
Sascha Block

Large-Scale
Agile
Frameworks
Agile Frameworks, Agile Infrastructure
and Pragmatic Solutions for Digital
Transformation

Large-Scale Agile Frameworks

Sascha Block

Large-Scale Agile
Frameworks
Agile Frameworks, Agile Infrastructure
and Pragmatic Solutions for Digital
Transformation

Sascha Block
Hamburg, Germany

ISBN 978-3-662-67781-0 ISBN 978-3-662-67782-7 (eBook)
https://doi.org/10.1007/978-3-662-67782-7

Translation from the German language edition: “Large-Scale Agile Frameworks” by Sascha Block, © Springer-
Verlag GmbH Deutschland, ein Teil von Springer Nature 2023. Published by Springer Berlin Heidelberg. All
Rights Reserved.
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part
of Springer Nature 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer-Verlag GmbH, DE, part of Springer
Nature.
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

https://doi.org/10.1007/978-3-662-67782-7

V

Preface

My decision to write this book matured in connection with my master's thesis at the Uni-
versity of Hamburg, which deals with the suitability of Large-Scale Agile Frameworks as
an organizational model for software manufacturers. The decision to complete a master's
program at an “advanced age” was significantly influenced by the fact that I missed agile
organizational forms in many aspects of my professional practice. It was never the indi-
vidual teams or colleagues who opposed such methodology - quite the contrary!

It was regularly observed that best practices and mature agile organizational models
were missing or simply unknown. In any case, I was determined to deal precisely with
this complex of topics of Large-Scale Agile Frameworks. To this day, I perceive how dif-
ficult it is for companies to anchor agile working methods holistically in their organiza-
tion.

I developed this book to help establish agility as a permanent part of our modern
working culture in companies and organizations of all kinds. Regardless of the level of
maturity you or your colleagues and employees are currently at, this book is intended to
serve as a guide to anchor an agile mindset and agile working methods in your profes-
sional everyday life. Whether you are a manager or a team member who wants to learn
more about agile methodology, this work should serve as a compass and navigate you
along the currently highly topical issues such as cloud technologies, DevOps, and IT
security. Another goal is to raise awareness of IT security and to demonstrate practical
strategies and solutions for implementation. It is my concern to help you expand your
knowledge beyond the basics of agility. This specialist book was created based on years
of experience in countless IT projects and against the background of various corporate
environments. There are many books that introduce agility and the associated basics.
My plan was to write a book that goes beyond that. This book is intended to effectively
support you and your organization in getting started with agility and establishing a new
organizational form so that you, together with your colleagues and teams - and above all
with fun - can achieve a successful digital transformation!

The period in which this book was created and grew was shaped by the Corona pan-
demic; not only the immense importance but also the urgency of agile methodology was
intensified once again. As an IT architect in the context of telematics infrastructure, the

VI Preface

results of my daily work are heavily dependent on many individuals and teams, with
external organizations, legal frameworks, and new subject areas - in and beyond software
architectures - playing a significant role.

In this context, I was able to help shape and experience the introduction of numer-
ous collaboration tools during this formative time and see their positive effects; I also
learned how important individual and community feedback is and how well-suited an
agile mindset is for mastering challenges in a team.

Because I know from my work as an IT architect how important visual representa-
tions are for developing a common understanding - especially across individual teams -
and how effective graphical artifacts are for successfully designing accepted solutions,
I have expanded this book with numerous illustrations. As the saying goes, a picture is
worth a thousand words …

This book is the result of countless iterations, influenced by ever-new ideas, be it dur-
ing my daily work as an IT architect and in dialogue with colleagues or with friends and
other IT specialists at numerous online events and meetups.

Structure of the Book
The book structures the problem in the context of agile software development and
focuses on Large-Scale Agile Frameworks, which meet the special requirements of com-
panies that are confronted with a multitude of agile teams in various, often parallel, digi-
tization projects.

Part I – Digital Transformation with Large-Scale Agile Frameworks
Practical methodology based on real project experience
Chapter 2 describes the problems that project participants and stakeholders face in digital
transformation. The agile prioritization is regularly a challenge for all involved.

Through clearly defined goals of digital transformation and the change to agile
working methods, the importance of agile processes and Large-Scale Agile Frameworks
is illustrated.

Agile concepts and basic terms are explained and examined in the context of multi-
project management and portfolio management.

Software license products and custom software must be distinguished from a soft-
ware platform, the software product family, and a software product line because dif-
ferent framework conditions must be taken into account on the requirements side. The
product life cycle of software as well as software releases, release management, soft-
ware architecture, and knowledge management as well as DevOps have a significant
influence on agile software development.

Agile concepts and the agile project model are presented in the context of Scaled-
Agile and Large-Scale Agile, Agile Teams, their roles, tasks, and processes.

Chapter 3 introduces the concept of Large-Scale Agile Frameworks and presents the
most relevant and proven models in practice, showing their differences and limitations.

VIIPreface

Chapter 4 provides practical support for introducing a Large-Scale Agile Framework
in an organization. With the method of Action Design Research, you have a modern
approach to practice-oriented problem solving in organizations.

With a fact-based summary of the most relevant influencing factors of the cloud
trend and virtualization, not only are highly current technology topics taken into account,
but also their effects on the requirements of agile organizational forms are considered.

Software architecture and IT security play a central role in all digitization activi-
ties. Not only are the paradigms of the approaches IT-Security-by-Design and the
Zero-Trust Strategy presented, but also effective secret management and the extended
protection requirements of virtual container environments. This results in a holistic view.

In this context, the aspects of public-key infrastructures, microservice architec-
tures, REST APIs, and RESTful design, the architecture pattern of service meshes,
and related quality characteristics must not be neglected.

Based on the OWASP guidelines, IT security can be demonstrably improved through
iterative, accompanying penetration testing. Penetration tests, on the other hand, docu-
ment examined properties at a specific point in time under defined conditions, along with
agreed test criteria, and thus attest to IT security in relation to a defined test scope. Com-
bined, both measures complement each other as effective means to harden software, i.e.,
to increase IT security.

With the methodology of threat modeling, an effective mechanism is explained to
identify threats early and systematically eliminate these security risks.

You will comprehensibly learn why early, agile deployment and automated tests are
suitable means to develop robust and IT security-hardened software solutions.

In this context, the relatively young discipline of DevSecOps is introduced, and with
the working tools of code reviews and pair programming, practical methods for soft-
ware development are presented.

The often-neglected requirement for logging and monitoring has its focus on IT
security and data protection aspects to be considered in this section.

To cope with these challenges, the necessary agile teams, roles, tasks, and processes
are outlined, which an agile organizational model requires. By introducing the respective
specializations, a comprehensible and easily understandable classification of the individ-
ual disciplines is provided. At the same time, this section can effectively support organi-
zations in sharpening or supplementing their own teams and role profiles.

In the context of design thinking and prototyping, the required basic knowledge for
prototypical approaches, rapid prototyping, and the prototype phase model is presented.

Chap. 5: Agile prioritization model for software manufacturers reflects compa-
nies in the role of a software manufacturer using three well-known companies, thus illus-
trating the scope and importance of software development for organizations. In Sect. 5.2,
the agile teams and roles typical for organizations in the role of a software manu-
facturer are presented, and in Sect. 5.3, the corresponding processes and activities are
presented.

VIII Preface

Based on the requirements and results of the previous chapters, the developed agile
model for cross-cutting prioritization within different company constellations is pre-
sented and explained why this model is suitable for harmonizing requirement prioritiza-
tion and agile software development for a wide variety of software projects.

To effectively address hurdles, “Chap. 6 presents the agile teams, roles, processes,
and activities that are typical for organizations in the role of a software manufacturer.

– Challenges in establishing a large-scale agile framework in the company” pre-
sents appropriate measures so that you can also master the regular challenges in your
organization that stand in the way of effective application of agile methodology.

With the establishment of Friendly User Tests, you will learn why development
stages within an organization cannot be skipped, but must be taken with agile maturity
levels. In addition, you will read about how innovative development and test environ-
ments with an abstracted hardware level provide you with reliable tests as well as
solid test results. The importance of transparent decision-making processes and agile
requirements management is also illustrated.

Section 6.2 clarifies how and why good digital leadership works. From vision to
strategy, the concept of a product/service roadmap is introduced. Moreover, the roles of
the Chief Information Officer (CIO) and the new leadership role of the Chief Digital
Officer (CDO) are explained in detail.

Likewise, the essential points of change management are explained, which are par-
ticularly relevant during the introduction of new organizational structures. These include,
in particular, the procedures essential for software development, such as change request
and release management, the establishment of agile capabilities through an Agile Acad-
emy, and the establishment of agile values.

The explanations on emergency management conclude the first part with a forward-
looking view on agile and appropriate reactions in emergency situations.

Part II – Agile Infrastructure
Chap. 7 – Agile Tools: Toolbox for Product Owners & Agile Teams
The second part of the book is dedicated to agile tools and serves as a toolbox for Prod-
uct Owners & Agile Teams.

In addition to the Agile Manifesto, agile goals, the agile concepts of Personas, User
Stories, Epics, Tasks and Sub-Tasks, and the Backlog are explained.

Collaboration Tools are the agile tools with which stakeholders and members of the
countless agile teams cooperate and exchange information. You will learn the importance
and functionality of Git repositories as well as OpenAPI as a tool for API design.

In order for agile architectures to form the foundation of software-based digitali-
zation, you will learn which important influencing factors apply to an agile infrastruc-
ture.

With Sect. 7.5, you will receive a guide to creating a pragmatic software architec-
ture documentation and learn how to create meaningful visual artifacts for your soft-
ware architecture and which standards, criteria, and norms are useful.

IXPreface

The following questions are also answered: Who are the recipients and what are the
subject areas of software architecture documentation? How do you formulate mean-
ingful questions for essential software architecture decisions? The relevance of technical
debt is also illustrated. The Arc42 template finally provides you with a directly usable
tool for software architecture documentation. And the standard of ISO/IEC 25010
defines the quality of software.

In Sect. 7.6 DevOps methods and DevOps tools are introduced with the transition to
BizDevOps.

Section 7.7 presents content and the goals of a content strategy and explains what
requirements should be placed on valuable content and how to measure the effective-
ness of content. We also devote ourselves to the presentation and visualization of con-
tent and introduce the special content formats of infographics and dialogue images.

In Sect. 7.8 possibilities for implementing monitoring and controlling based on
Key Performance Indicators (KPI) are explained and which strategies and tools can be
used to implement such reporting.

Section 7.9 introduces methods and tools for agile prioritization that provide real
relief for product owners and agile teams in the software development environment to
prioritize requirements and make existing dependencies between requirements visible.
Both timeboxing and feature-driven development are among the most popular and
proven methods. With the introduction of Liquid Democracy, you will learn an agile
voting procedure and find out how to live transparency within an organization together.

The conclusion is Chap. 8, which is dedicated to data quality and thus the lifeblood
of digitization. From the basics and prerequisites for excellent data quality, it goes on to
data cleansing techniques and effective control mechanisms for optimizing data quality.

Acknowledgment
My personal thanks go especially to the mental support of my wife Martina and the
patience of our daughter Coco. My special thanks go to my mother, who passed away after
a long illness during the creation of this book, and who always wholeheartedly supported
and encouraged me in my goals. This book should accompany Aileen and Jean Paul on
their journey and show that every great goal can be achieved – even in small steps.

Your questions & your personal feedback are welcome!
Feedback from our readers is always welcome!

Because an agile mindset, transparency, and open dialogue are very important to me
personally, I ask you as the reader to please direct any feedback to me as the author of
this work.

If you have any questions about any aspect of this book, please send me an email at
info@large-scale-agile-frameworks.com

Errata: Although I have taken every possible care to ensure the accuracy of my con-
tent, errors can occur. If you have found an error in this book, we would be grateful if
you could report it to us.

info@large-scale-agile-frameworks.com

X Preface

Of course, we also welcome your general feedback: Send us an email and mention the
title of the book in the subject of your message.

You can also find up-to-date information on the website www.large-scale-agile-frame-
works.com

Share your thoughts in the form of a book review!
If you have read Large-Scale Agile Frameworks – Agile Frameworks, Agile Infrastruc-
ture, and Pragmatic Solutions for Digital Transformation, we would love to hear your
opinion!

Your review is important to us and the tech community and helps us ensure that we
deliver excellent quality content.

Hamburg
Germany

Sascha Block

http://www.large-scale-agile-frameworks.com
http://www.large-scale-agile-frameworks.com

XI

Contents

Part I Digital Transformation with Large-Scale Agile Frameworks

1 Introduction . 3
References . 8

2 Digital Transformation & Agile Prioritization . 9
2.1 Agile Models for Organizing Digital Transformation 9

2.1.1 Digital Transformation—a Challenge With Many
Opportunities . 10

2.1.2 What Factors Influence Digital Transformation? 12
2.1.3 Goals of Digital Transformation . 13
2.1.4 Digital Transformation and Large-Scale Agile Frameworks 16
2.1.5 The Importance of Agile Processes and Large-Scale Agile

Frameworks . 17
2.2 How Proven Are Agile Approaches? . 19
2.3 Agile Concepts and Basic Terms . 20

2.3.1 Multi-Project Management . 21
2.3.2 Portfolio Management . 23
2.3.3 Software License Products and Custom Software 24
2.3.4 Software Platform, Software Product Family, and Software

Product Line . 27
2.3.5 Product Life Cycle of Software . 28
2.3.6 Software Releases and Release Management 31
2.3.7 Software Architecture and Knowledge Management 32
2.3.8 Requirement Management/Prioritization . 33
2.3.9 DevOps and DevOps Model . 35
2.3.10 Agility and Agile Project Model . 36
2.3.11 Scaled Agile/Large-Scale Agile Development 41

References . 43

XII Contents

3 Large-Scale Agile Frameworks . 47
3.1 Evaluation criteria for Large-Scale Agile Frameworks 47
3.2 Selected Scaled Agile Frameworks . 49
3.3 Domain-Oriented Model/Domain-Driven Design . 50
3.4 Spotify Engineering Model . 52
3.5 Scaled Agile Framework (SAFe) . 57
3.6 Comparison of the Three Selected Large-Scale Agile Frameworks 60
References . 62

4 How to Adapt and Implement a Large-Scale Agile Framework in
Your Organization . 65
4.1 Action Design Research . 66

4.1.1 Defining Individual Adaptations for a Large-Scale Agile
Framework . 70

4.1.2 As-Is Analysis in the Transformation Process through
Evaluation . 71

4.1.3 Survey Design . 74
4.1.4 Evaluation and Results of the Formative Evaluation 75
4.1.5 Summative Evaluation . 76
4.1.6 Expert Interview . 76

4.2 Consider the Influencing Factors of the Cloud Trend and
Virtualization in the Focus of an Agile Framework 77
4.2.1 Cloud Computing . 78
4.2.2 Cloud Properties . 78
4.2.3 Cloud Service Models . 79
4.2.4 Cloud Models . 80
4.2.5 Virtualization & Containerization . 82
4.2.6 Relevant Bodies for Establishing Internet and Cloud

Standards . 86
4.3 Software Architecture & IT Security as an Integral Part of an Agile

Framework . 88
4.3.1 IT-Security-by-Design: Software Architecture & IT-Security 89
4.3.2 Zero-Trust Strategy . 91
4.3.3 Protection Principles and Their Technical Implementation

Based on Zero Trust . 91
4.3.4 Secret Management . 95
4.3.5 Extended Protection Requirements for Virtual Container

Environments . 96
4.3.6 Key Management & Cryptographic Protection Measures 97
4.3.7 Public Key Infrastructures . 100
4.3.8 Microservice Architectures . 101

XIIIContents

4.3.9 APIs, Resources, and Dynamic IP Addresses in Cloud
Networks . 103

4.3.10 APIs and REST . 104
4.3.11 Quality Characteristics of Microservices and Web APIs 105
4.3.12 RESTful API . 105
4.3.13 Conclusion and Relevance of APIs in the Context of

Large-Scale Agile Frameworks . 109
4.3.14 Service Mesh & Agile Microservice Architectures 111
4.3.15 Improving IT Security Based on OWASP Guidelines 112
4.3.16 Penetration Testing/Pentesting . 113
4.3.17 Recommendations for integrating IT security as a fixed

component in an agile framework . 116
4.3.18 Threat Modeling . 123
4.3.19 As early as possible to agile deployment & automated tests 127
4.3.20 DevSecOps . 130
4.3.21 Code Reviews. 131
4.3.22 Pair Programming . 132
4.3.23 Logging & Monitoring . 133

4.4 Agile Teams, Roles, Tasks, and Processes . 135
4.4.1 Agile Software Development Teams . 136
4.4.2 IT Security Teams . 138
4.4.3 Implementation of Legal Framework Conditions and Data

Protection . 139
4.4.4 Software Product Management/Service Management 140
4.4.5 UX Teams: Frontend Design, Usability, and User

Experience . 140
4.4.6 Quality Assurance and Testing Procedures 141
4.4.7 Technical Editing . 142
4.4.8 Infrastructure Teams . 143
4.4.9 DevOps Teams . 144
4.4.10 Sales—The distribution of products and services of

your organization . 146
4.4.11 Research, Innovation, and PreSales . 146
4.4.12 System Integration . 147
4.4.13 Support Teams . 148

4.5 Getting Started with Design Thinking & Prototyping 149
4.5.1 Prototyping and Rapid Prototyping . 150
4.5.2 Prototyping Phase Model . 153

4.6 Aligning Overarching Agile Process Phases with a Prototypical
Approach . 154
4.6.1 Phase 1: Requirements gathering and idea generation 155

XIV Contents

4.6.2 Phase 2: Rapid Prototyping and Consultation Process 157
4.6.3 Phase 3: Test Management and Summative Evaluation 163
4.6.4 Notes and Recommendations on the Prototypical Approach 164

References . 165

5 Agile Prioritization Model for Software Manufacturers 169
5.1 To What Extent Does Your Organization Act in the Role of a

Software Manufacturer? . 170
5.1.1 Example 1: Is LEGO a Software Manufacturer? 171
5.1.2 Example 2: Flaschenpost.de—Innovative, App-driven

Beverage Service . 175
5.1.3 Example 3: Moia—Digital Shuttle Service 176

5.2 Agile Teams and Roles At Software Manufacturers 179
5.3 Processes and Activities . 182
5.4 Conclusion . 190
5.5 Conclusions . 190
5.6 Outlook . 193

5.6.1 Implications for Practice . 193
References . 195

6 Challenges in Establishing a Large-Scale Agile Framework in the
Enterprise . 197
6.1 Bringing Start-up Wind Into Established Organizations 197

6.1.1 Agile Software Service Development . 198
6.1.2 Friendly User Tests (FUT) . 199
6.1.3 Different Levels of Agility in Teams . 200
6.1.4 Establishing Novel Development and Test Environments

with Abstracted Hardware Layer . 200
6.1.5 Transparent Decision-Making Processes and Agile

Requirements Management . 201
6.2 Digital Leadership . 203

6.2.1 Vision, Strategy, and Product/Service Roadmap 204
6.2.2 Chief Information Officer . 205
6.2.3 Chief Digital Officer . 207

6.3 Change Management—Digital Leadership in Management 210
6.3.1 Perspectives of Change Management . 210
6.3.2 Change Request/Release Management . 211
6.3.3 Agile Academy . 211
6.3.4 Establish Agile Values . 212

6.4 Emergency Management: Can Your Organization React Agilely in
Emergency Situations? . 213
6.4.1 How Can You Proactively Address Emergencies? 214

XVContents

6.4.2 How Do We Approach an Emergency Concept
Organizationally? . 215

References . 218

Part II Agile Infrastructure

7 Agile Tools: Toolbox for Product Owners & Agile Teams 221
7.1 Agile Mindset & the 12 Principles of the Agile Manifesto 223
7.2 Agile Goals . 227

7.2.1 Personas . 228
7.2.2 User Story . 229
7.2.3 Epic . 233
7.2.4 Task & Sub-Task . 235
7.2.5 Backlog . 236

7.3 Collaboration Tools . 237
7.3.1 Confluence . 239
7.3.2 Jira . 240
7.3.3 Git Repositories, GitHub, and GitLab . 241
7.3.4 OpenAPI—Tools for API Design . 245
7.3.5 Messenger and Chat Systems . 249

7.4 Agile Architectures—Foundation of Software-based Digitalization 250
7.4.1 Factors Influencing Agile IT Architectures 252

7.5 Pragmatic Software Architecture Documentation . 253
7.5.1 How to Create Visual Software Architecture Artifacts 254
7.5.2 Standards, Criteria, and Norms for Software Architecture

Artifacts . 255
7.5.3 Addressing and Subject Areas of Software Architecture

Documentation . 257
7.5.4 Formulating Questions for Software Architecture Decisions 258
7.5.5 Technical Debt . 261
7.5.6 Arc42 Template for Software Architecture Documentation 262
7.5.7 ISO/IEC 25010—Quality of Software . 264

7.6 DevOps Methods and DevOps Tools . 265
7.6.1 The DevOps Periodic Table . 266
7.6.2 DevOps is More Than = Software Engineering + IT

Management . 266
7.6.3 BizDevOps as a Consequence for Agile Companies 269

7.7 Content . 272
7.7.1 Goals of a Content Strategy . 273
7.7.2 Requirements for Content . 273
7.7.3 Content Controlling . 274

XVI Contents

7.7.4 Content Process and Coordination . 274
7.7.5 Content Guidelines . 275
7.7.6 Design System . 275
7.7.7 Infographics . 277
7.7.8 Dialogue Images . 279

7.8 Monitoring & Controlling . 281
7.8.1 Key Performance Indicators (KPI) . 282
7.8.2 Monitoring . 283
7.8.3 Strategies and Approaches to Digital Transformation 283
7.8.4 The Optimal Architecture for the Digital Organization 285

7.9 Methods & Tools for Agile Prioritization . 285
7.9.1 Agile requirement prioritization with the Feature Graph 286
7.9.2 Agile Prioritization With the Single Point Query 286
7.9.3 Agile Prioritization with the Multi-point Query 287
7.9.4 Agile Prioritization With Liquid Democracy 288
7.9.5 Timeboxing . 289
7.9.6 Feature-Driven Development . 291

References . 292

8 Data Quality—Lifeblood of Digitalization . 295
8.1 Customer-Specific Products and Services Based on Smart Data 296
8.2 Data Quality: Fundamentals and Preconditions . 298

8.2.1 Data Dependencies . 299
8.2.2 Data Repair . 302
8.2.3 Data Deduplication . 303
8.2.4 Information Completeness . 305
8.2.5 Data Currency . 306
8.2.6 Data Precision . 306

8.3 Techniques for Data Cleansing . 307
8.3.1 Discovering Data Quality Rules . 307
8.3.2 Error Detection for Data . 307
8.3.3 Data Repair . 308

8.4 Control Mechanisms for Optimizing Data Quality are Essential 309
8.4.1 From Machine Learning to Smart Data . 309
8.4.2 Gaining Innovations from Data with Smart Data 310
8.4.3 Semantic Data Analysis . 311
8.4.4 Framework for Data-Driven Design . 312
8.4.5 Conclusion . 313

References . 314

XVII

Abbreviations

ADR Action Design Research
API Application Programming Interface
ART Agile Release Train
AWS Amazon Web Services
B2B Business to Business
B2C Business to Customer
BizDevOps Business, Development & Operations
BL Area Management
BSI Federal Office for Information Security
CI Configuration Item
CR Change Request
CWA Closed World Assumption
DDD Domain Driven Design
DEV Development
DevOps Development & Operations
DoS Denial of Service
DSVGO General Data Protection Regulation
EAM Enterprise Architecture Management
FAQ Frequently Asked Questions
HTTPS Hypertext Transfer Protocol Secure
IaaS Infrastructure as a Service
IAM Identity Access Management
IDLE Infrastructure Services
IoT Internet of Things
IT Information Technology
KPI Key Performance Indicators
LDAP Lightweight Directory Access Protocol
MPM Multi-Project Management
MVC Model View Controller

XVIII Abbreviations

MVP Minimum Viable Product
NIST National Institute of Standards and Technology
OLAP Online Analytical Processing
OLTP Online Transaction Processing
OPS Operations (IT Operations)
OWA Open World Assumption
PaaS Platform-as-a-Service
PI Program Increments
PJM Project Manager
PM Product Management
PO Product Owner
RTE Release Train Engineer
SA Software Architect
SaaS Software-as-a-Service
SAFe Scaled Agile Framework
TLS Transport Layer Security
TOM Technical Organizational Measures
UML Unified Modeling Language
UX User Experience
VCS Versioning Control System
Ver Sales
VMM Virtual Machine Monitor
XP Extreme Programming
XML Extensible Markup Language

XIX

List of Figures

Fig. 1.1 Change costs during the course of the project. (Source: Sascha
Block—Own illustration) . 6

Fig. 1.2 Iterative project model. (Source: Sascha Block—Own illustration) 7
Fig. 2.1 Domains and roles in a company. (Source: Own representation –

Sascha Block) . 18
Fig. 2.2 Multi-Project Management. (Source: Own representation based

on Steinle et al.) . 22
Fig. 2.3 Synchronization of Strategy & Goals. (Source: Own representation

based on Lang et al.) . 22
Fig. 2.4 Development of sales, profitability, and liquidity over the product

life cycle. (Source: Sascha Block) . 30
Fig. 2.5 Arc42-Workflow based on Hruschka/Starke . 34
Fig. 2.6 DevOps Model. (Source: Sascha Block) . 36
Fig. 2.7 Values of agile processes. (Source: Sascha Block) 41
Fig. 3.1 Model-View-Controller concept. (Source: Sascha Block) 51
Fig. 3.2 Organizational Model Spotify Engineering Model subject areas.

(Source: Sascha Block based on Kniberg/Ivarsson: Scaling Agile
@ Spotify with Tribes, Squads, Chapters & Guilds—10/2012.—
Source: Sascha Block) . 52

Fig. 3.3 Status surveys of the Spotify Engineering Model for defined
topics. (Source: Sascha Block, based on Kniberg/Ivarsson:
Scaling Agile @ Spotify with Tribes, Squads, Chapters &
Guilds—10/2012) . 54

Fig. 3.4 Organization of subject areas according to the Spotify
Engineering Model. (Source: Sascha Block, based on
Kniberg/Ivarsson: Scaling Agile @ Spotify with Tribes, Squads,
Chapters & Guilds—10/2012) . 56

Fig. 3.5 Agile Release Train—Photography and Image Editing:
Sascha Block . 59

Fig. 4.1 Action Design Research . 67

XX List of Figures

Fig. 4.2 Cloud Types . 81
Fig. 4.3 Hypervisor Type-1 and Type-2 based on Bernstein 84
Fig. 4.4 Figure 18 Docker Container versus Virtualization—Sascha Block 85
Fig. 4.5 Zero-Trust Strategy—Representation based on Mehraj/Banday. 92
Fig. 4.6 Lifecycle of cryptographic protection measures—Sascha

Block—Own representation based on NIST classification 98
Fig. 4.7 Quality features for interoperability and their impact on the

reusability of software artifacts—Sascha Block 106
Fig. 4.8 Hierarchical Layers REST API . 110
Fig. 4.9 Software library as the Achilles heel of a digital infrastructure.

(Source: Sascha Block) . 117
Fig. 4.10 Software architecture documentation with the collaboration tool

Atlassian Confluence. (Source: Sascha Block) . 118
Fig. 4.11 Code documentation with the collaboration tool Atlassian

Confluence. (Source: Sascha Block) . 119
Fig. 4.12 The six main tasks of software architects based on Hruschka/Starke . . . 138
Fig. 4.13 Iterative Prototyping Model . 152
Fig. 4.14 Prototyping Phase Model according to Pomberger/Pree, own

illustration Sascha Block . 154
Fig. 4.15 App POP—Prototyping on Paper . 159
Fig. 4.16 Digital Pen+Paper Prototype. (Source: Sascha Block) 160
Fig. 4.17 Development environment of an iOS app in Xcode.

(Source: Sascha Block) . 161
Fig. 4.18 Diagram MVP—Requirements for a Minimum Viable Product.

(Source: Sascha Block—Own illustration based on Olsen) 162
Fig. 5.1 Screenshot of the LEGO online shop as part of the LEGO website 172
Fig. 5.2 LEGO Apps in the iOS Store . 173
Fig. 5.3 Ordering process via the Flaschenpost app . 176
Fig. 5.4 iOS App of the digital shuttle service MOIA . 177
Fig. 5.5 Agile Software Portfolio Management. (Source: Sascha Block) 179
Fig. 5.6 Agile Software Product Lines—Sascha Block . 184
Fig. 6.1 Schematic sequence of an emergency process . 214
Fig. 7.1 Agile Onion . 223
Fig. 7.2 Persona Profile . 229
Fig. 7.3 User Stories in Atlassian Jira . 232
Fig. 7.4 Epic . 234
Fig. 7.5 Basic principle of a Product Backlog . 237
Fig. 7.6 Product Backlog in the form of a Kanban Board in Atlassian Jira 242
Fig. 7.7 GitHub Repository of the open-source IAM solution

Keycloak. (Screenshot source: Sascha Block) . 243
Fig. 7.8 Component-based structure of an OpenAPI object 247

XXIList of Figures

Fig. 7.9 OpenAPI Documentation . 250
Fig. 7.10 Discord as a Messenger-based Collaboration Tool 251
Fig. 7.11 Draw.io—Application for creating graphical artifacts for

software architecture. (Source: Sascha Block) . 255
Fig. 7.12 Subject Areas and Addressees of Software Architecture in

accordance with Bass et al. (Source: Sascha Block) 259
Fig. 7.13 Context delimitation for software architecture.

(Source: Sascha Block) . 260
Fig. 7.14 Building block view of software architecture.

(Source: Sascha Block) . 261
Fig. 7.15 Structure of the arc42 Template. (Source: Sascha

Block in reference to Hruschka/Starke) . 263
Fig. 7.16 Dimensions of Software Quality Based on ISO/IEC

25010—Sascha Block . 265
Fig. 7.17 Periodic Table of DevOps . 267
Fig. 7.18 BizDevOps model based on Fitzgerald/Stol. (Source:

Sascha Block) . 270
Fig. 7.19 Otto Group Design System with an extensive pattern library 277
Fig. 7.20 Dimensions of an infographic . 279
Fig. 7.21 Dialogue image for constructive exchange during a staff meeting.

(Source: Dialogbild GmbH) . 280
Fig. 7.22 Dialogue images for active customer communication.

(Source: Dialogbild GmbH) . 281
Fig. 7.23 Timeboxing for release planning with fixed time intervals 290
Fig. 7.24 Feature Boxing—Methodology of Feature-Driven Development 291
Fig. 8.1 Subject areas around “Smart Data”. (Source: Sascha Block) 296
Fig. 8.2 Continuous Build Measure Learn Cycle. (Source: Sascha Block) 310
Fig. 8.3 Artificial intelligence and machine learning using the example of

image recognition on an Apple iPhone. (Source: Sascha Block) 312
Fig. 8.4 Framework for Data-Driven Design. (Source: Sascha Block) 313

XXIII

List of Tables

Table 2.1 Classified Concepts with Relevance for Agile Collaboration 21
Table 3.1 Aspects of Agility Valid in the Spotify Model . 55
Table 4.1 Participants of a formative evaluation. (Source own

representation—Sascha Block) . 73
Table 4.2 Working Groups of the Internet Engineering Task Force (IETF) 89
Table 4.3 Quality features for interoperability and their impact

on reusability . 106
Table 4.4 REST definitions resource and representation 108
Table 4.5 Requirements for RESTful API Design . 109
Table 4.6 Layer model of REST APIs . 110
Table 4.7 Classification of IT Security Objectives . 124
Table 4.8 Classification of IT-Security Risk Groups . 126
Table 4.9 Phases and associated methods of the Design Thinking process.

(Source: Gerstbach—“Design Thinking in Companies”) 151
Table 5.1 Overview Table Teams and Roles. (Source: Sascha Block,

Own Representation) . 180
Table 6.1 Communication examples and their meaning . 204
Table 6.2 Definition of technical organizational measures (TOMs) 216
Table 6.3 Priority labeling for TOMs according to the traffic light principle 217
Table 7.1 Best Practices for Backlog Use . 238
Table 7.2 Field names and their meaning in the OpenAPI context 248
Table 7.3 Criteria and Checklist for Architecture Artifacts 256
Table 7.4 Representation Forms and Diagram Types of the Unified

Modeling Language (UML) . 257
Table 7.5 Cross tables as a pragmatic tool for software architectures. 258
Table 7.6 Example table for a Feature Graph. (Source: Sascha Block—Own

illustration) . 287
Table 7.7 Application examples for single point queries. 287
Table 7.8 Guiding questions for moderated prioritization. 288
Table 7.9 Rules for conducting the multi-point query. 289

XXIV List of Tables

Table 7.10 Timeboxing—Rules, Advantages, Disadvantages, and Risks. 290
Table 7.11 Feature Boxing—Rules, Advantages, Disadvantages, and Risks. 292
Table 8.1 D0—Data record of personal data . 299
Table 8.2 PatternTableaus PT1, PT2 . 300
Table 8.3 Complexity Levels of Implication Analysis [4, Sect. 2.1, p. 3] 302
Table 8.4 Complexity levels of repair checks [4, Sect. 2.1, p. 3] 303

Part I

Digital Transformation with Large-Scale Agile
Frameworks

3© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer
Nature 2023
S. Block, Large-Scale Agile Frameworks, https://doi.org/10.1007/978-3-662-67782-7_1

This book presents practical solutions for cross-cutting prioritization of requirements and
documentation using the example of an organization in the role or with essential char-
acteristics of a software manufacturer. In doing so, the interaction of current technology
topics such as the cloud trend or the organizational requirements with regard to microser-
vices is reflected. Under the requirement of customer-centric and service-oriented prod-
ucts and services, organizations are increasingly confronted with the need to align their
IT strategy closely with the needs of their customers. In addition, tightened requirements
in the direction of IT security and in the context of digital transformation using cloud
technologies and containerization require a radical realignment of previous IT strategies.

Companies struggle in the environment of unpredictable markets with increasing
competitive pressure, rapidly changing customer requirements, regulatory changes, and
rapid technological progress to achieve the best possible business success. Under such
conditions, long-term strategic plans are limited and require continuous control and agile
adjustment mechanisms to best support manufacturers of B2C or B2B products or ser-
vice providers in any industry in such a difficult market environment.

Not only a gentle, but also largely flexible handling of the available, limited resources
significantly relaxes the competitive situation. If software is defined through customer-
relevant digital services and is agilely oriented towards the real needs of customers, then
IT becomes an enabler in the company and contributes maximally to business success.

Software development is not only considered a complex problem area itself, but the
value of software is also sometimes difficult to verify. In doing so, software must cover
the strategic and economic interests of a company as extensively, simply, and cost-effec-
tively as possible. The complexity of software increases with the heterogeneous interests
of different customer groups. Thus, individualized software solutions that are optimally
aligned with specialized customer interests and their agile handling become indispensa-
ble.

Introduction 1

https://doi.org/10.1007/978-3-662-67782-7_1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-67782-7_1&domain=pdf

4 1 Introduction

The economic efficiency of optimized procedures seems to contradict the individu-
alization of software. The more individual a market-oriented offer is designed, the more
complex and elaborate the requirements become, and the more relevant the necessity
of cross-cutting prioritization becomes. In this way, desired scale effects can be real-
ized through structured digital services, economic aspects regarding the corresponding
resource determination for the implementation of software, the need for manageable
maintainability, the highest demands on IT security, and the shortest possible time-to-
market. How important agile and science-based action is, is shown in the phases of the
recent Corona crisis and in the context of national and European security efforts for criti-
cal infrastructures all the more.

This book analyzes and explains the special requirements of a differentiated offer of
software services and to what extent agile principles are suitable for effectively solving
this problem, using practice-proven agile methodology. In addition to considering the
product life cycle and a basic classification of software, the processes, activities, and
roles required for this are particularly highlighted. Based on these requirements, suita-
ble agile frameworks are selected, presented, and examined for possible weaknesses and
strengths.

In doing so, this book presents the close relationship and optimization potential along
software product lines. A software product line is a group of software products that rep-
resent variants of a base product and share a common software architecture.

This consideration is in the context of so-called Large-Scale Agile Development.
Large-Scale Agile Development becomes relevant when it comes to extending an agile
approach to the structures of larger organizations. In this way, projects with large teams
and a wide variety of different projects can be extended according to the principles of
agile development—beyond the boundaries of individual agile teams—to the entire
organization.

Motivation and Goals
The book aims to support organizations in an effective digital transformation. To this
end, suitable process models, methods, and agile tools are described and explained so
that companies can sustainably change their organizational structure towards a compre-
hensive, agile prioritization. With such agile organizational structures, also known as
Large-Scale Agile Frameworks, an adaptable implementation of, for example, cloud-
based microservices and the prioritization of business units organized in agile teams is
optimally supported.

Within the framework of recommendations oriented towards examples and use cases,
a practice- and science-oriented analysis is carried out with regard to the overarching
requirement prioritization between product-specific development teams and cross-func-
tional teams with overarching support functions as well as product-independent expert
teams with specialized tasks.

51 Introduction

Novel is the reflection of highly topical technical issues and the consideration of the
requirement for the best possible IT security in relation to the described technologies and
with regard to the impact on agile organizational models and prioritization models.

As a result, a suitable agile organization and prioritization model is presented that
effectively supports organizations that are at the beginning or already in the middle of
the agile transformation process to improve the service-wide organization and prioritiza-
tion.

With a focus on the efficient design of agile software services, the optimization,
dimensions of the technical framework, professional documentation, and inter-process
communication are at the center of such a model.

Who is this book for?
I have developed this book to help establish agility as a permanent part of our modern
working culture in companies and organizations of all kinds. Regardless of the level of
maturity you, your colleagues, and employees are currently at, this book is intended to
serve as a guide to anchor agile mindset and agile working methods in your professional
everyday life. Regardless of whether you want to learn more about agile methodology
as a manager or team member, this work is intended to serve as a compass and navi-
gates along the currently highly topical issues such as cloud technologies, DevOps, and
IT security. Another goal is to sharpen awareness of IT security and to demonstrate prac-
ticable strategies and solutions for implementation. It is my concern to help you expand
your knowledge beyond the basics of agility. It was created based on years of experi-
ence in countless projects and against the background of various corporate environments.
There are many books that introduce agility and the associated basics. My plan was to
write a book that goes beyond that. This book is intended to effectively support you and
your organization in getting started with agility and establishing a new organizational
form so that you, together with your colleagues and teams—and above all with fun—can
achieve a successful digital transformation!

Process Models, Frameworks, and Standards
Which process models, frameworks, and standards are ideally suited to successfully
complete agile software projects or transfer them to the next process phase?

A process model describes how a team solves a task within a project and how the team
cooperates effectively. It is important that the approach is repeatable and successful so
that comparable projects can be tackled in a similar form—in terms of cost, quality, and
time—in an optimized manner.

A process model defines three essential elements [1]:

• Roles
• Artifacts/Products
• Activities and Workflows

6 1 Introduction

If requirements are fully known at the beginning of a project, waterfall models are con-
sidered a proven process model, provided that there is also no need to change these
requirements during the further course of the project [1, page 759].

A second important prerequisite for the application of the waterfall model, which
is not given in the project context, is that an experienced project team with established
technology takes over the development. In addition, change costs during the course of
the project are a relevant decision criterion.

The diagram 1.1 “Change costs during the course of the project” schematically illus-
trates the amount of change costs during the course of the project, depending on how late
these adaptation requirements are recognized [2, pages 71/72].

To partially compensate for the mentioned disadvantages, projects can be imple-
mented iteratively, with the aim of recognizing adaptation requirements earlier and ben-
efiting from the partial results sooner. Even projects following the waterfall model can
be carried out in stages instead of in a single large waterfall. Each stage corresponds to a
small waterfall. Requirements can change from stage to stage, and lessons learned can be
implemented. Customer feedback is also provided after the first stage, not just at the end
of the project. Each stage can be treated as a separate fixed-price project.

With increasingly shorter intervals for changes in requirements, an iterative, proto-
typical approach is now suitable in most cases.

Co
st

s

Time

Change costs in the
course of the project

Phase 4: Implementation

Phase 2: Analysis +
Design

Phase 3: Programming

Phase 1: Requirements
de�nition

Phase 5: Going-Live

Fig. 1.1 Change costs during the course of the project. (Source: Sascha Block—Own illustration)

71 Introduction

In iterative process models, a project is organized in several small iterations, see
Fig. 1.2 “Iterative project model”. According to the iterative model, all phases are com-
pleted with each iteration.

Learning is possible within the team from iteration to iteration. Customer feedback is
also quickly taken into account, as functioning software is available after the first itera-
tion. This reduces the project risk for all project partners, as the project can be termi-
nated after each iteration [1, page 760]. In more recent iterative process models, this
approach is explicitly included as a build-measure-learn cycle or principle.

In addition, a distinction is made between evolutionary and incremental development
in iterative approaches. In incremental development, the software grows from iteration
to iteration. The range of functions is also continuously expanded, while requirements
remain largely unchanged.

In evolutionary iteration of software solutions, on the other hand, specifications and
requirements in the software can change from one iteration to the next. Thus, with evo-
lutionary iteration—hence the name of this iteration model—a complete restructuring
of software systems is possible if the architecture of the software cannot meet changed
requirements.

Phase 1:
Requirement

analysis

Phase 2:
System speci�cation

Phase 3:
Architecture design

Description of the actual state, rough planning

System speci
cation and realization of the system

System implementation

nished software product

conditionally
implemented phase

Iteration
phase

Legend:

Iterative project model

Phase 6:
Commissioning

Phase 5:
Integration and test

Phase 4:
Implementation

Iteration

Project start or
Start of an iteration stage

Project progres

Fig. 1.2 Iterative project model. (Source: Sascha Block—Own illustration)

8 1 Introduction

For starting situations with unclear project specifications, agile process models such
as Scrum are suitable. As a process management framework, Scrum has a very close
relationship to the product artifacts created in a project and provides a procedure for
managing and planning requirements. The specific approach in the ongoing development
process is determined by the project team [3, pages 3 and 4].

In contrast to plan-driven process models, the team itself is responsible for the out-
come and thus learns independently in the specific approach how it can work most pro-
ductively. The iterations, referred to as sprints, usually last a maximum of 30 days. For
each sprint, requirements are selected that are implemented directly. This also allows for
the flexible and independent adaptation of requirements within the project team from
sprint to sprint. Requirements are not necessarily defined in writing, but often in personal
conversations with stakeholders. Agile methods use product increments or prototypes,
which are delivered to project customers at short, regular intervals for evaluation. Valu-
able feedback is thus always immediately and directly available to the project team.

This book follows the motivation to present additional mechanisms for synchronizing
and prioritizing requirements between agile teams, the conducive methods, processes,
and tools, as well as agile concepts of large-scale agile frameworks.

Agile Processes and Knowledge Management
How can agile processes for software development be made simple, understandable,
transparent, and pragmatically documented?

Requirements for the Product Owner
What requirements should a Product Owner meet and which methodology proves suc-
cessful for recurring tasks and agile documentation?

References

1. Ernst, H., Schmidt, J., & Beneken, G. (2016). Grundkurs Informatik: Grundlagen und Konzepte
für die erfolgreiche IT-Praxis. – Eine umfassende praxisorientierte Einführung (6th ed., p.
757). Springer/Vieweg. hier Kapitel 17.4 „Vorgehensmodelle“.

2. Schoeneberg, K.-P. (Eds.). (2014). Komplexitätsmanagement in Unternehmen: Herausforder-
ungen im Umgang mit Dynamik, Unsicherheit und Komplexität meistern (1st ed.). Springer/
Gabler.

3. Schwaber, K., & Sutherland, J. (2017). „The Scrum Guide“ – Edition November 2017. http://
www.scrumguides.org. Accessed 3 Nov 2022.

http://www.scrumguides.org
http://www.scrumguides.org

9© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer
Nature 2023
S. Block, Large-Scale Agile Frameworks, https://doi.org/10.1007/978-3-662-67782-7_2

The digital transformation is the driving force behind agile prioritization. The central
theme in the overarching prioritization in the context of IT projects is the organization
and cooperation between agile teams: How are coordination processes in the agile envi-
ronment—especially overarching requirements in complex IT systems and software
projects—ideally regulated? In addition, the question arises as to how—in software
development in a technical domain with several technically separate products—the tech-
nical aspects of the domain and the technical documentation of the software products
complement each other and how such documentation can be created and updated agilely.

With regard to the primary goal—the development of an agile organization and prior-
itization model for IT projects—this chapter reflects the current state of research and all
aspects relevant to the development of such a model.

2.1 Agile Models for Organizing Digital Transformation

The Large-Scale Agile Frameworks presented in this book are the agile models for digi-
tal transformation in large organizations. Digital transformation places diverse demands
on organizations and requires a rethinking of organizational structures. Highly special-
ized teams are in demand, and new tools are desired as working tools for effective com-
munication between teams. Agile collaboration brings new rules of behavior into play
and demands an agile mindset from all participants. The following section helps to
understand the challenges posed by digital transformation and the new opportunities that
arise through agile organizational models.

Digital Transformation & Agile
Prioritization 2

https://doi.org/10.1007/978-3-662-67782-7_2
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-67782-7_2&domain=pdf

10 Digital Transformation & Agile Prioritization

2.1.1 Digital Transformation—a Challenge With Many
Opportunities

Digital transformation is the strategic realignment of companies to meet today’s require-
ments of an increasingly digitally oriented business environment [1, page 1].

What is the Digital Challenge?
In particular, the digitization of existing processes within the company and the map-
ping of digital sales and marketing strategies towards modern online commerce shape
the concept of digital transformation. Every company is therefore equally challenged to
perfectly align existing structures, processes, and IT infrastructure so that the maximum
value contribution is guaranteed even under increasing competitive conditions.

Why digital transformation?
Information systems for the integration of production and services play a central role.
With the increasing importance of digital media, companies are more dependent than
ever on customer-centric structures and problem-oriented solutions.

Shortest reaction times and perfectly interlocked IT systems
Complex service, eCommerce, and business scenarios require the shortest reaction times
for digital service offerings and online commerce in both B2C and B2B. As customers
increasingly expect shorter response times, the internal corporate requirements for IT,
logistics, marketing, sales, and support to perfectly interlock all used systems automati-
cally increase in the course of digital transformation.

Why digitization projects fail
Digitization is driving companies in every industry. However, many IT projects still fail.
A study by the University of St. Gallen estimates the damage caused by failed IT pro-
jects in the European Union at €142 billion annually. “Digitization means change. Pro-
cesses are being redesigned, employees are being assigned new tasks. But companies
find it difficult to design the change,” explains Dr.-Ing. Regina Zeitner from the Compe-
tence Center Process Management Real Estate in search of the causes and possible solu-
tions [2, page 24].

“Only half of the companies have a digital agenda”—90% of companies in Germany,
Austria, and Switzerland assume that competition will be fundamentally different in
2025 than it is today due to digitization and global events. But only half of the compa-
nies in this country have a digital agenda. For comparison: In Switzerland, it is 60%. At
the same time, companies face a number of obstacles when it comes to concrete imple-
mentation.

No later than the Corona pandemic, the importance and urgency of a consistent digi-
tal transformation has been demonstrated in all respects for all areas and organizational

11

forms. Drastically changing supply chains demand agile action just as much as the need
to respond to IT security concerns without delay. In addition to a digital agenda, many
companies still lack an IT strategy and, even more so, an agilely lived practice for imple-
menting IT security and associated emergency concepts.

Why digital change is indispensable
A significant peculiarity of digital transformation is that the starting point of the digital
revolution is for the first time not initiated by the companies themselves, but by consum-
ers [3, Chap. 6, page 159].

As digital technologies have now reached a high level of dissemination with the rapid
expansion of internet technologies and digital services, broadband availability, or smart
devices, digital technology is dissolving many previously existing and traditionally
analog customer relationships, forcing companies to address and serve consumers, part-
ners, and suppliers via digital platforms.

The new threat: Digital Disruption
The principle of digital disruption can be traced back to the American economist Clay-
ton M. Christensen. Clayton describes a digital innovation that completely displaces an
existing technology, an existing product, offer, or a proven business model ideally [4,
pages 17/18].

New markets emerge – even for established companies – often unexpectedly and ini-
tially appear uninteresting. As early as 1942, the Austrian economist Joseph Schumpeter
coined the term “creative destruction” (analogously “creative destruction”) to describe
the importance of disruptive technologies that, over time, show ever-increasing growth
and completely displace existing markets, products, and services [5]. According to this,
an innovative entrepreneur becomes a monopolist through his innovation only as long
as new imitators appear or his innovation fades due to other developments. For digital
transformation, this means a constant interplay between the willingness to merely imi-
tate other market participants or, instead, to outperform and displace competitors directly
through one’s own innovation.

Digital Disruption in Retail – Why almost every retailer needs to revise their busi-
ness model
Driven by the emergence of new digital trading platforms, retailers – predominantly in the
B2C sector and increasingly in the B2B sector – are forced to radically revise their busi-
ness models in order to create new, global trading forms in the course of digital transfor-
mation [6, page 30 in the article “Reinvention of trade through digital disruption”].

When customers can have interchangeable goods from a multitude of arbitrary providers
delivered directly and flexibly to any address of their choice via countless distribution

2.1 Agile Models for Organizing Digital Transformation

12 Digital Transformation & Agile Prioritization

channels and at the fastest possible speed with just a click, and prices are easily compa-
rable, both suppliers and manufacturers come under enormous competitive pressure.

A large number of retailers – without actively used digital sales strategies – are
already threatened in their existence by highly customer-centric services like Amazon
Prime.

The risk of not participating in the digital transformation is thus unacceptable, as the
standstill and consequently the economic decline of a company would be the inevitable
consequence.

2.1.2 What Factors Influence Digital Transformation?

To digitize a company, certain basic prerequisites must be created in the organization, at
the professional level, and in the alignment and implementation of the IT strategy.

Customer Experience
Customers want to be able to freely choose the communication channel through which
they contact a company. If digital marketing seamlessly interlocks traditional offline
channels with modern online channels and achieves a comprehensive customer-centric
approach, the digital customer approach is successful all around. This also includes sys-
tems at the center of customer dialogue in the form of a responsive company website and
the online shop, as well as all connected contact channels including social media.

The basic rule for success in customer experience management is:

“Only those who deliver more than promised will generate enthusiasm!” [1, page 173]

Operational Excellence
In practice, a coordinated approach with all involved departments in close cooperation
with all integrated executives in the company has proven successful for implementing
changes. Digital transformation requires additional expertise:

Excellent understanding of business processes
To successfully lead the transformation to a digital company, an excellent understanding
of business processes is required. Based on a careful as-is analysis, the target architec-
ture is determined and it is checked to what extent existing systems can be integrated or
replaced.

Transfer of analog to redesigned digital processes
The redesign of operational processes goes hand in hand with the changed business mod-
els brought about by digital transformation. This includes, for example, the immateriality
of the performance result in the form of operational processes, such as maintenance, up

13

to business processes, such as operating plants [1, page 128]. For each process step in the
company, it must be specifically examined to what extent analog processes can be digi-
tized.

Optimization of the organizational structure
With digital transformation, the focus shifts from internal processes to external processes
that are controlled by customers, suppliers, and partners and are aligned with them. This
goes hand in hand with the optimization of the organizational structure as well as adap-
tive processes and IT strategies.

Sensors and embedded digital systems
In order to specifically support logistics with digital services or align digital services with
customers (e.g., by providing tracking information and sensor data with relevant additional
information for users and customers), the implementation and use of appropriate sensors
are required, which generate digital data and pass it on to connected digital systems.

The technology in the form of GPS-based positioning systems or RFID chips for digital
coding of serial numbers in the GTIN process is inexpensive in terms of hardware; the
focus should rather be on the associated usage scenarios and the resulting process orien-
tation and IT-supported connection and data utilization [7, page 19 ff.].

Optimization of the Supply Chain
In addition, the supply chain can be supported, for example, by specifically accelerat-
ing delivery chains and planning processes, such as by connecting new technologies like
SAP’s In-Memory solution HANA to speed up reporting, provided the ERP solution in
the company is based on SAP solutions [7, page 22].

Legal and organizational foundations
To specifically exploit rationalization effects and all the advantages of digitization,
responsible handling of digital data is inevitably required. With fine-grained consent
management, a tiered model is proposed that only allows access to stored data when
there is demonstrable necessity. In this context, legal framework conditions are the focus.
Furthermore, decentralized and anonymized data storage must be taken into account so
that the creation of a personal profile is only partially possible and not accessible to eve-
ryone [8, page 45].

2.1.3 Goals of Digital Transformation

The goals of digital transformation projects are equally based on the opportunities that
arise from consistent digitization. The following goals are cross-industry and independ-
ent of the size of a particular company.

2.1 Agile Models for Organizing Digital Transformation

14 Digital Transformation & Agile Prioritization

Internal efficiency improvement
Efficiency is an important long-term criterion in the value creation model of every com-
pany. Internal efficiency improvement also includes looking at production and manufac-
turing costs as well as the careful use of all resources used in the value creation process.
All activities that do not contribute to value creation, i.e., do not produce value for cus-
tomers or the company, are wasteful and should be eliminated. It is also necessary to
examine to what extent scale effects can be used to achieve efficiency improvements with
certain target sizes. In most cases, digital offerings no longer incur additional costs once
the digital strategy has been successfully established. Marginal costs thus tend to approach
zero, even as user numbers and revenues in the company increase [9, page 211].

Productivity improvement
Whether cloud computing enables productivity improvement has not yet been proven. In
general, productivity depends heavily on the specific processes within a company, so that
process optimizations can only be identified and implemented based on in-depth anal-
yses. Digitization offers companies an opportunity in this regard, as processes can be
re-examined, evaluated, and redesigned in an optimized form through digital transforma-
tion. As previously explained in the Operational Excellence section, the highest degree of
attention must be paid to process analysis; appropriate resources must be planned (e.g.,
lead time, financial resources, employees, and efforts through external support based on
objective process consulting).

Quality improvement
Quality improvement in the context of digitization primarily aims at the previously
described process optimization and, in particular, at data quality within companies.

For data quality, the highest requirements apply with regard to:

• Completeness
• Consistency
• Timeliness
• Accuracy
• Reliability

Data quality poses challenges to digital transformation projects in two respects. First,
it is necessary to establish homogeneity between the existing different IT systems and
identify redundancies. Second, digitization projects involving the integration of partners
and suppliers on the data side require newly acquired data to be monitored before import
to ensure the best possible data quality continuously [10, page 276]. The improvement of
quality for software applies to at least the same extent to usability and IT security. Since
IT security is of significant importance with the cloud trend and containerization, a sepa-
rate section is dedicated to this topic.

15

Establishing Agility
Agility in relation to modern development concepts – such as the establishment of a
novel leadership style – are crucial success factors for digital transformation projects and
are explained in detail in Agile Organization and further in the concept of Large-Scale
Agile Frameworks.

Revenue Increase
Revenue increases can be achieved through lower prices as a result of internal efficiency
improvements (see point Internal Efficiency Improvement) as well as through new prod-
ucts and services. In the strategic (re)orientation towards specific market segments and
securing market shares or targeted expansion through the conquest of new market shares
through internationalization, revenues can be specifically increased with digitalization
strategies.

New Products + Digital Services
Those who understand the challenges of digital transformation as a real opportunity for
change to better products and customer-centric services will be rewarded with success on
the project side as well as with expected revenue increases.

Own Sales Structures and Innovative Services
Foresighted manufacturers build their own digital distribution channels and thus enter
into direct competition with their dealers. On the dealer side, new offers and services are
required as well as complementary sales and marketing strategies. The value of goods
can only be justified to the customer on the basis of tangible and convincing arguments.
Only in this way can customer loyalty be won and maintained.

Secure and Expand Market Shares
As mentioned in the point Revenue Increase, digitalization strategies specifically aim to
secure and expand market shares.

Address Customers Worldwide Online
While companies have so far bundled their sales strategy on a few sales channels and
distributed their products and services mainly nationally or in the surrounding European
economic area, digital platforms already have customers worldwide in focus from the
start phase.

Expand Market Shares and Win New Customers Without Additional Costs
While the digital platform attracts customer contact in a very short time and binds cus-
tomers to the company in the long term with the right digital strategy, digital companies
benefit from addressing customers in new market segments without significant marketing
costs, in order to safely gain revenue shares in new markets.

2.1 Agile Models for Organizing Digital Transformation

16 Digital Transformation & Agile Prioritization

Increasing Customer Loyalty
Customer loyalty can be demonstrably increased through multi-channel marketing and
personalized customer approach. In this context, the quality requirements listed under
point Quality Improvement regarding data quality play a decisive role.

Maximum Customer Orientation and Convenience Increases Profit
Focus specifically on usability and customer-oriented solutions! Based on already estab-
lished customer relationships and a high degree of comfort zone (keyword: Convenience)
on the customer side, Amazon can sometimes actively test high-price strategies. For the
technology company Amazon, it is a matter of course to adjust its offer prices for each
individual product online several times a day if necessary. Such a need arises simply
because the evaluation based on big data analyses with an evaluation of customer behav-
ior shows that higher prices can be enforced.

2.1.4 Digital Transformation and Large-Scale Agile Frameworks

Companies that do not use purely standard software products, but rather establish their
processes and services on individualized software solutions, face the following chal-
lenges when developing software – as part of complex IT systems:

While companies desire highly individualized software based on their individual
requirements, software manufacturers are interested in largely standardized software
products. From the dilemma between individualization and efficient standardization, cor-
responding prioritization requirements arise.

Organization of cross-functional prioritization for a software system
As soon as a software consists of various subsystems, whose development is indepen-
dently driven by several development teams, the question of organizing cross-functional
prioritization arises. Is this in contradiction to the agile mindset?

In almost every company, independent software products have developed over the course
of the business years from various individual projects, which functionally complement
each other. Initial basic requirements regularly deviate in parts or, in the worst case, com-
pletely from today’s requirements, especially with regard to software architecture:

Redundancies have arisen; accumulated requirements from the current design concept
can only be implemented with considerable effort on all individual components of the
software or an IT infrastructure. Also, with a growing number of interdependent sub-
systems, components, and modules, testing efforts increase significantly and currently
account for about one-third of project costs – thus, the creation of new or the adapta-
tion of existing software. In addition, technical questions arise, such as: “Which sys-
tems are leading?” and “How should corresponding process specifications be designed?”
This organizational task is an important mandatory discipline in the design of every IT

17

 architecture. Effective processes and role models are required for this. The focus is on
prioritizing requirements. Dependencies, roles, and required processes and options for
team and project coordination are considered. A suitable, agile model for cross-func-
tional prioritization and organization is desired.

Domains and tension fields of agile transformation
Carr’s provocatively formulated thesis “IT does not matter” [11] “triggered a controver-
sial and long overdue discussion about the role of IT” [12]. Typically, the IT domain is
not only leading in technical matters and solely focused on the development, provision,
and operation of IT systems. The importance of IT and software development increas-
ingly shapes strategic and creative, economically successful business processes. The role
of IT has changed significantly: from being perceived as a mere cost center, to IT as a
service provider, to IT as an enabler and even a driving force in companies. With the
trend towards digitalization, software is understood as a strategic competitive instrument
that creates differentiated and entirely new business models [13, page 98]. Traditionally,
a higher-level, organizational domain within the company is responsible for corporate
strategy, management of processes and activities, and resource planning.

The focus is primarily on problem areas that affect the IT environment and organiza-
tional business processes [14, page 40]. With agile transformation, companies in these
tension fields increasingly face challenges that can hardly be solved with traditional
methods. Complemented by the technical domain, the benefit-oriented reference that
software projects should fulfill is established. This extends the technical role of IT to
include strategic and marketing-related aspects.

Changed tasks require new roles, activities, and processes within the company. The
diagram 2.1 Domains and Roles in a Company illustrates the different perspectives of
various roles and domains in the agile context of a company.

2.1.5 The Importance of Agile Processes and Large-Scale Agile
Frameworks

Agile methodology promises significant advantages for software development, e.g., in
the form of shorter release cycles, a positive influence of regular feedback, and thus
overall higher-quality software. Therefore, agility practices are now widely established
as a standard for manageable project teams and moderately complex software develop-
ment projects.

Increasingly, companies are now interested in extending agile methods to larger
organizational units and the collaboration, coordination, and communication between
such teams. The growing number of agile frameworks can be seen as evidence of this.
Starting with the method set “Crystal Family” by Alistair Cockburn in 1992, there are
now at least 20 frameworks specifically designed for larger organizations [15, page 125].

2.1 Agile Models for Organizing Digital Transformation

18 Digital Transformation & Agile Prioritization

The economic success of young and agilely organized companies like Spotify, which
created their own organizational model for the purpose of agility scaling against this
background – the Spotify Engineering Model – should have aroused interest in verifiable
reasons and causes. Especially the introduction of agile approaches in large projects is
either associated with considerable difficulties for many companies or fails completely.

What criteria should be used to select such a framework, and how can an agile organi-
zational model be transformed to larger business units?

Balance between Agility and Prioritization
The most difficult task is to recognize when the need for overarching prioritization
arises, which stakeholders should be involved in decision-making processes, and which
procedural model can efficiently solve these challenges.

In addition to the actual development efforts, a large portion of time is spent on planning
and coordination processes. Legal frameworks, changing user requirements, error correc-
tions, and customer requests continuously flow into software development in the form of
changes, software releases, and new solutions. Agile methods promise the most effective
solution approach for this.

Specifics of Isolated Software Projects within an IT Strategy
In practice, isolated software projects are created over the years, which are powerful
individual solutions within the company and which – each taken separately and in the

Domains & roles in the company

Organizational domain

Representation of specialist domains in a company with experts in di�erent roles and areas of responsibility in the specialist context. The arrangement of the selected
expert pro�les and their positioning within the domain is company-speci�c and is shown here as an example.

• Board of Directors

IT domain

• Business Consultant

• Software Developer
• Agile Coach, Research

Software Architect •

• Software Product Manager

• DevOps specialist

Usability expert •

• Support sta�

Professional domain

• Business Manager

IT Consultant •

Technology
IT Systems Software
Development

Management
Corporate strategy
Resource planning

Software tester •

• Human Resources

• Expert of a department
e.g. revision

• Marketing• Distribution

Fig. 2.1 Domains and roles in a company. (Source: Own representation – Sascha Block)

19

form of separately licensable individual products – perform specific functions in very
specific task areas.

Individual Products, Product Packages, and Software Suites from Various Compo-
nents
From a company perspective, a uniform behavior in professional functions and sys-
tem monitoring as well as a uniform usability with a central configuration is regularly
desired. From an internal developer’s point of view, the question arises as to how existing
redundancies in software architecture and functionality can best be avoided. Against this
background, the “agility in software development” is examined to what extent optimiza-
tion potentials can be realized and how these can be achieved most easily through coor-
dination and coordination processes and transparent knowledge management. It should
be determined which fundamental decisions have to be made and which agile procedural
models are particularly suitable for such mutually complementary software components.

2.2 How Proven Are Agile Approaches?

The fact that agile approaches are proven is theoretically substantiated. For the first time,
Serrador and Pinto dedicate themselves to a quantitative study of 1386 projects in over
60 countries, examining the relationship between agile methodology and project success.
They used regression analysis to investigate criteria for goal achievement, budget, time,
and project evaluation by stakeholders. As a result, project success increased demonstra-
bly with the increasing application of agile methods. According to their observations,
projects that apply agile methods to a high degree have a similarly high effort for pro-
ject planning as traditional approaches [16, page 1047]; Dybå and Dingsøyr, on the other
hand, believe that agile projects apparently require higher planning efforts [17].

What seems to be less researched, however, is the direct practical relevance and the
aspects of existing dependencies within software products combined with the solution
approaches of agile methodology. Letho and Rautiainen, for example, consider the chal-
lenges of transformation towards agile software product development in a comparable
case study, but do not take into account the dependencies between software products
within a software portfolio [18].

Wnuk et al. criticize that approaches to release planning that support continuous
dynamic replanning currently seem to be underrepresented in the literature [19, page
49u.].

Against the background of fragmented system landscapes and the organization of
decentralized distributed teams, the scientific examination of the topic Scaled Agile is
gaining increasing importance. With the aspect of multi-product development, the rel-
evant artifacts and roles as well as relevant tools, methods, and agile approaches move
into the focus of consideration. A validation through practice-oriented evaluations of
existing Scaled Agile Frameworks (SAFe) also seems to be lacking so far.

2.2 How Proven Are Agile Approaches?

20 Digital Transformation & Agile Prioritization

In a study conducted in 2016, Dikert et al. question the still very limited practical
experience with Scaled Agile Frameworks: According to their results, only six research
papers deal with the topic at this point in time; the researchers are all the more surprised
by the fact that SAFe, based on a survey, already has an astonishingly high acceptance
and dissemination rate [20, page 106]. Against this background, the authors propose
practice-oriented case studies on agile transformations, studies on the use of scaling
practices and Scaled Agile Frameworks, as well as on company-wide use of Agile and
surveys on Agile on a large scale.

The current state of research on agile software development in larger organizational
structures largely refers to the explanation of agile methods and the subsequent consid-
eration of agile frameworks; this approach is followed by the present book.

2.3 Agile Concepts and Basic Terms

Compared to classical process and approach models, which are organized according
to the waterfall model, completely different requirements are placed on the organiza-
tion of corporate units and processes in agile processes. Consequently, the management
and handling of activities and roles in the company do not necessarily become easier.
Changes towards agile models should always be supported as extensively as possible by
the employees and thus pose new challenges and difficulties for management with regard
to the associated change processes.

Currently, there are no concrete guidelines in the literature regarding the implementa-
tion of an agile prioritization and organization model that contributes to making software
releases—traditionally referred to as software product lines—economically efficient and
customizable at the same time. This book examines this topic and presents models and
methodology that best meet the aforementioned requirements for efficiency and custom-
izability.

Concepts relevant to agile collaboration
Different concepts influence software development and agile collaboration in teams and
beyond organizational boundaries.

The Table 2.1 “Classified Concepts with Relevance for Agile Collaboration” illustrates
the relevant concepts that are significant in the context of Large Agile Frameworks and
agile software development.

This reflects all relevant agile methods as well as the overarching control of a multi-
tude of projects. The important topics for cross-cutting prioritization in software devel-
opment are examined in detail.

These include the equivalent terms “Portfolio Management” and “Multi-Project Man-
agement”, which are used synonymously in the literature and, by definition, form the
framework for the strategic and organizational management of software projects.

21

Suitability and Quality of Agile Processes and Activities
These concepts will be presented in the following chapters and reflected in the context
and with regard to their relevance in direct relation to the Large-Scale Agile Frameworks.

2.3.1 Multi-Project Management

Multi-Project Management (MPM) is an annual and intra-annual portfolio process for
the organization, control, and development of multiple projects [21, page 20]. Multi-pro-
ject management is situated in a field of tension between various interests and domains
within the company. Figure 2.2 “Multi-Project Management” illustrates the complex
interplay of various activities and responsibilities.

MPM is anchored in a strictly hierarchical organizational structure to achieve com-
pany-relevant goals through projects. In this respect, MPM appears to be well-suited for
the overarching prioritization of the software portfolio at a software manufacturer. Roh-
ner confirms that success in projects depends on the control and leadership activities in
the parent and project organizations, the given framework conditions, and the handling
of these [22, page 21]. Framework conditions that cannot be controlled or led by the pro-
ject include market dynamics, organizational structure, corporate dynamics, the IT land-
scape, and general operational capability—for example, in terms of available resources
[22, pages 22, 24].

In MPM, a project portfolio bundles projects and programs—possibly also other
project portfolios—in a delimited area of responsibility for the purpose of overarching
planning and control [23, page 28]. A project portfolio can be structured according to
different criteria; e.g., by products, markets, project types, or risk and economic aspects.
The initiation of projects is an important task in MPM; it can be done through a program,
the project portfolio, or by a department or management. Figure 2.3 “Synchronization

Table 2.1 Classified Concepts with Relevance for Agile Collaboration

Conceptswith Rel-
evance for Agile Soft-
ware Development

Multi-Project Management/Portfolio Management

Software Concepts:
• Software License Products and Custom Software
• Software Platform, Product Family, and Product Line
• Product Lifecycle of Software
• Software Releases and Release Concept
Domain Driven Development
Software Architecture and Knowledge Management
Requirement Management/Prioritization
DevOps and DevOps Model
Agility and Agile Project Model

Scaled Agile/Agile Frameworks

2.3 Agile Concepts and Basic Terms

22 Digital Transformation & Agile Prioritization

Project
implementation

Project planning

Project result Follow-up projects

Project applications

Operational projects

Idea fermentation

Strategy
Strategic planning

Innovation:
inspiration for new

business areas

Strategic projects Commercialize business areas Project portfolio change

Requirement for change
due to external in�uences

Target project

Bene�t planning / Information

Bene�t control / information

Impact on results

Assessment +
Prioritization

Strategy reference:
Opportunities & Risks

Project release Projects
control

Resource

deployment

Re
so

ur
ce

 Re
lea

se

M
ul

ti-
pr

oj
ec

t p
or

tf
ol

io

Economic
e�ciency
+ Bene�t

Ac
tua

l p
roj

ec
t p

ort
fol

io

Project-relevant disruptions

Multi-project management
Concept Implementation Development

Global Matching:

Projects Resources

Upper level

Middle level

Line Management

Single project
management

Multi-project
management

Coordination /
synergy utilization

Portfolio development

Employee management

Fig. 2.2 Multi-Project Management. (Source: Own representation based on Steinle et al.)

Synchronization of strategy & goals

project

Coordination of the measures /

consolidation of the results

Strategy

Balanced Scorecard

Portfolio Scorecard

Portfolio Scorecard

What

What

What

What

How

Like

Like

Like

Strategic goals

Key �gures

Speci�cations

Measures

Strategic goals

Key �gures

Speci�cations

Measures

Strategic goals

Key �gures

Speci�cations

Measures

Focus on overarching goals

Fig. 2.3 Synchronization of Strategy & Goals. (Source: Own representation based on Lang et al.)

23

of Strategy & Goals” shows, based on Lang et al., how measures are coordinated and
results are condensed with a focus on overarching goals.

Following a three-stage logic, project portfolios bundle initiated programs. Programs
in turn combine projects according to professional, strategic, or organizational aspects.
In a project, the actual implementation of strategic guidelines takes place. Projects can
serve purely for the optimization of internal support processes or be directly aimed at the
development and provision of products and services. In this context, top management is
challenged to create concrete synergies between project and strategy work and to make
decisions. To achieve this, a coordination of methods is required. Classically, goals are
broken down Top-Down – from strategy to project portfolio and finally to programs and
projects—and results are then condensed accordingly Bottom-Up [23, pages 38/39].

2.3.2 Portfolio Management

Regularly, various software products complement each other and form an overarching
software system within a company when interacting with each other. A distinct feature
that is examined in software companies in the role of software manufacturers as well
as in companies that develop their software components independently and complement
each other is discussed in the following section.

The portfolio- or multi-product management refers to the organization of a customer-
oriented offer in the form of a product portfolio and controls the product distribution
strategy. In the context of software development, these are individual licensable and
combinable software products that complement each other and are thus functionally
related to each other.

Strategic Control of the Software Product Portfolio
Product management assumes overarching prioritization responsibility for several soft-
ware products, which are typically arranged within product families with subordinate
product lines.

Thus, the portfolio management of software products carries out the pre-evaluation of
product ideas regarding prioritization, budget, and feasibility, including a recommenda-
tion in the form of a project ranking to the company management [21, page 20]. In this
context, multi-product management is responsible for compliance with the project man-
agement guideline and intervention with the relevant committees.

Not only in a classic process organization do the above-listed subprocesses of multi-
product management take place at fixed intervals; this is also necessary within an agile
model.

Thus, the product strategy of product management (PM) serves both controlling and
providing the individual agile product teams with important guidelines for delimiting the

2.3 Agile Concepts and Basic Terms

24 Digital Transformation & Agile Prioritization

software products they are responsible for from other products within the portfolio. From
an “In-Scope/Out-Scope orientation,” through the direct reference to practicable archi-
tectural concepts and software development strategies, the influence of PM extends to
prioritizing functionalities to be implemented. Additionally, PM can assume a feedback
function for evaluating team-internal processes. Furthermore, PM ensures reliable frame-
work conditions for the agile teams concerning the project dimensions of time, costs, and
resources and provides the teams with planning security and the information necessary
for their product planning. Important tools of PM are a transparent product vision, the
product roadmap, and the release plan with the individual release dates for main releases
and release patches.

Cross-functional Control and Controlling
For effective portfolio management in a software company, it is particularly important
to ensure that a cross-functional team—consisting of representatives of product manage-
ment, specialists for software architecture, and specialists for the functional requirements
of the respective solutions, based on cost-oriented controlling specifications, ensures the
required quality of project ideas and project proposals. The goal of this team is to ensure
products within a product family that correspond to the corporate strategy, evaluate the
feasibility of innovations and product changes, ensure quality assurance, harmonize the
solutions, and, if necessary, promote appropriate alternatives. To do this, the resulting
efforts, dependencies, and side effects of the respective solution approaches must be
evaluated; these can then be related to each other and ultimately contribute to making
recommendations and documenting them accordingly. If necessary, the core team can
involve appropriate experts from the product-specific specialist teams.

2.3.3 Software License Products and Custom Software

Software is an intangible product and, as such, has no physical properties. The value of
software is often difficult to perceive; also, the benefits and what distinguishes a specific
software product are to a large extent subjective [24, page 5].

Evaluation Criteria for Software
Software must—with regard to customer-oriented sales arguments—convince. In this
context, software products are primarily defined by:

• Functional and performance features
• Price
• Quality
• Scope of service

25

Classes and Types of Software Products
In contrast to clearly definable and distinguishable software products, “Embedded Soft-
ware” is a software component that cannot be marketed as a standalone software prod-
uct, but only in combination with a real—non-software-based product—[24, page 6]. A
concrete example of this is the integrated engine control within physical assemblies in
the vehicle interior.

Another important category is OEM software products;—the abbreviation OEM stands
for Original Equipment Manufacturer—here, a software manufacturer distributes soft-
ware to a company that sells it as an integrated part of its own products, usually without
visibly marking it [24, page 7].

License Products
Software license products can also be standardized solutions that are not further custom-
izable and are therefore typically aimed at a large market segment as a software product.
Representative examples of such mass license products are Microsoft Word or Adobe
Photoshop.

Custom Software
In contrast, customizable software license products are at least to a small—if not to a
large—extent customizable for specific customer needs. Thus, the standardized software
product forms a product superclass, with the customer-specific customization of this
product consequently forming the class instances. This reference point is given appro-
priate weight in prioritization, because—even without further detailed consideration—it
becomes immediately clear that the complexity increases continuously with each indi-
vidual customization variant: After all, each individual software variant must be kept
updatable and maintainable.

Software development has the character of a very heterogeneous, service-oriented ser-
vice. The benefit of a service is largely created on both sides; i.e., on the part of the ser-
vice provider as well as on the part of the customer [25, slide 36]. This also applies to a
large extent to the development of custom software: The customer of the software manu-
facturer becomes, due to the intensive interaction in the design process, the “co-creator
of the benefit”. Therefore, it is advisable to intensify cooperation with the customer; after
all, only the customer himself generates the actual benefit through the application in his
context. The software manufacturer only provides the necessary resources for this. In
diametrical contrast to this is the self-interest of the software manufacturer to pursue its
own software strategy, which may be contrary to customer interests.

In addition, service-oriented individual solutions have a low degree of standardiza-
tion, are difficult or impossible to compare with each other, make market transparency
difficult, are difficult to measure in terms of their quality level, and are highly diverse in
their perceived benefit by customers [25, slide 24]. The marketing of software is further

2.3 Agile Concepts and Basic Terms

26 Digital Transformation & Agile Prioritization

complicated by the fact that the resources, know-how, and technical specifications used
in the software production process remain largely hidden from the customer. In the prior-
itization process, this is of great importance because the sales department has a special,
compensating role to play in highlighting the advantages of this hidden information in
interaction with the customer. In addition, it is important to keep the risk for the cus-
tomer as low as possible due to uncertainties in the development process; after all, the
customer of custom software only receives the usable result at the very end of the soft-
ware development process. This directly reveals the need for agile approaches, as agile
feedback and frequent iterations can effectively reduce this risk in both directions.

