MMSE scheme is

𝑥𝑡 = −1.2(1 − 0.5𝐵)𝜀𝑡 (15.3.6)

with

𝜎2
𝑥
= (0.6)2

[
1 + (0.5)2

(1 − 0.5)2

]
𝜎2
𝑎
= 1.80𝜎2

𝑎

from (15.3.2)--(15.3.2a), and 𝜎2
𝜀
= 𝜎2

𝑎
. Suppose that this amount of variation in the adjust-

ment 𝑥𝑡 produced difficulties in process operation and it was desired to reduce it so that 𝜎
2
𝑥

was about 0.50𝜎2
𝑎
. Use of Table A15.2 shows that this can be achieved with the scheme

𝑥𝑡 = 0.32𝑥𝑡−1 − 0.06𝑥𝑡−2 − (0.57 × 1.2)(1 − 0.5𝐵)𝜀𝑡 (15.3.7)

which reduces 𝜎2
𝑥
to 0.47𝜎2

𝑎
with 𝜎2

𝜀
= 1.07𝜎2

𝑎
. Thus, an almost fourfold reduction in 𝜎2

𝑥

is produced for an increase of only 7% in the output variance. Such optimal constrained
schemes are extremely attractive since they often produce a very large reduction in 𝜎2

𝑥
for

only a small increase in 𝜎2
𝜀
. See, for example, Whittle (1963), Tunnicliffe Wilson (1970a,

1970b), MacGregor (1972), Box and Jenkins (1976), Harris et al. (1982), Aström and
Wittenmark (1984), Rivera et al. (1986), and Bergh andMacGregor (1987). Unfortunately,
such schemes can become complicated.

In practice, however, exact ‘‘optimality’’ is to some extent an illusion because assump-
tions are never true. It turns out that a form of constrained control, which is almost as good
as CMMSE control, can often be obtained using an appropriately tuned PI controller. Such
a controller has the advantage that it is simple and, in particular, is easily adapted to manual
control. The following example shows how suitably tuned PI controllers can do almost as
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TABLE 15.1 Illustrative Results Comparing Different Control Schemes for Models (15.2.13)
and (15.2.10), with 𝒈= 𝟎.𝟒, 𝜹 = 𝟎.𝟓, 𝝀 = 𝟎.𝟒, and 𝝈𝟐

𝐚 = 𝟏

𝜎2
𝜀

𝜎2
𝑥

(a) MMSE control −𝑥𝑡 = (1 + ∇)𝜀𝑡 1 5

(b) Optimal constrained control
−𝑥𝑡= −0.82𝑥𝑡−1 − 0.21𝑥𝑡−2

−0.39𝜀𝑡 + 0.19𝜀𝑡−1
1.20 0.25

(c) Optimal constrained PI control −𝑥𝑡 = 0.52(1 − 0.25∇)𝜀𝑡 1.20 0.25

well as optimal constrained schemes in producing great reductions in the variance 𝜎2
𝑥
of

the adjustment for only modest increases in the output variance 𝜎2
𝜀
.

As an illustration, consider once again the situation where the process disturbance is
represented by an IMA(0, 1, 1) process of (15.2.10) and the process dynamics by the first-
order system (15.2.13), that is,

(1 − 𝛿𝐵)𝑡 = (1 − 𝛿)𝑔𝐵𝑋𝑡+

and suppose that 𝜆 = 0.4, 𝜎2
𝑎
= 1, 𝑔 = 0.4, and 𝛿 = 0.5, so that 𝜉 = 𝛿∕(1 − 𝛿) = 1. Then

minimummean square error control is achieved by the PI scheme (a) shown in Table 15.1,
yielding an output variance 𝜎2

𝜀
of 1.00 with 𝜎2

𝑥
= 5. Using the optimal constrained control

equation (b) in Table 15.1, it is possible to achieve a 20-fold reduction in 𝜎2
𝑥
(to 0.25) at the

expense of a 20% increase in 𝜎2
𝜀
to 1.20. But almost nothing is lost by, instead, using the

much simpler optimal constrained PI controller (c) in Table 15.1 for which, to two-decimal
accuracy, the same result is obtained. Notice that if we use a manual adjustment chart for
theMMSE PI scheme (a), it would be necessary to extrapolate one whole time period ahead
from the current time 𝑡. However, for the constrained PI control (c), we must interpolate a
quarter of a period back from the current time 𝑡. This accounts for the much greater stability
of the latter scheme. A fuller discussion of this topic can be found in Box and Luceño
(1993).

15.4 MINIMUM COST CONTROLWITH FIXED COSTS OF ADJUSTMENT
ANDMONITORING

From the point of view of cost, we can summarize the discussion so far as follows. If we
assume that the only control cost we need to consider is that of being off target and that
this cost is proportional to the square of the deviation from target, unconstrained minimum
mean square error control implies minimization of the total cost of the scheme. Suppose,
however, that there is an additional quadratic loss associated with the size of the adjustment
𝑥𝑡, and that 𝛼 is some measure of the relative cost of being off target and of making
adjustments. Then, 𝜎2

𝜀
+ 𝛼𝜎2

𝑥
can be a measure of the overall cost of the scheme, and

minimization of this quantity can produce a control scheme yielding minimum cost, and,
as we have seen, suitably chosen PI schemes can often do almost as well. In either case, in
practice, it is rarely easy to gauge 𝛼, in terms of relative costs. Instead, choice of a suitable
scheme can be made by empirical judgment of what constitutes a satisfactory reduction of
𝜎2
𝑥
in exchange for an acceptable increase in 𝜎2

𝜀
. The same kinds of considerations apply to

systems for which there are fixed adjustment and monitoring costs.
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15.4.1 Bounded Adjustment Scheme for Fixed Adjustment Cost

Especially in the ‘‘parts’’ industries, situations occur where an adjustment often has im-
mediate effect but entails a fixed cost incurred, for example, by stopping a machine or
changing a tool.

Bounded Adjustment Charts. It was shown by Box and Jenkins (1963) that in the latter
case, on the assumption of a quadratic off-target loss and an IMA disturbance, the minimum
cost feedback control is not achieved by repeated adjustment after each observation. Instead,
it requires that an adjustment be made only when an exponentially weighted average �̂�𝑡(1)
of the deviations from target falls outside some fixed limits, ±𝐿, say. We call this bounded
adjustment. The adjustment that should then be made is the one that will produce a change
−�̂�𝑡(1) at the output. Such an adjustment can be put into effect manually using a ‘‘bounded
adjustment chart’’ such as that discussed below, or automatically.

A bounded adjustment chart such as that shown in Figure 15.11 is superficially similar to
that proposed for process monitoring by Roberts (1959). However, its purpose and design
are different. The purpose is to decide when, and by how much, to adjust the process. The
boundary lines are designed to minimize the overall cost, taking into account both the cost
of making adjustments and the cost of being off target. Their purpose is not to discover
statistically significant deviations from target. As the cost of adjustment approaches zero,
the lines come closer together, converging on the target value when the cost of adjustment
is zero and so yielding the ‘‘repeated adjustment’’ MMSE scheme.

Figure 15.11 shows an example of such a chart for themetallic thickness control problem
that would be appropriate if there had been a fixed cost for changing the deposition rate𝑋.
As before, 𝜆 = 0.2, 𝑔 = 1.2, and 𝜎𝑎 = 11. At time 𝑡, an open circle represents the deviation
from target 𝜀𝑡 obtained after periodically changing the deposition rate 𝑋𝑡 as required by
the chart. A filled circle represents an appropriate exponentially weighted moving average

FIGURE 15.11 Bounded adjustment chart: the open circles are the thickness deviations 𝜀𝑡 (after
adjustment), the filled circles are their EWMA forecasts �̂�𝑡−1(1) of these deviations.
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forecast. This is conveniently updated using the formula

�̂�𝑡(1) = 𝜆𝜀𝑡 + 𝜃�̂�𝑡−1(1)

The particular chart shown has boundary lines at 80 ± 8, that is, at 𝑇 ± 0.720𝜎𝑎. We
discuss the rationale for this choice below. To understand how the chart operates, suppose
initially that the deposition rate is some value 𝑋0. This will remain unchanged until time
𝑡 = 13, when the forecasted value 88.7 (i.e., �̂�𝑡(1) = 8.7) falls outside the upper limit and
the chart signals that a change is needed in the deposition rate that will reduce the thickness
by −8.7. An adjustment of

𝑋13 −𝑋0 = −8.7∕1.2

is now made in the deposition rate. Notice that such an adjustment does not upset the
calculation of the next EWMA. For example, the forecasted thickness at time 𝑡 = 14 is

(0.2 × 81.3) + (0.8 × 80.0) = 80.3

where 80 is the appropriate previous forecasted value after the adjustment has been made
to bring the process on target.

15.4.2 Indirect Approach for Obtaining a Bounded Adjustment Scheme

Tables for calculating the positions of the appropriate limit lines forminimum cost schemes
in terms of the cost of being off target and the cost of adjustmentwere provided by Box and
Jenkins (1963), Box et al. (1974), and Box and Kramer (1992). However, as we said earlier,
these costs are not always easy to assess, and it seems more practical to use these results to
provide an envelope of minimum cost schemes and then to choose among them empirically
by considering the increased standard deviation at the output obtained in exchange for a
longer interval betweenmaking adjustments. This approachwas illustrated by Box (1991b).
Table 15.2 shows theoretical average adjustment intervals (AAIs) and percent increase in
standard deviation (ISD) of the adjusted process for various values of 𝜆 and 𝐿∕𝜎𝑎, where
limit lines of the bounded adjustment scheme are at 𝑇 ± 𝐿.

For illustration, consider again the thickness adjustment example. Entering Table 15.2
with 𝜆 = 0.2 shows how much inflation in the error standard deviation would occur for a
bounded scheme for various choice of 𝐿∕𝜎𝑎. Thus, if 𝐿∕𝜎𝑎 were set equal to 0.5, a 2.6%
increase in the standard deviation would occur, but on the average, adjustments would be
needed only every 10 intervals. If 𝐿∕𝜎𝑎 were set equal to 1.0, a 9% increase in standard
deviation would result, but the AAI would be 32. The scheme depicted in Figure 15.11 is a
compromise in which 𝐿∕𝜎𝑎 was set equal to 0.72, which rough interpolation shows would
give a 5% increase in the standard deviation with an AAI of about 20. To achieve this, 𝐿
was set equal to 8 ≈ 0.72 × 11. AMonte Carlo study using the 100 observations of metallic
thickness graphed in Figure 15.2 shows an actual inflation of the standard deviation of
8.5% for this example with an AAI of 14. In view of the rather limited sample size, the
agreement must be considered quite good.

Interpolation Chart. Any degree of technological sophistication can be used in applying
these ideas: anything from transducers taking actions calculated by computers to operators
taking actions based on a simple interpolation chart such as that shown in Figure 15.12,
which used a pushpin and a piece of thread to indicate the appropriatemanual adjustment.
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TABLE 15.2 Average Adjustment Interval (AAI) and Percent Increase in Standard Deviation
of Output (ISD) for Various Choice of 𝑳∕𝝈𝒂 Where the Limit Lines Are at 𝑻 ±𝑳

Percent Increase
in Standard
Deviation

𝜆 𝐿∕𝜎𝑎 AAI ISD

0.1 0.5 32 2.4
1.0 112 9
1.5 243 18
2.0 423 30

0.2 0.5 10 2.6
1.0 32 9
1.5 66 20
2.0 112 32

0.3 0.5 5 2.6
1.0 16 10
1.5 32 20
2.0 52 33

0.4 0.5 4 2.6
1.0 10 10
1.5 19 21
2.0 32 34

0.5 0.5 3 2.5
1.0 7 10
1.5 13 21
2.0 21 35

Source: Box (1991b).

In the situation depicted, a previous forecast made at time 𝑡 − 1was 86 and the observation,
which has just been made at time 𝑡, is 66. Just before the current time 𝑡, therefore, the
location of the pushpin on the current forecast scale would be at 86 with the thread hanging
down from the pin. As soon as the actual value 66 became available, the thread would be
pulled tightly to join the point 66 on the right-hand scale. The updated forecast of 82 would
then be read off on the intermediate scale. This value lies within the boundaries, so that
pushpin would be moved down to this new current forecast value with the thread hanging
loose again until the next observation became available to produce a new updated forecast.
As soon as an updated forecast fell outside either boundary, the appropriate adjustment
in deposition rate to cancel out the forecasted deviation would be made, and the pushpin
would then be placed on the target value ready for the next interpolation.

15.4.3 Inclusion of the Cost of Monitoring

It was shown by Box and Kramer (1992) how these results could be extended to the case
where the cost of monitoring the process had also to be taken into account. They considered
the possibility of further reducing cost by less frequent monitoring at an interval 𝑚 instead
of at a unit interval. They provided charts for obtaining minimum cost schemes given
that in addition to 𝜎𝑎 and 𝜆 (estimated from plant data), three cost constants were known:
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FIGURE 15.12 Interpolation chart to update the forecasted value of thickness and to indicate when
and by how much the deposition rate should be adjusted.

(1) the (assumed quadratic) cost of being off target, (2) the fixed cost of making a change,
and (3) the fixed monitoring cost of taking an observation. Given this information, the
corresponding values of 𝐿∕𝜎𝑎 and of 𝑚 yielding minimum cost could be read off their
charts.

Again, these three individual costs may not be easy to determine, and Box and Luceño
(1993) used their results to allow the choice of scheme to be based on empirical judgment.
The charts shown in Figure 15.13 give the values of the AAI and the percent ISD with
respect to 𝜎𝑎 corresponding to value of the nonstationarity measure 𝜆 = 0.1(0.1)0.6, 0.8,
and 1.0, the standardized action limit 𝐿∕𝜎𝑎 = 0.0(0.25) 2.5, and the monitoring interval
𝑚 = 1, 2, 3,…. The charts cover small tomoderate increases in the output standard deviation
such as might be needed in practice. Thus, the larger values of 𝑚 appear only with smaller
values of 𝜆.

For example, we saw earlier that by using a bounded adjustment chart with𝐿∕𝜎𝑎 = 0.72
instead of a continuous scheme, the average adjustment interval could be increased to about
20 at the cost of an increase of 5% in the standard deviation. This is confirmed by the chart
of Figure 15.13 for 𝜆 = 0.2, which also shows, for example, that if we monitor the process
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FIGURE 15.13 Charts for 𝜆 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, and 1.0 showing AAIs and ISDs
obtained from various choices of 𝐿∕𝜎𝑎 and 𝑚.
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Nt

ut

P

Unobserved
disturbance

Observed
disturbance

Compensating
variable

Deviation from the output εt = Nt

L1(B)ω(B)

L2(B)δ(B)
{ut – (b – f – 1)–ut – 1 – (b – f – 1)}

δ–1(B)ω(B)Bb L1
–1(B)L2(B)Bf+1

δ–1(B)ω(B)ut – b –δ–1(B)ω(B)ut – f – 1+

FIGURE 15.14 System at time 𝑡 subject to an observed input disturbance 𝑢𝑡 and unobserved
disturbance 𝑁𝑡, with potential compensating variable 𝑋𝑡.

half as frequently (𝑚 = 2) and we again set 𝐿∕𝜎 = 0.72, we could obtain about the same
average adjustment interval (20) but with an 8% increase in the standard deviation.

15.5 FEEDFORWARD CONTROL

We now consider the design of discrete feedforward control schemes that give minimum
mean square error at the output. A situation arising in the manufacture of a polymer
is illustrated in Figure 15.14. The viscosity 𝑌𝑡 of the product is known to vary in part
due to fluctuations in the feed concentration 𝑢𝑡, which can be observed but not changed.
The steam pressure 𝑋𝑡 is a control variable that is measured, can be manipulated, and is
potentially available to alter the viscosity by any desired amount and hence compensate
potential deviations from target. The total effect in the output viscosity of all other sources
of disturbance at time 𝑡 is denoted by𝑁𝑡.

15.5.1 Feedforward Control to Minimize Mean Square Error at the Output

We can suppose that 𝑌𝑡, 𝑢𝑡, 𝑋𝑡,𝑁𝑡 are deviations from reference values, which are such
that if the conditions 𝑢 = 0, 𝑋 = 0, 𝑁 = 0 were continuously maintained, then the process
would remain in an equilibrium state such that the output was exactly on the target value
𝑌 = 0.
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The transfer function model, which connects the observed but uncontrollable input
disturbance 𝑢𝑡 (feed concentration) and the output 𝑌𝑡 (viscosity), is assumed to be

1𝑡 = 𝛿−1(𝐵)𝜔(𝐵)𝐵𝑏𝑢𝑡

Now, changes will be made in 𝑋 at times 𝑡, 𝑡 − 1, 𝑡− 2,… immediately after the obser-
vations 𝑢𝑡, 𝑢𝑡−1, 𝑢𝑡−2,… are taken. Hence, we obtain a ‘‘pulsed’’ input, and we denote the
level of 𝑋 in the interval 𝑡 to 𝑡 + 1 by 𝑋𝑡+. For this pulsed input, it is assumed that the
transfer function model, which connects the compensating variable 𝑋𝑡 (steam pressure)
and the output 𝑌𝑡 (viscosity), has the effect

2𝑡 = 𝐿−1
1 (𝐵)𝐿2(𝐵)𝐵𝑓+1𝑋𝑡+

where 𝐿1(𝐵) and 𝐿2(𝐵) are polynomials in 𝐵. Then, if no control is exerted (the potential
compensating variable 𝑋𝑡 is held fixed at 𝑋𝑡 = 0), the total error or deviation from target
value 𝑇 = 0, 𝜀𝑡 = 𝑌𝑡 − 𝑇 , in the output viscosity will be

𝜀𝑡 = 𝛿−1(𝐵)𝜔(𝐵)𝑢𝑡−𝑏 +𝑁𝑡

Clearly, it ought to be possible to compensate the effect of the measured parts of the
overall disturbance by manipulating𝑋𝑡. Now at time 𝑡, and at the point 𝑃 in Figure 15.14,

1. The total effect of the input disturbance (𝑢) is

𝛿−1(𝐵)𝜔(𝐵)𝑢𝑡−𝑏

2. The total effect of the compensation (𝑋) is

𝐿−1
1 (𝐵)𝐿2(𝐵)𝑋𝑡−𝑓−1+

and we assume that the effects of the input influences 𝑢 and 𝑋 on the output 𝑌 are
additive. Then, the effect of the observed input disturbance 𝑢 will be canceled if we
set

𝐿−1(𝐵)𝐿2(𝐵)𝑋𝑡−𝑓−1+ = −𝛿−1(𝐵)𝜔(𝐵)𝑢𝑡−𝑏

Thus, the control action at time 𝑡 should be such that

𝐿−1
1 (𝐵)𝐿2(𝐵)𝑋𝑡+ = −𝛿−1(𝐵)𝜔(𝐵)𝑢𝑡−(𝑏−𝑓−1) (15.5.1)

Case 1: 𝒃 ≥ 𝒇 + 𝟏. Now at time 𝑡, the values 𝑢𝑡+1, 𝑢𝑡+2… are unknown. The control action
(15.5.1) is directly realizable, therefore, only if (𝑏 − 𝑓 − 1) ≥ 0, in which case the desired
control action at time 𝑡 is to set the manipulated variable𝑋 to the level

𝑋𝑡+ = −
𝐿1(𝐵)𝜔(𝐵)
𝐿2(𝐵)𝛿(𝐵)

𝑢𝑡−(𝑏−𝑓−1) (15.5.2)

Alternatively, it is often more convenient to define the control action in terms of the change
𝑥𝑡 = 𝑋𝑡+ −𝑋𝑡−1+, which is to be made in the level of𝑋 immediately after the observation
𝑢𝑡 has come to hand. This is

𝑥𝑡 = −
𝐿1(𝐵)𝜔(𝐵)
𝐿2(𝐵)𝛿(𝐵)

(𝑢𝑡−(𝑏−𝑓−1) − 𝑢𝑡−1−(𝑏−𝑓−1)) (15.5.3)
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The situation is illustrated in Figure 15.14. The effect at 𝑃 from the control action is
−𝛿−1(𝐵)𝜔(𝐵)𝑢𝑡−𝑏, and this exactly cancels the effect at 𝑃 of the input disturbance. The
component of the deviation from target due to 𝑢𝑡 is (theoretically at least) exactly eliminated
at the observation times, and only the component 𝑁𝑡 due to the unobserved disturbance
remains.

Case 2: (𝒃 − 𝒇 − 𝟏) Negative. It can happen that 𝑓 + 1 > 𝑏. This means that an observed
input disturbance reaches the output before it is possible for compensating action to become
effective. In this case the action in (15.5.2) is not realizable because at time 𝑡, when the action
is to be taken, the relevant value 𝑢𝑡+(𝑓+1−𝑏) of the input disturbance is not yet available.
One would usually avoid this situation if one could (if some quicker acting compensating
variable could be used instead of 𝑋), but sometimes such an alternative is not available.

