


Blockchain and Artificial 
Intelligence Technologies 
for Smart Energy Systems

Present energy systems are undergoing a radical transformation, driven by the urgent need to 
address the climate change crisis.  At the same time, we are witnessing the sharp growth of en-
ergy data and a revolution of advanced technologies, with artificial intelligence (AI) and Block-
chain emerging as two of the most transformative technologies of our time.  The convergence of 
these two technologies has the potential to create a paradigm shift in the energy sector, enabling 
the development of smart energy systems that are more resilient, efficient, and sustainable. 

This book situates itself at the forefront of this paradigm shift, providing a timely and compre-
hensive guide to AI and Blockchain technologies in the energy system. Moving from an intro-
duction to the basic concepts of smart energy systems, this book proceeds to examine the key 
challenges facing the energy system, and how AI and Blockchain can be used to address these 
challenges. Research examples are presented to showcase the role and impact of these new tech-
nologies, while the latest developed testbeds are summarised and explained to help researchers 
accelerate their development of these technologies. 

This book is an indispensable guide to the current changes in the energy system, being of par-
ticular use to industry professionals, from researchers to management, looking to stay ahead of 
technological developments.

Hongjian Sun, Professor at Durham University, UK. He is the Head of Durham Smart Grid Lab-
oratory and leads Smart Grid research at Durham, with over 180 papers in refereed journals and 
international conferences. His research has been funded by EU H2020, EU ERDF, EPSRC, BEIS, 
Ofgem, Innovate UK, and industry. He is also the Editor-in-Chief for the IET Smart Grid journal.

Weiqi Hua, Assistant Professor at the University of Birmingham, UK. He took postdoctoral 
positions at the University of Oxford, UK, and Cardiff University, UK, after receiving his Ph.D. 
from the University of Durham, UK. He is an Editorial Board Member of Applied Energy, and 
Editorial Board Member of Oxford Open Energy. 

Minglei You, Assistant Professor at the University of Nottingham, UK. He is also a member 
of the Power Electronics, Machines and Control (PEMC) group. He received his Ph.D. from 
Durham University in 2019, as a recipient of the Durham Doctoral Scholarship. From 2019 to 
2021, he was a Postdoctoral Research Associate with Durham University and Loughborough 
University. 



Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


Blockchain and Artificial 
Intelligence Technologies 
for Smart Energy Systems 

Hongjian Sun, Weiqi Hua and Minglei You



First edition published 2024
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 Hongjian Sun, Weiqi Hua and Minglei You

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot as-
sume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have 
attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders 
if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please 
write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or 
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho-
tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission 
from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the 
Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are 
not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for 
identification and explanation without intent to infringe.

ISBN: 978-0-367-77127-0 (hbk)
ISBN: 978-0-367-77250-5 (pbk) 
ISBN: 978-1-003-17044-0 (ebk)

DOI: 10.1201/9781003170440

Typeset in Latin Modern font 
by KnowledgeWorks Global Ltd. 

Publisher’s note: This book has been prepared from camera-ready copy provided by the authors.

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the 
accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products 
does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use 
of the MATLAB® software.

https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003170440


This book is dedicated to my beloved father, Mr. Liqun Hua,
whose unwavering love and support continue to inspire me;

whose spirit inhabits my cells.
Dr Weiqi Hua

Oxford, United Kingdom
March 2023



Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


Contents

List of Figures xv

List of Tables xxi

Foreword xxiii

Preface xxv

Author Bios xxvii

Contributors xxxi

Section I Fundamental Theories

Chapter 1 ■ Smart Energy Systems 3

1.1 INTRODUCTION 3

1.2 RENEWABLE ENERGY SOURCES 5

1.3 ENERGY STORAGE 5

1.4 SMART METERING 6

1.5 DEMAND-SIDE MANAGEMENT 6

1.6 HOME ENERGY MANAGEMENT SYSTEM 7

1.7 CHAPTER SUMMARY 8

BIBLIOGRAPHY 9

Chapter 2 ■ Theories of Artificial Intelligence 13

2.1 INTRODUCTION 13

2.2 OPTIMISATION 14

2.3 GAME THEORY 15

2.4 SUPPORT VECTOR MACHINE 16

2.5 DIMENSIONALITY REDUCTION 18

2.5.1 Probabilistic Fundamental 19

vii



viii ■ Contents

2.5.2 Principal Component Analysis 21
2.5.3 Maximum Projection Variance 22
2.5.4 Minimum Cost of Reconstruction 23

2.6 EXPECTATION MAXIMISATION 25

2.6.1 Convergence of Expectation Maximisation Algorithm 26
2.6.2 Kullback–Leibler Divergence 28
2.6.3 Jensen Inequality 30
2.6.4 Generalised Expectation Maximisation 30

2.7 GAUSSIAN MIXTURE MODEL 31

2.7.1 Model Introduction 31
2.7.2 Solution of Gaussian Mixture Model 33

2.7.2.1 E-Step 34
2.7.2.2 M-Step 35

2.8 VARIATIONAL INFERENCE 35

2.9 HIDDEN MARKOV MODEL 38

2.9.1 Evaluation 39
2.9.2 Learning 41
2.9.3 Decoding 43

2.10 FEEDFORWARD NEURAL NETWORKS 44

2.10.1 Recurrent Neural Network 45
2.10.2 Long Short-Term Memory 46
2.10.3 Convolutional Neural Network 47

2.11 REINFORCEMENT LEARNING 48

2.12 CHAPTER SUMMARY 50

BIBLIOGRAPHY 50

Chapter 3 ■ Theories of Blockchain Technologies 55

3.1 AN OVERVIEW OF BLOCKCHAIN 55

3.2 BLOCKCHAIN-BASED CRYPTOCURRENCY 56

3.2.1 Cryptography Theory 56
3.2.1.1 Cryptographic Hash Function 56
3.2.1.2 Signature 57

3.2.2 Data Structure 59
3.2.2.1 Chaining Features 59
3.2.2.2 Merkle Tree 60

3.2.3 Consensus 60



Contents ■ ix

3.2.3.1 Unspent Transaction Output 61
3.2.3.2 Proof-of-Work 62

3.2.4 Block Structure 63
3.2.5 Difficulty 65

3.2.5.1 Reasons for Adjusting Difficulty 65
3.2.5.2 Mechanism for Adjusting Difficulty 66

3.2.6 Node Types 66
3.2.7 Networks 67

3.3 BLOCKCHAIN-BASED SMART CONTRACTS 67

3.3.1 Account 68
3.3.2 Data Structure 69

3.3.2.1 State Tree 71
3.3.2.2 Transaction Tree 73
3.3.2.3 Receipt Tree 73

3.3.3 Smart Contracts 74
3.3.3.1 Input and Output 76
3.3.3.2 Control Structures 77
3.3.3.3 Creating New Contracts 79
3.3.3.4 Conditions and Errors 79
3.3.3.5 Deployment of Smart Contracts 80

3.4 CHAPTER SUMMARY 81

BIBLIOGRAPHY 83

Section II Applications in Smart Energy Systems

Chapter 4 ■ Reforms in Energy Systems: Prosumers Era and Future
Low-Carbon Energy Systems 91

4.1 KEY STAKEHOLDERS IN GB ENERGY SYSTEM 92

4.1.1 Power System Operator 92
4.1.2 Transmission System Operator 93
4.1.3 Distribution Network Operator 94
4.1.4 Energy Suppliers 95
4.1.5 Policy Maker 95
4.1.6 Regulators 96
4.1.7 Consumers 96



x ■ Contents

4.2 THE EMERGING ROLE OF PROSUMERS 97

4.3 MARKET STRUCTURES FOR PROSUMER NETWORKS 98

4.3.1 Peer-to-Peer Trading Markets 99
4.3.2 Intermediary-Based Trading Markets 101
4.3.3 Microgrid-Based Trading Markets 102

4.4 REGULATORY SUPPORTS 102

4.4.1 Regulatory Barriers and Principles for Prosumers Engagement 102
4.4.2 Policy Supports for Net Zero Transition 105

4.4.2.1 Carbon Pricing Scheme 105
4.4.2.2 Contract for Difference Auction 107
4.4.2.3 Capacity Auction 108

4.4.3 Regulation for Electricity Trading and Balance: A Case in
the GB Electricity Market 110
4.4.3.1 Settlement 111
4.4.3.2 Imbalance Management 111

4.5 TECHNICAL CHALLENGES OF FUTURE LOW-INERTIA POWER
SYSTEMS 113

4.5.1 Frequency and Inertia 113
4.5.2 Challenges of Low-Inertia Power Systems 115
4.5.3 Solutions for Low-Inertia Power Systems 117

4.6 CHAPTER SUMMARY 117

BIBLIOGRAPHY 118

Chapter 5 ■ Application of Artificial Intelligence for Energy Systems 123

5.1 INTRODUCTION 123

5.2 OPTIMISATION 124

5.3 GAME THEORY 125

5.4 MACHINE LEARNING 126

5.5 STOCHASTIC APPROACHES 128

5.6 AGENT-BASED SYSTEM 129

5.7 RESEARCH EXAMPLE 1: MULTI-AGENT MODEL FOR ENERGY
SYSTEM SCHEDULING 129

5.7.1 Introduction 130
5.7.2 Framework of Multi-Agent System 131

5.7.2.1 Agents Design 131
5.7.2.2 Agents Coordination 132



Contents ■ xi

5.7.3 Problem Formulation 132
5.7.3.1 Demand-Side Management 133
5.7.3.2 Generation Scheduling 136

5.7.4 Case Studies 139
5.7.5 Research Summary 141

5.8 RESEARCH EXAMPLE 2: ARTIFICIAL INTELLIGENCE FOR
PRICING PATTERNS RECOGNITION 141

5.8.1 Introduction 142
5.8.2 Problem Formulation 144

5.8.2.1 Scenarios Analysis 145
5.8.2.2 Scheduling Strategy 147

5.8.3 Pricing Pattern Recognition 148
5.8.4 Case Studies 149
5.8.5 Research Summary 153

5.9 EXAMPLE RESEARCH 3: REINFORCEMENT LEARNING FOR
LOW-CARBON ENERGY HUB SCHEDULING 154

5.9.1 Introduction 155
5.9.2 System Model 157

5.9.2.1 Energy Hub Components 157
5.9.2.2 Technical Constraints 158
5.9.2.3 Carbon Emissions Tracing 160

5.9.3 Proposed Algorithm 161
5.9.3.1 Conditional Random Field for Elasticity Modelling 162
5.9.3.2 Reinforcement Learning 163

5.9.4 Numerical Results 165
5.9.4.1 Simulator 165
5.9.4.2 Evaluation of Model Performance 167
5.9.4.3 Evaluation of Cost and Carbon Reduction 169

5.9.5 Research Summary 171
5.10 EXAMPLE RESEARCH 4: ARTIFICIAL INTELLIGENCE FOR

ENERGY SYSTEMS SCHEDULING UNDER UNCERTAINTIES 172

5.10.1 Introduction 172
5.10.2 Data-Driven Approach in Addressing Uncertainties 176

5.10.2.1 Ideal Energy Dispatching 177
5.10.2.2 Practical Energy Dispatching 178
5.10.2.3 A Brief Revisit on DNN 180
5.10.2.4 Optimal Dispatching Model via DNN 180



xii ■ Contents

5.10.2.5 Day-Ahead Scheduling Model via DNN 181
5.10.2.6 Addressing Multiple Uncertainties via Deep Learning 183

5.10.3 Multi-Vector Energy System Implementations 184
5.10.3.1 A Case Study of Settlement Performance 186
5.10.3.2 A Case Study of 2017 UK Dataset 188
5.10.3.3 A Case Study of 2018 UK Dataset 189

BIBLIOGRAPHY 191

Chapter 6 ■ Implementation of Blockchain in Local Energy Markets 201

6.1 INTRODUCTION 201

6.2 BLOCKCHAIN ENABLING DECENTRALISED ENERGY MARKETS 202

6.2.1 Peer-to-Peer Energy Trading 203
6.2.2 Potential Applications of Blockchain Technologies 204
6.2.3 Comparison Remark 208

6.3 EXAMPLE RESEARCH 1: PEER-TO-PEER TRADING
INTEGRATING ENERGY AND CARBON MARKETS 210

6.3.1 Introduction 210
6.3.2 Trading Framework 212

6.3.2.1 Prosumer-Centric Trading 213
6.3.2.2 Microgrid-Trader-Centric Trading 214
6.3.2.3 Peer-to-Peer Trading Platform 215

6.3.3 Problem Formulation 215
6.3.3.1 Carbon Emissions Flow 216
6.3.3.2 Prosumer-Centric Algorithm 220
6.3.3.3 Microgrid-Trader-Centric Algorithm 224
6.3.3.4 Smart Contract-Based Auction Mechanism 227

6.3.4 Case Studies 231
6.3.4.1 Simulation Setup and Data Availability 231
6.3.4.2 Balancing Performances of Energy and Carbon

Allowance 235
6.3.4.3 Demonstration of Interface between Scheduling

Algorithms and Smart Contract 237
6.3.4.4 Demonstration of Smart Contract Execution 240

6.3.5 Research Summary 241



Contents ■ xiii

6.4 EXAMPLE RESEARCH 2: BLOCKCHAIN-SECURED
PEER-TO-PEER ENERGY TRADING 242

6.4.1 Introduction 243
6.4.2 System Model 245

6.4.2.1 Peer-to-Peer Trading Framework 245
6.4.2.2 Transaction Standard 247
6.4.2.3 Address Generation 248

6.4.3 Energy and Carbon Markets Coupling Theory 250
6.4.4 Case Studies 252
6.4.5 Evaluation of Decentralised Trading Scheme 252

6.4.5.1 Peer-to-Peer Trading 253
6.4.6 Research Summary 256

BIBLIOGRAPHY 257

Chapter 7 ■ Cyber Physical System Modelling for Energy Internet 263

7.1 REVIEW OF CYBER PHYSICAL SYSTEM MODELLING METHODS 263

7.1.1 ICT-Based CPS Modelling 264
7.1.1.1 ICT for CPS 264
7.1.1.2 Cyber Security for CPS 265

7.1.2 Energy System-Based CPS Modelling 268
7.1.3 Hybrid CPS Modelling 269

7.2 MULTI-VECTOR ENERGY SYSTEM 271

7.2.1 Coordination for Multi-Vector Energy System 271
7.2.1.1 Multi-Vector Energy System Modelling 271
7.2.1.2 MVES Coordination Modelling 281

7.2.2 Artificial Intelligence Enhancing Multi-Vector Energy System 285
7.2.2.1 Addressing Physical Constraints in Artificial

Intelligence Algorithms 285
7.2.2.2 Deep Learning Enhanced Multi-Vector Energy

System 290
7.2.3 Remarks of Challenges 294

BIBLIOGRAPHY 295



xiv ■ Contents

Section III Testbeds for Smart Energy Systems

Chapter 8 ■ Developing Testbeds for Smart Energy Systems 303

8.1 REVIEW OF ENERGY SYSTEMS TESTBEDS 303

8.1.1 Hardware-Based Designs 304
8.1.2 Software-Based Designs 304
8.1.3 Hybrid Designs 305
8.1.4 Remarks of Challenges 306

8.2 TESTBED DESIGN AND IMPLEMENTATION FOR ENERGY
SYSTEMS 307

8.2.1 ICT Implementation 308
8.2.1.1 Integration via Layered Architecture 308
8.2.1.2 Software-Defined Radio Implementations 310
8.2.1.3 Protocol Pool Method 311