Internal and External Perspectives on Software License Products
Both the internal perspective—from the software manufacturer’s point of view—and the
external view of end users and licensees are crucial. Software license products are often
not perceived as independent services, but rather as a part of a multifaceted software
landscape or as an integral part of a licensee’s service—and not understood as an inde-
pendent service object.

The Strategic Importance of Software Components
What role do software components play as integral parts of complex software systems?
License products such as online shop systems are often an integral part of a core pro-
cess or a service component in a company that has procured a software product or sev-
eral mutually complementary software components for this purpose. These individual
software products or software components, on the other hand, are not perceived by
end users—for example, in the role of customers of an online shop for medical prod-
ucts—although the service performance of online ordering would be inconceivable
without these integrated software license products. This aspect is crucial in terms of pri-
oritization, as it has a significant influence on the strategic orientation of the overarching
product strategy. The definition of industry-specific performance features serves to dif-
ferentiate from competitive products and influences the decision-making of customers
and their long-term commitment to the software manufacturer.

PayPal as an Example of a Perfectly Arranged Software Product
PayPal is an outstanding example of a perfectly arranged software product because the
provider of this digital payment component has managed to turn its actual software prod-
uct into a distinctive digital service in a perfect way. Technically speaking, PayPal is a
payment service like many other online payment services, but it sets itself apart from
all competitors in the market with a meticulously designed customer loyalty strategy—
primarily focused on the convenience and additional features of the money transfer
service—and has established itself as a currently indispensable payment component in
eCommerce and beyond. Just think about how often you have ordered goods simply
because PayPal was offered as a payment method.

27

PayPal’s success is based on its close customer loyalty strategy in the form of an easy-
to-integrate software component for online shop systems, and the monetization model
through the seller-supported fee model is well known to everyone.

Transform Your Software into Distinctive Digital Services!
In the same way, successful companies transform their previous product and service
strategies into distinctive digital services with an independent character. This, in turn,
has a direct impact on the way software should be designed to offer customers optimally
functioning processes. It is no longer sufficient for all involved software components to
work together smoothly; attention is now focused on the customer experience in the form
of a perfectly optimized user experience.

2.3.4 Software Platform, Software Product Family, and Software
Product Line

A software platform is a collection of similar elements—usually in the form of a basic
underlying technology—and as such is not yet an independent software product.

Software Platforms as Control Instruments for Innovations
A suitable example for almost every company is the Java runtime environment, which
has been available as freeware until now; a standardized software platform that is
required to run developed Java programs. With Oracle’s strategy change as the provider
of Java, this free freeware model has now turned into a license-based fee model. The
impact on existing software projects and, above all, software products from software
manufacturers is—as you can easily imagine—enormous!

This is relevant for prioritization because architectural decisions constantly fall into the
context of software platforms and such decisions are closely related to the strategic prod-
uct orientation and the innovation capability of software products. Accordingly, it should
be ensured that an organized process identifies, analyzes, and evaluates technologies.

Marketing instrument software product family
The software product family is a group of software products that are marked as related for
strategic marketing reasons. In this case, the software architecture plays a subordinate role;
rather, this circumstance results in the requirement that no disadvantages regarding the
software architecture arise from a specific product constellation in the future [24, page 11].

Optimization potential along software product lines
A software product line is a group of software products that represent variants of a
base product and have a common software architecture. According to the definition
by Clements and Northrop, software product lines are based on a set of identical base

2.3 Agile Concepts and Basic Terms

28 Digital Transformation & Agile Prioritization

 components that are incorporated into each individual product of this line according to
prescribed architectural specifications [26, page 23]. Thus, software product lines play an
essential role in a prioritization concept for a software manufacturer: The domain-based
architecture approach within a software product line enables scaling effects to develop
for a large number of similar systems—in favor of lower costs, shorter time, and higher
quality—[27, page 70/71]. Therefore, according to Clements and Northrop, software
product lines offer medium and long-term measurable scaling and synergy effects and
demonstrable economic benefits within a product portfolio as well as strategic advan-
tages through a differentiable orientation.

With the proper organization of processes and activities, there should be—at the same
time through simplified maintenance of the basic architecture—room for shared product
support and reduced development activities in scope. In an idealized change process—a
basic component for one of the line products—this modification should automatically be
incorporated into the other components without significant additional effort if desired.

Pohl/Metzer optimistically suggest that this could even result in up to 10% higher
productivity and quality, a reduction in costs of up to 60%, a decrease in development
effort of up to 87%, and a shortening of time-to-market of up to 98%; they also see the
possibility of serving new markets not in cycles of years, but within a few months [27,
page 185]. This requires an architecture concept geared towards this, combined with
organized version control management and appropriate DevOps practices. Dehmouch
fundamentally confirms the concept of software product lines and also sees advantages
in reusability, which can be achieved by considering commonalities and variability
within the product line; this can result in lower costs, shorter time-to-market, and higher
quality requirements [28].

The main task of product management—in the context of software engineering ori-
ented towards software product lines—is the alignment of a product portfolio through
the definition of distinguishable product features that characterize the essence of each
individual line product. In defining such characteristics, there is a risk that the scope of
a software product line becomes too large and domain artifacts become too general, and
ultimately the effort to realize them becomes too high. On the other hand, if the scope is
defined too narrowly, the required features as well as functional and quality requirements
of many customers may not be covered; consequently, only very few applications can be
derived from the product line. In both cases, the product line may not be economically
viable [27, page 189]. Therefore, a reliable forecast of cost estimates, achievable product
advantages, and technical expertise should be equally taken into account.

2.3.5 Product Life Cycle of Software

The product life cycle is a model according to which products have a limited lifespan in
the market due to societal and/or technological changes [29, page 116 ff.]. It describes

29

the process from market introduction to the withdrawal of a product from the market.
During this time span, software products—depending on their current life cycle phase—
contribute to economic success to varying degrees. It is possible that software products
do not go through the entire life cycle, as they may be displaced or abandoned during
their market deployment.

Development of sales, profitability, and liquidity over the product life cycle
Software is unique in that the largest capital expenditure occurs during the main devel-
opment phase; after that—apart from major improvements—mainly small variable costs
and high marginal profits are incurred [24, page 23]. The overarching product manage-
ment monitors the individual software products and their phases with an active product
policy. The following phases are distinguished:

1. Introduction phase
2. Growth phase
3. Maturity phase
4. Saturation phase

The introduction phase provides a new software product with market access; it is char-
acterized by sales efforts and increased marketing expenses, and first customers are
acquired [29, page 118]. This is to be distinguished from follow-up products in the form
of new software releases: Such new release versions can—especially with larger ver-
sion jumps—have a highly innovative product character in the form of so-called major
releases, i.e., version 2.0 follows version 1.0. However, the product to be introduced
to the market may already have a significant market presence, making the introduction
phase easier. Initially low and gradually increasing sales are offset by high expenditures
in software development and corresponding sales costs. Distribution costs for software
are not only negligibly low but also promise regular follow-up sales for software compa-
nies through implementation and training. However, internal costs, e.g., for training sales
and support teams, should not be neglected. Efforts related to software documentation
updates are also often overlooked. With the start of sales, software manufacturers face
the internal demand to demonstrate profits and significant annual sales growth.

These characteristic phases of a product life cycle are shown in Fig. 2.4 “Develop-
ment of sales, profitability, and liquidity over the product life cycle.” The graphical
representation clearly illustrates the interplay of the relevant factors such as the develop-
ment of sales, profitability, and liquidity in relation to the individual phases within the
product life cycle.

In the growth phase, the demand and thus the revenue for a software product stead-
ily increases. This leads to the profitability reaching its peak in the growth phase. Soft-
ware manufacturers with innovative software products benefit from their competitive
advantage and can skim so-called pioneer profits from the market [29, page 119]. An
advantage is that the demand in this phase is predominantly characterized by licensees

2.3 Agile Concepts and Basic Terms

30 Digital Transformation & Agile Prioritization

classified as innovators, who are generally less price-sensitive. For software manufactur-
ers, the otherwise typical rule for product manufacturers that investments only burden
the fixed assets to the extent of the depreciation on profits is only partially applicable,
as additional expenses typically arise for bug fixes and release updates. Such expenses
should correctly burden the portfolio controlling—at least in part—the budget of this
release version. The competitive situation during the growth phase is predominantly
moderate. Competition in growing market segments of software products is even less
intense.

The maturity phase is characterized by a slowed increase in sales volume, caused by
the emerging saturation limit of initial demand and the emergence of alternative products
due to technological progress [29, page 119]. Accordingly, revenue growth and invest-
ment expenses for the further development of this software release decrease, so that the
cash flow reaches its maximum. Depending on market intensity, market segment, and the
degree of individualization of the software, profitability decreases if increasing competi-
tion puts pressure on market prices and other conditions.

In the saturation phase, both the cash flow and profitability for a software product
decline [29, page 119]. Once software is introduced to a licensee, they only invest in it
when there is a particular need—usually triggered by regulatory requirements, market-
related changes, or especially due to the necessity of technological progress. It remains
open how relevant innovations can be reliably identified, analyzed, and evaluated, and
when they should be included in the development strategy.

Sa
le

s
/

Li
qu

id
ity

 /
 Pr

o�
ta

bi
lit

y

Time

Development of sales, pro�tability and
liquidity over the product life cycle

Paragraph
(quantity per year)

Introduction phase Growth phase Maturation phase Saturation phase

Liquidity contribution
(Free cash �ow in EUR million)

Pro�tability
(e.g. return on sales in %)

Fig. 2.4 Development of sales, profitability, and liquidity over the product life cycle. (Source:
Sascha Block)

31

2.3.6 Software Releases and Release Management

A software release is a version with a defined scope of functions and maturity level of a
software application or app that can also be specified for a particular user group.

Types of Different Releases
An initial software release generally represents the first generation of a new or improved
software application. In the context of software development for software products, the
term release candidate is alternatively used.

Before a release, the distribution of the application in the form of alpha and then beta
releases—also called alpha and beta versions—precedes as testable pre-versions.

The Major Release defines the main version of a software version and includes signif-
icant innovations of a software product. Such innovations can be completely new func-
tional areas or special technologies that are supported for the first time. Not infrequently,
such functional extensions are accompanied by changes to the system or software archi-
tecture.

In addition, the main version with the Major Release also replaces additions and
extensions that have been published since the last release approval. A minor release, on
the other hand, contains “smaller” application additions and software extensions to exist-
ing functions.

An Emergency Release is relevant in terms of IT security and refers to short-term
available software versions that fix serious problems. It is therefore an “emergency
release” that usually contains only significant bug fixes and no additional features. Alter-
native terms for Emergency Releases are Bugfixes, Emergency Fix, or Hotfixes. Before
the publication of an Emergency Release, specifically defined test cases for quality assur-
ance should be defined and passed.

A Stable Release usually indicates a release status that is approved for productive use
and meets the appropriate stability criteria.

Release Management
In agile software development, a release is a deployable software package that represents
the culmination of several iterations.

In the incremental development of software, features are incorporated into the respective
release versions, and a release-ready release usually has to pass defined tests successfully
within the scope of quality assurance. With this agile approach, releases can be created
before the end of an iteration, and software functions are made available as early as pos-
sible in the form of adapted or supplemented functions published with the release.

Accordingly, an agile model must include an effective mechanism for controlling
software releases. Such a release concept must be aligned with how different software
products and software services relate to each other.

2.3 Agile Concepts and Basic Terms

32 Digital Transformation & Agile Prioritization

A Software Release Cycle is the result of individual development and maturation
phases of computer software. The release cycles range from the initial software develop-
ment to the final release of a software application. Software Releases include updated
versions, patches, and updates of the released version with the aim of improving soft-
ware quality or fixing software errors still present in previous release versions.

The deployment of software releases is now mapped in most organizations using Git-
based repositories as part of release management. Here, software releases are planned
and implemented. In the course of release management, a release plan is traditionally
used. Based on release plans, software developers plan the scope, content, and timing of
deployments in releases. Depending on the software products and individual company
strategy, corresponding release cycles vary greatly from one another. The short-term
implementation and deployment of bug fixes, software quality control, agreed criteria for
release publication, maintenance of change logs, and the provision of release keys for the
release of functions can also be the responsibility of release management.

How this is achieved is explained in the concept of Release Trains in a separate sec-
tion. Test management is the mechanism that must ensure that each published software
release is error-free and establishes effective usability tests before your customers report
serious software errors to you at worst.

Thus, all stakeholders immediately get a sense of the value of individual functions
and have the opportunity to provide feedback early in the process. Each system version
as a software release is an addition of further functions, containing optimizations that
are, for example, aimed at stability and a positive user experience.

Indispensable, of course, is also the aspect of IT security. Each software release must
be subjected to appropriate hardening tests, so that test management and IT security
merge seamlessly.

2.3.7 Software Architecture and Knowledge Management

Software describes both static and dynamic aspects, thus providing a blueprint and pro-
cess plan for software. The following aspects are particularly relevant for software archi-
tecture:

Software Architecture Definition
Software architecture …

• …shapes structures at different levels (software layers),
• …enables functioning solutions for software-based use cases,
• … defines design decisions,
• …forms the transition from analysis to implementation,
• …consists of various views,
• …leads to easier comprehensibility,

33

• …is the framework for flexible and agile systems,
• …is abstraction,
• …creates quality.

Thus, software architecture encompasses significant decisions about:

• the organization of a software system: structuring a system, decomposition into parts,
responsibilities and interaction of these parts, as well as interfaces between the parts;

• the selection of structural elements and their interfaces, through which the overall sys-
tem is composed, along with the behavior defined with respect to the interaction of
the aforementioned elements;

• the composition of these elements into increasingly larger subsystems;
• the architectural style with regard to these elements and interfaces to ensure optimal

interaction of individual components and optimal performance of the overall system.

Because many aspects are difficult or costly to change later, decisions on software archi-
tecture and their justifications must be recorded by the stakeholders involved at the time
of the decision!

This leads to the fact that software architecture always requires a close connection
to knowledge management. How modern knowledge management can be effectively
designed with modern collaboration tools is discussed in the second part of this book.
Collaboration tools are software-based tools that have a positive impact on agile collabo-
ration across team and organizational boundaries.

2.3.8 Requirement Management/Prioritization

A functioning software architecture is based on coordinated requirements and constraints
among all stakeholders. Both the decision-making process with the clarification of
requirements and their prioritization, as well as the activity of analyzing and evaluating
requirements in relation to each other, must be continuously documented.

Large Agile Frameworks also provide the appropriate methodology for managing
requirements and their prioritization during implementation, which can be effectively
implemented in practice using collaboration tools.

The distribution of requirements to actors from different teams, including the com-
munication that takes place, is preferably supported by software-based tools in agile
teams. Atlassian, with its software solutions Confluence and Jira, currently dominates
the market, but alternatives do exist. For example, GitHub now offers a repository-based
approach as a serious alternative, which—when consistently applied—brings about a sig-
nificant and revolutionary change: not only the source code, but the entire requirement
management is made public through a repository. At the same time, it becomes possible

2.3 Agile Concepts and Basic Terms

34 Digital Transformation & Agile Prioritization

to design the prioritization process as an active participation process with the software
community—the actual users of software solutions.

Direct Relation to Software Architecture
Requirements and constraints are directly related to the tasks of software architects. The
Fig. 2.5 “Arc42-Workflow based on Hruschka/Starke” shows the central activity of IT
and software architects, namely clarifying requirements and constraints in relation to
the connected activities. Starting with—iteratively—specifying an initial challenge and
documenting it in writing in the software architecture documentation, solid starting con-
ditions are created, whereby the focus is defined by delimiting In-Scope and Out-Of-
Scope. Agile mindset also means thinking in processes that are specified as Epics, User
Stories, and Use Cases.

With the understanding of a Domain-Driven Design, IT and software architects shape the
active participation of all relevant stakeholders and actors, so that they regularly rely on
the expertise of domain experts in the role of other software developers and subject mat-
ter experts. Based on the prototypes created through User Stories and Use Cases, deter-
mined quality requirements, and defined constraints, the work becomes more precise in
the form of usable software artifacts and digital services.

Prototyping is an iterative quality process with continuous optimization, which—due
to constantly changing conditions—is carried out continuously. This becomes particu-
larly clear when you think about how quickly browser versions, new smartphone models,
and many other factors continuously affect software development. With each realization
and optimization of runnable prototypes, these executable specifications are immediately

Iterative and
cooperative
approach

The initial
challenge

Clean Start

Clarify requirements
and boundary

conditions

Functional
requirements

Targets

Stakeholder

Use Cases

Epics + User Stories

Domain Driven
Design

Quality requirements &
boundary conditions

Scenarios
Specifications on
Prototype (MVP)

Executable
specifications

Thinking
in processes

Scope

Fig. 2.5 Arc42-Workflow based on Hruschka/Starke

35

usable. At the latest when applying this prototypical approach, interactive and coopera-
tive behavior and true agility, beyond individual teams, is realized!

2.3.9 DevOps and DevOps Model

Consequently, an exact definition for DevOps is particularly difficult because the
DevOps concept is aligned with the DevOps cycle and at the same time includes several
relevant parts and aspects. In addition, DevOps is a highly topical subject area, so there
is no standardized definition yet.

The main attributes and thus leading characteristics of the DevOps method include:

1. Resources and capabilities
2. DevOps culture
3. DevOps technologies

DevOps Definition
Jabbari, Nauman bin Ali, and Petersen have characterized DevOps in their scientific
study and identified central DevOps components of DevOps definitions [30]:

“DevOps is a development methodology that aims to bridge the gap between development
(Dev) and operations, with a focus on communication and collaboration, continuous integra-
tion, quality assurance, and deployment with automated deployment using a set of develop-
ment practices.”

DevOps Model
The “DevOps Model” shown in Fig. 2.6 becomes easy to understand with a look at the
DevOps lifecycle. Instead of a classic division into separate business areas Development
and Operations, the model realizes an agile corporate culture and agile software develop-
ment.

In terms of creating and managing software, the DevOps model introduces a range of
new methodologies to significantly improve collaboration between different stakeholders
and to get software up and running faster.

Especially with regard to the current cloud trend and containerization, the DevOps
model has already proven itself in practice. Effective DevOps strategies also aim to
achieve platform independence, i.e., keeping software operational in fast release cycles
regardless of a specific operating environment. This platform independence and fast
release cycles are indispensable in the migration of software towards the cloud, rein-
forced by IT security requirements.

By using a set of development practices, specialized DevOps tools, and best prac-
tices, communication and collaboration between the traditionally separated organiza-
tional units Development and Operations are promoted. In addition, DevOps drives the

2.3 Agile Concepts and Basic Terms

36 Digital Transformation & Agile Prioritization

 continuous integration of ongoing software solutions and positively influences their qual-
ity assurance. With the provision of automated deployment mechanisms, the commit-
to-live time can be significantly reduced.

In agile software development, DevOps now plays an essential role and is taken into
account in every agile framework accordingly.

2.3.10 Agility and Agile Project Model

Conboy has formulated a very tangible definition of agility in relation to software devel-
opment; he describes agility as a continuous readiness to create changes quickly or
inherently, to proactively or reactively embrace them, and to learn from them, thus con-
tributing to perceived customer value (economy, quality, and simplicity) through collec-
tive components and relationships to its environment [31].

The failure of many IT projects fuels the need for agile project models that are capa-
ble of responding appropriately and flexibly in any situation to successfully manage pro-
jects. Agility is therefore an important topic for project management because software
projects are highly complex and agile approaches seem better suited to effectively con-
trol decisions based on the right priorities within complex system environments.

Continuous
Planning

Continuous
Feedback,
nnovation,
Monitoring

DevOps Modell

ontinuous
Deployment

Continuous
Delivery

Continuous
Integration

Continuous
Testing

DevOps Development Lifecycle

Requirements

Development

Build

Testing

DeploymentDeploymen

Execution

OPS: Classic
Operations

DEV: Classic
Development

Fig. 2.6 DevOps Model. (Source: Sascha Block)

37

Agile approaches help manage complex systems and organizational structures
Agile approaches are largely based on the system-theoretical principles for control-
ling complex systems [32, page 9 f.]: Complex systems behave unpredictably in many
aspects, but are based on causal chains and are therefore not chaotic. Due to extremely
complex causal chains, cause and effect are difficult to predict; moreover, each cause is
simultaneously an effect and each effect is in turn a cause. Gains in knowledge can pre-
dominantly be obtained retrospectively. The behavior of complex systems is extremely
difficult to predict—runtime behavior is a suitable example for this.

Agility and the central importance of iterative feedback
If the behavior of complex systems is so difficult to predict, traditional concepts based
predominantly on anticipatory planning are hardly suitable. Instead, retrospective analy-
ses at short intervals and on different levels are needed for control and prioritization. A
distinction must be made between direct feedback, such as that provided by unit tests in
test-driven development, and longer-running, calibrating feedback loops, such as those
provided by result reviews or retrospectives at the end of each iteration. Both forms of
agile feedback complement each other and are indispensable for managing complex
projects. Agile action only becomes possible and can actively shape optimization-ori-
ented changes through agile feedback loops and the inclusion of feedback for correction
[also 1, page 3]. Heikkilä et al. confirm the positive effect of iterative and incremental
releases, which enable frequent feedback from users and customers and thus improved
prioritization of requirements as their evaluations change over time [33, page 138].

Agility in terms of innovations, strategy, and conflicting interests
Software manufacturers act as innovation drivers and are even more challenged in this
agile role than other companies; they must demonstrate leadership in digital solutions
both internally and towards their customers. Startups are under at least as much innova-
tion pressure; however, it is short-sighted to assume that other companies can rest on
their past successes or approach software projects with reduced interest in innovation.
Certainly, traditional companies are never required to always rely on the latest technolo-
gies. While the use of new technologies is indeed associated with increased risk, as has
been extensively demonstrated elsewhere, every company is continuously challenged to
critically examine existing processes and optimize them accordingly. Often, the optimi-
zation or even expansion of digital service scenarios—and this is by no means limited
to a web, app, or cloud strategy—is only possible in most cases through new software
technologies.

To what extent does agile project management differ and provide reliable solutions for
cross-functional prioritization within a company? In the sense of a competitive (product)
vision, software manufacturers must be highly strategic and, at the same time, agile—
i.e., flexible—even with regard to contradictory interests. This requires a new leadership
style that can no longer be managed with purely classically organized processes.

2.3 Agile Concepts and Basic Terms

38 Digital Transformation & Agile Prioritization

Agile strategic corporate management means that companies can react more quickly
to new developments and changing framework conditions, and in this way, strategic
goals can be continuously adapted. This significantly shortens the cycles in which new
control impulses become necessary. Implementation phases of several years are a thing
of the past in agile software development [34, page 14].

Self-organization of agile teams
The self-organization of agile teams is an essential characteristic of agile approaches
and helps in an appropriate way to better cope with complexity. The focus is on self-
organized teams that independently organize their internal processes—i.e., those that
take place within their team—and continuously develop further based on knowledge.
The importance of this horizontal organizational form is not entirely new but was already
described in 1967 by Thomson with regard to the special advantages of mutual ad-hoc
adjustments, by solving problems as soon as they arise [35, pages 40/41].

Because insights cause changes, all structures often have only a temporary character. To
a certain extent—for example, limited by regulatory requirements for legally compliant
software—self-organization is a property of every group.

Agility includes accompanying analysis and the ability to react quickly
Continuous observation and evaluation of the relevant environment are typical for agile
strategic management. Agile processes are intended to enable companies to react quickly
and flexibly to changing requirements [36, page 11]. Agile approaches aim to support
companies in the best possible way even in turbulent times and volatile markets by align-
ing processes across departments flexibly and competitively [37, page 120]. In particular,
in software development, it is important to recognize early on newly prioritized goals
and changes with analytically oriented processes in order to be able to react correctly and
quickly through an adapted strategy.

Focusing on the customer leads to increased competitiveness
With agile processes, the customer and their needs are the focus. Agility is dynamic and
thus an ongoing process within the company without a predetermined end [38, page 27].
Agile approaches, therefore, require permanent attention to involve employees organiza-
tionally and in favor of optimal performance readiness concerning their individual abilities.
Likewise, the focus of agile approaches is particularly on the constantly changing require-
ments of markets and customers, which requires ongoing optimization of products and ser-
vices of companies to align them precisely with the currently relevant customer needs.

Accompanying controlling and regular feedback processes improve software
For this purpose, agile models use accompanying controlling, regular feedback pro-
cesses, and evaluation to improve the strategy and software products. Agility also

39

requires fast capabilities for implementation and deployment of software. A well-organ-
ized and smoothly functioning software architecture and DevOps skills within the com-
pany are important characteristics to assess the digital maturity [39, page 126].

In the current IT landscape, a bimodal mode prevails: Some organizations still have a
large proportion of technically outdated legacy systems in use in certain areas—under
the premise of stability and reliability—(Mode 1). In contrast, other parts of organiza-
tions are urgently required to place innovations agilely, reactively, and quickly due to
competitive pressure and market expectations, thus having an urgent need for rapidly
adaptable frontends. Increasingly, organizations—driven by disruptive factors of change
pressure as primary drivers—are forced to switch from Mode 1 to Mode 2. In this pro-
cess, Mode 1 ultimately does not become irrelevant but must adapt its processes to
this changeability. DevOps practices effectively support this change. For this purpose,
DevOps requires fundamentally different tools and an architecture with adapted pro-
cesses and smaller teams. More frequent changes in software lead to rapid development
of small features, and the goal is to deliver small-scale software releases to customers
according to a Minimum Viable Product (MVP) approach. It is important to note that
the IT operations departments (Ops)—due to capacity constraints—are the bottleneck
of flexibility in an agile software environment. In such a DevOps environment, a close
connection between the different teams such as development, testing, quality assurance,
operations, and the production environment is required.

Cooperations to Increase Competitiveness
Friedli points out the great potential of cooperations between companies in a dynamic
environment—characterized by shortening product life cycles and volatile market
needs—to secure competitiveness [40, pages 381/382]. For example, cooperations with
licensees can also be designed in such a way that the time required for commission-
ing supplied software components is significantly reduced. The DevOps approach with
shortened release cycles and accelerated commissioning is thus transferred from the soft-
ware manufacturer to its customers.

A current example of such a cooperation, which can become a serious threat in the bank-
ing environment, is the agreement between PayPal and Google with the integration of
the digital payment function Google Pay into Android smartphones. With this, around
20 million PayPal customers can now make mobile payments at German store checkouts
[41]. The increasing competitive pressure on the solutions of the Sparkassen and Volks-
banken is also intensifying since the market launch of Apple Pay [42]. The importance
of contactless payment became clear at the latest with the Corona crisis. The newcomer
N26 is already present in every banking market—even before the traditional banks them-
selves—and is completely digitally positioned in all customer-centered services.

2.3 Agile Concepts and Basic Terms

40 Digital Transformation & Agile Prioritization

Agile Corporate Culture, Values, and Philosophy
With the transition to agile processes, there is also a change in direction of the existing
corporate culture. With agile principles, the people who shape and live a process come
to the forefront of events. As a result, employees are also involved in the further devel-
opment of processes to optimize work effectiveness and thus have a significant impact
on the success of projects. Resources available in projects are always limited. The reali-
zation that people should be treated differently from the resources used is the first step
towards successful projects [43, page 15]. Chin and Benne—as representatives of clas-
sical motivation theory in the sense of an empirical-rational strategy—fundamentally
see employees as rational and acting in favor of their personal advantage, and only open
to their own corporate goals and intrinsic needs [44, pages 24 ff.]. In contrast, an agile
company requires a changed, modern value model. In the study “Value Worlds Work-
ing 4.0”, 1200 people (1000 working people, two control groups of 100 people each)
were surveyed based on the microcensus about their ideas on the topic of “work in Ger-
many”. According to this empirical investigation by the Federal Ministry of Labor and
Social Affairs, seven different value models compete equally alongside one another and
thus represent completely different, individual needs of employees [45, pages 14/15].
A rational change strategy in a company is therefore based on showing employees how
they can achieve their personal goals by aligning them with given framework conditions
and corporate goals. Financial security, positive career development, social recognition,
and self-realization have generally been considered primary factors of intrinsic employee
motivation. With the development of increasingly complex products and services, moti-
vational factors and requirements on the corporate side also change. Specifically, due
to digital transformation, organizational structures and processes in companies across
industries are undergoing a special change. Digital transformation is often associated
with a strategic realignment; at least always with an agile alignment of corporate pro-
cesses in an increasingly digitally oriented corporate field [1, pages 1 ff.]. In particular,
the Agile Manifesto has shaped clear basic ideas in this context, which are crucial for the
successful transition to agile methodology:

Basic Values of Agile Processes: The Agile Manifesto
The Agile Manifesto was created out of the desire for lightweight and iterative meth-
ods for software development. The compact result of the Manifesto for Agile Software
Development is reflected in the basic values and the twelve principles.

With the goal of developing better software, the values of the Agile Manifesto have
emerged as an integral part and guiding principles of action.

These values of agile processes are shown in Fig. 2.7. According to the philosophy
“We discover better ways of developing software by doing it and helping others do it.” A
prioritization of regularly recurring processes in software development has emerged [46].

41

In practice, the following core values should prove themselves:

• Individuals and interactions are valued over processes and tools.
• Working software is valued over comprehensive documentation.
• Collaboration with customers is valued over contractual agreements.
• Responding to change is more effective than following a strict plan.

That means, even though the values on the right side are meaningful and important, the
value of the core values on the left side outweighs them. While the core values of the
Agile Manifesto represent guidelines that quickly clarify the basic attitude of agile prac-
tice, the 12 principles of the Agile Manifesto concretize these basic ideas into specific
action recommendations [46]: The Agile Manifesto thus aims to ensure that all employ-
ees in the company follow a common value system and internalize the agile philosophy
from within. Consequently, a higher-level control system must also correspond to this
ideal value system and the claim of short iteration and release cycles—in combination
with an open feedback culture.

2.3.11 Scaled Agile/Large-Scale Agile Development

The term Scaled Agile or synonymously Large-Scale Agile Development is used when
it comes to extending agile approaches to the structures of larger organizations in order

2.3 Agile Concepts and Basic Terms

Values of agile processes

working software comprehensive
documentation

Cooperation with
the customer

Contract
negotiations

...is more important than...
Reaction to

change following a plan

Agile Manifesto

...are more important
than...

Individuals &
Interactions

Processes &
 Tools

before

before

Fig. 2.7 Values of agile processes. (Source: Sascha Block)

42 Digital Transformation & Agile Prioritization

to cover projects with large teams and a multitude of different projects, and thus to
extend the principles of agile development—beyond the boundaries of agile teams—to
the entire organization. In a large agile development environment, where more than two
teams are working towards a common goal, coordination between the teams becomes
particularly relevant [47].

Dingsøyr and Moe have compiled definitions that characterize such a Large-Scale
Agile Development environment [48, page 3]:

• More than 50 developers OR ½ million lines of code OR more than three time zones.
• Over 50 people OR more than 5 teams develop the same product together using agile

methods.
• Agile principles are applied to more than one team, one project/product.
• Agility is applied at the organizational level.
• The Agile methodology includes a context that affects more teams than a single per-

son can organize.
• When the coordination of teams is only possible through new agile project forms—

such as through a “Scrum-of-Scrums forum”.
• Several venues (arenas) are needed for coordination—such as a multitude of “Scrum

of Scrums”.
• Large teams require a solution to integrate each individual into the agile framework.
• Large projects in which many stakeholders are decision-relevant.
• Customer-centered orientation/Flexible changes.
• As soon as it is no longer possible to know every individual who is working on the

same project/on the same product.
• Agile organizations are characterized by rapid learning ability and effective value cre-

ation.
• Many teams work together to deliver software artifacts.
• Driven by a multitude of different requirements and challenges.
• Emergent, complex, and adaptable approach that is culture-based and requires a new

way of thinking.

Large-Scale Agile Development is aimed at covering software architecture, inter-team
coordination, portfolio management, and scaling in terms of software solutions and
organizational structure.

A Scaled Agile Framework is designed to provide an effective agile organizational
model for a complex environment. In particular, it avoids focusing the responsibilities of
coordination and information exchange on a single role, but instead promotes exchange
between as many team members as possible [47].

Analogous to Gustavsson, existing Scaled Agile Frameworks should not be con-
sidered as strictly binding prescriptions from a practical perspective, but rather serve
as inspiration or as a toolbox for one’s own model [47]. In this context, it makes sense
that neither Scrum, SAFe, nor Large-Scale Scrum (LeSS) require the role of a project

43

 manager, but this role should be largely avoided; nevertheless, many agile organizations
still consider such a role to be relevant [47, page 3].

References

 1. Kreutzer, R. T., Neugebauer, T., & Pattloch, A. (2017). Digital Business Leadership – Digitale
Transformation – Geschäftsmodell-Innovation – agile Organisation – Change-Management
(1st ed.). Springer/Gabler.

 2. Wiederhold, L., Zeitner, R., & Peyinghaus, M. (2016). Warum IT-Projekte scheitern. In:
Immobilienzeitung, p. 24. ISSN 1433-7878. http://www.htw-berlin.de/forschung/online-
forschungskatalog/publikationen/publikation/?eid=9014. Accessed 31 Mar 2020.

 3. Kollmann, T., & Schmidt, H. (2016). Deutschland 4.0 – Wie die Digitale Transformation
gelingt (1st ed.). Springer/Gabler.

 4. Christensen, C. M., & Matzler, K. (2013. Korrigierter Nachdruck in deutscher Übersetzung
des amerikanischen Orginalwerks). The innovator’s dilemma: Warum etablierte Unternehmen
den Wettbewerb um bahnbrechende Innovationen verlieren (1st ed.). Vahlen.

 5. Schumpeter, J. A. (1947). Capitalism, socialism and democracy (2nd ed.). Allen & Unwin.
 6. Heinemann, G., Gehrckens, M. H., & Wolters, U. J. (2016). Digitale Transformation oder dig-

itale Disruption im Handel – Vom Point-of-Sale zum Point-of-Decision im Digital Commerce
(1st ed.). Springer/Gabler.

 7. Bousonville, T. (2017). Logistik 4.0 – Die digitale Transformation der Wertschöpfungskette
(1st ed.). Springer/Gabler.

 8. Berberich, O. (2016). Trusted Web 4.0 – Konzepte einer digitalen Gesellschaft. Konzepte der
Dezentralisierung und Anonymisierung (1st ed.). Springer/Vieweg.

 9. Weinreich, U. (2016). Lean Digitization – Digitale Transformation durch agiles Management
(1st ed.). Springer/Gabler.

 10. Breyer-Mayländer, T. (2016). Management 4.0-Den digitalen Wandel erfolgreich meistern:
Das Kursbuch für Führungskräfte. Carl Hanser Verlag GmbH Co KG.

 11. Carr, N. G. (2003). IT doesn’t matter. Harvard Business School Publishing Corporation. Edu-
cause Review, 38, 24–38.

 12. Smith, H., & Fingar, P. (2003). IT doesn’t matter – Business processes do: A critical analysis
of Nicholas Carr’s IT article in the Harvard business review. Meghan-Kiffer Press.

 13. Ebert, C., & Paasivaara, M. (2017). Scaling agile. IEEE Software, 34(6), 98–103.
 14. Sein, M. K., et al. (2011). Action design research. MIS Quarterly, 40.
 15. Uludağ, Ö., et al. (2017). Investigating the role of architects in scaling agile frameworks. In

Enterprise distributed object computing conference (EDOC), 2017 IEEE 21st international.
IEEE.

 16. Serrador, P., & Pinto, J. K. (2015). Does Agile work? – A quantitative analysis of agile project
success. International Journal of Project Management, 33(5), 1040–1051.

 17. Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A system-
atic review. Information and Software Technology, 50(9–10), 833–859.

 18. Lehto, I., & Rautiainen, K. (2009). Software development governance challenges of a middle-
sized company in agile transition. In Software development governance, 2009. SDG’09. ICSE
workshop on (pp. 36–39). IEEE.

 19. Wnuk, K., et al. (2016). Supporting scope tracking and visualization for very large-scale
requirements engineering-utilizing FSC+, decision patterns, and atomic decision visualiza-
tions. IEEE Transactions on Software Engineering, 42(1), 47–74.

References

http://www.htw-berlin.de/forschung/online-forschungskatalog/publikationen/publikation/?eid=9014
http://www.htw-berlin.de/forschung/online-forschungskatalog/publikationen/publikation/?eid=9014

44 Digital Transformation & Agile Prioritization

 20. Dikert, K., Paasivaara, M., & Lassenius, C. (2016). Challenges and success factors for large-
scale agile transformations: A systematic literature review. Journal of Systems and Software,
119, 87–108.

 21. Steinle, C., Eßeling, V., & Eichenberg, T. (Eds.). (2010). Handbuch Multiprojektmanagement
und -controlling: Projekte erfolgreich strukturieren und steuern (2nd ed.). Erich Schmidt Ver-
lag GmbH & Co KG.

 22. Rohner, P. (9 November 2015). Warum scheitern große Projekte? AWF IWI-HSG.
 23. Lang, M., Kammerer, S., & Amberg, M. (2012). Projektportfoliomanagement in der IT – Pri-

orisierung, Investition, Steuerung (1st ed.). Symposion.
 24. Kittlaus, H.-B., & Clough, P. N. (2008). Software product management and pricing: Key suc-

cess factors for software organizations. Springer Science & Business Media.
 25. Böhmann, T. (2017). Vorlesungsunterlagen/Foliensätze. Modul Service Lifecycle Management.

Stand 09/2017, Universität Hamburg.
 26. Clements, P., & Northrop, L. (2012). Software product lines: practices and patterns (8th ed.).

Addison-Wesley.
 27. Metzger, A., & Pohl, K. (2014). Software product line engineering and variability manage-

ment: Achievements and challenges. In Proceedings of the on future of software engineering
(pp. 70–84). ACM.

 28. Dehmouch, I. (2014). Towards an agile feature composition for a large scale software product
lines. In Research Challenges in Information Science (RCIS), 2014 IEEE eighth international
conference on (pp. 1–6). IEEE.

 29. Baum, H.-G., et al. (2013). Strategisches Controlling (5th ed.). Schäffer-Poeschel.
 30. Jabbari, R., et al. (2016). What is DevOps? A systematic mapping study on definitions and

practices. In Proceedings of the scientific workshop proceedings of XP2016 (pp. 1–11).
 31. Conboy, K. (2009). Agility from first principles: Reconstructing the concept of agility. Infor-

mation Systems Research, 20(3), 329–354.
 32. Vigenschow, U. (2015). APM-Agiles Projektmanagement – Anspruchsvolle Softwareprojekte

erfolgreich steuern (1st ed.). Dpunkt.
 33. Heikkilä, V. T., et al. (2015). Operational release planning in large-scale Scrum with multi-

ple stakeholders-A longitudinal case study at F-Secure Corporation. Information and Software
Technology, 57, 116–140.

 34. Thiel, G., & Meinke, I. (2018). Agile Statistikbehörde – eine Herausforderung für den strat-
egischen Verbund. In WISTA – Wirtschaft und Statistik. Herausgeber Statistisches Bundesamt,
Ausgabe 3.

 35. Thompson, J. D. (1967). Organizations in action: Social science bases of administrative the-
ory. McGraw-Hill.

 36. Eckstein, J. (2012). Agile Softwareentwicklung in großen Projekten – Teams, Prozesse und
Technologien für den Wandel im Unternehmen (2. Aufl.). dpunkt.

 37. Overby, E., Bharadwaj, A., & Sambamurthy, V. (2006). Enterprise agility and the enabling role
of information technology. European Journal of Information Systems, 15(2), 120–131.

 38. Gunasekaran, A. (2001). Agile manufacturing: The 21st century competitive strategy (1st ed.).
Elsevier.

 39. Uludağ, Ö., et al. (2017). Investigating the role of architects in scaling agile frameworks. In
Enterprise distributed object computing conference (EDOC), 2017 IEEE 21st international
(pp. 125 ff.). IEEE.

 40. Friedli, T. (2006). Technologiemanagement: Modelle zur Sicherung der Wettbewerbsfähigkeit
(1st ed.). Springer.

45

 41. Paypal schließt einen Pakt mit Google. (10. Oktober 2018). Süddeutsche Zeitung. https://www.
sueddeutsche.de/wirtschaft/mobiles-bezahlen-paypalschliesst-einen-pakt-mit-google-1.4164040.
Accessed 10 Oct 2021.

 42. Apple Pay: Teilnehmende Banken in Europa und dem Nahen Osten. https://support.apple.com/
de-de/HT206637. Accessed 10 Oct 2021.

 43. Prescher, H. (2015). Projektmanagement, aber richtig – Der Weg aus der Kapazitätsfalle. Ein
Leitfaden für Organisation, Kommunikation und Führung in Projekten (1st ed.). tredition.

 44. Chin, R., & Benne, K. D. (1969). General strategies for effecting changes in human systems.
Human Relations Center, Boston University.

 45. Wie wir arbeiten (wollen). (2016). Werkheft 02 in der Reihe Arbeit weiter denken, Initiative
Arbeiten 4.0, Herausgeber: Bundesministerium für Arbeit und Soziales, Stand August 2016.
https://www.arbeitenviernull.de/fileadmin/Downloads/BMAS_Werkheft-2.pdf. Accessed 15
Oct 2021.

 46. Manifesto for Agile Software Development. http://agilemanifesto.org/. Accessed 7 Aug 2021.
 47. Gustavsson, T. (2017). Assigned roles for Inter-team coordination in Large-Scale Agile Devel-

opment: A literature review. In Proceedings of the XP2017 scientific workshops (p. 15). ACM.
 48. Dingsøyr, T., & Moe, N. B. (2014). Towards principles of large-scale agile development (May

2014). In: Agile methods: Large-scale development, refactoring, testing, and estimation, XP
2014 international workshops, revised selected papers, Rome.

References

https://www.sueddeutsche.de/wirtschaft/mobiles-bezahlen-paypalschliesst-einen-pakt-mit-google-1.4164040
https://www.sueddeutsche.de/wirtschaft/mobiles-bezahlen-paypalschliesst-einen-pakt-mit-google-1.4164040
https://support.apple.com/de-de/HT206637
https://support.apple.com/de-de/HT206637
https://www.arbeitenviernull.de/fileadmin/Downloads/BMAS_Werkheft-2.pdf
http://agilemanifesto.org/

47© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer
Nature 2023
S. Block, Large-Scale Agile Frameworks, https://doi.org/10.1007/978-3-662-67782-7_3

If the criteria summarized in the Scaled Agile/Large-Scale Agile Development section
apply to your organization, a Large-Scale Agile Framework offers you effective methods
for competitive software development. Regardless of the size of an organization, agile
frameworks provide effective strategies for implementing digital transformation and suit-
able methodology for working collaboratively agile across countless teams and individu-
als.

Large-Scale Agile Frameworks provide usable best practices for collaboration in
agile teams
Each Large Agile Framework provides an adequate solution for modern software devel-
opment and for taking into account constantly changing, diverse requirements of various
stakeholders and often divergent tasks. The goal is always to solve software-based prob-
lems effectively and economically within complex IT projects using agile methodology
and the available resources.

The approach varies from model to model in how the different agile teams organ-
ize themselves. Each of the Large Agile Frameworks is based on close collaboration
between the different agile teams and their goals.

3.1 Evaluation criteria for Large-Scale Agile Frameworks

The requirements for a Large-Scale Agile Framework typically differ according to the
size and type of an organization as well as the defined corporate goals. However, less
measurable factors such as the mindset of an organization also influence the suitability of
a specific Large-Scale Agile Framework.

Large-Scale Agile Frameworks 3

https://doi.org/10.1007/978-3-662-67782-7_3
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-67782-7_3&domain=pdf

48 Large-Scale Agile Frameworks

Agile maturity and adaptability of a Large-Scale Agile Framework
Rather bureaucratic organizational forms, such as public authorities or administrative and
research institutions, have a very different level of maturity with regard to agile method-
ology. Agile methodology is relatively new, and new ways of working may seem unfa-
miliar and perhaps too changeable or unproven to some.

It is important to effectively counter such reservations, especially when processes have
been handled strictly formally and strictly separated by responsibilities and departments
for decades. For these and other good reasons, it is not only important that we under-
stand new agile methods precisely, but also that a Large-Scale Agile Framework is adapt-
able and changeable for our organization and its needs.

Design Thinking for your optimal organizational form
Principles and phases of Design Thinking can also be incorporated into the introduction
phase of a Large-Scale Agile Framework, as it has become indispensable to place a spe-
cial focus on the needs of your employees and the users of (software) solutions them-
selves. Only in this way can a valuable prototype and finally a real application be created
for the user—usually the paying customers of a company or your employees who use the
software for your corporate goals. Ultimately, research-backed findings should always be
incorporated into software development.

Design Thinking takes time, but rewards you richly with added value
Since Design Thinking already requires an intensive observation phase and a longer pro-
ject duration overall, you should be aware at the beginning of the project that it is advis-
able to carry out a comprehensive process analysis with regard to all areas of the target
group. Only in this way can the advantages of the creative elements from Design Think-
ing be brought to bear as much as possible.

Relevance of prototyping and IT security
Overall, the different selected elements and methods of the approach in IT projects are
oriented towards various requirements on the part of stakeholders and the task at hand,
which require an iterative approach, an opportunity for evaluation of results and user
requirements, as well as the use of prototypes.

IT security plays a central key role for both software and hardware-based IoT solu-
tions (Internet of Things) that your organization uses. The responsibility for IT security
grows with the role and importance of your organization for third parties. This includes
taking into account legal framework requirements and the resulting data protection. If
your organization acts in the role of a software manufacturer, the responsibility attrib-
uted to you increases immensely. The rule here is: As soon as you and your organiza-
tion use digital services and offer these digital services to third parties—such as your
customers—you are already acting very quickly in the role of a software manufacturer.

49

The responsibility for this has already been clarified with the legal validity of the GDPR
in relation to the website services used by your organization.

With an app or any other software-based service, the role of a software manufacturer
applicable to your organization comes more into focus.

However, even if you do not clearly identify your organization in the role of a soft-
ware manufacturer, prototyping and IT security should undoubtedly play a central role in
an organizational model.

Therefore, these and other requirements for your organization should play a decisive
role both in assessing the suitability of a particular large-scale agile framework and in
introducing the large-scale agile model you prefer.

For this reason, a proven model is required that brings easily implementable and prac-
tical approaches and methods into play in order to adapt and introduce a large-scale agile
framework for your organization.

The direct inclusion of agile methodology, such as orientation towards design think-
ing and prototyping, and alignment with a predominantly incremental-iterative process
are the primary benchmarks. The inclusion of further aspects such as IT security and
data quality are additional dimensions that such a model should take into account for
your organization and make easily implementable.

3.2 Selected Scaled Agile Frameworks

Horlach et al. have examined existing scaled agile frameworks and classified them into
three different categories and evaluated them based on IT governance criteria [1].

In this context, each framework assigns a different importance to the decision
domains, so that these decisions are either predominantly prioritized as top-down or bot-
tom-up, or as a compromise, both approaches are combined accordingly.

Out of scope in the considered context are scaled agile frameworks that primar-
ily focus on agile transformation within the company. In contrast, according to Horlach
et al., organization-oriented frameworks are considered, which focus on agility with
regard to the emergence of products in companies, as well as the blueprint of an agile
organization. Here, Horlach et al. differentiate two subcategories—namely frameworks
that—like SAFe—focus on the company or—like the Spotify Engineering Model—are
based on the basic idea of close cooperation between teams. In order to decide which
approach is better suited in the examined context, a representative of both categories
is examined in more detail. According to the evaluation by Horlach et al., SAFe offers
the broadest coverage in terms of the dimensions of IT principles, IT architecture, IT
infrastructure, strategies, and requirements for business applications. In addition, SAFe
generally receives widespread attention in professional circles—as well as in [2]—and is
reflected in scientific literature.

The Spotify Engineering Model was rated as interesting and considered because of its
particularly consistent inter-team focus and numerous adaptations by other companies.

3.2 Selected Scaled Agile Frameworks

50 Large-Scale Agile Frameworks

3.3 Domain-Oriented Model/Domain-Driven Design

[History and Background]
The Domain-Oriented Model is also an agile approach to software development. The
fundamental conceptual ideas of this methodology come from Eric Evans, who first pub-
lished a book in the form of a reference guide in 2003 and coined the term Domain-
Driven Design (DDD) [3]. Evans initially defined the following terms, which are
relevant for understanding the model [3, page VI]: A domain is a sphere of knowledge,
influence, or activity. The subject area to which a user applies a program is the domain
of the software. A model is an abstraction system that describes selected aspects of a
domain and can be used to solve problems related to that domain. The ubiquitous lan-
guage is a language structured around the domain model and used by all team mem-
bers within a limited context to connect all team activities with the software. The context
in turn denotes the environment in which a word or statement occurs, determining its
meaning. Statements about a model can only be understood within this context. Bounded
context defines and describes the boundaries—typically for a subsystem or the work of
a specific team—within which a particular model is applicable. According to Evans,
Domain-Driven Design is an approach to developing complex software that focuses
[3, page 1]: 1) on the core of a domain; 2) enables the discovery of models in creative
collaboration between domain and software users; and 3) uses the ubiquitous language
within an explicitly defined bounded context.

[Prioritization Model, Core Values, Philosophy, and Principles]
Consequently, DDD is based on the realization that the modeling process of software is
primarily influenced by the domain-specific functionality to be implemented, as dictated
by the application domains. As a framework, DDD does not define any technical-specific
rules but provides purely methodological recommendations for the processes of software
development. DDD assumes agile approaches in the form of iterative software develop-
ment and close collaboration between software developers and domain experts—the so-
called domain experts.

Regarding the modeling of different architectural layers, Evans recommends a clear iso-
lation of business logic in the design of software applications to separate any dependen-
cies related to infrastructure, user interface, or application logic that do not correspond
to the business logic. To achieve this, complex programs should be organized in lay-
ers, with explicit attention to ensuring that individual layers are cohesive—closely con-
nected—to each other and that dependencies of a layer exist only in the direction of the
underlying layer [3, page 10].

Analogous to architectural patterns that follow the same strategy, DDD recommends
establishing only a loose coupling between an architectural layer and the layers above it.

Thus, the entire code of a domain model is isolated at one level and completely
detached from the user interface, the application, and the infrastructure. Such an

51

 architectural principle offers, in addition to the maximum possible level of abstraction
from the user interface, the following advantages:

It supports specialized division of labor in the creation of software products, the func-
tionality of the layers is clearly specified and prescribes to other layers in a strict man-
ner how they interact with each other. Finally, such a layer structure supports a software
system with a high degree of portability; it thus offers maximum agility concerning its
fundamental platform architecture, which can be changed at any time on a component-
by-component basis.

Thus, DDD is more generally positioned, but closely related to the architectural
model of the Model-View-Controller concept (MVC). The MVC concept allows for
an agile, highly adaptable software architecture model through the strict separation of
program logic, data source, and visualization [4, page 847]. Figure 3.1 “Model-View-
Controller concept” illustrates this widely used architectural concept, not least due to the
influence of modern cloud infrastructures.

Goll’s objection that the MVC concept is often associated with a deterioration in per-
formance is relevant [4, page 856].

In his model, Evans describes a large-scale structure for strategic design and limits
himself to recommending the creation of a pattern of rules or roles and relationships that
cover the entire system and thus enable an overall understanding of the whole system—
even without detailed knowledge [3, page 47].

Model View Controller Architecture

Information

Model View

Controller

Database Visualization

LogicChange data

Provides data, informs
View about changes

visualizes data and graphics
of the software application

de�nes logic and behavior of
the software application

Fig. 3.1 Model-View-Controller concept. (Source: Sascha Block)

3.3 Domain-Oriented Model/Domain-Driven Design

52 Large-Scale Agile Frameworks

To manage complexity in software systems, Evans recommends describing individual
objects in terms of their structure and behavior based on the basic model and also mak-
ing clear restrictions. By dividing such rules into concrete system specifications and gen-
eral rules and knowledge, a modular system architecture is enabled, allowing a user or
super-user to flexibly adapt the system behavior as needed [3, page 51].

3.4 Spotify Engineering Model

History and Background
The streaming service known as Spotify and the platform behind it is the model for the
framework of an agile organizational model. Founded in 2006 as a Swedish start-up,
Spotify AB is now active in 237 countries and, with a community of 406 million users
(as of February 2022) and payouts of over 9 billion EUR to rights holders (as of Decem-
ber 31, 2021) – according to its own statements—is one of the most significant drivers of
revenue in the music business [5].

The Spotify Engineering Model combines lean start-up methods into a novel approach
for agile scaling, primarily addressing corporate culture while also suggesting adjust-
ments for agile processes and an agile corporate structure.

The representation of the Spotify Engineering Model in Fig. 3.2 “Organizational
Model Spotify Engineering Model” is based on the conference paper [6] by Agile/Lean

Fig. 3.2 Organizational Model Spotify Engineering Model subject areas. (Source: Sascha
Block based on Kniberg/Ivarsson: Scaling Agile @ Spotify with Tribes, Squads, Chapters &
Guilds—10/2012.—Source: Sascha Block)

53

Coach Henrik Kniberg [7] and “organizational Coach” Anders Ivarsson [8] working for
Spotify, and presents the organizational model, its agile organizational structures, roles,
and framework-specific methods. According to Ivarsson, he deliberately chooses the
title of organizational coach because he places particular emphasis on building a strong,
effective, and entertaining organization.

Prioritization Model, Core Values, Philosophy, and Principles
Striking is the fundamental philosophy of the autonomy striving communicated in the
framework of the agile teams involved in the model.

In doing so, the agile teams pursue both autonomous independent project goals and col-
laborative goals to achieve overarching company objectives together and efficiently.
Squads are independent agile teams. A squad is the basic unit for software development
at Spotify.

Teams
Squads resemble Scrum teams and are designed to be as flexible as miniature start-ups.
Each squad has all the necessary skills and tools to cover design, development, testing,
and release to the production level. Squads are independently organized agile teams
and autonomously decide on the way and methods they work. Some use Scrum Sprints,
others Kanban, or a mix of both approaches. Each squad pursues a long-term mission;
for example, developing an Android client, scaling backend systems, or providing pay-
ment methods. Squads are specifically encouraged to practice Lean start-up principles—
such as creating a Minimum Viable Product or validated learning. Because a squad is
entrusted with the same specific tasks and specific components of a product for a long
time, experts can develop on specialized topics. In addition, each squad can indepen-
dently and directly contact its stakeholders. It is essential to continuously ensure that
there are no critical dependencies on other agile teams.

A tribe is a group of several squads working in a similar subject area—such as back-
end, infrastructure, or the music player. Tribes act as incubators for the squad mini-
start-ups, providing them with the necessary degrees of freedom. Given that it is hardly
possible for individuals to maintain social contact with more than 100 people, a tribe
comprises a maximum of 100 members. Moreover, experience shows that the bureau-
cratic effort and the need for freedom-restricting rules and additional management levels
increase disproportionately for larger groups. Tribes regularly hold events where current
work results—especially demos of functioning software, new tools and methods, and
noteworthy hack day results—are presented and discussed. These events are public and
thus accessible to people outside the tribe network.

Every organizational form has at least one disadvantage. The most relevant disadvan-
tage of complete autonomy is the loss of economies of scale. The tester in Squad A could
be struggling with a problem that the tester in Squad B has already successfully solved.
If all testers could organize themselves across squads and tribes, then these experts could

3.4 Spotify Engineering Model

54 Large-Scale Agile Frameworks

meaningfully share their knowledge and create helpful tools for everyone. The solution
to this problem lies in the organizational form of the Chapter: A chapter is a small unit
of specialized employees who have similar skills and generally work in a related field
of competence within the same tribe. Chapters hold regular meetings on their subject
areas—for example, on testing procedures, web development, or backend technologies.

In addition, the Guild is an organic and broadly based association of interest group
members who share an interest in specific topics and want to share their knowledge—
such as appropriate tools, code, and best practices. While chapters are always arranged
within a tribe, guilds are cross-location associations.

For cross-team DevOps support, there is a separate operations team whose task is to
provide support to the squads in publishing their code independently. By providing infra-
structure, scripts, and deployment routines, as well as internal knowledge transfer, this
team paves the way to production, so to speak.

All squad members can influence their work at any time; they actively participate in
planning and help determine which tasks should be worked on.

Regular surveys (e.g., quarterly) can ensure that processes are continuously optimized
and that the need for organizational support can be effectively determined.

The representation visualized with Fig. 3.3, “Status Surveys of the Spotify Engineer-
ing Model,” is intended to identify subject areas with current problems (red). Circles
reflect the current status, and arrows indicate the trend for the next phase. A green status
signifies a smooth process; a yellow status indicates a need for optimization. Based on
Table 3.1 “Aspects of Agility Valid in the Spotify Model,” a pattern for difficulties in the
release process can be identified through the feedback from three squads (3, 4, 5). This
implies an urgent need for action in the uncovered subject area.

Dependencies are hardly avoidable among a large number of squads and do not nec-
essarily have to be negatively connotated. Nevertheless, it is essential to recognize such

Product Owner

Agile Coach

Service development

Easy to release

Processes that �t the team

One mission

Support within the organization

Topics Squad 1 Squad 2 Squad 3 Squad 4 Squad 5

Fig. 3.3 Status surveys of the Spotify Engineering Model for defined topics. (Source: Sascha
Block, based on Kniberg/Ivarsson: Scaling Agile @ Spotify with Tribes, Squads, Chapters &
Guilds—10/2012)

55

dependencies; each squad will then be outlined in a report, and dependencies to other
teams will be determined.

For this purpose, a simple Excel table can be used as a practical tool and overview,
listing the squads in the first column, showing an existing dependency to one or more
squads in a second column, and classifying the type of dependency and visualizing it
with a traffic light status in a third column. A fourth comment column provides space for
explanations, and a fifth column adds information about a simple Yes (green)/No (red)
indication of whether the listed squad belongs to the same tribe.

Problematic dependencies can usually only be eliminated through reprioritization,
reorganization, architectural changes, or with the help of technical solutions.

Roles and Responsibilities
Product Owner (PO) coordinate and manage the backlog, prioritize tasks, and organize
coordination between the squads: Each agile squad team has an assigned Product Owner
who is responsible for prioritizing work and supporting the team in achieving its goals
without being involved in the implementation process. In doing so, Product Owners take
into account both the business strategy and relevant KPIs as well as technical aspects.
The Product Owners of different squads cooperate to continuously update an overarching
roadmap that transparently tracks the direction in which Spotify as a whole is develop-
ing. To this end, each Product Owner maintains a product backlog for their squad. The
role of the PO is closest to that of an entrepreneur and product champion. An entrepre-
neur is focused on realizing the best possible product. The Chapter Lead is the organ-
izer of a chapter and thus a line manager responsible for all chapter members and has
traditional responsibilities such as personnel development. Since the Chapter Lead is a
regular member of a squad and involved in its daily work, they are familiar with the real
conditions in the teams and thus have a realistic reference (Fig. 3.4).

Table 3.1 Aspects of Agility Valid in the Spotify Model

[Table footer—please overwrite]

Agility aspects Explanation

Easy to release: Simplicity in terms of release capability. A squad team is always able to
deploy to an existing release version without any obstacles.

Process that fits to
the team:

The team has sovereignty over their agile process and can continuously
optimize it.

Mission: Every squad member is aware of the mission and contributes to its fulfill-
ment. All stories in the squad backlog effectively contribute to achieving
the goal.

Organisational sup-
port:

The squad team knows who to turn to for problem-solving when issues
arise, both for technical and team-related matters.

3.4 Spotify Engineering Model

56 Large-Scale Agile Frameworks

In doing so, the Chapter Lead ensures the most effective methods for knowledge dis-
semination and the most impactful tool usage for sharing code in the horizontal company
dimension.

In matrix terminology, the vertical dimension ensures the “what” through the role of
the PO and the horizontal dimension ensures the “how” through the role of the Chapter
Lead.

Thus, each squad member receives certainty regarding the questions “What is to be
realized in terms of code next?” and “How do we build the code artifact?” The Chapter
Lead holds the competence leadership in relation to a specific technical expertise, such
as deployment or web technologies.

The Tribe Lead is the organizer of a tribe and ensures the appropriate environment
for their tribe in their role. Typically, all squads belonging to a tribe are located close to
each other in the same building due to their thematic connection. The Guild Coordina-
tor organizes the events of a guild association and ensures that everyone interested in a
planned guild event can participate. An Agile Coach supports the teams in their devel-
opment by helping to identify and eliminate obstacles. Typically, agile coaches support
continuous process improvement through retrospectives, sprint meetings, and individual
or group coaching sessions.

The squad teams act as efficient feature teams and, as such, usually need to update
multiple systems to make new features production-ready. The challenge of such a liberal
architectural model is to keep the overall system lean and performant, as no one focuses
on the integrity of the system as a whole. To ensure controlled evolution of the individual
components of the overall system, system owners take care of defined subsystems. For
system-critical software parts, a DevOps team consisting of a software developer and an

Fig. 3.4 Organization of
subject areas according to the
Spotify Engineering Model.
(Source: Sascha Block,
based on Kniberg/Ivarsson:
Scaling Agile @ Spotify with
Tribes, Squads, Chapters &
Guilds—10/2012)

Product
Owner

57

operations expert is defined. The System Owner (SO) is the central contact person for
all technical or architecture-related aspects. They guide the developers within the system
they supervise, thus ensuring quality, documentation, stability, scalability, and an unim-
paired release process. It is not necessary for the SO to make all decisions independently,
code themselves, or be solely responsible for the release process. Rather, the SO is typi-
cally a squad member or chapter lead who, in addition to their everyday tasks, takes on
the supervision of a system part. To meet this responsibility, the SO—whenever neces-
sary—sets a “System Owner Day” to meet these requirements and to perform “house-
keeping” of their system. A Chief Architect coordinates the software architecture at the
highest level. In doing so, the independent subsystems are architecturally combined into
a high-performance overall solution. Their tasks include reviewing new system parts and
maintaining and documenting the architectural vision. They always remain at the level of
recommendations and technical input; the final design decisions remain with the respec-
tive squad teams. To effectively synchronize the agile teams with each other, a Scrum of
Scrum Meeting regulates existing dependencies between the teams. At Spotify, however,
such regular meetings are largely dispensable because the lived agile organizational form
with its control mechanisms effectively controls existing dependencies. If project-related
collaboration of several squads is required over a longer period, the squads synchronize
daily to identify and clarify dependencies. A single board with “sticky notes” used by all
squads has proven effective for this purpose.

According to Schettino et al., the prioritization model of the Spotify Engineer-
ing Model is geared towards the further development of the Spotify platform, which is
considered a complex ecosystem with a wide variety of stakeholders [9] and aims for
the shortest possible release cycles of features and changes to the online platform to
incorporate feedback into software development as quickly as possible. The framework
is specifically designed for the enormous employee growth in the company, which has
grown from originally 300 employees to 3,000 employees in six years [10]. With a mod-
ern value system, this agile framework also establishes a tolerant error culture: errors are
understood as part of the learning process according to the lean start-up approach and
are intended to enable genuine innovations. Alqudah and Razali indirectly confirm that
the entire organizational model ultimately presupposes the role of a platform operator in
order to enable the continuous optimization of a very specific platform economy through
consistent DevOps control under permanent user feedback [11, page 831].

3.5 Scaled Agile Framework (SAFe)

History and Background
The Scaled Agile Framework (SAFe) is an agile concept for methodical organiza-
tion in software development. As a framework, SAFe provides methodical knowledge
in the form of a documented procedural model and proven process patterns from prac-
tice and was founded in 2011 by book author Dean Leffingwell, who, according to his

3.5 Scaled Agile Framework (SAFe)

58 Large-Scale Agile Frameworks

own statements, is an entrepreneur of various start-ups and a software and system devel-
oper [12, page XII] and already recognized the need for documented best practices in
2007 with an initial concept [12, page XIV]. The Scaled Agile Inc. officially provides
the knowledge free of charge and generally accessible via the freely accessible online
platform www.scaledagileframework.com. In addition, Scaled Agile Inc. offers certifica-
tions, training, and courses [13].

Prioritization Model, Core Values, Philosophy, and Principles
In addition to portfolio management, SAFe is particularly specialized in organizing the
alignment, collaboration, and delivery process of software across a large number of agile
teams in a structured manner. Release Engineering is the process that aims to achieve
high software quality for end users through individual changes made by developers [14,
page 1]. The Agile Release Train (ART) is a central component in the model and repre-
sents a mechanism that is the responsibility of a permanently defined group—consisting
of members of agile software development teams—to ensure continuous release delivery
[12, page 2, 6, and 12].

The concept of the Agile Release Train becomes understandable through the metaphor
of a subway train with a regular schedule. At regular intervals, the Agile Release Train
offers the various development teams the opportunity to integrate their current features
into the latest release; the programmer calls this deployment.

If the team misses the deadline, it must wait for the next opportunity, in the form of
the next release date for deployment (Fig. 3.5).

The ART concept with the Release Train Engineer represents a model specifically
designed for DevOps practices and the needs of agile teams to synchronize various
development strands—in the form of modular individual components—into a complete
release. Such an approach requires jointly defined tools and is only possible in combina-
tion with modern development tools, such as GIT-based versioning tools. Organization-
ally, the ART team uses a series of iterations of fixed length. The time window for the
iteration steps is set for defined program increments (PI) within the PI timebox—as a
program step width. The Agile Release Train aligns the teams involved in an agile pro-
ject with a common business strategy and technology mission and takes on the following
tasks [12, page 2/3]:

• Aligning management, teams, and stakeholders on a shared mission based on a single,
fundamental vision, roadmap, and program backlog.

• Delivering features in the form of ready-to-use user functions.
• Synchronizing the iterations of all involved teams using the same duration for start

and end dates.
• In doing so, each ART should deliver valuable and tested system-level increments in a

two-week cycle.

http://www.scaledagileframework.com

59

• Program increments (PIs) represent longer-term, fixed-schedule increments for plan-
ning, execution, analysis, and adaptation.

• Solutions can be released as needed; during or at the end of a PI, focused exclusively
on the needs of the business (customer). Regular or continuous integration of com-
pleted features from all teams is the ultimate measure of progress.

• The ART concept is based on face-to-face personal communication to enable smooth
collaboration, alignment, and the fastest possible implementation.

• ARTs build and maintain the Continuous Delivery Pipeline, which is required for
software development and release of manageable releases and thus for smaller optimi-
zations to the customer’s value contribution.

• Provide a shared and consistent approach to improving the user experience through
the application of Lean UX principles and practices.

• DevOps—which combines mindset, corporate culture, and a set of technical practices
for communication, integration, automation, and close collaboration among all those
involved in software development—supports the Agile Release Train in effectively
planning, developing, testing, deploying, releasing, and maintaining various solution
scenarios.

According to the ART concept, each development team always has two options:

Fig. 3.5 Agile Release Train—Photography and Image Editing: Sascha Block

3.5 Scaled Agile Framework (SAFe)

60 Large-Scale Agile Frameworks

Plan A A desired functionality is integrated at the defined time. In this case, the team
deploys its code at the earliest possible date.

Plan B In the event that the functionality is not yet fully completed or sufficiently
tested, the agile team must not prevent a timely release date. In this constellation, the
software team must still ensure that there are no side effects due to the delay. The team
ensures that there are no dependencies on development modules of other agile teams,
nor is the infrastructure or software architecture affected. If necessary API changes are
implemented to avoid breaking existing functionality.

SAFe is based on nine fundamental Lean and Agile principles, which guide the roles
and practices in SAFe and summarize the underlying logic [12, Part 3, page 133 ff.]:

1. Take an economic perspective.
2. Apply systems thinking.
3. Assume variability, preserve options.
4. Build incrementally, with fast integrated learning cycles.
5. Base milestones on objective evaluation of the running system.
6. Visualize and limit work-in-progress, reduce batch sizes, and manage queue lengths.
7. Use rhythm (timing), synchronize with cross-domain planning.
8. Unlock the intrinsic motivation of knowledge workers.
9. Decentralize decision-making.

The portfolio concept of SAFe is largely based on the logic presented in the sections on
multi-project management, multi-product development, and portfolio management, using
the same terminology, extended by the concept of agility and the influence of iterative
feedback [12, Part 8, page 575 ff.]. According to the introduced ART logic, a total of
5–10 SAFe teams form an “Agile Release Train,” so that typically 50 to 125 people—
including software development teams and other stakeholders—work together on a prod-
uct program. This ensures the synchronization of iteration dependencies, and every two
weeks, the delivered artifacts are integrated into the live environment. SAFe does not
address the specifics of software product lines.

A point of criticism is that the authors remain very general in many relevant areas,
such as in the “Value Streams” section, and often only superficially address topics: How
“Value Streams” [12, page 587 ff.] are concretely defined or what rules “Lean Budgets”
[12, page 599 ff.] follow remains unanswered.

3.6 Comparison of the Three Selected Large-Scale Agile
Frameworks

The domain-oriented model is a collection of generally valid architectural recommen-
dations for designing benefit-oriented and architecturally flexible software. In con-
trast, Domain-Driven Design (DDD) lacks the portfolio concept needed by software

http://www.inztitut.de/blog/glossar/api/

61

 manufacturers. Also completely unreflected is the organization of teams, although the
role of the domain expert is described, which comes very close to or even completely
corresponds to the role of the customer product manager. For the design of software
products, DDD thus only provides good starting points.

Ultimately, the Spotify Engineering Model is also a form of a modernized matrix
organizational model. However, this organizational model represents an effective coun-
terproposal to counteract the typical silo formation of a classic matrix organization with
functionally structured business units. The model primarily uses the same employee
profiles and agile roles such as Scrum Master, Product Owner, Agile Coaches, Software
Architects, etc., and relies on agile teams with heterogeneous employee profiles that
complement each other and take product responsibility for a clearly defined area within
the Spotify platform. Thus, comparable skills are not grouped in functional departments;
moreover, there are no classic projects that would require reporting to functional project
managers. The matrix of the Spotify Engineering Model is solely focused on the deliv-
ery of code to improve the platform. This is the reason why employees are arranged in
stable, spatially close teams, in which they work together with various skills and self-
organized to deliver great products.

The vertical dimension is the primary organizational structure, which, according to
the framework’s founders, is perceived as pleasant by employees and allows them to
engage willingly and enjoyably in their work time in agile teams in a varied way.

The horizontal dimension represents the most effective methodology for sharing
knowledge, tools, and code. The special charm of the Spotify Engineering Model lies—
besides a lean and easily understandable organizational model—in the manageable num-
ber of recommendations and rules. To what extent the company’s success is based on the
organizational model—or primarily on the business model—remains open. Numerous
companies—mainly start-ups—are already organized according to the example of this
framework.

In the end, however, the Spotify framework does not offer a suitable solution in the
considered context: With regard to portfolio management of software products and the
associated prioritization requirements, the model—without significant modifications—
does not seem suitable as such. Portfolio management is not described in the Spotify
model. The processes and mechanisms by which prioritization is carried out, or the key
figures by which such prioritization is controlled, remain open. Also missing in the con-
sidered context is the central operator aspect of an online platform. This circumstance
is a significant evaluation criterion for the framework and presupposes complete control
over the entire DevOps cycle. However, this is not always given. Nevertheless, the ideas
of practical inter-team cooperation can be adopted in particular.

The ART concept from SAFe is variable and ideally combined with the decisive
portfolio aspect, making it flexibly applicable to any complex dependencies in software
releases. The roles defined with SAFe are not fundamentally new, but they are suitable
for supporting software manufacturers in aligning a large number of different teams with
a shared mission and vision and ensuring the necessary coordination and governance as

3.6 Comparison of the Three Selected Large-Scale Agile Frameworks

62 Large-Scale Agile Frameworks

best as possible. SAFe generally recommends establishing a Product Owner per team,
with Gustavson characterizing the role of the Release Train Engineer as “Chief PO” [15,
page 2].

Horlach et al. criticize SAFe for only one aspect, namely the lack of reference to rec-
ommended implementation practices within IT infrastructure strategies [1]. At least in
the case of medium-sized software companies, it can be assumed that they align them-
selves with only one IT strategy. Furthermore, the criticism is unjustified insofar as an IT
strategy can also be synchronized across several portfolios. However, this crucial point
remains open within SAFe—namely the implementation of such synchronization. This
aspect plays a decisive role in the present context; this also applies to the aspect of align-
ment with software product lines, which is not dealt with in detail in SAFe. Nevertheless,
essential parts of SAFe can be integrated into an ideal model for software manufacturers.

References

 1. Horlach, B., Böhmann, T., Schirmer, I., & Drews, P. (2018). IT governance in scaling agile
frameworks. In Multikonferenz Wirtschaftsinformatik.

 2. Paasivaara, M. (2017). Adopting SAFe to scale agile in a globally distributed organization.
In Global Software Engineering (ICGSE), 2017 IEEE 12th international conference on (pp.
36–40). IEEE.

 3. Evans, E. Domain language: Tackling complexity in the heart of software. Domain driven
design reference. https://domainlanguage.com/ddd/reference/. The DDD Reference contains a
brief summary of every definition and pattern in Eric Evans’ 2004 book, plus three patterns
that didn’t make it into the original book, which Eric now thinks of as part of his understand-
ing of DDD. Accessed 27 Nov 2022.

 4. Goll, J. (2011). Methoden und Architekturen der Softwaretechnik (1st ed.). Vieweg+Teubner.
 5. Spotify. Unternehmensinformationen. https://newsroom.spotify.com/company-info/. Accessed

14 Apr 2022.
 6. Ivarsson, A., & Kniberg, K. (2012). Scaling agile @ Spotify with tribes, squads, chap-

ters & guilds (Oktober 2012). Conference paper. https://creativeheldstab.com/wpcontent/
uploads/2014/09/scaling-agile-spotify-11.pdf. Accessed 27 Sept 2021.

 7. LinkedIn Profil von Henrik Kniberg. https://www.linkedin.com/in/hkniberg/. Accessed
14 Sept 2022.

 8. LinkedIn Profil von Anders Ivarsson. https://www.linkedin.com/in/aivarsson/. Accessed 14
Sept 2022.

 9. Schettino, V. J., et al. (2017). Spotify characterization as a software ecosystem. In Proceed-
ings of the 11th Brazilian symposium on software components, architectures, and reuse (p. 8).
ACM.

 10. Statista. (o. J.). Anzahl der Mitarbeiter von Spotify weltweit in den Jahren 2011 bis 2017.
https://de.statista.com/statistik/daten/studie/297149/umfrage/anzahl-dermitarbeiter-von-spot-
ify/. Accessed 9 Dec 2022.

 11. Alqudah, M., & Razali, R. (2016). A review of scaling agile methods in large software devel-
opment. International Journal on Advanced Science, Engineering and Information Technol-
ogy, 6(6), 828–837.

https://domainlanguage.com/ddd/reference/
https://newsroom.spotify.com/company-info/
https://creativeheldstab.com/wpcontent/uploads/2014/09/scaling-agile-spotify-11.pdf
https://creativeheldstab.com/wpcontent/uploads/2014/09/scaling-agile-spotify-11.pdf
https://www.linkedin.com/in/hkniberg/
https://www.linkedin.com/in/aivarsson/
https://de.statista.com/statistik/daten/studie/297149/umfrage/anzahl-dermitarbeiter-von-spotify/
https://de.statista.com/statistik/daten/studie/297149/umfrage/anzahl-dermitarbeiter-von-spotify/

63

 12. Leffingwell, D., Knaster, R., Oren, I., & Jemilo, D. (2018). SAFe reference guide – Scaled
agile framework for lean enterprises (1st ed.). Version 4.5. Pearson.

 13. Scaled Agile Framework. Website der Scaled Agile Inc. https://www.scaledagileframework.
com/about/. Accessed 15 Apr 2022.

 14. Adams, B., & Mcintosh, S. (2016). Modern release engineering in a nutshell-why research-
ers should care. In Software analysis, evolution, and reengineering (SANER), 2016 IEEE 23rd
international conference on (pp. 78–90). IEEE.

 15. Gustavsson, T. (2017). Assigned roles for Inter-team coordination in large-scale agile develop-
ment: A literature review. In Proceedings of the XP2017 scientific workshops (p. 15). ACM.

References

https://www.scaledagileframework.com/about/
https://www.scaledagileframework.com/about/

65© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer
Nature 2023
S. Block, Large-Scale Agile Frameworks, https://doi.org/10.1007/978-3-662-67782-7_4

You can adapt a Large-Scale Agile Framework suitable for your organization using the
presented methodology or develop it from scratch—for example, for a different problem
class. We will introduce you to an approach and explain how this can be achieved based
on the current state of research.