Now with 𝑢′
𝑡
= 𝛿−1(𝐵)𝜔(𝐵)𝑢𝑡 represented by the linear model (see, for example, Box

et al. (1974))

𝑢′
𝑡
=

(
1 +

∞∑
𝑖=1

𝜓 ′
𝑖
𝐵𝑖

)
𝛼𝑡

where 𝛼𝑡 is a white noise process with mean zero and variance 𝜎2
𝛼
, then

𝑢′
𝑡+𝑓+1−𝑏 = �̂�′

𝑡
(𝑓 + 1 − 𝑏) + 𝑒′

𝑡
(𝑓 + 1 − 𝑏)

In this expression

𝑒′
𝑡
(𝑓 + 1 − 𝑏) = 𝛼𝑡+𝑓+1−𝑏 + 𝜓 ′

1𝛼𝑡+𝑓−𝑏 +⋯ + 𝜓 ′
𝑓−𝑏𝛼𝑡+1

is the forecast error. Then, we can write the right-hand side of (15.5.2) in the form

−𝐿1(𝐵)𝐿−1
2 (𝐵)�̂�′

𝑡
(𝑓 + 1 − 𝑏) − 𝐿1(𝐵)𝐿−1

2 (𝐵)𝑒′
𝑡
(𝑓 + 1 − 𝑏)

Now, 𝑒′
𝑓
(𝑓 + 1 − 𝑏) is a function of the uncorrelated randomvariates 𝛼𝑡+ℎ(ℎ ≥ 1), which

have not yet occurred at time 𝑡 and which are uncorrelated with any variable known at time
𝑡 (and the 𝛼𝑡+ℎ are therefore not forecastable). It follows that the optimal (minimum mean
square error) action is achieved by setting

𝑋𝑡+ = −
𝐿1(𝐵)
𝐿2(𝐵)

�̂�′
𝑡
(𝑓 + 1 − 𝑏) (15.5.4)

that is, by making the change in the compensating variable at time 𝑡 equal to

𝑥𝑡 = −
𝐿1(𝐵)
𝐿2(𝐵)

{�̂�′
𝑡
(𝑓 + 1 − 𝑏) − �̂�′

𝑡−1(𝑓 + 1 − 𝑏)} (15.5.5)

This results in an additional component in the deviation 𝜀𝑡 from the target, which now
becomes

𝜀𝑡 = 𝑁𝑡 + 𝑒′
𝑡−𝑓−1(𝑓 + 1 − 𝑏)

If the model for the input disturbance is 𝜑𝑢(𝐵)𝑢𝑡 = 𝜃𝑢(𝐵)𝛼𝑡, then the model for 𝑢′
𝑡
=

𝛿−1(𝐵)𝜔(𝐵)𝑢𝑡 can be written

𝜑′
𝑢
(𝐵)𝑢′

𝑡
= 𝜃′

𝑢
(𝐵)𝛼𝑡
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with

𝜑
′
𝑢
(𝐵) = 𝜑𝑢(𝐵)𝛿(𝐵) and 𝜃′

𝑢
(𝐵) = 𝜃𝑢(𝐵)𝜔(𝐵)

The needed forecasts �̂�′
𝑡
(𝑓 + 1 − 𝑏), obtained as in Chapter 5, can then be written conve-

niently in terms of previous 𝑢’s and 𝛼’s obtainable from the 𝑢 series itself.

15.5.2 An Example: Control of the Specific Gravity of an Intermediate Product

In the manufacture of an intermediate product, used for the production of a synthetic resin,
the specific gravity 𝑌𝑡 of the product had to be maintained as close as possible to the value
1.260. This was actually achieved by a mixed scheme of feedforward and feedback control.
We consider the complete scheme later and discuss here only the feedforward part. The
process has rather slow dynamics, and also the disturbance is known to change slowly,
so that observations and adjustments are made at 2-hour intervals. The uncontrolled input
disturbance that is fed forward is the feed concentration 𝑢𝑡, which is measured as deviations
from an origin of 30 g/L. The relation between specific gravity and feed concentration over
the range of normal operation has the effect

1𝑡 = 0.0016𝑢𝑡

where the effect 1𝑡 is measured from the target value 1.260.
This relation contains ‘‘no dynamics’’ because the feed concentration can only be

measured at the inlet to the reactor, so that in our general notation 𝛿(𝐵) = 1, 𝜔(𝐵) =
0.0016, 𝑏 = 0. Control is achieved by varying pressure, which is referred to a convenient
origin of 25 psi. The transfer function model relating specific gravity and pressure𝑋𝑡 was
estimated as having the effect

(1 − 0.7𝐵)2𝑡 = 0.0024𝑋𝑡−1+

so that 𝐿1(𝐵) = (1 − 0.7𝐵), 𝐿2(𝐵) = 0.0024, 𝑓 = 0. So far as could be ascertained, the
effects of pressure and feed concentration were approximately additive in the region of
normal operation. Therefore, the control equation (15.5.4) is used, since 𝑏 − 𝑓 − 1 is
negative, and yields

𝑋𝑡+ = −(1 − 0.7𝐵)0.0016
0.0024

�̂�𝑡(1) (15.5.6)

for, in this particular example, 𝑢′
𝑡
= 0.0016𝑢𝑡 and hence �̂�′

𝑡
(1) = 0.0016�̂�𝑡(1). Study of the

feed concentration showed that it could be represented by the linear stochastic model of
order (0, 1, 1),

∇𝑢𝑡 = (1 − 𝜃𝑢𝐵)𝛼𝑡

with 𝜃𝑢 = 0.5. For such a process,

�̂�𝑡(1) = (1 − 𝜃𝑢)𝑢𝑡 + 𝜃𝑢�̂�𝑡−1(1)

that is, (1 − 𝜃𝑢𝐵)�̂�1(1) = (1 − 𝜃𝑢)𝑢𝑡 or

�̂�𝑡(1) =
1 − 𝜃𝑢

1 − 𝜃𝑢𝐵
𝑢𝑡
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TABLE 15.3 Calculation of Adjustments for Feedforward Control Scheme (15.5.7)

Concentration Pressure
𝑡 𝑢

𝑡
+ 30 𝑢

𝑡
𝑋

𝑡+ 𝑋
𝑡+ + 25 𝑥

𝑡

0 31.6 1.6 −0.63 24.4

1 31.1 1.1 −0.31 24.7 0.3
2 34.4 4.4 −1.36 23.6 −1.1
3 32.0 2.0 −0.32 24.7 1.1
4 28.2 −1.8 0.90 25.9 1.2

Thus, the control equation (15.5.6) can be written finally as

𝑋𝑡+ = −(1 − 0.7𝐵)0.0016(0.5)
0.0024(1 − 0.5𝐵)

𝑢𝑡

or

𝑋𝑡+ = 0.5𝑋𝑡−1+ − 0.333(𝑢𝑡 − 0.7𝑢𝑡−1) (15.5.7)

Table 15.3 shows the calculation of the first few of a series of settings of the pressure
required to compensate the variations in feed concentration, given the starting conditions
for time 𝑡 = 0 of 𝑢0 = 1.6, 𝑋0+ = −0.63. Once the calculation has been started off, it is
sometimes more convenient to work directly with the changes 𝑥𝑡 to be made at time 𝑡 using

𝑥𝑡 = 0.5𝑥𝑡−1 − 0.333(∇𝑢𝑡 − 0.7∇𝑢𝑡−1) (15.5.8)

Figure 15.15a shows a section of the feed concentration. Figure 15.15b shows the output
after applying feedforward control. Figure 15.15c shows the specific gravity if no control
had been applied. These values 𝑌𝑡 are, of course, not directly available but may be obtained
in general from the values 𝑌 ′

𝑡
, which actually occurred using

𝑌𝑡 = 𝑌 ′
𝑡
+ �̂�′

𝑡−𝑓−1(𝑓 + 1 − 𝑏)

For this example then

𝑌𝑡 = 𝑌 ′
𝑡
+ 0.0008

1 − 0.5𝐵
𝑢𝑡−1

that is,

𝑌𝑡 = 0.5𝑌𝑡−1 + 𝑌 ′
𝑡
− 0.5𝑌 ′

𝑡−1 + 0.0008𝑢𝑡−1

As a result of feedforward control, the root mean square error deviation of the output from
the target value over the sample record shown is 0.003. Over the same period, the root
mean square error of the uncorrected series would have been 0.008. The improvement is
marked and extremely worthwhile. However, it appears that other unidentified sources of
disturbance exist in the process, as evidenced by the drift away from target. This kind of
tendency is frequently met in pure feedforward control schemes, but may be compensated
by the addition of feedback control, as discussed in Section 15.2. We will briefly indicate
the details of the combined scheme later in Section 15.5.4.

Control action is effected in whatever manner is most suited to the situation. If changes
are made infrequently, and if the control equation is fairly simple as in the above example,
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FIGURE 15.15 (a) Feed concentration, (b) Specific gravity after feedforward control, (c) Specific
gravity if no control had been applied.

the theory we have outlined may be used to obtain optimal control manually. It is then
convenient to use some form of control chart or nomogram that can be easily understood
by the process operator, similar to charts illustrated in Section 15.2 regarding feedback
control.

15.5.3 Feedforward Control with Multiple Inputs

No difficulty arises in principle when the effects of several additive input disturbances
𝑢1, 𝑢2,… , 𝑢𝑚 are to be compensated by changes in 𝑋 using feedforward control. Suppose
the combined effect at the output of all the input disturbances is given by

𝑡 =
𝑚∑
𝑗=1

𝛿−1
𝑗
(𝐵)𝜔𝑗(𝐵)𝐵𝑏𝑗 𝑢𝑗,𝑡 =

𝑚∑
𝑗=1

𝐵𝑏𝑗 𝑢′
𝑗,𝑡

where 𝑢′
𝑗,𝑡

= 𝛿−1
𝑗
(𝐵)𝜔𝑗(𝐵)𝑢𝑗,𝑡, and, as before, the transfer function model for the compen-

sating variable contributes the effect

2𝑡 = 𝐿−1
1 (𝐵)𝐿2(𝐵)𝐵𝑓+1𝑋𝑡+

Then, proceeding precisely as before, the required control action is to change 𝑋 at time 𝑡

by an amount

𝑥𝑡 = −𝐿1(𝐵)𝐿−1
2 (𝐵)

𝑚∑
𝑗=1

[𝑢′
𝑗,𝑡+𝑓+1−𝑏𝑗

− 𝑢′
𝑗,𝑡+𝑓−𝑏𝑗

] (15.5.9)
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where

[𝑢′
𝑗,𝑡+𝑓+1−𝑏𝑗

− 𝑢′
𝑗,𝑡+𝑓−𝑏𝑗

]

=

{
𝑢′
𝑗,𝑡+𝑓+1−𝑏𝑗

− 𝑢′
𝑗,𝑡+𝑓−𝑏𝑗

𝑓 + 1 − 𝑏𝑗 ≤ 0

�̂�′
𝑗,𝑡
(𝑓 + 1 − 𝑏𝑗) − �̂�′

𝑗,𝑡−1(𝑓 + 1 − 𝑏𝑗) 𝑓 + 1 − 𝑏𝑗 > 0
(15.5.10)

If, as before,𝑁𝑡 is an unmeasurable disturbance, then the error or deviation from target at
the output from this control action in the compensating variable𝑋𝑡+ will be

𝜀𝑡 = 𝑁𝑡 +
𝑚∑
𝑗=1

𝑒′
𝑗,𝑡−𝑓−1(𝑓 + 1 − 𝑏𝑗) (15.5.11)

where 𝑒′
𝑗,𝑡−𝑓−1(𝑓 + 1 − 𝑏𝑗) = 0 if 𝑓 + 1 − 𝑏𝑗 ≤ 0, and is the forecast error corresponding

to the 𝑗th input variable 𝑢𝑗,𝑡 if 𝑓 + 1 − 𝑏𝑗 > 0.
On the one hand, feedforward control allows us to take prompt action to cancel the

effect of input disturbance variables, and if 𝑓 + 1 − 𝑏𝑗 ≤ 0, to anticipate completely such
disturbances, at least in theory. On the other hand, to use this type of control we must be
able to measure the disturbing variables and possess complete knowledge---or at least a
good estimate---of the relationship between each input disturbance variable and the output.
In practice, we could never measure all of the disturbances that affected the system.
The remaining disturbances, which we have denoted by 𝑁𝑡 and which are not affected by
feedforward control, could of course increase the variance at the output or cause the process
to wander off target, as in fact occurred in the example discussed in Section 15.5.2. Clearly,
we can prevent this from happening by using the deviations 𝜀𝑡 themselves to indicate an
appropriate adjustment, that is, by using feedback control as discussed in earlier sections of
this chapter. In fact, a combined feedforward--feedback control scheme can be used, which
provides for the elimination of identifiable input disturbances by feedforward control and
for the reduction of the remaining disturbance by feedback control.

15.5.4 Feedforward--Feedback Control

A combined feedforward--feedback control scheme provides for the elimination of iden-
tifiable input disturbances by feedforward control and for the reduction of the remaining
disturbance by feedback control. We briefly discuss a combined feedforward--feedback
scheme in which𝑚 identifiable input disturbances 𝑢1, 𝑢2,… , 𝑢𝑚 are fed forward. The com-
bined effects on the output of all the input disturbances and of the compensating input
variable 𝑋𝑡 are assumed to be additive of the same form as given previously in Section
15.5.3. It is assumed also that 𝑁 ′

𝑡
is a further unidentified disturbance and that the aug-

mented noise𝑁𝑡 is made up of𝑁 ′
𝑡
plus that part of the feedforward disturbance that cannot

be predicted at time 𝑡. Thus, using (15.5.11),

𝑁𝑡 = 𝑁 ′
𝑡
+

𝑚∑
𝑗=1

𝑒′
𝑗,𝑡−𝑓−1(𝑓 + 1 − 𝑏𝑗)

where 𝑒′
𝑗,𝑡−𝑓−1(𝑓 + 1 − 𝑏𝑗) = 0 if 𝑓 + 1 − 𝑏𝑗 ≤ 0, and includes any further contributions

from errors in forecasting the identifiable inputs. It is assumed that 𝑁𝑡 can be represented
by a linear stochastic process so that, in the notation of Section 15.2.4, it follows that the
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relationship between the forecasts of this noise process and the forecast errors may be
written as

𝐿3(𝐵)(1 − 𝐵)
𝐿4(𝐵)

𝜀𝑡 = �̂�𝑡(𝑓 + 1) − �̂�𝑡−1(𝑓 + 1)

where 𝜀𝑡 = 𝑒𝑡−𝑓−1(𝑓 + 1) = 𝑁𝑡 − �̂�𝑡−𝑓−1(𝑓 + 1).
Arguing as in (15.2.16) and (15.5.9), the optimal control action for the compensating

input variable𝑋𝑡 to minimize the mean square error at the output is

𝑥𝑡 = −
𝐿1(𝐵)
𝐿2(𝐵)

{
𝑚∑
𝑖=1

[𝑢′
𝑗,𝑡+𝑓+1−𝑏𝑗

− 𝑢′
𝑗,𝑡+𝑓−𝑏𝑗

] +
𝐿3(𝐵)(1 − 𝐵)

𝐿4(𝐵)
𝜀𝑡

}
(15.5.12)

where the [𝑢′
𝑗,𝑡+𝑓+1−𝑏𝑗

− 𝑢′
𝑗,𝑡+𝑓−𝑏𝑗

] are as given in equation (15.5.10). The first term in

the control equation (15.5.12) is the same as in (15.5.9) and compensates for changes
in the feedforward input variables. The second term in (15.5.12) corresponds exactly to
(15.2.16) and compensates for that part𝑁 ′

𝑡
of the augmented noise, which can be predicted

at time 𝑡.

An Example of Feedforward--Feedback Control. We illustrate by discussing further the
example used in Section 15.5.2, where it was desired to control specific gravity as close
as possible to a target value 1.260. Study of the deviations from target occurring after
feedforward control showed that they could be represented by the IMA(0, 1, 1) process

∇𝑁𝑡 = (1 − 0.5𝐵)𝑎𝑡

where 𝑎𝑡 is a white noise process. Thus,

𝐿3(𝐵)(1 − 𝐵)
𝐿4(𝐵)

𝑎𝑡 = �̂�𝑡(1) − �̂�𝑡−1(1) = 0.5𝑎𝑡

and 𝜀𝑡 = 𝑒𝑡−1(1) = 𝑎𝑡. As in Section 15.5.2, the remaining parameters are

𝛿−1(𝐵)𝜔(𝐵) = 0.0016 𝑏 = 0

𝐿−1
2 (𝐵)𝐿1(𝐵) =

1 − 0.7𝐵
0.0024

𝑓 = 0

and

�̂�𝑡(1) − �̂�𝑡−1(1) =
0.5

1 − 0.5𝐵
(𝑢𝑡 − 𝑢𝑡−1)

Using (15.5.12), the minimum mean square error adjustment incorporating feedforward
and feedback control is

𝑥𝑡 = −1 − 0.7𝐵
0.0024

[
(0.0016)(0.5)
1 − 0.5𝐵

(𝑢𝑡 − 𝑢𝑡−1) + 0.5𝜀𝑡
]

(15.5.13)

that is,

𝑥𝑡 = 0.5𝑥𝑡−1 − 0.333(1 − 0.7𝐵)(𝑢𝑡 − 𝑢𝑡−1) − 208(1 − 0.7𝐵)(1 − 0.5𝐵)𝜀𝑡
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FIGURE 15.16 Typical variation in specific gravity with (a) no control, (b) feedforward control
only, and (c) feedforward with feedback control.

or

𝑥𝑡 = 0.5𝑥𝑡−1 − 0.333𝑢𝑡 + 0.566𝑢𝑡−1 − 0.233𝑢𝑡−2 − 208𝜀𝑡 + 250𝜀𝑡−1 − 73𝜀𝑡−2 (15.5.14)

Figure 15.16 shows the section of record previously given in Figure 15.15, when only
feedforward control was employed, and the corresponding calculated variation that would
have occurred if no control had been applied. This is now compared with a record from a
scheme using both feedforward and feedback control. The introduction of feedback control
resulted in a further substantial reduction in mean square error and corrected the tendency
to drift from the target, which was experienced with the feedforward scheme.

Note that with a feedback scheme, the correction employs a forecast having lead time
𝑓 + 1, whereas with a feedforward scheme the forecast has lead time 𝑓 + 1 − 𝑏 and no
forecasting is involved if 𝑓 + 1 − 𝑏 is zero or negative. Thus, feedforward control gains in
the immediacy of possible adjustment whenever 𝑏 is greater than zero. The example we
have quoted is an exception in that 𝑏 = 0, and consequently no advantage of immediacy is
gained, in this case, by feedforward control. It might be true in this case that equally good
control could have been obtained by a feedback scheme alone. In practice, possibly because
of error transmission problems, the mixed scheme did rather better than the pure feedback
system.

15.5.5 Advantages and Disadvantages of Feedforward and Feedback Control

With feedback control, it is the total disturbance, as evidenced by the error at the output,
that actuates compensation. Therefore, it is not necessary to be able to identify and measure
the sources of disturbance. All that is needed is that we characterize the disturbance 𝑁𝑡

at the output by an appropriate stochastic model (and as we have seen in earlier sections,
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an IMA(0, 1, 1) model would often provide adequate approximation to the noise model).
Because we are not relying on ‘‘dead reckoning,’’ unexpected disturbances and moderate
errors in identifying and estimating the system’s characteristics will normally result only in
greater variation about the target value and not (as may occur with feedforward control) in a
consistent drift away from the target value. On the other hand, especially if the delay 𝑓 + 1
is large, the errors about the target (since they are then the errors of a remote forecast) may
be large, although they have zero mean. Clearly, if identifiable sources of input disturbance
can be partially or wholly eliminated by feedforward control, then this should be done.
Then, only the unidentifiable error has to be dealt with by feedback control.

In summary, although we can design a feedback control scheme that is optimal, in the
sense that it is the best possible feedback scheme, it will not usually be as good as a combined
feedforward--feedback scheme in which sources of error that can be are eliminated before
the feedback loop.

15.5.6 Remarks on Fitting Transfer Function--Noise Models Using Operating Data

It is desirable that the parameters of a control system be estimated from data collected
under as nearly as possible the conditions that will apply when the control scheme is
in actual operation. The calculated control action, using estimates so obtained, properly
takes account of noise in the system, which will be characterized as if it entered at the
point provided for in the model. This being so, it is desirable to proceed iteratively in the
development of a control scheme. Using technical knowledge of the process, together with
whatever can be learned from past operating data, preliminary transfer function and noise
models are postulated and used to design a pilot control scheme. The operation of this pilot
scheme can then be used to supply further data, which may be analyzed to give improved
estimates of the transfer function and noise models, and then used to plan an improved
control scheme.

For example, consider a feedforward--feedback scheme with a single feedforward input,
as in Section 15.5.1, and the case with 𝑏 − 𝑓 − 1 nonnegative. Then for any inputs 𝑢𝑡 and
𝑋𝑡+, the output deviation from target is given by

𝜀𝑡 = 𝛿−1(𝐵)𝜔(𝐵)𝑢𝑡−𝑏 + 𝐿−1
1 (𝐵)𝐿2(𝐵)𝑋𝑡−𝑓−1+ +𝑁𝑡 (15.5.15)

and it is assumed that the noise𝑁𝑡 may be described by an ARIMA(𝑝, 𝑑, 𝑞) model. It is sup-
posed that time series data are available for 𝜀𝑡, 𝑢𝑡, and𝑋𝑡+ during a sufficiently long period
of actual plant operation. Often, although not necessarily, this would be a period during
which some preliminary pilot control schemewas being operated. Then for specified orders
of transfer function operators and noise model, the methods of Sections 12.3 and 12.4 may
be used directly to construct the sums of squares and likelihood function and to obtain
estimates of the model parameters in the standard way through nonlinear estimation using
numerical iterative calculation.

Consider now a pure feedback system that may be represented in the transfer
function--noise model form

𝜀𝑡 = 𝑣(𝐵)𝑋𝑡+ +𝑁𝑡 (15.5.16)

𝑋𝑡+ = 𝑐(𝐵)𝜀𝑡{+𝑑𝑡} (15.5.17)
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with

𝑣(𝐵) = 𝐿−1
1 (𝐵)𝐿2(𝐵)𝐵𝑓+1

where 𝑐(𝐵) is the known operator of the controller, not necessarily optimal, and 𝑑𝑡 is
either an additional unintended error or an added ‘‘dither’’ signal that has been deliberately
introduced. The curly brackets in (15.5.17) emphasize that the added term may or may not
be present. In either case, estimation of the unknown transfer function and noise model
parameters can be performed, as described in Chapter 12.

