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Preface 

This book is based on notes of a course, designed for first semester students in the 
sciences, which had been given by the second author at the University of Zurich 
several times. The goal of the course, with a format of three lectures classes and 
one exercise class per week, is twofold: to have students learn a basic working 
knowledge of linear algebra as well as acquire some computational skills, and to 
familiarize them with mathematical language with the aim of making mathematical 
literature more accessible. Therefore, emphasis is given on precise definitions, 
helpful notations, and careful statements of the results discussed. No proofs of these 
results are provided, but typically, they are illustrated with numerous examples, 
and for the sake of better understanding, we quite frequently give some supporting 
arguments for why they are valid. 

Together with the course Analysis for the Sciences for second semester students, 
for which a book is in preparation, the course Linear Algebra for the Sciences 
constitutes a basic introduction to mathematics. One of the main novelties of this 
introduction consists in the order in which the courses are taught. Since students 
have acquired a basic knowledge in linear algebra in the first semester, they are 
already familiar with functions of several variables at the beginning of the second 
semester. Differential and integral calculus is then developed at each stage for 
functions of one and of several variables. Furthermore, numerous illustrations of 
concepts from linear algebra in the differential and integral calculus are pointed out 
and examples and problems are discussed which involve notions from linear algebra. 
Nevertheless, by and large, the two books can be studied independently from each 
other. 

The table of contents of Linear Algebra for the Sciences describes the topics 
covered in the book. The book has six chapters and each of them three sections. 
Each chapter and each section begin with a short summary. Below we only give a 
brief overview. 

Chapter 1 treats finite systems of linear equations with real coefficients and 
explains in detail the algorithm of Gaussian elimination for solving such systems. 
This algorithm is used in all subsequent chapters.

v
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Chapter 2 introduces the notion of matrices, discusses how they operate, and 
explains how they are connected to systems of linear equations. In addition, we 
define the notion of linear (in)dependence of vectors in . Rk and the one of a basis 
in . Rk and show how systems of linear equations can be used for computations. 
Finally, we define the notion of the determinant of a square matrix and discuss its 
most important properties. 

In Chapter 3, we introduce complex numbers and discuss their basic properties, 
state the fundamental theorem of algebra and extend the notions and results, which 
were introduced in the previous chapters on the basis of real numbers. 

Chapters 4 and 5 constitute the core of the course. In Chap. 4, the notions of 
vector spaces (over the real as well as over the complex numbers) and the notions of 
a basis and of the dimension of such spaces are introduced. Furthermore, we define 
the notion of linear maps between such spaces and discuss the matrix representation 
of linear maps between finite dimensional vector spaces with respect to bases. In 
particular, we discuss in detail the change of bases of finite dimensional vector 
spaces and introduce special notation to describe it. The last section of Chap. 4 
introduces inner product spaces and discusses linear maps between such spaces, 
which leave the inner products invariant. 

In Chap. 5, we discuss the basics of the spectral theory of linear maps on a 
finite dimensional vector space over the complex numbers. In a separate section, 
we examine the spectral theory of a linear map on a finite dimensional vector space 
over the real numbers. In the last section of Chap. 5, we introduce quadratic forms 
and, as an application, discuss conic sections. 

Chapter 6 is an application of results of linear algebra, treated in the earlier 
chapters. We study systems of linear ordinary differential equations with constant 
coefficients, with the main focus on systems of first order. One of the aims of this 
chapter is to illustrate the use of linear algebra in other fields of mathematics such 
as analysis and to showcase the fundamental idea of linearity in the sciences. In this 
final chapter, some basic knowledge of analysis is assumed. 

In each section, numerous examples are discussed and problems solved with the 
aim of illustrating the introduced concepts and methods. Each section ends with a 
set of five problems, except for Sects. 1.1 and 6.1, which both are of an introductory 
nature. These problems are of the same type as the ones solved in the course of the 
corresponding section with the purpose that students acquire some computational 
skills and get more familiar with the concepts introduced. They are intentionally 
kept simple. Solutions of these problems are given in chapter “Solutions” at the end 
of the book. 

We would like to thank Riccardo Montalto, who was involved at an early stage, 
but, due to other commitments, decided not to participate further in the project. Over 
the years, the notes were used by colleagues of the Department of Mathematics of
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the University of Zurich. We would like to thank them and all the students for their 
feedback. Finally, we thank Camillo De Lellis for encouraging us to turn these notes 
into a book. 

Zurich, Switzerland Manuel Benz 
Thomas Kappeler



Addendum 

It is with sadness that I must inform the reader that Thomas Kappeler suddenly 
passed away during the final stages of this book. 

On a personal level, I lost a friend and mentor. On a professional level, the 
mathematical world has lost a great mind. His approach to mathematics was precise 
and careful and yet his presentation of it stayed very accessible. His way of teaching 
mathematics was thoughtful, smart and sophisticated. Additionally, I feel that his 
work shows his enthusiasm and joy for the subject, but also him as a person with 
great respect for human intelligence. 

I hope this book can serve as a testament to all these good qualities of Thomas 
and remind everyone of him as a mathematician, but also as a person enjoying 
mathematics. 

Zurich, Switzerland Manuel Benz
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Chapter 1 
Systems of Linear Equations 

1.1 Introduction 

One of the most important problems in linear algebra is to solve systems of linear 
equations, also referred to as linear systems. For illustration, let us consider a simple 
example of a system with two linear equations and two unknowns x, y, 

(S)

{
.x + 2y = 5

2x + 3y = 8.

(1.1) 

(1.2) 

We say that the pair .(u, v) of real numbers u and v is a solution of . (S) if 

. u + 2v = 5 and 2u + 3v = 8.

The basic questions are the following ones: 

.(Q1) Do linear systems such as . (S) have a solution (existence)? 

.(Q2) Do linear system such as . (S) have at most one solution (uniqueness)? 

.(Q3) Do there exist (efficient) methods to find all solutions of . (S)? 

It is convenient to introduce the set L of all solutions of . (S), 

. L := {
(u, v) ∈ R

2 | u + 2v = 5; 2u + 3v = 8
}

Then the questions .(Q1) and .(Q2) can be rephrased as follows: 

.(Q1′) Is the set of solutions of a linear system such as . (S) a nonempty set? 

.(Q2′) Does the set of solutions of a linear system such as .(S) have at most one 
element? 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
M. Benz, T. Kappeler, Linear Algebra for the Sciences, La Matematica 
per il 3+2 151, https://doi.org/10.1007/978-3-031-27220-2_1
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2 1 Systems of Linear Equations

Let us now discuss a method for finding the set L of solutions of . (S). It is referred  
to as the method of substitution and consists in the case of . (S) of the following four 
steps: 

Step 1. Solve (1.1) for x, 

.x = 5 − 2y. (1.3) 

Step 2. Substitute the expression (1.3) for x into equation (1.2), 

.2(5 − 2y) + 3y = 8 or 10 − y = 8. (1.4) 

Step 3. Determine y by (1.4), 

.y = 2. (1.5) 

Step 4. Determine x by using (1.3) and (1.5), 

. x = 5 − 2y = 5 − 2 · 2 = 1.

Hence the set L of solutions of . (S) is given by 

. L = {
(1, 2)

}
.

It consists of one element, meaning that .(1, 2) is the unique solution of . (S). 
However it is not always the case that a linear system of two equations with two 

unknowns has a unique solution. To see this consider

{
.x + y = 4

2x + 2y = 5.

(1.6) 

(1.7) 

By the same method, one obtains 

.x = 4 − y (1.8) 

and hence by substitution 

. 2(4 − y) + 2y = 5,

or 

. 8 − 2y + 2y = 5, i.e., 8 = 5.

But .8 �= 5. What does this mean? It means that the set of solutions L of (1.6)–(1.7) 
is empty, .L = ∅, i.e., there are no solutions of (1.6)–(1.7).
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Finally let us consider the following linear system

{
.x + 3y = 2

2x + 6y = 4.

(1.9) 

(1.10) 

Again by the method of substitution, one has .x = 2 − 3y and hence 

. 2(2 − 3y) + 6y = 4 or 4 = 4.

As a consequence, the unknown y can take any value and the set L of solutions of 
(1.9)–(1.10) is given by 

. L = {
(2 − 3v, v) | v ∈ R

}
.

The set L can thus be viewed as the graph of the function .R → R, v �→ 2 − 3v. In  
particular, there are infinitely many solutions. 

Summarizing our considerations so far, we have seen that the set of solutions can 
be empty, consist of one element, or of infinitely many elements. It turns out that 
this is true in general: The set of solutions of any given linear system fits into one of 
these three possibilities. 

In practical applications, systems of linear equations can be very large. One there 
needs to develop theoretical concepts and appropriate notation to investigate such 
systems and to find efficient algorithms to solve them numerically. In this chapter, 
we present such an algorithm, referred to as Gaussian elimination. 

1.2 Systems with Two Equations and Two Unknowns 

In preparation of treating general linear systems, the goal of this section is to study 
first the case of two equations with two unknowns in full generality, to discuss a 
method for finding the set of solutions and to point out connections with geometry. 

Consider a system of two equations and two unknowns x, y,

{
. p(x, y) = 0

q(x, y) = 0

where p and q are real valued functions on .R
2 = R×R. Such a system is said to be 

linear (or, more precisely, .R-linear) if p and q are polynomials in x and y of degree 
one, 

.p(x, y) = ax + by − e, q(x, y) = cx + dy − f
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where .a, b, c, d, e, f are real numbers. In such a case we customarily write

{
.ax + by = e

cx + dy = f.

(1.11) 

(1.12) 

The system (1.11)–(1.12) being a general linear system means that the coefficients 
.a, b, e of .p(x, y) and .c, d, f of .q(x, y) can be arbitrary real numbers. In applica-
tions, they can be assigned specific values, but since we want to consider a general 
linear system, they are denoted with the letters .a, b, e and respectively .c, d, f . 

We begin by pointing out some connections with geometry. Denote by . L1 the set 
of solutions of .ax + by = e, 

. L1 := {
(x, y) ∈ R

2 | ax + by = e
}
.

To describe . L1, we have to distinguish between different cases. Note that in the case 
.a = 0, the equation .ax + by = e cannot be solved for x and in case .b = 0, the  
equation cannot be solved for y. The following four cases arise: 

Case 1. .a = 0, .b = 0, .e = 0. Then .L1 = R
2. 

Case 2. .a = 0, .b = 0, .e �= 0. Then .L1 = ∅. 
Case 3. .b �= 0. In this case, the equation .ax + by = e can be solved for y and we 

get 

. y = e

b
− a

b
x and L1 =

{(
x,

e

b
− a

b
x
) ∣∣∣ x ∈ R

}
.

The set . L1 can be viewed as the graph of the function 

. R → R, x �→ e

b
− a

b
x.

Its graph is sketched in Fig. 1.1. 
Case 4. .b = 0, .a �= 0. In this case, the equation .ax + by = e reads .ax = e and can 

be solved for x, 

. x = e

a
and L1 =

{( e

a
, y

) ∣∣∣ y ∈ R

}
.

A graphical representation of . L1 can be seen in Fig. 1.2. Similarly, we denote 
by . L2 the set of solutions of the equation .cx + dy = f , 

.L2 := {
(x, y) ∈ R

2 | cx + dy = f
}
.
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Fig. 1.1 For .a �= 0, .e �= 0 (left) and for .a = 0, .e �= 0 (right) the set . L1 in Case 3 can be 
schematically pictured as shown in the two figures above 

Fig. 1.2 For .e �= 0 (left) and for .e = 0 (right) the set . L1 in Case 4 can be schematically pictured 
as shown in the two figures above 

Since an element .(x, y) in the set L of solutions of the system (1.11)–(1.12) is a 
solution of (1.11) and a solution of (1.12), the  set  L is given by the intersection 
of . L1 with . L2, 

. L = L1 ∩ L2.

Combining the four cases described above for . L1 and the corresponding ones 
for . L2, one can determine the set of solutions in each of these cases. We leave it to 
the reader to do that and consider instead only the case where . L1 and . L2 are both 
straight lines. Then the following three possibilities for the intersection .L1 ∩L2 can 
occur, 

. L1 ∩ L2 = {
point in R2}, L1 ∩ L2 = ∅, L1 = L2.

Note that in the case where .L1 ∩ L2 = ∅, the two straight lines . L1 and . L2 are 
parallel. The three possibilities are illustrated in Fig. 1.3. 

In the remaining part of this section we describe an algorithm how to determine 
the set L of solutions of the linear system (1.11)–(1.12), yielding explicit formulas 
for the solutions. Recall that (1.11)–(1.12) is the system . (S) given by

{
.ax + by = e

cx + dy = f.

(1.11) 

(1.12) 

We restrict ourselves to the case where 

.a �= 0. (1.13)
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Fig. 1.3 The three possible cases for . L1 and . L2 in a graphical representation. Please note the 
solution set for each case. (a) .L1 ∩ L2 = {

(x0, y0)
}
. (b) .L1 ∩ L2 = ∅. (c) . L1 ∩ L2 = L1

Before we describe the algorithm, we need to introduce the notion of equivalent 
systems. Assume that we are given a second system .(S′) of two linear equations,

{
. a′x + b′y = e′

c′x + d ′y = f ′

with real coefficients . a′, . b′, . e′, and . c′, . d ′, . f ′. Denote by . L′ its set of solutions. We 
say that . (S) and .(S′) are equivalent, if  .L = L′. We are now ready to describe the 
algorithm to determine L of . (S). 

Step 1. Eliminate x from Eq. (1.12). To achieve this, we replace (1.12) by (1.12) 
. − c

a
(1.11). It means that the left hand side of (1.12) is replaced by 

. cx + dy − c

a
(ax + by) (use that a �= 0)

whereas the right hand side of (1.12) is replaced by 

. f − c

a
e.

The new system of equations then reads as follows, 

⎧⎨ 

⎩ 

.ax + by = e(
d − c

a
b
)
y = f − c

a
e.

(1.11) 

(1.14)
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Fig. 1.4 The solution of the new system (1.11) and (1.14) still corresponds to the same point, but 
the elimination of x in (1.14) leads to the second line changed to horizontal 

It is straightforward to see that under the assumption (1.13), the set of solutions 
of (1.11)–(1.12) coincides with the set of solutions of (1.11)–(1.14), i.e. that the 
two systems are equivalent. 
Graphically, the elimination of x in Eq. (1.12) can be interpreted as follows. The 
unique solution of the original Eqs. (1.11) and (1.12) is given as the intersection 
point between two lines as shown in Fig. 1.4. 

Step 2. Solve (1.14) for y and then (1.11) for x. We distinguish three cases. 

Case 1. .d − c
a

b �= 0. Then (1.14) has the unique solution 

. y = f − c
a

e

d − c
a

b
= af − ce

ad − bc

and when substituted into (1.11) one obtains 

. ax = e − b
( af − ce

ad − bc

)
or x = de − bf

ad − bc
.

Hence the set L of solutions of . (S) consists of one element 

.L =
{( de − bf

ad − bc
,
af − ce

ad − bc

)}
(1.15) 

Case 2. .d − c
a

b = 0, f − c
a

e �= 0. Then Eq. (1.14) has no solutions and hence 
.L = ∅. 

Case 3. .d − c
a

b = 0, f − c
a

e = 0. Then any .y ∈ R is a solution of (1.14) and 
the solutions of (1.11) are given by .x = e

a
− b

a
y. Hence L is given by 

. L =
{( e

a
− b

a
y, y

) ∣∣∣ y ∈ R

}
.

Motivated by formula (1.15) for the solutions of (1.11), (1.14) in the case where 
.d − c

a
b �= 0 we make the following definitions:
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Definition 1.2.1 

(i) An array A of real numbers of the form 

. A :=
(

a b

c d

)
, a, b, c, d ∈ R,

is said to be a real .2 × 2 matrix (plural: matrices). 
(ii) The determinant .det(A) of a .2 × 2 matrix A is the real number, defined by 

. det(A) := ad − bc.

The determinant can be used to characterize the solvability of the linear system 
. (S), given by the two Eqs. (1.11) and (1.12), and to obtain formulas for its solutions. 
We say that the .2×2 matrix A, formed by the coefficients a, b, c, and d in Eqs. (1.11) 
and (1.12), 

. A :=
(

a b

c d

)

is the coefficient matrix of . (S). We state without proof the following. 

Theorem 1.2.2 

(i) The system of linear Eqs. (1.11) and (1.12) has a unique solution if and only if 
the determinant of its coefficient matrix does not vanish, 

. det

(
a b

c d

)
�= 0.

(ii) If .det

(
a b

c d

)
�= 0, then the unique solution .(x, y) of (1.11), (1.12) is given by 

the following formula (Cramer’s rule) 

. x =
det

(
e b

f d

)

det

(
a b

c d

) , y =
det

(
a e

c f

)

det

(
a b

c d

) .

Examples 

(i) Analyze the following system .(S1) of linear equations{
. 2x + 4y = 3

x + 2y = 5

and find its set of solutions.
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Solution The coefficient matrix A of .(S1) reads 

. A =
(
2 4
1 2

)
.

Then .det(A) = 0. Hence Theorem 1.2.2 says that the system .(S1) does not have 
a unique solution. It is straightforward to see that actually .(S1) has no solutions. 

(ii) Analyze the following system .(S2) of linear equations

{
. 2y + 4x = 3

x + 2y = 5

and find its set of solutions. 

Solution First we rewrite the equation .2y + 4x = 3 as .4x + 2y = 3. The  
coefficient matrix A of .(S2) thus reads 

. A =
(
4 2
1 2

)
.

Then .det(A) = 8 − 2 = 6 �= 0. Hence according to Theorem 1.2.2, the system 
of equations has a unique solution given by 

. x =
det

(
3 2
5 2

)
6

= 6 − 10

6
= − 2

3
, y =

det

(
4 3
1 5

)
6

= 20 − 3

6
= 17

6
.

Problems 

1. Determine the sets of solutions of the linear systems{
x + πy = 1 

2x + 6y = 4, 
(i)

{
x + 2y = e 

2x + 3y = f. 
(ii) 

2. Consider the system (S) of two linear equations with two unknowns.
{

. 2x + y = 4 (S1)

x − 4y = 2 (S2)

(i) Determine the sets L1 and L2 of solutions of (S1) and (S2), respectively 
and represent them geometrically as straight lines in R2.
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(ii) Determine the intersection L1 ∩ L2 of L1 and L2 from their geometric 
representation in R2. 

3. Compute the determinants of the following matrices and decide for which 
values of the parameter a ∈ R, they vanish. 

A =
(
1 − a 4 
1 1 − a

)
(i) B =

(
1 − a2 a + a2 
1 − a a

)
(ii) 

4. Solve the system of linear equations

{
. 3x − y = 1

5x + 3y = 2

by Cramer’s rule. 
5. Decide whether the following assertions are true or false and justify your 

answers. 

(i) For any given values of the coefficients a, b, c, d ∈ R, the linear system
{

. ax + by = 0

cx + dy = 0

has at least one solution. 
(ii) There exist real numbers a, b, c, d so that the linear system of (a) has 

infinitely many solutions. 
(iii) The system of equations

{
. x1 + x2 = 0

x2
1 + x2

2 = 1

is a linear system. 

1.3 Gaussian Elimination 

Gaussian elimination is the name of an algorithm which determines the set of 
solutions of a general system of .m ≥ 1 linear equations and .n ≥ 1 unknowns. 
The n unknowns are customarily denoted by .x1, . . . , xn. 

A system  .(S) of m equations and n unknowns is a system of equations of the 
form 

.f1(x1, . . . , xn) = 0, f2(x1, . . . , xn) = 0, . . . , fm(x1, . . . , xn) = 0
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where for any .1 ≤ i ≤ m, . fi is a real valued function of n real variables 

. fi : Rn → R, (x1, x2, . . . , xn) �→ fi(x1, x2, . . . , xn).

Definition 1.3.1 The system .(S) is said to be linear if for any .1 ≤ i ≤ m, the  
function . fi is a polynomial in . x1,  . . . , . xn of degree 1 with real coefficients. 

Since the number of equations and the one of unknowns can be arbitrarily large, 
one has to find an appropriate way how to denote the coefficients of the polynomials 
. fi . The following notation turns out to be very practical, 

. fi(x1, x2, . . . , xn) = ai1x1 + ai2x2 + · · · + ainxn − bi, 1 ≤ i ≤ m

where . ai1, . ai2,  . . . ,  . ain, and . bi are real numbers. The subscript i stands for the ith 
equation whereas we use the subscript j to list the unknowns . xj with .1 ≤ j ≤ n. 
The system . (S), in the case of being linear, is then customarily written as 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

. a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...

am1x1 + am2x2 + · · · + amnxn = bm

A compact way of writing the above system of equations is achieved using the 
symbol . 

∑
(upper case Greek letter sigma) for the sum, 

.

n∑
j=1

aij xj = bi, 1 ≤ i ≤ m. (1.16) 

Of course we could also use different letters than i and j to list the equations and 
the unknowns. We say that .(u1, . . . , un) in . Rn is a solution of (1.16) if 

. 

n∑
j=1

aijuj = bi, 1 ≤ i ≤ m.

In the sequel, we often will not distinguish between .(x1, . . . , xn) and .(u1, . . . , un). 
We denote by L the set of solutions of (1.16), 

.L := {
(x1, . . . , xn) ∈ R

n |
n∑

j=1

aij xj = bi, 1 ≤ i ≤ m
}
.
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Note that 

. L =
m⋂

i=1

Li, Li := {
(x1, . . . , xn) ∈ R

n |
n∑

j=1

aij xj = bi

}
, 1 ≤ i ≤ m.

Before we describe Gaussian elimination, we need to introduce the notion of 
equivalent linear systems in full generality, which we already encountered in 
Sect. 1.2 in the case of systems of two equations and two unknowns. 

Definition 1.3.2 We say that the system (S) of m linear equations and n unknowns 
. x1,  . . . , . xn, 

. 

n∑
j=1

aij xj = bi, 1 ≤ i ≤ m,

is equivalent to the system (S’) with p equations and unknowns . x1,  . . . , . xn, 

. 

n∑
j=1

ckj xj = dk, 1 ≤ k ≤ p,

if their sets of solutions coincide. If this is the case we write .(S) ≡ (S′). 

Example Consider the system . (S) of two equations with three unknowns,

{
. 4x1 + 3x2 + 2x3 = 1

x1 + x2 + x3 = 4

and the system .(S′) of three equations, also with three unknowns, 
⎧⎪⎪⎨ 

⎪⎪⎩ 

. 4x1 + 3x2 + 2x3 = 1

x1 + x2 + x3 = 4

2x1 + 2x2 + 2x3 = 8

The systems . (S) and .(S′) are equivalent, since the first two equations in the latter 
system coincide with .(S) and the third equation .2x1 + 2x2 + 2x3 = 8 of .(S′) is 
obtained from the second equation .x1 + x2 + x3 = 4 by multiplying left and right 
hand side by the factor 2. 

The idea of Gaussian elimination is to replace a given system of linear equations 
in a systematic way by an equivalent one which is easy to solve. In Sect. 1.2 we 
presented this algorithm in the case of two equations .(m = 2) and two unknowns 
.(n = 2) under the additional assumption (1.13).
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Gaussian elimination uses the following basic operations, referred to as row 
operations .(R1), .(R2), and .(R3), which leave the set of solutions of a given system 
of linear equations invariant: 

.(R1) Exchange of two equations (rows). 

Example 

. 

{
5x2 + 15x3 = 10

4x1 + 3x2 + x3 = 1
�

{
4x1 + 3x2 + x3 = 1

5x2 + 15x3 = 10

It means that the equations get listed in a different order. 

.(R2) Multiplication of an equation (row) by a real number .α �= 0. 

Example 

. 

{
4x1 + 3x2 + x3 = 1

5x2 + 15x3 = 10
�

{
4x1 + 3x2 + x3 = 1

x2 + 3x3 = 2

We have multiplied left and right hand side of the second equation by . 1/5. 

.(R3) An equation (row) gets replaced by the equation obtained by adding to it the 
multiple of another equation. More formally, this can be expressed as follows: 
the kth equation .

∑n
j=1 akj xj = bk is replaced by the equation 

. 

n∑
j=1

akj xj + α

n∑
j=1

a�j xj = bk + αb�

where .1 ≤ � ≤ m with .� �= k. In a more compact form, the new kth equation 
reads 

. (ak1 + αa�1)x1 + · · · + (akn + αa�n)xn = bk + αb�.

Example 

. 

{
x1 + x2 = 5

4x1 + 2x2 = 3
(R3)�

{
x1 + x2 = 5

−2x2 = −17

It is not difficult to verify that these basic row operations lead to equivalent linear 
systems. We state without proof the following. 

Theorem 1.3.3 The basic row operations .(R1), .(R2), and .(R3) lead to equivalent 
systems of linear equations. 

The Gaussian algorithm consists in using these basic row operations in a 
systematic way to transform an arbitrary linear system . (S) into an equivalent one, 
which is easy to solve, namely one which is in row echelon form.
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To make this more precise, we first need to introduce some more notation. Let 
. (S) be a system of linear equations of the form 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

. a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...

am1x1 + am2x2 + · · · + amnxn = bm

where . aij (.1 ≤ i ≤ m, 1 ≤ j ≤ n) and . bi (.1 ≤ i ≤ m) are real numbers. To . (S) we 
associate an array A of real numbers with m rows and n columns, 

. A =
⎛
⎜⎝

a11 · · · a1n
...

...

am1 · · · amn

⎞
⎟⎠ .

Such an array of real number is called an .m × n matrix with coefficients . aij , . 1 ≤
i ≤ m, .1 ≤ j ≤ n and written in a compact form as 

. A = (aij )1≤i≤m
1≤j≤n

The matrix A is referred to as the coefficient matrix of the system . (S). The  
augmented coefficient matrix of . (S) is the following array of real numbers 

. 

⎡
⎢⎣

a11 · · · a1n b1
...

...
...

am1 · · · amn bm

⎤
⎥⎦ .

In compact form it is written as .[A ‖ b]. 
Definition 1.3.4 .[A ‖ b] is said to be in row echelon form if it is of the form 

n1︷ ︸︸ ︷

m1

{

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0 · · ·  0 � b1 

0 · · · 0 �
... 

... 

0 · · · 0 �
... 

0 · · · 0 
... 

... 
0 · · · 0 bm 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where .0 ≤ n1 ≤ n, .0 ≤ m1 ≤ m, and where the symbol . � stands for a non-zero 
coefficient of A. 

Remark In the case .n1 = 0 and .m1 = 0, the above augmented coefficient matrix 
reads 

⎡ 

⎢⎢⎢⎣
� b1 

0 · · ·  0 � ...... 
... 

0 · · · 0 � bm 

⎤ 

⎥⎥⎥⎦ . 

Let us express in words the features of an augmented coefficient matrix in 
echelon form: 

(i) the coefficients of A below the echelon vanish; in particular, any zero row of 
A has to be at the bottom of A; 

(ii) at each echelon, the corresponding coefficient of A is nonzero; but otherwise, 
there are no further conditions on the coefficients above the echelon; 

(iii) there are no conditions on the coefficients . b1,  . . . , . bm. 

Examples 

(i) Examples of augmented coefficient matrices in row echelon form 

. 

[
0 1 1
0 0 0

]
,

[
1 0 0
0 0 1

]
,

[
0 0 1 1
0 0 0 1

]
,

. 

[
4 0 0 1
0 3 0 5

]
,

[
4 5 2 1
0 0 3 5

]
.

(ii) Examples of augmented coefficient matrices not in echelon form 

. 

[
1 0 1
1 1 1

]
,

[
0 1 1
1 1 1

]
,

[
0 0 1
0 1 1

]
.

If the augmented coefficient matrix of a linear system is in row echelon form, it can 
easily be solved. To illustrate this let us look at a few examples. 

Examples 

(i) The linear system 

.

{
2x1 + x2 = 2

3x2 = 6
�

[
2 1 2
0 3 6

]
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is in row echelon form. Solve it by first determining . x2 by the second equation 
and then solving the first equation for . x1 by substituting the obtained value of 
. x2: 

. 3x2 = 6 � x2 = 2;

. 2x1 = 2 − x2 � 2x1 = 0 � x1 = 0.

Hence the set of solutions is given by .L = {
(0, 2)

}
. 

(ii) The linear system 

. 

{
2x1 + x2 + x3 = 2

3x3 = 6
�

[
2 1 1 2
0 0 3 6

]

is in row echelon form. Solve the second equation for . x3 and then the first 
equation for . x1: 

. 3x3 = 6 � x3 = 2;

. x2 is a free variable;

. 2x1 = 2 − x2 − x3 � x1 = − 1

2
x2.

Hence 

. L =
{
(− 1

2
x2, x2, 2)

∣∣∣ x2 ∈ R

}
,

which is a straight line in . R3 trough .(0, 0, 2) in direction .(−1, 2, 0). 
(iii) The augmented coefficient matrix 

. 

⎡
⎣ 2 1 1
0 3 6
0 0 3

⎤
⎦

is in row echelon form. The corresponding system of linear equations can be 
solved as follows: since 

. 0 · x1 + 0 · x2 = 3

has no solutions, one concludes that .L = ∅.
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(iv) The augmented coefficient matrix 

. 

⎡
⎣ 2 1 1
0 3 6
0 0 0

⎤
⎦

is in row echelon form. The corresponding system of linear equations can be 
solved as follows: 

. 0 · x1 + 0 · x2 = 0

is satisfied for any .x1, x2 ∈ R; 

. 3x2 = 6 � x2 = 2;
. 2x1 = 1 − x2 � x1 = − 1

2
.

Hence .L = {
(− 1

2 , 2)
}
. 

(v) The augmented coefficient matrix 

. 

[
0 1 2 1
0 0 1 6

]

is in row echelon form and one computes 

. x3 = 6, x2 = 1 − 2x3 = −11, x1 free variable.

Hence 

. L = {
(x1,−11, 6) | x1 ∈ R

}
,

which is a straight line in . R3 through the point .(0,−11, 6) in direction 
.(1, 0, 0). 

(vi) The augmented coefficient matrix 

. 

[
1 2 0 1 0
0 0 0 3 6

]

is in row echelon form and one computes 

. 3x4 = 6 � x4 = 2;
. x3 and x2 are free variables;

.x1 = −2x2 − x4 = −2x2 − 2.
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Hence 

. L = {
(−2x2 − 2, x2, x3, 2) | x2, x3 ∈ R

}
,

which is a plane in . R4 containing the point .(−2, 0, 0, 2) and spanned by the 
vectors .(−2, 1, 0, 0) and .(0, 0, 1, 0). 

(vii) The augmented coefficient matrix 

. 

[
1 2 1 0 0
0 0 3 0 6

]

is in row echelon form and one computes 

. x4 is a free variable;

. 3x3 = 6 � x3 = 2;

. x2 is a free variable;

. x1 = −2x2 − x3 = −2x2 − 2.

Hence 

. L = {
(−2x2 − 2, x2, 2, x4) | x2, x4 ∈ R

}
,

which is a plane in . R4 containing the point .(−2, 0, 2, 0) and spanned by 
.(0, 0, 0, 1) and .(−2, 1, 0, 0). 

As already mentioned, Gaussian elimination is an algorithm which transforms a 
given augmented coefficient matrix with the help of the three basic row operations 
.(R1)–.(R3) into row echelon form. Rather than describing the algorithm in abstract 
terms, we illustrate how it functions with a few examples. It is convenient to 
introduce for the three basic row operations .(R1), .(R2), and .(R3) the following 
notations: 

.(R1) .Ri↔k: exchange rows i and k; 

.(R2) .Rk � αRk: replace kth row . Rk by .αRk , .α �= 0; 

.(R3) .Rk � Rk +αR�: replace kth row by adding to it .αR� where .� �= k and .α ∈ R. 

Examples 

(i) The augmented coefficient matrix 

.

[
0 3 6
2 1 2

]
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is not in row echelon form. Apply .R1↔2 to get 

. 

[
2 1 2
0 3 6

]
.

(ii) The augmented coefficient matrix 

. 

[
2 1 1
4 3 0

]

is not in row echelon form. The first row is ok; in the second row we have to 
eliminate 4; hence .R2 � R2 − 2R1 yielding 

. 

[
2 1 1
0 1 −2

]
.

(iii) The augmented coefficient matrix 

. 

⎡
⎣ 1 1 1 1
2 1 1 0
4 1 2 0

⎤
⎦

is not in row echelon form. The first row is ok; in the second and third row 
we have to eliminate 2 and 4, respectively. Hence .R2 � R2 − 2R1 and . R3 �
R3 − 4R1 leads to 

. 

⎡
⎣ 1 1 1 1
0 −1 −1 −2
0 −3 −2 −4

⎤
⎦ .

Now . R1 and . R2 are ok, but we need to eliminate . −3 from the last row. Hence 
.R3 � R3 − 3R2, yielding 

. 

⎡
⎣1 1 1 1
0 −1 −1 −2
0 0 1 2

⎤
⎦

which is in row echelon form. 
(iv) The augmented coefficient matrix 

.

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
−1 −1 0 0 1 −1
−2 −2 0 0 3 1
0 0 1 1 3 −1
1 1 2 2 4 1

⎤
⎥⎥⎥⎥⎥⎦
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is not in row echelon form. . R1 is ok, but we need to eliminate the first 
coefficients from the subsequent rows: .R2 � R2 + R1, .R3 � R3 + 2R1, 
.R5 � R5 − R1, yielding 

. 

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
0 0 1 1 2 0
0 0 2 2 5 3
0 0 1 1 3 −1
0 0 1 1 3 0

⎤
⎥⎥⎥⎥⎥⎦ .

Rows . R1, . R2 are ok, but we need to eliminate the third coefficients in the rows 
.R3, R4, R5. .R3 � R3 − 2R2, .R4 � R4 − R2, .R5 � R5 − R2, yielding 

. 

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
0 0 1 1 2 0
0 0 0 0 1 3
0 0 0 0 1 −1
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦ .

Now .R1, R2, R3 are ok, but we need to eliminate the last coefficients in . R4
and . R5, i.e., .R4 � R4 − R3, .R5 � R5 − R3, leading to 

. 

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
0 0 1 1 2 0
0 0 0 0 1 3
0 0 0 0 0 −4
0 0 0 0 0 −3

⎤
⎥⎥⎥⎥⎥⎦

which is in row echelon form. 
(v) The augmented coefficient matrix 

. 

⎡
⎣ 1 1 1 0

−1 −1 0 0
−2 1 0 1

⎤
⎦

is not in row echelon form. . R1 is ok, but we need to eliminate the first 
coefficients in . R2, . R3, i.e., .R2 � R2 + R1, .R3 � R3 + 2R1, yielding 

.

⎡
⎣ 1 1 1 0
0 0 1 0
0 3 2 1

⎤
⎦ .
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To bring the latter augmented coefficient matrix in row echelon form we need 
to exchange the second and the third row, .R2↔3, leading to 

. 

⎡
⎣1 1 1 0
0 3 2 1
0 0 1 0

⎤
⎦

which is in row echelon form. 

To simplify the computing of the set of solutions of a system of linear equations 
even more, one can go one step further and transform the augmented coefficient 
matrix of a given linear system into a reduced form. We begin by making some 
preliminary considerations. Consider the system .(S)

{
. x1 + 4x2 = b1

5x1 + 2x2 = b2.

The corresponding augmented coefficient matrix is given by 

. [A ‖ b] =
[
1 4 b1

5 2 b2

]
.

Let us compare it with the system . (S′), obtained by exchanging the two columns of 
A. Introducing as new unknowns . y1, . y2 this system reads

{
. 4y1 + y2 = b1

2y1 + 5y2 = b2

and the corresponding augmented coefficient matrix is given by .[A′ ‖ b] where 

. A′ =
(
4 1
2 5

)
.

Denote by L and . L′ the set of solutions of . (S) respectively . (S′). It is straightforward 
to see that the map 

. (x1, x2) �→ (y1, y2) := (x2, x1)

defines a bijection between L and . L′. It means that any solution .(x1, x2) of . (S) leads 
to the solution .y1 := x2, .y2 := x1 of .(S′) and conversely, any solution .(y1, y2) of 
.(S′) leads to a solution .x1 := y2, .x2 := y1 of . (S). Said in words, by renumerating 
the unknowns .x1, x2, we can read off the set of solutions of .(S′) from the one of 
. (S). This procedure can be used to bring an augmented coefficient matrix .[A ‖ b] in
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row echelon form into an even simpler form. Let us explain the procedure with the 
following example. 

Example Consider the augmented coefficient matrix .[A ‖ b], given by 

. 

⎡
⎢⎢⎣
1 4 1 2 1 b1

0 0 5 1 2 b2

0 0 0 0 6 b3

0 0 0 0 0 b4

⎤
⎥⎥⎦

which is in row echelon form. Note that . x2 and . x4 are free variables. In a first step, 
we move the column . C2 to the far right of A, 

. 
(
C1 C2 C3 C4 C5

)
�

(
C1 C3 C4 C5 C2

)
,

and then move the column . C4 to the far right of A, 

. 
(
C1 C3 C4 C5 C2

)
�

(
C1 C3 C5 C2 C4

)
.

The corresponding augmented coefficient matrix .[A′ ‖ b] then reads 

. 

⎡
⎢⎢⎣
1 1 1 4 2 b1

0 5 2 0 1 b2

0 0 6 0 0 b3

0 0 0 0 0 b4

⎤
⎥⎥⎦ .

Note that the latter echelon form has echelons with height and length equal to one 
and that the permuted variables, .y1, . . . , y5 are given by .y1 = x1, .y2 = x3, .y3 = x5, 
.y4 = x2, and .y5 = x4. Furthermore, the coefficients .b1, . . . , b5 remain unchanged. 

In a second step we use the row operation .(R2) to transform .[A′ ‖ b] into an 
augmented coefficient matrix .[A′′ ‖ b′′] where the coefficients . a′′

11, . a
′′
22, and . a

′′
33 are 

all 1. Note that .a′
11 = 1 and hence we can leave . R1 as is, whereas . R2 and . R3 are 

changed as follows 

. R2 �
1

5
R2, R3 �

1

6
R3.

We thus obtain 

.

⎡
⎢⎢⎣
1 1 1 4 2 b1

0 1 2/5 0 1/5
b2/5

0 0 1 0 0 b3/6

0 0 0 0 0 b4

⎤
⎥⎥⎦ .
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In a third step we use the row operation .(R3) to transform .[A′′ ‖ b′′] to . [Â ‖ b̂]
where .̂a12 = 0, .̂a13 = 0, and .̂a23 = 0. First we remove .a′′

12 by the operation 
.R1 � R1 − R2 to obtain 

. 

⎡
⎢⎢⎣
1 0 3/5 4 9/5 b1 − b2/5

0 1 2/5 0 1/5
b2/5

0 0 1 0 0 b3/6

0 0 0 0 0 b4

⎤
⎥⎥⎦ .

Then we apply the row operations 

. R1 � R1 − 3

5
R3 R2 � R2 − 2

5
R2

to obtain the reduced echelon form .[Â ‖ b̂], given by 

. 

⎡
⎢⎢⎣
1 0 0 4 9/5 b1 − b2/5 − 3/5 · b3/6

0 1 0 0 1/5
b2/5 − 2/5 · b3/6

0 0 1 0 0 b3/6

0 0 0 0 0 b4

⎤
⎥⎥⎦ .

The corresponding system of linear equations is given by 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

. y1 + 4y4 + 9

5
y5 = b1 − b2

5
− b3

10

y2 + 1

5
y5 = b2

5
− b3

15

y3 = b3

6

0 =
5∑

j=1

0 · yj = b̂4 = b4,

whose set of solutions can be easily described. We will discuss this for a general 
system in what follows. 

Let us now consider the general case. Assume that A has m rows and n columns 
and is in row echelon form. By permuting the columns of A in the way explained
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in the above example, .[A ‖ b] can be transformed into the augmented coefficient 
matrix .[A′ ‖ b] of the form 

. 

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a′
11 a′

12 a′
13 · · · a′

1k a′
1(k+1) · · · a′

1n b1

0 a′
22 a′

23 · · · a′
2k a′

2(k+1) · · · a′
2n b2

0 0 a′
33 · · · a′

3k a′
3(k+1) · · · a′

3n b3
...

...
...

...
...

...

0 · · · 0 a′
kk a′

k(k+1) · · · a′
kn bk

0 · · · 0 bk+1
...

...
...

0 · · · 0 bm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where k is an integer with .0 ≤ k ≤ min(m, n) and .a′
11 �= 0, .a′

22 �= 0, . . . , a′
kk �= 0. 

If .k = 0, then . A′ is the matrix whose entries are all zero. Note that now all echelons 
have height and length equal to ‘one’ and that k can be interpreted as the height of 
the echelon. 

Using the row operations .(R2) and .(R3), .[A′ ‖ b] can be simplified. First we 
apply .(R2) to the rows . Ri , .1 ≤ i ≤ k, 

. Ri �
1

a′
ii

Ri

yielding 

. 

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 a′′
12 a′′

13 · · · a′′
1k a′′

1(k+1) · · · a′′
1n b′′

1

0 1 a′′
23 · · · a′′

2k a′′
2(k+1) · · · a′′

2n b′′
2

0 0 1 a′′
3k a′′

3(k+1) · · · a′′
3n b′′

3
...

...
...

...
...

0 · · · 0 1 a′′
k(k+1) · · · a′′

kn b′′
k

0 · · · 0 b′′
k+1

...
...

...

0 · · · 0 b′′
m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and then we apply .(R3) to remove first the coefficient . a′′
12 in the second column 

of A, then the coefficients . a′′
13, . a

′′
23 in the third column of A,  . . . ,  and  finally the
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coefficients . a′′
1k , . a

′′
2k ,  . . . .a

′′
(k−1)k in the kth column of A. In this way one obtains an 

augmented coefficient matrix .[Â ‖ b̂] of the form 

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 â1(k+1) · · · â1n b̂1

0 1 0 · · · 0 â2(k+1) · · · â2n b̂2

0 0 1 0 â3(k+1) · · · â3n b̂3
...

...
...

...
...

0 · · · 0 1 âk(k+1) · · · âkn b̂k

0 · · · 0 b̂k+1
...

...
...

0 · · · 0 b̂m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.17) 

referred to as being in reduced echelon form. The system of linear equations cor-
responding to this latter augmented coefficient matrix .[Â ‖ b̂] is then the following 
one: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

. y1 +
n∑

j=k+1

â1j yj = b̂1

...

yk +
n∑

j=k+1

âkj yj = b̂k

0 =
n∑

j=1

0 · yj = b̂k+1

...

0 =
n∑

j=1

0 · yj = b̂m.

Notice that the unknowns are denoted by .y1, . . . , yn since the original unknowns 
.x1, . . . , xn might have been permuted, and that .0 ≤ k ≤ min(m, n). Furthermore, 
since .[Â ‖ b̂] has been obtained from .[A′ ‖ b] by row operations, the set of solutions 
. ̂L of the system corresponding to .[Â ‖ b̂] coincides with the set of solutions . L′ of the 
system corresponding to .[A′ ‖ b]. The  sets  . ̂L and L can now easily be determined. 
We have to distinguish between two cases: 

Case 1. .k < m and there exists i with .k + 1 ≤ i ≤ m so that .̂bi �= 0. Then . ̂L = ∅
and hence .L = ∅.
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Case 2. Either [.k = m] or [.k < m and .̂bk+1 = 0, . . . , b̂m = 0]. Then the system 
above reduces to the system of equations 

.yi +
n∑

j=k+1

âij yj = b̂i , 1 ≤ i ≤ k. (1.18) 

Case 2a. If in addition .k = n, then the system (1.18) reads .yi = b̂i for any . 1 ≤ i ≤
n. It means that .L̂ = {

(̂b1, . . . , b̂n)
}
and therefore the system with augmented 

coefficient matrix .[A ‖ b] we started with, has a unique solution. 
Case 2b. If in addition .k < n, then the system (1.18) reads 

. yi = b̂i −
n∑

j=k+1

âij yj , 1 ≤ i ≤ k

and the unknowns .yk+1, . . . , yn are free variables, also referred to as  parame-
ters and denoted by .tk+1, . . . , tn. Then . ̂L is given by 

. 

{(̂
b1−

n∑
j=k+1

â1j tj , . . . , b̂k−
n∑

j=k+1

âkj tj , tk+1, . . . , tn
)∣∣∣(tk+1, . . . , tn) ∈ R

n−k
}
.

Hence the system (1.18) and therefore also the original system with augmented 
coefficient matrix .[A ‖ b] has infinitely many solutions. The map 

. F : Rn−k → R
n, (tk+1, . . . , tn) �→ F(tk+1, . . . , tn),

with .F(tk+1, . . . , tn) given by 

.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b̂1
...

b̂k

0
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ tk+1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−â1(k+1)
...

−âk(k+1)

1
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ tk+2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−â1(k+2)
...

−âk(k+2)

0
1
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ · · · + tn

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−â1n
...

−âkn

0
0
...

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.19) 

is a parameter representation of the set of solutions . L′. 

Let us now illustrate the discussed procedure with a few examples.
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Examples 

(i) Consider the case of one equation and two unknowns, 

. a11x1 + a12x2 = b1, a11 �= 0.

We apply Gaussian elimination. The corresponding augmented coefficient 
matrix .[A ‖ b] is given by 

. 
[
a11 a12 b1

]
.

Since .a11 �= 0, it is in echelon form. To transform it in reduced echelon form, 
note that we do not have to permute . x1, . x2. Apply the row operation .(R2), . R1
.� .

1
a11

R1 to get 

. 
[
1 â12 b̂1

]
, â12 = a12

a11
, b̂1 = b1

a11
,

which is in reduced echelon form. We are in Case 2b with .m = 1, n = 2, and 
.k = 1. Hence there is .n−k = 1 free variable. The set of solutions L coincides 
with . ̂L (since no permutation of the unknowns were necessary) and has the 
following parameter representation 

. F : R → R
2, t2 �→

(
b̂1

0

)
+ t2

(−â21

1

)
.

It is a straight line in .R2, passing through the point .(̂b1, 0) and having the 
direction .(−â21, 1). 

(ii) Consider the case of one equation and three unknowns, 

. a11x1 + a12x2 + a13x3 = b1, a11 �= 0.

We apply Gaussian elimination. The corresponding augmented coefficient 
matrix .[A ‖ b] is given by 

. 
[
a11 a12 a13 b1

]
.

Since .a11 �= 0, it is in echelon form. To transform it in reduced echelon form, 
note that we do not have to permute . x1, . x2, . x3. Apply the row operation .(R2), 
.R1 .� .

1
a11

R1 to get 

.
[
1 â12 â13 b̂1

]
, â12 = a12

a11
, â13 = a13

a11
, b̂1 = b1

a11
,
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which is in reduced echelon form. We are again in Case 2b, now with . m =
1, n = 3, and .k = 1. Hence there are .n − k = 2 free variables. The set of 
solutions L coincides with . ̂L and has the following parameter representation 

. F : R2 → R
3,

(
t2

t3

)
�→

⎛
⎝b̂1

0
0

⎞
⎠ + t2

⎛
⎝−â12

1
0

⎞
⎠ + t3

⎛
⎝−â13

0
1

⎞
⎠ .

It is a plane in . R3 passing through the point .(̂b1, 0, 0) and spanned by 
.(−â12, 1, 0) and .(−â13, 0, 1). 

(iii) Consider the following system⎧⎨ 

⎩ 

. x1 + x2 + x3 = 4

x1 − x2 − 2x3 = 0.

We apply Gaussian elimination. The corresponding augmented coefficient 
matrix .[A ‖ b] is given by 

. 

[
1 1 1 4
1 −1 −2 0

]
.

To transform it in echelon form apply the row operation .(R3), .R2 .� . R2 − R1
to get 

. 

[
1 1 1 4
0 −2 −3 −4

]
,

which is echelon form. To transform in reduced echelon form, apply the row 
operation .(R2), .R2 � − 1

2 R2 to get 

. 

[
1 1 1 4
0 1 3/2 2

]
.

Apply the row operation .(R3) once more, .R1 � R1 − R2, to obtain 

. 

[
1 0 − 1/2 2
0 1 3/2 2

]

which is in reduced echelon form. We are in Case 2b with .m = 2, .n = 3, and 
.k = 2. Hence there is .n − k = 1 free variable. Since we have not permuted 
the unknowns, .L̂ = L and a parameter representation of L is given by 

.F : R → R
3, t3 �→

⎛
⎝2
2
0

⎞
⎠ + t3

⎛
⎝ 1/2

− 3/2

1

⎞
⎠
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which is a straight line in . R3, passing through the point .(2, 2, 0) and having 
the direction .(1/2,−3/2, 1). 

(iv) Consider ⎧⎪⎪⎨ 

⎪⎪⎩ 

. x1 + 2x2 − x3 = 1

2x1 + x2 + x3 = 0

3x1 + 0 · x2 + 3x3 = −1.

We apply Gaussian elimination. The corresponding augmented coefficient 
matrix .[A ‖ b] is given by 

. 

⎡
⎣1 2 −1 1
2 1 1 0
3 0 3 −1

⎤
⎦ .

To transform it in echelon form, apply the row operation .(R3), replacing . R2 �
R2 − 2R1, .R3 � R3 − 3R1, to obtain 

. 

⎡
⎣ 1 2 −1 1
0 −3 3 −2
0 −6 6 −4

⎤
⎦ .

Apply .(R3) once were, .R3 � R3 − 2R2, to obtain an augmented coefficient 
matrix in echelon form 

. 

⎡
⎣ 1 2 −1 1
0 −3 3 −2
0 0 0 0

⎤
⎦ .

To transform it in reduced echelon form, apply .(R2), .R2 � − 1
3 R2 to get 

. 

⎡
⎣1 2 −1 1
0 1 −1 2/3

0 0 0 0

⎤
⎦

and finally we apply .(R3) once more, .R1 � R1 − 2R2, to get the following 
augmented coefficient matrix in reduced echelon form 

.

⎡
⎣ 1 0 1 − 1/3

0 1 −1 2/3

0 0 0 0

⎤
⎦ .
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We are in Case 2b with .m = 3, .n = 3, and .k = 2. Hence there us . n − k = 1
free variable. Furthermore .L̂ = L. Hence a parameter representation of L is 
given by 

. F : R → R
3, t3 �→

⎛
⎝− 1/3

2/3

0

⎞
⎠ + t3

⎛
⎝−1

1
1

⎞
⎠

which is a straight line in . R3 passing through the point .(− 1/3 , 2/3 , 0) and 
having the direction .(−1, 1, 1). 

From our analysis one can deduce the following 

Theorem 1.3.5 If .(S) is a system of m linear equations and n unknowns with 
.m < n, then its set of solutions is either empty or infinite. 

Remark To see that Theorem 1.3.5 holds, one argues as follows: bring the aug-
mented coefficient matrix in reduced row echelon form. Then . k ≤ min(m, n) =
m < n since by assumption .m < n. Hence Case 2a cannot occur and we are either 
in Case 1 (.L = ∅) or in  Case 2b (L infinite). 

An important class of linear systems is the one where the number of equations is 
the same as the number of unknowns, .m = n. 

Definition 1.3.6 Amatrix  A is called quadratic if the number of its rows equals the 
number of its columns. 

Definition 1.3.7 We say that a .n×n matrix .(A) = (aij )1≤i,j≤n is a diagonal matrix 
if .A = diag(A) where .diag(A) = (dij )1≤i,j≤n is the .n × n matrix with 

. dii = aii , 1 ≤ i ≤ n, dij = 0, i �= j.

It is called the .n × n identity matrix if .aii = 1 for any .1 ≤ i ≤ n and .aij = 0 for 
.i �= j . We denote it by .Idn×n or . Idn for short. 

Going through the procedure described above for transforming the augmented 
coefficient matrix .[A ‖ b] of a given system .(S) of n linear equations with n 
unknowns into reduced echelon form, one sees that .(S) has a unique solution if 
and only if it is possible to bring .[A ‖ b] without permuting the unknowns into the 
form .[Idn×n ‖ b̂], yielding the solution .x1 = b̂1, . . . , xn = b̂n. 

Definition 1.3.8 We say that a .n × n matrix A is regular if it can be transformed 
by the row operations .(R1)–.(R3) to the identity matrix . Idn. Otherwise A is called 
singular.
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Theorem 1.3.9 Assume that . (S) is a system of n linear equations and n unknowns 
with augmented coefficients matrix .[A ‖ b], i.e., 

. 

n∑
j=1

aij xj = bi, 1 ≤ i ≤ n.

Then the following holds: 

(i) If A is regular, then for any .b′ ∈ R
n, 

. 

n∑
j=1

aij xj = b′
i , 1 ≤ i ≤ n.

has a unique solution. 
(ii) If A is singular, then for any .b′ ∈ R

n, the system 

. 

n∑
j=1

aij xj = b′
i , 1 ≤ i ≤ n.

has either no solution at all or infinitely many. 

Example Assume that A is a singular .n×nmatrix. Then the system with augmented 
coefficient matrix .[A ‖ 0] has infinitely many solutions. 

Corollary 1.3.10 Assume that A is a .n×n matrix, .A = (aij )1≤i,j≤n. If there exists 
.b ∈ R

n so that 

. 

n∑
j=1

aij xj = bi, 1 ≤ i ≤ n,

has a unique solution, then for any .b
′ ∈ R

n, 

. 

n∑
j=1

aij xj = b
′
i , 1 ≤ i ≤ n,

has a unique solution. 

Definition 1.3.11 A system of the form 

.

n∑
j=1

aij xj = bi, 1 ≤ i ≤ m
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is said to be a homogeneous system of linear equations if . b = (b1, . . . , bm) =
(0, . . . , 0) and inhomogeneous one otherwise. Given a inhomogeneous system 

. 

n∑
j=1

aij xj = bi, 1 ≤ i ≤ m,

the system 

. 

n∑
j=1

aij xj = 0, 1 ≤ i ≤ m

is referred to as the corresponding homogeneous system. 

Note that a homogeneous system of linear equations has always the zero solution. 
Theorem 1.3.5 then leads to the following corollary. 

Corollary 1.3.12 A homogeneous system of m linear equations with n unknowns 
and .m < n has infinitely many solutions. 

We summarize the results obtained for a system of n linear equations with n 
unknowns as follows. 

Corollary 1.3.13 Assume that we are given a system . (S)

. 

n∑
j=1

aij xj = bi, 1 ≤ i ≤ n

where .b = (b1, . . . , bn) ∈ R
n. Then the following statements are equivalent: 

(i) . (S) has a unique solution. 
(ii) The homogeneous system corresponding to . (S) has only the zero solution. 
(iii) .A = (aij )1≤i,j≤n is regular. 

In view of Theorem 1.2.2, Corollary 1.3.13 leads to the following characteriza-
tion of regular .2 × 2 matrices. 

Corollary 1.3.14 For any .2× 2 matrix A, the following statements are equivalent: 

(i) A is regular. 
(ii) .detA �= 0. 

Finally, we already remark at this point that the set of solutions L of the linear 
system 

.

n∑
j=1

aij xj = b, 1 ≤ i ≤ m,
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and the set of solutions .Lhom of the corresponding homogeneous system 

. 

n∑
j=1

aij xj = 0, 1 ≤ i ≤ m,

have the following properties, which can be verified in a straightforward way: 

.(P 1) .x + x′ ∈ Lhom, .λx ∈ Lhom . x, x′ ∈ Lhom, .λ ∈ R. 

.(P 2) .x − x′ ∈ Lhom, . x, x′ ∈ L. 

.(P 3) .x + x′ ∈ L, . x ∈ L, .x′ ∈ Lhom. 

We will come back to these properties after having introduced the notion of a vector 
space. 

Problems 

1. Determine the augmented coefficient matrices of the following linear systems 
and transform them in row echelon form by using Gaussian elimination.⎧⎨ 

⎩ 

x1 + 2x2 + x3 = 0 
2x1 + 6x2 + 3x3 = 4 

2x2 + 5x3 = −4 
(i) 

⎧⎨ 

⎩ 

x1 − 3x2 + x3 = 1 
2x1 + x2 − x3 = 2 

x1 + 4x2 − 2x3 = 1 
(ii) 

2. Transform the augmented coefficient matrices of the following linear systems 
into reduced echelon form and find a parameter representation of the sets of its 
solutions.⎧⎨ 

⎩ 

x1 − 3x2 + 4x3 = 5 
x2 − x3 = 4 

2x2 + 4x3 = 2 
(i) 

⎧⎨ 

⎩ 

x1 + 3x2 + x3 + x4 = 3 
2x1 − x2 + x3 + 2x4 = 8 

x1 − 5x2 + x4 = 5 
(ii) 

3. Consider the linear system given by the following augmented coefficient matrix 

. 

⎡
⎣1 1 3 2
1 2 4 3
1 3 α β

⎤
⎦ .

(i) For which values of α and β in R does the system have infinitely many 
solutions? 

(ii) For which values of α and β in R does the system have no solutions?
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4. Determine the set of solutions of the following linear system of n equations and 
n unknowns. 

. 

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1 + 5x2 = 0
x2 + 5x3 = 0

...

xn−1 + 5xn = 0
5x1 + xn = 1

5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) There exist linear systems with three equations and three unknowns, which 
have precisely three solutions due to special symmetry properties. 

(ii) Every linear system with two equations and three unknowns has infinitely 
many solutions.



Chapter 2 
Matrices and Related Topics 

The aim of this chapter is to discuss the basic operations on matrices, to introduce 
the notions of linear (in)dependence of elements in . Rk , of a basis of . Rk and of 
coordinates of an element in . Rk with respect to a basis. Furthermore, we extend the 
notion of the determinant of .2 × 2 matrices, introduced at the end of Sect. 1.2, to  
square matrices of arbitrary dimension and characterize invertible square matrices 
as being those with nonvanishing determinant. 

An element .(a1, . . . , ak) in . Rk is often referred to as a vector (in . Rk) and . aj , 
.1 ≤ j ≤ k, as its j th component. The vector in . Rk , whose components are all zero, 
is referred to as the null vector in . Rk and is denoted by 0. 

2.1 Matrices 

The aim of this section is to discuss the basic operations on matrices. We denote by 
.Matm×n(R), or by .R

m×n for short, the set of all real .m × n matrices, 

. A = (aij )1≤i≤m
1≤j≤n

=
⎛
⎜⎝

a11 · · · a1n
...

...

am1 · · · amn

⎞
⎟⎠ .

Definition 2.1.1 Let .A = (aij )1≤i≤m
1≤j≤n

, .B = (bij )1≤i≤m
1≤j≤n

be in .R
m×n and let .λ ∈ R. 

(i) By .A + B we denote the .m × n matrix given by 

. (aij + bij )1≤i≤m
1≤j≤n

∈ R
m×n.

The matrix .A + B is referred to as the sum of the matrices A and B. 
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(ii) By . λA we denote the .m × n matrix 

. (λaij )1≤i≤m
1≤j≤n

∈ R
m×n.

The matrix . λA is referred to as the scalar multiple of A by the factor . λ. 

Note that for the sum of two matrices A and B to be defined, they have to have the 
same dimensions, i.e., the same number of rows and the same number of columns. 
So, e.g., the two matrices 

. 

(
1 2
3 4

)
and

(
6 7

)

cannot be added. 
The definition of the multiplication of matrices is more complicated. It is 

motivated by the interpretation of a .m × n matrix as a linear map from . Rn to . Rm, 
which we will discuss in Sect. 4.2 in detail. We will see that the multiplication of 
matrices corresponds to the composition of the corresponding linear maps. At this 
point however it is only important to know that the definition of the multiplication 
of matrices is very well motivated. 

Definition 2.1.2 Let .A = (ai�)1≤i≤m
1≤�≤n

∈ R
m×n and .B = (b�j )1≤�≤n

1≤j≤k

∈ R
n×k . Then 

the product of A and B, denoted by .A · B, or .AB for short, is the .m × k matrix with 
coefficients given by 

. (A · B)ij :=
n∑

�=1

ai�b�j .

Remark 

(i) In the case, .m = 1 and .n = 1, the matrices .A,B ∈ R
m×n are .1 × 1 matrices, 

.A = (a11) and .B = (b11), and the product .AB = (a11b11) is the product of . a11
with . b11. 