8.2.2 Power System Implementation 313
8.2.2.1 Simulator-Based Implementation 313
8.2.2.2 Real-Time Simulations 315

8.2.3 Artificial Intelligence Integration 317
8.2.3.1 An Integration of Reinforcement Learning with the

Testbed 318
8.2.3.2 Remarks on the Integration of Artificial Intelligence 321

8.2.4 Interfacing Techniques 323
8.2.4.1 Software-Based Interfacing Techniques 324
8.2.4.2 Hardware-Based Interfacing Techniques 329

8.2.5 Remarks of Challenges 335
BIBLIOGRAPHY 336

Index 343



List of Figures

1.1 Smart energy system as a multi-vector integrated energy system. 4
1.2 Schematic illustration of the power vector in a smart energy system. 4

2.1 Approaches for solving optimisation problems. 14
2.2 Using a hyperplane to classify the dataset into two classes. 16
2.3 Example of finding the principle component in a two-dimensional space. 22
2.4 Example of the Eigenvector of a sample in the two-dimensional space. 24
2.5 Schematic illustration of the relationship between the ELBO and

logP (x|θ). 29
2.6 Schematic illustration of generating the probability density function

using the Gaussian mixture model. 32
2.7 Example of two Gaussian distributions in a two-dimensional space. 32
2.8 The Gaussian mixture model from the probabilistic graphical per-

spective. 33
2.9 Schematic illustration of the hidden Markov model. 38
2.10 Schematic illustration of using the forward algorithm to solve the

evaluation problem of the hidden Markov model. 40
2.11 Schematic illustration of solving the decoding problem of the hidden

Markov model. 43
2.12 Schematic illustration of the recursive relationship between δt+1 and

δt. 44
2.13 Architecture of neural networks. 45
2.14 Mechanism of the recurrent neural networks. 46
2.15 Mechanism of the long short-term memory of recurrent neural networks. 47
2.16 Architecture of convolutional neural networks. 48
2.17 Flowchart of reinforcement learning. 48

3.1 Schematic illustration of the Blockchain networks secured by the
SHA-256. 58

3.2 Example of a target for the block mining. 58

xv



xvi ■ List of Figures

3.3 Schematic illustration of the hash pointer and data structure of the
Blockchain. 59

3.4 Schematic illustration of the data structure inside a block. 60
3.5 Merkle proof for a light node to verify a transaction. 61
3.6 Schematic illustration for updating the UTXO with the proceeding

of transactions. 63
3.7 Blockchain forking due to the communication delay. 66
3.8 A set of six keys is structured as a digital tree. 70
3.9 A set of six keys is structured as a Patricia tree. 71
3.10 The data structure of a block in the format of the modified Merkle

Patricia trees. 71
3.11 Four key-value pairs are structured into a state tree. 72
3.12 Schematic illustration for updating the state tree when a new block

is generated. 73
3.13 Data structure of the transaction tree. 74
3.14 Producing a digest and searching elements of a set by using the bloom

filter. 75
3.15 Example of the virtual machine for deploying smart contracts. 81
3.16 Deploying the Ethereum smart contracts written in the virtual ma-

chine by using the Remix IDE [66]. 82

4.1 Schematic illustration of the capital flow in liberalised energy markets. 97
4.2 Schematic illustration of energy markets design towards the pro-

sumers era. 99
4.3 Benefits of the peer-to-peer energy trading from different temporal

dimensions. 100
4.4 Key regulatory barriers for the engagement of prosumers. 103
4.5 Principles for the demand-side policy design. 104
4.6 Comparison between carbon tax and emissions trading scheme from

economics perspective. 107
4.7 Flowchart of the contract for difference auction. 109
4.8 Flowchart of the capacity auction. 110
4.9 Schematic illustration of the non-physical trading of the electricity. 111
4.10 Transition towards future low-inertia power systems. 114
4.11 Relationship between the inertia and frequency, and corresponding

primary frequency response measures. 115
4.12 Comparison of frequency response between high-inertia power system

and low-inertia power system. 116



List of Figures ■ xvii

4.13 Challenges caused by the transition from the high-inertia power
system to low-inertia power system. 116

4.14 Time horizon for clearing the system fault after a disturbance. 117

5.1 The operation of energy markets and power grids. 133
5.2 Interaction of agents in the day-ahead scheduling. 134
5.3 Interaction of agents in the real-time scheduling. The generation and

consumption are dynamically matched in a real-time manner through
the load curtailment and generation curtailment performed by the
power system operators. 134

5.4 Architecture of the generation scheduling. This generation scheduling
is carried out through the power system operator agent, in which the
operational information is collected, before performing the schedul-
ing decisions and allocating to each generator. The day-ahead
scheduling aims for predictive generation dispatch and the real-time
scheduling performs corrections through comparing the day-
ahead schedules and real-time measurements. 136

5.5 Load profile of the day-ahead hourly scheduling. The x-axis is the time
step of the energy scheduling. The left y-axis is the power demand
with the unit of MW, and the right y-axis is the wholesale power
prices with the unit of GBP/MWh. 140

5.6 Load profile of the real-time scheduling. The x-axis is the time step
of the energy scheduling. The y-axis is the power with the unit of MW. 141

5.7 Schematic illustration of the proposed model and its implementation. 146
5.8 Schematic illustration of neural networks for pricing pattern recogni-

tion. 150
5.9 Variations of the train loss with the increase of epochs. 152
5.10 Learning process for electricity consumption at day 50, day 100, and

day 200 in (a), (b), and (c), respectively, with corresponding electricity
prices in (d), (e), and (f), respectively. 153

5.11 Comparison of the power output and carbon intensity of the bench-
mark in (a) and proposed model in (b). 154

5.12 Structure of the energy hub with electricity and natural gas networks. 157
5.13 Flowchart of the proposed conditional random field-based reinforce-

ment learning algorithm. 164
5.14 Schematic illustration of a four-bus medium voltage distribution

system. 166
5.15 Interactions between MATLAB®, Real-Time Digital Simulator, and

Data Acquisition and Actuator module. 167



xviii ■ List of Figures

5.16 Probability distribution of weighting factors of µt and λt,t−1 at each
interval for (a) µt with πe, (b) µt with πg, (c) λt,t−1 with πe, and
(d) λt,t−1 with πg. The x-axis represents action type and the y-axis
represents price interval. 169

5.17 Illustration of learning process for electricity generated by combined
heat and power in (a), (b), and (c), power exchange in (d), (e), and (f)
with electricity prices in (g), (h), and (i). The day number is indicated
at the top of each column. 170

5.18 Comparison of energy scheduling and carbon intensity for (a) Schedul-
ing from (22) and (b) proposed algorithm. 171

5.19 Example of real electricity load forecasting errors. 175
5.20 Example of real wind generation forecasting errors. 176
5.21 The architecture of the considered multi-vector energy system. 177
5.22 The proposed deep learning embedded multi-vector energy system

scheduling and dispatching scheme. 179
5.23 Electricity load forecasting errors at different days of the week and

times of the day. 186
5.24 The evaluation results with the data of Settlement 17 on 30 Wednes-

days across 2017. 187
5.25 Comparison results for the full April month (30 days) in 2017. 188
5.26 Comparison results according to settlements in whole year 2017. 189
5.27 Comparison results for the full April month (30 days) in 2018. 190
5.28 Comparison results according to settlements in whole year 2018. 190

6.1 Conceptual graph of peer-to-peer trading framework coupling energy
and carbon markets. 212

6.2 Architecture and information flows of the proposed framework for
peer-to-peer trading of energy and carbon allowance. 213

6.3 Schematic illustration for the distribution of the carbon emissions flow. 216
6.4 Schematic illustration of carbon emissions tracing for prosumers. 218
6.5 Overview of the testing environment for the blockchain-based peer-

to-peer trading framework. 232
6.6 Modified IEEE 37-bus distribution network. 232
6.7 Demand allocation for prosumers and microgrids in the modified

IEEE 37-bus distribution network. 233
6.8 Generation allocation for prosumers and microgrids in the modified

IEEE 37-bus distribution network. 234
6.9 Net power of the modified IEEE 37-bus distribution network. 236
6.10 Surplus of carbon allowance of the modified IEEE 37-bus distribution

network. 237



List of Figures ■ xix

6.11 Optimal energy scheduling and bidding prices obtained by prosumer-
centric algorithm. 238

6.12 Optimal bidding prices of energy buyers as inputs of smart contract. 239
6.13 Execution of smart contract-based auction on the peer-to-peer trading

platform. The black line is the execution of the energy trading, and
the dashed blue line is the execution of the carbon allowance trading. 241

6.14 Schematic illustration of the blockchain-based peer-to-peer energy
trading scheme. Prosumers directly communicate with each other to
exchange energy and carbon allowance. During each transaction, the
asset ownership in terms of both token and energy is exchanged af-
ter signing and broadcasting the encrypted trading outcomes to the
network. 245

6.15 Flowchart of procedures for generating address of an account. 249
6.16 The distributions of generation carbon emissions (a), transmission

and distribution carbon emissions (b), consumption carbon emissions
(c), net carbon emissions (d), carbon allowances (e), and compensa-
tion (f) for 11 prosumers.The x axes denote each half-hour settlement
period and y axes denote the number of peers or branches. 254

7.1 A typical MVES architecture. 272
7.2 Daily MVES operating cost results. 291
7.3 Monthly MVES operating cost results. 292
7.4 The EV’s hourly SOC results. 293
7.5 The EV’s hourly SOC results. 293

8.1 An illustration of energy system from a testbed design aspect. 308
8.2 An illustration of OSI and IEEE 802 reference models. 309
8.3 An illustration of spectrum sharing mechanism. 312
8.4 An illustration of the spectrum sharing protocol. 313
8.5 An example of the power system implementation in the RTDS. 314
8.6 An example of the PV implementation in the RTDS. 314
8.7 An example of the thermal energy system implementation in the RTDS. 316
8.8 An example of reinforcement learning algorithm for the testbed im-

plementation. 319
8.9 Experiments results of reinforcement learning algorithm on testbed. 320
8.10 An example of hardware-based interfacing technique with micro-

controllers. 333



Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


List of Tables

2.1 Latent variable to describe the probability of mixture Gaussian dis-
tributions 33

3.1 Example of information contained in a mined block [29] 64

4.1 Comparison between the carbon tax and emissions trading scheme 108

5.1 Comparison of game-theoretic models, stakeholders, and solution ap-
proaches in the field of energy scheduling 126

5.2 The comparison of scheduling objectives including the electricity bills,
carbon emissions, and profits 140

5.3 Selected parameters of the convolutional neural network 152
5.4 Parameters in the case studies 184
5.5 Scenario list 185

6.1 Comparison between the conventional centralised energy trading and
blockchain-based peer-to-peer energy trading 209

6.2 Multi-criteria evaluation of environmental, economic, and security
benefits for proposed fully decentralised peer-to-peer energy and car-
bon trading scheme and conventional centralised trading 253

6.3 Example of available bids and offers for one settlement period 255
6.4 Blockchain structure for peer-to-peer trading 256

7.1 A Communication Protocol layer view of the potential attacks and
countermeasures 267

8.1 Commonly used interfaces in the testbed design 331

xxi



Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


Foreword

Present energy systems are undergoing a radical transformation, driven by the ur-
gent need to address the climate change crisis and rapid development of information
and communication technologies. With the connection of more distributed energy re-
sources, the electrification of transportation and heating, and the increasingly flexible
demand enabled by smart meters and energy storage, the energy system is becoming
more complex and interconnected than ever before.

At the same time, we are witnessing sharp growth of energy data and revolutions
of advanced technologies, with artificial intelligence (AI) and Blockchain emerging as
two of the most transformative technologies of our time. AI is empowering machines
to learn rapidly from huge volumes of data and reason in ways that were once the
exclusive domain of human intelligence; while Blockchain is revolutionising the way we
store and share data, making it more secure, transparent, and efficient for processing
data.

The convergence of these two technologies has the potential to create a paradigm
shift in the energy sector, enabling the development of smart energy systems that
are more resilient, efficient, and sustainable. By leveraging the power of AI and
Blockchain technologies, we can create much more intelligent energy systems that
can anticipate and respond to fast-changing energy demands (e.g., due to electric
vehicle charging or extreme weather), optimise energy production and consumption
(e.g., local production and consumption in the form of prosumers and their energy
trading), and enable the integration of more renewable energy sources.

This book, titled Blockchain and Artificial Intelligence Technologies for Smart
Energy Systems, is a timely and comprehensive guide to the applications of AI and
Blockchain technologies to the energy system. It provides a detailed overview of the
latest developments in these two fields and their potential impact on the energy
system. The book begins by introducing the basic concepts of smart energy systems:
AI and Blockchain. It then goes on to examine the key challenges faced by the energy
system, and how AI and Blockchain can be used to address these challenges. Some
research examples are presented to showcase the role and impact of AI and Blockchain
technologies. The latest developed testbeds are summarised and explained to help
researchers accelerate their research and development of relevant technologies.

One of the key themes of the book is the emerging role of prosumers and their peer-
to-peer energy trading. The authors explore how Blockchain can be used to enable
intelligent and decentralised energy management systems that can optimise energy
generation and consumption, reduce energy waste and carbon emissions, and improve
the overall efficiency of the energy system. Another important theme of the book is
the role of AI for enabling smart multi-vector energy systems with high uncertainties.
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The authors examine how AI can be used to develop multi-agent tools and energy
hubs to manage the variability and intermittency of renewable energy generation,
and uncertainties in multiple energy vectors including transport and heat.

Throughout the book, the authors provide practical examples and case studies to
illustrate the potential applications of AI and Blockchain in the energy system. They
also discuss the regulatory implications of these technologies, and the challenges that
must be overcome to realise their full potential.

In conclusion, Blockchain and Artificial Intelligence Technologies for Smart En-
ergy Systems is an important and timely contribution to the literature on clean energy,
AI, and Blockchain technologies. It provides a comprehensive guide to the potential
applications of AI and Blockchain in the energy sector, and explores how these tech-
nologies can be used to create more sustainable and efficient energy systems. The
book is an essential read for anyone interested in the future of energy and the role of
AI and Blockchain technologies in creating a more sustainable world.



Preface

Since the Industrial Revolution, the economic growth of economic powers (e.g., the
UK and the USA) has been closely linked to their increasing energy demand. However,
this increase in energy demand has also given rise to the climate crisis, which poses a
threat to the safety of billions of people on the planet. The climate crisis is not limited
to global warming; it includes various alarming occurrences such as sea-level rise
resulting from melting glaciers, as well as more frequent extreme weather events like
heatwaves, floods, and wildfires. Examples of such extreme weather events include:
the 2020 wildfires in the western United States and Australia; the 2021 Henan floods
in China; the 2021 European floods that affected several countries, including Austria,
Germany, and Italy; and the 2022 storms in the UK.

Numerous countries have pledged to reduce greenhouse gas emissions to combat
climate change. For instance, the UK aims to reach net-zero greenhouse gas emissions
by 2050, while the EU has set the European Climate Law to achieve climate neutral-
ity by the same year. These objectives represent one of the most urgent challenges
for the coming decades, requiring significant reductions in greenhouse gas emissions
across all energy sectors and systems, including power, heating, and transport sec-
tors. The transport and heating sectors are especially challenging to decarbonise due
to complex socio-technical problems, such as cultural patterns of mobility and the
path-dependence of heat.

In the transport sector, millions of petrol and diesel vehicles are likely to be re-
placed with electric vehicles (EVs), powered by electricity from power systems. Many
people believe that increasing low-carbon and renewable energy generation in power
systems can reduce the majority of greenhouse gas emissions in this sector. However,
the intermittency of renewable energy generation can compromise power system secu-
rity, and uncoordinated EV charging could contribute to more power demand spikes
in distribution networks and rising energy bills for consumers. Therefore, data-driven
smart technologies are necessary to deliver precise and coordinated EV charging and
synergise with intermittent renewable energy to scale up the use of both EVs and
renewable energy to achieve the net-zero objective.