However, difficulties in estimation of the model under feedback conditions can arise
when the added term 𝑑𝑡 is not present. To better understand the nature of issues involved
in fitting of the model, we can substitute (15.5.17) in (15.5.16) to obtain

[1 − 𝑣(𝐵)𝑐(𝐵)]𝜀𝑡 = 𝜓(𝐵)𝑎𝑡{+𝑣(𝐵)𝑑𝑡} (15.5.18)

First consider the case where 𝑑𝑡 is zero. Because, from (15.5.17),𝑋𝑡+ is then a deterministic
function of the 𝜀𝑡’s, the model (which appears in (15.5.16) to be of the transfer function
form) is seen in (15.5.18) to be equivalent to an ARIMA model whose coefficients are
functions of the known parameters of 𝑐(𝐵) and of the unknown dynamic and stochastic
noise parameters of themodel. It is then apparent that, with 𝑑𝑡 absent, estimation difficulties
can arise, as all dynamic and stochastic noise model forms 𝑣0(𝐵) and 𝜓0(𝐵), which are
such that

𝜓−1
0 (𝐵)[1 − 𝑣0(𝐵)𝑐(𝐵)] = 𝜓−1(𝐵)[1 − 𝑣(𝐵)𝑐(𝐵)] (15.5.19)

will fit equally well in theory. In particular, it can be shown (Box and MacGregor, 1976)
that as the pilot feedback controller used during the generation of the data approaches near
optimality, near singularities occur in the sum-of-squares surface used for estimation of
model parameters. The individual parameters may then be estimated only very imprecisely
or will be nonestimable in the limit. In these circumstances, however, accurate estimates
of those functions of the parameters that are the constants of the feedback control equation
may be obtainable. Thus,while data collected under feedback conditionsmay be inadequate
for estimating the individual dynamic and stochastic noise parameters of the system, it may
nevertheless be used for updating the estimates of the constants of a control equationwhose
mathematical form is assumed known.

The situation can bemuch improved by the deliberate introduction during data generation
of a random signal 𝑑𝑡 as in (15.5.17). To achieve this, the action 𝑐(𝐵)𝜀𝑡 is first computed
according to the control equation and then𝑑𝑡 is added on. The added signal can, for example,
be a random normal variate or a random binary variable and should have mean zero and
variance small enough so as not to unduly upset the process. We see from (15.5.18) that
with 𝑑𝑡 present, the estimation procedure based on fitting model (15.5.16) now involves a
genuine transfer function model form in which 𝜀𝑡 depends on the random input 𝑑𝑡 as well
as on the random shocks 𝑎𝑡. Thus, with 𝑑𝑡 present, the fitting procedure tacitly employs not
only information arising from the autocorrelationsof the 𝜀𝑡’s but also additional information
associated with the cross-correlations of the 𝜀𝑡’s and the 𝑑𝑡’s.

In many examples, data from a pilot scheme are used to re-estimate parameters with
the model form already identified from open-loop (no feedback control loop) data and
from previous knowledge of the system. Considerable caution and care is needed in using
closed-loop data in the model identification/specification process itself. In the first place,
if 𝑑𝑡 is absent, it is apparent from (15.5.16) that cross-correlation of the ‘‘output’’ 𝜀𝑡 and
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the ‘‘input’’ 𝑋𝑡+ with or without prewhitening will tell us (what we already know) about
𝑐(𝐵) and not, as might appear if (15.5.16) were treated as defining an open-loop system,
about 𝑣(𝐵). Furthermore, since the autocorrelations of the 𝜀𝑡 will be the same for all model
forms satisfying (15.5.19), unique identification is not possible if nothing is known about
the form of either 𝜓(𝐵) or 𝑣(𝐵). On the other hand, if either 𝜓(𝐵) or 𝑣(𝐵) is known, the
autocorrelation function can be used for the identification of the other. With 𝑑𝑡 present,
the form of (15.5.18) is that of a genuine transfer function--noise model considered in
Chapter 12 and corresponding methods may be used for identification.

15.6 MONITORING VALUES OF PARAMETERS OF FORECASTING AND
FEEDBACK ADJUSTMENT SCHEMES

Earlier we mentioned the complementary roles of process adjustment and process moni-
toring. This symbiosis is further illustrated if we again consider the need to monitor the
adjustment scheme itself. It has often been proposed that the series of residual deviations
from the target from such schemes (and similarly the errors from forecasting schemes)
should be studied and that a Shewhart chart or more generally a cumulative sum or other
monitoring chart should be run on the residual errors to warn of changes. The cumulative
sum is, of course, appropriate to look for small changes in mean level, but often other kinds
of discrepanciesmay be feared.A general theory of sequential directionalmonitoring based
on a cumulative Fisher score statistic (Cuscore) was proposed by Box and Ramı́rez (1992)
(see also Bagshaw and Johnson, 1977).

Suppose that a model can be written in the form of deviations 𝑒𝑡 that depend on an
unknown parameter 𝜃 as

𝑒𝑡 = 𝑒𝑡(𝜃) (15.6.1)

and that if the correct value of the parameter 𝜃 = 𝜃0 is employed in themodel, {𝑒𝑡} = {𝑎𝑡} is
a sequence of Normal iid random variables. Then, the cumulative score statistic appropriate
to detect a departure from the value 𝜃0 may be written

𝑄𝑡 =
𝑡∑

𝑖=1
𝑒𝑖𝑟𝑖 (15.6.2)

where 𝑟𝑡 = −(𝑑𝑒𝑡∕𝑑𝜃)|𝜃=𝜃0 may be called the detector signal.
For example, suppose that we wished to detect a shift in a mean from a value 𝜃0 for the

simple model 𝑦𝑡 = 𝜃 + 𝑒𝑡. We can write

𝑒𝑡 = 𝑒𝑡(𝜃) = 𝑦𝑡 − 𝜃 𝑎𝑡 = 𝑦𝑡 − 𝜃0 (15.6.3)

Then, in this example, the detector signal is 𝑟𝑡 = 1 and 𝑄𝑡 =
∑𝑡

𝑖=1 𝑒𝑖, the well-known
cumulative sum statistic.

In general, for some value of 𝜃 close to 𝜃0, since 𝑒𝑡 may be approximated by 𝑒𝑡 =
𝑎𝑡 − (𝜃 − 𝜃0)𝑟𝑡, the cumulative product in (15.6.2) will contain a part

−(𝜃 − 𝜃0)
𝑡∑

𝑖=1
𝑟2
𝑖

(15.6.4)
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FIGURE 15.17 Cuscore monitoring for detecting a change in the parameter 𝜃 used in conjunction
with the adjustment chart of Figure 15.3.

which systematically increases in magnitude with sample size 𝑡 when 𝜃 differs from 𝜃0.
For illustration, consider the possibility that in the feedback control scheme for metallic
thickness of Section 15.2.1, the value of 𝜆 (estimated as 0.2) may have changed during the
period 𝑡 = 1 to 𝑡 = 100. For this example,

𝑒𝑡 = 𝑒𝑡(𝜃) =
1 − 𝐵

1 − 𝜃𝐵
𝑁𝑡 (15.6.5)

Thus,

𝑟𝑡 = − 1 − 𝐵

(1 − 𝜃𝐵)2
𝑁𝑡−1 = −

𝑒𝑡−1
1 − 𝜃𝐵

= −
𝑒𝑡−1(1)

𝜆
(15.6.6)

where 𝑒𝑡−1(1) = 𝜆(1 − 𝜃𝐵)−1𝑒𝑡−1 is an EWMAof past 𝑒𝑡’s. The cumulative score (Cuscore)
statistic for detecting this departure is, therefore,

𝑄𝑡 = −1
𝜆

𝑡∑
𝑖=1

𝑒𝑖𝑒𝑖−1(1) (15.6.7)

where the detector signal 𝑒𝑡−1(1) is, in this case, the EWMA of past values of the residuals.
These residuals are the deviations from the target plotted on the feedback adjustment chart
of Figure 15.3. The criterion agrees with the commonsense idea that if the model is true,
then 𝑒𝑡 = 𝑎𝑡 and 𝑒𝑡 is not predictable from previous values. The Cuscore chart shown
in Figure 15.17 suggests that a change in parameter may have occurred at about 𝑡 = 40.
However, we see from the original data of Figure 15.2 that this is very close to the point at
which the level of the original series appears to have changed, and further data and analysis
would be needed to confirm this finding.

The important point is that this example shows the partnership of two types of control
(adjustment and monitoring) and the corresponding two types of statistical inference (esti-
mation and criticism). A further development is to feed back the filtered Cuscore statistic
to ‘‘self-tune’’ the control equation, but we do not pursue this further here.

APPENDIX A15.1 FEEDBACK CONTROL SCHEMES WHERE THE
ADJUSTMENT VARIANCE IS RESTRICTED

Consider now the feedback control situation where the models for the noise and system
dynamics are again given by (15.2.10) and (15.2.13), so that 𝜀𝑡 = 𝑡 +𝑁𝑡 with

(1 − 𝐵)𝑁𝑡 = (1 − 𝜃𝐵)𝑎𝑡 and (1 − 𝛿𝐵)𝑡 = (1 − 𝛿)𝑔𝑋𝑡−1+
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but some restriction of the input variance var[𝑥𝑡] is necessary, where 𝑥𝑡 = (1 − 𝐵)𝑋𝑡. The
unrestricted optimal scheme has the property that the errors in the output 𝜀1, 𝜀𝑡−1, 𝜀𝑡−2,…
are the uncorrelated random variables 𝑎𝑡, 𝑎𝑡−1, 𝑎𝑡−2,… and the variance of the output 𝜎2

𝜀 has
theminimumpossible value𝜎2

𝑎
.With the restricted schemes, the variance 𝜎2

𝜀
will necessarily

be greater than 𝜎2
𝑎
, and the errors 𝜀𝑡, 𝜀𝑡−1, 𝜀𝑡−2,… at the output will be correlated.

We will pose our problem as follows: Given that 𝜎2
𝑡
be allowed to increase to some

value 𝜎2
𝜀
= (1 + 𝑐)𝜎2

𝑎
, where 𝑐 is a positive constant, we want to find the control scheme

that produces the minimum value for 𝜎2
𝑥
= var[𝑥𝑡]. Equivalently, the problem is to find an

(unconstrained)minimum of the expression 𝜎2
𝜀
+ 𝛼𝜎2

𝑥
, where 𝛼 is some specified multiplier

that allocates the relative costs of variations in 𝜀𝑡 and 𝑥𝑡.

A15.1.1 Derivation of Optimal Adjustment

Let the optimal adjustment, expressed in terms of the 𝑎𝑡’s, be

𝑥𝑡 = −1
𝑔
𝐿(𝐵)𝑎𝑡 (A15.1.1)

where

𝐿(𝐵) = 𝑙0 + 𝑙1𝐵 + 𝑙2𝐵
2 +⋯

Then, we see that the error 𝜀𝑡 at the output is given by

𝜀𝑡 =
(1 − 𝛿)𝑔
1 − 𝛿𝐵

𝑋𝑡−1+ +𝑁𝑡

= − 1 − 𝛿

1 − 𝛿𝐵
(1 − 𝐵)−1𝐿(𝐵)𝑎𝑡−1 + (1 − 𝐵)−1(1 − 𝜃𝐵)𝑎𝑡

= 𝑎𝑡 +
[
𝜆 − 𝐿(𝐵)(1 − 𝛿)

1 − 𝛿𝐵

]
𝑆𝑎𝑡−1 (A15.1.2)

where 𝑆 = (1 − 𝐵)−1. The coefficient of 𝑎𝑡 in this expression is unity, so we can write

𝜀𝑡 = [1 + 𝐵𝜇(𝐵)]𝑎𝑡 (A15.1.3)

where

𝜇(𝐵) = 𝜇1 + 𝜇2𝐵 + 𝜇3𝐵
2 +⋯

Furthermore, in practice, control would need to be exerted in terms of the observed output
errors 𝜀𝑡 rather than in terms of the 𝑎𝑡’s, so that the control equation actually used would
be of the form

𝑥𝑡 = −1
𝑔

𝐿(𝐵)
1 + 𝐵𝜇(𝐵)

𝜀𝑡 (A15.1.4)

Equating (A15.1.2) and (A15.1.3), we obtain

(1 − 𝛿)𝐿(𝐵) = [𝜆 − (1 − 𝐵)𝜇(𝐵)](1 − 𝛿𝐵) (A15.1.5)
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Since 𝛿, 𝑔, and 𝜎2
𝑎 are constants, we can proceed conveniently by finding an unrestricted

minimum of

𝐶 =
(1 − 𝛿)2𝑔2𝑉 [𝑥𝑡] + 𝑣𝑉 [𝜀𝑡]

𝜎2
𝑎

(A15.1.6)

where, for example,

𝑉 [𝑥𝑡] = var[𝑥𝑡]

and 𝑣 = (1 − 𝛿)2𝑔2∕𝛼. Now, from (A15.1.3), 𝑉 [𝜀𝑡]∕𝜎2
𝑎
= 1 +

∑∞
𝑗=1 𝜇

2
𝑗
, while from

(A15.1.1), (1 − 𝛿)𝑔𝑥𝑡 = −(1 − 𝛿)𝐿(𝐵)𝑎𝑡 = −𝜏(𝐵)𝑎𝑡, so that

(1 − 𝛿)2𝑔2𝑉 [𝑥𝑡]
𝜎2
𝑎

=
∞∑
𝑗=0

𝜏2
𝑗

where

𝜏(𝐵) =
∞∑
𝑗=0

𝜏𝑗𝐵
𝑗 = (1 − 𝛿)𝐿(𝐵) = [𝜆 − (1 − 𝐵)𝜇(𝐵)](1 − 𝛿𝐵)

from (A15.1.5). The coefficients {𝜏𝑖} are thus seen to be functionally related to the 𝜇𝑖 by
the difference equation

𝜇𝑖 − (1 + 𝛿)𝜇𝑖−1 + 𝛿𝜇𝑖−2 = −𝜏𝑖−1 for 𝑖 > 2 (A15.1.7)

with 𝜏0 = −(𝜇1 − 𝜆), 𝜏1 = −[𝜇2 − (1 + 𝛿)𝜇1 + 𝜆𝛿]. Hence, we require an unrestricted min-
imum, with respect to the 𝜇𝑖, of the expression

𝐶 =
∞∑
𝑗=0

𝜏2
𝑗
+ 𝑣

(
1 +

∞∑
𝑗=1

𝜇2
𝑗

)
(A15.1.8)

This can be obtained by differentiating 𝐶 with respect to each 𝜇𝑖 (𝑖 = 1, 2,…), equating
these derivatives to zero and solving the resulting equations. Now, a given𝜇𝑖only influences
the values 𝜏𝑖+1, 𝜏𝑖, and 𝜏𝑖−1 through (A15.1.7), and we see that

𝜕𝜏𝑗

𝜕𝜇𝑖

=

⎧⎪⎪⎨⎪⎪⎩

−1 𝑗 = 𝑖 − 1
1 + 𝛿 𝑗 = 𝑖

−𝛿 𝑗 = 𝑖 + 1
0 otherwise

(A15.1.9)

Therefore, from (A15.1.8) and (A15.1.9), we obtain

𝜕

𝜕𝜇𝑖

𝐶 = 2
(
𝜏𝑖+1

𝜕𝜏𝑖+1
𝜕𝜇𝑖

+ 𝜏𝑖
𝜕𝜏𝑖

𝜕𝜇𝑖

+ 𝜏𝑖−1
𝜕𝜏𝑖−1
𝜕𝜇𝑖

+ 𝑣𝜇𝑖

)

= 2[−𝛿𝜏𝑖+1 + (1 + 𝛿)𝜏𝑖 − 𝜏𝑖−1 + 𝑣𝜇𝑖] for 𝑖 = 1, 2,… (A15.1.10)
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Then, after substituting the expressions for the 𝜏𝑗 in terms of the 𝜇𝑖 from equation (A15.1.7)
in (A15.1.10) and setting each of these equal to zero, we obtain the following equations:

(𝑖 = 1) ∶ −𝜆(1 + 𝛿 + 𝛿2) + 2(1 + 𝛿 + 𝛿2)𝜇1 − (1 + 𝛿)2𝜇2 + 𝛿𝜇3 + 𝜈𝜇1 = 0
(A15.1.11)

(𝑖 = 2) ∶ 𝜆𝛿 − (1 + 𝛿)2𝜇1 + 2(1 + 𝛿 + 𝛿2)𝜇2 − (1 + 𝛿)2𝜇3 + 𝛿𝜇4 + 𝜈𝜇2 = 0
(A15.1.12)

(𝑖 > 2) ∶ [𝛿𝐵2 − (1 + 𝛿)2𝐵 + 2(1 + 𝛿 + 𝛿2) − (1 + 𝛿)2𝐹 + 𝛿𝐹 2 + 𝜈]𝜇𝑖 = 0
(A15.1.13)

A15.1.2 Case Where 𝜹 Is Negligible

Consider first the simpler case where 𝛿 is negligibly small and can be set equal to zero.
Then the equations above can be written as

(𝑖 = 1) ∶ −(𝜆 − 𝜇1) + (𝜇1 − 𝜇2) + 𝜈𝜇1 = 0 (A15.1.14)

(𝑖 > 1) ∶ [𝐵 − (2 + 𝜈) + 𝐹 ]𝜇𝑖 = 0 (A15.1.15)

These difference equations have a solution of the form

𝜇𝑖 = 𝐴1𝜅
𝑖
1 + 𝐴2𝜅

𝑖
2

where 𝜅1 and 𝜅2 are the roots of the characteristic equation

𝐵2 − (2 + 𝑣)𝐵 + 1 = 0 (A15.1.16)

that is, of

𝐵 + 𝐵−1 = 2 + 𝜈

Evidently, if 𝜅 is a root, so is 𝜅−1. Thus, the solution is of the form 𝜇𝑖 = 𝐴1𝜅
𝑖 + 𝐴2𝜅

−𝑖.
Now if 𝜅 has modulus less than or equal to 1, 𝜅−1 has modulus greater than or equal to 1,
and since 𝜀𝑡 = [1 + 𝐵𝜇(𝐵)]𝑎𝑡 must have finite variance, 𝐴2 must be zero with |𝜅| < 1. By
substituting the solution 𝜇𝑖 = 𝐴1𝜅

𝑖 in (A15.1.14), we find that 𝐴1 = 𝜆.
Finally, then, 𝜇𝑖 = 𝜆𝜅𝑖, and since 𝜇𝑖 and 𝜆 must be real, so must the root 𝜅. Hence,

𝜇(𝐵) = 𝜆𝜅

1 − 𝜅𝐵
0 < 𝜅 < 1 (A15.1.17)

1 + 𝐵𝜇(𝐵) = 1 + 𝜆𝜅𝐵

1 − 𝜅𝐵
= 1 − 𝜃𝜅𝐵

1 − 𝜅𝐵
(A15.1.18)

where 𝜃 = 1 − 𝜆. Thus,

𝜀𝑡 =
1 − 𝜃𝜅𝐵

1 − 𝜅𝐵
𝑎𝑡

so that

𝑉 [𝜀𝑡]
𝜎2
𝑎

= 1 + 𝜆2𝜅2

1 − 𝜅2
(A15.1.19)
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Also, using (A15.1.5) with 𝛿 = 0,

𝐿(𝐵) = 𝜆 − (1 − 𝐵)𝜆𝜅
1 − 𝜅𝐵

= 𝜆(1 − 𝜅)
1 − 𝜅𝐵

(A15.1.20)

Thus,

𝑥𝑡 = −𝜆

𝑔

1 − 𝜅

1 − 𝜅𝐵
𝑎𝑡

and

𝑉 [𝑥𝑡]
𝜎2
𝑎

= 𝜆2

𝑔2
(1 − 𝜅)2

1 − 𝜅2 = 𝜆2

𝑔2
1 − 𝜅

1 + 𝜅
(A15.1.21)

Using (A15.1.4) with (A15.1.18) and (A15.1.20), we now find that the optimal control
action, in terms of the observed output error 𝜀𝑡, is

𝑥𝑡 = −1
𝑔

𝜆(1 − 𝜅)
1 − 𝜃𝜅𝐵

𝜀𝑡

that is,

𝑥𝑡 = (1 − 𝜆)𝜅𝑥𝑡−1 −
1
𝑔
𝜆(1 − 𝜅)𝜀𝑡 (A15.1.22)

Note that the constrained control equation differs from the unconstrained one in two
respects:

1. A new factor (1 − 𝜆)𝜅𝑥𝑡−1 is introduced, thus making present action depend partly
on previous action.

2. The constant determining the amount of integral control is reduced by a factor 1 − 𝜅.

We have supposed that the output variance is allowed to increase to some value 𝜎2
𝑎
(1 + 𝑐).

It follows from (A15.1.19) that

𝑐 = 𝜆2𝜅2

1 − 𝜅2

that is,

𝜅 =
√

𝑐

𝜆2 + 𝑐

where the positive square root is to be taken. It is convenient to write 𝑄 = 𝑐∕𝜆2. Then,
𝑄 = 𝜅2∕(1 − 𝜅2) and 𝜅2 = 𝑄∕(1 +𝑄) and the output variance becomes 𝜎2

𝑎
(1 + 𝜆2𝑄).