(ii) Note that in order for the multiplication AB of two matrices A and B to be 
defined, A must have the same number of columns as B has rows. Furthermore, 
the coefficient .(A · B)ij of the matrix product AB can be viewed as the matrix 
product of the ith row .Ri(A) ∈ R

1×n of A and the j th column . Cj (B) ∈ R
n×1

of B, 

.(A · B)ij = Ri(A) · Cj (B), Ri(A) := (
ai1 · · · ain

)
, Cj (B) :=

⎛
⎜⎝

b1j
...

bnj

⎞
⎟⎠ .
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Examples 

(i) Let .A =
(
1 2
3 4

)
, B =

(
1
2

)
. Then .A ∈ R

2×2, .B ∈ R
2×1, and AB is well 

defined, 

. AB =
(
1 · 1 + 2 · 2
3 · 1 + 4 · 2

)
=
(
5
11

)
∈ R

2×1.

Note that the matrix product BA is not defined. 

(ii) Let .A =
(
1 2
3 4

)
, B =

(
1 0
3 1

)
. Then .A,B ∈ R

2×2 and 

. AB =
(
1 · 1 + 2 · 3 1 · 0 + 2 · 1
3 · 1 + 4 · 3 3 · 0 + 4 · 1

)
=
(
7 2
15 4

)
∈ R

2×2.

Note that BA is well defined and can be computed in a similar way. 

(iii) Let .A =
(
1 2
3 4

)
, B =

(
1 0 1
3 1 0

)
. Then .A ∈ R

2×2, .B ∈ R
2×3 and 

. AB =
(
1 · 1 + 2 · 3 1 · 0 + 2 · 1 1 · 1 + 2 · 0
3 · 1 + 4 · 3 3 · 0 + 4 · 1 3 · 1 + 4 · 0

)
=
(
7 2 1
15 4 3

)
∈ R

2×3.

(iv) Let .A = (
1 2
)
, B =

(
3
4

)
. Then .A ∈ R

1×2, .B ∈ R
2×1. Hence both AB and 

BA are well defined and 

. AB = 3 + 8 = 11 ∈ R
1×1 (� R)

and 

. BA =
(
3 · 1 3 · 2
4 · 1 4 · 2

)
=
(
3 6
4 8

)
∈ R

2×2.

The following theorem states elementary properties of matrix multiplication. We 
recall that .Idn×n denotes the .n × n identity matrix. 

Theorem 2.1.3 The following holds: 

(i) Matrix multiplication is associative, 

.(AB)C = A(BC), A ∈ R
m×n, B ∈ R

n×k, C ∈ R
k×�.
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(ii) Matrix multiplication is distributive, 

. (A + B)C = AC + BC, A,B ∈ R
m×n, C ∈ R

n×k,

. A(B + C) = AB + AC, A ∈ R
m×n, B,C ∈ R

n×k.

(iii) Multiplication with the identity matrix .Idn×n satisfies 

. A · Idn×n = A, A ∈ R
m×n, Idn×n ·B = B, B ∈ R

n×k.

Remark To get acquainted with matrix multiplication, let us verify Theorem (i) of 
Theorem 2.1.3 in the case .m = 2, .n = 2, and .k = 2. For any .A,B,C ∈ R

2×2, the  
identity .A(BC) = (AB)C is verified as follows: let .D := BC, .E := AB. It is to  
show that .AD = EC. Indeed, for any .1 ≤ i, j ≤ 2, 

. (AD)ij =
2∑

k=1

aikdkj =
2∑

k=1

aik

( 2∑
�=1

bk�c�j

) =
2∑

k=1

2∑
�=1

aikbk�c�j

and 

. (EC)ij =
2∑

�=1

ei�c�j =
2∑

�=1

( 2∑
k=1

aikbk�

)
c�j =

2∑
�=1

2∑
k=1

aikbk�c�j .

This shows that .AD = EC. 

Note that in the case A and B are square matrices of the same dimensions, i.e., 
A, B in .Rn×n, the products AB and BA are well defined and both are elements in 
.R

n×n. In particular, .AA is well defined. It is demoted by . A2. More generally, for 
any .n ∈ N, we denote by . An the product .A · · · A with n factors. 

It is important to be aware that matrix multiplication of square matrices in . Rn×n

with .n ≥ 2 is not commutative, i.e., in general, for .A,B ∈ R
n×n, one has .AB �= BA. 

As an example consider .A =
(
1 0
0 2

)
and .B =

(
1 0
1 1

)
. Then .AB �= BA since 

. AB =
(
1 0
0 2

)(
1 0
1 1

)
=
(
1 0
2 2

)
,

whereas 

. BA =
(
1 0
1 1

)(
1 0
0 2

)
=
(
1 0
1 2

)
.

As a consequence, in general .(AB)2 �= A2B2.
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However matrices in certain special classes commute with each other. The set of 
diagonal .n × n matrices is such a class. Indeed if .A,B ∈ R

n×n are both diagonal 
matrices, .A = diag(A), .B = diag(B), then AB is also a diagonal matrix, . AB =
diag(AB), with 

. (AB)ii = aiibii , 1 ≤ i ≤ n,

implying that .AB = BA. 

Definition 2.1.4 Let A, .B ∈ R
n×n. 

(i) A and B commute if .AB = BA. They  anti-commute if .AB = −BA. 
(ii) A is invertible if there exists .C ∈ R

n×n so that .AC = Idn×n and .CA = Idn×n. 

Remark 

(i) One easily verifies that for any given .A ∈ R
n×n, there exists at most one matrix 

.B ∈ R
n×n so that .AB = Idn×n and .BA = Idn×n. Indeed assume that . C ∈

R
n×n satisfies .AC = Idn×n and .CA = Idn×n. Then 

. C = C · Idn×n = C(AB) = (CA)B = Idn×n ·B = B.

Hence if .A ∈ R
n×n is invertible, there exists a unique matrix .B ∈ R

n×n so that 
.AB = Idn×n and .BA = Idn×n. This matrix is denoted by .A−1 and is called the 
inverse of A. Note that the notion of the inverse of a matrix is only defined for 
square matrices. 

(ii) A matrix .A = (a11) ∈ R
1×1 is invertible if and only of .a11 �= 0 and in such a 

case, .(A−1)11 = 1/a11. 

Examples Decide which of the following .2 × 2 matrices are invertible and which 
are not. 

(i) The matrix .

(
0 0
0 0

)
, referred to as null matrix, is not invertible since for any 

. B ∈ R
2×2

. 

(
0 0
0 0

)
B =

(
0 0
0 0

)(
b11 b12

b21 b22

)
=
(
0 0
0 0

)
�= Id2×2 .

(ii) The matrix .

(
0 1
0 0

)
is not invertible since for any . B ∈ R

2×2

. 

(
0 1
0 0

)
B =

(
0 1
0 0

)(
b1 b2

b3 b4

)
=
(

b3 b4

0 0

)
�= Id2×2 .

(iii) The identity matrix .Id2×2 is invertible and .(Id2×2)
−1 = Id2×2.
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(iv) The diagonal matrix .A =
(
3 0
0 4

)
is invertible and 

. A−1 =
(

1/3 0
0 1/4

)
.

(v) The matrix .A =
(
1 2
3 4

)
is invertible. One can easily verify that 

. A−1 = − 1

2

(
4 −2

−3 1

)
.

How can the inverse of an invertible .2 × 2 matrix .A =
(

a b

c d

)
be computed? In the 

case where .det(A) �= 0, it turns out that A is invertible and its inverse .A−1 is given 
by 

.A−1 = 1

det(A)

(
d −b

−c a

)
=
(

d
det(A)

−b
det(A)

−c
det(A)

a
det(A)

)
. (2.1) 

Indeed, one has 

. A−1A = 1

det(A)

(
d −b

−c a

)(
a b

c d

)

= 1

det(A)

(
da − bc db − bd

−ca + ac −cb + ad

)
= Id2×2 .

Similarly one verifies that .AA−1 = Id2×2. 
Before we describe a procedure to find the inverse of an invertible .n × n matrix, 

let us state some general results on invertible .n × n matrices. First let us introduce 

.GLR(n) := {
A ∈ R

n×n | A is invertible
}
. (2.2) 

We remark that . GL stands for ‘general linear’. 

Theorem 2.1.5 The following holds: 

(i) For any .A,B ∈ GLR(n), one has .AB ∈ GLR(n) and 

.(AB)−1 = B−1A−1.
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As a consequence, for any .k ∈ N, .Ak ∈ GLR(n) and .(Ak)−1 = (A−1)k . We  
denote .(A−1)k by .A−k and define .A0 := Idn×n. 

(ii) For any .A ∈ GLR(n), .A−1 ∈ GLR(n) and 

. (A−1)−1 = A.

To get acquainted with the notion of the inverse of an invertible matrix, let us verify 
Theorem 2.1.5(i): first note that if .A,B ∈ GLR(n), then .A−1, B−1 are well defined 
and so is .B−1A−1. To see that .B−1A−1 is the inverse of AB we compute 

. (B−1A−1)(AB) = B−1(A−1A)B = B−1 · Idn×n ·B = B−1B = Idn×n

and similarly 

. (AB)B−1A−1 = A(BB−1)A−1 = A · Idn×n ·A−1 = AA−1 = Idn×n .

Hence by the definition of the inverse we have that AB is invertible and .(AB)−1 is 
given by .B−1A−1. To see that Theorem 2.1.5(ii) holds we argue similarly. Note that 
in general, .A−1B−1 is not the inverse of AB, but of BA. Hence in case A and B do 
not commute, neither do .A−1 and .B−1. 

Questions of interest with regard to the invertibility of a square matrix A are the 
following ones: 

(Q1) How can we decide if A is invertible? 
(Q2) In case A is invertible, how can we find its inverse? 

It turns out that the two questions are closely related and can be answered by the 
following procedure: consider the system . (S) of n linear equations with n unknowns 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

. a11x1 + · · · + a1nxn = b1

...

an1x1 + · · · + annxn = bn

where .A = (aij )1≤i,j≤n and .b = (b1, . . . , bn) ∈ R
n. We want to write this system 

in matrix notation. For this purpose we consider b as a .n × 1 matrix and similarly, 
we do so for x, 

.b =
⎛
⎜⎝

b1
...

bn

⎞
⎟⎠ , x =

⎛
⎜⎝

x1
...

xn

⎞
⎟⎠ .
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Since A is a .n × n matrix, the matrix multiplication of A and x is well defined and 
.Ax ∈ R

n×1. Note that 

. (Ax)j =
n∑

k=1

ajkxk = aj1x1 + · · · + ajnxn.

Hence the above linear system . (S), when written in matrix notation, takes the form 

. Ax = b.

Let us assume that A is invertible. Then the matrix multiplication of .A−1 and Ax is 
well defined and 

. A−1(Ax) = (A−1A)x = Idn×n x = x.

Hence multiplying left and right hand side of .Ax = b with .A−1, we get 

. x = A−1b.

It follows that for any .b ∈ R
n, the linear system .Ax = b has a unique solution, 

given by .A−1b. Introduce the following vectors in . Rn, 

. e(1) := (1, 0, · · · , 0), e(2) := (0, 1, 0, · · · , 0), . . . , e(n) := (0, · · · , 0, 1).

If .b = e(1) with .e(1) viewed as .n × 1 matrix, then .x = A−1e(1) is the first column of 
.A−1. More generally, if .b = e(j), .1 ≤ j ≤ n, with .e(j) viewed as .n × 1 matrix, then 
.A−1e(j) is the j th column of .A−1. Summarizing, we have seen that if .A−1 exists, 
then for any .b ∈ R

n, .Ax = b has a unique solution and A is regular. Furthermore, 
we can determine .A−1 by solving the following systems of linear equations 

. Ax = e(1), Ax = e(2), · · · , Ax = e(n).

Conversely, assume that A is regular. Then the latter equations have unique 
solutions, which we denote by .x(1), · · · , x(n), and one verifies that the matrix B, 
whose columns are given by .x(1), · · · , x(n), satisfies .AB = Idn×n. One can prove 
that this implies that B equals .A−1 (cf. Corollary 2.2.6). 

Our considerations suggest to compute the inverse of A by forming the following 
version of the augmented coefficient matrix 

.

⎡
⎢⎢⎢⎢⎣

a11 · · · a1n 1 0 · · · 0
...

... 0 1 · · · 0
...

...
...

...
...

...

an1 · · · ann 0 0 · · · 1

⎤
⎥⎥⎥⎥⎦
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and use Gaussian elimination to determine the solutions .x(1), . . . , x(n). 
We summarize our findings as follows. 

Theorem 2.1.6 The square matrix A is invertible if and only if A is regular. In case 
A is invertible, the linear system .Ax = b has the (unique) solution .x = A−1b. 

We recall that by Definition 1.3.8, a .n × n matrix A is said to be regular if it can 
be transformed into the identity matrix .Idn×n by the row operations (R1)–(R3). In 
such a case, the above version of the augmented coefficient matrix 

. 

⎡
⎢⎢⎢⎢⎣

a11 · · · a1n 1 0 · · · 0
...

... 0 1 · · · 0
...

...
...

...
...

...

an1 · · · ann 0 0 · · · 1

⎤
⎥⎥⎥⎥⎦

gets transformed into 

. 

⎡
⎢⎣
1 · · · 0 b11 · · · b1n
...

...
...

...

0 · · · 1 bn1 · · · bnn

⎤
⎥⎦

and .A−1 is given by the matrix .(bij )1≤i,j≤n. 

Examples For each of the matrices A below, decide if A is invertible and in case it 
is, determine its inverse. 

(i) For .A =
(

1 1
−1 1

)
consider the augmented coefficient matrix 

. 

[
1 1 1 0

−1 1 0 1

]

and compute its reduced echelon form. 

(a) By the row operation .R2 � R2 + R1, one gets 

. 

[
1 1 1 0
0 2 1 1

]
.

(b) Then apply the row operations .R2 � 1/2 R2, 

.

[
1 1 1 0
0 1 1/2

1/2

]
.
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(c) Finally, the row operation .R1 � R1 − R2 yields 

. 

[
1 0 1/2 − 1/2

0 1 1/2
1/2

]
,

thus 

. A−1 =
(
1/2 − 1/2
1/2

1/2

)
= 1

2

(
1 −1
1 1

)
.

Note that the result coincides with the one obtained by the formula 

. 
1

det(A)

(
d −b

−c a

)
.

(ii) For .A =
⎛
⎝
1 −2 2
1 1 −1
2 3 1

⎞
⎠ consider the augmented coefficient matrix 

. 

⎡
⎣
1 −2 2 1 0 0
1 1 −1 0 1 0
2 3 1 0 0 1

⎤
⎦

and compute its reduced echelon form. 

(a) By the row operations .R1 � R2 − R1, .R3 � R3 − 2R1 one gets 

. 

⎡
⎣
1 −2 2 1 0 0
0 3 −3 −1 1 0
0 7 −3 −2 0 1

⎤
⎦ .

(b) Then apply the row operation .R3 � R3 − 7/3 R2, 

. 

⎡
⎣
1 −2 2 1 0 0
0 3 −3 −1 1 0
0 0 4 1/3 − 7/3 1

⎤
⎦ .

(c) In a next step, apply the row operations .R2 � 1/3 R2, .R3 � 1/4 R3, 

.

⎡
⎣
1 −2 2 1 0 0
0 1 −1 − 1/3

1/3 0
0 0 1 1/12 − 7/12

1/4

⎤
⎦ .
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(d) Finally, by first applying the row operation .R1 � R1 + 2R2, 

. 

⎡
⎣
1 0 0 1/3

2/3 0
0 1 −1 − 1/3

1/3 0
0 0 1 1/12 − 7/12

1/4

⎤
⎦ ,

(e) and then the row operations .R2 � R2 + R3, one arrives at 

. 

⎡
⎣
1 0 0 1/3

2/3 0
0 1 0 − 1/4 − 1/4

1/4

0 0 1 1/12 − 7/12
1/4

⎤
⎦ .

Hence 

. A−1 =
⎛
⎝

1/3
2/3 0

− 1/4 − 1/4
1/4

1/12 − 7/12
1/4

⎞
⎠ .

(iii) For .A =
(

2 3
−4 −6

)
consider the augmented coefficients matrix 

. 

[
2 3 1 0

−4 −6 0 1

]

and try to compute its reduced row echelon form. 

(a) Apply the row operation .R2 � R2 + 2R1 to get 

. 

[
2 3 1 0
0 0 2 1

]
.

It follows that A is not regular and hence according to Theorem 2.1.6, A is not 
invertible. 

We finish this section by introducing the notion of the transpose of a matrix. 

Definition 2.1.7 Given .A ∈ R
m×n, we denote by . AT the .n × m matrix for which 

the ith row is given by the j th column of A and call it the transpose of A. More  
formally, 

.(AT)ij = aji, 1 ≤ i ≤ n, 1 ≤ j ≤ m.
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Examples 

(i) . A =
(
1 2
3 4

)
∈ R

2×2 � AT =
(
1 3
2 4

)
∈ R

2×2.

(ii) . A =
⎛
⎝
1 4
2 5
3 6

⎞
⎠ ∈ R

3×2 � AT =
(
1 2 3
4 5 6

)
∈ R

2×3.

(iii) . A =
⎛
⎝
1
2
3

⎞
⎠ ∈ R

3×1 � AT =
⎛
⎝
1
2
3

⎞
⎠ ∈ R

1×3.

Definition 2.1.8 A square matrix .A = (aij )1≤i,j≤n ∈ R
n×n is said to be symmetric 

if .A = AT or, written coefficient wise, 

. aij = aji 1 ≤ i, j ≤ n.

Examples 

(i) .A =
(
1 2
2 3

)
is symmetric. 

(ii) .A =
(
1 2
1 3

)
is not symmetric. 

(iii) If .A ∈ R
n×n is a diagonal matrix, then A is symmetric. (Recall that A is a 

diagonal matrix if .A = diag(A).) 

Theorem 2.1.9 

(i) For any .A ∈ R
m×n, .B ∈ R

n×k , 

. (AB)T = BTAT.

(ii) For any .A ∈ GLR(n), also .AT ∈ GLR(n) and 

. (AT)−1 = (A−1)T.

To get more acquainted with the notion of the transpose of a matrix, let us verify 
the statements of Theorem 2.1.9: given .A ∈ R

m×n, .B ∈ R
n×k , one has . AB ∈ R

m×k

and for any .1 ≤ i ≤ m, .1 ≤ j ≤ k, 

. (AB)ij =
n∑

�=1

ai�b�j =
n∑

�=1

(AT)�i(B
T)j� =

n∑
�=1

(BT)j�(A
T)�i = (BTAT)ji

and on the other hand, by the definition of the transpose matrix, . ((AB)T)ji =
(AB)ij . Combining the two identities yields .(AB)T = BTAT. To see that for any
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.A ∈ GLR(n) also .AT ∈ GLR(n), the candidate for the inverse of . AT is the matrix 

.(A−1)T. Indeed, by Theorem 2.1.9(i), one has 

. (AT)(A−1)T = (A−1A)T = IdTn×n = Idn×n

and 

. (A−1)TAT = (AA−1)T = IdTn×n = Idn×n .

Problems 

1. Let A, B, C be the following matrices 

. A =
(
2 −1 2
4 −2 4

)
, B =

⎛
⎝
−1 0
2 2
2 1

⎞
⎠ , C =

(−1 2
0 2

)
.

(i) Determine which product Q · P are defined for Q, P ∈ {
A, B, C

}
and 

which are not (the matrices Q and P do not have to be different). 
(ii) Compute AB and BA. 
(iii) Compute 3C5 + 2C2. 
(iv) Compute ABC. 

2. Determine which of the following matrices are regular and if so, determine their 
inverses. 

(i) A = 

⎛ 

⎝ 
1 2  −2 
0 −1 1  
2 3 0  

⎞ 

⎠ 

(ii) B = 

⎛ 

⎝ 
1 2 2  
0 2  −1 

−1 0  −3 

⎞ 

⎠ 

3. (i) Determine all real numbers α, β for which the 2 × 2 matrix  

. A :=
(

α β

β α

)

is invertible and compute for those numbers the inverse of A. 
(ii) Determine all real numbers a, b, c, d, e, f for which the matrix 

. B :=
⎛
⎝

a d e

0 b f

0 0 c

⎞
⎠

is invertible and compute for those numbers the inverse of B.
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4. (i) Find symmetric 2 × 2 matrices A, B so that the product AB is not 
symmetric. 

(ii) Verify: for any 4 × 4 matrices of the form 

. A =
(

A1 A2

0 A3

)
, B =

(
B1 B2

0 B3

)

where A1, A2, A3 and B1, B2, B3 are 2 × 2 matrices, the 4 × 4 matrix  AB 
is given by 

. AB =
(

A1B1 A1B2 + A2B3

0 A3B3

)
.

5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) For arbitrary matrices A, B in R2×2, 

. (A + B)2 = A2 + 2AB + B2.

(ii) Let A be the 2× 2 matrix  A =
(
1 2  
3 5

)
. Then for any k ∈ N, Ak is invertible 

and for any n, m ∈ Z, 

. An+m = AnAm.

(Recall that A0 = Id2×2 and for any k ∈ N, A−k is defined as 
A−k = (A−1)k .) 

2.2 Linear Dependence, Bases, Coordinates 

In this section we introduce the important notions of linear independence / linear 
dependence of elements in . Rk , of a basis of . Rk , and of coordinates of an element 
in . Rk with respect to a basis. In Chap. 4, we will discuss these notions in the more 
general framework of vector spaces, of which . Rk is an example. An element a of 
. Rk is referred to as a vector and is written as .a = (a1, . . . , ak) where . aj , .1 ≤ j ≤ k, 
are called the components of a. Depending on the context, it is convenient to view 
a alternatively as a .1 × k matrix .(a1 · · · ak) ∈ R

1×k or as a .k × 1 matrix 

.a =
⎛
⎜⎝

a1
...

ak

⎞
⎟⎠ ∈ Rk×1.
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Definition 2.2.1 Assume that .a(1), . . . , a(n) are vectors in . Rk where .n ≥ 2 and . k ≥
1. A vector .b ∈ R

k is said to be a linear combination of the vectors .a(1), . . . , a(n) if 
there exist real numbers .α1, . . . , αn so that 

. b = α1a
(1) + · · · + αna

(n) or b =
n∑

j=1

αja
(j).

The notion of linear combination in . R is trivial, involving the addition and 
multiplication of real numbers. The following examples illustrate the notion of 
linear combination in . R2. 

Examples 

(i) .n = 2. Consider the vectors .a(1) = (1, 2) and .a(2) = (2, 1) ∈ R
2. The vector 

.b = (b1, b2) = (1, 5) is a linear combination of .a(1) and . a(2), .b = 3a(1) − a(2). 
Indeed, 

. 3a(1) − a(2) = 3(1, 2) − (1, 2) = (3, 6) − (2, 1) = (1, 5) = b.

(ii) .n = 3. Consider the vectors .a(1) = (1, 2), .a(2) = (2, 1), and .a(3) = (2, 2) ∈ R
2. 

The vector .b = (b1, b2) = (1, 5) is a linear combination of . a(1), . a(2), and . a(3), 
.b = 2a(1) − 2a(2) + 3

2 a(3). Indeed, 

. 2a(1) − 2a(2) + 3

2
a(3) = 2(1, 2) − 2(2, 1) + 3

2
(2, 2)

= (2, 4) − (4, 2) + (3, 3) = (1, 5).

Note that according to (i), one also has .b = 3a(1) − a(2) + 0a(3). Hence the 
representation of b as a linear combination of . a(1), . a(2), and .a(3) is not unique. 

Definition 2.2.2 

(i) Assume that .a(1), . . . , a(n) are vectors in . Rk where .n ≥ 2 and .k ≥ 1. They are  
said to be linearly dependent if there exists .1 ≤ i ≤ n so that .a(i) is a linear 
combination of . a(j), .j �= i, i.e., if there exist .αj ∈ R, .j �= i, so that 

. a(i) =
∑
j �=i

1≤j≤n

αja
(j).

Equivalently, .a(1), . . . , a(n) are linearly dependent if there exist . β1, . . . , βn ∈
R, not all zero, so that 

.0 =
n∑

j=1

βja
(j).
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We say in such a case that 0 is a nontrivial linear combination of .a(1), . . . , a(n). 
(ii) The vectors .a(1), . . . , a(n) are said to be linearly independent if they are not 

linearly dependent. Equivalently, .a(1), . . . , a(n) are linearly independent if for 
any .β1, . . . , βn ∈ R, the identity .

∑n
j=1 βja

(j) = 0 implies that .βj = 0 for any 
.1 ≤ j ≤ n. 

According to Definition 2.2.2, any set of numbers .a(1), . . . , a(n), .n ≥ 2, in  . R
is linearly dependent. Furthermore, any two vectors .a(1) and .a(2) in . Rk , .k ≥ 2, 
are linearly dependent if and only if .a(1) is a scalar multiple of .a(2) or .a(2) is 
a scalar multiple of . a(1). The following examples illustrate the notion of linear 
(in)dependence in . R2. 

Examples 

(i) .n = 2. The two vectors .a(1) = (1, 2), .a(2) = (2, 1) are linearly independent 
in . R2. Indeed, since .(1, 2) is not a scalar multiple of .(2, 1) and .(2, 1) is not a 
scalar multiple of .(1, 2), .a(1) and .a(2) are linearly independent. 
To verify that .a(1) and .a(2) are linearly independent, one can use the alternative 
definition, given in Definition 2.2.2. In this case one needs to verify that for any 
. β1, . β2 in . R, .β1a

(1) + β2a
(2) = 0 implies that .β1 = 0 and .β2 = 0. Indeed, the 

equation .β1a
(1) + β2a

(2) = (0, 0) can be written in matrix notation as 

.A

(
β1

β2

)
=
(
0
0

)
, A :=

(
1 2
2 1

)
. (2.3) 

Since .detA = 1 · 1− 2 · 2 = −3 �= 0, the homogeneous linear system (2.3) has 
only the trivial solution .β1 = 0, .β2 = 0. 

(ii) The three vectors .a(1) = (1, 2), .a(2) = (2, 1), and .a(3) = (2, 2) ∈ R
2 are 

linearly dependent. Indeed, 

.a(3) = 2

3
a(1) + 2

3
a(2). (2.4) 

To verify that . a(1), . a(2), and .a(3) are linearly dependent by using the alternative 
definition, given in Definition 2.2.2, it suffices to note that by (2.4) one has 
.
2
3 a(1) + 2

3 a(2) − a(3) = 0, meaning that 0 can be represented as a nontrivial 
linear combination of the vectors . a(1), . a(2), and . a(3). 

Figures 2.1, 2.2, 2.3, and Fig. 2.4 show the notion of linear (in)dependence and linear 
combination in . R2. 

Important questions with regard to the notions of linear combination and linear 
(in)dependence are the following ones: 

(Q1) How can we decide whether given vectors .a(1), . . . , a(n) in . Rk are linearly 
independent?
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Fig. 2.1 Linearly independent vectors in . R2. Note that the two arrows representing the vectors 
point in different directions 

Fig. 2.2 Linearly dependent vectors in . R2. (a) The linear dependence is shown by the fact that the 
two arrows representing the vectors point in the same direction or... (b) that they point in opposite 
directions or... (c) that one vector is the null vector 

Fig. 2.3 A linear combination of vectors in . R2. The vector .a(1) + 2a(2) is the sum of vector . a(1)

and twice vector .a(2)
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Fig. 2.4 The null vector as a 
linear combination of 
.a(1), a(2), a(3) ∈ R

2. Note  
that because the sum of 
. β1a

(1) + β2a
(2) + β3a

(3)

yields the null vector, the 
arrows representing this sum 
form a closed loop with start 
and end at the origin 

(Q2) Given vectors .b, a(1), . . . , a(n) in . Rk , how can we decide whether b is a 
linear combination of .a(1), . . . , a(n)? In case, b can be represented as a linear 
combination of .a(1), . . . , a(n), how can we find .α1, . . . , αn ∈ R so that 

. b =
n∑

j=1

αja
(j)?

Are the numbers .α1, . . . , αn uniquely determined? 

It turns out that these questions are closely related with each other and can be 
rephrased in terms of systems of linear equations: assume that .b, a(1), . . . , a(n) are 
vectors in . Rk . We view them as .k × 1 matrices and write 

. b =
⎛
⎜⎝

b1
...

bk

⎞
⎟⎠ , a(1) =

⎛
⎜⎝

a
(1)
1
...

a
(1)
k

⎞
⎟⎠ =

⎛
⎜⎝

a11
...

ak1

⎞
⎟⎠ , . . . , a(n) =

⎛
⎜⎝

a
(n)
1
...

a
(n)
k

⎞
⎟⎠ =

⎛
⎜⎝

a1n
...

akn

⎞
⎟⎠ .

Denote by A the .k × n matrix with columns .C1(A) = a(1), . . . , Cn(A) = a(n), 

. A =
⎛
⎜⎝

a11 . . . a1n
...

...

ak1 . . . akn

⎞
⎟⎠ =

⎛
⎜⎝

a
(1)
1 . . . a

(n)
1

...
...

a
(1)
k . . . a

(n)
k

⎞
⎟⎠ .

Recall that b is a linear combination of the vectors .a(1), . . . , a(n) if there exist real 
numbers .α1, . . . , αn so that 

.b =
n∑

j=1

αja
(j).
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Written componentwise, the latter identity reads 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

. b1 = α1a
(1)
1 + · · · + αna

(n)
1 =

n∑
j=1

a1jαj

...

bk = α1a
(1)
k + · · · + αna

(n)
k =

n∑
j=1

akjαj

or in matrix notation, .b = Aα, where 

. α =
⎛
⎜⎝

α1
...

αn

⎞
⎟⎠ ∈ R

n×1.

Note that .A ∈ R
k×n and hence the matrix multiplication of A by . α is well 

defined. Hence we can express the questions, whether b is a linear combination 
of .a(1), . . . , a(n), and whether .a(1), . . . , a(n) are linearly (in)dependent, in terms of 
matrices as follows: 

(LC) b is a linear combination of .a(1), . . . , a(n) if and only if the linear system 
.Ax = b has a solution .x ∈ R

n×1. 
(LD) .a(1), . . . , a(n) are linearly dependent if and only if the linear homogeneous 

system .Ax = 0 has a solution .x ∈ R
n×1 with .x �= 0. 

(LI ) .a(1), . . . , a(n) are linearly independent if and only if the linear homogeneous 
system .Ax = 0 has only the trivial solution .x = 0. 

The following example illustrates how to apply .(LC) in the case where .k = 4 and 
.n = 3. 

Example Let .b = (5, 5,−1,−2) ∈ R
4 and 

. a(1) = (1, 1, 0, 1), a(2) = (0, 2,−1,−1), a(3) = (−2,−1, 0, 1).

Then b is a linear combination of .a(1), a(2), a(3). Verification. We look for a solution 
.x ∈ R

3 of the linear system .Ax = b where 

.A =
⎛
⎜⎝

a
(1)
1 a

(2)
1 a

(3)
1

...
...

...

a
(1)
4 a

(2)
4 a

(3)
4

⎞
⎟⎠ =

⎛
⎜⎜⎝

1 0 −2
1 2 −1
0 −1 0
1 −1 1

⎞
⎟⎟⎠ , x =

⎛
⎝

x1

x2

x3

⎞
⎠ , b =

⎛
⎜⎜⎝

5
5

−1
−2

⎞
⎟⎟⎠ .
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To this is end, we transform the augmented coefficient matrix 

. 

⎡
⎢⎢⎣

1 0 −2 5
1 2 −1 5
0 −1 0 −1
1 −1 1 −2

⎤
⎥⎥⎦

in row echelon form. 

Step 1. Apply the row operations .R2 � R2 − R1, .R4 � R4 − R1, 

. 

⎡
⎢⎢⎣

1 0 −2 5
0 2 1 0
0 −1 0 −1
0 −1 3 −7

⎤
⎥⎥⎦ .

Step 2. Apply the row operation .R2�3, 

. 

⎡
⎢⎢⎣

1 0 −2 5
0 −1 0 −1
0 2 1 0
0 −1 3 −7

⎤
⎥⎥⎦ .

Step 3. Apply the row operations .R3 � R3 + 2R2, .R4 � R4 − R2, 

. 

⎡
⎢⎢⎣

1 0 −2 5
0 −1 0 −1
0 0 1 −2
0 0 3 −6

⎤
⎥⎥⎦ .

Step 4. Apply the row operation .R4 � R4 − 3R3, 

. 

⎡
⎢⎢⎣

1 0 −2 5
0 −1 0 −1
0 0 1 −2
0 0 0 0

⎤
⎥⎥⎦ .

Therefore, .x3 = −2, .x2 = 1, .x1 = 5 + 2x3 = 1 and hence 

. b = 1 · a(1) + 1 · a(2) + (−2) · a(3) = a(1) + a(2) − 2a(3).

In the important case where .k = n, we have, in view of the definition of a regular 
matrix, the following
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Theorem 2.2.3 Assume that .a(1), . . . , a(n) are vectors in . Rn. Then the following 
two statements are equivalent: 

(i) .a(1), . . . , a(n) are linearly independent. 
(ii) The .n × n matrix A is regular where 

. A =
⎛
⎜⎝

a
(1)
1 . . . a

(n)
1

...
...

a
(1)
n . . . a

(n)
n

⎞
⎟⎠ .

Definition 2.2.4 The vectors .a(1), . . . , a(n) in . Rk are called a basis of . Rk if every 
vector .b ∈ R

k can be represented in a unique way as linear combination of 
.a(1), . . . , a(n), i.e., if for every .b ∈ R

k there exist uniquely determined real numbers 
.α1, . . . , αn such that 

. b =
n∑

j=1

αja
(j).

The numbers .α1, . . . , αn are called the coordinates of b with respect to the basis 
.a(1), . . . , a(n). For a basis, consisting of the vectors .a(1), . . . , a(n), we will often use 
the notation .[a(1), . . . , a(n)] or . [a] for short. 
Theorem 2.2.5 

(i) Any basis of . Rk consists of k vectors. 
(ii) If the vectors .a(1), . . . , a(k) ∈ R

k are linearly independent, then they form a 
basis in . Rk . 

(iii) If .a(1), . . . , a(n) are linearly independent vectors in . Rk with .1 ≤ n < k, then 
there exist vectors .a(n+1), . . . , a(k) ∈ R

k so that . a(1), . . . , a(n), a(n+1), . . . , a(k)

form a basis of . Rk . In words: a collection of linearly independent vectors of 
. Rk can always be completed to a basis of . Rk . 

Examples 

(i) The vectors 

. e(1) = (1, 0, . . . , 0), e(2) = (0, 1, 0, . . . , 0), . . . , e(k) = (0, . . . , 0, 1),

form a basis of . Rk , referred to as the standard basis of . Rk . Indeed, any vector 
.b = (b1, . . . , bk) ∈ R

k can be written in a unique way as 

.b =
k∑

j=1

bj e
(j).
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The components .b1, . . . , bk of b are the coordinates of b with respect to the 
standard basis .[e] = [e(1), . . . , e(k)] of . Rk . 

(ii) The vectors .a(1) = (1, 1), a(2) = (2, 1) form a basis of . R2. Indeed, according 
to Theorem 2.2.5(ii), it suffices to verify that .a(1), a(2) are linearly independent 
in . R2. By Theorem 2.2.3, this is the case if and only if 

. A =
(

a
(1)
1 a

(2)
1

a
(1)
2 a

(2)
2

)
=
(
1 2
1 1

)

is regular. By Gaussian elimination, 

. 

(
1 2
1 1

)
R2�R2−R1�

(
1 2
0 −1

)
R2�−R2�

(
1 2
0 1

)
R1�R1−2R1�

(
1 0
0 1

)

and hence A is regular. Alternatively, to see that A is regular, one can show that 
.detA �= 0. Indeed, one has .detA = 1 · 1 − 2 · 1 = −1 �= 0. 

(iii) Let us compute the coordinates of the vector .b = (1, 3) ∈ R
2 with respect to 

the basis .[a] = [a(1), a(2)] of . R2 of Item (ii). To this end, we solve the linear 
system .Ax = b where A is given as in Item (ii). By Gaussian elimination, 

. 

[
1 2 1
1 1 3

]
R2�R2−R1�

[
1 2 1
0 −1 2

]

yielding .x2 = −2, .x1 = 1 − 2x2 = 5, and hence 

.b = 5a(1) − 2a(2). (2.5) 

Note that by (2.5), the coordinates of b with respect to the basis .[a(1), a(2)] of 
. R2 are 5 and . −2, whereas the ones with respect to the standard basis of . R2 are 1 
and 3. For a geometric interpretation, see Fig. 2.5. An important question is how the 
coefficients .5,−2 and .1, 3 are related to each other. We consider this question in a 
more general context. Assume that 

. [a] := [a(1), . . . , a(n)] and [b] := [b(1), . . . , b(n)]

are bases of . Rn and consider a vector .u ∈ R
n. Then 

. u =
n∑

j=1

αja
(j), u =

n∑
j=1

βjb
(j)

where .α1, . . . , αn are the coordinates of u with respect to . [a] and .β1, . . . , βn the 
ones of u with respect to . [b]. We would like to have a method of computing . βj ,
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Fig. 2.5 A geometric interpretation of Example (iii). Note that vector b has coordinates 1 and 3 
in the coordinate system using the standard basis of . R2, but can be expressed by .5a(1) − 2a(2) and 
hence has the coordinates 5 and . −2 with respect to the basis . a(1), a(2)

.1 ≤ j ≤ n from . αj , .1 ≤ j ≤ n. To this end we have to express the vectors .a(j) as 
linear combination of the vectors .b(1), . . . , b(n): 

. a(j) =
n∑

i=1

tij b
(i), T :=

⎛
⎜⎝

t11 . . . t1n
...

...

tn1 . . . tnn

⎞
⎟⎠ .

Then 

. 

n∑
i=1

βib
(i) = u =

n∑
j=1

αja
(j) =

n∑
j=1

αj

n∑
i=1

tij b
(i)

or 

. 

n∑
i=1

βib
(i) =

n∑
i=1

( n∑
j=1

αj tij

)
b(i).

Since the coordinates of u with respect to the basis . [b] are uniquely determined one 
concludes that .βi = ∑n

j=1 tij αj for any .1 ≤ i ≤ n. In matrix notation, we thus 
obtain the relation 

.β = T α, α =
⎛
⎜⎝

α1
...

αn

⎞
⎟⎠ , β =

⎛
⎜⎝

β1
...

βn

⎞
⎟⎠ . (2.6)
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It turns out that a convenient notation for T is the following one 

.T = Id[a]→[b] . (2.7) 

The j th column of T is the vector of coordinates of .a(j) with respect to the basis 
. [b]. Similarly, we express .b(j) as a linear combination of .a(1), . . . , a(n), 

. b(j) =
n∑

i=1

sij a
(i), S =

⎛
⎜⎝

s11 . . . s1n
...

...

sn1 . . . snn

⎞
⎟⎠ .

We then obtain 

.α = Sβ, S = Id[b]→[a] . (2.8) 

We will motivate the notation .Id[a]→[b] for T in a much broader context in 
Sect. 4.2, once we have introduced the notion of vector spaces and linear maps. At 
this point, we just record that .Id[a]→[b] can be viewed as the matrix representation 
of the identity operator on . Rn with respect to the bases . [a] and . [b]. 
Theorem 2.2.6 Assume that . [a] and . [b] are bases of . Rn. Then 

(i) S and T are regular .n × n matrices, hence invertible. 
(ii) .T = S−1. 

Note that Theorem 2.2.6 can be deduced from (2.6) and (2.8). Indeed 

. 
β = T α

(2.8)� β = T Sβ  
α = Sβ (2.6)� α = ST α. 

It then follows that .T S = Idn×n and .ST = Idn×n, i.e., .T = S−1. 

Example Consider the standard basis .[e] = [e(1), e(2), e(3)] of . R3 and the basis 
.[b] = [b(1), b(2), b(3)] of . R3, given by 

. b(1) = (1, 1, 1), b(2) = (0, 1, 2), b(3) = (2, 1,−1).

Let us compute .S = Id[b]→[e]. The first column of S is the vector of coordinates of 
.b(1) with respect to the standard basis . [e], 

. b(1) = 1 · e(1) + 1 · e(2) + 1 · e(3),

and similarly, 

.b(2) = 0 · e(1) + 1 · e(2) + 2 · e(3), b(3) = 2 · e(1) + 1 · e(2) − 1 · e(3).
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Hence 

. S =
⎛
⎝
1 0 2
1 1 1
1 2 −1

⎞
⎠ .

By Gaussian elimination, we then compute .T = Id[e]→[b] = S−1, 

. T =
⎛
⎝

3 −4 2
−2 3 −1
−1 2 −1

⎞
⎠ .

The coordinates .β1, β2, β3 of .u = (1, 2, 3) ∈ R
3 with respect to the basis . [b], 

.u = ∑3
j=1 βjb

(j), can then be computed as follows: 

Step 1. Compute the coordinates of u with respect to the basis . [e], 

. α1 = 1, α2 = 2, α3 = 3.

Step 2. 

. β = Id[e]→[b] α = T α =
⎛
⎝

3 −4 2
−2 3 −1
−1 2 −1

⎞
⎠
⎛
⎝
1
2
3

⎞
⎠ =

⎛
⎝
1
1
0

⎞
⎠ .

Hence .u = 1 · b(1) + 1 · b(2) + 0 · b(3). 
The formula .β = Id[e]→[b] α can be expressed in words as follows, 

. 

{
β = ’new’ coordinates, α = ’old’ coordinates;
[b] = ’new’ basis, [e] = ’old’ basis.

We will come back to this topic when we discuss the notion of a linear map and its 
matrix representation with respect to bases. 

Problems 

1. (i) Decide whether a(1) = (2, 5), a(2) = (5, 2) are linearly dependent in R2. 
(ii) If possible, represent b = (1, 9) as a linear combination of a(1) = (1, 1) 

and a(2) = (3, −1). 
2. Decide whether the following vectors in R3 are linearly dependent or not. 

(i) a(1) = (1, 2, 1), a(2) = (−1, 1, 3).
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(ii) a(1) = (1, 1,−1), a(2) = (0, 4,−3), a(3) = (1, 0, 3). 

3. (i) Let a(1) := (1, 1, 1), a(2) := (1, 1, 2). Find a vector a(3) ∈ R3 so that a(1), 
a(2), and a(3) form a basis of R3. 

(ii) Let [a] = [a(1) , a(2)] be the basis of R2, given by 

. a(1) = (1,−1), a(2) = (2, 1).

Compute Id[e]→[a] and Id[a]→[e]. 
4. Consider the basis [a] = [a(1) , a(2) , a(3)] of R3, given by a(1) = (1, 1, 0), 

a(2) = (1, 0, 1) and a(3) = (0, 1, 1), and denote by [e] = [e(1) , e(2) , e(3)] the 
standard basis of R3. 

(i) Compute S := Id[a]→[e] and T := Id[e]→[a]. 
(ii) Compute the coordinates α1, α2, α3 of the vector b = (1, 2, 3) with respect 

to the basis [a], b = α1a
(1)+α2a

(2)+α3a
(3), and determine the coefficients 

β1, β2, β3 of the vector a(1)+2a(2)+3a(3) with respect to the standard basis 
[e]. 

5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) Let n, m ≥ 2. If one of the vectors a(1) , . . . , a(n) ∈ Rm is the null vector, 
then a(1) , . . . , a(n) are linearly dependent. 

(ii) Assume that a(1) , . . . , a(n) are vectors in R2. If  n ≥ 3, then any vector 
b ∈ R2 can be written as a linear combination of a(1) , . . . , a(n). 

2.3 Determinants 

In Sect. 1.2, we introduced the notion of the determinant of a .2 × 2 matrix, 

. det(A) = a11a22 − a12a21, A =
(

a11 a12

a21 a22

)

and recorded the following important properties (cf. Theorem 1.2.2): 

(i) For any .b ∈ R
2, .Ax = b has a unique solution if and only if .det(A) �= 0. 

(ii) Cramer’s rule for solving .Ax = b, .b ∈ R
2. Let  

.C1 ≡ C1(A) :=
(

a11

a21

)
, C2 ≡ C2(A) :=

(
a12

a22

)
, b =

(
b1

b2

)
.
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Then 

. x1 = det
(
b C2

)

det
(
C1 C2

) , x2 = det
(
C1 b

)

det
(
C1 C2

) .

We now want to address the question whether the notion of determinant can be 
extended to .n × n matrices with properties similar to the ones of the determinant of 
.2×2 matrices. The answer is yes! Among the many equivalent ways of defining the 
determinant of .n × n matrices, we choose a recursive definition, which defines the 
determinant of a .n × n matrix in terms of determinants of certain . (n − 1) × (n − 1)
matrices. First we need to introduce some more notations. For .A ∈ R

n×n and . 1 ≤
i, j ≤ n, we denote by .A(i,j) ∈ R

(n−1)×(n−1) the .(n− 1)× (n− 1) matrix, obtained 
from A by deleting the ith row and the j th column. 

Example For 

. A =
⎛
⎝
1 2 3
4 5 6
7 8 9

⎞
⎠ ∈ R

3×3

one has 

. A(1,1) =
(
5 6
8 9

)
, A(1,3) =

(
4 5
7 8

)
, A(1,2) =

(
4 6
7 9

)
,

. A(2,1) =
(
2 3
8 9

)
, A(2,2) =

(
1 3
7 9

)
, A(2,3) =

(
1 2
7 8

)
.

To motivate the inductive definition of the determinant of a .n×n matrix, we first 
consider the cases .n = 1, .n = 2. One has 

. 

n = 1 : A = (a11) ∈ R
1×1 � det(A) = a11.

n = 2 : A =
(

a11 a12

a21 a22

)
� det(A) = a11a22 − a12a21

which can be written as 

. det(A) = a11 · det(A(1,1)) − a12 · det(A(1,2))

= (−1)1+1a11 · det(A(1,1)) + (−1)1+2a12 · det(A(1,2))

=
2∑

j=1

(−1)1+j a1j · det(A(1,j)).
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Definition 2.2.1 For any .A ∈ R
n×n with .n ≥ 3, we define the determinant of A as 

. det(A) =
n∑

j=1

(−1)1+j a1j det(A
(1,j)). (2.9) 

Since .A(1,j) is a .(n − 1) × (n − 1) matrix for any .1 ≤ j ≤ n, this is indeed a 
recursive definition. We refer to (2.9) as the expansion of .det(A) with respect to the 
first row of A. 

Example The determinant of 

. A =
⎛
⎝
1 2 3
4 2 1
1 0 1

⎞
⎠ ∈ R

3×3

can be computed as follows. By Definition 2.2.1 

. det(A) = (−1)1+11 · det(A(1,1))+ (−1)1+22 · det(A(1,2))+ (−1)1+33 · det(A(1,3)).

Since 

. A(1,1) =
(
2 1
0 1

)
, A(1,2) =

(
4 1
1 1

)
, A(1,3) =

(
4 2
1 0

)
,

one gets 

. det(A) = (2 · 1 − 0) − 2(4 · 1 − 1 · 1) + 3(4 · 0 − 2 · 1) = 2 − 6 − 6 = −10.

Let us state some important properties of the determinant. 

Theorem 2.2.2 For any .A ∈ R
n×n and .1 ≤ k ≤ n, the following holds: 

(i) Expansion of .det(A) with respect to the kth row of A. 

. det(A) =
n∑

j=1

(−1)k+j akj det(A
(k,j)).

(ii) Expansion of .det(A) with respect to the kth column of A. 

. det(A) =
n∑

j=1

(−1)j+kajk det(A
(j,k)).
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(iii) The determinant of the transpose of A. 

. det(AT) = det(A).

Note that Item (iii) of the latter theorem follows from Item (ii), since . (AT)1j = aj1
and .(AT)(1,j) = A(j,1). 

To state the next theorem let us introduce some more notations. For .A ∈ R
n×n, 

denote by .C1 ≡ C1(A),  . . . ,  .Cn ≡ Cn(A) its columns and by .R1 ≡ R1(A),  . . . ,  
.Rn ≡ Rn(A) its rows. We then have 

. A = (C1 · · · Cn), A =
⎛
⎜⎝

R1
...

Rn

⎞
⎟⎠ .

Theorem 2.2.3 For any .A ∈ R
n×n, the following identities hold: 

(i) For any . 1 ≤ j < i ≤ n,

. det(C1 · · ·Cj · · · Ci · · · Cn) = − det(C1 · · · Ci · · · Cj · · · Cn).

By Theorem 2.2.2(iii), it then follows that a corresponding result holds for the 
rows of A, 

. det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R1
...

Rj

...

Ri

...

Rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= − det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R1
...

Ri

...

Rj

...

Rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(ii) For any .λ ∈ R and .1 ≤ i ≤ n, 

. det(C1 · · · λCi · · · Cn) = λ · det(C1 · · · Ci · · · Cn)

and for any .b ∈ R
n×1, 

. det(C1 · · · (Ci + b) · · · Cn) = det(C1 · · · Ci · · · Cn) + det(C1 · · · b · · · Cn).

By Theorem 2.2.2(iii), it then follows that analogous statements hold for the 
rows of A. 

(iii) For any .1 ≤ i, j ≤ n and .i �= j , .λ ∈ R, 

. det(C1 · · · (Ci + λCj ) · · · Cn) = det(C1 · · ·Ci · · · Cn).
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By Theorem 2.2.2(iii), it then follows that an analogous statement holds for the 
rows of A. 

(iv) If A is upper triangular, namely .aij = 0, i > j , then 

. det(A) = a11a22 · · · ann =
n∏

j=1

ajj .

In particular, .det(Idn×n) = 1 and .det(0n×n) = 0 where .0n×n denotes the . n×n

matrix, all whose coefficients are zero. 

Remark Expressed in words, Theorem 2.2.3(ii) says that for any .1 ≤ i ≤ n, . det(A)

is linear with respect to its ith column and Theorem 2.2.3(iii) says that for any 
.1 ≤ i ≤ n, .det(A) is linear with respect to its ith row (cf. Chap. 4 for the notion of 
linear maps). 

In view of the rules for computing .det(A), stated in Theorem 2.2.3, one can 
compute .det(A) with the help of the row operation .(R1)–.(R3). 

Example Let 

. A =
⎛
⎝
1 2 3
4 2 1
1 0 1

⎞
⎠ ∈ R

3×3.

Then .det(A) can be computed as follows. 

Step 1. Applying the row operations .R2 � R2 − 4R1, .R3 � R3 − R1 to A does 
not change its determinant (cf. Theorem 2.2.3(iii)), 

. det(A) = det

⎛
⎝
1 2 3
0 −6 −11
0 −2 −2

⎞
⎠ .

Step 2. Next apply the row operation .R3 � R3 − 1/3 R2 to get 

. det(A) = det

⎛
⎝
1 2 3
0 −6 −11
0 0 5/3

⎞
⎠ ,

and hence (cf. Theorem 2.2.3(iv)) 

. det(A) = det

⎛
⎝
1 2 3
0 −6 −11
0 0 5/3

⎞
⎠ = −10.
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We finish this section by stating the following important properties of determinants. 

Theorem 2.2.4 For any .A ∈ R
n×n, A is regular if and only if .det(A) �= 0. 

Theorem 2.2.5 For any .A,B ∈ R
n×n, the following holds: 

(i) .det(AB) = det(A) det(B). 
(ii) A is invertible if and only if .det(A) �= 0 and in case .det(A) �= 0, 

. det(A−1) = 1

det(A)
.

Theorem 2.2.5 implies the following 

Corollary 2.2.6 Assume that for a given .A ∈ R
n×n, there exists .B ∈ R

n×n so that 
.AB = Idn×n. Then A is invertible and .A−1 = B. 

Theorem 2.2.7 (Cramer’s Rule) Assume that .A ∈ R
n×n is regular. Then for any 

.b ∈ R
n×1, the unique solution of .Ax = b is given by .x = A−1b and for any 

.1 ≤ j ≤ n, the  j th component . xj of x by 

. xj = det(ACj (A)�b)

det(A)

where .ACj (A)�b is the .n × n matrix, obtained from A by replacing the j th column 
.Cj (A) of A by b. 

Problems 

1. Decide whether the following vectors in R3 form a basis of R3 and if so, 
represent b = (1, 0, 1) as a linear combination of the basis vectors. 

(i) a(1) = (1, 0, 0), a(2) = (0, 4,−1), a(3) = (2, 2,−3), 
(ii) a(1) = (2,−4, 5), a(2) = (1, 5, 6), a(3) = (1, 1, 1). 

2. Compute the determinants of the following 3 × 3 matrices 

(i) A = 

⎛ 

⎝ 
−1 2 3  
4 5 6  
7 8 9  

⎞ 

⎠, 

(ii) B = 

⎛ 

⎝ 
1 2 3  
4 5 6  
7 8 9  

⎞ 

⎠.
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3. (i) Compute the determinant of the 3 × 3 matrix  

. A =
⎛
⎝

1 0 1
−1 1 0
1 1 1

⎞
⎠
25

.

(ii) Determine all numbers a ∈ R for which the determinant of the 2×2 matrix  

. B =
(
4 3
1 0

)
+ a

(−2 1
−1 −1

)

vanishes. 
4. Verify that for any basis [a(1) , a(2) , a(3)] of R3, [−a(1) , 2a(2) , a(1)+a(3)] is also 

a basis. 
5. Decide whether the following assertions are true or false and justify your 

answers. 

(i) det(λA) = λ det(A) for any λ ∈ R, A ∈ R
n×n, n ≥ 1. 

(ii) Let A ∈ R
n×n, n ≥ 1, have the property that det(Ak ) = 0 for  some  k ∈ N. 

Then det(A) = 0.



Chapter 3 
Complex Numbers 

So far we have worked with real numbers and used that they are ordered and 
can be added and multiplied, tacitly assuming that addition and multiplication 
satisfy the classical computational rules, i.e., that these operations are commutative, 
associative, . . . .. It turns out that for many reasons, it is necessary to consider an 
extension of the set . R of real numbers. These more general numbers are referred to 
as complex numbers and the set of them is denoted by . C. They can be added and 
multiplied. One important feature of complex numbers is that for any equation of 
the form 

. xn + an−1x
n−1 + · · · + a1x + a0 = 0

with .n ≥ 1 and .an−1, . . . , a0 arbitrary real numbers, there exists at least one solution 
in . C. In particular, the equation 

. x2 + 1 = 0,

admits a solution in . C, denoted by . i. Additionally, .− i := (−1) i is a second solution. 
Before introducing the complex numbers in a formal way, let us give a brief 

overview on the steps of gradually extending the set of natural numbers to 
larger systems of numbers. The natural numbers .1, 2, 3, . . . appear in the process 
of counting and have been studied for thousands of years. The set of these 
numbers is denoted by . N. Natural numbers are ordered and can be added and 
multiplied. 

A first extension of . N is necessary to solve an equation of the form 

. x + a = b, a, b ∈ N, a ≥ b.

Note that such equations frequently come up in the business of accounting. Since 
.a ≥ b, this equation has no solution in . N and it is necessary to introduce negative 
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numbers and zero. The set 

. . . . ,−2,−1, 0, 1, 2, . . .

is denoted by . Z and its elements are referred to as integers. For each .a ∈ N, . x +a =
a has the unique solution .0 ∈ Z. More generally, for any .a, b ∈ Z, .x + a = b has 
the unique solution 

. x = b + (−a) ∈ Z.

Integers are ordered and can be added, subtracted, and multiplied. To solve 
equations of the form 

. ax = b, a, b ∈ Z, a �= 0,

one needs to extend . Z and introduce the set of rational numbers 

. Q := { p

q
| p ∈ Z, q ∈ N;p, q relatively prime

}
.

Rational numbers are ordered. They can be added, subtracted, multiplied, and be 
divided by nonzero rational numbers. 

Note that the equation 

. x2 = 2

has no solution in . Q. (To see this, argue by assuming that it does and show that 
this leads to a contradiction.) We remark that x can be interpreted as the length 
of the hypotenuse of a rectangular triangle whose smaller sides have both length 
1. Considerations of this type led to the extension of . Q to the set . R of real 
numbers. Elements in . R, which are not in . Q, are referred to as irrational numbers. 
Irrational numbers can be further distinguished. Irrational numbers, which are roots 
of polynomials with rational numbers as coefficients, are referred to as algebraic, 
whereas numbers, which do not have this property such as . π and e, are called 
transcendental numbers.) Real numbers are ordered. They can be added, subtracted, 
multiplied, and divided by nonzero real numbers. But as mentioned above, . R is not 
algebraically closed, i.e., there are polynomials with real coefficients which have no 
roots in . R. 

3.1 Complex Numbers: Definition and Operations 

A complex number is an element .(a, b) ∈ R
2 which we conveniently write as . z =

a + i b where the letter . i stands for imaginary. The real numbers a and b are referred
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Fig. 3.1 The complex plane 
with the real and the 
imaginary axis 

to as real and imaginary parts of z and denoted as follows 

. a = Re(z), b = Im(z).

The set of all the complex numbers is denoted by . C and sometimes referred to as the 
complex plane (Fig. 3.1). We write .z = 0 if .Re(z) = 0 and .Im(z) = 0. A complex 
number in .C \ {0} is referred to as a nonzero complex number. If  .z = i b, .b ∈ R, 
then z is called a purely imaginary number. 

It turns out that addition and multiplication of complex numbers can be defined 
in such a way that they satisfy the same computational rules as real numbers. 

Addition The addition of complex numbers is defined by the addition of vectors in 
. R2. Recall that vectors .(a, b), (a′, b′) ∈ R

2 are added componentwise, 

. (a, b) + (a′, b′) = (a + a′, b + b′).

Accordingly, the sum of two complex numbers .z = a + i b, .z′ = a′ + i b′ is defined 
as 

. z + z′ = (a + i b) + (a′ + i b′) := (a + a′) + i(b + b′).

Note that for .z′ = 0 one has 

. z + 0 = (a + 0) + i(b + 0) = z.

Example The sum of the complex numbers .z = 2 + 4 i, .z′ = 3 + i is computed as 

. z + z′ = (2 + 3) + i(4 + 1) = 5 + 5 i .

Multiplication The key idea to define a multiplication between complex numbers 
is to interpret . i as a solution of .x2 + 1 = 0, i.e., 

.i2 = −1.
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Assuming that the terms involved commute with each other, the multiplication of 
.z = a + i b and .z′ = a′ + i b′ can be computed formally as follows, 

. zz′ = (a + i b)(a′ + i b′) := aa′ + i ba′ + i ab′ + i2 bb′.

Using that .i2 = −1 and collecting terms containing . i and those which do not, one 
gets .zz′ = (aa′ − bb′)+ i(ab′ + ba′). Hence we define the multiplication . zz′ of two 
complex numbers, .z = a + i b, .z′ = a′ + i b′ as 

. zz′ := (aa′ − bb′) + i(ab′ + ba′).

For reasons of clarity we sometimes write .z · z′ instead of . zz′. 

Example For .z = 2 + 4 i, .z′ = 3 + i, one computes 

. zz′ = (2 · 3 − 4 · 1) + i(2 · 1 + 4 · 3) = 2 + i 14.

We have the following special cases: 

(i) If .z = a ∈ R, then 

. zz′ = az′ = (aa′) + i(ab′)

corresponds to the scalar multiplication of the vector .(a′, b′) ∈ R
2 by the real 

number .a ∈ R. In particular .1 · z′ = z′. 
(ii) If .z = i b, .b ∈ R, then 

. zz′ = i b(a′ + i b′) = b(−b′ + ia′) = −bb′ + i ba′.

Geometrically, multiplication by . i b can be viewed as the composition of 
a rotation in . R2 by .π/2 (in counterclockwise orientation) with the scalar 
multiplication by b. 

(iii) If .z = 0, then .0 · z′ = 0. 

One can verify that the standard computational rules are satisfied: the operations 
of addition and multiplication are associative and commutative and the distributive 
laws hold. 

Absolute Value, Polar Representation The absolute value of a complex number 
.z = a + i b is defined as the length of the vector .(a, b) ∈ R

2 and denoted by . |z|, 

. |z| =
√

a2 + b2 .

In particular .|z| = 0, if and only if .z = 0. It leads to the polar representation of a 
complex number .z �= 0. Indeed 

.(a, b) =
√

a2 + b2 (cosϕ, sinϕ) = (
√

a2 + b2 cosϕ,
√

a2 + b2 sinϕ) (3.1)
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where . ϕ is the oriented angle (determined modulo . 2π ) between the x-axis and the 
vector .(a, b). Hence, we have by the definition of multiplication that 

. z = |z| cosϕ + i |z| sinϕ = |z|( cosϕ + i sinϕ
)
.