In this chapter, we will demonstrate how to proceed when adapting a Large-Scale
Agile Framework to be perfectly tailored to the problem classes of software manufactur-
ers. Undoubtedly, other industries have different problem classes, but almost all organi-
zations are more or less strongly software-driven or also develop software independently.
To help you answer the question to what extent your organization acts in the role of a
software manufacturer, a separate section is dedicated to answering this exciting question
and shows you exemplary companies whose IT strategy can be largely assessed from the
outside.

The most urgent question in most companies is: “How do we switch to an agile mode
as quickly as possible in which the most diverse teams within an organization work
together efficiently?”

The question “How organizations act perfectly agile” concerns every organization—
differences only exist in the maturity level of the respective organization in this regard.

Involve employees and teams and their needs closely
First, the basic prerequisites in the form of agile teams, roles, and processes must be cre-
ated within the organization. These organizational changes are partly taken into account
by the respective Large-Scale Agile Frameworks; however, fundamental organizational
measures must also be taken to prepare for such profound organizational changes. This
includes infrastructure issues, such as spatial changes resulting from the establishment of
new teams or the procurement of agile software tools and their training for your employ-
ees.

How to Adapt and Implement a
Large-Scale Agile Framework in Your
Organization

4

https://doi.org/10.1007/978-3-662-67782-7_4
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-67782-7_4&domain=pdf

66 4 How to Adapt and Implement a Large-Scale …

Introduce agile methodology step by step
The introduction of a Large-Scale Agile Framework—no matter which Agile Framework
seems most suitable for your organization—is not a process that will take place in an
organization from one day to the next, but rather should be a continuous change process.
The introduction of a Large-Scale Agile Framework must go hand in hand with success-
fully involving your employees in this transformation process within your organization
in order to integrate and promote them as best as possible according to their individual
abilities.

A proven approach to introducing and adapting a Large-Scale Agile Framework in
your organization is presented in the next section with Action Design Research.

4.1 Action Design Research

Action Design Research (ADR) is an agile problem-solving process to create practice-
oriented solutions for overcoming the barriers between the tension fields of IT, organiza-
tional, and professional domains.

In agile software development, these tension fields regularly exist between domains in
companies—e.g., in relation to different domain knowledge. It follows that ADR appears
to be a particularly suitable approach to problem-solving in the context of the problem of
an agile transformation.

This may seem theoretical and abstract to you at this point due to the terms; how-
ever, what ADR can solve for your organization is extremely valuable and certainly
well known to you from practice. If you mentally associate domain knowledge with the
knowledge “trapped” in the individual departments of your organization and with spe-
cific employees, you will immediately sense the challenges ADR can solve for you in
your organization.

Methodology
Science and practice are closely interlinked through iterative ADR cycles. The integra-
tion of employees from companies into research-based projects enables optimal coopera-
tion with practice-oriented researchers, each addressing a problem existing in corporate
practice and leading to viable decisions and a science-based problem solution. The
applied ADR methodology follows the guidelines of Sein et al. and is divided into the
phases shown in Fig. 4.1 “Action Design Research” [1]. This scientific approach, in
which individual theses are evaluated and verified in a solution-oriented manner, can be
implemented very practically in any organization. The ADR methodology will also find
particular appeal in your organization because everyone will feel included and involved.
Rightly so, because that is exactly what ADR effectively implements.

67

Phase 1: Problem Formulation
Start your Action Design Research with an initial kick-off event in which you discuss
your company-specific problem with stakeholders and concretize the fundamental
research questions relevant to you based on this challenge. The defined research ques-
tions help you to concretely validate in which areas there is a particular need for change
and how you can effectively address this. The approach is science-oriented and proven in
practice.

Based on this, define the Opportunity Statement. It is helpful if you present the spe-
cific setting of your company in terms of market situation and competition and other
relevant factors. Determine 1–2 main responsible persons in your company who can
contribute their long-standing practical experience in the context and act as immediate
contact persons and sparring partners in the practice-oriented research, development, and
validation of the model.

Document the theory-based artifacts resulting from this problem-oriented research
activity, ideally in an internal company wiki.

Phase 2: Construction, Intervention, Evaluation
To create truly effective artifacts for relevant problem spaces, an accompanying forma-
tive evaluation supports the research and prototyping process.

1

2 Design of the solution:
Construction, intervention, evaluation

Principle 3: Mutual design
Principle 4: Mutual, influenced roles
Principle 5: Authentic & simultaneous evaluation

3 Reflection &
Learning:

4 Formalization of learning:

Action Design Research

Problem Formulation:

Principle 1: Practice-oriented research
Principle 2: Theory-based artifacts

Principle 6:
Guided creation of the
solution

Principle 7:
Generalized results

Fig. 4.1 Action Design Research

4.1 Action Design Research

68 4 How to Adapt and Implement a Large-Scale …

Thus, the ADR team, with extensive representation of other practitioners from your
company, iteratively moves from the initial to an increasingly improved definition of
requirements and solution artifacts to arrive at the alpha version of a first model. The
Minimum Viable Product—the so-called MVP—is such an alpha version in the prototyp-
ing of agile software development.

In a further iteration, an improved beta version is created, which should then prove
itself in future practical application as agile software artifacts for your company.

In addition to the regular weekly meetings of this agile team, the third principle of
mutual design is applied to work together on these prototypes in an authentic and simul-
taneous evaluation.

Continuously supplement the problem formulation with the insights gained in the
formative evaluation. The evaluation results also flow into the as-is analysis.

Phase 3: Reflection & Learning
The learning and reflection process is reflected in the corresponding tasks in this phase:

1. Reflect on the design of the solution artifact.
2. Evaluate compliance with the rules.
3. Analyze the intervention of the results with regard to the defined practice and research

objectives.

By examining the originally defined problem from ever new perspectives in Phase 3,
a conscious reflection of the chosen theories and the emerging ensemble of individual
solution artifacts takes place, which significantly contributes to identifying relevant
knowledge for solving class problems. In this process, the research process is continu-
ously adapted based on early evaluation results to reflect the increasing understanding.

With an expert interview, you reflect on a summative evaluation of the design of your
solution artifact. Furthermore, you continuously evaluate compliance with the rules
established in the process and analyze the intervention of the results with regard to the
defined practice and research objectives. The invaluable advantage of this approach is
that you ensure that your reflection and learning phase conceptually moves from the cre-
ation of a single solution towards the application to a broader class of problems. Conse-
quently, you create not just a science-based solution for a single problem, but one that is
equally suitable for a multitude of similar challenges.

Phase 4: Formalization of Learning
The formalization of generalized results summarizes the learnings for your company in a
science-oriented and practical manner. In addition to the iterative examination and vali-
dation, a final reflection is complemented by a final evaluation aimed at ensuring that the
created artifacts are generally suitable for solving similar problems in the class of com-
parable initial situations.

69

Accordingly, tasks in this phase:

1. Abstract the learned concepts for a class of field problems.
2. Share the results and assessment with practitioners.
3. Articulate the results as design principles.
4. Articulate learning in light of the selected theories.
5. Formalize the results for dissemination.

How to Successfully Apply the ADR Methodology
You apply this problem space exploration technique of ADR both in the analytical prob-
lem analysis and in the context of an evaluation repeatedly. The formative evaluation rep-
resents the current analysis for you based on a representative of the processes practiced
in your company.

In a second step, in ADR Phase 2, you supplement this with ideal-typical processes
and activities that are generally considered useful in the agile environment. This means
that the entire knowledge process is accompanied by continuous analysis, reflection,
and optimization, as facts are examined from different perspectives and constantly ques-
tioned.

The questions that arise in this process help you structure the problem and create a
clear overview of the problem situation based on detailed questions.

Start with an Evaluative Analysis into Agile Transformation
For all types of organizations, the following questions regularly arise when prioritizing
processes and activities in the agile software release cycle:

Why? Objectives:
• What are the strategic objectives?
• Why? Are defined objectives still current and valid?
• Critical: Commitment (agreement of all parties)

What? Problem analysis:
• What is the overarching prioritization?
• Review the need for overarching prioritization
• What function does local prioritization have?
• What types of decisions need to be prioritized?

4.1 Action Design Research

70 4 How to Adapt and Implement a Large-Scale …

How? Processes and activities:
• Organization of decisions
• Derive the requirements for processes and activities within overarching prioritization
• How and when do higher-level priorities apply?
• Identification of overarching decision-making processes
• Definition and classification of decision criteria
• Methodology, roles, and processes
• Collective decision-making/prioritization/coordination processes between agile

teams
• Synchronization of information, decisions, etc.
• Integrated validation processes
• Knowledge management
• How is feedback from customers and internal teams incorporated?

Who? Roles:
• Who is involved in the decision-making and prioritization process?
• Domains
• Roles
• Teams
• Organizational forms
• Who is responsible for which processes and activities?
• Specialization versus generalization

When? Time management:
• Critical time: Deadlines
• Coordination within teams
• Synchronization of agile teams
• Release planning and roadmap for software products

4.1.1 Defining Individual Adaptations for a Large-Scale Agile
Framework

To adapt an agile framework to the specific requirements of your organization, the
requirements must be defined in accordance with the goals of your organization and the
needs of your employees and teams.

As part of the iterative reflection, you continuously ensure, with concrete questions
and considering current research, which requirements arise for the specific problems in
your company.

The following are the requirements for an agile organizational and prioritization
model for companies in the role of a software manufacturer; these include, for example,
the following processes and activities:

Processes and Activities
• Particularly required for the effective orchestration of various software products are:

– Transparent product strategy,

71

– Medium and long-term, cross-product product roadmap,
– Agile product release plan,
– IT security by design.

• The agile model should provide suitable approaches to
– Support early effort estimation,
– Avoid misprioritization,
– Clarify features and release strategies,
– Serve quality improvement,
– e.g., through feedback and agile control mechanisms.

• The model should fundamentally be geared towards reducing time-intensive testing
efforts.

• For this purpose, the agile model must support small-scale effort definitions that ena-
ble more accurate and reliable effort estimation.

4.1.2 As-Is Analysis in the Transformation Process
through Evaluation

A very proven method to determine such a transformation process as precisely as possi-
ble for your organization is to conduct an evaluation by surveying your employees.

An initial problem analysis facilitates the entry to effectively identify practice-rele-
vant problems and causes: problems can only be solved when their causes are known.
Therefore, an evaluation by surveying the employees of your organization is the ideal
approach to identify existing problems and acute optimization needs in the context of
introducing a large-scale agile framework.

The 5-W questions method is suitable for effective problem analysis. By constantly
asking “WHY” problems occur or prioritization and coordination processes are difficult,
even initially hidden causes become clear through a constantly questioning as-is analy-
sis. The focus is on finding the cause of the error so that optimizations can be effective.

Easily Applicable Solution Models as a Result of the Formative Evaluation
In the context of a scientific investigation, an evaluation for the as-is analysis typically
takes place as a fixed integral part in one piece. Instead of a classic evaluation process, a
continuous validation of assumptions and hypotheses appears more suitable in the agile
context today. What you then receive are easily applicable agile solution models.

Qualitative Employee Survey—Considerate Inclusion of All Stakeholders
Based on an accompanying qualitative employee survey, you evaluate the current state
for your company. The goal of such a qualitative survey in relation to the practical exam-
ple of developing an agile prioritization model for software manufacturers is to deter-
mine how cross-product coordination can be improved in the dimensions of technical
framework conditions, professional documentation, and inter-process communication.

4.1 Action Design Research

72 4 How to Adapt and Implement a Large-Scale …

In a qualitative survey in the form of individual interviews, you should definitely
ensure that employees in various roles are involved. In the practical example, these
are, for example, those employees who are relevant for the implementation of software
product development. Thus, the survey in the practical example serves both to take into
account the needs and wishes of employees and to determine the need for change for
optimized process design in software development and the prioritization of requirements
and documentation of a software product family.

You conduct the survey informally as a personal conversation. Be sure to use adapted
questions if you interview different target groups. Such adjustments are necessary, for
example, if some of the evaluation participants do not have in-depth technical knowl-
edge, while another evaluation group has exactly this expertise. Your W-questions prove
to be particularly useful for you now, as they help you to identify backgrounds and dif-
fering needs in your company. If answers emerge during the survey that are relevant in
several sub-areas of the survey, be sure to note this in the written documentation and take
these valuable insights into account in your evaluation. In addition to exploring needs,
the survey also serves to evaluate previous ideas and any interim results.

Evaluation Participants
The evaluation should definitely include a representative selection of people in relation
to your initial problem and the company context. Ask yourself the following questions,
for example:

• Which teams/departments/specialist groups are affected or should be involved in the
process in the future?

• Which employees are currently facing difficulties in the process?
• Which activities will change?
• How do the changes affect existing processes in the company?
• Which processes have not yet been digitized?
• Which employees and departments need to be involved for what purpose?

If you lack detailed knowledge of these or similar questions in the company context, the
evaluation provides your company with valuable insights that correspond above all to
the current practice in your organization. When in doubt, interview a few more people
rather than foregoing important internal company information. Of course, such a survey,
including preparation, implementation, and careful evaluation, involves considerable
effort; however, you can be sure that these efforts are worth it and will have a positive
impact on the results. Especially when you want to establish new roles such as a Chief
Digital Officer (CDO) or new teams in the company, such a survey is of particular ben-
efit.

To illustrate, Table 4.1 “Participants of a Formative Evaluation” visualizes a repre-
sentative selection of people for an evaluation in relation to the employees and roles typi-
cally involved in agile software development.

73

When assembling the evaluation participants, it is also important to ensure that the
different agile teams are represented, so that the characteristics and differences regarding
agile approaches become clear.

In particular, question—and do so service-/product-wide—whether and what spe-
cial features and needs the different teams have for agile approaches. Use evaluation to
examine in particular whether and to what extent requirements for a higher-level prioriti-
zation exist. Your evaluation will then also provide a representative cross-section in terms
of the range of tasks and professional functions, enabling you to obtain a balanced over-
all picture for assessing your organization as a whole.

Table 4.1 Participants of a formative evaluation. (Source own representation—Sascha Block)

No. Role/Function Function/Team Location Date

1 Company Management Board/Managing Director Hamburg 21.09.21

2 Product Management Product-/Cross-Team Hamburg 18.03.21

3 Area Management Product-/Cross-Team Hamburg 19.03.21

3 Chief Information Officer (CIO) Product-/Cross-Team Hamburg 19.03.21

4 IT Consultant Product-/Cross-Team Hamburg 18.03.21

4 Product Owner Product A Hamburg 17.05.21

5 Service Consultant Service-/Cross-Team Munich 17.05.21

6 Product Owner Product B Hamburg 18.05.21

7 Product Owner Product C Berlin 05.07.21

8 Service Owner Service I Hamburg 05.07.21

9 Service Owner Service II Munich 06.07.21

7 Software Developer Product A Munich 07.07.21

8 Software Developer Product A Munich 07.07.21

9 Software Developer Product B Munich 07.07.21

10 Software Architect Product A, B Hamburg 08.07.21

11 Software Architect Product C Berlin 09.07.21

12 Security Expert Product-/Team-wide Hamburg 09.07.21

13 UX Design Expert Product-/Team-wide Hamburg 12.07.21

14 Support Product-/Team-wide Hannover 13.07.21

15 DevOps Engineer Product-/Team-wide Hamburg 12.07.21

16 Sales Product-/Team-wide Munich 08.07.21

17 Marketing Product-/Team-wide Hamburg 10.07.21

18 SecDevOps Specialist Product-/Team-wide Hannover 10.07.21

19 Research, Innovation, Presales Product-/Team-wide Hamburg 10.07.21

4.1 Action Design Research

74 4 How to Adapt and Implement a Large-Scale …

Empathic Interviews
Empirical research for a new process design—or for optimizing an existing model—
should always begin with a deep understanding of the relevant processes and the techni-
cal context; for this purpose, interviews with stakeholders are particularly suitable [2,
page 39]. In order to gain the most accurate understanding of the different tasks and roles
in the agile software development environment, empathic and openly designed inter-
views should be conducted along predefined questions, so that the mindset of employees
regarding agile practices is captured, as well as relevant information on processes, activi-
ties, and roles.

Directly applicable and helpful for conducting such interviews are the following rec-
ommendations, which are based on the scientific recommendations in the teaching mod-
ule “Empirical Software Engineering” at the University of Hamburg [3]:

• Avoid yes/no questions
• Formulate open-ended questions
• Do not try to fill silence
• Establish eye contact
• Dig for interesting stories
• Ask follow-up questions
• Show empathy and paraphrase
• Look for extreme experiences
• Continuously ask “Why?”
• Leave room for comments

4.1.3 Survey Design

Ideally, the questionnaire addresses the three areas of everyday work, communication,
and agility, covering both different and central aspects of agile software development
that are relevant to your company.

Clarify in your survey design, in particular, how you currently prioritize, identify, and
document requirements across teams in the company.

The questions in the Everyday Work section serve you for the analysis of existing
tasks and processes within and between teams. Essentially, you can use the results of
questions 1) to 5) for your team descriptions. With questions 6) and 7), the actual analy-
sis of existing problems and requirements for a prioritization and organization model to
solve these challenges begins.

Everyday Work
1) What are your everyday tasks?
 What functions do you take on in software development/in projects?
2) What do you regularly do outside of specific tasks?

75

3) How do you contribute to software development?
 (e.g., core tasks, specialization, practices, and procedures)
4) How is work progress currently measured, controlled, and visualized?
5) How are decisions made and documented concerning your activities? How and who

makes the decisions?
6) What problems do you frequently face in your work?
7) Specific suggestions: What kind of support do you wish for?
 (e.g., in information gathering, communication, specific work processes)

Communication
8) Imagine you have made an important decision that affects the entire team or even

spans multiple software products. How do you communicate the decision made or
record it? Are you aware of who the recipient of such a decision is or how do you
solve this?

9) Do you have the impression that you receive important information too late or not at
all?

 O regularly O frequently O occasionally O rarely O never
 If yes: What kind of information? Example situation?
10) What information is repeatedly important to you in your specific position?
11) Have you been able to contribute and implement your ideas so far?
12) What suggestions do you have for improving cross-product documentation?
 Especially for optimizing the

– Technical documentation
– Infrastructure documentation (build management and deploy management)
– Artifacts for software architecture/technical framework

Agility
13) Do you feel that the software product development is agile enough?
14) Do you see difficulties in the cross-product lifecycle and what are the causes of

existing problems?
15) What would you change to improve the lifecycle of cross-product solutions?

4.1.4 Evaluation and Results of the Formative Evaluation

The preparation, implementation, and evaluation of a formative evaluation regularly
involve a considerable amount of effort. Make sure that sufficient time and support are
planned for this in your company. Careful coordination for implementation is just as
essential as transparent communication within the company about this project.

Honest and insightful answers from employees, which are ultimately valuable, will
be obtained in the survey if you approach it openly and create trust. Make your goals

4.1 Action Design Research

76 4 How to Adapt and Implement a Large-Scale …

transparent and easily understandable and take 10–15 minutes before each interview to
explain the background and objectives. Make it clear why the person being interviewed
is relevant and that the survey is solely for the optimization of their daily work routine,
thus automatically helping their company achieve increased success.

In your evaluation, you can then incorporate relevant statements. Mark these, for
example, according to the following scheme: [Number of the interviewee, abbreviation
of the role, number of the question]; combined sources can be added comma-separated.
Verbatim quotes should be marked with quotation marks and italicized. Arrange the
statements you have collected for the evaluation in a readable continuous text and thus
summarize existing problems for your company and existing practical requirements in an
understandable way. If this is advantageous for understanding, you can of course change
individual sentences grammatically, but never in terms of content.

Finally, summarize the insights gained from the evaluation and aggregation of the
answers of the formative evaluation.

4.1.5 Summative Evaluation

The summative evaluation can, for example, take place within the framework of an inter-
view with experts in the company who are suitable for evaluating the facts and insights
collected during the formative evaluation based on their assessment.

The purpose of the summative evaluation is to determine whether the results derived
by you and the model established using the Action Research Design appear suitable for
improving the overall organization and prioritization. With a focus on the efficient design
of software product lines, the optimization of the dimensions of the technical frame-
work, the subject-specific documentation, and the inter-process communication are at the
center of such a model.

In agile software development, the optimization of the dimensions of the technical
framework, the subject-specific documentation, and the inter-process communication are
at the forefront of an agile model in every company. However, it is up to you to deter-
mine the specific requirements for your company. The combination of formative and
summative evaluation provides you with the best methodology and results that you can
ultimately rely on.

4.1.6 Expert Interview

An expert interview takes place in the form of established evaluation theses, which result
directly from the model requirements and can be confirmed or denied by the experts. In
this case, the denial of a thesis—with regard to the suitability of the generated model
artifact for problem-solving—corresponds to its rejection, and the affirmation accord-
ingly to the suitability of the model for problem-solving.

77

The established theses ultimately reflect and answer your research questions in a
measurable way.

With the results of the evaluation, you switch to active practice mode
With the evaluation, you have worked on tangible results that reflect the needs of your
employees and teams and determined which new structures and processes are suitable
for improving collaboration within the organization and defined goals and results in your
organization.

4.2 Consider the Influencing Factors of the Cloud Trend
and Virtualization in the Focus of an Agile Framework

With the increasing shift of IT infrastructures to the cloud and with container-based vir-
tualization of applications, the complexity level of IT applications is extended by a new
dimension. This increase in complexity in IT scenarios also has a significant impact on
the establishment of an agile framework.

Although IT security has always been of great importance for the development and
operation of software, cloud security poses different requirements than the protection of
monolithic applications in traditionally largely isolated corporate networks.

With the cloud trend, numerous processes and business processes within an organiza-
tion are also changing. With the switch to the cloud or the expansion of cloud scenarios,
procedural and organizational changes within an organization are inevitably necessary.
The following section explains the relationships that exist here and the dimensions in
which this has a concrete impact.

None of the existing large-scale agile frameworks reflect the specific requirements in
the cloud context or with regard to IT security and their effects on the design of an agile
framework.

Since there are indeed relevant requirements for this, which are accompanied by
urgently needed organizational changes, it is absolutely sensible to reflect on the rela-
tionships and effects of certain technologies that are directly related to cloud service
models. This includes clarifying questions such as how to implement IT security by
design or a zero-trust strategy. Furthermore, the extended protection needs of a con-
tainer-based software architecture and associated mechanisms such as secret manage-
ment and components such as a public key infrastructure must be taken into account.
REST APIs, the approach of RESTful design, and microservice paradigms emerge as a
possible, effective technical implementation. The effectiveness of influencing factors for
a clearly visible visualization of information related to IT security and software architec-
ture artifacts and their optimal communication and visualization should not be neglected.
The individual sections already reflect the corresponding tasks, functions, roles, and pro-
cesses that result from this; these are presented once again in the generally valid context
of agile teams in Sect. 4.4.

4.2 Consider the Influencing Factors of the Cloud Trend …

78 4 How to Adapt and Implement a Large-Scale …

4.2.1 Cloud Computing

Cloud Computing is an IT service model for the demand-oriented use of IT resources
from a pool of configurable services from IT hardware and provided cloud applications
and basic services for using these cloud resources.

Cloud computing thus becomes usable only through the provided cloud infrastruc-
ture—which in turn combines hardware and software. Within cloud infrastructures, a dis-
tinction is made between the physical layer and a defined abstraction layer.

The physical cloud layer consists of the hardware resources required to support the
provided cloud services. Such cloud hardware does not differ from regular hardware in
traditional data centers and includes server, storage, and network components.

The conceptually higher-level cloud abstraction layer, which consists of cloud soft-
ware, lies above the physical layer. Both levels together realize the essential cloud prop-
erties in mutual interaction.

Based on the definition of the National Institute of Standards and Technology (NIST),
a cloud model is defined that consists of five essential characteristics and three service
models and distinguishes four types of clouds, which differ in terms of cloud deployment
[4, pages 2 ff.].

This cloud model consists of five essential characteristics, three service models, and
four deployment models:

4.2.2 Cloud Properties

The 5 Essential Cloud Characteristics
1. On-Demand Self-Services: A cloud customer can unilaterally and automatically pro-

vide desired computing capacities independently as needed.
2. Provisioning via Internet: The provided services are available over the internet and

are scalable through standard mechanisms.
3. Resource Pooling: The computing resources of the cloud provider are provided from

a pool of IT resources and services and can also be shared by multiple customers.
Based on a multi-tenant model, these resources are dynamically assigned as vari-
ous physical and virtual resources and reassigned as needed by the cloud customers.
Although a customer may perceive a location-based perception, a cloud customer
generally has no precise control or knowledge of the exact location of the provided
resources. Even if defined cloud services can be limited to a cloud region, a country,
or a state as a physical cloud resource, there is no control or claim to select a specific
hardware in the sense of a defined Configuration Item (CI) artifact at any time.

4. Rapid Elasticity: Cloud capabilities can be elastically provided and released. This
cloud property includes the option for customers to use freely definable rules for

79

 automatic capacity expansion, enabling horizontal and/or vertical scaling as needed.
To the cloud consumer, the available features often appear unlimited and can be used
in any quantity and at any time.

5. Measured Service: Cloud systems automatically control and optimize resource usage
based on intelligent measurement functions at an abstraction level suitable for the
type of service (e.g., storage, CPU utilization, bandwidth, and active user accounts).
Resource usage can be monitored, controlled, and reported online, providing transpar-
ency for both the provider and the user of the utilized cloud service.

4.2.3 Cloud Service Models

Different service models are also defined for cloud environments, which in turn have
concrete effects on the agile processes within their organization.

1. Software as a Service (SaaS): The cloud consumer has the option to use the cloud
provider’s cloud applications, which are based on a cloud infrastructure. Access to
the provided applications is usually from various client devices either via a thin-client
interface, such as a web browser, or through a program interface (API). The SaaS cus-
tomer does not manage or control the underlying cloud infrastructure, including net-
work, servers, operating systems, storage, or the provided application features. Even
though the software services are customizable and configurable, the source code and
the basic technologies used regularly remain hidden.

2. Platform as a Service (PaaS): The capability provided to the customer is to deploy,
in the cloud infrastructure, applications created or acquired by the customer, which
are supported by the platform provider using programming, libraries, services, and
tools. The consumer has control over the provided applications in PaaS and may also
have permissions for configuration settings for the application hosting environment.
In no case does the PaaS customer manage or control the underlying cloud infrastruc-
ture, including network, servers, operating systems, or storage resources.

3. Infrastructure as a Service (IaaS): The capability provided to the consumer is
the provision of processing, storage, networking, and other basic data processing
resources. The IaaS customer is able to independently provide these resources to
deploy and run any software on these resources, including operating systems and any
applications.

 The consumer does not manage or control the underlying cloud infrastructure but has
control over operating systems, storage space, and deployed applications; and regu-
larly has limited control over selected network components to use them in the sense
of, for example, host firewalls.

4.2 Consider the Influencing Factors of the Cloud Trend …

80 4 How to Adapt and Implement a Large-Scale …

4.2.4 Cloud Models

With the background of the previously presented cloud properties and cloud service
models, different cloud models have evolved, which have other characteristics in terms
of the provided cloud infrastructures and deployment strategies.

Private Cloud
The cloud infrastructure is provided for the exclusive use by a single organization com-
prising multiple cloud users. A private cloud can be owned by the organization itself or
by a third party, or it can consist of a combination of both.

Whether the operation and management of a private cloud take place within or outside
the premises of the respective organization is secondary. What is more important is how
the authorization model of such a private cloud regulates and logs access, as these central
aspects of a cloud architecture are directly related to the integrity of data and are there-
fore highly relevant for compliance with data protection requirements.

Community Cloud
The cloud infrastructure is provided for the exclusive use by a specific community of
consumers who have shared concerns (e.g., mission, security requirements, policies, and
compliance considerations). The community cloud can be owned by one or more organi-
zations, belong to a third party, and be managed and operated by a single organization or
a community, and such a community cloud can exist within or outside of buildings.

Public Cloud
In a public cloud, the cloud infrastructure is made available for open use by the gen-
eral public. The public cloud can be owned by a company, an academic or governmental
organization, or be in shared ownership. Physically, the cloud infrastructure is located in
the premises of the cloud provider. Amazon AWS, Google Cloud, and Microsoft’s Azure
Cloud are among the largest and most well-known public cloud providers.

Hybrid Cloud
In a hybrid cloud, the cloud infrastructure is a composition of two or more different
cloud infrastructures (private, community, or public) that remain separate entities but are
connected through standardized or proprietary technologies to enable data and applica-
tion portability.

Multi-Cloud
The multi-cloud, on the other hand, does not represent its own cloud model and does not
extend the five cloud models by a sixth cloud model, but merely represents a cloud usage
consisting of any combination of the five classified cloud models.

81

Figure 4.2 “Cloud Types” visualizes the coexistence of the various cloud models in a
shared, virtual infrastructure:

Impact of Cloud Models on Agile Structures
While the cloud term is often vague and generally used for cloud scenarios, many organ-
izations in practice already use mixed forms of multi-cloud scenarios.

It is important to be aware of this small but significant difference, as it has many fun-
damental implications for basic IT operations, IT security, and IT governance. Impacts
arise, for example, specifically for data protection and, of course, also with regard to the
IT security of cloud applications.

A hybrid cloud, for example, exists in conjunction with a network in an organization’s
internal data center connected to, for example, cloud services from Google Cloud and/or
connected AWS cloud services. These cloud scenarios are already widespread and typi-
cal cloud representatives.

In many cases, the technological change, with the migration of IT into cloud scenar-
ios, takes place without simultaneously addressing the organizational adjustments that
are so essential for organizations in the required manner. If important aspects of IT secu-
rity are neglected or inadequately considered, serious security risks have already arisen
not infrequently.

Technical Infrastructures with Impact on Data Protection and Legal Framework
Conditions
Each cloud usage has special characteristics in data processing, and the cloud models
always represent different protection areas for which a specific security concept becomes
relevant as soon as these cloud zones are used.

Multi
Cloud

Hybid Cloud

Public Cloud

Private Cloud

Community
Cloud

Fig. 4.2 Cloud Types

4.2 Consider the Influencing Factors of the Cloud Trend …

82 4 How to Adapt and Implement a Large-Scale …

Various aspects of data protection come into play here—for example, the technical
implementation of the legally anchored “right to be forgotten” for consumers. Security
officers and the new role of data protection officers must not only be named in person
and function but must also be actively involved in the technical implementation with
direct practical relevance.

From the perspective of software development, it is all too often overlooked who the
components come from and what implications this has for data protection and IT secu-
rity. Emergency concepts are often not available but are absolutely necessary to remain
capable of acting when damage or threat situations occur.

Especially in terms of security for multi-cloud environments, which consist of public,
private, and hybrid clouds, a public key infrastructure is indispensable. With such techni-
cal solutions, organizational adjustments are always required at the same time, which can
effectively ensure that the prescribed access protection and the functionality with con-
nected support processes are equally guaranteed.

When data is moved from one data room to another data room—and this is regularly
the case with cloud scenarios—different requirements arise with regard to data protec-
tion.

On the one hand, this requires technical mechanisms that meet this requirement, as
well as organizational measures that are optimally coordinated with them. At the same
time, however, these technical infrastructures also always have an impact on legal foun-
dations and agreements between the respective cloud operator, the cloud contract partner
as a direct cloud user, and the users as immediate cloud users.

4.2.5 Virtualization & Containerization

Cloud computing uses virtualization technology because of the cost-efficient advantages
it offers, such as payload-oriented hardware and energy use, automated error detection,
consequently improving the quality of software, and increased flexibility and easier man-
ageability.

Virtualization
Virtualization enables the shared use of resources of a single physical instance by mul-
tiple users and organizations. The virtualization concept is thus essentially a techni-
cal agility principle that consists of dividing the physical infrastructure of computer
and network resources into smaller, reusable, and more portable and flexible units. The
advantages lie in the efficient use of resources and the effective operation of parallel sys-
tems in an isolated environment.

Hypervisor
The hypervisor, also called Virtual Machine Monitor (VMM), is a software as a cen-
tral component of every virtualization concept, which enables the emulation of the

83

 underlying hardware resources and infrastructure. VMM creates the illusion of multiple
running machines on the same underlying hardware such as CPU, memory, NIC, and
hard drive, enabling a variety of applications running on different operating systems [5].
The hypervisor is executed on the host computer, and each encapsulated VM is referred
to as a guest computer (Guest-OS).

There are two different types of hypervisors:

Type 1 Hypervisor: Uses a direct connection to the hardware infrastructure, e.g.,
HyperKit (MacOS) or Hyper-V (Windows).
Type 2 Hypervisor: Runs as an application on the host-OS and thus has no direct con-
nection to the hardware infrastructure, e.g., VirtualBox or VMWare.

Figure 4.3 illustrates the difference between “Hypervisor Type-1 and Type-2 based on
Bernstein”.

Containerization
The technology of containerization is the alternative to virtualization. Containerization
involves encapsulating software code and all necessary dependencies in an isolated con-
tainer [6].

The bundling of software in containers simplifies the automatic deployment of soft-
ware services in the cloud and on heterogeneous systems, as a virtual operating system
and file system are executed on the integrated, native system. This significantly simpli-
fies the development process across the phases of development, testing, integration, and
deployment, as it allows the developer to provide software that is platform-independent
and highly portable.

Docker
Docker is one such containerization solution. By now, Docker has firmly established
itself as the base technology for containerized operation and deployment of applications
due to its ease of use.

The once-created, virtualized container already provides an isolated layer for auto-
mated quality assurance tests with its virtualization layer. With the right approach, these
containers can be more easily restricted to protect against unauthorized access than pro-
grams running on a native platform.

The robustness of applications also increases with the containerized operating envi-
ronment, as each container serves as an isolated sandbox for the programs contained
within and protects the underlying system from being affected by applications from other
environments.

Thus, containerization allows many containers to run in parallel on a single system
without affecting each other.

Figure 4.4 “Docker Container versus Virtualization” compares the different virtualiza-
tion principles.

4.2 Consider the Influencing Factors of the Cloud Trend …

84 4 How to Adapt and Implement a Large-Scale …

The Docker Daemon in the Docker container concept corresponds to the layer of the
hypervisor of a virtual machine. The Docker Daemon runs as a service in the background
on the host OS and manages—as a middleware component—everything required for the
operation and interaction in the data flow with Docker containers.

The Docker Daemon communicates directly with the host OS and organizes all
required services and data for the container in the process. The Docker Daemon also
ensures a clean separation in the layer concept with the goal that each container is iso-
lated from both the host OS and other containers.

Container Orchestration
With further mechanisms and tools, containerized applications can then be scaled much
more easily and thus offer a demand-oriented agile solution for performance adjustment.

The management of a large number of containers then requires a reliable solution for so-
called container orchestration.

Long ago, the former niche technologies of container solutions around Docker and the
orchestration tool Kubernetes have proven themselves in numerous projects and estab-
lished themselves as a standard, thus making agile deployment of software something
completely ubiquitous.

Fig. 4.3 Hypervisor Type-1 and Type-2 based on Bernstein

85

Kubernetes—The De Facto Standard for Container Orchestration
One such orchestration solution is Kubernetes, which, as an open-source tool, han-
dles the deployment, scaling, and management of containerized applications. Although
Docker also offers an orchestration solution with Docker Swarm [7], Kubernetes is con-
sidered the most widely used orchestration solution in professional environments accord-
ing to a survey from the “State of Cloud Native Development Report 2021” [8]. The
CNCF report is of high relevance, as more than 19,000 developers worldwide were sur-
veyed between November 2020 and February 2021. More than 3800 survey participants
answered questions about the development of backend services and the technologies they
use. The spread of container-based deployments has been increasing ever since; more
than a year has passed since this survey, which is already a relatively long period for
evaluating technology trends. Many existing software releases have since been replaced

Fig. 4.4 Figure 18 Docker Container versus Virtualization—Sascha Block

4.2 Consider the Influencing Factors of the Cloud Trend …

86 4 How to Adapt and Implement a Large-Scale …

by new release versions. However, basic technologies do not undergo rapid change,
especially since the selection remains limited. Those who read the report closely will
notice that Kubernetes technology is still in an evaluation stage in many projects; the
shift towards the cloud, along with the associated topics of containerization, is thus in
full swing in the vast majority of organizations. It is certainly worth considering to what
extent the CNCF is influenced by economic interests in its statements, as each project
involves very high investment sums and correspondingly high profit expectations. But
even under this aspect, the CNCF remains an excellent starting point for evaluating tech-
nological solutions against each other.

Risk of Incomplete Knowledge of Container Technologies
An interesting statement comes from the CTO of the CNCF, Chris Aniszczyk:

“The discrepancy between the use of containers (93%) and the use of Kubernetes (96%)
has steadily increased over the past year. There seems to be a growing gap in understand-
ing that these technologies are essentially a complete package. What’s fascinating is how
quickly Kubernetes has evolved from a niche technology to such a ubiquitous technology
that people don’t even know they’re using technologies built on top of it, as the value for
end-users has shifted upwards.”It is worth pausing at this point in the technical context: Of
course, there is a significant risk in using technologies that are not fully understood. This
is an important insight and an excellent transition to the next section and the relevance of
knowledge about software architectures and IT security.

In the context of large-scale agile frameworks, it is a central point of high relevance to
anchor technical knowledge in organizations and to disseminate the right information
and facts. Despite all collaboration tools, effective mechanisms are needed to identify
and record relevant knowledge. This, in turn, requires the necessary time frame, patience,
and all the necessary support.

4.2.6 Relevant Bodies for Establishing Internet and Cloud
Standards

Since container orchestration has become an established standard in software develop-
ment and deployment of software releases, and the interoperability of cloud technolo-
gies represents an important characteristic for software architectures, it is advantageous
to regularly obtain information from first-hand sources. The following standardization
bodies are highly recommended for this purpose:

Open Container Initiative (OCI)
The Open Container Initiative is an open initiative with the defined goal of creating open
industry standards for container formats and container runtime environments [9].

87

The OCI has existed since June 2015 and was founded by Docker and other leading
companies in the container industry. Companies such as Amazon, Google, Cisco, Apple,
SUSE, Microsoft, and many other strong partners participate in the OCI and contribute
their requirements and expertise.

The Open Container Initiative Community sees itself as a technical open-source com-
munity. Therefore, the tech initiative is working intensively on the further development
and establishment of standards for container formats and container runtime technologies.

Currently, two specifications are in the focus of the standardization committee:

• Container Runtime Specification (Runtime-spec) and
• Container Image Specification (Image-spec).

Transparency first The Technical Oversight Board (TOB) is the technical supervisory
body of the OCI and is responsible for managing conflicts, violations of procedures or
policies, and for all cross-project or overarching issues that cannot be resolved through
the decision-making body for OCI projects. The TOB is also responsible for adding,
removing, or reorganizing OCI projects. Of course, all specifications are also published
on GitHub [10].

Cloud Native Computing Foundation (CNCF)
The Cloud Native Computing Foundation (CNCF) serves as a vendor-independent body
for cloud standards. The CNCF hosts cloud projects at different maturity levels and is
thus a central point of contact for learning about and evaluating cloud technology trends
and the important components of the global technology infrastructure. To this end, the
CNCF brings together the world’s leading developers, end users, and providers and
organizes the largest open-source developer conferences. The CNCF is part of the non-
profit Linux Foundation.

The projects differ in their maturity level: The most advanced stage with a high matu-
rity level is currently formed by the 16 graduated projects, which include the Container
Runtime containerd, the Coordination & Service Recovery services CoreDNS and etcd,
the Service Proxy envoy, the Logging solution fluentd, the Container Registry Harbor,
the Application Definition & Image Build HELM, the Tracing solution JAEGER, the
Scheduling & Orchestration solution kubernetes, the Service Mesh LINKERD, the Secu-
rity & Compliance solutions Open Policy Agent and TUF, the Monitoring service Pro-
metheus, the Cloud Native Storage solution Rook, and the Database solutions KV and
Vitess [11].

33 projects are currently assigned to the Incubating status. And 68 more projects are
currently still in the Sandbox stage, thus showing the lowest technology maturity level.
Before committing to a technical solution as an organization, it is strongly recommended
to check the official project status through this body before backing the wrong horse…

4.2 Consider the Influencing Factors of the Cloud Trend …

88 4 How to Adapt and Implement a Large-Scale …

Internet Engineering Task Force (IETF)
The Internet Engineering Task Force aims to improve internet technologies by creating
high-quality, technical documents and guidelines that influence the way people design,
use, and manage the internet [12].

Members who develop technical specifications for the committee have many years of
technical expertise. The documents of the IETF are therefore of high technical quality
and are created based on network engineering principles and established standards.

When the IETF takes on the protocol responsibility for a protocol or function, it is
responsible for all technical aspects and properties of the protocol.

The standards are created based on the technical judgment of the participants on
defined topics, based on practical experience in implementing and applying these highly
relevant specifications.

In principle, anyone can become a part and active member of the committee. The
entire circle of technical experts is made up of voluntary participants, and anyone who
wants to contribute to “making the internet better” is encouraged and welcome.

Working Groups of the ITEF
For effective standardization, the ITEF is divided into working groups, which are shown
in Table 4.2 “Working Groups of the Internet Engineering Task Force (IETF)”.

All relevant protocols, security standards, and frameworks, such as OpenID Connect
(OIDC) for secure and standardized Internet technologies and thus also for cloud tech-
nologies, are supervised by the IETF; so you should definitely consider the recommenda-
tions and standards of the IETF in the context of your software architecture.

4.3 Software Architecture & IT Security as an Integral Part
of an Agile Framework

Modern cloud architectures and virtualized operating environments are highly heteroge-
neous and complex systems, based on distributed systems and consisting of a multitude
of components with countless functions, always relying on software.

Basic principle of responsibility in handling sensitive data
In all of this, the basic principle of responsibility in handling sensitive data applies. At all
times, sensitive data such as personal data, personal health data, intellectual property, or
financial transaction data must be identified, i.e., technically cleanly classified, in order
to define the appropriate security levels and standards in data transfer based on this.

Then, an appropriate security configuration is carried out, with adequate protection
levels for the classified data. With this approach, a high or even very high level of protec-
tion for sensitive data can be ensured.

89

4.3.1 IT-Security-by-Design: Software Architecture & IT-Security

How can IT security be anchored as an integral component in an organization as a bun-
dle of various activities and technical protective measures when IT systems are regularly
highly complex and these almost always consist of countless individual components,
basic technologies, and frameworks? The artifacts of software architecture—with an
integrated IT security architecture and its communication within the organization—play
a central role in this.

Table 4.2 Working Groups of the Internet Engineering Task Force (IETF)

ITEF Working Group Specialization

Internet Engineering Steer-
ing Group (IESG)

Internet Steering Group for Technology
The Internet Engineering Steering Group (IESG) is responsible
for the technical management of IETF activities and the Internet
standards process

Internet Research Task
Force (IRTF)

Internet Research Task Force
The Internet Research Task Force (IRTF) promotes research work
that is important for the development of the Internet by setting up
targeted, long-term research groups that deal with topics related to
Internet protocols, applications, architecture, and technology

Nominating Committee Nominating Committee
The Nominating Committee, or as it is commonly called, the Nom-
Com, is responsible for reviewing open positions of the IESG, IAB,
and IAOC and nominating a candidate for each

Tools Team The IETF Tools Team is a group of volunteers from the IETF com-
munity that develops tools to support the work of the IETF itself

Internet Architecture Board Internet Architecture Committee
The Internet Architecture Board sets the long-term technical direc-
tion for Internet standards and ensures that the Internet continues
to grow and evolve as a platform for global communication and
innovation

Directorates Directorates
IETF Directorates, composed of experienced IETF participants,
often serve as advisory groups for the work of the IETF

IETF The IETF Trust was established to acquire, hold, and maintain intel-
lectual property and other property used in connection with Internet
standards

IETF Systers The IETF Systers program provides women with the opportunity to
network with peers from all areas of the Internet Engineering Task
Force and the Internet Research Task Force

4.3 Software Architecture & IT Security as an Integral …

90 4 How to Adapt and Implement a Large-Scale …

Software architecture as a technical and process-oriented agile software design pro-
cess for all stakeholders
In practice, it is extremely challenging to ensure IT security in every individual com-
ponent as well as overall—i.e., in the interaction of components through their interac-
tion and data flows—permanently. That is why it is so important to map the software
architecture together with the determined requirements as best as possible—and with
direct reference to IT security. The software architecture documentation is an especially
important tool for all stakeholders, largely detached from role and function. These arti-
facts are indispensable for, for example, software architects, IT security specialists, and
all stakeholders within software development itself. This is not only about the technical
detailed documentation for IT specialists but also about easily understandable process
documentation for all stakeholders.

IT-Security, software architecture, and software documentation complement each
other
Starting from the definition of requirements, the documentation of ongoing software
development, the recording of architecture decisions and their implementation status,
security-relevant facts about IT architecture and the clear identification of data worth
protecting play a central role. The aim is to maintain an overview of an increasing num-
ber of API endpoints or to clearly record technical debts in the IT architecture, with the
goal of closing these vulnerabilities as quickly as possible.

Software architecture is the supporting foundation of every IT solution, regardless of
the extent to which hardware components—which in turn also rely on software build-
ing blocks—play a role. No one would dispute this. Nevertheless, software architecture
is still neglected in many projects. IT security ultimately becomes possible only on the
basis of a solid and gapless software architecture documentation.

IT-Security-by-Design
The earlier IT security requirements are taken into account, the more cost-effective their
consideration will be. You will benefit immensely in favor of high software quality and
avoiding unnecessary costs if you involve your IT security specialists early on and estab-
lish agile processes in which IT-Security-by-Design is taken into account in a practical
manner.

The approach IT-Security-by-Design is based on the idea of considering IT security
requirements already in the initial design phases [13, page 87]. Even if it may seem
uncomfortable because IT security requirements increase the overall requirements and
efforts, maximum IT security remains a MUST criterion, so these security guarantees
must not only be fundamentally included at a defined point in time, but should also be
incorporated as early as possible to keep costs minimal and ensure security standards
right from the start.

Subsequently raised requirements are—see also section “Process models, frame-
works, and standards”—proven to be significantly more complex and costly [14, pages

91

71/72]. If security requirements are incorporated as early as possible, the overall project
duration is also reduced. If IT security-relevant functionalities can be directly integrated
into prototyping and these features are testable and verifiable in early phases, resource-
intensive changes can be avoided.

A pragmatic approach to effectively integrate security-relevant aspects and make IT-
Security-by-Design a reality is the implementation of the Zero-Trust strategy.

4.3.2 Zero-Trust Strategy

Associated with the increasing use of cloud services and the resulting challenges in
terms of IT security and privacy protection are fundamental aspects such as identity
theft, data protection breaches, data integrity, and data confidentiality. This makes trust
management for cloud computing, microservice, and API-based architectures indispen-
sable.

Precisely because cloud computing services are provided from remote and globally
distributed data centers and we cannot exercise direct control from within our organiza-
tion, except for taking technical measures, there is a need for a suitable strategy to pro-
tect any data; the Zero-Trust concept offers proven solutions for this purpose.

Establishing trust based on the Zero-Trust strategy
A Zero-Trust strategy is a conceptual model for highly protected IT architectures and
offers conceptual protective measures in the form of technical best practices to ensure
trust in sensitive environments based on technical protective measures and procedural
trust steps in organizations [15]. Figure 4.5 illustrates the “Zero-Trust Strategy” with its
basic functionality based on the components in reference to Mehraj/Banday.

4.3.3 Protection Principles and Their Technical Implementation
Based on Zero Trust

Let’s take a closer look at the individual measures of the Zero-Trust strategy with refer-
ence to cloud strategies and their effectiveness in terms of IT security:

Identify data and access
A Zero-Trust strategy is based on the basic principle “never trust, always verify”.

This security model assumes that only users, devices, data, applications, and services
operating within the security boundaries of an organization should be trusted after suc-
cessful user AND device authentication.

Such a security strategy must also ensure that every system and each individual entity
is verified for their identity before granting access to anyone requesting a connection
to its resources. Consequently, such a trust check occurs every time a user attempts to

4.3 Software Architecture & IT Security as an Integral …

92 4 How to Adapt and Implement a Large-Scale …

 interact with the system, classifying the entire network traffic as untrustworthy. These
two principles are, so to speak, the cornerstones and can be technically implemented
using multi-factor authentication.

Multi-factor Authentication (MFA)
The principle of multi-stage authentication (MFA principle) requires more than just a
single authentication method to verify the user’s credentials. Instead of relying solely on
a password, multi-factor authentication may, for example, require a user to also enter a
secret code sent to an email address or a mobile phone number that only the user should
have access to.

“Prevent data breaches, automatically comply with GDPR”

Zero Trust Strategy

Identify data & accesses
Multifactor Authentication (MFA)

Just-in-timeaccess

fine-granular authorization model
"Segregation of Duties (SoD)."

Zero Trust Parameters
"Least privilege access"

IT security at applicationlevel
"Micro-segmentation"

Zero Trust Logging & Monitoring
Auditing & Tracking

Security Automation & Orchestration

Data / Resources

U
S
E
R

A
u
t
h
o
r
i
z
a
t
i
o
n

D
E
V
I
C
E

A
u
t
h
o
r
i
z
a
t
i
o
n

Fig. 4.5 Zero-Trust Strategy—Representation based on Mehraj/Banday.

93

By implementing technical measures, the Zero Trust model virtually automatically
contributes to preventing data breaches caused by the exploitation of privileged creden-
tials, by banishing the concept of trust from an organization’s network architecture. This
is achieved through micro-segmentation of the network with fine-grained control of
user access, thereby preventing unwanted access, which is often lateral in system archi-
tectures, i.e., allowing access to connected systems. Another very effective protection
mechanism of the Zero Trust model is aimed at quickly withdrawing trust from both
individual entities and a system component. The Zero Trust strategy thus realizes a
strict approach aimed at maximum IT security.

Just-in-time Access
The just-in-time access is based on the idea that no user or machine identity should have
permanent, constantly available access to an important resource. Instead, the identity
is verified each time a connection is established. Likewise, the authorization to access
a resource is automatically removed after the connection has been established and the
data transfer has ended. This ensures that the identity requesting access undergoes the
required security checks each time. This is technically implemented through the mech-
anism of time-limited secrets, so-called tokens, and technology specifications such as
OAuth 2.x or Open ID Connect (OIDC).

Based on the classification of data, sensitive data flows in the networks between the
individual data transfer interfaces are specifically monitored, and authorized access,
as well as unauthorized access attempts, are logged. Since data flows can regularly be
directed in multiple directions simultaneously and should always be optimized, this
principle leads to the definition of micro-networks. Minimal data flows are then also the
basis for the implementation of fine-grained permissions.

Fine-grained Permission Model & Segregation of Duties
The principle of separation of tasks and responsibilities—also known as Segregation
of Duties (SoD)—reflects that no person or device should have complete access to all
important systems or data of a company. If this were the case, a potential attacker who
gained control of the security data of that person or device would have unrestricted
access to all areas of the company network.

Examples of overly broad access include network firewalls and virtual private net-
works (VPNs). They isolate and restrict access to technology resources and services, but
once access has been gained, one is considered trustworthy by default. If access in cloud
models were still limited to this model, potential attackers would only have to overcome
these hurdles to gain complete control of system landscapes and exploit access to all
data.

Another important aspect of the separation of responsibilities is that no person should
hold multiple roles, especially not in the critical parts of the software release pipelines.
For example, no developer should have access from the test to the production environ-
ment or be able to expand their privileges without appropriate supervision.

4.3 Software Architecture & IT Security as an Integral …

94 4 How to Adapt and Implement a Large-Scale …

Accordingly, fine-grained authorization models must be implemented, which usually
operate on the basis of microservices, but in any case ensure that only the actual minimal
required permissions are granted.

The fine-grained role-based authorization concept also reflects the fact of accepting
security restrictions within the architectural concept, that a frontend can never be con-
trolled in detail per se. Even implemented protective functions regarding frontend manip-
ulation have limited effectiveness, so that a trustworthy protection level can only be
achieved through the interaction of all individual protective measures.

Role- and permission-based processes
The fact that applications are increasingly being run in containers requires role- and
permission-based processes in all agile teams. Increased sensitivity in handling sensitive
data is also essential during the development, deployment, and production of software
artifacts and complex applications.

Zero-Trust Parameter: Least privilege access
In practice, the separation of tasks is achieved by assigning each user a role with the
least access rights (Least privilege access), which means that each user or device within
the network can only access the most important resources they need and nothing else.
This has the advantage that if an attacker successfully gains access or control of a user’s
login credentials or device from outside, this access is limited to this isolatable environ-
ment, reducing the potential security risk. This principle is closely related to the previ-
ously explained mechanisms of the fine-grained authorization concept and the separation
of tasks and responsibilities.

Microsegmentation
The Zero-Trust model also utilizes microsegmentation. By segmenting services, the
company’s IT environment is divided into security zones. Separate authorization is
required for access to each of these zones. This is a proven method that significantly
minimizes the likelihood of an attacker “jumping” from one part of the network to
another to access and compromise more sensitive data.

Auditing and tracking through logging & monitoring
Regular audits and proper reviews of IT security ensure, among other things, that the
required security standards of the minimum necessary protection level are always met.
This includes, for example, current network protocols with encryption standards adapted
over time. However, auditing is not just a random check, but an agile, ongoing process.
In order to arrive at a meaningful tracking of possible abnormal occurrences, so-called
incidents, or to be able to confirm with a clear conscience that only authorized access
takes place, every connection and activity in the network must be recorded based on log
files. This generates a large amount of logging data, which can only be evaluated auto-
matically due to its volume.

95

Within the monitoring process, these log data can provide insights into unusual activi-
ties in the network, such as a verified and possibly compromised identity. It should be
noted that detecting a compromised identity is not a trivial matter. On the one hand, the
existing data protection regulations must be observed, and these regulations prohibit—in
combination with the implementation of Zero-Trust rules—any content-related insight
into data worth protecting.

Thus, the abstraction levels of log data, along with user reports, are often the only
clues to identify compressions. Random checks complement the approach to suspected
cases of compromise.

An IT security solution requires corresponding legally compliant, anonymized session
data (Session Data) so that in legitimate control situations it can be precisely analyzed
which actions were performed by which user with which authorization in a session. This
approach using logging and monitoring is not only very useful for forensics but can also
be used as evidence for reporting in corresponding security audits.

Security Automation & DevOps Orchestration
The automation of deployment processes plays an important role for agile frameworks
and the integration of practical IT security principles for two reasons: In order to enable
automation policies and security automation at all, individual processes must be appar-
ent. For this purpose, countless individual data flows must be aggregated and mapped.

In doing so, a profound understanding of technology is required, which regularly
involves familiarizing oneself with new tools and data flows. While complex data flows
have previously taken place predominantly within monolithic applications, this paradigm
is gradually dissolving not only through microservice architectures but also because the
Zero-Trust concept requires precisely this detailed understanding and knowledge of indi-
vidual data streams within and outside our organization.

The necessary tools to implement this are, on the one hand, Git systems and container
solutions that encapsulate our components. Release strategies, including extensive test
management, then reflect the interaction of our software components and map the meta-
level of data flows. Only on these infrastructural foundations can tasks be automated
across the entire cloud platform or even outside the cloud.

4.3.4 Secret Management

Secret keys, or simply secrets, are digital secrets worth protecting that exist within a
company’s networks and beyond. The need for protection extends to traditional corporate
networks—which are generally easier to protect—as well as the emerging cloud environ-
ments.

A secret is a key-value pair that grants access to information, APIs, and services to a
specific user or group of users.

4.3 Software Architecture & IT Security as an Integral …

96 4 How to Adapt and Implement a Large-Scale …

With such secrets, sensitive information such as configuration files and source code
can also be protected. A fundamental IT security requirement is that source code never
reveals unprotected secrets.

With the versioning of source code, secret protection also extends to resources shared
with other developers and web-based repositories. At this point, there is an additional
need for a solution to manage sensitive secrets.

Secrets include credentials such as:

• Passwords
• Usernames and database identifiers
• API keys
• SSH keys
• Certificates

4.3.5 Extended Protection Requirements for Virtual Container
Environments

Especially for a cloud computing environment, security challenges must be overcome
that are associated with the specific cloud infrastructure. As previously shown, cloud-
based services are inevitably closely linked to the technologies of virtualization and
containerization of an IT landscape. An extended level of protection extends to these
containerized environments, in which sensitive information in the form of so-called
Secret Keys or Secrets Keys, is located.

Protection requirements for containerized applications
When applications are operated in containerized environments, these secrets must be
injected into these applications as environment variables across countless hosts in distrib-
uted container landscapes. The injection of these secrets into the container environment
occurs at build time, so that the secrets are only accessible at runtime, with authorized
access.

Key Management in the Context of Agile Frameworks
In the context of agile frameworks, key management of such secrets is not directly con-
sidered. Rather, the management of keys and cryptographic key material is indispensable
in the context of implementing IT security. In the role-based authorization concepts—
on which the permissions granted by Secret Keys are based—there is another important
security concept that must be implemented directly when establishing an agile frame-
work for your organization.

97

4.3.6 Key Management & Cryptographic Protection Measures

Verified information and proven methodology for key management with many details
are specified, for example, by NIST [16,17]. The Federal Office for Information Security
(BSI) also adapts its guidelines on cryptographic procedures and regularly updates rec-
ommendations on key lengths and IT security [18]. The recommendations for implemen-
tation in your organization should initially be considered in the following aspects when
implementing:

• Guidelines for cryptographic key management;
• Practice for managing cryptographic key material;
• Specification of security services in the context of software architecture especially

regarding the use of cryptography, algorithms, and key types that can be used;
• Definition of necessary organizational processes with direct connection to emer-

gency management;
• Definition of update regulations.

Lifecycle of Cryptographic Protection Mechanisms
Secrets are regularly generated based on cryptographic functions and encrypted in the
same way. Cryptographic methods for protecting sensitive data are software artifacts.
These can become obsolete and ineffective just like hardware, or only guarantee an
insufficient level of IT security protection.

The estimated time span during which data protected by a specific cryptographic
algorithm in combination with the key size is referred to as the security duration of
the algorithm. During this time, the algorithm can be used both for applying crypto-
graphic protection (e.g., encrypting data) and for processing the protected information
(e.g., decrypting data), although the period for applying the protection may be shorter
than the security duration of the algorithm (see figure).

Security Lifecycle of an Algorithm: The algorithm used here MUST provide ade-
quate protection for the sensitive data throughout the entire lifecycle of the algorithm,
i.e., the period for which the use of this protection method is considered secure [17, page
60]. In Fig. 4.6, the “Lifecycle of cryptographic protection measures based on the NIST
classification” is shown. Relevant in the context of agile frameworks is that mechanisms
are in place in organizations where regular audits ensure the effectiveness of crypto-
graphic methods.

Establish Agile Protection Measures for Secrets
In addition, you should ensure that agile mechanisms are in place for your organization
that, on the one hand, verify the assumptions and prerequisites at regular intervals and
check the implementation.

4.3 Software Architecture & IT Security as an Integral …

98 4 How to Adapt and Implement a Large-Scale …

Implement Crypto-Agility
Consequently, there is also a need for us to be able to regularly or, if necessary, easily
adapt our protection mechanisms. All of this requires sophisticated secret management
mechanisms that must be an integral part of an agile framework as defined protection
measures.

It is widely claimed that these crypto functions—which contain a key pair generation
rule—are also worth protecting. The logic behind this follows the assumption that if a
potential attacker knows the rules by which we create usernames or key pairs, the attack
protection would be significantly weakened.

Kerckhoffs’ Maxim as an Important Cryptography Principle
Rather, Kerckhoffs’ maxim still applies—a principle of cryptography dating back to
1883 and originating from Auguste Kerckhoff:

“It must not require any secrecy and
can fall into the hands of the enemy without harm.”
La cryptographie militaire 1883—Auguste KerckhoffApplied to cryptographic methods and
principles of IT security, Kerckhoffs’ principle means that it must be irrelevant whether a
potential attacker knows an algorithm implemented in IT systems. It follows: If the attacker
knows the crypto algorithm and the cryptographic method still effectively protects the secret
protected by it, both the secrets are protected, and the applied cryptographic method can be
considered secure.

This also implies for cryptographic methods: All crypto functions may be publicly
known as long as the secret key—the so-called Secret Key—is effectively protected.
Kerckhoff’s principle is therefore based on the protection of cryptographic keys, not on
the protection of cryptographic algorithms or crypto functions. This important fact once
again underlines the central point of how indispensable the protection of any secrets is.

Fig. 4.6 Lifecycle of
cryptographic protection
measures—Sascha Block—
Own representation based on
NIST classification

Time2022 20272025

Remaining period under which
data is considered secure

Useful life
of an algorithm

Safety life cycle
of an algorithm

99

Virtualization & Microservice Architectures Require Sophisticated Secret Manage-
ment
Containerized microservice architectures with widely distributed individual components
and countless API endpoints require, in addition to certificate-based end-to-end encryp-
tion, a sophisticated platform solution for managing countless secrets distributed across
the microservice architecture.

The management of secrets aims to centralize the management of multiple secrets
that may be distributed across several IT projects and countless software components.
These secrets must be protected both at the location of secret storage and during trans-
mission. In this context, endpoints worth protecting must be taken into account in all
phases of the DevOps cycle—i.e., throughout the entire lifetime of a secret. Environ-
ments worth protecting include the local development environment, automated build,
staging, and production environments. With the automation of individual phases in the
software development and delivery process, the importance of protecting sensitive data
increases. With the introduction of an agile framework, these essential security aspects
must be combined with improved security in the form of easily enforceable DevSecOps
principles.

Secret rotation and limiting the validity of secrets
A proven protective measure for this is automatic rotation of secrets, complemented by
the definition of a time-limited validity of these access mechanisms. Only when a sys-
tem effectively protects valuable secrets with technical protection mechanisms and agile
business processes are in place that implement and live these protection mechanisms can
established IT security be spoken of.

In terms of security, the most important improvements that advanced secret manage-
ment offers are encryption, revocation, rotation, and Identity and Access Management
(IAM) of secrets. Rotation and revocation are also an important part of the automation
increasingly used in modern software development processes. Integrating the manage-
ment of secrets with third-party services for proxy access to other platforms and sharing
secrets among multiple clients is another use case that can boost a development team’s
productivity.

Consequently, this security requirement results in the scenario of using a central
platform for managing and rotating secrets. Such a secret platform is connected to a
role-based user concept that takes into account both internal users of an organization
and external users. With the function of a central secret safe, all existing secrets rotate
throughout their lifetime, as long as these secrets are valid and grant access as the only
existing and central storage for secrets worth protecting. In this secret safe, all secrets
required by each individual application are stored, such as database passwords and API
keys.

The automation of build processes is architecturally connected to the use of this plat-
form for managing secrets. It is a MUST criterion that the sensitive credentials are not
stored in plain text in a version control system like a GitLab or GitHub repository, so

4.3 Software Architecture & IT Security as an Integral …

100 4 How to Adapt and Implement a Large-Scale …

access to the credentials must occur from the temporary environments during the runtime
of a build process. These practices enable secure, automated builds of software releases
at any time. In a containerized architecture, the build automation phase also includes
authentication with the secrets management platform, retrieving the secrets, and injecting
them into the containers, the so-called “secret injection.”

4.3.7 Public Key Infrastructures

A Public Key Infrastructure (PKI) is, according to the definitions of NIST, the archi-
tecture of an organization with the technology, practice, and procedures that, in com-
bination, support the implementation and operation of a certificate-based cryptographic
system with a public key. This includes the framework for issuing, maintaining, and
revoking certificates for public keys [19].

As a PKI framework, such an infrastructure encompasses the services responsible
for generating, distributing, controlling, and deactivating public key certificates. Such a
framework establishes the necessary technical components as well as all required organi-
zational processes to ensure that certificates and keys are used to protect data on a per-
manent basis, based on defined security policies.

The PKI thus consists of critical infrastructure components with central functions for
access control and must be taken into account when implementing an agile large-scale
agile framework. Agile processes for this infrastructure must ensure digital certificate
management and reliably generate public-private key pairs with technical processes.
Service-oriented, digital processes, based on the basic services of digital signature and
authentication, ultimately enable critical and indispensable reliable business and security
requirements.

The protocol standard already defined in 2004—based on X.509 Public Key Infra-
structure (PKI) certificates, as defined in RFC 3280—is designed for use on the Inter-
net [20]. Certificates as trust anchors in the World Wide Web, cryptographic methods for
encryption and secure transmission of data are the central subject of IT security meas-
ures.

The PKI is also based on the principles of role-based access control and encryption
and thus becomes an indispensable tool for platforms, networks, and cloud structures for
managing these secrets in need of protection. A PKI simplifies the handling of a large
number of clients as a central building block. In addition to the protective function of
a protocol-based, encrypted network communication, a PKI adds further security levels
and thus enables the overall security of an IT system.

101

4.3.8 Microservice Architectures

With the ongoing cloud trend, applications designed as microservices are increasing
in number and distribution day by day. The evolutionary precursor to microservices is
the applications in the form of monoliths. The monolith forms an inseparable unit—as
a “large whole”—within an IT system. A monolithic architecture does not follow an
explicit division into subsystems, the so-called components. This architectural approach
of monoliths is in direct contrast to a distributed IT system, which also includes micros-
ervices.

Just like their monolithic ancestors, microservice applications must comply with
enterprise-wide constraints regarding compliance, security, performance, etc. Authori-
zation, i.e., controlling which individuals and machines are allowed to perform which
actions, is a fundamental security issue that requires new solutions in a microservice
world, as requirements regarding performance, availability, and even where authorization
is architecturally enforced, change fundamentally.

Microservice Definition
Microservitization is a development towards the transformation of services and com-
ponents into microservices, meaning highly fine-grained and autonomous services, in
order to isolate previously bundled program functions through functionally limited
microservices that then interact via standardized interfaces [21].

Properties of Microservices
• Atomic microservice architecture, i.e.

– granular services, i.e. minimal service definition,
– focused on a single task,
– aligned with a limited context,
– autonomous,
– independently deployable,
– loosely coupled services.

This design pattern connects the underlying software architectures with some fundamen-
tal consequences. Microservices require—in contrast to a monolithic architecture—an
increased monitoring effort by default, as it is necessary to ensure that the multitude of
microservices distributed in different cloud environments communicate with each other
and forward corresponding information objects. Microservices thus require appropriate
real-time monitoring. This obligation is, at the same time, a valuable advantage in the
operation of an IT application, with the additional layer required for monitoring with
role-based access control, increasing the complexity of the software architecture.

4.3 Software Architecture & IT Security as an Integral …

102 4 How to Adapt and Implement a Large-Scale …

Basic Recommendations for a Good Microservice Architecture
Taibi and Lenarduzzi have summarized the following practical recommendations for the
design of microservice architectures [22, page 2]:

 1. To avoid timeouts that cause service requests to be unable to connect to the micros-
ervice, timeout values should be used so that calls and potential time overruns due to
the unresponsiveness of services are avoided from the outset. With connected moni-
toring and appropriately defined Service Licence Agreements, the availability of the
service must then be restored as quickly as possible.

 2. Microservices should share connected modules and software libraries, so that exist-
ing dependencies are kept to a minimum.

 3. Each microservice API must be versioned, and at the same time, it must be ensured
that service consumers do not direct their service requests to outdated API versions.

 4. Mega-services, i.e., oversized services that bundle multiple functionalities, should
be broken down into individual microservices.

 5. Shared persistence, i.e., the shared use of data by multiple microservices, regularly
causes problems when parallel data access is not prevented.

 6. Data should not be exchanged directly between different microservices; rather, the
data flow must always be directed via APIs, and each microservice may only process
the data it needs for its limited functionality.

 7. The design of service interfaces must follow a higher-level design pattern that
reflects all microservices and must not be done separately for each service in a sepa-
rate manner.

 8. Hard-coded IP addresses and ports in microservices can lead to errors and hinder
adjustments when the network infrastructure changes, and are contrary to the flex-
ibility of microservices.

 9. Services that are directly accessible and connected to each other should not be
made accessible via an API gateway layer and should not be directly connected to
each other. To simplify the connection of microservices and support the monitor-
ing of individual microservices, authorization issues should always be delegated
to the API gateway. The authorization configuration should be managed centrally
through changes to the so-called API contract by the API gateway. The API gateway
is responsible for providing the content for the various consumers and ensures that
only the required data is provided.

 10. Easy maintainability and optimal interoperability can be ensured by using current
technology standards.

 11. The use of too many different communication protocols regularly leads to disrup-
tions that make microservices unusable.

 12. Even if individual teams are regularly responsible for individual microservices, this
must not result in a team-driven microservice design that dominates the microser-
vice architecture.

103

 13. Microservices must be able to operate independently of each other; otherwise, only
the creation of a distributed monolith is achieved.

 14. Continuous tests must be established and always aligned with current test cases;
under no circumstances should only static tests be aligned with a transient and out-
dated data world.

Microservices in Relation to the Structure of Agile Teams and Deployed Technolo-
gies
From these recommendations, it follows that suitable synchronization processes between
teams must ensure that corresponding cross-team definitions exist and are applied. Used
technology standards must be known across teams.

Microservices have a direct impact on the structure of agile teams and thus direct
relevance for a Large-Scale Agile Framework: Since microservices enable independent
deployment, small teams can work on separate and focused microservice services, using
the most suitable technologies for their task, which can then be deployed and scaled
independently of each other.

An organization-wide error culture must ensure that in the event of errors—which
may result, for example, as side effects from one or more microservices, a calm and pru-
dent, mutually constructive error elimination always takes place.

Taibi and Lenarduzzi conclude that by observing the above points, the majority of
potential errors can already be avoided from the outset, and the role of software archi-
tects in interaction with agile software teams is of great importance.

When breaking down a monolith into microservices, much of the process involves
identifying independent business processes that can be isolated from the monolith, not
just extracting functions into various web services. The connections between microser-
vices, including connections to private data and shared libraries, must also be carefully
analyzed.

4.3.9 APIs, Resources, and Dynamic IP Addresses in Cloud
Networks

Application Programming Interface (API) means “interface for application program-
ming”. APIs are the elementary building blocks and the countless hubs for data; APIs
are also worth protecting in the context of possible cyber-attacks. API gateways provide
the appropriate protection mechanisms. An API enables access to endpoints where dif-
ferent services usually grant access to databases in the form of defined database que-
ries. Hardware status and control of graphical user interfaces, for example, the control
of apps—the smartphone applications that have become indispensable to us today—are
unthinkable without APIs.

An API can be viewed from at least two perspectives:

4.3 Software Architecture & IT Security as an Integral …

104 4 How to Adapt and Implement a Large-Scale …

API from a Code Perspective
An API consists of code, which is why the technical view from the perspective of com-
puter science is inevitable.

API in a Business Context
On the other hand, APIs have a significant impact on every data-based process, shaping
the respective processes with the connected business logic, so that an API is usually not
only relevant for a single context. Only in the interaction of various agile teams do the
relationships relevant to API design become apparent, which then result in the technical
implementation. With the realization of microservices, APIs become slimmer, are easy to
read, and can be used quickly and versatilely with the correct implementation.

The second part of the book presents tools and methodology for creating an appropri-
ate agile API documentation.

4.3.10 APIs and REST

In the context of cloud architectures and/or microservices, REST plays an important role.
Roy Fielding coined this “Representational State Transfer architectural style”, or REST,
in his dissertation as a hybrid architectural style that derives from several network-based
architectural styles and combines them with additional constraints that define a uniform
HTTP protocol-based web interface [23]:

REST Constraints
• Client Server
• Statelessness
• Cacheable
• Uniform interface
• Layered systems
• Code on demand

Protected Resources and API Design
APIs are therefore always about uniformly defined interfaces for exchanging data and
protecting resources. Protection mechanisms must be designed in such a way that only
protected access via web technologies using exposed Uniform Resource Identifier
(URI) is possible for exclusively authorized requests.

Within an agile organization, there is not only a widespread understanding and secu-
rity awareness that resources are fundamentally trustworthy and worth protecting, but
also a set of rules in the form of a role-based authorization concept. The information
about who can access the resource when and under what conditions defines processes
that always involve a large number of different stakeholders and ultimately result in the
API design.

105

4.3.11 Quality Characteristics of Microservices and Web APIs

For Web APIs and microservices, certain quality characteristics have emerged that are
crucial for a good microservice architecture, these are:

1. Reusability and
2. Flexibility

The reusability is in turn positively reflected in optimal usability. The usability and
requirements for ergonomics of human-system interaction are defined according to Part
11 of DIN EN ISO 9241-11 [24].

In concrete terms, this means: Only if an API is easy to use or learn and can simulta-
neously meet the defined requirements for mapping the required use cases as a service
consumer, does this microservice actually provide a real added value to an organization.

Interoperability as an Essential Quality Feature
Interoperability is an essential quality feature for software components, such as micros-
ervices and specified API interfaces, to fit together, i.e., to be interoperable with each
other in terms of data exchange. Interoperability must consider any changes due to new
requirements or possibly necessary error corrections. This can have negative conse-
quences for service consumers and thus worsen interoperability. Therefore, this should
already be taken into account within a DevOps strategy through agile software/service
release management; Git repositories play a central role in this.

Mutual Features for Interoperability
Figure 4.7 shows the mutual “quality features for interoperability and their impact on the
reusability of software artifacts”.

Table 4.3 “Quality features for interoperability and their impact on reusability”
explains the individual quality features of software and distinguishes their significance in
the context of interoperability and reusability of software artifacts from each other.

The mutual relationships underline the importance of cross-team communication and
corresponding quality assurance measures. Using (partially) automatable deployments
and testing procedures, concrete quality characteristics can be defined step by step and
applied as test criteria.

4.3.12 RESTful API

Regarding definitions for RESTful API design, properties are defined that play an impor-
tant role in the architectural pattern of REST APIs. Even though these requirements
alone do not yet represent a microservice implementation, they already form the essen-
tial foundations for it:

4.3 Software Architecture & IT Security as an Integral …

106 4 How to Adapt and Implement a Large-Scale …

Flexibility

Reusability

Interoperability

Findability

Usability
Performance

promotes the promotes the

promotes the

promotes the

enables the

enables the

Fig. 4.7 Quality features for interoperability and their impact on the reusability of software arti-
facts—Sascha Block

Table 4.3 Quality features for interoperability and their impact on reusability

Feature Requirement

Discoverability • provided, machine-interpretable documentation
A machine-interpretable documentation with defined syntax and seman-
tics is crucial for easy discoverability of an API. Only in this way can the
functionality offered by an API or a microservice be effectively used. An API
developer portal with documentation aimed at software developers is highly
recommended.
In addition, additional semantic technologies and languages can be used, such
as Resource Description Framework (RDF), see W3C specification [25].
RDF is a standard model for data exchange on the web. RDF has features
that facilitate the merging of data, even if the underlying schemas differ, and it
particularly supports the development of schemas over time without having to
change all data consumers.
• Compliance with naming conventions

Interoperability Unlike the usability of a web API, interoperability focuses on the technical
perspective and thus the integrability by service consumers. A web API should
ideally not impose any requirements on the technologies used by the service
consumer. In addition, when changes are made to the web API due to internal
or external factors, care must be taken to ensure that existing service consum-
ers can continue to interact with it without compromising interoperability.
• Stability in focus over time
• Evaluation of technologies in terms of lifecycle, simplicity, proven effective-

ness, etc.

(continued)

107

Table 4.3 (continued)

Feature Requirement

Performance • efficient resource utilization
• Abstraction of application-related requirements (functionality from the per-

spective of users, the insured)

Usability • use proven methods
• adherence to naming conventions
By adhering to established conventions for naming resources, representations,
and Uniform Resource Identifiers (URIs), consistency increases, which has a
positive effect on usability and findability. Consistency in software develop-
ment is reflected in the simplicity with which an API can be derived. This
makes APIs easy to learn and quickly usable. Higher consistency also reduces
the documentation effort for an API.
• reference to the represented domain
• meaningful feedback on errors
• presence of up-to-date documentation for software developers
The documentation of an API contains both information on its use and meta-
information, such as the name and all attributes used in the API, as well as an
introductory description text that explains the context of use. The documenta-
tion must also focus on the description of the correct API usage, significantly
increasing understanding and preventing potential errors in API usage in
advance, including defined preconditions.
Three types of documentation specifically for software development can be
distinguished:
1. reference documentation
2. workflows
3. tutorials
• meaningful feedback on errors
Errors in the use of an API can never be fundamentally excluded, but can only
be reduced with the help of provided information on usage. However, errors in
web APIs, unlike in the case of more easily testable local APIs, cannot be ana-
lyzed using a debugger or similar methods, since the underlying implementa-
tion is not under one’s own control and usually cannot be viewed. Therefore,
the analyzability of any errors through meaningful feedback from the
service is an important quality aspect.
The error analysis focuses on the analysis possibilities of the service con-
sumer, with the help of which they can find and possibly fix the cause of the
error without communication with the service provider, provided the error
does not originate from the service provider. For this purpose, meaningful
error codes must be defined by all parties involved—including third par-
ties.
From the perspective of IT security, it is worth considering which details are
communicated externally, as every API naturally always represents an inter-
esting attack vector for potential attackers… However, this must not be under-
stood as an excuse for saving meaningful error messages, but requires the
additional effort to define how error messages are communicated in different
directions. If users can only report errors in the sense of a 404 classification,
error search and elimination are significantly more difficult. If the same users
report an X53B error with a limitation of an internally classified component,
this will only have a positive effect on their service quality!