In the heating sector, heat production accounts for almost half of the total energy
demand in many countries, contributing significantly to greenhouse gas emissions.
Electrification of heat is one means of decarbonising heat demand, particularly when
solar panels or other renewable energy sources are installed. However, daily and sea-
sonal heat demand has the potential to disrupt electricity supplies if these loads are
added to the power system. Smart energy systems could maximise the efficiency of
such energy systems by coordinating heating demand in tandem with the available
renewable energy.
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Today’s transformative technologies, such as artificial intelligence (AI) and
Blockchain, have enormous potential to change businesses and transform entire in-
dustries. The energy system is probably the most important system that these smart
technologies will change, and they are believed to play a vital role in stopping climate
change and saving lives in the coming decades. This book aims to introduce key smart
energy technologies, focusing on AI and Blockchain technologies.

Part I will present some fundamentals of smart energy systems, AI, and
Blockchain. Part II will focus on the applications of these technologies in smart
energy systems, such as peer-to-peer energy trading, Energy Internet, smart local
energy market, multi-vector energy systems, and cyber-physical systems. Part III
will introduce our latest efforts on building laboratory testbeds of integrating both
software and hardware for testing smart energy technologies.

DISCLAIMER

Due to the time limit, there might be errors or typos in this book, but as authors we
tried our best to correct them. If you found any errors or typos, please feel free to
contact us.

Prof. Hongjian Sun, at Durham, UK
26 February 2023
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C H A P T E R 1

Smart Energy Systems

I n this chapter, we will be introducing the definition and fundamental components
of smart energy systems. Section 1.1 will define smart energy systems and outline

their advantages. Section 1.2 will provide a brief overview of the role of renewable
energy sources in facilitating clean energy supply and the transition to net-zero emis-
sions. In Section 1.3, we will describe the role of energy storage systems in addressing
the intermittency of renewable energy sources and enhancing the local energy bal-
ance. We will then discuss smart metering, demand-side management, and home
energy management systems in Sections 1.4 through 1.6, respectively. Finally, Sec-
tion 1.7 will summarise the key points of this chapter and provide a vision about
the role of artificial intelligence (AI) and Blockchain technologies in smart energy
systems.

1.1 INTRODUCTION

Smart energy system could be defined as a multi-vector and integrated energy system
(including power, heat/thermal, hydrogen and gas vectors) combined with energy
storage technologies and empowered by information and communication technologies
(ICT) to realise flexible and efficient operations of the whole system [1]. An example
of smart energy systems is shown in Figure 1.1.

We are currently experiencing a transformation in the way energy systems work.
In a conventional energy system, energy flows in one direction, generated by large-
scale centralised generation stations, transmitted by the transmission and distribution
networks, and delivered to passive energy consumers. These consumers are only able
to receive energy from the energy networks, and they pay their energy bills according
to the retail price as price takers.

However, with the transition towards a smart energy system, numerous dis-
tributed energy generation sources, energy storage devices, and electric vehicles are
being added to the energy network, particularly on the demand-side. This means
that now energy flows in both directions, either from the supply side to the demand-
side or within the demand-side [2]. Moreover, passive consumers are now becoming
active prosumers who generate clean energy locally to meet their energy demand or
share energy with others. This transformation has created an opportunity for en-
ergy consumers to actively participate in the energy market and contribute to a more
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Figure 1.1 Smart energy system as a multi-vector integrated energy system. Multiple
energy vectors include power, heat, hydrogen, and gas that aim to realise a low-
carbon, flexible, and resilient energy system.

sustainable energy future [3]. Figure 1.2 presents a schematic illustration of the power
vector in a smart energy system.

The main advantages of smart energy systems can be summarised as follows:

• Smart energy systems use ICT [4] to enable the real-time bidirectional infor-
mation flows, which ensures timely monitoring of dynamic system states and

Figure 1.2 Schematic illustration of the power vector in a smart energy system. Both
power and information flow bidirectionally, with active demand-side engagement.
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supply–demand balance of energy. This guarantees system stability and security
of supply.

• The accurate prediction and optimal dispatch of energy generation provide a
solution for the intermittent issues of renewable energy sources. Hence, smart
energy systems enhance the penetration of renewable energy so as to facilitate
the net-zero energy transition [5].

• Smart energy systems enable the local energy supply–demand balance and re-
duce the transmission and distribution losses through integrating innovative
technologies, such as the distributed generation, demand-side management, and
peer-to-peer energy trading [6].

1.2 RENEWABLE ENERGY SOURCES

Renewable energy sources are derived from natural resources that are replenished
within a reasonable time period [7]. These include wind, solar, hydro, geothermal, and
biomass energy [8]. For power systems, as alternative energy sources to fossil fuels, the
increasing penetration of renewable energy sources contributes to the enhanced energy
security and improved power quality whilst reducing carbon emissions and operating
costs [9]. For distribution networks, the deployment of distributed renewable energy
sources can reduce carbon emissions and transmission losses, and improve the local
energy supply–demand balance [10].

Nonetheless, the intermittency of renewable energy sources caused by weather
conditions presents a challenge for their integration into power systems [11]. Smart
energy systems are the key to overcoming this challenge, since the advanced commu-
nication and control infrastructures along with energy storage systems could enable
the renewable energy sources to be optimally dispatched.

1.3 ENERGY STORAGE

The pressure of increasing intermittent renewable energy sources and growing energy
demand drives the development of energy storage technologies [12]. These technolo-
gies include chemical energy storage, thermal energy storage, hydro pump energy
storage, compressed air energy storage, flywheel energy storage, and superconduct-
ing magnetic energy storage [13]. They can flexibly “absorb” or “release” energy as
and when required with the benefits of enhancing the system stability and the se-
curity of supply [14]. Typically energy storage technologies can reduce the need for
investing in additional generation capacities, and contribute to financial savings and
carbon emissions mitigation from conventional power generation [15]. The deploy-
ment of energy storage devices can also reduce the costs of updating transmission
and distribution networks.
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1.4 SMART METERING

Smart metering is an enabling technology for the demand-side management, optimal
dispatch of distributed renewable energy sources, and peer-to-peer energy trading.
With the smart meters installed, consumers can self-read the meter and control their
energy usage, so as to adopt energy-efficient measures and save energy bills [30].
Smart metering (including smart meters and their communication and data stor-
age infrastructures) facilitates distributed renewable energy sources to be integrated
into power systems by providing an accurate forecast and optimal energy schedul-
ing. In addition, smart metering is the key to the carbon emissions mitigation by
changing consumption behaviours. From the short-term perspective, consumers can
be incentivised by dynamic pricing to save their electricity bills, e.g., by using en-
ergy from energy storage devices when the electricity price is relatively high. From the
long-term perspective, consumers can cost-effectively invest renewable energy sources
and/or manage energy storage devices.

1.5 DEMAND-SIDE MANAGEMENT

As one of the key smart technologies, the demand-side management is defined as tech-
nologies of reshaping energy consumption behaviours of consumers through monetary
incentives or educational programmes, in order to make power grid operations more
reliable and cost-effective [16]. Traditionally power grids are designed for meeting
the peak demand, thus leading to generation units often under-utilised with high
operational costs. To make future power systems more affordable, the demand-side
management is needed to mitigate and modify peak demand without the need of
enhancing power networks, typically reducing the peak-to-average ratio of the de-
mand. Recently the demand-side management is also used for dynamically balancing
supply and demand to accelerate the adoption of renewable energy sources [17]. The
strategies for delivering the demand-side management can be categorised as follows:

• Energy efficiency: Consumers can deliver the same tasks with lower energy
demand by improving the energy efficiency of their loads [18].

• Demand response: The demand response refers to strategically reshaping con-
sumption behaviours in response to the incentive of pricing signals [19]. The
strategies of the demand response include curtailing energy demand during peak
time periods and shifting energy demand from peak time periods to off-peak
time periods, e.g., midnight or weekends [20].

• Dynamic demand: The operating cycles of loads can be optimally advanced
or postponed by a few seconds or minutes without disturbing consumers, e.g.,
heat pumps, so as to increase the diversity factor and reduce the critical power
mismatch for power systems [21].

Generally demand-side management can be divided into two different approaches:
incentive-based demand-side management and price-based demand-side management.
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The former one includes the direct load control, interruptible service, and demand-
side bidding. They are designed for engaging with different types of consumers. The
direct load control is typically offered to residential or small commercial customers
who have some flexible loads that can be turned on/off given a short notice [22].
Examples of these flexible loads are air conditioner, water heater, and space heat-
ing which can tolerate inaccurate operation time to some degree. The interruptible
services target large industrial or commercial energy consumers whose energy curtail-
ment has huge impacts on the peak-to-average ratio and system contingency mitiga-
tion [23]. As a reward, they can be offered with bill/rate discounts for the retail tariff
or free credits. However, penalties could be imposed if they fail to respond to the
curtailment request in the predefine time period. Demand-side bidding (buy-back) is
a mechanism to encourage the consumers’ participation in energy markets by using
their potentially curtailed energy consumption [24]. It can be offered to either large
energy consumers or aggregators of many small energy consumers. These large energy
consumers or aggregators can offer bids for the curtailment based on wholesale elec-
tricity market prices, generating additional incomes, thus reducing their total energy
bills [25].

The price-based demand-side management focuses on modifying electricity prices
to reflect the real system cost and operational status. It is believed that electricity
prices change energy consumers’ consumption patterns, i.e., there is more consump-
tion if consumers are offered lower electricity prices and vice versa. The time-of-use
pricing means that the electricity prices are different depending on when electricity is
consumed [26], e.g., UK Economy-7 tariff offers cheap price for off-peak hours [27]. It
is usually predefined on a day-ahead basis or even a month-ahead basis. The real-time
pricing typically has different electricity prices for every hour, by linking prices with
the dynamic balancing status of supply and demand in the wholesale market [28].
Consumers can be notified in a day-ahead manner, hour-ahead manner, or even 15-
minutes-ahead manner. The critical time pricing is based on the time-of-use pricing,
but added with a much higher price called as the critical peak price during a system
contingency time period [29].

1.6 HOME ENERGY MANAGEMENT SYSTEM

Smart technologies can enhance the efficiency of home appliances by forming a smart
home energy management system. It allows the consumers to monitor their energy
generation and energy consumption, with devices such as roof-top solar panels and
smart appliances, and to use energy in a cost-effective manner [31]. The home en-
ergy management systems consist of both the hardware and software elements. The
hardware elements include sensors, actuators, controllers, and the communication net-
work linking the smart appliances and consumers. The software elements can analyse
historical consumption behaviours and generate optimal control functions based on
users’ preferences. For instance, receiving real-time pricing signals, the home energy
management systems can help consumers strategically shift or curtail their loads as
a kind of demand responses. Basic functions of home energy management systems
include:
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• Monitoring the home energy consumption at different granularities and time
intervals, such as total home energy consumption vs. individual appliance usage
within 1 minute, 1 hour, or 1 day.

• Monitoring environmental parameters, e.g., temperature and humidity, which
can be used for setting home energy management strategies.

• Management of home appliances to meet consumers’ needs through the auto-
matic or manual control of appliances.

• Supporting the integration of renewable energy sources and energy storage de-
vices.

• Interacting with external stakeholders of smart energy systems to realise ad-
vanced features, such as demand-side management or peer-to-peer energy trad-
ing.

1.7 CHAPTER SUMMARY

The smart energy system has become increasingly important in recent years due to
the need to address climate change crisis and to achieve the Net Zero goal. This sys-
tem can use a range of innovative technologies to optimise energy consumption and
promote the use of renewable energy sources. One of the key benefits of the smart
energy system is its ability to facilitate bidirectional communication between energy
systems, distributed generators, and consumers. This communication allows for the
optimisation of distributed generator operations and the active engagement of con-
sumers. For example, smart meters can provide consumers with real-time information
about their energy consumption, enabling them to adjust their behaviour and reduce
their energy usage/bills and carbon emission.

From a controlling perspective, the smart energy system enables energy market
participants to work together to achieve the overall benefits of whole systems. By co-
operating, market participants can save energy bills for consumers, increase operating
profits for generators, reduce carbon emissions, and enhance the security of supply.
For instance, demand-side management programs can incentivise consumers to reduce
their energy consumption during peak time, reducing the need for additional genera-
tion capacity and lowering costs. This cooperation between market participants can
also help to optimise the use of renewable energy sources and energy storage devices,
ensuring that energy is supplied when and where it is needed most.

Looking forward, the integration of AI and Blockchain technologies into the energy
system is expected to further enhance its intelligence, efficiency, and effectiveness. AI
can support the predictability, responsiveness, interoperability, and automation of
the smart energy system, enabling it to respond more quickly and effectively to quick
changes in energy demand and supply. Meanwhile, Blockchain can support secure
data sharing and peer-to-peer energy trading, leading to reduced energy bills for con-
sumers and increased integration of renewable energy resources. Ultimately, the inte-
gration of AI and Blockchain technologies into the energy system is expected to play
a critical role in achieving the Net Zero goal and promoting sustainable development.
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tion to net-zero emissions: Lessons from exploring the differences between france
and sweden,” Energy Policy, vol. 139, p. 111358, 2020.

[6] W. Hua, J. Jiang, H. Sun, and J. Wu, “A blockchain based peer-to-peer trading
framework integrating energy and carbon markets,” Applied Energy, vol. 279,
p. 115539, 2020.

[7] G. Boyle, Peake, Stephen. Renewable energy-power for a sustainable future. No.
Ed. 4. Oxford university press, 2018.

[8] J. A. Turner, “A realizable renewable energy future,” Science, vol. 285, no. 5428,
pp. 687–689, 1999.

[9] E. Heylen, G. Deconinck, and D. Van Hertem, “Review and classification of
reliability indicators for power systems with a high share of renewable energy
sources,” Renewable and Sustainable Energy Reviews, vol. 97, pp. 554–568, 2018.

[10] B. Muruganantham, R. Gnanadass, and N. Padhy, “Challenges with renewable
energy sources and storage in practical distribution systems,” Renewable and
Sustainable Energy Reviews, vol. 73, pp. 125–134, 2017.

[11] W. Hua, J. Jiang, H. Sun, A. M. Tonello, M. Qadrdan, and J. Wu, “Data-
driven prosumer-centric energy scheduling using convolutional neural networks,”
Applied Energy, vol. 308, p. 118361, 2022.

[12] J. A. McDowall, “Status and outlook of the energy storage market,” in 2007
IEEE Power Engineering Society General Meeting. IEEE, 2007, pp. 1–3.

[13] M. Hannan, M. Faisal, P. Jern Ker, R. Begum, Z. Dong, and C. Zhang, “Review
of optimal methods and algorithms for sizing energy storage systems to achieve
decarbonization in microgrid applications,” Renewable and Sustainable Energy
Reviews, vol. 131, p. 110022, 2020.



10 ■ Blockchain and Artificial Intelligence Technologies for Smart Energy Systems

[14] A. Nasiri, “Integrating energy storage with renewable energy systems,” in 2008
34th Annual Conference of IEEE Industrial Electronics. IEEE, 2008, pp. 17–18.

[15] W. Seward, W. Hua, and M. Qadrdan, “Electricity storage in local energy sys-
tems,” Microgrids and Local Energy Systems, vol. 1, p. 127, 2021.

[16] C. W. Gellings, “The concept of demand-side management for electric utilities,”
Proceedings of the IEEE, vol. 73, no. 10, pp. 1468–1470, 1985.