To shorten our notation, we introduce 

. e(ϕ) := cosϕ + i sinϕ,

yielding the polar representation 

. z = |z|e(ϕ).

Note that .|e(ϕ)| = 1. For reasons of clarity, we can write .z = |z| · e(ϕ). Note that 
the angle . ϕ is only determined modulo . 2π , i.e., . ϕ might be replaced by .ϕ + 2πk for 
an arbitrary integer .k ∈ Z. 

Examples 

(i) Polar representation of .z = −2: 

. |z| = 2 � z = 2(cosπ + i sinπ) = 2 · e(π).

(ii) Polar representation of .z = 1 + i (Fig. 3.2): 

. |z| = √
1 + 1 = √

2 � z = √
2

(
cos(π/4)+ i sin(π/4)

) = √
2 · e(π/4).

(iii) Polar representation of .z = 1 − i (Fig. 3.3): 

. |z| = √
2 � z = √

2 · e(−π/4) = √
2 · e(7π/4).

Fig. 3.2 A graphical 
illustration of the polar 
representation of the number 
.z = 1 + i
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Fig. 3.3 A graphical 
illustration of the polar 
representation of the number 
. z = 1 − i

The polar representation is particularly useful for the multiplication and the division 
of non zero complex numbers: let z, . z′ be nonzero complex numbers with polar 
representation .z = |z|e(ϕ), .z′ = |z′|e(ϕ′). Then 

. zz′ = |z||z′|(cosϕ + i sinϕ)(cos ϕ′ + i sinϕ′)

= |z||z′|((cosϕ cosϕ′ − sinϕ sinϕ′) + i(cosϕ sinϕ′ + sinϕ cosϕ′)
)
.

Since by the trigonometric addition theorems 

. cosϕ cosϕ′−sinϕ sinϕ′ = cos(ϕ+ϕ′), cosϕ sinϕ′+sinϕ cosϕ′ = sin(ϕ+ϕ′),

one obtains 

. zz′ = |z||z′|e(ϕ + ϕ′).

In particular, one has .|zz′| = |z||z′|. 
Given .z �= 0, the formula above can be used to determine the inverse of z, denoted 

by . 1
z
. It is the complex number . z′ characterized by 

. 1 = zz′ = |z||z′|e(ϕ + ϕ′).

Hence 

. |z′| = 1

|z| , ϕ′ = −ϕ (mod 2π),

i.e., 

. 
1

z
= 1

|z| e(−ϕ).

More generally, the formula for the multiplication of two nonzero complex 
numbers in polar representation can be applied to compute their quotient. More 
precisely, let z, . z′ be nonzero complex numbers with polar representations
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.z = |z|e(ϕ) and .z′ = |z′|e(ϕ′), respectively. Then 

. 
z′

z
:= z′ · 1

z
= |z′|

|z| e(ϕ′ − ϕ).

Conjugation The complex conjugate of a complex number .z = a + i b is the 
complex number 

. z := a − i b.

Note that .0 = 0 and that for any .z �= 0 with polar representation .z = |z|e(ϕ), one 
has 

. z = |z|e(−ϕ).

For a geometrical interpretation of the effects of a complex conjugation of the 
complex number z, see Fig. 3.4. 

Note that for any .z ∈ C, 

. zz = (a + i b)(a − i b) = a2 + b2 = |z|2.

This can be used to compute the real and imaginary parts of the quotient .z′/z of the 
nonzero complex numbers . z′ and z. Indeed, let .z = a + i b and .z′ = a′ + i b′. Then 
we multiply nominator and denominator of .z′/z by . z to obtain 

. 
z′

z
= z′z

zz
= (a′ + i b′)(a − i b)

a2 + b2

= a′a + b′b
a2 + b2

+ i
b′a − a′b
a2 + b2

.

Example Compute real and imaginary part of the quotient .(2 + 3 i)/(1 − i). Since 
.1 − i = 1 + i, one has 

. 
2 + 3 i

1 − i
· 1 + i

1 + i
= (2 + 3 i)(1 + i)

1 + 1
= 2 − 3 + i(3 + 2)

2
= − 1

2
+ i

5

2
.

Fig. 3.4 Geometrically, the 
map .z �→ z corresponds to 
the reflection in . R2 at the 
x-axis, .(a, b) �→ (a,−b)
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Note that in this example, the computations in polar coordinates would be more 
complicated as the angle in the polar representation of .2 + 3 i is not integer valued. 

The following identities can be easily verified, 

. z + z′ = z + z′, zz′ = z · z′.

Furthermore, .z = z if and only if z is real, i.e., .Im(z) = 0. 

Powers and Roots The powers . zn, .n = 1, 2 . . . of a complex number .z �= 0 can 
easily be computed by using the polar representation of z, .z = |z|e(ϕ). For  . n = 2
one gets 

. z2 = |z|e(ϕ)|z|e(ϕ) = |z|2e(2ϕ).

Arguing by induction, one obtains for any .n ≥ 2, 

. zn = (|z|e(ϕ)
)n = |z|n( cos(nϕ) + i sin(nϕ)

) = |z|ne(nϕ).

Example Compute real and imaginary parts of .(1 + i)12. Note that . |1 + i | = √
2

and thus .1 + i = √
2 e(π/4). Hence 

. (1 + i)12 = 2
12
2 e(12π/4) = 64e(3π) = −64.

Hence .Re((1 + i)12) = −64 and .Im((1 + i)12) = 0. 

The same method works to compute for any nonzero complex number z and any 
natural number .n ≥ 1, 

. z−n := ( 1
z

)n = 1

|z|n e(−nϕ).

Example Compute real and imaginary part of .(1 + i)−8. 
Since .1 + i = √

2 e(π/4), one has .
1

1+i = 1√
2

e(−π/4) and therefore 

. (1 + i)−8 = 1

2
8
2

e(−8π/4) = 1

16
,

yielding .Re((1 + i)−8) = 1
16 and .Im((1 + i)−8) = 0. 

Next we want to find all complex numbers w, satisfying the equation 

.wn = z
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where z is a given complex number and .n ≥ 2 a natural number. A solution of the 
equation .wn = z is called a nth root of z. In the case .n = 2, w is referred as a square 
root of z, rather than as the second root of z. 

If .z = 0, then the only solution is .w = 0. If  .z �= 0, consider its polar 
representation, .z = |z|e(ϕ). A solution w of .wn = z then satisfies .w �= 0 and 
hence has also a polar representation .w = ρe(ψ). Hence we want to solve 

. ρne(nψ) = |z|e(ϕ).

Clearly one has 

. ρ = |z| 1n , nψ = ϕ (mod 2π).

There are n solutions of the latter equation, given by 

. ψk = ϕ

n
+ k

2π

n
(mod 2π), 0 ≤ k ≤ n − 1.

Hence if .z �= 0, .wn = z has n solutions, given by 

. wk = |z| 1n e
( ϕ

n
+ k

2π

n

)
, 0 ≤ k ≤ n − 1.

In the case .z = 1, .w0, . . . , wn−1 are called the nth roots of unity. As polar 
representation of .z = 1, one can choose .z = e(0) and hence one has .w0 = 1. 

Examples 

(i) Compute the 6th roots of the unity, .w6 = 1. 
Note that .w0 = 1, .w1 = e

( 2π
6

) = e
(

π
3

)
and 

. 

w2 = e
(
2 · 2π

6

) = e
( 2π

3

)
, w3 = e

(
3 · 2π

6

) = e(π) = −1,

w4 = e
(
4 · 2π

6

) = e
( 4π

3

)
, w5 = e

(
5 · 2π

6

) = e
( 5π

3

)
.

(ii) Compute the solutions of .w3 = 2(
√
3 + i). 

Note that .2(
√
3 + i) = 4e(π/6). Thus .w0 = 41/3e(π/18) and 

.w1 = 4
1
3 e

( π

18
+ 2π

3

)
, w2 = 4

1
3 e

( π

18
+ 2 · 2π

3

)
.
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Remark The expression .e(ϕ) = cosϕ + i sinϕ can be computed via the complex 
exponential function, given by the series 

.ez =
∞∑

n=0

1

n! zn = 1 + z + 1

2! z2 + . . . , z ∈ C. (3.2) 

Euler showed that 

. ei x = cos x + i sin x (Euler’s formula).

The complex exponential function has similar properties as the real exponential 
function . ex . In particular, the law of the exponents holds, 

. ez+z′ = ezez′
,

implying that for any . z = a + i b

. ez = ea+i b = eaei b = ea(cos b + i sin b).

It means that 

. |ez| = ea,

and that .b (mod 2π) is the argument of . ez. By Euler’s formula, one has 

. cos x = ei x + e− i x

2
, sin x = ei x − e− i x

2 i
.

We remark that the trigonometric addition theorems are a straightforward conse-
quence of the law of exponents. Indeed, by Euler’s formula, 

. ei(ϕ+ψ) = cos(ϕ + ψ) + i sin(ϕ + ψ),

and by the law of the exponents, 

. ei(ϕ+ψ) = eiϕeiψ = (cosϕ + i sinϕ)(cosψ + i sinψ)

= cosϕ cosψ − sinϕ sinψ + i(sinϕ cosψ + cosϕ sinψ).

Comparing the two expressions leads to 

. cos(ϕ+ψ) = cosϕ cosψ−sinϕ sinψ, sin(ϕ+ψ) = sinϕ cosψ+sinψ cosϕ.
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Problems 

1. Compute the real and the imaginary part of the following complex numbers. 

(i) 
1 + i 
2 + 3 i  

(ii) (2 + 3 i)2 (iii) 
1 

(1 − i)3
(iv) 

1 + 1−i 
1+i 

1 + 1 
1+2 i  

2. (i) Compute the polar coordinates r , ϕ of the complex number z = √
3 + i and 

find all possible values of z1/3. 
(ii) Compute the polar coordinates r , ϕ of the complex number z = 1 + i and 

find all possible values of z1/5. 
(iii) Find all solutions of z4 = 16. 

3. (i) Compute

∣∣∣∣
2 − 3 i  

3 + 4 i

∣∣∣∣. 

(ii) Compute real and imaginary part of the complex number
∑16 

n=1 i
n. 

(iii) Express sin3 ϕ in terms of sin and cos of multiples of the angle ϕ. 
4. Sketch the following subsets of the complex plane C. 

(i) M1 =
{
z ∈ C | |z − 1 + 2 i | ≥ |z + 1|}

(ii) M2 =
{
z ∈ C | |z + i | ≥  2; |z − 2| ≤ 1

}

5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) There are complex numbers z1 �= 0 and z2 �= 0 so that  z1z2 = 0. 
(ii) The identity i0 = i holds. 
(iii) The identity i = e− i π/2 holds. 

3.2 The Fundamental Theorem of Algebra 

The goal of this section is to discuss complex valued functions, .p : C → C, given  
by polynomials. In Chap. 5, such polynomials come into play when computing the 
eigenvalues of a matrix. 

By definition, a function .p : C → C is said to be a polynomial in the complex 
variable z, if it can be written in the form 

. p(z) = anz
n + an−1z

n−1 + · · · + a1z + a0

where n is a nonnegative integer and .a0, a1, . . . , an are complex numbers. Written 
in compact form using the symbol . 

∑
, p reads 

.p(z) =
n∑

j=0

aj z
j .
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The complex numbers .a0, a1, . . . , an are referred to as the coefficients of p. If . an �=
0, p is said to be a polynomial of degree n. Note that a polynomial p of degree 0 
is the constant function .p = a0 �= 0. In case .n = 0 and .a0 = 0, p is said to be 
the zero polynomial. It is customary to define the degree of the zero polynomial to 
be .−∞. In case all the coefficients are real, p is said to be a polynomial with real 
coefficients. 

Of special interest are the roots of a polynomial p, also referred to as the  zeroes 
of p. By definition, a (complex) root of a polynomial p of degree .n ≥ 1 is a complex 
number w so that .p(w) = 0. 

Lemma 3.2.1 Assume that .p(z) = ∑n
j=0 aj z

j and .q(z) = ∑m
�=0 b�z

� are 
polynomials with complex coefficients of degree n and m, respectively. Then: 

(i) The sum .p(z)+q(z) is a polynomial. In case .n > m, it is polynomial of degree 
n, 

. p(z) + q(z) =
n∑

j=m+1

aj z
j +

m∑

j=0

(aj + bj )z
j .

In case .n = m, .p(z) + q(z) = ∑n
j=0(aj + bj )z

j is a polynomial of degree 
. ≤ n. 

(ii) The product .p(z) · q(z) of p and q is a polynomial of degree .m + n, 

. p(z) · q(z) =
n+m∑

k=0

ckz
k, ck =

∑

j+�=k

aj b�.

One says that p and q are factors of .p(z) · q(z). 
(iii) A complex number .w ∈ C is a root of .p(z) · q(z) if and only if .p(w) = 0 or 

.q(w) = 0. (Note that it is possible that .p(w) = 0 and .q(w) = 0.) 

Lemma 3.2.1 has the following 

Corollary 3.2.2 Let .n ≥ 1 and .an �= 0, . zk , .1 ≤ k ≤ n, be arbitrary complex 
numbers. Then the product .an

∏n
k=1(z − zk) is a polynomial of degree n. It has  

precisely n roots, when counted with multiplicities. They are given by . zk , .1 ≤ k ≤ n. 
For any .1 ≤ k ≤ n, .z − zk is a polynomial of degree one and is referred to as a 
linear factor of .an

∏n
k=1(z − zk). 

Examples 

(i) The function .p : C → C, given by .p(z) = (z − 1)(z + i) is a polynomial of 
degree two. Indeed, when multiplied out, one gets 

.p(z) = z2 − z + i z + i = z2 + (−1 + i)z − i .
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The degree of p is two and the coefficients are given by .a2 = 1, .a1 = −1 + i, 
and .a0 = − i. Note .(z− 1) and .(z+ i) are polynomials of degree one and hence 
linear factors of p. The roots of p are 1 and . −i. 

(ii) Let .p(z) = (z − 1)(z + i) and .q(z) = −(z − 1)(z − i). Then .p(z) + q(z) is a 
polynomial of degree one. Indeed 

. p(z) + q(z) = z2 + (−1 + i)z − i−(
z2 + (−1 − i)z + i

) = 2 i z − 2 i,

or .p(z) + q(z) = 2 i(z − 1). Hence .p(z) + q(z) is a polynomial of degree one 
and its only root is 1. 

A version of the fundamental theorem of algebra says that any polynomial with 
complex coefficients of degree .n ≥ 1 of the form .zn + · · · is a product of n 
polynomials of degree 1. More precisely one has 

Theorem 3.2.3 Any polynomial .p(z) = ∑n
k=0 akz

k of degree .n ≥ 1 with complex 
coefficients .a0, a1, . . . , an can be uniquely written as a product of the constant . an

and of n polynomials of degree one, 

.p(z) = an(z − z1) · · · (z − zn) = an

n∏

k=1

(z − zk). (3.3) 

Remark 

(i) The complex numbers .z1, . . . , zn in (3.3) do not need to be different from each 
other. Alternatively we can write 

. p(z) = an(z − ζ1)
m1 · · · (z − ζ�)

m�

where .ζ1, . . . , ζ� are the distinct complex numbers among .z1, . . . , zn and for 
any .1 ≤ j ≤ �, .mj ∈ N is referred to as the multiplicity of the root . ζj . One has 
.
∑�

j=1 mj = n. 
(ii) The result, corresponding to the one of Theorem 3.2.3, does not hold for 

polynomials p with real coefficients. More precisely, a polynomial p of degree 
.n ≥ 2 with real coefficients might not have n real zeroes. As an example we 
mention the polynomial .p(x) = x2 + 1 of degree two, with real coefficients 
.a2 = 1, .a1 = 0 and .a0 = 1. Its graph does not intersect the x-axis and hence p 
has no real zeroes (Fig. 3.5). 
However, as it should be, p has two complex roots, .z1 = i, z2 = − i and p 
factors over the complex numbers, 

. p(z) = (z − i)(z + i).

Note that the two complex roots are complex conjugates of each other (see 
Lemma 3.2.4 below for a general result about roots of polynomials with real 
coefficients). The fact that the version of Theorem 3.2.3 for polynomials p with
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Fig. 3.5 No intersection with 
the x-axis implies that there 
are no real zeroes for 
. p(x) = x2 + 1

real coefficients does not hold, is one of the main reasons why we need to work 
with complex numbers in the sequel: the eigenvalues of a real .n × n matrix 
(.n ≥ 2), might be complex numbers. 

The next result concerns polynomials with real coefficients. Assume that . p(z) =∑n
k=0 akz

k is a polynomial of degree .n ≥ 1 with real coefficients . ak , .0 ≤ k ≤ n. 
Assume that .w ∈ C is a root of p, .0 = p(w) = ∑n

k=0 akw
k . Taking the complex 

conjugate of the left and right hand sides of the latter identity yields 

. 0 =
n∑

k=0

akwk =
n∑

k=0

akwk =
n∑

k=0

ak(w)k.

Since by assumption .ak = ak , it then follows 

. 0 =
n∑

k=0

ak(w)k = p(w),

i.e., . w is also a root of p. We record our findings as follows. 

Lemma 3.2.4 Let p be a polynomial of degree .n ≥ 1 with real coefficients. Then 
the complex conjugate . w of any root .w ∈ C of p, is also a root of p. Furthermore, 
w and . w have the same multiplicity. 

Example (Polynomials of Degree Two with Complex Coefficients) Consider . p(z) =
az2 + bz + c with .a, b, c ∈ C, .a �= 0. To find the roots of p, we proceed by 
completing the square. One obtains 

. p(z) = a
(
z2 + b

a
z + b2

4a2
) + c − b2

4a
= a

(
z + b

2a

)2 + c − b2

4a
.

To find .z1, z2 with .p(zi) = 0, one needs to solve 

.a
(
z + b

2a

)2 = b2

4a
− c
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or 

. 
(
z + b

2a

)2 = b2

4a2
− c

a
.

We need to distinguish two cases: 

Case 1. . b
2

4a2
− c

a
= 0. Then 

. 
(
z + b

2a

)2 = 0,

implying that 

. z1 = z2 = − b

2a

and 

. p(z) = a
(
z + b

2a

)2
.

Case 2. . b
2

4a2
− c

a
�= 0. In this case, the equation 

. w2 = b2

4a2
− c

a
= 1

4a2
(b2 − 4ac)

has two distinct complex solutions . w1 and . w2 where .w2 = −w1 and .w1 �= 0 is 
given by 

. w1 = 1

2a

√
b2 − 4ac

with a specific choice of the sign of the square root (cf. Sect. 3.1). Hence the 
two roots of p are 

. z1 = − b

2a
+ w1, z2 = − b

2a
− w1,

and we have 

. p(z) = a
(
z − ( − b

2a
+ w1

))(
z − ( − b

2a
− w1

))
.

Example (Polynomials of Degree Two with Real Coefficients) Consider the polyno-
mial .p(z) = az2 + bz + c with real coefficients .a, b, c ∈ R and .a �= 0. We argue in



82 3 Complex Numbers

a similar way as in previous example and write by completing the square 

. p(z) = a
(
z + b

2a

)2 + c − b2

4a
.

Case 1. . b
2

4a2
− c

a
= 0. Then 

. 
(
z + b

2a

)2 = 0

and we conclude that 

. z1 = z2 = − b

2a
∈ R.

The polynomial .p(z) = az2 + bz + c can be written as a product of real linear 
factors, 

. p(z) = a
(
z + b

2a

)2
.

Case 2. . b
2

4a2
− c

a
> 0. Then 

. w1 =
√

b2 − 4ac

2a
, w2 = −

√
b2 − 4ac

2a
< 0,

are real numbers and so are the roots 

. z1 = − b

2a
+ 1

2a

√
b2 − 4ac , z2 = − b

2a
− 1

2a

√
b2 − 4ac .

Here and in the future, .
√

b2 − 4ac > 0 denotes the positive square root of 
.b2 − 4ac. In this case, .p(x) can again be written as the product of two real 
linear factors, 

. p(z) = a
(
z − ( − b

2a
+ 1

2a

√
b2 − 4ac

))(
z − ( − b

2a
− 1

2a

√
b2 − 4ac

))
.

Case 3. .b2 − 4ac < 0. Then 

.w1 = i

√
4ac − b2

2a
, w2 = − i

√
4ac − b2

2a
,
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are purely imaginary numbers and the roots .z1, z2 are now the complex numbers 

. z1 = − b

2a
+ i

1

2a

√
4ac − b2 , z2 = − b

2a
− i

1

2a

√
4ac − b2 .

Note that . z2 is the complex conjugate of . z1, .z2 = z1. As a consequence 

. p(z) = a
(
z − ( − b

2a
+ i

2a

√
4ac − b2

))(
z − ( − b

2a
− i

2a

√
4ac − b2

))
.

Remark For polynomials of degree three, there are formulas for the three roots, due 
to Cardano, but they are rather complicated. For polynomials of degree .n ≥ 5, it  
can be proved that the roots can no longer be written as an expression of roots of 
complex numbers. 

Examples 

(i) Represent .p(z) = z4 + z3 − z − 1 as a product of linear factors. 
By inspection, one sees that .z1 = 1, .z2 = −1 are roots of p. We get the 
representation 

. p(z) = (z − 1)(z + 1)(z2 + z + 1).

The polynomial .q(z) = z2 + z + 1 has the roots 

. z3 = − 1

2
+ i

√
3

2
, z4 = z3 = − 1

2
− i

√
3

2
.

(ii) Represent .p(z) = z6 − 1 as a product of linear factors. By inspection, one sees 
that 

. z6 − 1 = (z3 − 1)(z3 + 1)

and 

. z3 − 1 = (z − 1)(z2 + z + 1), z3 + 1 = (z + 1)(z2 − z + 1).

Hence .z1 = 1, .z2 = −1 are two real roots. As in Item (i), the roots of . z2 + z+1
are 

. z3 = − 1

2
+ i

√
3

2
, z4 = z3 = − 1

2
− i

√
3

2
,

whereas the roots of .z2 − z + 1 are 

.z5 = 1

2
+ i

√
3

2
, z6 = 1

2
− i

√
3

2
.
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Problems 

1. Find the roots of the following polynomials and write the latter as a product of 
linear factors. 

(i) p(z) = 2z2 − 4z − 5 
(ii) p(z) = z2 + 2z + 3 

2. Let p(z) = z3 − 5z2 + z − 5. 

(i) Verify that i is a root of p(z). 
(ii) Write p(z) as a product of linear factors. 

3. (i) Find all roots of p(z) = z4 + 2z2 − 5 and write p(z) as a product of linear 
factors. 

(ii) Find all roots of p(z) = z5 + 3z3 + z and write p(z) as a product of linear 
factors. 

4. Consider the function 

. f : R → R, x �→ x3 + 5x2 + x − 1.

(i) Compute the values of f at x = −1, x = 0 and x = 1. 
(ii) Conclude that f has three real roots. 

5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) Any polynomial of degree 5 with real coefficients has at least three real 
roots. 

(ii) Any polynomial p(z) of degree n ≥ 1 with real coefficients can be written 
as a product of polynomials with real coefficients, each of which has degree 
one or two. 

3.3 Linear Systems with Complex Coefficients 

The results about systems of linear equations with real coefficients of Chap. 1 and 
the ones about matrices and related topics of Chap. 2 extend in a straightforward 
way to a setup where the real numbers are replaced by the complex numbers. The 
goal of this section is to introduce the main definitions and results. 

Given any .n ∈ N, we denote by . Cn the Cartesian product of n copies of . C, i.e., 
.C

n = C×C×· · ·×C (n copies of . C). Elements in . Cn are denoted by .(z1, . . . , zn), 
.zj ∈ C. They are often referred to as (complex) vectors. Complex vectors can be 
added and one can define a (complex) scalar multiple of a complex vector similarly
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as in the case of real vectors, 

. (z1, . . . , zn) + (z′
1, . . . , z

′
n) = (z1 + z′

1, . . . , zn + z′
n),

. λ(z1, . . . , zn) = (λz1, . . . , λzn), λ ∈ C.

For notational convenience, the zero vector .(0, . . . , 0) is often denoted by 0. 

Definition 3.3.1 An .m × n matrix A with complex coefficients is an array of 
complex numbers of the form 

. A = (aij )1≤i≤m
1≤j≤n

, aij ∈ C.

The set of all .m × n matrices is denoted by .C
m×n or .Matm×n(C). 

A system of  m linear equations with complex coefficients and n unknowns 
.z1, . . . , zn is a system of equations of the form 

. 

n∑

j=1

aij zj = bi, 1 ≤ i ≤ m

where .aij ∈ C .(1 ≤ i ≤ m, 1 ≤ j ≤ n) and .bi ∈ C .(1 ≤ i ≤ m). It is referred to as  
a complex linear system. In matrix notation, it is given by .Az = b where 

. z =
⎛

⎜
⎝

z1
...

zn

⎞

⎟
⎠ ∈ C

n×1, b =
⎛

⎜
⎝

b1
...

bm

⎞

⎟
⎠ ∈ C

m×1, A = (aij )1≤i≤m
1≤j≤n

∈ C
m×n,

and . Az denotes matrix multiplication of the .m × n matrix A with the .n × 1 matrix 
z, resulting in the .m × 1 matrix . Az with coefficients 

. 

n∑

j=1

aij zj , 1 ≤ i ≤ m.

As in the case of real linear systems, complex linear systems can be solved by 
Gaussian elimination, using the row operations .(R1), .(R2), and .(R3), now involving 
complex numbers instead of real ones. We say that a .n × n matrix .A ∈ Cn×n is 
regular if A can be transformed into the .n × n identity matrix .Idn×n by the row 
operations .(R1), .(R2), and .(R3). 

Definition 3.3.2 The general linear group over . C is defined as 

.GLC(n) := {
A ∈ C

n×n | A is regular
}
.
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The determinant of a complex .n×n matrix is defined in the same way as the one 
of a real .n × n matrix and it can be shown that for any .A ∈ C

n×n, A is regular if 
and only if .det(A) �= 0. 

Definition 3.3.3 We say that .b ∈ C
k is a .C-linear combination (or linear combina-

tion for short) of complex vectors .a(1), . . . , a(n) ∈ C
k if there exist . λ1, . . . , λn ∈ C

such that 

. b =
n∑

j=1

λja
(j).

Definition 3.3.4 The vectors .a(1), . . . , a(n) ∈ C
k are said to be .C-linearly indepen-

dent (or linearly independent for short) if for any .λ1, . . . , λn ∈ C with 

. 

n∑

j=1

λja
(j) = 0,

it follows that .λ1 = 0, . . . , λn = 0. Otherwise .a(1), . . . , a(n) are said to be  .C-
linearly dependent (or linearly dependent for short). 

Definition 3.3.5 The vectors .a(1), . . . , a(n) ∈ C
k form a basis of .Ck if the 

following holds: 

(i) .a(1), . . . , a(n) are .C-linearly independent; 
(ii) every vector .b ∈ C

k can be represented as a .C-linear combination of 
.a(1), . . . , a(n). 

If .a(1), . . . , a(n) ∈ C
k form a basis of . Ck , one has .n = k and every element in . Ck

can be written in a unique way as a .C-linear combination of .a(1), . . . , a(k). A basis 
.a(1), . . . , a(k) of . Ck is denoted by .[a] = [a(1), . . . , a(k)]. 
Example The vectors .e(1) = (1, 0), .e(2) = (0, 1) in . R2 are .R-linearly independent 
in . R2. Viewed as complex vectors in . C2, . e(1), . e(2), are  .C-linearly independent and 
hence form basis of . C2. It is referred as the standard basis of . C2. Any vector . b =
(b1, b2) ∈ C

2 can be written as a .C-linear combination of .e(1) and .e(2) as follows, 

. b = b1e
(1) + b2e

(2).

Problems 

1. Find the set of solutions of the following complex linear systems. 

(i)

{
z1 − i z2 = 2 

(−1 + i)z1 + (2 + i)z2 = 0
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(ii) 

⎧ 
⎨ 

⎩ 

z1 + i z2 − (1 + i)z3 = 0 
i z1 + z2 + (1 + i)z3 = 0 

(1 + 2 i)z1 + (1 + i)z2 + 2z3 = 0 

2. (i) Compute the determinant of the following complex 3 × 3 matrix. 

. A =
⎛

⎝
1 i 1 + i
0 −1 + i 2
i 2 1 + 2 i

⎞

⎠

(ii) Find all complex numbers z ∈ C with the property that det(B) = 0 where 

. B =
(
1 + 2 i 3 + 4 i

z 1 − 2 i

)25
.

3. (i) Compute AAT and ATA where AT is the transpose of A and A ∈ C2×3 is 
given by 

. A =
(
1 i 2
i −2 i

)
.

(ii) Compute the inverse of the following complex 2 × 2 matrix  

. A =
(

2 i 1
1 + i 1 − i

)
.

4. Decide whether the following vectors in C3 are C-linearly independent or C-
linearly dependent. 

(i) a(1) = (1, 2 + i, i), a(2) = (−1 + 3 i, 1 + i, 3 + i) 
(ii) b(1) = (1+ i, 1− i,−1+ i), b(2) = (0, 4−2 i,−3+5 i), b(3) = (1+ i, 0, 3) 

5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) There exists vectors a(1), a(2) in C2 with the following two properties: 
(P1) For any α1, α2 ∈ R with α1a

(1) + α2a
(2) = 0, it follows that α1 = 0 

and α2 = 0 (i.e. a(1), a(2) are R-linearly independent). 
(P2) There exist β1, β2 ∈ C \ {0} so that β1a

(1) + β2a
(2) = 0 (i.e. a(1), a(2) 

are C-linearly dependent). 
(ii) Any basis [a] = [a(1) , . . . , a(n)] of Rn gives rise to a basis of Cn, when 

a(1) , . . . , a(n) are considered as vectors in Cn. 
(iii) The vectors a(1) = (i, 1, 0), a(2) = (i,−1, 0) are C-linearly independent 

in C3 and there exists a(3) ∈ C3 so that [a] = [a(1) , a(2) , a(3)] is a basis of 
C
3.



Chapter 4 
Vector Spaces and Linear Maps 

In this chapter we introduce the notion of a vector space over . R or . C and of maps 
between such spaces which respect to their structure. Maps of this type are referred 
to as linear maps. 

4.1 Vector Spaces 

Before we introduce the notion of a vector space in a formal way, let us review 
two prominent examples of such spaces which we have already considered in the 
previous chapters. 

Recall that we denoted by . Rn the Cartesian product of n copies of the set of 
real numbers . R. Elements of . Rn are denoted by .a = (a1, . . . , an) where .aj ∈ R, 
.1 ≤ j ≤ n, and referred to as vectors. Such vectors can be added and they can be 
multiplied by a real number componentwise: 

Vector addition. For .a = (a1, . . . , an) and .b = (b1, . . . , bn) in . Rn, 

. a + b := (a1 + b1, . . . , an + bn).

Multiplication by a scalar. For any .λ ∈ R and .a = (a1, . . . , an) ∈ R
n, 

. λa ≡ λ · a = (λa1, . . . , λan).

Similarly, we considered the Cartesian product . Cn of n copies of the set of 
complex numbers . C. Elements of . Cn are denoted by .a = (a1, . . . , an), .aj ∈ C, 
.1 ≤ j ≤ n, and are also referred to as vectors or complex vectors. Such vectors can 
be added, 

. a + b = (a1 + b1, . . . , an + bn),
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and they can be multiplied by a complex scalar .λ ∈ C, 

. λa = λ · a = (λa1, . . . , λan).

We now define the notion of a .K-vector space where . K denotes either . R or . C. 

Definition 4.1.1 A .K-vector space is a non empty set V , endowed with two 
operations . + (addition) and . · (multiplication with a scalar .λ ∈ K), 

. +: V × V → V, (a, b) �→ a + b, · : K × V → V, (λ, a) �→ λ · a,

with the following properties: 
.(V S1) .(V ,+) is an abelian group: 

(i) . + is associative: .(a + b) + c = a + (b + c) for any .a, b, c ∈ V . 
(ii) . + is commutative: .a + b = b + a for any .a, b ∈ V . 
(iii) There is an element .0 ∈ V so that .0 + a = a + 0 = a for any .a ∈ V . The  

element is uniquely determined and referred to as zero or zero element of V . 
(iv) For any element .a ∈ V , there exists a unique element .b ∈ V so that .a + b = 0. 

The element b is referred to as the inverse of a and denoted by . −a. 

.(V S2) The two distributive laws hold, i.e., for any .λ,μ ∈ K and .a, b ∈ V , 

(i) .(λ + μ) · a = λ · a + μ · a, 
(ii) .λ · (a + b) = λ · a + λ · b. 

.(V S3) The scalar multiplication satisfies the following properties: 

(i) It is associative, i.e., for any .λ,μ ∈ K and .a ∈ V , .λ · (μ · a) = (λμ) · a. 
(ii) For any .a ∈ V , .1 · a = a. 

Elements of a .K-vector space are often referred to as vectors. 

Remark Various useful identities can be derived from (V S1)–(V S3). Let us discuss 
the following two examples: 

(i) For any .a ∈ V , .0 · a = 0. 

To verify this identity, note that .0 · a = (0+ 0) · a (v)= 0 · a + 0 · a. Add on both  

sides of the latter equality .−(0 · a) to conclude that . 0
(iv)= 0 · a + ( − (0 · a)

) =
0 · a + 0 · a + ( − (0 · a)

) (i)= 0 · a. 
(ii) For any .a ∈ V , .(−1) · a = −a. 

To verify this identity, note that . a+(−1)·a (viii)= 1·a+(−1)·a (v)= (
1+(−1)

)·a =
0 · a

Remark (i)= 0.
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Examples 

(i) For any .n ∈ Z≥1, .(Rn,+, ·) with addition . + and scalar multiplication . ·
described as above is a .R-vector space. Similarly .(Cn,+, ·) is a .C-vector 
space. In summary, for any .n ∈ Z≥1, .(Kn,+, ·) is a .K-vector space. 

(ii) For any .m, n ∈ Z≥1, let  .V = K
m×n be the set of .m × n matrices A with 

coefficients in . K, 

. A = (aij )1≤i≤m
1≤j≤n

, aij ∈ K,

and define addition of matrices and multiplication of a matrix by a scalar . λ ∈ K

as in Sect. 2.1 in the case of .m × n matrices with real coefficients, 

. 

+: Km×n × K
m×n → K

m×n,
(
(aij )1≤i≤m

1≤j≤n

, (bij )1≤i≤m
1≤j≤n

) �→ (aij + bij )1≤i≤m
1≤j≤n

,

· : R × K
m×n → K

m×n,
(
λ, (aij )1≤i≤m

1≤j≤n

) �→ (λaij )1≤i≤m
1≤j≤n

.

Then .(Km×n,+, ·) is a .K-vector space. 
(iii) Let .M[0, 1] := {

f | [0, 1] → R
}
. Define addition on .M[0, 1] by 

. +: M[0, 1] × M[0, 1] → M[0, 1], (f, g) �→ f + g

where 

. f + g : [0, 1] → R, t �→ (f + g)(t) = f (t) + g(t),

and scalar multiplication 

. · : R × M[0, 1] → M[0, 1], (λ, f ) �→ λ · f

where 

. λ · f : [0, 1] → R, t �→ (λf )(t) := λ · f (t).

Then .
(
M[0, 1],+, ·) is a .R-vector space. In a similar way, one can define 

addition and multiplication by a scalar on .M(K) := {
f : K → K

}
so that 

.
(
M(K),+, ·) is a .K-vector space. 

(iv) For any integer .n ≥ 1, let  . Pn denote the set of all polynomials with real 
coefficients of degree at most n. An element .p ∈ Pn can be viewed as a 
function 

.p : R → R, t �→ ant
n + an−1t

n−1 + · · · + a1t + a0



92 4 Vector Spaces and Linear Maps

where .an, . . . , a0 are the coefficients of p and are assumed to be real numbers. 
Define addition and scalar multiplication as in . (3) above. Then .(Pn,+, ·) is a 
.R-vector space. 

Definition 4.1.2 If .V ≡ (V ,+, ·) is a .K-vector space and .W ⊆ V a nonempty 
subset of V , then W is said to be a .K-subspace (or subspace for short) of V if the 
following holds: 

.(SS1) W is closed with respect to addition: .a + b ∈ W, a, b ∈ W . 

.(SS2) W is closed with respect to scalar multiplication: .λa ∈ W, a ∈ W,λ ∈ K. 

A subset of V of the form .a + W where .a ∈ V and W a subspace of V , is referred 
as an affine subspace of V . 

Note that W with addition . + and scalar multiplication . · from V forms a .K-vector 
space. 

Examples 

(i) Assume that .A ∈ R
m×n and let .L := {

x ∈ R
n×1 | Ax = 0

}
. Then L is a 

subspace of .R
n×1. (Recall that .Rn×1 can be identified with . Rn). To verify this 

assertion we have to show that L is non empty and .(SS1), (SS2) hold. Indeed, 
.0 ∈ R

n×1 is an element of L since .A0 = 0. Furthermore, for any .x, y ∈ L, 
.λ ∈ R, one has 

. A(x + y) = Ax + Ay = 0 + 0 = 0, A(λx) = λAx = λ · 0 = 0.

(ii) Recall that .M(R) := {
f : R → R

}
and . Pn are .R-vector spaces. In fact, we 

verified in the previous example that . Pn is a subspace of .
(
M(R),+, ·). 

(iii) The set of all subspaces of . R2 can be described as follows: . {0} and . R2 are the 
trivial subspaces of . R2, whereas the nontrivial subspaces of . R2 are given by 
the one parameter family of straight lines, .Wθ := {

λ(cos θ, sin θ) | λ ∈ R, 
.0 ≤ θ < π

}
. 

The notions of linear combination of vectors in . Rn (Definition 2.2.1) and . Cn

(Definition 3.3.3) as well as the notion of linearly dependent/linearly independent 
vectors (cf. Definition 2.2.2, Definition 3.3.4) extends in a natural way to .K-vector 
spaces. 

Definition 4.1.3 We say that a vector b in a .K-vector space V is a .K-linear 
combination (or linear combination for short) of vectors .a(1), . . . , a(n) ∈ V if there 
exist .λ1, . . . , λn ∈ K so that 

.b =
n∑

j=1

λja
(j).
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Definition 4.1.4 The vectors .a(1), . . . , a(n) in a .K-vector space V are said to be .K-
linearly independent (or linearly independent for short) if for any . λ1, . . . , λn ∈ K

with 

. 

n∑

j=1

λja
(j) = 0,

it follows that .λ1 = 0, . . . , λn = 0. Otherwise .a(1), . . . , a(n) are said to be .K-
linearly dependent (or linearly dependent for short). 

Similarly, the notion of a basis of . Rn (Definition 2.2.4) and the one of . Cn

(Definition 3.3.5) extends in a natural way to .K-vector spaces. 

Definition 4.1.5 Assume that V is a .K-vector space and .v(1), . . . , v(n) are elements 
of V . Then .[v] = [v(1), . . . , v(n)] is a basis of V if the following holds: 

.(B1) Any vector .a ∈ V can be represented as a .K-linear combination of 
.v(1), . . . , v(n), i.e. there exist .λ1, . . . , λn ∈ K so that .a = ∑n

j=1 λjv
(j). 

.(B2) The vectors .v(1), . . . , v(n) are .K-linearly independent. 

Remark Equivalently, . [v] is a basis if the following holds: 
.(B) Any .a ∈ V can be written in a unique way as a .K-linear combination, . a =∑n

j=1 λjv
(j). 

The numbers .λ1, . . . , λn ∈ K are called the coordinates of a with respect to the 
basis . [v]. 

The properties of bases of . Rn and . Cn, discussed in Sect. 2.2 and respectively, 
Sect. 3.3, also hold for bases of .K-vector spaces. 

Theorem 4.1.6 Assume that V is a .K-vector space and .[v] = [v(1), . . . , v(n)] is a 
basis of V . Then every basis of V has precisely n elements. 

Definition 4.1.7 

(i) Assume that V is a .K-vector space and that . [v] is a basis of V with . n ≥ 1
elements, .[v] = [v(1), . . . , v(n)]. Then V is said to be a .K-vector space of 
dimension n. 

(ii) A .K-vector space is said to be finite dimensional if it admits a basis with finitely 
many elements. The dimension of a finite dimensional vector space is denoted 
by .dimK(V ) or .dim(V ) for short. 

(iii) If .V = {0}, then .dim(V ) = 0. 

Examples 

(i) For any .n ≥ 1, .V = R
n is a .R-vector basis of dimension n since the standard 

basis . [e] of . Rn has n elements, 

.e(1) = (1, 0, . . . , 0), e(2) = (0, 1, 0, . . . , 0), . . . , e(n) = (0, . . . , 0, 1).
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(ii) For any .n ≥ 1, the space . Pn ≡ Pn(C) = {
p(z) = ∑n

k=0 akz
k | a0, . . . ,

.an ∈ C
}
is a .C-vector space of dimension .n + 1, since the polynomials 

.p(0), . . . , p(n), given by 

. p(0)(z) := 1, p(1)(z) := z, . . . , p(n)(z) := zn.

form a basis of . Pn. 

Theorem 4.1.8 Assume that V is a .K-vector space of dimension .n ≥ 1. Then: 

(i) Every subspace W of V is a finite dimensional .K-vector space and . dim(W) ≤
dim(V ). 

(ii) If the vectors .v(1), . . . , v(m) span all of V , 

. V = { m∑

j=1

λjv
(j) | λ1, . . . , λm ∈ K

}
,

then the following holds: 

(ii1) .m ≥ n; 
(ii2) .v(1), . . . , v(m) is a basis of V if and only if .m = n; 
(ii3) if .m > n, then one can choose n elements among .v(1), . . . , v(m), which  

form a basis of V . 

(iii) If the vectors .v(1), . . . , v(m) in V are .K-linearly independent then one has: 

(iii1) .m ≤ n; 
(iii2) .v(1), . . . , v(m) is a basis of V if and only if .m = n; 
(iii3) if .m < n, then there exist elements .w(1), . . . , w(n−m) in V so that 

.v(1), . . . , vm,w(1), . . . , w(n−m) form a basis of V . 

Let us discuss an example. 

Example Consider the following vectors in .R
3×1, 

. v(1) =
⎛

⎝
1
1
1

⎞

⎠ , v(2) =
⎛

⎝
0
2
1

⎞

⎠ , v(3) =
⎛

⎝
1

−1
0

⎞

⎠ , v(4) =
⎛

⎝
1
2
3

⎞

⎠ .

(i) Verify that .v(1), . . . , v(4) span all of .R
3×1. 

It means that every element .b ∈ R
3×1 can be represented as a linear 

combination of .v(1), . . . , v(4), i.e., .b = ∑4
j=1 λjv

(j) where .λ1, . . . , λ4 ∈ R. 

Expressed in terms of linear systems, it is to show that for any .b ∈ R
3×1, 

the linear system .
∑4

j=1 xjv
(j) = b has at least one solution. We form the
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corresponding augmented coefficient matrix 

. 

⎡

⎣
1 0 1 1 b1

1 2 −1 2 b2

1 1 0 3 b3

⎤

⎦

and use Gaussian elimination to transform it in row echelon form. 

Step 1. .R2 � R2 − R1, .R3 � R3 − R1, 

. 

⎡

⎣
1 0 1 1 b1

0 2 −2 1 b2 − b1

0 1 −1 2 b3 − b1

⎤

⎦ .

Step 2. . R3 � R3 − 1/2 R2

. 

⎡

⎣
1 0 1 1 b1

0 2 −2 1 b2 − b1

0 0 0 3/2 b3 − 1/2 b1 − 1/2 b2

⎤

⎦ .

We conclude that .b = ∑4
j=1 λjv

(j) with . 32 λ4 = b3 − 1
2 b1 − 1

2 b2, .λ3 = 0, 
.2λ2 = −λ4 + b2 − b1, and .λ1 = −λ4 + b1. 

(ii) By Theorem 4.1.8(ii3) we can find a basis of .R3×1 by choosing three of the 
four vectors .v(1), . . . , v(4). How to proceed? Note that .dim(R3×1) = 3, and 
hence .v(1), . . . , v(4) are linearly dependent. We want to find a vector among 
.v(1), . . . , v(4) which can be expressed as a linear combination of the remaining 
three vectors. It means to find a non trivial solution of the homogeneous system 
.
∑4

j=1 xjv
(j) = 0. According to the above scheme with .b = 0 we get 

. 

⎡

⎣
1 0 1 1 0
0 2 −2 1 0
0 0 0 3/2 0

⎤

⎦ .

With the solution x, given by .x4 = 0, .x3 = 1, .x2 = 1, and .x1 = −x3 = −1, 
one obtains .−v(1) + v(2) + v(3) = 0 or 

. v(1) = v(2) + v(3).

Since .v(1), . . . , v(4) span .R3×1 and .dim(R3×1) = 3, the vectors . v(2), v(3), v(4)

form a basis of .R
3×1. 

As an illustration of the notion of a subspace of a vector space and the one of the 
dimension of a finite dimensional vector space, we introduce the notion of the rank 
of a matrix. For any .m×nmatrix .A ∈ K

m×n, denote by .C1(A), . . . , Cn(A) ∈ K
m×1
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its columns and define the set 

. CA := { n∑

j=1

λjCj (A) | λ1, . . . , λn ∈ K
}
.

Then . CA is a .K-subspace of .K
m×1 and hence a finite dimensional .K-vector space. 

Definition 4.1.9 The rank of A, denoted by .rank(A), is defined as 

. rank(A) := dim(CA).

Note that .rank(A) ≤ m since .CA ⊆ K
m×1 and .rank(A) ≤ n since A has n 

columns, implying that .rank(A) ≤ min
{
m, n

}
. 

Proposition 4.1.10 For any .A ∈ K
m×n, .rank(AT) = rank(A). 

Remark For any .A ∈ K
m×n, denote by .R1(A), . . . , Rm(A) ∈ K

1×n the rows of A 
and introduce 

. RA := { m∑

k=1

λkRk(A) | λ1, . . . , λm ∈ K
} ⊆ K

1×n.

Then one has .dim(RA) = rank(AT) and it follows from Proposition 4.1.10 that 

. dim(RA) = dim(CA).

Example Compute the rank of the matrix .A ∈ R
3×4, 

. A =
⎛

⎝
1 0 1 −1
1 1 0 1
1 1 1 2

⎞

⎠ .

The vector space generated by the columns of A is 

. CA := { 4∑

j=1

λjCj (A) | λ1, . . . , λ4 ∈ R
}

where the columns .Cj (A) ∈ R
3×1, .1 ≤ j ≤ 4, are  given by  

.C1(A) =
⎛

⎝
1
1
1

⎞

⎠ , C2(A) =
⎛

⎝
0
1
1

⎞

⎠ , C3(A) =
⎛

⎝
1
0
1

⎞

⎠ , C4(A) =
⎛

⎝
−1
1
2

⎞

⎠ .
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To compute .rank(A) one has to construct a basis of . CA. We want to use Theo-
rem 4.1.8(ii). Note that .CA is a subspace of .R3×1 and .dim(R3×1) = 3. Hence 
the columns .Cj (A), .1 ≤ j ≤ 4, cannot be linearly independent. To choose from 
.C1(A), . . . , C4(A) a maximal set of linearly independent ones, we need to study the 
homogeneous linear system 

. 

4∑

j=1

xjCj (A) = 0, x =

⎛

⎜⎜
⎝

x1

x2

x3

x4

⎞

⎟⎟
⎠ ∈ R

4×1.

In matrix notation the latter linear system reads .Ax = 0. We solve  for  x by Gaussian 
elimination. The augmented coefficient matrix is given by 

. 

⎡

⎣
1 0 1 −1 0
1 1 0 1 0
1 1 1 2 0

⎤

⎦ .

Step 1. .R2 � R2 − R1, . R3 � R3 − R1

. 

⎡

⎣
1 0 1 1 0
0 1 −1 2 0
0 1 0 3 0

⎤

⎦ .

Step 2. . R3 � R3 − R2

. 

⎡

⎣
1 0 1 1 0
0 1 −1 2 0
0 0 1 1 0

⎤

⎦ .

We then conclude that . x4 is a free variable and 

. x3 = −x4; x2 = x3 − 2x4 � x2 = −3x4; x1 = −x3 − x4 = 0.

Choosing .x4 = 1 we get .x3 = −1, .x2 = −3, .x1 = 0 and hence 

. C4(A) = 3C2(A) + C3(A).

We conclude that .[C1(A), C2(A), C3(A)] is a basis of . CA. Hence .dim(CA) = 3 and 
in turn .rank(A) = 3. Note that since .dim(R3×1) = 3 one has .CA = R

3×1.
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Finally we discuss the set L of solutions of a homogeneous linear system . Ax = 0
where A is a .m × n matrix in .K

m×n. Note that 

. L = {
x ∈ K

n×1 | Ax = 0
}

is a .K-subspace of .Kn×1. Let us compute its dimension. To this end we have to 
construct a basis of L. 

Recall that by using Gaussian elimination, L can be conveniently parametrized 
by transforming the augmented coefficient matrix .[A ‖ 0] into reduced echelon form 
(see (1.17) in Sect. 1.3). More precisely, by renumerating the variables .x1, . . . , xn, 
as .y1, . . . , yn, if needed, the augmented coefficient matrix .[A ‖ 0] of the system 
.Ax = 0 can be brought into the reduced echelon form .[Â ‖ 0] by the row operations 
(R1)–(R3), 

. 

⎡

⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

1 0 · · · 0 0 â1(k+1) · · · â1n 0
0 1 · · · 0 0 â2(k+1) · · · â2n 0
...

...
...

0 · · · 0 1 âk(k+1) · · · âkn 0
0 · · · 0 · · · 0 0
...

0 · · · 0 · · · 0 0

⎤

⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

.

The solutions of .Ây = 0 are given by (cf. (1.18) and (1.19)) 

. y1 = −
n∑

j=k+1

â1j tj , . . . , yk = −
n∑

j=k+1

âkj tj , yj := tj , k + 1 ≤ j ≤ n.

We summarize our findings as follows. 

Theorem 4.1.11 The space of solutions of .Ây = 0, 

. ̂L = {
y ∈ K

n×1 | Ây = 0
}
,

is a subspace of .Kn×1 with basis 

.̂v(1) =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

−â1(k+1)
...

−âk(k+1)

1
0
...

0

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

, . . . , v̂(n−k) =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

−â1n
...

−âkn

0
...

0
1

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.
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By renumerating the unknowns .y1, . . . , yn, one obtains a basis .v(1), . . . , v(n−k) of 
.L = {

x ∈ K
n×1 | Ax = 0

}
. As a consequence, .dim(L) = n − k. 

A corresponding result holds for an inhomogeneous system of linear equations: 

Theorem 4.1.12 Let .A ∈ K
m×n and .b ∈ K

m×1 and assume that .Ax = b has at 
least one solution, denoted by .xpart. Then the space of solutions 

. L = {
x ∈ K

n×1 | Ax = b
}

equals the affine subspace .xpart + Lhom of .Kn×1 (cf. Definition 4.1.2), 

. L = xpart + Lhom

where .Lhom is the subspace of .Kn×1, given by .Lhom = {
x ∈ K

n×1 | Ax = 0
}
. The 

solution .xpart of .Ax = b is customarily referred to as a particular solution. 

Remark Note that .xpart + Lhom ⊆ L, since for any .x ∈ Lhom, 

. A(xpart + x) = A(xpart) + Ax = b + 0 = b.

Similarly, for any solution .y ∈ L one has 

. A(y − xpart) = Ay − Axpart = b − b = 0

and hence .x := y − xpart ∈ Lhom or .y = xpart + x ∈ xpart + Lhom. 

Let us discuss an example. 

Example We would like to compute the dimension of the space of solutions of the 
homogeneous system .Ax = 0 where .A ∈ R

3×5 is given by 

. A =
⎛

⎝
1 1 1 1 1
2 1 −1 3 0
2 1 2 1 2

⎞

⎠ .

Recall that .Lhom = {
x ∈ R

5×1 | Ax = 0
}
is a subspace of .R5×1, since for any 

.x, x′ ∈ Lhom and any . λ ∈ R

. A(x + x′) = Ax + Ax′ = 0, A(λx) = λAx = 0.

To compute the dimension of .Lhom, we have to find a basis of .Lhom. The dimension 
of .Lhom is then given by the number of the vectors of this basis. Use Gaussian 
elimination to bring the extended coefficient matrix .[A ‖ 0] into reduced row 
echelon form.
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Step 1. .R2 � R2 − 2R1, .R3 � R3 − 2R1, 

. 

⎡

⎣
1 1 1 1 1 0
0 −1 −3 1 −2 0
0 −1 0 −1 0 0

⎤

⎦ .

Step 2. .R3 � R3 − R2, 

. 

⎡

⎣
1 1 1 1 1 0
0 −1 −3 1 −2 0
0 0 3 −2 2 0

⎤

⎦ .

Step 3. .R2 � R2 + R3, .R1 � R1 − 1
3 R3, 

. 

⎡

⎣
1 1 0 5/3

1/3 0
0 −1 0 −1 0 0
0 0 3 −2 2 0

⎤

⎦ .

Step 4. .R1 � R1 + R2, 

. 

⎡

⎣
1 0 0 2/3

1/3 0
0 −1 0 −1 0 0
0 0 3 −2 2 0

⎤

⎦ .

Step 5. .R2 � −R2, .R3 � 1
3 R3, 

. 

⎡

⎣
1 0 0 2/3

1/3 0
0 1 0 1 0 0
0 0 1 − 2/3

2/3 0

⎤

⎦ .

Hence .x4, x5 are free variables and any solution of the system .Ax = 0 has the form 

.x =

⎛

⎜⎜⎜
⎜⎜
⎝

x1

x2

x3

x4

x5

⎞

⎟⎟⎟
⎟⎟
⎠

=

⎛

⎜⎜⎜
⎜⎜
⎝

− 2/3 x4 − 1/3 x5

−x4
2/3 x4 − 2/3 x5

x4

x5

⎞

⎟⎟⎟
⎟⎟
⎠

= x4

⎛

⎜⎜⎜
⎜⎜
⎝

− 2/3

−1
2/3

1
0

⎞

⎟⎟⎟
⎟⎟
⎠

+ x5

⎛

⎜⎜⎜
⎜⎜
⎝

− 1/3

0
− 2/3

0
1

⎞

⎟⎟⎟
⎟⎟
⎠

.
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It means that x is a linear combination of 

. v(1) =

⎛

⎜⎜⎜⎜⎜
⎝

− 2/3

−1
2/3

1
0

⎞

⎟⎟⎟⎟⎟
⎠

, v(2) =

⎛

⎜⎜⎜⎜⎜
⎝

− 1/3

0
− 2/3

0
1

⎞

⎟⎟⎟⎟⎟
⎠

.

Since .x4, x5 are free variables, .v(1), v(2) are linearly independent and hence form a 
basis of .Lhom. One concludes that .dim(Lhom) = 2. 

Problems 

1. Decide which of the following subsets are linear subspaces of the corresponding 
R-vector spaces. 

(i) W = {
(x1, x2, x3) ∈ R3 | 2x1 + 3x2 + x3 = 0

}
. 

(ii) V = {
(x1, x2, x3, x4) ∈ R4 | 4x2 + 3x3 + 2x4 = 7

}
. 

(iii) GLR(3) = {
A ∈ R3×3 | A regular

}
. 

(iv) L = {
(x1, x2) ∈ R2 | x1x2 = 0

}
. 

2. Consider the following linear system (S), 

. 

{
3x1 + x2 − 3x3 = 4

x1 + 2x2 + 5x3 = −2
.

(i) Determine the vector space of solutions Lhom ⊆ R3 of the corresponding 
homogenous system 

. 

{
3x1 + x2 − 3x3 = 0

x1 + 2x2 + 5x3 = 0

and compute its dimension. 
(ii) Determine the affine space L of solutions of (S) by finding a particular 

solution of (S). 

3. Let P3(C) denote the C-vector space of polynomials of degree at most three in 
one complex variable, 

.P3(C) = {
p(z) = a3z

3 + a2z
2 + a1z + a0 | a0, a1, a2, a3 ∈ C

}
,
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and by E3(C) the subset 

. E3(C) = {
p ∈ P3(C) | p(−z) = p(z), z ∈ C

}
.

(i) Find a basis of P3(C) and compute dimP3(C). 
(ii) Verify that E3(C) is a C-subspace of P3(C) and compute its dimension. 

4. Consider the subset W of C3×3, 

. W = {
(aij )1≤i,j≤3 ∈ C

3×3 | aij = 0, 1 ≤ i < j ≤ 3
}
.

(i) Find a basis of C3×3 and compute its dimension. 
(ii) Verify that W is a linear subspace of C3×3 and compute its dimension. 

5. Let A =
(

a1 

a2

)
∈ R2×1. 

(i) Determine the rank of ATA ∈ R1×1 and of AAT ∈ R
2×2 in terms of A. 

(ii) Decide for which A the matrix ATA and for which A the matrix AAT is 
regular. 

4.2 Linear Maps 

In this section we introduce the notion of a linear map between vector spaces. If not 
stated otherwise V , W are .K-vector spaces where . K denotes either . R (field of real 
numbers) or . C (field of complex numbers). 

Definition 4.2.1 A map .f : V → W is said to be .K-linear (or linear for short) if it 
is compatible with the vector space structures of V and W . It means that 

.(L1) .f (u + v) = f (u) + f (v), .u, v ∈ V , 

.(L2) .f (λu) = λf (u), .λ ∈ K, u ∈ V . 

From .(L1) and .(L2) it follows that for any .v(1), . . . , v(n) ∈ V , .λ1, . . . , λn ∈ K, 

. f
( n∑

j=1

λjv
(j)

) =
n∑

j=1

λjf (v(j)).

Lemma 4.2.2 If .f : V → W is a linear map, then .f (0V ) = 0W where . 0V denotes 
the zero element of V and . 0W the one of W . 

Note that Lemma 4.2.2 can be verified in a straightforward way: using that . 0V =
0V + 0V , it follows that .f (0V ) = f (0V ) + f (0V ) = 2f (0V ) implying that 

.0W = f (0V ) − f (0V ) = 2f (0V ) − f (0V ) = f (0V ).
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Examples 

(i) Let .V = W = R and .a ∈ R. Then .f : R → R, x �→ ax is a linear map. 
Indeed, .(L1), (L2) are clearly satisfied. 

(ii) Let .V = R
n×1, .W = R

m×1. Then for any . A = (aij )1≤i≤m
1≤j≤n

∈ R
m×n

. fA : Rn×1 → R
m×1, x �→ Ax =

⎛

⎜
⎝

∑n
j=1 a1j xj

...∑n
j=1 amjxj

⎞

⎟
⎠

is linear since .(L1) and .(L2) are clearly satisfied. The map . fA is called the 
linear map associated to the matrix A. 

(iii) Let .f : R2 → R
2 be the map which maps an arbitrary point .x ∈ R

2 to the point 
obtained by reflecting it at the .x1-axis. The map f is given by . f : (x1, x2) →
(x1,−x2). Identifying . R2 and .R

2×1 one sees that f can be represented as 

. f (x1, x2) = A

(
x1

x2

)
, A =

(
1 0
0 −1

)
,

hence by Item 4.2, f is linear. 
(iv) Let .R(ϕ) denote the map .R

2 → R
2, defined by rotating a given vector . x ∈ R

2

counterclockwise by the angle . ϕ (modulo . 2π ). Note that 

. (1, 0) �→ (cosϕ, sinϕ), (0, 1) �→ (− sinϕ, cosϕ).

Identifying again . R2 and .R
2×1 one can verify in a straightforward way that 

. f (x1, x2) = A

(
x1

x2

)
, A :=

(
cosϕ − sinϕ

sinϕ cosϕ

)
,

hence by Item 4.2, f is linear. 
(v) Let .f : R → R, .x �→ x2. Then f is not linear since .f (2) = 22 = 4, but  

.f (1) + f (1) = 2, implying that .f (1 + 1) �= 2f (1), which violates .(L1). 
(vi) Let .f : R → R, .x �→ 1 + 2x. Then f is not linear since .f (0) = 1, .f (1) = 3, 

and hence .f (1 + 0) �= f (1) + f (0), violating .(L1). 

Definition 4.2.3 The nullspace .Null(f ) and the range .Range(f ) of a linear map 
.f : V → W are defined as 

. Null(f ) := {
x ∈ V | f (x) = 0

}
, Range(f ) := {

f (x) | x ∈ V
}
.