4.3 Software Architecture & IT Security as an Integral …

108 4 How to Adapt and Implement a Large-Scale …

• Design of RESTful APIs that follow defined design paradigms,
• distributed services, i.e., distributed services within a (cloud) service network,
• not every service within this service network necessarily has to be a microservice.

Table 4.4 “REST definitions resource and representation” explains the computer science-
related distinction between resource and representation and at the same time illustrates
the role of services/microservices as consumers of data.

Boundary conditions for uniform REST APIs
An architectural style always defines corresponding boundary conditions (constraints)
for architectural elements in order to achieve certain system properties, such as easy
extensibility or scalability. The following boundary conditions have been established for
RESTful APIs:

Table 4.5 “Requirements for RESTful API Design” lists the four requirements for the
compliant implementation of a REST API with their respective boundary conditions.

REST Layer Model with Reference to RESTful Services
Each REST API can be classified into four different technical layers. Figure 4.8 “Hierar-
chical Layers REST API” illustrates the individual layers in which REST APIs encapsu-
late corresponding functionalities.

Each level has specific properties of REST, while the levels below are each a subset of
the upper levels.

Table 4.6 “Layer model of REST APIs” explains the different architecture layers of an
API in the corresponding level classification.

Specification of resource-oriented web APIs
For the specification of resource-oriented web APIs, various specification languages now
exist, such as Web Application Description Language (WADL), OpenAPI (originally
Swagger), RESTful API Modeling Language (RAML), or API Blueprint.

Table 4.4 REST definitions resource and representation

Term Definition

Resource A resource is a uniquely addressable and conceptual assignment to one
or more entities, not depending on the time of instantiation. An entity can
basically be anything with which a service consumer wants to interact, see
RFC2396 [26].

Representation A representation is a state description of a resource that does not require a
specific data format.

109

4.3.13 Conclusion and Relevance of APIs in the Context of Large-
Scale Agile Frameworks

APIs play a special role in microservice architecture, as the functional scope of individ-
ual APIs—according to the previously defined criteria—is significantly more granular
than in monoliths or other architectural patterns.

This results in—which must also be taken into account within an agile framework—a
significantly increased number of APIs and increased administrative effort in API man-
agement.

Frontend-oriented service approach…
The more APIs are understood from the perspective of a frontend-oriented service
approach, the greater the benefit to users and thus to your organization. Consequently,
APIs are increasingly bundled as products and supplemented with a product owner

Table 4.5 Requirements for RESTful API Design

Requirement Boundary Conditions

1. Identification of
Resources

 • is done by at least one URI, i.e., by means of a compact string
for identifying an abstract or physical resource
A URI consists of a scheme and a scheme-specific structure, with
the scheme determining how the scheme-specific structure is
constructed and interpreted [26]. To find out whether multiple URIs
address the same resource, however, further domain-specific knowl-
edge is required, which is why a fundamentally solid documentation
is referred to again at this point

2. Manipulation of
Resources through Rep-
resentations

Once a resource is identified, interaction with the resource is pos-
sible. To manipulate the state of a resource, the service user trans-
mits the desired state using a representation to the resource, which
receives this representation and then changes its own state
In principle, multiple representations can exist for a resource, for
example, to map different use cases

3. Self-Descriptive Mes-
sages

All necessary information for understanding the response or request
should be contained in the message itself or at least somehow linked
to it. A message is defined in this case by the message header with
any meta-information and the message body with a correspond-
ing representation

4. Hypermedia as Engine
of Application State

Hypermedia as Engine of Application State (HATEOAS) is a
component of the REST application architecture that distinguishes
it from other network application architectures. With HATEOAS, a
client interacts with a network application whose application server
provides information dynamically via hypermedia
Standardized REST definitions enable a software design that is dura-
ble and promotes independent development of the software

4.3 Software Architecture & IT Security as an Integral …

110 4 How to Adapt and Implement a Large-Scale …

assignment, ensuring that APIs always provide basic business functions for frontend-ori-
ented service operations.

…for a wide range of heterogeneous devices
Since the provision of APIs is now regularly carried out for a wide range of different
devices, it is all the more important to consistently observe the framework conditions
outlined above. With a multitude of highly heterogeneous frontends such as millions of
IoT devices and a sheer variety of countless smartphone devices and different operating
system environments, user expectations and the level of complexity continue to rise. A
large-scale agile framework can only meet this challenge if it provides effective mecha-
nisms for the efficient merging and aggregation of these properties.

Fig. 4.8 Hierarchical Layers
REST API

Use of hypermedia

Consideration of the protocol properties

Use of resources

Tunneling requests via a URILevel 0

Level 1

Level 2

Level 3

Table 4.6 Layer model of REST APIs

REST Level Explanation

Level 0 At level 0, the services are classified that have only one URI and where the
entire interaction is controlled via the message body of the corresponding
application layer protocol. Well-known examples are services according to the
WS* specifications using Simple Object Access Protocol (SOAP) with HTTP. All
requests are defined in Web Service Description Language (WSDL) and instanti-
ated in the form of Extensible Markup Language (XML) in the message body

Level 1 Based on level 0, at level 1 the URI is divided into several URIs and the con-
cept of resources is introduced
Each URI thus refers to a resource, which then serves as an endpoint for interac-
tion

Level 2 With level 2, the correct use of the application layer protocol is finally focused.
For example, only idempotent (in computer science, a piece of program code
that produces the same result when executed multiple times in a row as when
executed once is called idempotent) and side-effect-free methods should be used
for a read operation, e.g., the GET method in HTTP
Level 2 thus plays an essential role in error analysis

Level 3 The third and final level 3 requires the use of hypermedia. Then, hyperlinks
between resources should be used for navigation, and all the semantics necessary
for interpreting the resources and hyperlinks should be contained in the represen-
tations of the resources.
Only if the service considers and uses the principles of hypermedia can and
should it be called a RESTful Service

111

Because APIs are such important and central building blocks in any IT architecture
for the reasons described, it is particularly important within the context of a large-scale
agile framework to establish mechanisms that ensure a large number of agile teams can
work on different APIs in parallel. It is crucial to establish standards at a higher level and
to communicate them permanently between the involved agile teams.

4.3.14 Service Mesh & Agile Microservice Architectures

As soon as we follow a microservice architecture and use a multitude of different API
endpoints to expose countless services to various user groups via internet technologies,
the design pattern of the service mesh is suitable for implementation.

Using a Service Mesh to Implement a Zero-Trust Strategy
In terms of IT security, the architectural pattern of the service mesh also offers certain
advantages, as the security-relevant aspects of the zero-trust principle can be imple-
mented particularly well and at the same time all the advantages of cloud services come
into play.

With the cloud trend and hybrid cloud scenarios, IT systems are no longer limited
to fixed IP addresses, but transform into dynamic networks with constantly changing,
dynamic IP addresses. From a technical perspective, this presents various challenges
with implications for emergency scenarios, network management, and IT security.

Therefore, effective processes are needed to ensure that IP addresses and endpoints
worth protecting are secured and monitored at all times.

A service mesh is a very young design pattern that is suitable for solving exactly these
challenges for Platform as a Service (PaaS) and cloud architectures.

Reusability of Required Basic Functionality
With a service mesh, service outsourcing takes place in such a way that required basic
functionalities do not have to be reinvented, implemented, and configured again and
again, and also not with different technologies, but rather a comprehensive configuration
is available for all services.

Above all, the network management for all incoming or outgoing requests from any
services:

• both internal network requests, of the internal services we consume,
• as well as external network requests, i.e., those services we provide externally.

With each application that is not part of the process, a new proxy configuration is also
required, which manages each individual incoming and outgoing network request for us.
Since it lives outside the service, the proxy configuration is thus by default portable and

4.3 Software Architecture & IT Security as an Integral …

112 4 How to Adapt and Implement a Large-Scale …

agnostic, and can therefore support any service that is compatible with the provided lan-
guage or the framework of the service mesh itself.

Service-Oriented Architectures with Direct Reference to Agile Organizational
Forms
The IT security-relevant aspects of the zero-trust principle can be systematically imple-
mented with this architectural pattern and help to design small-scale, service-oriented
APIs at the same time. In the course of IT security-relevant requirements, there are often
various misunderstandings between the agile teams involved, especially the further away
they are from technical IT security topics. The efforts to design fine-grained authoriza-
tion concepts and carefully defined group rights have direct effects on data protection
aspects, IT security, organizational and technical cuts that go beyond the architectural
design. A close orientation along defined user stories and customer journeys is just as
important as reflecting this seemingly more technical aspect in the agile framework that
your organization has established. Connected support processes, for example, require
defined visibility that is oriented on the one hand towards legal requirements, but on the
other hand is suitable for covering effective support routes in various directions. The
later these effects are considered within an organization, the more complex the imple-
mentations for covering these requirements will be.

4.3.15 Improving IT Security Based on OWASP Guidelines

The Open Web Application Security Project—or OWASP Foundation for short—is
a community that works to improve the security of software through numerous open-
source software projects, events, and guidelines. The OWASP regularly publishes and
updates its Top 10 lists of currently threatening security risks to raise awareness among
IT managers and software developers about security.

The OWASP Top 10 for web applications represents a broad consensus on the most
important security risks for web applications. Insecure design was a newly defined secu-
rity category in 2021, focusing on risks associated with design flaws. Security-by-design
is to be established through increased attention to real threat models, the use of secure
design patterns, the establishment of IT security standards in architectural design, and
the application of reference architectures [27].

Are you already using established security standards for mobile applications and a
comprehensive testing guide to align organization-wide processes, techniques, and tools
with the security testing of mobile applications? Have you defined comprehensive sets of
test cases for your software and apply them regularly to ensure reliable, consistent, and
complete results for increasing your IT security?

113

Benefit from the free IT security knowledge of the OWASP community and establish
guidelines such as the OWASP Mobile Security Testing Guide [28] in your agile soft-
ware development processes.

4.3.16 Penetration Testing/Pentesting

In contrast, there is the approach of classical pentesting, in which IT security is analyzed
according to predefined security criteria. Penetration tests involve a controlled attack
on a predefined environment, such as software, an app, or a network, to assess its secu-
rity. The results of such pentests are evaluations with detailed test results in the form of
explanations and reports with recommendations for action for the test object, which was
analyzed and evaluated at a specific point in time.

The German IT industry association bitkom explicitly welcomes in its position paper
on the proposal for a regulation on digital resilience for the financial sector (DORA) that
“testing methods” such as “penetration tests” and “red team” tests” are provided for
in the proposal. The proposal states: “The competent authorities shall identify the finan-
cial institutions that are to carry out threat-based penetration tests in a manner that is
appropriate to the size, activity, and overall risk profile of the financial institution and
the scope of these tests.” [29, pages 2/3].

Traditionally, pentesting often takes place at a later stage and serves as a demonstra-
ble seal of quality in many organizations. Undoubtedly, pentesting is a useful protective
measure, but it offers no guarantees that software solutions are permanently or currently
secure, which requires agile mechanisms. A possible agile solution approach that takes
this into account in the sense of IT-Security-by-Design is presented in a separate section
and within the agile prioritization model for software manufacturers.

Nevertheless, the static and purely time-based pentesting, which is often carried out
with the motivation to obtain a security certificate, currently still accounts for a signifi-
cant proportion of the security checks taking place. In the course of increasingly fre-
quent attacks on security vulnerabilities such as the recent log4j [30], IT security
cannot and must not be limited to occasional pentests.

The Federal Office for Information Security (BSI) has assessed the vulnerability in
the Java library Log4j as extremely critical and, as a result, published a cyber security
warning at the red warning level [31].

The preparation and typical procedure of a pentest is explained in a separate section
in this chapter.

Pentesting aims to identify vulnerabilities in IT systems and processes, assess the
associated risks, and initiate appropriate countermeasures. In contrast to Vulnerability
Scans, the results of a pentest are much more detailed and, due to manual work, more
extensive and precise in the outcome of the vulnerability analysis.

Possible starting points and scenarios for effective pentests:

4.3 Software Architecture & IT Security as an Integral …

114 4 How to Adapt and Implement a Large-Scale …

• Simulation of a stolen company laptop for privileged access to the corporate network
• missing hard disk encryption?
• unsecured passwords/password safes?
• two-factor authentication?

Continuous pentests are essential to ensure effective IT security; using tools and methods
of real attackers, internal and external pentesters analyze vulnerabilities under realistic
conditions.

Objectives of a penetration test
• Demonstration of the vulnerability of IT systems/inventory (status analysis)
• Optimization of IT security
• Prioritization of protection mechanisms
• Testing of reaction mechanisms
• Penetration tests for compliance reasons
• Reduction of the costs of a vulnerability management program

Phases of a penetration test
Phase 1—Preparation
Phase 2—Information gathering and evaluation
Phase 3—Assessment of information/risk analysis
Phase 4—Active intrusion attempts
Phase 5—Final analysis

It should be taken into account that the phases of a pentest do not strictly follow a linear
sequence, but rather individual events from the respective phases merge into events of
the other phases. This is precisely why it makes sense to integrate these phases into the
security phases of a Large Agile Framework as well.

Phase 1—Preparation of a pentest
• Determination of objectives
• Definition of target systems
• Definition of approach
• For external pentesters: Contractual agreement between the company and pentest

In particular, the following questions need to be clarified:

• Which test tools, malware, botkits, etc. are permissible?
• Are Denial-of-Service (DoS) attacks allowed? Are internal company processes

defined in response to DoS attacks, and are employees trained and authorized to make
decisions accordingly?

115

• Does the testing procedure allow for the physical or digital destruction of IT systems
and thus test the effectiveness and efficiency of backup procedures?

• Are social engineering methods included in the pentest, and how extensive are they?
(Is extortion, lying, or illegal entry into the company allowed to test the effectiveness
of security measures?)

• Who contacts the cloud provider (deputy regulation!) and registers the test there
should also be part of the contract.

• For cloud tests: Is the consent of the cloud provider available? (required!)

Phase 2—Information gathering and evaluation
• Information gathering within the company and from third parties
• Use of scanning tools such as port and vulnerability scanners
• Development of an overview and documentation of system and software architecture
• Use of Metasploit scanning and auxiliary modules

Important: The more knowledge the pentester has about organizational structures,
employees, and IT systems of the company, the greater the likelihood of uncovering
security gaps.

Phase 3—Evaluation of information/risk analysis
• each evaluation is based on the criteria defined in Phase 1
• Consultation and coordination with system managers

Phase 4—Active intrusion attempts
• active use of identified vulnerabilities
• Damage assessment and evaluation
• Use of exploit code with stress tests for systems

Phase 5—Final analysis
• Documentation of findings and uncovered security gaps
• Recommendations for action to eliminate uncovered security gaps
• if necessary, divided into management and IT reports with technical details

For pentests of cloud environments, it is particularly the side paths and almost never the
direct attack on the cloud infrastructure that reveal security gaps.

Variety of mobile devices and IoT devices
With the steady increase in numerous mobile devices and countless IoT devices and their
practical use in service-oriented scenarios, networked connectivity goes hand in hand,
and vulnerability to attacks increases rapidly.

4.3 Software Architecture & IT Security as an Integral …

116 4 How to Adapt and Implement a Large-Scale …

It is clear: The importance of IT security continues to increase and is already indis-
pensable. So how can we improve the quality of software, optimize functionality, and at
the same time take security aspects into account?

4.3.17 Recommendations for integrating IT security as a fixed
component in an agile framework

IT security must therefore be an integral part of every software architecture and its
agile model. All agile teams must understand the integral software architecture aspects
in context and their impact. In this way, all stakeholders actively take into account the
associated requirements of a comprehensive IT security strategy and ensure that these
requirements are taken into account early on in all software-based processes and con-
nected organizational workflows.

”IT security is the control and quality seal of digitization and should be included in the
pricing of digital products and services for every company from the outset.”

Improve software quality and reduce costs
Under these conditions, a positive side effect can be automatically achieved: The qual-
ity of software increases and costs for IT and software are significantly lower because
aspects relevant to IT security are taken into account directly during development. Both
goals are much easier to achieve if these requirements are firmly anchored in the soft-
ware architecture through IT security-by-design and incorporated using agile prototyp-
ing.

Resolve legal framework conditions and IT security using agile prototyping
Legal framework conditions—such as software-side regulations in favor of tightened
data protection, which in turn are accompanied by increased IT security—can also be
directly implemented using agile prototyping.

Especially now in the age of digitization and due to the Corona pandemic, this is
painfully apparent. Where digitization projects are initiated with great effort, teams from
different organizations regularly come together. Communication about software architec-
ture plays a central role here, as it is at the heart of creating every digital solution.

Specifically improve communication within and between agile teams
How is it that numerous software projects do not achieve the desired progress or even
fail completely? A major factor in this is poor communication. Each of us has experi-
enced this at some point. The reasons for this are regularly diverse. In the worst case,
communication is completely omitted and important information does not even flow into
the solution process.

117

But even if parties from different teams blindly trust each other and the exchange of
information about software architecture is lacking or insufficient, problems are pre-pro-
grammed that stand in the way of successful digitization.

Figure 4.9 “Software library as the Achilles heel of a digital infrastructure” carica-
tures such a fragile architecture: The symbolically depicted existential dependence on a
single software library represents an enormous risk, especially if this library is not under
one’s own control and must therefore be understood as the Achilles heel of such a digital
infrastructure.

In this context, a solid software architecture documentation and targeted communica-
tion about the software architecture are at the center, as they form the basis for designing
and implementing software solutions. This is an extremely important point, as the soft-
ware architecture is relevant beyond organizational boundaries, especially when external
parties are involved in the implementation of digital strategies. All too often, however,
the truly important facts remain undocumented, are not communicated at all or inade-
quately, but continue to play a central role in the architecture of complex software solu-
tions, completely unimpressed by this.

Pragmatic architecture documentation with collaboration tools and Git repositories
The good news is that agile frameworks with their mechanisms are particularly suita-
ble for breaking up these paradigms and achieving demonstrable results in improving
communication. The agile approach offers effective mechanisms to dissolve mistrust and

Fig. 4.9 Software library as
the Achilles heel of a digital
infrastructure. (Source: Sascha
Block)

4.3 Software Architecture & IT Security as an Integral …

118 4 How to Adapt and Implement a Large-Scale …

fears and to strengthen mutual trust in communication in all directions. These are crucial
factors when it comes to ensuring functioning communication—also about the software
architecture. The architecture of software and its documentation regularly has far-reach-
ing effects. The relevance of software architecture documentation extends far beyond
the teams directly involved in software development. Support processes, organization-
wide quality management, and communication with customers and partners are equally
affected.

An example of what such software architecture documentation can look like with the
collaboration tool Atlassian Confluence is shown in Fig. 4.10 “Software architecture doc-
umentation with the collaboration tool Atlassian Confluence”.

Pragmatic architecture documentation becomes manageable through the use of vari-
ous tools such as collaboration tools, which also act as versioning tools, as well as tech-
nical code and deployment documentation based on code versioning tools, primarily Git
repositories. It is essential to always establish the cross-connections, which often have a
significant positive influence on cross-team communication of various stakeholders, e.g.,
in the form of links. Only if easy access to information is guaranteed for all participants,
can quality goals and “informative satisfaction” be realized across teams. We will intro-
duce you to these agile tools, the methodology, and the necessary infrastructure in the
second part of the book.

Fig. 4.10 Software architecture documentation with the collaboration tool Atlassian Confluence.
(Source: Sascha Block)

119

Confluence is now also well-suited for documenting code, as illustrated in Fig. 4.11
“Code documentation with the collaboration tool Atlassian Confluence”.

Many projects lack meaningful, visualized architecture artifacts
Are all these artifacts well documented and graphically visualized in your projects? A
well-designed and formally correct overview diagram and precise flowcharts usually
have more expressive power than countless words and numerous meetings.

Are your teams trained in the routine creation of these invaluable artifacts? Is the nec-
essary time frame and importance given to architecture documentation, and is there a
functioning interaction within prototyping and is all this connected to a threat model-
based pentesting?

Fig. 4.11 Code documentation with the collaboration tool Atlassian Confluence. (Source: Sascha
Block)

4.3 Software Architecture & IT Security as an Integral …

120 4 How to Adapt and Implement a Large-Scale …

Step by Step to the Detailing of Software Architecture Artifacts
Clear recommendation: Start with simple representations and develop these repre-
sentations step by step through an increasingly refined and detailed process. With this
approach, you will obtain different representations that are practically useful for different
recipients and purposes due to their varying levels of detail.

In Sect. 7.5 “Pragmatic Software Architecture Documentation” in the second part of
the book, we present corresponding best practices.

Living a Culture of Error—Eliminating Fears, Mistrust, and Lack of Communica-
tion
Live a healthy culture of error! Any form of software is fundamentally not error-free by
default, but requires a minimum level of defined control and protection mechanisms.

The more technologies and software components are interlinked, the greater the likeli-
hood that IT systems are vulnerable. For these reasons, mechanisms are needed to firmly
anchor IT security in an agile framework.

”IT security must be an integral part of your agile model!“It is essential that you protect
your software and especially your data as best as possible against potential attackers. Access
to data and documents must also meet the requirements of data protection and data security
in the digital world, even over long periods and across system changes.

Even if error-free operation is the actual goal, we can only achieve it step by step. The
goal of error-free and hardened software can be effectively achieved through testing,
testing, and more testing. Different testing methods and methodology complement each
other in this process.

The prototypical approach in an agile model supports the IT security-by-design
approach and ultimately realizes a healthy culture of error in the close collaboration of
all agile teams and towards hardened software.

In the agile interplay of software teams with software architects and IT security
teams, regular tests support fast release cycles as well as functioning, good communica-
tion between the teams. Specialized IT security teams effectively complement this with
their security-oriented mindset and forensic methodology. No team should have to evalu-
ate its own work quality, but always another team. A healthy culture of error increases
effectiveness as well as smooth communication, and well-documented software artifacts
are part of the whole.

Establish Agile Mechanisms Based on Defined Security Rules
In order for you and your organization to benefit from the effectiveness of these tech-
nical possibilities of a Secret Management Solution, you must align agile mechanisms
based on defined security rules in parallel with the protection measures technically con-
figured in the IT systems and establish these processes with and among all stakeholders.
This includes appropriate awareness training at all organizational levels. This is not an
easy task, especially since this is a protection mechanism that you must regularly train

121

and repeat. Only if “fire protection measures” are well known AND effective firefighting
tools are available to trained employees at all times, can fires be effectively fought or not
occur at all. You should always keep this image in mind when dealing with IT security in
your organization.

1. Maximum Security from the Start: Data Protection & IT Security Already with
the Definition of Requirements
IT security and data protection can be integrated into the early stages of the DevOps pro-
cesses, and not just at the very end of the Software Delivery Pipeline.

IT security—including the requirements for data protection, with the integral
demands of integrity and confidentiality—are thus already part of our quality require-
ments and are implemented as early as possible and then verified in the form of tests
with the results (meeting the requirements OR insufficient: must be improved imme-
diately). In this form, tests are carried out iteratively, i.e., regularly repeated and then
firmly established as part of the software development/delivery process.

Just as continuous integration of software enables a “left shift” by accelerating test
and feedback loops to discover errors earlier in the process and improve software quality,
DevOps processes can include automated security tests and compliance.

2. Automate IT security in your processes
With increasing automation of tests and processes, there is a lower risk of introducing
security flaws due to time constraints or human error. Automated tests are more efficient
and cover more areas at a higher frequency. IT processes thus become more consistent
and predictable. If a defect occurs, it is easier to locate and fix more quickly through
automated error messages.

3. Establish continuous integration through IT security tools
By using security tools, particularly with an end-to-end automation platform and
DevOps tools that encompass development, deployment, integration, testing, operation,
and security, we gain transparency and control over the entire development cycle of sys-
tems. Increased IT security can be achieved through automated pipelines in the stages of
development, testing, and operation by creating a closed process for testing and moni-
toring with corresponding IT security status reports that gradually encompass more and
more systems and data flows.

4. Close security gaps immediately!
Security breaches or vulnerabilities can never be 100% ruled out; the crucial factor is a
rapid response capability to solve the problem immediately. SecDevOps reduces the lead
time to a minimum so that patches and updates can be developed, tested, and deployed
more quickly. In addition, meticulous tracking of error configurations with DevOps tools
significantly simplifies and accelerates the state of all monitored applications, environ-
ments, and pipeline stages.

4.3 Software Architecture & IT Security as an Integral …

122 4 How to Adapt and Implement a Large-Scale …

If the exact version status of an application with all components in its environment
is known and even provided in a containerized form, it is also possible to quickly deter-
mine the component of the application that needs the update, identify the instances that
require attention, and roll out updates in a faster, more consistent, and repeatable deploy-
ment process. The majority of the workflows required for this are automatable.

5. Make Compliance & IT-Governance transparent and easily understandable for
everyone
It is essential to enable everyone in the company, not just the IT department, to ensure
requirements, compliance, and IT governance. DevOps focuses on streamlining pro-
cesses throughout the entire pipeline to ensure consistent development, testing, and
release practices. DevOps tools and automation can be configured to empower develop-
ers to be self-sufficient and “get their work done” while simultaneously ensuring access
controls and compliance automatically. As a solution to the growing “shadow IT” phe-
nomenon, many organizations use an internal DevOps service to provide appropriate
development and testing environments with shared repositories, workflows, deployment
processes, etc. This allows each involved agile team on-demand access to the appropri-
ate infrastructure (including production) while access control, security measures, release
points, and configuration parameters are automatically anchored centrally to avoid con-
figuration drift or inconsistent processes. Furthermore, it ensures that all instances in all
environments, whether development, quality assurance, or production, are identified and
tracked and that they operate within predefined guidelines and can be monitored and
managed by the responsible teams.

6. Design Source Code & IT Systems to be revision-proof
Both the source code and the respective system environments must be considered in a
security concept. By creating manageable systems that are consistent, traceable, and
reproducible—i.e., revertible to an initial state—it can be proven who has access and
who made which changes when.

7. Monitoring & easy generation of status reports
Monitoring with easy-to-generate status reports is essential for evaluating and monitor-
ing the security status. To achieve this, automated processes must be established, which
also ensure the additional advantage of consistency and availability at any time.

Predictable events should—connected to the threat model—deliver results in the form
of occurring actions, notifications, info state, and test outcomes. In this way, the security
process is automatically logged and documented for security audits.

Ideally, DevOps extends across the entire pipeline, ensuring traceability from code
changes to release. Automating build, test, integration, deployment, and release pro-
cesses allows access to a wealth of diverse information that can be used for various
purposes in very detailed logging. This simplifies auditing, enables various security pro-
tocols and compliance reports, all of which can be created on-demand and fully auto-
matically.

123

8. SecDevOps enables higher IT security and adaptable services towards customers
SecDevOps allows organizations to achieve speed in establishing and adapting services
without compromising stability and governance. Security and compliance controls are
an integral part of DevOps processes and include requirements for data protection and IT
security. By successively implementing DevOps processes that incorporate best practices
and recommendations from BSI and OWASP for IT security from the outset, an effective
and adaptable security layer for applications and environments is established. The grad-
ual expansion of SecDevOps measures ensures the best possible security and governance
in the long term, in a rational, efficient, and proactive manner.

9. Establish Threat Modeling to effectively counter threats!
The most effective method to ward off threats is to proactively identify, assess, and coun-
ter these recognized threats with the available resources before they occur. The next sec-
tion details how this can be achieved.

4.3.18 Threat Modeling

A Threat Model represents both technical risks and potential threats as well as busi-
ness risks in IT systems. Through the case-specific and thus targeted user-oriented per-
spective, the modeling of different threats and risks (Threat Modeling) represents a
particularly effective form of risk identification, risk classification, and risk assessment.
Ultimately, the Threat Model is an indispensable basis for risk analyses, penetration
tests, and any other type of internal security analysis within the scope of IT compliance.

Protection Objectives
Various protection objectives are distinguished for IT security, which abstractly describe
the security goals pursued in a process, system, or similar. A system can also demand the
guarantee of several protection objectives. Table 4.7 “Classification of IT-Security Pro-
tection Objectives” explains the background and purpose of each protection objective to
effectively anchor IT security in organizations.

The protection objectives listed above must be ensured across all components and
also in cloud environments or when using third-party solutions, and must be designed in
compliance with GDPR. In this context, the operator of an IT system is responsible for
providing evidence of meeting these protection objectives. However, what is even more
important nowadays is that you earn the trust of your users with your digital services and
communicate trustworthily who stores and uses which data when, where, and how. In the
coming years, there will be an increasing trend for these rights to be enforced on the con-
sumer side. These rights have been demanded by users for a long time; therefore, those
who have already aligned their IT services with these customer-centric needs are acting
more foresightedly and wisely.

4.3 Software Architecture & IT Security as an Integral …

124 4 How to Adapt and Implement a Large-Scale …

Table 4.7 Classification of IT Security Objectives

Protection Objective Explanation

Confidentiality The protection objective of confidentiality (engl. confidentiality) is
ensured when an unauthorized subject cannot access the information to
be protected.
To ensure this protection objective, a system or data transmission must
ensure that the information to be protected does not leak out. This
protection objective is often implemented through access rights, so that
unauthorized persons do not receive read rights for an object. For data
transmissions, encryption is a suitable method to achieve this protection
objective.

Availability For the protection objective of availability (engl. availability), it must
be ensured that a request for information or a service by an authorized
subject can be served within an acceptable time.
To ensure this protection objective, sufficient resources such as comput-
ing time and storage must be provided and control over these resources
must be protected to prevent impairment.

Integrity To ensure the protection objective of integrity (engl. integrity), the data
to be protected must be protected against unauthorized and unnoticed
manipulation.
For locally stored data, this protection objective can be achieved by
restricting write access for unauthorized subjects. For data transfer over
an insecure network such as the Internet, manipulation can only be pre-
vented by increased security mechanisms. For example, cryptographic
hash values ensure that manipulation of the data is detected by the
recipient, so that the manipulated data is not further processed.

Authenticity For the protection objective of authenticity (engl. authenticity), the iden-
tity of a subject must be ensured. This means that the subject must prove
that it is what it claims to be. This is done in an authentication process,
in which, for example, a user authenticates themselves to a system using
knowledge (knowledge of a password), possession (chip card, digital
certificate), or biometric properties (fingerprint, iris features). For data
transmissions, this protection objective must additionally ensure that the
transmitted data has been “freshly” generated and is not a replay of an
old message.

Non-manipulable The protection objective of being non-manipulable (often also referred to
as binding or non-repudiation and in Engl. Nonrepudiation) ensures that
actions that have been executed on a system cannot be denied afterwards
by the subject who performed these actions (traceability of transactions).
This protection objective is particularly relevant for all business-related
transactions or in connection with data protection.
Digital signatures, for example, can be used to achieve this.

125

Thinking through risks and threats using questions and scenarios
When considering IT risks and potential threats, it is useful to ask questions like the fol-
lowing:

• How can an attacker change the authentication data?
• What is the impact if an attacker can read the user profile data?
• What happens if access to the user profile database is denied?

Threat Modeling Activities
Each threat modeling process is based on a structured approach that is divided into the
following activities:

• Identification and Modeling of risks and threats as a “Use-Case”,
• Classification of the risk/threat,
• Assessment of the risk/threat in terms of the extent of damage in the event of an inci-

dent,
• Deriving recommendations for measures to eliminate or reduce risk,
• Monitoring the implementation,
• Continuous optimization.

Threat Model as a Jira Board
The entire threat modeling process is—for example, within a current app project focus-
ing solely on native app development, specifically related to a developed iOS app and/or
Android app—represented in the form of a Jira Board as a Threat Model.

The logic of such a Jira board threat model with the individual processes can be
designed as follows:

1. Each risk is recorded as a Jira ticket, issue type Threat.
2. In the summary, the risk is briefly and easily understandable, e.g., “weak certificate

signatures”.
3. The risk is specified with the description.
4. The priority (lowest, low, high, highest) indicates the urgency to eliminate the risk.

Since the priority is often not assessable in advance, the specification is not defined as
a mandatory field.

Risk groups in a threat model
The risk groups correlate with the protection objectives but are presented here as a threat,
i.e., a specified risk.

The IT security framework presented by Bryant and Saiedian has proven effective in
identifying IT security alerts in relation to expected behaviors that are conducive to con-
ducting security investigations in a methodical manner [32].

4.3 Software Architecture & IT Security as an Integral …

126 4 How to Adapt and Implement a Large-Scale …

In Table 4.8 “Classification of IT-Security Risk Groups,” the different risks according
to the STRIDE classification [33] are explained, which were reflected and expanded by
the BSI in a security profile for a SaaS collaboration platform [34].

With the use of cloud or equally exposed APIs, the security architecture in the con-
text of cloud management must be considered. It is important to note that with the indi-
vidual layers of a cloud-based security architecture, the security services of the cloud
provider also become the responsibility of the organization. Therefore, manipulation and
privilege escalation are particularly important. The STRIDE classification is suitable for
effectively detecting classified attack patterns and initiating appropriate countermeasures
without delay. With protection and countermeasures linked to this classification, almost
all attack patterns for the access and delivery layers can be covered, as cloud access

Table 4.8 Classification of IT-Security Risk Groups

Risk Group Explanation

Spoofing identity An example of identity forgery is the illegal access to and use of
another user’s authentication information, such as username and
password

Tampering with data Data tampering means the malicious alteration of data. Examples
include unauthorized changes to persistent data, such as those stored
in a database, and the alteration of data flowing between two comput-
ers over an open network, such as the Internet

Repudiation Repudiation threats are actions that deny users the execution of an
action without other parties having a way to prove it otherwise—for
example, a user performs an illegal operation in a system that lacks
the ability to track the prohibited operations
Nonrepudiation, i.e., undeniable, refers to a system’s ability to coun-
ter repudiation threats

Information disclosure Information disclosure threats involve the disclosure of information
to individuals who should not have access to it—for example, the
ability of users to read a file to which they have not been granted
access, or the ability of an intruder to read data on the transmission
between two computers

Denial of service (DoS) Denial-of-service (DoS) attacks deny service to valid users by mak-
ing the service—usually a web server—temporarily unavailable or
unusable through a targeted network attack. Defense against certain
types of DoS threats is achievable with various protective measures
and strategies—such as load balancing—to improve system availabil-
ity and reliability

Elevation of privilege In this type of threat, an unprivileged user gains privileged access and
thus has sufficient access to endanger or destroy the entire system.
Elevated privilege threats include those situations where an attacker
has effectively penetrated all system defense systems—e.g., fire-
walls—and has become part of the trusted system itself, a dangerous
situation

127

always takes place only via these two cloud architecture layers. Consequently, every
agile organizational model to be established must be able to capture these real existing
threats and define responsibilities along individual experts and specialist teams in order
to use effective mechanisms that are capable of responding quickly and independently to
respective cyber threats.

Priority levels of risks/threats
Each row of the Threat Board represents the priority level of a risk.

The row-by-row representation in the Threat Model graphically illustrates this prior-
itization, accordingly, from top to bottom:
Determine priority levels for risks/threats:
Highest priority (highest)
High priority (high)
Medium priority (low)
Low priority (lowest)

Risk classes: Damage extent of risks/threats
In order to meaningfully assess and prioritize risks, an evaluation of the expected dam-
age risk in the event of the occurrence of the respective risk or threat is necessary.

The six columns serve the function of prioritizing individual risks and use the follow-
ing status:

Define damage extent of identified risks/threats:
• not prioritized
• low risk
• medium risk
• high risk

With the Threat Modeling, we have introduced an approach that allows you to include
accompanying penetration testing in your agile framework.

The prototypical approach presented in the book offers you the direct opportunity to
involve an IT security team right from the planning and implementation phase.

4.3.19 As early as possible to agile deployment & automated tests

Agile deployment realizes the concept of continuous delivery, i.e., the ability to fre-
quently deliver software features to customers and then continuously learn from the real-
time use of the software by the customer.

As early as possible and agile deployment has become so attractive because the
potential for even shorter feedback loops has been recognized. From a quality assurance
perspective, we should definitely align our software development as early as possible
towards the earliest possible agile deployment.

4.3 Software Architecture & IT Security as an Integral …

128 4 How to Adapt and Implement a Large-Scale …

This ensures that we test our software development with the deployment environ-
ments in the environments where we want to operate our software later. This, in turn,
means that we orient the test platform as close as possible to the production environment
to avoid errors and deviations.

What deployment goals do we have here and what is the purpose of agile deploy-
ment?
A) Monitoring and optimization of quality processes
B) Automated execution, control, and logging of software tests
C) Automation of quality and deployment processes/release processes

With the transition from traditional software development, characterized by slow devel-
opment cycles, with only quarterly or, at worst, annual release cycles and a waterfall-like
interaction mostly between stakeholders from product management, product develop-
ment, system testing, and the customer, a gradual change to an agile organization usu-
ally takes place, which is oriented towards the approaches of research and development.
Typically, non-agile organizational forms can be recognized by the fact that customer
feedback processes are not or not sufficiently integrated into the product, service, and
software development process.

Deployment obstacles: Too large teams, strict planning phases, lengthy release
cycles, no or insufficient feedback loops
There are usually classic organizational forms with classic department structures and
regularly much too large project teams. Responsibilities are roughly divided into disci-
plines such as system architecture, design, and testing. Development takes place sequen-
tially with a strict planning phase at the very beginning of each project. Delivery to
the customer usually takes place at the end of the project, and only then can customers
provide feedback on the received software functionality. Likewise, such organizational
forms lack any agile deployment with prototypical character or feedback-based testing
methods.

Olsson et al. have identified barriers to agile transformation and aligned them with a
stage model that is oriented towards continuous deployment of software [35]:

Maturity Level 1: First steps towards an agile transformation
The next step in the development of the organization is that individual teams adopt agile
practices, but still adhere to a central control for specifications and product management,
up to system verification. So, the traditional software development model is still predom-
inantly used. This can often be recognized by the fact that short feedback loops with the
customer are missing.

129

Maturity Level 2: Continuous Integration
An organization that pursues a continuous integration strategy has successfully intro-
duced practices that enable frequent integration of development performance, with daily
builds and rapid handover of release changes. This maturity level already includes (par-
tially) automated builds and (partially) automated tests. Humble and Farley define con-
tinuous integration as a software development practice in which team members integrate
their work frequently, resulting in multiple integrations per day [36].

Only the ability to automate test cases, integration of software libraries and pack-
ages, release builds, etc., enables teams to test and integrate the updated code artifacts
daily and feature-oriented. With this maturity level, the required time from idea to actual
implementation in software is noticeably reduced. At this point, both the connected soft-
ware development teams and system validation work according to agile practices. This
includes specialists for user experience and usability as well as IT security.

Maturity Level 3: Continuous Deployment
In this phase, all practices of the second maturity level are applied so that service and
customer-oriented functionalities are continuously realized in short intervals through
software releases.

Furthermore, continuous customer feedback is implemented, which is based on learn-
ing from validated information and data on the use of the software by users and custom-
ers in a real usage context. This means that verified insights are already incorporated into
the elimination of errors and optimizations are only implemented if there is an expecta-
tion that they will provide added value for the customer.

At this stage of development, marketing, R&D, product management, and customers
are all involved in a fast, agile cycle of software release development.

Maturity Level 4: Continuous adjustments based on the latest requirements
The fourth maturity level realizes the stage of immediately responding to customer feed-
back and results in the actual and immediate provision of software functionality as a
means of experimenting and testing with respect to all aspects of real customer needs.
With this agile maturity level, the deployment of software is considered as a starting
point for any further prioritization of functionality rather than as the delivery of the final
product. With this maturity level, quality processes are continuously monitored and opti-
mized. Regular software tests are (partially) automated and are carried out with docu-
mentation.

The agile deployment strategy leads us straight towards (partially) automated testing
procedures.

What do we need to do to achieve automated testing?
1. Evaluation and definition of the build tools, test frameworks, and tools to be used
2. Definition and setup of the test environment and test strategies for manual testing as

well as for test automation

4.3 Software Architecture & IT Security as an Integral …

130 4 How to Adapt and Implement a Large-Scale …

3. Definition and monitoring of our Continuous Integration/Continuous Deployment
pipelines

To implement these capabilities, it is recommended to follow the best practices presented
in the second chapter and to use established DevOps tools, which you will gain a com-
prehensive insight into at the latest in the DevOps periodic table.

Understanding maturity levels as evaluation stages to be passed through
The knowledge and conscious consideration of maturity levels is of particular impor-
tance when an organization is striving to become more agile. Each maturity level takes
time, and the individual maturity levels are to be understood as evaluation stages that
cannot be skipped but must be taken one at a time. Each organization will be shaped by
different experiences on its journey, and it is also important to understand that there are
often multiple ways and tools as solutions to the goal. Best practices and science-based
recommendations for action can, however, be understood as gentle suggestions that often
make things easier for those involved and prevent frustrations.

Positively understand that optimizations will always be necessary in the future
Furthermore, all stakeholders within the organization understand that an agile software
development process can never reach a final result at any point in time because future
adjustments will continue to take place and will always be based on the latest require-
ments. Lastly, optimization and error correction are based on a positive feedback and
error culture, and every effort is based on cooperative collaboration.

4.3.20 DevSecOps

Efforts to integrate security into DevOps have led to the DevSecOps paradigm, which
can prove to be a real challenge in practice.

DevOps leads to DevSecOps
In particular, with the careless use of various DevOps tools, including the use of cloud-
specific development tools or, for example, the improper or careless use of container
tools, the need for developer-centric tools for testing towards application security
increases. This includes specific tools designed for continuous testing and practices to
harden IT security during the development and operation of software.

DevSecOps and agile team structures
DevSecOps goes beyond automation, continuous integration, and deployment pro-
cesses, as it specifically involves IT security specialists with the goal of hardening soft-
ware. With the establishment of security practices in DevOps routines, the collaboration
between different teams automatically intensifies, which has a direct influence on the

131

agile organizational model. As soon as critical systems, objectives, risks, and evidence
for IT security have to be provided and managed during development, DevSecOps plays
a particularly important role. After implementing security into the DevOps toolchain, the
more extensive DevSecOps work only begins. Within the agile organizational structure,
behavioral changes must be brought about alongside established security processes to
create a security culture. The special DevSecOps role has established itself in many ways
as a practical solution proposal to effectively minimize risks with a targeted task focus.

The DevSecOps tool truffleHog
An example of such a tool is the analysis program truffleHog [37], which is designed
to search Git repositories for seemingly hidden secrets and thus automatically dig deep
into the commit history and branches of software releases for the IT security specialist.
The analysis program, which is available as a free version under the GPL-2.0 license,
uncovers hidden secrets in the code that were usually accidentally transmitted at different
stages of development.

Threat modeling and code reviews are also considered DevSecOps practices.

4.3.21 Code Reviews

Code reviews are part of the quality assurance process and also part of the development
lifecycle.

With a code review, we check whether conventions are being followed and systemati-
cally test software for its error-free operation.

Approach to Code Reviews
In order to review program code, the exact functionality of the code must be clear as a
result of a review. The reviewer thus uses the basic principle of validating hypotheses,
meaning they verify whether the programs really do what I, as a reviewer, would have
thought and expected beforehand?

It is precisely with this verifying approach to code reviews that code reviews gain
important significance in terms of error analysis or in the identification of unwanted side
effects.

At the same time, it becomes clear why it is considered that no programmer should
review their own code, because as the creator of a code fragment, this very question of
what a code fragment should fulfill is predetermined from the outset. The analysis is
inherently limited by implicit knowledge, and the result is accordingly one-sided…

When program fragments—be it through creative inspiration—or through analytical
approaches from a different perspective with unexpected input values or deviating behav-
ior are confronted, it often leads to surprising and equally undesirable results.

4.3 Software Architecture & IT Security as an Integral …

132 4 How to Adapt and Implement a Large-Scale …

Using Frameworks to Practice Code Reviews
Good starting points for code review exercises are frameworks. Most open-source frame-
works are excellently documented, so that numerous sources for task assignments of
foreign code can be used within agile software teams, which are unknown to the code
reviewer. Such exercises are even more effective when the code review is prepared by
another team member, so that the code confronted with the code reviewer in the analysis
actually represents a completely foreign code artifact.

For example, many software developers use the Java Spring Framework, but how
many developers really know the framework internally and in the interaction of its com-
ponents? What happens in the individual steps in a program fragment and in a module
and in the interaction of the numerous components?

Getting Familiar with Foreign Code is a Very Common Requirement
In a code review, we want to understand what we are applying in terms of code, we
want to understand what the programmers were thinking when creating the software.
The review of foreign software artifacts is suitable for improving one’s own skills and is
extremely useful in getting familiar with foreign code in ever shorter periods of time.

Getting familiar with foreign code is a very common requirement because foreign
code artifacts are constantly being used in software development, be it as part of the
open-source environment or from outsourced contract artifacts.

4.3.22 Pair Programming

Pair programming is a form of collaborative learning; two programmers work together
to achieve a common goal. Preston confirmed in his study the advantages of the pair pro-
gramming methodology in terms of effectiveness and in the analysis of critical properties
that successful collaborative learning approaches must fulfill in order to be considered as
such [38].

Classic Approach to Pair Programming
In the classic pair programming approach, one programmer takes on the role of the
”Driver“ and, as the code editor, is responsible for writing a program draft on a com-
puter, whiteboard, or simply on paper [39].

The other partner takes on the role of the so-called ”Navigator“ and fulfills several
tasks at the same time. One of these tasks is observing the work of the ”Driver“ in terms
of tactical and strategic errors; these can be syntax errors, typos, and calling the wrong
method. Strategic errors occur when the implementation or design of the driver will ulti-
mately not achieve its goals. The Navigator is the strategic, far-sighted thinker of the pro-
gramming pair. Since the Navigator is not as deeply involved in the design, algorithm,
code, or testing, he or she can more easily adopt an objective perspective and has greater
degrees of freedom to think about the strategic direction of the work. In collaboration,

133

both act as a team and are constant brainstorming partners for each other. As an effective
pair, they continuously discuss alternative approaches and solutions to the problem.

Pair Programming as a Team Building Measure & Perfect Training Method
Pair programming can also be used ideally as a team-building measure or to learn or
train code conventions, algorithms, or a specific technique.

Working in pairs or as a team often increases motivation. Together, for example, it is
easier to define the result of more readable comments or to gain a better technical under-
standing, such as how components should ideally be architecturally connected to repre-
sent a specific behavior.

In pair programming, the community idea counts with the goal of bringing improve-
ments for oneself, the team, and a common solution.

Pair Programming and Code Reviews
Pair programming is particularly practical in terms of code reviews, as programmers
should never look at code from programs they already know when analyzing errors.

Knowledge Exchange, Improving Competencies, and Having Fun Programming
Together!
The benefit of pair programming lies not least in the exchange of knowledge, improving
competencies, and of course, the fun of programming should not be neglected!

4.3.23 Logging & Monitoring

With the establishment of DevOps and the implementation of a series of practices to
accelerate a software development process aligned with the DevOps cycle, the logging of
software activities, known as logging, takes on an important role.

Logging from the Perspective of IT Security and the Requirements of KPI-Oriented
Monitoring
From the perspective of IT security and with the goal of (partially) automated deploy-
ment, appropriate logging is required in order to build a corresponding monitoring sys-
tem that can assess effectiveness levels as well as security-relevant aspects in real-time.
While we will address the requirements of KPI-oriented monitoring in a separate chap-
ter, it is important to consider at this point in the context of setting up effective logging
which data we can technically collect, what efforts are associated with it, and what value
these logging data will have for us in terms of meaningful monitoring.

Not all logging data is equally valuable to us
Almost every component is technically capable of generating countless logging data.
In connection with logging data, it is always necessary to question the time interval for

4.3 Software Architecture & IT Security as an Integral …

134 4 How to Adapt and Implement a Large-Scale …

which this data has any significance. Against this background, logging is often limited to
ensure appropriate data protection.

Reconciling logging and IT security requirements
Some security requirements are diametrically opposed to these restrictions. Often, how-
ever, both requirements can be reconciled; for example, through appropriate data protec-
tion concepts, documented IT security processes based on the four-eyes principle, and by
applying the consistent premise of not collecting data en masse blindly, but only when
there is a specific need and appropriate occasion, such as in justified threat situations.

Evaluating various logging sources
Sources for logging data include, for example, various types of software repositories
containing historical, communication, bug, and runtime information that are relevant for
optimization and should be used for systematic analysis.

Effectively supporting software development & IT security with logging policies
and tools
All of this is done with the aim of supporting software development—including IT secu-
rity—by providing policies and tools for the development and maintenance of high-qual-
ity logging code.

So far, there are only a few guidelines and tools for creating high-quality logging
code. The current application context of log analysis is very limited in terms of feedback
for developers and correlation with usable telemetry data.

We want to support the IT operations side by enriching the context of log analysis
through systematic estimation of code coverage across log execution and in-depth prob-
lem diagnosis through correlation of logs such as traces and APM data.

Approach to integrating a practice-oriented logging mechanism
Starting with a systematic analysis of commit logs from software repositories, which
aims to filter and analyze relevant descriptions from bug reports, a list of code commits
can be systematically created. With this practice-oriented approach, we gain valuable
information about existing problems in the logging code.

Four different components of logged logging code
In software repositories, there are basically four different components of logged code:

1. The object of log logging
2. Detailed explanatory information artifacts, the so-called verbosity level
3. Static texts
4. Dynamic content

135

All of these four components can be changed separately, using different revisions. An
effective logging approach requires automatically localizing changes that lead to errors
based on the change lines. We need a logging mechanism capable of identifying existing
problems and localizing them based on applied code fixes.

Once such a benchmark dataset is available, an exploratory study can be conducted
based on this data to evaluate the effectiveness of various existing tools for detecting log-
ging code problems.

Test Environments and Test Devices
Especially with regard to data protection considerations and the development of corre-
sponding expertise, usable test environments and test devices are required to build effec-
tive data analyses and to verify the implemented analysis processes. When establishing
agile processes, it is important to consider which teams and product owners will take on
these tasks and how the individual agile teams can be best involved.

4.4 Agile Teams, Roles, Tasks, and Processes

Agile software development in teams requires a shift towards DevOps and thus requires
new teams, roles, tasks, and processes; these will be presented in detail in the following
section.

The classifications listed apply across the board and should be considered largely
independent of the individual Large-Scale Agile Frameworks. If a Large-Scale Agile
Framework defines its own roles, tasks, and processes, the explanations of the respective
Large-Scale Agile Framework should be consulted.

To ensure the broadest possible practical relevance, the team and role descriptions
are based on proven team constellations and processes that should be applicable in most
medium-sized companies. Especially in the IT sector, individual job profiles vary in part
or entirely in their title and are largely comparable or even identical despite different
designations, only through the defined functions and areas of responsibility as well as
required skills.

Agile Teams:
In addition to agile software development teams, many other, very differently specialized
teams are regularly involved in the development of existing software solutions:

• Agile Software Development Teams
• Frontend and Usability Technologies
• System/Manufacturer Test
• IT Security & DevSecOps Teams
• Technical Documentation
• Infrastructure Services

4.4 Agile Teams, Roles, Tasks, and Processes

136 4 How to Adapt and Implement a Large-Scale …

• Sales
• Research, Innovation, and PreSales
• System Integration
• Support
• Product Management
• Marketing and Content Teams
• Legal & Data Protection Experts

Agile Roles
Various specialists take on different roles in software development within agile teams.
The typical representatives with very different specializations within the teams are:

• Product Owner
• Project/Team Leaders(**)
• Software Architects
• Software Developers
• Software Engineers

– DevOps Engineers
• Service/Maintenance Officers

Note(**): Agile concepts typically avoid roles that already indicate a management or
leadership function in their designation.

Tasks and Processes
The tasks and processes are either team-specific and tailored to the respective agile team
or have a cross-functional function.

Cross-functional means that the role coordinates corresponding tasks and processes
between different teams or assumes a coordination function between the different teams.

4.4.1 Agile Software Development Teams

Roles
Product Owner, Project/Team Leader, IT and Software Architect, Software Devel-
oper/Software Engineer, Product Manager, IT Security Specialist, QA Engineer

Tasks
The initial and ongoing development of technical software solutions is organized in spe-
cialized development teams, with assignment at the Product Owner level. Within the
scope of software development, these teams are also responsible for developer tests,
which are largely automated.

137

The type of technical architecture and detailed process documentation is also in the
hands of the product-specific development teams.

Processes
The Product Owner of an individual software product is responsible for the product
strategy and aligns it with the cross-product strategy of product management. In the case
of software specialists, a predominantly technical and product-oriented perspective can
be assumed within the scope of software product development. For complex software
products, the Project Manager assumes a temporary and the Team Leader a permanent
management function, which includes organizational and personnel responsibilities. This
includes project controlling, writing status reports, defining and describing work pack-
ages, employee management, and cross-project and cross-site communication.

The focus of Quality Assurance Engineers is on protecting, monitoring, and ensuring
the product quality of an organization. The central task is to establish a quality assurance
process that meets the current requirements and objectives of the organization. At the
same time, this process must provide software, service, and product teams with a solid
foundation to ensure the availability and stability for stakeholders and end customers is
consistently reliable. In this context, the Quality Assurance Engineer performs functional
tests that reveal existing problems or insufficient usability. These specialists are also
significantly involved in service/product development, as they are well acquainted with
defined quality characteristics. The QA Engineer selects suitable test approaches depend-
ing on the requirements, such as behavior-oriented, technically based test procedures, or
tests based on acceptance criteria. Very often, approaches from various test procedures
are combined. For the Product Owner, the role of the QA Engineer is a very important
support.

The Software Architects are responsible for the technical and professional software
architecture. They coordinate this with other software architects and all stakeholders in
such a way that no disadvantages arise from a specific software architecture in the inter-
action of numerous and different software components or, for example, for a specific
software product constellation in the future.

The six activities depicted in Fig. 4.12 “The six main tasks of software architects”
based on “Hruschka/Starke” interact with each other and usually require continuous
adjustments, which are best implemented agilely. Clarifying requirements and con-
straints: Insufficient, incomplete, or defective requirements need to be clarified, with the
minimum prerequisite being the subset of architecture-relevant requirements. Based on
the requirements and constraints, structures for data processing and cross-sectional con-
cepts are to be designed. Subsequently, software architects accompany the implementa-
tion and communicate and evaluate the software architecture.

The software developer deals with concrete implementation tasks and is an expert in
a range of specific technologies and methods required for the provision and use of soft-
ware products. This includes development-specific resources such as development tools,
third-party software and frameworks, the software architecture, and the connection of

4.4 Agile Teams, Roles, Tasks, and Processes

138 4 How to Adapt and Implement a Large-Scale …

software products to internal and external software modules and IT systems, as well as
the team-internal agile approach.

A product owner and their deputy are the designated contacts for the maintenance and
support of a software product.

4.4.2 IT Security Teams

Roles
IT Security Specialist, Pentester, Sec-DevOps, IT Security Consultants

Tasks
The IT Security Specialists pursue the hardening of any software components and sys-
tems and ensure their ongoing monitoring. With this focus, IT specialists independently
accompany all ongoing processes within the organization in both a consulting and imple-
menting capacity. In doing so, IT security specialists implement the establishment of
security standards and ensure their compliance through appropriate policies.

The six main
tasks in the role

of software
architect Rate

architecture

Accompany
implementation

Communicate
architecture

Design
structures

Clarify requirements and
boundary conditions

Design cross-
sectional
concepts

Fig. 4.12 The six main tasks of software architects based on Hruschka/Starke

139

Processes
With their IT security-focused expertise, security specialists support software and IT
architects in an advisory capacity, organize penetration tests, and ensure in collaboration
with agile software teams that technical debt is eliminated as quickly as possible or at
least that appropriate protective measures are in place during the transition phase to pre-
vent damage. IT security specialists thus also have a veto right when it comes to putting
software, services, or releases into production. Likewise, IT specialists advise on con-
tract design, for example, when service contracts require cooperation with third parties.
Their goal is also to establish system-wide test environments and enforce access rights to
source code.

The security tools used are partly very specific depending on the system environ-
ment, partly generally applicable, so that, for example, BSI or OWASP recommendations
can be implemented. The IT security-oriented logging and monitoring is thus to a large
extent the domain of the IT security teams.

4.4.3 Implementation of Legal Framework Conditions and Data
Protection

Even though requirements for legal framework conditions and data protection gener-
ally automatically flow into software, organizations benefit in the medium and long term
from targeted influence through a separate requirements management for this area.

Complex IT scenarios—especially when they are increasingly located in cloud
scenarios and thus open up their service scenarios towards the web and mobile appli-
cations—require effective data protection and IT security concepts that meet the legal
framework conditions. Only recently, the effects of the Privacy Shield ruling have unset-
tled numerous companies [40].

Data protection is based on the classifications defined under IT basic protection,
which make it possible to evaluate data in the dimensions of confidentiality, integrity,
and availability and to assign them to the corresponding protection requirements catego-
ries [41].

Roles
Data Protection Officer, Information Security Management (ISMS) Officer, ISM
Teams, IT Law and Data Protection Experts

Tasks
Under the leadership of the organization’s Data Protection Officer, the teams are pri-
marily responsible for ensuring and maintaining the data protection of the personal and
sensitive data entrusted to them within the organization. Specialists in this area ensure
compliance with legal framework conditions, organize IT certifications and standardiza-
tions according to ISO standards, provide IT security awareness training, and perform

4.4 Agile Teams, Roles, Tasks, and Processes

140 4 How to Adapt and Implement a Large-Scale …

administrative tasks. In the area of IT law and data protection, full lawyers cooperate
with the technical teams to achieve their goals.

Processes
Using various approaches, potential integrity violations are analyzed and proactively
prevented through rules and measures implemented within the organization. In addition,
the creation of emergency plans with respective instructions for individual employees is
the responsibility of these teams. Through close cooperation with IT security special-
ists, processes are evaluated by simulating potential threats using threat models for the
organization and IT processes.

4.4.4 Software Product Management/Service Management

Roles
Team Lead Product Management, Product Manager, Service Manager

Tasks
The overarching product-service management works in close cooperation with the mem-
bers of the agile software product teams and takes on the task of cross-product coordina-
tion in particular.

Processes
Product/Service Management prioritizes requirements and resources, is responsible for
resource planning and coordination, as well as the expansion of the product/service port-
folio. With a future-oriented approach, Product/Service Management has the visionary
task of establishing a long-term, strategic product/service vision. As an escalation point,
Product/Service Management mediates both externally towards the customer and inter-
nally—primarily between the team leader, product/service manager, and software archi-
tects.

4.4.5 UX Teams: Frontend Design, Usability, and User Experience

Roles
Team lead, Project manager, Usability experts, Usability engineers

Tasks
The frontend and usability team standardizes the interfaces in software products and
provides technical solutions to the product/service teams. A uniform operating concept
ensures that graphical elements in the interfaces have a consistent appearance and pro-
cesses are similarly designed; the developer can fully concentrate on the subject matter

141

during product development. Technically, the developers use appropriate interfaces
developed from one or more offered frameworks. By using frameworks agreed upon
among the teams, it is avoided that product/service-specific solutions dominate the fron-
tend design, and usability teams can manage and be responsible for uniform user flows
for all connected development teams.

Processes
The usability engineers maintain the constructed usability frameworks and take on the
developer role in the team. Usability experts do not need to perform developer activities
but methodically monitor the constructed components.

For this purpose, it is necessary for these team members to question the professional
context of the users. This ideally happens in direct dialogue and by observing the users
during work and while using the software.

Qualitative interviews with users have also proven to be effective. Mockups and dis-
cussions with customers are very helpful in creating user-friendly operating concepts for
individual software solutions.

4.4.6 Quality Assurance and Testing Procedures

Roles
Team lead, Software testers

Tasks
When creating software, the responsible team is in charge of establishing and imple-
menting tests, such as a system test and the testing of individual components. The team
specializes in quality assurance using various testing procedures and establishes the cor-
responding testing methods within the entire software creation process. The team mem-
bers do not necessarily know the software products to be tested from the inside but test
the software with various tools from the outside. The challenge with testing procedures
is the complex interaction of the various product/service components.

Processes
The so-called “smoke test” is one such testing procedure and ensures that the basic func-
tions of the application run smoothly in the form of automated surface tests. A software
tester checks daily whether the smoke tests, usually carried out outside regular working
hours, such as at night or in the early morning, are successful for all supported version
combinations of the software products. In case of test errors, these are logged and for-
warded to the product/service development teams via ticket. After the successful comple-
tion of the testing procedure, the software goes live on the test systems.

The team leader ensures the quality of the testing procedures and must maintain an
overall view of the active testing procedures so that all relevant areas are tested as far as

4.4 Agile Teams, Roles, Tasks, and Processes

142 4 How to Adapt and Implement a Large-Scale …

possible. Each product/service team can use its own testing procedures with separate test
data. In higher-level rounds, agile teams should strive to exchange their experiences and
harmonize testing procedures with each other as far as it makes sense.

In the form of integration tests, these are also partially product/service cross-cutting
tests.

4.4.7 Technical Editing

Roles
Technical Editors

Tasks
The team composed of technical editors is responsible for software documentation, usu-
ally for external stakeholders. In this context, these documentation specialists cooperate
with software architects to create a unified internal documentation. Typically, the transla-
tion process for multilingual documentation is also located within such a team.

Basically, there are two types of different documentation artifacts to distinguish: First,
the documentation in the form of online help, which every software manufacturer is
legally obliged to provide, and second, the creation of installation manuals or market-
ing material such as product/service flyers. Furthermore, the technical editing department
generates graphics, tutorials, etc., and serves as a technical-focused proofreading service
for other departments, e.g., marketing. Since online documentation now often leads to
various web-based service artifacts, workflows from internal wikis, such as Confluence
systems, towards publicly accessible websites are suitable. FAQs and other service arti-
facts are also integrated and continuously updated in this way. All service artifacts have
both external and, to some extent, purely internal character.

Processes
It makes sense to establish a clear assignment of employees at the product/service level.
This assignment of technical editors to product teams usually arises from factors such as
strong company growth and requests from project teams.

Documentation creation usually takes place through proofreading release notes and
can follow traditional workflows: If working with change requests or problem reports,
release notes have proven to be effective; these are written in advance by the develop-
ers and proofread by the project management of the respective product team from the
release date onwards, i.e., a review is carried out with regard to terminology and com-
prehensibility. It is highly recommended to use a single-source publishing procedure to
ensure that surface texts (properties) are uniformly designed and appear correspondingly
in release notes and documentation. This also makes it easy to write uniformly and gen-
erate a comfortable online help from a single source of truth. It should also be ensured

143

that generated output formats are cross-platform and do not cause any unpleasant sur-
prises in different languages. For this purpose, the use of a so-called translation memory
is absolutely sensible. This also allows for defining connected workflows, such as a qual-
ity assurance process for mockups.

4.4.8 Infrastructure Teams

Roles
Teamlead, Infrastructure Engineer

Tasks
These teams provide established infrastructure services within the company. The differ-
entiation between an infrastructure team and a DevOps team is that no ongoing operation
is maintained and coordinated; the service offerings are focused on hardware and tools
for software development. The services include both consulting and usable software arti-
facts. Specifically, these are, for example, deployments of systems such as

• Confluence and Jira
• GIT repository server
• Build environments
• Etc.

Supporting this, the team drives technology topics forward through developed visions,
e.g., by adding technologies such as Kubernetes or Docker as technical abstraction layers
for hardware.

Processes
The work progress can be controlled, for example, using a timeboxing approach.
Requests are tracked in the form of incoming tasks in Jira. The services defined via Jira
tickets are successively processed by the infrastructure engineers. To bundle competen-
cies, it is recommended that individual team members specialize in about three technol-
ogy topics each, so that they complement each other in their different skills. In addition,
this ensures that all required services can be provided at any time. With the help of Jira,
the team leader continuously analyzes where exactly problems exist and topics “get
stuck”. The documentation of knowledge on technology topics is done in the Conflu-
ence wiki. A status round serves to review individual tasks and check their status for
delays. Typically, such processes are scheduled weekly and take place once a week as a
”Weekly”.

4.4 Agile Teams, Roles, Tasks, and Processes

144 4 How to Adapt and Implement a Large-Scale …

4.4.9 DevOps Teams

Roles
DevOps Engineers

Tasks
The DevOps Engineer is a specialized DevOps expert who combines the already estab-
lished roles of Build Engineer, System Administrator, and Tool Developer.

Why a DevOps Engineer?
The reason for introducing the role of the DevOps Engineer is the consistent merging of
different disciplines and a recurring shift of various responsibilities.

With a focus on automating various development processes and optimizing the
pipeline, the DevOps Engineer plays a higher-level role. They bring together the previ-
ously mentioned roles and embody a responsibility that acts as an active communicator
for the implementation of selected DevOps approaches on the developer side as well as
in IT operations.

Through the approaches to be implemented, not only is a faster release cycle aimed
for, but the end customer is also brought more into focus through approaches from the
User-Driven Design area.

Processes
The 16 task areas of the DevOps Engineer:

Based on the scientific study”Who Needs Release and DevOps Engineers, and Why?“
will provide a more in-depth definition of the role of the DevOps Engineer in the fol-
lowing. The results of the study show that the following 16 areas of responsibility can
be assigned to the role of the DevOps Engineer [42]:

 1. Integration: Source Control Management (SCM), including branch and merging
strategies for parallel software development and support through SCM tools such as
GIT.

 2. Build System: Techniques and tools for generating and packaging source code and
program files into delivery units, e.g., using software solutions like Ant or Maven.

 3. Continuous Integration: Management of tools for automated quality assurance
based on defined events, for example, using tools like Jenkins. A specific application
example: After each change that developers deliver via commit to the correspond-
ing test scenario, the delivered code fragment is automatically tested on a dedicated
build/test server. This area of responsibility also includes tagging and storing the
built artifacts in repositories such as JFrog or Nexus.

 4. Environment/Infrastructure: Defining and managing the system environments and
infrastructure involved in software development (e.g., servers, VMs, and containers,

145

as well as any hardware and network components to be configured) for implement-
ing different staging activities, such as development, software testing, operation on
the staging environment, and productive live operation (Dev, Test, Staging, Produc-
tion). This includes coordinating with other roles and areas of responsibility.

 5. Execution and Planning of System Tests: The DevOps Engineer supports the
implementation of development-specific test scenarios and advises on their plan-
ning. It should be noted that test definition is only worthwhile and sensible for
longer-term and more complex projects, as extensive time is required for defining
specific test scenarios and their mapping in the system test.

 6. Delivery/Release: Setting up and maintaining the pipeline for software deployments
and software releases, both for existing and new projects.

 7. Operation Monitoring: Monitoring and controlling the production environment
and proactive error correction.

 8. Problem Diagnosis: Diagnosis of errors and undesired system behavior occurring
after a release. It is important to note that as detailed error images as possible with
timestamps and precise descriptions should be available for problem localization.

 9. Version Upgrades: Upgrading existing production environments to newer release
levels, possibly using techniques such as Canary Deployment or Rollback.

 10. Pipeline Optimization: Optimization of the various activities of the release process
with a focus on Continuous Delivery.

 11. Scripting: Scripting and automation of manual release engineering tasks, typically
using scripting languages such as Bash, Python, or PowerShell.

 12. Communication: Ability to promote active dialogue within the team. Targeted
exchange of information through both formal and informal discussions, social net-
works, internal wiki, and custom documentation, as well as via email and other
communication media.

 13. Coordination and Planning: Support of release planning, for example in the form
of a release roadmap or the temporal definition of development cycles. This area of
responsibility requires strong coordination skills in relation to other team members
such as developers, external database administrators, or IT service providers.

 14. Non-release related activities: Engagement in further development-related activi-
ties such as system design, easily understandable system architecture, or the design
of test scenarios.

 15. IT Security: Necessity to establish a release-related and maximum security-oriented
infrastructure and security-oriented processes. This also includes IT security train-
ing, company-wide uniform standards for data protection, and related training and
education.

 16. Cloud: Knowledge and implementation of cloud-based technologies and processes
for build, test, and deployment environments.

4.4 Agile Teams, Roles, Tasks, and Processes

146 4 How to Adapt and Implement a Large-Scale …

4.4.10 Sales—The distribution of products and services of your
organization

Roles
Account Manager, Sales Representative, Service Account Representative

Tasks
Sales is responsible for the offer and sales process and takes care of all customers,
whether you act in the role of a software manufacturer or sell software-supported prod-
ucts and services. The assignment to customers—in the case of software product or SaaS
offerings, these are licensees—is usually divided among individual account managers but
can also be clustered into any other units.

Processes
In customer support, the account manager is the first point of contact. For existing cus-
tomers, they are on an equal footing with the customer product manager. For software
products, the customer product manager ensures that customers receive offers for their
inquiries about individual product/service and feature extensions. For change request
inquiries, this task includes coordinating the offer design with product management. For
pure license sales, the sale usually takes place according to the specifications of an inter-
nal company price list. When commissioning software-related services, the coordination
of efforts and deadlines with team colleagues is required. Likewise, regular meetings
with customers must be organized and conducted.

Public tenders typically take place in close cooperation with the respective service/
product manager. Sales significantly shape the contract management, for example, in
the form of contract details for Service Licence Agreements (SLA) and coordinate these
with product management.

4.4.11 Research, Innovation, and PreSales

Roles
Technical Consultants

Tasks
Technical consultants conduct purposeful research on technical issues from developer
practice; they test new frameworks, technology standards, APIs, or tools and explore and
test new or modified procedures or processes. In this way, such a team actively contrib-
utes to promoting innovation within the company. In addition, such a team can take over
or proactively support the accompaniment of tenders and support the pre-sales process in
the context of providing technology-related information and proofs-of-concept.

147

Processes
In this role, the team members act as a technical support function—through consulting
and coaching—as a link between the software development area and affiliated teams
such as product management or individual software teams. Technical consultants are typ-
ically also commissioned by individual software development teams to evaluate specific
technical issues or to bring about objective decisions if discrepancies exist between dif-
ferent teams regarding technology preferences.

The following procedure appears particularly proven in practice:
As soon as the team has developed and evaluated an alternative procedure, it is discussed
internally within the company or openly with customers. After two rounds of discussion
on an internal discussion platform, the optimized process technology is then defined as a
mandatory standard for all products or services. Product improvements are implemented
as quickly as possible using this approach.

4.4.12 System Integration

Roles
Team Leader, Integration Engineer

Tasks
A system integration team is responsible for integrating software products into heteroge-
neous IT landscapes. In the case of software license product customers, as well as server/
cloud applications, there are often extremely customer-specific IT systems that ulti-
mately demand the same benefits from software but have significantly different require-
ments regarding the operating environment.

For complex software products consisting of numerous individual components, inte-
gration at the licensee may include “meshing” the individual components on behalf of
the specific requirement specification into a customer-specific individual solution. In this
case, the members of an integration team not only take on a function in relation to tech-
nical issues but also have functions in the professional context in practice.

Processes
In the preparation phase, the integration engineer clarifies all integration-related ques-
tions and checks whether all associated prerequisites are met, e.g., whether the technical
infrastructure is in place. In addition, the team members ensure that the contact persons
on the customer side are familiar with the subject matter required by the commissioned
software services.

If the integration of software takes place on-site at the licensee, software products
in heterogeneous IT systems often do not work directly “out of the box.” Thus, soft-
ware integration is always very complex, technology-specific, and regularly requires

4.4 Agile Teams, Roles, Tasks, and Processes

148 4 How to Adapt and Implement a Large-Scale …

 intervention at the code level. Shell scripts are primarily modified or created in this
process. This often involves API connection to a customer-specific IT infrastructure in
addition to pure software configuration. Different IT skills are required for dealing with
middleware; these usually include: Unix, Java, and specific knowledge of server systems,
connected network infrastructure, middleware technologies, shell scripting, handling
XML, XAML, and JSON files, creating configurations, executing queries at the data-
base level, setting up a database, e.g., in Oracle, understanding the functionality of TLS,
knowledge of software code functionality, and knowledge of adjacent software compo-
nents operated by licensees in parallel with the marketed software license products.

A customer-specific implementation often also includes extensions through individual
programming.

Following an on-site integration, aftercare topics are again in focus: These include
application monitoring, patching, and performing updates, integrated into ongoing opera-
tions.

Software projects often have a project duration of more than half a year. Usually, sev-
eral software projects run in parallel, and each individual project is in a different project
status.

As a result of their activities, the team members of an integration team are an essential
link for software developers by passing on information about real customer-side process
flows and licensee feedback, which arises during integration assignments, to the software
development teams.

If a software defect—the so-called bug—requires a change request, communication
with product management should also take place. Regular exchange between all involved
teams is also recommended.

4.4.13 Support Teams

Roles
Team leader, Support staff

Tasks
The primary function of the support team is to provide first and second level support for
customers. Support requests are usually received by most support teams via email, tel-
ephone, and increasingly via chat and social media. To ensure the best possible support
in critical areas, an effective all-round support aims for a 24/7/365 support concept. To
establish these high-quality standards in smaller companies—without an underlying call
center mode—a service model with on-call support hotline for processing and resolv-
ing support requests is recommended, at least for critical software products or software-
based services.

Some support teams also handle the service of software deliveries for provided prod-
ucts and solutions and their organization, such as through a download and service portal.

149

Processes
As part of support management, a support team regularly manages personal data of cus-
tomers and companies, often organized through a dedicated helpdesk system or a central
CRM system. Ideally, service and license management is organized in a central system.
If the support also manages a web-based customer portal and provides extended service
in the form of product downloads and documentation for its customers or licensees via
customer login access, the support team is also responsible for the associated service
tasks.

To resolve support requests, support teams often still use very specific support data-
bases. Many companies are now moving to the use of external cloud solutions such as
Atlassian Jira Service Desk, especially since Jira and Confluence are already extremely
widespread and, due to the almost identical user interfaces with Jira and Confluence, are
already largely familiar in companies that use Atlassian.

The support process is conducted via email and connected online portals. After open-
ing a service call, the support system automatically records the processing status for the
support staff and guides them through the service process based on further information.
Data is checked for completeness and, if necessary, followed up with the service cus-
tomer. The ticket status changes within different statuses such as “interrupted” until the
requested information—e.g., screenshots or log files—is available. Subsequently, prob-
lem analysis takes place; if the first level support cannot solve the problem, the ticket
goes to the second level support or switches to other teams, such as system integration or
software development teams.

For specific software product teams, it is advisable to define special service represent-
atives. In any case, all support processes with all details—such as technical environment
details—must be comprehensively documented so that it is always traceable for every-
one—including the customer!—who currently “wears the hat”. Internal software devel-
opment—whether focused on digital services or software products—also benefits from
perfect error documentation and analysis. Communication with the customer and internal
teams should be clear, comprehensible, and easy to understand for all parties involved. If
foreign language support is to be provided, it should be well organized how translation
processes are defined. Ideally, such foreign language processes should always be organ-
ized directly through the support team to maintain a consistent external appearance.

4.5 Getting Started with Design Thinking & Prototyping

In this section, you will learn how to practically combine techniques from design think-
ing with prototyping to get started agilely.

Design Thinking is a creative, multi-stage development process for developing inno-
vative solutions. Design Thinking aims to determine the needs of a user as precisely as
possible by considering the conventional problem detached from its previous context.

4.5 Getting Started with Design Thinking & Prototyping

150 4 How to Adapt and Implement a Large-Scale …

Eliminate prejudices and entrenched procedures
Prejudices and entrenched procedures are eliminated as much as possible so that all peo-
ple involved in the Design Thinking process are open to new solutions. Iterative pro-
cesses—as they underlie Design Thinking—thus combine openness to results with
problem-solving [43, pages 14/15].