In summary, suppose that we are prepared to tolerate an increase in variance in the
output to some value 𝜎2

𝑎
(1 + 𝜆2𝑄); then

1. We compute 𝜅 =
√
𝑄∕(1 +𝑄).

2. Optimal control will be achieved by taking action given by (A15.1.22).
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Table A15.1 Values of Parameters for a Simple Constrained Control Scheme

𝑐∕𝜆2 = 𝑄 𝜅 𝑊 𝑐∕𝜆2 = 𝑄 𝜅 𝑊

0.10 0.302 53.7 0.60 0.612 24.0
0.20 0.408 42.0 0.70 0.641 21.9
0.30 0.480 35.1 0.80 0.667 20.0
0.40 0.535 30.3 0.90 0.688 18.5
0.50 0.577 26.8 1.00 0.707 17.2

3. The variance of the input will be reduced to

𝑉 [𝑥𝑡] =
𝜆2

𝑔2
1 − 𝜅

1 + 𝜅
𝜎2
𝑎

that is, it will reduce to a value that is 𝑊% of that for the unconstrained scheme,
where

𝑊 = 100
(1 − 𝜅

1 + 𝜅

)

Table A15.1 shows 𝜅 and 𝑊 for values of 𝑄 between 0.1 and 1.0. For illustration,
suppose that 𝜆 = 0.4. Then the optimal unconstrained scheme will employ the control
action

𝑥𝑡 = −0.4
𝑔

𝜀𝑡

with 𝜀𝑡 = 𝑎𝑡. The variance of 𝑥𝑡 would be 𝑉 [𝑥𝑡] = (𝜎2
𝑎
∕𝑔2)0.16. Suppose that it was desired

to reduce this by a factor of 4, to the value (𝜎2
𝑎
∕𝑔2)0.04. Thus, we require 𝑊 to be 25%.

Table A15.1 shows that a reduction of the input variance to 24% of its unconstrained
value is possible with 𝑄 = 0.60 and 𝜅 = 0.612. If we use this scheme, the output variance
will be

𝜎2
𝜀
= 𝜎2

𝑎
(1 + 0.16 × 0.60) = 1.10𝜎2

𝑎

Thus, by the use of the control action

𝑥𝑡 = 0.37𝑥𝑡−1 −
1
𝑔
0.16𝜀𝑡

instead of 𝑥𝑡 = −(0.4∕𝑔)𝜀𝑡, the variance of the input is reduced to about 1/4 of its previous
value, while the variance of the output is increased by only 10%.

Case Where 𝜹 Is Not Negligible. Consider now the more general situation where 𝛿 is not
negligible and the system dynamics must be taken account of. The difference equation
(A15.1.13) is of the form

(𝛼𝐵−2 + 𝛽𝐵−1 + 𝛾 + 𝛽𝐵 + 𝛼𝐵2)𝜇𝑖 = 0

and if 𝜅 is a root of the characteristic equation, so is 𝜅−1. Suppose that the roots are
𝜅1, 𝜅2, 𝜅

−1
1 , 𝜅−1

2 and that 𝜅1 and 𝜅2 are a pair of roots with modulus < 1. Then, in the
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solution

𝜇𝑖 = 𝐴1𝜅
𝑖
1 + 𝐴2𝜅

𝑖
2 + 𝐴3𝜅

−𝑖
1 + 𝐴4𝜅

−𝑖
2

𝐴3 and 𝐴4 must be zero, because 𝜀𝑡 is required to have a finite variance.
Hence, the solution is of the form

𝜇𝑖 = 𝐴1𝜅
𝑖
1 + 𝐴2𝜅

𝑖
2 |𝜅1| < 1 |𝜅2| < 1

The𝐴’s satisfying the initial conditions, definedby (A15.1.11)and (A15.1.12), are obtained
by substitution to give

𝐴1 =
𝜆𝜅1(1 − 𝜅2)
𝜅1 − 𝜅2

𝐴2 = −
𝜆𝜅2(1 − 𝜅1)
𝜅1 − 𝜅2

If we write 𝑘0 = 𝜅1 + 𝜅2 − 𝜅1𝜅2, 𝑘1 = 𝜅1𝜅2, then

𝜇(𝐵) = 𝜆

[
𝑘0 − 𝑘1𝐵

1 − (𝑘0 + 𝑘1)𝐵 + 𝑘1𝐵
2

]
(A15.1.23)

and

1 + 𝐵𝜇(𝐵) =
1 − 𝑘1𝐵 − (1 − 𝜆)(𝑘0𝐵 − 𝑘1𝐵

2)
1 − (𝑘0 + 𝑘1)𝐵 + 𝑘1𝐵

2 (A15.1.24)

Now substituting (A15.1.23) in (A15.1.5),

𝐿(𝐵) =
𝜆(1 − 𝛿𝐵)(1 − 𝑘0)

(1 − 𝛿)[1 − (𝑘0 + 𝑘1)𝐵 + 𝑘1𝐵
2]

(A15.1.25)

and

𝐿(𝐵)
1 + 𝐵𝜇(𝐵)

=
𝜆(1 − 𝛿𝐵)(1 − 𝑘0)

(1 − 𝛿)[1 − 𝑘1𝐵 − (1 − 𝜆)(𝑘0𝐵 − 𝑘1𝐵
2)]

Therefore, using (A15.1.4), we find that the optimal control action in terms of the error 𝜀𝑡
is

𝑥𝑡 = −𝜆

𝑔

(1 − 𝛿𝐵)(1 − 𝑘0)
(1 − 𝛿)[1 − 𝑘1𝐵 − (1 − 𝜆)(𝑘0𝐵 − 𝑘𝑡𝐵

2)]
𝜀𝑡 (A15.1.26)

or

𝑥𝑡 = [𝑘1 + (1 − 𝜆)𝑘0]𝑥𝑡−1 − (1 − 𝜆)𝑘1𝑥𝑡−2 −
𝜆(1 − 𝑘0)(1 − 𝛿𝐵)

𝑔(1 − 𝛿)
𝜀𝑡 (A15.1.27)

Thus, the modified control scheme makes 𝑥𝑡 depend on both 𝑥𝑡−1 and 𝑥𝑡−2 (only on 𝑥𝑡−1
if 𝜆 = 1) and reduces the standard integral and proportional action by a factor 1 − 𝑘0.

Variances of Output and Input. The actual variances for the output and input are readily
found since

𝜀𝑡 = 𝑎𝑡 + 𝜆

[
𝑘0 − 𝑘1𝐵

1 − (𝑘0 + 𝑘1)𝐵 + 𝑘1𝐵
2

]
𝑎𝑡−1
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The second term on the right defines a mixed autoregressive--moving average process of
order (2, 0, 1), the variance for which is readily obtained to give

𝑉 [𝜀𝑡]
𝜎2
𝑎

= 1 + 𝜆2

{
(𝑘0 + 𝑘1)2(1 − 𝑘1) − 2𝑘1(𝑘0 − 𝑘21)
(1 − 𝑘1)(1 + 𝑘1)2 − (𝑘0 + 𝑘1)2]

}
= 1 + 𝜆2𝑄 (A15.1.28)

Also,

𝑉 [𝑥𝑡]
𝜎2
𝑎

= 𝜆2

𝑔2(1 − 𝛿)2
(1 − 𝑘0)[(1 + 𝛿2)(1 + 𝑘1) − 2𝛿(𝑘0 + 𝑘1)]

(1 + 𝑘0 + 2𝑘1)(1 − 𝑘1)
(A15.1.29)

Computation of 𝒌𝟎 and 𝒌𝟏. Returning to the difference equations (A15.1.13), the charac-
teristic equation may be written

𝐵4 −𝑀𝐵3 −𝑁𝐵2 −𝑀𝐵 + 1 = 0

where 𝑀 = (1 + 𝛿)2∕𝛿 and𝑁 = [(1 + 𝛿2) + (1 + 𝛿2) + 𝑣]∕𝛿. It may also be written in the
form

(𝐵2 − 𝑇𝐵 + 𝑃 )(𝐵2 − 𝑃−1𝑇𝐵 + 𝑃−1) = 0

where

𝑇 = 𝜅1 + 𝜅2 and 𝑃 = 𝜅1𝜅2

Equating coefficients of 𝐵 gives

𝑇 + 𝑃−1𝑇 = 𝑀

that is, 𝑇 = 𝑃𝑀∕(1 + 𝑃 ), and

𝑃 + 𝑃−1 + 𝑃−1𝑇 2 = 𝑁

Thus, 𝑃 + 𝑃−1 + 𝑃𝑀2∕(1 + 𝑃 )2 = 𝑁 , that is,

(𝑃 + 2 + 𝑃−1)(𝑃 + 𝑃−1) +𝑀2 = 𝑁(𝑃 + 2 + 𝑃−1)

or

(𝑃 + 𝑃−1)2 + (2 −𝑁)(𝑃 + 𝑃−1) +𝑀2 − 2𝑁 = 0

For suitable vales of 𝑣, this quadratic equation will have two real roots:

𝑢1 = 𝜅1𝜅2 + 𝜅−1
1 𝜅−1

2 𝑢2 = 𝜅1𝜅
−1
2 + 𝜅−1

1 𝜅2

the root 𝑢1 being the larger. The required quantity𝑃 is now the smaller root of the quadratic
equation

𝑃 2 − 𝑢1𝑃 + 1 = 0

and 𝑇 is given by

𝑇 = [𝑃 (𝑢2 + 2)]1∕2
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Table A15.2 Table to Facilitate the Calculation of Optimal Constrained Control Schemes

100Q

𝛿 20 40 60 80 100

0.9 100 𝑊 21.7 11.3 6.7 4.5 3.1
𝑘0 0.44 0.585 0.68 0.74 0.78
𝑘1 0.18 0.27 0.34 0.39 0.44

0.8 100 𝑊 22.0 11.7 7.2 4.8 3.4
𝑘0 0.44 0.585 0.68 0.74 0.78
𝑘1 0.18 0.27 0.33 0.38 0.43

0.7 100 𝑊 22.7 12.4 8.0 5.6 4.1
𝑘0 0.44 0.585 0.68 0.74 0.78
𝑘1 0.17 0.25 0.32 0.36 0.40

0.6 100 𝑊 24.1 13.6 9.0 6.6 5.0
𝑘0 0.44 0.58 0.67 0.73 0.78
𝑘1 0.16 0.24 0.29 0.33 0.365

0.5 100 𝑊 26.5 15.5 10.5 7.9 6.2
𝑘0 0.43 0.58 0.67 0.72 0.77
𝑘1 0.15 0.21 0.26 0.29 0.32

0.4 100 𝑊 28.5 17.7 12.7 9.8 7.9
𝑘0 0.43 0.57 0.66 0.72 0.76
𝑘1 0.13 0.18 0.22 0.245 0.265

0.3 100 𝑊 31.5 20.5 15.2 12.0 9.9
𝑘0 0.43 0.57 0.65 0.71 0.75
𝑘1 0.105 0.145 0.17 0.19 0.20

0.2 100 𝑊 34.8 23.6 18.0 14.5 12.2
𝑘0 0.42 0.56 0.64 0.69 0.73
𝑘1 0.07 0.10 0.12 0.13 0.14

0.1 100 𝑊 38.2 26.7 21.0 17.3 14.6
𝑘0 0.42 0.55 0.63 0.68 0.72
𝑘1 0.04 0.05 0.06 0.065 0.07

Table of Optimal Values for Constrained Schemes

Construction of the Table. Table A15.2 is provided to facilitate the selection of an optimal
control scheme. The tabled values were obtained as follows for each chosen value of the
parameter 𝛿 in the transfer function model:

1. Compute𝑀 = (1 + 𝛿)2∕𝛿 and𝑁 = ((1 + 𝛿)2 + (1 + 𝛿2) + 𝑣)∕𝛿 for a series of values
of 𝑣 chosen to provide a suitable range for 𝑄.

2. Compute 𝑢1 = 1∕2(𝑁 − 2) +
[
((𝑁 − 2)∕2)2 + 2𝑁 −𝑀2]1∕2 and 𝑢2 = 1∕2(𝑁 −

2) −
[
((𝑁 − 2)∕2)2 + 2𝑁 −𝑀2]1∕2

3. Compute 𝑘1 = 𝑃 = 1∕2𝑢1 −
[(
1∕2𝑢1

)2 − 1
]1∕2

and

𝑘0 = 𝑇 − 𝑃 = [𝑘1(𝑢2 + 2)]1∕2 − 𝑘1.

4. Compute𝑄 =
(𝑘0 + 𝑘1)2(1 − 𝑘1) − 2𝑘1(𝑘0 − 𝑘21)
(1 − 𝑘1)[(1 + 𝑘1)2 − (𝑘1 + 𝑘1)2]

.
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5. Compute𝑊 =
(1 − 𝑘0)[(1 + 𝛿2)(1 + 𝑘1) − 2𝛿(𝑘0 + 𝑘1)]

(1 + 𝑘0 + 2𝑘1)(1 − 𝑘1)(1 + 𝛿2)
.

6. Interpolate among the 𝑊 , 𝑘0, 𝑘1 values at convenient values of 𝑄.

Use of the Table. Table A15.2 may be used as follows. The value of 𝛿 is entered in the
vertical margin. Using the fact that 𝑉 [𝜀𝑡] = (1 + 𝜆2𝑄)𝜎2

𝑎
, the percentage increase in output

variance is 100𝑄𝜆2. A suitable value of 𝑄 is entered in the horizontal margin. The entries
in the table are then (1) 100𝑊 , the percentage reduction in the variance of 𝑥𝑡, (2) 𝑘0, and
(3) 𝑘1.

For illustration, suppose that 𝜆 = 0.6, 𝛿 = 0.5, and 𝑔 = 1. The optimal unconstrained
control equation is then

𝑥𝑡 = −1.2(1 − 0.5𝐵)𝜀𝑡 = −1.2(1 − 0.5𝐵)𝑎𝑡

and var[𝑥𝑡] = 1.80𝜎2
𝑎
. Suppose that this amount of variation in the input variable produces

difficulties in process operation and it is desired to reduce var[𝑥𝑡] to about 0.50𝜎2
𝑎
, that is, to

about 28% of the value for the unconstrained scheme. Inspection of Table A15.2 in the row
labeled 𝛿 = 0.5 shows that a reduction to 26.5% can be achieved by using a control scheme
with constants 𝑘0 = 0.43, 𝑘1 = 0.15, that is, by employing the control equation (A15.1.27)
to give

𝑥𝑡 = 0.32𝑥𝑡−1 − 0.06𝑥𝑡−2 − (0.57 × 1.2)(1 − 0.5𝐵)𝜀𝑡

This solution corresponds to a value 𝑄 = 0.20. Therefore, the variance at the output will
be increased by a factor of

1 + 𝜆2𝑄 = 1 + 0.62(0.2) = 1.072

that is, by about 7%.

APPENDIX A15.2 CHOICE OF THE SAMPLING INTERVAL

In comparison to continuous systems, discrete systems of control, such as those discussed
here, can be very efficient provided that the sampling interval is suitably chosen. Roughly
speaking, we want the interval to be such that not too much change can occur during the
sampling interval. Usually, the behavior of the disturbance that has to pass through all or part
of the system reflects the inertia or dynamic properties of the system, so that the sampling
interval will often be chosen tacitly or explicitly to be proportional to the time constant or
constants of the system. In chemical processes involving reaction and mixing of liquids,
rather infrequent sampling, say at hourly intervals and possibly with operator surveillance
and manual adjustment, will be sufficient. By contrast, where reactions between gases
are involved, a suitable sampling interval may be measured in seconds and automatic
monitoring and adjustment may be essential.

In some cases, experimentation may be needed to arrive at a satisfactory sampling
interval, and in others rather simple calculations will show how the choice of sampling
interval will affect the degree of control that is possible.
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A15.2.1 Illustration of the Effect of Reducing Sampling Frequency

To illustrate the kind of calculation that is helpful, suppose again that we have a simple
system in which, using a particular sampling interval, the noise is represented by a (0, 1, 1)
process ∇𝑁𝑡 = (1 − 𝜃𝐵)𝑎𝑡 and the transfer function model by the first-order system (1 −
𝛿𝐵)𝑡 = 𝑔(1 − 𝛿)𝑋𝑡−1. In this case, if we employ the MMSE adjustment

𝑥𝑡 = − 1 − 𝜃

𝑔(1 − 𝛿)
(1 − 𝛿𝐵)𝜀𝑡 (A15.2.1)

then the deviation from target is 𝜀𝑡 = 𝑎𝑡 and has variance 𝜎
2
𝑎
= 𝜎2

1 , say.
In practice, the question has often arisen: How much worse off would we be if we took

samples less frequently? To answer this question, we consider the effect of sampling the
stochastic process involved.

A15.2.2 Sampling an IMA(𝟎, 𝟏, 𝟏) Process

Suppose that with observations beingmade at some ‘‘unit’’ interval, we have a noise model

∇𝑁𝑡 = (1 − 𝜃1𝐵)𝑎𝑡

with var[𝑎𝑡] = 𝜎2
𝑎
= 𝜎21 , where the subscript 1 is used in this context to denote the choice

of sampling interval. Then, for the differences∇𝑁𝑡, the autocovariances 𝛾𝑘 are given by

𝛾0 = (1 + 𝜃21)𝜎
2
1

𝛾1 = −𝜃1𝜎2
1 (A15.2.2)

𝛾𝑗 = 0 𝑗 ≥ 2

Writing 𝜁 = (𝛾0 + 2𝛾1)∕𝛾1, we obtain

𝜁 = −
(1 − 𝜃1)2

𝜃1

so that, given 𝛾0 and 𝛾1, the parameter 𝜆 = 1 − 𝜃1 of the IMA process may be obtained by
solving the quadratic equation

(1 − 𝜃1)2 − 𝜁(1 − 𝜃1) + 𝜁 = 0

selecting that root for which −1 < 𝜃1 < 1. Also,

𝜎21 = −
𝛾1
𝜃1

(A15.2.3)

Suppose now that the process 𝑁𝑡 is observed at intervals of ℎ units (where ℎ is a positive
integer) and the resulting process is denoted by 𝑀𝑡. Then,

∇𝑀𝑡 = 𝑁𝑡 −𝑁𝑡−ℎ = (𝑎𝑡 + 𝑎𝑡−1 +⋯ + 𝑎𝑡−ℎ+1)
− 𝜃1(𝑎𝑡−1 + 𝑎𝑡−2 +⋯ + 𝑎𝑡−ℎ)

∇𝑀𝑡−ℎ = 𝑁𝑡−ℎ −𝑁𝑡−2ℎ = (𝑎𝑡−ℎ + 𝑎𝑡−ℎ−1 +⋯ + 𝑎𝑡−2ℎ+1)
− 𝜃1(𝑎𝑡−ℎ−1 +⋯ + 𝑎𝑡−2ℎ)
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and so on. Then, for the differences ∇𝑀𝑡, the autocovariances 𝛾𝑘(ℎ) are

𝛾0(ℎ) = [(1 + 𝜃21) + (ℎ − 1)(1 − 𝜃1)
2]𝜎21

𝛾1(ℎ) = −𝜃1𝜎2
1 (A15.2.4)

𝛾𝑗(ℎ) = 0 𝑗 ≥ 2

It follows that the process𝑀𝑡 is also an IMA process of order (0, 1, 1),

∇𝑀𝑡 = (1 − 𝜃ℎ𝐵)𝑒𝑡

where 𝑒𝑡 is a white noise process with variance 𝜎
2
ℎ
. Now

𝛾0(ℎ) + 2𝛾1(ℎ)
𝛾1(ℎ)

= −
ℎ(1 − 𝜃1)2

𝜃1

so that

ℎ(1 − 𝜃1)2

𝜃1
=

(1 − 𝜃ℎ)2

𝜃ℎ
(A15.2.5)

Also, since 𝛾1(ℎ) = −𝜃ℎ𝜎2
ℎ
= −𝜃1𝜎2

1 , it follows that

𝜎2
ℎ

𝜎2
1

=
𝜃1
𝜃ℎ

(A15.2.6)

Therefore, we have shown that the sampling of an IMA process of order (0, 1, 1) at in-
terval ℎ produces another IMA process of order (0, 1, 1). From (A15.2.5), we can obtain the
value of the parameter 𝜃ℎ for the sampled process, and from (A15.2.6) we can obtain
the variance 𝜎2

ℎ
= var[𝑒𝑡] of the corresponding white noise generating process in terms of

the parameters 𝜃1 and 𝜎2
𝑡
= var[𝑎𝑡] of the original process.