Alternatively, .Null(f ) is also referred as the kernel of f and denoted by .ker(f ). 
Note that .Null(f ) is a subspace of V and .Range(f ) one of W .



104 4 Vector Spaces and Linear Maps

Theorem 4.2.4 For any linear map .f : Kn → K
m, there exists a matrix . A ∈ K

m×n

so that .f (x) = Ax, for any .x ∈ K
n. (Here we identify .Kn×1 with . Kn.) The matrix 

A is referred to as the matrix representation of f with respect to the standard bases 
.[eKn ] = [e(1)

Kn , . . . , e
(n)
Kn ] of . Kn and .[eKm ] = [e(1)

Km, . . . , e
(m)
Km ] of . Km. 

The following notation for A turns out to be very convenient: 

. A = f[eKn ]→[eKm ].

Remark In the sequel, we will often drop the subscript . Kn in .e
(j)

Kn and simply write 
. e(j). 

To get more familiar with the notion of a linear map, let us determine the 
matrix .A ∈ K

m×n in Theorem 4.2.4. Given  .x = (x1, . . . , xn) ∈ K
n, we write 

.x = ∑n
j=1 xj e

(j)

Kn and get 

. f (x) = f
( n∑

j=1

xj e
(j)

Kn

) =
n∑

j=1

xjf (e
(j)

Kn ).

With .f (e
(j)

Kn ) = (a1j , . . . , amj ) ∈ K
m, one has 

. f (x) =
⎛

⎜
⎝

∑n
j=1 a1j xj

...∑n
j=1 amjxj

⎞

⎟
⎠ = Ax

where A is the .m × n matrix with columns given by 

. C1(A) :=
⎛

⎜
⎝

a11
...

am1

⎞

⎟
⎠ , . . . , Cn(A) :=

⎛

⎜
⎝

a1n
...

amn

⎞

⎟
⎠ .

More generally, assume that V is a .K-vector space of dimension n with basis 
.[v] = [v(1), . . . , v(n)], W a .K-vector space of dimension m with basis . [w] =
[w(1), . . . , w(m)], and .f : V → W a linear map. Then the image .f (v(j)) of the 
vector .v(j) can be written in a unique way as a linear combination of the vectors of 
the basis . [w], namely 

.f (v(j)) =
m∑

i=1

aijw
(i).
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Definition 4.2.5 The matrix 

. A = (aij )1≤i≤m
1≤j≤n

is called the matrix representation of f with respect to the basis . [v] of V and . [w]
of W and is denoted by .f[v]→[w]. The coefficients of the j th column . Cj (f[v]→[w])
of .f[v]→[w] are given by the coefficients of .f (v(j)) with respect to the basis . [w]. 
(The notation .f[v]→[w] coincides with the one introduced in (2.7) in Sect. 2.2 in the 
special case where .V = R

n, .W = V , and f is given by the identity map.) 

Theorem 4.2.6 Assume that .f : V → W is a linear map, .x = ∑n
j=1 xjv

(j), and 

.f (x) = ∑m
i=1 yiw

(i). Then .y = (y1, . . . , ym) is related to .x = (x1, . . . , xn) by 

. y = f[v]→[w]x.

In words: the coordinates of .f (x) with respect to the basis .[w] can be computed 
from the coordinates of x with respect to the basis . [v] with the help of the . m × n

matrix .f[v]→[w], i.e., .y = f[v]→[w]x. 

Let us verify the statement of Theorem 4.2.6: writing .f (v(j)) as a linear 
combination of the vectors in the basis . [w], .f (v(j)) = ∑m

i=1 aijw
(i), one has 

. f
( n∑

j=1

xjv
(j)

) =
n∑

j=1

xjf (v(j)) =
n∑

j=1

xj

m∑

i=1

aijw
(i) =

m∑

i=1

( n∑

j=1

aij xj

)
w(i).

So .
∑n

j=1 aij xj is the ith coordinate of the vector .f
( ∑n

j=1 xjv
(j)

)
with respect to 

the basis . [w]. 
Linear maps between two vector spaces can be added and multiplied by a scalar, 

resulting again in linear maps. 

Proposition 4.2.7 Let V and W be .K-vector spaces. Then the following holds: 

(i) If .f, g : V → W are linear maps and .λ ∈ K, then so are 

. f + g : V → W, x �→ f (x) + g(x), λf : V → W, x �→ λf (x).

(ii) If .f : V → W is a bijective linear map, then its inverse .f −1 : W → V is also 
linear. 

The matrix representation of the linear maps of Proposition 4.2.7 can be computed 
as follows.
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Theorem 4.2.8 Let V and W be .K-vector spaces and let .[v] = [v(1), . . . , v(n)] be 
a basis of V and .[w] = [w(1), . . . , w(m)] be one of W . Then the following holds: 

(i) If f , .g : V → W are linear maps and .λ ∈ K, then 

. (f + g)[v]→[w] = f[v]→[w] + g[v]→[w], (λf )[v]→[w] = λf[v]→[w].

(ii) If .f : V → W is a bijective linear map, then .dim(V ) = dim(W) and 
.f[v]→[w] ∈ K

n×n is a regular. The matrix representation of the inverse 
.f −1 : W → V of f satisfies 

.(f −1)[w]→[v] = (f[v]→[w])−1 (4.1) 

An important property of linear maps is that the composition of such maps is again 
linear, a fact which can be verified in a straightforward way. 

Proposition 4.2.9 Assume that V , W , U are .K-vector spaces and .f : V → W , 
.g : W → U are linear maps. Then the composition 

. g ◦ f : V → U, x �→ g(f (x)),

is a linear map. 

We now discuss the relation between the composition of linear maps and matrix 
multiplication, already mentioned in Sect. 2.1. Assume that V is a .K-vector space 
of dimension n with basis .[v] = [v(1), . . . , v(n)], W a .K-vector space of dimension 
m with basis .[w] = [w(1), . . . , w(m)] and U a .K-vector space of dimension k with 
basis .[u] = [u(1), . . . , u(k)]. Furthermore, assume that 

. f : V → W, g : W → U,

are linear maps with matrix representations .A = f[v]→[w] and .B = g[w]→[u]. The  
following theorem says how to compute the matrix representation .(g ◦ f )[v]→[u] of 
the linear map 

. g ◦ f : V
f→ W

g→ U.

Theorem 4.2.10 Under the above assumptions, 

. (g ◦ f )[v]→[u] = g[w]→[u] · f[v]→[w].

Remark The formula (4.1) for the matrix representation of the inverse . f −1 : W →
V follows from Theorem 4.2.10, 

. Idn×n = Id[v]→[v] = (f −1 ◦ f )[v]→[v] = (f −1)[w]→[v] · f[v]→[w].
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To get more familiar with the composition of linear maps, let us verify the 
statement of Theorem 4.2.10. With .x = ∑n

j=1 xjv
(j) and . f (v(j)) = ∑m

i=1 aijw
(i)

one gets 

. f (x) =
m∑

i=1

( n∑

j=1

aij xj

)
w(i).

Writing .g(w(i)) = ∑k
�=1 b�iu

(�), one then concludes that 

. g
(
f (x)

) =
m∑

i=1

( n∑

j=1

aij xj

)
g(w(i)) =

m∑

i=1

( n∑

j=1

aij xj

) k∑

�=1

b�iu
(�)

=
k∑

�=1

( n∑

j=1

( m∑

i=1

b�iaij

)
xj

)
u(�).

But 

. 

m∑

i=1

b�iaij = (BA)�j , A = f[v]→[w], B = g[w]→[u],

and hence 

. g
(
f (x)

) =
k∑

�=1

z�u
(�), z� =

n∑

j=1

(BA)�j xj = (BAx)�, 1 ≤ � ≤ k.

Let us now consider the special case where .V = W . Assume that V is a 
.K-vector space of dimension n. In this case one often chooses the same basis 
.[v] = [v(1), . . . , v(n)] in the domain and the target of a linear map . f : V → V

and .f[v]→[v] is said to be the matrix representation of f with respect to . [v]. The  
.n × n matrix .A := f[v]→[v] has columns .Cj (A), .1 ≤ j ≤ n, whose coefficients are 
the coordinates of .f (v(j)) with respect to the basis . [v], 

. f (v(j)) =
n∑

i=1

aij v
(i).

Examples 

(i) Let us consider the rotation .R(ϕ) : R2 → R
2 by the angle . ϕ in counterclock-

wise direction, introduced earlier, and denote by .[e] = [e(1), e(2)] the standard 
basis of . R2. The two columns .C1(A), .C2(A) of .A := R(ϕ)[e]→[e] are then
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computed as follows (we identify . R2 with .R2×1): 

. R(ϕ)e(1) =
(
cosϕ

sinϕ

)
= cosϕe(1) + sinϕe(2),

implying that .C1(A) =
(
cosϕ

sinϕ

)
. Similarly 

. R(ϕ)e(2) =
(− sinϕ

cosϕ

)
= − sinϕe(1) + cosϕe(2),

yielding .C2(A) =
(− sinϕ

cosϕ

)
. Altogether one obtains 

. R(ϕ)[e]→[e] =
(
cosϕ − sinϕ

sinϕ cosϕ

)
.

(ii) Let .w(1) = (1, 0), .w(2) = (1, 1). To compute .R(ϕ)[w]→[w] we proceed as 
follows: write 

. R(ϕ)w(1) =
(
cosϕ

sinϕ

)
= a11w

(1) + a21w
(2)

and determine .a11, a21 by solving the linear system 

. 

{
a11 + a21 = cosϕ

a21 = sinϕ
.

Hence .a21 = sinϕ and .a11 = cosϕ − sinϕ. Similarly, to find the coordinates 
.a21, a22 of 

. R(ϕ)w(2) =
(
cosϕ − sinϕ

sinϕ + cosϕ

)

with respect to the basis .[w] we need to solve the system 

.

{
a12 + a22 = cosϕ − sinϕ

a22 = sinϕ + cosϕ
,
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whose solution is .a22 = sinϕ + cosϕ and .a12 = −2 sinϕ. Altogether, one then 
obtains 

. R(ϕ)[w]→[w] =
(

a11 a12

a21 a22

)
=

(
cosϕ − sinϕ −2 sinϕ

sinϕ sinϕ + cosϕ

)
.

With the introduced notations we can also express the matrix representation of the 
identity map with respect to bases . [v] and .[w] of a given vector space. To be more 
precise, assume that V is a .K-vector space of dimension n and that 

. [v] = [v(1), . . . , v(n)], [w] = [w(1), . . . , w(n)],

are two bases of V . The matrix representation of the identity map .Id : V → V with 
respect to the bases . [v] and .[w] is then given by 

. Id[v]→[w] .

The meaning of this matrix is the following one: given any vector b in V , write b 
as a linear combination with respect to the two bases . [v] and . [w], . b = ∑n

j=1 xjv
(j)

and .b = ∑n
j=1 yjw

(j). The coordinate vectors .x = (xj )1≤j≤n and . y = (yj )1≤j≤n

are then related by the formula .y = Id[v]→[w] x and the matrix .Id[v]→[w] is referred 
to as the matrix of the change of the basis . [v] to the basis . [w]. We remark that the 
matrix .Id[v]→[w] was already introduced in (2.7) in Sect. 2.2. 

The j th column of .Id[v]→[w] is given by the coordinates of .v(j) with respect to 
the basis . [w], .v(j) = ∑n

i=1 sijw
(i). Note that .Id[v]→[v] = Idn×n where .Idn×n is the 

standard .n × n identity matrix in .Kn×n and .Id ◦ Id = Id. Hence by the previous 
remark, we get 

. Id[v]→[w] · Id[w]→[v] = Id[v]→[v] = Idn×n,

yielding .Id[w]→[v] = (Id[v]→[w])−1. 

Theorem 4.2.11 Assume that V is a .K-vector space of dimension n, .f : V → V is 
a linear map, and . [v], .[w] are bases of V . Then 

. f[w]→[w] = Id[v]→[w] ·f[v]→[v] · Id[w]→[v] = (Id[w]→[v])−1 · f[v]→[v] · Id[w]→[v] .

Example Assume that .V = W = R
2 and let .[v] = [v(1), v(2)] be the basis of . R2

with .v(1) = (1, 1), .v(2) = (1,−1). As usual, .[e] = [e(1), e(2)] denotes the standard 
basis of . R2.
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(i) Compute .Id[v]→[e]. 
Write .v(1) = 1 · e(1) + 1 · e(2) and .v(2) = 1 · e(1) + (−1) · e(2). Hence 

. Id[v]→[e] = (
v(1) v(2)

) =
(
1 1
1 −1

)
.

(ii) Compute .Id[e]→[v]. 

It is to compute .(Id[v]→[e])−1, which is given by .

(
1/2

1/2
1/2 − 1/2

)
. 

(iii) Consider the counterclockwise rotation .R(ϕ) in . R2 by the angle . ϕ. 

(iii1) Compute .R(ϕ)[e]→[e]. 
We have 

. R(ϕ)e(1) = cosϕ·e(1)+sinϕ·e(2), R(ϕ)e(2) = − sinϕ·e(1)+cosϕ·e(2),

yielding 

. R(ϕ)[e]→[e] =
(
cosϕ − sinϕ

sinϕ cosϕ

)
.

(iii2) Compute .R(ϕ)[v]→[e]. 
We have 

. R(ϕ)[v]→[e] = R(ϕ)[e]→[e] · Id[v]→[e] .

Combining 4.2 and (iii1) we get 

. 

R(ϕ)[v]→[e] =
(
cosϕ − sinϕ

sinϕ cosϕ

) (
1 1
1−1

)

=
(
cosϕ − sinϕ cosϕ + sinϕ

sinϕ + cosϕ sinϕ − cosϕ

)
.

(iii3) Compute .R(ϕ)[v]→[v]. 
We have 

.R(ϕ)[v]→[v] = Id[e]→[v] ·R(ϕ)[e]→[e] · Id[v]→[e]

=
(
1/2

1/2
1/2 − 1/2

)(
cosϕ − sinϕ cosϕ + sinϕ

sinϕ + cosϕ sinϕ − cosϕ

)

=
(

cosϕ sinϕ

− sinϕ cosϕ

)
.
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We point out that one has to distinguish between linear maps and their matrix 
representations. Linear maps are independent of a choice of bases and a matrix 
can be the representation of many different linear maps, depending on the choice 
of bases made. In the case where f is a linear map of a vector space V into itself, 
Theorem 4.2.11 says how the matrix representations with respect to different bases 
of V are related to each other, motivating the following 

Definition 4.2.12 Two matrices .A,B ∈ K
n×n are said to be  similar if there exists 

a matrix .S ∈ GLK(n) so that .B = S−1AS (and hence .A = SBS−1). 

Note that the matrix S can be interpreted as .Id[v]→[e], with . [v] = [v(1), . . . , v(n)]
given by the columns of S, implying that B is the matrix representation of the linear 
map .fA : Kn → K

n, .x �→ Ax with respect to the basis . [v]. 
Examples 

(i) For .A = λ Idn×n, .λ ∈ R, the set of all matrices similar to A is determined as 
follows: for any .S ∈ GLR(n), 

. S−1AS = S−1λ Idn×n S = λS−1S = λ Idn×n = A.

In words: the matrix representation of .fλ Idn×n : Rn → R
n, x �→ λx, with 

respect to any basis of . Rn is the matrix .λ Idn×n. 
(ii) Let A and B be the .2 × 2 matrices 

. A =
(
1 0
0 2

)
, B =

(
3 2

−1 0

)
.

It turns out that the regular matrix .S =
(

1 2
−1 −1

)
satisfies .B = S−1AS and 

.A = SBS−1, implying that A and B are similar. We will learn in Chap. 5 how 
to find out whether two given matrices of the same dimension are similar and if 
so how to obtain a matrix S with the above properties. 

Definition 4.2.13 Let V be a .K-vector space of dimension n and . f : V → V

a linear map. Then f is said to be diagonalizable if there exists a basis . [v] =
[v(1), . . . , v(n)] of V so that the matrix representation .f[v]→[v] of f with respect 
to the basis . [v] is diagonal. 

Note that in the Example 4.2 above, the linear map 

.fB : R2 → R
2, x �→ Bx,
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is diagonalizable. Indeed let .[v] = [v(1), v(2)] be the basis of . R2 with . v(1), .v(2) given 
by the columns of 

. S−1 =
(−1 −2

1 1

)
.

Then .S−1 = Id[v]→[e] and since .B = (fB)[e]→[e] it follows that 

. (fB)[v]→[v] = Id[e]→[v] B Id[v]→[e] = SBS−1 = A.

In Sect. 5.1, we will describe a whole class of linear maps .f : Cn → C
n which are 

diagonalizable and in Sect. 5.2 a corresponding class of linear maps from . Rn to . Rn. 

Problems 

1. Verify that the following maps f : Rn → Rm are linear and determine their 
matrix representations f[e]→[e] with respect to the standard bases. 

(i) f : R4 → R
2, (x1, x2, x3, x4) �→ (x1 + 3x2,−x1 + 4x2). 

(ii) Let f : R2 → R2 be the map acting on a vector x = (x1, x2) ∈ R2 as 
follows: first x is scaled by the factor 5 and then it is reflected at the x2-axis. 

2. Let P7 be the R-vector space of polynomials of degree at most 7 with real 
coefficients. Denote by p′ the first and by p′′ the second derivative of p ∈ P7 
with respect to x. Show that the following maps map P7 into itself and decide 
whether they are linear. 

(i) T (p)(x) := 2p′′(x) + 2p′(x) + 5p(x). 
(ii) S(p)(x) := x2p′′(x) + p(x). 

3. Consider the bases in R2, [e] = [e(1) , e(2)], [v] = [e(2) , e(1)], and 

. [w] = [w(1), w(2)], w(1) = (1, 1), w(2) = (1,−1),

and let f : R2 → R2 be the linear map with matrix representation 

. f[e]→[e] =
(
1 2
3 4

)
.

(i) Determine Id[v]→[e] and Id[e]→[v]. 
(ii) Determine f[v]→[e] and f[v]→[v]. 
(iii) Determine f[w]→[w].
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4. Consider the basis [v] = [v(1) , v(2) , v(3)] of R3, defined as 

. v(1) = (1, 0,−1), v(2) = (1, 2, 1), v(3) = (−1, 1, 1),

and the basis [w] = [w(1) , w(2)] of R2, given by 

. w(1) = (1,−1), w(2) = (2,−1).

Determine the matrix representations T[v]→[w] of the following linear maps. 

(i) T : R3 → R2, (x1, x2, x3) �→ (2x3, x1). 
(ii) T : R3 → R2, (x1, x2, x3) �→ (x1 − x2, x1 + x3). 

5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) There exists a linear map T : R3 → R
7 so that

{
T (x)  | x ∈ R3

} = R7. 
(ii) For any linear map f : Rn → Rn, f is bijective if and only if 

det(f[e]→[e]) �= 0. 

4.3 Inner Products 

Often in applications we are given a vector space with additional geometric 
structures, allowing e.g. to measure the length of a vector or the angle between two 
nonzero vectors. In this section, we introduce such an additional geometric structure, 
called inner product. Linear maps between vector spaces with inner products, which 
leave the latter invariant, will also be discussed. It turns out that that inner products 
on .R- and .C-vector spaces have slightly different properties and hence we discuss 
them separately. 

Inner Products on R-Vector Spaces 

Throughout this paragraph, V denotes a .R-vector space. 

Definition 4.3.1 A map .〈·, ·〉 : V × V → R is said to be an inner product or scalar 
product on V if the following conditions hold: 

(IP1) For any v, w in V , 

.〈v,w〉 = 〈w, v〉.
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(IP2) For any v, w, u in V and any . λ in . R, 

. 〈v + w, u〉 = 〈v, u〉 + 〈w, u〉, 〈λv,w〉 = λ〈v,w〉.

(IP3) For any v in V , 

. 〈v, v〉 ≥ 0, 〈v, v〉 = 0 if and only if v = 0.

In words: .〈·, ·〉 is a symmetric, positive definite, real valued, bilinear map. In case 
.dim(V ) < ∞, the pair .

(
V, 〈·, ·〉) is said to be a finite dimensional .R-Hilbert space 

or Hilbert space for short. 

Definition 4.3.2 On a vector space V with an inner product .〈·, ·〉 one can define the 
notion of the length of a vector, 

. ‖v‖ := 〈v, v〉 1
2 .

The nonnegative number .‖v‖ is referred to as the norm of v, associated to .〈·, ·〉. By  
.(IP3) it follows that for any .v ∈ V , 

. ‖v‖ = 0 if and only if v = 0

and by .(IP2), 

. ‖λv‖ = |λ|‖v‖, λ ∈ R, v ∈ V.

In the remaining part of this paragraph, we will always assume that the .R-
vector space V is equipped with an inner product .〈·, ·〉. The following fundamental 
inequality holds. 

Lemma 4.3.3 (Cauchy-Schwarz Inequality) 

. |〈v,w〉| ≤ ‖v‖‖w‖, v, w ∈ V.

Remark The Cauchy-Schwarz inequality can be verified as follows: obviously, it 
holds if .v = 0 or .w = 0. In the case .v �= 0, .w �= 0, let us consider the vector . v + tw

where .t ∈ R is arbitrary. Then 

. 0 ≤ ‖v + tw‖2 = 〈v + tw, v + tw〉 = 〈v, v〉 + 2t〈v,w〉 + t2〈w,w〉.

Let us find the minimum of .‖v + tw‖2 when viewed as a function of t . To this end 
we determine the critical values of t , i.e., the numbers t satisfying 

.
d

dt

(〈v, v〉 + 2t〈v,w〉 + t2〈w,w〉) = 0.
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Actually, there is unique such t , given by 

. t0 = − 〈v,w〉
‖w‖2 ,

and we conclude that .0 ≤ 〈v, v〉 + 2t0〈v,w〉 + t20 〈w,w〉 yielding the Cauchy-
Schwarz inequality .0 ≤ ‖v‖2‖w‖2 − 〈v,w〉2 or, written differently, 

. |〈v,w〉| ≤ ‖v‖2‖w‖2.

Note that for .v,w ∈ V with .‖v‖ = ‖w‖ = 1 the Cauchy-Schwarz inequality 
yields 

. |〈v,w〉| ≤ 1 or − 1 ≤ 〈v,w〉 ≤ 1.

Hence there exists a unique angle .0 ≤ ϕ ≤ π with 

. 〈v,w〉 = cosϕ.

Definition 4.3.4 For any vectors .v,w ∈ V \ {0}, the uniquely determined real 
number .0 ≤ ϕ ≤ π with 

. cosϕ = 〈 v

‖v‖ ,
w

‖w‖
〉

is said to be the non-oriented angle between v and w. (The non-oriented angle does 
not allow to determine whether . v

‖v‖ needs to be rotated clockwise or counterclock-
wise to be mapped to . w

‖w‖ .) 

As a consequence, one has for any .v,w ∈ V \ {0}, 

. 〈v,w〉 = ‖v‖‖w‖ cosϕ.

Definition 4.3.5 The vectors .v,w ∈ V are said to be  orthogonal to each other if 
.〈v,w〉 = 0. 

Note that if .v = 0 or .w = 0, one always has .〈v,w〉 = 0, whereas for 
. v,w ∈ V \ {0}

. 0 = 〈v,w〉 = ‖v‖‖w‖ cos ϕ

implies .ϕ = π/2. As an easy application of the notion of an inner product one 
obtains the following well known result:
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Theorem 4.3.6 (Pythagorean Theorem) For any .v,w ∈ V , which are orthogonal 
to each other, one has 

. ‖v + w‖2 = ‖v‖2 + ‖w‖2.

This identity follows immediately from the assumption .〈v,w〉 = 0 and 

. ‖v + w‖2 = 〈v + w, v + w〉 = 〈w,w〉 + 2〈v,w〉 + 〈v, v〉.

Theorem 4.3.7 (Law of Cosines) For any .v,w ∈ V \ {0} one has 

. ‖v − w‖2 = ‖v‖2 + ‖w‖2 − 2‖v‖‖w‖ cos ϕ

where . ϕ is the non-oriented angle between v and w. 

The above theorems are indeed generalizations of the corresponding well known 
results in the Euclidean plane . R2. This is explained with the following 

Example Let .V = R
2 and define 

. 〈·, ·〉Euclid : R2 × R
2 → R, (x, y) �→ x1y1 + x2y2

where .x = (x1, x2), .y = (y1, y2). One easily verifies that .〈·, ·〉Euclid is an inner 
product for . R2. The corresponding norm .‖x‖ is given by 

. ‖x‖ := 〈x, x〉 1
2 = (x2

1 + x2
2)

1
2

and the angle . ϕ between vectors .x, y ∈ R
2 of norm 1 can be computed as follows. 

Using polar coordinates one has 

. x = (cos θ, sin θ), y = (cosψ, sinψ), 0 ≤ θ, ψ < 2π.

Then the angle .0 ≤ ϕ ≤ π defined by 

. 〈x, y〉 = ‖x‖‖y‖ cos ϕ = cosϕ

is determined as follows: by the addition formula for the cosine, 

. cosϕ = 〈x, y〉 = cos θ cosψ + sin θ sinψ = cos(ψ − θ),

yielding .ψ − θ = ϕ (mod 2π) or .ψ − θ = −ϕ (mod 2π). (Note that .cos x is an 
even and .2π -periodic function and that .cos : [0, π ] → [−1, 1] is bijective. On the 
other hand, .ψ − θ need not to be an element in the interval .[0, π ].) For notational 
convenience, we will simply write .〈·, ·〉 for .〈·, ·〉Euclid in the sequel. As an application 
of the inner product, let us compute the area F of a triangle ABC in . R2 where



4.3 Inner Products 117

.A = (0, 0) is the origin, 

. B = x = (x1, x2) �= (0, 0), C = y = (y1, y2) �= (0, 0),

and the oriented angle . ψ between x and y is assumed to satisfy .0 < ψ < π . Recall 
that 

. F = 1

2
length of AB · height

where the height is given by .‖y‖ sinψ and the length of .AB is . ‖x‖. Since . 0 <

sinψ ≤ 1 one then has 

. F = 1

2
‖x‖‖y‖ sinψ = 1

2
‖x‖‖y‖

√
1 − cos2 ψ , cosψ = 〈x, y〉

‖x‖‖y‖ .

Thus 

. F = 1

2

√
‖x‖2‖y‖2 − 〈x, y〉2 .

By an elementary computation, 

. ‖x‖2‖y‖2 − 〈x, y〉2 = (x1y2 − x2y1)
2

or 

. 

√
‖x‖2‖y‖2 − 〈x, y〉2 = |x1y2 − x2y1| =

∣∣∣ det
(

x1 y1

x2 y2

) ∣∣∣.

The absolute value of the determinant can thus be interpreted as the area of the 
parallelogram spanned by x and y. 

Examples 

(i) Assume that .V = R
n. Then the map 

. R
n × R

n → R, (x, y) �→
n∑

i=1

xiyi

is an inner product on . Rn, referred to as Euclidean inner product. The  
corresponding norm of a vector .x ∈ R

n is given by 

.‖x‖ =
( n∑

i=1

x2
i

) 1
2
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and the non-oriented angle .0 ≤ ϕ ≤ π between two vectors .x, y ∈ R
n \ {0} is 

defined by 

. cosϕ = 1

‖x‖‖y‖
n∑

i=1

xiyi .

(ii) There exist many inner products on . Rn. Customarily we denote them by the 
same symbol. One verifies in a straightforward way that the following map 
defines an inner product on . R2, 

. R
2 × R

2 → R, (x, y) �→ 〈x, y〉 := 2x1y1 + 5x2y2,

and so does the map 

. R
2 × R

2 → R, (x, y) �→ 〈x, y〉 := 3x1y1 + x1y2 + x2y1 + 3x2y2.

We will see in Sect. 5.3 how inner products such as the two examples above can 
be found. 

An important property of inner products is the so called triangle inequality. 

Lemma 4.3.8 (Triangle Inequality) For any . v,w ∈ V

. ‖v + w‖ ≤ ‖v‖ + ‖w‖.

We remark that the triangle inequality follows in a straightforward way from the 
Cauchy-Schwarz inequality, 

. ‖v + w‖2 = ‖v‖2 + ‖w‖2 + 2〈v,w〉 ≤ ‖v‖2 + ‖w‖2 + 2‖v‖‖w‖ = (‖v‖ + ‖w‖)2.

Isometries and Orthogonal Matrices 

Assume that V is a .R-vector space equipped with an inner product .〈·, ·〉. 
Definition 4.3.9 A linear map .f : V → V is said to be isometric (or an isometry) 
with respect to .〈·, ·〉 if 

. 
〈
f (v), f (w)

〉 = 〈v,w〉, v, w ∈ V.

In words: f preserves the length of vectors and the non-oriented angle between 
nonzero vectors.
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Definition 4.3.10 A matrix .A ∈ R
n×n is said to be orthogonal if 

. 〈Ax,Ay〉 = 〈x, y〉, x, y ∈ R
n

where .〈·, ·〉 denotes the Euclidean inner product in . Rn, 

. 〈x, y〉 :=
n∑

j=1

xjyj , x, y ∈ R
n.

Lemma 4.3.11 For any .A ∈ R
n×n, A is orthogonal if and only if .ATA = Idn×n. 

Remark Lemma 4.3.11 can be verified in a straightforward way. Indeed, if A 
is orthogonal one has for any vectors . e(i), .e(j) of the standard basis . [e] =
[e(1), . . . , e(n)], 

. 〈Ae(i), Ae(j)〉 = 0, i �= j, 〈Ae(i), Ae(i)〉 = 1.

Since for any .1 ≤ j ≤ n, the  j th column .Cj (A) of A equals .Ae(j), one has 

. 
〈
Ci(A), Cj (A)

〉 = 〈Ae(i), Ae(j)〉 =
n∑

k=1

akiakj = (ATA)ij

and thus indeed .ATA = Idn×n. Conversely, if .ATA = Idn×n, then for any . x, y ∈ R
n

. 〈x, y〉 = 〈x,ATAy〉 = 〈Ax,Ay〉.

Note that Lemma 4.3.11 implies that any orthogonal .n × n matrix A is invertible 
since 

. 1 = det(Idn×n) = det(ATA) = det(AT) det(A) = (det(A))2.

The following theorem states various properties of orthogonal matrices, which 
can be verified in a straightforward way. 

Theorem 4.3.12 For any .A ∈ R
n×n, the following holds: 

(i) If A is orthogonal, then A is regular and .A−1 = AT. 
(ii) If A is orthogonal so is .A−1 (and hence . AT by Item 4.3.12). 
(iii) .Idn×n is orthogonal. 
(iv) If .A,B ∈ R

n×n are orthogonal, so is . AB. 
(v) If A is orthogonal, then .det(A) ∈ { − 1, 1

}
.
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The set of orthogonal .n×n matrices is customarily denoted by .O(n) and by . SO(n)

the subset of orthogonal matrices whose determinant equals one, 

. O(n) := {
A ∈ R

n×n | A is orthogonal
}
, SO(n) := {

A ∈ O(n) | det(A) = 1
}
.

Remark From Theorem 4.3.12 it follows that .O(n) and .SO(n) are groups. 

Definition 4.3.13 Let V be a .R-vector space of dimension n, equipped with an 
inner product .〈·, ·〉. A basis .[v] = [v(1), . . . , v(n)] of V is said to be orthonormal if 

. 〈v(i), v(j)〉 = δij , 1 ≤ i, j ≤ n

where . δij is the Kronecker delta, defined as 

. δij = 1, i �= j, δii = 1.

In words: the vectors . v(i), .1 ≤ i ≤ n, have length 1 and are pairwise orthogonal. 

Examples 

(i) Let .V = R
n and let .〈·, ·〉 be the Euclidean inner product. Then the standard 

basis .[e] = [e(1), . . . , e(n)] is an orthonormal basis. 
(ii) Let .V = R

2 and let .〈·, ·〉 be the Euclidean inner product. Define 

. v(1) = (cosϕ, sinϕ), v(2) = (− sinϕ, cosϕ)

where .0 ≤ ϕ < 2π . Then .[v] = [v(1), v(2)] is an orthonormal basis of . R2. 
(iii) Assume that .V = R

n and .〈·, ·〉 is the Euclidean inner product of . Rn. The  
columns .C1(A), . . . , Cn(A) of an arbitrary orthogonal .n×n matrix A form an 
orthonormal basis of . Rn. (To verify this statement use Lemma 4.3.11.) 

The following assertions are frequently used in applications. They can be verified in 
a straightforward way. 

Proposition 4.3.14 Assume that .
(
V, 〈·, ·〉) is a .R-Hilbert space of dimension n. 

Then the following holds: 

(i) Let .v(1), . . . , v(n) be an orthonormal basis of V . If  .f : V → V is an isometry, 
then .f (v(1)), . . . , f (v(n)) is also an orthonormal basis of V . 

(ii) Assume that .[v] = [v(1), . . . , v(n)] is an orthonormal basis of a V . Then for any 
.w ∈ V , 

. w =
n∑

j=1

〈w, v(j)〉v(j),

i.e., the coordinates .x1, . . . , xn of w with respect to the orthonormal basis . [v]
are given by .xj = 〈w, v(j)〉, .1 ≤ j ≤ n.
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There is a close connection between orthogonal .n × n matrices and isometries of 
.R-Hilbert spaces of dimension n 

Theorem 4.3.15 Assume that .V ≡ (
V, 〈·, ·〉) is a .R-Hilbert space of dimension n, 

. [v] an orthonormal basis of V and .f : V → V an isometry. Then .f[v]→[v] is an 
orthogonal matrix. 

Finally we introduce the notion of orthogonal complement. 

Definition 4.3.16 Assume that .M ⊆ V is a subset of the .R-Hilbert space .
(
V, 〈·, ·〉). 

Then 

. M⊥ := {
w ∈ V | 〈w, v〉 = 0, v ∈ M

}

is referred to as the orthogonal complement of M . 

Theorem 4.3.17 Assume that .
(
V, 〈·, ·〉) is a .R-Hilbert space of dimension n and 

.M ⊆ V . Then the following holds: 

(i) .M⊥ is a subspace of V . In particular, .{0}⊥ = V and .V ⊥ = {0}. 
(ii) Assume that .M ⊆ V is a subspace of V and .v(1), . . . , v(m) is an orthonormal 

basis of M . Then there are vectors .v(m+1), . . . , v(n) ∈ V so that . [v(1), . . . , v(n)]
is an orthonormal basis of V and .[v(m+1), . . . , v(n)] is an orthonormal basis 
of . M⊥. 

(iii) If .M ⊆ V is a subspace of V , then .dim(V ) = dim(M) + dim(M⊥). 

Inner Products on C-Vector Spaces 

The inner product on a .C-vector space V is defined as follows. 

Definition 4.3.18 The map .〈·, ·〉 : V × V → C is said to be an inner product if the 
following is satisfied 

.(IP1)c .〈v,w〉 = 〈w, v〉 v,w ∈ V . 

.(IP2)c .〈αv + βw, u〉 = α〈v, u〉 + β〈w, u〉 v,w, u ∈ V, α, β ∈ C. 

.(IP3)c For any .v ∈ V , 

. 〈v, v〉 ≥ 0, 〈v, v〉 = 0 if and only if v = 0.

Remark 

(i) Note that .(IP1)c and .(IP2)c imply that .〈·, ·〉 is antilinear in the second 
argument, i.e., 

.〈u, αv + βw〉 = α〈u, v〉 + β〈u,w〉, v, w, u ∈ V, α, β ∈ C.
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(ii) Alternatively, instead of .(IP2)c, one could require that .〈·, ·〉 is .C-linear with 
respect to the second argument, 

. 〈u, αv + βw〉 = α〈u, v〉 + β〈u,w〉, v, w, u ∈ V, α, β ∈ C.

In that case, .〈·, ·〉 is antilinear in the first argument. 

Again one can define the norm of a vector .v ∈ V , induced by .〈·, ·〉, 

. ‖v‖ := 〈v, v〉 1
2 .

It has the following properties: for any v, .w ∈ V , 

. ‖αv‖ = |α|‖v‖, α ∈ C, ‖v + w‖ ≤ ‖v‖ + ‖w‖,

and 

. ‖v‖ ≥ 0, ‖v‖ = 0 if and only if v = 0.

Furthermore, the Cauchy-Schwarz inequality continues to hold, 

. |〈v,w〉| ≤ ‖v‖‖w‖, v, w ∈ V.

However note that in this case, .〈v,w〉 ∈ C and hence we cannot define an angle. 

Example For any .v = (v1, . . . , vn), .w = (w1. . . . , wn) ∈ C
n, let  

. 〈v,w〉 :=
n∑

j=1

vjwj .

It is straightforward to verify that .(IP1)c to .(IP3)c are satisfied. This inner product 
is referred to as the Euclidean inner product of . Cn. 

In case V is a .C-vector space of dimension n, equipped with an inner product 
.〈·, ·〉, .(V, 〈·, ·〉) is referred to as a n-dimensional .C-Hilbert space. A basis . [v] =
[v(1), . . . , v(n)] of the .C-vector space V of dimension n with inner product .〈·, ·〉 is 
said to be an orthonormal basis if 

. 〈v(i), v(j)〉 = δij , 1 ≤ i, j ≤ n

where . δij denotes the Kronecker delta.
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Definition 4.3.19 

(i) A matrix .A ∈ C
n×n is said to be unitary if 

. 〈Av,Aw〉 = 〈v,w〉, v, w ∈ C
n.

Here .〈·, ·〉 denotes the Euclidean inner product on . Cn. 
(ii) A linear map .f : V → V on a n-dimensional .C-Hilbert space . V ≡ (

V, 〈·, ·〉)
is said to be an isometry if 

. 
〈
f (v), f (w)

〉 = 〈v,w〉, v, w ∈ V.

Note that .A ∈ C
n×n is unitary if and only if 

. fA : Cn → C
n, v �→ Av

is an isometry. Furthermore, similarly as in the case of orthogonal matrices (cf. 
Lemma 4.3.11), one has that for any .A ∈ C

n×n, 

. A is unitary if and only if A
T
A = Idn×n .

Here . A
T
is the conjugate transpose of A, 

. (A
T
)ij = aji, 1 ≤ i, j ≤ n where A = (aij )1≤i,j≤n.

Theorem 4.3.20 Assume that .[v] = [v(1), . . . , v(n)] is an orthonormal basis of the 
.C-Hilbert space .

(
V, 〈·, ·〉) and .f : V → V a linear map. Then f is an isometry if 

and only if .f[v]→[v] is unitary. 

Vector Product in R3 

The Euclidean space . R3 is special in the sense that a multiplication of vectors with 
good properties can be defined, which turns out to be useful. 

Definition 4.3.21 The vector product in . R3, also referred to as cross product), is 
the map 

. R
3×R

3 → R
3, (v,w) �→ v×w := (v2w3−v3w2,−v1w3+v3w1, v1w2−v2w1).

Example For .v = (0, 1, 0), .w = (1, 0, 0), one has .v × w = (0, 0,−1).
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Theorem 4.3.22 The vector product in .R3, with .R3 being equipped with the 
Euclidean inner product .〈·, ·〉, has the following properties: 
(i) .v × w = −w × v, v,w ∈ R

3. 
(ii) For any .v,w, u ∈ R

3, .α, β ∈ R, 

. u × (αv + βw) = α(u × v) + β(u × w),

(αv + βw) × u = α(v × u) + β(w × u).

(iii) .〈v × w, v〉 = 0, .〈v × w,w〉 = 0, v, w ∈ R
3. 

(iv) If .v × w = 0, then v and w are linearly dependent. In more detail, 

. v = 0 or w = 0 or v = αw, α ∈ R.

(v) Let .0 ≤ ϕ ≤ π be the angle given by .〈v,w〉 = ‖v‖‖w‖ cos ϕ. Then 

. ‖v × w‖ = ‖v‖‖w‖ sinϕ.

(vi) The vectors .v,w, v×w are positively oriented, meaning that .det(A) ≥ 0where 
A is the .3 × 3 matrix whose columns are given by .v,w, v × w (right thumb 
rule). 

Corollary 4.3.23 Assume that .v(1), v(2) are vectors in . R3 with . ‖v(1)‖ = ‖v(2)‖ = 1
and .〈v(1), v(2)〉 = 0. Then .[v(1), v(2), v(1) × v(2)] is an orthonormal basis of . R3. 

Remark Corollary 4.3.23 can be verified in a straightforward way. Since 
.〈v(1), v(2)〉 = 0 one has .〈v(1), v(2)〉 = cosϕ with .ϕ = π/2, implying that 

. ‖v(1) × v(2)‖ = ‖v(1)‖‖v(2)‖ sinϕ = 1.

By Theorem 4.3.22(iii), it then follows that .[v(1), v(2), v(1) ×v(2)] is an orthonormal 
basis. 

Example Let .v(1) = 1√
6

(2, 1,−1). Then .‖v(1)‖ = 1. We choose a vector 

.v(2) of norm one, which is orthogonal to . v(1), .v(2) = 1√
5

(1,−2, 0). Then 

.[v(1), v(2), v(3)], .v(3) = v(1) × v(2) is an orthonormal basis of . R3. One computes 

.v(3) = 1√
30

(−2,−1,−5). 

Problems 

1. Let B : R2 × R2 → R be given by 

.B(x, y) = 3x1y1 + x1y2 + x2y1 + 2x2y2
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where x = (x1, x2), y = (y1, y2) ∈ R2. 

(i) Verify that B is an inner product on R2. 
(ii) Verify that the vectors a = ( 1√

3 
, 0) and b = (0, 1√

2 
) have length 1 with 

respect to the inner product B. 
(iii) Compute the cosine of the (unoriented) angle between the vectors a and b 

of (ii). 

2. Let 〈·, ·〉 be the Euclidean inner product of R3 and v(1) , v(2) , v(3) be the following 
vectors in R3, v(1) = ( − 1√

6 
,− 2√

6 
, 1√

6

)
, v(2) = ( 1√

2 
, 0, 1√

2

)
, v(3) = ( − 

1√
3 

, 1√
3 

, 1√
3

)
. 

(i) Verify that [v] = [v(1) , v(2) , v(3)] is an orthonormal basis of R3. 
(ii) Compute Id[v]→[e], verify that it is an orthonormal 3 × 3 matrix, and then 

compute Id[e]→[v]. Here [e] = [e(1) , e(2) , e(3)] denotes the standard basis of 
R
3. 

(iii) Represent the vectors a = (1, 2, 1) and b = (1, 0, 1) as linear combinations 
of v(1), v(2), and v(3). 

3. Let 〈·, ·〉 be the Euclidean inner product on R2 and v(1) = ( 1√
2 

,− 1√
2

)
. 

(i) Determine all possible vectors v(2) ∈ R
2 so that [v(1) , v(2)] is an orthonormal 

basis of R2. 
(ii) Determine the matrix representation R(ϕ)[v]→[e] of the linear map 

. R(ϕ) : R2 → R
2, (x1, x2) �→ (cosϕ ·x1 − sinϕ ·x2, sinϕ ·x1+cosϕ ·x2)

with respect to an orthonormal basis [v] = [v(1) , v(2)] of R2, found in Item 3. 

4. (i) Let T : R3 → R3 be the rotation by the angle π 
3 in clockwise direction in 

the x1x2-plane with rotation axis {0} × {0} × R. Determine T[e]→[e] where 
[e] = [e(1) , e(2) , e(3)] is the standard basis of R3. 

(ii) Let S : R3 → R3 be the rotation by the angle π 
3 in counterclockwise 

direction in the x2x3-plane with rotation axis R × {0} × {0}. Determine 
S[e]→[e] and verify that it is an orthogonal 3 × 3 matrix. 

(iii) Compute (S ◦ T )[e]→[e] and (T ◦ S)[e]→[e]. 
5. Decide whether the following assertions are true or false and justify your 

answers. 

(i) There exists an orthogonal 2 × 2 matrix  A with det(A) = −1. 
(ii) Let v(1) , v(2) , v(3) , v(4) be vectors in R4 so that 

.〈v(i), v(j)〉 = δij
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for any 1 ≤ i, j ≤ 4 where 〈·, ·〉 denotes the Euclidean inner product in R4 

and δij is the Kronecker delta, defined as 

. δij =
{
0 if i �= j,

1 if i = j.

Then [v(1) , v(2) , v(3) , v(4)] is a basis of R4.



Chapter 5 
Eigenvalues and Eigenvectors 

In this chapter we introduce the important notions of eigenvalue and eigenvector of 
a linear map .f : V → V on a vector space V of finite dimension. Since the case 
where V is a .C-vector space is somewhat simpler, we first treat this case. 

5.1 Eigenvalues and Eigenvectors of C-Linear Maps 

Assume that V is a .C-vector space and f a .C-linear map. We restrict ourselves to 
the case where V is of finite dimension. If not stated otherwise, we assume that 
.dim(V ) = n ∈ N. 

Definition 5.1.1 A complex number .λ ∈ C is said to be an eigenvalue of f if there 
exists .w ∈ V \ {0} such that 

. f (w) = λw.

The vector w is called an eigenvector of f for the eigenvalue . λ. Geometrically, it 
means that in the direction w, f is a dilation by the complex number . λ. 

A complex number .λ ∈ C is said to be an eigenvalue of the matrix .A ∈ C
n×n, if  

. λ is an eigenvalue of the linear map .fA : Cn → C
n. An eigenvector .w ∈ C

n \ {0} of 
. fA for . λ is also referred to as an eigenvector of A for the eigenvalue . λ. 

Example Let .V = C
n and let .f : Cn → C

n be the linear map 

. f (v) = diag(λ1, . . . , λn)v

where .λ1, . . . , λn are given complex numbers. Then .f (e(j)) = λj e
(j) for any . 1 ≤

j ≤ n where .e(1), . . . , e(n) is the standard basis of . Cn. Since .e(j) �= 0, .e(j) is an 
eigenvector of f for the eigenvalue . λj . 
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How to compute the eigenvalues of the linear map .f : V → V when V is of 
dimension n? Choose a basis .[v] = [v(1), . . . , v(n)] of V and consider the matrix 
representation .f[v]→[v] ∈ C

n×n of f with respect to . [v]. Assume that . w ∈ V \ {0}
is an eigenvector of f for the eigenvalue . λ. Then w can be uniquely represented as 
a linear combination of .v(1), . . . , v(n), 

. w =
n∑

j=1

xjv
(j).

Then .x := (x1, . . . , xn) ∈ C
n \ {0} and .f (w) = λw implies that 

. f[v]→[v]x = λx or
(
f[v]→[v] − λ Idn×n

)
x = 0.

It means that .f[v]→[v] − λ Idn×n is not regular and hence 

. det(f[v]→[v] − λ Idn×n) = 0.

We have therefore obtained the following 

Theorem 5.1.2 Assume that V is a .C-vector space of dimension n with basis . [v] =
[v(1), . . . , v(n)] and .f : V → V is .C-linear. Then .λ ∈ C is an eigenvalue of f if 
and only if 

. det(f[v]→[v] − λ Idn×n) = 0.

Let us now investigate the function 

. C → C, z �→ det(f[v]→[v] − z Idn×n).

Consider first the case where 

. f[v]→[v] = (aij )1≤i,j≤n

is a diagonal matrix, i.e., .aij = 0 for .i �= j . Then 

. f[v]→[v] − z Idn×n = diag(a11 − z, · · · , ann − z)

and hence .det(f[v]→[v] − z Idn×n) is given by 

.(a11−z) · · · (ann−z) = (−1)nzn+(−1)n−1(a11+· · ·+ann)z
n−1+. . .+det(f[v]→[v]),
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which is a polynomial of degree n in z. Actually this holds in general. As an 
illustration, consider the case when .n = 2, 

. det(f[v]→[v] − z Id2×2) = det

(
a11 − z a12

a21 a22 − z

)
= z2 − (a11 + a22)z + det(A).

More generally, one has the following 

Theorem 5.1.3 Assume that V is a .C-vector space of dimension n with basis . [v] =
[v(1), . . . , v(n)] and .f : V → V is .C-linear. Then the following holds: 

(i) .χ(z) := det(f[v]→[v] − z Idn×n) is a polynomial in z of degree n of the form 

. χ(z) = pnz
n + · · · + p1z + p0 with pn := (−1)n, p0 := det(f[v]→[v]),

and .pj ∈ C, .0 ≤ j < n. 
(ii) Every root of . χ is an eigenvalue of f . 

Remark The polynomial .χ(z) is independent of the choice of the basis . [v]. This can 
be verified as follows: Assume that .[w] = [w(1), . . . , w(n)] is another basis of V . 
Since 

. f[w]→[w] = Id[v]→[w] f[v]→[v] Id[w]→[v], Id[v]→[w] = (Id[w]→[v])−1,

it follows that .χ(z) := det(f[w]→[w] − z Idn×n) can be computed as 

. χ(z) = det((Id[w]→[v])−1f[v]→[v] Id[w]→[v] −z(Id[w]→[v])−1 Id[w]→[v])

= det((Id[w]→[v])−1(f[v]→[v] − z Idn×n) Id[w]→[v])

= det((Id[w]→[v])−1) det(f[v]→[v] − z Idn×n) det(Id[w]→[v])

= det(f[v]→[v] − z Idn×n)

where we have used that the determinant is multiplicative and hence in particular 

. det((Id[w]→[v])−1) = (
det(Id[w]→[v])

)−1
.

Since .χ(z) depends only on f we denote it also by .χf (z). It is referred to as the 
characteristic polynomial of f . 

How many eigenvalues does f have? Or equivalently, how many roots does . χf

have? Since . χf is a polynomial of degree n, Theorem 3.2.3 applies and we conclude 
that it has n complex roots, when counted with their multiplicities. The multiplicity 
of a root of . χf is also referred to as the algebraic multiplicity of the corresponding 
eigenvalue of f . 

We summarize our discussion as follows:
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Theorem 5.1.4 Assume that V is a .C-vector space of dimension n and . f : V → V

is linear. Then f has precisely n eigenvalues, when counted with their algebraic 
multiplicities. 

Definition 5.1.5 Assume that V is a .C-vector space of dimension n and . f : V → V

is linear. The collection of all the eigenvalues of f , listed with their algebraic 
multiplicities, is called the spectrum of f and denoted by .spec(f ). For any 
eigenvalue . λ of f , we denote by . mλ its algebraic multiplicity. The eigenvalue . λ
of f is said to be simple if .mλ = 1. The  map  f is said to have a simple spectrum if 
each eigenvalue of f is simple. 

The spectrum of a matrix .A ∈ C
n×n is defined to be the spectrum of . fA and 

denoted by .spec(A). An eigenvalue . λ of .A ∈ C
n×n is called simple if .mλ = 1. The  

spectrum of A is called simple if each eigenvalue of A is simple. 

Examples 

(i) Let .A = diag(4, 4, 4, 7, 3, 3) ∈ C
6×6. Then . χA(z) = (4 − z)3(7 − z)(3 − z)2

and the spectrum of f is given by 

. λ1 = λ2 = λ3 = 4, λ4 = 7, λ5 = λ6 = 3.

One has .mλ1 = 3, .mλ4 = 1, and .mλ5 = 2. In particular, .spec(A) is not simple. 
Note that .mλ1 + mλ4 + mλ5 = 6 = dim(C6). 

(ii) Assume that V is a .C-vector space of dimension n and f is the identity map, 
.f = Id. Choose an arbitrary basis . [v] of V . Then .f[v]→[v] = Idn×n and hence 

. det(f[v]→[v] − z Idn×n) = (1 − z)n.

Hence . Id has the eigenvalues .λj = 1, .1 ≤ j ≤ n, and .mλ1 = n. 

Definition 5.1.6 Given any eigenvalue . λ of a linear map .f : V → V , the  set  

. Eλ ≡ Eλ(f ) := {
v ∈ V | f (v) = λv

}

is said to be the eigenspace of f for the eigenvalue . λ. Note that 

. Eλ = {
0
} ∪ {

v ∈ V | v eigenvector of f for the eigenvalue λ
}
.

Lemma 5.1.7 For any eigenvalue . λ of f , .Eλ(f ) is a .C-subspace of V . 

Remark Note that .Eλ(f ) can be interpreted as the nullspace of the linear map . f −
λ Id, which implies that it is .C-subspace of V (cf. Definition 4.2.3). 

Definition 5.1.8 Let V be a vector space of dimension n. For an eigenvalue . λ of a 
linear map .f : V → V , .dim(Eλ(f )) is referred to as the geometric multiplicity of 
. λ.
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Theorem 5.1.9 Assume that V is a .C-vector space of dimension n and . f : V → V

a linear map. Then the following holds: 

(i) For any eigenvalue .λ ∈ C of f , 

. dim(Eλ(f )) ≤ mλ, mλ ≤ n

where . mλ denotes the algebraic multiplicity of . λ. 
(ii) If .dim(Eλ(f )) = mλ for any eigenvalue . λ of f , then V admits a basis consisting 

of eigenvectors of f . 

Definition 5.1.10 A .C-linear map .f : V → V on a .C-vector space of dimension 
n is said to be diagonalizable if there exists a basis .[v] = [v(1), . . . , v(n)] of 
eigenvectors of f . In such a case 

. f[v]→[v] = diag(λ1, . . . , λn)

where for any .1 ≤ i ≤ n, .λi ∈ C is the eigenvalue of f , corresponding to the 
eigenvector . v(i). 

Examples Let .V = C
2. We consider examples of linear maps .f : C2 → C

2 of the 
form . fA with .A ∈ C

2×2. Recall that .(fA)[e]→[e] = A. Hence 

. χfA
(z) = det(A − λ Id2×2).

We refer to .χfA
(z) also as the characteristic polynomial of A and for notational 

convenience denote it by .χA(z). For each of the .2×2 matricesA in Item (i)–Item (iii) 
below, we determine its spectrum and the corresponding eigenspaces. Recall that the 
eigenvalues of A are defined to be the eigenvalues of . fA and the eigenvectors of A 
the ones of . fA. To make our computations fairly simple, the matrices A considered 
have real coefficients. 

(i) 

. A =
(
2 −1
1 2

)
.

Step 1. Computation of the spectrum of A. 
The characteristic polynomial of A is given by 

.χA(z) = det

(
2 − z −1
1 2 − z

)
= (2 − z)(2 − z) + 1 = z2 − 4z + 5.
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The roots are .z± = 2 ± 1
2

√
16 − 20 = 2 ± i. Hence the eigenvalues of A 

and their algebraic multiplicities are given by 

. λ1 = 2 + i, mλ1 = 1, λ2 = 2 − i, mλ2 = 1.

In particular, the spectrum of A is simple. 
Step 2. Computation of the eigenspaces of . λ1 and . λ2. 

.Eλ1(A) ≡ Eλ1(fA): an eigenvector .v = (v1, v2) ∈ C
2 of A for the 

eigenvalue . λ1 solves the following linear system 

. 

(
2 − λ1 −1

1 2 − λ1

) (
v1

v2

)
=

(
(2 − λ1)v1 − v2

v1 + (2 − λ1)v2

)
=

(
0
0

)
.

To find a nontrivial solution of the latter linear system, consider the first 
equation 

. (2 − λ1)v1 − v2 = 0.

Since .2 − λ1 = − i, we may choose .v1 = 1 and get .v2 = − i. One verifies 
that the second equation is then verified as well, 

. v1 + (2 − λ1)v2 = 1 + (− i)(− i) = 1 − 1 = 0.

Hence .v(1) = (1,− i) is an eigenvector for . λ1. Since .mλ1 = 1 one has 

. Eλ1(A) = {
αv(1) | α ∈ C

}
, dim(Eλ1(A)) = 1.

.Eλ2(A) ≡ Eλ2(fA): an eigenvector .v = (v1, v2) ∈ C
2 of A for the 

eigenvalue . λ2 solves the following linear system: 

. 

(
2 − λ2 −1

1 2 − λ2

) (
v1

v2

)
=

(
(2 − λ2)v1 − v2

v1 + (2 − λ2)v2

)
=

(
0
0

)
.

To find a nontrivial solution of the latter system, consider the first equation 
.(2− λ2)v1 − v2 = 0. Since .2− λ2 = i, we may again choose .v1 = 1 and get 
.v2 = i. One verifies that the second equation is then verified as well, 

. v1 + (2 − λ2)v2 = 1 + i · i = 0.

Hence .v(2) = (1, i) is an eigenvector for the eigenvalue . λ2. Since . mλ2 = 1
one has 

.Eλ2(A) = {
αv(2) | α ∈ C

}
, dim(Eλ2(A)) = 1.
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The vectors .v(1), v(2) form a basis . [v] of . C2. (Since they are eigenvectors 
of . fA corresponding to distinct eigenvalues, they are linearly independent.) 
One has 

. (fA)[v]→[v] =
(

λ1 0
0 λ2

)
.

Since .A = (fA)[e]→[e] it follows that A is diagonalizable, 

. A = Id[v]→[e](fA)[v]→[v] Id[e]→[v]

where .Id[v]→[e] = (
v(1) v(2)

)
is the .2 × 2 matrix with first column .v(1) and 

second column . v(2), and .Id[e]→[v] = (Id[v]→[e])−1. 

(ii) 

. A =
(
1 1
0 2

)
.

Step 1. Computation of the spectrum of A. 
The characteristic polynomial of A is given by 

. χA(z) = det

(
1 − z 1
0 2 − z

)
= (1 − z)(2 − z).

Hence 

. λ1 = 1, mλ1 = 1, λ2 = 2, mλ2 = 1.

In particular, the spectrum of A is simple. 
Step 2. Computation of the eigenspaces of . λ1 and . λ2. 

.Eλ1(A) ≡ Eλ1(fA): an eigenvector .v = (v1, v2) ∈ C
2 of A for the 

eigenvalue . λ1 solves the following linear system 

. 

(
1 − 1 1
0 2 − 1

) (
v1

v2

)
=

(
0 · v1 + v2

0 · v1 + v2

)
=

(
0
0

)
.

To find a nontrivial solution of the latter linear system, consider the first 
equation .0 · v1 + v2 = 0. It has the solution .v2 = 0, .v1 = 1. Then the 
second equation .0 · v1 + v2 = 0 is also satisfied and hence .v(1) = (1, 0) is 
an eigenvector for the eigenvalue . λ1. Since .mλ1 = 1 one has 

.Eλ1(A) = {
α(1, 0) | α ∈ C

}
, dim(Eλ1(A)) = 1.
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.Eλ2(A) ≡ Eλ2(fA): an eigenvector .v = (v1, v2) ∈ C
2 of A for the 

eigenvalue . λ2 solves the following linear system 

. 

(
1 − 2 1
0 2 − 2

)(
v1

v2

)
=

( −v1 + v2

0 · v1 + 0 · v2

)
=

(
0
0

)
.

To find a nontrivial solution of the latter linear system, it suffices to consider 
the first equation .−v1 + v2 = 0. It has the solution .v1 = 1, .v2 = 1. The  
second equation .0 · v1 + 0 · v2 is trivially satisfied and hence .v(2) = (1, 1) is 
an eigenvector for the eigenvalue . λ2. Since .mλ2 = 1 one has 

. Eλ2(A) = {
α(1, 1) | α ∈ C

}
, dim(Eλ2(A)) = 1.

We conclude that .[v] = [v(1), v(2)] is a basis of . C2 and 

. (fA)[v]→[v] =
(
1 0
0 2

)
.

Since .A = (fA)[e]→[e] it follows that A is diagonalizable, 

. A = Id[v]→[e](fA)[v]→[v] Id[e]→[v]

where .Id[v]→[e] = (
v(1) v(2)

)
and .Id[e]→[v] = (Id[v]→[e])−1. 

(iii) 

. A =
(
1 1
0 1

)
.

Step 1. Computation of the spectrum of A. 
The characteristic polynomial of A is given by 

. χA(z) = det(A − z Id2×2) = det

(
1 − z 1
0 1 − z

)
= (1 − z)2.

Hence 

. λ1 = 1, λ2 = λ1, mλ1 = 2.

The spectrum of A is therefore not simple. 
Step 2. Computation of the eigenspace of . λ1. 

.Eλ1(A) ≡ Eλ1(fA): an eigenvector .v = (v1, v2) ∈ C
2 of A for the 

eigenvalue . λ1 solves the following linear system
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. 

(
0 1
0 0

) (
v1

v2

)
=

(
0 · v1 + v2

0 · v1 + 0 · v2

)
=

(
0
0

)
.