[17] D. Groppi, A. Pfeifer, D. A. Garcia, G. Krajačić, and N. Duić, “A review on
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C H A P T E R 2

Theories of Artificial
Intelligence

I n this chapter, we will be introducing the theories of the most common AI ap-
proaches related to the applications in energy systems. The focus of this chapter is

on the energy-related artificial intelligence (AI) approaches, other AI approaches will
not be covered in this chapter. In the meantime, we will try to simplify the illustra-
tions of these theories. For detailed knowledge of the AI, readers are recommended
to read refs.[1, 2, 3]. Section 2.1 introduces the backgrounds and development of the
AI. Section 2.2 discusses the optimisation problems in energy systems and solution
approaches. Section 2.3 describe how to use the game theory to model the decision-
making and interactions among stakeholders in energy systems. The support vector
machine (SVM) is detailed in Section 2.4 in solving the classification problems for
a given dataset. Section 2.5 discusses how to reduce the dimensionality of a high-
dimensional dataset by using the principle component analysis (PCA). In Section 2.6,
expectation maximisation (EM) algorithm is introduced to solve the maximum likeli-
hood estimation (MLE) problems which are used to estimate the density for a dataset.
The Gaussian mixture model (GMM) is introduced in Section 2.7 for estimating the
probability density function. Section 2.8 discusses the variational inference which is
used to approximate intractable integrals. Section 2.9 describes the implementations
of the hidden Markov model (HMM) on the problems of the evaluation, learning, and
decoding. Section 2.10 discusses typical architectures of neural networks, and Section
2.11 introduces the reinforcement learning. Section 2.12 concludes this chapter.

2.1 INTRODUCTION

AI could be understood as machines that possess human-like intelligence to act, pre-
dict, and make decisions by learning from data [4]. Such intelligence relies on the
availability of data and the designed algorithm (such as a programme or a rule). The
algorithm processes data to solve problems, typically by identifying certain patterns
to decide what to do or predict future outcomes. This procedure seems to give ma-
chines an ability to learn from data, and such an ability could significantly improve
over time as the data volume increases. In other words, the more data machines get
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Figure 2.1 Approaches for solving optimisation problems, categorised into program-
ming techniques and heuristic algorithms.

to learn from, the smarter machines become. Like human, AI could have a range of
human-like abilities, such as seeing like face recognition in payment systems or smart
phones, speaking like Alexa, playing games like AlphaGo, and chatting like Chat-
GPT. This book will focus on discussing how the AI could help power systems, or
broadly energy systems, to intelligently control relevant assets and make intelligent
decisions.

2.2 OPTIMISATION

The optimisation is an essential approach for energy systems in terms of planning,
scheduling, and dynamic responses. Under optimisation problems, the objectives of
stakeholders in energy systems, e.g., generators, consumers, prosumers, policy makers,
power system operators, and market operators, are modelled by predefined formula-
tions and parameters. Solving optimisation problems in energy systems is often con-
strained by physical limits, e.g., capacities, operating conditions, power rates, ramp
rates, voltage/current limits, and security restrictions. By solving the optimisation
problems, optimal decisions are yielded, such as optimal size of generation infras-
tructures [5], optimal control strategies on controllable power units [6], and optimal
pricing which reduces peak energy demand [7].

The optimisation approaches can be categorised into programming techniques
and heuristic algorithms as presented in Figure 2.1.

The programming techniques consist of the linear programming, non-linear pro-
gramming, integer linear programming, and mixed integer linear programming. Lin-
ear programming is defined as an optimisation problem in which both the objective
functions and constraints are the linear functions of decision variables [8]. By con-
trast, non-linear programming is defined as an optimisation problem in which at least
one objective function or constraint is non-linear function of decision variables [9].
Whereas for the integer linear programming problems, only integers, including binary
values, can be used as decision variables [10]. For the mixed integer linear program-
ming problems, both integers and non-integers are used as decision variables [11].

The heuristic algorithms consist of particle swarm algorithm, genetic algorithm,
artificial immune algorithm, and other heuristic algorithms. These algorithms are
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primarily used to solve the non-linear programming problems through iteratively
searching from the entire solution space which is defined by the constraints of the
optimisation problems. The particle swarm algorithm [12] searches from the solution
space consisting of particles and moves particles within the space according to the
predefined functions which describe the position and velocity of particles, in order to
find the optimal solutions. The movement of particles is determined by both the local
best known position and global best known position in the searching space. All parti-
cles ultimately move towards the best solutions. Learning from the Darwin’s Theory
of Evolution, the genetic algorithm randomly generates a population of candidate
solutions within the solution space. Each generated population is defined as a gen-
eration [13]. The value of objective functions for every individual in the population
is evaluated and defined as the fitness. After evaluating the fitness for all individ-
uals, most fit individuals are selected and mutated to form a new generation. The
population is iteratively evolved towards the best solution in solving the optimisation
problems. In the artificial immune algorithm [14], a population of candidate solutions
to an optimisation problem is randomly generated, which is similar to the generation
of population of the genetic algorithm. The generated population of the artificial im-
mune algorithm is defined as the antigens. The value of objective functions for every
antigen in the population is evaluated and defined as the antibody. The antigens are
iteratively cloned towards the best solutions.

2.3 GAME THEORY

The game theory serves as an analytical tool for modelling the decision-making
and interactions of stakeholders in energy systems. Both cooperative game and non-
cooperative game have been implemented into the field of energy systems. The coop-
erative game enables each stakeholder to at least gain interests through participating
in the game instead of acting independently [15]. For the non-cooperative game, each
stakeholder seeks to maximise its own interests and ultimately all stakeholders reach
to an equilibrium through iterative interactions [16].

Cournot game and Stackelberg game are two classic game-theoretic models for
analysing decision-making and interactions of stakeholders in energy systems. The
Cournot game describes that stakeholders provide homogeneous products, e.g., elec-
tricity, and compete on the amount of products by making individual decisions inde-
pendently and simultaneously [17]. Whereas, the Stackelberg game is a hierarchical
two-level or multi-level sequential decision-making process [18]. For the two-level
decision-making, stakeholders are categorised into the leader level which make de-
cisions in the first place and the follower level which make responding decisions af-
ter receiving decisions from leaders. For the multi-level decision-making, after each
level of followers make responding decisions, they become a leader. This sequential
decision-making continues until the last level of followers.

An example of the two-level Stackelberg game in energy systems is that the policy
makers (as the leader) determine policy measures in the first place, e.g., carbon pricing
or renewable regulations. Receiving the policy signals, generators and consumers (i.e.,
the followers) make responding decisions, e.g., investing in low-carbon generators or
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Figure 2.2 Using a hyperplane to classify the dataset into two classes. The hyperplane
is denoted as (wTxi + b). The figure on the left hand side is an accurate classification
whereas the figure on the right hand side is an inaccurate classification. The dashed
line indicates the maximum distance between the hyperplane and the closest data
point.

reshaping consumption behaviours (readers are referred to [19]). Another example
for the multi-level Stackelberg game is when in the energy markets, the policy maker
(as the leader) charges the carbon tax from generators, the generators (as the first
follower) would increase wholesale prices responding to the increase of generating
costs caused by the increased carbon tax. The increase of wholesale prices would
cause the increase of retail prices by energy suppliers (i.e., the second follower), which
results in consumers (i.e., the last follower) changing their consumption behaviours
for reducing the electricity bills as responses (readers are referred to [20]).

2.4 SUPPORT VECTOR MACHINE

As a type of the supervised learning model, the SVM is used for classifying the
training dataset. For a training dataset containing N data points as{

(xi, yi) |Ni=1, xi ∈ Rp, yi ∈ {1,−1}
}
, (2.1)

where xi is the sample i of the dataset, i.e., the training inputs, and yi is a binary
value indicating the class to which the point xi belongs, i.e., the training labels.

The aim of the SVM is to find a hyperplane, denoted as
(
wTxi + b

)
, to classify

the datasets. As shown in Figure 2.2, the figure on the left hand side is an accurate
classification whereas the figure on the right hand side is an inaccurate classification.
Hence, if the data point that is closest to the hyperplane, in each category has the
maximum distance to the hyperplane, as indicated by the dashed lines in Figure 2.2,
the hyperplane is the best one to classify the dataset.
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Let a margin function describe the distance between the hyperplane to the closest
data point as

fmargin (w, b) := min
w,b

l (w, b, xi) ,∀i = 1, ..., N, (2.2)

where fmargin (·) is the margin function to measure the distance between the hyper-
plane and the closest data point, w is the weight of the hyperplane, b is the bias of
the hyperplane, and l (·) is the distance function to measure the distance between
the hyperplane and the data point xi which is quantified by

l (w, b, xi) = 1
∥w∥

·
∣∣∣wTxi + b

∣∣∣ . (2.3)

A classifier can be mathematically described as{
wTxi + b > 0, yi = 1,
wTxi + b < 0, yi = −1, ∀ i = 1, ..., N. (2.4)

The hyperplane (wTxi + b) divides a group of data samples xi into two classes: one
is indicated by yi = 1 and another is indicated by yi = −1. Since (wTxi + b) and yi

have the same sign, Equation (2.4) can be simplified as:

yi ·
(
wTxi + b

)
> 0,∀ i = 1, ..., N. (2.5)

Therefore, the SVM is a classifier which seeks to find the maximum margin as

max
w,b

fmargin(w, b), (2.6)

s.t.

yi ·
(
wTxi + b

)
> 0,∀ i = 1, ..., N. (2.7)

Considering Equation (2.3), we have

max
w,b

fmargin(w, b)

= max
w,b

min
i

1
∥w∥

·
∣∣∣wTxi + b

∣∣∣
= max

w,b
min

i

1
∥w∥

· yi ·
(
wTxi + b

)
= max

w,b

1
∥w∥

min
i
yi ·

(
wTxi + b

)
.

(2.8)

s.t.

yi ·
(
wTxi + b

)
> 0,∀ i = 1, ..., N. (2.9)

Given the constraint yi ·
(
wTxi + b

)
> 0, there exists a γ > 0 to let mini yi ·(

wTxi + b
)

= γ, i.e., the margin (the hyperplane to the closest data point) equals
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to γ. Hence for all data points, their distances to the hyperplane are larger than or
equal to γ as

yi ·
(
wTxi + b

)
≥ γ. (2.10)

Equation (2.8) can be further simplified as:

max
w,b

γ

∥w∥
(2.11)

s.t.

yi ·
(
wTxi + b

)
> γ, ∀ i = 1, ..., N. (2.12)

It is noted that when w and b are scaled to (λ ·w) and (λ · b), respectively, γ will be
scaled to (λ · γ), which results in an equivalent optimisation problem that does not
affect the results. For simplicity, let γ=1. In addition, the objective function can be
written in the minimisation form as:

max
w,b

1
∥w∥

≡ min
w,b

1
2∥w∥

= min
w,b

1
2w

Tw.

(2.13)

Therefore, the SVM approach can be described as solving an optimisation problem
as

min
w,b

1
2w

Tw (2.14)

s.t.

yi ·
(
wTxi + b

)
> 1,∀ i = 1, ..., N. (2.15)

Remark: In addition to the SVM, there are other classification approaches. These
approaches can be categorised into the hard margin and soft margin. A primary
difference is that for the hard margin, yi ∈ {0, 1}; whereas for the soft margin, yi ∈
[0, 1]. The hard margin includes the linear discriminant analysis [21] and perceptron
[22]. The soft margin includes the generative model [23], e.g., Gaussian discriminant
analysis [24], and discriminative model [25] such as logistic regression [26].

2.5 DIMENSIONALITY REDUCTION

This section introduces the dimensionality reduction. The dimensionality reduction
is used in the machine learning to address the issue of overfitting, which occurs when
a statistical model fits exactly against its training data [27]. The common solutions
to address the overfitting issues include: (1) increasing the data volume, (2) regu-
larization, and (3) dimensionality reduction. The motivation of the dimensionality
reduction is the curse of dimensionality [28] which is the direct reason of the overfit-
ting issue.
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Let’s look at the curse of dimensionality. From the mathematical perspective, let
us take a simple example of a feature represented by a binary value; the required
data to accurately estimate the feature space increases exponentially by two. For
more complicated features, much more data is required to accurately estimate the
feature spaces.

From the geometric perspective, we consider a hypercube and suprasphere with
the same diameter:

• In two-dimension, the hypercube is a square with the area of 1 and the supra-
sphere is a circle with the area of π · 0.52.

• In three-dimension, the hypercube is a cube with the volume of 1 and the
suprasphere is a sphere with the volume of 4

3 · 0.53.

Therefore, we can use a general formula to represent the volume of the suprasphere
as:

Vs = k · 0.5d, (2.16)

where Vs is the volume of the suprasphere, k is the coefficient, and d is the dimension
of the suprasphere. By contrast, the volume of the hypercube remains 1 irrespective
of the increase of the dimension. When the dimension approaches to infinity, i.e.,
d → +∞, the volume of the suprasphere would approach to 0. This means that in
the high-dimensional space, the suprasphere is empty and the samples are distributed
in the space between the outer of suprasphere and inner of hypercube. This results
in the difficulty of the classification due to the sparsity and heterogeneity of samples.

The approaches of the dimensionality reduction include (1) feature selection, (2)
linear dimensionality reduction, and (3) non-linear dimensionality reduction. The lin-
ear dimensionality reduction includes PCA [29] and multi-dimensional scaling [30].
The non-linear dimensionality reduction includes Isomap [31] and locally linear em-
bedding [32]. The book here takes PCA as a typical approach of the dimensionality
reduction.

2.5.1 Probabilistic Fundamental

To facilitate the illustration of PCA, this subsection discusses how to represent the
mean and covariance of samples in the matrix format. Let n denote the index of
samples and p denote the dimensionality of samples. The matrix of samples can be
represented as:

X = (x1,x2, ...,xN )T =


xT

1
xT

2
...

xT
N

 =


x11 x12 ... x1p

x21 x22 ... x2p
...

... . . . ...
xN1 xN2 ... xNp


N×p

,

xi ∈ Rp, i = 1, 2, ..., N,

(2.17)
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For the one-dimensional samples, the mean and covariance of samples can be
defined by the Equations (2.18) and (2.19), respectively.

X̄ = 1
N

N∑
i=1

xi, (2.18)

S = 1
N

N∑
i=1

(
xi − X̄

)2
. (2.19)

For the p-dimensional samples, the mean and covariance of samples can be defined
by the Equations (2.20) and (2.21), respectively.

X̄p×1 = 1
N

N∑
i=1

xi, (2.20)

Sp×p = 1
N

N∑
i=1

(
xi − X̄

) (
xi − X̄

)T
. (2.21)

Let IN denote a N -dimensional unit column vector. Based on the Equation (2.17),
the Equations (2.20) and (2.21) can be expressed in the matrix format as:

X̄ = 1
N

(x1,x2, ...,xN ) IN = 1
N
XT IN , (2.22)

Sp×p = 1
N

(
x1 − X̄, x2 − X̄, ..., xN − X̄

)
·


(
x1 − X̄

)T(
x2 − X̄

)T

...(
xN − X̄

)T



= 1
N

[
(x1, x2, ..., xN ) −

(
X̄, X̄, ..., X̄

)]
·


(
x1 − X̄

)T(
x2 − X̄

)T

...(
xN − X̄

)T



= 1
N

(
XT − X̄IT

N

)
·


(
x1 − X̄

)T(
x2 − X̄

)T

...(
xN − X̄

)T



= 1
N

(
XT − 1

N
XT IN IT

N

)
·


(
x1 − X̄

)T(
x2 − X̄

)T

...(
xN − X̄

)T


= 1

N
XT

(
IN − 1

N
IN IT

N

)
·
(

IN − 1
N

IN IT
N

)T

X.