In Figure A15.1, 𝜃𝑛 is plotted against log ℎ, a scale of ℎ being appended. The graph
enables one to find the effect of increasing the sampling interval of a (0, 1, 1) process by
any given multiple. For illustration, suppose that we have a process for which 𝜃1 = 0.5 and
𝜎2
1 = 1. Let us use the graph to find the values of the correspondingparameters 𝜃2, 𝜃4, 𝜎

2
2 , 𝜎

2
4

when the sampling interval is (a) doubled and (b) quadrupled. Marking on the edge of a
piece of paper the points ℎ = 1, ℎ = 2, ℎ = 4 from the scale of the graph, we set the paper

FIGURE A15.1 Sampling of IMA(0, 1, 1) process: parameter 𝜃ℎ plotted against log ℎ.
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horizontally so that ℎ = 1 corresponds to the point on the curve for which 𝜃1 = 0.5. We
then read off the ordinates for 𝜃2 and 𝜃4 corresponding to ℎ = 2 and ℎ = 4. We find that

𝜃1 = 0.5 𝜃2 = 0.38 𝜃4 = 0.27

Using (A15.2.6), the variances are in inverse proportion to the values of 𝜃, so that

𝜎2
1 = 1.00 𝜎2

2 = 1.32 𝜎2
4 = 2.17

Suppose now that for the original scheme with unit interval, the dynamic constant was 𝛿1
(again we will use the subscript to denote the sampling interval). Then, since in real time
the same fixed time constant 𝑇 = −ℎ∕ ln(𝛿) applies to all the schemes, we have

𝛿2 = 𝛿21 𝛿4 = 𝛿41

The scheme giving minimummean square error for a particular sampling interval ℎ would
be

𝑥𝑡(ℎ) = −
1 − 𝜃ℎ

𝑔(1 − 𝛿ℎ1 )
(1 − 𝛿ℎ1𝐵)𝜀𝑡(ℎ)

or

𝑥𝑡(ℎ) = −
1 − 𝜃ℎ

𝑔

(
1 +

𝛿ℎ1

1 − 𝛿ℎ1
∇

)
𝜀𝑡(ℎ) (A15.2.7)

Suppose, for example, with 𝜃1 = 0.5 as above, 𝛿1 = 0.8, so that 𝛿2 = 0.64, 𝛿4 = 0.41. Then
the optimal schemes would be

ℎ = 1 ∶ 𝑥𝑡(1) = −0.5
𝑔

(1 + 4∇)𝜀𝑡(1) 𝜎2
𝜀
= 1.00 𝑔2𝜎2

𝑥
= 10.25

ℎ = 2 ∶ 𝑥𝑡(2) = −0.62
𝑔

(1 + 1.78∇)𝜀𝑡(2) 𝜎2
𝜀
= 1.32 𝑔2𝜎2

𝑥
= 5.50

ℎ = 4 ∶ 𝑥𝑡(4) = −0.73
𝑔

(1 + 0.69∇)𝜀𝑡(4) 𝜎2
𝜀
= 2.17 𝑔2𝜎2

𝑥
= 3.84

In accordance with expectation, as the sampling interval is increased and the dynamics of
the system have relatively less importance, the amount of ‘‘integral’’ control is increased
and the ratio of proportional to integral control is markedly reduced. We noted earlier
that an excessively large adjustment variance 𝜎2

𝑥
would usually be a disadvantage. The

values of 𝑔2𝜎2
𝑥
are indicated to show how the schemes differ in this respect. The smaller

value for 𝜎2
𝑥
would not of itself, of course, justify the choice ℎ = 4. Using an optima1

constrained scheme, as is described in Appendix A15.1, with ℎ = 1, a very large reduction
in 𝜎2

𝑥
would be produced with only a small increase in the output variance. For example,

entering Table A15.2 with 𝛿 = 0.8, 100𝑄 = 20, we find that for a 5% increase of output
variance to the value (1 + 𝜆2𝑄)𝜎21 = 1.05𝜎2

1, the input variance for the scheme with ℎ = 1
could be reduced to 22% of its unconstrained value, so that 𝑔2𝜎2

𝑥
= 10.25 × 0.22 = 2.26.
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Using (A15.1.27), we obtain for the constrained scheme with ℎ = 1,

𝑥𝑡 = 0.40𝑥𝑡−1 − 0.09𝑥𝑡−2 − 0.56
[
0.5
𝑔

(1 + 4∇)
]
𝜀𝑡(1)

𝜎2
𝜀
= 1.05 𝑔2𝜎2

𝑥
= 2.26

In practice, various alternative schemes could be set out with their accompanying char-
acteristics and an economic choice made to suit the particular problem. In general, the
increase in output variance that comes with the larger interval would have to be balanced
off against the economic advantage, if any, of less frequent surveillance.

EXERCISES

15.1. In a chemical process, 30 successive values of viscosity 𝑁𝑡 that occurred during a
period when the control variable (gas rate)𝑋𝑡 was held fixed at its standard reference
origin were recorded as follows:

Time Viscosities

1--10 92 92 96 96 96 98 98 100 100 94
11--20 98 88 88 88 96 96 92 92 90 90
21--30 90 94 90 90 94 94 96 96 96 96

Reconstruct and plot the error sequence (deviations from target) 𝜀𝑡 and adjustments
𝑥𝑡, which would have occurred if the optimal feedback control scheme

𝑥𝑡 = −10𝜀𝑡 + 5𝜀𝑡−1 (1)

had been applied during this period. It is given that the dynamic model is

𝑦𝑡 = 0.5𝑦𝑡−1 + 0.10𝑥𝑡−1 (2)

and that the error signal may be obtained from

𝜀𝑡 = 𝜀𝑡−1 + ∇𝑁𝑡 + 𝑦𝑡 (3)

Your calculation sequence should proceed in the order (2), (3), and (1) and initially
you should assume that 𝜀1 = 0, 𝑦1 = 0, 𝑥1 = 0. Can you devise a more direct way to
compute 𝜀𝑡 from𝑁𝑡?
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15.2. Given the following combinations of disturbance and transfer function models:

(1) ∇𝑁𝑡 = (1 − 0.7𝐵)𝑎𝑡
(1 − 0.4𝐵)Y𝑡 = 5.0𝑋𝑡−1+

(2) ∇𝑁𝑡 = (1 − 0.5𝐵)𝑎𝑡
(1 − 1.2𝐵 + 0.4𝐵2)Y𝑡 = (20 − 8.5)𝑋𝑡−1+

(3) ∇2𝑁𝑡 = (1 − 0.9𝐵 + 0.5𝐵2)𝑎𝑡
(1 − 0.7𝐵)Y𝑡 = 3.0𝑋𝑡−1+

(4) ∇𝑁𝑡 = (1 − 0.7𝐵)𝑎𝑡
(1 − 0.4𝐵)Y𝑡 = 5.0𝑋𝑡−2+

(a) Design the minimum mean square error feedback control schemes associated
with each combination of disturbance and transfer function model.

(b) For case (4), derive an expression for the error 𝜀𝑡 and for its variance in terms of
𝜎2
𝑎
.

(c) For case (4), design a nomogram suitable for carrying out the control action
manually by a process operator.

15.3. In a treatment plant for industrial waste, the strength 𝑢𝑡 of the influent is measured
every 30 minutes and can be represented by the model ∇𝑢𝑡 = (1 − 0.5𝐵)𝛼𝑡. In the
absence of control, the strength of the effluent 𝑌𝑡 is related to that of the influent 𝑢𝑡
by an effect Y1𝑡 that can be represented as

Y1𝑡 =
0.3𝐵

1 − 0.2𝐵
�̃�𝑡

An increase in strength in the waste may be compensated by an increase in the flow
𝑋𝑡 of a chemical to the plant, whose effect on 𝑌𝑡 is represented by the effect

Y2𝑡 =
21.6𝐵2

1 − 0.7𝐵
�̃�𝑡

Show that minimum mean square error feedforward control is obtained with the
control equation

�̃�𝑡 = − 0.3
21.6

[
(0.7 − 0.2𝐵)(1 − 0.7𝐵)
(1 − 0.2𝐵)(1 − 0.5𝐵)

]
�̃�𝑡

that is, �̃�𝑡 = 0.7�̃�𝑡−1 − 0.1�̃�𝑡−2 − 0.0139(0.7�̃�𝑡 − 0.69�̃�𝑡−1 + 0.14�̃�𝑡−2).

15.4. A pilot feedback control scheme, based on the following disturbance and transfer
function models:

∇𝑁𝑡 = 𝑎𝑡

(1 − 𝛿𝐵)Y𝑡 = 𝜔0𝑋𝑡−1+ − 𝜔1𝑋𝑡−2+
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was operated, leading to a series of adjustments 𝑥𝑡 and errors 𝜀𝑡. It was believed
that the noise model was reasonably accurate, but that the parameters of the transfer
function model were of questionable accuracy.

(a) Given the first 10 values of the 𝑥𝑡, 𝜀𝑡 series shown below:

t 𝑥𝑡 𝜀𝑡 t 𝑥𝑡 𝜀𝑡

1 25 −7 6 −30 1
2 42 −7 7 −25 3
3 3 −6 8 −25 4
4 20 −7 9 20 0
5 5 −4 10 40 −3

set out the calculation of the residuals 𝑎𝑡 (𝑡 = 2, 3,… , 10) for 𝛿 = 0.5,
𝜔0 = 0.3, 𝜔1 = 0.2, and for arbitrary starting values 𝑦01 and 𝑥00.

(b) Calculate the values 𝑦1, �̂�0 of 𝑦01 and 𝑥00 that minimize the sum of squares∑10
𝑡=2(𝑎𝑡|𝛿 = 0.5, 𝜔0 = 0.3, 𝜔1 = 0.2, 𝑦01, 𝑥

0
0)
2 and the value of thisminimum sum

of squares.

15.5. Consider (Box andMacGregor, 1976) a system forwhich the process transfer function
is gB and the noise model is (1 − 𝐵)𝑁𝑡 = (1 − 𝜃𝐵)𝑎𝑡 so that the error 𝜀𝑡 at the output
satisfies

(1 − 𝐵)𝜀𝑡 = 𝑔(1 − 𝐵)𝑋𝑡−1+ + (1 − 𝜃𝐵)𝑎𝑡

Suppose that the system is controlled by a known discrete ‘‘integral’’
controller

(1 − 𝐵)𝑋𝑡+ = −𝑐𝜀𝑡

(a) Show that the errors 𝜀𝑡 at the output will follow the ARMA(1, 1) process

(1 − 𝜙𝐵)𝜀𝑡 = (1 − 𝜃𝐵)𝑎𝑡 𝜙 = 1 − 𝑔𝑐

and hence that the problem of estimating 𝑔 and 𝜃 using data from a pilot control
scheme is equivalent to that of estimating the parameters in this ARMA(1, 1)
model.

(b) Show also that the optimal control scheme is such that 𝑐 = 𝑐0 = (1 − 𝜃)∕𝑔 and
hence that if the pilot scheme used in collecting the data happens to be optimal
already, then 1 − 𝜃 and 𝑔 cannot be separately estimated.
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PART FIVE

CHARTS AND TABLES

This part of the book is a collection of auxiliary material useful in the analysis of time
series. This includes tables and charts for obtaining preliminary estimates of the parameters
in autoregressive--moving-average models, together with the usual tail area tables of the
normal, 𝜒2, and 𝑡 distributions. This is followed by a listing of the time series analyzed in
the book, as well as some additional time series that are discussed in the exercises located
at the end of the individual chapters.

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
○c 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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COLLECTION OF TABLES AND CHARTS

TABLE A Table relating 𝜌1 to 𝜃 for a first-order moving average process

CHART B Chart relating 𝜌1 and 𝜌2 to 𝜙1 and 𝜙2 for a second-order autoregressive
process

CHART C Chart relating 𝜌1 and 𝜌2 to 𝜃1 and 𝜃2 for a second-order moving average
process

CHART D Chart relating 𝜌1 and 𝜌2 to 𝜙 and 𝜃 for a mixed first-order
autoregressive--moving average process

TABLE E Tail areas and ordinates of unit normal distribution

TABLE F Tail areas of the chi-square distribution

TABLE G Tail areas of the 𝑡 distribution

Charts B, C, and D are adapted and reproduced from Stralkowski (1968) with
permission of the author. Tables E, F, and G are condensed and adapted from
Biometrika Tables for Statisticians, Volume I, with permission from the trustees of
Biometrika.

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
○c 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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TABLE A Table Relating 𝝆𝟏 to 𝜽 for a First-Order Moving Average Process

𝜃 𝜌1 𝜃 𝜌1

0.00 0.000 0.00 0.000
0.05 −0.050 −0.05 0.050
0.10 −0.099 −0.10 0.099
0.15 −0.147 −0.15 0.147
0.20 −0.192 −0.20 0.192
0.25 −0.235 −0.25 0.235
0.30 −0.275 −0.30 0.275
0.35 −0.315 −0.35 0.315
0.40 −0.349 −0.40 0.349
0.45 −0.374 −0.45 0.374
0.50 −0.400 −0.50 0.400
0.55 −0.422 −0.55 0.422
0.60 −0.441 −0.60 0.441
0.65 −0.457 −0.65 0.457
0.70 −0.468 −0.70 0.468
0.75 −0.480 −0.75 0.480
0.80 −0.488 −0.80 0.488
0.85 −0.493 −0.85 0.493
0.90 −0.497 −0.90 0.497
0.95 −0.499 −0.95 0.499
1.00 −0.500 −1.00 0.500

Table A may be used to obtain first estimates of the parameters in the (0, 𝑑, 1) model
𝑤𝑡 = (1 − 𝜃𝐵)𝑎𝑡, where𝑤𝑡 = ∇𝑑𝑧𝑡, by substituting 𝑟1(𝑤) for 𝜌1.
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CHART B Chart relating 𝜌1 and 𝜌1 to 𝜙1 and 𝜙2 for a second-order autoregressive process.

The chart may be used to obtain estimates of the parameters in the (2, 𝑑, 0) model
(1 − 𝜙1𝐵 − 𝜙2𝐵

2)𝑤𝑡 = 𝑎𝑡, where 𝑤𝑡 = ∇𝑑𝑧𝑡, by substituting 𝑟1(𝑤) and 𝑟2(𝑤) for 𝜌1
and 𝜌2.

CHART C Chart relating 𝜌1 and 𝜌1 to 𝜃1 and 𝜃2 for a second-order autoregressive process.

The chart may be used to obtain estimates of the parameters in the (0, 𝑑, 2) model
𝑤𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵

2)𝑎𝑡, where 𝑤𝑡 = ∇𝑑𝑧𝑡, by substituting 𝑟1(𝑤) and 𝑟2(𝑤) for 𝜌1
and 𝜌2.
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CHART D Chart relating 𝜌1 and 𝜌2 to 𝜙 and 𝜃 for a mixed first-order autoregressive--moving
average process.

The chart may be used to obtain estimates of the parameters in the (1, 𝑑, 1) model
(1 − 𝜙𝐵)𝑤𝑡 = (1 − 𝜃𝐵)𝑎𝑡, where 𝑤𝑡 = ∇𝑑𝑧𝑡, by substituting 𝑟1(𝑤) and 𝑟2(𝑤) for 𝜌1
and 𝜌2.

TABLE E Tail Areas and Ordinates of Unit Normal Distribution𝒂

𝑢𝜀 𝜀 𝑝(𝑢𝜀) 𝑢𝜀 𝜀 𝑝(𝑢𝜀)

0.0 0.500 0.3989 1.6 0.055 0.1109
0.1 0.460 0.3969 1.7 0.045 0.0940
0.2 0.421 0.3910 1.8 0.036 0.0790
0.3 0.382 0.3814 1.9 0.029 0.0656
0.4 0.345 0.3683 2.0 0.023 0.0540
0.5 0.309 0.3521 2.1 0.018 0.0440
0.6 0.274 0.3322 2.2 0.014 0.0355
0.7 0.242 0.3123 2.3 0 011 0.0283
0.8 0.212 0.2897 2.4 0.008 0.0224
0.9 0.184 0.2661 2.5 0.006 0.0175
1.0 0.159 0.2420 2.6 0.005 0.0136
1.1 0.136 0.2179 2.7 0.003 0.0104
1.2 0.115 0.1942 2.8 0.003 0.0079
1.3 0.097 0.1714 2.9 0.002 0.0059
1.4 0.081 0.1497 3.0 0.001 0.0044
1.5 0.067 0.1295
𝑎 Shown are the values of the unit normal deviate 𝑢𝜀 such that Pr{𝑢 > 𝑢𝜀} = 𝜀; also shown are the ordinates
𝑝(𝑢 = 𝑢𝜀).





Box3G Date: May 21, 2015 Time: 2:30 pm

624 COLLECTION OF TABLES AND CHARTS

TABLE G Tail Areas of the 𝒕 Distribution𝒂

𝜀

𝑛𝑢 0.25 0.10 0.05 0.025 0.01 0.005

1 1.00 3.08 6.31 12.71 31.82 63.66
2 0.82 1.89 2.92 4.30 6.96 9.92
3 0.76 1.64 2.35 3.18 4.54 5.84
4 0.74 1.53 2.13 2.78 3.75 4.60
5 0.73 1.48 2.02 2.57 3.36 4.03
6 0.72 1.44 1.94 2.45 3.14 3.71
7 0.71 1.42 1.90 2.36 3.00 3.50
8 0.71 1.40 1.86 2.31 2.90 3.36
9 0.70 1.38 1.83 2.26 2.82 3.25
10 0.70 1.37 1.81 2.23 2.76 3.17
11 0.70 1.36 1.80 2.20 2.72 3.11
12 0.70 1.36 1.78 2.18 2.68 3.06
13 0.69 1.35 1.77 2.16 2.65 3.01
14 0.69 1.34 1.76 2.14 2.62 2.98
15 0.69 1.34 1.75 2.13 2.60 2.95
16 0.69 1.34 1.75 2.12 2.58 2.92
17 0.69 1.33 1.74 2.11 2.57 2.90
18 0.69 1.33 1.73 2.10 2.55 2.88
19 0.69 1.33 1.73 2.09 2.54 2.86
20 0.69 1.33 1.72 2.09 2.53 2.84
30 0.68 1.31 1.70 2.04 2.46 2.75
40 0.68 1.30 1.68 2.02 2.42 2.70
60 0.68 1.30 1.67 2.00 2.39 2.66
120 0.68 1.29 1.66 1.98 2.36 2.62
∞ 0.67 1.28 1.64 1.96 2.33 2.58

𝑎 Shown are the values of 𝑡𝜀(𝑣) such that Pr{𝑡(𝑣) > 𝑡𝜀(𝑣)} = 𝜀, where 𝑣 is the number of degrees of freedom.
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COLLECTION OF TIME SERIES USED
FOR EXAMPLES IN THE TEXT AND IN
EXERCISES

SERIES A Chemical process concentration readings: every 2 hours

SERIES B IBM common stock closing prices: daily, May 17, 1961--November 2, 1962

SERIES B′ IBM common stock closing prices: daily, June 29, 1959--June 30, 1960

SERIES C Chemical process temperature readings: every minute

SERIES D Chemical process viscosity readings: every hour

SERIES E Wölfer sunspot numbers: yearly

SERIES F Yields from a batch chemical process: consecutive

SERIES G International airline passengers: monthly totals (thousands of passengers)
January 1949--December 1960

SERIES J Gas furnace data

SERIES K Simulated dynamic data with two inputs

SERIES L Pilot scheme data

SERIES M Sales data with leading indicator

SERIES N Mink fur sales of the Hudson’s Bay Company: annual for 1850--1911

SERIES P Unemployment and GDP data in UK: quarterly for 1955--1969

SERIES Q Logged and coded U.S. hog price data: annual for 1867--1948

SERIES R Monthly averages of hourly readings of ozone in downtown Los Angeles

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
○c 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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SERIES A Chemical Process Concentration Readings: Every 2 Hours𝒂

1 17.0 41 17.6 81 16.8 121 16.9 161 17.1
2 16.6 42 17.5 82 16.7 122 17.1 162 17.1
3 16.3 43 16.5 83 16.4 123 16.8 163 17.1
4 16.1 44 17.8 84 16.5 124 17.0 164 17.4
5 17.1 45 17.3 85 16.4 125 17.2 165 17.2
6 16.9 46 17.3 86 16.6 126 17.3 166 16.9
7 16.8 47 17.1 87 16.5 127 17.2 167 16.9
8 17.4 48 17.4 88 16.7 128 17.3 168 17.0
9 17.1 49 16.9 89 16.4 129 17.2 169 16.7
10 17.0 50 17.3 90 16.4 130 17.2 170 16.9
11 16.7 51 17.6 91 16.2 131 17.5 171 17.3
12 17.4 52 16.9 92 16.4 132 16.9 172 17.8
13 17.2 53 16.7 93 16.3 133 16.9 173 17.8
14 17.4 54 16.8 94 16.4 134 16.9 174 17.6
15 17.4 55 16.8 95 17.0 135 17.0 175 17.5
16 17.0 56 17.2 96 16.9 136 16.5 176 17.0
17 17.3 57 16.8 97 17.1 137 16.7 177 16.9
18 17.2 58 17.6 98 17.1 138 16.8 178 17.1
19 17.4 59 17.2 99 16.7 139 16.7 179 17.2
20 16.8 60 16.6 100 16.9 140 16.7 180 17.4
21 17.1 61 17.1 101 16.5 141 16.6 181 17.5
22 17.4 62 16.9 102 17.2 142 16.5 182 17.9
23 17.4 63 16.6 103 16.4 143 17.0 183 17.0
24 17.5 64 18.0 104 17.0 144 16.7 184 17.0
25 17.4 65 17.2 105 17.0 145 16.7 185 17.0
26 17.6 66 17.3 106 16.7 146 16.9 186 17.2
27 17.4 67 17.0 107 16.2 147 17.4 187 17.3
28 17.3 68 16.9 108 16.6 148 17.1 188 17.4
29 17.0 69 17.3 109 16.9 149 17.0 189 17.4
30 17.8 70 16.8 110 16.5 150 16.8 190 17.0
31 17.5 71 17.3 111 16.6 151 17.2 191 18.0
32 18.1 72 17.4 112 16.6 152 17.2 192 18.2
33 17.5 73 17.7 113 17.0 153 17.4 193 17.6
34 17.4 74 16.8 114 17.1 154 17.2 194 17.8
35 17.4 75 16.9 115 17.1 155 16.9 195 17.7
36 17.1 76 17.0 116 16.7 156 16.8 196 17.2
37 17.6 77 16.9 117 16.8 157 17.0 197 17.4
38 17.7 78 17.0 118 16.3 158 17.4
39 17.4 79 16.6 119 16.6 159 17.2
40 17.8 80 16.7 120 16.8 160 17.2
𝑎197 observations.
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SERIES B IBM Common Stock Closing Prices: Daily, May 17, 1961--November 2, 1962𝒂

460 471 527 580 551 523 333 394 330
457 467 540 579 551 516 330 393 340
452 473 542 584 552 511 336 409 339
459 481 538 581 553 518 328 411 331
462 488 541 581 557 517 316 409 345
459 490 541 577 557 520 320 408 352
463 489 547 577 548 519 332 393 346
479 489 553 578 547 519 320 391 352
493 485 559 580 545 519 333 388 357
490 491 557 586 545 518 344 396
492 492 557 583 539 513 339 387
498 494 560 581 539 499 350 383
499 499 571 576 535 485 351 388
497 498 571 571 537 454 350 382
496 500 569 575 535 462 345 384
490 497 575 575 536 473 350 382
489 494 580 573 537 482 359 383
478 495 584 577 543 486 375 383
487 500 585 582 548 475 379 388
491 504 590 584 546 459 376 395
487 513 599 579 547 451 382 392
482 511 603 572 548 453 370 386
479 514 599 577 549 446 365 383
478 510 596 571 553 455 367 377
479 509 585 560 553 452 372 364
477 515 587 549 552 457 373 369
479 519 585 556 551 449 363 355
475 523 581 557 550 450 371 350
479 519 583 563 553 435 369 353
476 523 592 564 554 415 376 340
476 531 592 567 551 398 387 350
478 547 596 561 551 399 387 349
479 551 596 559 545 361 376 358
477 547 595 553 547 383 385 360
476 541 598 553 547 393 385 360
475 545 598 553 537 385 380 366
475 549 595 547 539 360 373 359
473 545 595 550 538 364 382 356
474 549 592 544 533 365 377 355
474 547 588 541 525 370 376 367
474 543 582 532 513 374 379 357
465 540 576 525 510 359 386 361
466 539 578 542 521 335 387 355
467 532 589 555 521 323 386 348
471 517 585 558 521 306 389 343

𝑎369 observations (read down).
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SERIES B′ IBM Common Stock Closing Prices: Daily, June 29, 1959--June 30, 1960𝒂

445 425 406 441 415 461
448 421 407 437 420 463
450 414 410 427 420 463
447 410 408 423 424 461
451 411 408 424 426 465
453 406 409 428 423 473
454 406 410 428 423 473
454 413 409 431 425 475
459 411 405 425 431 499
440 410 406 423 436 485
446 405 405 420 436 491
443 409 407 426 440 496
443 410 409 418 436 504
440 405 407 416 443 504
439 401 409 419 445 509
435 401 425 418 439 511
435 401 425 416 443 524
436 414 428 419 445 525
435 419 436 425 450 541
435 425 442 421 461 531
435 423 442 422 471 529
433 411 433 422 467 530
429 414 435 417 462 531
428 420 433 420 456 527
425 412 435 417 464 525
427 415 429 418 463 519
425 412 439 419 465 514
422 412 437 419 464 509
409 411 439 417 456 505
407 412 438 419 460 513
423 409 435 422 458 525
422 407 433 423 453 519
417 408 437 422 453 519
421 415 437 421 449 522
424 413 444 421 447 522
414 413 441 419 453
419 410 440 418 450
429 405 441 421 459
426 410 439 420 457
425 412 439 413 453
424 413 438 413 455
425 411 437 408 453
425 411 441 409 450
424 409 442 415 456

𝑎255 observations (read down).