The solutions of the latter system are of the form .(v1, 0) with . v1 ∈ C

arbitrary. Hence 

. Eλ1(A) = {
α(1, 0) | α ∈ C

}

is of dimension 1, 

. dim(Eλ1(A)) = 1 < 2 = mλ1 .

As a consequence, there does not exist a basis of . C2, consisting of eigenvec-
tors of A. The matrix A cannot be diagonalized. 

For special types of matrices, the eigenvalues are quite easy to compute. Let us 
discuss the following ones. 

Upper Triangular Matrices A matrix  .A ∈ C
n×n is said to be upper triangular if 

it is of the form 

. A = (aij )1≤i,j≤n, aij = 0, i > j.

Then the coefficients .a11, . . . , ann of the diagonal of A are the eigenvalues of . fA, 
counted with their algebraic multiplicities. Indeed 

. det(A − z Idn×n) = (a11 − z) · · · (ann − z).

The spectrum of an upper triangular matrix A can therefore be directly read from 
the diagonal of A. 

Lower Triangular Matrices A matrix  .A ∈ C
n×n is said to be lower triangular if 

it is of the form 

. A = (aij )1≤i,j≤n, aij = 0, i < j.

As in the case of upper triangular matrices, the spectrum of a lower triangular matrix 
.A ∈ C

n×n can be read of from the diagonal of A. 

Invertible Matrices Assume that .A ∈ C
n×n is invertible. Then the eigenvalues 

.λ1, . . . , λn of A (listed with their algebraic multiplicities) are in .C \ {0} and 

.λ−1
1 , . . . , λ−1

n are the eigenvalues of .A−1, again listed with their algebraic multi-
plicities. If .v(j) is an eigenvector of A for . λj , then .A−1v(j) = λ−1

j v(j), i.e., .v(j) is 

also an eigenvector of .A−1, corresponding to . λ−1
j .
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Transpose of a Matrix Given a matrix .A ∈ C
n×n, the eigenvalues of its transpose 

. AT coincide with the eigenvalues of A. Indeed 

. det(AT − z Idn×n) = det([A − z Idn×n]T) = det(A − z Idn×n),

i.e., A and .AT have the same characteristic polynomial and hence the same 
spectrum. 

Theorem 5.1.11 Let .A ∈ C
n×n. Then .fA : Cn → C

n, .x �→ Ax has a basis of 
eigenvectors if and only if there is a regular matrix .S ∈ C

n×n such that .S−1AS is a 
diagonal matrix. The elements of the diagonal of .S−1AS are the eigenvalues of A. 

Remark If .[v] = [v(1), . . . , v(n)] is a basis of .Cn consisting of eigenvectors 
of .fA : Cn → C

n, then .S = Id[v]→[e] is regular and .S−1AS is a diagonal 
matrix. Conversely, let .S ∈ C

n×n be regular and .S−1AS a diagonal matrix . B =
diag(λ1, . . . , λn). Then the columns .C1(S), . . . , Cn(S) of S form a basis of . Cn. 
Since .AS = SB it follows that for any . 1 ≤ j ≤ n

. λjCj (S) = λjSe(j) = S(λj e
(j)) = SB(e(j)) = AS(e(j)) = ACj (S).

Hence .Cj (S) is an eigenvector of A for the eigenvalue . λj . 

Theorem 5.1.12 Assume that .f : V → V is a .C-linear map and V a .C-vector 
space of dimension n. If  f has simple spectrum, i.e., has n distinct eigenvalues 
.λ1, . . . , λn ∈ C, then f is diagonalizable. 

Example Computation of the spectrum and the eigenspaces of 

A = 

⎛ 

⎝ 
2 1 0  
0 1  −1 
0 2 4  

⎞ 

⎠ ∈ C3×3. 

Step 1. Computation of the eigenvalues of A. 
The characteristic polynomial of A is given by 

. det(A − z Id3×3) = (2 − z)
(
(1 − z)(4 − z) + 2

)
.

Then .λ1 = 2 and .λ2, λ3 are the roots of 

. (1 − z)(4 − z) + 2 = z2 − 5z + 6 = (z − 2)(z − 3),

i.e., .λ2 = 2 and .λ3 = 3. Note that 

.mλ1 = 2, mλ3 = 1.
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In particular, the spectrum of A is not simple. 
Step 2. Computation of the eigenspaces of . λ1 and . λ3. 

.Eλ3(A) ≡ Eλ3(fA): an eigenvector .v = (v1, v2, v3) ∈ C
3 \ {0} of A for the 

eigenvalue . λ3 solves the following linear system 

. 

⎛

⎝
−1 1 0
0 −2 −1
0 2 1

⎞

⎠

⎛

⎝
v1

v2

v3

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠ .

Gaussian elimination .(R3 � R2 + R3) leads to 

⎡ 

⎣ 
−1 1 0 0 
0 −2 −1 0 
0 0 0 0 

⎤ 

⎦ . 

Thus the solutions are given by the vectors .α(−1,−1, 2), .α ∈ C, 

. Eλ3(A) = {
α(−1,−1, 2) | α ∈ C

}
.

.Eλ1(A) ≡ Eλ1(fA): an eigenvector .v = (v1, v2, v3) ∈ C
3 \ {0} of A for the 

eigenvalue . λ1 solves the following linear system 

.

⎛

⎝
0 1 0
0 −1 −1
0 2 2

⎞

⎠

⎛

⎝
v1

v2

v3

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠ . (5.1) 

By Gaussian elimination (.R3 � R3 + 2R2, .R2 � R2 + R1) 

⎡ 

⎣ 
0 1  0 0 
0 0  −1 0 
0 0  0 0 

⎤ 

⎦ . 

Hence any solution of (5.1) is of the form .v = α(1, 0, 0), .α ∈ C, and 

. Eλ1(A) = {
α(1, 0, 0) | α ∈ C

}
.

Since 

. dim(Eλ1(A)) < mλ1 = 2,

the matrix A cannot be diagonalized. 

To finish this section, let us discuss two important classes of matrices. Recall 
that by Definition 4.3.19, a matrix .A = (aij )1≤i,j≤n ∈ C

n×n is said to be unitary
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if .A
T
A = Idn×n where . A

T
is the transpose of . A and the matrix . A is given by 

.(aij )1≤i,j≤n. Note that A is unitary if and only if 

. 〈Av,Aw〉 = 〈v,w〉, v, w ∈ C
n

where .〈v,w〉 = ∑n
j=1 vjwj denotes the Euclidean inner product on . Cn. 

Theorem 5.1.13 For any unitary matrix .A ∈ C
n×n, the following holds: 

(i) Every eigenvalue . λ of A satisfies .|λ| = 1. 
(ii) If .λ,μ ∈ C are distinct eigenvalues of A, .λ �= μ, then for any eigenvectors . v,w

of A for . λ, respectively . μ, v and w are orthogonal, i.e., .〈v,w〉 = 0. 
(iii) There exists an orthonormal basis of eigenvectors of A. In particular, A is 

diagonalizable. 

Remark Let us briefly discuss Items (i) and (ii). Concerning Item (i), assume that 
.λ ∈ C is an eigenvalue of A and .v ∈ C

n \ {0} an eigenvector of A for . λ. Then 

. 〈v, v〉 = 〈Av,Av〉 = 〈λv, λv〉 = λλ〈v, v〉.

Since .v �= 0 and hence .〈v, v〉 �= 0 it follows that .|λ|2 = 1. Regarding (ii), assume 
that . λ, . μ are distinct eigenvalues of A, .λ �= μ, and .v,w ∈ C

n \ {0} are eigenvectors 
of A for . λ, respectively . μ. Then 

. λ〈v,w〉 = 〈λv,w〉 = 〈Av,w〉 = 〈v,A
T
w〉.

Since .A
T = A−1 and .A−1w = μ−1w with .μ−1 = μ it then follows that 

. λ〈v,w〉 = 〈v,A
T
w〉 = 〈v, μw〉 = μ〈v,w〉

or .(λ − μ)〈v,w〉 = 0. By assumption .λ − μ �= 0 and hence .〈v,w〉 = 0. 

Example Computation of the spectrum and the eigenspaces of 

. A =
(
cosϕ − sinϕ

sinϕ cosϕ

)
, ϕ /∈ {

nπ | n ∈ N
}
.

Since under the latter assumption .sinϕ �= 0, A is not a diagonal matrix. 

Step 0. Clearly, .A = A and one verifies in a straighforward way that the matrix A is 
unitary, 

. AA
T = AAT = Id2×2 .

Step 1. Computation of the spectrum of A. 
The characteristic polynomial of A is given by
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. det

(
cosϕ − z − sinϕ

sinϕ cosϕ − z

)
= (cosϕ − z)2 + sin2 ϕ = z2 − 2z cosϕ + 1.

The eigenvalues of A and their multiplicities are given by 

. 
λ1 = cosϕ + i sinϕ = eiϕ, mλ1 = 1,
λ2 = cosϕ − i sinϕ = e− iϕ, mλ2 = 1.

In particular, the spectrum of A is simple. 
Step 2. Computation of the eigenspaces of . λ1 and . λ2. 

.Eλ2(A) ≡ Eλ2(fA): an eigenvector .v = (v1, v2) ∈ C
2 \ {

(0, 0)
}
of A for the 

eigenvalue . λ2 solves the following linear system 

. 

(
i sinϕ − sinϕ

sinϕ i sinϕ

) (
v1

v2

)
=

(
i sinϕ · v1 − sinϕ · v2

sinϕ · v1 + i sinϕ · v2

)
=

(
0
0

)
.

To find a nontrivial solution of the latter linear system, consider the first equation 
.i sinϕ · v1 − sinϕ · v2 = 0. Since by assumption .sinϕ �= 0, we can divide by 
.sinϕ and choose .v1 = 1, .v2 = i. The second equation . sinϕ · v1 + i sinϕ · v2 = 0
is then also satisfied and hence 

. Eλ2(A) = {
α(1, i) | α ∈ C

}
.

.Eλ1(A) ≡ Eλ1(fA): an eigenvector .v = (v1, v2) ∈ C
2 \ {0} of A for the 

eigenvalue . λ1 solves the following linear system 

. 

(− i sinϕ − sinϕ

sinϕ − i sinϕ

) (
v1

v2

)
=

(− i sinϕ · v1 − sinϕ · v2

sinϕ · v1 − i sinϕ · v2

)
=

(
0
0

)
.

To find a nontrivial solution of the latter linear system, consider the first equation 
.− i sinϕ · v1 − sinϕ · v2 = 0. Since by assumption .sinϕ �= 0, we can divide by 
.sinϕ and choose .v1 = 1, .v2 = − i. The second equation . sinϕ ·v1−i sinϕ ·v2 = 0
is then also satisfied and hence 

. Eλ1(A) = {
α(1,− i) | α ∈ C

}
.

Then .v(1) = (1,− i), .v(2) = (1, i) form a basis . [v] of eigenvectors of . C2 with 

. (fA)[v]→[v] = diag(eiϕ, e− i ϕ)

and .A = Id[v]→[e] diag(eiϕ, e− i ϕ)(Id[v]→[e])−1 can be computed as 

.A =
(

1 1
− i i

)(
eiϕ 0
0 e− iϕ

)
1

2 i

(
i −1
i 1

)
.
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The second class of matrices we want to discuss are the Hermitian matrices. 

Definition 5.1.14 A matrix  .A ∈ C
n×n is said to be Hermitian if .A

T = A or, 
equivalently, 

. 〈Av,w〉 = 〈v,Aw〉, v, w ∈ C
n

where .〈·, ·〉 denotes the Euclidean inner product on . Cn. 

Theorem 5.1.15 For any Hermitian matrix .A ∈ C
n×n, the following holds: 

(i) Every eigenvalue of A is real. 
(ii) Any two eigenvectors .v,w ∈ C

n \ {0} of A for distinct eigenvalues . λ, . μ of A, 
.λ �= μ, are orthogonal, i.e., .〈v,w〉 = 0. 

(iii) There exists an orthonormal basis of . Cn consisting of eigenvectors of A. In  
particular, A is diagonalizable. 

Remark Let us briefly discuss Items (i) and (ii). Concerning (i), let  . λ be an 
eigenvalue of A and .v ∈ C

n \ {0} a corresponding eigenvector, .Av = λv. Since 

. λ〈v, v〉 = 〈λv, v〉 = 〈Av, v〉 = 〈v,Av〉 = 〈v, λv〉 = λ〈v, v〉,

it then follows that .λ = λ. Regarding Item (ii), assume that . λ, . μ are distinct 
eigenvalues of A, .λ �= μ, and v, .w ∈ C

n \ {0} eigenvectors for . λ, respectively 
. μ. Then 

. λ〈v,w〉 = 〈λv,w〉 = 〈Av,w〉 = 〈v,Aw〉 = 〈v, μw〉 = μ〈v,w〉.

Since . μ is real and by assumption .λ �= μ, it then follows that .〈v,w〉 = 0. 

Problems 

1. Let A =
(−1 + 2 i  1  + i 

2 + 2 i  2 − i

)
∈ C2×2. 

(i) Compute the eigenvalues of A. 
(ii) Compute the eigenspaces of the eigenvalues of A. 
(iii) Find a regular 2 × 2 matrix  S ∈ C2×2 so that S−1AS is diagonal. 

2. Let A =
(
1 −1 
2 −1

)
, viewed as an element in C2×2. 

(i) Compute the eigenvalues of A. 
(ii) Compute the eigenspaces (in C2) of the eigenvalues of A. 
(iii) Find a regular 2 × 2 matrix  S ∈ C2×2 so that S−1AS is diagonal.
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3. Let A =
(

1/2 + i/2 
1/2 + i/2 

− 1/2 − i/2 
1/2 + i/2

)
∈ C2×2. 

(i) Verify that A is unitary. 
(ii) Compute the spectrum of A. 
(iii) Find an orthonormal basis of C2, consisting of eigenvectors of A. 

4. Let A = 

⎛ 

⎝ 
2 i 1  

− i 2  − i 
1 i 2  

⎞ 

⎠ ∈ C3×3. 

(i) Verify that A is Hermitian. 
(ii) Compute the spectrum of A. 
(iii) Find a unitary 3 × 3 matrix  S ∈ C3×3 so that S−1AS is diagonal. 

5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) Assume that A, B ∈ C2×2 and that λ ∈ C is an eigenvalue of A and μ ∈ C 
is an eigenvalue of B. Then λ + μ is an eigenvalue of A + B. 

(ii) For any A ∈ C2×2, A and AT have the same eigenspaces. 

5.2 Eigenvalues and Eigenvectors of R-Linear Maps 

The aim of this section is to discuss issues in spectral theory, arising when one 
considers .R-linear maps on a .R-vector space V . To simplify the exposition we limit 
ourselves to the case where .V = R

n. Note that any .R-linear map .f : Rn → R
n is 

of the form .fA : Rn → R
n, .x → Ax where .A = f[e]→[e] ∈ R

n×n and that we can 
extend the .R-linear map . fA to a .C-linear map on . Cn, .fA : Cn → C

n, .x �→ Ax and 
then apply the results obtained in Sect. 5.1. It turns out that square matrices with real 
coefficients have special features and new questions arise which we now would like 
to discuss in some detail. For .A ∈ R

n×n, consider the characteristic polynomial 

. χA(z) = det(A − z Idn×n).

It is not difficult to see that the polynomial .χA(z) has real coefficients. However, 
note that in general this does not imply that the roots of . χA are real numbers. 

Lemma 5.2.1 Assume that .A ∈ R
n×n and .v ∈ C

n \ {0} is an eigenvector of A for 
the eigenvalue .λ ∈ C. Then . λ is an eigenvalue of A as well and . v is a corresponding 
eigenvector. 

Indeed, since .A = A and .Av = Av, one has .Av = Av = λv = λv. 

Remark Actually one can show that for any eigenvalue .λ ∈ C of .A ∈ R
n×n,
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. mλ = mλ, dim(Eλ(A)) = dim(Eλ(A)),

i.e., . λ and . λ have the same algebraic and geometric multiplicities. For notational 
convenience, we write .Eλ(A) for .Eλ(fA). 

Lemma 5.2.1 can be applied as follows: assume that .λ ∈ C \ R is an eigenvalue 
of A with eigenvector .v = (vj )1≤j≤n ∈ C

n. Then 

. Av = λv, Av = λv.

Note that .v + v = (
2Re(vj )

)
1≤j≤n

∈ R
n and .i(v − v) = (

2 Im(vj )
)
1≤j≤n

∈ R
n. 

Hence with .λ1 = Re(λ), .λ2 = Im(λ), one has 

. A(v + v) = (λ1 + i λ2)v + (λ1 − i λ2)v = λ1(v + v) − i λ2(v − v)

and similarly, 

. A
(
i(v−v)

) = iAv− iAv = i(λ1− i λ2)v− i(λ1+ i λ2)v = λ1 i(v−v)+λ2(v+v).

In the case where .v + v and .i(v − v) are linearly independent vectors in . Rn, we  
consider the two dimensional subspace .W := {

α1v
(1) +α2v

(2) | α1, α2 ∈ R
}
of . Rn, 

generated by 

. v(1) := v + v, v(2) := i(v − v).

Then .Aw ∈ W for any .w ∈ W and 

. (fA|W)[v(1),v(2)]→[v(1),v(2)] =
(

Re(λ) Im(λ)

− Im(λ) Re(λ)

)
.

We have the following 

Lemma 5.2.2 Assume that .A ∈ R
n×n and .v ∈ C

n is an eigenvector of A with 
eigenvalue .λ ∈ C \ R. Then the following holds: 
(i) .v(1) = v + v and .v(2) = i(v − v) are linearly independent vectors in . Rn. 
(ii) The two dimensional subspace W , spanned by .v(1) and . v(2), is invariant under 

. fA, i.e., for any .α1, α2 ∈ R, .A(α1v
(1) + α2v

(2)) ∈ W . 
(iii) The matrix representation of the restriction .fA|W : W → W with respect to the 

basis .[v(1), v(2)] is given by 

. (fA|W)[v(1),v(2)]→[v(1),v(2)] =
(

Re(λ) Im(λ)

− Im(λ) Re(λ)

)
= |λ|

(
cos θ sin θ

− sin θ cos θ

)

where .|λ|ei θ is the polar representation of the complex number . λ. Since . λ /∈ R

one has .sin θ �= 0.
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Remark The above computations imply that for any real eigenvalue . λ of .A ∈ R
n×n, 

there exists an eigenvector .v ∈ R
n, .Av = λv. Indeed, assume that .v ∈ C

n \ {0} is 
an eigenvector for the eigenvalue . λ of A, .Av = λv. Then .Av = λv and hence 

. A(v + v) = λ(v + v), A
(
i(v − v)

) = λ i(v − v).

Since .0 �= 2v = (v + v) + i
(
i(v − v)

)
and .v �= 0, either .v + v �= 0 or .i(v − v) �= 0. 

To finish this section, we consider two special classes of matrices in .R
n×n. 

Orthogonal Matrices A matrix  .A ∈ R
n×n is said to be orthogonal if . ATA =

Idn×n. Equivalently, it means that 

. 〈Ax,Ay〉 = 〈x, y〉, x, y ∈ R
n

where .〈·, ·〉 denotes the Euclidean scalar product on . Rn, .〈x, y〉 = ∑n
k=1 xkyk . 

Theorem 5.2.3 For any orthogonal matrix .A ∈ R
n×n, the following holds: 

(i) Any eigenvalue . λ of A satisfies .|λ| = 1. 
(ii) If .v,w ∈ C

n are eigenvectors for distinct eigenvalues .λ,μ of A, then 
.
∑n

k=1 vkwk = 0. 
(iii) . Cn admits a basis of eigenvectors of A. 

Remark Since any orthogonal matrix is unitary, Theorem 5.1.13 applies. 

Example The .2 × 2 matrix .R(ϕ) =
(

cosϕ sinϕ

− sinϕ cosϕ

)
, describing the rotation in 

. R2 by the angle . ϕ, is orthogonal. Its eigenvalues are .λ1 = eiϕ , .λ2 = e− iϕ . 

Symmetric Matrices A matrix  .A ∈ R
n×n is said to be symmetric if .AT = A. 

Equivalently, it means that 

. 〈Ax, y〉 = 〈x,Ay〉, x, y ∈ R
n.

Theorem 5.2.4 For any symmetric matrix .A ∈ R
n×n, the following holds: 

(i) Every eigenvalue of A is real and hence admits an eigenvector x in . Rn, . Ax =
λx. 

(ii) If .λ,μ are eigenvalues of A with .λ �= μ, then .〈x, y〉 = 0 for any eigenvector 
.x ∈ R

n
.[y ∈ R

n] of A for the eigenvalue . λ . [μ]. 
(iii) . Rn admits an orthonormal basis of eigenvectors of A. 

Remark To see that Item (i) of Theorem 5.2.4 holds, note that since a symmetric 
matrix .A ∈ R

n×n is Hermitian, it follows by Theorem 5.1.15 that every eigenvalue 
of A is real. By the Remark after Lemma 5.2.2, there exists .x ∈ R

n \ {0} so that 
.Ax = λx. Concerning Item (ii), one argues as in the last Remark of the previous 
section.
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In the case .A ∈ R
n×n is symmetric, one can define the geometric multiplicity of 

an eigenvalue . λ in the following alternative way: consider 

. Eλ,Rn(A) := {
x ∈ R

n | Ax = λx
} = Eλ(A) ∩ R

n.

It is straightforward to verify that .Eλ,Rn(A) is a subspace of . Rn. By Theorem 5.2.4 
we know that it is a non trivial subspace of . Rn. It can be proved that 

. dimR(Eλ,Rn(A)) = dimC(Eλ(A))

and hence the geometric multiplicity of . λ is given by .dimR(Eλ,Rn(A)). 

Theorem 5.2.5 Any symmetric matrix .A ∈ R
n×n can be diagonalized in the 

following sense: there exists an orthonormal basis .[v] = [v(1), . . . , v(n)] of . Rn, 
consisting of eigenvectors of A, .Av(j) = λjv

(j), .1 ≤ j ≤ n, so that 

. (fA)[v]→[v] = STAS

where S is the orthogonal matrix in .Rn×n, given by .Id[v]→[e]. Hence the j th 
column of S is given by . v(j). Furthermore, for any eigenvalue . λ of A, the algebraic 
multiplicity . mλ coincides with the geometric multiplicity .dimR(Eλ,Rn(A)). 

Problems 

1. Let A =
(
1 4  
2 3

)
∈ R2×2. 

(i) Compute the spectrum of A. 
(ii) Find eigenvectors v(1), v(2) ∈ R

2 of A, which form a basis of R2. 
(iii) Find a regular 2 × 2 matrix  S ∈ R2×2 so that S−1AS is diagonal. 

2. Let A = 

⎛ 

⎝ 
2 1 0  
0 1  −1 
0 2  −1 

⎞ 

⎠, viewed as an element in C3×3. 

(i) Compute the spectrum of A. 
(ii) For each eigenvalue of A, compute the eigenspace. 
(iii) Find a regular matrix S ∈ C3×3 so that S−1AS is diagonal. 

3. Determine for each of the following symmetric matrices 

A =
(
2 1  
1 2

)
(i) B = 

⎛ 

⎝ 
2 1 1  
1 3  −2 
1 −2 3  

⎞ 

⎠(ii) 

its spectrum and find an orthogonal matrix, which diagonalizes it.
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4. (i) Assume that A is a n×n matrix with real coefficients, A ∈ R
n×n, satisfying 

A2 = A. Verify that each eigenvalue of A is either 0 or 1. 
(ii) Let A ∈ R

n×n. For any a ∈ R, compute the eigenvalues and the eigenspaces 
of A + a Idn×n in terms of the eigenvalues and the eigenspaces of A. 

5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) Any matrix A ∈ R3×3 has at least one real eigenvalue. 
(ii) There exists a symmetric matrix A ∈ R5×5, which admits an eigenvalue, 

whose geometric multiplicity is 1, but its algebraic multiplicity is 2. 

5.3 Quadratic Forms on Rn 

In this section we introduce the notion of quadratic forms on . Rn and discuss 
applications to geometry. 

Definition 5.3.1 We say that a function .Q : Rn → R is a quadratic form on . Rn if 
for any .x = (x1, . . . , xn) ∈ R

n, 

. Q(x) =
∑

1≤i,j≤n

aij xixj , aij ∈ R.

It means that Q is a polynomial homogeneous of degree 2 in the variables . x1, . . . , xn

with real coefficients . aij , .1 ≤ i, j ≤ n. 

Since 

. Q(x) =
∑

1≤i,j≤n

aij + aji

2
xixj =

∑

1≤i,j≤n

1

2
(A + AT)ij xixj ,

we can assume without loss of generality that A is symmetric, i.e., .A = AT. We  
say that .Q = QA is the quadratic form associated to the symmetric matrix A. One  
can represent the quadratic form .QA with the help of the Euclidean inner product 
on . Rn, 

. QA(x) = 〈Ax, x〉, x ∈ R
n.

Example Assume that .Q(x) = 3x2
1 +5x1x2+8x2

2 . Then . Q(x) = QA(x) = 〈Ax, x〉
for any .x ∈ R

2 where 

. A =
(
3 5/2
5/2 8

)
∈ R

2×2.

Quadratic forms can be classified as follows:
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Definition 5.3.2 A quadratic form .Q : Rn → R is said to be positive definite 
(positive semi-definite) if  .Q(x) > 0 (.Q(x) ≥ 0) for any .x ∈ R

n \ {0}. It is said  
to be negative definite (negative semi-definite) if  .Q(x) < 0 (.Q(x) ≤ 0) for any 
.x ∈ R

n \ {0}. Finally, Q is said to be indefinite, if there exists .x, y ∈ R
n such that 

.Q(x) > 0 and .Q(y) < 0. 

Note that for a positive definite quadratic form Q, .x = 0 is a global strict 
minimum of Q. If  Q is indefinite, then .x = 0 is a saddle point. To decide the type 
of a given quadratic form . QA, it is useful to introduce the following classification 
of symmetric .n × n matrices. 

Definition 5.3.3 A symmetric .n×n matrix .A ∈ R
n×n is said to be positive definite 

(positive semi-definite) if any eigenvalue . λ of A satisfies .λ > 0 (.λ ≥ 0). Similarly A 
is said to be negative definite (negative semi-definite) if any eigenvalue of A satisfies 
.λ < 0 (.λ ≤ 0). Finally, A is said to be indefinite if it possesses eigenvalues . λ,μ

satisfying .λ < 0 < μ. 

It turns out that the classifications of quadratic forms and symmetric matrices 
are closely related. For any quadratic form .QA with .A ∈ R

n×n symmetric, it 
follows from Theorem 5.2.5 that there exists an orthogonal matrix . S ∈ R

n×n

and real numbers .λ1, . . . , λn such that .A = SBST where .B = diag(λ1, . . . , λn). 
Here, .λ1, . . . , λn are the eigenvalues of A and the j th column of S is a normalized 
eigenvector of A for . λj . As a consequence 

. QA(x) = 〈Ax, x〉 = 〈SBSTx, x〉 = 〈BSTx, STx〉.

With .y = STx, .x ∈ R
n one then can write 

. QA(x) =
n∑

j=1

λjy
2
j , y = (y1, . . . , yn) = STx.

It yields the following relationship between the classification of quadratic forms . QA

and the one of symmetric matrices A. 

(i) .QA is positive definite (positive semi-definite) if and only if A is positive 
definite (positive semi-definite). 

(ii) .QA is negative definite (negative semi-definite) if and only if A is negative 
definite (negative semi-definite). 

(iii) .QA is indefinite if and only if A is indefinite. 

To decide the type of a given symmetric .n×nmatrix A, it is not always necessary 
to compute the spectrum of A. The following result characterizes positive definite 
symmetric matrices. 

Theorem 5.3.4 Assume that .A ∈ R
n×n is symmetric and denote by .A(k) the . k × k

matrix .A(k) = (aij )1≤i,j≤k . Then A is positive definite if and only if . det(A(k)) > 0
for any .1 ≤ k ≤ n.
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Example Consider the symmetric .3 × 3 matrix 

. A =
⎛

⎝
1 1 0
1 2 −1
0 −1 2

⎞

⎠ .

Then .A(1) = 1, .A(2) =
(
1 1
1 2

)
and .A(3) = A. One computes .detA(1) = 1 > 0, 

.detA(2) = 1 > 0, .detA(3) = 1 > 0. 

We finish this section with an application to geometry. Consider a function 
.f : R2 → R of the form 

.f (x1, x2) = ax2
1 + bx1x2 + cx2

2 + dx1 + ex2 + k (5.2) 

with real coefficients .a, b, c, d, e, and k. It means that f is a polynomial of degree 2 
in the variables .x1, x2. The coefficients of the polynomial f are assumed to be real.  
The quadratic form 

. QA(x) = 〈x,Ax〉, A =
(

a b/2
b/2 c

)
∈ R

2×2

is referred to as the quadratic form associated to f . 

Definition 5.3.5 A conic section is a subset of . R2 of the form 

. Kf = {
(x1, x2) ∈ R

2 | f (x1, x2) = 0
}

where f is a polynomial of the form (5.2). 

Examples 

(i) For .f (x1, x2) = 1
4 x2

1 + x2
2 − 1, 

. Kf = {
(x1, x2) ∈ R

2 | 1
4

x2
1 + x2

2 = 1
}
,

i.e., . Kf is an ellipse centered at .(0, 0) with half axes of length 2 and 1. 
(ii) For .f (x1, x2) = x2

1 − x2, 

. Kf = {
(x1, x2) ∈ R

2 | x2 = x2
1

}

is a parabola with vertex .(0, 0). 
(iii) For .f (x1, x2) = x1x2 − 1, 

.Kf = {
(x1, x2) ∈ R

2 | x2 = 1/x1
}
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is a hyperbola with two branches. 
(iv) For .f (x1, x2) = (x1 + x2)

2 + 1, one has .Kf = ∅. 
(v) For .f (x1, x2) = (x1 + x2)

2 − 1, 

. Kf = {
(x1, x2) ∈ R

2 | x1 + x2 = 1 or x1 + x2 = −1
}
,

i.e., . Kf is the union of two straight lines. 
(vi) For .f (x1, x2) = (x1 + x2)

2, 

. Kf = {
(x1, x2) ∈ R

2 | x1 + x2 = 0
}
,

i.e., . Kf is one straight line. 
(vii) For .f (x1, x2) = x2

1 + x2
2 , one has .Kf = {

(0, 0)
}
. 

Remark A conic section . Kf is said to be degenerate if . Kf is empty or a point set or 
a straight line or a union of two straight lines. Otherwise it is called nondegenerate. 

Theorem 5.3.6 By means of translations and/or rotations in . R2, any nondegen-
erate conic section can be brought into one of the following forms, referred to as 
canonical forms: 

(i) Ellipse with center .(0, 0), 

. 
x2
1

a21

+ x2
2

a22

= 1, a1, a2 ∈ R>0.

The associated symmetric matrix A equals .diag( 1
a21

, 1
a22

), hence .detA > 0. 

(ii) Hyperbola, centered at .(0, 0), with two branches, 

. 
x2
1

a21

− x2
2

a22

= 1, a1, a2 ∈ R>0.

The associated symmetric matrix A equals .diag( 1
a21

,− 1
a22

), hence .detA < 0. 

(iii) Parabola with vertex .(0, 0), 

. x2
1 = ax2 or x2

2 = ax1, a ∈ R \ {0}.

The associated symmetric matrix A is given by .A = diag(1, 0) or . A =
diag(0, 1). Hence .detA = 0. 

Examples 

(i) Consider the polynomial 

.f (x1, x2) = 9x2
1 − 18x1 + 4x2

2 + 16x2 − 11.
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Bring . Kf in canonical form, if possible. 
In a first step we complete squares in the following expressions, 

. 9x2
1 − 18x1 = 9(x2

1 − 2x1) = 9
(
(x1 − 1)2 − 1

) = 9(x1 − 1)2 − 9,

4x2
2 + 16x2 = 4(x2

2 + 4x2) = 4
(
(x2 + 2)2 − 4

) = 4(x2 + 2)2 − 16,

to get 

. f (x1, x2) = 9(x1 − 1)2 + 4(x2 + 2)2 − 36.

Then .f (x1, x2) = 0 if and only if 

. 
9(x1 − 1)2

36
+ 4(x2 + 2)2

36
= 1

or 

. 
(x1 − 1)2

22
+ (x2 + 2)2

32
= 1.

Hence by the translation .x �→ y := x − (1,−2) one gets 

. 
y2
1

a21

+ y2
2

a22

= 1, a1 = 2, a2 = 3,

i.e., . Kf is an ellipse with center .(1,−2). 
(ii) Consider 

. f (x1, x2) = 3x2
1 + 2x1x2 + 3x2

2 − 8.

Decide whether .Kf is nondegenerate and if so, bring it into canonical form. 
First note that 

. f (x) = 〈x,Ax〉 − 8, A =
(
3 1
1 3

)
.

The eigenvalues of A can be computed to be .λ1 = 2, .λ2 = 4. Hence . detA =
2 · 4 = 8 > 0. This shows that . Kf is an ellipse. To bring it in canonical form, 
we have to diagonalize A. One verifies that 

. v(1) = 1√
2

(1,−1), v(2) = 1√
2

(1, 1),

are normalized eigenvectors of A for . λ1 and . λ2. Then .S := Id[v]→[e] is the 
orthogonal .2 × 2 matrix
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. S = 1√
2

(
1 1

−1 1

)

and .A = S diag(2, 4)ST. Hence 

. 〈x,Ax〉 = 〈
STx,

(
2 0
0 4

)
STx

〉
, x ∈ R

2.

Thus we have shown that .Kf = {
x = Sy | y21

4 + y22
2 = 1

}
. When, expressed in 

the y coordinates, . Kf is an ellipse with axes of length 2 and . 
√
2 . 

One can investigate the zero sets of polynomials also in higher dimensions. In the 
case .n = 3, one considers polynomials .f : R3 → R of the form 

. f (x) = 〈x,Ax〉 + 〈b, x〉 + c

where .A ∈ R
3×3 is symmetric, .b ∈ R

3 and .c ∈ R. The zero set . Kf = {
x ∈ R

3 |
f (x) = 0

}
is called a quadric surface or a quadric. Types of non degenerate quadrics 

in . R3 are the following surfaces: 

(i) ellipsoid. For any .a1, a2, a3 > 0, 

. a21x
2
1 + a22x

2
2 + a23x

2
3 = 1.

(ii) hyperboloid with one sheet. For any .a1, a2, a3 > 0, 

. − a21x
2
1 + a22x

2
2 + a23x

2
3 = 1;

(iii) hyperboloid with two sheets. For any .a1, a2, a3 > 0, 

. − a21x
2
1 − a22x

2
2 + a23x

2
3 = 1;

(iv) elliptic paraboloid. For any .a3 �= 0 and .a1, a2 > 0, 

. a3x3 = a21x
2
1 + a22x

2
2 ;

(v) hyperbolic paraboloid. For any .a3 �= 0 and .a1, a2 > 0, 

.a3x3 = −a21x
2
1 + a22x

2
2 .
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Problems 

1. (i) Decide, which of the following matrices A ∈ Rn×n are symmetric and 
which are not.⎛ 

⎝ 
3 2 1  
2 1 3  
1 3 2  

⎞ 

⎠(a)

(
1 2  

−2 1

)
(b) 

⎛ 

⎝ 
1 2  3  
2 −1 3  
3 4  1  

⎞ 

⎠(c) 

(ii) Determine for the following quadratic forms Q the symmetric matrices A ∈ 
R
3×3 so that Q(x) = 〈x, Ax〉 for any x = (x1, x2, x3) ∈ R3. 

(a) Q(x1, x2, x3) = 2x2 
1 + 3x2 

2 + x2 
3 + x1x2 − 2x1x3 + 3x2x3. 

(b) Q(x1, x2, x3) = 8x1x2 + 10x1x3 + x2 
1 − x2 

3 + 5x2 
2 + 7x2x3. 

2. Find a coordinate transformation of R2 (translation and/or rotation) so that the 
conic section Kf =

{
f (x1, x2) = 0

}
is in canonical form where 

. f (x1, x2) = 3x2
1 + 8x1x2 − 3x2

2 + 28.

3. Verify that the conic section Kf = {
f (x)  = 0

}
is a parabola where f is given 

by 

. f (x) = x2
1 + 2x1x2 + x2

2 + 3x1 + x2 − 1, x = (x1, x2) ∈ R
2.

4. (i) Determine symmetric matrices A, B ∈ R2×2 so that A and B have the same 
eigenvalues, but not the same eigenspaces. 

(ii) Assume that A, B ∈ C
2×2 have the same eigenvalues and the same 

eigenspaces. Decide whether in such a case A = B. 
5. Decide whether the following assertions are true or false and justify your 

answers. 

(i) For any eigenvalue of a symmetric matrix A ∈ R
n×n, its algebraic 

multiplicity equals its geometric multiplicity. 
(ii) The linear map T : R2 → R2, (x1, x2) �→ (x2, x1) is a rotation. 
(iii) The linear map R : R2 → R2, (x1, x2) �→ (−x2, x1) is orthogonal.



Chapter 6 
Differential Equations 

The aim of this chapter is to present a brief introduction to the theory of ordinary 
differential equations. The main focus is on systems of linear differential equations 
of first order in . Rn with constant coefficients. They can be solved by the means of 
linear algebra. Hence this chapter is an application of what we have learned so far 
to a topic in the field of analysis. 

In this chapter, we assume some basic knowledge of analysis such as the notion 
of a continuous or the one of a differentiable function .f : R → R

n, the fundamental 
theorem of calculus, the exponential function .t �→ et or the logarithm . t �→ log t

among others. 

6.1 Introduction 

Mathematical models describing the dynamics of systems, considered in the 
sciences, are often expressed in terms of differential equations, which relate 
the quantities describing the essential features of the system. Such models are 
introduced and analyzed with the aim of predicting how these systems evolve in 
time. Prominent examples are models of mechanical systems, such as the motion 
of a particle of mass m in the space . R3, models for radioactive decay, population 
models etc. 

Motion of a Particle in .R3 The motion of a particle in . R3 can be described by a 
curve in . R3, 

. y : R → R
3, t �→ y(t)
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where t (independent variable) denotes time and .y(t) (dependent variable) the 
position of the particle at time t . In case the particle has mass m and a force F 
acts on it, Newton’s law says that 

. m · y′′(t) = F

where .y′(t) = d
dt y(t) is the velocity and .y′′(t) = d2

dt2
y(t) is the acceleration of the 

particle at time t . Here  F is the vector resulting from all the forces acting on the 
particle at a given time. The equation .my′′(t) = F is a differential equation in case 
the force F only depends on t , on the position .y(t) at time t , on the velocity .y′(t) at 
time t , . . . . , but not on the values .y(s) or one of its derivatives for .s �= t . 

Radioactive Decay A substance, such as radium, decays by a stochastic process. 
It is assumed that the probability P of the decay of an atom of the substance in 
an infinitesimal time interval .[t, t + �t] is proportional to . �t , i.e., there exists a 
constant . λ, depending on the substance considered, so that 

. P
(
decay of atom in [t, t + �t]) = λ�t.

Denote by m is the mass of a single atom of the substance considered and by . N(t)

the number of atoms at time t . It is then expected that 

. N(t + �t) − N(t) = −N(t) · P
(
decay of atom in [t, t + �t]) = −N(t)λ�t

and hence that the total mass of the substance .x(t) = mN(t) obeys the law 

. x(t + �t) − x(t) = −x(t)λ�t.

Taking the limit .�t → 0, one is led to the differential equation 

. x′(t) = −λx(t).

More generally, if one is given three substances .X, Y,Z where X decays to Y and Y 
decays to Z, then the total masses . x(t), . y(t), .z(t) of the substances .X, Y,Z at time 
t satisfy a system of differential equations of the form 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

. x′(t) = −λx(t)

y′(t) = λx(t) − μy(t)

z′(t) = μy(t).

Population Models Denote by .N(t) the number of individuals of a given species 
at time t . We assume that .N(t) is very large so that it can be approximated by a real
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valued function .p(t) which is continuously differentiable in t . Often it is assumed 
that the growth rate at time t , 

. 
p′(t)
p(t)

,

depends on the population .p(t) at time t , i.e., that it is modelled by a function .r(p), 
yielding the equation 

. 
p′(t)
p(t)

= r(p(t)), t ∈ R.

In case the function r is a constant .r ≡ α > 0, one speaks of exponential growth, 

. p′(t) = α · p(t), t ∈ R

In applications, it is often observed that the growth rate becomes negative if the 
population exceeds a certain threshold . p0. In such a case, one frequently chooses 
for r an affine function, 

. r(p) = β · (p0 − p), β > 0,

leading to the equation 

. p′(t) = β · (
p0 − p(t)

) · p(t) = βp0p(t) − βp(t)2, t ∈ R.

The equation is referred to as the logistic equation. 
Now assume that 

. f : R × R × R → R, (t, x0, x1) �→ f (t, x0, x1)

is a function which is sufficiently often differentiable for the purposes considered. 
We then say that 

.f
(
t, x(t), x′(t)

) = 0, t ∈ R, (6.1) 

is an ordinary differential equation (ODE) of first order and that a continuously 
differentiable function .x : R → R satisfying .f (t, x(t), x′(t)) = 0 for any .t ∈ R (or 
alternatively for any t in some open nonempty interval) is a solution of (6.1). More  
generally, if 

. F : R × R
n × R

n → R
m

is a sufficiently regular vector valued map, we say that 

.F
(
t, y(t), y′(t)

) = 0, t ∈ R, (6.2)
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is a system of ordinary differential equations of first order and that the continuously 
differentiable vector valued function 

. y : R → R
n,

satisfying .F(t, y(t), y′(t)) = 0 for any .t ∈ R, is a solution of (6.2). We say that (6.2) 
is in explicit form if it can be written in the form 

.y′(t) = G
(
t, y(t)

)
, t ∈ R. (6.3) 

Note that in this case, .m = n and G is a map .G : R × R
n → R

n. 
More generally, a system of ODEs of nth order in explicit form is an equation of 

the form 

.y(n)(t) = G
(
t, y(t), y′(t), . . . , y(n−1)(t)

)
(6.4) 

where .y(j)(t) denotes the j th derivative of .y : R → R
n and 

. G : R × R
n × · · · × R

n → R
n

is sufficiently regular for the purposes considered. In the sequel, we will only 
consider ODEs of the form (6.4). We remark that systems of order n can always be 
converted into systems of first order, albeit of higher dimension. See the discussion 
in Sect. 6.3 concerning second order ODEs. Hence, we may restrict our attention to 
equations of the form (6.3). 

The main questions concerning the Eq. (6.3) are the existence and the uniqueness 
of solutions and their properties. We remark that only in very rare cases, the 
solution can be represented in terms of an explicit formula. Hence investigations 
of qualitative properties of solutions play an important role. In particular, one is 
interested to know whether solutions exist for all time or whether some of them 
blow up in finite time. Of special interest is to determine the asymptotic behaviour 
of solutions as .t → +∞ or as t approaches the blow up time. In addition, one wants 
to find out if there are special solutions such as stationary solutions or periodic 
solutions and investigate their stability. 

Associated to (6.3) is the so called initial value problem (IVP)

{
.y′(t) = G

(
t, y(t)

)
, t ∈ R,

y(0) = y(0)

(6.5) 

(6.6) 

where .y(0) ∈ R
n is a given vector. There are quite general results saying that under 

appropriate conditions of the map G, (6.5) has a unique solution at least in some 
time interval containing .t = 0. An important class of equations of the form (6.3) are 
the so called linear ODEs. We say that (6.3) is a linear ODE if G is of the form 

.G(t, y) = A(t)y + f (t),
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or written componentwise, 

.Gj(t, y) =
n∑

k=1

ajk(t)yk + fj (t), 1 ≤ j ≤ n (6.7) 

where .A : R → R
n×n, .t �→ A(t) = (

ajk(t)
)
1≤j,k≤n

is a matrix valued map 
and .f : R → R

n, .t �→ f (t) a vector valued one. Note that the notion of 
linear ODE concerns the (dependent) variable y and not to the (independent) 
variable t . The real valued functions .t �→ ajk(t) are referred to as the coefficients 
of (6.7). In case .f = 0, (6.7) is said to be a homogeneous ODE, otherwise a 
inhomogeneous one. We say that a linear ODE of the form (6.7) has constant 
coefficients if all the coefficients .ajk(t), .1 ≤ j, k ≤ n, are independent of 
t . Note that f need not to be constant in t . Linear ODEs of the form (6.3) 
with constant coefficients can be solved explicitly. Such ODEs will be discussed 
in Sect. 6.2, whereas ODEs of second order (with constant coefficients) will be 
studied in Sect. 6.3. We point out that the theory of ODEs is a large field within 
analysis and that in this chapter we only discuss a tiny, albeit important, part of 
it. We also mention that a field closely related to the field of ordinary differential 
equations is the field of partial differential equations (PDEs), including equations 
such as heat equations, transport equations, Schrödinger equations, wave equations, 
Maxwell’s equations, and Einstein’s equations. In contrast to ODEs, PDEs have 
more than one independent variable. In addition to the time variable, these might be 
space variables, or more generally, variables in a phase space. The field of partial 
differential equations is huge and currently a very active area of research. 

6.2 Linear ODEs with Constant Coefficients of First Order 

In this section we treat systems of .n ≥ 1 linear differential equations of first order 
with n unknowns, .y = (y1, . . . , yn) ∈ R

n, 

.Py′(t) + Qy(t) = g(t), t ∈ R (6.8) 

where .y′(t) = d
dt y(t) denotes the derivative of y at time t , .P,Q are matrices 

in .Rn×n with constant coefficients, and .g : R → R
n is a continuous function. 

In applications, the variable t has often the meaning of time. We are looking for 
solutions .y : t �→ y(t) of (6.8) which are continuously differentiable. In the sequel 
we will always assume that P is invertible. Hence we might multiply the left and the 
right hand side of (6.8) by .P −1 and are thus led to consider systems of differential 
equations of first order of the form 

.y′(t) = Ay(t) + f (t), t ∈ R
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where .A ∈ R
n×n has constant coefficients and .f : R → R

n is  assumed to be  
continuous. We first treat the case where f identically vanishes. The system 

.y′(t) = Ay(t), t ∈ R, (6.9) 

is referred to as a homogeneous system of linear ODEs with constant coefficients. 
Note that .t �→ y(t) = 0 is always a solution of (6.9), referred to as the trivial 
solution. An important question is whether (6.9) has nontrivial solutions. Written 
componentwise, the system reads 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

. y′
1(t) =

n∑

j=1

a1j yj (t)

...

y′
n(t) =

n∑

j=1

anjyj (t)

where .A = (aij )1≤i,j≤n. 
Let us first consider the special case .n = 1. Writing a for .A = (a11), Eq. (6.9) 

becomes .y′(t) = ay(t). We claim that .y(t) = ceat , .c ∈ R arbitrary, is a solution. 
Indeed, by substituting .y(t) = ceat into the equation .y′(t) = ay(t) and using that 
.
d
dt (e

at ) = aeat one sees that this is the case. 
How can one find a solution of .y′(t) = ay(t)without guessing? A possible way is 

to use the method of separation of variables. It consists in transforming the equation 
in such a way that the left hand side is an expression in y and its derivative only, 
whereas the right hand side does not involve y and its derivative at all. In the case at 
hand, we argue formally. 

Divide .y′(t) = ay(t) by .y(t) to get 

. 
y′(t)
y(t)

= a.

Since, formally, . y
′(t)

y(t)
= d

dt log(y(t)), one concludes that 

. log(y(t)) − log(y(0)) =
∫ t

0

d

dt
log(y(t)) dt =

∫ t

0
a dt = at.

Using that .log(y(t))− log(y(0)) = log(y(t)/y(0)), one gets .y(t) = y(0)eat for any 
.t ∈ R. Hence for any initial value .y0 ∈ R, .t �→ y0e

at is a solution of the initial 
value problem 

.

{
y′(t) = ay(t), t ∈ R,

y(0) = y0
. (IVP)
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It turns out that .y0eat is the unique solution of (IVP). Indeed, assume that . z : R →
R is a continuously differentiable function such that (IVP) holds. Then consider 
.w(t) := e−at z(t). By the product rule for differentiation, 

. w′(t) = −ae−at z(t) + e−at z′(t).

Since .z′(t) = az(t), it follows  that  .w′(t) = 0 for all .t ∈ R. Hence .w(t) is constant 
in time. Since .w(0) = z(0) = y0, one has .y0 = e−at z(t) for any .t ∈ R, implying 
that .z(t) = y0e

at . In summary we have seen that in the case .n = 1, Eq. (6.9) admits 
a one parameter family of solutions and the initial value problem (IVP) has, for any 
initial value .y0 ∈ R, a unique solution. 

Do similar results hold in the case .n ≥ 2? First we would like to investigate if 
the exponential . ea can be defined when a is replaced by an arbitrary .n×n matrix A. 
Recall that in (3.2), the exponential . ez of a complex number z is defined as a power 
series, 

. ez =
∞∑

n=0

zn

n! = 1 + z + z2

2! + . . . .

If we replace z by a .n × n matrix A, then .A2 = AA, and inductively, for any .n ≥ 1, 
.An+1 = AAn is well defined. It can be shown that the series .

∑∞
n=0

An

n! converges 
and defines a .n × n matrix which is denoted by . eA, 

.eA =
∞∑

n=0

An

n! . (6.10) 

Examples 

(i) For .A = diag(−1, 2), . eA can be computed as follows, 

. A2 = diag((−1)2, 22), A3 = diag((−1)3, 23), . . . ,

hence 

.eA =
∞∑

n=0

An

n! =
∞∑

n=0

diag((−1)n, 2n)

n!

=
(∑∞

n=0
(−1)n

n! 0
0

∑∞
n=0

2n

n!

)

=
(

e−1 0
0 e2

)
.
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(ii) Let .S ∈ R
2×2 be invertible and consider .B = S−1AS where A is the diagonal 

matrix .A = diag(−1, 2) of Item (i). Then . Bn, .n ≥ 2, can be computed as 
follows: 

. B2 = (S−1AS)(S−1AS) = S−1A2S,

and, inductively, for any .n ≥ 2, 

. Bn+1 = (S−1AS)Bn = (S−1AS)S−1AnS = S−1A(SS−1)AnS = S−1An+1S.

Hence 

. eB =
∞∑

n=0

Bn

n! =
∞∑

n=0

S−1AnS

n! = S−1(
∞∑

n=0

An

n!
)
S = S−1eAS.

By Item (i) it then follows that 

. eB = S−1 diag(e−1, e2)S.

Theorem 6.2.1 For any .A ∈ R
n×n, the  map  .R → R

n×n, .t �→ etA is continuously 
differentiable and satisfies 

. 

⎧
⎨

⎩

d
dt e

tA = AetA, t ∈ R,

etA|t=0 = Idn×n .

Remark 

(i) Let us comment on why Theorem 6.2.1 holds. 
By the definition (6.10) of . eA, one has .e0·A = Idn×n. Furthermore, by 
differentiating term by term, one gets at least formally 

. 
d

dt
(etA) = d

dt

(
Idn×n +tA + t2A2

2! + . . .
)

= A + 2tA2

2! + 3t2A3

3! . . .

= A
(
Idn×n +tA + t2A2

2! + . . .
) = AetA.

(ii) One can show that 

.e(t+s)A = etAesA, t, s ∈ R.
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Indeed for any given .s ∈ R, let  .E(t) := etAesA. Then .t �→ E(t) is 
continuously differentiable and satisfies 

.

⎧
⎨

⎩

E′(t) = AE(t), t ∈ R,

E(0) = esA.
(6.11) 

On the other hand, Theorem 6.2.1 implies that 

. 
d

dt
e(t+s)A = Ae(t+s)A, e(t+s)A|t=0 = esA.

Furthermore, one can show that the solution of (6.11) is unique. This implies 
that .E(t) = e(t+s)A for any .t ∈ R. Since .s ∈ R is arbitrary, the claimed 
identity follows. 

(iii) By Item (ii) applied for .s = −t , one has 

. etAe−tA = e(t−t)A = Idn×n,

meaning that for any .t ∈ R, . etA is invertible and its inverse is .e−tA. 

Theorem 6.2.2 For any .A ∈ R
n×n and .y(0) ∈ R

n, the initial value problem 

. 

{
y′(t) = Ay(t), t ∈ R,

y(0) = y(0),

has a unique solution. It is given by .y(t) = etAy(0). Hence the general solution of 
.y′(t) = Ay(t) is .etAv, .v = (v1, . . . , vn) ∈ R

n. If  .t �→ u(t) and .t �→ v(t) are 
solutions of .y′ = Ay, so is  .t �→ au(t) + bv(t) for any .a, b ∈ R (superposition 
principle). 

Remark 

(i) We often write . y0 instead of .y(0) for the initial value. 
(ii) By Theorem 6.2.1, .y(t) = etAy(0) satisfies 

. 
d

dt
etAy(0) = AetAy(0) = Ay(t), t ∈ R, y(0) = e0Ay(0) = y(0).

To see that this is the only solution, we argue as in the case where . A ∈ R
n×n

with .n = 1, treated at the beginning of this section. Assume that .z : R → R
n is 

another solution, i.e., .z′(t) = Az(t) and .z(0) = y(0). Define . w(t) := e−tAz(t)

and note that 

.w(0) = e−0Az(0) = Idn×n y(0) = y(0).
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By the product rule for differentiation, 

. w′(t) = d

dt
(e−tA)z(t) + e−tAz′(t)

= −Ae−tAz(t) + e−tAAz(t)

= −Ae−tAz(t) + Ae−tAz(t) = 0

where we have used that  .e−tAA = Ae−tA since by definition . e−tA =∑∞
n=0

(−t)n

n! An. It then follows that .w(t) is a vector independent of t , i.e., 
.w(t) = w(0) = y(0), implying that for any .t ∈ R, 

. y(t) = etAy(0) = etAw(t) = etAe−tAz(t) = z(t).

Examples 

(i) Find the general solution of 

. 

{
y′
1 = 3y1 + 4y2

y′
2 = 3y1 + 2y2

In matrix notation, the system reads .y′(t) = Ay(t) where 

. A =
(
3 4
3 2

)
∈ R

2×2.

The general solution is given by .y(t) = etAv, .v = (v1, v2) ∈ R
2. To determine 

.y(t) in more explicit terms, we analyze . etA as follows. The eigenvalues of A 
are .λ1 = −1, .λ2 = 6 with corresponding eigenvectors 

. v(1) = (1,−1) ∈ R
2, v(2) = (4, 3) ∈ R

2.

Note that .Akv(1) = λk
1v

(1) for any .k ≥ 0 and hence 

. etAv(1) =
∞∑

k=0

tk

k! Akv(1) =
∞∑

k=0

tk

k! λk
1v

(1) = etλ1v(1).

Similarly, one has .etAv(2) = etλ2v(2). Since .v(1) and .v(2) are linearly 
independent, any vector .v ∈ R

2 can be uniquely represented as a linear 
combination 

.v = a1v
(1) + a2v

(2).
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Hence 

. etAv = etA(a1v
(1) + a2v

(2)) = a1e
tAv(1) + a2e

tAv(2)

= a1e
tλ1v(1) + a2e

tλ2v(2)

= (a1e
−t + 4a2e

6t ,−a1e
−t + 3a2e

6t ).

To solve the initial value problem of .y′ = Ay with .y(0) = (6, 1) we need to 
solve the linear system 

. 

{
a1 + 4a2 = 6

−a1 + 3a2 = 1
.

One obtains .a1 = 2 and .a2 = 1 and hence 

. y(t) = (2e−t + 4e6t ,−2e−t + 3e6t ).

The asymptotics of the solution .y(t) for .t → ±∞ can be described as follows: 

. 
y(t) ∼ (2e−t ,−2e−t ) t → −∞,

y(t) ∼ (4e6t , 3e6t ) t → +∞.

(ii) Find the general solution of 

. 

{
y′
1 = y1 + y2

y′
2 = −2y1 + 3y2

In matrix notation, the system reads .y′(t) = Ay(t) where 

. A =
(

1 1
−2 3

)
∈ R

2×2.

The general solution is given by .y(t) = etAv, .v = (v1, v2) ∈ R
2. To determine 

the solutions .y(t) in more explicit terms, we analyze .etA as follows. The 
eigenvalues of A can be computed as .λ1 = 2 + i, .λ2 = λ1 = 2 − i with 

. v(1) = (1, 1 + i) ∈ C
2, v(2) = v(1) = (1, 1 − i) ∈ C

2,

being corresponding eigenvectors, which form a basis of . C2. The general 
complex solution of .y′ = Ay is then given by 

.y(t) = a1e
λ1t v(1) + a2e

λ2t v(2), a1, a2 ∈ C.
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How can we obtain the general real solution? Recall that by Euler’s formula, 

. eα+iβ = eαeiβ = eα
(
cosβ + i sinβ

)
.

Hence 

. eλ1t = e2t (cos t + i sin t),

implying that 

. eλ1t v(1) = (
e2t cos t + i e2t sin t, e2t (cos t − sin t) + i e2t (cos t + sin t)

)
.

By the superposition principle, .C-linear combinations of solutions of . y′(t) =
Ay(t) are again solutions. Since .eλ2t v(2) = eλ1t v(1), one concludes that the 
following solutions are real, 

. 
1

2
(eλ1t v(1) + eλ2t v(2)),

1

2 i
(eλ1t v(1) − eλ2t v(2)).

They can be computed as 

. 
(
e2t cos t, e2t (cos t − sin t)

)
,

(
e2t sin t, e2t (cos t + sin t)

)
.

Hence the general real solution is given by 

. a1
(
e2t cos t, e2t (cos t − sin t)

) + a2
(
e2t sin t, e2t (cos t + sin t)

)
, a1, a2 ∈ R.

(iii) Find the general solution of 

. 

{
y′
1 = y1 + y2

y′
2 = y2.

In matrix notation, the system reads 

. y′(t) = Ay(t), A :=
(
1 1
0 1

)
.

The general solution is given by .etAv where .v = (v1, v2) is an arbitrary vector 
in . R2. To determine the solutions in a more explicit form, we analyze . etA

further. Note that in this case A is not diagonalizable. To compute . etA we use 
that for .S, T ∈ R

n×n with .ST = T S, one has .eS+T = eSeT , an identity, which
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follows in a straightforward way from the definition (6.10) of the exponential 
function of square matrices. Since 

. A = Id2×2 +T , T =
(
0 1
0 0

)
, Id2×2 T = T Id2×2,

it follows that .etA = et Id2×2etT . Clearly .et Id2×2 = et Id2×2 and 

. etT =
∞∑

k=0

tk

k! T k = Id2×2 +tT ,

since 

. T 2 =
(
0 1
0 0

) (
0 1
0 0

)
=

(
0 0
0 0

)
.

Altogether 

. etA = et

(
1 t

0 1

)
,

implying that the general real solution is given by 

. y1(t) = v1e
t + v2te

t , y2(t) = v2e
t

where .v1, v2 ∈ R are arbitrary constants. 

Let us now turn to the system 

.y′(t) = Ay(t) + f (t), (6.12) 

referred to as an inhomogeneous system of linear ODEs of first order with constant 
coefficients. 

Theorem 6.2.3 Assume that .A∈R
n×n, .f : R→R

n is continuous and . yp : R→R
n

a given solution of (6.12), .y′
p(t) = Ayp(t)+f (t), .t ∈ R. Then the following holds: 

(i) For any solution .t �→ u(t) of the homogeneous system, .u′ = Au, 
.t �→ yp(t) + u(t) is a solution of (6.12). 

(ii) For any solution y of (6.12), .t �→ y(t) − yp(t) is a solution of the 
homogeneous system .u′ = Au.
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Remark Items (i) and (ii) of Theorem 6.2.3 can be verified in a straigthforward way. 
Indeed, in the case of Item (i), by substituting .yp + u into (6.12), one gets, 

. 
d

dt

(
yp(t) + u(t)

) = y′
p(t) + u′(t) = Ayp(t) + f (t) + Au(t)

= A
(
yp(t) + u(t)

) + f (t)

and hence .t �→ yp(t) + u(t) is a solution of (6.12). In the case of Item (ii), let  
.u(t) := y(t) − yp(t). Then 

. u′(t) = y′(t) − y′
p(t) = Ay(t) + f (t) − Ayp(t) − f (t)

= A
(
y(t) − yp(t)

) = Au(t).

As a consequence of Theorem 6.2.3, the general solution of (6.12) can be found 
as follows: 

(i) Find a particular solution of (6.12). 
(ii) Find the general solution of the homogeneous system .u′ = Au. 