(2.23)
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The term XT
(
IN − 1

N INI
T
N

)
is defined as the centring matrix and is denoted as

H. Hence, the Equation (2.23) can be rewritten as:

Sp×p = 1
N
XTH ·HTX. (2.24)

The function of the centring matrix is to subtract mean value in every dimension,
so that the samples are distributed around the origin, with the following properties:

• Property 1 : The transposition of H is itself as

HT = (IN − 1
N
INI

T
N ) = H (2.25)

• Property 2 : The product of H is itself as

H2 = (IN − 1
N
INI

T
N )(IN − 1

N
INI

T
N )

= IN − 2
N
INI

T
N − 1

N2 INI
T
NINI

T
N

= IN − 2
N
IN×N + 1

N2 IN×NIN×N

= IN − ( 2
N

)N×N + 1
N2NN×N

= IN − ( 2
N

)N×N + ( 1
N

)N×N

= IN − ( 1
N

)N×N

= IN − 1
N
IN×N = H,

(2.26)

where IN×N is an N -dimensional unit square matrix. From this property, we
have:

Sp×p = 1
N
XTHX . (2.27)

2.5.2 Principal Component Analysis

PCA aims to transform a set of linear dependent variables into a set of linear in-
dependent variables by using the orthogonal transformation, i.e., reconstructing the
original feature space [33]. For instance, the variables of an energy consumer include
location, energy supplier, energy demand, retail electricity price, and wholesale elec-
tricity price. There is correlation between the retail electricity price and wholesale
electricity price. PCA can reconstruct the original feature space for transforming
the retail electricity price and wholesale electricity price to be linearly independent.
Reconstructing the original feature space is achieved by the maximum projection
variance or minimum cost of reconstructing.

As shown in Figure 2.3, we have a set of samples in a two-dimensional space
with projections from various directions, e.g., projection 1 and projection 2. The
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Figure 2.3 Example of finding the principle component in the two-dimensional space.
Projection 1 and projection 2 are two instantiated projections of data samples, in
which the projection 1 has the most dispersed distribution that the principle compo-
nent analysis aims to find, since the data samples have the maximum variance from
this projection. The projection 1 is defined as the principle component.

projection 1 has the most dispersed distribution that PCA aims to find. At this
projection, these samples have the maximum variance. This projection is defined as
the principal component. If we want to reduce the dimensionality to q dimensions,
we only need to find the first q principle components. The variance represents how
much features the data can cover. Hence, finding the maximum projection variance
means covering information as much as possible after the projections. By contrast,
if all the projections of samples concentrate on a crowded region with overlap, the
costs of reconstructing from projections to the original coordination are large. PCA
also aims to find the projection with the minimum cost of the reconstitution.

2.5.3 Maximum Projection Variance

We firstly think about how to mathematically represent the maximum projection
variance. Assume a sample xi normalised by the mean X̄ as (xi − X̄). Given a unit
vector ∥u1∥=1, the projection of (xi − X̄) on the unit vector u1 is the dot product
of (xi − X̄) and u1 as (

xi − X̄
)

· u1

=
∥∥∥xi − X̄

∥∥∥ · ∥u1∥ · cos θ

=
∥∥∥xi − X̄

∥∥∥ · cos θ

=
(
xi − X̄

)T
u1,

(2.28)

s.t.
uT

1 u1 = 1. (2.29)
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Therefore, for N samples, the projection of
(
xi − X̄

)
on u1 can be calculated by

the square mean length as

J = 1
N

N∑
i=1

[(
xi − X̄

)T
u1

]2
,

= uT
1

[
1
N

N∑
i=1

(
xi − X̄

) (
xi − X̄

)T
]

u1,

(2.30)

where J is the projection of
(
xi − X̄

)
on u1.

With the Equation (2.21), the Equation (2.30) can be written as:

J = uT
1 Su1. (2.31)

Therefore, the problem of finding the maximum projection variance can be ex-
pressed as an optimisation problem as:

u∗
1 = arg max

u1
uT

1 Su1, (2.32)

s.t.
uT

1 u1 = 1. (2.33)
This optimisation problem can be solved by the Lagrange multiplier as

L (u1, λ) = uT
1 Su1 + λ

(
1 − uT

1 u1
)
, (2.34)

∂L

∂u1
= 2 · S · u1 − 2 · λ · u1 = 0. (2.35)

We have
S · u1 = λ · u1 , (2.36)

where λ is defined as the Eigenvalue and u1 is defined as the Eigenvector [34].
In summary, in p dimensions, we have p Eigenvectors u1, ..., up, corresponding to p

Eigenvalues λ1, ..., λp. Reducing to q dimensions means taking the first q Eigenvalues
λ1, ..., λq.

2.5.4 Minimum Cost of Reconstruction

Next, we think about how to mathematically represent the cost of the reconstruction.
As shown in Figure 2.4, xi is a sample in the two-dimensional space, u1 and u2 are
Eigenvectors of the covariance matrix and their Eigenvalues are λ1 and λ2, respec-
tively. The coordinate of xi on u1 and u2 are the product of the original coordinate
(xT

i up) and the vector up as

(xT
i u1)u1 + (xT

i u2)u2. (2.37)

When reducing to single dimension, we have:

x′
i = (xT

i u1)u1. (2.38)
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Figure 2.4 Example of the Eigenvector of a sample in the two-dimensional space. u1
and u2 are Eigenvectors of the covariance matrix.

From this simple example, we can see that the dimensionality reduction is to reduce
the Eigenvector, but the dimension of xi remains unchanged.

For the problem of the dimensionality reduction from p dimensions to q dimen-
sions, first, samples are normalised as:

x′
i = xi − X̄. (2.39)

Second, projecting samples to the Eigenvectors, the new coordinate is:

x′′
i =

p∑
k=1

(x′T
i uk)uk. (2.40)

Third, ranking the Eigenvectors in descending order of Eigenvalues λ and keeping
the first q dimension as

x̂′′
i =

q∑
k=1

(x′T
i uk)uk. (2.41)

The minimum cost of the reconstruction is the cost to convert from x̂′′
i back to

x′′
i , which is denoted as

J = 1
N

N∑
i=1

∥x′′
i − x̂′′

i ∥2

= 1
N

N∑
i=1

∥∥∥∥∥∥
p∑

k=q+1
(x′T

i uk)uk

∥∥∥∥∥∥
2 (2.42)

The 2-norm of a vector is the sum of squares of this vector in every dimension.
We have ∥∥∥∥∥∥

p∑
k=q+1

(x′T
i uk)uk

∥∥∥∥∥∥
2

=
p∑

k=q+1
(x′T

i uk)2. (2.43)
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Hence,

J = 1
N

N∑
i=1

p∑
k=q+1

(x′T
i uk)2

=
p∑

k=q+1

1
N

N∑
i=1

(x′T
i uk)2

=
p∑

k=q+1

1
N

N∑
i=1

[
(xi − X̄)T uk

]2
,

(2.44)

With Equation (2.31), we have

J =
p∑

k=q+1
uT

k Suk. (2.45)

Therefore, the minimum cost of the reconstruction can be described as:

u∗
k = arg min

uk

p∑
k=q+1

uT
k Suk, (2.46)

s.t.
uT

k uk = 1. (2.47)
Since uk is a linear independent vector. This optimisation problem can be converted
into multiple independent optimisation problems as:

u∗
k = arg min uT

k Suk, (2.48)

s.t.
uT

k uk = 1. (2.49)
This is the same problem as described in the Section 2.5.3.

Therefore, PCA is to find the first q Eigenvectors of the covariance matrix, cor-
responding to the fist q largest Eigenvalues.

2.6 EXPECTATION MAXIMISATION

MLE is used to estimate the density of a dataset by searching various probability dis-
tributions and fitting the parameters [35]. For a simple statistical model, parameters
can be estimated as:

θ∗ = arg max
θ

logP (x|θ) , (2.50)

where θ is the parameter to be estimated, x is the sample, and logP (x|θ) is the log
likelihood.

By contrast, for a complex mixture model, e.g., GMM, it is difficult to estimate
parameters using the MLE, since we have no information about the distribution of
the dataset and need to use latent variables to generate x as

P (x) =
∫

z
P (x, z) dz, (2.51)

where z is the latent variable.
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For this reason, we introduce EM which is an algorithm to estimate parameters
for the mixture model in the presence of latent variables [36]. The EM algorithm can
be described as:

θt+1 = arg max
θ

∫
z

logP (x, z|θ) · P
(
z|x, θt) dz, (2.52)

where z is the latent variable, θt+1 is the parameter at the iteration t+ 1 which is a
decision variable, θt is the parameter at the iteration t which is a constant, P (z|x, θt)
is the posterior probability, and the joint probability logP (x, z|θ) is the complete
data. The term

∫
z logP (x, z|θ) ·P (z|x, θt) dz can also be denoted in the expectation

format as:
Ez|x,θt [logP (x, z|θ)] . (2.53)

The procedures of EM algorithm can be described as the following two steps, as
indicated by its name:

• 1) E-step: Given the posterior probability P (z|x, θt), calculating the expecta-
tion as

Ez|x,θt [logP (x, z|θ)] . (2.54)

• 2) M-step: Maximising the expectation

θt+1 = arg max
θ
Ez|x,θt [logP (x, z|θ)] . (2.55)

2.6.1 Convergence of Expectation Maximisation Algorithm

EM algorithm iteratively updates the parameter from the iteration t (θt) to the
iteration t + 1 (θt+1), resulting in an updated log likelihood from logP (x|θt) to
logP

(
x|θt+1). In order to yield the maximum expectation, i.e., the convergence of

the EM algorithm, we need to ensure

logP
(
x|θt) ≤ logP

(
x|θt+1

)
. (2.56)

The proof of existing convergence of EM algorithm is given in this subsection. First,
we have

logP (x|θ) = log P (x, z|θ)
P (z|x, θ)

= logP (x, z|θ) − logP (z|x, θ) .
(2.57)

In both sides of the equation, calculating the expectation with respect to P (z|x, θt):

• For left hand, given
∫

z P (z|x, θt) dz = 1, we have

left hand =
∫

z
P
(
z|x, θt) · logP (x|θ) dz

= logP (x|θ)
∫

z
P
(
z|x, θt) dz

= logP (x|θ)

(2.58)
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• For right hand, we have

right hand =
∫

z
P
(
z|x, θt) · logP (x, z|θ) dz −

∫
z
P
(
z|x, θt) · logP (z|x, θ) dz.

(2.59)

Define
∫

z P (z|x, θt)·logP (x, z|θ) dz as Q (θ, θt) and
∫

z P (z|x, θt)·logP (z|x, θ) dz
as H (θ, θt). Hence, in order to prove logP (x|θt) ≤ logP

(
x|θt+1) as in Equation

(2.56), we need to prove

Q
(
θt, θt)−H

(
θt, θt) ≤ Q

(
θt+1, θt

)
−H

(
θt+1, θt

)
. (2.60)

This proof is given as follows:

• For the Q (θ, θt), we have

Q
(
θt, θt) =

∫
z
P
(
z|x, θt) · logP

(
x, z|θt) dz, (2.61)

Q
(
θt+1, θt

)
=
∫

z
P
(
z|x, θt) · logP

(
x, z|θt+1

)
dz. (2.62)

Given that
θt+1 = arg max

θ

∫
z

logP (x, z|θ) · P
(
z|x, θt) dz, (2.63)

we have
Q
(
θt+1, θt

)
≥ Q

(
θt, θt) . (2.64)

• For H (θ, θt), we have

H
(
θt+1, θt

)
−H

(
θt, θt)

=
∫

z
P
(
z|x, θt) · logP

(
z|x, θt+1

)
dz −

∫
z
P
(
z|x, θt) · logP

(
z|x, θt) dz

=
∫

z
P
(
z|x, θt) ·

[
logP

(
z|x, θt+1

)
− logP

(
z|x, θt)] dz

=
∫

z
P
(
z|x, θt) · log P

(
z|x, θt+1)

P (z|x, θt) dz.

(2.65)

To prove H
(
θt+1, θt

)
≤ H (θt, θt), one option is to use the Kullback–Leibler

(KL) divergence [37], through which the Equation (2.65) can be denoted as:

−KL
(
P
(
z|x, θt) ∥ P

(
z|x, θt+1

))
. (2.66)

Given KL ≥ 0, we have

−KL
(
P
(
z|x, θt) ∥ P

(
z|x, θt+1

))
≤ 0. (2.67)

Hence,
H
(
θt+1, θt

)
≤ H

(
θt, θt) . (2.68)
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Alternatively, the Jensen inequality can be used to prove H
(
θt+1, θt

)
≤

H (θt, θt). For a convex function, e.g., the log function, we have

E [log x] ≤ logE [log x] . (2.69)

Hence,
H
(
θt+1, θt

)
−H

(
θt, θt)

=
∫

z
P
(
z|x, θt) · log P

(
z|x, θt+1)

P (z|x, θt) dz

≤ log
∫

z
P
(
z|x, θt) · P

(
z|x, θt+1)

P (z|x, θt) dz

= log
∫

z
P
(
z|x, θt+1

)
dz

= log 1
=0,

(2.70)

which means that H
(
θt+1, θt

)
≤ H (θt, θt).

Therefore, the Equation (2.60) is proved, i.e., logP (x|θt) ≤ logP
(
x|θt+1).

In the following two subsections, more strict proofs of convergence will be provided
from the KL divergence and Jensen inequality, respectively.

2.6.2 Kullback–Leibler Divergence

This subsection provides the strict proof for the convergence of EM algorithm from
the KL divergence. We have

logP (x|θ) = logP (x, z|θ) − logP (z|x, θ) ,
= logP (x, z|θ) − log q (z) − [logP (z|x, θ) − log q (z)]

= log P (x, z|θ)
q (z) − log P (z|x, θ)

q (z) .

(2.71)

In both sides of the equation, calculating the expectation with respect to q (z) as

left hand =
∫

z
q (z) · logP (x|θ) dz

= logP (x|θ)
∫

z
q (z) dz

= logP (x|θ)

(2.72)

right hand =
∫

z
q (z) · log P (x, z|θ)

q (z) dz −
∫

z
q (z) · log P (z|x, θ)

q (z) dz, (2.73)
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Figure 2.5 Schematic illustration of the relationship between the ELBO and
logP (x|θ). Given an initial parameter θ0, EM tries to find the maximal ELBO and
then uses this ELBO to update θ0 to θ1. This procedure iteratively proceeds until it
finds the optimum parameter θ⋆ which yields the maximum logP (x|θ).

where the first term
∫

z q (z) · log P (x,z|θ)
q(z) dz is defined as the evidence lower bound

(ELBO) and the second term is the KL divergence as KL (q (z) ∥ P (z|x, θ)). Hence,
we have

logP (x|θ) = ELBO +KL (q ∥ p) . (2.74)

Given KL (q ∥ p) ≥ 0 and the equality holds only if p = q, we have

logP (x|θ) ≥ ELBO. (2.75)

The schematic illustration of the relationship between the ELBO and logP (x|θ)
is presented in Figure 2.5. Given an initial parameter θ0, EM tries to find the maximal
ELBO and then uses this ELBO to update θ0 to θ1. This procedure iteratively pro-
ceeds until it finds the optimum parameter θ⋆ which yields the maximum logP (x|θ)
as

θ∗ = arg max
θ

ELBO

= arg max
θ

∫
z
q (z) · log P (x, z|θ)

q (z) dz
(2.76)

Using P (z|x, θt) to replace q (z), we have

θ∗ = arg max
θ

∫
z
P
(
z|x, θt) · log P (x, z|θ)

P (z|x, θt)dz

= arg max
θ

∫
z
P
(
z|x, θt) ·

[
logP (x, z|θ) − logP

(
z|x, θt)] dz.