Box3G Date: May 21, 2015 Time: 1:12 pm

COLLECTION OF TIME SERIES USED FOR EXAMPLES IN THE TEXT AND IN EXERCISES 629

SERIES C Chemical Process Temperature Readings: Every Minute𝒂

26.6 19.6 24.4 21.1 24.4
27.0 19.6 24.4 20.9 24.2
27.1 19.6 24.4 20.8 24.2
27.1 19.6 24.4 20.8 24.1
27.1 19.6 24.5 20.8 24.1
27.1 19.7 24.5 20.8 24.0
26.9 19.9 24.4 20.9 24.0
26.8 20.0 24.3 20.8 24.0
26.7 20.1 24.2 20.8 23.9
26.4 20.2 24.2 20.7 23.8
26.0 20.3 24.0 20.7 23.8
25.8 20.6 23.9 20.8 23.7
25.6 21.6 23.7 20.9 23.7
25.2 21.9 23.6 21.2 23.6
25.0 21.7 23.5 21.4 23.7
24.6 21.3 23.5 21.7 23.6
24.2 21.2 23.5 21.8 23.6
24.0 21.4 23.5 21.9 23.6
23.7 21.7 23.5 22.2 23.5
23.4 22.2 23.7 22.5 23.5
23.1 23.0 23.8 22.8 23.4
22.9 23.8 23.8 23.1 23.3
22.8 24.6 23.9 23.4 23.3
22.7 25.1 23.9 23.8 23.3
22.6 25.6 23.8 24.1 23.4
22.4 25.8 23.7 24.6 23.4
22.2 26.1 23.6 24.9 23.3
22.0 26.3 23.4 24.9 23.2
21.8 26.3 23.2 25.1 23.3
21.4 26.2 23.0 25.0 23.3
20.9 26.0 22.8 25.0 23.2
20.3 25.8 22.6 25.0 23.1
19.7 25.6 22.4 25.0 22.9
19.4 25.4 22.0 24.9 22.8
19.3 25.2 21.6 24.8 22.6
19.2 24.9 21.3 24.7 22.4
19.1 24.7 21.2 24.6 22.2
19.0 24.5 21.2 24.5 21.8
18.9 24.4 21.1 24.5 21.3
18.9 24.4 21.0 24.5 20.8
19.2 24.4 20.9 24.5 20.2
19.3 24.4 21.0 24.5 19.7
19.3 24.4 21.0 24.5 19.3
19.4 24.3 21.1 24.5 19.1
19.5 24.4 21.2 24.4 19.0

18.8
𝑎226 observations (read down).
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SERIES D Chemical Process Viscosity Readings: Every Hour𝒂

8.0 8.8 9.3 9.1 9.0 10.0 9.6
8.0 8.6 9.9 9.5 9.0 9.8 8.6
7.4 8.6 9.7 9.4 9.4 9.8 8.0
8.0 8.4 9.1 9.5 9.0 9.7 8.0
8.0 8.3 9.3 9.6 9.0 9.6 8.0
8.0 8.4 9.5 10.2 9.4 9.4 8.0
8.0 8.3 9.4 9.8 9.4 9.2 8.4
8.8 8.3 9.0 9.6 9.6 9.0 8.8
8.4 8.1 9.0 9.6 9.4 9.4 8.4
8.4 8.2 8.8 9.4 9.6 9.6 8.4
8.0 8.3 9.0 9.4 9.6 9.6 9.0
8.2 8.5 8.8 9.4 9.6 9.6 9.0
8.2 8.1 8.6 9.4 10.0 9.6 9.4
8.2 8.1 8.6 9.6 10.0 9.6 10.0
8.4 7.9 8.0 9.6 9.6 9.6 10.0
8.4 8.3 8.0 9.4 9.2 9.0 10.0
8.4 8.1 8.0 9.4 9.2 9.4 10.2
8.6 8.1 8.0 9.0 9.2 9.4 10.0
8.8 8.1 8.6 9.4 9.0 9.4 10.0
8.6 8.4 8.0 9.4 9.0 9.6 9.6
8.6 8.7 8.0 9.6 9.6 9.4 9.0
8.6 9.0 8.0 9.4 9.8 9.6 9.0
8.6 9.3 7.6 9.2 10.2 9.6 8.6
8.6 9.3 8.6 8.8 10.0 9.8 9.0
8.8 9.5 9.6 8.8 10.0 9.8 9.6
8.9 9.3 9.6 9.2 10.0 9.8 9.6
9.1 9.5 10.0 9.2 9.4 9.6 9.0
9.5 9.5 9.4 9.6 9.2 9.2 9.0
8.5 9.5 9.3 9.6 9.6 9.6 8.9
8.4 9.5 9.2 9.8 9.7 9.2 8.8
8.3 9.5 9.5 9.8 9.7 9.2 8.7
8.2 9.5 9.5 10.0 9.8 9.6 8.6
8.1 9.9 9.5 10.0 9.8 9.6 8.3
8.3 9.5 9.9 9.4 9.8 9.6 7.9
8.4 9.7 9.9 9.8 10.0 9.6 8.5
8.7 9.1 9.5 8.8 10.0 9.6 8.7
8.8 9.1 9.3 8.8 8.6 9.6 8.9
8.8 8.9 9.5 8.8 9.0 10.0 9.1
9.2 9.3 9.5 8.8 9.4 10.0 9.1
9.6 9.1 9.1 9.6 9.4 10.4 9.1
9.0 9.1 9.3 9.6 9.4 10.4
8.8 9.3 9.5 9.6 9.4 9.8
8.6 9.5 9.3 9.2 9.4 9.0
8.6 9.3 9.1 9.2 9.6 9.6
8.8 9.3 9.3 9.0 10.0 9.8

𝑎310 observations (read down).
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SERIES E Wölfer Sunspot Numbers: Yearly𝒂

1770 101 1795 21 1820 16 1845 40
1771 82 1796 16 1821 7 1846 62
1772 66 1797 6 1822 4 1847 98
1773 35 1798 4 1823 2 1848 124
1774 31 1799 7 1824 8 1849 96
1775 7 1800 14 1825 17 1850 66
1776 20 1801 34 1826 36 1851 64
1777 92 1802 45 1827 50 1852 54
1778 154 1803 43 1828 62 1853 39
1779 125 1804 48 1829 67 1854 21
1780 85 1805 42 1830 71 1855 7
1781 68 1806 28 1831 48 1856 4
1782 38 1807 10 1832 28 1857 23
1783 23 1808 8 1833 8 1858 55
1784 10 1809 2 1834 13 1859 94
1785 24 1810 0 1835 57 1860 96
1786 83 1811 1 1836 122 1861 77
1787 132 1812 5 1837 138 1862 59
1788 131 1813 12 1838 103 1863 44
1789 118 1814 14 1839 86 1864 47
1790 90 1815 35 1840 63 1865 30
1791 67 1816 46 1841 37 1866 16
1792 60 1817 41 1842 24 1867 7
1793 47 1818 30 1843 11 1868 37
1794 41 1819 24 1844 15 1869 74

𝑎100 observations.

SERIES F Yields from a Batch Chemical Process: Consecutive𝒂

47 44 50 62 68
64 80 71 44 38
23 55 56 64 50
71 37 74 43 60
38 74 50 52 39
64 51 58 38 59
55 57 45 59 40
41 50 54 55 57
59 60 36 41 54
48 45 54 53 23
71 57 48 49
35 50 55 34
57 45 45 35
40 25 57 54
58 59 50 45

𝑎70 Observations (read down).
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SERIES G International Airline Passengers: Monthly Totals (Thousands of Passengers)
January 1949--December 1960𝒂

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

1949 112 118 132 129 121 135 148 148 136 119 104 118
1950 115 126 141 135 125 149 170 170 158 133 114 140
1951 145 150 178 163 172 178 199 199 184 162 146 166
1952 171 180 193 181 183 218 230 242 209 191 172 194
1953 196 196 236 235 229 243 264 272 237 211 180 201
1954 204 188 235 227 234 264 302 293 259 229 203 229
1955 242 233 267 269 270 315 364 347 312 274 237 278
1956 284 277 317 313 318 374 413 405 355 306 271 306
1957 315 301 356 348 355 422 465 467 404 347 305 336
1958 340 318 362 348 363 435 491 505 404 359 310 337
1959 360 342 406 396 420 472 548 559 463 407 362 405
1960 417 391 419 461 472 535 622 606 508 461 390 432

𝑎144 observations.

SERIES J Series J Gas Furnace Data𝒂

𝑡 𝑋𝑡 𝑌𝑡 𝑡 𝑋𝑡 𝑌𝑡 𝑡 𝑋𝑡 𝑌𝑡

1 −0.109 53.8 51 1.608 46.9 101 −0.288 51.0
2 0.000 53.6 52 1.905 47.8 102 −0.153 51.8
3 0.178 53.5 53 2.023 48.2 103 −0.109 52.4
4 0.339 53.5 54 1.815 48.3 104 −0.187 53.0
5 0.373 53.4 55 0.535 47.9 105 −0.255 53.4
6 0.441 53.1 56 0.122 47.2 106 −0.229 53.6
7 0.461 52.7 57 0.009 47.2 107 −0.007 53.7
8 0.348 52.4 58 0.164 48.1 108 0.254 53.8
9 0.127 52.2 59 0.671 49.4 109 0.330 53.8
10 −0.180 52.0 60 1.019 50.6 110 0.102 53.8
11 −0.588 52.0 61 1.146 51.5 111 −0.423 53.3
12 −1.055 52.4 62 1.155 51.6 112 −1.139 53.0
13 −1.421 53.0 63 1.112 51.2 113 −2.275 52.9
14 −1.520 54.0 64 1.121 50.5 114 −2.594 53.4
15 −1.302 54.9 65 1.223 50.1 115 −2.716 54.6
16 −0.814 56.0 66 1.257 49.8 116 −2.510 56.4
17 −0.475 56.8 67 1.157 49.6 117 −1.790 58.0
18 −0.193 56.8 68 0.913 49.4 118 −1.346 59.4
19 0.088 56.4 69 0.620 49.3 119 −1.081 60.2
20 0.435 55.7 70 0.255 49.2 120 −0.910 60.0
21 0.771 55.0 71 −0.280 49.3 121 −0.876 59.4
22 0.866 54.3 72 −1.080 49.7 122 −0.885 58.4
23 0.875 53.2 73 −1.551 50.3 123 −0.800 57.6
24 0.891 52.3 74 −1.799 51.3 124 −0.544 56.9
25 0.987 51.6 75 −1.825 52.8 125 −0.416 56.4
26 1.263 51.2 76 −1.456 54.4 126 −0.271 56.0
27 1.775 50.8 77 −0.944 56.0 127 0.000 55.7
28 1.976 50.5 78 −0.570 56.9 128 0.403 55.3
29 1.934 50.0 79 −0.431 57.5 129 0.841 55.0
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SERIES J (continued )

𝑡 𝑋𝑡 𝑌𝑡 𝑡 𝑋𝑡 𝑌𝑡 𝑡 𝑋𝑡 𝑌𝑡

30 1.866 49.2 80 −0.577 57.3 130 1.285 54.4
31 1.832 48.4 81 −0.960 56.6 131 1.607 53.7
32 1.767 47.9 82 −1.616 56.0 132 1.746 52.8
33 1.608 47.6 83 −1.875 55.4 133 1.683 51.6
34 1.265 47.5 84 −1.891 55.4 134 1.485 50.6
35 0.790 47.5 85 −1.746 56.4 135 0.993 49.4
36 0.360 47.6 86 −1.474 57.2 136 0.648 48.8
37 0.115 48.1 87 −1.201 58.0 137 0.577 48.5
38 0.088 49.0 88 −0.927 58.4 138 0.577 48.7
39 0.331 50.0 89 −0.524 58.4 139 0.632 49.2
40 0.645 51.1 90 0.040 58.1 140 0.747 49.8
41 0.960 51.8 91 0.788 57.7 141 0.900 50.4
42 1.409 51.9 92 0.943 57.0 142 0.993 50.7
43 2.670 51.7 93 0.930 56.0 143 0.968 50.9
44 2.834 51.2 94 1.006 54.7 144 0.790 50.7
45 2.812 50.0 95 1.137 53.2 145 0.399 50.5
46 2.483 48.3 96 1.198 52.1 146 −0.161 50.4
47 1.929 47.0 97 1.054 51.6 147 −0.553 50.2
48 1.485 45.8 98 0.595 51.0 148 −0.603 50.4
49 1.214 45.6 99 −0.080 50.5 149 −0.424 51.2
50 1.239 46.0 100 −0.314 50.4 150 −0.194 52.3

151 −0.049 53.2 201 −2.473 55.6 251 0.185 56.3
152 0.060 53.9 202 −2.330 58.0 252 0.662 56.4
153 0.161 54.1 203 −2.053 59.5 253 0.709 56.4
154 0.301 54.0 204 −1.739 60.0 254 0.605 56.0
155 0.517 53.6 205 −1.261 60.4 255 0.501 55.2
156 0.566 53.2 206 −0.569 60.5 256 0.603 54.0
157 0.560 53.0 207 −0.137 60.2 257 0.943 53.0
158 0.573 52.8 208 −0.024 59.7 258 1.223 52.0
159 0.592 52.3 209 −0.050 59.0 259 1.249 51.6
160 0.671 51.9 210 −0.135 57.6 260 0.824 51.6
161 0.933 51.6 211 −0.276 56.4 261 0.102 51.1
162 1.337 51.6 212 −0.534 55.2 262 0.025 50.4
163 1.460 51.4 213 −0.871 54.5 263 0.382 50.0
164 1.353 51.2 214 −1.243 54.1 264 0.922 50.0
165 0.772 50.7 215 −1.439 54.1 265 1.032 52.0
166 0.218 50.0 216 −1.422 54.4 266 0.866 54.0
167 −0.237 49.4 217 −1.175 55.5 267 0.527 55.1
168 −0.714 49.3 218 −0.813 56.2 268 0.093 54.5
169 −1.099 49.7 219 −0.634 57.0 269 −0.458 52.8
170 −1.269 50.6 220 −0.582 57.3 270 −0.748 51.4
171 −1.175 51.8 221 −0.625 57.4 271 −0.947 50.8
172 −0.676 53.0 222 −0.713 57.0 272 −1.029 51.2
173 0.033 54.0 223 −0.848 56.4 273 −0.928 52.0
174 0.556 55.3 224 −1.039 55.9 274 −0.645 52.8
175 0.643 55.9 225 −1.346 55.5 275 −0.424 53.8
176 0.484 55.9 226 −1.628 55.3 276 −0.276 54.5
177 0.109 54.6 227 −1.619 55.2 277 −0.158 54.9
178 −0.310 53.5 228 −1.149 55.4 278 −0.033 54.9
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SERIES J (continued )

𝑡 𝑋𝑡 𝑌𝑡 𝑡 𝑋𝑡 𝑌𝑡 𝑡 𝑋𝑡 𝑌𝑡

179 −0.697 52.4 229 −0.488 56.0 279 0.102 54.8
180 −1.047 52.1 230 −0.160 56.5 280 0.251 54.4
181 −1.218 52.3 231 −0.007 57.1 281 0.280 53.7
182 −1.183 53.0 232 −0.092 57.3 282 0.000 53.3
183 −0.873 53.8 233 −0.620 56.8 283 −0.493 52.8
184 −0.336 54.6 234 −1.086 55.6 284 −0.759 52.6
185 0.063 55.4 235 −1.525 55.0 285 −0.824 52.6
186 0.084 55.9 236 −1.858 54.1 286 −0.740 53.0
187 0.000 55.9 237 −2.029 54.3 287 −0.528 54.3
188 0.001 55.2 238 −2.024 55.3 288 −0.204 56.0
189 0.209 54.4 239 −1.961 56.4 289 0.034 57.0
190 0.556 53.7 240 −1.952 57.2 290 0.204 58.0
191 0.782 53.6 241 −1.794 57.8 291 0.253 58.6
192 0.858 53.6 242 −1.302 58.3 292 0.195 58.5
193 0.918 53.2 243 −1.030 58.6 293 0.131 58.3
194 0.862 52.5 244 −0.918 58.8 294 0.017 57.8
195 0.416 52.0 245 −0.798 58.8 295 −0.182 57.3
196 −0.336 51.4 246 −0.867 58.6 296 −0.262 57.0
197 −0.959 51.0 247 −1.047 58.0
198 −1.813 50.9 248 −1.123 57.4
199 −2.378 52.4 249 −0.876 57.0
200 −2.499 53.5 250 −0.395 56.4

𝑎Sampling interval 9 seconds; observations for 296 pairs of data points. 𝑋, 0.60 − 0.04 (input gas rate in cubic
feet per minute); 𝑌 ,%CO2 in outlet gas.
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SERIES K Simulated Dynamic Data with Two Inputs𝒂

𝑡 𝑋1𝑡 𝑋2𝑡 𝑌𝑡 𝑡 𝑋1𝑡 𝑋2𝑡 𝑌𝑡

−2 0 0 58.3
−1 61.8
0 64.2 30 65.8
1 62.1 31 67.4
2 −1 1 55.1 32 −1 −1 64.7
3 50.6 33 65.7
4 47.8 34 67.5

5 49.7 35 58.2
6 51.6 36 57.0
7 1 −1 58.5 37 −1 1 54.7
8 61.5 38 54.9
9 63.3 39 48.4

10 65.9 40 49.7
11 70.9 41 53.1
12 −1 −1 65.8 42 1 −1 50.2
13 57.6 43 51.7
14 56.1 44 57.4

15 58.2 45 62.6
16 61.7 46 65.8
17 1 1 59.2 47 −1 −1 61.5
18 57.9 48 61.5
19 61.3 49 56.8

20 60.8 50 62.3
21 63.6 51 57.7
22 1 −1 69.5 52 −1 1 54.0
23 69.3 53 45.2
24 70.5 54 51.9

25 68.0 55 45.6
26 68.1 56 46.2
27 1 1 65.0 57 1 1 50.2
28 71.9 58 54.6
29 64.8 59 55.6

60 0 0 60.4
61 59.4

𝑎64 observations.
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SERIES L Pilot Scheme Data𝒂