It thus remains to investigate how to find a particular solution of (6.12). For functions 
f of special type such as polynomials, trigonometric polynomials, or exponential 
functions, a particular solution can be found most efficiently by a suitable ansatz. 
We will discuss these cases at the end of the section. 

First however, let us discuss a method, always applicable, which allows to 
construct the general solution of (6.12) (and hence also a particular solution) with 
the help of the general solution of the corresponding homogeneous system .u′ = Au. 
This method goes under the name of the method of variation of the constants. Its  
starting point is the ansatz 

. y(t) = etAw(t), t ∈ R.

In case .w(t) is a vector .v ∈ R
n independent of t , .t �→ y(t) is a solution of the 

homogeneous system .u′(t) = Au(t). Hence the ansatz consists in replacing the 
constant v by a t-dependent unknown function .w(t), which explains the name of 
the method. Substituting the ansatz into the inhomogeneous equation one gets by 
the product rule of differentiation, 

. y′(t) = d

dt
(etA)w(t) + etAw′(t)

= AetAw(t) + etAw′(t)

= Ay(t) + etAw′(t).

In case .t �→ y(t) is a solution of (6.12), it then follows that 

.Ay(t) + f (t) = Ay(t) + etAw′(t) or f (t) = etAw′(t).
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Multiplying both sides of the latter identity by the matrix .e−tA one gets 

. w′(t) = e−tAf (t).

Integrating in t , one obtains 

. w(t) − w(0) =
∫ t

0
w(s) ds =

∫ t

0
e−sAf (s) ds.

Altogether we found 

. y(t) = etAw(t) = etAw(0) + etA

∫ t

0
e−sAf (s) ds, t ∈ R.

Hence 

.t �→ y(t) = etAv +
∫ t

0
e(t−s)Af (s) ds, v ∈ R

n, (6.13) 

is the general solution of (6.12). Note that .t �→ etAv is the general solution of 
the homogeneous system .u′ = Au, whereas .t �→ ∫ t

0 e(t−s)Af (s) ds is a particular 
solution . yp of (6.12) with .yp(0) = 0. 

Special Inhomogeneous Term f Assume that in the equation .y′ = Ay + f , the  
inhomogeneous term f is a solution of the homogeneous equation .u′ = Au, i.e., 
there exists .a ∈ R, so that .f (t) = etAa for any .t ∈ R. Substituting f into the 
integral .

∫ t

0 e(t−s)Af (s) ds in (6.13) yields the particular solution .t �→ yp(t) with 
.yp(0) = 0, given by 

. 

∫ t

0
e(t−s)Af (s) ds =

∫ t

0
etAe−sAesAa ds = tetAa.

Alternatively, one verifies in a straightforward way that whenever f is a solution of 
the homogeneous system .u′ = Au, then .t �→ yp(t) = tf (t) is a particular solution 
of .y′ = Ay + f . 

Application Formula (6.13) can be used to solve the initial value problem (IVP) 

. 

{
y′ = Ay + f

y(0) = y(0)

where .y(0) is an arbitrary given vector in . Rn. The solution is given by 

.y(t) = etAy(0) +
∫ t

0
e(t−s)Af (s) ds, t ∈ R.
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Example Find the general solution of 

. 

{
y′
1 = −y2

y′
2 = y1 + t

.

In matrix notation, the system reads 

. y′ = Ay + f, A =
(
0 −1
1 0

)
, f (t) =

(
0
t

)
.

First we compute . etA. The eigenvalues of A are .λ1 = i and .λ2 = − i and 

. v(1) =
(
i
1

)
, v(2) =

(− i
1

)

are corresponding eigenvectors. Hence 

. etAv(1) = ei t v(1), etAv(2) = e− i t v(2).

Using that .e± i t = cos t ± i sin t (Euler’s formula) and 

. 
v(1) + v(2)

2
=

(
0
1

)
,

i(v(2) − v(1))

2
=

(
1
0

)
,

it follows that 

. etA

(
0
1

)
=

(− sin t

cos t

)
, etA

(
1
0

)
=

(
cos t

sin t

)
,

implying that 

. (etA)[e]→[e] =
(
cos t − sin t

sin t cos t

)
= (cos t) Id2×2 +(sin t)A

where .[e] = [e(1), e(2)] is the standard basis of . R2. The general solution then reads 

. etAv +
∫ t

0
e(t−s)A

(
0
s

)
ds, t ∈ R

where . v is an arbitrary vector in . R2. One has 

.e(t−s)A

(
0
s

)
= cos(t − s)

(
0
s

)
− sin(t − s)

(−s

0

)
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and 

. 

∫ t

0
−s sin(t − s) ds = [ − s cos(t − s) − sin(t − s)

]t
0 = −t + sin t,

. 

∫ t

0
s cos(t − s) ds = [ − s sin(t − s) + cos(t − s)

]t
0 = 1 − cos t.

Altogether we have 

. 

∫ t

0
e(t−s)A

(
0
s

)
ds =

(−t + sin t

1 − cos t

)

and the general solution reads 

. v1

(
cos t

sin t

)
+ v2

(− sin t

cos t

)
+

(−t + sin t

1 − cos t

)
.

As an aside, we remark that there is the following alternative way of computing the 
exponential . etA. Note that 

. A =
(
0 −1
1 0

)
, A2 =

(−1 0
0 −1

)
, A3 = −A, A4 = Id2×2, . . . ,

and thus 

. etA =
∞∑

k=0

tk

k! Ak =
∞∑

k=0

t2k

(2k)! A2k +
∞∑

k=0

t2k+1

(2k + 1)! A2k+1

=
∞∑

k=0

(−1)kt2k

(2k)! Id2×2 +
∞∑

k=0

(−1)kt2k+1

(2k + 1)! A.

It can be shown that 

. cos t =
∞∑

k=0

(−1)kt2k

(2k)! , sin t =
∞∑

k=0

(−1)kt2k+1

(2k + 1)! ,

implying that .etA = (cos t) Id2×2 +(sin t)A. 

The example above shows that the computation of .
∫ t

0 e(t−s)Af (s) ds can be quite 
involved. For special classes of functions .f : R → R

n it is easier to get a particular 
solution by making an ansatz. We now discuss three classes of functions to illustrate 
this method.



170 6 Differential Equations

Polynomials Assume that in the equation .y′ = Ay + f , each component of f is a 
polynomial in t of degree at most L. It means that 

. f (t) =
L∑

j=0

tj f (j), f (0), . . . , f (L) ∈ R
n.

We restrict ourselves to the case where the .n × n matrix A is invertible and make 
an ansatz for a particular solution .t �→ yp(t) of .y′ = Ay + f , assuming that 
each component of . yp is a polynomial in t of degree at most L, i.e., . yp(t) =(
q1(t), . . . , qn(t)

)
where for any .1 ≤ k ≤ n, .qk(t) is a polynomial in t of degree at 

most L. When written in matrix notation, .yp(t) is of the form 

. yp(t) =
L∑

j=0

tjw(j), w(0), . . . , w(L) ∈ R
n.

Since 

. y′
p(t) =

L∑

j=1

j tj−1w(j) =
L−1∑

j=0

(j + 1)tjw(j+1),

one obtains, upon substitution of . yp into the equation .y′
p = Ayp + f , 

. 

L−1∑

j=0

(j + 1)tjw(j+1) =
L∑

j=0

tjAw(j) +
L∑

j=0

tj f (j).

By comparison of coefficients, one gets 

. (j + 1)w(j+1) = Aw(j) + f (j), 0 ≤ j ≤ L − 1, 0 = Aw(L) + f (L).

Since A is assumed to be invertible, we can solve this linear system recursively. 
Solving the equation .0 = Aw(L) + f (L) yields .w(L) = −A−1f (L), which then 
allows to solve the remaining equations by setting for . j = L − 1, . . . , j = 0,

. Aw(j) = −f (j) + (j + 1)w(j+1) or w(j) = A−1((j + 1)w(j+1) − f (j)
)
.

To illustrate how to find a particular solution . yp in the case where the components 
of the inhomognenous term .f (t) are polynomials in t , let us go back to the example 
treated above, 

.y′(t) =
(
0 −1
1 0

)
y(t) +

(
0
t

)
. (6.14)
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Note that each component of .f (t) = (0, t) is a polynomial in t of degree at 

most 1 and that the matrix .

(
0 −1
1 0

)
is invertible. Hence we make the ansatz 

.yp(t) = (
q1(t), q2(t)

)
where the components .q1(t) and .q2(t) are polynomials in 

t of degree at most 1, 

. q1(t) = a0 + a1t, q2(t) = b0 + b1t.

Upon substitution of the ansatz into Eq. (6.14) and using that .y′
p(t) = (a1, b1), one 

gets 

. 

(
a1

b1

)
=

( −b0 − b1t

a0 + a1t + t

)
, t ∈ R.

Comparing coefficients yields 

. a1 = −b0, 0 = −b1, b1 = a0, 0 = a1 + 1,

hence .a1 = −1, .b1 = 0, .a0 = 0, and .b0 = 1, yielding .yp(t) = (−t, 1). 

To see that in the case where the components of f are polynomials of degree 
at most L, the ansatz for . yp, consisting in choosing the components of . yp to be 
polynomials of degree at most L, not always works, consider the following scalar 
valued ODE 

. y′(t) = f (t), f (t) = 4 + 6t.

The general solution can be found by integration, .yp(t) = c1 + 4t + 3t2. Clearly, 
for no choice of . c1, .yp(t) will be a polynomial of degree at most one. Note that in 
this example, when written in “matrix form” .y′(t) = Ay(t)+f (t), the .1× 1 matrix 
A is zero. 

Trigonometric Polynomials Assume that in the equation .y′ = Ay + f , each 
component of .f : R → R

n is a trigonometric polynomial. It means that f can 
be written in the form 

. f (t) = f (0) +
J∑

j=1

cos(ξj t)f
(2j−1) + sin(ξj t)f

(2j), f (0), . . . , f (2J ) ∈ R
n.

Here .ξ1, . . . , ξJ are in .R \ {0}. We restrict to the case where the .n × n matrix A is 
invertible and .±iξj , .1 ≤ j ≤ J , are not eigenvalues of A. We then make an ansatz 
for a particular solution .yp(t) of the form 

.yp(t) = w(0) +
J∑

j=1

cos(ξj t)w
(2j−1) + sin(ξj t)w

(2j), w(0), . . . , w(2J ) ∈ R
n.
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Upon substitution of the ansatz into the equation .y′ = Ay + f , the vectors .w(j), 
.0 ≤ j ≤ 2J , can then be determined by comparison of coefficients. To illustrate the 
method with an example, let us consider the system 

.y′(t) =
(
0 −1
1 0

)
y(t) +

(
cos(2t)

1

)
. (6.15) 

Clearly, the .2 × 2 matrix .

(
0 −1
1 0

)
is invertible and its eigenvalues are i and . −i. 

Following the considerations above, we make the ansatz . yp(t) = (
q1(t), q2(t)

)

where 

. q1(t) = a0 + a1 cos(2t) + a2 sin(2t), q2(t) = b0 + b1 cos(2t) + b2 sin(2t).

Since 

. y′
p(t) =

(−2a1 sin(2t) + 2a2 cos(2t)
−2b1 sin(2t) + 2b2 cos(2t)

)
,

Ayp(t) =
(−b0 − b1 cos(2t) − b2 sin(2t)

a0 + a1 cos(2t) + a2 sin(2t)

)
,

Eq. (6.15) leads to the following equation 

. 

(−2a1 sin(2t) + 2a2 cos(2t)
−2b1 sin(2t) + 2b2 cos(2t)

)
=

(−b0 − b1 cos(2t) − b2 sin(2t) + cos(2t)
a0 + a1 cos(2t) + a2 sin(2t) + 1

)
.

By comparison of coefficients, one obtains the following linear system of equations, 

. 0 = b0, −2a1 = −b2, 2a2 = −b1+1, 0 = a0+1, −2b1 = a2, 2b2 = a1,

having the solution 

. a0 = −1, b0 = 0, a1 = 0, b2 = 0, a2 = 2

3
, b1 = − 1

3
.

Altogether, we get 

.yp(t) = ( − 1 + 2

3
sin(2t),− 1

3
cos(2t)

)
.
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Exponentials Assume that in the equation .y′ = Ay + f , each component of 
.f : R → R

n is a linear combination of exponential functions, i.e., each component 
is an element in 

. V := {
g(t) =

J∑

j=1

aj e
ξj t | a1, . . . , aJ ∈ R

}

and .ξ1, . . . , ξJ are distinct real numbers. Then V is a .R-vector space of continuously 
differentiable functions .g : R → R of dimension . J with the property that for any 
.g ∈ V , its derivative . g′ is again in V . In the case where no exponent . ξj is an 
eigenvalue of A, we make the ansatz for a particular solution .yp(t), by assuming 
that each component of .yp(t) is an element in V . The particular solution .yp(t) is 
then again computed by comparison of coefficients. 

We refer to Problem 4 at the end of this section where an example of an equation 
of the form .y′ = Ay + f is considered with the components of f being (linear 
combinations of) exponential functions. 

Problems 

1. Find the general solution of the following linear ODEs.
{

y′
1(t) = y1(t) + y2(t) 

y′
2(t) = −2y1(t) + 4y2(t) 

,(i)

{
y′
1(t) = 2y1(t) + 4y2(t) 

y′
2(t) = −y1(t) − 3y2(t) 

.(ii) 

2. Solve the following initial value problems. 

(i)

{
y′
1(t) = −y1(t) + 2y2(t) 

y′
2(t) = 2y1(t) − y2(t) 

, y(0) =
(

2 
−1

)

(ii) 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

y′
1(t) = 2y1(t) − 6y3(t) 

y′
2(t) = y1(t) − 3y3(t) 

y′
3(t) = y2(t) − 2y3(t) 

, y(0) = 

⎛ 

⎝ 
1 
0 

−1 

⎞ 

⎠ 

3. Consider the linear ODE 

. y′(t) = Ay(t), A =
⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠ ∈ R
3×3.

(i) Compute A2 and A3. 
(ii) Determine the general solution of y′(t) = Ay(t).
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4. Let A =
(

0 2  
−1 0

)
∈ R2×2. Find the solutions of the following initial value 

problems. 

(i) y′(t) = Ay(t) +
(

et 

3

)
, y(0) =

(
1 
0

)

(ii) y′(t) = Ay(t) +
(

0 
cos(2t)

)
, y(0) =

(
0 
1

)

5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) For any A, B ∈ R2×2, one has eA+B = eA eB . 

(ii) Let A =
(
0 −1 
1 0

)
∈ R2×2. Then the linear ODE y′(t) = Ay(t) +

(
t2 

t

)

admits a particular solution of the form

(
a + bt + ct2 

d + et

)
. 

6.3 Linear ODEs with Constant Coefficients of Higher Order 

The main goal of this section is to discuss linear ODEs of second order with constant 
coefficients. They come up in many applications and therefore are particularly 
important. Specifically, we consider ODEs of the form 

.y′′(t) = b1y
′(t) + b0y(t) + f (t), t ∈ R (6.16) 

where .y′(t) = d
dt y(t), .y′′(t) = d2

dt2
y(t), . b1, .b0 ∈ R are constants, and where 

.f : R → R is a continuous function. We want to discuss two methods for solving 
such equations. 

Method 1 Convert Eq. (6.16) into a system of ODEs of first order with constant 
coefficients as follows: let .x(t) = (x0(t), x1(t)) ∈ R

2 be given by 

. x0(t) := y(t), x1(t) := y′(t).

Then 

.x′(t) =
(

x′
0(t)

x′
1(t)

)
=

(
y′(t)
y′′(t)

)
=

(
x1(t)

b1y
′(t) + b0y(t) + f (t)

)

=
(

x1(t)

b1x1(t) + b0x0(t) + f (t)

)
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or, in matrix notation, 

.x′(t) = Ax(t) +
(

0
f (t)

)
, A :=

(
0 1
b0 b1

)
. (6.17) 

The Eqs. (6.16) and (6.17) are equivalent in the sense that they have the same set 
of solutions: a solution y of (6.16) gives rise to a solution  . x(t) = (y(t), y′(t))
of (6.17) and conversely, a solution .x(t) = (x0(t), x1(t)) of (6.17) yields a solution 
.y(t) = x0(t) of (6.16). More generally, an ODE of the form 

.y(n)(t) = bn−1y
(n−1)(t) + · · · + b1y

′(t) + b0, t ∈ R, (6.18) 

can be converted into a system of ODEs of first order by setting 

. x0(t) := y(t), x1(t) := y′(t), . . . , xn−1(t) := y(n−1)(t).

Then one gets .x′
0(t) = x1(t),  . . . , .x′

n−2(t) = xn−1(t), and 

. x′
n−1(t) = y(n)(t) = bn−1y

(n−1)(t) + · · · + b1y
′(t) + b0y + f (t).

In matrix notation, 

.x′(t) = Ax(t) + (0, . . . , 0, f (t)), t ∈ R (6.19) 

where 

.A :=

⎛

⎜⎜⎜⎜⎜
⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...

0 0 0 . . . 1
b0 b1 b2 . . . bn−1

⎞

⎟⎟⎟⎟⎟
⎠

∈ R
n×n. (6.20) 

Again Eqs. (6.18) and (6.19) are equivalent in the sense that they have the same set 
of solutions. 

Example Consider 

.y′′(t) = −k2y(t), k > 0. (6.21) 

The equation is a model for the vibrations of a string without damping. Converting 
this equation into a .2 × 2 system leads to the following first order ODE, 

.x′(t) = Ax(t), x(t) =
(

x0(t)

x1(t)

)
, A =

(
0 1

−k2 0

)
.
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Then the general solution is given by .x(t) = etAc, .c = (c1, c2) ∈ R
2. In order to 

determine .y(t) = x0(t) in a more explicit form, we need to analyze . etA further. The 
eigenvalues of A are .λ1 = i k, .λ2 = − i k and corresponding eigenvectors are 

. v(1) = (1, i k), v(2) = (1,− i k).

Note that . v(1), .v(2) form a basis of . C2. The general complex solution is given by 

.a1e
i kt v(1) + a2e

− i kt v(2), a1, a2 ∈ C, (6.22) 

and the general real solution is given by an arbitrary linear combination of the real 
and the imaginary part of the general complex solution of (6.22), 

. c1

(
cos(kt)

−k sin(kt)

)
+ c2

(
sin(kt)

k cos(kt)

)
, c1, c2 ∈ R.

Method 2 With this method one finds the general solution of a homogeneous ODE 
of order 2, .y′′(t) = b1y

′(t) + b0y(t) or more generally, of a homogeneous ODE of 
order n, .y(n)(t) = bn−1y

(n−1)(t) + · · · + b0y(t), by first finding solutions of the 
form .y(t) = eλt with .λ ∈ C to be determined. Let us illustrate this method with the 
Eq. (6.21), .y′′(t) = −k2y(t), considered above. Substituting the ansatz . y(t) = eλt

into the equation .y′′(t) = −k2y(t) one gets 

. λ2eλt = y′′(t) = −k2y(t) = −k2eλt ,

hence 

. λ2 = −k2, or λ1 = i k, λ2 = − i k.

The general complex solution reads 

. a1e
i kt + a2e

− i kt , a1, a2 ∈ C,

whereas the general real solution is given by 

. c1 cos(kt) + c2 sin(kt), c1, c2 ∈ R.

To solve the inhomogeneous ODE of second order (cf. (6.16)), 

.y′′(t) = b1y
′(t) + b0y(t) + f (t), t ∈ R,
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we argue as for systems of linear ODEs of first order to conclude that the set of 
solutions of (6.16) is given by 

. 
{
yp + u | u satisfies u′′(t) + au′(t) + bu(t) = 0, t ∈ R

}

where . yp is a particular solution of (6.16). We illustrate this method of solving (6.16) 
with the following example. 

Example Consider 

.y′′(t) + 3y′(t) + 2y(t) = 8, t ∈ R. (6.23) 

First we consider the homogeneous ODE 

.y′′(t) + 3y′(t) + 2y(t) = 0, t ∈ R. (6.24) 

By Method 2, we make the ansatz .y(t) = eλt . Substituting .y(t) = eλt into (6.24) 
and using that .y′(t) = λeλt , .y′′(t) = λ2eλt , one is led to 

. λ2 + 3λ + 2 = 0.

The roots are given by 

. λ1 = −1, λ2 = −2.

The general real solution of (6.24) is therefore 

. y(t) = c1e
−t + c2e

−2t , c1, c2 ∈ R,

and in turn, the general solution of (6.23) is given by 

.general solution of (6.24) + yp 

where . yp is a particular solution of (6.23). As for systems of ODEs of first order, 
we may try to find a particular solution by making a suitable ansatz. Note that the 
inhomogeneous term is the constant function .f (t) = 8, which is a polynomial of 
degree 0. Thus we try the ansatz .yp = c. Substituting the ansatz into the Eq. (6.23) 
one gets .0 + 3 · 0 + 2c = 8 and hence .c = 4. Altogether we conclude that 

. c1e
−t + c2e

−2t + 4, c1, c2 ∈ R,

is the general solution of (6.23). 

The advantage of Method 2 over Method 1 is that the given equation has not 
to be converted into a system of first order and that the computations are typically
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shorter. However we will see that in some situations, the ansatz .y(t) = eλt has to be 
modified to get all solutions in this way. 

As for systems of ODEs of first order, one can study the initial value problem for 
Eq. (6.16) or more generally for Eq. (6.18), 

. 

{
y(n)(t) = bn−1y

(n−1)(t) + · · · + b1y
′(t) + b0y(t) + f (t), t ∈ R,

y(0) = a0, . . . , y
(n−1)(0) = an−1

(IVP) 

where .a0, . . . , an−1 are arbitrary real numbers. Note that there are n initial 
conditions for an equation of order n. This corresponds to a vector .a ∈ R

n of initial 
values for the initial value problem of a .n×n system of first order ODEs. As in that 
case, the above initial value problem has a unique solution. Let us illustrate how to 
find this solution with the following examples. 

Examples 

(i) Consider the initial value problem 

. y′′(t) = −k2y(t), y(0) = 1, y′(0) = 0

where we assume again that .k > 0. We have seen that the general complex 
solution is given by 

. y(t) = a1e
i kt + a2e

− i kt , a1, a2 ∈ C.

We need to determine .a1, a2 ∈ C so that .y(0) = 1, .y′(0) = 0, i.e., 

. 1 = y(0) = a1 + a2, 0 = y′(0) = i ka1 − i ka2.

This is a linear .2× 2 system with the two unknowns . a1 and . a2. We get . a1 = a2
and .a1 = 1/2. Hence 

. y(t) = 1

2
ei kt + 1

2
e− i kt = cos(kt)

is the solution of the initial value problem. Note that it is automatically real 
valued. 

(ii) Consider the initial value problem 

. y′′(t) + 3y′(t) + 2y(t) = 8, y(0) = 1, y′(0) = 0.

We have seen that the general solution of .y′′(t) + 3y′(t) + 2y(t) = 8 is given 
by 

.y(t) = c1e
−t + c2e

−2t + 4, c1, c2 ∈ R.
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We need to determine .c1, c2 in such a way that .y(0) = 1, .y′(0) = 0, i.e., 

. 1 = y(0) = c1 + c2 + 4, 0 = y′(0) = −c1 − 2c2,

yielding .c1 = −6, .c2 = 3 and hence 

. y(t) = −6e−t + 3e−2t + 4.

Homogeneous Equations Let us now discuss in some more detail the homoge-
neous equation, corresponding to (6.16). More precisely, we consider 

.y′′(t) + ay′(t) + by(t) = 0, a > 0, b = ω2, ω > 0, (6.25) 

which is a model for the vibrations of a string with damping. 
It is convenient to apply Method 2. Making the ansatz .y(t) = eλt and taking into 

account that .y′(t) = λeλt , .y′′(t) = λ2eλt , one is led to the equation 

. (λ2 + aλ + b)eλt = 0, t ∈ R.

Hence .λ2 + aλ + b = 0 or 

. λ± = − a

2
± 1

2

√
a2 − 4ω2 .

Case 1. .a2 − 4ω2 > 0, i.e., .0 < 2ω < a. This is the case of strong damping, 
leading to solutions with no oscillations. Indeed, in this case .λ− < λ+ < 0 and 
the general real solution is given by 

. y(t) = c+eλ+t + c−eλ−t , c+, c− ∈ R.

Case 2. .a2 − 4ω2 < 0, i.e., .0 < a < 2ω. This is the case of weak damping, leading 
to solutions with oscillations. Then .λ± = − a

2 ± i γ where .γ := 1
2

√
4ω2 − a2 . 

Then 

. eλ±t = e− a
2 t e± i γ = e− a

2 t
(
cos(γ t) + i sin(γ t)

)

and the general real solution is given by 

. c1e
− a

2 t cos(γ t) + c2e
− a

2 t sin(γ t), c1, c2 ∈ R, γ = 1

2

√
4ω2 − a2 .

Note that as .t → ∞, all solutions tend to 0, whereas for .t → −∞, the  
nontrivial solutions are unbounded. This is in sharp contrast with the case 
without damping, i.e., the case where .a = 0.
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Case 3. .a2 − 4ω2 = 0, i.e., .a = 2ω. Then .λ+ = λ− = − a
2 . It can be verified 

that besides .e− a
2 t , also .te− a

2 t is a solution and hence the general real solution is 
given by 

.c1e
− a

2 t + c2te
− a

2 t , c1, c2 ∈ R. (6.26) 

There are no oscillations in this case, but as .t → ∞ the decay is weaker than 
in case 1. To find the general solution (6.26) without guessing, one can apply 
Method 1. Converting .y′′(t) = −by′(t)−ay(t) to a .2×2 system we get . x′(t) =
Ax(t), with 

. A =
(

0 1
−b −a

)
, b = a2

4
.

Then .λ1 = λ2 = − a
2 are the eigenvalues of A and the geometric multiplicity 

of A is one. To compute . etA we write A as a sum, 

. A = − a

2
Id2×2 +B, B :=

(
a/2 −1

−b − a/2

)
.

Using that .b = (a/2)2 one infers that .B2 = 0. Since .Id2×2 and B commute, 
one then concludes that 

. etA = e− a
2 t Id2×2etB = e− a

2 t etB = e− a
2 t (Id2×2 +tB)

= e− a
2 t

(
1 + a/2 t 1

−bt 1 − a/2 t

)
.

It then follows that the general solution of (6.26) in case 3 is indeed given 
by (6.26). 

Inhomogeneous Equations We finish this section with a discussion of how to find 
particular solutions of (6.16) for certain classes of functions .f : R → R by making 
a suitable ansatz. For this purpose it is convenient to write (6.16) in slightly different 
form, 

.y′′(t) + ay′(t) + by(t) = f (t), t ∈ R. (6.27) 

Polynomials In case f is a polynomial of degree L, .f (t) = f0 +f1t + . . .+fLtL, 
we make the ansatz 

.yp(t) = α0 + α1t + . . . + αL+2t
L+2.
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Substituting the ansatz into the Eq. (6.27), one gets 

. 

L+2∑

j=2

αj j (j − 1)tj−2 + a

L+2∑

j=1

αj j tj−1 + b

L+2∑

j=0

αj t
j =

L∑

j=0

fj t
j .

The coefficients .α0, . . . , αL+2 are then determined inductively by comparison of 
coefficients, 

.bαL+2 = 0, (L + 2)aαL+2 + bαL+1 = 0, (6.28) 

.(j + 2)(j + 1)αj+2 + (j + 1)aαj+1 + bαj = fj , 0 ≤ j ≤ L. (6.29) 

Remark 

(i) To see that a particular solution of an ODE of the type (6.27) might not be given 
by a polynomial of degree L, consider 

. y′′(t) = 2 + 3t2.

The general solution of the latter equation can be easily found by integration, 

. yp(t) = t2 + 1

4
t4 + α1t + α0, α1, α0 ∈ R.

Note that in this case, .a = 0 and .b = 0 in (6.27) and hence the two equations 
in (6.28) trivially hold for any choice of .αL+2 and .αL+1. 

(ii) There are examples of ODEs of the type (6.27) where a particular solution is a 
polynomial of degree .L + 1. Indeed, consider 

. y′′(t) + 2y′(t) = t.

Substituting the ansatz .yp(t) = α0 + α1t + α2t
2 + α3t

3, one gets 

. 6α3t + 2α2 + 6α3t
2 + 4α2t + 2α1 = t

and comparison of coefficients yields 

. α3 = 0, 6α3 + 4α2 = 1, 2α2 + 2α1 = 0.

Hence .α3 = 0, .α2 = 1/4, and .α1 = −1/4, whereas . α0 can be chosen arbitrarily. 
A particular solution is hence given by the following polynomial of degree two, 

.yp(t) = − 1

4
t + 1

4
t2.
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Note that in this case, .a = 2 and .b = 0 in (6.27). Hence the first equation 
in (6.28) trivially holds for any choice of .αL+2, whereas the second equation 
implies that .αL+2 = 0. 

Solution of Homogeneous Equation Assume that f is a solution of the homoge-
neous equation .u′′(t) + au′(t) + bu(t) = 0. We have to consider two cases. 

Case 1. .a2 �= 4b. We have seen that in this case the general complex solution of 
.u′′(t) + au′(t) + bu(t) = 0 is given by .c1e

λ1t + c2e
λ2t where .c1, c2 ∈ C and 

. λ1 = − a

2
+ 1

2

√
a2 − 4b , λ2 = − a

2
− 1

2

√
a2 − 4b ,

(with .
√

a2 − 4b defined as .i
√
4b − a2 in the case .a2 < 4b). By assumption, 

.f (t) = f1e
λ1t + f2e

λ2t where .f1, f2 ∈ C are uniquely determined by 

. f (0) = f1 + f2, f ′(0) = λ1f1 + λ2f2.

Note that . f1, . f2 might be complex numbers even if f is real valued. However, in 
such a case .f2 = f 1 and .λ2 = λ1. Making the ansatz . yp(t) = t (α1e

λ1t+α2e
λ2t )

and substituting it into (6.27), one finds by comparison of coefficients 

. α1 = f1

2λ1 + a
, α2 = f2

2λ2 + a
.

Note that .2λ1 + a = √
a2 − 4b and .2λ2 + a = −√

a2 − 4b do not vanish by 
assumption, so that .α1, α2 are well defined. Hence 

. yp(t) = f1

2λ1 + a
teλ1t + f2

2λ2 + a
teλ2t

is a particular real solution of (6.27). 
Case 2. .a2 = 4b. We have seen that in this case, the general solution of . u′′(t) +

au′(t)+bu(t) = 0 is given by .c1e
−at/2+c2te

−at/2, .c1, c2 ∈ R. By assumption, 
.f (t) = f1e

−at/2 + f2te
−at/2 where . f1 and . f2 are real numbers, determined by 

.f (0) = f1, .f ′(0) = (−a/2)f1 + f2. Making the ansatz 

. yp(t) = t2(α1 + α2t)e
− a

2 t

and substituting it into (6.27) one finds by comparison of coefficients that . α1 =
f1
2 , .α2 = f2

6 , yielding 

.yp(t) = ( f1

2
t2 + f2

6
t3

)
e− a

2 t .
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Trigonometric Polynomials In case f is a trigonometric polynomial 

. f (t) = f0 +
L∑

j=1

f2j−1 cos(ξj t) +
L∑

j=1

f2j sin(ξj t)

with . ξj real, pairwise different, and .i ξj /∈ {
0, λ1, λ2

}
, we make the ansatz 

. yp(t) = α0 +
L∑

j=1

(
α2j−1 cos(ξj t) + α2j sin(ξj t)

)
.

Here .λ1, λ2 are the zeroes of .λ2 + aλ + b = 0, listed with their multiplicities. 
Substituting the ansatz into the equation, the coefficients .α0, . . . , α2L are then 
determined by comparison of coefficients. 

Examples 

(i) Consider 

.y′′(t) + 2y′(t) + y(t) = cos t, t ∈ R. (6.30) 

Note that .λ1 = λ2 = −1 and .ξ1 = 1, hence .i ξ1 /∈ {
0,−1

}
. Substituting the 

ansatz 

. yp(t) = α0 + α1 cos t + α2 sin t

into the equation and using that 

. y′
p(t) = −α1 sin t + α2 cos t, y′′

p(t) = −α1 cos t − α2 sin t,

one gets 

. −α1 cos t −α2 sin t +2(−α1 sin t +α2 cos t)+(α0+α1 cos t +α2 sin t) = cos t.

Hence by comparison of coefficients, 

. − α1 + 2α2 + α1 = 1, −α2 − 2α1 + α2 = 0, α0 = 0,

yielding .α2 = 1
2 , .α1 = 0, and .α0 = 0, i.e., 

.yp(t) = 1

2
sin t (6.31) 

is a particular solution of (6.30).
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(ii) Consider 

.y′′(t) + ω2y(t) = δ sin(ωt), ω > 0. (6.32) 

Since .λ1 = iω, .λ2 = − iω, and .ξ1 = ω, it follows  that  .i ξ1 ∈ {
0, λ1, λ2

}
. 

In such a case one has to modify the ansatz .α1 cos(ωt) + α2 sin(ωt) for a 
particular solution of (6.32). Note that .c1eλ1t +c2e

λ2t , .c1, c2 ∈ C, is the general 
complex solution of .u′′(t) + ω2u(t) = 0. It then follows that the two solutions 
.cos(ωt), .sin(ωt) form a basis of the .R-vector space V of the real solutions of 
the homogeneous equation .u′′(t) + ω2u(t) = 0, 

. V = {
c1 cos(ωt) + c2 sin(ωt) | c1, c2 ∈ R

}
.

As in the discussion above of the case where f is a solution of the homogeneous 
equation, we make the following ansatz for a particular solution, 

. yp(t) = α1t cos(ωt) + α2t sin(ωt).

Substituting it into (6.32) one gets with 

. y′
p(t) = α1 cos(ωt) + α2 sin(ωt) + t

(
α1 cos(ωt) + α2 sin(ωt)

)′
,

y′′
p(t) = 2

(
α1 cos(ωt) + α2 sin(ωt)

)′ + t
(
α1 cos(ωt) + α2 sin(ωt)

)′′
,

that 

. 2
(
α1 cos(ωt) + α2 sin(ωt)

)′ = δ sin(ωt),

implying that .α2 = 0 and .−2α1ω = δ. Hence 

. yp(t) = − δ

2ω
t cos(ωt)

is a particular solution of (6.32). Note that this solution is oscillatory with 
unbounded amplitude. The general real solution of (6.32) is given by 

.c1 cos(ωt) + c2 sin(ωt) − δ

2ω
t cos(ωt), c1, c2 ∈ R. (6.33) 

Remark The general solution (6.33) can be used to solve the corresponding initial 
value problem. To illustrate how this can be done, let us find the unique solution 
of (6.32), satisfying the initial conditions 

.y(0) = 0, y′(0) = 1. (6.34)
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It means that in the formula (6.33), the constants .c1, c2 have to be determined in such 
a way that (6.34) holds. Therefore, we need to solve the following linear system, 

. c1 = 0, ωc2 − δ

2ω
= 1.

The solution .y(t) of the intial value problem is then given by 

. y(t) = 1

ω

(
1 + δ

2ω

)
sin(ωt) − δ

2ω
t cos(ωt).

Exponentials In case f is a linear combination of exponentials 

.f (t) =
L∑

j=1

fj e
ξj t , f1, . . . , fL ∈ R (6.35) 

where .ξ1, . . . , ξL are in .R\{
λ1, λ2

}
and pairwise different and .λ1, λ2 are the zeroes 

of .λ2 + aλ + b = 0, we make the ansatz .yp(t) = ∑L
j=1 αje

ξj t for a particular 
solution of .y′′(t) + ay′(t) + by(t) = f (t). Since 

. y′
p(t) =

L∑

j=1

ξjαj e
ξj t , y′′

p(t) =
L∑

j=1

ξ2j αj e
ξj t ,

one obtains, upon substitution, that 

. 

L∑

j=1

(αj ξ
2
j + aαj ξj + bαj )e

ξj t =
L∑

j=1

fj e
ξj t .

Hence 

. αj = fj

ξ2j + aξj + b
, 1 ≤ j ≤ L,

and 

. yp(t) =
L∑

j=1

fj

ξ2j + aξj + b
eξj t

is a particular solution of (6.27) with f given by (6.35). Note that . ξ2j + aξj + b �= 0
for any .1 ≤ j ≤ L, since by assumption, .ξj �= λ1, λ2.
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Example Consider 

. y′′(t) − 5y′(t) + 4y(t) = 1 + et , t ∈ R.

Note that .λ2 − 5λ + 4 = 0 has the solutions .λ1 = 4, .λ2 = 1. Hence the general 
solution of the homogeneous equation .u′′(t) − 5u′(t) + 4u(t) = 0 is given by 
.c1e

4t + c2e
t with .c1, c2 ∈ R. On the other hand, .f (t) = eξ1t + eξ2t with .ξ1 = 0 and 

.ξ2 = λ2. We look for a particular solution of the form 

. yp(t) = y(1)
p (t) + y(2)

p (t)

where .y(1)
p is a particular solution of .y′′(t) − 5y′(t) + 4y(t) = 1 and .y(2)

p is a 

particular solution of .y′′(t) − 5y′(t) + 4y(t) = et . For  .y(1)
p we make the ansatz 

.y
(1)
p (t) = α ∈ R. Upon substitution into the equation . y′′(t) − 5y′(t) + 4y(t) = 1

we get .y(1)
p (t) = 1/4. Since . et is a solution of the homogeneous problem . y′′(t) −

5y′(t) + 4y(t) = 0, we make the ansatz .y
(2)
p (t) = αtet . Substituting it into . y′′(t) −

5y′(t) + 4y(t) = et , we obtain, with .y′(t) = αet + αtet and .y′′(t) = 2αet + αtet , 

. − 3αet + αt(et − 5et + 4et ) = et ,

yielding .α = −1/3 and hence .y
(2)
p (t) = − 1

3 tet . We conclude that 

. yp(t) = 1

4
− 1

3
tet

is a solution of .y′′(t)−5y′(t)+4y(t) = 1+et and the general real solution is given 
by 

.c1e
4t + c2e

t + 1

4
− 1

3
tet , c1, c2 ∈ R. (6.36) 

Remark The formula (6.36) can be used to solve the initial value problem 

. 

⎧
⎨

⎩

y′′(t) − 5y′(t) + 4y(t) = 1 + et , t ∈ R,

y(0) = 1

4
, y′(0) = 8

3
.

Indeed, the constants .c1, c2 ∈ R in (6.36) can be determined by solving the 
following linear system 

.c1 + c2 + 1

4
= 1

4
, 4c1 + c2 − 1

3
= 8

3
,
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yielding .c1 + c2 = 0 and .4c1 + c2 = 3. Hence .c1 = 1, .c2 = −1 and the unique 
solution .y(t) of the initial value problem is given by 

. y(t) = e4t − et + 1

4
− 1

3
tet .

Problems 

1. Find the general solution of the following linear ODEs of second order. 

(i) y′′(t) + 2y′(t) + 4y(t) = 0, 
(ii) y′′(t) + 2y′(t) − 4y(t) = t2. 

2. Find the solutions of the following initial value problems. 

(i) y′′(t) − y′(t) − 2y(t) = e−πt , y(0) = 0, y′(0) = 1. 
(ii) y′′(t) + y(t) = sin t , y(0) = 1, y′(0) = 0. 

3. Consider the following ODE: 

. 

{
y′
1(t) = y1(t) + 2y2(t)

y′
2(t) = 3y1(t) + 2y2(t)

.

(i) Find all solutions y(t) = (y1(t), y2(t)) with the property that 

. lim
t→∞ ‖y(t)‖ = 0.

(ii) Do there exist solutions y(t) so that 

. lim
t→∞ ‖y(t)‖ = 0 and lim

t→−∞ ‖y(t)‖ = 0?

Here ‖y(t)‖ = (
y1(t)

2 + y2(t)2
)1/2 . 

4. (i) Define for A ∈ R
2×2 

. cosA =
∞∑

k=0

(−1)k

(2k)! A2k and sinA =
∞∑

k=0

(−1)k

(2k + 1)! A2k+1.

Verify that ei A = cos A + i sin  A. 

(ii) Compute etA  for A =
(
5 −2 
2 5

)
.
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5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) The superposition principle holds for every ODE of the form y′′(t) + 
a(t)y(t)  = b(t) where a, b : R → R are arbitrary continuous functions. 

(ii) Every solution y(t) = (
y1(t), y2(t)

) ∈ R2 of 

. 

{
y′
1(t) = 2y1(t) + y2(t)

y′
2(t) = 7y1(t) − 3y2(t)

is bounded, meaning that there exists a constant C >  0 so that  

.‖y(t)‖2 = y1(t)
2 + y2(t)

2 ≤ C, t ∈ R.
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Solutions of Problems of Sect. 1.2 

1. Determine the sets of solutions of the linear systems{
x + πy = 1 

2x + 6y = 4, 
(i)

{
x + 2y = e 

2x + 3y = f. 
(ii) 

Solutions 

L =
{( 2π − 3 

π − 3 
, 

1 

3 − π
)}

(i) L = {
(−3e + 2f, 2e − f )

}
(ii) 

2. Consider the system (S) of two linear equations with two unknowns.

{
.2x + y = 4

x − 4y = 2

(S1) 

(S2) 

(i) Determine the sets L1 and L2 of solutions of (S1) and (S2), respectively 
and represent them geometrically as straight lines in R2. 

(ii) Determine the intersection L1 ∩ L2 of L1 and L2 from their geometric 
representation in R2. 

Solutions 

(i) L1 =
{
(x, −2x + 4) | x ∈ R

}
, L2 =

{
(x, 1 4 x − 1 2 ) | x ∈ R

}
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(ii) The intersection with the x-axis is at the point (2, 0). Indeed, an algebraic check confirms 
this result. 

3. Compute the determinants of the following matrices and decide for which 
values of the parameter a ∈ R, they vanish. 

A =
(
1 − a 4 
1 1 − a

)
(i) B =

(
1 − a2 a + a2 
1 − a a

)
(ii) 

Solutions 

(i) det(A) = (1− a)2 − 4. From (1− a)2 − 4 = 0 follows that the determinant vanishes for 
a = −1 and  a = 3. 

(ii) det(A) = (1 − a2)a − (a + a2)(1 − a) = 0, i.e. det(A) vanishes for all a ∈ R. 

4. Solve the system of linear equations

{
. 3x − y = 1

5x + 3y = 2

by Cramer’s rule. 

Solutions Since det
(
3 −1 
5 3

)
= 14 �= 0, we can use Cramer’s rule. Thus 

. x =
det

(
1 −1
2 3

)

det

(
3 −1
5 3

) = 5

14
, y =

det

(
3 1
5 2

)

det

(
3 −1
5 3

) = 1

14
.

Hence, L = {
( 5 14 , 

1 
14 )

}
. 

5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) For any given values of the coefficients a, b, c, d ∈ R, the linear system
{

. ax + by = 0

cx + dy = 0

has at least one solution.
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(ii) There exist real numbers a, b, c, d so that the linear system of (a) has 
infinitely many solutions. 

(iii) The system of equations

{
. x1 + x2 = 0

x2
1 + x2

2 = 1

is a linear system. 

Solutions 

(i) True. x = 0, y = 0 is always a solution. 
(ii) True. Choose a = 0, b = 0, c = 0, d = 0. Then any point (x, y) ∈ R

2 is a solution. 
(iii) False. The second equation reads q(x1, x2) = 0 where  q(x1, x2) = x2 

1 + x2 
2 − 1 is a  

polynomial of degree two. Hence the system is not linear. 

Solutions of Problems of Sect. 1.3 

1. Determine the augmented coefficient matrices of the following linear systems 
and transform them in row echelon form by using Gaussian elimination.⎧⎨ 

⎩ 

x1 + 2x2 + x3 = 0 
2x1 + 6x2 + 3x3 = 4 

2x2 + 5x3 = −4 
(i) 

⎧⎨ 

⎩ 

x1 − 3x2 + x3 = 1 
2x1 + x2 − x3 = 2 

x1 + 4x2 − 2x3 = 1 
(ii) 

Solutions 

(i) 

.

augmented coefficient matrix

⎡
⎣ 1 2 1 0
2 6 3 4
0 2 5 −4

⎤
⎦

R2 � R2 − 2R1

⎡
⎣ 1 2 1 0
0 2 1 4
0 2 5 −4

⎤
⎦

R3 � R3 − R2

⎡
⎣ 1 2 1 0
0 2 1 4
0 0 4 −8

⎤
⎦
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(ii) 

. 

augmented coefficient matrix

⎡
⎣ 1 −3 1 1
2 1 −1 2
1 4 −2 1

⎤
⎦

R2 � R2 − 2R1, R3 � R3 − R1

⎡
⎣ 1 −3 1 1
0 7 −3 0
0 7 −3 0

⎤
⎦

R3 � R3 − R1

⎡
⎣ 1 −3 1 1
0 7 −3 0
0 0 0 0

⎤
⎦

2. Transform the augmented coefficient matrices of the following linear systems 
into reduced echelon form and find a parameter representation of the sets of its 
solutions.⎧⎨ 

⎩ 

x1 − 3x2 + 4x3 = 5 
x2 − x3 = 4 

2x2 + 4x3 = 2 
(i) 

⎧⎨ 

⎩ 

x1 + 3x2 + x3 + x4 = 3 
2x1 − x2 + x3 + 2x4 = 8 

x1 − 5x2 + x4 = 5 
(ii) 

Solutions 

(i) 

. 

augmented coefficient matrix

⎡
⎣ 1 −3 4 5
0 1 −1 4
0 2 4 2

⎤
⎦

R3 � R3 − 2R2

⎡
⎣ 1 −3 4 5
0 1 −1 4
0 0 6 −6

⎤
⎦

R3 � 1/6 R3

⎡
⎣ 1 −3 4 5
0 1 −1 4
0 0 1 −1

⎤
⎦

R2 � R2 + R3

⎡
⎣ 1 −3 4 5
0 1 0 3
0 0 1 −1

⎤
⎦

R1 � R1 + 3R2 − 4R3

⎡
⎣ 1 0 0 18
0 1 0 3
0 0 1 −1

⎤
⎦

Hence, L = {
(18, 3,−1)

}
.
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(ii) 

. 

augmented coefficient matrix

⎡
⎣ 1 3 1 1 3
2 −1 1 2 8
1 −5 0 1 5

⎤
⎦

R2 � R2 − 2R1, R3 � R3 − R1

⎡
⎣ 1 3 1 1 3
0 −7 −1 0 2
0 −8 −1 0 2

⎤
⎦

R3 � R3 − 8/7 R2

⎡
⎣ 1 3 1 1 3
0 −7 −1 0 2
0 0 1/7 0 − 2/7

⎤
⎦

R2 � 1/(−7) R2, R3 � 7R3

⎡
⎣ 1 3 1 1 3
0 1 1/7 0 − 2/7

0 0 1 0 −2

⎤
⎦

R2 � R2 − 1/7 R3

⎡
⎣ 1 3 1 1 3
0 1 0 0 0
0 0 1 0 −2

⎤
⎦

R1 � R1 − 3R2 − R3

⎡
⎣ 1 0 0 1 5
0 1 0 0 0
0 0 1 0 −2

⎤
⎦

Hence, L = {
(5 − t4, 0, −2, t4) | t4 ∈ R

}
or in parameter representation 

F : R → R4, t4 �→ 

⎛ 

⎜⎜⎝ 

5 
0 

−2 
0 

⎞ 

⎟⎟⎠ + t4 

⎛ 

⎜⎜⎝ 

−1 
0 
0 
1 

⎞ 

⎟⎟⎠, which represents a line in R4. 

3. Consider the linear system given by the following augmented coefficient matrix 

. 

⎡
⎣ 1 1 3 2
1 2 4 3
1 3 α β

⎤
⎦ .

(i) For which values of α and β in R does the system have infinitely many 
solutions? 

(ii) For which values of α and β in R does the system have no solutions? 

Solutions By using Gaussian elimination, we bring the augmented coefficient matrix into row 
echelon form.
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. 

augmented coefficient matrix

⎡
⎣ 1 1 3 2
1 2 4 3
1 3 α β

⎤
⎦

R2 � R2 − R1, R3 � R3 − R1

⎡
⎣ 1 1 3 2
0 1 1 1
0 2 α − 3 β − 2

⎤
⎦

R3 � R3 − 2R2

⎡
⎣ 1 0 2 1
0 1 1 1
0 0 α − 5 β − 4

⎤
⎦

α �= 5: only for α �= 5 can the augmented coefficient matrix be divided by α − 5 and hence 
be transformed to reduced row echelon form. 

. 

⎡
⎣ 1 0 0 1 − 2 (β−4)/(α−5)

0 1 0 1 − (β−4)/(α−5)

0 0 1 (β−4)/(α−5)

⎤
⎦

The unique solution of the system is thus given by 

. L =
{(
1 − 2

(β − 4)

(α − 5)
, 1 − (β − 4)

(α − 5)
,
(β − 4)

(α − 5)

)}
.

(i) α = 5, β = 4: for α = 5 and  β = 4, we get the following augmented coefficient matrix 

. 

⎡
⎣ 1 0 2 1
0 1 1 1
0 0 0 0

⎤
⎦ .

The set of solutions thus consists of infinitely many solutions given by 

. L = {
(1 − 2t, 1 − t, t) | t ∈ R

}
with t a free variable. 

(ii) α = 5, β �= 4: for α = 5 and  β �= 4, we get 

. 

⎡
⎣ 1 0 2 1
0 1 1 1
0 0 0 β − 4

⎤
⎦

and the set of solutions is empty, L = ∅. 
4. Determine the set of solutions of the following linear system of n equations and 

n unknowns 

.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1 + 5x2 = 0
x2 + 5x3 = 0

...

xn−1 + 5xn = 0
5x1 + xn = 1
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Solutions By using Gaussian elimination iteratively, we get 

. 

augmented coefficient matrix

⎡
⎢⎢⎢⎢⎢⎢⎣

1 5 0
1 5 0

.

.

.
.
.
.

1 5 0
5 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Rn � Rn − 5R1

⎡
⎢⎢⎢⎢⎢⎢⎣

1 5 0
1 5 0

.

.

.
.
.
.

1 5 0
0 −52 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Rn � Rn + 52R2

⎡
⎢⎢⎢⎢⎢⎢⎣

1 5 0
1 5 0

.

.

.
.
.
.

1 5 0
0 0 53 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

.

.

Rn � Rn + (−1)n−15n−1Rn−1

⎡
⎢⎢⎢⎢⎢⎢⎣

1 5 0
1 5 0

.

.

.
.
.
.

1 5 0
0 0 0 . . . 1 + (−1)n−15n 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Finally, we get a solution for xn: xn = 1 

1 + (−1)n−15n . 

By inserting the solutions backwards into the equations described by the augmented coeffi-
cient matrix, one obtains 

. xn−1 = (−5) · 1

1 + (−1)n−15n
, . . . , x1 = (−5)n−1 · 1

1 + (−1)n−15n
.

Hence the solution is unique, 

. L =
{( (−5)n−1

1 + (−1)n−15n
,

(−5)n−2

1 + (−1)n−15n
, . . . ,

(−5)

1 + (−1)n−15n
,

1

1 + (−1)n−15n

)}
.

5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) There exist linear systems with three equations and three unknowns, which 
have precisely three solutions due to special symmetry properties. 

(ii) Every linear system with two equations and three unknowns has infinitely 
many solutions.
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Solutions 

(i) False. The set of solutions is either empty, a single point, a line, a plane, or the whole 
space. Thus there is either no solution, a unique solution, or there are infinitely many 
solutions. 

(ii) False. It can have no solutions as well. Consider for example the system of equations 
with associated augmented coefficient matrix 

. 

augmented coefficient matrix

[
1 1 1 0
1 1 1 1

]

R2 � R2 − R1

[
1 1 1 0
0 0 0 1

]

which has no solutions. 

Solutions of Problems of Sect. 2.1 

1. Let A, B, C be the following matrices 

. A =
(
2 −1 2
4 −2 4

)
, B =

⎛
⎝−1 0

2 2
2 1

⎞
⎠ , C =

(−1 2
0 2

)
.

(i) Determine which product Q · P are defined for Q, P ∈ {
A, B, C

}
and 

which are not (the matrices Q and P do not have to be different). 
(ii) Compute AB and BA. 
(iii) Compute 3C5 + 2C2. 
(iv) Compute ABC. 

Solutions 

(i) For the product Q · P to be defined, the number of columns of Q has to be the same as 
the number of rows of P . Since  A has 2 rows and 3 columns, A ∈ R2×3, B has 3 rows 
and 2 columns, B ∈ R3×2 and C has 2 rows and 2 columns, C ∈ R2×2, AB, BA, BC, 
CA and CC are defined. 

(ii) AB =
(
2 −1 2  
4 −2 4

)⎛ 

⎝−1 0  
2 2  
2 1  

⎞ 

⎠ =
(
0 0  
0 0

)
and 

BA = 

⎛ 

⎝−1 0  
2 2  
2 1  

⎞ 

⎠(
2 −1 2  
4 −2 4

)
= 

⎛ 

⎝−2 1  −2 
12 −6 12  
8 −4 8  

⎞ 

⎠. 

(iii) C2 =
(−1 2  

0 2

)(−1 2  
0 2

)
=

(
1 2  
0 4

)
, 

C4 = C2 · C2 =
(
1 2  
0 4

)(
1 2  
0 4

)
=

(
1 10  
0 16

)
,
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C5 = C · C4 =
(−1 2  

0 2

)(
1 10  
0 16

)
=

(−1 22  
0 32

)
, 

3C5 + 2C2 = 3
(−1 22  

0 32

)
+ 2

(
1 2  
0 4

)
=

(−3 66  
0 96

)
+

(
2 4  
0 8

)
=

(−1 70  
0 104

)
. 

(iv) From the solution of (i), it follows that AB =
(
0 0  
0 0

)
, 

hence ABC =
(
0 0  
0 0

)(−1 2  
0 2

)
=

(
0 0  
0 0

)
. 

2. Determine which of the following matrices are regular and if so, determine their 
inverses. 

(i) A = 

⎛ 

⎝1 2  −2 
0 −1 1  
2 3 0  

⎞ 

⎠ 

(ii) B = 

⎛ 

⎝ 
1 2 2  
0 2  −1 

−1 0  −3 

⎞ 

⎠ 

Solutions 

(i) Using Gaussian elimination, we decide whether A is regular and if so, compute its 
inverse. 

.

augmented coefficient matrix

⎡
⎣ 1 2 −2 1 0 0
0 −1 1 0 1 0
2 3 0 0 0 1

⎤
⎦

R3 � R3 − 2R1

⎡
⎣ 1 2 −2 1 0 0
0 −1 1 0 1 0
0 −1 4 −2 0 1

⎤
⎦

R2 � −R2

⎡
⎣ 1 2 −2 1 0 0
0 1 −1 0 −1 0
0 −1 4 −2 0 1

⎤
⎦

R3 � R3 + R2

⎡
⎣ 1 2 −2 1 0 0
0 1 −1 0 −1 0
0 0 3 −2 −1 1

⎤
⎦

R3 � 1/3 R3

⎡
⎣ 1 2 −2 1 0 0
0 1 −1 0 −1 0
0 0 1 − 2/3 − 1/3

1/3

⎤
⎦
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It follows that A is regular. Its inverse can be computed as follows. 

. 

R1 � R1 − 2R2

⎡
⎣ 1 0 0 1 2 0
0 1 −1 0 −1 0
0 0 1 − 2/3 − 1/3

1/3

⎤
⎦

R2 � R2 + R3

⎡
⎣ 1 0 0 1 2 0
0 1 0 − 2/3 − 4/3

1/3

0 0 1 − 2/3 − 1/3
1/3

⎤
⎦

Hence, the inverse of A is A−1 = 

⎛ 

⎝ 
1 2 0  

− 2/3 − 4/3 
1/3 

− 2/3 − 1/3 
1/3 

⎞ 

⎠. 

(ii) Using Gaussian elimination, we decide whether B is regular or not. 

. 

augmented coefficient matrix

⎡
⎣ 1 2 2 1 0 0

0 2 −1 0 1 0
−1 0 −3 0 0 1

⎤
⎦

R3 � R3 + R1

⎡
⎣ 1 2 2 1 0 0
0 2 −1 0 1 0
0 2 −1 1 0 1

⎤
⎦

R3 � R3 − R2

⎡
⎣ 1 2 2 1 0 0
0 2 −1 0 1 0
0 0 0 1 −1 1

⎤
⎦

Hence B is not regular. 

3. (i) Determine all real numbers α, β for which the 2 × 2 matrix  

. A :=
(

α β

β α

)

is invertible and compute for those numbers the inverse of A. 
(ii) Determine all real numbers a, b, c, d, e, f for which the matrix 

. B :=
⎛
⎝a d e

0 b f

0 0 c

⎞
⎠

is invertible and compute for those numbers the inverse of B. 
Solutions 

(i) The matrix is invertible if and only if det(A) = α2 − β2 �= 0. In the latter case, A−1 is 
given by Eq. (2.1), 

.A−1 = 1

α2 − β2

(
α −β

−β α

)
.
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(ii) From 

. 

⎡
⎣ a d e 1 0 0
0 b f 0 1 0
0 0 c 0 0 1

⎤
⎦

we see that B is invertible if and only if abc �= 0. If abc �= 0, we proceed by Gaussian 
elimination. 

. 

augmented coefficient matrix

⎡
⎣ a d e 1 0 0
0 b f 0 1 0
0 0 c 0 0 1

⎤
⎦

R1 � 1/a R1, R2 � 1/b R2, R3 � 1/c R3

⎡
⎣ 1 d/a

e/a
1/a 0 0

0 1 f/b 0 1/b 0
0 0 1 0 0 1/c

⎤
⎦

R2 � R2 − f/b R3

⎡
⎣ 1 d/a

e/a
1/a 0 0

0 1 0 0 1/b − f/bc

0 0 1 0 0 1/c

⎤
⎦

R1 � R1 − d/a R2 − e/a R3

⎡
⎣ 1 0 0 1/a − d/ab

df/abc − e/ac

0 1 0 0 1/b − f/bc

0 0 1 0 0 1/c

⎤
⎦

Hence, the inverse matrix ist given by 

. 

⎛
⎝

1/a − d/ab
df/abc − e/ac

0 1/b − f/bc

0 0 1/c

⎞
⎠ .

4. (i) Find symmetric 2 × 2 matrices A, B so that the product AB is not 
symmetric. 

(ii) Verify: for any 4 × 4 matrices of the form 

. A =
(

A1 A2

0 A3

)
, B =

(
B1 B2

0 B3

)

where A1, A2, A3 and B1, B2, B3 are 2 × 2 matrices, the 4 × 4 matrix  AB 
is given by 

. AB =
(

A1B1 A1B2 + A2B3

0 A3B3

)
.

Solutions 

(i) Consider the following general 2 × 2 matrices with a, b, c, d, a′, b′, c′, d ′ ∈ R, 

.

(
a b

c d

)(
a′ b′
c′ d ′

)
=

(
aa′ + bb′ ab′ + bc′
ba′ + cb′ bb′ + cc′

)
.
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Hence, for the symmetric matrices A =
(
1 1  
1 0

)
and B =

(
2 1  
1 0

)
, one has AB =

(
3 1  
2 1

)
. 

(ii) For any 1 ≤ i, j ≤ 2: 

(AB)ij = Ri(A)Cj (B) = Ri(A1)Cj (B1) = (A1B1)ij , 

(AB)(i+2)j = Ri+2(A)Cj (B) = (
0 0

)
Cj (B1) + Ri(A3)

(
0 
0

)
= 0, 

(AB)i(j+2) = Ri(A)Cj+2(B) = Ri(A1)Cj (B2) + Ri(A2)Cj (B3) = (A1B2)ij + 
(A2B3)ij , 

(AB)(i+2)(j+2) = Ri+2(A)Cj+2(B) = (
0 0

)
Cj (B2) + Ri(A3)Cj (B3) = (A3B3)ij . 

5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) For arbitrary matrices A, B in R2×2, 

. (A + B)2 = A2 + 2AB + B2.

(ii) Let A be the 2× 2 matrix  A =
(
1 2  
3 5

)
. Then for any k ∈ N, Ak is invertible 

and for any n, m ∈ Z, 

. An+m = AnAm.