(2.77)

Since θt is a constant, this equation can be simplified as

θ∗ = arg max
θ

∫
z
P
(
z|x, θt) · logP (x, z|θ) dz. (2.78)
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2.6.3 Jensen Inequality

This section provides strict proof for the convergence of EM algorithm from the
Jensen inequality [38]. According to Jensen inequality, we have

logP (x|θ) =
∫

z
P (x, z|θ) dz

= log
∫

z

P (x, z|θ)
q (z) q (z) dz

= logEq(z)

[
P (x, z|θ)
q (z)

]
≥ Eq(z)

[
log P (x, z|θ)

q (z)

]
.

(2.79)

The equality holds only if
P (x, z|θ)
q (z) = C, (2.80)

where C is a constant. In this equation, the term Eq(z)
[
log P (x,z|θ)

q(z)

]
is the ELBO.

Next, we need to prove q (z) = P (z|x, θ). When the equality holds, we have

q (z) = 1
C
P (x, z|θ) (2.81)

Calculating expectation with respect to z under the probability distribution of q (z),
we have ∫

z
q (z) dz =

∫
z

1
C
P (x, z|θ) dz = 1 (2.82)

Hence,
1
C
P (x|θ) = 1 (2.83)

i.e., C = P (x|θ).
Therefore,

q (z) = P (x, z|θ)
P (x|θ) = P (z|x, θ) . (2.84)

2.6.4 Generalised Expectation Maximisation

This subsection introduces a generalised form of the EM. From previous subsections,
we have

logP (x|θ) = ELBO +KL (q ∥ p) , (2.85)

where  ELBO = Eq(z)
[
log P (x,z|θ)

q(z)

]
,

KL (q ∥ p) =
∫

z q (z) · log q(z)
P (z|x,θ)dz.

(2.86)

Denote ELBO as L (q, θ). Given KL ≥ 0, we have

logP (x|θ) ≥ L (q, θ) . (2.87)
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Although we assume q (z) = P (z|x, θ), for a complex generative model, P (z|x, θ)
is intractable. Hence, the aim is to let the value of q (z) approach to the value of
P (z|x, θ) through iterative optimisation as:

• First, when θ is fixed, i.e., logP (x|θ) is fixed, when q (z) approaches to
P (z|x, θ), the KL decreases and ELBO increases.

• Second, when q∗ is fixed, the EM maximises the ELBO through finding the
optimal θ.

Therefore, the generalised form of the EM can be described as:{
E-Step: qt+1 = arg maxq L (q, θt)
M-Step: θt+1 = arg maxθ L

(
qt+1, θ

) (2.88)

The ELBO can be further simplified as:

L (q, θ) = Eq(z) [logP (x, z) − log q (z)]
= Eq(z) [logP (x, z)] − Eq(z) [log q (z)]
= Eq(z) [logP (x, z)] +H [q (z)] ,

(2.89)

where H [q (z)] is the entropy of q (z) which is an additional term for the generalised
EM. This is because we have no information about the distribution of q (z).

2.7 GAUSSIAN MIXTURE MODEL

This section introduces the GMM which is a mixture of multiple Gaussian distri-
butions [39]. The probability density function (pdf) of a set of samples is shown in
Figure 2.6. The pdf indicated by the dashed blue lines is the Gaussian distribution of
each sample. The pdf indicated by the green line is the mixture of multiple Gaussian
distributions.

2.7.1 Model Introduction

From the geometry perspective, GMM is the weighted sum of multiple Gaussian
distributions. Let N (µk,Σk) denote the Gaussian distribution k, where µk is the
expectation of the Gaussian distribution k and Σk is the variance of the Gaussian
distribution k. The pdf of the sample x obtained from the mixture of total K Gaussian
distributions can be denoted as:

K∑
k=1

αkN (x|µk,Σk) , (2.90)

s.t.
K∑

k=1
αk = 1, (2.91)

where αk is the weight of the Gaussian distribution k.
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Figure 2.6 Schematic illustration of generating the probability density function us-
ing the Gaussian mixture model. The probability density function indicated by the
dashed blue lines is the Gaussian distribution of each samples. The probability density
function indicated by the green line is the mixture of multiple Gaussian distributions.

As shown in Figure 2.7, there are two Gaussian distributions in a two-dimensional
space as indicated by the contour lines. For a sample x, it belongs to both of these
two distributions with different probabilities. It is high-probable that x belongs to
the Gaussian distribution a and low-probable that x belongs to the Gaussian distri-
bution b. To illustrate these different probabilities, we introduce a new variable z,
defined as the latent variable. The latent variable indicates the all possible Gaussian
distributions of the variable x, and the probability of each Gaussian distribution as
shown in Table 2.1. We have

K∑
k=1

pk = 1, (2.92)

where pk is the probability that the variable x belongs to the Gaussian distribution
k.

Figure 2.7 Example of two Gaussian distributions in a two-dimensional space. Each
Gaussian distribution is indicated by the contour lines. For a sample x, it belongs to
both of these two distributions with different probabilities. It is high-probable that
x belongs to the Gaussian distribution a and low-probable that x belongs to the
Gaussian distribution b.
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Table 2.1 Latent variable to describe the probability of mixture Gaussian distributions
z Gaussian distribution 1 Gaussian distribution 2 ... Gaussian distribution K
Probability p1 p2 ... pK

Figure 2.8 The Gaussian mixture model from the probabilistic graphical perspective.
The Gaussian mixture model firstly determines the latent variable z with the proba-
bility pk from a set of probabilities p1, p2, ..., pK , and then generates x being subject
to N (µk,Σk).

From the perspective of a generative model, GMM firstly selects one of K Gaus-
sian distributions and secondly generates a sample from the selected Gaussian distri-
bution.

From the probabilistic graphical perspective as shown in Figure 2.8, GMM firstly
determines the latent variable z with the probability pk from a set of probabilities
p1, p2, ..., pK , and then generates x being subject to N (µk,Σk).

Therefore, αk from the geometry perspective equals to pk from the probabilistic
graphical perspective, given

P (x) =
∑

z

P (x, z)

=
K∑

k=1
P (x, z = Ck)

=
K∑

k=1
P (z = Ck)P (x|z = Ck) =

K∑
k=1

pkN (x|µk,Σk) ,

(2.93)

where Ck is the Gaussian distribution k.

2.7.2 Solution of Gaussian Mixture Model

EM algorithm is an efficient algorithm to solve the GMM. As introduced in Section
2.6, the EM algorithm is given as follows:

θt+1 = arg maxEz|x,θt [logP (x, z|θ)] , (2.94)

which consists of the E-step and M-step as detailed in the following subsections.
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2.7.2.1 E-Step

First, we will introduce the E-step of the EM algorithm. Let Q (θ, θt) denote
Ez|x,θt [logP (x, z|θ)], X denote a set of N observed samples, and Z denote a set
of N latent variables. We have

Q
(
θ, θt) =

∫
Z

logP (X,Z|θ) · P
(
Z|x, θt)

=
∑
Z

log
N∏

i=1
P (xi, zi|θ)

N∏
i=1

P
(
zi|xi, θ

t)
=
∑
Z

N∑
i=1

logP (xi, zi|θ)
N∏

i=1
P
(
zi|xi, θ

t)
=
∑
Z

[logP (x1, z1|θ) + logP (x2, z2|θ) +

...+ logP (xN , zN |θ)]
N∏

i=1
P
(
zi|xi, θ

t)

(2.95)

Taking the first term logP (x1, z1|θ) as an example. We have

∑
z1,z2,...,zN

logP (x1, z1|θ)
N∏

i=1
P
(
zi|xi, θ

t)
=
∑
z1

logP (x1, z1|θ)P
(
z1|x1, θ

t) ∑
z2,...,zN

N∏
i=2

P
(
zi|xi, θ

t)
=
∑
z1

logP (x1, z1|θ)P
(
z1|x1, θ

t) ∑
z2,...,zN

∑
z2

P
(
z2|x2, θ

t)
∑
z3

P
(
z3|x3, θ

t) ...∑
zN

P
(
zN |xN , θ

t)
(2.96)

Given
∑

zi
P (zi|xi, θ

t) = 1, this equation can be simplified as∑
z1

logP (x1, z1|θ) · P
(
z1|x1, θ

t) . (2.97)

Hence,

Q
(
θ, θt) =

∑
z1

logP (x1, z1|θ) · P
(
z1|x1, θ

t)+ ...+
∑
zN

logP (xN , zN |θ) · P
(
zN |xN , θ

t)
=

N∑
i=1

∑
zi

logP (xi, zi|θ) · P
(
zi|xi, θ

t) .
(2.98)

In the GMM, we have

P (x) =
K∑

k=1
pk ·N (µk,Σk) , (2.99)
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P (x, z) = P (z)P (x|z) = pz ·N (x|µz,Σz) , (2.100)

P (z|x) = P (x, z)
P (x) = pz ·N (x|µz,Σz)∑K

k=1 pk ·N (x|µk,Σk)
. (2.101)

Therefore, we have

Q
(
θ, θt) =

N∑
i=1

∑
zi

log [pzi ·N (xi|µzi ,Σzi)] ·
pzi ·N

(
xi|µt

zi
,Σt

zi

)∑K
k=1 p

t
k ·N (xi|µt

k,Σt
k)

(2.102)

2.7.2.2 M-Step

Next, we will introduce the M-step of the EM algorithm. Since the term
pzi ·N(xi|µt

zi
,Σt

zi
)∑K

k=1 pt
k
·N(xi|µt

k
,Σt

k) in Equation (2.102) is a constant, for simplicity, let P (zi|xi, θ
t)

denote this term. We have

Q
(
θ, θt) =

∑
zi

N∑
i=1

log [pzi ·N (xi|µzi ,Σzi)] · P
(
zi|xi, θ

t) . (2.103)

Expending zi over k = 1, ..., K. We have

Q
(
θ, θt) =

K∑
k=1

N∑
i=1

log [pk ·N (xi|µk,Σk)] · P
(
zk = Ck|xi, θ

t) . (2.104)

Further expanding the log function, we have

Q
(
θ, θt) =

K∑
k=1

N∑
i=1

[log pk + logN (xi|µk,Σk)] · P
(
zk = Ck|xi, θ

t) . (2.105)

The optimal parameter θ is given by

θt+1 = arg max
θ
Q
(
θ, θt) . (2.106)

By solving this optimisation problem, the optimal values of pk, µk, and Σk can
be obtained.

2.8 VARIATIONAL INFERENCE

Bayesian inference is a statistical inference method including the exact inference
which can obtain the exact distribution of variables [40] and approximate infer-
ence which can efficiently obtain the approximated distribution for a complex model
through sacrificing the accuracy to some extent [41]. Approximate inference includes
the deterministic approximate inference, e.g., variational inference [42], and stochas-
tic approximate inference, e.g., Gibbs sampling [43]. Variational inference is an ap-
proach for approximating the intractable integrals which are used in complex statis-
tical models containing observed variables, unknown parameters, and latent variables
as described as follows:

P (Z|X) = P (X|Z) · P (Z)
P (X) . (2.107)
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This section will introduce how to obtain the posteriori P (Z|X) by using the
variational inference.

Recall that in the Section 2.6, we derived the Equation (2.74) as:

logP (X|θ) = ELBO +KL [q (Z) ∥ p (Z|X)] . (2.108)

Let L (q) denote the ELBO. Given KL (q ∥ p) ≥ 0, we need to find a q (Z) to approach
p (Z|X), so that KL [q (Z) ∥ p (Z|X)] equals to zero.

Given logP (X|θ) is fixed, when L (q) approaches to the maximum, KL[q(Z) ∥
p(Z|X)] = 0. Hence, we have

q∗ (Z) = arg max
q(Z)

L (q) ⇒ q∗ (Z) ≈ P (Z|X) . (2.109)

Let’s disaggregate Z into M independent variables z1, z2, ..., zM . We have

q (Z) =
M∏

i=1
qi (zi) . (2.110)

Next, let’s fix other variables to calculate one term qj (j ∈ M, j ≠ i) along. Recall
the formulation of ELBO, we have

L (q) =
∫

Z
q (Z) logP (X,Z) dZ︸ ︷︷ ︸

(1)

−
∫

Z
q (Z) log q (Z) dZ︸ ︷︷ ︸

(2)

, (2.111)

in which the terms (1) and (2) can be transformed as follows:

• For the term (1):

(1)=
∫

z1,z2,...,zM

M∏
i=1

qi (zi) log P (X, Z) dz1dz2...dzM

=
∫

zj

qj (zj)

∫
z1,...,zj−1,zj+1,...,zM

log P (X, Z)
M∏

i=1,i̸=j

qi (zi) dz1...dzj−1dzj+1...dzM

dzj

=
∫

zj

qj (zj) · E∏M

i=1,i̸=j
qi(zi) [log P (X, Z)] dzj .

(2.112)
Rewriting (1) in the log form by using log p̂ (X, zj) to replace E∏M

i=1,i̸=j
qi(zi)

[logP (X,Z)] as

(1) =
∫

zj

qj (zj) · E∏M

i=1,i̸=j
qi(zi)

[logP (X,Z)] dzj

=
∫

zj

qj (zj) · log p̂ (X, zj) dzj

(2.113)
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• For the term (2):

(2) =
∫

Z

M∏
i=1

qi (zi) · log
M∏

i=1
qi (zi) dZ

=
∫

Z

M∏
i=1

qi (zi) ·
M∑

i=1
log qi (zi) dZ

=
∫

Z

M∏
i=1

qi (zi) · (log q1 (z1) + log q2 (z2) + ...+ log qM (zM )) dZ

(2.114)

Taking any one term from Equation (2.114) as an example, e.g.,
∫

Z

∏M
i=1 qi (zi) ·

log q1 (z1) dZ, we have∫
Z

M∏
i=1

qi (zi) · log q1 (z1) dZ

=
∫

Z
q1 (z1) · q2 (z2) ...qM (zM ) · log q1 (z1) dZ

=
∫

z1,z2,...,zM

q1 (z1) · q2 (z2) ...qM (zM ) · log q1 (z1) dz1 · dz2...dzM

=
∫

z1

q1 (z1) · log q1 (z1) dz1

∫
z2

q2 (z2) dz2...

∫
zM

qM (zM ) dzM .

(2.115)

Given
∫

zi
qi (zi) dzi = 1, we have∫
Z

M∏
i=1

qi (zi) · log q1 (z1) dZ =
∫

z1

q1 (z1) · log q1 (z1) dz1. (2.116)

Hence,

(2) =
M∑

i=1

∫
zi

qi (zi) · log qi (zi) dzi. (2.117)

Taking the jth (j ∈ M, j ̸= i) term and denote other terms as a constant C.
Hence,

(2) =
∫

zj

qj (zj) · log qj (zj) dzj + C. (2.118)

Therefore, we have
L (q) = (1) − (2)

=
∫

zj

qj (zj) · log p̂ (X, zj) dzj −
∫

zj

qj (zj) · log qj (zj) dzj − C

=
∫

zj

qj (zj) · log p̂ (X, zj)
qj (zj)

dzj − C.

(2.119)

By omitting the constant term, we have

L (q) =
∫

zj

qj (zj) · log p̂ (X, zj)
qj (zj)

dzj

= KL (qj (zj) ∥ p̂ (X, zj))
≤ 0.

(2.120)

Therefore, when qj (zj) = p̂ (X, zj), the equality of Equation (2.120) holds.
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Figure 2.9 Schematic illustration of the hidden Markov model. The model consists
of two parts. The first part is the time series state variable, denoted as S =
s1, s2, ..., st, ..., with the space of Q = {q1, q2, ..., qN }. The transition between states is
modelled by a transition probability matrix A = ai,j , ai,j = P (st+1 = qj |st = qi). The
second part, which describes the underlying dynamics of systems, is the observation
variable, denoted as O = o1, o2, ..., ot, ..., with the space of V = {v1, v2, ..., vN }. The
generation from the state to observation is modelled by a emission probability matrix
B = bj (k) , bj (k) = P (ot = vk|st = qj).