𝑡 𝑥
𝑡

𝜀
𝑡

𝑡 𝑥
𝑡

𝜀
𝑡

𝑡 𝑥
𝑡

𝜀
𝑡

1 30 −4 53 −60 6 105 55 −4
2 0 −2 54 50 −2 106 0 2
3 −10 0 55 −10 0 107 −90 8
4 0 0 56 40 −4 108 40 0
5 −40 4 57 40 −6 109 0 0
6 0 2 58 −30 0 110 80 −8
7 −10 2 59 20 −2 111 −20 −2
8 10 0 60 −30 2 112 −10 0
9 20 −2 61 10 0 113 −70 6
10 50 −6 62 −20 2 114 −30 6
11 −10 −2 63 30 −2 115 −10 4
12 −55 4 64 −50 4 116 30 −1
13 0 2 65 10 −2 117 −5 0
14 10 0 66 10 −2 118 −60 6
15 0 −2 67 10 −2 119 70 −4
16 10 −2 68 −30 0 120 40 −6
17 −70 6 69 0 0 121 10 −4
18 30 0 70 −10 2 122 20 −4
19 −20 2 71 −10 3 123 10 −3
20 10 0 72 15 0 124 0 −2
21 0 0 73 20 −2 125 −70 6
22 0 0 74 −50 4 126 50 −2
23 20 −2 75 20 0 127 30 −4
24 30 −4 76 0 0 128 0 −2
25 0 −2 77 0 0 129 −10 0
26 −10 0 78 0 0 130 0 0
27 −20 2 79 0 0 131 −40 4
28 −30 4 80 −40 4 132 0 2
29 0 2 81 −100 12 133 −10 2
30 10 0 82 0 8 134 10 0
31 20 −2 83 0 −12 135 0 0
32 −10 0 84 50 −15 136 80 −8
33 0 0 85 85 −15 137 −80 4
34 20 −2 86 5 −12 138 20 4
35 10 −2 87 40 −14 139 20 0
36 −10 0 88 10 −8 140 −10 2
37 0 0 89 −60 2 141 10 0
38 0 0 90 −50 6 142 0 0
39 0 0 91 −50 8 143 −20 2
40 0 0 92 40 0 144 20 −1
41 0 0 93 0 0 145 55 −6
42 0 0 94 0 0 146 0 −3
43 20 −2 95 −20 2 147 25 −4
44 −50 4 96 −30 4 148 20 −4
45 20 0 97 −60 8 149 −60 4
46 0 0 98 −20 6 150 −40 6
47 0 0 99 −30 6 151 10 4
48 40 −4 100 30 0 152 20 0
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SERIES L (continued )

𝑡 𝑥𝑡 𝜀𝑡 𝑡 𝑥𝑡 𝜀𝑡 𝑡 𝑥𝑡 𝜀𝑡

49 0 −2 101 −40 4 153 60 −6
50 50 −6 102 80 −6 154 −50 2
51 −40 0 103 −40 0 155 −10 2
52 −50 3 104 −20 2 156 −30 4

157 20 0 209 −40 4 261 −25 4
158 0 0 210 40 −2 262 35 −2
159 20 −2 211 −90 8 263 70 8
160 10 −2 212 40 0 264 −10 −5
161 10 −2 213 0 0 265 100 −20
162 10 −22 214 0 0 266 −20 −8
163 50 −6 215 0 0 267 −40 0
164 −30 0 216 20 −2 268 −20 2
165 −30 6 217 90 −10 269 10 0
166 90 12 218 30 −8 270 0 0
167 60 0 219 20 −6 271 0 0
168 −40 4 220 30 −6 272 −20 2
169 20 0 221 30 −6 273 −50 6
170 0 0 222 30 −6 274 50 −2
171 20 −2 223 30 −6 275 30 −4
172 10 −2 224 −90 6 276 60 −8
173 −30 2 225 10 2 277 −40 0
174 −30 4 226 10 2 278 −20 2
175 0 2 227 −30 4 279 −10 2
176 50 −4 228 −20 4 280 10 0
177 −60 4 229 40 −2 281 −110 13
178 20 0 230 10 −2 282 15 4
179 0 0 231 10 −2 283 30 −2
180 40 −8 232 10 −2 284 0 −1
181 80 −12 233 −100 12 285 25 −3
182 20 −8 234 10 6 286 −5 −1
183 −100 6 235 45 −2 287 −15 1
184 −30 6 236 30 −4 288 45 −4
185 30 0 237 30 −5 289 40 −6
186 −20 2 238 −15 −1 290 −50 2
187 −30 4 239 −5 0 291 −10 2
188 20 0 240 10 −1 292 −50 6
189 60 −6 241 −85 8 293 20 1
190 −10 −2 242 0 4 294 5 0
191 30 −4 243 0 0 295 −40 4
192 −40 2 244 60 −4 296 0 6
193 30 −2 245 40 −6 297 −60 8
194 −20 1 246 −30 0 298 40 0
195 5 0 247 −40 4 299 −20 2
196 −20 2 248 −40 6 300 130 −12
197 −30 4 249 50 −2 301 −20 −4
198 20 0 250 10 −2 302 0 −2
199 10 −1 251 30 −4 303 30 −4
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SERIES L (continued )

𝑡 𝑥𝑡 𝜀𝑡 𝑡 𝑥𝑡 𝜀𝑡 𝑡 𝑥𝑡 𝜀𝑡

200 −15 1 252 −40 2 304 −20 0
201 −75 8 253 10 0 305 60 6
202 −40 8 254 −40 4 306 10 −4
203 −40 6 255 40 −2 307 −10 1
204 90 −6 256 −30 2 308 −25 2
205 90 −12 257 −50 6 309 0 1
206 80 −14 258 0 3 310 15 −1
207 −45 −2 259 −45 6 311 −5 0
208 −10 0 260 −20 5 312 0 0

𝑎312 observations.
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SERIES M Sales Data with Leading Indicator𝒂

Leading Leading Leading
Indicator Sales Indicator Sales Indicator Sales

𝑡 𝑋𝑡 𝑌𝑡 𝑡 𝑋𝑡 𝑌𝑡 𝑡 𝑋𝑡 𝑌𝑡

1 10.01 200.1 51 10.77 220.0 101 12.90 249.4
2 10.07 199.5 52 10.88 218.7 102 13.12 249.0
3 10.32 199.4 53 10.49 217.0 103 12.47 249.9
4 9.75 198.9 54 10.50 215.9 104 12.47 250.5
5 10.33 199.0 55 11.00 215.8 105 12.94 251.5
6 10.13 200.2 56 10.98 214.1 106 13.10 249.0
7 10.36 198.6 57 10.61 212.3 107 12.91 247.6
8 10.32 200.0 58 10.48 213.9 108 13.39 248.8
9 10.13 200.3 59 10.53 214.6 109 13.13 250.4

10 10.16 201.2 60 11.07 213.6 110 13.34 250.7
11 10.58 201.6 61 10.61 212.1 111 13.34 253.0
12 10.62 2013 62 10.86 211.4 112 13.14 253.7
13 10.86 201.5 63 10.34 213.1 113 13.49 255.0
14 11.20 203.5 64 10.78 212.9 114 13.87 256.2
15 10.74 204.9 65 10.80 213.3 115 13.39 256.0
16 10.56 207.1 66 10.33 211.5 116 13.59 257.4
17 10.48 210.5 67 10.44 212.3 117 13.27 260.4
18 10.77 210.5 68 10.50 213.0 118 13.70 260.0
19 11.33 209.8 69 10.75 211.0 119 13.20 261.3
20 10.96 208.8 70 10.40 210.7 120 13.32 260.4
21 11.16 209.5 71 10.40 210.1 121 13.15 261.6
22 11.70 213.2 72 10.34 211.4 122 13.30 260.8
23 11.39 213.7 73 10.55 210.0 123 12.94 259.8
24 11.42 215.1 74 10.46 209.7 124 13.29 259.0
25 11.94 218.7 75 10.82 208.8 125 13.26 258.9
26 11.24 219.8 76 10.91 208.8 126 13.08 257.4
27 11.59 220.5 77 10.87 208.8 127 13.24 257.7
28 10.96 223.8 78 10.67 210.6 128 13.31 257.9
29 11.40 222.8 79 11.11 211.9 129 13.52 257.4
30 11.02 223.8 80 10.88 212.8 130 13.02 257.3
31 11.01 221.7 81 11.28 212.5 131 13.25 257.6
32 11.23 222.3 82 11.27 214.8 132 13.12 258.9
33 11.33 220.8 83 11.44 215.3 133 13.26 257.8
34 10.83 219.4 84 11.52 217.5 134 13.11 257.7
35 10.84 220.1 85 12.10 218.8 135 13.30 257.2
36 11.14 220.6 86 11.83 220.7 136 13.06 257.5
37 10.38 218.9 87 12.62 222.2 137 13.32 256.8
38 10.90 217.8 88 12.41 226.7 138 13.10 257.5
39 11.05 217.7 89 12.43 228.4 139 13.27 257.0
40 11.11 215.0 90 12.73 233.2 140 13.64 257.6
41 11.01 215.3 91 13.01 235.7 141 13.58 257.3
42 11.22 215.9 92 12.74 237.1 142 13.87 257.5
43 11.21 216.7 93 12.73 240.6 143 13.53 259.6
44 11 91 216.7 94 12.76 243.8 144 13.41 261.1
45 11.69 217.7 95 12.92 245.3 145 13.25 262.9
46 10.93 218.7 96 12.64 246.0 146 13.50 263.3
47 10.99 222.9 97 12.79 246.3 147 13.58 262.8
48 11.01 224.9 98 13.05 247.7 148 13.51 261.8
49 10.84 222.2 99 12.69 247.6 149 13.77 262.2
50 10.76 220.7 100 13.01 247.8 150 13.40 262.7

𝑎150 observations.
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SERIES N Mink Fur Sales of the Hudson’s Bay Company: Annual for 1850--1911𝒂

1850 29,619 1866 51,404 1882 45,600 1897 76,365
1851 21,151 1867 58,451 1883 47,508 1898 70,407
1852 24,859 1868 73,575 1884 52,290 1899 41,839
1853 25,152 1869 74,343 1885 110,824 1900 45,978
1854 42,375 1870 27,708 1886 76,503 1901 47,813
1855 50,839 1871 31,985 1887 64,303 1902 57,620
1856 61,581 1872 39,266 1888 83,023 1903 66,549
1857 61,951 1873 44,740 1889 40,748 1904 54,673
1858 76,231 1874 60,429 1890 35,596 1905 55,996
1859 63,264 1875 72,273 1891 29,479 1906 60,053
1860 44,730 1876 79,214 1892 42,264 1907 39,169
1861 31,094 1877 79,060 1893 58,171 1908 21,534
1862 49,452 1878 84,244 1894 50,815 1909 17,857
1863 43,961 1879 62,590 1895 51,285 1910 21,788
1864 61,727 1880 35,072 1896 70,229 1911 33,008
1865 60,334 1881 36,160

𝑎62 observations.

SERIES P Unemployment and GDP Data in UK: Quarterly for 1955--1969𝒂

UN GDP UN GDP UN GDP

1955 1 225 81.37 1960 1 363 92.30 1965 1 306 108.07
2 208 82.60 2 342 92.13 2 304 107.64
3 201 82.30 3 325 93.17 3 321 108.87
4 199 83.00 4 312 93.50 4 305 109.75

1956 1 207 82.87 1961 1 291 94.77 1966 1 279 110.20
2 215 83.60 2 293 95.37 2 282 110.20
3 240 83.33 3 304 95.03 3 318 110.90
4 245 83.53 4 330 95.23 4 414 110.40

1957 1 295 84.27 1962 1 357 95.07 1967 1 463 111.00
2 293 85.50 2 401 96.40 2 506 112.10
3 279 84.33 3 447 96.97 3 538 112.50
4 287 84.30 4 483 96.50 4 536 113.00

1958 1 331 85.07 1963 1 535 96.16 1968 1 544 114.30
2 396 83.60 2 520 99.79 2 541 115.10
3 432 84.37 3 489 101.14 3 547 116.40
4 462 84.50 4 456 102.95 4 532 117.80

1959 1 454 85.20 1964 1 386 103.96 1969 1 532 116.80
2 446 87.07 2 368 105.28 2 519 117.80
3 426 88.40 3 358 105.81 3 547 119.00
4 402 90.03 4 330 107.14 4 544 119.60

Source: Bray (1971).
𝑎60 pairs of data; data are seasonally adjusted; unemployment (UN) in thousands; gross domestic product (GDP)
is composite estimate (1963 = 100).
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SERIES Q Logged and Coded U.S. Hog Price Data: Annual for 1867--1948𝒂

1867 597 1888 709 1909 810 1929 1112
1868 509 1889 763 1910 957 1930 1129
1869 663 1890 681 1911 970 1931 1055
1870 751 1891 627 1912 903 1932 787
1871 739 1892 667 1913 995 1933 624
1872 598 1893 804 1914 1022 1934 612
1873 556 1894 782 1915 998 1935 800
1874 594 1895 707 1916 928 1936 1104
1875 667 1896 653 1917 1073 1937 1075
1876 776 1897 639 1918 1294 1938 1052
1877 754 1898 672 1919 1346 1939 1048
1878 689 1899 669 1920 1301 1940 891
1879 498 1900 729 1921 1134 1941 921
1880 643 1901 784 1922 1024 1942 1193
1881 681 1902 842 1923 1090 1943 1352
1882 778 1903 886 1924 1013 1944 1243
1883 829 1904 784 1925 1119 1945 1314
1884 751 1905 770 1926 1195 1946 1380
1885 704 1906 783 1927 1235 1947 1556
1886 633 1907 877 1928 1120 1948 1632
1887 663 1908 777

Source: Quenouille (1957).
𝑎82 observations; values are 1000 log10(𝐻𝑡), where 𝐻𝑡 is the price, in dollars, per head on January 1 of the year.

SERIES R Monthly Averages of Hourly Readings of Ozone in Downtown Los Angeles𝒂

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

1955 2.63 1.94 3.38 4.92 6.29 5.58 5.50 4.71 6.04 7.13 7.79 3.83
1956 3.83 4.25 5.29 3.75 4.67 5.42 6.04 5.71 8.13 4.88 5.42 5.50
1957 3.00 3.42 4.50 4.25 4.00 5.33 5.79 6.58 7.29 5.04 5.04 4.48
1958 3.33 2.88 2.50 3.83 4.17 4.42 4.25 4.08 4.88 4.54 4.25 4.21
1959 2.75 2.42 4.50 5.21 4.00 7.54 7.38 5.96 5.08 5.46 4.79 2.67
1960 1.71 1.92 3.38 3.98 4.63 4.88 5.17 4.83 5.29 3.71 2.46 2.17
1961 2.15 2.44 2.54 3.25 2.81 4.21 4.13 4.17 3.75 3.83 2.42 2.17
1962 2.33 2.00 2.13 4.46 3.17 3.25 4.08 5.42 4.50 4.88 2.83 2.75
1963 1.63 3.04 2.58 2.92 3.29 3.71 4.88 4.63 4.83 3.42 2.38 2.33
1964 1.50 2.25 2.63 2.96 3.46 4.33 5.42 4.79 4.38 4.54 2.04 1.33
1965 2.04 2.81 2.67 4.08 3.90 3.96 4.50 5.58 4.52 5.88 3.67 1.79
1966 1.71 1.92 3.58 4.40 3.79 5.52 5.50 5.00 5.48 4.81 2.42 1.46
1967 1.71 2.46 2.42 1.79 3.63 3.54 4.88 4.96 3.63 5.46 3.08 1.75
1968 2.13 2.58 2.75 3.15 3.46 3.33 4.67 4.13 4.73 3.42 3.08 1.79
1969 1.96 1.63 2.75 3.06 4.31 3.31 3.71 5.25 3.67 3.10 2.25 2.29
1970 1.25 2.25 2.67 3.23 3.58 3.04 3.75 4.54 4.46 2.83 1.63 1.17
1971 1.79 1.92 2.25 2.96 2.38 3.38 3.38 3.21 2.58 2.42 1.58 1.21
1972 1.42 1.96 3.04 2.92 3.58 3.33 4.04 3.92 3.08 2.00 1.58 1.21

𝑎216 observations; values are in pphm.
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Teräsvirta, T., 362, 367, 370, 374, 376, 378,

380, 385
Thompson, R., 344
Tiao, G.C., 4, 175, 190, 191, 192, 217, 246,

248, 332, 339, 343, 349, 350, 369, 445,
482, 484--86, 489, 502, 515, 517, 529,
530--31, 532, 539, 547, 557

Time series
heteroscedastic, 361--77
continuous vs. discrete, 21--22
deterministic vs. statistical, 22
estimation, missing values, 495--505
forecasting overview, 129--44
intervention analysis, 481--88
long memory processes, 385--92
multivariate, 505--51
nonlinear models, 377--85

nonstationary behavior, 88--116
outlier analysis, 489--95
as realization of stochastic process, 22--23
regression models, model building and

forecasting, 339--45
seasonal models, 305--39
vector models, 505--51

Tintner, G., 92
Tjøstheim, D., 380
Todd, P.H.J., 332
Tong, H., 131, 197, 294, 370, 378, 380, 382,

384--85
Transfer function-noise model

cross-correlation function, 429--31
conditional sum-of-squares function, 446--47
design of optimal inputs, 469--71
fitting and checking, 446--53
forecasting, 461--469
gas furnace CO2 output forecasting, 465
gas furnace, diagnostic checking, 453--57
gas furnace, identifying transfer function,

438--41
gas furnace, identifying noise model, 443
identification, 435--46
identifying noise model, 442--46
identifying transfer function model, 435--41,

444--46
model checking, 449--53
nonlinear estimation, 447--49
nonstationary sales data, 468--70
single-input vs. multiple-input, 445,

472--73
Tremayne, A.R., 295, 297, 453, 518
Tsay, R.S., 190, 191, 192, 362, 369, 374, 377,

378, 380, 381--83, 488, 489, 491, 506, 510,
523, 530, 531, 539, 543, 551, 557

Tuan, P.D., 379
Tukey, J.W., 15, 284
Tunnicliffe Wilson, G., 344, 345, 498, 581
Turnbull, S.M., 377

U
Unconditional sum of squares, 213--18
Unit roots, tests for, 353--60
Unstable linear filters, 92
Updating forecasts, 136, 144--55, 313--15

V
van Dijk, D., 362, 378
Variate difference method, 92
Variograms, 571--72
Vector AR (VAR) model



Box3G Date: May 21, 2015 Time: 1:1 pm

INDEX 669

cross-covariance and cross-correlation
matrices, 506--07, 511, 512--14

infinite MA representation, 509
model building, 515--24
model building example, 519--24
model checking, 518--19
model specification and least squares

estimation, 515--18
parameter estimation, 516, 518
partial autoregression matrices, 516--17
stationarity, 506, 509--10, 512
VAR(𝑝) model, 509--11
VAR(1) model, 511--15
Yule-Walker equations, 510--11

Vector MA (VMA) model, 524--26
Vector ARMA (VARMA) model

aspects of nonuniqueness and parameter
identifiability, 528--29

calculating forecasts from difference
equation, 534--36

canonical correlation analysis, 530--31,
541--43

cointegration, estimation and inferences,
549--51

covariance matrix properties, 506--07,
528

echelon canonical form, 530, 533, 539,
541--42

estimation and model checking, 532--33
forecasting, 534--36
Kronecker indices, 530, 539--43
likelihood function, 532--33
model specification, 529--32, 539--45
nonstationarity and cointegration, 546--51
partial canonical correlation analysis reduced

rank structure, 545--46
relation to transfer function and ARMAX

model forms, 533--34
scalar component models (SCM), 530--31,

539
state-space form, 536--39
stationary and invertibility conditions,

527--28
vector autoregressive (VAR) model, 509--24
vector autoregressive-moving averge

(VARMA) model, 527--35
vector moving average (VMA) model,

524--27
vector white noise process, 507--08

Vector white noise process, 507--08
Venables, W.N., 18, 344

W
Wald, A., 222
Walker, A.M., 222
Walker, G., 47, 57
Watts, D.G., 30, 36--39, 46, 51, 401, 429, 431,

457, 472, 473, 553
Weak stationarity, 28, 507
Wei, C.Z., 354
Wei, W.W.S., 514, 517
Weiss, A.A., 363, 368, 369, 370
White noise process

added, 124--25
defined, 7--8, 28--29
effect on IMA process, 124--25
linear filter output, 47--8
vector, 507--08

Whittle, P., 131, 210, 222, 273, 581
Wichern, D.W., 206, 516
Wiener, N., 131
Wincek, M.A., 244, 343, 496
Winters, P.R., 7
Wittenmark, B., 581
Wold, H.O., 47, 48, 131, 508
Wong, H., 370
Wood, E.F., 190, 192, 530, 543
Woodward, W.A., 190
Wooldridge, J.M., 370

X
Xiao, Z., 353
Xekalaki, E., 362

Y
Yaglom, A.M., 92
Yamamoto, T., 343
Yao, Q., 378, 380, 381
Yap, S.F., 358
Yohai, V.J., 488
Young, A.J. , 428
Yule, G.U., 7, 47, 57, 197
Yule-Walker equations

introduction, 57
obtaining parameter estimates of AR process,
237--38

and partial autocorrelation function, 64--66
in AR(2) process, 61--62
in VAR(p) process, 510--11

Z
Zadeh, L.A., 92
Zakoı̈an, J.-M., 362, 363, 370, 375



Box3G Date: May 21, 2015 Time: 2:4 pm



Box3G Date: May 21, 2015 Time: 2:4 pm



Box3G Date: May 21, 2015 Time: 2:4 pm



Box3G Date: May 21, 2015 Time: 2:4 pm



Box3G Date: May 21, 2015 Time: 2:4 pm



Box3G Date: May 21, 2015 Time: 2:4 pm



Box3G Date: May 21, 2015 Time: 2:4 pm



Box3G Date: May 21, 2015 Time: 2:4 pm



Box3G Date: May 21, 2015 Time: 2:4 pm



Box3G Date: May 21, 2015 Time: 2:4 pm



Box3G Date: May 21, 2015 Time: 2:4 pm



WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley's ebook
EULA.

www.wiley.com/go/eula

	Time Series Analysis: Forecasting and Control
	Contents
	Preface to the Fifth Edition
	Preface to the Fourth Edition
	Preface to the Third Edition
	Chapter 1: Introduction
	1.1 Five Important Practical Problems
	1.1.1 Forecasting Time Series
	1.1.2 Estimation of Transfer Functions
	1.1.3 Analysis of Effects of Unusual Intervention Events to a System
	1.1.4 Analysis of Multivariate Time Series
	1.1.5 Discrete Control Systems