(Recall that A0 = Id2×2 and for any k ∈ N, A−k is defined as 
A−k = (A−1)k .) 

Solutions 

(i) False. We first note that 

. (A + B)2 = A2 + AB + BA + B2,

thus if AB �= BA, the claim is false. Consider for example 

. A =
(
2 0
0 3

)
, B =

(
0 1

−1 0

)
, AB =

(
0 2

−3 0

)
, BA =

(
0 3

−2 0

)
.

Then 

. (A + B)2 =
(
4 0
0 9

)
+

(
0 2

−3 0

)
+

(
0 3

−2 0

)
+

(−1 0
0 −1

)
=

(
3 5

−5 8

)
,

while 

.A2 + 2AB + B2 =
(
4 0
0 9

)
+

(
0 4

−6 0

)
+

(−1 0
0 −1

)
=

(
3 4

−6 8

)
.
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(ii) True. First note that A is invertible, since det(A) = 5 − 6 = −1 �= 0. By Eq. (2.1) one 
therefore has 

. A−1 = 1

det(A)

(
5 −2

−3 1

)
=

(−5 2
3 −1

)
.

This implies that Ak is invertible, since AA−1 = Id2×2 and thus Ak A−k = Ak (A−1)k = 
A · · ·A · A · A−1︸ ︷︷ ︸

=Id2×2 

·A−1 · · ·A−1 = Id2×2. Since  Ak and A−k are defined for any k ∈ N 

and A0 = Id2×2, the exponentiation law An+m = An Am holds for any n, m ∈ Z. More 
precisely, for any n, m ∈ N one has 
An Am = A · · ·  A︸ ︷︷ ︸

n 
· A · · ·  A︸ ︷︷ ︸

m 
= An+m, 

A−n A−m = A−1 · · ·A−1︸ ︷︷ ︸
n 

· A−1 · · ·  A−1︸ ︷︷ ︸
m 

= A−n−m, 

An A0 = An = A0An, 

A−n Am =
{

A−r A−m Am = A−n+m if r := n − m ≥ 0 
A−n An A−r = A−n+m if r := n − m <  0 

. 

Solutions of Problems of Sect. 2.2 

1. (i) Decide whether a(1) = (2, 5), a(2) = (5, 2) are linearly dependent in R2. 
(ii) If possible, represent b = (1, 9) as a linear combination of a(1) = (1, 1) 

and a(2) = (3,−1). 
Solutions 

(i) a(1) and a(2) are linearly independent if the matrix

(
2 5  
5 2

)
is regular. Since det(A) = 

4 − 10 �= 0, A is regular. 
(ii) To write b, if possible, as a linear combination of a(1) and a(2), we need to solve the 

linear system 

. Ax = b, A =
(
1 3
1 −1

)
, x =

(
x1

x2

)
.

The corresponding augmented coefficient matrix can be transformed by Gaussian 
elimination into row echelon form. 

. 

augmented coefficient matrix

[
1 3 1
1 −1 9

]

R2 � R2 − R1

[
1 3 1
0 −4 8

]

R2 � − 1/4 R2

[
1 3 1
0 1 −2

]

R1 � R1 − 3R2

[
1 0 7
0 1 −2

]

Hence, b = 7a(1) − 2a(2).
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2. Decide whether the following vectors in R3 are linearly dependent or not. 

(i) a(1) = (1, 2, 1), a(2) = (−1, 1, 3). 
(ii) a(1) = (1, 1,−1), a(2) = (0, 4,−3), a(3) = (1, 0, 3). 
Solutions 

(i) Let us assume that the vectors are linearly dependent and then either show that it is true 
or show that the assumption leads to a contradiction. 

Case 1. Let us assume there exists α1 ∈ R with a(1) = α1a
(2). This leads to 1  = −1α1, 

2 = 1α1 and 1 = 3α1, clearly a contradiction. 
Case 2. Let us assume there exists α2 ∈ R with a(2) = α2a

(1). This leads to −1 = 1α2, 
1 = 2α2 and 3 = 1α2, also a contradiction. 

Hence, the vectors a(1) and a(2) are linearly independent. Alternatively, the linear 
independence of a(1) and a(2) can be established by showing that the linear system 

Ax = 

⎛ 

⎝0 
0 
0 

⎞ 

⎠ has only the trivial solution x =
(
0 
0

)
. Here  A is the 3 × 2 matrix, whose 

columns are C1(A) = a(1), C2(A) = a(2). By Gaussian elimination we transform the 
augmented coefficient matrix into row echelon form, 

. 

augmented coefficient matrix

⎡
⎣ 1 1 0
1 1 0
1 2 0

⎤
⎦

R2 � R2 − R1, R3 � R3 − R1

⎡
⎣ 1 1 0
0 0 0
0 1 0

⎤
⎦

R2↔3

⎡
⎣ 1 1 0
0 1 0
0 0 0

⎤
⎦.

Hence, Ax = 

⎛ 

⎝0 
0 
0 

⎞ 

⎠ has only the trivial solution. 

(ii) The vectors a(1), a(2) and a(3) are linearly independent if and only if for any real numbers 
x1, x3, x3 with x1a(1) + x2a

(2) + x3a(3) = 0, it follows that x1 = 0, x2 = 0, and 
x3 = 0. It means that the homogenous linear system Ax = 0 has only the trivial solution 
x = 0. Here A is the 3 × 3 matrix with columns C1(A) = a(1), C2(A) = a(2) and 
C3(A) = a(3). By Gaussian elimination, we transform the augmented coefficient matrix 
into row echelon form,
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. 

augmented coefficient matrix

⎡
⎣ 1 0 1 0

1 4 0 0
−1 −3 3 0

⎤
⎦

R2 � R2 − R1, R3 � R3 + R1

⎡
⎣ 1 0 1 0
0 4 −1 0
0 −3 4 0

⎤
⎦

R2 � 1/4 R2

⎡
⎣ 1 0 1 0
0 1 − 1/4 0
0 −3 4 0

⎤
⎦

R3 � R3 + 3R2

⎡
⎣ 1 0 1 0
0 1 − 1/4 0
0 0 13/4 0

⎤
⎦.

Hence, Ax = 0 admits only the trivial solution x = 0. 

3. (i) Let a(1) := (1, 1, 1), a(2) := (1, 1, 2). Find a vector a(3) ∈ R3 so that a(1), 
a(2), and a(3) form a basis of R3. 

(ii) Let [a] = [a(1) , a(2)] be the basis of R2, given by 

. a(1) = (1,−1), a(2) = (2, 1).

Compute Id[e]→[a] and Id[a]→[e]. 
Solutions 

(i) First, we note that a(1) and a(2) are linearly independent. Indeed, transforming, the 
augmented coefficient matrix into row echelon form, one gets 

. 

augmented coefficient matrix

⎡
⎣ 1 1 0
1 1 0
1 2 0

⎤
⎦

R2 � R2 − R1, R3 � R3 − R1

⎡
⎣ 1 1 0
0 0 0
0 1 0

⎤
⎦

R2↔3

⎡
⎣ 1 1 0
0 1 0
0 0 0

⎤
⎦.

Hence, a(1) and a(2) are linearly independent. To find a(3) = (x1, x2, x3) so that 
a(1) , a(2) , a(3) form  a basis, we consider  

.

⎡
⎣ 1 1 x1 0
1 1 x2 0
1 2 x3 0

⎤
⎦



204 Solutions

and transform it into row echelon form. As before 

. 

augmented coefficient matrix

⎡
⎣ 1 1 x1 0
1 1 x2 0
1 2 x3 0

⎤
⎦

R2 � R2 − R1, R3 � R3 − R1

⎡
⎣ 1 1 x1 0
0 0 x2 − x1 0
0 1 x3 − x1 0

⎤
⎦

R2↔3

⎡
⎣ 1 1 x1 0
0 1 x3 − x1 0
0 0 x2 − x1 0

⎤
⎦.

Hence, a possible solution is (x1, x2, x3) = (0, 1, 0). Note that there are many solutions. 
In geometric terms, we need to choose a(3) in such a way that it is not contained in the 
plane spanned by a(1) and a(2),

{
sa(1) + ta(2) | s, t ∈ R

} ⊆ R3. 
(ii) Since the coefficients of a(1) and a(2) with respect to the standard basis [e] = [e(1) , e(2)] 

are the components of a(1) and a(2), respectively, we first compute Id[a]→[e]. 

As a(1) = 1 · e(1) − 1 · e(2) and a(2) = 2 · e(1) + 1 · e(2), we get  

. S := Id[a]→[e] =
(

1 2
−1 1

)
.

Since T := Id[e]→[a] = S−1, we need to find the inverse of S. We use Eq. (2.1) for the 
inverse of a 2 × 2 matrix,  

. S−1 = 1

det(S)

(
1 −2
1 1

)
= 1

3

(
1 −2
1 1

)
=

(
1/3 − 2/3
1/3

1/3

)
.

4. Consider the basis [a] = [a(1) , a(2) , a(3)] of R3, given by a(1) = (1, 1, 0), 
a(2) = (1, 0, 1) and a(3) = (0, 1, 1), and denote by [e] = [e(1) , e(2) , e(3)] the 
standard basis of R3. 

(i) Compute S := Id[a]→[e] and T := Id[e]→[a]. 
(ii) Compute the coordinates α1, α2, α3 of the vector b = (1, 2, 3) with respect 

to the basis [a], b = α1a
(1)+α2a

(2)+α3a
(3), and determine the coefficients 

β1, β2, β3 of the vector a(1)+2a(2)+3a(3) with respect to the standard basis 
[e]. 

Solutions 

(i) Since the coefficients of a(1) , a(2) , a(3) with respect to the standard basis [e] are known, 
it is convenient to first compute S. One has 

. a(1) = 1 · e(1) + 1 · e(2) + 0 · e(3), a(2) = 1 · e(1) + 0 · e(2) + 1 · e(3),

.a(3) = 0 · e(1) + 1 · e(2) + 1 · e(3),
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hence 

. S =
⎛
⎝1 1 0
1 0 1
0 1 1

⎞
⎠ .

Since T = S−1, we find  T by transforming the augmented coefficient matrix into 
reduced row echelon form, 

. 

augemented coefficient matrix

⎡
⎣ 1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

⎤
⎦

R2 � R2 − R1

⎡
⎣ 1 1 0 1 0 0
0 −1 1 −1 1 0
0 1 1 0 0 1

⎤
⎦

R3 � R3 + R2

⎡
⎣ 1 1 0 1 0 0
0 −1 1 −1 1 0
0 0 2 −1 1 1

⎤
⎦

R2 � −R2, R3 � 1/2 R3

⎡
⎣ 1 1 0 1 0 0
0 1 −1 1 −1 0
0 0 1 − 1/2

1/2
1/2

⎤
⎦

R2 � R2 + R3

⎡
⎣ 1 1 0 1 0 0
0 1 0 1/2 − 1/2

1/2

0 0 1 − 1/2
1/2

1/2

⎤
⎦

R1 � R1 − R2

⎡
⎣ 1 0 0 1/2

1/2 − 1/2

0 1 0 1/2 − 1/2
1/2

0 0 1 − 1/2
1/2

1/2

⎤
⎦

Hence, T = 1 2 

⎛ 

⎝ 
1 1  −1 
1 −1 1  

−1 1 1  

⎞ 

⎠. 

(ii) The coefficients α1, α2, α3 of b = (1, 2, 3) with respect to basis [a] can be computed as 

. α =
⎛
⎝α1

α2

α3

⎞
⎠ = Id[e]→[a]

⎛
⎝1
2
3

⎞
⎠ = T

⎛
⎝1
2
3

⎞
⎠ = 1

2

⎛
⎝ 1 1 −1

1 −1 1
−1 1 1

⎞
⎠

⎛
⎝1
2
3

⎞
⎠ =

⎛
⎝0
1
2

⎞
⎠ .

The coefficients β1, β2, β3 of the vector 1a(1) + 2(2) + 3a(3) with respect to the basis [e] 
can be computed as 

. β =
⎛
⎝β1

β2

β3

⎞
⎠ = Id[a]→[e]

⎛
⎝1
2
3

⎞
⎠ = S

⎛
⎝1
2
3

⎞
⎠ =

⎛
⎝1 1 0
1 0 1
0 1 1

⎞
⎠

⎛
⎝1
2
3

⎞
⎠ =

⎛
⎝3
4
5

⎞
⎠ .

5. Decide whether the following assertions are true or false and justify your 
answers.
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(i) Let n, m ≥ 2. If one of the vectors a(1) , . . . , a(n) ∈ Rm is the null vector, 
then a(1) , . . . , a(n) are linearly dependent. 

(ii) Assume that a(1) , . . . , a(n) are vectors in R2. If  n ≥ 3, then any vector 
b ∈ R2 can be written as a linear combination of a(1) , . . . , a(n). 

Solutions 

(i) True. Suppose a(k) = 0 in  Rm with 1 ≤ k ≤ n. Then  

. a(k) = 0 =
∑
j �=k

0 · a(j).

(ii) False. Suppose a(1) = a(2) = a(3) = 0, then the claim is false for any b ∈ R2 \ {0}. 

Solutions of Problems of Sect. 2.3 

1. Decide whether the following vectors in R3 form a basis of R3 and if so, 
represent b = (1, 0, 1) as a linear combination of the basis vectors. 

(i) a(1) = (1, 0, 0), a(2) = (0, 4,−1), a(3) = (2, 2,−3), 
(ii) a(1) = (2,−4, 5), a(2) = (1, 5, 6), a(3) = (1, 1, 1). 

Solutions 

(i) We simultaneously check a(1), a(2), and  a(3) for linear independence and solve Ax = 

b where A = 

⎛ 

⎝1 0 2  
0 4 2  
0 −1 −3 

⎞ 

⎠. To this end, we transform the augmented coefficient 

matrix in row echelon form. 

. 

augmented coefficient matrix

⎡
⎣ 1 0 2 1
0 4 2 0
0 −1 −3 1

⎤
⎦

R3 � R3 + 1/4 R2

⎡
⎣ 1 0 2 1
0 4 2 0
0 0 − 5/2 1

⎤
⎦

R2 � 1/4 R2, R3 � − 2/5 R3

⎡
⎣ 1 0 2 1
0 1 1/2 0
0 0 1 − 2/5

⎤
⎦

R2 � R2 − 1/2 R3, R1 � R1 − 2R3

⎡
⎣ 1 0 0 9/5

0 1 0 1/5

0 0 1 − 2/5

⎤
⎦

Consequently, A is regular, hence a(1), a(2), a(3) is a basis of R3 and 

.b = 9

5
a(1) + 1

5
a(2) − 2

5
a(3).
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(ii) We simultaneously check a(1), a(2), and  a(3) for linear independence and solve Ax = b 

where A = 

⎛ 

⎝ 
2 1 2  

−4 5 1  
5 6 1  

⎞ 

⎠. Again, we transform the augmented coefficient matrix into row 

echelon form. 

. 

augmented coefficient matrix

⎡
⎣ 2 1 1 1

−4 5 1 0
5 6 1 1

⎤
⎦

R2 � R2 + 2R1, R3 − 5/2 R1

⎡
⎣ 2 1 1 1
0 7 3 2
0 7/2

3/2 − 3/2

⎤
⎦

R3 � R3 − 1/2 R2

⎡
⎣ 2 1 1 1
0 7 3 2
0 0 −3 − 5/2

⎤
⎦

R1 � 1/2 R1, R2 � 1/7 R2, R3 � − 1/3 R2

⎡
⎣ 1 1/2

1/2
1/2

0 1 3/7
2/7

0 0 1 5/6

⎤
⎦

R1 � R1 − 1/2 R3, R2 � R2 − 3/7 R3

⎡
⎣ 1 1/2 0 1/12

0 1 0 − 1/14

0 0 1 5/6

⎤
⎦

R1 � R1 − 1/2 R2

⎡
⎣ 1 0 0 5/42

0 1 0 − 1/14

0 0 1 5/6

⎤
⎦

Consequently, A is regular, hence a(1), a(2), a(3) is a basis of R3 and 

. b = 5

42
a(1) − 1

14
a(2) + 5

6
a(3).

2. Compute the determinants of the following 3 × 3 matrices 

(i) A = 

⎛ 

⎝−1 2 3  
4 5 6  
7 8 9  

⎞ 

⎠, 

(ii) B = 

⎛ 

⎝1 2 3  
4 5 6  
7 8 9  

⎞ 

⎠. 

Solutions 

(i) We compute the determinant using Gaussian elimination. 

. det

⎛
⎝−1 2 3

4 5 6
7 8 9

⎞
⎠ R2�R2+4R1

R3�R3+7R1= det

⎛
⎝−1 2 3

0 13 18
0 22 30

⎞
⎠ = (−1)(13 · 30 − 18 · 22)

= 18 · 22 − 30 · 13 = 396 − 390 = 6.
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(ii) We compute the determinant using Gaussian elimination. 

. det

⎛
⎝1 2 3
4 5 6
7 8 9

⎞
⎠ = det

⎛
⎝1 2 3
0 −3 −6
0 −6 −12

⎞
⎠ = det

⎛
⎝1 2 3
0 −3 −6
0 0 0

⎞
⎠ = 0.

3. (i) Compute the determinant of the 3 × 3 matrix  

. A =
⎛
⎝ 1 0 1
−1 1 0
1 1 1

⎞
⎠
25

.

(ii) Determine all numbers a ∈ R for which the determinant of the 2×2 matrix  

. B =
(
4 3
1 0

)
+ a

(−2 1
−1 −1

)

vanishes. 
Solutions 

(i) Since det(AB) = det(A) det(B), one has det(A25) = (det(A))25. Furthermore, by 
expanding det(A) with respect to the first row, we get 

. det

⎛
⎝ 1 0 1
−1 1 0
1 1 1

⎞
⎠ = det

(
1 0
1 1

)
+ det

(−1 1
1 1

)
= 1 − 2 = −1

and hence det(A) = (−1)25 = −1. 

(ii) One has B =
(
4 − 2a 3 + a 
1 − a −a

)
and hence 

. det(B) = (4 − 2a)(−a) − (3 + a)(1 − a) = 3a2 − 2a − 3.

Solving 3a2 − 2a − 3 = 0, we find that the determinant vanishes for a = 1 3 ± 
√
10 
3 . 

4. Verify that for any basis [a(1) , a(2) , a(3)] of R3, [−a(1) , 2a(2) , a(1)+a(3)] is also 
a basis. 
Solutions Let b(1) = −a(1), b(2) = 2a(2), b(3) = a(1) + a(3). Then  

. 
(
b(1) b(2) b(3)

) = (
a(1) a(2) a(3)

)⎛⎝−1 0 1
0 2 0
0 0 1

⎞
⎠ .

The vectors b(1), b(2), b(3) form a basis if the determinant of the left hand side of the latter 
identity is nonzero. Since det(AB) = det(A) det(B), we conclude 

. det
(
b(1) b(2) b(3)

) = det
(
a(1) a(2) a(3)

)
det

⎛
⎝−1 0 1

0 2 0
0 0 1

⎞
⎠

= −2 det
(
a(1) a(2) a(3)

)

and the right hand side is nonzero since a(1), a(2), a(3) form a basis.
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5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) det(λA) = λ det(A) for any λ ∈ R, A ∈ Rn×n, n ≥ 1. 
(ii) Let A ∈ Rn×n, n ≥ 1, have the property that det(Ak ) = 0 for  some  k ∈ N. 

Then det(A) = 0. 
Solutions 

(i) False. Since λA = (
λC1 λC2 . . .  λCn

)
with Cj ≡ Cj (A), 1  ≤ j ≤ n, one has by 

Theorem 2.2.3 

. det λA = λ det
(
C1 λC2 . . . λCn

)
= λ2 det

(
C1 C2 λC3 . . . λCn

) = . . .

= λn det
(
C1 C2 . . . Cn

) = λn det(A)

Hence, for n ≥ 2 and det(A) �= 0, it follows that for λ = 2, det(2A) = 2 det(A) is not 
correct. 

(ii) True. Since det(AB) = det(A) det(B), det(Ak ) = (
det(A)

)k . Hence, if
(
det(A)

)k = 0, 
then det(A) = 0. 

Solutions of Problems of Sect. 3.1 

1. Compute the real and the imaginary part of the following complex numbers. 

1 + i 
2 + 3 i  

(i) (2 + 3 i)2(ii) 
1 

(1 − i)3 
(iii) 

1 + 1−i 
1+i 

1 + 1 
1+2 i  

(iv) 

Solutions 

(i) 
1 + i 

2 + 3 i  
= 

(1 + i)(2 − 3 i) 
(2 + 3 i)(2 − 3 i) 

= 
2 + 3 + 2 i−3 i  

4 + 9 
= 

5 − i 
13 

= 
5 

13 
− 

i 

13 

(ii) (2+ 3 i)3 = 23 + 3 · 22 · (3 i) + 3 · 2 · (3 i)2 + (3 i)3 = 8− 54+ (36− 27) i = −46+ 9 i  

(iii) 
1 

(1 − i)3 
= 

(1 + i)3 

23 
= 

1 + 3 i+3 i2 + i3 

8
= 

−2 + 2 i  
8

= −  
1 

4 
+ 

i 

4 

(iv) 
1 + 1−i 

1+i 

1 + 1 
1+2 i  

= 
2 

1+i 
2+2 i  
1+2 i  

= 
2 

1 + i 
· 1 + 2 i  

2 + 2 i  
= 

1 + 2 i  

(1 + i)2 
= 

1 + 2 i  
2 i  

= 1 − 
1 

2 
i 

2. (i) Compute the polar coordinates r , ϕ of the complex number z = √
3 + i and 

find all possible values of z1/3. 
(ii) Compute the polar coordinates r , ϕ of the complex number z = 1 + i and 

find all possible values of z1/5. 
(iii) Find all solutions of z4 = 16.
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Solutions 

(i) Note that r = |z| = √
3 + 1 = 2 and that cosϕ = √

3 /2, sinϕ = 1/2, hence ϕ = π/6 
(mod 2π)  and z = 2ei π/6. The third root z1/3 takes therefore the values 

. 2
1
3 · ei(

π
18 + 2πj

3 ), 0 ≤ j ≤ 2.

(ii) One has z = √
2 eiπ/4 so that r = √

2 and  ϕ = π/4 (mod 2π). The fifth root z1/5 then 
takes the values 

. 2
1
10 · e( iπ20 + i 2πj

5 ), 0 ≤ j ≤ 4.

(iii) One has zj = 2ei 2πj/4, 0 ≤ j ≤ 3, that is z0 = 2, z1 = 2 i,  z2 = −2 and  z3 = −2 i.  

3. (i) Compute

∣∣∣∣2 − 3 i  

3 + 4 i

∣∣∣∣. 
(ii) Compute real and imaginary part of the complex number

∑16 
n=1 i

n. 
(iii) Express sin3 ϕ in terms of sin and cos of multiples of the angle ϕ. 

Solutions 

(i) We compute 

. 
2 − 3 i

3 + 4 i
= (2 − 3 i)(3 − 4 i)

9 + 16
= −6 − 17 i

25

so that 

. 

∣∣∣∣2 − 3 i

3 + 4 i

∣∣∣∣ = 1

25

√
62 + 172 = 1

25

√
325 = 1

5

√
13 .

(ii) One has 
16∑

n=1 

in = 
i17 − i 

i−1 
= i · i

16 −1 

i−1 
= 0. 

(iii) Let z := eiϕ = cos ϕ + i sin  ϕ. Then  z − z = 2 i sin ϕ and 

. − 8 i sin3 ϕ = (2 i sinϕ)3 = (z − z)3 = z3 − 3z2z + 3zz2 − z3

= z3 − z3 − 3(z − z).

Since 

. z3 − z3 = cos(3ϕ) + i sin(3ϕ) − (
cos(3ϕ) − i sin(3ϕ)

) = 2 i sin(3ϕ)

it follows that 

. − 8 i sin3 ϕ = 2 i sin(3ϕ) − 6 i sinϕ,

yielding sin3 ϕ = 
3 

4 
sin ϕ − 

1 

4 
sin(3ϕ). 

4. Sketch the following subsets of the complex plane C. 

(i) M1 =
{
z ∈ C | |z − 1 + 2 i | ≥ |z + 1|}

(ii) M2 =
{
z ∈ C | |z + i | ≥  2; |z − 2| ≤ 1

}
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Solutions 

(i) The set of points z ∈ C satisfying |z − 1 + 2 i | = |z + 1| is the set of all points in 
C, having the same distance from −1 and 1  − 2 i. This set is given by the straight line 
of slope 1 through − i. The set M1 is given by the closed half plane above this line. In 
particular, 0 ∈ M1. 

(ii) M2 is given by the intersection of the complement of the open disk of radius 2, centered 
at − i, and the closed disk of radius 1, centered at 2. 

5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) There are complex numbers z1 �= 0 and z2 �= 0 so that  z1z2 = 0. 
(ii) The identity i0 = i holds. 
(iii) The identity i = e− i π/2 holds. 

Solutions 

(i) False. Indeed, suppose z1 �= 0, then z−1 
1 exists and we can multiply the equation z1z2 = 0 

by z−1 
1 to obtain 0 = z−1 

1 z1z2 = z2, which contradicts z2 �= 0. 
(ii) False. This would imply that −1 = i2 = i · i = i0 · i = i0+1 = i. 
(iii) False. By Euler’s formula e− i π/2 = cos(−π/2) + i sin(−π/2) = − i. 

Solutions of Problems of Sect. 3.2 

1. Find the roots of the following polynomials and write the latter as a product of 
linear factors.
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(i) p(z) = 2z2 − 4z − 5 
(ii) p(z) = z2 + 2z + 3 
Solutions 

(i) The discriminant of p is given by b2 

4a2 
− c 

a = 16 16 − −5 
2 = 7 2 > 0. Hence p has two real 

roots. We compute these roots by completing the square. First devide 2z2 − 4z − 5 = 0 
by 2 to get  z2 − 2z − 5 2 = 0. Completing the square then yields 

. z2 − 2z − 5

2
= z2 − 2z + 1 − 1 − 5

2
= (z − 1)2 − 7

2
.

Hence z − 1 = ±√
7/2 or  z = 1 ± √

7/2 and  p can be factorized as 

. p(z) = 2(z − 1 + √
7/2 )(z − 1 − √

7/2 ).

(ii) Since the discriminant of p is given by b2 

4a2 
− c 

a = 4 4 − 3 
1 = −2 < 0, p has two complex 

roots. By the formula for the roots of a polynomial of degree two, one has 

. z1,2 = ( − b

2a
± i

2a

√
4ac − b2

) = −1 ± i
√
2

and hence p factors as p(z) = (z + 1 − i
√
2 )(z + 1 + i

√
2 ). 

2. Let p(z) = z3 − 5z2 + z − 5. 

(i) Verify that i is a root of p(z). 
(ii) Write p(z) as a product of linear factors. 
Solutions 

(i) One computes p(i) = i3 −5 i2 + i−5 = − i+5 + i−5 = 0. 
(ii) Since all coefficients of p(z) are real, − i must be a root as well and therefore p(z) = 

q(z)(z + i)(z − i) = q(z)(z2 + 1) where q(z) is a polynomial of the form (z − a). By  
comparison of coefficients, one infers that a = 5 and hence p(z) = (z− 5)(z + i)(z− i). 

3. (i) Find all roots of p(z) = z4 + 2z2 − 5 and write p(z) as a product of linear 
factors. 

(ii) Find all roots of p(z) = z5 + 3z3 + z and write p(z) as a product of linear 
factors. 

Solutions Both equations are first reduced to polynomials of degree two by a substitution and 
then analyzed by the methods discussed. 

(i) With the substitution z2 = y, one obtains y2 + 2y − 5 = 0, which has the following 
roots, 

. y1 = − b

a
+ 1

2a

√
b2 − 4ac = −1 + √

6 ,

y2 = − b

a
− 1

2a

√
b2 − 4ac = −1 − √

6 .

Hence, the four roots of p are given by 

.z1,2 = ±
√

−1 + √
6 , z3,4 = ± i

√
1 + √

6 .
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(Two roots lie on the real axis and two on the imaginary one.) Thus p factors as 

. p(z) = (
z −

√
−1 + √

6
)(

z +
√

−1 + √
6
)(

z − i

√
1 + √

6
)(

z + i

√
1 + √

6
)
.

(ii) The polynomial p(z) factors as p(z) = zq(z) where q(z) := (z4 + 3z2 + 1). Hence 
z5 := 0 is a root of p. With the substitution z2 = y, q(z) leads to the polynomial 
y2 + 3y + 1, whose roots are 

. y1 = − 3

2
+ 1

2

√
5 = − 1

2
(3 − √

5 ), y2 = − 3

2
− 1

2

√
5 = − 1

2
(3 + √

5 ).

Hence, 

. z1,2 = ± i
1√
2

√
3 − √

5 , z3.4 = ± i
1√
2

√
3 + √

5 .

(All roots lie on the imaginary axis.) Therefore, p factorizes as 

. p(z) = z
(
z − i

1√
2

√
3 − √

5
)(

z + i
1√
2

√
3 − √

5
)

· (z − i
1√
2

√
3 + √

5
)(

z + i
1√
2

√
3 + √

5
)
.

4. Consider the function 

. f : R → R, x �→ x3 + 5x2 + x − 1.

(i) Compute the values of f at x = −1, x = 0 and x = 1. 
(ii) Conclude that f has three real roots. 
Solutions 

(i) f (−1) = 2, f (0) = −1 and  f (1) = 6. 
(ii) Since f (−1) >  0, f (0) <  0 and  f (1) >  0, f has at least one root in the open 

interval (−1, 0) and at least one in the open interval (0, 1). Since all coefficients of the 
polynomial f are real, it then follows that the third root of f also must be real. 

5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) Any polynomial of degree 5 with real coefficients has at least three real 
roots. 

(ii) Any polynomial p(z) of degree n ≥ 1 with real coefficients can be written 
as a product of polynomials with real coefficients, each of which has degree 
one or two.
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Solutions 

(i) False. The polynomial p(z) = z(z2 + 1)(z2 + 4) is of degree 5 and all its coefficients are 
real. It has the four purely imaginary roots i, − i, 2 i, −2 i.  

(ii) True. Without loss of generality we assume that p(z) = zn + an−1z
n−1 + . . . . First, 

we consider the case where p has at least one real root. Denote the real roots of p by 
rj , 1  ≤ j ≤ k where 1 ≤ j ≤ k ≤ n. In the case where k = n, one has p(z) =∏

1≤j≤n(z − rj ). In case where 1 ≤ k <  n, p(z) factors as p(z) = q(z)
∏

1≤j≤k(z − rj ) 
where q(z) is a polynomial with real coefficients of degree n − k, which has no real 
roots. It therefore must be of even degree, 2m = n − k. Since the roots come in pairs of 
complex numbers which are complex conjugate to each other, we can list the roots of q 
as zj , zj , 1 ≤ j ≤ m where Im(zj ) >  0. It then follows that 

. q(z) =
∏

1≤j≤m

(z − zj )(z − zj ) =
∏

1≤j≤m

(z2 − |zj |2).

Hence the claim follows in the case where p(z) has at least one real root. The case where 
p(z) has no real roots follows by the same arguments. Actually, it is simpler, since in this 
case q(z) = p(z). 

Solutions of Problems of Sect. 3.3 

1. Find the set of solutions of the following complex linear systems. 

(i)

{
z1 − i z2 = 2 

(−1 + i)z1 + (2 + i)z2 = 0 

(ii) 

⎧⎨ 

⎩ 

z1 + i z2 − (1 + i)z3 = 0 
i z1 + z2 + (1 + i)z3 = 0 

(1 + 2 i)z1 + (1 + i)z2 + 2z3 = 0 
Solutions We solve these complex linear systems with Gaussian elimination. 

(i) 

. 

augmented coefficient matrix

[
1 − i 2

(−1 + i) (2 + i) 0

]

R2 � R2 − (−1 + i)R1

[
1 − i 2
0 1 2 − 2 i

]

Hence, z2 = 2 − 2 i  and  in  turn  z1 = 2 − (− i)(2 − 2 i) = 4 + 2 i.
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(ii) 

. 

augmented coefficient matrix

⎡
⎣ 1 i −(1 + i) 0

i 1 (1 + i) 0
(1 + 2 i) (1 + i) 2 0

⎤
⎦

R2 � R2 − iR1, R3 � R3 − (1 + 2 i)R1

⎡
⎣ 1 i −(1 + i) 0
0 2 2 i 0
0 3 (1 + 3 i) 0

⎤
⎦

R3 � R3 − 3/2 R2

⎡
⎣ 1 i −(1 + i) 0
0 2 2 i 0
0 0 1 0

⎤
⎦

Hence, z3 = z2 = z1 = 0. 

2. (i) Compute the determinant of the following complex 3 × 3 matrix, 

. A =
⎛
⎝1 i 1 + i
0 −1 + i 2
i 2 1 + 2 i

⎞
⎠ .

(ii) Find all complex numbers z ∈ C with the property that det(B) = 0 where 

. B =
(
1 + 2 i 3 + 4 i

z 1 − 2 i

)25
.

Solutions 

(i) We expand with respect to the first column. 

. det(A) = 1 · det
(

(−1 + i) 2
2 (1 + 2 i)

)
+ i det

(
i (1 + i)

(−1 + i) 2

)

= (−1 + i)(1 + 2 i) − 4 + i
(
2i − (−1 + i)(1 + i)

) = −9 + i .

(ii) Since det(B) = (
(1 + 2 i)(1 − 2 i) − (3 + 4 i)z

)25 = (
5 − (3 + 4 i)z

)25 . 
Therefore, det(B) = 0, if 

. z = 5

3 + 4 i
= 5(3 − 4 i)

(3 + 4 i)(3 − 4 i)
= 15 − 20 i

25
= 3

5
− 4

5
i .

3. (i) Compute AAT and ATA where AT is the transpose of A and A ∈ C2×3 is 
given by 

.A =
(
1 i 2
i −2 i

)
.
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(ii) Compute the inverse of the following complex 2 × 2 matrix  

. A =
(

2 i 1
1 + i 1 − i

)
.

Solutions 

(i) Since AT = 

⎛ 

⎝1 i  
i −2 
2 i  

⎞ 

⎠, we get  

. AAT =
(
1 i 2
i −2 i

)⎛
⎝1 i
i −2
2 i

⎞
⎠ =

(
4 i
i 2

)

and 

. ATA =
⎛
⎝1 i
i −2
2 i

⎞
⎠(

1 i 2
i −2 i

)
=

⎛
⎝ 0 − i 1
− i 3 0
1 0 3

⎞
⎠ .

(ii) The inverse of a regular 2 × 2 matrix  B =
(

a b  
c d

)
∈ C

2×2 can be computed as 

. B−1 = 1

det(B)

(
d −b

−c a

)
.

In the case at hand, det(A) = 1 + i. Hence 1 
det(A) = 1−i 

2 and in turn  

. A−1 = 1 − i

2

(
1 − i −1

−(1 + i) 2 i

)
=

(− i (−1+i)/2

−1 1 + i

)
.

4. Decide whether the following vectors in C3 are C-linearly independent or C-
linearly dependent. 

(i) a(1) = (1, 2 + i, i), a(2) = (−1 + 3 i, 1 + i, 3 + i) 
(ii) b(1) = (1+ i, 1− i,−1+ i), b(2) = (0, 4−2 i,−3+5 i), b(3) = (1+ i, 0, 3) 
Solutions 

(i) It is straightforward to verify that there is no complex number λ so that a(1) = λa(2) or 
a(2) = λa(1). Hence the two vectors are C-linearly independent. 

(ii) We compute the determinant of the 3 × 3 matrix  B, whose rows are given by the 
transposes of the three vectors b(1), b(2), and  b(3), by expanding det(B) with respect 
to the first row, 

. det

⎛
⎝ 1 + i 0 1 + i

1 − i 4 − 2 i) 0
−1 + i −3 + 5 i 3

⎞
⎠

= (1 + i)(4 − 2 i)3 + (1 + i)(1 − i)(−3 + 5 i) − (1 + i)(−1 + i)(4 − 2 i)
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= (6 + 2 i)3 + 2(−3 + 5 i) + 2(4 − 2 i) = (18 − 6 + 8) + (6 + 10 − 4) i 

= 20 + 12 i �= 0. 

Hence, the three vectors are linearly independent. 

5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) There exists vectors a(1), a(2) in C2 with the following two properties: 
(P1) For any α1, α2 ∈ R with α1a

(1) + α2a
(2) = 0, it follows that α1 = 0 

and α2 = 0 (i.e. a(1), a(2) are R-linearly independent). 
(P2) There exist β1, β2 ∈ C \ {0} so that β1a

(1) + β2a
(2) = 0 (i.e. a(1), 

a(2) are C-linearly dependent). 
(ii) Any basis [a] = [a(1) , . . . , a(n)] of Rn gives rise to a basis of Cn, when 

a(1) , . . . , a(n) are considered as vectors in Cn. 
(iii) The vectors a(1) = (i, 1, 0), a(2) = (i,−1, 0) are C-linearly independent 

in C3 and there exists a(3) ∈ C3 so that [a] = [a(1) , a(2) , a(3)] is a basis of 
C
3. 

Solutions 

(i) True. Let a(1) = (1, 0) and a(2) = (i, 0). These vectors in C2 are C-linearly dependent, 
since a(2) = i a(1) where β1 = i and  β2 = −1. Hence, (P 2) is satisfied. On the other 
hand, for any α1, α2 ∈ R with α1a

(1) + α2a
(2) = 0, it follows that 

. z := α1 + α2 i = 0, α1 · 0 + α2 · 0 = 0.

Since α1 and α2 are real, z = α1 +α2 i = 0 implies that α1 = 0 and  α2 = 0. Hence (P 1) 
is satisfied as well. 

(ii) True. Let b be an arbitrary vector in Cn. Then  b = b(1) + i b(2) where b(1) = (b+b)/2 ∈ 
R

n and b(2) = (b − b)/(2 i) ∈ Rn. It follows that there are uniquely determined real 
numbers λ (1) j , λ (2) j , 1 ≤ j ≤ n, so that  

. b(1) =
n∑

j=1

λ
(1)
j a(j), b(2) =

n∑
j=1

λ
(2)
j a(j).

Hence b = b(1) + i b(2) = ∑n 
j=1(λ (1) j + i λ (2) j )a(j) and λ (1) j + i λ (2) j ∈ C, 1 ≤ j ≤ n, are  

uniquely determined. This shows that [a] = [a(1) , . . . , a(n)] is a basis of Cn. 
(iii) True. Let a(3) = (0, 0, 1). The  3 × 3 matrix  A ∈ C3×3, whose rows are given by a(1), 

a(2), and  a(3), is regular since det(A) = −2 i �= 0. It follows that a(1), a(2), and  a(3) are 
linearly independent (and so are a(1) and a(2)) and hence form a basis of C3. 

Solutions of Problems of Sect. 4.1 

1. Decide which of the following subsets are linear subspaces of the corresponding 
R-vector spaces.



218 Solutions

(i) W = {
(x1, x2, x3) ∈ R3 | 2x1 + 3x2 + x3 = 0

}
. 

(ii) V = {
(x1, x2, x3, x4) ∈ R

4 | 4x2 + 3x3 + 2x4 = 7
}
. 

(iii) GLR(3) = {
A ∈ R3×3 | A regular

}
. 

(iv) L = {
(x1, x2) ∈ R2 | x1x2 = 0

}
. 

Solutions 

(i) Note that W = {
x ∈ R3 | Ax = 0

}
where A = (

2 3 1
) ∈ R1×3. Therefore, W equals 

the space of solutions of the homogenous system Ax = 0 and hence is a linear subspace 
of R3. Indeed, for u, v ∈ W and λ ∈ R, we have  A(u + v) = Au + Av = 0 and  
A(λu) = λAu = 0. 

(ii) Note that V = {
x ∈ R4 | Ax = 7

}
with A = (

0 4 3 2
) ∈ R1×4. In particular, 0 /∈ V 

and hence V is not a linear subspace of R4. (It is however an affine subspace of R4). 
(iii) Clearly, 0 /∈ GLR(3) and hence GLR(3) is not a linear subspace of R3×3. 
(iv) Note that e(1) = (1, 0) and e(2) = (0, 1) are both in L, but  e(1) + e(2) = (1, 1) is not. 

Hence L is not a linear subspace of R2. 

2. Consider the following linear system (S), 

. 

{
3x1 + x2 − 3x3 = 4

x1 + 2x2 + 5x3 = −2
.

(i) Determine the vector space of solutions Lhom ⊆ R3 of the corresponding 
homogenous system 

. 

{
3x1 + x2 − 3x3 = 0

x1 + 2x2 + 5x3 = 0

and compute its dimension. 
(ii) Determine the affine space L of solutions of (S) by finding a particular 

solution of (S). 

Solutions 

(i) We consider the augmented coefficient matrix and use Gaussian elimination. 

.

augmented coefficient matrix

[
3 1 −3 0
1 2 5 0

]

R2 � 1/3 R2 − R1

[
3 1 −3 0
0 5/3 6 0

]

R1 � 1/3 R1, R2 � 3/5 · R2

[
1 1/3 −1 0
0 1 18/5 0

]

R1 � R1 − 1/3 R2

[
1 0 − 11/5 0
0 1 18/5 0

]
.
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Consequently, Lhom =
{( 11 

5 
t,− 18 

5 
t, t

) ∣∣∣ t ∈ R

}
and dim(Lhom = 1. 

(ii) Setting x3 = 0, one finds by Gaussian elimination the particular solution ypart = 
(2, −2, 0). The space L of solutions of the inhomogenous system (S) is thus given by 

. L = ypart + Lhom =
{
(2,−2, 0) + ( 11

5
t,− 18

5
t, t

) ∣∣∣ t ∈ R

}
.

3. Let P3(C) denote the C-vector space of polynomials of degree at most three in 
one complex variable, 

. P3(C) = {
p(z) = a3z

3 + a2z
2 + a1z + a0 | a0, a1, a2, a3 ∈ C

}
,

and by E3(C) the subset 

. E3(C) = {
p ∈ P3(C) | p(−z) = p(z), z ∈ C

}
.

(i) Find a basis of P3(C) and compute dimP3(C). 
(ii) Verify that E3(C) is a C-subspace of P3(C) and compute its dimension. 

Solutions 

(i) The standard basis of P3(C) is given by [p3, p2, p1, p0] where pk(z) = zk , 0  ≤ k ≤ 3, 
and hence dimP3(C) = 4. 

(ii) By comparison of coefficients, for any polynomial p ∈ P3(C), the condition 

. p(−z) − p(z) = 0, z ∈ C,

implies that −a3 − a3 = 0 and −a1 − a1 = 0, implying that a3 = 0 and  a1 = 0. Hence, 
E3(C) = {

a2z
2 + a0 | a0, a2 ∈ C

}
which is a subspace of P3(C) with basis [p2, p0] 

and thus dim E3(C) = 2. 

4. Consider the subset W of C3×3, 

. W = {
(aij )1≤i,j≤3 ∈ C

3×3 | aij = 0, 1 ≤ i < j ≤ 3
}
.

(i) Find a basis of C3×3 and compute its dimension. 
(ii) Verify that W is a linear subspace of C3×3 and compute its dimension. 

Solutions 

(i) The standard basis of C3×3 is given by the nine 3 × 3-matrices Ei,j , 1  ≤ i, j ≤ 3 where  

Ei,j = (a (i,j) 
mn )1≤m,n≤3 is the matrix with a (i,j) 

mn = 0 if  (m, n) �= (i, j) and a (i,j) 
ij = 1. 

Hence dim(C3×3) = 9. 
(ii) In view of Item (i), 

.W = {∑
1≤i<j≤3

bi,jEi,j | bi,j ∈ C
}
.
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Hence W is a linear subspace of C3×3 and dim(W) = 6. 

5. Let A =
(

a1 

a2

)
∈ R2×1. 

(i) Determine the rank of ATA ∈ R
1×1 and of AAT ∈ R2×2 in terms of A. 

(ii) Decide for which A the matrix ATA and for which A the matrix AAT is 
regular. 

Solutions 

(i) We compute 

. ATA = (
a1 a2

) (a1

a2

)
= a21 + a22 , AAT =

(
a1

a2

) (
a1 a2

) =
(

a21 a1a2

a2a1 a22

)
.

If (a1, a2) �= (0, 0), then  a2 1 + a2 2 �= 0, hence rank(ATA) = 1. Conversely, if a1 = 0 and  
a2 = 0, then ATA is the zero matrix and rank(ATA) = 0. 

Solutions of Problems of Sect. 4.2 

1. Verify that the following maps f : Rn → Rm are linear and determine their 
matrix representations f[e]→[e] with respect to the standard bases. 

(i) f : R4 → R2, (x1, x2, x3, x4) �→ (x1 + 3x2,−x1 + 4x2). 
(ii) Let f : R2 → R2 be the map acting on a vector x = (x1, x2) ∈ R2 as 

follows: first x is scaled by the factor 5 and then it is reflected at the x2-
axis. 

Solutions 

(i) Let x, y ∈ R
4 and λ ∈ R. Then  

. f (x + y) =
(

(x + y)1 + 3(x + y)2

−(x + y)1 + 4(x + y)2

)
=

(
x1 + 3x2

−x1 + 4x2

)
+

(
y1 + 3y2

−y1 + 4y2

)

= f (x) + f (y),

f (λx) =
(

(λx)1 + 3(λx)2

−(λx)1 + 4(λx)2

)
= λ

(
x1 + 3x2

−x1 + 4x2

)
= λf (x).

So, f is R-linear. Moreover, 

.

f (e(1)) =
(

1
−1

)
= e(1) − e(2), f (e(2)) =

(
3
4

)
= 3e(1) + 4e(2),

f (e(3)) =
(
0
0

)
= 0 · e(1) + 0 · e(2), f (e(4)) =

(
0
0

)
= 0 · e(1) + 0 · e(2).
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Hence, 

. f[e]→[e] =
(

1 3 0 0
−1 4 0 0

)
.

(ii) f : R2 → R2 is the composition of the two operations 

. 

(
x1

x2

)
�→

(
5x1
5x2

)
, and

(
x1

x2

)
�→

(−x1

x2

)
.

Consequently, 

. f (x) =
(−5x1

5x2

)
= A

(
x1

x2

)
, A =

(−5 0
0 5

)
.

Hence, f is R-linear and f[e]→[e] = A. 

2. Let P7 be the R-vector space of polynomials of degree at most 7 with real 
coefficients. Denote by p′ the first and by p′′ the second derivative of p ∈ P7 
with respect to x. Show that the following maps map P7 into itself and decide 
whether they are linear. 

(i) T (p)(x) := 2p′′(x) + 2p′(x) + 5p(x). 
(ii) S(p)(x) := x2p′′(x) + p(x). 

Solutions First note that for any polynomial p(x) = ∑7 
k=0 akx

k in P7, the derivative p′ of p 
is given by 

.p′(x) =
7∑

k=1

akkxk−1 = a1 + 2a2x + · · · + 7a7x
6 (A.1) 

and hence a polynomial of degree at most 6, implying that p′ is an element in P7. Similarly, 
the second derivative p′′ of p is given by 

.p′′(x) =
7∑

k=2

akk(k − 1)xk−2 = 2a2 + 3 · 2a3x + · · · + 7 · 6a7x5, (A.2) 

which is a polynomial of degree at most 5 and thus also in P7. Furthermore, it is easy to see 
that for any polynomials p, q in P7 and any λ ∈ R, one has 

.(p + q)′(x) = p′(x) + q ′(x), (p + q)′′(x) = p′′(x) + q ′′(x), . (A.3) 

(λp)′(x) = λp′(x), (λp)′′(x) = λp′′(x). (A.4) 

(i) By (A.1)–(A.2) it follows that for any p ∈ P7, T (p)  is in P7 and by (A.3)–(A.4) one has 
for any p, q ∈ P7 and λ ∈ R, 

.T (p + q)(x) = 2(p + q)′′(x) + 2(p + q)′(x) + 5(p + q)(x)

= 2p′′(x) + 2p′(x) + 5p(x) + 2q ′′(x) + 2q ′(x) + 5q(x)

= T (p)(x) + T (q)(x),
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and 

. T (λp)(x) = 2λp′′(x) + 2λp′(x) + 5λp(x) = λ(2p′′(x) + 2p′(x) + 5p(x))

= λT (p)(x).

Altogether, this shows that T is linear map from P7 into itself. 
(ii) By (A.2) it follows that for any p ∈ P7, x2p′′(x) is a polynomial of degree at most 7 

and hence in P7. One then concludes that for any p ∈ P7, S(p) is in P7. Furthermore, 
by (A.3)–(A.4) one has for any p, q ∈ P7 and λ ∈ R, 

. S(p + q)(x) = x2(p + q)′′(x) + (p + q)(x)

= x2p′′(x) + p(x) + x2q ′′(x) + q(x)

= S(p)(x) + S(q)(x)

and 

. S(λp)(x) = x2(λp)′′(x) + (λp)(x) = λ(x2p′′(x) + p(x)) = λS(p)(x).

This establishes that S is a linear map from P7 into itself. 

3. Consider the bases in R2, [e] = [e(1) , e(2)], [v] = [e(2) , e(1)], and 

. [w] = [w(1), w(2)], w(1) = (1, 1), w(2) = (1,−1),

and let f : R2 → R2 be the linear map with matrix representation 

. f[e]→[e] =
(
1 2
3 4

)
.

(i) Determine Id[v]→[e] and Id[e]→[v]. 
(ii) Determine f[v]→[e] and f[v]→[v]. 
(iii) Determine f[w]→[w]. 

Solutions 

(i) Since v(1) = e(2) and v(2) = e(1), 

. Id[v]→[e] =
(
0 1
1 0

)
.

Conversely, e(1) = v(2) and e(2) = v(1), hence 

. Id[e]→[v] =
(
0 1
1 0

)
.

(Note that Id[e]→[v] Id[v]→[e] = Id[v]→[v] and Id[v]→[e] Id[e]→[v] = Id[e]→[e]. In  
particular, one has Id[e]→[v] = Id−1 

[v]→[e].)
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(ii) A straightforward computation gives 

. f[v]→[e] = f[e]→[e] Id[v]→[e] =
(
1 2
3 4

)(
0 1
1 0

)
=

(
2 1
4 3

)
,

f[v]→[v] = Id[e]→[v] f[e]→[e] Id[v]→[e] =
(
0 1
1 0

)(
2 1
4 3

)
=

(
4 3
2 1

)
.

(iii) We first note that 

. Id[w]→[e] =
(
1 1
1 −1

)
.

To compute Id[e]→[w], we invert Id[w]→[e], 

. Id[e]→[w] =
(
1 1
1 −1

)−1

= − 1

2

(−1 −1
−1 1

)
= 1

2

(
1 1
1 −1

)
.

Consequently, 

. f[w]→[w] = Id[e]→[w] f[e]→[e] Id[w]→[e]

= 1

2

(
1 1
1 −1

)(
1 2
3 4

)(
1 1
1 −1

)
= 1

2

(
1 1
1 −1

)(
3 −1
7 −1

)

= 1

2

(
10 −2

−4 0

)
=

(
5 −1

−2 0

)
.

4. Consider the basis [v] = [v(1) , v(2) , v(3)] of R3, defined as 

. v(1) = (1, 0,−1), v(2) = (1, 2, 1), v(3) = (−1, 1, 1),

and the basis [w] = [w(1) , w(2)] of R2, given by 

. w(1) = (1,−1), w(2) = (2,−1).

Determine the matrix representations T[v]→[w] of the following linear maps. 

(i) T : R3 → R2, (x1, x2, x3) �→ (2x3, x1). 
(ii) T : R3 → R2, (x1, x2, x3) �→ (x1 − x2, x1 + x3). 
Solutions 

(i) We first note that 

. T[e]→[e] =
(
0 0 2
1 0 0

)
, Id[v]→[e] =

⎛
⎝ 1 1 −1

0 2 1
−1 1 1

⎞
⎠ , Id[w]→[e] =

(
1 2

−1 −1

)
.

We further compute 

. Id[e]→[w] = Id−1
[w]→[e] =

(−1 −2
1 1

)
,
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hence 

. T[v]→[w] = Id[e]→[w] T[e]→[e] Id[v]→[e]

=
(−1 −2

1 1

)(
0 0 2
1 0 0

)⎛
⎝ 1 1 −1

0 2 1
−1 1 1

⎞
⎠

=
(−1 −2

1 1

)(−2 2 2
1 1 −1

)

=
(

0 −4 0
−1 3 1

)
.

(ii) With 

. T[e]→[e] =
(
1 −1 0
1 0 1

)

and the computations of Id[v]→[e] and Id[e]→[w] of (i), we obtain 

. T[v]→[w] = Id[e]→[w] T[e]→[e] Id[e]→[w]

=
(−1 −2

1 1

)(
1 −1 0
1 0 1

)⎛
⎝ 1 1 −1

0 2 1
−1 1 1

⎞
⎠

=
(−1 −2

1 1

)(
1 −1 −2
0 2 0

)

=
(−1 −3 2

1 1 −2

)
.

5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) There exists a linear map T : R3 → R7 so that
{
T (x)  | x ∈ R3

} = R7. 
(ii) For any linear map f : Rn → R

n, f is bijective if and only if 
det(f[e]→[e]) �= 0. 

Solutions 

(i) False. Suppose the claim was true. Then, there exist x(i) ∈ R3, 1 ≤ i ≤ 7, with f (x(i) ) = 
e(i). Since the dimension of R3 is three, the vectors x(i) are linearly dependent. Hence, 
there exist (α1, . . . , α7) ∈ R7 \ {

(0, · · ·  , 0)
}
so that 0 = ∑7 

i=1 αix
(i) , implying that 

. 0 = f
( 7∑

i=1

αix
(i)

) =
7∑

i=1

αif (x(i)) =
7∑

i=1

αie
(i),

which contradicts the fact that [e(1) , . . . , e(7)] is a basis of R7.
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(ii) True. By Theorem 2.2.5, the matrix f[e]→[e] ∈ R
n×n is invertible if and only if 

det(f[e]→[e]) �= 0. Furthermore, since f (x)  = f[e]→[e]x for any x ∈ Rn (here we 
identify x with the corresponding n × 1 matrix),  f is bijective if and only if f[e]→[e] is 
invertible. It then follows that f is bijective if and only if det(f[e]→[e]) �= 0. 

Solutions of Problems of Sect. 4.3 

1. Let B : R2 × R2 → R be given by 

. B(x, y) = 3x1y1 + x1y2 + x2y1 + 2x2y2

where x = (x1, x2), y = (y1, y2) ∈ R
2. 

(i) Verify that B is an inner product on R2. 
(ii) Verify that the vectors a = ( 1√

3 
, 0) and b = (0, 1√

2 
) have length 1 with 

respect to the inner product B. 
(iii) Compute the cosine of the (unoriented) angle between the vectors a and b 

of Item (ii). 

Solutions 

(i) It is to check that B satisfies (IP 1), (IP 2), and  (IP 3), i.e. that  B is symmetric, linear 
(in the first component), and positive definite. 

(IP1): For any x, y in R2, 

. B(y, x) = 3y1x1 + y1x2 + y2x1 + 2y2x2 = 3x1y1 + x2y1 + x1y2 + 2x2y2 = B(x, y).

(IP2): For any x, y, z in R2, and  α ∈ R 

. B(x + y, z) = 3(x1 + y1)z1 + (x1 + y1)z2 + (x2 + y2)z1 + 2(x2 + y2)z2

= B(x, z) + B(y, z),

. B(αx, y) = 3αx1y1 + αx1y2 + αx2y1 + 2αx2y2 = αB(x, y).

(IP3): For any x ∈ R
2, one has B(x, x) = 3x2 

1+2x1x2+2x2 
2 = (x1+x2)

2+2x2 
1+x2 

2 ≥ 0. 

If x = 0, then B(x, x) = 0. Conversely, if B(x, x) = 0, then (x1 + x2)2 = 0, x2 
1 = 0 

and x2 
2 = 0, hence x = 0. 

(ii) We compute 

. 
∥∥∥( 1√

3
, 0

)∥∥∥ := B
(( 1√

3
, 0

)
,
( 1√

3
, 0

)) 1
2 =

√
3 · 1

3
= 1,

and similarly 

.

∥∥∥(0, 1√
2

)∥∥∥ := B
((
0,

1√
2

)
,
(
0,

1√
2

)) 1
2 =

√
2 · 1

2
= 1.
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(iii) We find 

. cosϕ :=
B
(
( 1√

3
, 0), (0, 1√

2
)
)

‖( 1√
3

, 0)‖‖(0, 1√
2
)‖ = 1√

3

1√
2

= 1√
6

.

2. Let 〈·, ·〉 be the Euclidean inner product of R3 and v(1) , v(2) , v(3) be the 
following vectors in R3, v(1) = ( − 1√

6 
, − 2√

6 
, 1√

6

)
, v(2) = ( 1√

2 
, 0, 1√

2

)
, 

v(3) = ( − 1√
3 

, 1√
3 

, 1√
3

)
. 

(i) Verify that [v] = [v(1) , v(2) , v(3)] is an orthonormal basis of R3. 
(ii) Compute Id[v]→[e], verify that it is an orthonormal 3 × 3 matrix, and then 

compute Id[e]→[v]. Here [e] = [e(1) , e(2) , e(3)] denotes the standard basis of 
R
3. 

(iii) Represent the vectors a = (1, 2, 1) and b = (1, 0, 1) as linear combinations 
of v(1), v(2), and v(3). 

Solutions 

(i) We need to check that 〈v(i) , v(j)〉 = δij . By a straightforward computation we get 

. 

〈v(1), v(1)〉 = 1
6 + 4

6 + 1
6 = 1,

〈v(2), v(2)〉 = 1
2 + 1

2 = 1,

〈v(3), v(3)〉 = 1
3 + 1

3 + 1
3 = 1,

and by symmetry of the inner product, it suffices to further check that 

. 

〈v(1), v(2)〉 = − 1√
12

+ 1√
12

= 0,

〈v(1), v(3)〉 = 1√
18

− 2√
18

+ 1√
18

= 0,

〈v(2), v(3)〉 = − 1√
6

+ 1√
6

= 0.

(ii) One has 

. Id[v]→[e] =
⎛
⎜⎝
− 1/√6

1/√2 − 1/√3
− 2/√6 0 1/√3

1/√6
1/√2

1/√3

⎞
⎟⎠ .

Since [v] is an orthonormal basis of R3, Id[v]→[e] is an orthogonal matrix. Indeed, one 
computes 

. IdT[v]→[e] Id[v]→[e] =
⎛
⎜⎝
− 1/√6 − 2/√6

1/√6
1/√2 0 1/√2

− 1/√3
1/√3

1/√3

⎞
⎟⎠

⎛
⎜⎝
− 1/√6

1/√2 − 1/√3
− 2/√6 0 1/√3

1/√6
1/√2

1/√3

⎞
⎟⎠

=
⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠ .

So, we verified Id[e]→[v] x = Id−1 
[v]→[e] = IdT[v]→[e].
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(iii) Since [v] is an orthonormal basis of R3, one has for any vector x ∈ R3, x = ∑3 
j=1 dj v

(j) 

where dj = 〈x, v(j)〉. Alternatively, d = (d1, d2, d3) can be computed as d = Id[e]→[v] x 
with x = (x1, x2, x3). In this way one obtains for a and b as given, 

. a = − 4√
6

v(1) + √
2 v(2) + 2√

3
v(3), b = √

2 v(2).

3. Let 〈·, ·〉 be the Euclidean inner product on R2 and v(1) = ( 1√
2 

,− 1√
2

)
. 

(i) Determine all possible vectors v(2) ∈ R2 so that [v(1) , v(2)] is an orthonor-
mal basis of R2. 

(ii) Determine the matrix representation R(ϕ)[v]→[e] of the linear map 

. R(ϕ) : R2 → R
2, (x1, x2) �→ (cosϕ ·x1−sinϕ ·x2, sinϕ ·x1+cosϕ ·x2)

with respect to an orthonormal basis [v] = [v(1) , v(2)] of R2, found in 
Item (i). 

Solutions 

(i) An orthonormal basis has to satisfy 〈v(i) , v(j)〉 = δij . Denote v(2) = (x1, x2), then  

. x2
1 + x2

2 = 1, and
1√
2

(x1 − x2) = 0.

This gives x1 = x2 and hence 2x2 
1 = 1. So v(2) equals either

( 1√
2 

, 1√
2

)
or( − 1√

2 
, − 1√

2

)
. 