In this context, Design Thinking is considered a scientific method. The idea of Design
Thinking was initiated in the 1970s by David Kelley; the creativity methodology has
been popular since the beginning of the 21st century. The design agency led by Kelley,
which consistently relies on Design Thinking, has already filed well over 1000 patents
and won hundreds of design awards by this time.

Table 4.9 “Phases and associated methods of the Design-Thinking process” lists the
phases and methods of Design Thinking defined by Gerstbach, which ideally comple-
ment agile projects methodically to incorporate new ideas and approaches for creative
solution design.

With the digital age, design thinking is increasingly being considered in the agile
development of software prototypes. This is closely linked to a science-oriented
approach, but at the same time is highly practice-oriented. The reason for this is as fol-
lows: The combination of design thinking with prototyping is about creative solution
approaches and their formulation as a thesis. These theses are subject to continuous test-
ing with prototyping by verifying the assumptions made regarding their truth content. We
thus generate test cases, which we then examine to see whether our assumption turns out
to be true or false. This basic principle is a methodology that is very close to computer
science.

No matter for which area a new innovative solution is to be created, the same design-
thinking process is always used. This process is not linear, but unfolds its effectiveness
through repetitions [43, page 65]. It is precisely this iterative approach that can be very
well anchored with the prototypical approach in a large-scale agile framework.

4.5.1 Prototyping and Rapid Prototyping

Prototyping refers to the production of software in the form of repeated presentations of
this software, with the maturity level of the software solution advancing with each pres-
entation. Prototypes serve to better understand requirements [44, pages 760 f.].

Prototyping is therefore particularly suitable for successively approaching a problem
solution and is therefore also used as a method in various process models—including
design thinking. Figure 4.13 “Iterative Prototyping Model” illustrates an iterative proto-
typing model, with the finished software product being, for example, a published stable
release with new functionality. Due to the regular involvement of stakeholders through
continuous feedback in the development process, prototyping serves the client on the one
hand to reduce project risks due to misguided software development, and on the other

151

Table 4.9 Phases and associated methods of the Design Thinking process. (Source: Gerstbach—
“Design Thinking in Companies”)

Phases of the Design
Thinking process:

Methods:

Phase 1:
Observation

• Analysis of processes through observation
• Empathic interviews, through personal conversations and inquiries
• Research: Gathering information from various sources
• Detailed immersion: Why?
 1. What do people say?
 2. What do they think?
 3. How do they feel?
 4. How do they act?
• Persona profiles
• Productive meeting (informal conversation)
• Story and Capture
• Empathy Map

Phase 2:
Definition of the prob-
lem field

• Point of View: Developing a deep understanding of the person and
their problem space

• PoV fill-in-the-blank: Why?
 [User] wants [need] because [surprising insight]
• PoV analogy
• Insight Cards
• Concept plan
• Critical Reading Checklist

Phase 3:
Generating ideas

• Word association chain
• Sticky note method
• 6-3-5 method
• Collective notebook
• Scamper technique
• Idea menu
• Decision matrix

Phase 4:
Experimenting

• Drawing boundaries
• Actively building empathy
• Building a prototype
• Feedback conversations

hand, a prototypical approach in software development is expected to deliver the end
result that most closely meets the expectations of the user group.

Rapid Prototyping is an accelerated form of prototyping, which applies to prototypes
in the context of Industry 4.0, such as 3D printing, as well as software prototypes [45,
page 40]. Rapid prototyping aims to support the project progress, especially in the early
phases of the development process, with particularly fast and cost-efficient generation of
prototypes [46, page 202].

4.5 Getting Started with Design Thinking & Prototyping

152 4 How to Adapt and Implement a Large-Scale …

The danger of rapid prototyping lies in the fact that the underlying structures may
soon “burst at the seams” due to insufficiently defined requirements and necessitate
refactoring or redesign [47, page 708].

Types and Dimensions of Prototyping
Prototyping can be further differentiated: Basically, horizontal and vertical prototypes
are distinguished.

While horizontal prototypes consider various aspects of a system—such as its func-
tionality and usability—in the form of navigation concepts, vertical prototypes are pri-
marily focused on the technical aspects, such as the underlying system architecture.

Vertical prototypes thus consider all system levels (layers) of a system, including data
management. Horizontal prototypes, on the other hand, are suitable for providing a broad
view of a system by, for example, visualizing the complete user interface concept. There-
fore, mockups, for instance, are considered horizontal prototypes. In doing so, horizontal
prototypes deliberately exclude architectural implementation details. This makes hori-
zontal prototypes particularly suitable for introducing stakeholders to the basic function-
ality of a system. This allows clients to assess at an early stage whether a planned system
is suitable for solving the intended task in the desired manner. Vertical prototypes—often
also known as feasibility studies (English: Proof of Concept)—represent the levels of
technical implementation of a system and thus reflect all system layers. Vertical proto-
types clarify uncertainties regarding a planned implementation and are therefore suitable

Targets
completely reached: abort iteration

Project progress

Phase 1:
De�ne
goals

Phase 2:
Specify prototype

Description of the actual state, rough planning
System speci�cation
and realization of the system

System implementation

�nished software product

Iterative prototyping model

Phase 4:
Rate prototype

Phase 3:
Implementation

Iteration

Project start

Targets not or
insu�ciently
achieved:

Yes
Goals achieved?

No

Fig. 4.13 Iterative Prototyping Model

153

for early assessment of the functionality of a planned system. Typically, vertical pro-
totypes evaluate database schemas, optimize algorithms, or attest to the reliability of a
system. Vertical prototyping also tests critical runtime requirements by checking agreed
response times and predicts the total effort for realization as accurately as possible [48].

Furthermore, throwaway prototypes are distinguished from evolutionary prototypes:
While throwaway prototypes serve to capture a situation as quickly as possible and pro-
vide a low depth in terms of the reproduction accuracy of a depicted scenario, evolution-
ary prototypes are much more detailed. Even though an evolutionary prototype strongly
resembles the final product, it is usually focused on a particular aspect of a system and
represents it as accurately as possible [49, pages 52/53].

The similarity to the finished software product is also due to the fact that the evolu-
tionary prototype approaches the final product with each iteration stage in its develop-
ment process. Both prototyping types are conceivable for both vertical and horizontal
representations.

In terms of formalization, prototyping can be assigned as a constructive method with
predominantly qualitative characteristics [50, page 112].

In order for prototyping to comply with the structured approach still fundamentally
required for software development, it is recommended to consider proven process mod-
els from the field of software engineering.

4.5.2 Prototyping Phase Model

Pomberger and Pree define a multi-level prototype-oriented phase model for software
engineering, which is divided into requirements or system specification, platform con-
ception, system architecture, and a subsequent process of application dynamics in
practice; see Fig. 4.14 “Prototyping Phase Model according to Pomberger/Pree”. In a
subsequent validation part, system tests in the form of expert surveys and based on usa-
bility tests lead to a further improvement of the prototype in further iterations [51, pages
26 ff.].

The risk of premature refactoring due to insufficiently defined system specifications
can be effectively countered in the prototyping process by first creating an architectural
design for technical prototypes to determine the quality characteristics of the planned
system at an early stage [44, page 760].

Products and basic technologies in the introduction phase, about which the project
team has no profound experience with the technology, reinforce the decision in favor
of a prototypical approach. Also, the fact that defined project phases in the waterfall
model are run through exactly once hinders learning in the testing of new technologies
during the execution of a project. The most serious disadvantage of waterfall-based IT
projects is that the user sees and tests the resulting software very late in the project. If
requirements were misunderstood by the project team or the project customer could not
properly formulate their needs, changes are very expensive, as large parts of the project

4.5 Getting Started with Design Thinking & Prototyping

154 4 How to Adapt and Implement a Large-Scale …

have to be repeated. Change costs during the project are therefore an important aspect in
choosing a suitable approach model [52, page 346].

4.6 Aligning Overarching Agile Process Phases with a
Prototypical Approach

With the previous section, we have already moved to a prototypical approach with the
prototyping phase model and thus into a shaping activity mode. Here, the results of your
evaluation on prototyping are specifically incorporated.

In a higher-level view, three overarching process phases are relevant within an agile
approach model, which regularly repeat in this form in agile software development:

Phase 1: Requirements gathering and idea generation
Phase 2: Prototyping and consulting process
Phase 3: Testing and summative evaluation

Phase 7:
System test

Phase 6:
Implementation

Project progress

Phase 1:
Problem de�nition
& rough planning

Phase 2:
System speci�cation

Phase 3:
Prototyping:

User interface

Phase 4:
Draft

Phase 5:
Prototyping:

Architecture &
Components

Phase 8:
Operation &
Maintenance

As-is state description, rough planning

system speci
cation and realization of the prototype

System architecture, component structure
Architecture prototype and component prototype

System implementation

nished software product

conditionally
implemented

Planning / design
and implementation

phase

Legend:
Prototyping

phase

Prototyping
phase model

optional feedback process: Process Transition:
Phase description /

generated project artifacts

Fig. 4.14 Prototyping Phase Model according to Pomberger/Pree, own illustration Sascha Block

155

4.6.1 Phase 1: Requirements gathering and idea generation

Due to a required pragmatic agile solution approach for everyday practice—with a
strong focus on prototyping—the following process elements appear suitable:

• (Moderated) Brainstorming
• Research
• Empathic interviews
• Persona profiles

Phase 1, Step 1: Initial Project Meeting
Every project starts with a project pre-meeting with the stakeholders; in this appoint-
ment, the conversation partners from usually different departments describe their direct
and/or indirect client role and the project goals desired from their point of view.

A quote, as exemplified in the following examples, is ideally suited to summarize the
stakeholders’ expectations:

“Essentially, the goal is to create a flexible feedback channel for all employees in the
medium term, in order to provide relevant information in the short term.”or

“Currently, the idea is for the new content team to provide concrete ideas and content that
we want to use on all communication channels. We want to find out with you how well this
approach works in practice.”

Phase 1, Step 2: Internal Brainstorming/Research/Initial Project Customer Meeting
After the kick-off event, in the form of the project pre-meeting, it makes sense to use the
remaining time for your own preliminary considerations, research, and an internal brain-
storming with a deliberately objectified perspective.

Independent research by the client provides valuable information, for example, on
existing internal company problems that objectified third parties perceive more clearly.

Phase 1, Step 3: Brainstorming
In a further follow-up appointment, it is a proven method to invite everyone to a joint
brainstorming session and effectively combine the external view of the project team with
the internal company view of the stakeholders.

For example, define different user groups as users of a software application, a service,
or an app together with the stakeholders, such as:

• Customers of Product/Service A
• Customers of Product/Service B
• Prospects
• …

4.6 Aligning Overarching Agile Process Phases with a Prototypical Approach

156 4 How to Adapt and Implement a Large-Scale …

For a more precise definition, persona profiles are suitable for determining the exact
needs and problems in the customer and/or workday.

In a joint brainstorming session, the suggestions of the stakeholders can then be com-
bined with the ideas developed by the project team in advance, discuss the ideas, and
roughly group them thematically.

An established method here is to allow each participant to freely assign five priority
points to topics and ideas that are considered particularly important for project success or
an interesting app. Based on this, it is easy to vote on the topics to be implemented as the
main focus of a planned application in the further course.

Phase 1, Step 4: Final Coordination with Stakeholders
Following the brainstorming and the acceptance of the project charter, the results are
documented, digitized, and structured. Based on this, initial templates for user stories
and persona profiles as well as, for example, a simple project Kanban board are created.

In addition, the basic project work organization is set up with appropriate collabora-
tion tools so that project reporting can already begin.

Subsequently, the work assigned to Phase 2 can begin, which is visually sketched
with an initial pen-&-paper prototype, with which UX design the application is oriented
with the first prototype to be implemented.

The objective of such a meeting is to learn about the compelling and secondary
expectations for the potential future application. In the spirit of an empathic customer-
oriented approach to increasing benefits, acute problems, e.g., from the perspective of a
department, are also addressed in order to be able to examine them for application-based
solution approaches. In addition, support needs for further project work, e.g., in the form
of an early employee survey, are announced, contact persons are determined, and stake-
holders are sensitized to previously identified project risks—especially with regard to the
necessity of user-oriented, interesting features.

In corresponding meetings, processes can be identified that should be supported or
digitized. What is technically feasible and what should be implemented must always be
closely examined in consultation with the stakeholders. The goal for their next meeting is
then already the presentation of an MVP.

Phase 1, Step 5: Empathic Interviews
Empirical research for a new product design as well as a software application should
always begin with a profound understanding of the relevant processes and the technical
context surrounding the product; interviews with stakeholders are particularly suitable
for this purpose [53, page 39].

In order to gain the most accurate understanding of the different requirements,
empathic and openly designed interviews are particularly suitable for learning more
about the needs of users, their everyday challenges, as well as the mindset of various
user groups, for example, regarding the use of new technologies or information from the
corporate context.

157

The open conversation with employees from various company areas also offers the
opportunity to introduce the project team with its members and each of them within their
respective project role, and at the same time is the best opportunity to initiate direct con-
tact with the users themselves.

Documenting the interviews allows for a professional conversation-analytical data
analysis, which remains available for methodical evaluation and for internal company
purposes if necessary [54, page 338].

In separate sections of this book, you will learn all the details you need to conduct
empathic employee interviews and receive suggestions for developing suitable questions
and creating corresponding questionnaires.

Phase 1, Step 6: Persona Profiles
Based on the conducted interviews and in the context of ongoing feedback rounds with
other stakeholders and users in different roles, persona profiles can be created. Personae
represent stereotypical users and embody their different goals, behaviors, and character-
istics that are relevant to the product to be developed [55, page 39].

Specific design goals can be determined much more purposefully using selected per-
sona profiles by comparing goals and assigned priorities of interviewed persons and
recording general and easily understandable matches in a persona profile [53, page 26].

In the context of software applications, personae should be developed based on the
information obtained in the survey, as well as their respective roles as future users of an
application. On the one hand, this approach already provides valuable insights into dif-
ferent requirements, such as frontend design, and on the other hand, you also sketch your
software architecturally by outlining at least rudimentary authorization rules within the
application. Thus, the resulting personae, the software design, and future application sce-
narios reflect relevant user properties visually and easily understandable.

4.6.2 Phase 2: Rapid Prototyping and Consultation Process

The insights gained from the analysis of users and context are translated into personae
and scenarios. By using personae, relevant user profiles are incorporated for the applica-
tion, while scenarios describe the work with the new system from the user’s perspective
[49, page 23].

The respective application scenarios, which are incorporated into the stakeholder sur-
veys, provide a solid foundation for the design of a use-case model or individual user
stories. Typically, this modeling process is specified in a second step with regard to the sys-
tem’s behavior according to quality requirements and framework conditions [56, page 7].

For complex requirements and long-term projects, it becomes clear at this point at the
latest in terms of agile rapid prototyping that quality assurance processes should not be
dispensed with. The user stories thus flow not only directly into the design of the pro-
totypes but also into the later testing and debugging. In favor of the agile prototyping

4.6 Aligning Overarching Agile Process Phases with a Prototypical Approach

158 4 How to Adapt and Implement a Large-Scale …

approach, it is recommended to use a formative evaluation for the qualitative strengthen-
ing of software products and to prioritize user-oriented requirements on the part of the
stakeholders. The aspect of IT security should also not be missing in any software pro-
ject at present; we also provide valuable practical recommendations for this in part 2 of
the book.

Phase 2, Step 1: Pen-&-Paper-Prototyping
An initial prototype should already be created very early on, directly at the beginning of
the project, in the form of a pen-&-paper prototype after joint brainstorming with several
stakeholders. Such a pen-&-paper prototype then serves as the basis for further require-
ment definitions in all subsequent discussions with stakeholders. This early hand-drawn
design typically already outlines essential core functions that can then actually be found
in the later implementation of a software application, at least in a slightly modified form.

Often, the simplest variant of an actual pen and paper drawn prototype is sufficient.
Equally helpful are digital tools that provide an easy-to-use construction kit and directly
offer templates for smart phones or even specific iPhone models as a basis. In addition
to the Draw.io tool presented in the second part of the book, the POP—Prototyping on
Paper—app is suitable for the uncomplicated creation of a first pen-&-paper prototype,
which is available for iPhone and Android and makes it easy for all participants to create
vivid app prototypes in no time, see Fig. 4.15 “App POP—Prototyping on Paper”.

The app offers tangible advantages over classic pen-&-paper types:

• uncomplicated handling, easy to learn,
• prototypes are directly in digital format and can be easily distributed,
• many templates directly usable,
• the app can be used by everyone in parallel, so that several prototypes can be created

and presented simultaneously,
• prototypes can be easily extended to mockups,
• app available for iPhone and Android.

A prototype created within a few minutes with the Pop app is shown in Fig. 4.16
“Pen + Paper Prototype”.

Phase 2, Step 2: First Prototype & Technology Kick-off
Now, the direct software development begins with the initial development of a runnable
prototype using the technologies and software components planned for the project. To
do this, focus first on one or two central requirements and work with your agile teams to
create a usable prototype for the corresponding functions.

Already in this early design phase, it will become apparent whether the development
environment used proves to be an effective prototyping tool, as the rudimentary design of
a software application should be as easy to create in the design process as a pen-&-paper
draft.

159

By separating the development version and the released version, you can also gener-
ate runnable prototype versions that you can evaluate separately from each other, while
functions still in development are withheld in a developer variant.

The invaluable advantage that results from accompanying version-based surveys of
users is valuable insights that flow directly into the UX design and application logic!

In Fig. 4.17 “Development environment of an iOS app in Xcode”, the development
environment Xcode provided by Apple for iOS apps is shown with an iOS app in the
early development phase.

Fig. 4.15 App POP—Prototyping on Paper

4.6 Aligning Overarching Agile Process Phases with a Prototypical Approach

160 4 How to Adapt and Implement a Large-Scale …

“Prototypical development offers countless advantages…”Feedback discussions with the
later user groups, which you conduct as part of the qualitative target group survey, thus
always focus on logically completed development stages. This fact contributes significantly
to the fact that the prototypical software application is predominantly perceived as a usable
software product and less as a prototype. But that’s not all; in addition, you appreciate your
users, continuously build trust in the new software—which is particularly important when
using new technologies as a key success factor—and avoid faulty and expensive misdevel-
opments. Last but not least, you establish a test and error management for software optimi-
zation together with your users.

Phase 2, Step 3: Minimum Viable Product (MVP)
The Minimum Viable Product—or MVP for short—is a special prototype with an explor-
atory character [57, page 49]. The concept of an MVP offers excellent opportunities to
test ideas and hypotheses in early stages, but requires an early focus on essential func-
tions. A good MVP generally serves to answer the questions of whether a product is suit-
able for problem-solving and whether customers are willing to pay for it. To ensure these
properties, the MVP must meet certain requirements, as illustrated in the figure below
[58, page 2].

Fig. 4.16 Digital Pen+Paper
Prototype. (Source: Sascha
Block)

161

While the degree of fulfillment for the “functional” property should still be around
100%, the degree of fulfillment for the properties of reliability, usability, and pleasant
usability decreases progressively. Often, the term “minimum” as part of an MVP is mis-
understood to justify the inadequacies of an MVP.

Figure 4.18 “Diagram MVP—Requirements for a Minimum Viable Product” based
on Olsen illustrates how the degree of fulfillment of an MVP is related to its properties
and what minimum requirements therefore apply to this prototype.

Although it is true that an MVP is deliberately limited in terms of its product matu-
rity, what is passed on to customers with an MVP must be in a balanced ratio to the
entire defined value proposition [59, pages 89/90].

In order for an MVP to be suitable for providing a reliable answer as to whether later
development effort justifies the associated costs, a sufficiently high quality standard and
degree of fulfillment must already be achieved in order to generate a perceptible added
value for the project customer. This is generally fulfilled if the MVP meets the product
requirements shown above in approximate percentage.

The following requirements exemplify and illustrate how requirements for an MVP
can be classified:

Fig. 4.17 Development environment of an iOS app in Xcode. (Source: Sascha Block)

4.6 Aligning Overarching Agile Process Phases with a Prototypical Approach

162 4 How to Adapt and Implement a Large-Scale …

• Runnable iOS application
• News functions consisting of news area with detailed view and news overview
• Simple contact function with defined contact person in the company
• Rudimentary, “dummy-like” representation of the service area without real content
• User guidance via a menu for switching between functions (implemented in parallel

as a menu bar and start screen)

For such a concrete milestone of an MVP, a clear date can then be set in the course of the
project, at which these requirements have been successfully implemented. Such a date is
not a target specification, as is usual in waterfall projects, but rather a milestone of suc-
cess for the respective project teams.

Phase 2, Step 4: Development of the Funky Prototype
With the Funky Prototype, the development of a final software product begins. The
Funky Prototype aims to identify and combine the most successful and significant find-
ings of the previous iteration stages [60, page 253].

From a user’s perspective, the Funky Prototype creates a “completely mature software
product that is also fun to use.”

For this iteration, feedback functions with the following specifications for the Funky
Prototype can be defined for an app, for example, in addition to the requirements already
defined in the MVP:

• Function for submitting app feedback and app rating
• Subscribable push notifications for personal user notifications and release news
• Service screen with contact details for defined contact persons
• Functional optimization of the user experience

From this, more classical MVP requirements can be distinguished, which fulfill oblig-
atory mandatory functions before the go-live of an app due to system-related speci-
fications—such as those of an app store—or due to legal framework conditions, but
ultimately do not inspire users, but are simply necessary.

Fig. 4.18 Diagram
MVP—Requirements for a
Minimum Viable Product.
(Source: Sascha Block—Own
illustration based on Olsen)

MVP - Minimum Viable Product
Requirements for an MVP:

1%

100%

Degree of fulfillment of
the MVP?

Pleasant

usable

reliable

functional

163

To test the acceptance of a prototype, elaborate identification procedures that require
multi-factor authentication are certainly an obstacle; nevertheless, such mandatory
requirements should be introduced iteratively within a sprint at an early stage so that nei-
ther a Go Live is prevented nor security risks are posed. This naturally includes the man-
datory terms of use and privacy information, which must be integrated simultaneously
and in combination with appropriate opt-in procedures.

The focus of the Funky Prototype is therefore on functionality and less on the user’s
perception of design. As this development stage progresses, a sophisticated prototype
with a detailed level of resolution is already available.

The date of the milestone for the Funky Prototype is an important target date and
should be duly acknowledged by all stakeholders.

Phase 2, Step 5: Functional Prototype
The Functional Prototype of a typical Design Thinking project is the precursor to the
final prototype and should thus provide an extrapolation possibility for the end result.
In addition to functional aspects, design solutions must now also be considered and
tested. While the number of prototypes decreases, the focus on a few application aspects
increases, and their level of resolution continues to increase [60, page 254].

In contrast, the requirement for the final prototype is that the final product—be it a
material product, a business model, process, or service—is as tangible for the customer
in its most important elements as if it were real. Thus, the final prototype provides all
essential information regarding the subsequent commercial development.

For an app, the following requirements for the Functional Prototype can be defined as
examples:

• Interface integration with another service, e.g., connection of service forms, such as
handling returns via DHL, Hermes, or other used external logistics service providers,

• Adaptation to the corporate design,
• Legally compliant recording of used functions for statistical purposes and debugging.

4.6.3 Phase 3: Test Management and Summative Evaluation

The testing phase is an important process phase to provide a software as a mature appli-
cation to users. For this purpose, it is recommended to extensively test the final prototype
already at the end of phase 2 in order to keep the error rate as low as possible during this
phase.

If the previous prototypes are only used internally within an organization, ideally
additional internal test groups can be added. Content providers, such as a marketing or
HR department, can start the extensive and final testing phase from a user perspective
by providing content. In this context, it is particularly important to ensure that the test
persons are trained to create appropriate error messages based on predefined test cases.

4.6 Aligning Overarching Agile Process Phases with a Prototypical Approach

164 4 How to Adapt and Implement a Large-Scale …

There are now various agile tools that specify test scenarios with all conceivable error
constellations as precisely as possible for developers based on predefined specifications
so that they can implement error correction without further inquiries. Only in this way is
it possible to effectively identify and correct technical errors.

License issues should be cleared early on by appropriate inquiries with involved test
persons and departments. An early release for all programs connected in the testing
phase is therefore highly recommended; this should be done in close cooperation with
the IT department or the respective support teams.

Usability Tests
Usability is defined in Part 11 “Guidance on Usability” of the ISO 9241-392 (2015)
standard as “effectiveness and satisfaction in achieving specified goals for users in spe-
cific application environments.” [61]. According to this definition, in a best-case plan-
ning, three analyses should be planned and carried out to measure software usability and
evaluate improvements:

• The properties that the software must fulfill in a specific context,
• the process of interaction between user and product, and
• the effectiveness and degree of satisfaction resulting from the use of the product.

To determine these factors, users should test the software according to specific guide-
lines. Similar to a survey, usability tests would be conducted using questionnaires or
interviews as field trials—i.e., outside of test environments and laboratories—[62, page
25].

For this purpose, a representative sample of employees within the target group would
be asked to test the user interface of the software according to specific guidelines. Sub-
sequently, the test subjects would be asked about the usability they perceived and the
benefits of the respective function.

A simple submission of quantitative feedback, via integrated feedback functions in
the software, web forms, or supplementary test tools, simplifies and improves the test
results.

For more information on effectively connecting additional test groups for usability
tests, see the section on Friendly User Tests.

4.6.4 Notes and Recommendations on the Prototypical Approach

The presented prototypical approach must always be adapted specifically to the require-
ments of the project. The approach is particularly applicable to exploratory projects.
Fully specified and defined requirements from the beginning would require a less exten-
sive anticipatory evaluation and collection of ideas and needs. Depending on the finality
of the product specification, a vertical prototype for clarifying technical questions should

165

be implemented instead of a horizontal one. The approach also appears less effective if
it is not possible to effectively involve the customer, as they ultimately need to support
decisions based on feedback from employees.

To apply the described approach, sufficient methodological competence in the areas
of requirements elicitation, preparation of interviews/surveys, and independent require-
ments specification is also necessary on the part of the involved project teams. Large
teams should supplement the approach with defined internal decision-making processes.

With a parallel work of a large number of agile teams on a common prototype, the
organizational efforts for coordination and support of the individual agile teams and
stakeholders increase. To efficiently utilize multiple teams, capacities and concepts for
task distribution and technical merging of designs would need to be added.

Organizations that have been strongly hierarchical up to now can benefit greatly from
training agile project methods; prototypical and exploratory approaches are particularly
well suited for this purpose. If there is no interest and openness towards the methods
used, this can make it particularly difficult to involve the customer. Comprehensive
project reporting obligations and requirements for a waterfall-like project planning in
advance also tend to be contrary to the described approach.

For projects with a high budget, the risks must also be assessed differently. As a
result, the proposed extension of the shown approach to include appropriate risk manage-
ment is recommended and precise project controlling is also necessary.

In summary, prototyping and design thinking are ideally suited to establish digital
transformation in a novel, agile organizational form and to connect all teams, organiza-
tional units, and stakeholders in an exploratory manner. All participants will experience
the prototypical approach together, which strengthens cohesion within the organization
and clarifies visions and goals of an organization, making them not only visualized but
also applicable and tangible through the prototypes.

References

 1. Sein, M. K., et al. (2011). Action design research. MIS Quarterly, pp. 37–56.
 2. Cooper, A., et al. (2014). About face: The essentials of interaction design (4th edn.). Wiley.
 3. Maaley, W. (2017). Vorlesungsunterlagen zum Modul Empirical Software engineering—Soft-

ware requirements—Requirement elicitation methods Stand 09/2017. Universität Hamburg.
 4. Mell, P., Grance, T., & National Institute of Standards and Technology. The NIST definition of

cloud computing. https://csrc.nist.gov/publications/detail/sp/800-145/final. Accessed 10. Jan.
2022.

 5. Smith, J. E., & Nair, R. (2005). The architecture of virtual machines. Computer, 38(5), 32–38.
 6. Bernstein, D. (2014). Containers and cloud: From LXC to docker to kubernetes. IEEE Cloud

Computing, 1(3), 81–84.
 7. Docker Inc. Docker Swarm—Container-Orchestrierung mit Docker. https://docs.docker.com/

engine/swarm/. Accessed 17. Feb. 2022.
 8. Cloud Native Computing Foundation (CNCF). CNCF annual survey 2021 report. https://

www.cncf.io/reports/cncf-annual-survey-2021/. Accessed 17. Feb. 2022.

References

https://csrc.nist.gov/publications/detail/sp/800-145/final
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://www.cncf.io/reports/cncf-annual-survey-2021/
https://www.cncf.io/reports/cncf-annual-survey-2021/

166 4 How to Adapt and Implement a Large-Scale …

 9. Open Container Initiative. Standardisierungsgremium für Container-Technologien. https://
opencontainers.org/. Accessed 22. Mar. 2022.

 10. Open Container Initiative. Technical oversight board (TOB). https://github.com/opencontain-
ers/tob. Accessed 22. Mar. 2022.

 11. Cloud Native Computing Foundation—Projektwebsite. https://www.cncf.io/. Accessed 22.
Mar. 2022.

 12. Internet Engineering Task Force (IETF). Offizielle Seite des Standardisierungsgremiums.
https://www.ietf.org/. Accessed 22. Mar. 2022.

 13. Granata, D., & Rak, M. (2021). Design and development of a technique for the automation of
the risk analysis process in IT security. CLOSER 2021, 87–98.

 14. Schoeneberg, K.-P. (ed.). (2014). Komplexitätsmanagement in Unternehmen: Herausforder-
ungen im Umgang mit Dynamik, Unsicherheit und Komplexität meistern (1st edn.). Springer/
Gabler.

 15. Mehraj, S., & Banday, M. T. (2020). Establishing a zero trust strategy in cloud computing
environment. In 2020 international conference on computer communication and informatics
(ICCCI) (S. 1–6). IEEE.

 16. Barker, E., & Barker, W. C. NIST, National Institute of Standards and Technology: Recom-
mendation for key management part 2—Best practices for key management organisations.
NIST Special Public Publication 800-57 Part 2, Revision 1. https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-57pt2r1.pdf. Accessed 15. Feb. 2022.

 17. Barker, E. NIST, National Institute of Standards and Technology: “Recommendation for key
management part 1—General”—NIST Special Public Publication 800-57 Part 1, Revision 5.
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf. Accessed 14.
Feb. 2022.

 18. Bundesamt für Sicherheit in der Informationstechnologie (BSI). (2021). “BSI—Technis-
che Richtlinie—Kryptographische Verfahren: Empfehlungen und Schlüssellängen”, BSI
TR-02102-1 vom 24. März 2021. https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/
Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf. Accessed 15. Feb. 2022.

 19. NIST, National Institute of Standards and Technology: “Definitions of public key infrastruc-
ture.” https://csrc.nist.gov/glossary/term/public_key_infrastructure. Accessed 16.Feb. 2022.

 20. Tuecke, S., Welch, V., Engert, D., Pearlman, L., & Thompson, M. Internet X.509 public key
infrastructure (PKI) proxy certificate profile. Rfc 3820—veröffentlicht im Juni 2004. https://
www.hjp.at/doc/rfc/rfc3820.html. Accessed 13. Jan. 2022.

 21. Hassan, S., Ali, N., & Bahsoon, R. (2017). Microservice ambients: An architectural meta-
modelling approach for microservice granularity. In 2017 IEEE International Conference on
Software Architecture (ICSA) (S. 1–10). IEEE.

 22. Taibi, D., & Lenarduzzi, V. (2018). On the definition of microservice bad smells. IEEE Soft-
ware, 35(3), 56–62.

 23. Fielding, R. T. (2000). Architectural styles and the design of network-based software archi-
tectures. Dissertation, Information and Computer Science, University of California, Irvine.
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm. Accessed 17. Feb. 2022.

 24. DIN EN ISO 9241-11. Ergonomie der Mensch-System-Interaktion—Teil 11: Gebrauchs-
tauglichkeit: Begriffe und Konzepte (ISO 9241-11:2018); Deutsche Fassung EN ISO 9241-
11:2018. https://www.din.de/de/mitwirken/normenausschuesse/naerg/veroeffentlichungen/
wdc-beuth:din21:279590417. Accessed 17. Mar. 2022.

 25. World Wide Web Consortium (W3C). Resource Description Framework (RDF). https://www.
w3.org/RDF/. Accessed 17. Mar. 2022.

https://opencontainers.org/
https://opencontainers.org/
https://github.com/opencontainers/tob
https://github.com/opencontainers/tob
https://www.cncf.io/
https://www.ietf.org/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt2r1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt2r1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf%3F__blob%3DpublicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf%3F__blob%3DpublicationFile
https://csrc.nist.gov/glossary/term/public_key_infrastructure
https://www.hjp.at/doc/rfc/rfc3820.html
https://www.hjp.at/doc/rfc/rfc3820.html
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.din.de/de/mitwirken/normenausschuesse/naerg/veroeffentlichungen/wdc-beuth:din21:279590417
https://www.din.de/de/mitwirken/normenausschuesse/naerg/veroeffentlichungen/wdc-beuth:din21:279590417
https://www.w3.org/RDF/
https://www.w3.org/RDF/

167

 26. Berners-Lee, et al. RFC2396—Uniform Resource Identifiers (URI): Generic syntax. Internet
Engineering Task Force—08/1998. https://www.ietf.org/rfc/rfc2396.txt. Accessed 17. Mar.
2022.

 27. OWASP, Open Web Application Security Project. Top 10 web application security risks 2021.
https://owasp.org/www-project-top-ten/. Accessed 13. Jan. 2022.

 28. OWASP, Open Web Application Security Project. OWASP mobile security testing guide.
https://owasp.org/www-project-mobile-security-testing-guide/. Accessed 13. Jan. 2022.

 29. BITKOM. Position paper regulation on digital resilience for the financial sector
(DORA). https://www.bitkom.org/sites/default/files/2020-10/bitkom_position-paper_on_
dora_20201016.pdf. Accessed 18. Feb. 2022.

 30. Heise online. Die Bedrohungslage verschärft sich—Log4j-Angriffe nehmen zu. https://
www.heise.de/news/Dienstag-Die-Bedrohungslage-verschaerft-sich-Log4j-Angriffe-
nehmen-zu-6301155.html. Accessed 17. Mar. 2022.

 31. Bundesamt für Sicherheit in der Informationstechnik (BSI). Kritische Schwachstelle in Java-
Bibliothek Log4j. https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/
Informationen-und-Empfehlungen/Empfehlungen-nach-Angriffszielen/Webanwendungen/
log4j/log4j_node.html. Accessed 17. Feb. 2022.

 32. Bryant, B. D., & Saiedian, H. (2017). A novel kill-chain framework for remote security log
analysis with SIEM software. Computers & Security, 67, 198–210.

 33. Microsoft Corp. (2009). The STRIDE threat model. Artikel vom 11.12.2009. https://docs.
microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20). Accessed 17.
Mar. 2022.

 34. Bundesamt für Sicherheit in der Informationstechnik (BSI). Sicherheitsprofil für eine SaaS
Collaboration Plattform—Teil 2: Bedrohungs- und Risikoanalyse. https://www.bsi.bund.de/
SharedDocs/Downloads/DE/BSI/CloudComputing/SaaS/SPC_Teil_2.pdf. Accessed 17. Mar.
2022.

 35. Olsson, H. H., Alahyari, H., & Bosch, J. (2012). Climbing the „stairway to heaven“—A
mulitiple-case study exploring barriers in the transition from agile development towards con-
tinuous deployment of software. In 2012 38th euromicro conference on software engineering
and advanced applications (S. 392–399). IEEE.

 36. Humble, J., & Farley, D. (2010). Continuous delivery: Reliable software releases through
build, test, and deployment automation. Pearson Education.

 37. truffleHog. Analyse-Software für Secrets in Git-Repositories. https://github.com/trufflesecu-
rity/truffleHog. Accessed 17. Mar. 2022.

 38. Preston, D. (2005). Pair programming as a model of collaborative learning: A review of the
research. Journal of Computing Sciences in colleges, 20(4), 39–45.

 39. Williams, L. A. (2010). Pair programming. Encyclopedia of software engineering, 2.
 40. Bundesverband Digitale Wirtschaft (BVDW) e. V. EU-US Privacy Shield. https://www.bvdw.

org/themen/recht/eu-us-privacy-shield/. Accessed 27. Mai. 2022.
 41. BSI—Bundesamt für Sicherheit in der Informationstechnik—IT Grundschutz, Lerneinheit 4.1:

Grundlegende Definitionen. https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrund-
schutzSchulung/OnlinekursITGrundschutz2018/Lektion_4_Schutzbedarfsfeststellung/Lek-
tion_4_01/Lektion_4_01_node.html.

 42. Kerzazi, N., & Adams, B. (2016). Who needs release and devops engineers, and why? Pro-
ceedings of the international workshop on continuous software evolution and delivery, pp.
77–83.

 43. Gerstbach, I. (2016). Design Thinking im Unternehmen: Ein Workbook für die Einführung von
Design Thinking (1st edn.). GABAL Verlag GmbH.

References

https://www.ietf.org/rfc/rfc2396.txt
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-mobile-security-testing-guide/
https://www.bitkom.org/sites/default/files/2020-10/bitkom_position-paper_on_dora_20201016.pdf
https://www.bitkom.org/sites/default/files/2020-10/bitkom_position-paper_on_dora_20201016.pdf
https://www.heise.de/news/Dienstag-Die-Bedrohungslage-verschaerft-sich-Log4j-Angriffe-nehmen-zu-6301155.html
https://www.heise.de/news/Dienstag-Die-Bedrohungslage-verschaerft-sich-Log4j-Angriffe-nehmen-zu-6301155.html
https://www.heise.de/news/Dienstag-Die-Bedrohungslage-verschaerft-sich-Log4j-Angriffe-nehmen-zu-6301155.html
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Empfehlungen-nach-Angriffszielen/Webanwendungen/log4j/log4j_node.html
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Empfehlungen-nach-Angriffszielen/Webanwendungen/log4j/log4j_node.html
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Empfehlungen-nach-Angriffszielen/Webanwendungen/log4j/log4j_node.html
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/CloudComputing/SaaS/SPC_Teil_2.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/CloudComputing/SaaS/SPC_Teil_2.pdf
https://github.com/trufflesecurity/truffleHog
https://github.com/trufflesecurity/truffleHog
https://www.bvdw.org/themen/recht/eu-us-privacy-shield/
https://www.bvdw.org/themen/recht/eu-us-privacy-shield/
https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzSchulung/OnlinekursITGrundschutz2018/Lektion_4_Schutzbedarfsfeststellung/Lektion_4_01/Lektion_4_01_node.html
https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzSchulung/OnlinekursITGrundschutz2018/Lektion_4_Schutzbedarfsfeststellung/Lektion_4_01/Lektion_4_01_node.html
https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzSchulung/OnlinekursITGrundschutz2018/Lektion_4_Schutzbedarfsfeststellung/Lektion_4_01/Lektion_4_01_node.html

168 4 How to Adapt and Implement a Large-Scale …

 44. Ernst, H., Schmidt, J., & Beneken, G. (2016). Grundkurs Informatik: Grundlagen und
Konzepte für die erfolgreiche IT-Praxis.—Eine umfassende praxisorientierte Einführung (6th
edn.). Springer/Vieweg.

 45. Obermaier, R. (2016). Industrie 4.0 als unternehmerische Gestaltungsaufgabe: Betrieb-
swirtschaftliche, technische und rechtliche Herausforderungen (1st edn.). Springer Gabler.

 46. Gaubinger, K., Rabl, M., Swan, S., & Werani, T. (edn.). (2015). Innovation and product man-
agement—A holistic and practical approach to uncertainty reduction (1st edn.). Springer.

 47. Fischer, P., & Hofer, P. (2011). Lexikon der Informatik (15th edn.). Springer.
 48. Maaley, W. (2017). Vorlesungsunterlagen Modul Empirical Software Engineering—Software

Requirements—Requirement Elicitation Methods und Foliensatz zum Themenkomplex Proto-
typing—Stand 09/2017—Universität Hamburg.

 49. Richter, M., & Flückiger, M. (2013). Usability Engineering kompakt: Benutzbare Produkte
gezielt entwickeln (3rd edn.). Springer/Vieweg.

 50. Zimmermann, K. (August 2013). Referenzprozessmodell für das Business-IT-Management—
Vorgehen, Erstellung und Einsatz auf Basis qualitativer Forschungsmethoden. Dissertation zur
Erlangung des Doktorgrades (Dr. rer. nat.) am Fachbereich Informatik, Fakultät für Mathema-
tik, Informatik und Naturwissenschaften der Universität Hamburg.

 51. Pomberger, G., & Pree, W. (2004). Software Engineering: Architektur-Design und Prozessori-
entierung (3rd edn.). Hanser.

 52. Alpar, P., Alt, R., Bensberg, F., Grob, H. L., Weimann, P., & Winter, R. (2016). Anwendungso-
rientierte Wirtschaftsinformatik—Strategische Planung, Entwicklung und Nutzung von Infor-
mationssystemen (8th edn.). Springer/Vieweg.

 53. Cooper, A., et al. (2014). About face: The essentials of interaction design. Wiley.
 54. Buber, R., & Holzmüller, H. H. (2007). Qualitative Marktforschung. Gabler.
 55. Richter, M., & Flückiger, M. D. (2013). Usability Engineering kompakt: benutzbare Produkte

gezielt entwickeln. Springer.
 56. Dumke, R. (2013). Software Engineering: Eine Einführung für Informatiker und Ingenieure:

Systeme, Erfahrungen, Methoden, Tools. Springer.
 57. Weinreich, U., et al. (2016). Lean digitization. Springer.
 58. Saadatmand, M. (2017). Assessment of minimum viable product techniques: A literature.

Assessment.
 59. Olsen, D. (2015). The lean product playbook: How to innovate with minimum viable products

and rapid customer feedback. Wiley.
 60. Hoffmann, C., et al. (eds.). (2016). Business Innovation: Das St. Galler Modell. Springer

Gabler.
 61. DIN EN ISO 9241-392. Ergonomie der Mensch-System-Interaktion—Teil 392: Ergono-

mische Anforderungen zur Reduktion visueller Ermüdung durch stereoskopische Bilder
(ISO 9241-392:2015); Deutsche Fassung EN ISO 9241-392:2017. https://www.din.de/de/
mitwirken/normenausschuesse/naerg/veroeffentlichungen/wdc-beuth:din21:270021604.
Accessed 21.03.2022.

 62. Böhringer, J., et al. (2014). Kompendium der Mediengestaltung: IV. Medienproduktion Digi-
tal. Springer.

https://www.din.de/de/mitwirken/normenausschuesse/naerg/veroeffentlichungen/wdc-beuth:din21:270021604
https://www.din.de/de/mitwirken/normenausschuesse/naerg/veroeffentlichungen/wdc-beuth:din21:270021604

169© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer
Nature 2023
S. Block, Large-Scale Agile Frameworks, https://doi.org/10.1007/978-3-662-67782-7_5

In this section, a specially developed agile organizational and prioritization model for
software manufacturers in the context of a software product family is presented.

This model is fundamentally universally valid for software manufacturers and equally
usable for all organizations in which the development of software-based solutions and
digital services plays a central role.

It is obvious that this model will also deliver precise results in favor of your com-
pany’s success in comparable constellations. Otherwise, you can intervene at any time
and adapt the agile model to your organization and needs. The decisive factor here is the
democratic inclusion of all stakeholders, as we have described in detail how you should
proceed.

The aim of modeling the presented Large-Scale Agile Framework is to develop an
agile organizational and prioritization model suitable for software manufacturers in the
context of a software product family in order to improve the cross-product organization
and prioritization. With a focus on the efficient design of software product lines, optimi-
zation, dimensions of technical framework conditions, professional documentation, and
inter-process communication are at the center of such a model.

For software manufacturers, projects that represent individual software products are
the actual value drivers. Thus, the success of a software manufacturer’s company is
directly dependent on software projects, so that a detailed structured multi-project man-
agement and controlling is of great importance. This applies equally to organizations
whose value drivers are digital services. This includes platform operators who pursue an
analogous strategy. In addition to the project level, all processes that reflect the life cycle
of software products must be considered specifically for software manufacturers.

Pure multi-project management (MPM) does not offer suitable solutions for this. The
desire for increasing flexibility also requires moving away from conventional, rigid struc-
tures. In contrast, pure MPM is a strictly hierarchical organizational model with typical

Agile Prioritization Model for Software
Manufacturers 5

https://doi.org/10.1007/978-3-662-67782-7_5
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-67782-7_5&domain=pdf

170 5 Agile Prioritization Model for Software Manufacturers

top-down structures in its purest form and is therefore not a contemporary organizational
model for a software manufacturer.

Requirement of key figure-based control and synchronization of a large number of
projects
Crucial for companies in the role of a software manufacturer is rather that coordinated
planning, control, and synchronization take place with regard to success-relevant key fig-
ures for a large number of projects, between which strong dependencies exist. For this
purpose, the Balanced Scorecard model presented based on the life cycle of software
products appears to be a sensible approach for such key figure-based control. The devel-
oped model is closely based on SAFe but also includes elements from the team concept
of the Spotify Engineering Model, as well as the architecture and domain-related recom-
mendations from Domain-Driven Design. The requirements for the efficient design of
software product lines are also taken into account.

Embedding quality criteria for software in the software release cycle
Furthermore, the development of software products within a software product family
must meet the qualitative requirements defined in ISO/IEC 25010, achieve correspond-
ing economic efficiency with regard to the resources used, and at the same time meet the
ever faster changing requirements in terms of agile software development.

Cross-functional prioritization of processes and activities in the agile software
release cycle
Concrete questions are suitable for organizing an agile software release cycle in order to
prioritize the internal processes and activities in the company that uses software for its
business processes and digital services.

In the prioritization of processes and activities, the focus is on the different agile teams
with their specialized tasks and roles.

5.1 To What Extent Does Your Organization Act in the Role
of a Software Manufacturer?

Engaging with the question of to what extent your organization acts in the role of a
software manufacturer is extremely rewarding. Even if the distribution of software—in
contrast to traditional software manufacturers—is not a defined corporate goal for your
organization, you will recognize many factors along the way to answering the question
that also apply to your organization.

For organizations where digital services are the main value drivers, the focus is even
more on digital marketing aspects, but the development of digital services should be under-
stood analogously to the corresponding software releases of a software manufacturer.

171

Companies in the Role of Software Manufacturer
If a company designs its software for other companies, then it is in the role of a software
manufacturer.

To find an answer to the question of to what extent your organization acts in the role of a
software manufacturer, please consider that the transition to a software manufacturer in
an increasingly digitalized world is fluid. While many companies such as retail groups
and product manufacturers may not be software manufacturers, software products and
digital services currently represent the central challenges for these companies.

To illustrate this, the following section presents examples of companies and their
services that are suitable for highlighting important aspects. Use the examples listed to
reflect on how dependent your organization is on software-based processes and agile
transformation…

Outsourcing of IT Development
If your organization pursues an outsourcing strategy or has no sufficient internal capaci-
ties for the complete development of its software-side services and products, then the
associated restrictions and limitations must be clear.

As soon as IT development is outsourced, the responsibility for requirement definition
increases even more. The internal IT strategy of your organization remains the respon-
sibility of your organization, even if external consulting is involved, as an IT strategy is
inseparably linked to the positioning and overall strategy of your organization.

In addition, topics such as data structures, data management, and IT security must be
optimally aligned with the service-oriented aspects of your organization’s target groups.
Long-term outsourcing based solely on cost savings or because internal know-how and
employee-related resources are lacking is always strategically inferior in the long run.

Moreover, the more dependent your organization is on software, the greater the
degree of customization and individualization of the software used. This already brings
with it the need for differentiation from competitors, and this differentiation is increas-
ingly shifting to the quality of digital services.

5.1.1 Example 1: Is LEGO a Software Manufacturer?

Consider, for example, the company that has become globally known and successful
with the LEGO brand. Do software products play a central role for this company—in
addition to the actual LEGO products? …

Figure 5.1 “Screenshot of the LEGO online shop as part of the LEGO world” illus-
trates how the LEGO brand integrates the online shop as part of the LEGO website and
demonstrates that the frontend development of a website is closely linked to backend

5.1 To What Extent Does Your Organization Act in the Role ...

172 5 Agile Prioritization Model for Software Manufacturers

systems and the underlying data models in order to offer customers service-oriented
experience worlds with up-to-date data.

In this context, digital experience worlds and offer platforms play far more significant
roles than merely promoting digital marketing. Digital service offerings and products in
the form of apps and digital services on the international LEGO website have long com-
plemented the globally popular colorful building blocks.

Figure 5.2 “LEGO Apps in the iOS Store” are evidence that numerous additional
software artifacts—here in the form of iOS apps—are important experience and feed-
back channels. Each company, in turn, will be interested in integrating a single artifact
as a functioning component within its entire digital experience world. With such an IT

Fig. 5.1 Screenshot of the LEGO online shop as part of the LEGO website

173

 strategy, customer-oriented services always work across products and offer the best pos-
sible user experience.

The LEGO Group already initiated an agile transformation of its digital business
departments in 2016, which also includes the introduction of a new digital operating
model [1]. The decision-makers at the LEGO Group recognized that the transition to a
digital company places special demands on adaptability. Over the years, the corporate
group has been able to build a powerful enterprise platform.

“What is often overlooked is the massive system integration and the extent to which the
LEGO Group is actually an IT and a brand-oriented company.”—Jørgen Vig Knudstorp

Jørgen Vig Knudstorp has been part of the LEGO Group since 1995 and was its CEO
until January 1, 2017, and was significantly involved in its current corporate success. He
recognized early on fundamental problems within the organization regarding agility and
digital strategies [1]:

“We are not adept enough when it comes to developing software, such as smaller appli-
cations, disruptive business models, omnichannel landscapes, e-commerce, web-based
services, cloud-based services, and so on. We are not agile enough there. And we could
risk ending up with a legacy platform instead of an advantage platform.”—Jørgen Vig

Fig. 5.2 LEGO Apps in the iOS Store

5.1 To What Extent Does Your Organization Act in the Role ...

174 5 Agile Prioritization Model for Software Manufacturers

 KnudstorpOne year after the transformation, the effects of the new model are evident in a
significant reduction in response time to changes—from months to weeks—in the core func-
tions of the company [2].

The example of the LEGO Group is, on the one hand, good evidence of how heavily
companies in every industry now depend on software and digital services. On the other
hand, the clearly defined role of software manufacturers recedes into the background
insofar as the need for digitization and agile processes is of the utmost relevance in any
case.

Even if it is to be ensured that published apps and software releases are always com-
patible with new devices and technologies, there is a direct proximity to the role of the
software manufacturer.

It is also secondary whether a company commissions other companies to produce cus-
tom software for its own organization or whether this software is to be heavily adapted
to the respective company processes by third parties, i.e., whether the software devel-
opment is provided entirely internally or not. The LEGO Group, for example, not only
uses software solutions such as those from SAP but also serves an ever-growing demand
for digital toys and promotes the sale of LEGO bricks with video games, programma-
ble LEGO robots, augmented reality offerings, and is strongly committed to intensifying
customer relationships.

This is evident, on the one hand, in a rapidly growing LEGO online community and a
rapidly growing library of digital content offerings. The official LEGO YouTube channel,
which was registered in 2005, currently has almost 14 million subscribers and has over
17 billion video views [3].

From the service perspective of customers and consumers, it is entirely irrelevant
who designed a digital service; the only decisive factors for them are service and product
quality, combined with their experience.

In this context, it also fits into the overall picture that the influencer who became
known as the “Hero of the Stones,” who had already built up a considerable reach as a
YouTuber with around 727,000 subscribers and over 233 million video views on You-
Tube [4], was perceived as a serious threat to the brand. The LEGO Group had taken
legal action against the YouTube star and had sued him for trademark infringement, in
which the generic term “LEGO” was at the center, which did not diminish the popularity
of the “Hero-of-the-Stones format.” On the contrary, the legal action taken by the corpo-
ration has been met with incomprehension by a broad section of LEGO fans [5]. Purely
in terms of the share of video views on YouTube, this amounts to “only” 1.33% reach of
an influencer in direct comparison.

The example of the trademark dispute à la David and Goliath, in the context of the
above quote from the former LEGO CEO, illustrates all the more how important it is to
establish agile processes within large organizations that are capable of responding not
only quickly but also appropriately to any occurrences. Such events also fall into the
category of emergency management, which requires close cooperation between various
agile teams.

175

The example of the LEGO Group also shows that a transformation to agile processes
and digital strategies is an ongoing, continuous process. It is obvious that transforma-
tions take longer the larger and more heterogeneous an organization is and the lower the
agile maturity level of individual teams within the organization. Furthermore, the exam-
ple illustrates how obvious it is to consider an organization as a software manufacturer.

5.1.2 Example 2: Flaschenpost.de—Innovative, App-driven
Beverage Service

The digital beverage delivery service Flaschenpost is a good example of how traditional
processes can be successfully digitized and a disruptive approach to established market
participants. Started as a company from Münster, the innovative delivery service now
exists in numerous cities and dominates not only with its innovative service concept in
the industry.

Flaschenpost offers online ordering of beverages, groceries, and everyday products
and delivers them to customers within 120 min. No delivery fee is charged, and deposit
bottles can be returned to the supplier. As of 2022, Flaschenpost offers the delivery ser-
vice, starting from over 30 warehouse locations, nationwide in 170 German cities and
municipalities [6]. The option of online ordering via the website was quickly supple-
mented by a native iOS and Android app, thus intensifying the customer relationship in
parallel to the email newsletter by adding another level of customer loyalty.

Functionally, the app also offers additional features, such as customer-specific track-
ing for tracking one’s beverage order, push notifications for status changes, and informa-
tion on current special offers, for example.

Figure 5.3 shows the “ordering process via the Flaschenpost app”. The almost negli-
gible delay of 3 minutes and the precise delivery in real-time can be tracked based on the
time.

As a Flaschenpost customer, it is an invaluable advantage for me to know exactly
when I will be supplied, as I am also informed in advance about the start of the delivery.
And of course, the delivery almost always takes place within the desired 2-hour interval
of my pre-order.

A win-win situation for both sides: For both the Flaschenpost company and me as a
customer, the beverage delivery is predictable, reliable, and always a positive experience.
Of course, I also receive the receipt of my order as a digital proof of purchase. And,
naturally, the return of empties is handled and easily digitally accounted for.

In October 2020, the successful company changed ownership and is now part of the
Oetker Group with an estimated purchase price of around 1 billion euros [7]. This is
an impressive achievement, especially since the founder Dieter Büchl had founded the
beverage delivery service in 2015 with substantial venture capital support amounting
to 3 million EUR. By 2019, Flaschenpost had already achieved sales of around 90 mil-
lion EUR. Due to the Corona crisis, beverage delivery services like Flaschenpost were

5.1 To What Extent Does Your Organization Act in the Role ...

176 5 Agile Prioritization Model for Software Manufacturers

rewarded with strong sales growth for their digital business model. The takeover by the
Oetker Group impressively demonstrates how much manufacturers value direct touch-
points with customers and how little corporations seem to trust themselves with such
projects. In addition, Flaschenpost had succeeded in placing beer and water private labels
alongside its digital service offering.

5.1.3 Example 3: Moia—Digital Shuttle Service

Moia is a service offering with which the Volkswagen Group has prototypically started
an independent company with locations in Berlin and Hamburg and has since success-
fully operated a popular ride-pooling service in Hamburg and Hanover.

MOIA serves as a current example of the close integration of hardware and software
and at the same time for a clever, image-oriented service strategy with a green thumb-
print.

Figure 5.4 shows the “iOS App of the digital shuttle service MOIA” and also illus-
trates how pleasant and convenient a shuttle service can work in conjunction with a cus-
tomer app. In addition to the number and type of passengers, a child seat and/or booster

Fig. 5.3 Ordering process via the Flaschenpost app

177

seat can be easily booked. Different service offers can be selected, which may differ in
waiting time or distance to the boarding point. Payment is, of course, cashless, and the
tip can be chosen at the end of the ride or in advance. It’s a pity that this service is only
available in Hamburg and Hanover so far…

MOIA redefines mobility in urban spaces
The ride-sharing service Moia is VW’s contribution to minimizing individual traf-
fic in cities with electric shuttles. In Hamburg’s cityscape, the extravagant electric cars
stand out not only because of their striking gold color but also with their clear lines and

Fig. 5.4 iOS App of the digital shuttle service MOIA

5.1 To What Extent Does Your Organization Act in the Role ...

178 5 Agile Prioritization Model for Software Manufacturers

 extravagant design. Moreover, a Moia offers its passengers luxury public transport at the
push of a button and, above all, via an app.

With Moia, the group has been developing a system for shared electric shuttle rides in
Hamburg since 2019. Hamburg residents have already ordered a Moia vehicle via the
app four million times. At about half the taxi price, it takes passengers—often with
minor detours for additional passengers—to their destination. So far, this has been a
major subsidy business for VW: The group not only built the specially developed electric
vehicles but also three depots with charging infrastructure [8].

MOIA develops tomorrow’s mobility today
Meanwhile, the Volkswagen Group also wants to use its expertise to offer its own strat-
egy in terms of autonomous driving. The company is currently testing the vision of
autonomous driving with prototypes. By 2025, the autonomous technology of transporta-
tion should also be usable for the ridesharing service [9].

With this strategy, Volkswagen not only strengthens its technological know-how and
launches as an official city partner in public transport (ÖPNV), but also improves its
overall image with its emission-free mobility service and intensifies its customer rela-
tionships through the app service.

The three examples illustrate the close interlocking of digital services with a focus on
maximum customer orientation. All three examples represent service scenarios from our
real everyday life based on complex data and innovative technologies.

The result is always a service that customers are happy to use and, in doing so, natu-
rally use and no longer want to do without the offered technologies—which are often a
prerequisite for using the service scenario.

The necessary technologies and the associated know-how should ideally be best rep-
resented internally by companies offering such product or service scenarios, or at least
be mastered so well that desired reaction times on the customer side can be realistically
depicted. If call centers or third parties are involved as service partners, unwanted ser-
vice efforts with usually long lead times inevitably arise. No one wants cascading service
chains, telephone waiting loops, or email responses that take longer than expected…

Accordingly, the three practical examples also illustrate how important it is for com-
panies and organizations to understand their role as software manufacturers. The sooner
you can come to terms with this role, the better your service times will turn out, and the
more pleasant the usability and benefits of your digital service will be for customers.

Why not give it a try and take on the role of a software manufacturer for your organi-
zation!

179

5.2 Agile Teams and Roles At Software Manufacturers

In order for organizations in the role of a software manufacturer to effectively design
digital services and software products as the main value drivers in the course of digital
transformation, the focus must be as closely aligned as possible with digital marketing
options.

To achieve this, the development of digital services must be realized with Git reposi-
tory-based software releases.

The central role is played by the Agile Release Train concept presented, which is at
the center of the interaction of all agile teams and reflects all IT security aspects from the
beginning with the Security-by-Design approach.

In Fig. 5.5 “Agile Software Portfolio Management”, such an agile prioritization model
for software manufacturers is shown.

The teams and roles recommended for the model are derived from practical require-
ments and a comparison with the current state of research. Table 5.1 “Overview Table
Teams and Roles” lists the essential roles, teams, and their functions together with a
compact task description, which are recommended for an agile prioritization model for
software development.

Product portfolio

P1 P2 P3 P4 Pn

Software product family 1
(Marketing / Product Strategy)

P6

Software Product Family 2
(Marketing Strategy)

Software product family 3
(Marketing Strategy)

P7 P8

Product Road Map

Agile software portfolio management

SA = Software Architect
PO = Product Owner /

Product Manager

StrategyVision

Research & Innovation

Distribution

SA POSA PO SA PO SA PO SA PO

Design + Usability

DevOps

Technical editing

Marketing

Agile Release Trains

Customer Product Managers,
System Integration Engineers

Regulatory

Support

Market

Cross-product agile teams:

• Functionality

• Performance

• Security

• Compatibility

• Reliability

• Usability

• Maintainability

• Portability

ISO / IEC 25010

Software development in agile teams

Cross-product

System test

Release Train Engineer

IT Security
Specialists

P5

Fig. 5.5 Agile Software Portfolio Management. (Source: Sascha Block)

5.2 Agile Teams and Roles At Software Manufacturers

180 5 Agile Prioritization Model for Software Manufacturers

Table 5.1 Overview Table Teams and Roles. (Source: Sascha Block, Own Representation)

Teams Description and Tasks Roles

Executive Board/
Management

The Executive Board/Management is responsible for the company strategy
and positioning in the market. With active networking, they also shape and
coordinate partnerships and alliances.
They are responsible for the distribution of financial resources and, together
with the Product Owners, shape the project budgets. In close coordination
with the CDO and the agile software development teams, they coordinate
the vision, strategy, and software product portfolio aligned with all software
products.
They maintain close contact with the Product Owners and agile teams and
support them in achieving their goals. Active support is provided, for exam-
ple, in removing existing obstacles or mediating in existing conflicts and
bringing about objective decisions.

Chief Digital
Officer (CDO)

The CDO’s goal is to develop a clear digitalization strategy and implement
it continuously. To this end, he/she develops digital processes and services
for customers, suppliers, partners, and internal processes in close coopera-
tion with all agile teams. He/she ensures that the teams aligned with this can
work optimally and achieve their goals.
In doing so, he/she ensures that the defined goals harmonize with the legal
framework conditions and that optimal IT security is guaranteed.

Product Owner/
Software Product
Manager

In addition to market observation and positioning of software products in
relation to customer-specific business cases, Product Owners primarily are
responsible for:
• Software products within the software product portfolio
• Software product roadmap and corresponding agile release plans
• Agile prioritization of requirements

Research & Inno-
vation

Product-wide support function: Technical Consultants

Marketing Product-wide support function:
• Development of brand strategy
• Establishing a consistent brand com-

munication
• Marketing across all channels and

media
• …

Team leader, Marketing staff

Sales Product-wide support function: Team leader, Account Manager

Support Product-wide support function:
• Responding to support requests
• Internal and customer-side license man-

agement for software products

Team leader, Support staff

(continued)

181

Table 5.1 (continued)

Teams Description and Tasks Roles

DevOps Product-wide support function:
Infrastructure services specialized in the
area of hardware and tools for software
development, as well as DevOps support
for test environments.

Team leader, DevOps Engineers

IT-Security/
SecDevOps

Product-wide support function:
• Requirement definitions for the IT secu-

rity of software products
• IT security-focused technology

analysis
• Organization and execution of penetra-

tion tests
• Stakeholder briefing on the status of

IT security, especially CDO, software
architects, and product owners

IT security specialists, e.g.
SecDevOps Engineer, IT Secu-
rity Consultants

Technical Docu-
mentation

Product-wide support function:
Multilingual, cross-media software prod-
uct documentation for customers, e.g.
in the form of online help, installation
manuals, tutorials, etc.
Partially overlapping area of activity
in coordination with marketing (e.g.
product flyers, proofreading function,
graphics) and in close cooperation with
development teams, marketing, sales, and
product management.

Team leader, Technical Editors

Design/Usability Cross-product support function:
Standardization of interfaces in software
products and development of technical
frontend and usability solutions.

Team leader, project leader,
usability experts, usability
engineers

System test Cross-product support function:
Quality assurance using different testing
methods at the level of individual prod-
ucts, as well as across products.

Team leader, software tester

Customer Product
Manager

Representative of licensees and custom-
ers of custom software solutions. Repre-
sents customer interests, collects direct
feedback from customers on site

Customer product manager

System integration Cross-product support function:
Integration of products into the heteroge-
neous IT landscape of license customers.

Team leader, integration engi-
neers

(continued)

5.2 Agile Teams and Roles At Software Manufacturers

182 5 Agile Prioritization Model for Software Manufacturers

5.3 Processes and Activities

The following section describes the essential processes and activities relevant to the
model:

Agile Product Management
Executive board/management, CDO, and Product Owner are jointly responsible, in close
cooperation with the agile development teams, for the vision and strategy aligned with
all software products, as well as the product portfolio.

The cross-product vision and strategy are mutually dependent and primarily focused on
the company’s economic objectives. The product/service portfolio represents all individ-
ual software products and software services with their specific characteristics.

A software product family is a group of functionally complementary software prod-
ucts; as such, it addresses the specific needs of defined customer groups and is related
for strategic marketing reasons. Laukkanen et al. confirm that complex constellations—
including the environment of a software product family in a highly regulated market—
require a correspondingly stringent release engineering [10, Sect. 5.3]. The same applies
analogously to the bundling of software services.

Technically speaking, a single software product can be represented within a Git-based
repository branch. By using so-called feature branches, it becomes possible to bundle
various variants within a product branch, making customer-specific customizations easily
manageable through such feature branches. The same approach can be applied to soft-
ware-based services, for example, within the scope of a SaaS platform strategy.

Table 5.1 (continued)

Teams Description and Tasks Roles

Agile Software
Product Teams

Specialized development teams, assigned
at the product level. Initial and ongoing
further development of technical soft-
ware solutions.
Internal developer tests, which are auto-
mated as far as possible.
The type of technical architecture and
detailed process documentation is also in
the hands of the product-specific devel-
opment teams.

Product manager, project leader,
team leader, software architects,
software developers, mainte-
nance officers

Release Train
Engineer

Cross-functional role for organizing and
coordinating cross-product release dates
with regard to the product roadmap. Pos-
sibly attached to the DevOps team.

Release Train Engineer

183

Product Owners actively contribute to product strategy
The role of the software product manager is virtually identical to that of the Product
Owner in agile framework models. Typically, the software product manager is responsi-
ble for defining the product strategy and defines it in relation to the product for a period
of at least one to five years. This product strategy should be in line with the overarch-
ing portfolio strategy. In addition, there is a risk of bias and “tunnel vision”; a possible
solution is the establishment of a committee that incorporates recommendations directly
related to the product and between the product and portfolio. Product Owners will reg-
ularly have a higher level of detailed knowledge about their products/services than the
more distant CDO, yet both actors align their strategies for the organization.

Increased IT security in the software lifecycle is essential
Moreover, the currently applicable requirements regarding IT security must be taken
into account; these requirements are continuously introduced and monitored by the IT
security team. IT security is a MUST criterion for software and thus also causes fixed
cost components. These quality assurance efforts are relevant for both individual soft-
ware products and the software portfolio, as well as within the entire DevOps cycle.
Accordingly, the efforts for IT security must be made assignable and differentiated into
cross-product/service and product/service-specific costs. In any case, IT security is indis-
pensable and must be included in the pricing.

Agile change request process and cross-product product backlog in harmony
An agile change request process—in the context of a software product family and soft-
ware product lines—is based on a cross-product product backlog and various product-
specific product backlogs, with the cross-product product backlog synchronizing and
prioritizing the requirements towards the individual software products.

The Product Owner manages the product backlog. At a central location, all features of
the software product represented by him, which are coordinated with the software prod-
uct portfolio, are transparently accessible. Software services are to be understood here
as software products in the same way. The backlog organizes and prioritizes all require-
ments aligned with these features and submitted to the development team for implemen-
tation.

In doing so, all Product Owners collectively—supported by the software architects—
ensure that no disadvantages arise in terms of software architecture from a specific prod-
uct configuration in the future. The Product Owner of an individual software product is
responsible for the product strategy and aligns it with the cross-product strategy for the
product portfolio.

Agile management of efficient software product lines
The main task of strategic and technically coordinated software product portfolio man-
agement—in the context of software engineering focused on software product lines—is

5.3 Processes and Activities

184 5 Agile Prioritization Model for Software Manufacturers

the alignment of a product portfolio through the definition of distinguishable product
features that characterize the essence of each individual line product.

Metzger/Pohl point out the importance of character features in software product lines: In
defining such character features, there is a risk that the scope of a software product line
becomes too large, so that domain artifacts become too general and the effort to realize
them becomes too high. On the other hand, if the scope is defined too narrowly, poten-
tially required features as well as functional and quality requirements of many customers
may not be covered, and only very few applications can be derived from the product line.
In both cases, the product line may not be economically viable [11, p. 189].

Figure 5.6 “Agile Software Product Lines” illustrates the interaction of agile teams,
showing how non-marketable individual components represent technologically required
basic functions, while the functions directly perceivable by the customer efficiently solve
customer problems in the form of marketable software products.

Identifying Basic Components
Product Owners and Software Architects ensure that the software product lines repre-
sent valid variants of a base product, which have a common software architecture as far
as possible and are based on identical basic components that are incorporated into each
individual product of this line according to prescribed architectural specifications [12,

P1 P2 P3 P4 Pn

Software product line 1
(Software Architecture / Product Strategy)

P5 P6

Software product line 2 Software product line 3
(Software Architecture Strategy)

P6 - Pn do not need frontend component

P7 P8

Rights Management Component Logging componentFrontend component

Agile software product lines

SA PO

Design + Usability Team
(cross-product, permanent

team)

Customers

Agile components team
(cross-product - temporary,
in case of need for change)

Agile Software Engineer
(cross-product - temporary,
in case of need for change)

SA PO
SA PO

1) Does not buy a customer as a single component
2) But the customer needs these components indirectly
3) They should also make you happy, e.g. with uniform
 operating concepts, usability, etc.

Hidden Technology:
Non-marketable individual components

With the following features:

SA = Software Architect
PO = Product Owner /

Product Manager
and permanent
product-speci�c
feature teams

Face to the Customer:
Marketable products

e�ciently solve the customer problems

Whereby each product has
speci�c characteristics.

Fig. 5.6 Agile Software Product Lines—Sascha Block

185

p. 23]. Agile component teams develop the necessary, cross-product base technologies
for this purpose.

Cooperation of Feature Teams, Product Owners, Software Architects, and Security
Specialists
The product teams develop the actual software products as permanent feature teams and
are responsible—together with Product Owners, Software Architects, and Security Spe-
cialists—for the product architecture with the product-specific characteristics.

Analogous to the recommendations of Dingsøyr et al., the iterative development process
of the feature teams is divided into four phases [13, p. 501]:

1. Requirements Analysis: This phase begins with the transfer of defined functionali-
ties in the form of roughly abstracted User Stories. The Product Owner prioritizes the
product backlog.

2. Solution Description: The User Stories are described in more detail and assigned to
Epics, which also cover the design and architecture. Then, the individual User Stories
are estimated in terms of effort and assigned to a feature team.

3. Construction: Development of the functionalities commissioned via the backlog in
the form of tested, fully functional solutions.

4. Release: A formal functional and non-functional test to ensure that the entire release
works according to expectations. This includes internal and external interfaces as well
as the interaction between components and systems.

The Release Train Engineer (RTE) organizes the release processes and coordinates the
release dates across all Product Owners and agile teams.

Whether the role of the RTE is functionally close to the agile software development
teams or in the overarching DevOps team depends closely on the company processes and
is crucial as long as such responsibility is not clearly regulated. Paasivaara comes to the
same conclusion and classifies the explicit application of the RTE role as a key success
factor [14, pp. 39/49].

Hidden Technology in the Form of Non-Marketable Individual Components
In order to create market-ready software product lines that efficiently solve customer
problems and are modularly coordinated and optimally complement each other, non-
marketable individual components must be identified in an analysis and transformation
process, which typically have the following three characteristics: First, these functional
individual components are not in demand by the customer; second, the customer still
needs these components indirectly; and third, such components should “round off” the
software product as a whole and make the customer as a software user “happy”.

5.3 Processes and Activities

186 5 Agile Prioritization Model for Software Manufacturers

Typical examples of such non-independently usable and marketable software compo-
nents are logging or frontend components and rights management.

The goal of an efficient software product line design is now to identify product-wide
functions required by multiple software products and to outsource them in the form of
“Hidden Technology”. The implementation of these hidden technology components
is always product-wide and can be carried out by a permanently or temporarily defined
team, depending on the need for change and the intensity of the task. In any case, it is
important to ensure that all software products are integrated into the software architecture
concept in a compatible manner. Because strong dependencies exist, proactive involve-
ment of agile development teams facilitates consensus building and ultimately ensures a
design and architecture concept that is coordinated across all software product lines. In
this way, software product lines enable a differentiated marketing strategy and medium-
and long-term measurable scaling and synergy effects with a clearly demonstrable eco-
nomic benefit. At the same time, it is ensured at all times that the individual software
products within the product portfolio offer smooth interaction and the most variable com-
bination possible. In addition, testing efforts are significantly reduced [as also 15].

The Special Role of the Customer Product Manager
Customer product managers intensify cooperation with the customer and ensure active
feedback processes from license customers. This ensures that largely standardized soft-
ware product lines offer the highest possible scaling effect [11, pp. 70/71] and that the
diametrical interest is optimally reconciled. Software platforms serve as control instru-
ments for innovations; in this context, the research and innovation team assumes a prod-
uct-wide advisory and mediation function for and between the agile teams.

Solutions for Dealing with Individualized Software License Products
With regard to individualizable software license products, customer product manag-
ers, together with the product manager and product management, clarify to what extent
customer requirements are still product-compliant and can be incorporated into the fur-
ther development of software product lines. In contrast, the high degree of customiza-
tion to meet specific customer needs provides a valid reason to consistently separate
such adapted release versions from the development branch of a software line and to
label them in this way as clearly defined customer-specific special products. This has an
impact on the Git repository-based organization of software releases. As a consequence,
separate release plans must be maintained for such individualized software products.
It is also necessary to decide when the effort of further development becomes too high
and ties up too many valuable resources, so that licensees must decide to switch releases
within the software product line with repeated individualization.

Life Cycles and Technology Phases of Software Products
Product owners should be able to name the phase of a software product within its life
cycle at any time and align the release planning accordingly. This includes ongoing stra-

187

tegic decisions and a cost-benefit analysis [16], e.g., to answer the question of whether
the introduction of new software products is justified.

To evaluate individual software products, product management is required to reliably rec-
ognize, analyze, and assess relevant innovations. Ford and Ryan recommend a coherent
strategy based on a technology portfolio and introduce classified technology phases (Phase
1: Pacing technologies, Phase 2: Key technologies, Phase 3: Basic technologies) [17].

Goodwin et al. [18, pp. 1082–1097] express reservations regarding the validity of
existing analysis methods for predicting the importance of technologies, as the required
basic data is usually already lacking in the non-availability of time series data—espe-
cially the heterogeneity of customers—and the necessary macroeconomic basic data.
Therefore, the accompanying support of a research- and innovation-oriented team in an
advisory function plays an even more significant role.

Portfolio analysis and the relevance of key technologies
Portfolio analysis is an indispensable tool for software manufacturers. They are con-
tinuously dependent on integrating relevant key technologies in the development of
innovative and competitive software products. Therefore, it is essential to prioritize the
identification, evaluation, and investment in pacing technologies relevant to the software
product portfolio at the right time to develop market-ready software technologies. This
ensures that market and regulatory requirements are fully taken into account.

This enables the company to assume a market-leading role in a market segment. Further-
more, a healthy technology mix should ensure that innovative customer groups refinance
the investment-intensive key technologies and less demanding customer groups support
the profitability of the software manufacturer through the licensing of basic technologies.
In addition, key technologies in the early stage require the willingness to change, primar-
ily from innovative customer groups.

Effectively removing obstacles in the transformation process
In the transformation process, the executive board/management and product owner work
together to remove opposing obstacles, support the relevance of feedback, promote the
agile mindset, and the agile corporate organization across all levels.

Balance of prioritization top-down and bottom-up
The balance of prioritization is not only top-down but also bottom-up and externally
influenced [19]. The optimization of quality and time-to-market are accompanying
effects [20].

The cross-product teams (support, DevOps, IT security/DevSecOps, technical docu-
mentation, design + usability, system testing, marketing, sales, research and innovation,
and customer product managers) support the agile software product teams in the further
development and maintenance of the software products.

5.3 Processes and Activities

188 5 Agile Prioritization Model for Software Manufacturers

Dual role of the product owner
The product owners assume a dual role: On the one hand, they act as advocates and rep-
resentatives of the interests of an agile software product team; on the other hand, they
take responsibility for the software product they are responsible for as product owners.

The software architects and IT security specialists provide professional support to the
individual software product teams regarding software architecture and the implementa-
tion of IT security standards and regulatory requirements. The software architects and
IT security specialists coordinate the product-specific and cross-product software archi-
tecture optimally with the product owner and among themselves. The teams negotiate
compromises among themselves, and the research & innovation team has an advisory
and process-accompanying support function. It makes sense for these teams to be closely
linked and mutually complement their skills and expertise.