2.9 HIDDEN MARKOV MODEL

HMM is a statistical Markov model which consists of following two parts of the
statistical process [44] as shown in Figure 2.9:

• State variable: The first part is the time series state variable, denoted as
S = s1, s2, ..., st, ..., with the space of Q = {q1, q2, ..., qN }. The transition be-
tween states is modelled by a transition probability matrix A = ai,j , ai,j =
P (st+1 = qj |st = qi).

• Observation variable: The second part which describes the underlying dynam-
ics of systems is the observation variable, denoted as O = o1, o2, ..., ot, ...,
with the space of V = {v1, v2, ..., vN }. The generation from the state to ob-
servation is modelled by a emission probability matrix B = bj (k) , bj (k) =
P (ot = vk|st = qj).

HMM is subject to the following two assumptions:

• Assumption 1 : The current state is only dependent on the previous one state
as

P (st+1|st, st−1, ..., s1, ot, ot−1, ..., o1) = P (st+1|st) . (2.121)

• Assumption 2 : The current observation is only dependent on the current state
as

P (ot|st, st−1, ..., s1) = P (ot|st) . (2.122)

This model is applicable for three tasks: evaluation, learning, and decoding, which
will be detailed in the following subsections.
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2.9.1 Evaluation

The evaluation task aims to compute the probability of observation by given model
parameters, i.e., P (O|λ), where λ is the model parameters. Let’s take the state
variable into the consideration by using the sum of the state variable, and then use
the conditional probability formula as:

P (O|λ) =
∑

S

P (O, S|λ)

=
∑

S

P (O|S, λ) · P (S|λ) .
(2.123)

Therefore, the calculation of P (O|λ) can be converted to the calculation of P (O|S, λ)
and P (S|λ) as follows:

• Calculating P (S|λ):
The expansion of P (S|λ) is

P (S|λ) = P (s1, s2, ..., sT |λ)
= P (sT |s1, s2, ..., sT −1, λ) · P (s1, s2, ..., sT −1|λ) .

(2.124)

Based on the Assumption 1, we have

P (sT |s1, s2, ..., sT −1, λ) = P (sT |sT −1, λ) . (2.125)

Analogously, we have

P (s1, s2, ..., sT −1|λ) = P (sT −1|s1, s2, ..., sT −2, λ) · P (s1, s2, ..., sT −2|λ)
= P (sT −1|sT −2, λ) · P (s1, s2, ..., sT −2|λ) .

(2.126)
Through recursive iterations, we have

P (S|λ) = P (sT |sT −1, λ) · P (sT −1|sT −2, λ) ...P (s2|s1, λ) · P (s1, λ)

= π (as1) ·
T∏

t=2
ast−1,st ,

(2.127)

where π (as1) is the probability distribution of the initial state s1.

• Calculating P (O|S, λ):
The expansion of P (O|S, λ) is

P (O|S, λ) =P (oT , oT −1, ..., o1|sT , sT −1, ..., s1, λ)
=P (oT |oT −1, ..., o1, sT , sT −1, ..., s1, λ) ·
P (oT −1, ..., o1|sT , sT −1, ..., s1, λ) .

(2.128)

Based on the Assumption 2, we have

P (oT |oT −1, ..., o1, sT , sT −1, ..., s1, λ) = P (oT |sT , λ) . (2.129)
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Figure 2.10 Schematic illustration of using the forward algorithm to solve the evalu-
ation problem of the hidden Markov model. The part in the red box contains the
observations in the first t steps and the state in the t-th step, denoted as αt (i).

Through recursive iterations, we have

P (O|S, λ) = P (oT |sT , λ) · P (oT −1|sT −1, λ) ...P (o1|s1, λ)

=
T∏

t=1
bst (ot) .

(2.130)

Therefore, by calculating P (S|λ) and P (O|S, λ), P (O|λ) can be calculated as

P (O|λ) =
∑

S

[
π (as1) ·

T∏
t=2

ast−1,st ·
T∏

t=1
bst (ot)

]
. (2.131)

In Equation (2.131), the sum of S can be expanded as

P (O|λ) =
∑
s1

∑
s2

...
∑
sT

[
π (as1) ·

T∏
t=2

ast−1,st ·
T∏

t=1
bst (ot)

]
, (2.132)

which means that there are T -dimensional s and each s has N possible values. Hence,
the computational complexity of calculating Equation (2.131) is O

(
NT

)
. The forward

algorithm [45] is an efficient algorithm to solve this problem by reducing the compu-
tational complexity from O

(
NT

)
to O

(
T ·N2), which is introduced in subsequent

text.
As presented in Figure 2.10, let αt (i) denote the part in the red box containing

the observations in the first t steps and the state in the t-th step. We have

αt (i) = P (o1, ..., ot, st = qi|λ) , (2.133)

αT (i) = P (O, sT = qi|λ) . (2.134)
Hence,

P (O|λ) =
N∑

s=1
P (O, sT = qi|λ)

=
N∑

s=1
αT (i) .

(2.135)
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For the next time step, we have

αt+1 (j) =P (o1, ..., ot+1, st+1 = qj |λ)

=
N∑

s=1
P (o1, ..., ot, ot+1, st+1 = qj , st = qi|λ)

=
N∑

s=1
P (ot+1|o1, ..., ot, st = qi, st+1 = qj , λ) · P (o1, ..., ot, st = qi, st+1 = qj |λ)

=
N∑

s=1
P (ot+1|o1, ..., ot, st = qi, st+1 = qj , λ) · P (st+1 = qj |o1, ..., ot, st = qi, λ)

· P (o1, ..., ot, st = qi|λ)

=
N∑

s=1
P (ot+1|st+1 = qj , λ) · P (st+1 = qj |st = qi, λ) · αt (i) ,

(2.136)
in which the last step uses Assumption 1 and Assumption 2 to simplify the equa-
tion. This results in a recursive relationship between αt+1 (j) and αt (i). Using
the transition probability matrix and emission probability matrix to replace the
P (ot+1|st+1 = qj , λ) and P (st+1 = qj |st = qi, λ) in Equation (2.136), respectively, we
have

αt+1 (j) =
N∑

s=1
bj (Ot+1) · ai,j · αt (i) , (2.137)

through which the probability P (O|λ) can be obtained.

2.9.2 Learning

The learning problem of the HMM can de described as an MLE problem as

λ⋆ = arg max
λ

P (O|λ) , (2.138)

where the parameter λ = (π,A,B).
Recall that in Section 2.6 the EM algorithm is an efficient algorithm to solve the

MLE problem. On the context of the HMM, the EM algorithm can be described as

λt+1 = arg max
λ

∑
S

logP (O, S|λ) · P
(
S|O, λt) . (2.139)

We have
P
(
S|O, λt) = P (S,O|λt)

P (O|λt) . (2.140)

Since λt is a known input from the last time step and the observation O is given,
the term P (O|λt) is a constant which is independent of the maximisation problem.
Equation (2.139) can be further simplified as

λt+1 = arg max
λ

∑
S

logP (O, S|λ) · P
(
O, S|λt) . (2.141)
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Let Q (λ, λt) denote
∑

S logP (O, S|λ) · P (O, S|λt).
Recall in Equation (2.132), we have

P (O|λ) =
∑

S

P (O, S|λ)

=
∑
s1

∑
s2

...
∑
sT

[
π (as1) ·

T∏
t=2

ast−1,st ·
T∏

t=1
bst (ot)

]
.

(2.142)

Hence,

P (O, S|λ) = π (as1) ·
T∏

t=2
ast−1,st ·

T∏
t=1

bst (ot) . (2.143)

Taking Equation (2.143) to Q (λ, λt) and using πs1 to denote π (as1), we have

Q
(
λ, λt) =

∑
S

[(
log πs1 +

T∑
t=2

log ast−1,st +
T∑

t=1
log bst (ot)

)
· P
(
O, S|λt)] . (2.144)

We take solving the parameter π as an example to demonstrate the solutions. Since
we aim to solve the parameter π, the terms

∑T
t=2 log ast−1,st and

∑T
t=1 log bst (ot) can

be omitted. We have

πt+1 = arg max
π

Q
(
λ, λt)

= arg max
π

∑
S

[
log πs1 · P

(
O, S|λt)]

= arg max
π

∑
s1

...
∑
sT

[
log πs1 · P

(
O, s1, ..., sT |λt)]

= arg max
π

∑
s1
[
log πs1 · P

(
O, s1|λt)] .

(2.145)

Given s1 has N possible values {q1, q2, ..., qN } and πs1 is the probability when s1 = qi,
use s to replace s1. We have

arg max
π

∑
s1

[
log πs1 · P

(
O, s1|λt)]

= arg max
π

N∑
s=1

[
log πs · P

(
O, s1 = qi|λt)] , (2.146)

s.t.
N∑

s=1
πs = 1. (2.147)

This optimisation problem can be solved by the Lagrange multiplier as

L (π, η) =
N∑

s=1

[
log πs · P

(
O, s1 = qi|λt)]+ η ·

(
N∑

s=1
πs − 1

)
. (2.148)

∂L

∂πs
= 1
πs
P
(
O, s1 = qi|λt)+ η = 0. (2.149)
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Figure 2.11 Schematic illustration of solving the decoding problem of the hidden
Markov model. The aim of the decoding problem is to find a sequence {s1, s2, ..., sT }
with the highest probability as indicated by the dashed red arrow. In each time step
t, there are N potential values.

Hence,
P
(
O, s1 = qi|λt)+ η · πs = 0. (2.150)

N∑
s=1

[
P
(
O, s1 = qi|λt)+ η · πs

]
= 0. (2.151)

P
(
O|λt)+ η = 0. (2.152)

η = −P
(
O|λt) (2.153)

Taking η to Equation (2.150), we have

πt+1
s = P (O, s1 = qi|λt)

P (O|λt) . (2.154)

This is the process to solve the learning problem of the HMM. The solution
algorithm is defined as Baum–Welch algorithm [46].

2.9.3 Decoding

The decoding problem of the HMM can be described as

S⋆ = arg max
S

P (S|O, λ) . (2.155)

As shown in Figure 2.11, the aim of the decoding problem is to find a sequence
{s1, s2, ..., sT } with the highest probability as indicated by the dashed red arrow. In
each time step t, there are N potential values. Hence, the total possible combination
of the sequence is NT .

Let δt (i) denote the maximum probability of choosing the value qi at the time
step t as

δt (i) = max
s1,s2,...,st−1

P (o1, o2, ..., ot, s1, ..., st−1, st = qi) . (2.156)

It is noted that Equation (2.156) only fixes the value st at the time step t, before
which the state is random being subject to the sequence with the highest probability.
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Figure 2.12 Schematic illustration of the recursive relationship between δt+1 and δt.

To solve the decoding problem, we need to find the recursive relationship between
δt+1 (j) and δt (i), as indicated in Figure 2.12 from the dashed red box to dashed blue
box. δt+1 can be expressed as:

δt+1 (j) = max
s1,s2,...,st

P (o1, o2, ..., ot, ot+1, s1, ..., st, st+1 = qj) . (2.157)

This recursive relationship can be expressed as:

δt+1 (j) = max
1≤i≤N

δt (i) · ai,j · bj (ot+1) . (2.158)

To record the path of maximum probability from the step 1 to the step T , let
φt+1 (j) denote the selected index i moving to δt+1 (j). We have

φt+1 (j) = arg max
1≤i≤N

δt (i) · ai,j · bj (ot+1) . (2.159)

Therefore, the optimal solution of the decoding problem is {φ1, φ2, ..., φT }. This
solving algorithm is defined as the Viterbi algorithm [47].

2.10 FEEDFORWARD NEURAL NETWORKS

As one of typical machine learning models, neural networks are inspired by human
brains [48]. As presented in Figure 2.13, the neural networks take the dataset as
inputs and process the dataset by extracting key features through deep hidden layers
of neurons. The extracted features are mapped to the outputs. The aim of training
neural networks is to make the predicted outputs to be close to training labels, also
defined as the ground truth. During the training process, the weights and bias of
these neurons are iteratively updated to accurately predict desired outputs through
the back-propagation [13].

Neural networks are in particular suitable for mapping the non-linear relationship
between the inputs and outputs. The activation functions are key to the non-linearity.
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Figure 2.13 Architecture of neural networks. The neural networks take the dataset as
inputs and process the dataset by extracting key features through deep hidden layers
of neurons. The extracted features are mapped to the outputs.

Common non-linear activation functions include the Sigmoid [49], Tanh [50], ReLU
[13], and Softmax [13]. These are expressed as follows:

Sigmoid: f (x) = 1
1 + e−x

, (2.160)

Tanh: f (x) = ex − e−x

ex + e−x
, (2.161)

ReLU: f (x) = max (0, x) , (2.162)

Softmax: f (xi) = exp (xi)∑
i exp (xi)

, (2.163)

where x is the input sample, i is the index of the sample, and f (x) is the returned
output.

Typical neural networks include the recurrent neural networks [13], long short-
term memory of recurrent neural networks [13], and convolutional neural networks
[13]. These are detailed in the following subsections.

2.10.1 Recurrent Neural Network

For complicated machine learning problems, it is useful to look at the data and find
certain patterns, e.g., data organised in a sequencial order or regular circle. This
means that the input data is in the form of vectors which are the computers’ native
language. For instance, in power systems, the daily load profile in every hour can be
organised as a vector with 24 elements. With one vector as an input, we can predict
the daily power profile for tomorrow which is also a 24-element vector. Next, if there
is a case in which we have the data of daily load profile for Monday, but do not
have the data of daily load profile for Tuesday, how would we predict the daily load
profile for Wednesday? The solution is that we could use the data for Monday to
predict the daily load profile for Tuesday, and then use the prediction of the daily
load profile on Tuesday as an input. The neural networks would return the prediction
of the daily load profile on Wednesday as the output. This is a simple example to
show the mechanism behind the recurrent neural networks as shown in Figure 2.14.
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Figure 2.14 Mechanism of the recurrent neural networks. The output prediction is fed
back as a new input of neural networks to predict outputs based on the data with
recurring patterns.

2.10.2 Long Short-Term Memory

One drawback of the recurrent neural networks is that each prediction only looks
back one time step, which is a short-term memory. However, the information from
further back would be equally valuable for the accuracy of predictions. To overcome
this drawback, we expand the recurrent neural networks by adding the memory to
remember the extracted features of many back steps. The mechanism of the long
short-term memory of the recurrent neural network is presented in Figure 2.15. The
plus junction indicates the sum of element-by-element of two vectors with the same
shape. Analogously, the times junction indicates the multiplication of element-by-
element of two vectors with the same shape.

• Prediction: The new information is passed through the neural networks to get
predictions.

• Forgetting: The predictions are further passed through the plus junction, and
in the meantime, the copy of the predictions is held on for the next time step
when the next predictions are yielded by neural networks. Some of predictions
are forgotten while other predictions are remembered which are added back into
the next predictions by the plus junction. There are separate neural networks
which take the sum of prediction and memories as the input, and are trained
to learn when to forget what.

• Selection: When combining the prediction with memories, the memories are
not necessarily released as new predictions. Hence, the selection gate acts as a
filter to achieve this function through another separate neural networks.