	1.2 Stochastic and Deterministic Dynamic Mathematical Models
	1.2.1 Stationary and Nonstationary Stochastic Models for Forecasting and Control
	1.2.2 Transfer Function Models
	1.2.3 Models for Discrete Control Systems

	1.3 Basic Ideas in Model Building
	1.3.1 Parsimony
	1.3.2 Iterative Stages in the Selection of a Model

	Appendix A1.1 Use of the R Software
	Exercises

	Part One: Stochastic Models and Their Forecasting
	Chapter 2: Autocorrelation Function and Spectrum of Stationary Processes
	2.1 Autocorrelation Properties of Stationary Models
	2.1.1 Time Series and Stochastic Processes
	2.1.2 Stationary Stochastic Processes
	2.1.3 Positive Definiteness and the Autocovariance Matrix
	2.1.4 Autocovariance and Autocorrelation Functions
	2.1.5 Estimation of Autocovariance and Autocorrelation Functions
	2.1.6 Standard Errors of Autocorrelation Estimates

	2.2 Spectral Properties of Stationary Models
	2.2.1 Periodogram of a Time Series
	2.2.2 Analysis of Variance
	2.2.3 Spectrum and Spectral Density Function
	2.2.4 Simple Examples of Autocorrelation and Spectral Density Functions
	2.2.5 Advantages and Disadvantages of the Autocorrelation and Spectral Density Functions

	Appendix A2.1 Link Between the Sample Spectrum and Autocovariance Function Estimate
	Exercises

	Chapter 3: Linear Stationary Models
	3.1 General Linear Process
	3.1.1 Two Equivalent Forms for the Linear Process
	3.1.2 Autocovariance Generating Function of a Linear Process
	3.1.3 Stationarity and Invertibility Conditions for a Linear Process
	3.1.4 Autoregressive and Moving Average Processes

	3.2 Autoregressive Processes
	3.2.1 Stationarity Conditions for Autoregressive Processes
	3.2.2 Autocorrelation Function and Spectrum of Autoregressive Processes
	3.2.3 The First-Order Autoregressive Process
	3.2.4 Second-Order Autoregressive Process
	3.2.5 Partial Autocorrelation Function
	3.2.6 Estimation of the Partial Autocorrelation Function
	3.2.7 Standard Errors of Partial Autocorrelation Estimates
	3.2.8 Calculations in R

	3.3 Moving Average Processes
	3.3.1 Invertibility Conditions for Moving Average Processes
	3.3.2 Autocorrelation Function and Spectrum of Moving Average Processes
	3.3.3 First-OrderMoving Average Process
	3.3.4 Second-Order Moving Average Process
	3.3.5 Duality Between Autoregressive and Moving Average Processes

	3.4 Mixed Autoregressive-Moving Average Processes
	3.4.1 Stationarity and Invertibility Properties
	3.4.2 Autocorrelation Function and Spectrum of Mixed Processes
	3.4.3 First Order Autoregressive First-Order Moving Average Process
	3.4.4 Summary

	Appendix A3.1 Autocovariances, Autocovariance Generating Function, and Stationarity Conditions for a General Linear Process
	Appendix A3.2 Recursive Method for Calculating Estimates of Autoregressive Parameters
	Exercises

	Chapter 4: Linear Nonstationary Models
	4.1 Autoregressive Integrated Moving Average Processes
	4.1.1 Nonstationary First-Order Autoregressive Process
	4.1.2 GeneralModel for a Nonstationary Process Exhibiting Homogeneity
	4.1.3 General Form of the ARIMA Model

	4.2 Three Explicit Forms for the Arima Model
	4.2.1 Difference Equation Form of the Model
	4.2.2 Random Shock Form of the Model
	4.2.3 Inverted Form of the Model

	4.3 Integrated Moving Average Processes
	4.3.1 Integrated Moving Average Process of Order (0, 1, 1)
	4.3.2 IntegratedMoving Average Process of Order (0, 2, 2)
	4.3.3 General Integrated Moving Average Process of Order (0, d, q)

	Appendix A4.1 Linear Difference Equations
	Appendix A4.2 IMA(0, 1, 1) Process with Deterministic Drift
	Appendix A4.3 Arima Processes with Added Noise
	A4.3.1 Sum of Two Independent Moving Average Processes
	A4.3.2 Effect of Added Noise on the General Model
	A4.3.3 Example for an IMA(0, 1, 1) Process with Added White Noise
	A4.3.4 Relation between the IMA(0, 1, 1) Process and a Random Walk
	A4.3.5 Autocovariance Function of the General Model with Added Correlated Noise

	Exercises

	Chapter 5: Forecasting
	5.1 Minimum Mean Square Error Forecasts and Their Properties
	5.1.1 Derivation of the Minimum Mean Square Error Forecasts
	5.1.2 Three Basic Forms for the Forecast

	5.2 Calculating Forecasts and Probability Limits
	5.2.1 Calculation of ѱ Weights
	5.2.2 Use of the ѱ Weights in Updating the Forecasts
	5.2.3 Calculation of the Probability Limits at Different Lead Times
	5.2.4 Calculation of Forecasts Using R

	5.3 Forecast Function and Forecastweights
	5.3.1 Eventual Forecast Function Determined by the Autoregressive Operator
	5.3.2 Role of the Moving Average Operator in Fixing the Initial Values
	5.3.3 Lead l Forecast Weights

	5.4 Examples of Forecast Functions and Their Updating
	5.4.1 Forecasting an IMA(0, 1, 1) Process
	5.4.2 Forecasting an IMA(0, 2, 2) Process
	5.4.3 Forecasting a General IMA(0, d, q) Process
	5.4.4 Forecasting Autoregressive Processes
	5.4.5 Forecasting a (1, 0, 1) Process
	5.4.6 Forecasting a (1, 1, 1) Process

	5.5 Use of State-Space Model Formulation for Exact Forecasting
	5.5.1 State-SpaceModel Representation for the ARIMA Process
	5.5.2 Kalman Filtering Relations for Use in Prediction
	5.5.3 Smoothing Relations in the State Variable Model

	5.6 Summary
	Appendix A5.1 Correlation Between Forecast Errors
	A5.1.1 Autocorrelation Function of Forecast Errors at Different Origins
	A5.1.2 Correlation Between Forecast Errors at the Same Origin with Different Lead Times

	Appendix A5.2 Forecastweights for Any Lead Time
	Appendix A5.3 Forecasting in Terms of the General Integrated Form
	A5.3.1 General Method of Obtaining the Integrated Form
	A5.3.2 Updating the General Integrated Form
	A5.3.3 Comparison with the Discounted Least-Squares Method

	Exercises


	Part Two: Stochastic Model Building
	Chapter 6: Model Identification
	6.1 Objectives of Identification
	6.1.1 Stages in the Identification Procedure

	6.2 Identification Techniques
	6.2.1 Use of the Autocorrelation and Partial Autocorrelation Functions in Identification
	6.2.2 Standard Errors for Estimated Autocorrelations and Partial Autocorrelations
	6.2.3 Identification of Models for Some Actual Time Series
	6.2.4 Some Additional Model Identification Tools

	6.3 Initial Estimates for the Parameters
	6.3.1 Uniqueness of Estimates Obtained from the Autocovariance Function
	6.3.2 Initial Estimates for Moving Average Processes
	6.3.3 Initial Estimates for Autoregressive Processes
	6.3.4 Initial Estimates for Mixed Autoregressive--Moving Average Processes
	6.3.5 Initial Estimate of Error Variance
	6.3.6 Approximate Standard Error for ѿ
	6.3.7 Choice Between Stationary and Nonstationary Models in Doubtful Cases

	6.4 Model Multiplicity
	6.4.1 Multiplicity of Autoregressive--Moving AverageModels
	6.4.2 Multiple Moment Solutions forMoving Average Parameters
	6.4.3 Use of the Backward Process to Determine Starting Values

	Appendix A6.1 Expected Behavior of the Estimated Autocorrelation Function for A Nonstationary Process
	Exercises

	Chapter 7: Parameter Estimation
	7.1 Study of the Likelihood and Sum-of-Squares Functions
	7.1.1 Likelihood Function
	7.1.2 Conditional Likelihood for an ARIMA Process
	7.1.3 Choice of Starting Values for Conditional Calculation
	7.1.4 Unconditional Likelihood, Sum-of-Squares Function, and Least-Squares Estimates
	7.1.5 General Procedure for Calculating the Unconditional Sum of Squares
	7.1.6 Graphical Study of the Sum-of-Squares Function
	7.1.7 Examination of the Likelihood Function and Confidence Regions

	7.2 Nonlinear Estimation
	7.2.1 GeneralMethod of Approach
	7.2.2 Numerical Estimates of the Derivatives
	7.2.3 Direct Evaluation of the Derivatives
	7.2.4 General Least-Squares Algorithm for the Conditional Model
	7.2.5 ARIMA Models Fitted to Series A-F
	7.2.6 Large-Sample InformationMatrices and Covariance Estimates

	7.3 Some Estimation Results for Specific Models
	7.3.1 Autoregressive Processes
	7.3.2 Moving Average Processes
	7.3.3 Mixed Processes
	7.3.4 Separation of Linear and Nonlinear Components in Estimation
	7.3.5 Parameter Redundancy

	7.4 Likelihood Function Based on the State-Space Model
	7.5 Estimation Using Bayes' Theorem
	7.5.1 Bayes’ Theorem
	7.5.2 Bayesian Estimation of Parameters
	7.5.3 Autoregressive Processes
	7.5.4 Moving Average Processes
	7.5.5 Mixed Processes

	Appendix A7.1 Review of Normal Distribution Theory
	A7.1.1 Partitioning of a Positive-Definite Quadratic Form
	A7.1.2 Two Useful Integrals
	A7.1.3 Normal Distribution
	A7.1.4 Student’s t Distribution

	Appendix A7.2 Review of Linear Least-Squares Theory
	A7.2.1 Normal Equations and Least Squares
	A7.2.2 Estimation of Error Variance
	A7.2.3 CovarianceMatrix of Least-Squares Estimates
	A7.2.4 Confidence Regions
	A7.2.5 Correlated Errors

	Appendix A7.3 Exact Likelihood Function for Moving Average and Mixed Processes
	Appendix A7.4 Exact Likelihood Function for an Autoregressive Process
	Appendix A7.5 Asymptotic Distribution of Estimators for Autoregressive Models
	Appendix A7.6 Examples of the Effect of Parameter Estimation Errors on Variances of Forecast Errors and Probability Limits for Forecasts
	Appendix A7.7 Special Note on Estimation of Moving Average Parameters
	Exercises

	Chapter 8: Model Diagnostic Checking
	8.1 Checking the Stochastic Model
	8.1.1 General Philosophy
	8.1.2 Overfitting

	8.2 Diagnostic Checks Applied to Residuals
	8.2.1 Autocorrelation Check
	8.2.2 Portmanteau Lack-of-Fit Test
	8.2.3 Model Inadequacy Arising from Changes in Parameter Values
	8.2.4 Score Tests forModel Checking
	8.2.5 Cumulative Periodogram Check

	8.3 Use of Residuals to Modify the Model
	8.3.1 Nature of the Correlations in the Residuals When an Incorrect Model Is Used
	8.3.2 Use of Residuals to Modify the Model

	Exercises

	Chapter 9: Analysis of Seasonal Time Series
	9.1 Parsimonious Models for Seasonal Time Series
	9.1.1 Fitting Versus Forecasting
	9.1.2 Seasonal Models Involving Adaptive Sines and Cosines
	9.1.3 GeneralMultiplicative Seasonal Model

	9.2 Representation of the Airline Data by a Multiplicative (0, 1, 1) × (0, 1, 1)12 Model
	9.2.1 Multiplicative (0, 1, 1) × (0, 1, 1)12 Model
	9.2.2 Forecasting
	9.2.3 Model Identification
	9.2.4 Parameter Estimation
	9.2.5 Diagnostic Checking

	9.3 Some Aspects of More General Seasonal Arima Models
	9.3.1 Multiplicative and Nonmultiplicative Models
	9.3.2 Model Identification
	9.3.3 Parameter Estimation
	9.3.4 Eventual Forecast Functions for Various Seasonal Models
	9.3.5 Choice of Transformation

	9.4 Structural Component Models and Deterministic Seasonal Components
	9.4.1 Structural Component Time Series Models
	9.4.2 Deterministic Seasonal and Trend Components and Common Factors
	9.4.3 Estimation of Unobserved Components in Structural Models

	9.5 Regression Models with Time Series Error Terms
	9.5.1 Model Building, Estimation, and Forecasting Procedures for Regression Models
	9.5.2 Restricted Maximum Likelihood Estimation for Regression Models

	Appendix A9.1 Autocovariances for Some Seasonal Models
	Exercises

	Chapter 10: Additional Topics and Extensions
	10.1 Tests for Unit Roots in Arima Models
	10.1.1 Tests for Unit Roots in AR Models
	10.1.2 Extensions of Unit Root Testing to Mixed ARIMA Models

	10.2 Conditional Heteroscedastic Models
	10.2.1 The ARCH Model
	10.2.2 The GARCH Model
	10.2.3 Model Building and Parameter Estimation
	10.2.4 An Illustrative Example:Weekly S&P 500 Log Returns
	10.2.5 Extensions of the ARCH and GARCH Models
	10.2.6 Stochastic VolatilityModels

	10.3 Nonlinear Time Series Models
	10.3.1 Classes of Nonlinear Models
	10.3.2 Detection of Nonlinearity
	10.3.3 An Empirical Example

	10.4 Long Memory Time Series Processes
	10.4.1 Fractionally Integrated Processes
	10.4.2 Estimation of Parameters
	Exercises



	Part Three: Transfer Function and Multivariate Model Building
	Chapter 11: Transfer Function Models
	11.1 Linear Transfer Function Models
	11.1.1 Discrete Transfer Function
	11.1.2 Continuous Dynamic Models Represented by Differential Equations

	11.2 Discrete Dynamic Models Represented by Difference Equations
	11.2.1 General Form of the Difference Equation
	11.2.2 Nature of the Transfer Function
	11.2.3 First- and Second-Order Discrete Transfer Function Models
	11.2.4 Recursive Computation of Output for Any Input
	11.2.5 Transfer Function Models with Added Noise

	11.3 Relation Between Discrete and Continuous Models
	11.3.1 Response to a Pulsed Input
	11.3.2 Relationships for First- and Second-Order Coincident Systems
	11.3.3 Approximating General Continuous Models by Discrete Models
	Appendix A11.1 Continuous Models with Pulsed Inputs
	Appendix A11.2 Nonlinear Transfer Functions and Linearization
	Exercises


	Chapter 12: Identification, Fitting, and Checking of Transfer Function Models
	12.1 Cross-Correlation Function
	12.1.1 Properties of the Cross-Covariance and Cross-Correlation Functions
	12.1.2 Estimation of the Cross-Covariance and Cross-Correlation Functions
	12.1.3 Approximate Standard Errors of Cross-Correlation Estimates

	12.2 Identification of Transfer Function Models
	12.2.1 Identification of Transfer Function Models by Prewhitening the Input
	12.2.2 Example of the Identification of a Transfer Function Model
	12.2.3 Identification of the Noise Model
	12.2.4 Some General Considerations in Identifying Transfer Function Models

	12.3 Fitting and Checking Transfer Function Models
	12.3.1 Conditional Sum-of-Squares Function
	12.3.2 Nonlinear Estimation
	12.3.3 Use of Residuals for Diagnostic Checking
	12.3.4 Specific Checks Applied to the Residuals

	12.4 Some Examples of Fitting and Checking Transfer Function Models
	12.4.1 Fitting and Checking of the Gas Furnace Model
	12.4.2 Simulated Example with Two Inputs

	12.5 Forecasting with Transfer Function Models Using Leading Indicators
	12.5.1 Minimum Mean Square Error Forecast
	12.5.2 Forecast of CO𝟐 Output from Gas Furnace
	12.5.3 Forecast of Nonstationary Sales Data Using a Leading Indicator

	12.6 Some Aspects of the Design of Experiments to Estimate Transfer Functions
	Appendix A12.1 Use of Cross-Spectral Analysis for Transfer Function Model Identification
	A12.1.1 Identification of Single-Input Transfer Function Models
	A12.1.2 Identification of Multiple-Input Transfer Function Models

	Appendix A12.2 Choice of Input to Provide Optimal Parameter Estimates
	A12.2.1 Design of Optimal Inputs for a Simple System
	A12.2.2 Numerical Example

	Exercises

	Chapter 13: Intervention Analysis, Outlier Detection, and Missing Values
	13.1 Intervention Analysis Methods
	13.1.1 Models for Intervention Analysis
	13.1.2 Example of Intervention Analysis
	13.1.3 Nature of the ML Estimator for a Simple Level Change Model

	13.2 Outlier Analysis for Time Series
	13.2.1 Models for Additive and Innovational Outliers
	13.2.2 Estimation of Outlier Effect for Known Timing of the Outlier
	13.2.3 Iterative Procedure for Outlier Detection
	13.2.4 Examples of Analysis of Outliers

	13.3 Estimation for ARMA Models with Missing Values
	13.3.1 State-Space Model and Kalman Filter with Missing Values
	13.3.2 Estimation of Missing Values of an ARMA Process

	Exercises

	Chapter 14: Multivariate Time Series Analysis
	14.1 Stationary Multivariate Time Series
	14.1.1 Cross-Covariance and Cross-Correlation Matrices
	14.1.2 Covariance Stationarity
	14.1.3 Vector White Noise Process
	14.1.4 Moving Average Representation of a Stationary Vector Process

	14.2 Vector Autoregressive Models
	14.2.1 VAR(p) Model
	14.2.2 Moment Equations and Yule-Walker Estimates
	14.2.3 Special Case: VAR(1) Model
	14.2.4 Numerical Example
	14.2.5 Initial Model Building and Least-Squares Estimation for VAR Models
	14.2.6 Parameter Estimation and Model Checking
	14.2.7 An Empirical Example

	14.3 Vector Moving Average Models
	14.3.1 Vector MA(q) Model
	14.3.2 Special Case: Vector MA(1) Model
	14.3.3 Numerical Example
	14.3.4 Model Building for Vector MA Models

	14.4 Vector Autoregressive-Moving Average Models
	14.4.1 Stationarity and Invertibility Conditions
	14.4.2 Covariance Matrix Properties of VARMA Models
	14.4.3 Nonuniqueness and Parameter Identifiability for VARMA Models
	14.4.4 Model Specification for VARMA Processes
	14.4.5 Estimation and Model Checking for VARMA Models
	14.4.6 Relation of VARMA Models to Transfer Function and ARMAX Models

	14.5 Forecasting for Vector Autoregressive-Moving Average Processes
	14.5.1 Calculation of Forecasts from ARMA Difference Equation
	14.5.2 Forecasts from Infinite VMA Form and Properties of Forecast Errors

	14.6 State-Space Form of the Varma Model
	14.7 Further Discussion of Varma Model Specification
	14.7.1 Kronecker Structure for VARMA Models
	14.7.2 An Empirical Example
	14.7.3 Partial Canonical Correlation Analysis for Reduced-Rank Structure

	14.8 Nonstationarity and Cointegration
	14.8.1 Vector ARIMA Models
	14.8.2 Cointegration in Nonstationary Vector Processes
	14.8.3 Estimation and Inferences for Cointegrated VAR Models

	Appendix A14.1 Spectral Characteristics and Linear Filtering Relations for Stationary Multivariate Processes
	A14.1.1 Spectral Characteristics for Stationary Multivariate Processes
	A14.1.2 Linear Filtering Relations for StationaryMultivariate Processes

	Exercises


	Part Four: Design of Discrete Control Schemes
	Chapter 15: Aspects of Process Control
	15.1 Process Monitoring and Process Adjustment
	15.1.1 Process Monitoring
	15.1.2 Process Adjustment

	15.2 Process Adjustment Using Feedback Control
	15.2.1 Feedback Adjustment Chart
	15.2.2 Modeling the Feedback Loop
	15.2.3 Simple Models for Disturbances and Dynamics
	15.2.4 General Minimum Mean Square Error Feedback Control Schemes
	15.2.5 Manual Adjustment for Discrete Proportional-Integral Schemes
	15.2.6 Complementary Roles of Monitoring and Adjustment

	15.3 Excessive Adjustment Sometimes Required by Mmse Control
	15.3.1 Constrained Control

	15.4 Minimum Cost Controlwith Fixed Costs of Adjustment and Monitoring
	15.4.1 Bounded Adjustment Scheme for Fixed Adjustment Cost
	15.4.2 Indirect Approach for Obtaining a Bounded Adjustment Scheme
	15.4.3 Inclusion of the Cost of Monitoring

	15.5 Feedforward Control
	15.5.1 Feedforward Control to Minimize Mean Square Error at the Output
	15.5.2 An Example: Control of the Specific Gravity of an Intermediate Product
	15.5.3 Feedforward Control with Multiple Inputs
	15.5.4 Feedforward-Feedback Control
	15.5.5 Advantages and Disadvantages of Feedforward and Feedback Control
	15.5.6 Remarks on Fitting Transfer Function-Noise Models Using Operating Data

	15.6 Monitoring Values of Parameters of Forecasting and Feedback Adjustment Schemes
	Appendix A15.1 Feedback Control Schemes Where the Adjustment Variance is Restricted
	A15.1.1 Derivation of Optimal Adjustment
	A15.1.2 CaseWhere 𝜹 Is Negligible

	Appendix A15.2 Choice of the Sampling Interval
	A15.2.1 Illustration of the Effect of Reducing Sampling Frequency
	A15.2.2 Sampling an IMA(0, 1, 1) Process

	Exercises


	Part Five: Charts and Tables
	Collection of Tables and Charts
	Collection of Time Series Used for Examples in the Text and in Exercises
	References
	Index
	End User License Agreement