The Release Engineering typically covers—according to the recommendations of
Laukkanen et al. [10, p. 3]—six areas:

1. Version control (Branching and Merging),
2. Deployment Pipeline (Code generation and largely automated testing),
3. Build systems (Compiling, linking, and bundling in packages),
4. Code-based infrastructures such as automatic configuration of servers, middleware,

applications, firewalls, etc.,
5. Deployment: Rolling out a new software version as well as
6. Release: The publication of a new software version.

Agile Feedback Processes and Knowledge Management
All agile teams are continuously actively involved through ongoing feedback processes.
Product Owners have the following methods available for planning, prioritizing, organ-
izing, risk minimization, and implementation of feedback processes and agile knowledge
management:

• RACI—Responsibility Matrix/Role Model Canvas
• Guiding questions for moderated prioritization
• Timeboxing/Feature Boxing
• Multi-point/Single-point query
• Liquid Democracy/Liquid Feedback
• Liberating Structures

The arc42 template [21] provides Product Owners and software architects and IT secu-
rity specialists with a proven framework for joint agile knowledge management, espe-
cially for:

189

• Questions for architectural decisions and IT security
• Constraints, context delimitation

A well-structured knowledge management also effectively supports all stakeholders in
identifying cross-sectional topics and forming horizontal and vertical agile teams. The
following information is helpful in this regard:

• Personas of stakeholders
• Map of contact persons/“System” responsible persons

Collaboration Tools provide valuable organization-wide support
Modern collaboration tools provide valuable, project-accompanying support for all
employees and teams in an organization. When selecting such technology tools, it is
essential to ensure that each stakeholder has access to all relevant areas for them.

External exchange is also recommended: Expertise is not only gained through internal
organizational exchange with colleagues, but also through subject-related topic groups
and Meetup events, professional conferences, online learning, etc.

This is relevant in terms of modern collaboration tools because, in addition to per-
sonal exchange, they significantly simplify knowledge management with regard to such
events in the form of shared calendars and the integration of content and links.

Agile Software Tools for Support
By now, various tools are available for this purpose, and there are also suggestions with
the arc42 template [21] on how to efficiently record architectural decisions. Neverthe-
less, in the context of agile software development, there is still a lack of established
methods for effectively managing software projects centrally across departments within
the company and across company boundaries and providing support throughout all pro-
ject phases.

• How can changes be effectively communicated?
• How are milestones documented in an easily understandable way across disciplines,

and how can task allocation in interdisciplinary teams be effectively managed?

Artifacts for Knowledge Management
• Scalable software product lines offer advantages in economic and strategic terms

through a differentiable orientation.
• Based on the factors of sales, liquidity, and profitability, product management should

be able to identify the phase of a software product within its life cycle at any time and
align release planning accordingly.

5.3 Processes and Activities

190 5 Agile Prioritization Model for Software Manufacturers

5.4 Conclusion

Based on the current state of research and taking into account various research-based
approaches, it is possible to develop an effective agile organizational and prioritization
model for software manufacturers in the context of a software product family for organi-
zations. Such an Agile Framework then provides effective methods to effectively support
software development and set the right priorities for digitalization.

Software product lines, as presented, offer medium and long-term measurable scaling
and synergy effects and a demonstrable economic benefit in the interaction of individual
software products within a product portfolio. Test efforts can be significantly reduced
with such an approach model.

The presented concepts provide support in terms of easily understandable, transpar-
ent, and pragmatic documentation of software development.

It should also have become clear that agility must never be misused to justify unco-
ordinated prioritization. Nevertheless, this can be observed time and again in practice
and can only be broken up through consistent action in the sense of an agile mindset and
based on pragmatic software architecture documentation.

Agility here means the constantly present possibility not only to react quickly to
changes but also to proactively shape the change. Continuous learning based on feedback
processes creates an environment that is perceived as positive in terms of economy, qual-
ity, and simplicity—and leads to perfect cooperation.

5.5 Conclusions

License products, which are modified to a high degree based on a standard product due
to customer-specific operating environments and customer-specific functions, represent
individual solutions. The need for an integration team illustrates this deviation from
standard software.

It follows that software manufacturers with software products that have a high propor-
tion of individualization features require a different agile approach model than manufac-
turers of standard products. In addition, such a model requires clear rules to what extent
such individualization takes place.

In a situation typical for the large-scale agile development environment, where a soft-
ware product cannot be fully verified internally, it is advantageous and important to work
towards effective communication between the various functional parts, development and
deployment (Dev) and operations (Ops). The more an ideal-typical DevOps environment
can be established towards the customer, the more knowledge gain is achieved within the
feedback processes, and an improved time-to-market contributes to increased customer
satisfaction and higher customer retention.

Software companies are challenged to maintain demand through constant product
innovation. In view of the considerable costs and the additional organizational efforts

191

required—which are associated with the introduction of a new software product—it should
always be carefully considered whether innovations should be held back for the next major
release or justify the introduction of a new software product. An alternative is to expand the
portfolio within and beyond the product line. Based on the factors of sales, liquidity, and
profitability, product management should be able to identify the phase of a software prod-
uct within its life cycle at any time and align the release planning accordingly.

Market leaders in an industry often assume the role of innovators as early adopters
of innovative software technologies and have a solid IT budget as such. Significant mar-
ket changes or internal cost pressure also create a drive to use innovative information
technologies. In both cases, software manufacturers have increased sales opportunities.
The desire to intensify proximity to customers is also an important claim feature, which,
closely related to the keywords Big Data and Smart Data, fuels demand through software
services and can be justified with the increasing abundance and density of data and cus-
tomer information.

Even though the practice-oriented case study provides an important and relevant
research contribution, it is difficult to draw universally valid conclusions in the field of
software engineering. This is due to the product context, which significantly influences
development practices. In the context of a scientific work, it has been possible to mitigate
these effects with the help of formative evaluation; the highly heterogeneous software
products of different development teams play a significant role in this. Furthermore, the
expert interviews conducted as part of a summative evaluation confirm the correctness of
the results. The resulting artifact—in terms of a specifically adapted agile model for the
organization and prioritization of software manufacturers—could also be confirmed.

A major challenge in studying very complex scenarios is the size of the case; the
problem lies in understanding both the whole and the individual parts (principle of the
hermeneutic circle). This problem was deliberately taken into account by reflecting a
wide range of scientific viewpoints and, with the support of Action Design Research,
iteratively questioning and adapting the selected concepts and scientific factual knowl-
edge. In this way, a continuously developed understanding of the whole could be built
up, and the three research questions embedded in the case study design could be ensured.
In addition, there are a number of other subject areas that are relevant; these include, for
example, dealing with software quality or the methodology of feedback from licensees.

The following checklist is intended to help software manufacturers consciously coun-
teract disruptive factors and agility obstacles in order to eliminate them early on or, at
best, proactively prevent them:

Checklist Agility Obstacles
Factors that prevent agility in software development:

• Change resistance
• Poorly defined or coordinated processes
• Homogeneous teams, lack of interdisciplinarity

5.5 Conclusions

192 5 Agile Prioritization Model for Software Manufacturers

• Poorly defined responsibilities
• Inappropriate role definition, leading to broad and complex process interfaces
• Rigid top-down dictated goals/dominant prioritization share
• Non-functioning feedback culture
• Disparaging appreciation within and between teams
• Lack of knowledge regarding agile methods and processes
• Factors that endanger the acceptance of direct user involvement:
• Keyword “Zombie Scrum”

All of these points—which oppose agility—apply not only to companies in the role of a
software manufacturer but are fundamentally transferable to other organizations.

Organization-specific adaptations are important
The presented approach must be specifically adapted to the requirements of your organi-
zation and may only be transferable to any projects with adjustments or limitations.

The methodology of Design Thinking and Prototyping is particularly applicable to
exploratory projects. Fully specified and fixed requirements from the beginning would
require a less extensive anticipatory evaluation and collection of ideas and needs.

Depending on the finality of the product specification, a vertical prototype for clarify-
ing technical questions should be implemented instead of a horizontal one.

Do not limit Design Thinking and Prototyping!
The approach using Design Thinking and Prototyping also has limited effectiveness if it
is not possible to effectively involve the user and/or customer.

This should be taken into account as far as possible and any restrictions in this regard
should be avoided!

Since software ultimately always has to support more decisions based on user feed-
back, this limitation has fortunately become rare, as feedback is desired on both sides.

Support method competence as best as possible
To apply the described approach, the project team also needs sufficient methodological
competence in the areas of requirements elicitation, preparation of interviews/surveys,
and independent requirements specification.

Large teams should supplement the procedural model with defined internal decision-
making processes.

Also, real parallel work on prototypes can only be considered to a limited extent if
features or components can only be developed cumbersomely across multiple teams.

193

For the efficient utilization of larger teams, concepts for task distribution and techni-
cal merging of designs must be added. Numerous project tools are suitable for this pur-
pose, not least Confluence and Jira from Atlassian.

Agile methodology is also suitable for strongly hierarchical organizations
As is repeatedly demonstrated in IT projects, agile project methods can also be applied
in strongly hierarchical organizations. Agile approaches are generally welcomed by large
parts of the employees, regardless of the company culture, despite their novelty.

If there is no interest and openness towards the methods used, this can particularly hinder
the involvement of third parties, such as customers or cooperation partners. Comprehen-
sive project reporting obligations and requirements for a waterfall-like project planning
in advance also tend to be contrary to the described approach.

For projects with a high budget, the risks must also be assessed differently. As a
result, an extension of the shown approach would be necessary, including risk manage-
ment processes and more precise project controlling.

5.6 Outlook

5.6.1 Implications for Practice

With reference to software product lines, the relevance of an excellent software architec-
ture becomes particularly clear.

In case of conflicting interests of different stakeholders, quality requirements take
precedence over the actual functions in the software requirements.

Product owners and software architects have three strategies available to manage this
complexity:

Chunking—breaking down requirements into manageable components
First: “Chunking”—breaking down requirements into manageable components.

Prioritizing requirements in hierarchies
Second: “Forming hierarchies—related to requirements” and using them specifically for
prioritization.

Using proven architecture patterns
Third: the targeted selection of proven architecture patterns—such as the Model-View-
Controller concept, to design effective software solutions.

5.6 Outlook

194 5 Agile Prioritization Model for Software Manufacturers

With this strategy, including the “Security-by-Design” concept, IT security can also be
specifically increased, not only within software solutions but also in the processes taking
place around them.

Establish ongoing access to the operating environment
If software manufacturers do not have ongoing access to the operating environment for
the software products they develop and customize, a gap between Dev and Ops inevita-
bly arises.

To a certain extent, the lack of an Ops environment can be compensated for by operating
an internal staging area and systems on which software products complement each other
in defined test scenarios. However, the system load and dynamically occurring difficul-
ties in heterogeneous production environments can only be simulated to a very limited
extent in this way.

Customer-specific operating environments pose a real challenge in terms of regula-
tory compliance and data protection, as well as operational components. However, it is
already apparent that cloud solutions are suitable for dissolving this barrier as well.

Mature container technologies, the concept of a central secret vault, and role-based
identity access management solutions contribute to this solution.

The strength of such system environments for software product lines, however, lies
not only in the ability to demonstrate to licensees but also in the rapid response capabil-
ity for reproducing deviating system scenarios.

With increasing technical virtualization possibilities and the corresponding DevOps
maturity level, software manufacturers—based on a necessary agile organization and
prioritization model—benefit from short release cycles and the fastest possible reaction
times through the flexibility of such a model.

In the medium to long term, the increasing degree of dissemination of the underlying
technologies will further expand agility towards licensees.

KPI-based Real-time Monitoring
The need for a unified, cross-product monitoring forms the technical bridge for a stra-
tegic expansion of software product lines. This also applies to website-based services,
cloud-based platform solutions, and apps.

In the course of container-based virtualization, which is further driven by increasingly
widespread private and public cloud environments, the striving for the greatest possible
homogeneity also takes on a further very important and noteworthy role in the Ops area.

The Ops area benefits from this virtualization technology through highly efficient ser-
vices, which are only made possible by machine-readable definition files, non-physical
hardware configurations, or interactive configuration tools.

The spread of these virtual technologies based on the “Infrastructure-as-code con-
cept” is thus continuously driven forward, with both Dev and Ops areas requiring highly
agile methods to work together as effectively as possible.

195

Emergency concepts based on these principles prove to be particularly effective in
order to intervene as quickly as possible in the event of a compromise. If permissions can
be quickly and effectively revoked, damage can be limited, and data protection incidents
can be avoided through established security concepts.

References

 1. Andersen, P., & Ross, J. W. (2016). Transforming the LEGO Group for the digital economy.
ICIS.

 2. Sommer, A. F. (2019). Agile transformation at LEGO Group: Implementing agile methods in
multiple departments changed not only processes but also employees’ behavior and mindset.
Research-Technology Management, 62(5), 20–29.

 3. LEGO YouTube Kanal. https://www.youtube.com/c/LEGO/about. Accessed 22 Febr 2022.
 4. Panke, T. alias HELD DER STEINE, YouTube Kanal. https://www.youtube.com/c/Heldder-

Steine/about. Accessed 22 Febr 2022.
 5. Richters, M., & Siethoff, P. Held der Steine gegen Lego – Konzern nimmt Stellung. Frankfurter

Neue Presse vom 24.02.2021. https://www.fnp.de/frankfurt/held-der-steine-lego-frankfurt-
youtube-streit-abmahnung-abo-fans-panke-zr-90193767.html. Accessed 22 Febr 2022.

 6. Flaschenpost, Unternehmensangaben. https://www.wirsindflaschenpost.de/. Accessed 22 Febr
2022.

 7. Ksienrzyk, L. Gründerszene. Eigentlich wollte Flaschenpost nicht verkaufen, sondern 100
Millionen einnehmen https://www.businessinsider.de/gruenderszene/food/flaschenpost-cherry-
ventures-exit-r/. Accessed 22 Febr 2022.

 8. Kapalschinski, C. (15. September 2021). HANDELSBLATT. https://www.handelsblatt.com/
mobilitaet/elektromobilitaet/vw-shuttle-moia-vw-will-mit-moia-das-vollautomatische-fahren-
zum-weltweiten-servicegeschaeft-machen-/27614874.html. Accessed 22 Febr 2022.

 9. MOIA GmbH, Unternehmenswebsite. https://www.moia.io/de-DE/ueber-moia. Accessed 22
Febr 2022.

 10. Laukkanen, E., et al. (2018). Comparison of release engineering practices in a large mature
company and a startup. Empirical Software Engineering, 2018, Jg.(Nr. 6), 1–43.

 11. Metzger, A., & Pohl, K. (2014). Software product line engineering and variability manage-
ment: Achievements and challenges. In Proceedings of the on future of software engineering
(S. 70–84). ACM.

 12. Clements, P., & Northrop, L. (2012). Software product lines: Practices and patterns (8th
edn.). Addison-Wesley.

 13. Dingsøyr, T., et al. (2018). Exploring software development at the very largescale: A revela-
tory case study and research agenda for agile method adaptation. Empirical Software Engi-
neering, 23(1), 490–520.

 14. Paasivaara, M. (2017). Adopting SAFe to scale agile in a globally distributed organization.
In Global Software Engineering (ICGSE), 2017 IEEE 12th international conference on (S.
36–40). IEEE.

 15. Gustavsson, T. (2017). Assigned roles for Inter-team coordination in Large Scale agile devel-
opment: A literature review. In Proceedings of the XP2017 scientific workshops (S. 15). ACM.

 16. Baum, H.-G., et al. (2013). Strategisches Controlling (5th edn.). Schäffer-Poeschel.
 17. Ford, D., & Ryan, C. (March–April 1981). Taking technology to market. Harvard Business

Review, 2.

References

https://www.youtube.com/c/LEGO/about
https://www.youtube.com/c/HeldderSteine/about
https://www.youtube.com/c/HeldderSteine/about
https://www.fnp.de/frankfurt/held-der-steine-lego-frankfurt-youtube-streit-abmahnung-abo-fans-panke-zr-90193767.html
https://www.fnp.de/frankfurt/held-der-steine-lego-frankfurt-youtube-streit-abmahnung-abo-fans-panke-zr-90193767.html
https://www.wirsindflaschenpost.de/
https://www.businessinsider.de/gruenderszene/food/flaschenpost-cherry-ventures-exit-r/
https://www.businessinsider.de/gruenderszene/food/flaschenpost-cherry-ventures-exit-r/
https://www.handelsblatt.com/mobilitaet/elektromobilitaet/vw-shuttle-moia-vw-will-mit-moia-das-vollautomatische-fahren-zum-weltweiten-servicegeschaeft-machen-/27614874.html
https://www.handelsblatt.com/mobilitaet/elektromobilitaet/vw-shuttle-moia-vw-will-mit-moia-das-vollautomatische-fahren-zum-weltweiten-servicegeschaeft-machen-/27614874.html
https://www.handelsblatt.com/mobilitaet/elektromobilitaet/vw-shuttle-moia-vw-will-mit-moia-das-vollautomatische-fahren-zum-weltweiten-servicegeschaeft-machen-/27614874.html
https://www.moia.io/de-DE/ueber-moia

196 5 Agile Prioritization Model for Software Manufacturers

 18. Goodwin, P., Meeran, S., & Dyussekeneva, K. (2014). The challenges of pre-launch forecast-
ing of adoption time series for new durable products. International Journal of Forecasting,
30(4), 1082–1097.

 19. Fitzgerald, B., & Stol, K.-J. (2017). Continuous software engineering: A roadmap and agenda.
Journal of Systems and Software, 123, 176–189.

 20. Perols, J., Zimmermann, C., & Kortmann, S. (2013). On the relationship between supplier
integration and time-to-market. Journal of Operations Management, 31(3), 153–167.

 21. Starke, G., & Hruschka, P. Das arc42 Template für Architekturentscheidungen in Softwarepro-
jekten. www.arc42.de. Accessed 23 Febr 2022.

http://www.arc42.de

197© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer
Nature 2023
S. Block, Large-Scale Agile Frameworks, https://doi.org/10.1007/978-3-662-67782-7_6

Regardless of the form of the Large-Scale Agile Framework that appears to be the most
suitable model for your organizational form, almost the same questions and challenges
arise that you and your agile teams must face.

These aspects are presented compactly in the following sections and can serve as a
starting point for discussion and provide you with further suggestions for an optimal
transformation process. If you recognize problems and challenges in the reading that
already arise within your organization, then you should focus on the discussion and
problem-solving here.

You will also find that you are not alone with a statement or perspective, but rather,
alternatives in the sense of constructive problem-solving can often be found very quickly
around you and in the most diverse teams.

6.1 Bringing Start-up Wind Into Established Organizations

For young companies like start-ups, digitization or the establishment of agile frameworks
is often not necessary or even only to a limited extent as presented.

Reasons for this are:

• Digital natives find it easy to deal with the latest technology.
• Start-ups are usually small organizations with flat hierarchies, modern thinking, and

few areas of competence/business.
• New strategies and changes are much easier to implement.
• Consistent digitization is already present at the time of company formation and is

therefore a matter of course for every employee from the outset.

Challenges in Establishing a Large-Scale
Agile Framework in the Enterprise 6

https://doi.org/10.1007/978-3-662-67782-7_6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-67782-7_6&domain=pdf

198 6 Challenges in Establishing a Large-Scale Agile Framework …

• Start-ups consistently rely on DevOps strategies and new technologies from the very
beginning.

• Start-ups act intuitively or through agile cultures shaped by the start-up initiators as
digital leaders and are particularly agile in collaboration, or the start-up is already
based on an agile organizational model similar to the Spotify model.

Open-mindedness & inventiveness are always a real enrichment!
Let yourself be inspired by the spirit, energy, and inventiveness—and also the open-
mindedness—of start-ups …

Break away from entrenched processes and actively engage with your agile teams, your
company, and its strengths and weaknesses! Put on the customer glasses, and actively
involve your customers and partners in your company optimization.

Analyze processes, strengths, and weaknesses …
Which digitized processes give your customers and partners an advantage?

It is precisely these optimizations that advance your company because your customers
generate your sales, and optimized processes with business partners give your company
the competitive edge that moves you forward!

Do you and your teams already deal with these demands and goals 100% today, or
does pure resignation prevail in large parts of your company or individual departments
and specialist areas? It is your task to resolve this step by step.

Business model innovation
The aim of business model innovation is to combine the elements of the business model
in such a way that they reinforce each other. This makes it possible to achieve growth
and be difficult to imitate for competitors [1, Chap. 1, p. 5].

Prototypes, experiments, and a positive error culture put your company on the digi-
tal fast track!
Be courageous and start projects by continuously improving processes with prototypes.
Initiate experiments; support creative thinking and new approaches that may not promise
direct results at first glance.

Promote a new culture of learning in the company and, above all: Establish a positive
error culture!

6.1.1 Agile Software Service Development

How much time elapses in your organization internally before a new release goes live in
the production environment?

199

How agile is your release management?
Does it take months or even over half a year for desired changes to actually reach the
user as results?

If you recognize yourself in such scenarios, your approaches to software development
are accordingly extremely limited to probably not agile at all.

Even if the team-internal processes are already designed to reflect mockups according
to the agile methodology, take the next step:

Test features not only within individual software teams, but always involve additional
organizational units and especially even end customers in the testing phases.

6.1.2 Friendly User Tests (FUT)

A Friendly User Test is a test by the actual users of the software. Such tests are per-
formed by people who are not part of the development team but are known to the organi-
zation conducting the test.

A Friendly User is a person who agrees to test an application or software in an unfin-
ished version and before general introduction to discover errors.

The voluntary user of the new service agrees to collect valuable information from the
developers. The resulting inconveniences are converted into active participation in fixing
the errors that have occurred.

Steps to establish Friendly User Tests
• Planning and coordination of the deployment process for test versions;
• Definition of a main responsible person for test coordination;
• Ensuring that the test group uses a meaningful variety of test devices and devices,

possibly providing these test devices as an incentive for testing an app for mobile
devices;

• Briefing of frontend and backend teams;
• Support of overall project management, including stakeholder management and dis-

semination of agile working methods;
• Preparation of the execution of the Friendly User Test: Preparation of the test design,

including customer journey, briefings, feedback options, etc.;
• Ensuring that test feedback can be easily given and provided in various ways and is

comprehensively included in the evaluation.

Tests with real users are incredibly important for digital transformation and innovation.
Even the best and most experienced developers can gain new insights through Friendly
User Tests [2, p. 124 ff.] and further improve their software product or digital service.

6.1 Bringing Start-up Wind Into Established Organizations

200 6 Challenges in Establishing a Large-Scale Agile Framework …

6.1.3 Different Levels of Agility in Teams

To anticipate it: Different development levels of individual teams are not unusual, but
rather the norm. It would be unusual and extremely unfavorable if an extreme manifesta-
tion were to accumulate within certain teams; in such a case, action would be needed.

While some software teams, for example, already use acceptance tests that are virtual-
ized in Docker containers, other teams may not yet have this level of maturity by far.

• How far is your organization as a whole from a fully completed deployment process?
• What gaps do you still need to close and on which topics should the teams actively

work to realize this target vision of agile software development for your organization?

DevOps is definitely a very relevant topic, which is closely related to the agility level of
your organization [see also 3], and the technical development should therefore proceed
in this direction.

Kubernetes and Docker are technically mature topics, i.e. these technologies have
a low risk—not only large corporations like Google or Amazon have been using these
technologies in productive operation for many years, but more and more medium-sized
companies have also recognized the advantages of these container technologies.

6.1.4 Establishing Novel Development and Test Environments
with Abstracted Hardware Layer

Agile software development and the products and services around it demand precisely
such DevOps-based service solutions.

• Is the acceptance in your organization mature enough that everyone involved knows
that DevOps technologies are an absolutely viable decision and a worthwhile invest-
ment, and that now is the right time to focus on such topics?

It is also relevant that the underlying technologies such as Kubernetes or API gateways
are based on open-source solutions from disclosed sources. The primary goal is to create
an abstracted layer to the hardware.

Gained Freedom for Development Processes & Test Scenarios
This creates a completely new space for the development process, allowing complex test
scenarios in differentiated hardware environments to be possible, with the effort for pro-
visioning, administration, and operation—in terms of time and cost—noticeably reduced.

The significantly noticeable reduced implementation time is particularly important for
service-oriented scenarios. Shortest time-to-market cycles strengthen the positioning of
your organization in important markets and customer segments for you.

201

With the standardization of the development strategy—e.g. through a uniform deploy-
ment—a considerable savings potential also arises. There are hardly any significant dif-
ficulties regarding the use of different technologies, e.g. within the build processes.

6.1.5 Transparent Decision-Making Processes and Agile
Requirements Management

A transparent decision-making process regarding requirements management and archi-
tectural decisions in the context of interconnected and interdependent software services
is indispensable in an agile environment.

“Conscious agile action should be understood as understanding the activities of others as
well as understanding one’s own activities in the context of other team members, teams, the
organization, and their goals.”—Sascha BlockIn the context of transparent decision-making
processes, various aspects are relevant:

• Openness of communication and information exchange;
• Visibility of and access to data, documents, and information;
• Visibility of decision-making processes and decisions;
• Visibility of processes;
• Transparency of collaboration;
• Transparency of tools;
• Awareness can be defined as openness, good observation skills, and proactive action

Transparent goals support collaboration and improve efficiency by reducing redundant
work. Only when strategic goals are transparently and clearly communicated can such a
strategy be effectively broken down and divided into work-sharing, agile packages. This
results in small-scale, agile work packages with clearly defined and meaningful compo-
nents, based on which each individual employee can act [4].

Strategies, visions, goals, and motives should be transparent and understandable at all
levels of work and be understood at all levels of work, and the definition of portfolios
and roadmaps based on corporate strategy and goals should be proposed [5].

Are all requirement descriptions clear and easy to understand?
• To what extent do the processes of requirement description in your organization

require optimization?
• Are all affected organizational units involved in the calculation of releases to achieve

a viable effort calculation?
• Are all relevant processes organized in regular cycles and designed transparently to

provide more planning security and to be able to reliably and exclusively focus on
software development outside of these cycles?

6.1 Bringing Start-up Wind Into Established Organizations

202 6 Challenges in Establishing a Large-Scale Agile Framework …

Only through solid requirements engineering can requirements be achieved with the
desired effect and without unwanted side effects.

In this context, it is necessary, even if it may be more complex, to design the require-
ments in close relation between domain knowledge and the refinement of requirements.

For this purpose, minimum standards must be defined, which information must be
presented in which level of detail and based on which specification [see also 6].

This requires agile methodology to effectively deal with requirements that develop
quickly and may already be outdated before the project is completed [7].

Therefore, create control mechanisms and quality loops that regularly reassess the
technologies used and ensure that you continue to “bet on the right horses.”

Are time expenditures in projects measured in a usable way?
For organizational relief and optimization of project control, the recording of time
expenditures and project planning should be carried out centrally in one tool. Collabo-
ration tools like Jira offer excellent support for this, and of course, the commissioning
should also be done centrally in the same tool—completely via Jira.

Do experience values flow into the effort calculation?
Effort calculation will always remain a real challenge. Experience from countless pro-
jects shows that the more minor the scope of a task, the closer the effort estimation and
actual effort are to each other.

Therefore, break down tasks into packages as small as possible and necessary to achieve
realistic estimates. Also, trust yourself to approach the results in estimation methods and
deal openly with any mistakes made here.

Learn from your mistakes; you will hardly make them a second time in the same way!
The difficulty of unifying software and its architecture repeatedly proves to be par-

ticularly challenging. The life cycle of software products in relation to each other is far
too different, and this will always be the case.

Product life cycle of components & basic technologies
The product life cycle of different software products is also closely interrelated and influ-
ences each other. It is difficult, if not impossible, for all software products to be based on
the same framework.

The frameworks on which software solutions are based are also subject to a life cycle,
so that these technology components automatically shape the character of the software
products at different stages of age and maturity.

A uniform character of software services can only be realized with the simultaneous
start of development for all software components. A uniform operating concept and usa-
bility, on the other hand, can be well implemented. These UX features are essential for
successful software and are the key properties of good software.

203

6.2 Digital Leadership

Digital leadership means nothing less for a company than taking the lead in economi-
cally important competence fields with digital strategies. For digital leadership, it is not
sufficient to merely understand digital changes. Rather, the challenge is to become an
active shaper of change [8, Chap. 1, p. 3].

Agile Organization
In the sense of a digital version, being highly strategic and at the same time agile, i.e.,
flexible even with regard to contradictory interests, requires a new leadership style for
digital transformation projects.

Interdisciplinary Teams
Successful digital companies use consistent collaboration in cross-functional teams. This
influences the division of labor between regular corporate functions in terms of a strong
emphasis on project-related collaboration across traditional organizational department
boundaries and oriented towards a central success factor. Decision-making possibilities
are shifted to the operational experts of the respective areas to optimally integrate their
expertise into the digital development process [8, Chap. 2, p. 112].

Product Ownership
The role of the Product Owner is associated with the innovation and product develop-
ment method “Scrum”. Scrum is a popular agile approach model. The Product Owner
takes responsibility for the (further) development of products and services. Unlike tradi-
tional development concepts, the advantage lies in the fact that regular feedback during
the various development steps is directly incorporated into the design drafts and devel-
opment concepts, both from the commissioning department and from the customer side
through usability tests.

Communication
Digitizing companies also means using modern project tools, establishing new commu-
nication channels, and dissolving old thought patterns and structures. Arguments such as
“We’ve always done it this way, it will still work tomorrow.” must be actively refuted.

Pay attention to meaningful communication in meetings and in dialogue with each other.
Table 6.1 “Communication examples and their meaning” lists some typical examples
from everyday IT project life and at the same time provides an interpretation with pos-
sible recommendations for action on the communicative response to the respective state-
ment. Feel free to use the following examples to illustrate how agility does not work,
because each of these statements reflects how ideal communication, according to the
understanding of the agile mindset, should not take place.

6.2 Digital Leadership

204 6 Challenges in Establishing a Large-Scale Agile Framework …

Flexible processes for action approval
Flexible processes for action approval, budgeting, and success control are essential to
compete with start-ups and established players. Especially with regard to competitors, it
is important to remain competitive with agile methods by ensuring that technological and
strategic advantages are of the longest possible duration and maximum benefit.

6.2.1 Vision, Strategy, and Product/Service Roadmap

An organization-wide vision requires strategic decisions about products or services, such
as setting priorities, determining the phasing out of product releases, or announcing the
discontinuation of functionalities. This often requires the involvement of software archi-
tects and software development teams, as well as the executive board and other cross-
product teams.

Many decisions are made in dialogue between specialists or managers and are not
recorded. Agile collaboration tools like Confluence offer effective support in various
ways to remedy this situation.

Table 6.1 Communication examples and their meaning

Statement Interpretation and possible reaction

“We need to
clarify this bilat-
erally”

I don’t want to talk about it in this round/discuss the topic in detail. We can
clarify this one-on-one.
Often with fatal consequences! Relevant information remains opaque, and
there is often little or no interest in an appropriate solution. You can actively
counteract this by objecting that details can be clarified bilaterally, but you ask
them to officially announce the results in the team.

“A colleague is
working on it.”

I don’t know the current status.
Often an indication of poor communication within or between teams. Unfa-
vorable if only accurate information is not available at the moment, harmful if
customer processes are affected or even security-relevant…

“I am not
involved.”

Another example of poor communication within or between teams.
Why are you not involved? Are you aware of the connections? Do you know if
and between whom/which teams agreements have been made on this?
Has a deadline been agreed upon for the solution?

“I am not up to
date.”

Another example of poor communication within or between teams.
Why are you not up to date? What needs to be changed so that you can make a
statement on this?
Are representation arrangements effectively made?

“We had no top-
ics in the past
few days.”

Empty backlog?
Okay if nothing important or even urgent was pending. Often this is also a
good example of poor communication within or between teams.
Is there regular information exchange? How is it organized and structured?
Possibly also a sign of lack of motivation…

205

Use decision logs!
It is extremely important that decisions and information are transparent and easily acces-
sible. This can be achieved with the help of decision logs, which also record the presence
and absence of participants. Also important are communicated, clearly defined deadlines
by which a decision is made jointly. An adequate preparation period should, of course,
also be ensured.

Use graphical tools, decision trees, or the various functions of collaboration tools, such
as appointment reminders or voting for decision-making. The only relevant thing is to
make information as easily accessible as possible at all times and to make decisions
transparently.

From “having a vision” to “living our vision!”
If the vision for a product/service and its associated business cases are shaped almost
exclusively by the respective product owner, who closely coordinates with managers, the
problem arises that there is not enough transparency regarding the vision and strategy. It
is not sufficient to simply disseminate this information in a condensed form to the teams;
instead, this information must be made permanently and easily accessible to all organiza-
tion members via collaboration tools.

Product/Service Roadmap with defined features
This also requires a defined product/service roadmap, with definitions of usable features
and service benefits. An active process for planning the lifecycle of products and services
is also necessary.

Are your organization’s customers actively involved in such decisions? After all, it
is always the customers who contribute their value to your organization! Expand your
organization’s horizon and include all relevant stakeholders…

Two of the most important actors who proactively support agile teams in digitaliza-
tion projects are the Chief Information Officer and the relatively new leadership role of
the Chief Digital Officer:

6.2.2 Chief Information Officer

Role
The Chief Information Officer (CIO) is responsible for information technology and
software systems in a company. The American-originated job title of Chief Information
Officer is also widespread in German companies, and the position of CIO is common in
most corporations and larger medium-sized companies. The position of Chief Informa-
tion Officer is usually located directly in the upper management of a company.

6.2 Digital Leadership

206 6 Challenges in Establishing a Large-Scale Agile Framework …

Tasks
The tasks of the Chief Information Officer include planning and strategic manage-
ment of the information technology used in the company. The range of tasks of a CIO
includes control, monitoring, and management of activities, functions, and resources
associated with digital information and IT systems, as well as the communication tech-
nologies used in the company.

The Chief Information Officer is the main person responsible for information technology
within the company, responsible for the management of IT planning,IT operations,
and IT technology selection. On the one hand, the CIO fulfills an operational role,
focused on the short-term corporate goals. On the other hand, CIOs take on a strategic
role within the company with the long-term planning of IT strategies [9].

Processes
The activities of the CIO can be primarily divided into three areas of responsibility:

1. Operational tasks of the CIO
 In day-to-day business, a CIO is fundamentally responsible for ensuring a smooth

flow of all IT-relevant processes within the company. In addition to providing IT
services, the CIO monitors the hardware and software used in the company through
monitoring and controlling. In case of problems, the CIO must initiate the right
measures for immediate error correction.
• Implementation of legal requirements
• Vendor management (control of external service providers)
• Management of technical infrastructure and IT operations
• Ensuring the successful execution of IT projects

2. The strategic Chief Information Officer
 The strategic and continuous improvement of business processes through IT

solutions is the second area of responsibility for the CIO. By systematically ensuring
more efficient workflows,cost advantages within the company, and new solution
approaches for business processes, the CIO provides the company with a competi-
tive advantage through IT.
• Development of the IT strategy
• Planning the technical advancement of IT and software solutions
• IT coordination with departments and management

3. The innovative CIO
 The third area of responsibility for a CIO is focused on the innovative aspects of cor-

porate IT. In this context, the Chief Information Officer identifies relevant technical
innovations and their potential for the company and ensures that they are introduced
at the right time within the company. Together with the IT architect, the CIO plans
the structure of the IT architecture and the selection of optimally suitable technolo-
gies. The innovations of the CIO are primarily aimed at improving the efficiency of

207

 internal processes, ensuring effective IT communication, and contributing to the
maximization of productivity within the company through optimal IT processes.

History of the Chief Information Officer (CIO)
Until now, the Chief Information Officer was usually solely responsible for the imple-
mentation and planning of IT projects and thus IT manager of the computer center.
Translated, the term Chief Information Officer most closely corresponds to a Head of
Information Technology, Computer Center Manager, or IT Executive. The CIO is at
the top of the management hierarchy and is primarily responsible for the IT infrastruc-
ture in a company. Equal to a manager, the Chief Information Officer is not involved in
operational business areas. Rather, a CIO operates at the strategic level and makes fun-
damental decisions for the operational IT in the company.

Can a CIO program?
In practice, the CIO has no time for operational activities such as programming. How-
ever, most CIOs will be able to program themselves, as the majority of CIOs have a
technical IT education, usually being computer scientists or having a comparable qualifi-
cation.

Experienced CIOs are in high demand!
CIOs with a solid technological foundation for project management and several years
of experience are highly sought after as executives. Those who can demonstrate a wide
range and depth of skills and experiences for the position of Chief Information Officer
are hot candidates for the CIO position in companies. Evidence of successfully com-
pleted projects, change management, and lean management with a focus on the efficient
implementation of IT processes are advantageous.

What is the difference between a CIO and a CDO?
In many companies that have not yet adopted the role of the Chief Digital Officer
(CDO), the Chief Information Officer (CIO) continues to play the role of IT innovator
to ensure that the company can keep pace with competitors both strategically and techno-
logically. The CIO can also plan and implement the digital corporate strategy on an equal
footing with the CDO.

6.2.3 Chief Digital Officer

Role
The Chief Digital Officer (CDO) is the central key figure of digital transformation in the
company. A Chief Digital Officer aims to develop a clear strategy for the digitalization of
the company and to implement it continuously.

6.2 Digital Leadership

208 6 Challenges in Establishing a Large-Scale Agile Framework …

Tasks
A Chief Digital Officer pursues several strategic goals for the digitalization of a com-
pany. Since most companies use IT solutions primarily to manage internal work pro-
cesses, Chief Digital Officers assess the opportunities and risks of digitalization for
companies. The task of the CDO is to develop digital processes and services for custom-
ers, suppliers, partners, and internal processes [10].

Processes

“CDOs design and optimize digital processes.”

In doing so, CDOs analyze and evaluate company processes entirely anew. For example,
based on questions like the following:

• How can the company be made more efficient through the digitalization of internal
processes and further increase business success?

• How can an effective digital strategy for marketing, customer communication, and
sales be defined and individualized based on customer wishes?

“CDOs drive the use of digital channels.”

• Which digital channels are used for internal and external communication?
• How can digital sales channels for products and services be used and intensified?
• What budget is required for optimal digitalization?
• How can customer acquisition, support, and sales be made more efficient through dig-

ital channels?
• How can sales through digital channels be further increased?
• Which digital social media channels should the company integrate into its marketing

and corporate communication?

“CDOs modernize the digital infrastructure.”

• What prerequisites in the form of changed or new structures need to be created for
this?

• Which digital technologies are required to achieve the objectives?

“CDOs develop digital products and services.”

• The Chief Digital Officer is challenged to identify the potentials through digitaliza-
tion and to use them efficiently for the company. This includes the development of
new digital products and services that, on the one hand, open up new sources of
income for the company and, on the other hand, also increase customer satisfaction.

209

“The CDO enables the analysis of Big Data.”

• What data is collected within the company and how is this information analyzed and
used?

• Which relevant information is not yet digitally available and what strategies can be
used to digitize such analog data?

“A Chief Digital Officer coordinates the digitalization of know-how & promotes the digital
corporate culture.”

• What knowledge must be present among the employees in the company in order to be
able to implement the digital topics internally?

• Which new working methods and tools can be used to improve collaboration within
the company and drive the digital transformation forward?

Skills of the Chief Digital Officer
1. Business Skills
 The Chief Digital Officer has a strong expertise in increasing a company’s digital cap-

ital and integrating the best possible channels and tools. The CDO evaluates oppor-
tunities for diversification and strengthening the company strategy associated with
digitalization.

2. Marketing Skills
 The CDO is familiar with all relevant marketing channels, recognizes crucial digi-

tal trends, and evaluates marketing opportunities of digitalization within the company.
By analyzing and evaluating user behavior, the CDO increases the value of digital
information within the company.

3. Communication and Leadership Style
 The Chief Digital Officer analyzes the habits of internal and external user groups and

optimizes existing communication channels within and outside the company.
4. IT and Digital Technologies
 By using state-of-the-art digital communication and IT technology, the CDO expands

the coverage of all relevant areas in which digital information processes make the
company more efficient.

5. Legal Expertise
 The CDO is familiar with legal aspects of digitalization, even if they are not a legal

expert in the strict sense. With a keen sense, the Chief Digital Officer finds the best
possible solutions for the highest security and optimal data protection.

6. Logistical Abilities
 Experienced CDOs often have solid knowledge in the field of logistics or the efficient

use of resources within the company and process optimization.

6.2 Digital Leadership

210 6 Challenges in Establishing a Large-Scale Agile Framework …

What is the difference between a CDO and a CIO?
In many companies where the role of the Chief Digital Officer (CDO) is still not
adopted, the Chief Information Officer (CIO) continues to assume the role of IT inno-
vator to ensure that the company can keep pace with competitors both strategically and
technologically.

The CIO can also plan and implement the digital company strategy on an equal footing
with the CDO.

6.3 Change Management—Digital Leadership in Management

Change management is particularly successful in digitalization projects as a proactive
and thus prudent approach when it comes to achieving the greatest possible acceptance
among affected executives and employees.

In particular, the support of top management is a critical success factor that ultimately
shapes the efficiency of use and employee satisfaction [11].

Successful change management understands communication as a supporting ele-
ment in change processes. Since inadequate communication is one of the main reasons
for failed transformation projects, we align our strategy from the beginning to actively
involve every employee in the company through communication.

Change management actively contributes to project success with two objectives:
1. Targeted coordination of processes, information technologies, and people
2. Control of change processes

6.3.1 Perspectives of Change Management

Successful change management focuses on the following three perspectives in your com-
pany:

1. System-constructivist perspective:
 Comprehensive consideration of all basic constants in the company (including barri-

ers and boundary conditions) for organizing changes.
2. Organizational development:
 Inclusion of all affected people with their specific behavior and viewpoints.
3. Learning organization:
 Change processes should be designed as learning processes.

Invest in changes in this direction and use the tools and techniques presented in Part II to
bring about and support positive changes in your company.

211

6.3.2 Change Request/Release Management

Focus on the following questions regarding change request and release management ana-
lytically. Experience shows that there is a lot of potential for optimization in the answers.

• Are the lived software development processes heavily change request-driven?
• How does fulfilling customer requests relate to your service/product vision?
• In what cycles and timeframes do requirements change?
• How dynamically do you react within requirement and implementation processes?
• How does your organization and individual teams deal with requirements, especially

when customer interests are heterogeneous and not compatible with each other?
• How do you organize your software architecture and decide on the essential compo-

nents, their essential quality properties, and at which points are you willing to com-
promise and where not?

• Has your organization recorded these central specifications and self-imposed goals for
all team members in collaboration tools?

Each organization is challenged in its own decision-making and optimal use of limited
resources—primarily time and development capacity. In doing so, the individual organi-
zational areas must always be closely linked with software development.

A crucial aspect in implementation is to live processes agilely in all parts of the
organization. Agility should not only be lived in the areas of software development but in
all parts of your organization.

Even if projects and products and services are repeatedly worked towards hard-
defined deadlines or executives expect fixed-price calculations in projects; to take cus-
tomers along agilely, it is necessary to closely involve the participating organizational
units in the agile software development process beforehand.

For this purpose, the tools used for change request requirement management, which
records these rigid processes, must be replaced by agile alternatives (Jira, backlogs,
dynamic prioritization—e.g., using story points and actual sprint planning—between the
product owner and the project team).

6.3.3 Agile Academy

Take advantage of introductory events and coaching on relevant topics to prepare
employees for your agile transformation journey and provide optimal support.

Under no circumstances should you introduce new tools that are not at least internally
trained by colleagues who are well acquainted with their use.

A good option is regular training and active information events in which the employ-
ees of your organization are involved and can actively contribute.

6.3 Change Management—Digital Leadership in Management

212 6 Challenges in Establishing a Large-Scale Agile Framework …

The chosen event format should be recurring. How short the repetition intervals
(monthly, quarterly, or even once a week) depend heavily on the agile maturity of the
organization and employees.

It is important that emotions and thoughts are regularly reflected upon and appreci-
ated.

An agile mindset should first be understood and internalized. For some, certain par-
adigms are at least unfamiliar, especially when breaking up leadership structures and
dismantling hierarchies. Some also feel uncomfortable with the desire to take on more
personal responsibility.

When employees can freely express their ideas, expectations, and desires and feel that
they are being taken into account, participation and willingness to participate increase
noticeably. This, in turn, has a very positive effect on the teams and the organization as a
whole. Moreover, this effect is reinforced with an increasingly agile organizational cul-
ture. Suddenly, a pleasant feel-good atmosphere is realized, and productivity and diver-
sity of ideas for problem-solving increase.

6.3.4 Establish Agile Values

Establish an agile mindset by clarifying for your organization and teams which values
should shape their collaboration.

“Our Agile Manifesto”
For inspiration, here are some ideas of what such values might look like:

Values

• We are a team. And as such, we appear. Together.
• We have expertise. And if we want to know something, we learn.
• We respect and appreciate ourselves. And others.
• We give feedback. Constructive. Regularly.
• We see ourselves as service providers for *placeholder*. Customer-centric. Product-

oriented. Service-oriented.
• We see digital transformation as an opportunity. And actively shape our change.
• We live a culture of error, are open-minded, and welcome diversity.
• We act sustainably, proactively, and avoid waste.
• We act in the interest of the company and the general society. Responsibly.
• We have open and transparent communication. Among ourselves. And towards others.
• We let go of our shame where it hinders us rather than helps.

With such an agile mindset, we can only win and achieve our goals together, thus
unleashing the full potential of all our possibilities.

213

Symbolically, “shame is the little sister of greatfear” and illustrates what we can
achieve when we reflect on what holds us back. In realizing goals or even just in open,
mutual communication. And communication is an essential building block for success.
On a small and large scale, as individuals and as a team. Then nothing and no one can
stop us from achieving our goals. Everything suddenly becomes effortlessly possible
when we can trust each other…

6.4 Emergency Management: Can Your Organization React
Agilely in Emergency Situations?

A functioning emergency management system aims to ensure the continuity of business
operations in emergencies. Carefully prepared emergency management enables organi-
zations to respond appropriately and effectively to disruptions of critical business pro-
cesses. Components of emergency management include emergency preparedness and
emergency response.

With the rapidly increasing threat landscape regarding ransomware and cybercrime,
the likelihood of any organization being affected by a cyber attack has increased signifi-
cantly. However, regular IT failure scenarios should also be anticipated with foresight, so
that employees of your organization can make informed decisions in emergency situa-
tions and initiate important steps to minimize the extent of damage.

Especially when reorienting towards an agile process organization, it is essential to
deal with the components of emergency management.

Do you have planned IT Service Continuity Management?
IT Service Continuity Management does not necessarily assume dramatic emergency
situations and therefore offers effective methods to defuse emergencies. The proac-
tive management of unwanted effects that can affect your IT consists regularly of many
interconnected processes, so it is of crucial advantage if you specifically think about the
impacts and linked mechanisms in your organization.

Are you aware of the most important factors determining the quality level of the digital ser-
vices you use?One of the sub-goals, which should lead to the fulfillment of the main goals,
is the improvement of service availability.

The goal of IT Service Continuity Management is to ensure the technical and program-
matic tools, with the fulfillment of quality objectives primarily depending on the follow-
ing critical success factors:

• the provision of information and
• the best possible support for all employees,
• a permanent updating of critical infrastructure artifacts,
• adequate response to corresponding changes in the organization …

6.4 Emergency Management: Can Your Organization React Agilely …

214 6 Challenges in Establishing a Large-Scale Agile Framework …

• … and its environment, including legal framework conditions or changes in the
assessment of the threat situation and potential attack vectors,

• regular and serious check-ups of the effectiveness of protective measures and training,
• an effective configuration management process,
• the trained and routine use of effective tools.

The critical factors for the success of a specific quality objective can be designed
expandable for your organization and may differ slightly in weighting, but the factors
described above are generally valid for all organizations [12].

Benefits of proactive emergency planning
Every organization is now reducing the risks that can specifically impair performance
and response time noticeably.

Directly achievable benefits of risk mitigation:

• lived adaptation of your organization to the constantly current situation—your cus-
tomers and partners appreciate this too!,

• competitive advantages, e.g. through innovation and proactive communication,
• compliance with legal requirements,
• optimal understanding of business needs,
• increasing the credibility of your organization,
• reduction of insurance expenses.

6.4.1 How Can You Proactively Address Emergencies?

In critical security incidents, various steps must be executed very quickly to avert the
acute threat. Time, communication, and optimal preparation for emergencies play a deci-
sive role in this process.

Figure 6.1 “Schematic sequence of an emergency process” illustrates the typical
sequence of an emergency process and can serve as an initial template for creating an
emergency concept.

Emergency
Information to

emergency manager,
team

Evaluate situation,
initiate measures

Minimize dangers,
mitigate risks, constant

communication
Emergency

solved

Fig. 6.1 Schematic sequence of an emergency process

215

Recommendations for implementing an emergency concept:
1. Appropriate communication: Be sure to clarify WHO should ideally be notified in

WHAT order. Clear and unambiguous information about the occurred damage should,
however, DEFINITELY be provided to all employees of your organization. External
partners and/or customers should also be considered if they are affected by the extent
of the damage.

2. Initiation of individual measures: For each previously identified emergency situa-
tion, individual steps and measures must be defined in preparation. You must not only
discuss these action plans with your employees but actively practice them. With a pro-
totypical approach, you will most likely identify further side effects and be able to
take them into account as well. In an emergency, the training reflex kicks in and sig-
nificantly increases the likelihood of correct action.

3. Constant, up-to-date communication flow: Especially in emergency situations, it
is important to communicate with each other and ensure that important information
reaches where it is urgently needed. Use the right communication channels for this
purpose and have backup options in place in case of their failure?

4. Troubleshooting: The elimination of the damage is, of course, the focus of the
respective emergency actions. In order for everyone to contribute effectively, it is not
only important to know the individual steps for damage elimination but also necessary
to assign the required roles to the involved actors.

5. Documentation/Evaluation/Adjustment: After one damage event is before the next
damage event, or better before its prevention. It is important to learn from mistakes,
effectively close gaps, and evaluate the corresponding findings within agile teams in
a retrospective to learn from them and improve overall, both in the team and in the
organization. Without analysis and evaluation of the events, this is simply not pos-
sible. Nevertheless, you should leave the non-implementation to others and put in the
necessary diligence here…

Regardless of these factors, the resulting emergency concepts must be regularly reviewed
and tested. Do not shy away from simulating the emergency as realistically as possible.
These measures serve to protect your organization and to review the emergency concept,
its effectiveness, and above all, the best possible training of the employees.

6.4.2 How Do We Approach an Emergency Concept
Organizationally?

Ideally, each agile team independently assesses critical processes, and a higher-level
team for emergency management acts as a coordinated control center and also supports
the exchange of agile teams with each other.

6.4 Emergency Management: Can Your Organization React Agilely …

216 6 Challenges in Establishing a Large-Scale Agile Framework …

Defining Technical & Organizational Measures (TOMs)
Technical and organizational measures define concrete actions to be implemented in the
respective emergency situations. An example of such a TOM in a serious threat situation
includes the appropriate measures to sever relevant network nodes and immediately dis-
connect hardware from the network in case of a serious threat. A corresponding TOM for
this should read as follows:

Procedure in case of serious network compromise: 1) Disconnect server/component from
external network (Internet); 2) Disconnect server/component from internal network; 3)
Shut down server/component; 4) In case of hardware compromise or if hardware cannot
be shut down: Do not disconnect from power supply, i.e., turn off BEFORE securing evi-
dence such as log files.

Prioritize TOMs & Record All Services/Applications
Already in a first meeting, you can use a tool like Table 6.2 “Definition of technical
organizational measures (TOMs)” to identify individual services and applications:

Table 6.3 “Priority labeling for TOMs according to the traffic light principle” is help-
ful as a legend to visually assign a corresponding priority rating to each defined TOM.
When assigning priorities, the prioritizations according to the traffic light principle
should be easily recognizable by color. Such a simplified presentation is invaluable in an
emergency.

Table 6.2 Definition of technical organizational measures (TOMs)

Column Description

Application/Service Name of the application/service

Manufacturer Name of the manufacturer/developer

Operator Name of the operator/service provider

Prio Classification of the application/service

Internal contact person Contact information of the contact person within the organi-
zation

Internal contact person backup Contact information of the substitute contact person as an
internal backup

Operator contact person Contact information of the contact person at the operator

Operator contact person backup Contact information of the contact person backup at the
operator

TOM Stored TOM document (Technical & Organizational Meas-
ures)

TOM Date Last review date of the TOM document regarding its currency

217

Low damage (Affects a small amount of data records with non-critical significance/
application, etc.)

Medium damage
High damage (Affects many data records AND/OR critical data/application AND/OR

significant impact on performance).

In total, the evaluation of all services/applications should result in a balanced picture, so
that the different categories are represented approximately equally.

Framework conditions for emergency management
In each emergency concept, the required course of action is described. Guidelines, roles
and tasks as well as delimitations and framework conditions should be listed.

This includes that the respective emergency concepts are tailored to the agile teams; it is
very unlikely that these concepts can simply be transferred to other teams or organiza-
tional areas.

Also consider disasters caused by the influence of higher powers (flood, earthquake,
war, building occupation), building damage (power outage, water damage, fire, evacu-
ation, lightning strike) or severe disease events (epidemic, endemic, pandemic). Use
In-Scope/Out-of-Scope to specifically exclude what is or has not been part of your con-
sideration so far; this ensures that no threat situation is overlooked.

Level of detail & scaling effects
The focus of an individual emergency concept should always be traced back to the appli-
cations or services that are within the responsibility and maximum scope of action of a
respective team. When considering the steps to be taken, a pragmatic balance between
granularity and bundling must be observed so that the meaningfulness is not affected.
The BSI standard 100-4 recommends between 5 and 15 processes per organizational unit
[13]. The process should be tailored so that it is completely within an organizational unit
and thus within a responsibility and accountability area.

According to the Single-Point-Of-Failure principle or the principle of broad impact, it is
desirable to know components that have a large impact on other components when they
fail.

Table 6.3 Priority labeling for TOMs according to the traffic light principle

Colum Description

LOW

MEDIUM

HIGH

6.4 Emergency Management: Can Your Organization React Agilely …

218 6 Challenges in Establishing a Large-Scale Agile Framework …

It is also important to know which processes cause the greatest damage according to
defined criteria when they fail, in order to prioritize them accordingly. Logical relation-
ships and dependencies that require a specific sequence must also be identified. This is
an important point insofar as this information is needed for the processes to restart.

References

 1. Schallmo, D., et al. (2017). Digitale Transformation von Geschäftsmodellen. Grundlagen,
Instrumente und Best Practices (1st edn.). Springer/Gabler.

 2. Cooper, A. (2004). The inmates are running the asylum: Why high tech products drive us
crazy and how to restore the Sanity (1. März 2004). Sams Publishing—2004 Que (2nd edn.).

 3. Luz, W. P., Pinto, G., & Bonifácio, R. (2019). Adopting DevOps in the real world: A theory, a
model, and a case study. Journal of Systems and Software, 157, 110–384.

 4. Berggren, E., & Bernshteyn, R. (2007). Organizational transparency drives company perfor-
mance. The Journal of Management Development, 2007, 26. Jg., Nr. 5, 411.

 5. Kelanti, M., et al. (2013). A case study of requirements management: Toward transparency
in requirements management tools. In Proceedings of the eighth international conference on
software engineering advances (ICSEA 2013) (S. 597–604).

 6. Zave, P., & Jackson, M. (1997). Four dark corners of requirements engineering. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 6(1), 1–30.

 7. Cao, L., & Ramesh, B. (2008). Agile requirements engineering practices: An empirical study.
IEEE Software, 25(1), 60–67.

 8. Kreutzer, R. T., et al. (2017). Digital Business Leadership – Digitale Transformation –
Geschäftsmodell-Innovation – agile Organisation – Change-Management (1st edn.). Springer/
Gabler.

 9. Peppard, J. (2010). Unlocking the performance of the chief information officer (CIO). Califor-
nia Management Review, 52(4), 73–99.

 10. Horlacher, A., & Hess, T. (2016). What does a chief digital officer do? Managerial tasks and
roles of a new C-level position in the context of digital transformation. In 2016 49th Hawaii
international conference on system sciences (HICSS) (S. 5126–5135). IEEE.

 11. Shao, Z., Feng, Y., & Hu, Q. (2016). Effectiveness of top management support in enterprise
systems success: A contingency perspective of fit between leadership style and system life-
cycle. European Journal of Information Systems, 25(2), 131–153.

 12. Ministr, J., Stevko, M., & Fiala, J. (2009). The IT service continuity management principles
implementation by method A2. In IDIMT-2009 systems and humans–A complex relationship–
17th interdisciplinary information management talks preceedings (S. 131–139). Trauner
Druck.

 13. Bundesamt Für Sicherheit in Der Informationstechnik. BSI-Standard. 100-4: Notfallmanage-
ment. 2008.

Part II

Agile Infrastructure

221© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer
Nature 2023
S. Block, Large-Scale Agile Frameworks, https://doi.org/10.1007/978-3-662-67782-7_7

Numerous digital platforms are growing at a rate of three new members per second. With
such rapid user growth, the infrastructure must be correspondingly agile and expandable.

This applies to internal IT systems as well as capacities in data centers or cloud infra-
structure. And the collaboration tools you use should also be sized and licensed to ensure
that every employee in your organization can work with these tools. This may seem
obvious, but unfortunately, it is still very often reported from practice that it often fails
due to these basic organizational hurdles.

There are missing Confluence licenses for new employees or entire teams, or Conflu-
ence areas or Slack channels have permissions only for specific teams or individuals but
contain relevant, cross-functional knowledge.

If this sounds familiar to you, you know where to start. There are usually no good rea-
sons to maintain such practices…

Moving to the cloud increases the need for agile infrastructure
Moving to the cloud provides you with such agile infrastructure, giving you access to
thousands of servers and virtual nodes around the globe. This makes it easy to connect
new systems and API interfaces. However, at no point should the aspect of IT security be
lost sight of, even remotely.

An Amazon AWS Cloud account is generally well secured in its basic configuration, but
even here, repeated reminders to activate two-factor authentication are often ignored…

To highlight just one more aspect that concerns many organizations: Agile infrastruc-
ture should also make it easy for you to connect new social media channels at any time
and give you the ability to centrally control content. With these capabilities, you can sig-
nificantly increase your potential reach, in line with your cloud infrastructure, and reach
more influencers every day. However, the connection with data protection aspects must
be taken into account. Make sure you know which data is flowing where. Especially the

Agile Tools: Toolbox for Product Owners
& Agile Teams 7

https://doi.org/10.1007/978-3-662-67782-7_7
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-67782-7_8&domain=pdf

222 Agile Tools: Toolbox for Product Owners ...

flow of data to third parties not only leads data into the unsuspecting control of third par-
ties but also directly affects your terms of use. How do you organize the necessary con-
sents within your consent management?

How is content management organized in your company? How do you ensure that
content is optimized simultaneously for different social media channels, as almost every
channel regularly has different requirements for the provided content, yet on the other
hand, it should be ensured that you spread almost the same information content-wise on
all channels at the same time. Your followers will thank you. Critical and attentive fol-
lowers often notice more than what is known within an organization or, in the worst case,
continues to be ignored… Often, negative feedback or constructive criticism from cus-
tomers is not taken into account, not systematically evaluated at all or insufficiently, and
thus no optimizations can be incorporated agilely.

Excellent if you and your organization already take all this feedback into account. Do
you also communicate regularly and appreciatively that you consider such feedback and
actively respond to customer requests?

Agile deployment of IT infrastructure
Effective mechanisms for agile deployment and management are essential to make your
requirements for a highly scalable infrastructure practically usable.

You will quickly reach a point where the flexible connection of distributed applications
becomes indispensable in an optimal way. For this, you need a highly responsive, distrib-
uted network infrastructure that is scalable and grows horizontally without changing the
basic architecture or interrupting the data flow within your network with every change.

Requirement categories of an agile infrastructure
From this, the following categories of requirements for an agile infrastructure can be
derived:

• Security: An important aspect of any global system and the strongest requirement for
the defined API design.

• Developer-friendly: All developers working with your API should not suffer when
working with your system.

• Extensibility: Our system should be able to handle the addition of new features with-
out affecting your customers.

• Up-to-date documentation: Good documentation is key to getting your API adopted
by new developers.

• Proper error handling: Because things will go wrong and we need to be well-pre-
pared for that.

• Offers a variety of SDK/API libraries: The more work you simplify for developers,
the more they will like your system.

223

• Scalability: The ability to scale is something every good API should have in order to
properly deliver its services.

7.1 Agile Mindset & the 12 Principles of the Agile Manifesto

The increasing popularity of agile methodology and its importance for agile software
development are a crucial reason why many organizations are adopting agile frameworks
to accelerate and successfully shape the transition to agility.

A crucial factor for agility is an agile mindset, which is significantly influenced by the
Agile Mindset and the Agile Manifesto.

Figure 7.1 “Agile Onion” illustrates how the Agile Mindset is related to values, princi-
ples, practices, processes, and tools. Intangible values have a strong impact on agility but
are less visible. Processes and tools have high visibility but ultimately a weaker impact
because they are ineffective without mindset and values, and cannot even unfold their
full potential. The intangible values have a much longer-term validity, while processes
and tools can be subject to a higher change interval depending on current needs.

The mindset of an organization is an essential part of the agile infrastructure. The
employees of an organization—also referred to as Human Resources in a “classic”
sense—are the capital of every organization. As banal as it sounds, it remains true: With-
out employees, no products and services. Without motivated and committed employees,
no excellent products and services.

Mindset

Values

Principles

Practices

Processes +
Tools

Highly visible
Weaker effect

Intangible assets
strong impactChanges in lower

interval

Dynamic changes
in more frequent intervals

Fig. 7.1 Agile Onion

7.1 Agile Mindset & the 12 Principles of the Agile Manifesto

224 Agile Tools: Toolbox for Product Owners ...

In terms of introducing an agile organizational structure, certain agile values and
behaviors must also be known and lived.

The Agile Manifesto is an essential part of what defines the agile mindset. In many
management levels, the content and its importance are still unknown. In the majority of
agile software teams, the principles and their application have already become “second
nature” to a large extent and are therefore passionately lived and defended in arguments.

Principles of the Agile Manifesto:
 1. Our highest priority is to satisfy the customer through early and continuous delivery

of valuable software.
 2. Welcome changing requirements, even late in development. Agile processes harness

change for the customer’s competitive advantage.
 3. Deliver working software frequently, from a couple of weeks to a couple of months,

with a preference to the shorter timescale.
 4. Business people and developers must work together daily throughout the project.
 5. Build projects around motivated individuals. Give them the environment and support

they need, and trust them to get the job done.
 6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.
 7. Working software is the primary measure of progress.
 8. Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely .
 9. Continuous attention to technical excellence and good design enhances agility.
 10. Simplicity—the art of maximizing the amount of work not done—is essential.
 11. The best architectures, requirements, and designs emerge from self-organizing

teams.
 12. At regular intervals, the team reflects on how to become more effective, then tunes

and adjusts its behavior accordingly.

Note: The 12 principles of the Agile Manifesto—Source: [1] , German translation
by Sascha Block from the English original

Mordi and Schoop have made a significant contribution to developing a clear defini-
tion and understanding of the Agile Mindset with their scientific analysis [2, page 9]:

“Agile Mindset is a way of thinking based on the values and principles of the Agile Mani-
festo and its main characteristics are trust, responsibility and self-responsibility, continu-
ous improvement, willingness to learn, openness, and the readiness to constantly adapt
and grow. It is underpinned by specific personal traits at the individual level and a sup-
portive environment at the organizational level that enables the autonomy of people and
teams, dealing with uncertainty, and a focus on customer benefit, with the aim of achieving
a state of being agile rather than just acting agile.”Furthermore, Mordi and Schopp point
out the direct connection to agile infrastructure: Having an agile mindset and being agile
also means that the entire environment must be designed to take into account and support
the attributes postulated in the definition.

225

It is not enough to merely acknowledge the importance and relevance of the Agile Mind-
set in theory; rather, it is essential to establish an organization-wide Agile Mindset that
fulfills the following, partially overlapping characteristics:

Trust
Trust is an important characteristic, requiring explicit trust in the talents and abilities of
those who do the work, which demands the ability to “let go” on the part of leaders, as
without trust, true agility cannot exist. Trust also includes confidence in one’s own exper-
tise and encourages the courage to fight for one’s ideas and not simply give in.

Responsibility and Self-Responsibility
Responsibility and self-responsibility are closely related to the value of trust and encom-
pass both the collective responsibility of teams and the sole responsibility of an indi-
vidual.

It is essential to promote the ability to make decisions instead of delegating decisions to
others. To this end, everyone should be encouraged equally to maintain continuous atten-
tion in order to minimize errors and effectively respond to unexpected events. This fun-
damentally requires courage and genuine commitment. In extreme cases, this can result
in triggering an emergency process—see emergency management—in a positive sense.

Continuous Improvement
Continuous improvement is based on the ability of independent or authorized reflection
of personal behavior and individual skills, strengths, and weaknesses. It is desirable for
each individual to proactively and tirelessly strive for improvements in their work.

Willingness to Learn
Continuous improvements are only possible if there is a willingness for constant learn-
ing and reflection. Analytical, science-oriented approaches and prototypical evaluation of
hypotheses are part of this.

Curiosity and constructively questioning underlying assumptions and prerequisites, the
willingness to experiment, error tolerance, and “learning by doing”, as well as feedback
and short feedback cycles are the necessary prerequisites for this.

Openness and Readiness to Constantly Adapt and Grow
These characteristics are facilitated by a holistic view of life and an associated aware-
ness of the environment and others, meaning they also involve being open and unbiased
towards other perspectives.

7.1 Agile Mindset & the 12 Principles of the Agile Manifesto

226 Agile Tools: Toolbox for Product Owners ...

Skills mature over time, just as technologies, in particular, develop rapidly. Recogniz-
ing similarities and patterns are not only technical skills but also of overarching impor-
tance.

Recognizing that we are on a journey together is preferable to the standpoint that a
final state has been reached. This does not mean that defined goals are not achieved at a
fixed point in time or are fundamentally questionable, but rather that they should always
remain trustingly reflectable.

Specific personal characteristics
In order to develop and acquire an Agile Mindset, certain personality traits are signifi-
cant; to personally support an Agile Mindset and enable it together with others, these
include in particular: intention, integrity, honesty, transparency, courage, authenticity,
empathy, proactivity, creativity, and problem orientation.

In combination with the other values, this leads to constructive, agile cooperation.

Creative environment
The creative environment is the infrastructure that supports the agility of individuals and
teams through a pleasant, positive environment.

In addition to the physical aspects of a spatial environment with collaboration-friendly
workspaces, this also includes open communication that does not follow hierarchical lev-
els. In this context, managers take on the role of “enablers” and remove any obstacles,
see also further explanations in the Change Management section.

Everyone contributes equally to goals, so that in the end we only win or lose together
as a team. Constructive feedback following a “no-blame approach” should be promoted,
meaning that mistakes are allowed and should be openly shared.

Autonomy of individuals and teams
The autonomy of individuals and teams means that agile work should be carried out in
small, autonomous, cross-functional teams that in turn use a network of other agile teams.
The respective individuals regulate and organize themselves as independently as the units
of teams or team networks. Behind this is the conviction that people are intrinsically moti-
vated and want to contribute if they understand the impact of their own work [3].

The result is mutual respect, trust, and self-organization. Technical tools and the physical
environment provide the opportunity for interaction or (self-)information at any time.

Dealing with uncertainty
Uncertainties or extreme situations must not change the agile mindset. If it is accepted
that simple solutions are rather rare than the rule—which is especially true for the

227

increasingly complex technical infrastructure—it then also becomes the rule to validate
knowledge and to allow the necessary time for this.

Creating facts and reflecting on them multiple times, i.e., from different perspectives and
under different conditions, is useful and not a process that can be skipped.

Focus on customer benefit
An important driving force for agility is the creation of added value for the customer;
this maxim is already contained in the agile manifesto. Every organization must there-
fore have goals and values that focus on added value and innovation for customers and
deliver results that are meaningful to customers.

Prototypical approaches support this customer-oriented focus and include direct feed-
back from customers. It should be considered to what extent an internal idea and
improvement management system transparently involves customers or to what extent
unique selling points are worth protecting from competitors.

7.2 Agile Goals

Goal definitions are elementary guidelines according to which every organization aligns
itself and its (economic) actions. Starting from a guiding vision and derived main goals,
various goals result, which can be broken down into subgoals or project goals, or simply
to be achieved by a defined date.

The concept of an agile goal does not currently seem to be defined in the literature but
is indirectly derived from the previous explanations of the agile mindset:

After the goal is before the goal
On the one hand, every achieved or missed goal is followed by another, new goal defini-
tion. This ultimately follows from the definition of continuous improvement. By reach-
ing the finish line, we are thus putting ourselves back in the starting position.

Do not cling to rigid goal definitions at all costs
On the other hand—and this is the more significant point—we should not follow rigidly
defined goals without constantly checking their current validity.

Uncertainties should smartly influence goals
Uncertainties should also smartly influence our goal definitions, namely by clarify-
ing and eliminating uncertainties and then checking and, if necessary, adjusting already
established goal definitions.

7.2 Agile Goals

228 Agile Tools: Toolbox for Product Owners ...

In software development, however, it is very often a technological change that can call
a defined goal into question. In the spirit of an agile mindset, it is then logical to ques-
tion a situation even in the middle of a project and admit that a decision was made when
selecting a basic technology that is evaluated differently from today’s standpoint. If it
follows from this insight and situational assessment that the consequences of maintain-
ing the status quo are acceptable, everyone will feel better than if they simply continued
undeterred according to tacit agreements.

The mere reevaluation with a transparently communicated insight—especially beyond
a single team or decision-maker—will have a positive impact.

If we take into account that we cannot always make the right decisions—there are cer-
tainly analogies to probability theory—then it can only be advantageous to speak of agile
goals with an agile mindset, right?

Our customers provide us with agile goals
When we focus on customers, we should not neglect the fact that their requirements can
also change. The good news is that with a prototypical approach, we not only greatly
minimize the risk of not registering customer wishes, but we are also much more respon-
sive because our entire approach is designed for adaptability. We are a bit chameleon-
like. And not opportunistically, but in a purely positive sense!

How do we ensure that (adjusted) goals are visible?
To make a company vision and company goals visible, dialogue images are an excellent
option; these are presented in detail in the section on dialogue images and infographics
under Content.

With the agile approach and the focus on the customer, goal definitions have been estab-
lished and proven that pursue the common goal of aligning agile software development
more closely with people.

7.2.1 Personas

Personas support the project team in gaining a common understanding of users and
stakeholders, as well as their needs and behaviors, by being used as actors in user stories.

Persona Profile
Personas help to understand how and when, that is, in which context tasks are performed.
One of the main advantages of using personas is that the resulting scenarios and visual
designs are prescriptive. This brings us back very close to prototyping, because prescrip-
tion is a scientific method for developing a hypothesis, which must then be secured by
empirical observation or an experiment following the formation of the hypothesis. And a

229

meaningful experiment requires as precise a description as possible of the test case and
the test candidates.

If the test candidates do not have the right properties, the test results cannot provide cor-
rect statements either. Specifically: If the new gummy bear mix is tasted by test subjects
who prefer chocolate, it misses its test target.

Figure 7.2 shows a “persona profile” in a graphically designed form. The visual repre-
sentation with a concise, fictional name helps all teams optimally understand the motiva-
tion, goals, problems, and context of the persona.

7.2.2 User Story

User stories have their origin in eXtreme Programming [4] and are still referred to as
“Customer Story” there.

A user story consists of three essential elements [5]:

• the written part,, which serves as a reminder of the requirement;
• the conversation around the story, which supports the development of a common

understanding;

Age: 50 years

Marital status: Married

Job, position: Product manager
Member of the management

circle
Character: calm and level-headed

Biographical: born in Stuttgartt, since 5 years
in Hamburg, studies of economic
sciences

Leisure interests: Friends, Squash, Travel

Professional
Interests:

"The nice thing about my job is
to support our product in
di
erent roles. My work allows
me to have close contact with
customers & experts in the
market."

Peter Product communicative creative dynamic open-minded self-critical collegial

Typical application context:

As a product manager, I orchestrate various areas of responsibility that serve
the goal of getting the product o� the ground: Sales, Marketing, Development,
Test and Technical Writing.

Personality
Incentive: "All decisions around business cases a�ect the content

and character of our product; having that responsibility
is an exciting point!"

Performance: " If my product makes our customers happy and
the sales targets are met, I'm happy!"

Fears: "Setting the wrong priorities in product development or
urgent releases with far too great a time delay deliver
to the customer. Critical errors caused by our products in
customer processes. "

Success: "Decision criteria of our licensees when selecting software
are security, reliability and functionality. In these criteria
our product should score best possible!"

Growth: "Our testing procedures play a major role in the e�ort
plays an essential role. My goal: the lowest possible test
e�ort with the highest possible quality gain in the optimal
interaction between the teams involved - system testing,
development, business development and the customer.

Social: "The good cooperation in our teams is very close to my
personal heart. I bring my experience to bear at all times
for the bene�t of all teams and share my knowledge."

Motivation
Introverted Extroverted

Analytical Creative

Conservative Liberal

Passive Active
X

X

X

X

preferred agility methodology:
Agility Model: Tools:

Scrum Jira

Con�uence (Wiki)

Problems

Targets

Biography
At this point, there is a short paragraph describing Peter's journey.
What led to the current use case?

Personal and work life information that makes Peter the ideal user can be very
helpful in optimization.

• What will our product have to do tomorrow? Which technologies and
interfaces are outdated and can be dropped?

• As a PM, I am directly a�ected by what requirements are delivered with a
release, directly in�uenced by the development teams, the read action and
the test teams.

• In the past, there was only patchy explicit documentation of the product
design and system architecture; instead, there were only formal coordination
processes between the Executive Board and the Head of Products. This
information is now urgently needed.

• Often, development and release deployment is not fast enough and is
extremely complex. The result is costly development, long development
times with high lead times; sometimes it is di�cult to get customers
excited about features.

• Close customer contact and good sense of needs of the banking environment
• Quickly identify di�culties and bottlenecks in product development and

e�ectively counteract them
• Reliable identification of the relevant quality criteria that our products must

meet in terms of speci�cations - e.g. with regard to regulatory requirements
• Optimal test sequences: best possible quality results with minimum

e�ort
• To be able to immediately recognize which changes a�ect which products

and where there is a need for coordination through improved cross-product
collaboration.

• Profit from established processes of a cross-product development strategy

Fig. 7.2 Persona Profile

7.2 Agile Goals

230 Agile Tools: Toolbox for Product Owners ...

• and the acceptance criteria, which serve as boundaries for the scope of a story.
In recent years, this established schema of user stories has evolved. Cohn had already

suggested in 2004 to supplement the story with personas.

Harbers introduces the concept of “value-based user stories” that are created in a “Value
Story Workshop” attended by various interest groups and incorporating stakeholder val-
ues into the requirements [6].

Regardless of the individual weighting you choose, there are several sensible ways to
incorporate the needs of users and stakeholders into the development of products, soft-
ware, and services.

Personas always form the starting point for a User Story. In this way, the attributes of
the personas are fully taken into account in the context of use. The following steps are
taken to create User Stories:

• Requirement analysis: Identification of the content requirements in the context of
the considered persona;

• Identification of functional requirements, e.g., regarding navigation, backend func-
tions to be connected with the derivation of the minimally required permissions, etc.;

• within the Story Board, an overall view of the needs and business processes is thus
created;

• the definition of interaction scenarios for different groups, for example, those of web
users in comparison to app users.

With the transition to agile development, requirements are increasingly formulated in the
form of textual User Stories. These User Stories capture only the essential elements of a
requirement:

• for whom it is intended,
• what they expect from the system, and,
• optionally, why it is important.

What does a User Story look like?
The most well-known format, popularized by Mike Cohn [5], is:

“As a ⟨type of user⟩, I want ⟨goal⟩, [so that ⟨some reason⟩]”.
“As a ⟨type of user⟩, I want ⟨goal⟩, [so that ⟨some reason⟩]”Example of a correct
User Story: “As an administrator, I want to receive a notification when an untrustwor-
thy event has occurred so that I can respond to it.”

User Stories never contain the solution for technical implementation
As you may have already noticed, User Stories remain a clearly defined part of the
requirement analysis and never contain specifications for a technical implementation.