(ii) Let [v] = [v(1) , v(2)] denote the orthonormal basis of R2 with v(2) given by
( 1√

2 
, 1√

2

)
. 

Note that 

. R(ϕ)[e]→[e] =
(
cosϕ − sinϕ

sinϕ cosϕ

)
, Id[v+]→[e] =

(
1/√2

1/√2
− 1/√2

1/√2

)
.

Hence R(ϕ)[v]→[e] = R(ϕ)[e]→[e] Id[v]→[e] can be computed as 

. R(ϕ)[v]→[e] = 1√
2

(
cosϕ + sinϕ cosϕ − sinϕ

sinϕ − cosϕ sinϕ + cosϕ

)
.

4. (i) Let T : R3 → R3 be the rotation by the angle π 
3 in clockwise direction in 

the x1x2-plane with rotation axis {0} × {0} ×  R. Determine T[e]→[e] where 
[e] = [e(1) , e(2) , e(3)] is the standard basis of R3. 

(ii) Let S : R3 → R3 be the rotation by the angle π 
3 in counterclockwise 

direction in the x2x3-plane with rotation axis R × {0} × {0}. Determine 
S[e]→[e] and verify that it is an orthogonal 3 × 3 matrix. 

(iii) Compute (S ◦ T )[e]→[e] and (T ◦ S)[e]→[e].
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Solutions 

(i) Clearly, T e(3) = e(3). Further, the vectors e(1) and e(2) are rotated in the x1x2-plane 
by −π/3. In particular, their third component stays constant. As in the case of R2, we  
compute 

. T e(1) = (
cos(π/3),− sin(π/3), 0

)
, T e(2) = (

sin(π/3), cos(π/3), 0
)
.

Altogether we thus obtain 

. T[e]→[e] =
⎛
⎝ cos(π/3) sin(π/3) 0

− sin(π/3) cos(π/3) 0
0 0 1

⎞
⎠ .

(ii) We have Se(1) = e(1), Se(2) = (
0, cos(π/3), sin(π/3)

)
, and  Se(3) = (

0,− sin(π/3), 
cos(π/3)

)
, so that  

. S[e]→[e] =
⎛
⎝1 0 0
0 cos(π/3) − sin(π/3)
0 sin(π/3) cos(π/3)

⎞
⎠ .

S is orthogonal since for any vectors e(i), e(j) of the standard basis [e] = [e(1) , . . . , e(n)], 
one sees by straightforward computations that 

. 〈Se(i), Se(j)〉 = 0, i �= j and 〈Se(i), Se(i)〉 = 1.

(iii) Recall that the matrix representation of a composition of two linear maps is given by the 
matrix multiplication of the appropriate matrix representations of the two linear maps. 
Hence 

. (S ◦ T )[e]→[e] = S[e]→[e] · T[e]→[e], (T ◦ S)[e]→[e] = T[e]→[e] · S[e]→[e].

It thus follows that 

. (S ◦ T )[e]→[e] =
⎛
⎝1 0 0
0 cos(π/3) − sin(π/3)
0 sin(π/3) cos(π/3)

⎞
⎠

⎛
⎝ cos(π/3) sin(π/3) 0

− sin(π/3) cos(π/3) 0
0 0 1

⎞
⎠

=
⎛
⎝ cos(π/3) sin(π/3) 0
− cos(π/3) sin(π/3) cos2(π/3) − sin(π/3)

− sin(π/3) cos(π/3) sin(π/3) cos(π/3)

⎞
⎠

and 

.(T ◦ S)[e]→[e] =
⎛
⎝ cos(π/3) sin(π/3) 0

− sin(π/3) cos(π/3) 0
0 0 1

⎞
⎠

⎛
⎝1 0 0
0 cos(π/3) − sin(π/3)
0 sin(π/3) cos(π/3)

⎞
⎠

=
⎛
⎝ cos(π/3) cos(π/3) sin(π/3) − sin2(π/3)

− sin(π/3) cos2(π/3) − cos(π/3) sin(π/3)
0 sin(π/3) cos(π/3)

⎞
⎠
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5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) There exists an orthogonal 2 × 2 matrix  A with det(A) = −1. 
(ii) Let v(1) , v(2) , v(3) , v(4) be vectors in R4 so that 

. 〈v(i), v(j)〉 = δij

for any 1 ≤ i, j ≤ 4 where 〈·, ·〉 denotes the Euclidean inner product in R4 

and δij is the Kronecker delta, defined as 

. δij =
{
0 if i �= j,

1 if i = j.

Then [v(1) , v(2) , v(3) , v(4)] is a basis of R4. 

Solutions 

(i) True. Consider A =
(
1 0  
0 −1

)
. Then  

. ATA =
(
1 0
0 −1

)(
1 0
0 −1

)
=

(
1 0
0 1

)
.

(ii) True. Since the dimension of R4 equals 4, it remains to verify that v(1) , v(2) , v(3) , v(4) 

are linearly independent. Suppose this is not the case. Then one of the vectors, let us say 
v(4), can be written as a linear combination of the others, 

. v(4) = α1v
(1) + α2v

(2) + α3v
(3), α1, α2, α3 ∈ R,

implying that 〈v(4) , v(4)〉 = ∑3 
j=1 αj 〈v(j) , v(4)〉. Since by assumption 〈v(4) , v(4)〉 =  

1 and 〈v(4) , v(j)〉 =  0 for  any 1  ≤ j ≤ 3, one then obtains 1 = 0. Hence 
v(1) , v(2) , v(3) , v(4) are indeed linearly independent. 

Solutions of Problems of Sect. 5.1 

1. Let A =
(−1 + 2 i  1 + i 

2 + 2 i  2 − i

)
∈ C2×2. 

(i) Compute the eigenvalues of A. 
(ii) Compute the eigenspaces of the eigenvalues of A. 
(iii) Find a regular 2 × 2 matrix  S ∈ C

2×2 so that S−1AS is diagonal. 
Solutions 

(i) The characteristic polynomial χA(z) = det(A − z Id2×2) of A can be computed as 

.χA(z) = (−1 + 2 i−z)(2 − i−z) − (1 + i)(2 + 2 i)

= z2 − z − i z + i = (z − 1)(z − i).
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Hence the eigenvalues of A, given by the roots of the characteristic polynomial, are 
λ1 = 1 and  λ2 = i. (Note that both eigenvalues have arithmetic multiplicity 1, hence the 
spectrum of A is simple.) 

(ii) The eigenspace Eλ1 (A) of A for the eigenvalue λ1 is defined as the nullspace of 
A − λ1 Id2×2. One obtains by Gaussian elimination 

. A − λ1 Id2×2 =
(−2 + 2 i 1 + i

2 + 2 i 1 − i

)
�

(
1 − i/2

1 − i/2

)
�

(
1 − i/2

0 0

)
.

Hence v(1) = (i, 2) is an eigenvector of A for λ1. Since  λ1 is simple, the eigenspace 
Eλ1 (A) is given by Eλ1 (A) = {

α(i, 2) | α ∈ C
}
. Similarly, one computes the eigenspace 

Eλ2 (A) of A for λ2. 

. A − λ2 Id2×2 =
(−1 + i 1 + i

2 + 2 i 2 − 2 i

)
�

(
1 − i
1 − i

)
�

(
1 − i
0 0

)
.

Hence v(2) = (i, 1) is an eigenvector of A for λ2. Since  λ2 is simple, the eigenspace 
Eλ2 (A) is given by Eλ2 (A) = {

α(i, 1) | α ∈ C
}
. 

(iii) Since v(1) and v(2) are eigenvectors of A for distinct eigenvalues, they are linearly 
independent and hence [v] = [v(1) , v(2)] is a basis of C2. It follows  that  

. (Id[v]→[e])−1A Id[v]→[e] =
(
1 0
0 i

)

and 

. S := Id[v]→[e] =
(
i i
2 1

)
.

2. Let A =
(
1 −1 
2 −1

)
, viewed as an element in C2×2. 

(i) Compute the eigenvalues of A. 
(ii) Compute the eigenspaces (in C2) of the eigenvalues of A. 
(iii) Find a regular 2 × 2 matrix  S ∈ C2×2 so that S−1AS is diagonal. 
Solutions 

(i) The characteristic polynomial χA(z) = det(A − z Id2×2) of A can be computed as 

. χA(z) = (1 − z)(−1 − z) + 2 = z2 + 1.

Hence the eigenvalues of A are λ1 = i and  λ2 = − i. (Note that the spectrum of A is 
simple.) 

(ii) The eigenspace Eλ1 (A) of A for the eigenvalue λ1 is defined as the nullspace of 
A − λ1 Id2×2. One obtains by Gaussian elimination 

.A − λ1 Id2×2 =
(
1 − i −1
2 −1 − i

)
�

(
1 −(1+i)/2

1 −(1+i)/2

)
�

(
1 −(1+i)/2

0 0

)
.
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Hence v(1) = (1+ i, 2) is an eigenvector of A for λ1. Since  λ1 is simple, the eigenspace 
Eλ1 (A) is given by Eλ1 (A) = {

α(1 + i, 2) | α ∈ C
}
. Similarly, one computes the 

eigenspace Eλ2 (A) of A for λ2. 

. A − λ2 Id2×2 =
(
1 + i −1
2 −1 + i

)
�

(
1 (−1+i)/2

1 (−1+i)/2

)
�

(
1 (−1+i)/2

0 0

)
.

Hence v(2) = (1− i, 2) is an eigenvector of A for λ2. Since  λ2 is simple, the eigenspace 
Eλ2 (A) is given by Eλ2 (A) = {

α(1 − i, 2) | α ∈ C
}
. 

(iii) Since v(1) and v(2) are eigenvectors of A for distinct eigenvalues, they are linearly 
independent and hence [v] = [v(1) , v(2)] is a basis of C2. It follows  that  

. (Id[v]→[e])−1A Id[v]→[e] =
(
i 0
0 − i

)

and 

. S := Id[v]→[e] =
(
1 + i 1 − i
2 2

)

3. Let A =
(

1/2 + i/2 
1/2 + i/2 

− 1/2 − i/2 
1/2 + i/2

)
∈ C2×2. 

(i) Verify that A is unitary. 
(ii) Compute the spectrum of A. 
(iii) Find an orthonormal basis of C2, consisting of eigenvectors of A. 

Solutions 

(i) The matrix A is unitary if and only if A T A = Id2×2. We find  

. A =
(

1/2 − i/2
1/2 − i/2

− 1/2 + i/2
1/2 − i/2

)

and hence 

. A
T =

(
1/2 − i/2 − 1/2 + i/2
1/2 − i/2

1/2 − i/2

)
.

By a straightforward computation one finds that A T A = Id2×2 and hence A is indeed 
unitary. 

(ii) The characteristic polynomial χA(z) = det(A − z Id2×2) of A can be computed as 

. χA(z) = (a − z)(a − z) − (−a)a = (a − z)2 + a2, a := (1 + i)/2.

Hence the roots of χA(z) satisfy a − z = √−a2 = ± i a and hence the eigenvalues of A 
are given by 

.λ1 = a − i a = (1 − i)a = (1 − i)(1 + i)/2 = 1,

λ2 = a + i a = (1 + i)a = (1 + i)(1 + i)/2 = i .
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(iii) We first compute an eigenvector of A for λ1. By Gaussian elimination, 

. A − λ1 Id2×2 =
(− 1/2 + i/2

1/2 + i/2

− 1/2 − i/2 − 1/2 + i/2

)
�

(
1 − i
1 − i

)
�

(
1 − i
0 0

)
.

Thus v(1) = 1√
2 

(i, 1) is an eigenvector of A for λ1 with ‖v(1)‖ =  1. Similarly, we 

compute an eigenvector of A for λ2, 

. A − λ2 Id2×2 =
(

1/2 − i/2
1/2 + i/2

− 1/2 − i/2
1/2 − i/2

)
�

(
1 i
1 i

)
�

(
1 i
0 0

)
.

Thus v(2) = 1√
2 

(− i, 1) is an eigenvector of A for λ2 with ‖v(2)‖ =  1. 
Since A is unitary and λ1 and λ2 are distinct eigenvalues, v(1) and v(2) are orthogonal. 
Indeed, 

. 〈v(1), v(2)〉 = v
(1)
1 · v

(2)
1 + v

(1)
2 · v

(2)
2 = 0

Taking into account that both v(1) and v(2) are of norm one, it follows that [v(1) , v(2)] is 
an orthonormal basis of C2. 

4. Let A = 

⎛ 

⎝ 
2 i 1  

− i 2  − i 
1 i 2  

⎞ 

⎠ ∈ C3×3. 

(i) Verify that A is Hermitian. 
(ii) Compute the spectrum of A. 
(iii) Find a unitary 3 × 3 matrix  S ∈ C3×3 so that S−1AS is diagonal. 
Solutions 

(i) AT = 

⎛ 

⎝ 
2 i 1  

− i 2  − i 
1 i 2  

⎞ 

⎠ = A. 

(ii) The characteristic polynomial χA(z) = det(A − z Id3×3) of A can be computed as 

. χA(z) = (2 − z)
(
(2 − z)2 − 1

) + i
(
i(2 − z) − i

) + (
1 − (2 − z)

)
= (2 − z)3 − 3(2 − z) + 2 = −z3 + 6z2 − 9z + 4.

By an educated guess, we find that z = 1 is a root of χA(z) and hence (z − 1) (and 
therefore −(z − 1)) is a factor of χA(z). One computes 

. − z3 + 6z2 − 9z + 4 = −(z − 1)(z2 − 5z + 4) = −(z − 1)(z − 1)(z − 4).

Therefore, the eigenvalues of A are given by λ1 = 1, λ2 = 1 and  λ3 = 4. Note that λ1 
has algebraic multilpicity two, whereas λ3 is simple. 

(iii) To find a basis of C3, consisting of eigenvectors of A, we first compute the eigenspace 
Eλ1 (A) (= Eλ2 (A)) of  A. By Gaussian elimination 

.A − λ1 Id3×3 =
⎛
⎝ 1 i 1
− i 1 − i
1 i 1

⎞
⎠ �

⎛
⎝1 i 1
0 0 0
0 0 0

⎞
⎠ .
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Hence w(1) = (− i, 1, 0) and w(2) = (−1, 0, 1) are linearly independent eigenvectors of 
A for λ1 and hence 

. Eλ1 (A) = {
α1w

(1) + α2w
(2) | α1, α2 ∈ C

}
.

We need to find an orthonormal basis of Eλ1 (A). Note that w(1) and w(2) are not 
orthogonal. Indeed, 〈w(2) , w(1)〉 = − i �= 0. Define v(1) := 1√

2 
(− i, 1, 0). Then  v(1) 

is an eigenvector of A for λ1 of norm one. Further set 

. ̃v(2) = w(2) − 〈w(2), v(1)〉v(1) = (−1, 0, 1) − − i

2
(− i, 1, 0) = (− 1

2
,
i

2
, 1).

Then v(1) and ṽ(2) are orthogonal. Finally, to obtain an orthonormal basis of Eλ1 (A) we 
need to normalize ṽ(2), 

. v(2) := 1

‖ṽ(2)‖ ṽ(2) = 1√
6

(−1, i, 2).

Now let us turn to the eigenvalue λ3, which is simple. To find an eigenvector of A for λ3, 
we get by Gaussian elimination 

. 

A − λ3 Id3×3 =
⎛
⎝−2 i 1
− i −2 − i
1 i −2

⎞
⎠ �

⎛
⎝ 2 − i −1
−2 i −4 −2 i

2 2 i −4

⎞
⎠ �

⎛
⎝2 − i −1
0 −3 −3 i
0 3 i −3

⎞
⎠

�

⎛
⎝2 − i −1
0 1 i
0 0 0

⎞
⎠ .

Hence v(3) = 1√
3 

(1,− i, 1) is an eigenvector of A for λ3 of norm one. 

Since A is Hermitian, and λ1 and λ3 are distinct eigenvalues, v(3) is orthogonal to Eλ1 (A) 
and hence [v] = [v(1) , v(2) , v(3)] is an orthonormal basis of C3. Altogether we conclude 
that 

. (Id[v]→[e])−1A Id[v]→[e] =
⎛
⎝1 0 0
0 1 0
0 0 4

⎞
⎠

is a diagonal 3 × 3 matrix and  

. S = Id[v]→[e] =
⎛
⎜⎝

− i/√2
−1/√6

1/√3
1/√2

i/√6
− i/√3

0 2/√6
1/√3

⎞
⎟⎠

a unitary 3 × 3 matrix.  

5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) Assume that A, B ∈ C2×2 and that λ ∈ C is an eigenvalue of A and μ ∈ C 
is an eigenvalue of B. Then λ + μ is an eigenvalue of A + B. 

(ii) For any A ∈ C2×2, A and AT have the same eigenspaces.
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Solutions 

(i) False. Let A :=
(
1 0  
0 0

)
and B :=

(
0 0  
0 1

)
. Then  A + B = Id2×2. Note that 1 is an 

eigenvalue of A and of B, but  1 + 1 = 2 is not an eigenvalue of Id2×2. 

(ii) False. Let A :=
(
0 1  
0 0

)
. Then  AT =

(
0 0  
1 0

)
. Note that λ1 = 0 is the only eigenvalue of 

A. It has algebraic multiplicity 2 and geometric multiplicity 1. Furthermore v(1) = (1, 0) 
is an eigenvector of A and Eλ1 (A) = {

α(1, 0) | α ∈ C
}
the eigenspace of λ1. The  

spectrum of AT coincides with the one of A. But the eigenspace Eλ1 (A
T) is given by 

Eλ1 (A
T) = {

α(0, 1) | α ∈ C
}
. 

Solutions of Problems of Sect. 5.2 

1. Let A =
(
1 4  
2 3

)
∈ R2×2. 

(i) Compute the spectrum of A. 
(ii) Find eigenvectors v(1), v(2) ∈ R2 of A, which form a basis of R2. 
(iii) Find a regular 2 × 2 matrix  S ∈ R2×2 so that S−1AS is diagonal. 
Solutions 

(i) The characteristic polynomial χA(z) = det(A − z Id2×2) of A can be computed as 

. χA(z) = (1 − z)(3 − z) − 8 = z2 − 4z − 5 = (z + 1)(z − 5).

Hence the eigenvalues of A are λ1 = −1 and  λ2 = 5. Note that both eigenvalues are 
simple and real. 

(ii) Let us first find an eigenvector of A for λ1. By Gaussian elimination 

. A − λ1 Id2×2 =
(
2 4
2 4

)
�

(
1 2
0 0

)
,

Hence v(1) = (−2, 1) ∈ R2 is an eigenvector of A for λ1. To find an eigenvector of A 
for λ2, one argues similarly. By Gaussian elimination 

. A − λ2 Id2×2 =
(−4 4

2 −2

)
�

(
1 −1
0 0

)
,

Hence v(2) = (1, 1) ∈ R2 is an eigenvector of A for λ2. 
(iii) Since v(1) and v(2) are eigenvectors of A for distinct eigenvalues and in addition vectors 

in R2, they are linearly independent in R2. Hence [v] = [v(1) , v(2)] is a basis of R2. It  
follows that 

.(Id[v]→[e])−1A Id[v]→[e] =
(−1 0

0 5

)
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and 

. S := Id[v]→[e] =
(−2 1

1 1

)
.

2. Let A = 

⎛ 

⎝2 1 0  
0 1  −1 
0 2  −1 

⎞ 

⎠, viewed as an element in C3×3. 

(i) Compute the spectrum of A. 
(ii) For each eigenvalue of A, compute the eigenspace. 
(iii) Find a regular matrix S ∈ C3×3 so that S−1AS is diagonal. 
Solutions 

(i) The characteristic polynomial χA(z) = det(A − z Id3×3) of A can be computed as 

. χA(z) = (2 − z)(1 − z)(−1 − z) + 2(2 − z) = −(z − 2)(z2 + 1).

Thus the eigenvalues of A are λ1 = 2, λ2 = i, and λ3 = − i. Note that all the eigenvalues 
are simple. 

(ii) The eigenspace Eλ1 (A) of A for the eigenvalue λ1 is defined as the nullspace of 
A − λ1 Id3×3. One obtains by Gaussian elimination 

. A − λ1 Id3×3 =
⎛
⎝0 1 0
0 −1 −1
0 2 −3

⎞
⎠ �

⎛
⎝0 1 0
0 0 1
0 0 1

⎞
⎠ ,

Hence v(1) = (1, 0, 0) is an eigenvector of A for λ1. Since  λ1 is a simple eigenvalue, 
Eλ1 (A) = {

α(1, 0, 0) | α ∈ C
}
. 

The eigenspace Eλ2 (A) of A for the eigenvalue λ2 is computed in a similar fashion. By 
Gaussian elimination 

. A − λ2 Id3×3 =
⎛
⎝2 − i 1 0

0 1 − i −1
0 2 −1 − i

⎞
⎠ �

⎛
⎝2 − i 1 0

0 2 −1 − i
0 0 0

⎞
⎠ ,

Hence v(2) = (−1 − 3 i, 5 + 5 i, 10) is an eigenvector of A for λ2. Since  λ2 is a simple 
eigenvalue, Eλ2 (A) = {

α(−1 − 3 i, 5 + 5 i, 10) | α ∈ C
}
. 

Finally, we compute the eigenspace Eλ3 (A) of A for the eigenvalue λ3. By Gaussian 
elimination 

. A − λ3 Id3×3 =
⎛
⎝2 + i 1 0

0 1 + i −1
0 2 −1 + i

⎞
⎠ �

⎛
⎝1 0 (1−3 i)/10

0 2 −1 + i
0 0 0

⎞
⎠ .

Hence v(3) = (−1 + 3 i, 5 − 5 i, 10) is an eigenvector of A for λ3. Since  λ3 is a simple 
eigenvalue, Eλ3 (A) = {

α(−1 + 3 i, 5 − 5 i, 10) | α ∈ C
}
.
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(iii) Since v(1), v(2), and  v(3) are eigenvectors of A in C3 for distinct eigenvalues, they are 
linearly independent in C3. Hence they are linearly independent in C3 and therefore 
[v] = [v(1) , v(2) , v(3)] is a basis of C3. It follows that 

. (Id[v]→[e])−1A Id[v]→[e] =
⎛
⎝2 0 0
0 i 0
0 0 − i

⎞
⎠

and 

. S := Id[v]→[e] =
⎛
⎝1 −1 − 3 i −1 + 3 i
0 5 + 5 i 5 − 5 i
0 10 10

⎞
⎠ .

3. Determine for each of the following symmetric matrices 

A =
(
2 1  
1 2

)
(i) B = 

⎛ 

⎝2 1 1  
1 3  −2 
1 −2 3  

⎞ 

⎠(ii) 

its spectrum and find an orthogonal matrix, which diagonalizes it. 
Solutions 

(i) The characteristic polynomial χA(z) = det(A − z Id2×2) of A can be computed as 

. χA(z) = (2 − z)2 − 1 = z2 − 4z + 3 = (z − 1)(z − 3).

Hence the eigenvalues of A are λ1 = 1 and  λ2 = 3. Note that both eigenvalues are 
simple. First we determine an eigenvector of A for λ1. By Gaussian elimination one has 

. A − λ1 Id2×2 =
(
1 1
1 1

)
�

(
1 1
0 0

)
.

Hence v(1) = 1√
2 

(−1, 1) is an eigenvector of A for the eigenvalue λ1 with ‖v(1)‖ = 1. 

To determine an eigenvector of A for λ2, we argue similarly, 

. A − λ2 Id2×2 =
(−1 1

1 −1

)
�

(
1 −1
0 0

)
.

Hence v(2) = 1√
2 

(1, 1) is an eigenvector of A for the eigenvalue λ2 with ‖v(2)‖ =  
1. Since v(1) and v(2) are eigenvectors of A in R2 for distinct eigenvalues and A is a 
symmetric 2 × 2 matrix,  v(1) and v(2) are orthogonal in R2. Therefore [v] = [v(1) , v(2)] 
is an orthonormal basis of R2. It follows  that  

. (Id[v]→[e])−1A Id[v]→[e] =
(
1 0
0 3

)

and that 

. S := Id[v]→[e] =
(
− 1/√2

1/√2
1/√2

1/√2

)

is an orthogonal 2 × 2 matrix.
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(ii) The characteristic polynomial χA(z) = det(A − z Id3×3) of A can be computed as 

. χA(z) = (2 − z)
(
(3 − z)2 − 4

) − (
(3 − z) + 2

) + ( − 2 − (3 − z)
)

= (3 − z)(2 − z)(3 − z) − 2(3 − z) − 4(3 − z)

= (3 − z)
(
(2 − z)(3 − z) − 6)

) = (3 − z)(z2 − 5z) = z(3 − z)(z − 5).

Hence the eigenvalues of A are λ1 = 0, λ2 = 3, and λ3 = 5. Note that each of the three 
eigenvalues is simple. 
First we determine an eigenvector of A for λ1. By Gaussian elimination one has 

. A − λ1 Id3×3 =
⎛
⎝2 1 1
1 3 −2
1 −2 3

⎞
⎠ �

⎛
⎝2 1 1
2 6 −4
2 −4 6

⎞
⎠

�

⎛
⎝2 1 1
0 5 −5
0 −5 5

⎞
⎠ �

⎛
⎝2 1 1
0 1 −1
0 0 0

⎞
⎠ .

Hence v(1) = 1√
3 

(−1, 1, 1) is an eigenvector of A for λ1 with ‖v(1)‖ = 1. 

Similarly, we compute an eigenvector of A for λ2. By Gaussian elimination 

. A − λ2 Id3×3 =
⎛
⎝−1 1 1

1 0 −2
1 −2 0

⎞
⎠ �

⎛
⎝−1 1 1

0 1 −1
0 0 0

⎞
⎠ ,

Hence v(2) = 1√
6 

(2, 1, 1) is an eigenvector of A for λ2 with ‖v(2)‖ =  1. 
Finally, we compute an eigenvector of A for λ3, 

. 

A − λ3 Id3×3 =
⎛
⎝−3 1 1

1 −2 −2
1 −2 −2

⎞
⎠ �

⎛
⎝−3 1 1

1 −2 −2
0 0 0

⎞
⎠ �

⎛
⎝−3 1 1

3 −6 −6
0 0 0

⎞
⎠

�

⎛
⎝−3 1 1

0 −5 −5
0 0 0

⎞
⎠ �

⎛
⎝−3 0 0

0 1 1
0 0 0

⎞
⎠ .

Hence v(3) = 1√
2 

(0,−1, 1) is an eigenvector of A for λ3 with ‖v(3)‖ =  1. Since 
all three eigenvalues are simple and v(1), v(2), and  v(3) are normalized eigenvectors in 
R
3, it follows  that  [v] = [v(1) , v(2) , v(3)] is an orthonormal basis of R3. Altogether we 

conclude that 

. (Id[v]→[e])−1A Id[v]→[e] =
⎛
⎝0 0 0
0 3 0
0 0 5

⎞
⎠

and that 

. S := Id[v]→[e] =
⎛
⎜⎝
− 1/√3

2/√6 0
1/√3

1/√6 − 1/√2
1/√3

1/√6
1/√2

⎞
⎟⎠

is an orthogonal 3 × 3 matrix.
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4. (i) Assume that A is a n×n matrix with real coefficients, A ∈ Rn×n, satisfying 
A2 = A. Verify that each eigenvalue of A is either 0 or 1. 

(ii) Let A ∈ Rn×n. For any a ∈ R, compute the eigenvalues and the eigenspaces 
of A + a Idn×n in terms of the eigenvalues and the eigenspaces of A. 

Solutions 

(i) Suppose λ is an eigenvalue of A and v an eigenvector of A for λ, Av = λv. Then  

. λv = Av = AAv = A(λv) = λ2v.

Since v �= 0, it follows that λ2 = λ. So either  λ = 0 or  λ = 1. 
(ii) Let λ1, . . . , λn be the eigenvalues of A, listed with their algebraic multiplicities. The 

characteristic polynomial χA(z) = det(A − z Idn×n) of A the reads 

. χA(z) = (−1)n
∏

1≤j≤n

(λ − λj ).

Hence 

. χA+a Idn×n (z) = det(A − (z − a) Idn×n) = χA(z − a).

Therefore, the roots of χA+a Idn×n are the roots of χA, translated by a. It means that the 
eigenvalues of A + a Idn×n are λ1 + a,  . . . , λn + a. 
Any eigenvector of A for an eigenvalue λ of A is also an eigenvector of A + a Idn×n 
for the eigenvalue λ + a of A + a Idn×n. It follows that for any 1 ≤ j ≤ n, Eλj (A) = 
Eλj +a(A + a Idn×n). 

5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) Any matrix A ∈ R3×3 has at least one real eigenvalue. 
(ii) There exists a symmetric matrix A ∈ R5×5, which admits an eigenvalue, 

whose geometric multiplicity is 1, but its algebraic multiplicity is 2. 

Solutions 

(i) True. Assume that A has not only real eigenvalues. Let λ ∈ C be an eigenvalue of A with 
Im(λ) �= 0. Then also the complex conjugate λ of λ is an eigenvalue of A with Im λ �= 0. 
Consequently, the characteristic polynomial of A is of the form 

. χA(z) = (λ − z)(λ − z)(μ − z) = (|λ|2 − 2Re(λ)z + z2)(μ − z)

with μ being the third eigenvalue of A. Since  A is a real matrix, χA(z) ∈ R for any 
z ∈ R. This implies that μ ∈ R. 

(ii) False. By Theorem 5.2.5, the geometric multiplicity of any eigenvalue λ of a real 
symmetric matrix A in R5×5 is equal to the algebraic multiplicity of λ.
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Solutions of Problems of Sect. 5.3 

1. (i) Decide, which of the following matrices A ∈ Rn×n are symmetric and 
which are not.⎛ 

⎝3 2 1  
2 1 3  
1 3 2  

⎞ 

⎠(a)

(
1 2  

−2 1

)
(b) 

⎛ 

⎝1 2  3  
2 −1 3  
3 4  1  

⎞ 

⎠(c) 

(ii) Determine for the following quadratic forms Q the symmetric matrices A ∈ 
R
3×3 so that Q(x) = 〈x, Ax〉 for any x = (x1, x2, x3) ∈ R3. 

(a) Q(x1, x2, x3) = 2x2 
1 + 3x2 

2 + x2 
3 + x1x2 − 2x1x3 + 3x2x3. 

(b) Q(x1, x2, x3) = 8x1x2 + 10x1x3 + x2 
1 − x2 

3 + 5x2 
2 + 7x2x3. 

Solutions 

(i) (a) is symmetric, (b) and (c) are not. 
(ii) (a) Writing Q(x1, x2, x3) in the form 

. Q(x1, x2, x3) = x1
(
2x1+ 1

2
x2−x3

)+x2
(
3x2+ 1

2
x1+ 3

2
x3

)+x3
(
x3−x1+ 3

2
x2

)
,

one sees that 

. A =
⎛
⎝ 2 1/2 −1

1/2 3 3/2

−1 3/2 1

⎞
⎠ .

(b) Similarly, write Q(x, y, z) in the form 

. Q(x1, x2, x3) = x1
(
x1+4x2+5x3

)+x2
(
4x1+5x2+ 7

2
x3

)+x3
(
5x1+ 7

2
x2−x3

)
,

yielding 

. A =
⎛
⎝1 4 5
4 5 7/2

5 7/2 −1

⎞
⎠ .

2. Find a coordinate transformation of R2 (translation and/or rotation) so that the 
conic section Kf =

{
f (x1, x2) = 0

}
is in canonical form where 

. f (x1, x2) = 3x2
1 + 8x1x2 − 3x2

2 + 28.

Solutions Clearly 

.f (x1, x2) = 〈
A

(
x1

x2

)
,

(
x1

x2

) 〉 + 28, A =
(
3 4
4 −3

)
.
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To determine the eigenvalues of A, consider the characteristic polynomial χA(z) = det(A − 
z Id2×2) of A, 

. χA(z) = (3 − z)(−3 − z) − 16 = z2 − 25 = (z − 5)(z + 5).

Hence, λ1 = 5 and  λ2 = −5. To obtain an eigenvector of A for λ1, we compute 

. A − λ1 Id2×2 =
(−2 4

4 −8

)
�

(
1 −2
0 0

)

Hence v(1) = 1√
5 

(2, 1) is an eigenvector of A for λ1 with ‖v(1)‖ =  1. Similarly, to find an 

eigenvector of A for λ2, one computes 

. A − λ2 Id2×2 =
(
8 4
4 2

)
�

(
1 1/2

0 0

)

Hence v(2) = 1√
5 

(−1, 2) is an eigenvector of A for λ2 with ‖v(2)‖ =  1. Since v(1) and 

v(2) are normalized eigenvectors of A for the distinct eigenvalues λ1 and respectively, λ2, 
[v] = [v(1) , v(2)] is an orthonormal basis of R2. Hence 

. S := Id[v]→[e] = 1√
5

(
2 −1
1 2

)

is an orthogonal 2 × 2 matrix and  S�AS = diag(5, −5) or A = S diag(5,−5)S�. It implies  
that 

. f (x) = 〈Ax, x〉 = 〈
diag(5,−5)STx, STx

〉
.

Let y := STx. Then  x = Sy and 

. f (Sy) = 5y2
1 − 5y2

2 + 28.

Hence 

. Kf = {
x | 5

28
(y2

2 − y2
1 ) = 1, y = STx

}
.

3. Verify that the conic section Kf = {
f (x)  = 0

}
is a parabola where f is given 

by 

. f (x) = x2
1 + 2x1x2 + x2

2 + 3x1 + x2 − 1, x = (x1, x2) ∈ R
2.

Solutions Writing 3x1 + x2 as 2(x1 + x2) + x1 − x2, one obtains by completing the square of 
(x1 + x2)

2 + 2(x1 + x2), 

. f (x) = (x1 + x2)
2 + 2(x1 + x2) + x1 − x2 − 1 = (x1 + x2 + 1)2 + x1 − x2 − 2.

We want to find a translation 

.T : R2 → R
2, x �→ y := x + a, a = (a1, a2) ∈ R

2,
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so that f (x)  = (y1 + y2)2 + y1 − y2 or 

. (x1 + x2 + 1)2 + x1 − x2 − 2 = (
(x1 + a1) + (x2 + a2)

)2 + (x1 + a1) − (x2 + a2).

It means that a1, a2 have to satisfy a1 + a2 = 1 and  a1 − a2 = −2. One obtains a1 = −1/2 
and a2 = 3/2. Note that 

. f (x) = (y1 + y2)
2 + y1 − y2, y = x + a,

can be written as 

. f (x) = 〈Ay, y〉 + 〈b, y〉, A :=
(
1 1
1 1

)
, b :=

(
1

−1

)
.

To bring Kf into normal form, we have to analyze the spectrum of A. The characteristic 
polynomial χA(z) = det(A − z Id2×2) of A is given by 

. χA(z) = (1 − z)2 − 1 = z2 − 2z = z(z − 2),

hence λ1 = 2 and  λ2 = 0 are the eigenvalues of A. Note that both eigenvalues are simple. To 
obtain an eigenvector of A for the eigenvalue λ1, we use Gaussian elimination, 

. A − λ1 Id2×2 =
(−1 1

1 −1

)
�

(
1 −1
0 0

)
.

Hence v(1) = 1√
2 

(1, 1) ∈ R2 is a normalized eigenvector of A for the eigenvalue λ1. 
Similarly, to obtain an eigenvector of A for λ2, one computes 

. A − λ2 Id2×2 =
(
1 1
1 1

)
�

(
1 1
0 0

)
.

Hence v(2) = 1√
2 

(−1, 1) ∈ R2 is a normalized eigenvector of A for λ2. Since  v(1) and v(2) 

are normalized eigenvectors of A for the eigenvalues λ1 and λ2, the eigenvalues are simple, 
and A ∈ R

2×2 is symmetric, [v] = [v(1) , v(2)] is an orthonormal basis of R2. It implies that 

. S = Id[v]→[e] = 1√
2

(
1 −1
1 1

)

is an orthogonal 2 × 2 matrix and  STAS = diag(2, 0) or 

. 〈Ay, y〉 + 〈b, y〉 = 〈
diag(2, 0)STy, STy

〉 + 〈STb, STy〉, STb =
(

0
−√

2

)
.

Consequently, 

. Kf = {
x | w2

1 = 1√
2

w2, w := STy = ST(x + a)
}
.

4. (i) Determine symmetric matrices A, B ∈ R2×2 so that A and B have the same 
eigenvalues, but not the same eigenspaces.
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(ii) Assume that A, B ∈ C
2×2 have the same eigenvalues and the same 

eigenspaces. Decide whether in such a case A = B. 
Solutions 

(i) Consider 

. A =
(
1 0
0 0

)
, B =

(
0 0
0 1

)
.

The eigenvalues of A are λ1 = 1 and  λ2 = 0. They coincide with the eigenvalues of B. 
The eigenspace Eλ1 (A) of A for λ1 is given by Eλ1 (A) = {

α(1, 0) | α ∈ C
}
, whereas 

Eλ1 (B) = {
α(0, 1) | α ∈ C

}
. Hence Eλ1 (A) �= Eλ1 (B). 

(ii) In general, it does not follow that A = B. Consider 

. A =
(
0 1
0 0

)
, B =

(
0 2
0 0

)
.

The eigenvalues of A are λ1 = λ2 = 0 and coincide with the eigenvalues of B. Note  
that for both matrices, λ1 has algebraic multiplicity two and geometric multiplicity one. 
Furthermore, v(1) = (1, 0) is an eigenvector of A and of B for λ1. Hence Eλ1 (A) = 
Eλ1 (B). However,  A �= B. 

5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) For any eigenvalue of a symmetric matrix A ∈ R
n×n, its algebraic 

multiplicity equals its geometric multiplicity. 
(ii) The linear map T : R2 → R2, (x1, x2) �→ (x2, x1) is a rotation. 
(iii) The linear map R : R2 → R2, (x1, x2) �→ (−x2, x1) is orthogonal. 
Solutions 

(i) True. See Theorem 5.2.5. Since  A is symmetric, it is diagonalizable. That is there exists 
an orthogonal transformation S, such that 

. STAS =

⎛
⎜⎜⎝

λ1

. . .

λn

⎞
⎟⎟⎠

with λ1 . . . λn being the possibly complex eigenvalues of A. Suppose λi = . . . λi+m. 
Then, e(i) , . . . , e(i+m) are all eigenvectors of λi and the dimension of Eλi (A) corre-
sponds to the algebraic multiplicity of λi . 

(ii) False. Clearly, the matrix representation T[e]→[e] of T is given by 

. T[e]→[e] =
(
0 1
1 0

)
.

Since det(T[e]→[e]) = −1, T is not a rotation. 
(iii) True. Indeed, for arbitrary vectors x = (x1, x2) ∈ R

2, y = (y1, y2) ∈ R
2 one has 

. 〈Rx,Ry〉 = (−x2)(−y2) + x1y1 = x1y1 + x2y2 = 〈x, y〉.

Hence by definition, R is orthogonal.
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Solutions of Problems of Sect. 6.2 

1. Find the general solution of the following linear ODEs.{
y′
1(t) = y1(t) + y2(t) 

y′
2(t) = −2y1(t) + 4y2(t) 

,(i)

{
y′
1(t) = 2y1(t) + 4y2(t) 

y′
2(t) = −y1(t) − 3y2(t) 

.(ii) 

Solutions 

(i) We write y′ = Ay with 

. A =
(

1 1
−2 4

)
.

The general solution is given by y(t) = eAt y0. To determine eAt y0, we compute the 
eigenvalues if A with 

. λ± = 5 ± √
25 − 24

2
= 5 ± 1

2
,

and hence v(1) = (1, 1) and v(2) = (1, 2). The general solution is thus given by 

. y(t) = ae2t v(1) + be3t v(2), a, b ∈ R.

(ii) Again, we write y′ = Ay with 

. A =
(

2 4
−1 −3

)
.

The general solution is given by y(t)0eAt y0. To determine eAt y0, we compute the 
eigenvalues of A with 

. λ± = −1 ± √
1 + 8

2
= −1 ± 3

2
,

and hence v(1) = (−1, 1) and v(2) = (−4, 1). The general solution is this given by 

. y(t) = ar−2t v(1) + bet v(2), a, b ∈ R.

2. Solve the following initial value problems. 

(i)

{
y′
1(t) = −y1(t) + 2y2(t) 

y′
2(t) = 2y1(t) − y2(t) 

, y(0) =
(

2 
−1

)
, 

(ii) 

⎧⎨ 

⎩ 

y′
1(t) = 2y1(t) − 6y3(t) 

y′
2(t) = y1(t) − 3y3(t) 

y′
3(t) = y2(t) − 2y3(t) 

, y(0) = 

⎛ 

⎝ 
1 
0 

−1 

⎞ 

⎠.
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Solutions 

(i) We write the system in the form y′ = Ay with A =
(−1 2  

2 −1

)
. The eigenvalues A are 

then given by 

. λ± = −2 ± √
4 + 12

2
= −1 ± 2,

and for the eigenvectors, we obtain 

. 

λ− :
(
2 2
2 2

)
�

(
1 1
0 0

)
,

λ+ :
(−2 2

2 −2

)
�

(
1 −1
0 0

)
,

Finally, v(1) = (−1, 1) and v(2) = (1, 1). The general solution has the form 

. y(t) = ae−3t v(1) + bet v(2), a, b ∈ R.

To determine (a, b), we use the initial conditions and thus solve the system 

. 

augmented coefficient matrix

[−1 1 2
1 1 −1

]

R1 � −R1, R2 � R2 + R1

[
1 −1 −2
0 2 1

]

R1 � R1 + 1/2 R2, R2 � 1/2 R2

[
1 0 − 3/2

0 1 1/2

]
.

Hence, the solution for the initial values y(0) = (2,−1) is 

. y(t) = − 3

2
e−3t

(−1
1

)
+ 1

2
et

(
1
1

)
.

(ii) We write the initial value problem in the form y′ = Ay with A = 

⎛ 

⎝2 0  −6 
1 0  −3 
0 1  −2 

⎞ 

⎠. The  

characteristic polynomial of A is given by 

.xA(z) = (2 − z)(−z)(−2 − z) − 6 − (−3(2 − z))

= (2 − z)(−z)(−2 − z) − 3z = −z(z2 − 1).
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The eigenvalues of A thus are λ1 = 1, λ2 = −1, λ3 = 0. To obtain the eigenvectors, we 
find for 

. 

λ1 :
⎛
⎝1 0 −6
1 −1 −3
0 1 −3

⎞
⎠ �

⎛
⎝1 0 −6
0 −1 −3
0 0 0

⎞
⎠,

λ2 :
⎛
⎝3 0 −6
1 1 −3
0 1 −1

⎞
⎠ �

⎛
⎝1 0 −2
0 1 −1
0 0 −0

⎞
⎠,

λ3 :
⎛
⎝2 0 −6
1 0 −3
0 1 −2

⎞
⎠ �

⎛
⎝1 0 −3
0 0 0
0 1 −2

⎞
⎠,

which gives by choosing the third component equal to 1, v(1) = (6, 3, 1), v(2) = (2, 1, 1) 
and v(3) = (3, 2, 1). 
We therefore have as a general solution 

. eAty0 = aet

⎛
⎝6
3
1

⎞
⎠ + be−t

⎛
⎝2
1
1

⎞
⎠ + c

⎛
⎝3
2
1

⎞
⎠ .

Evaluating at y0 yields the following system. 

. 

augmented coefficient matrix

⎡
⎣ 6 2 3 1
3 1 2 0
1 1 1 −1

⎤
⎦

R2 � 2(R2 − 1/2 R1), R3 � 6(R3 − 1/6 R1)

⎡
⎣ 6 2 3 1
0 0 1 −1
0 4 3 −7

⎤
⎦

R1 � R1 − 3R2, R3 � R3 − 4R2, R2↔3

⎡
⎣ 6 2 0 4
0 4 0 −4
0 0 1 −1

⎤
⎦

R1 � 1/6 (R1 − 1/2 R2), R2 � 1/4 R2

⎡
⎣ 1 0 0 1
0 1 0 −1
0 0 1 −1

⎤
⎦

and hence 

. y(t) = eAty0 = et

⎛
⎝6
3
1

⎞
⎠ − e−t

⎛
⎝2
1
1

⎞
⎠ −

⎛
⎝3
2
1

⎞
⎠ .

3. Consider the linear ODE 

.y′(t) = Ay(t), A =
⎛
⎝0 1 0
0 0 1
0 0 0

⎞
⎠ ∈ R

3×3.
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(i) Compute A2 and A3. 
(ii) Determine the general solution of y′(t) = Ay(t). 

Solutions 

(i) A2 = 

⎛ 

⎝0 0 1  
0 0 0  
0 0 0  

⎞ 

⎠, A3 = 

⎛ 

⎝0 0 0  
0 0 0  
0 0 0  

⎞ 

⎠. 

(ii) Since A3 = 0, it follows that An = 0 for  any  n ≥ 3. Therefore, 

. etA =
∑
n≥0

tn

n! An = Id+tA + t2

A2 =
⎛
⎝1 t t2/2

0 1 t

0 0 1

⎞
⎠ .

The general solution is then given by y(t) = eAt y0. 

4. Let A =
(

0 2  
−1 0

)
∈ R2×2. Find the solutions of the following initial value 

problems. 

(i) y′(t) = Ay(t) +
(

et 

3

)
, y(0) =

(
1 
0

)
, 

(ii) y′(t) = Ay(t) +
(

0 
cos(2t)

)
, y(0) =

(
0 
1

)
. 

Solutions 

(i) Since we have an added term (et , 3), we choose the ansatz 

. y(t) =
(

a0 + a1e
t

b0 + b1e
t

)
.

Inserting this into the given equation yields 

. 

(
a1e

t

b1e
t

)
=

(
2b0 + 2b1et

−a0 − a1e
t

)
+

(
et

3

)
=

(
2b0 + (2b1 + 1)et

−a0 + 3 − a1e
t

)
.

This leads to the following four equations. 

. 0 = 2b0, a1 = 2b1 + 1, 0 = a0 − 3, b1 = −a1,

which admit the solution 

. a0 = 3, b0 = 0, a1 = 1

3
, b1 = − 1

3
.

Hence, 

. yp(t) = 1

3

(
0 + et

−et

)

is a particular solution.
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To determine the general solution, we first compute the eigenvalues with 

. λ± = 0 ± √−8

2
= ± i

√
2 .

To obtain the eigenvectors, we get 

. 

λ1 :
(
i
√
2 2

−1 i
√
2

)
�

(
1 − i

√
2

0 0

)
,

λ2 :
(− i

√
2 2

−1 − i
√
2

)
�

(
1 i

√
2

0 0

)
,

and thus obtain v(1) = (− i
√
2 , 1) and v(2) = (i

√
2 , 1). Any solution of the 

homogenous equation thus has the form 

. yhom(t) = a

(√
2 sin(ωt)

cos(ωt)

)
+ b

(−√
2 cos(ωt)

sin(ωt)

)
, a, b ∈ R.

The general solution of the original problem is given by 

. y(t) = yp(t) + a

(√
2 sin(ωt)

cos(ωt)

)
+ b

(−√
2 cos(ωt)

sin(ωt)

)
.

To find (a, b) for the initial value (1, 0), we solve  

. 

(
1
0

)
= 1

3

(
10

−1

)
+

(−√
2 b

a

)

and hence obtain a = 1/3 and  b = 7/(3
√
2 ). Finally, 

. y(t) = 1

3

(
9 + et

−et

)
+ 1

3

(−7 cos(
√
2 t) + √

2 sin(
√
2 t)

7/√2 sin(
√
2 t) + cos(

√
2 t)

)
.

(ii) The added term (0, cos(2t))  lets us choose the ansatz 

. yp(t) =
(

a0 cos(2t) + a1 sin(2t)
b0 cos(2t) + b1 sin(2t)

)
,

which gives, inserted into the equation, 

. 

(−2a0 sin(2t) + 2a1 cos(2t)
−2b0 sin(2t) + 2b1 cos(2t)

)
=

(
2b0 cos(2t) + 2b1 sin(2t)
−a0 cos(2t) − a1 sin(2t)

)
+

(
0

cos(2t)

)
.

This yields the following four equation. 

. − 2a0 = 2b1, 2a1 = 2b0, −2b0 = −a1, 2b1 = 1 − a0

with the solution 

.a0 = −1, b1 = 1, a1 = b0 = 0.
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Thus, we have the particular solution 

. yp(t) =
(− cos(2t)

sin(2t)

)
.

The general solution is given by y(t) = yp(t) + yhom(t) where yhom is the solution to 
the homogenous equation. We thus solve with the given initial values for 

. 

(
0
1

)
=

(−1
0

)
+

(−√
2 b

a

)
.

Thus, a = 1, b = −  1√
2 
and 

. y(t) =
(− cos(2t)

sin(2t)

)
+

(
cos(

√
2 t) + √

2 sin(
√
2 t)

− 1/√2 sin(
√
2 t) + cos(

√
2 t)

)
.

5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) For any A, B ∈ R2×2, one has eA+B = eA eB . 

(ii) Let A =
(
0 −1 
1 0

)
∈ R2×2. Then the linear ODE y′(t) = Ay(t) +

(
t2 

t

)

admits a particular solution of the form

(
a + bt + ct2 

d + et

)
. 

Solutions 

(i) False. Consider 

. A =
(
1 0
0 0

)
, B =

(
0 1
0 0

)
.

For the addition, we get 

. (A + B)2 = A + B =
(
1 1
0 0

)
=: C.

Hence, 

. e(A+B)t = Id+(∑
n≥1

tn

n!
)
C = Id+(et − 1)C =

(
et et − 1
0 1

)
.

Since A2 = A and B2 = 0, we further conclude 

. etA =
(

et 0
0 1

)
, etB = Id+tB =

(
1 t

0 1

)
.

Consequently, 

.etAetB =
(

et tet

0 1

)
.
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(ii) False, inserting the ansatz 

. yp(t) =
(

a + bt + ct2

d + et

)

into the equation yields 

. 

(
b + 2ct

e

)
=

( −d − et

a + bt + ct2

)
+

(
t2

t

)
,

which does not admit a solution due to the t2 term in the first line. 

Solutions of Problems of Sect. 6.3 

1. Find the general solution of the following linear ODEs of second order. 

(i) y′′(t) + 2y′(t) + 4y(t) = 0, 
(ii) y′′(t) + 2y′(t) − 4y(t) = t2. 
Solutions 

(i) We look for a solution of the form 

. y(t) = eλt .

Inserting the ansatz into the equation yields 

. 0 = (λ2 + 2λ + 4)eλt .

Hence 

. λ± = −2 ± √
4 − 16

2
= −1 ± i

√
3

satisfies the equation. The general solution is thus given 

. y(t) = ae−t cos(
√
3 t) + be−t sin(

√
3 t), a, b ∈ R.

(ii) To obtain a particular solution, we make the ansatz 

. y(t) = at2 + bt + c.

Inserting the ansatz into the equation yields 

. t2 = −4at2 + (−4b + 4a)t + (2a + 2b − 4c).

By comparison of coefficients, a = −1/4, b = −1/4, and c = −1/4. To obtain the 
general solution of the homogenous equation, we make the ansatz 

.y(t) = eλt .
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Inserting this ansatz into the equation yields 

. 0 = (λ2 + 2λ − 4)eλt .

Hence 

. λ± = −2 ± √
4 + 16

2
= −1 ± √

5

and the general real solution of the homogenous equation reads 

. yhom(t) = ae(
√
5−1)t + be−(

√
5+1)t , a, b ∈ R.

The general solution of the given equation is thus 

. y(t) = ae(
√
5−1)t + be−(

√
5+1)t − 1

4
t2 − 1

4
t − 1

4
, a, b ∈ R.

2. Find the solutions of the following initial value problems. 

(i) y′′(t) − y′(t) − 2y(t) = e−πt , y(0) = 0, y′(0) = 1. 
(ii) y′′(t) + y(t) = sin t , y(0) = 1, y′(0) = 0. 
Solutions 

(i) To obtain a particular solution of y′′(t) − y′(t) − 2y(t) = e−πt , we look for a solution 
of the form 

. yp(t) = ce−πt .

Inserting the ansatz into the equation gives 

. e−πt = c(π2 + π − 2)e−πt ,

and hence the choice c = (π2 + π − 2)−1 yields a particular solution. 
To obtain the general solution of the homogenous equation y′′(t) − y′(t) − 2y(t) = 0, 
we look for solutions of the form 

. y(t) = eλt .

Substituting it into y′′(t) − y′(t) − 2y(t) = 0 one gets 

. 0 = (λ2 − λ − 2)eλt .

Hence 

. λ1 = 1 − 3

2
= −1, λ2 = 1 + 3

2
= 2.

The general solution of the homogenous equation is then given by 

.yhom(t) = ae−t + be2t , a, b ∈ R.
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The general solution of the given ODE is therefore 

. y(t) = ae−t + be2t + 1

π2 + π − 2
e−πt , a, b ∈ R.

To obtain a and b, corresponding to the initial values y(0) = 0, y′(0) = 1, we solve the 
linear system of equations 

. 0 = y(0) = a + b + 1

π2 + π − 2
, 1 = y′(0) = −a + 2b − π

π2 + π − 2
.

Adding the latter two equations, one has 

. b = 1

3

(
1 + π − 1

π2 + π − 2

) = 1

3

π2 + 2π − 3

π2 + π − 2
= 1

3

(π − 1)(π + 3)

(π − 1)(π + 2)
= 1

3

π + 3

π + 2

and in turn, 

. a = − 1

3

( 3

π2 + π − 2
+ π2 + 2π − 3

π2 + π − 2

) = − 1

3

π(π + 2)

(π − 1)(π + 2)
= − 1

3

π

π − 1
.

Therefore, 

. y(t) = − 1

3

π

π − 1
e−t + 1

3

π + 3

π + 2
e2t + 1

π2 + π − 2
e−πt .

(ii) To obtain a particular solution of y′′(t) + y(t) = sin t , we look for a solution of the form 

. yp(t) = (a + bt) sin t + (c + dt) cos t.

Inserting the ansatz into the equation and using that (fg)′′ = f ′′ + 2f ′g′ + g′′, we get  

. sin t = 2b cos t − 2d sin t.

By comparison of coefficients b = 0 and  d = −1/2. Furthermore, we may choose a = 0 
and c = 0. Hence 

. yp(t) = − 1

2
t cos t

is a particular solution. To obtain the general solution of the homogenous equation 
y′′(t) + y(t) = 0, we make the ansatz 

. y(t) = eλt ,

from which we get the equation 

. 0 = (λ2 + 1)eλt .

Hence λ1 = − i and  λ2 = i yield two solutions. The general real solution of the 
homogenous equation is thus given by 

.yhom(t) = a cos t + b sin t, a, b ∈ R
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and the one of the given equation is 

. a cos t + b sin t − 1

2
t cos t, a, b ∈ R.

To find a and b, corresponding to the initial values y(0) = 1, y′(0) = 0 we solve  the  
linear system 

. 1 = y(0) = a, 0 = y′(0) = b − 1

2
.

It follows that a = 1 and  b = 1/2. Therefore, the unique solution of the given initial 
value problem is 

. y(t) = cos t + 1

2
sin t − t

2
cos t.

3. Consider the following ODE: 

. 

{
y′
1(t) = y1(t) + 2y2(t)

y′
2(t) = 3y1(t) + 2y2(t)

.

(i) Find all solutions y(t) = (
y1(t), y2(t)

)
with the property that 

. lim
t→∞ ‖y(t)‖ = 0.

(ii) Do there exist solutions y(t) so that 

. lim
t→∞ ‖y(t)‖ = 0 and lim

t→−∞ ‖y(t)‖ = 0?

Here ‖y(t)‖ = (
y1(t)

2 + y2(t)2
)1/2 . 

Solutions 

(i) We write y′ = Ay with A =
(
1 2  
3 2

)
. Since  det(A) = −4 and  tr(A) = 3, the eigenvalues 

of A are given by 

. λ1 = 3 − 5

2
= −1, λ2 = 3 + 5

2
= 4.

Hence the general solution is of the form 

. y(t) = ae−t v(1) + be4t v(2), a, b ∈ R

where v(1) is an eigenvector corresponding to λ1 and v(2) one corresponding to λ2. The  
solutions of the form ae−t v(1) (i.e. the solutions with b = 0) are thus precisely those with
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the property that limt→∞ y(t) = 0. To obtain an eigenvector v(1) of A, corresponding to 
λ1, we compute 

. λ1 : A − λ1 Id2×2 =
(
2 2
3 3

)
�

(
1 1
0 0

)
.

Hence, v(1) = (−1, 1). The solutions are thus given by 

. y(t) = ae−t

(−1
1

)
, a ∈ R.

(ii) Since the general solution is given by 

. y(t) = ae−t v(1) + be4t v(2),

we conclude from the assumption that a = 0 and  b = 0. So y(t) ≡ 0 is the unique 
solution with the property that limt→∞ ‖y(t)‖ = 0 and  limt→−∞ ‖y(t)‖ =  0. 

4. (i) Define for A ∈ R
2×2 

. cosA =
∞∑

k=0

(−1)k

(2k)! A2k and sinA =
∞∑

k=0

(−1)k

(2k + 1)! A2k+1.

Verify that ei A = cos A + i sin  A. 

(ii) Compute etA  for A =
(
5 −2 
2 5

)
. 

Solutions 

(i) Recall that eiA is defined as a power series. We separate terms with even and odd indices, 

. eiA =
∑
k≥0

1

k! i
k Ak =

∑
k≥0

1

(2k)! i
2k A2k +

∑
k≥0

1

(2k + 1)! i
2k+1 A2k+1

=
∑
k≥0

(−1)k

(2k)! A2k + i
∑
k≥0

(−1)k

(2k + 1)! A2k+1 = cosA + i sinA.

(ii) We write A = α Id2×2 +ωJ with α = 5, ω = 2 and  J =
(
0 −1 
1 0

)
. First note that 

Id2×2 J = J Id2×2 and hence 

. etA = et(α Id2×2 +ωJ) = etα Id2×2etωJ

and 

.etα Id2×2 = etα Id2×2 .
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Moreover, J 2 = − Id2×2 and hence J 2k = (−1)k Id2×2 as well as J 2k+1 = (−1)k J for 
any k ≥ 0. Therefore 

. etωJ =
∑
k≥0

1

k! (tω)kJ k =
∑
k≥0

(−1)k

(2k)! (tω)2k Id2×2 +
∑
k≥0

(−1)k

(2k + 1)! (tω)2k+1J

= cos(tω) Id2×2 + sin(tω)J =
(
cos(tω) − sin(tω)

sin(tω) cos(tω)

)
.

Altogether, we conclude that 

. etA = eαt

(
cos(tω) − sin(tω)

sin(tω) cos(tω)

)
= e5t

(
cos(2t) − sin(2t)
sin(2t) cos(2t)

)
.

5. Decide whether the following assertions are true or false and justify your 
answers. 

(i) The superposition principle holds for every ODE of the form y′′(t) + 
a(t)y(t)  = b(t) where a, b : R → R are arbitrary continuous functions. 

(ii) Every solution y(t) = (
y1(t), y2(t)

) ∈ R2 of 

. 

{
y′
1(t) = 2y1(t) + y2(t)

y′
2(t) = 7y1(t) − 3y2(t)

is bounded, meaning that there exists a constant C >  0 so that  

. ‖y(t)‖2 = y1(t)
2 + y2(t)

2 ≤ C, t ∈ R.

Solutions 

(i) False. Consider the constant functions a = 1 and  b = 1. Then 

. y′′ + y = 1.

Let y1 and y2 denote two solutions. Then y3 = y1 + y2 satisfies 

. y′′
3 + y3 = y′′

1 + y1 + y′′
2 + y2 = 2 �= 1.

(ii) False. We write y′ = Ay with A =
(
3 1  
7 −3

)
. Since  det(A) = −16 and tr(A) = 0, the 

eigenvalues are λ1 = 4 and  λ2 = −4. Let v(1) and v(2) be corresponding eigenvectors. 
The general solution is then of the form 

. y(t) = a4t v(1) + be−4t v(2), a, b ∈ R.

Clearly, limt→∞ be−4t v(2) = 0 for any choice of b. However, if  a �= 0, then ae4t v(1) is 
unbounded as t → ∞. Consequently, for any initial value of the form av(1) + bv(2) with 
a �= 0, the solution is unbounded.
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