231

This is a very common mistake made in the formulation of User Stories in practice.
Example of an incorrect User Story: “As an administrator, I want to receive an email

when an untrustworthy event has occurred so that I can respond to it.”
The modified User Story would already make a limited specification with email as the

notification method, which may appear as a possible solution suggestion in connection
with the User Story, but has no place in the User Story itself.

After all, it is quite possible that an SMS or push-up notification represents a better
option or should also be included as a parallel notification option, so that three individual
specifications result from this User Story.

A well-formulated User Story minimizes efforts
In practice, it is not uncommon for such trivial details to lead to functionalities never
being questioned again. At the very least, the necessary efforts for subsequent implemen-
tation regularly turn out to be significantly higher.

Another mistake in the formulation of User Stories is the role designation, which often
remains unchanged with the placeholder User and then does not provide any clarity
regarding the actual role.

Example: Within the context—for example, in the registration process for an online
service—complex, downstream authentication processes regularly occur, which are asso-
ciated with completely different permissions.

Figure 7.3 “User Stories in Atlassian Jira” illustrates how user stories are represented
in the collaboration tool Atlassian Jira.

How to improve the quality of a user story
For software engineering, there are eight quality characteristics that must apply to a
requirement [7]:

1. Correct
2. Unambiguous
3. Complete
4. Consistent
5. ordered by importance/stability
6. Verifiable
7. Modifiable and
8. Traceable

Lucassen et al. recommend a methodical optimization of user stories, which is based on
three complementary approaches and optimizes user stories from three different direc-
tions [8]:

7.2 Agile Goals

232 Agile Tools: Toolbox for Product Owners ...

A. Syntactic quality, which refers to the textual structure of a user story without consid-
ering its meaning. The user story is therefore:
– Atomic
– Minimalistic
– Well-defined
If these requirements are taken into account, a user story expresses a requirement for

exactly one feature, contains only one role, means, and purpose.
B. Semantic quality, which refers to the relationships and meaning of the text and their

relation to the user story; The user story is therefore:
– Conflict-free
– Conceptually sound

Fig. 7.3 User Stories in Atlassian Jira

233

– Problem-oriented
– Unambiguous

Thus, a user story does not contradict another user story. The means of the user
story expresses a function and its purpose a justification, not something else. In
addition, a user story describes only the problem, not the solution for it. A user
story avoids terms or abstractions that can lead to multiple interpretations.

C. Pragmatic quality, which refers to the selection of the most effective alternatives for
communicating a specific set of requirements. The user story is therefore:
– Complete
– Without explicit dependencies
– Formulated as a complete sentence
– Independent
– Scalable
– Uniform
– Unique

If user stories are created according to these rules, you not only avoid associated prob-
lems, but also guarantee unambiguous and easily understandable user stories and at the
same time use an agile task cut with separable and high-quality requirement definitions.

7.2.3 Epic

An Epic is a unit that encompasses a multitude of User Stories. The Epic construct, orig-
inating from Scrum—translated as epic—is a large User Story that summarizes several
atomic User Stories to make them tangible and narratable, and is divided into smaller,
implementable user stories.

Epics are thus units that aggregate User Stories and serve to organize agile work
packages in this way. While User Stories reflect individual requirements in the form of
needs from the customer’s perspective, an Epic can be understood as an organizational
unit.

An Epic is—viewed from a tree structure—the higher-level hierarchy for organiza-
tion. Therefore, Epics regularly exist across multiple sprint cycles, while User Stories,
Tasks, and Sub-Tasks can typically be completed, i.e., done, within a single sprint.

Figure 7.4 “Epic” illustrates—here in the detailed view—the relationship between
Epics and individual User Stories.

Using Epics for KPIs and Management Reports
When an organization is just transitioning to agile methodology, it can be useful to define
goals for Epics that are achievable quarterly or semi-annually.

7.2 Agile Goals

234 Agile Tools: Toolbox for Product Owners ...

Do not underestimate the initial planning effort associated with preparing the first
rough plan. To complicate matters during this initial phase, you also need to familiarize
yourself with the planning tools, which in most cases will be Jira from Atlassian.

Note that the following additional tasks are involved in the initial setup:

• Reporting: Reports for Product Owners, executives, or other stakeholders who want
specific status information;

• Representation of progress: The textual description of all User Stories and their
relationship, which converge in an Epic;

• Check Time Estimate: It should be taken into account that the tasks converging in an
Epic are all based on initial time estimates from agile teams.

 The individual estimates are based on assumptions, at best on solid experience values.
 It is worth taking the time at this point to look at these effort estimates together with

the teams and in the overarching and cross-team context of the Epic, in order to make
any necessary adjustments in advance.

Fig. 7.4 Epic

235

Tip Even though Epics represent a longer time unit, it is not recommended to define
either too short or too long a time span for an Epic. It makes more sense to design the
first Epics rather simpler and gradually approach the tools and methodology. Over time,
you will develop a very keen sense of when an Epic is overloaded and time dimensions
are either too generously sized or too ambitious. Keep in mind that it is always possible
to transfer User Stories along with associated tasks to another Epic.

7.2.4 Task & Sub-Task

Tasks and sub-tasks dress a user story with the goal of organizational and technical
implementation. Product owners and agile teams define the tasks required to implement
a user story and organize these task packages into tasks and sub-tasks.

Planning tasks for sprints
For sprint planning, the product owners and teams decide which user stories and task
packages to tackle. Sub-tasks often bundle preparatory measures, such as configur-
ing a development, testing, and production environment. It has proven useful to adapt
repeated steps in the process based on existing user stories—as a template. Furthermore,
it is important that tasks and sub-tasks do not contain documentation-like detailed infor-
mation but rather refer to corresponding wiki documentation or Confluence sections via
direct links.

Clear recommendation: Separate tasks and documentation
The advantage is obvious: First, agile teams can focus on the current status information
within the respective task artifacts and independently inform and exchange information
about these agile artifacts at any time. Second, documentation takes place at a central,
overarching location and forms a coherent artifact that grows over time and gradually
complements a complete documentation that should also be easily understood by new
team members.

Product owners, team members, and other stakeholders gain easily graspable priorities
by breaking down task elements into granular sub-elements and estimates based on story
points. Another positive side effect is that potentially hidden activities are uncovered and
defined in the course of the estimate-based effort assessment. As a result, the product
owner regularly reprioritizes the elements in the backlog after receiving estimates from
the individual participants.

7.2 Agile Goals

236 Agile Tools: Toolbox for Product Owners ...

7.2.5 Backlog

A backlog, or product backlog, is a list of work items. Part of a backlog are, for example,
user stories or software bugs that still need to be fixed, i.e., all the various tasks that agile
teams need to coordinate to manage the upcoming work.

In agile software development, the product owner is responsible for setting priori-
ties in the backlog. To do this, the respective tasks must be equipped with appropriate
requirement definitions, brief descriptions of desired functions, or bug fixes for bug elim-
ination for a software product.

For agile teams, the backlog is the most important project management tool and thus
an indispensable tool for the agile working mode.

Close collaboration between product owners and teams
Product owners must work closely with the responsible agile teams to be able to use the
most realistic effort estimates. Based on a good estimate and good, compact descriptions,
product owners can evaluate the individual task elements and their priority in context and
thus assess the relative priority of each element accurately.

Effort estimation clarifies questions and details
Regularly, questions about requirements and implementation arise within the agile teams
when the estimation process begins. This effect is deliberately desired as a fixed compo-
nent of the agile approach, as these questions help the entire team to understand the tasks
in detail and to add any missing details or to further specify the respective task packages.

Sedano et al. have, through an extensive field study, made an important contribution to
the basic principle of a backlog and provide the following results for this [9, page 210]:

1. Product Backlog serve as an informal model for the work to be done, and do not
contain requirement specifications.

2. A backlog acts as a boundary object, and bridges the gap between the creation of
solution concepts and the development of software.

3. The authors confirm the role and mode of operation of backlogs in requirement
specification and their functioning for team-oriented evolution towards finding
solutions specifically for software, as well as the cross-team importance of a back-
log.

4. Identification of design obstacles that can arise within a backlog.Figure 7.5 illus-
trates the “basic principle of a Product Backlog” and thus provides a solid foundation
for defining and implementing requirements in an agile manner.

Recommendation of specific backlog practices
Furthermore, the authors of the study define and recommend 13 specific backlog prac-
tices to minimize the emergence of requirement backlogs and to optimally use backlogs

237

[9, page 204 ff.], which was supplemented by their own practical experience as well as
references to prototyping and Action Design Research.

Table 7.1 “Best Practices for Backlog Use” provides recommendations on which
approach has a particularly positive effect on effective backlog use in practice.

Software teams can use the practice descriptions to improve the creation of their
backlogs

7.3 Collaboration Tools

Collaboration tools are tools for effective collaboration with one or more other people to
produce or create something.

The communication function is often an integral part of collaboration tools but far
from the only benefit.

Many collaboration tools are based on traditional face-to-face interaction and use
completely different functions and technologies. They all have the following characteris-
tics in common [10]:

Backlog concept

Domain
Backlog

Release Backlog Team A Backlog Team A Sprint

Team B Backlog Team B Sprint

Product
Owner

Other
stakeholders

Team A
member

Team B
member

Epics
User Story 9

"As (kind of user}, I want
to (target), [so that (some
reasons}]."

"As (type of user}, I want
to (target), [so that (some
reasons)]."

"As (type of user), I want
to (target), [so that (some
reasons}]."

"Ale (type of user}, I want
(target), [so that (some
reasons}]".

"As (kind of user}, I want
to (target), [so that (some
reasons}]."

"As (kind of user), I want
to (target), [so that (some
reasons}]."

"As (kind of the user}, I
want to (target), [so that
(some reasons}]".

"As (kind dos user}, I want
(target), [so that (some
reasons}]''.

"As (kind of user}, I want
to (target), [so that (some
grande}]."

"As (kind of user}, I want
to (target), [so that (some
reasons}]."

"As (kind of user}, I want
to (target), [so that (some
reasons}]."

"As (kind of user}, I want
to (target), [so that (some
reasons}]."

User Story 5

User Story 10

User Story 11

User Story 12

Use Cases

Features

User Stories

Define and implement requirements in an agile manner

User Story 6

User Story 7

User Story 8

User Story 3

User Story 4

User Story 1

User Story 2

Fig. 7.5 Basic principle of a Product Backlog

7.3 Collaboration Tools

238 Agile Tools: Toolbox for Product Owners ...

Table 7.1 Best Practices for Backlog Use

Best Practice for Backlog
Use

Explanation

Balanced Teams Well-balanced team composition with experts from the fields of
business processes, product design, and software development.

Dual-Track Agility It is recommended to organize work in parallel on two “tracks”:
• Track 1 usually includes research, negotiations with stakehold-
ers, creating prototypes, and writing user stories.
• Track 2 involves the creation, testing, software architecture,
refactoring, as well as deployment and maintenance of the prod-
uct.

Stakeholder Briefing Identification and visualization of the individuals who are inter-
ested in the success of the product.

Interviews Open interviews as well as (semi-)structured conversations with
stakeholders such as users and product sponsors, i.e., stakeholders
for e.g. (individual) functions

Persona Creation of functional users with detailed character sketches to
determine who will use the product features with which motiva-
tion and what specific needs.

Affinity-Based Task Assign-
ment

Strengths and motivation-based, as well as voluntary assignment
of tasks to promote the best possible intrinsic motivation of each
individual as a contributor

Creative Idea Process &
Action Design Research

Establishment of creative methods for problem-solving, organi-
zation of stakeholder interviews, and systematic processing of
survey results.

Prototyping Prototypical product conception through iteration between the
phases of requirement definition, prototype creation, and discus-
sion of prototype design.

Active Usability Testing and
Validation of Functionality
and Error-Free Operation

Technical and functional tests of prototypes and releases, includ-
ing the implementation of (partially) automated test routes, i.e.,
definition of test cases and their verification using suitable test
methodology.

User Stories Building a common understanding within the team and together
with connected teams for the implementation of upcoming user
stories.
Writing short, informal user stories with a connected reference to
the overarching software architecture.

Story Showcase Using story showcases and prototypes specifically to share goal
definitions with other teams and to seek feedback and construc-
tive solution/experience exchange.

Backlog Maintenance Redefinition and re-sequencing of user stories and tasks within
the backlog, checking for necessary updates—“Are all the infor-
mation up-to-date?”

Acceptance Tests of User
Stories,

Evaluation of the work performed by the stakeholders of the user
stories.
Establishing retrospectives for mutual reflection within the team.

239

• Strong communication skills: Whether through video, audio, or simple text, the
most important characteristic of a tool for digital collaboration in agile teams is its
ability to significantly support communication and interaction between participants.

• Easy to understand and comfortable to use: The user interface of the tool should
be simple and intuitive to use. This is characterized by the simplest and most intuitive
operation and easy navigation.

• Excellent capabilities to support virtual collaboration: Important are functions to
support an optimal structure of information as well as well-functioning mechanisms
for finding content, not solely through a very good search function. To encourage the
numerous participants to contribute and also to structure their contributions, a col-
laboration tool should make it clear that contributions are expected and that they will
elicit a response.

 An online presentation is a good example of extended functionality, as it is clear to
communication participants during use that they should actively respond to the pres-
entation and interact with the presenter and other participants, rather than passively
consuming a webcast.

The Periodic Table for DevOps Tools—see separate section—currently lists Slack,
Microsoft Teams, Atlassian Confluence, Stack Overflow, and Mattermost as the most sig-
nificant collaboration tools.

7.3.1 Confluence

Atlassian Confluence is a wiki software for collaboration within an organization. It is
a commercial software that can be used as a platform-independent browser application
as well as a native app in a mobile-optimized version. The name is programmatic, as all
information from an organization converges in Confluence.

Confluence is primarily used for collaboration and knowledge management within an
organization.

The most common use cases for Confluence:
• Knowledge management
• Organization-wide wiki & glossary
• Collaborative platform
• Document management
• Requirement documentation
• Intranet
• Quality management system
• Project management
• Task management, if no Jira usage
• To support e-learning

7.3 Collaboration Tools

240 Agile Tools: Toolbox for Product Owners ...

• Content production and technical editing
• Troubleshooting articles

Main features of Confluence:
• Teams can work together on documents simultaneously and track their changes in

real-time;
• automatic versioning of content and files;
• comprehensive role and permission concept;
• templates for different content and reports;
• full-text search, which also includes attachments in the search;
• browser-based support for any language;
• extensive notification functions via email, popup, or push notification;
• integration of external user directories such as LDAP;
• export options for page content as PDF, Word, or HTML—the HTML function can be

used, for example, to connect to a public website, e.g., for direct customer support;
• promotion of interaction through inline comments and notification options when men-

tioned;
• support for separation for specialized areas of teams or projects;
• very powerful WYSIWYG editor for creating appealing content, including an option

for optimized color display of various programming languages;
• socializing features, e.g., comments and likes;
• tight integration with Atlassian Jira.

A page you should NOT actually see in Confluence is the error message “You do not
have permission to view this page”. Confluence thrives as a collaboration tool on coop-
eration and transparency, and which information in your organization is so trustworthy
that you entrust it to a cloud tool but want to hide it from your employees—regardless of
their role and function?

7.3.2 Jira

Atlassian Jira is an essential tool for implementing agile projects and is also suitable for
effectively structuring and organizing complex tasks. Jira allows agile teams to digitally
map all essential artifacts and events according to Scrum or Kanban or even alternative
agile methodologies.

Alternatives—mostly for smaller organizations are Trello and Asana—due to its wide
distribution, importance, and functional superiority as well as the option to connect many
other 3rd-party tools, Jira is presented here as an example.

The focus of Jira is on realizing the planning, all information on the current status,
and the release process of software or products. To this end, the browser-based soft-
ware—which has also been supplemented by native apps—offers real-time reporting and
convenient features to keep an eye on progress and all relevant information.

241

Almost any conceivable customization towards individual team needs can be imple-
mented, so that every agile team can find itself here. Jira works task or ticket-based.
Transparency to individual information artifacts, just like in Confluence, forms the start-
ing point for collaboration within and between agile teams. If desired, all information is
available at any time.

Jira Backlog
Central elements here are the digital Scrum or Kanban boards, which can be freely cho-
sen by the teams, on which the respective tasks with their status and the current proces-
sor are graphically visualized and thus plausibly and easily understandable represent the
current project status.

Figure 7.6 illustrates a “Product Backlog in the form of a Kanban Board in Atlassian
Jira”. Here it is directly visible at a glance which requirements have already been fully
implemented, which tasks are still in review or in progress, currently selected for devel-
opment, or still in the backlog.

7.3.3 Git Repositories, GitHub, and GitLab

A repository is a software-managed directory for storing and describing objects. Git-
repositories are such indispensable tools for software development in agile teams for
versioned and centralized storage of source code. A Git-based repository database thus
enables the systematic storage of program code, code fragments, technical documenta-
tion, and other components relevant to software development and at the same time allows
their versioning.

While the Git environment on a local computer with one or more Git repositories rep-
resents a personal development environment, GitHub and GitLab are online platforms
for remote repositories. Such a remote repository is a remote repository on another host
to which development files are transferred. GitLab offers—unlike GitHub—the possibil-
ity to operate such remote repositories on your own servers, thus supporting the so-called
on-premise variant for software operation.

Figure 7.7 shows a “Git Repository” in the form of a publicly accessible GitHub
repository, here using the example of Keycloak, an open-source solution for identity and
access management.

GitHub, on the other hand, is a purely cloud-based platform for versioning software
based on Git versioning. GitHub online repositories are very popular and widely used in
both open-source projects and commercial software.

Remote repositories and Git provide the particularly important functions and mecha-
nisms for sharing code in a coordinated manner in a software project, for developing new
software functionalities in parallel with other developers in agile teams, or for optimizing
software.

7.3 Collaboration Tools

242 Agile Tools: Toolbox for Product Owners ...

“For you as a software developer, it’s only a small step to versioning with Git, but for every
agile software project in a team, it’s a big step—a milestone!”

Sascha Block—IT Architect

Why is Git versioning of software so important?
The use of a Git versioning system (Git-CVS) not only solves many common problems
when writing code but also significantly improves the entire software development pro-
cess.

By allowing not only software developers and software architects to track code develop-
ment via Git in near real-time as soon as code is hosted online, software development
becomes transparent, reproducible, and open for collaboration in agile teams. Not only
can other stakeholders and, in particular, penetration testers effectively assess the qual-
ity of software, but all automation processes are based on the basic technology of Git
versioning.

It is secondary where code is hosted in Git repositories. The decisive factor is that
online access is possible at any time. Closed-source projects can be hosted in a protected

Fig. 7.6 Product Backlog in the form of a Kanban Board in Atlassian Jira

243

environment in the cloud or on private servers, the way and means are secondary. The
primary goal is that code artifacts are available and versioned online in real-time.

The most important Git mechanisms explained compactly:
Commit

The commit is a snapshot of the changes made to source code via so-called staging
files. A commit in a Git repository is like a backup of a developer’s save state in the Git
project with all the changes made to the stage files. All changes are saved with the com-
mit command. The clever part—like with a backup—is that there is always the possibil-
ity to return to this state. Smart, right?

Stage
A stage—also referred to as the staging area—contains the files that should be included
in the next Git transfer. With staging, the developer defines a file for the next transfer to
the remote Git repository.

Fig. 7.7 GitHub Repository of the open-source IAM solution Keycloak. (Screenshot source:
Sascha Block)

7.3 Collaboration Tools

244 Agile Tools: Toolbox for Product Owners ...

Track
When a Git file is tracked, an observer follows its changes and is informed about each
such change. A tracked file is a Git element that is recognized by the Git repository as a
single element. Tracking is not only relevant for software developers but also an invalu-
able mechanism for product owners, penetration testers, and various tasks within quality
assurance and documentation of software.

Branch
A branch is a parallel version of the files in a repository.

Local
Newly defined source code artifacts regularly emerge as development files on the local
development environment of individual software developers and thus contain the refer-
ence to their machine and their repository version.

Remote
The remote is the version of the repository that is stored on a remote host, such as a
server. This remote repository can be hosted on GitHub, GitLab, or elsewhere. A URL or
URI addresses this remote location.

Clone
A clone is a local copy of a remote project archive that has been created as a duplicate
for a separate development environment.

Fork
A fork (fork) is a (modified) copy of a project archive and can be created at any time by
any developer or Git user. It is a common strategy to fork a GitHub/GitLab project and
create a 1:1 copy of this Git project as an archive. Likewise, a developer can transfer or
merge a Git repo from another Git-Hub user’s GitHub account to their own.

Merge
A merge is a versioning strategy to combine version files. With Git merge, a Git pro-
ject is updated by incorporating all introduced changes via new commits into the remote
repository through a merge.

Pull
With a pull or pull request, a developer retrieves modified files via commit from a remote
repository and transfers them to their local repository. The release files are thus merged
in the direction of a development environment.

245

Push
With a push or push request, developers send commits from a local repository to a
remote repository.

Pull Request
The pull request is a request as a message sent by another GitHub user to incorporate
the transfers in their remote repository into the remote repository of another user. Pull
requests thus grant permissions for versioning into a remote repository.

Is Git versioning suitable only for code?
Git is not limited to code alone! There is no reason why this framework should be lim-
ited to code; a Versioning Control System (VCS) is well suited for tracking any plain text
files:

• Technical specifications
• Protocols
• Manuscripts
• …

Public and non-public Git versioning
Whether Git versioning is publicly visible (public) or private and thus not publicly vis-
ible is determined by the owner of a repository.

The permission control of repositories is diverse and offers a solution for every conceiv-
able requirement.

Or to put it plainly and clearly differently:
There is no, absolutely no, good reason not to version software and source code with

Git. Git is indispensable when programming.
In this sense: Happy Git versioning! ;-)

7.3.4 OpenAPI—Tools for API Design

Technically, APIs are often highly individual; mainly because new code in the form of
definitions must be written for each interface. To keep time expenditures as efficient as
possible and costs as low as possible, standardized API protocols, such as JSON-based
REST APIs, ideally in RESTful API design, are often used.

For APIs for structured document formats like JSON, the use of the library must
match the underlying specification for context-free documents.

Instances of context-free API protocols can, especially when misusing the APIs, lead
to typical runtime exceptions or data leaks [11].

OpenAPI [12] is the leading specification and thus tool for documenting APIs.

7.3 Collaboration Tools

246 Agile Tools: Toolbox for Product Owners ...

OpenAPI, formerly known as Swagger, has now firmly established itself in software
development. Swagger started as an open-source specification for the development and
documentation of REST/RESTful APIs back in 2010.

In 2015, the Swagger project was acquired by SmartBear Software. The Swagger
specification was donated to the Linux Foundation and renamed to OpenAPI.

The OpenAPI Specification is the cornerstone for a thoroughly proven open-source
software, each with independent communities behind them, which further develop the
respective open-source projects such as IAM-Keycloak with new IAM releases and a
professional release plan.

With OpenAPI, countless OpenAPI tools are also available, which bring valuable
functions to software projects, such as converters to alternative documentation formats,
validators, editors, mock servers, test tools, etc.

From the OpenAPI specification, source code documentation can be generated for
both client and server-side for over 50 languages. All of this is available as a free-to-use
open-source contribution based on the OpenAPI specification.

OpenAPI Tools
In the freely accessible OpenAPI GitHub [13] you can find all known OpenAPI tools
that implement the OpenAPI specification and are available for free use.

The number of tools is constantly growing, so it is worth checking regularly to benefit
from further, new tools for API documentation via OpenAPI.

OpenAPI Schema
OpenAPI definitions should be used to make APIs transparent and easily understandable
for all agile teams. In particular, the JSON schema for validating OpenAPI definitions of
versions 3.1. [14] and the OpenAPI 3.1 YAML schema [15] are particularly popular.

OpenAPI Object
An OpenAPI object is, as illustrated in Fig. 7.8 “Component-based structure of an
OpenAPI object,” divided into components of an OpenApi object.

Fig. 7.8 “Component-based structure of an OpenAPI object” illustrates the component-
based structure of an OpenApi object.

Analogous to representation 47, Table 7.2 explains the respective components of an
OpenAPI object.

Advantages of OpenAPI Interface Documentation
The OpenAPI specification already forms the foundation of numerous field-tested open-
source software, each backed by independent communities that further develop the
respective open-source projects, such as IAM-Keycloak, with new IAM releases and a
professional release plan.

247

• OpenAPI is the widely established standard for API specification.
• OpenAPI is an agnostic technology, meaning that all technology-independent tech-

nologies specified via OpenAPI, such as Java, .NET, PHP, etc., benefit.
• OpenAPI specifications are defined in YAML or JSON.
• The OpenAPI specifications are defined by a formal schema.
• Because OpenAPI specifications are organized in a structured document, all informa-

tion is machine-readable.
• OpenAPI makes information objects and the relationships between them clear.
• Because all information is machine-readable, automatic API testing is possible.
• Tools like Swagger.io or Postman provide the appropriate working environment for

any API testing.
• These tools are also a living API documentation.
• OpenApi CodeGen—Generate Server Code offers convenient templates for different

programming languages.
• An OpenApi is a “single source of truth”, meaning the API documentation is the only

source and always up to date.

With OpenAPI, countless OpenAPI tools are also available, providing valuable functions
in software projects, such as converters to alternative documentation formats, validators,
editors, mock servers, test tools, SDK generators, etc.

From the OpenAPI specification, source code documentation can be generated for
both client and server sides in over 50 languages. All of this is available as a free-to-use
open-source contribution based on the OpenAPI specification.

How Agile Teams Benefit from OpenAPI Documentation
• Microservices define APIs, and these are defined through OpenAPI specifications.
• Through the OpenAPI Specs, the different code artifacts are defined, which can be

comfortably versioned and organized via a Git-based repository. These code artifacts,
in turn, are the different (information) objects in the API context, such as operation

Fig. 7.8 Component-based
structure of an OpenAPI object

components

externalDocs

path

tags

securityservers

info

OpenAPI 3.1

7.3 Collaboration Tools

248 Agile Tools: Toolbox for Product Owners ...

Table 7.2 Field names and their meaning in the OpenAPI context

Field Name Type Explanation

openapi string REQUIRED. This string MUST be the version number
of the OpenAPI specification used by the OpenAPI
document. The openapi field SHOULD be used by tools
to interpret the OpenAPI document. It is not related to
the API info.version string.

info Info Object REQUIRED. Provides metadata about the API. The
metadata MAY be used by tooling as needed.

jsonSchema-
Dialect

string The default value for the $schema keyword in the
Schema Objects contained in this OAS document. This
MUST be in the form of a URI.

servers [Server Object] An array of Server Objects, which provide connectivity
information to a target server. If the servers property
is not provided or is an empty array, the default value
would be a Server Object with a url value of /.

paths Paths Object The available paths and operations for the API.

webhooks Map[string, Path Item
Object | Reference
Object]]

The incoming webhooks that MAY be received as part
of this API and that the API client MAY implement.
This section is closely related to the “callbacks” feature
and describes requests that are not initiated by an API
call, e.g., by an out-of-band registration. The key name
is a unique string to refer to each webhook, while the
(optionally referenced) Path Item Object describes a
request that can be initiated by the API provider, as well
as the expected responses. An example is available.

components Components Object An element to hold various schemas for the document.

security [Security Requirement
Object]

A declaration of which security mechanisms can be
used in the API. The list of values includes alternative
Security Requirement Objects that can be used. Only
one of the Security Requirement Objects needs to be
satisfied to authorize a request. Individual operations
can override this definition. To make security optional,
an empty Security Requirement ({}) can be included in
the array.

tags [Tag Object] A list of tags used in the document with additional
metadata. The order of the tags can be used to reflect
on their order by the parsing tools. Not all tags that are
used by the Operation Object have to be declared. The
undeclared tags CAN be organized arbitrarily or based
on the logic of the tooling. Each tag name in the list
MUST be unique.

externalDocs External Documenta-
tion Object

Additional external documentation.

Note: Further details are explained in the root object of the OpenAPI document.

249

objects like user, documents, etc., and define with their properties and query param-
eters how an API works.

• Unit tests use OpenAPI to validate requests and responses.
• Tests can be cleanly separated for the respective test and deployment environments

and realized and (partially) automated using continuous integration and continuous
deployment.

• Consumer-driven APIs are defined through OpenAPI extensions.
• Authorization concepts are also API-based and are considered early on with an

OpenAPI specification.
• The public API documentation is (automatically) generated from the OpenAPI speci-

fication, e.g., with Swagger tools, and made visible in the Swagger User Interface (see
screenshot below).

Figure 7.9 shows how an “OpenAPI documentation” can be visualized clearly and easily
comprehensible.

7.3.5 Messenger and Chat Systems

Messenger and chat systems support person-to-person or group-oriented communication.
The messenger is an application for receiving and sending messages via a mostly native
application, which is installed in addition to a browser. However, many messengers also
support purely browser-based communication. Chat systems, on the other hand, are pre-
dominantly browser-based.

Almost all messenger and chat systems now offer a video conferencing function.
Even though Discord does not appear in the DevOps Periodic Table—see separate

section—this application as a chat messenger has gained similar popularity as Slack in
open source projects and is likely to be more widespread than Mattermost.

Fig. 7.10 illustrates how “Discord as a messenger-based collaboration tool” can
be used for communication within and between teams. The Discord channel of Strapi
shows the externally accessible communication channels in which the internal teams are
directly integrated.

The mentioned representatives belong to the so-called messenger and chat clients,
which serve for short-term communication and all support IP-based video telephony. Of
course, video calls between several participants are supported. A standardized tool for
this type of communication is absolutely essential for collaboration in agile teams.

In addition, your organization should—following the motto “Bring your own
device”—also support alternative messengers and clients so that communication
between participants of your organization and third parties is not unnecessarily compli-
cated.

Certainly, IT security relevant aspects have to be considered, but basic support should
definitely be ensured.

7.3 Collaboration Tools

250 Agile Tools: Toolbox for Product Owners ...

When introducing a messenger and chat system, you should consider how to plan the
implementation of separate topic channels and team spaces within an agile framework.
Separate retreat areas for coordinating individual teams with limited visibility are just as
relevant as the correct bundling of different topics.

7.4 Agile Architectures—Foundation of Software-based
Digitalization

Under rapid technological change, software architectures are changing at ever shorter
intervals. What remains constant over a longer interval in these agile architectures are
the underlying frameworks and patterns by which software does what you want it to do.
That’s why it’s so important to continuously enrich this knowledge and incorporate this
collection of values and practices into the development of digital solutions.

Even though cloud trends revolutionize many things, basic technologies that signifi-
cantly ensure the security of cloud solutions are not new. The specification for the OAuth
2.0 Authorization Framework has existed since October 2012 [16], but is still current.

Technologies built on this, such as OpenID Connect, which have since extended the
OAuth 2.0 protocol with additional functionalities, are continuously updated.

Fig. 7.9 OpenAPI Documentation

251

For example, the OpenID Connect specification is currently being actively adapted
with Draft 17 for OpenID Connect Federation 1.0 by the actors involved in standardiza-
tion [17].

Software architecture is thus always to be understood as agile architecture and
includes standardized software design. As such, it standardizes the technologies and
components selected by your organization to be aligned with the most widely established
standards. The underlying basic software architecture enables and shapes your organiza-
tion-specific or company-internal processes.

Fig. 7.10 Discord as a Messenger-based Collaboration Tool

7.4 Agile Architectures—Foundation of Software-based Digitalization

252 Agile Tools: Toolbox for Product Owners ...

How to become agile and shape your company innovatively:
Improve your agile software development and agile project management with agile pro-
cesses, pragmatic tools, and methodological extensions within your company. Design the
digital solutions for your company and your customers and users as effectively as pos-
sible!

Internalize how much you and your company are defined by agile processes! Take the
initiative and shape your options according to your ideas. Which agile framework is
ultimately the right one for your company can be found in the chapter on large-scale
agile frameworks. Much more important than committing to a specific model or agile
approach is understanding the agile mindset and the underlying idea and applying agile
practices.

An agile software architecture enables customer-centric UX design
At the same time, an agile software architecture—in conjunction with prototyping—
allows for the implementation of new system functions in close interaction with cus-
tomer-centric goals in line with your organization’s or company’s strategy in the shortest
possible time.

In the spirit of the lean-agile mindset, the verification of hypotheses regarding UX design
and the targeted control of company-relevant KPIs in the form of accompanying usabil-
ity tests are included.

7.4.1 Factors Influencing Agile IT Architectures

1. High-speed architecture: With the rapid growth of the internet, complex software
systems, websites, online shops, and apps must be aligned for maximum speed. Infra-
structure, code, and software-as-a-service are all concepts that further accelerate this
trend of technological change.

2. Mobile First, smart devices & IoT: By the end of 2021, there will be two trillion
smartphones worldwide and up to 12.3 trillion (equivalent to 12,300 billion) devices
connected to the internet, ranging from Alexa to various IoT devices [18]. Regard-
less of whether digital identities generate revenue through websites and online shops,
customers expect to be able to seamlessly switch between devices and media. The
Mobile-First philosophy plays a crucial role in this, as does the ongoing consideration
of applicable legal frameworks and IT security.

3. Agile software and scalable services:
 Loosely coupled systems are well-prepared for the future. Microservices enable agil-

ity for complex software systems by breaking down these software applications into
individual components. This increases companies’ agility, stability, and scalability.

253

Based on scalable software-as-a-service solutions, companies can provide transparent
services and digital services to customers and bill them according to demand.

4. The value of data is increasing: Each year, the amount of data grows by up to 50%.
The rapidly increasing amount of information requires not only powerful analysis
tools and a solid, company-wide data concept but also the importance of new tech-
nologies such as artificial intelligence, neural networks, and smart data to analyze
unstructured data from different sources in a targeted manner. At the same time, the
responsibility of providers and operators to use data exclusively within the framework
of applicable legal provisions is increasing. This also includes the right to delete per-
sonal data, which can be demanded by customers at any time.

5. Cloud-based infrastructure: In the digital age, the cloud is increasingly becoming
an instrument for agile infrastructure. In most cases, several cloud solutions operate
in parallel, complementing the market-leading cloud providers Amazon Web Services
(AWS), Google Cloud, and Microsoft Azure. Solutions vary according to require-
ments and budget.

6. Security and data protection: With cloud-based systems and stricter data protection
regulations—not just regarding GDPR—the requirements for security and data pro-
tection are growing. Every company is challenged to meet the necessary requirements
of cybersecurity. Customers rightly expect transparent data protection and a fair, part-
nership-based customer relationship.

7. DevOps and agile integration: Companies, public organizations, and non-profit
organizations inherently desire the transformation to agile customer service. In-house
DevOps engineers, UX experts, and specialists in data management and analysis are
just examples of central positions that enable the upcoming changes in companies.
The introduction of agile methods requires company-wide support. In this context, the
objective analysis and advice of external specialists, in close cooperation with com-
pany management, can prove successful. The crucial factor is that you approach and
live the transformation towards agile architectures based on the agile mindset!

7.5 Pragmatic Software Architecture Documentation

A software architecture documentation is indispensable. For the creation of such a tech-
nical documentation, it is irrelevant whether a software system initially consists of a
series of largely manageable functions or already a multitude of various components that
are further divided into countless software services. In the worst case, a complex IT sys-
tem exists for years without adequate architecture documentation.

Over the course of a project, software usually becomes more complex, rarely simpli-
fied. Especially with microservice architectures, the number of endpoints and functions
increases, and the interaction between countless components and functional modules
becomes more complex over time. Even if it is “only” an already functioning and com-
plex software system—consisting of interacting individual applications in a corporate

7.5 Pragmatic Software Architecture Documentation

254 Agile Tools: Toolbox for Product Owners ...

network—it is important to know architecture specifications; therefore, it is all the more
important to record all relevant architectural decisions.

How to achieve pragmatic architecture documentation?
In pragmatic architecture documentation, the focus is primarily on fundamental deci-
sions that are difficult to reverse in the future.

Interaction of collaboration tools and Git repositories
Pragmatic architecture documentation becomes manageable through the use of suitable
collaboration tools and actively used tools for versioning software; primarily Git reposi-
tories.

With tools like OpenAPI tools and Postman, APIs can be flexibly documented. However,
such predominantly technical documentation focused on data structures must always be
supplemented with graphical and textual artifacts that can be displayed in a wiki like
Confluence or directly with a web-based Git platform like GitHub or GitLab.

7.5.1 How to Create Visual Software Architecture Artifacts

Are all important software architecture artifacts in your projects well documented and
visually represented? A well-designed and formally correct overview diagram and pre-
cise flowcharts often have more significance than countless words and numerous meet-
ings.

Many projects lack meaningful, visualized architecture artifacts
Are your teams trained in the routine creation of these invaluable artifacts? Is the neces-
sary time frame and importance given to architecture documentation, and is there a func-
tioning interaction within prototyping and threat model-based penetration testing?

Clear recommendation: Start with simple representations and develop these representa-
tions further through refinement and detailing.

Draw.io as a simple visualization tool
For pragmatic architecture documentation, we briefly introduce the tool Draw.io as a best
practice. The tool for graphical software architecture sketches, diagrams, and process
representations is now available as a free desktop version, browser version, and as an
add-on for Atlassian Confluence.

The operation is reminiscent of the alternative Microsoft Visio and is multilingual, the
strength of the tool lies in its simplicity and equally in its easy availability for all. This is
a crucial argument because the graphical design of architecture artifacts is not and should

255

not be a science reserved for an elitist group of experts. Experts such as IT and software
architects should rather support the optimization and refinement of such artifacts.

Moreover, with the attractive templates, even beginners can quickly create profes-
sional representations that can be saved and exported in various formats. The original file
in Draw.io format, on the other hand, is not pixel-based and can therefore be scaled and,
above all, modified as desired. With the easy availability and simple accessibility of the
tool, everyone can contribute to the expansion of graphical architecture artifacts.

Figure 7.11 “Draw.io—Application for creating graphical artifacts for software archi-
tecture” shows the application interface of Draw.io and how this tool can effectively sup-
port you in creating graphical artifacts, e.g., for software architecture.

7.5.2 Standards, Criteria, and Norms for Software Architecture
Artifacts

Ideally, these artifacts for documenting IT architecture comply with defined criteria and
norms and are thus generally and easily understandable. To achieve this goal, the follow-
ing criteria are defined, which should serve as a checklist for architecture artifacts.

Table 7.3 “Criteria and Checklist for Architecture Artifacts”

Fig. 7.11 Draw.io—Application for creating graphical artifacts for software architecture.
(Source: Sascha Block)

7.5 Pragmatic Software Architecture Documentation

256 Agile Tools: Toolbox for Product Owners ...

Designing easily understandable software architecture documentation
The documentation should be created as easily understandable as possible so that every
potential recipient from the circle of stakeholders receives real assistance with the archi-
tecture documentation or is at least able to obtain a well-founded explanation with the
help of other experts.

UML Diagrams
The Unified Modeling Language (UML) is a standard for describing software systems
based on a uniform notation.

UML is the standard for analysis and design of IT architectures and object-oriented
applications. Thus, UML provides a solid framework for representing complex software
architectures uniformly and easily understandable.

Goals of UML representations:

• Specification
• Visualization
• Documentation

Representation Forms and Diagram Types
UML essentially consists of nine diagram types, each serving a different purpose. These
diagram types use different graphical elements, the semantics of which are precisely
defined. Table 7.4 “Representation Forms and Diagram Types” lists the different UML
representations in the context of their perspective in relation to requirements.

Auxiliary Cross Tables
As a pragmatic architectural artifact, easily readable cross tables prove to be useful.
These cross tables contain both column and row headings, each representing a character-
istic—e.g., different quality goals. Instead of a simple cross, an extension via weighting

Table 7.3 Criteria and Checklist for Architecture Artifacts

Criterion Explanation

Comprehensibility Representations should be intuitively comprehensible.

Legend A legend explains the individual objects used and their meaning within
the illustration. A centrally defined legend can be used, but ideally, the
legend should always be provided with the respective representation.

Standards + Norms Representations are easily understandable when they are created accord-
ing to a specific convention or norm and the representation clearly refers
to this specification in the form of a reference.

Readability Texts, labels, and graphical objects must be of good readability in terms
of display quality.

257

or values is also possible. Relationships can be color-coded in a simple cross table, or a
UML tool such as the software Enterprise Architect can be chosen instead of, for exam-
ple, Excel.

Table 7.5 “Cross tables as a pragmatic tool for software architectures” is recommended
to illustrate the effects of technical decisions regarding architecture and corresponding
software properties.

7.5.3 Addressing and Subject Areas of Software Architecture
Documentation

According to Bass et al, software architecture addresses four different subject areas with
heterogeneous interest groups in all cases [19]:

1. The Technology that provides measurable benefits to the company for problem-solv-
ing and ideally is based on established industry standards. The technical part of an
architecture documentation includes all decisions relevant to system architecture, such
as why a particular software architecture approach—like the Model-View-Controller
concept—has been chosen for the design of a software system. In addition, it must be
documented how the software system is structured as a whole, e.g., which individual
systems make up the overall system and how they relate to each other.

2. The Business Context documents how the software system is suitable for mapping
the company’s objectives. Based solely on such a documentation component, the

Table 7.4 Representation Forms and Diagram Types of the Unified Modeling Language (UML)

Perspective UML Representation Representation of

Requirements (Requirements) Use Case Diagram • Actors
• Scenarios

Static View Class Diagram • Classes
• Relationships

Package Diagram • Structuring of used packages
and/or libraries

Collaboration Diagram • Interaction of components

Dynamic View
(Interactions, processes in the
system)

Activity Diagram • Sequence possibilities

Sequence Diagram • Objects
• Interactions

State Diagram • internal behavior of objects

Implementation Component Diagram • inner structure of objects

Deployment Diagram • Embedding of objects in an
environment

7.5 Pragmatic Software Architecture Documentation

258 Agile Tools: Toolbox for Product Owners ...

management can verify whether all corporate goals are fully represented; deficits in
software-based solution support can also be identified. Customers of the company
typically also count as stakeholders of a software system, especially whenever prod-
ucts and services are prepared for customers as a target group via a software system—
for example, in the form of an online shop. The description of the market situation
allows changes to be perceived at any time and incorporated into the course of a soft-
ware project.

3. Software Projects usually have a fixed project schedule from which corresponding
milestones in the form of guaranteed functionalities at a specific point in time and
scope, as well as within a defined cost framework, are agreed upon. Project manage-
ment coordinates teams and tasks using appropriate planning tools such as Microsoft
Visio or modern Software-as-a-Service tools like Atlassian Jira and Confluence.

4. Professionals are experts such as IT and software architects who accompany the
involved teams and competently guide and coordinate specialist departments, ensur-
ing that knowledge—in relation to deployed information technologies—is made avail-
able to all participants on an equal basis.Figure 7.12 illustrates “Subject Areas and
Addressees of Software Architecture in accordance with Bass et al.”

Determining Stakeholder Goals through Personas
Personas of Stakeholders: Appropriate personas of stakeholders precisely pinpoint their
respective interests and clarify for all involved internal and external software developers
who the respective user groups of the software solution are and what their main interests
consist of.

7.5.4 Formulating Questions for Software Architecture Decisions

Zörner recommends using the following dimensions and questions to formulate architec-
tural decisions [20, page 65]:

• System context: How do you involve the stakeholders?
• Quality objectives: Strategies and possible alternatives

Table 7.5 Cross tables as a pragmatic tool for software architectures

Usability Reliability Maintainability

1. On which application environment is the server
based?

X X

2. Where is the state of an ongoing online session
maintained?

X X

3. Which programming model/framework is used for
the server?

X

259

• Project risks: potential hurdles endangering the quality objectives
• Identification of difficult-to-revise decisions
• Identification of framework conditions with a large scope for decision-making
• Technologies: Which technology/product do we use for XY?

It is essential to evaluate possible alternatives. This also identifies corresponding ques-
tions, always with the evaluation of the subsequent solution strategies and alternatives.
The respective conditions and relationships must be listed and evaluated accordingly.

Figure 7.13 illustrates the importance of the “context delimitation of software archi-
tecture”.

Typical decisions for software architecture
Certain types of questions arise in every software project [20, page 64]:

• What interface will the users receive?
• How do we integrate external system XY?
• How do components of our system communicate with each other?

Architecture as the sum
of important decisions

Technology

SOFTWARE
ARCHITECTURE

Business Project Professional

• Tasks of the
software
architects

• Skills: technical,
social, leadership,
management

• Knowledge

• Development
process

• Project
management

• Teams

• Tasks

• Corporate goals

• Business strategy

• Customers

• Market situation

• Expected changes
over time

• Problem solving

• Industry
standards

• Software
architecture

• Infrastructure

• Structuring
overall system

Fig. 7.12 Subject Areas and Addressees of Software Architecture in accordance with Bass et al.
(Source: Sascha Block)

7.5 Pragmatic Software Architecture Documentation

260 Agile Tools: Toolbox for Product Owners ...

• How do we address cross-cutting issues (e.g., persistence, distribution, …)?
• Type of implementation for required functionalities: “Make or Buy Decision”
• Which product/technology do we use for XY?

Documentation tool “Software Architecture Decision”
In practice, a structured approach and the use of a template that documents the ques-
tion, relevant influencing factors, assumptions, alternatives, and decisions made regard-
ing software architecture have proven effective [20, page 62].

Zörner recommends incorporating lively questions (e.g., “Which framework do we
choose for …?”) or the presentation of results (e.g., “ZEND as an object-oriented frame-
work for implementing PHP-based web applications”) specifically into the titles of the
architecture documentation [20, page 66].

Figure 7.14 illustrates how the “building block view of a software architecture” can
be depicted. Such visual artifacts are not only informative for new team members but
also serve as fundamental information artifacts for software architects, IT security teams,
and all other technically connected team members.

2

1

Context delimitation
for software architecture

professional context delimitation:

Practice-oriented:
Which professional processes
in�uence the
Software & System Architecture?

technical context delineation:

Focus on IT systems & components:
Which existing and planned system
components in�uence the software &
system architecture?

Target?

...

Explanation

...

Quality objectives

Who?

...

Interested?

Stakeholder

...

For 1 + 2:

For 1 + 2:

Fig. 7.13 Context delimitation for software architecture. (Source: Sascha Block)

261

7.5.5 Technical Debt

In a fast-paced digital world, technical debt is often overlooked. Cunningham defines
technical debt as immature or faulty program code, thus providing a useful definition for
software architecture artifacts that require urgent action in terms of correction and opti-
mization [21].

Categorization of Technical Debt
The context and significance of technical debt have been continuously expanded and dif-
ferentiated, ultimately allowing technical debt to be assigned to the following three cat-
egories [22]:

Requirement debts are caused by missing, insufficient, or subsequently added require-
ments (missing in the currently defined requirements) and inevitably result in inad-
equate software design or at least suboptimal software architecture. Software design
debts reflect inadequate design in software architecture. It is obvious that poorly
defined requirements can only lead to inadequate software architecture. However, even
if requirements are complete, a deficient software architecture arises if proven software
design patterns are unknown and/or ignored. It is irrelevant whether existing compo-
nents do not fit together at all or at least not optimally due to different design patterns.

Building Block View
for Software Architecture

Building Block View:
This view shows the static decomposition of
the system into building blocks as well as their
relationships.
Examples of building blocks include:

System 1
System 2

System 3

Software in the enterprise:

System 1 System 2 System 3

Component Component with
bidirectional API

Component with
one-directional API

- Modules - Components
- Subsystems - Interfaces

Fig. 7.14 Building block view of software architecture. (Source: Sascha Block)

7.5 Pragmatic Software Architecture Documentation

262 Agile Tools: Toolbox for Product Owners ...

Typically, a historically grown software architecture prevents a robust, balanced software
architecture, and the cloud trend makes these shortcomings even more apparent because
suddenly applications are supposed to interact with each other that are completely
incompatible. Only when these new requirements are defined in terms of technical debt
and thus made visible and known to all stakeholders can these obstacles be overcome.
Test debts reflect debts based on missing or insufficient tests. Inadequate tests affect the
error-free, quality, and robustness at different levels, including a (partially/automated)
error analysis at the code level.

Impact of Accumulated Technical Debt
Technical debt regularly refers to an accumulation of deficiencies that make it difficult
to add new features to the system. The most common type of accumulation of technical
debt is the rapid release of defined features without considering the future sustainability
of the overall system or possible side effects.

That is precisely why it is essential for a large-scale agile framework to take this impor-
tant aspect into account: Only if communicative mechanisms and overarching processes
between the multitude of agile teams work can the implementation of desirable software
architecture be achieved, which not only scores with a multitude of new features for the
user but ultimately does not jeopardize the overall system with a balanced pace of new
features, but supports all agile teams and the organization as a whole in their goals.

It is not always possible to completely avoid technical debt. Although it is regularly
challenging to prevent technical debt, the efforts aimed at doing so are worthwhile. Not
least, these efforts have a positive effect on the communication and satisfaction of all
those involved…

7.5.6 Arc42 Template for Software Architecture Documentation

The arc42 template developed by Gernot Starke and Peter Hruschka is a proven proposal
for pragmatically documenting software architectures [23]:

Structure of the arc42 Template
Figure 7.15 shows the “Structure of the arc42 Template” for organizing the subject areas
of a software architecture.

Based on such a structure in a wiki like Confluence, the implementation of a complex
software architecture can also be communicated across organizations.

The core of a software architecture documentation organized in this way consists
of the context boundary, the three views on it are represented by the building block
view, runtime view, and deployment view, and the cross-cutting concepts reflect the
overarching, general principles and approaches that are used uniformly in many parts of

263

.

4. solution strategy

How does the solution work? What are the fundamental approaches to
the solution?

11. risks

12. glossary

Important terms and their, compact easy to understand explanation for
all stakeholders.

Legend:

Requirement-related
information

Overarching (technical)
information

Structures of the solution (views)

Particularly important decisions

Arc42 template
Document software architecture pragmatically

1. Introduction and goals
Task definition, quality objectives, a summary of the architecture-
relevant requirements (especially the non-functional ones), stakeholders.

2. Boundary conditions
What guardrails constrain design decisions?

3. Context delimitation
In which professional and/or technical environment does the system
operate?

5. Building block view

The static structure of the system, the construction from implementation
parts.

6. Runtime view

Interaction of the building blocks at runtime, shown in exemplary
processes ("scenarios")

7. Distribution View

Deployment: On which hardware are the modules operated?

8. cross-sectional concepts and patterns

Recurring patterns and structures. Professional structures.
Cross-sectional, overarching concepts, usage or application
instructions for technologies. Often usable across projects/systems!

9. design decisions

Central, formative and important decisions.

10. quality scenarios

Quality tree as well as its concretization through scenarios.

Fig. 7.15 Structure of the arc42 Template. (Source: Sascha Block in reference to Hruschka/
Starke)

7.5 Pragmatic Software Architecture Documentation

264 Agile Tools: Toolbox for Product Owners ...

the architecture and follow the cross-cutting approach. This also includes concepts that
relate equally to several components and can be centrally managed. For example, archi-
tectural patterns and styles, rules for cross-functional communication with regard to the
agreement and use of specific technology stacks are included.

Particularly important decisions, including all design decisions and risks and techni-
cal debt, are documented separately and are thus permanently highly visible.

Introduction and objectives provide an easily understandable overview for every
stakeholder with a brief description of the requirements and the three to a maximum of
five most important quality goals for the software architecture. An overview with func-
tion and contact information for relevant stakeholders and their summarized expectations
regarding the software architecture provides a good starting point for both newcom-
ers and “old hands”. Constraints capture what restricts design and implementation,
including, for example, legal frameworks or defined IT security requirements. The
solution strategy summarizes fundamental architectural decisions and describes the
targeted solutions and is thus to be understood as a vision of the overall architecture.
This includes the definition of partial steps for implementation and all defined IT stra-
tegic decisions. The quality requirements make requirements measurable and tangible
through scenarios and defined key performance indicators (KPIs). Glossary and Wiki
are central tools for technical and software architecture-oriented knowledge manage-
ment.

7.5.7 ISO/IEC 25010—Quality of Software

Standards can also be understood as a tool for orientation; in particular, the guidelines
for the quality of software and software development anchored in ISO 25010 should be
taken into account within an agile organizational and prioritization model. As part of
the adaptable framework conditions with a focus on software quality, the specifications
of such quality guidelines correspond equally to the interests of the various stakeholder
groups: organizations in the role of software manufacturers or for deriving defined quali-
tative specifications, possible operators (Ops), licensees, and end users. In addition to
recommendations for the design of software, these guidelines also provide useful support
for contract design.

Dimensions of Software Quality Based on ISO/IEC 25010
The qualitative dimensions of software are defined in ISO/IEC 25010 [24]. The quality
dimensions complement each other and often lead to decisions that involve compromises
in favor of one and at the expense of another quality dimension. The following quality
dimensions are defined according to ISO 25010:

265

• Functionality
• Performance
• Security

• Compatibility
• Reliability
• Usability

• Maintainability
• Portability

Quality and effort are directly related: In general, software quality drives effort, i.e.,
increased quality increases effort. It makes sense for software manufacturers and clients
to agree on contractually clearly defined specifications for technical parameters such as
reaction times, system load, and other system-specific framework conditions that are fair
to both sides.

Figure 7.16 illustrates the “Dimensions of Software Quality Based on ISO/IEC
25010”.

7.6 DevOps Methods and DevOps Tools

DevOps combines development methodologies aimed at bridging the gap between
development (Development, abbreviated: Dev) and operations (short: Ops).

ISO / IEC 25010 - Software quality

Functional software:

SOFTWARE

• complete in terms of software functions
• functionally correct
• appropriate functionality

Easy maintenance:
• modular structure
• reusable components
• good analysis functions
• Easily modi�able
• extensive test options

E�cient performance:
• Time response
• Use resources e�ectively
• Save capacities

Perfect usability:
• optimal detectability
• easy to learn and adaptive

• Protection against incorrect
operation by the user

• good operability

• Aesthetic user interface
• easy access

Highest safety:
• Privacy
• Integrity
• not manipulable
• secure administration and

protected user accounts
• Authenticity

LEasy portability:
• good adaptivity
• easy to install
• easily replaceable

High compatibility:

• mature software quality
• Availability
• Fault tolerance
• Recoverability

• optimal co-existence with other software
• Interoperability

functional

reliable

intuitive
performant

secure

compatible

portable

easily
maintainable

8 Quality dimensions as criteria for software development
Reliable software:

Fig. 7.16 Dimensions of Software Quality Based on ISO/IEC 25010—Sascha Block

7.6 DevOps Methods and DevOps Tools

266 Agile Tools: Toolbox for Product Owners ...

DevOps as a Method Mix with Valuable Tools
The DevOps term is derived from the IT task areas Development and Operations.
DevOps is a set of methods aimed at reducing the time required for changes to a soft-
ware system or a digital IT solution from the initial change to the transfer to a defined
target system—usually the test environment, the staging system, and the live environ-
ment (production environment) while ensuring the highest quality.

In contrast to alternative IT management practices such as ITIL, a proven DevOps strat-
egy offers best practices and tools. ITIL, on the other hand, follows a strict approach and
uses, for example, inventoried artifacts such as “Configuration Items (CI)”, which can be
useful but also involves considerable administrative effort and not to be underestimated
complexity.

7.6.1 The DevOps Periodic Table

The Periodic Table of DevOps Tools provides a useful overview of tools that are relevant
for actively supporting agility and DevOps practices while taking into account the entire
lifecycle of software.

Figure 7.17 shows the infographic of the “Periodic Table of DevOps Tools” [25].
Over 18,000 votes for more than 400 products in 17 categories were evaluated in

determining the listed DevOps tools [25]. No matter at which stage of implementing a
DevOps strategy your organization is currently in, the tool provides a compact overview,
brief explanations, and above all, a structured classification of the respective DevOps
tools. Over time, it is also ideally suited to check to what extent new tools and technolo-
gies can improve your individual DevOps maturity level.

7.6.2 DevOps is More Than = Software Engineering + IT
Management

A DevOps strategy deals with the question of how to optimally and efficiently design the
software release process.

DevOps optimizes the software release process
DevOps as a paradigm in the form of a model, pattern, a set of methods with principles
that support communication and collaboration in efficient teams from the areas of soft-
ware development and software operations.

1. Development (software development) and Operations
2. Communication, collaboration, and teamwork between the software development

and software operations departments

267

Fi
g.

 7
.1

7
 P

er
io

di
c

Ta
bl

e
of

 D
ev

O
ps

7.6 DevOps Methods and DevOps Tools

268 Agile Tools: Toolbox for Product Owners ...

3. “Bridge the gap” between software development and operations, i.e., the operation
of the software

4. Software development methods
5. Deployment of software and code—Continuous software deployment enables stake-

holders to receive continuous feedback, quick responses regarding desired changes,
and the implementation of automated “delivery pipelines” to significantly reduce the
time and resources required for the overall software integration process.

6. Automated Deployment—A central task is the support and establishment of an auto-
mated deployment process in which the source code is transferred and integrated from
the development environment to the production systems via versioning tools.

7. Continuous Integration—As a practical approach, the task of continuous integration
defines seamless code integration into the live environment, thus ensuring the smooth
software integration of digital solutions into the direct operating environment of users.

8. Quality Assurance—Defined as a DevOps method, it combines the demands for
quality assurance with the operation and development of software and continuously
optimizes them.

How to become agile with DevOps and shape your organization innovatively:
With the DevOps approach, you effectively complement your agile software develop-
ment and agile project management with pragmatic tools and methodological extensions
within your company.

In combination with the use of personas, user stories, and prototyping, you thus design
digital solutions for your organization and all users as effectively as possible.

Aligning IT strategy with DevOps:
A successful DevOps anchoring is significantly influenced by the corporate strategy. To
implement DevOps effectively and sustainably, the following questions help in this con-
text:

• Which products, services, and processes depend on the DevOps area?
• To what extent does an employee devote themselves to activities defined for the

DevOps engineer within internal DevOps topics, and to what percentage is the
DevOps engineer available for external DevOps projects?

• How is DevOps anchored company-wide as an IT strategy and in the sense of a
jointly agreed mindset?

Defining internal and external DevOps KPIs:
To optimally and sustainably anchor DevOps in the company, it is essential to define
company-internal performance indicators in the form of DevOps-related KPIs.

269

Based on these KPIs, DevOps activities and the company-wide DevOps strategy can
then be represented internally and externally.

In doing so, it is important—in the spirit of the DevOps idea—to ensure that the suc-
cess assessment is transparent to all employees and customers. Only in this way can it be
ensured that continuous improvement is achievable and accessible to all.

“DevOps and release engineering are software engineering disciplines that deal with the
development, implementation, and process optimization to create high-quality software reli-
ably and predictably.”

7.6.3 BizDevOps as a Consequence for Agile Companies

Fitzgerald and Stol recognize the importance of DevOps for the close integration
between software development and its operational deployment, which must be continu-
ous, and call for a similar continuity between business strategy and its development, for
which the authors have coined the term BizDevOps [26]. Fitzgerald and Stol consider a
decoupling of IT and business strategies to be even more problematic, as the complex
and data-intensive systems being developed today must be reliable and resilient.

BizDevOps thus places further demands on an agile organizational form and calls for
an agile strategy with a strong focus on IT-strategic aspects, which is aligned with the
entire company.

Figure 7.18 illustrates the “BizDevOps model based on Fitzgerald/Stol”.
BizDevOps takes into account, as a consistently agile corporate strategy, all cross-

functional agile teams that enable innovations and customer-oriented solutions for your
company.

In this context, BizDevOps as an agile business strategy encompasses all areas and
processes of a company: from the production and distribution of products and services,
corporate strategy, resource planning and budgeting, to IT strategy and relationships with
customers and partners.

How does BizDevOps differ from DevOps?
While DevOps practices currently contribute to merging software development and
integration, the same continuity between business strategy and corporate development is
required. The abbreviation BizDev is deliberately based on the DevOps concept.

Why BizDezOps?
The separation of individual business areas is currently even more problematic, as reli-
ability and resilience play an increasingly important role in complex and data-intensive
systems.

7.6 DevOps Methods and DevOps Tools

270 Agile Tools: Toolbox for Product Owners ...

Above all, however, customer orientation plays a central role, and with it the desire on
the part of companies to meet these requirements using the latest technologies. With the
ongoing digitalization, new requirements arise in the form of new sales channels, cus-
tomer communication, or customer tracking for success evaluation.

The functionally limited technologies of company-owned frameworks and internal IT
solutions hardly meet these agile requirements anymore and require new tools and new
organizational forms such as BizDevOps teams. Such a BizDevOps team is responsible
for accompanying service processes, defining and monitoring relevant quality projects, and
supporting development and operation; these teams have a high degree of autonomy [27].

There are therefore considerable risks if, as a result of non-agile structures and due to
lengthy processes and sluggish reaction speeds, entire customer groups migrate to pro-
viders who have optimally adapted to technological change and are thus able to respond
adequately to customer requests. Innovation through digital technologies is only possible
and successful if the most suitable solution is always used and not the one that is merely
optimally aligned with internal company operating aspects.

BizDevOps: Continuous Loop of Innovation & Feedback

OperationsDevelopmentBusiness-Strategy

Continuous
Budgeting

Continuous
Planning

Continuous
Integration

Continuous
Deployment

Continuous Delivery

Continuous
Veri�cation / Testing

Continuous Security

Continuous Evolution

Continuous Use

Continuous Trust

Continuous
Runtime-Monitoring

BizDev DevOps

Continuous Improvement

Continuous Experimentation and Innovation

Fig. 7.18 BizDevOps model based on Fitzgerald/Stol. (Source: Sascha Block)

271

Higher motivation of employees through BizDevOps
Good employees and IT professionals want innovations and want to work with new tech-
nologies. This is because they know that this is also the best way to implement innova-
tions and customer-oriented solutions.

However, if a company restricts its employees so much with its IT strategy that only a
very small number of technologies are supported—which is usually due to a centrally
organized IT operation—real innovations and customer-oriented solutions become sim-
ply impossible. As a result, not only does employee motivation drop rapidly, but custom-
ers also turn away from such traditional companies.

This situation will continue to intensify in the future. It has long been foreseeable that
innovations will increasingly come from IT. With digital transformation, organizations
in all industries are thus challenged to introduce agile business strategies that follow the
orientation of a BizDevOps team.

Make cross-disciplinary decisions together
When cross-disciplinary teams are jointly responsible for project success, it ensures that
the requirements of all business areas are taken into account and enables customer-ori-
ented innovation across teams.

Risk assessment can be the responsibility of a specialized BizDevOps team, so that deci-
sions are neither one-sided nor made lightly. It is important that agile teams jointly take
responsibility for the development, operation, and optimization of applications.

Modernization of IT Strategy
To achieve this, modernization of the IT infrastructure is absolutely necessary: From
Continuous Deployment to technologies such as Docker, virtual machines, and orches-
tration tools like Kubernetes, to automated system tests and standardized version con-
trol. Realize user satisfaction for user groups through design thinking and prototyping,
resulting in comfortable usage. Guarantee quality and IT security based on continuous
and detailed logging, and align key performance indicators to operate robust systems and
effectively monitor them with connected processes and monitoring.

Cross-interface, multiple DevOps teams operate across applications, so technology deci-
sions are never made and managed independently. The cycle of system development,
system operation, and optimization is closed with regularly conducted experiments. The
company-wide IT landscape evolves towards flexibly interacting IT systems and micros-
ervices.

Strategy and Vision as an Integral Part
In contrast to traditional projects, agile teams always take on functional responsibility for
processes at the same time. This ensures that processes are ideally represented for both

7.6 DevOps Methods and DevOps Tools

272 Agile Tools: Toolbox for Product Owners ...

the organization and customers, even when existing applications are modernized or com-
pletely replaced.

Strategy and vision of an organization are an integral part of an organization-wide, agile
organizational model. To make strategy and vision visible and to clarify understanding in
all relevant perspectives, infographics and organization-specific dialogue images are suit-
able content media, which will be presented in the following section.

7.7 Content

Content is any material published and provided for a specific target audience.
Successful content is based on a fundamental content strategy. A content concept

defines clear goals and individual steps in the content creation process.
Within a large-scale agile framework, the content process is also a very important

component. Content significantly determines how your organization is perceived by the
public and customers. Nothing should be left to chance here.

Single Source Publishing for Countless Platforms and Media Formats
Your customers also expect that, even with a large number of content channels and
countless content formats used by your organization, recognizability and consistent,
unambiguous communication are guaranteed. Information is now expected around the
clock.

The only solution to this is a single-source publishing strategy, which must be an inte-
gral part of your agile framework. This involves considering the content process from
conception, production, to feedback evaluation. You also want to use content controlling
to find out which content is well received and which is less well received or not at all by
your personas.

Flawless, i.e., correct and error-free information and high quality should be the goal.
From the perspective of your personas, every relevant medium and platform should be
usable; this effectively serves the media channels that your personas also use.

Of course, you should choose the optimal format and platform for your organization.
Nevertheless, you should also communicate this selection transparently and compre-
hensibly. In any case, take into account the relevance of your feedback channels and,
of course, evaluate from the perspective of your customers which are the right content
channels.

273

7.7.1 Goals of a Content Strategy

The goal of every content strategy is to attractively address the respective target group
through clear and easily understandable messages.

From content aimed at potential interested parties, it must be immediately apparent
what the benefit of an offer is. Each message must therefore be prepared specifically for
the target group.

Concrete Content Goals
Each content goal is directly connected to the benefit for the company.

• Optimal information flow within the company
• Always available basic information, e.g., in the form of FAQs
• Current information (many pieces of information have an expiration date in the

form of a validity period)
• Efficiently reach target audience
• Increase expert knowledge and position as an expert
• Increase brand awareness and reach (Branding)
• Increase trust
• Improve user experience

7.7.2 Requirements for Content

To achieve these content goals, the following requirements for corresponding content
result:

• We understand content consumers as customers and create content to increase
employee satisfaction.

 Speaking of customer satisfaction in the context of content creation helps us to have
external addressees in focus right from the start. Such external content addressees
include, for example, partners, suppliers, or applicants, whom we directly focus on at
the start of our content strategy.

• Content is provided regularly, thus continuously serving the target group
• Lower barriers to participation
• Obtain feedback and set incentives for high-quality feedback
• Remain unique and memorable
• Continuously deliver quality and be a reliable source of information
• Challenge: identify concrete wishes and determine exact needs (the more precisely we

know the demand, the better the content will be)

7.7 Content

274 Agile Tools: Toolbox for Product Owners ...

Conclusion: Good content is by no means cheap, but ultimately what counts is that good
content is sustainably valuable for every company.

Questions in Implementing a Content Strategy
• Are you already involved in the creation of professional content with relevant ben-

efits?
• Does your company have a solid content strategy?
• Do you practice success monitoring and thus maintain full control over which existing

content really convinces?
• Do you use a topic plan for creating new content?

7.7.3 Content Controlling

How can you determine if the provided content is successful? The following key perfor-
mance indicators have become established for this purpose:

Measurable KPIs for content:
• Conversion rate
• Contact initiation per channel
• Social media response
• Followers (also differentiated in new and lost followers)
• Visibility (internal/external)
• Bounce rate
• User feedback
• Average visit duration
• Number of user sessions
• Exit rates

7.7.4 Content Process and Coordination

Content must be cross-departmental, even according to old rules. All teams actively and
regularly contribute to the content strategy. For this purpose, appropriate resources are
available, which the content team can access as the product owner of the content strategy.

The content manager ensures qualitative and quantitative goal achievement through
regular success and deviation controls.

Employees not involved in the project can contribute to the content at any time by
submitting topic suggestions or concepts. The topic and action planning is guided by
overarching corporate goals.

275

5. Content Resources
• Content strategy manager (person-hours)
• Resources of specialist departments (person-hours)
• Budget (e.g., for image materials, maintenance and development of content tools,

advertising, and similar for creation and distribution)

7.7.5 Content Guidelines

A content guideline defines your content strategy. Such a guideline is particularly ori-
ented towards the personas. And the personas, as well as the culture of your organization,
define the optimal approach for this.

Do you want a casual connection with your customers and use informal language, or
is a more distant and very serious approach the better choice? Such and similar decisions
are made for the content guidelines.

7.7.6 Design System

A design system is usually a combination of (living) style guides, component or pat-
tern libraries, and general guidelines, e.g., for the use of elements. Ideally, it serves as a
“single source of truth” to centrally control the design of various platforms and channels
(e.g., web, print, app). This ensures that all aspects of design guidelines, such as a corpo-
rate design, have the same consistency and quality.

Creating a design system pays off if the project is designed to grow and scale. It also
facilitates collaboration and the onboarding of new team members.

Why Style Guides?
A style guide is a general description of the design principles. Style guides have
existed longer than the web; they have been (and still are) used to define the appear-
ance of print materials such as brochures, catalogs, stationery, logos, and packaging. In
this context, one often reads about Corporate Design (CD) or the even broader Corpo-
rate Image (CI). The corporate image not only specifies visual aspects but also includes
aspects of text and the overall big picture of how one presents oneself to the outside
world—the image one wants to convey to the public.

A style guide describes, among other things:

• Typography (specifications for fonts, typefaces, and sizes)
• Colors (used palettes)
• (Design) grids (grid system)
• Imagery, icons

7.7 Content

276 Agile Tools: Toolbox for Product Owners ...

In general terms, this guideline defines what the face of the company or product looks
like. This ensures consistent design and recognition. This is a core aspect of marketing
efforts and also benefits users, as they can better navigate thanks to this consistency.

It is always important to adhere to the common UI conventions for buttons, check-
boxes, etc. For example, on websites, the logo should always be in the top left corner,
followed by the menu. Red should be used as a warning color, while green should be
used as a signal color for OK. Buttons should look like buttons, and links should look
like links (preferably blue and underlined).

What can such a pattern library look like?
A pattern library is a collection of patterns, i.e., templates or models. These patterns
describe, for example, how interactive elements on the website work. For instance,
what an expandable element (accordion) looks like that displays additional information
when clicked/tapped. This includes describing…

• when such an element is used,
• what it looks like,
• how the icon is designed that triggers the interaction,
• how the interaction works exactly,
• how the animation proceeds.

In most cases, the (HTML or script) code is also included in the pattern library to imple-
ment this element. This facilitates work, ensures consistency, and prevents errors.

The design system of the Otto Group, for example, demonstrates such a modular sys-
tem used to develop the frontends of digital products at OTTO. As the illustration shows,
such a design system consists of numerous fragments, components, and modules [28].

Figure 7.19 shows the “Otto Group Design System with an extensive pattern library”.
All patterns serve as templates and follow a uniform, semantic naming scheme.

Semantic naming means that the name is not based on the appearance of the pattern, but
on its meaning in use. Examples of semantic names are Primary Button, Slider, Copy,
or Headline. Descriptive names like shiny button, large button, red headline should be
avoided. Names that refer to the context of the pattern, such as Button Footer or Head-
line Navigation, are also unsuitable.

Why does a company like Otto expose its design system—accessible to everyone—
publicly on the internet?
This is done so that service providers and third parties, but above all, every in-house
employee has uncomplicated access to—not trustworthy—but relevant information
for the corporate identity. In other words: Why shouldn’t you also use such proven

277

approaches for your organization and benefit from simplified handling with clear trans-
parency in the future?

7.7.7 Infographics

Infographics are visual representations of information and data. By combining text,
images, diagrams, and in video-based channels also videos, infographics enable easy
access to information.

Fig. 7.19 Otto Group Design System with an extensive pattern library

7.7 Content

278 Agile Tools: Toolbox for Product Owners ...

Design complex information visually easy to understand
Infographics are suitable for presenting complex problems in an easily understand-
able and plausible way and encourage users to engage with more complex information
through their entertaining and stimulating presentation.

With the content form of storytelling, a narrative method in which information is enter-
tainingly processed, and which integrates graphics and images in digital media, info-
graphics have gained in popularity. This is mainly due to the numerous social media
platforms and website-based content platforms that intensively use these complex
graphic media to generate attention among their target groups.

A good infographic conveys a central statement, which is reflected in a concise head-
line. In addition, a good infographic succeeds in presenting a complex issue or multiple
pieces of information, i.e., data, in a visually appealing and concise manner.

Infographics should be part of every content strategy!
You should therefore include infographics directly in your content strategy and prepare
the infographics in such a way that they precisely meet the information needs of your
persona.

The actual purpose of an infographic is to convey information and a message to the
viewer.

Four quality characteristics for infographics
Figure 7.20 illustrates quality characteristics as “dimensions of an infographic”.

1. Design—The design should be convincing, with the chosen colors and fonts matching
the theme and the graphic representation, and good readability is essential.

2. Data—The data contained must be relevant, current, and accurate.
3. Story—The story an infographic tells should be entertaining, exciting, or in some

way particularly appealing, not for just anyone, but for your target audience. A prob-
lem, statement, message, or solution can be the focus.

4. Shareability—An infographic also achieves a further degree of dissemination
through its metadata and, of course, the way in which and where you use and virally
spread it.

A good example of an infographic, with direct context reference, is the DevOps Periodic
Table presented in Sect. 7.6.2. Both as a pure graphic and as an interactive representation
on the website, it meets all the requirements of a good infographic.

279

7.7.8 Dialogue Images

Dialogue images visualize complex topics in an illustrative way, similar to infographics.
However, unlike infographics, dialogue images pursue a completely different goal: they
aim to enable a dialogue between viewers based on their graphical representation.

Figure 7.21 illustrates the use of a “dialogue image for constructive exchange during a
staff meeting”.

The Design Process as Dialogue
When a dialogue image is developed during a joint workshop, it emerges step by step as
a result of an intensive, topic-focused, and creative design process. In this process, one
participant can take on the role of a moderator, while the participants are supported by an
illustrator in working together with project managers, executives, and other stakeholders
on the prototype sketch for the later dialogue image.

PERFECT
INFOGRAPHIC

DATA

DESIGN STORY

SHAREABILITY

PROBLEM-ORIENTED
INCLUDES SOLUTION
EXCITING
EXTRAORDINARY
INNOVATIVE
...

MEDIA SUITABILITY SOCIAL
FACTOR VIRAL FACTORS
SEO
LOCAL RELATIONSHIP or TARGET
SPECIFIC

CORRECT DATA
VALUABLE INFORMATION
CURRENT DATA
DATA IN CONTEXT
...

APPEALING
DESIGN
COLORS FONTS
LEGIBILITY
...

Fig. 7.20 Dimensions of an infographic

7.7 Content

280 Agile Tools: Toolbox for Product Owners ...

Such workshops demonstrate that discussions about what should be illustrated and to
what extent contribute significantly to creating a common understanding of an organiza-
tion’s vision and strategy. Dialogue images not only support understanding of the proto-
typical approach but are also ideally suited to support agile transformation.

By the end of an eight-hour workshop, a complex prototype of a dialogue image in
sketch form can be the creative result. Based on this specification, professionals for vis-
ual design then develop the actual dialogue image and, if desired, interactive versions of
it.

In the interactive form of a dialogue image, content users can interact with the dia-
logue image via click points to playfully work out, for example, technical backgrounds
and fact-based information on individual focus topics.

Fig. 7.21 Dialogue image for constructive exchange during a staff meeting. (Source: Dialogbild
GmbH)

281

Conveying Vision & Goals of Your Organization Visually
They are an effective tool for conveying knowledge and illustrating relationships. They
always provide orientation for the viewer.

Dialogue images are particularly well suited for graphically designing your organization
to playfully and entertainingly convey the vision and goals of your organization.

Figure 7.22 illustrates the use of “dialogue images for active customer communica-
tion”.

7.8 Monitoring & Controlling

As already clarified in the previous sections on Epics or within the framework of soft-
ware architecture, controlling and monitoring based on defined metrics is necessary to
measure and continuously monitor set goals.

Only based on identified quality indicators is it possible to determine the fundamental
causes and facts of existing problems, and in the course of digital transformation, this
information must be mapped in metrics in an organization’s IT systems.

Fig. 7.22 Dialogue images for active customer communication. (Source: Dialogbild GmbH)

7.8 Monitoring & Controlling

282 Agile Tools: Toolbox for Product Owners ...

Discrete and Continuous Indicators
Quality indicators can be meaningfully classified into Discrete Indicators and Continu-
ous Indicators.

Continuous indicators are used for factors that can be measured on an infinitely extend-
able scale or continuously. Typically, these are units such as weight, time, and money.
Their measurement is determined and carried out repeatedly in advance.

Discrete indicators define characteristics that have a descriptive nature and can be
well represented by personas in an agile context, for example.

Discrete indicators regularly have a certain frequency and can be in a relation (e.g.,
the number of orders of a defined persona classification). These can be assigned to artifi-
cially determined evaluation scales (satisfaction in relation to a specific service in quality
levels such as excellent, satisfactory, unsatisfactory, etc.).

Such indicators can be repeatedly observed in predetermined periods and linked to
conditions. Because discrete indicators sometimes pretend to be conjunctive with respect
to observed properties and frequencies, percentage KPIs are recommended [29, page
970]. For simplification, conjunctive continuous indicators can also be converted into
discrete indicators.

Example The delivery time is converted into the categories “on time” and “with delay,”
which makes the informative value clearer than if such a KPI were expressed in time
units like days or minutes.

If customer satisfaction is to be investigated, an evaluation scale with a discrete char-
acter is always used. The direct advantage: observing and recording discrete data is gen-
erally easier. Disadvantages of discrete analysis are the requirement of a higher number
of observations to obtain meaningful information. As a statistical guideline, a sample is
considered reliably measured if at least 200 indicators can be reliably measured. For the
precise definition of KPIs, further literature is referred to at this point; it is important to
understand the indispensable necessity and significance of KPIs.

7.8.1 Key Performance Indicators (KPI)

Thus, it is also clear that continuous controlling and monitoring for the management and
supervision of defined corporate goals are indispensable. Only on continuous data collec-
tion and measurement can you effectively assess whether strategic goals—also in view
of competition—need to be adjusted.

Success indicators with the Business Motivation Model
The Business Motivation Model is suitable for defining corresponding success indica-
tors. The Business Motivation Model is closely related to the motivation and business
objectives of the Zachman Framework for Enterprise Architectures [29].

283

The vision of a corporate strategy is transformed into reality through quantifiable
goals that are increased through controlling.

Defining KPI with the Balanced Scorecard method
Ganesan and Paturi suggest defining KPI based on Business Motivation Models and the
Balanced Scorecard approach [31]. The defined KPIs must then be assigned to the deci-
sive points within the process hierarchy at different organizational levels so that monitor-
ing these KPIs becomes possible by multiple function carriers. The success factors are
measured, analyzed, and evaluated at regular intervals through concrete projects within
the corporate strategy, with specific KPIs. The excellent process knowledge of our as-is
analysis mentioned at the beginning supports this (see Sect. “Excellent understanding of
business processes”).

7.8.2 Monitoring

Buschle, Johnson, and Shahzad recommend a specially designed analysis tool for mon-
itoring enterprise architectures. While a large number of Enterprise Architecture Tools
focus on documenting enterprise architectures, the authors present tool-based analysis
functions for properties such as Business Fit, Security, and Interoperability. The article
emphasizes that it is a real challenge to develop such a tool and adapt it to company-
specific requirements [31].

Using proven methods such as Monte Carlo simulation, typical problems like server
monitoring can be solved by observing certain object-oriented attributes. The introduced
tool offers a Class Modeler and an Object Modeler as two separate tools for monitoring
framework objects, their attributes, relations, and KPIs. In a second step, concrete analy-
sis and monitoring scenarios can be implemented using the Object Modeler [32].

7.8.3 Strategies and Approaches to Digital Transformation

In addition to agile process models, other strategies and approaches are effective in
successfully shaping digital transformation in companies. The following strategic
approaches have proven particularly successful:

Forming cooperations and alliances
The economic dynamics on a rapidly changing digital playing field and the increasing
competitive pressure in the market are pushing companies to cooperate to a much greater
extent than before, even among strategic competitors. Often, a strategic goal can only be
mastered due to its complexity if companies jointly lead projects to success in a coopera-
tive network [33, Chapter 1, Page 6].

7.8 Monitoring & Controlling

284 Agile Tools: Toolbox for Product Owners ...

An example of such a partnership alliance is the cooperation between Audi, BMW,
and Daimler, who jointly acquired Nokia’s map and navigation service Here for 2.8 bil-
lion EUR [34]. The acquired digital assets in the form of highly precise digital road maps
are a crucial technological component for autonomous driving. Building this data foun-
dation alone would have required a high individual investment for each company without
really being able to differentiate themselves in the competition. However, the acquisition
of Here, which is considered one of the leading software companies for digital naviga-
tion maps and controls the world’s largest map database, is also a strategic move against
digital players like Google and Amazon and includes, above all, valuable access to new
customers, as 80% of all cars driving in Europe and North America with integrated navi-
gation systems use Here maps. This gives the automakers direct access to a petabyte-
sized database that can store billions of events per week [35].

Mastering large amounts of data
Digital transformation is causing the amount of digital data to be processed to increase
rapidly: Cloud computing, mobile internet, social media, digital sensors, machine net-
working, and Industry 4.0 are the drivers for data growth in companies according to a
Bitkom study [36]. Google already exceeded a data volume of 24 petabytes during the
2009 fiscal year. The digital technology unit has 15 zeros. Today, the Californians pro-
cess almost the same amount of data—daily [37]. For comparison: All books ever writ-
ten together amount to hardly more than 50 petabytes.

Mastering large amounts of data is a real challenge for companies, both in terms of tech-
nology and the requirement to process and evaluate these vast amounts of data in a tar-
geted manner.

Using strategic big data analyses
Big data analyses are undisputedly one of the core competencies for digital excellence.
While digital players have long since firmly established the necessary expertise in their
companies, managing even significantly smaller data volumes poses a serious threat to
most medium-sized companies.

Strategic Goals of Big Data Analysis
In a study of 706 surveyed medium-sized companies with 100 employees or more in var-
ious industries, the goals of “optimizing the organization” and “better customer target-
ing” ranked equally at the top of the priority list for data analysis [38]. All relevant goals
for big data analysis within a corporate strategy, with their percentage of mentions:

1. Optimization of organization and processes—86%
2. Improvement of customer contact/customer targeting—86%
3. Better decision-making options—84%
4. Faster decision-making—78%

285

5. Development of innovative business models—73%
6. Better forecasts of future trends—69%
7. More targeted product design/product targeting—62%
8. More individual/targeted marketing—56%
9. Minimization of product launch time—56%

7.8.4 The Optimal Architecture for the Digital Organization

Establishing the optimal software architecture for a company is not an easy task, but a
constant challenge for all agile teams and decision-makers in the company. The use of
tools can be helpful, but a clear and understandable architecture documentation is indis-
pensable.

Enterprise Architecture Management (EAM) Tools for Planning Support
Both for the as-is analysis of the current IT landscape and for defining the target IT land-
scape as a target image of a digitization strategy, the use of EAM tools is an established
method to methodically lead IT projects to success.

Software Cartography and IT Landscape Plans Provide an Overview
Software cartography and graphical representations and tools for organizing IT land-
scape plans, such as a functional, typical, or technical construction graphic, provide all
participants with an easily understandable overview by hiding unimportant details and
focusing on the relevant decision factors [39, page 176].

7.9 Methods & Tools for Agile Prioritization

In agile software development, prioritization is a crucial process in managing require-
ments, as poor prioritization of requirements can drastically increase development costs
and even lead to production failures.

Agile prioritization is challenging, especially as more teams and stakeholders are
involved, and requires at least a well-organized and possibly somewhat more formal pro-
cess across the board, as changes in the priority list can lead to significant rework.

Furthermore, requirement prioritization in agile software development is a challeng-
ing task, as it is highly volatile. Neglecting critical requirements during prioritization
leads to numerous problems such as poor product quality and dissatisfied stakeholders.
In this section, we therefore present some techniques for agile prioritization of require-
ments.

7.9 Methods & Tools for Agile Prioritization

286 Agile Tools: Toolbox for Product Owners ...

7.9.1 Agile requirement prioritization with the Feature Graph

The Feature Graph offers a simple method for Product Owners to prioritize requirements
in an agile manner.

Typically, stories with defined process descriptions are the starting point for an itera-
tion. The essential selection criterion for which story the actual software development
starts should be a benefit assessment of the respective features for the system and thus
the user.

Requirement prioritization facilitates deciding whether the level of detail of the
stories is already suitable for implementation and whether extensive stories need to
be divided into smaller chapters. The first estimation round already provides concrete
results for this: The developers estimate which artifacts can be implemented the fastest.
This creates an order from the fastest realizable features to the most complex story.

In the second step, a dependency graph can be derived from this basic information:
“Which features benefit in terms of effort from the existence of other defined features?”

Table 7.6 “Example table for a Feature Graph” illustrates the relationship of functions
in mutual dependency on each other.

Visualization
Each outgoing arrow connection adds a score point in column B for a positive effect
on another feature set. Each incoming arrow connection adds a score point in column C
for an existing dependency on another feature set. Column D calculates the difference
of the positive impacts of a feature set reduced by the number of existing dependencies
on other feature sets. In a second step, the dependency graph can then be refined in a
weighted variant by additional evaluation dimensions. Meaningful evaluation dimen-
sions include, for example, the evaluation of easier implementation, improved usability,
increased security, etc. Such a dependency graph visualizes the relationship in an easily
understandable way for all participants [40, pages 47/48].

7.9.2 Agile Prioritization With the Single Point Query

In software product development, there is always a need to quickly and easily make an
assessment of a group of people on a specific topic transparent. The question asked can
relate to both the factual level and the relationship level. Single point queries can be rep-
resented on a scale, in a coordinate system, or through an evaluation table. Above all,
a decision-making process with the single point query can also be quickly, easily, and
conveniently carried out using modern collaboration tools or in a wiki. Table 7.7 “Appli-
cation examples for single point queries” illustrates how effectively targeted questioning
techniques can be used for current state analysis in teams.

287

The results of single point queries should be reflected upon together, and negative
evaluations should be treated with appreciation and sovereignty. Then, the regular imple-
mentation of single point queries can be perceived as appreciative and is suitable for pos-
itively influencing a pleasant working atmosphere in the company.

7.9.3 Agile Prioritization with the Multi-point Query

Limited resources require prioritization with the decision of which projects to tackle
and in what order. To find concrete results in such regularly recurring decisions, the
multi-point query offers a methodology for moderating decision-making rounds [41,
pages 144–147], which also ideally reflects the agile mindset.

Table 7.6 Example table for a Feature Graph. (Source: Sascha Block—Own illustration)

Step 1: Step 2:
A B C D
Feature Positive impact for feature

set no.
Dependent on feature no. Sum of positive feature

impact minus feature
dependencies

Set 1 2,3,5,6,7 : ∑ = 5 none : ∑ = 0 5 − 0 = 5 (Highest prior-
ity)

Set 2 1,3,4,7 : ∑ = 4 2 : ∑ = 1 4 − 2 = 2

Set 3 2,4,6 : ∑ = 3 5,6 : ∑ = 2 3 − 2 = 1

Set 4 1,3,4 : ∑ = 3 2,3,6 : ∑ = 3 3 − 3 = 0

Set 5 3,4 : ∑ = 2 1,3,4 : ∑ = 3 2 − 3 = −1

Set 6 1,4 : ∑ = 1 2,3,4,7 : ∑ = 4 2 − 4 = −2

Set 7 none : ∑ = 0 2,3,6 : ∑ = 3 0 − 3 = −3 (Lowest prior-
ity)

Table 7.7 Application examples for single point queries. (Source: Own representation based on
Stach)

Application examples for single point queries:

Factual level: How well informed do you feel about topic X?
Presentation option: Scale from “not at all” to “comprehensive”

Relationship level: How do you rate the mood in your team?
Presentation option: Scale with a smiling smiley to a sad smiley
How great is the understanding for each other in the team?
Presentation option: Evaluation table in five units from ++ to −−

7.9 Methods & Tools for Agile Prioritization

288 Agile Tools: Toolbox for Product Owners ...

The multi-point query is an approach to majority-capable decision-making and
includes elements of estimation methods, as prioritization is based on experience and gut
feeling rather than exclusively on hard facts.

What criteria should be used for prioritization?
In order to make well-founded decisions about prioritization, it makes sense to base them
on a well-thought-out moderation concept that equally reflects all decision dimensions,
so that no essential aspect of decision-making is lost.

Table 7.8 provides suggestions for important guiding questions for moderated prioritiza-
tion.

With the help of a point allocation procedure, a majority-supported prioritization deci-
sion is now brought about—perfectly suited to an agility-oriented, democratic majority
formation, reflecting and evaluating the alternatives in the community. Table 7.9 “Rules
for Conducting the Multi-point Query” is a valuable guide on how to effectively apply
this survey technique.

The multi-point query is suitable for decision-making as well as for agile prioritiza-
tion of ideas, aspects, and solution approaches.

7.9.4 Agile Prioritization With Liquid Democracy

Liquid Democracy is a modern approach that optimally supports employee participa-
tion in companies or customer involvement in product development. Liquid Democracy
reflects the wealth of experience of employees or customers by actively involving them
in the decision-making process through received feedback.

What is Liquid Feedback?
Liquid Feedback is a freely available open source software that supports the Liquid
Democracy principle for opinion formation and decision-making.

Table 7.8 Guiding questions for moderated prioritization. (Source: Own representation based on
Stach)

Guiding questions for moderated prioritization:

Which topics are …
 … strategically important?
 … the fastest to implement?
 … the most cost-effective to realize?
 … the most effective in terms of customers?
 … the most innovative?
 … suitable for clearly distinguishing oneself from competitors?

289

How does Liquid Feedback work?
The basic idea of Liquid Feedback is an openly designed grassroots democracy. To opti-
mally involve all participants in important decision-making processes, the Liquid Feed-
back strategy provides for four stages [42]:

1. New ideas and proposals: In this liquid phase, a proposal must reach a certain quota
in order to enter the voting process.

2. Current discussion: Discuss ideas, proposed changes, and improvements to the orig-
inal quorum from Liquid Phase 1.

3. Frozen Liquids: If the necessary quota is reached through the discussion, there will
be no further changes to the liquid proposal.

4. Liquid Voting: In the final liquid process, voting takes place. A minimum number of
participating employees is required for valid liquid voting.

With the Liquid Democracy methodology, it is specifically avoided that decision-making
processes are dominated by a few decision-makers or solitary decisions from a higher
hierarchical level. This can increase the quality of decisions in companies, at least to
the extent that liquid surveys at least contribute to sincerely appreciating the opinions of
employees and customers.

In addition, Liquid Feedback sends a positive signal towards a modern-oriented soci-
etal or customer-oriented change in the company.

7.9.5 Timeboxing

The timeboxing approach, with fixed time intervals, enables the scheduling and project
planning from an organizational perspective in the simplest way. The project team is free
to choose their internal iteration cycle, for example, on a weekly basis, and for project
management, the fixed cycles simplify project planning with regard to release dates.

Table 7.9 Rules for conducting the multi-point query. (Source: Own representation based on
Stach)

Rules for conducting the multi-point query:

• In a moderated process, all alternatives are collectively reflected upon.
• The formulated prioritization question must correspond to the goal of the moderation.
• The number of points to be awarded per participant is approximately half the number of alterna-

tives, not the number of solutions to be implemented.
• The moderator takes over the evaluation and adjusts the result by cumulative rounding up or

down.
• A maximum of two points may be awarded per option.
• The prioritization question is formulated and visualized according to the focus.

7.9 Methods & Tools for Agile Prioritization

290 Agile Tools: Toolbox for Product Owners ...

Figure 7.23 illustrates the method of “Timeboxing for release planning with fixed
time intervals”.

Table 7.10 “Timeboxing—Rules, Advantages, Disadvantages, and Risks” lists the
respective rules, advantages, and disadvantages of the timeboxing method.

Pr
oj

ec
t p

ro
gr

es
s

Time

Timeboxing

Phase 1:Iteration 1

Increasing
degree of complexity

with increasing
software maturity

Iteration rounds with identical and �xed time intervals:

Release 1

Release date

Release 2

Release date

Phase 2:Iteration 2 Phase 3:Iteration 1 Phase 4:Iteration 2 Phase 4:Iteration 3

Fig. 7.23 Timeboxing for release planning with fixed time intervals

Table 7.10 Timeboxing—Rules, Advantages, Disadvantages, and Risks. (Source: Own represen-
tation—Sascha Block)

Rules: • Fixed release dates
• Free choice of iteration cycle
• Variable scope of functions
• If the complete scope of functions cannot be maintained, a func-

tioning release will be delivered in any case

Advantages: • Simplified release planning
• A good prioritization allows for timely delivery with a meaning-

ful scope of functions
• Easier conclusions about team productivity possible
• Over time, more confidence in performance and time estimation
• Fixed cycle has a positive effect on the relationship with contrac-

tual partners

Disadvantages and Risks: • Deadline adherence over quality?

291

7.9.6 Feature-Driven Development

In the concept of Feature-Driven Development (FDD), no fixed time intervals for itera-
tions are agreed upon, but the priority lies in the completion of defined work packages.
The initial work package defines a rough, technical model of the software application.

Figure 7.24 “Feature Boxing” illustrates the functional principle of Feature-Driven
Development. The release planning with variable time intervals of maximum duration
focuses on software functionalities.

Table 7.11 “Feature Boxing—Rules, Advantages, Disadvantages, and Risks” lists the
respective rules, advantages, and disadvantages of the Feature Boxing method.

Pr
oj

ec
t p

ro
gr

es
s

Time

Feature Boxing

Phase 2: Feature Set 2

Phase 3: Feature Set 3Phase 1: Feature Set 2

Increasing
degree of complexity

with increasing
software maturity

Feature-driven agile time management:

Release 1

Release date

Fig. 7.24 Feature Boxing—Methodology of Feature-Driven Development

7.9 Methods & Tools for Agile Prioritization

292 Agile Tools: Toolbox for Product Owners ...

References

 1. Beedle, et al. Manifesto for Agile Software Development. http://agilemanifesto.org/. Accessed
24 Febr 2022.

 2. Mordi, A., & Schoop, M. (2020). Making IT tangible-creating a definition of agile mindset.
ECIS.

 3. Scheller, T. (2017). Auf dem Weg zur agilen Organisation: Wie Sie Ihr Unternehmen dynamis-
cher, flexibler und leistungsfähiger gestalten. Vahlen.

 4. Beck, K. (2000). Extreme programming explained: Embrace change. Addison-Wesley Profes-
sional.

 5. Cohn, M. (2004). User stories applied: For agile software development. Addison-Wesley Pro-
fessional.

 6. Harbers, M., Detweiler, C., & Neerincx, M. A. (2015). Embedding stakeholder values in the
requirements engineering process. In International working conference on requirements engi-
neering: Foundation for software quality (pp. 318–332). Springer.

 7. IEEE Standard Association, et al. (1998). IEEE recommended practice for software require-
ments specifications. IEEE Std-830.

 8. Lucassen, G., et al. (2016). Improving agile requirements: The quality user story framework
and tool. Requirements Engineering, 21(3), 383–403.

 9. Sedano, T., Ralph, P., & Péraire, C. (2019). The product backlog. In 2019 IEEE/ACM 41st
international conference on software engineering (ICSE) (pp. 200–211). IEEE.

 10. Lomas, C., Burke, M., & Page, C. L. (2008). Collaboration tools. Educause Learning Initia-
tive, 2, 1–11).

 11. Ferles, K., Stephens, J., & Dillig, I. (2020). Verifying correct usage of context-free API proto-
cols (extended version). arXiv preprint arXiv:2010.09652.

 12. Open API Initiative. Linux foundation. https://www.openapis.org/. Accessed 3 Mar 2022.

Table 7.11 Feature Boxing—Rules, Advantages, Disadvantages, and Risks. (Source: Own repre-
sentation, Sascha Block)

Rules: • No fixed time intervals, only maximum time specifications
• Planning for a maximum of 6 months
• Initial planning never takes longer than 2 weeks
• FDD-defined requirements are fine-grained and thus always

evaluable in terms of the associated effort
• Features are grouped into feature groups that contain technically

meaningful units for delivery to users
• The project manager only determines the calendar month of the

completion of a feature group

Advantages: • At the monthly level, it is always precisely recognizable whether
an agile team is on schedule, over-fulfilled, or behind schedule

• There are never any compromises at the expense of the function-
ality defined in advance for the delivery dates

Disadvantages and Risks: • If functions are more time-consuming to implement than planned,
the delivery date will be postponed

http://agilemanifesto.org/
https://www.openapis.org/

293

 13. GitHub zur OpenAPI Spezifikation. Werkzeuge zur Anwendung der OpenAPI-Spezifika-
tion. https://github.com/OAI/OpenAPI-Specification/blob/main/IMPLEMENTATIONS.md.
Accessed 3 Mar 2022.

 14. OpenApi 3.1 JSON Schema. https://github.com/OAI/OpenAPI-Specification/blob/main/sche-
mas/v3.1/schema.json. Accessed 3 Mar 2022.

 15. OpenApi 3.1 YAML Schema. https://github.com/OAI/OpenAPI-Specification/blob/main/sche-
mas/v3.1/schema.yaml. Accessed 3 Mar 2022.

 16. Hardt, D., et al. (Oktober 2012). The OAuth 2.0 authorization framework. Internet Engineering
Task Force (IETF). https://datatracker.ietf.org/doc/html/rfc6749. Accessed 8 Mar 2022.

 17. Hedberg, R., et al. (September Oktober 2021). OpenID Connect Federation 1.0—draft 17.
Internet Engineering Task Force (IETF). https://openid.net/specs/openid-connect-federa-
tion-1_0.html#rfc.section.5.1. Accessed 8 Mar 2022.

 18. Sinha, Satyajit—IOT Analytics. State of IoT 2021: Number of connected IoT devices growing
9 % to 12.3 billion globally, cellular IoT now surpassing 2 billion. https://iot-analytics.com/
number-connected-iot-devices/. Accessed 8 Mar 2022.

 19. Bass, L., Clements, P., & Kazman, R. (2012). Software architecture in practice (3rd edn.).
Addison-Wesley Professional.

 20. Zörner, S. (2012). Softwarearchitekturen dokumentieren und kommunizieren (1st edn.). Carl
Hanser Verlag.

 21. Cunningham, W. (1992). The WyCash portfolio management system. ACM SIGPLAN OOPS
Messenger, 4(2), 29–30.

 22. Abad, Z. S. H., & Ruhe, G. (2015). Using real options to manage technical debt in require-
ments engineering. In 2015 IEEE 23rd international requirements engineering conference
(RE) (pp. 230–235). IEEE.

 23. Starke, G., & Hruschka, P. Das arc42 Template für Architekturentscheidungen in Softwarepro-
jekten. https://www.arc42.de/overview/. Accessed 10 Mar 2022.

 24. [URL:ISO/IEC 25010:2011]. Leitfaden zur der ISO 25010 “Software product Quality
Requirements and Evaluation (SQuaRE)”. https://www.iso.org/standard/35733.html. Accessed
3 Mar 2022.

 25. Digital.ai Software Inc. Periodic table of DevOps tools. https://digital.ai/periodic-table-of-
devops-tools/. Accessed 10 Mar 2022.

 26. Fitzgerald, B., & Stol, K.-J. (2017). Continuous software engineering: A roadmap and agenda.
Journal of Systems and Software, 123(Januar), 176–189.

 27. Drews, P., et al. (2017). Bimodal enterprise architecture management: The emergence of a
New EAM function for a BizDevOps-based fast IT. In 2017 IEEE 21st international enter-
prise distributed object computing workshop (EDOCW) (pp. 57–64). IEEE.

 28. Otto Group. Design System der Otto Group. https://www.otto.de/design-system. Accessed 14
Apr 2022.

 29. Mikušová, M., & Janečková, V. (2010). Developing and implementing successful key perfor-
mance indicators. World Academy of Science, Engineering and Technology, 42(6), 969–981.

 30. Zachman, J. A. (2003). The zachman framework for enterprise architecture. Primer for enter-
prise engineering and manufacturing. Zachman International.

 31. Ganesan, E., & Paturi, R. 2009. Key performance indicators framework-a method to track
business objectives, link business strategy to processes and detail importance of key perfor-
mance indicators in enterprise business architecture. In: Americas Conference on Information
Systems. 2009.

 32. Buschle, M., Johnson, P., & Shahzad, K. (2013). The enterprise architecture analysis tool–sup-
port for the predictive, probabilistic architecture modeling framework. In 19th Americas con-

References

https://github.com/OAI/OpenAPI-Specification/blob/main/IMPLEMENTATIONS.md
https://github.com/OAI/OpenAPI-Specification/blob/main/schemas/v3.1/schema.json
https://github.com/OAI/OpenAPI-Specification/blob/main/schemas/v3.1/schema.json
https://github.com/OAI/OpenAPI-Specification/blob/main/schemas/v3.1/schema.yaml
https://github.com/OAI/OpenAPI-Specification/blob/main/schemas/v3.1/schema.yaml
https://datatracker.ietf.org/doc/html/rfc6749
https://openid.net/specs/openid-connect-federation-1_0.html#rfc.section.5.1
https://openid.net/specs/openid-connect-federation-1_0.html#rfc.section.5.1
https://iot-analytics.com/number-connected-iot-devices/
https://iot-analytics.com/number-connected-iot-devices/
https://www.arc42.de/overview/
https://www.iso.org/standard/35733.html
https://digital.ai/periodic-table-of-devops-tools/
https://digital.ai/periodic-table-of-devops-tools/
https://www.otto.de/design-system

294 Agile Tools: Toolbox for Product Owners ...

ference on information systems, AMCIS 2013; Chicago, IL; United States; 15 August 2013
through 17 August 2013 (pp. 3350–3364). Association for Information Systems.

 33. Kreutzer, R. T., Neugebauer, T., & Pattloch, A. (2017). Digital Business Leadership—Digitale
Transformation –Geschäftsmodell-Innovation—agile Organisation—Change-Management
(1st edn.). Springer/Gabler.

 34. FAZ vom 03.08.2015. http://www.faz.net/aktuell/wirtschaft/nokia-verkauft-kartendienst-here-
an-deutsche-autokonzerne-13731935.html. Accessed 15 Apr 2022.

 35. Becker, J. (14. Oktober 2016). Was Audi, BMW und Daimler mit dem Kartendienst Here
vorhaben. Süddeutsche Zeitung.

 36. Bitkom—KEMPF/FRESE. Datability. Accessed 9 Mar 2014.
 37. Leetaru, K. (17. Januar 2017). Why are we so afraid of Petabytes? Forbes Magazine.
 38. Bitkom Research/KPMG. Mit Daten Werte schaffen. Research Studie 2015.
 39. Hanschke, Giesinger, & Goetze. (2016). Business-Analyse—einfach und effektiv—Geschäft-

sanforderungen verstehen und in IT-Lösungen umsetzen (2nd edn.). Carl Hanser.
 40. Bleek, W.-G., & Wolf, H. (2011). Agile Softwareentwicklung: Werte, Konzepte und Methoden.

dpunkt.
 41. Stach, M. (2016). Agil moderieren—Konkrete Ergebnisse statt endloser Diskussion (1st edn.).

Business Village.
 42. Open-Source Software LiquidFeedback. https://liquidfeedback.org/ und https://www.public-

software-group.org/liquid_feedback. Accessed 10 Mar 2022.

http://www.faz.net/aktuell/wirtschaft/nokia-verkauft-kartendienst-here-an-deutsche-autokonzerne-13731935.html
http://www.faz.net/aktuell/wirtschaft/nokia-verkauft-kartendienst-here-an-deutsche-autokonzerne-13731935.html
https://liquidfeedback.org/
https://www.public-software-group.org/liquid_feedback
https://www.public-software-group.org/liquid_feedback

295© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer
Nature 2023
S. Block, Large-Scale Agile Frameworks, https://doi.org/10.1007/978-3-662-67782-7_8

The ubiquitous digitalization, with an increasingly purely digital data processing, Big
Data and Smart Data, as well as complex and clever data analysis methods, form an
inseparable unit that is becoming increasingly important for every organization—regard-
less of the industry.

“Garbage in, Garbage out”
The quantification and quality of data are—like two sides of a coin—equally important
for good data management. The principle “Garbage in, Garbage out” applies to com-
panies as well as any scenario in which digital data is processed. Only when working
together and purposefully on the best possible data quality can powerful IT systems also
deliver valid and meaningful data. Without valid data, there is no efficient system.

Digital transformation places high demands on data quality, and almost all employees
in companies contribute to this. If incorrect product information ends up on websites or
customer data is already recorded incorrectly during the ordering process in an online
shop, this reduces data quality and has direct economic consequences.

Errors in the data cause errors in the generated reports; lack of trust in data leads to
wrong decisions; opportunities are missed when data is outdated or incomprehensible.

What is Smart Data?
The term Smart Data extends basic data concepts and essentially describes intelligent
concepts for the clever use of digital data, primarily in Big Data. Big Data stands for the
rapidly increasing volume of digital data sets that arise in various ways within logging of
IT processes, telecommunications, or in eCommerce. With the use and data protection-
compliant evaluation of IoT devices, data volumes grow immensely.

Data Quality—Lifeblood of Digitalization 8

https://doi.org/10.1007/978-3-662-67782-7_8
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-67782-7_8&domain=pdf

296 8 Data Quality—Lifeblood of Digitalization

Smart Data pursues the goal and task of ensuring excellent data management to
ensure that correct and error-free data remains meaningful.

In this sense, Smart Data strategies try to use digital data in different scenarios as
effectively and purposefully as possible. Smart Data is therefore an imprecise term that
combines novel data analytics practices with industry trends such as the Internet of
Things (also known as IoT). The attribute smart refers not only to the data but also to
applied knowledge of how this data is used in the application context and value-creating
business scenarios [1, pp. 31/32].

Fig. 8.1 illustrates relevant subject areas around “Smart Data”.
At the latest when Big Data is to be used, it becomes clear that IT managers must

focus all efforts on intact data. Since data cleansing becomes more resource-intensive
and sometimes impossible with increasing data volumes, it is logically indispensable to
carry out data cleansing before the point of merging large amounts of data.

The enormous amounts of data require targeted and efficient methods for evaluating
and web analysis of this data. As in Data Mining, knowledge evaluation within Smart
Data is of central interest. The networking of different data sources—especially for com-
panies—leads to new usage interests; however, existing data protection regulations must
always be taken into account. Especially when using artificial intelligence, which con-
sists largely of training neural networks, data quality is of high relevance.

8.1 Customer-Specific Products and Services Based on Smart
Data

The benefits of smart data strategies in Industry 4.0 scenarios are only made possible by
the Internet of Things: data on production performance and product quality can already
be monitored in real-time [2, 457]. Customer data flows directly into the automatic
production process, realizing exclusive custom-made products of the highest quality.

Fig. 8.1 Subject areas around “Smart Data”. (Source: Sascha Block)

297

 Customized sports shoes with Nike ID—while simultaneously analyzing the customer’s
running behavior via Apple iWatch or with Android Smart Watch—are just one real-life
example from our consumer world.

In this economic scenario, two leading global corporations benefit from the coopera-
tion in exchanging smart data of their mutual customers.

Data is the central raw material for economic value creation in the digital age. Data is
available every day in ever-increasing quantities. With the worldwide rapidly increasing
data volumes, the global data volume is expected to grow to a gigantic data volume of
163 zettabytes (ZB) [3].

Whether we believe the forecast of a leading international company for storage media
or not is secondary. Even if the forecast only comes true at a later date, the increasingly
vital importance of data in our modern society is a fact that we cannot escape—each and
every one of us is directly affected!

The shift of our data to the cloud and the increase in devices that create data without
human intervention is already happening. In this respect, the far more likely scenario is
that the actual data volume is reached much earlier.

Challenges in Dealing with Immense Increase in Digital Data
When using smart data, many new questions arise, especially when the meaningful use
of massive data streams is in the foreground. In addition to legal foundations that provide
a legally secured space for companies to store and analyze data based on legal norms and
regulations, societal acceptance must not be neglected.

It is precisely the emerging business models—particularly in sensitive areas such as
finance, the insurance industry, and the clever handling of highly sensitive data in health-
care—that determine how consumers react to the intensive use of smart data. On the
technical side, the primary question is the manageability of big data. With sensitive and
highly protected data such as personal and health data, the complexity of data processing
increases significantly. For example, by connecting effective solutions for pseudonymiz-
ing personal data and consent management.

From Theory to Practical Implementation
This section describes the mathematical foundations of computer science that apply to
the successful validation of data. Plausibility checks and basic mechanisms of data col-
lection, data analysis, and data correction are explained.

By the time you read this section, you will quickly realize why your company should
definitely integrate this building block for optimizing data quality firmly into the
selected Agile Framework and digitalization strategy…

8.1 Customer-Specific Products and Services Based on Smart Data

298 8 Data Quality—Lifeblood of Digitalization

8.2 Data Quality: Fundamentals and Preconditions

Five fundamental factors are crucial for high-quality data quality [4, Chap. 2, p. 1]:

• Data consistency
• Deduplication
• Information completeness
• Data currency
• Data precision

Scientific studies on data quality primarily focus on data consistency and deduplication
of relational data. Nonetheless, all five factors for data quality are equally important, and
each technical aspect poses fundamental challenges. The following sections provide a
detailed explanation of these five fundamental factors.

Data consistency
The consistency of data is directly related to the plausibility and integrity of this data
concerning its representation of existing values from the real world.

Using an easily understandable practical example, different methods for data optimiza-
tion are explained. The connection to the real world is established by a manageable table
with 5 data records containing personal data [4, Sect. 2.1, p. 2]:

Table 8.1 “Data record of personal data” represents the starting point of our dataset
for data optimization and illustrates how quickly seemingly correct data can be contra-
dictory.

Using plausible rules, it will be demonstrated step by step how many contradictions
can already be contained in such a manageable amount of data, which are not recogniz-
able at first glance. The term “tuple” used here is used in computer science for ordered
collections of values (one-dimensional arrays) and—especially in relational algebra—as
a synonym for data record. The values of a tuple are called attributes (data field) and can
be seen in the example above in the table rows t1 to t5; a table row thus corresponds to a
data record.

Consistent data are thus error-free within their data stock insofar as no contradictions
arise from this data. To ensure this, it is necessary to continuously identify and eliminate
errors within the data stocks using formal-logical plausibility checks.

Inconsistencies in data typically occur in the form of violations of data dependen-
cies or violations of data integrity. The integrity of data is always directly related to the
respective applicable conditions or relationships of data or data records to each other.
Data integrity helps us repair data by correcting existing errors and inconsistencies in
data records.

299

Two central questions arise in direct relation to data consistency:

1. Which data dependencies should we use to detect errors?
2. Which repair model should we apply for error correction?

8.2.1 Data Dependencies

Dependencies of data exist in various forms. Such dependencies within data can be clas-
sified as follows:

1. A) Functional Dependencies (FDs) [5, Chap. 2.1.2, p. 24]:
 In a relation R, if an attribute set A defines an attribute set B such that for every tuple

pair t1, t2∈ R, if tA
′

1 = tA
′

2 , then tB
′

1 = tB
′

2 .
 Functional dependencies typically arise directly from the application context. Accord-

ingly, for our Table 8.1, each location is determined by a ZIP code.
 B) Inclusion Dependencies (INDs):
 Inclusion dependencies are defined such that all values of an attribute a are contained

in the values of another attribute b. In this case, a is the dependent attribute and b is
the referenced attribute. It holds: a ∈A ⊆ b ∈ A. Every foreign key automatically ful-
fills the requirement of inclusion dependency [6, p. 144].

Table 8.1 D0—Data record of personal data

T First
Name

Last
Name

CC AC landline Mobile Street City ZIP Status

t1: Marie Schmidt 49 030 3855662 7966899 Unter
den
Linden
15

Berlin 10115 single

t2: Marie Lutz 49 040 null null Jun-
gfern-
stieg
10

Ham-
burg

20095 mar-
ried

t3: Marie Lutz 49 040 6513877 7966899 Bee-
thoven-
str. 7

Ham-
burg

20095 mar-
ried

t4: Tom Walker 01 908 6512845 3393756 Post-
fach
212

Trenton 08601 single

t5: Rob-
erto

Blanco 01 908 6512845 null 6 N
Broad
St

Trenton 08601 single

8.2 Data Quality: Fundamentals and Preconditions

300 8 Data Quality—Lifeblood of Digitalization

2. Conditional-functional dependencies (CFDs)
 In the context of our example data, such a conditional-functional dependency can be

created by combining the FD ϕ1 and ϕ2—supplemented with specific data patterns in
the form of so-called Pattern Tableaus PT1, PT2 resulting from the logic of the respec-
tive data used. In the practical example of our dataset of personal data, such a CFD
can be represented with the two axioms ϕ1 and ϕ2 as follows:

A CFD results from the integration of individual FDs into a combined quality rule:

PT1 and PT2 are each functional dependencies (FDs) as logical data fragments that we
integrate into our formula in the form of a valid condition (Table 8.2).

CFD ϕ1:cc, zip →street states that in Germany (i.e., where CC = “49”), the ZIP code
uniquely determines the street. In other words, cc, zip →street is a functional depend-
ency that is only valid for tuples with the country code CC = “49”.

For our example data, FD ϕ1 thus applies only to tuples t1, t2, and t3, so that an incon-
sistency for tuples t4, and t5 becomes apparent due to these rules.

If we use ϕ as a data quality rule, we come to the conclusion that t2 and t3 violate the
axiom ϕ1:cc, zip →street and are therefore inconsistent: Both records have the same ZIP,
but differ in the street. Such errors remain undetected when using regular FDs exclu-
sively. Only by combining functional dependencies into a conditional functional depend-
ency can inconsistencies in this form be detected.

CFD ϕ2:cc, ac →city states that the Country Code (CC) and the Area Code (AC)
uniquely determine the city. Moreover, for Germany (i.e., for the records in which CC
= “49”), if the AC = “040”, it must be the city of Hamburg. For the USA (i.e., for the
records in which CC = “01”), if the AC = “908” (district of the State New Jersey), it must
be the city of “Trenton”. Thus, tuple t1 is identified as the record that violates this rule.

3. Denial Constraints (DCs)
 Typically formulated by predicate logic statements of the form ∀x : ¬ (φ(x) ∧β(x)),

where φ(x) is a non-empty conjunction of relation atoms over x and β(x) is a conjunc-
tion of the form =; ≠ , < , > , ≤ , ≥ for elements of x.

ϕ1 : cc, zip → street ϕ1 : cc, ac → city

CFDs : (ϕ1, PT1), (ϕ1, PT2), thus (ϕ1, cc, zip → street), (ϕ1, cc, ac → city),

Table 8.2 PatternTableaus PT1, PT2

Note: Axiom ϕ2 subsumes the conventional FD: cc, ac →city and thus marks the first data entry in
PT2 with its “* = Wildcard” entries.

PT1 CC ZIP Street PT2 CC AC city

44 * * * * *

49 040 Hamburg

01 908 Trenton

301

4. Equality-Generated Dependencies (EGDs)
 A special form of DCs, when β(x) is of the form xi =xj.
5. Tuple-Generated Dependencies (TGDs)
 Predicate logic sentences of the form ∀x(φ(x) → ∃y(ψ(x,y))), where φ(x) and ψ(x,y)

are conjunctions of relation atoms over x and x ⋃y, so that each variable of x is related
at least once with an atom of φ(x).

6. Full TGDs
 A special case of TGDs without existing quantifiers, for example in the form

∀x(φ(x) →ψ(x)).
7. Local as View TGDs (LAV)
 A special case of TGDs in which φ(x) is a single relation atom; LAV TGDs subsume

INDs.

It is like a balancing act to decide which dependency class we should use as a data qual-
ity rule for repairing data. It is always necessary to ensure that the required computing
power is sufficient. To assess the complexity of the chosen dependency class, computer
scientists use the satisfiability problem of propositional logic and implication problems
[7, Chap. 4: Relations and Mappings, p. 104].

Satisfiability
The satisfiability problem of propositional logic (engl.: Satisfiability) is a formal mathe-
matical decision problem (predicate logic) that can be used to determine whether a prop-
ositional logic formula is satisfiable (true). Accordingly, unsatisfiable propositional logic
formulas fundamentally yield the overall result false. A fundamental question that arises
for the computer scientist is: “Does the rapid identification of an NP-complex problem
through correct solutions also mean that there is a fast way to find the solution path
algorithmically?” [8, pp. 279/280] Even if the available computing power increases year
by year according to Moore’s Law and thus the speed of solution calculation continu-
ously improves, there remains a large number of non-trivial problems to solve, whose
calculation is so complex that this solution is considered NP-complete. In terms of data
quality, this means knowing whether the defined data quality rules are valid in relation to
all defined dependencies.

Implications and Implication Analyses
Implication analysis can be used to remove redundant data quality rules and thus acceler-
ate the process of error detection and data repair.

Complexity Levels of Implication Analysis
Table 8.3 “Complexity Levels of Implication Analysis” summarizes the complexity lev-
els of the functions explained in the “Data Dependencies” section:

8.2 Data Quality: Fundamentals and Preconditions

302 8 Data Quality—Lifeblood of Digitalization

8.2.2 Data Repair

In practice, there are two approaches to cleaning an inconsistent database and optimizing
data quality:

1. Repairing data: This approach is similar to creating a database copy that differs only
minimally from the original database and contains only consistent information.

 and
2. Consistent answering of queries: This method performs repairs on data to be corrected

directly in the original database and determines answers for correction based on prede-
fined queries, with each individual repair operation corresponding to a database query.

Data Repair Models
Based on a distance function of graph theory, the change distance of a respective repair
is evaluated, so that all dependencies to be fulfilled are preserved at the same time. In
practice, there are various models with different repair semantics, each pursuing the goal
of minimal cost:

1. S-Repair: The S-model assumes inconsistent but complete data. This model only
allows the deletion of data tuples based on minimal set difference.

2. C-Repair: The C-model assumes both inconsistent and incomplete data. The
C-model allows both the deletion and insertion of tuples. C-repairs are based on mini-
mal cardinality and set difference [9, Sect. 5.7, p. 67].

3. CC-Repair: The CC-model extends the C-model so that the image of the database is
smaller than the reference database in any case.

4. U-Repair: The U-model is a numerical aggregation method; this model supports the
modification of attribute values. As a result, the costs for corrections are higher the
further the values are from the actual starting attribute, as more processing cycles are
required for correction.

Table 8.3 Complexity Levels of Implication Analysis [4, Sect. 2.1, p. 3]

Dependencies Implications (Runtime Estimation)

FDs Ο(n)

INDs PSpace-complete

FDs + INDs Undecidable

CFDs coNP-complete (Solutions can be falsified in polynomial time)

CINDs EXPTIME (Solvable in exponential runtime)

CFDs + CINDs Undecidable

DCs coNP-complete (Solutions can be falsified in polynomial time)

TGDs Undecidable

303

In practice, most data corrections are performed using the U-model. Unfortunately, apply-
ing the U-model is the most cost-intensive approach, especially when attribute values are
also allowed to update continuously. The complexity level is already considered unsolvable
when using the U-model as soon as only FDs or INDs are in use. Table 8.4 “Complexity
levels of repair checks” illustrates how the classified dependencies are classified as a repair
model and at the same time provides a runtime estimate of the respective repair checks.

8.2.3 Data Deduplication

The data deduplication—also known as record-matching—aims to eliminate redun-
dant data and is therefore an indispensable step in optimizing data quality. The process
of data deduplication can be divided into the identification and elimination of redundant
data. Deduplication is based on complex mathematical operations; therefore, it is almost
impossible to accurately predict the efficiency of deduplication algorithms.

Requirement for Redundancy Cleanup in Big Data
Cleaning up data to remove redundant records is essential, especially for large amounts
of data.

In particular, when it comes to Big Data, the first step—before all other optimization
steps—is to eliminate redundant data. This reduces the amount of data and automatically

Table 8.4 Complexity levels of repair checks [4, Sect. 2.1, p. 3]

Dependencies Repair Model Runtime Estimation of Repair Check

Complete TGDs S-Repair PTIME

1 FDs + 1 INDs S-Repair coNP-complete

DCs S-Repair LOGSPACE

WA LAV TGDs + EGDs S-Repair LOGSPACE

Complete TGDs + EGDs S-Repair PTIME-complete

WA TGDs + EGDs S-Repair coNP-complete

DCs C-Repair coNP-complete

Complete TGDs + EGDs C-Repair coNP-complete

WA TGDs + EGDs C-Repair coNP-complete

DCs CC-Repair coNP-complete

Complete TGDs + EGDs CC-Repair coNP-complete

WA TGDs + EGDs CC-Repair coNP-complete

Fixed FDs U-Repair coNP-complete

Fixed CINDs U-Repair coNP-complete

8.2 Data Quality: Fundamentals and Preconditions

304 8 Data Quality—Lifeblood of Digitalization

makes subsequent optimization methods more performant. Redundant data mainly
occurs when data from a large number of different data sources with predominantly het-
erogeneous data sets are merged.

Deduplication Techniques
In practice, various deduplication techniques have proven successful, as there is no pre-
vailing deduplication approach that is equally well applicable to all problem situations
to handle all types of redundancies [10, Chap. 2 “Existing Deduplication Techniques”,
p. 23]. In terms of performance and implementation effort, the deduplication technique
with its specific designs—depending on the particular characteristics of the prevailing
data sets, the IT architecture of the involved systems, the available capacities, and the
available deduplication time—offers special advantages. Thus, deduplication remains
one of the most efficient methods in computer science to cleverly reduce data volumes.
Four approaches to deduplication can be distinguished [4, Sect. 2.2, p. 3]:

1. Probabilistic Deduplication
2. Learning-based Deduplication
3. Distance-based Deduplication
4. Rule-based Deduplication

Collaborative Deduplication
Fan focuses in his introduction to data quality optimization on the approach of rule-
based deduplication supplemented with directly connected repair processes (collabo-
rative deduplication). Fan justifies this extension by stating that deduplication in its
processes is always simultaneously aimed at data consistency analysis and data accu-
racy with data repair. Likewise, rule-based deduplication takes into account efficiency in
terms of required resources (Data Currency). For this reason, it is understandable that the
usually separate processes of data repair and deduplication are combined in the approach
of collaborative deduplication to be used together for data precision.

In a previous study, Fan et al. demonstrate that record-matching and data repair comple-
ment each other and thus lay the foundation for data cleansing. While matching aims to
identify tuples that refer to the same “Real-World-Object”, it is the accompanying task
of data repair to make a database consistent by successively fixing errors within the data
set [11, p. 16].

Deduplication and Bijectivity
To identify redundant data records, the mathematical function of bijectivity can be used.
With the help of a bijection, it can be mathematically proven that a complete pairing
between the elements of the domain and the target set takes place. Likewise, the inverse
functions of a bijective mapping are always bijective [7, Chap. 11: Linear Mappings,
p. 267]. This property of bijective relations can thus be used in the form of common

305

entity decompositions of relations to optimize data quality (deduplication). The field
of entity resolution is receiving increasing attention to manage the growth of structured
and semi-structured data from a variety of heterogeneous data sources. An exact resolu-
tion of existing relations is equally crucial for the cost-effectiveness of data cleansing
algorithms, reducing data volumes, and precise data analysis for critical applications. It
has been shown that, in particular for structured data, resolving entities from the rela-
tional perspective is effective. The collective resolution of relational entities is a power-
ful and promising approach that combines the attribute similarity method with relational
evidence and enables improved performance compared to traditional approaches [12].

Matching Rules
Data Matching is the process of merging two or more data records into a single data
record to eliminate duplicates [5, Chap. 7: Data Matching, p. 173]. With the help of rules
defined closely to the respective data context, data records can be identified that, despite
partially deviating content, have an identical meaning. This is usually done through
recursive conclusions of identified data fragments with semantically equivalent content.
With the help of matching rules with result inference, it is possible for deviating data
fragments, despite different content in partial attributes, that both data records have the
same meaning in the application context. Starting from the identical data fragments in
the form of attribute tuples of both data records, the identical meaning of the partial frag-
ments is inferred recursively. Of course, the applicable rules must be closely related to
the context of the data sets to be optimized. In practice, matching rules are particularly
helpful due to their practical benefits in transferring various data records into a single
data record to limit data volumes and meaningfully improve data quality [5, Chap. 7:
Data Matching, p. 177].

8.2.4 Information Completeness

The completeness of information is another important criterion for assessing data quality
[7, Sect. 2.3 “Information Completeness”, p. 4]. Only if the required basic data is avail-
able, database operations in the form of queries lead to the desired success by providing
the desired answers to the database query.

Distinguishable are:

1. Closed World Assumption (CWA): In this case, the database is complete with all
tuples in relation to the image of the real world, with only a few attribute values pos-
sibly being incomplete.

2. Open World Assumption (OWA): Here, in addition to missing attribute values,
complete data records (tuples) are also missing, so that the image of the real value is
incomplete.

8.2 Data Quality: Fundamentals and Preconditions

306 8 Data Quality—Lifeblood of Digitalization

The case of the CWA is practically always given, so that the attention is mainly focused
on the case of the OWA, for which only a few queries are suitable to bring about a solu-
tion. It is precisely for these difficult problems that computer scientists strive to provide
adequate solution strategies that can be demonstrably effectively applied.

Relative Completeness of Information
In order to ensure complete information as best as possible, computer science relies on
the concept of master data (Master Data or Reference Data). To this end, companies
establish a central repository of high-quality basic data that is used in various software
applications in the corporate context. The concentration of data maintenance of such
master data offers the advantage of consistent views and the supply of core processes
in the company with pre-verified entities. Another advantage offered by master data is a
stable framework in the form of a master data validation framework, which provides
a secure foundation—based on precisely this completeness of master data—to derive
applicable rules for data validation that facilitate further data processing or make it pos-
sible in the first place based on complexity barriers.

8.2.5 Data Currency

Data currency is aimed at evaluating the current value of data records in order to make
well-founded decisions on data correction based on these evaluations. An existing
approach to determining such data evaluations is timestamps in temporary databases.
In practice, however, it has been found that these timestamps are often not available or
imprecise [13, p. 251]. The crucial question, therefore, is how to make reliable data eval-
uations even without timestamps.

Modeling Data Currency
With the approach presented by Fan et al. for individual evaluation of tuples and attrib-
ute values, it also becomes possible to quantify the value of data [14, p. 44]. Using our
example data set, it can be demonstrated analogously that a change from married status
to single is impossible. Likewise, due to this rule definition, the conclusion is made that
the last name and the status are directly related to each other, so that Marie’s current last
name is “Lutz”. In combination with the unique mobile phone number, this leads to the
conclusion that the data record t3 is more current and thus more valuable than t1.

8.2.6 Data Precision

Precision of data aims to ensure that values are as close to reality as possible, ideally
representing it exactly. If precise data is not available, at least existing basic values
(see explanations on the term master data) should be used to enable approximation or

307

 calculation. In this respect, there is still a wide field of activity for scientifically sound
solutions, as only a few studies are dedicated to this subject area [4, Sect. 2.5 Data
Accuray, p. 6].

8.3 Techniques for Data Cleansing

Data cleansing tools primarily offer enhancements for customer data or product data. For
such auxiliary tools, there is an immense demand on the company side due to the rapidly
increasing data volumes year after year. What functions must data cleansing tools pro-
vide? First and foremost, such data tools are expected to:

1. Data profiling: Identifying and creating rules for evaluating data quality
2. Data cleansing: Optimizing data so that it meets established quality guidelines,

standards, business rules, and domain requirements.
3. Data matching: The identification, linking, and merging of existing data entries.

8.3.1 Discovering Data Quality Rules

While it is unrealistic to rely solely on business rules or experts from different application
areas and domains to design valid data quality rules—especially since this is a manual and
cost-intensive process—the question arises as to how it is possible to automatically derive
such data quality rules. Since there is a possibility that the rule sets themselves are poorly
defined or are based on invalid data, it is also useful to consider a mechanism that verifies
the rules themselves [4, Sect. 3.1 Discovering Data Quality Rules, p. 6].

8.3.2 Error Detection for Data

Once the practically applicable data quality rules are qualified, the question arises as to
how to efficiently capture errors in a database by applying these rules. For most users, it
is sufficient if errors in data are automatically detected; data correction is often not even
part of the requirement. Which methods for error detection are applicable depends on
the prevailing dependencies. Which methods for error identification are effectively appli-
cable depends in particular on which data quality rules are used and whether the data is
stored in a local database or across multiple distributed databases. In practice, data is
usually fragmented, scattered across various databases of different systems. In the first
step, a consolidation of the data at a single location is necessary. Nevertheless, it remains
an NP-complete problem to determine errors within vertically or horizontally fragmented
data. While SQL-based approaches are still applicable for a single data source, this
approach can no longer be used for fragmented data.

8.3 Techniques for Data Cleansing

308 8 Data Quality—Lifeblood of Digitalization

8.3.3 Data Repair

After errors in data sets have been detected, it is necessary to repair these faulty data.
The only repair model of interest is the U-based repair model with a focus on correcting
individual attribute values, as this is where the greatest need exists in practice.

Heuristic Data Corrections
Data repairs are often prohibitively expensive in terms of cost, but heuristic data cor-
rections still offer acceptable solutions in such cases. A heuristic method refers to an
analytical approach that achieves acceptable solutions despite limited knowledge and
few available resources; heuristics use limited knowledge and make decisions through a
clever system with the help of logical conclusions: “Initiating heuristic methods provide
initial approximations, while optimizing methods gradually improve the solutions; above
this are meta-methods that strategically control the discovery process even beyond local
optima” [15, p. 388].

The complexity level is already coNP-complete for fixed FDs or INDs. For this reason,
repair algorithms are usually heuristic and require 1:1 dependencies. With the separation
of the decision which values are equal and the decision which values should be assigned
to the respective equivalence class, there are guaranteed solutions for a data repair. The
costs for this are determined based on the listed repair patterns from the table of the sec-
tion Repair Models for Data.

Secured Repair Steps and Data Fixes
A main problem of heuristic repair methods is that they cannot guarantee corrections that
are considered correct. To enable such a secured approach, correction assurance using
master data is recommended. If this master data-enhanced framework is additionally
secured by user interaction at the time of data entry using basic algorithms and optimiza-
tion techniques, in any case, corrections that are considered correct and comprehensively
secured are enabled [11, p. 237].

For our example data, the data structure can be extended in the master data by a postcode
that secures all data applicable to the country code 49 = Germany as follows:

This specifies for all input tuples that a uniquely assigned master data pair exists, which
assigns a zip to a postal code. In this way, secured data corrections can be guaranteed,
which in turn prevent correct values from being replaced by incorrect data corrections.

For critical application areas with highly sensitive data, heuristic methods are
excluded from the outset because correct data may be replaced by faulty data. This
results in the fact that for data-critical areas—such as for medical applications—only
data correction methods that guarantee absolutely error-free data repairs are suitable.

σ : (postal, zip) → ((C, city), (A,AC))

309

8.4 Control Mechanisms for Optimizing Data Quality are
Essential

The transition to a digital enterprise is inevitable. Competitive pressure under time con-
straints and the transformation of established companies with organically grown data
structures over time require particularly careful handling of data for every IT project.
The goal is not to accumulate every possible piece of data, but rather to interpret which
data is correct, relevant, and of corresponding value and benefit to the company.

Careful handling of data requires diverse challenges in various areas. From the
choice of the right data structures to the use of the right tools for digital data processing
and data correction, to the creation and application of valid rules for data validation, it
requires a wide range of expert knowledge. However, the effort to optimize the quality of
one’s own data is worthwhile, as data is of increasing value in a digital world. Only com-
panies that continuously maintain their values in the form of existing data volumes and
consistently focus all efforts on the continuous optimization of digital values will also
increase their company value.

Precisely because their data volumes are constantly increasing and Big Data has long
been prevalent in their company, but only correct and up-to-date data ultimately have
value, their Large-Scale Agile Framework must include an effective mechanism for con-
trolling data quality.

8.4.1 From Machine Learning to Smart Data

Large amounts of data can only be managed through machine-based methods. Artifi-
cial intelligence can be trained with algorithms and learns—guided by precise spec-
ifications from data specialists and algorithm experts—which patterns are present in
the digital data streams. Especially with dynamic data streams—i.e., data that is con-
stantly changing due to ongoing user interactions and machine behavior—humans rely
on machine-assisted data analysis. Predictions and forecasts are often only possible
through algorithm-based analysis methods that autonomously react to changes in data
streams.

Stand-alone data mining programs can only analyze complex data volumes to a lim-
ited extent. The efficient integration of data and graph mining algorithms into relational
database systems still poses a challenge in some cases. Some database systems, such as
SAP HANA and Hyper, already integrate the various workloads OLAP and OLTP into
a single system, so that the data basis only needs to be maintained once and ETL cycles
are eliminated. SAP HANA’s Predictive Analytics Library allows data mining algo-
rithms to be executed individually, similar to SQL queries. The results of the algorithms
are stored in tables to be specified and can thus be used in separate SQL queries [16,
pp. 45/46].

8.4 Control Mechanisms for Optimizing Data Quality are Essential

310 8 Data Quality—Lifeblood of Digitalization

8.4.2 Gaining Innovations from Data with Smart Data

Since various data is increasingly produced by diverse systems and stored in a distrib-
uted manner, it is important to evaluate whether merging the data streams creates rel-
evant added value in the form of an information gain. If new information of relevant use
is obtained through the aggregation of individual data fragments or if new business sce-
narios are only made possible through data bundling, innovations can be created based
on data.

What is Smart Data Innovation?
Smart Data Innovation is therefore a process that aims to create new value based on
data. Smart Data explores new structures in existing data. Just as untapped potentials
are uncovered through the change of perspective in Design Thinking, Smart Data also
detects innovations and unused values in data off the beaten path.

Agile Approach and Iterative Methodology Enrich Our Knowledge
The basis of Smart Data strategies is the concept of the continuous “Build Measure
Learn Cycle”. With this method, we quickly realize our idea in the form of a digital pro-
totype, capture and collect digital data, and evaluate it based on previously established
assumptions.

Figure 8.2 illustrates how the “Continuous Build Measure Learn Cycle” can be effec-
tively used to optimize digital products and services using data.

Continous Build -Measure -Learn -Cycle
Hypothesis: statement that can
be proven true or false.

Design of the test and a metric
that confirms or refutes our
hypothesis at a certain,
predefined level.

Testing a real setting
with real users.

Pay attention, even to
what is NOT happening.

PRODUCT

IDEAS

DATA
measure

Add to the
findings
both on data level
and in your knowledge -
also disproved
hypotheses

Confirm OR
disprove
your hypothesis
based on the
selected metric
and the defined
limit value

Learn build

Fig. 8.2 Continuous Build Measure Learn Cycle. (Source: Sascha Block)

311

Our knowledge base is thus constantly expanding with relevant insights that continu-
ously optimize our business model and our products. In this context, misjudgments in the
form of invalid hypotheses are also relevant and valuable.

8.4.3 Semantic Data Analysis

Semantics usually refers to the meaning of data and is characterized by metadata struc-
tures. Supplementary sets of rules about the relationships between information objects
and metadata complement a semantic data analysis. Semantic data analyses are com-
plex and involve a high level of effort in creation. The evaluation and verification of rule
systems are time-consuming, especially since each defined rule can generate new meta-
data and trigger new rules in turn. An important feature of semantic data analysis is that
metadata description occurs decentrally: This enables the automatic integration of indi-
vidual data silos. However, the inclusion of additional data from subsystems introduces
new data rules. Although the computational effort increases and becomes more difficult
to control as the system becomes more data-intensive, it is also possible that contradic-
tions arise due to data integration. Nevertheless, semantic data analysis is an established
 methodology for enabling the integration of various data from different systems in the
context of big data. Semantic context information is usually represented as so-called
linked data in the form of interconnected graphs [1, p. 30].

Smart Data Optimization
Predictive Data Analytics, Cognitive Computing, Artificial Intelligence, and Machine
Learning are central concepts that play an important role in the use of large amounts
of data and smart data projects. As the processing of rapidly increasing data volumes
becomes more and more complicated, the exploration of information and the search for
exploitable patterns in big data are already impossible for individuals without technical
aids.

Application example for artificial intelligence and machine learning: Image recog-
nition on smartphones
A practical application example is the identification and logical sorting of people recog-
nized in images. Over time, a large number of photographs accumulate on every smart-
phone; a large proportion of the images depict people.

Without our intervention or support, a smartphone is already capable of independently
identifying people in images and sorting the images by the people depicted.

The manual and laborious process of tagging images is thus rendered obsolete and
replaced by a true smart data innovation.

Figure 8.3 illustrates how artificial intelligence and machine learning can be used for
image recognition on an Apple iPhone.

8.4 Control Mechanisms for Optimizing Data Quality are Essential

312 8 Data Quality—Lifeblood of Digitalization

8.4.4 Framework for Data-Driven Design

Innovations and novel technologies require continuous improvement by optimally align-
ing the design and provided functions to the needs of users and consumers.

Design Thinking and agile development methods make a decisive contribution to suc-
cess by using iterative procedures, starting with the minimal viable prototype (Minimal
Viable Product, or MVP) to verify or refute a hypothesis.

Such an MVP generates valuable data in a short time, which can be used directly for
the analysis and evaluation of new business models, business scenarios, and innovative
products and digital services.

Figure 8.4 Framework for Data-Driven Design—Using measurable Key Performance
Indicators (KPI), data-driven design is iteratively measured in 5 steps.

In a first step, we identify relevant KPIs and metrics that are important for achieving
our business goals. In the second step, we start generating digital data—directly with the
MVP or an existing business scenario—that appears valuable for the analysis and evalu-
ation of our goals.

In step 3, we create assumptions and forecasts about the influences that the changes
we introduce or a newly provided digital service will have.

Fig. 8.3 Artificial intelligence
and machine learning using the
example of image recognition
on an Apple iPhone. (Source:
Sascha Block)

313

In step 4, we implement the necessary prerequisites and go live with our MVP. In
real operation, our digital prototype now generates digital data that we use in step 5 for
analysis and success evaluation.

8.4.5 Conclusion

The transition to a digital enterprise is inevitable. Competitive pressure under time con-
straints and the transformation of established companies with organically grown data
structures over time require particularly careful handling of data for every IT project.
The goal is not to accumulate every possible piece of data, but rather to interpret which
data is correct, relevant, and of corresponding value and benefit to the company.

Careful handling of data requires diverse challenges in various areas. From choosing
the right data structures to using the right tools for digital data processing and data cor-
rection, to creating and applying valid rules for data validation, it requires a wide range
of expert knowledge. However, the effort to optimize and evaluate the quality of one’s
own data is worthwhile, as data is of increasing value in a digital world. Only companies
that continuously maintain their values in the form of existing data volumes and consist-
ently focus all efforts on the ongoing optimization of digital values will simultaneously
increase their company value.

Smart data is the regenerative energy source of the 21st century, and the value of data
continues to grow unabated. Short-term and meaningful reports are as essential a part of

A�er each project, KPIs, metrics, and goals should be re-evaluated
to ensure the right data is being measured and achievable goals
are being targeted....

Update

5) Record the results
and determine the
value of success.

4) Design and
develop ac�vi�es
aligned with UX KPIs.

3) Predic�ng the likely
impact of design
improvements.

2) Measure the
basic UX metrics
for the current
user experience.

1) Analyze
business goals
and translate
them into UX
KPIs and metrics.

Forecastdefine Design MeasureBenchmark

Step 1: Create design hypotheses Step

Step 2: Validate hypotheses with data

Framework for data driven design
Data Driven Design -The next generation of UX Design.

Fig. 8.4 Framework for Data-Driven Design. (Source: Sascha Block)

8.4 Control Mechanisms for Optimizing Data Quality are Essential

314 8 Data Quality—Lifeblood of Digitalization

entrepreneurial action as the consolidation of competitive positions based on one’s own
innovations. Technological progress, a significant advantage over competitors, and genu-
ine innovations with economic benefits have always been a guarantee of entrepreneurial
success and a solid foundation for successful business strategies.

Because smart data projects aim to promote innovations and because smart data
analyses always have an exploratory character, it must be understood that insights and
innovations in the basic process of their research are subject to a certain degree of uncer-
tainty. Nevertheless, smart data technologies remain the only sensible option for han-
dling constantly growing digital data streams. More than ever, a knowledge advantage
is an indispensable competitive advantage, and smart data is ideally suited for creating
novel digital products and innovative digital services. In addition, investing in expert
knowledge around smart data is extremely lucrative, so not only companies like Google,
Facebook, or Amazon are among the winners, but also medium-sized companies in every
industry that specifically focus on these new digital technologies.

References

 1. Wierse, A., & Riedel, T. (2017). Smart Data Analytics – Zusammenhänge erkennen, Potentiale
nutzen, Big Data verstehen (1st edn.). De Gruyter.

 2. Vogel-Heuser, B., Bauernhansel, T., & ten Hompel, M. (2017). Handbuch Industrie 4.0 Bd. 2
– Automatisierung (2nd edn.). Springer.

 3. Unternehmenswesite Seagate Inc. IDC-Whitepaper. https://www.seagate.com/files/www-con-
tent/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf. Accessed 10 March 2022.

 4. Fan, W. (2015). Data quality: From theory to practice. ACM SIGMOD Record, 44(3), 7–18.
 5. Doan, A. H., Halevy, A., & Ives, Z. (2012). Principles of data integration. Elsevier.
 6. Bohannon, P., et al. (2005). A cost-based model and effective heuristic for repairing con-

straints by value modification. In Proceedings of the 2005 ACM SIGMOD international con-
ference on Management of data (S. 143–154). ACM.

 7. Brill, M. (2001). Mathematik für Informatiker. Hanser.
 8. Hansen, P., & Jaumard, B. (1990). Algorithms for the maximum satisfiability problem. Com-

puting, 44(4), 279–303.
 9. Bertossi, L. (2011). Database repairing and consistent query answering. Synthesis Lectures on

Data Management, 3(5), 1–121.
 10. Choi, B.-Y., Kim, D., & Song, S. (2017). Data deduplication for data optimization for storage

and network systems. Springer International Publishing.
 11. Fan, W., et al. (2010). Towards certain fixes with editing rules and master data. Proceedings of

the VLDB Endowment, 3(1–2), 173–184.
 12. Bhattacharya, I., & Getoor, L. (2007). Collective entity resolution in relational data. ACM

Transactions on Knowledge Discovery from Data (TKDD), 1(1), 5.
 13. Zhang, H., Diao, Y., & Immerman, N. (2010). Recognizing patterns in streams with imprecise

timestamps. Proceedings of the VLDB Endowment, 3(1–2), 244–255.
 14. Fan, W., Geerts, F., & Wijsen, J. (2012). Determining the currency of data. ACM Transactions

on Database Systems (TODS), 37(4), 25.

https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

315

 15. Fischer, P., & Hofer, P. (2011). Lexikon der Informatik (15. Aufl.). Springer.
 16. Then, M., Passing, L., Hubig, N., Günnemann, S., Kemper, A., & Neumann, T. (2015). Effi-

ziente Integration von Data- und GraphMining-Algorithmen in relationale Datenbanksysteme.
TU München – Proceedings of the LWA.

References

	Preface
	Contents
	Abbreviations
	List of Figures
	List of Tables
	Part I Digital Transformation with Large-Scale Agile Frameworks
	1 Introduction
	References

	2 Digital Transformation & Agile Prioritization
	2.1	Agile Models for Organizing Digital Transformation
	2.1.1	Digital Transformation—a Challenge With Many Opportunities
	2.1.2	What Factors Influence Digital Transformation?
	2.1.3	Goals of Digital Transformation
	2.1.4	Digital Transformation and Large-Scale Agile Frameworks
	2.1.5	The Importance of Agile Processes and Large-Scale Agile Frameworks

	2.2	How Proven Are Agile Approaches?
	2.3	Agile Concepts and Basic Terms
	2.3.1	Multi-Project Management
	2.3.2	Portfolio Management
	2.3.3	Software License Products and Custom Software
	2.3.4	Software Platform, Software Product Family, and Software Product Line
	2.3.5	Product Life Cycle of Software
	2.3.6	Software Releases and Release Management
	2.3.7	Software Architecture and Knowledge Management
	2.3.8	Requirement Management/Prioritization
	2.3.9	DevOps and DevOps Model
	2.3.10	Agility and Agile Project Model
	2.3.11	Scaled Agile/Large-Scale Agile Development

	References

	3 Large-Scale Agile Frameworks
	3.1	Evaluation criteria for Large-Scale Agile Frameworks
	3.2	Selected Scaled Agile Frameworks
	3.3	Domain-Oriented Model/Domain-Driven Design
	3.4	Spotify Engineering Model
	3.5	Scaled Agile Framework (SAFe)
	3.6	Comparison of the Three Selected Large-Scale Agile Frameworks
	References

	4 How to Adapt and Implement a Large-Scale Agile Framework in Your Organization
	4.1	Action Design Research
	4.1.1	Defining Individual Adaptations for a Large-Scale Agile Framework
	4.1.2	As-Is Analysis in the Transformation Process through Evaluation
	4.1.3	Survey Design
	4.1.4	Evaluation and Results of the Formative Evaluation
	4.1.5	Summative Evaluation
	4.1.6	Expert Interview

	4.2	Consider the Influencing Factors of the Cloud Trend and Virtualization in the Focus of an Agile Framework
	4.2.1	Cloud Computing
	4.2.2	Cloud Properties
	4.2.3	Cloud Service Models
	4.2.4	Cloud Models
	4.2.5	Virtualization & Containerization
	4.2.6	Relevant Bodies for Establishing Internet and Cloud Standards

	4.3	Software Architecture & IT Security as an Integral Part of an Agile Framework
	4.3.1	IT-Security-by-Design: Software Architecture & IT-Security
	4.3.2	Zero-Trust Strategy
	4.3.3	Protection Principles and Their Technical Implementation Based on Zero Trust
	4.3.4	Secret Management
	4.3.5	Extended Protection Requirements for Virtual Container Environments
	4.3.6	Key Management & Cryptographic Protection Measures
	4.3.7	Public Key Infrastructures
	4.3.8	Microservice Architectures
	4.3.9	APIs, Resources, and Dynamic IP Addresses in Cloud Networks
	4.3.10	APIs and REST
	4.3.11	Quality Characteristics of Microservices and Web APIs
	4.3.12	RESTful API
	4.3.13	Conclusion and Relevance of APIs in the Context of Large-Scale Agile Frameworks
	4.3.14	Service Mesh & Agile Microservice Architectures
	4.3.15	Improving IT Security Based on OWASP Guidelines
	4.3.16	Penetration Testing/Pentesting
	4.3.17	Recommendations for integrating IT security as a fixed component in an agile framework
	4.3.18	Threat Modeling
	4.3.19	As early as possible to agile deployment & automated tests
	4.3.20	DevSecOps
	4.3.21	Code Reviews
	4.3.22	Pair Programming
	4.3.23	Logging & Monitoring

	4.4	Agile Teams, Roles, Tasks, and Processes
	4.4.1	Agile Software Development Teams
	4.4.2	IT Security Teams
	4.4.3	Implementation of Legal Framework Conditions and Data Protection
	4.4.4	Software Product Management/Service Management
	4.4.5	UX Teams: Frontend Design, Usability, and User Experience
	4.4.6	Quality Assurance and Testing Procedures
	4.4.7	Technical Editing
	4.4.8	Infrastructure Teams
	4.4.9	DevOps Teams
	4.4.10	Sales—The distribution of products and services of your organization
	4.4.11	Research, Innovation, and PreSales
	4.4.12	System Integration
	4.4.13	Support Teams

	4.5	Getting Started with Design Thinking & Prototyping
	4.5.1	Prototyping and Rapid Prototyping
	4.5.2	Prototyping Phase Model

	4.6	Aligning Overarching Agile Process Phases with a Prototypical Approach
	4.6.1	Phase 1: Requirements gathering and idea generation
	4.6.2	Phase 2: Rapid Prototyping and Consultation Process
	4.6.3	Phase 3: Test Management and Summative Evaluation
	4.6.4	Notes and Recommendations on the Prototypical Approach

	References

	5 Agile Prioritization Model for Software Manufacturers
	5.1	To What Extent Does Your Organization Act in the Role of a Software Manufacturer?
	5.1.1	Example 1: Is LEGO a Software Manufacturer?
	5.1.2	Example 2: Flaschenpost.de—Innovative, App-driven Beverage Service
	5.1.3	Example 3: Moia—Digital Shuttle Service

	5.2	Agile Teams and Roles At Software Manufacturers
	5.3	Processes and Activities
	5.4	Conclusion
	5.5	Conclusions
	5.6	Outlook
	5.6.1	Implications for Practice

	References

	6 Challenges in Establishing a Large-Scale Agile Framework in the Enterprise
	6.1	Bringing Start-up Wind Into Established Organizations
	6.1.1	Agile Software Service Development
	6.1.2	Friendly User Tests (FUT)
	6.1.3	Different Levels of Agility in Teams
	6.1.4	Establishing Novel Development and Test Environments with Abstracted Hardware Layer
	6.1.5	Transparent Decision-Making Processes and Agile Requirements Management

	6.2	Digital Leadership
	6.2.1	Vision, Strategy, and Product/Service Roadmap
	6.2.2	Chief Information Officer
	6.2.3	Chief Digital Officer

	6.3	Change Management—Digital Leadership in Management
	6.3.1	Perspectives of Change Management
	6.3.2	Change Request/Release Management
	6.3.3	Agile Academy
	6.3.4	Establish Agile Values

	6.4	Emergency Management: Can Your Organization React Agilely in Emergency Situations?
	6.4.1	How Can You Proactively Address Emergencies?
	6.4.2	How Do We Approach an Emergency Concept Organizationally?

	References

	Part II Agile Infrastructure
	7 Agile Tools: Toolbox for Product Owners & Agile Teams
	7.1	Agile Mindset & the 12 Principles of the Agile Manifesto
	7.2	Agile Goals
	7.2.1	Personas
	7.2.2	User Story
	7.2.3	Epic
	7.2.4	Task & Sub-Task
	7.2.5	Backlog

	7.3	Collaboration Tools
	7.3.1	Confluence
	7.3.2	Jira
	7.3.3	Git Repositories, GitHub, and GitLab
	7.3.4	OpenAPI—Tools for API Design
	7.3.5	Messenger and Chat Systems

	7.4	Agile Architectures—Foundation of Software-based Digitalization
	7.4.1	Factors Influencing Agile IT Architectures

	7.5	Pragmatic Software Architecture Documentation
	7.5.1	How to Create Visual Software Architecture Artifacts
	7.5.2	Standards, Criteria, and Norms for Software Architecture Artifacts
	7.5.3	Addressing and Subject Areas of Software Architecture Documentation
	7.5.4	Formulating Questions for Software Architecture Decisions
	7.5.5	Technical Debt
	7.5.6	Arc42 Template for Software Architecture Documentation
	7.5.7	ISO/IEC 25010—Quality of Software

	7.6	DevOps Methods and DevOps Tools
	7.6.1	The DevOps Periodic Table
	7.6.2	DevOps is More Than = Software Engineering + IT Management
	7.6.3	BizDevOps as a Consequence for Agile Companies

	7.7	Content
	7.7.1	Goals of a Content Strategy
	7.7.2	Requirements for Content
	7.7.3	Content Controlling
	7.7.4	Content Process and Coordination
	7.7.5	Content Guidelines
	7.7.6	Design System
	7.7.7	Infographics
	7.7.8	Dialogue Images

	7.8	Monitoring & Controlling
	7.8.1	Key Performance Indicators (KPI)
	7.8.2	Monitoring
	7.8.3	Strategies and Approaches to Digital Transformation
	7.8.4	The Optimal Architecture for the Digital Organization

	7.9	Methods & Tools for Agile Prioritization
	7.9.1	Agile requirement prioritization with the Feature Graph
	7.9.2	Agile Prioritization With the Single Point Query
	7.9.3	Agile Prioritization with the Multi-point Query
	7.9.4	Agile Prioritization With Liquid Democracy
	7.9.5	Timeboxing
	7.9.6	Feature-Driven Development

	References

	8 Data Quality—Lifeblood of Digitalization
	8.1	Customer-Specific Products and Services Based on Smart Data
	8.2	Data Quality: Fundamentals and Preconditions
	8.2.1	Data Dependencies
	8.2.2	Data Repair
	8.2.3	Data Deduplication
	8.2.4	Information Completeness
	8.2.5	Data Currency
	8.2.6	Data Precision

	8.3	Techniques for Data Cleansing
	8.3.1	Discovering Data Quality Rules
	8.3.2	Error Detection for Data
	8.3.3	Data Repair

	8.4	Control Mechanisms for Optimizing Data Quality are Essential
	8.4.1	From Machine Learning to Smart Data
	8.4.2	Gaining Innovations from Data with Smart Data
	8.4.3	Semantic Data Analysis
	8.4.4	Framework for Data-Driven Design
	8.4.5	Conclusion

	References