• Ignoring: The ignoring gate ignores possible predictions, which sets aside the
elements which are not of immediate relevance.
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Figure 2.15 Mechanism of the long short-term memory of recurrent neural networks.
The new information is passed through the neural networks to get predictions. The
predictions are further passed through the plus junction, and in the meantime, the
copy of the predictions is held on for the next time step when the next predictions are
yielded by neural networks. Some of predictions are forgotten while other predictions
are remembered which are added back into the next predictions by the plus junction.
There are separate neural networks which take the sum of prediction and memories
as the input, and are trained to learn when to forget what. When combining the pre-
diction with memories, the memories are not necessarily released as new predictions.
Hence, the selection gate acts as a filter to achieve this function through another
separate neural networks. The ignoring gate ignores possible predictions, which sets
aside the elements which are not of immediate relevance.

2.10.3 Convolutional Neural Network

The high-dimensional inputs would incur high computational burdens for conven-
tional neural networks. To overcome this issue, the convolutional neural networks can
improve the computational efficiency and extract key features from high-dimensional
inputs. General structure of the convolutional neural networks is presented in Figure
2.16. In convolutional layers, multiple filters slide through the input to capture key
feature representations as

Φ = fa (W ⊗ x+ b) , (2.164)

where Φ is the output feature representation, fa (·) is the activation function, W is
the weight of a filter, and b is the bias of a filter.
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Figure 2.16 Architecture of convolutional neural networks. In convolutional layers,
multiple filters slide through the input to capture key feature representations. The
pooling layer follows the convolutional layer to reduce the size of extracted features
and keep key features. All extracted features from multiple filters are stacked to form
a global feature map. The global feature map is subsequently flattened and processed
by fully connected layers to return to the outputs.

The pooling layer follows the convolutional layer to reduce the size of extracted
features and keep key features. All extracted features from multiple filters are stacked
to form a global feature map. The global feature map is subsequently flattened and
processed by fully connected layers to return to the outputs.

2.11 REINFORCEMENT LEARNING

Under the mode of reinforcement learning, the agent seeks to take actions in an
environment for maximising the cumulative reward [51] as shown in Figure 2.17.
This subsection introduces the reinforcement learning and relevant key concepts.

To help readers understand the reinforcement learning, key terminologies are
introduced as follows:

• State, action, policy function, and reward: Given an observed state, an agent
takes an action by the policy function as

π (s, a) = P (A = a|S = s) , (2.165)

Figure 2.17 Flowchart of reinforcement learning. Under the mode of reinforcement
learning, the agent seeks to take actions in an environment for maximising the cu-
mulative reward.
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where π (·) is the policy function, π ∈ [0, 1], A and S are random variables
representing the action and state, respectively, and a and s are specific values
taken by the random variables A and S, respectively. Once an agent takes an
action, the environment will return a reward, denoted as R.
At the current state s, once an agent takes an action a, the environment will
give a new state s′, which is defined as the state transition as

p (s′|s, a) = P (S′ = s′|S = s, A = a) , (2.166)

where p (•) is the state transition function.
The state, action, and reward form a trajectory as s1, a1, r1, s2, a2, r2, ..., sT , aT ,
rT .

• Reward and return: Return (also defined as the cumulative future reward) ac-
counts for cumulative rewards in future. Considering that the future reward is
less valuable than the current reward, the future reward should be discounted
as

Ut = γ ·Rt + γ2 ·Rt+1 + ..., (2.167)

where Ut is the return at the time step t, and γ ∈ [0, 1] is the discounted rate.
At the time step t, all the future rewards are random and therefore the return
Ut is random. There are two sources of randomness in the return:

1) Given the state s, the action has the randomness which comes from the
policy function, i.e., π (a|s) = P (A = a|S = s);

2) Given the state s and action a, the new state has the random-
ness which comes from the state transition function, i.e., p (s′|s, a) =
P (S′ = s′|S = s, A = a). This is because for any time step i in future,
i ≥ t, the reward Ri depends on Si and Ai.

Therefore, the return Ut depends on all future actions from time t, i.e.,
At, At+1, At+2, ... and all future states from time t, i.e., St, St+1, St+2, ....

• Action-value function: Since Ut is a random variable, the future situation at
time step t is not known. To evaluate the future situations, we can calculate
the expectation of Ut, defined as the action-value function as

Qπ (st, at) = E [Ut|St = st, At = at] , (2.168)

where Qπ (·) is the action-value function, which depends on the current state st,
action at, and the policy function π. The action-value function indicates that
using the policy π, how good it is to take action at given the current state st.
Given various policy functions, the policy function that can yield the maximum
value of the action-value function is the best policy function. The corresponding
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maximum value of the action-value function is defined as the optimal action-
value function as

Q⋆ (st, at) = max
π

Qπ (st, at) . (2.169)

Whatever policy function π is used, the result of taking at at state st cannot
be better than Q⋆ (st, at).

• State-value function: State-value function is the expectation of the action-value
function with respect to action A as

Vπ (st) = EA [Qπ (st, A)] ,

=
{ ∑

a π (a|st) ·Qπ (st, a) , if action is discrete,∫
a π (a|st) ·Qπ (st, a) da, if action is contineous,

(2.170)

where Vπ (·) is the state-value function. On the one hand, the state-value func-
tion indicates how good the current situation is. On the other hand, the average
value of the state-value function, i.e., ES [Vπ (S)] evaluates how good the policy
π is.

Based on these terminologies, an agent has two options to take an action:

1) If the agent has a good policy π (a|s), given an observed state st, an action at

can be taken by randomly sampling from the policy function;

2) If the agent has an optimal action-value function Q⋆ (st, at), given an observed
state st, an action at can be taken by maximising the value of the action-value
function.

2.12 CHAPTER SUMMARY

This chapter introduced the fundamental theories of AI as the preliminary for apply-
ing the AI into smart energy systems. The most common AI approaches have been
described, based on the background and development of the current AI technologies
and interactions with energy systems. These approaches include the optimisation,
game theory, SVM, PCA for dimensionality reduction, EM for MLE, GMM, vari-
ational inference, HMM, neural networks, and reinforcement learning. In the next
chapter, the fundamental theories and key functions of the Blockchain technologies
will be introduced.
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C H A P T E R 3

Theories of Blockchain
Technologies

T his chapter introduces fundamental theories of the Blockchain technologies,
with the focus on the cryptocurrency and smart contracts. Key functions of

Blockchain technologies related to the energy field are highlighted. Section 3.1 intro-
duces an overview of Blockchain technology and its key properties. The Blockchain-
based cryptocurrency is introduced in Section 3.2, including the cryptography theory
supporting the operation of Blockchain networks in Sub-Section 3.2.1, structures
of individual blocks and Blockchain networks in Sub-Section 3.2.2, consensus of
recording transactions in Blockchain networks in Sub-Section 3.2.3, information
contained in individual block in Sub-Section 3.2.4, difficulty for maintaining block
time in Sub-Section 3.2.5, node types of Blockchain networks in Sub-Section 3.2.6,
and communications of Blockchain networks in Sub-Section 3.2.7. Blockchain-based
smart contracts are introduced in Section 3.3, including account types of Ethereum
Blockchain networks in Sub-Section 3.3.1, data structure of individual block of
Ethereum Blockchain networks in Sub-Section 3.3.2, and programmes of smart con-
tracts in Sub-Section 3.3.3. Section 3.4 concludes this chapter.

3.1 AN OVERVIEW OF BLOCKCHAIN

A Blockchain is a distributed ledger system for storing information that is managed by
a decentralised community in a peer-to-peer manner through proper incentivisation
[1, 2]. As such, the terms Blockchain and distributed ledger can be used interchange-
ably, although the former primarily describes how different records (i.e., blocks) are
put together to form a chain, whereas the latter mainly focuses on how data is repli-
cated, shared, and synchronised across multiple nodes, thus making recorded data
immutable. Typically, Blockchain has the following properties [3]:

• Duplicability: Recorded data of Blockchain is shared across a peer-to-peer net-
work (public or private) where each network node has a copy of the recorded
data.
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• Consensus: A decentralised consensus is achieved when creating a new block in
the Blockchain.

• Immutability: Without the approval of the majority of network nodes, it is
impossible to alter any data in the block.

• Verifiability: Recorded data of a Blockchain is verifiable to establish the digital
trust throughout the network.

3.2 BLOCKCHAIN-BASED CRYPTOCURRENCY

The cryptocurrency, such as the Bitcoin, is recognised as the first generation of
the Blockchain technologies [4]. The cryptocurrency is not only a trendsetter, but
supports a fully decentralised peer-to-peer network. The fundamental theories, e.g.,
cryptography theory, and designs, e.g., block structures and node types, provide huge
potential for supporting peer-to-peer energy trading in local energy markets by en-
suring the security, trustworthiness, and privacy of prosumers or consumers. This
section will introduce key functions of Blockchain-based cryptocurrency relevant to
energy trading.

3.2.1 Cryptography Theory

Although the Blockchain uses the term of crypto, it is still open and accessible to all
users, which means that the information stored in the Blockchain networks, e.g., the
account address, balances, and transactions, can be accessed by all users. Rather, the
actual meaning behind the crypto refers to the foundation of the cryptocurrency, i.e.,
the cryptography theory. In the cryptography theory, two important functions are
exploited by the cryptocurrency, which are the cryptographic hash function [5] and
signature [6]. In the following text, how these two functions support the operation of
the cryptocurrency will be discussed.

3.2.1.1 Cryptographic Hash Function

A hash function can map an arbitrary-size data to fixed-size values, defined as the
hash values or digest [7]. The hash values are usually used to index a fixed-size table,
called a hash table. The cryptographic hash function has two properties: the collision
resistance and hiding [1].

To understand the property of the collision resistance, first, let us know what is
collision. In the cryptography theory, a collision is defined as a cryptographic hash
that tries to find two different inputs, e.g., x and y, x ̸= y, such that these two inputs
can produce the same hash value, i.e., hash (x) = hash (y) [8]. In the hash table, the
input space is much larger than the output space, which results in the collision to be
unavoidable. For instance, in the case of the Secure Hash Algorithm (SHA)-256 with
a 256-bit (32 bytes) hash value, the input space is infinite whereas the output space
would be 2256 [9].

Next, with the knowledge of the collision, the property of the collision resistance
means that it is highly unlikely to artificially create a collision attack. This means
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given an input x, there is not any efficient approach to artificially find another input y,
such that hash (x) = hash (y), unless traversing every feasible value in the input space
[10]. For a large input space, e.g., the input space of the SHA-256, this traversal would
be extremely computationally complex. One important application of the property
of the collision resistance is to prevent the message tampering [1]. When a message a
is encrypted by the cryptographic hash function hash (a), the tampered message a′

would result in a different hash value hash (a′), such that hash (a) ≠ hash (a′).
With the property of hiding, the cryptographic hash functions can hide the input

messages by only saving the hash value of the original input messages, instead of
saving the input messages themselves [11]. This is because the process of producing
the hash value is irreversible, which means that given an input x, the cryptographic
hash functions can produce the hash value hash (x). However, given a hash value
hash (x), it is impossible to trace any information about the input x, unless traversing
every feasible value in the input space to find out which input can produce the
hash value hash (x). Again, this would be extremely computationally complex. One
important condition for the property of hiding is the input space should be large
enough and the input values should be uniformly distributed within this space.

The Blockchain networks are protected by solving the puzzle using the SHA-256
which is secured by the properties of the collision resistance and hiding. As shown
in Figure 3.1, the block header includes the version number, Merkle root, previous
block hash, timestamp, difficulty target, and nonce. The details of these domains and
the block body will be introduced in the following subsections. Here, we focus on the
domain of the nonce. In cryptography, nonce is an arbitrary number which would
be used just once in a cryptographic communication, i.e., the number once [12]. The
input of the SHA-256 is the values in all the domains of the block header, and the
output of the SHA-256 is the fixed-length hash value which is the unique identity
of a block [13]. The mechanism behind the block mining is to keep trying different
nonces until the hash value satisfies the certain targets, e.g., a targeted value with k
times of 0 as shown in Figure 3.2. The process of the puzzle solving has the feature
of being moderately hard to solve during the block mining but easy to verify during
the validation [14]. This feature indicates that the only way to find the satisfied
nonce is through exhaustively trying. However, once the satisfied nonce is found, the
verification can be easily proceeded by executing one time SHA-256.

3.2.1.2 Signature

In the Blockchain networks, a user can set up an account by creating a key pair. This
key pair consists of the private key and public key [15]. The concepts of the private
key and public key originated from the asymmetric cryptography [16].

An example of the asymmetric cryptography is explained here: Alice has sent an
encrypted message to Bob. If Bob wants to read the content of the message, he has to
decrypt this message with the same key which Alice has used to encrypt the message.
However, there is not any secure way for Alice to send the key to Bob in a plain-text
manner. To overcome this issue, in the asymmetric cryptography, instead of using one
single key for both the encryption and decryption [17], we use a key pair by which
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Figure 3.1 Schematic illustration of the Blockchain networks secured by the SHA-256.
The input of the SHA-256 is the values in all the domains of the block header, and
the output of the SHA-256 is the fixed-length hash value which is the unique identity
of a block.

Figure 3.2 Example of a target for the block mining. The miners keep trying different
nonces until the hash value satisfies the targeted value with k times of 0.

the public key is used to crypt the message and the private key is used to decrypt
the message. For the same example, Alice can use Bob’s public key to encrypt the
message. When Bob receives the encrypted message, he can use his own private key
to decrypt. It should be noted that both the public key and private key belong to
Bob, i.e., the message receiver. The advantage of this public–private key pair is that
the message receiver only needs to share the public key to the sender while keeping
the security of the private key.

In the Blockchain networks, both the private key and public key are generated
by the SHA-256, by which the private key is used to generate the public key and
the public key is used to generate the public key hash, i.e., the account address (also
called the wallet) [18]. The SHA-256 with a 256-bit hash value can provide a good
source of randomness for generating a unique key pair for every user. When an user
initiates a transaction, this user only needs to sign this transaction with the private
key. Other users can use the public key of this initiator of transaction to verify the
signature.
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Figure 3.3 Schematic illustration of the hash pointer and data structure of the
Blockchain. The blocks are chronologically chained by involving the hash of the pre-
vious block into the current block, forming a Blockchain. The hash pointer indicates
the position of a block in the Blockchain.

3.2.2 Data Structure

With the knowledge of the key cryptography theory for the cryptocurrency, the fol-
lowing text will introduce how this theory can be exploited to support the data
structure of the Blockchain networks from the following two aspects:

• The link between two blocks, i.e., the chaining features;

• The data structure inside a block, i.e., the Merkle tree.

3.2.2.1 Chaining Features

In the Blockchain networks, all the transactions are structured as publicly available
ledgers, i.e., blocks. The blocks are chronologically chained by involving the hash
of the previous block into the current block, forming a Blockchain [19] as shown in
Figure 3.3. Recall that in Sub-Section 3.2.1.1, this chaining feature is secured by the
cryptographic hash function, e.g., SHA-256. Hence, the Blockchain can be taken as a
linked list and the cryptographic hash function can be taken as a hash pointer which
indicates the position of a block in this list.

The advantage of using the hash pointer is that the hash pointer can not only
indicate the position of a block, but also guarantee the tamper resistance [20]. This
is because if a malicious node tries to tamper with the information stored in one
block, it would result in a different hash value which does not match the input of
the next block and the following blocks. If a malicious node tries to tamper with
all the following blocks, it would be extremely computationally difficult. With this
advantage, we can verify whether the information in anywhere of the Blockchain is
tampered by only verifying the hash value of the current block.
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Figure 3.4 Schematic illustration of the data structure inside a block. The data is
stored in the form of a Merkle tree. Transactions are structured in the bottom as the
leaf nodes. Each leaf node is linked to its parent node through the hash pointer, until
reaching the root node. The cryptographic hash of the root node is called the Merkle
root hash which is stored in the block header.

3.2.2.2 Merkle Tree

In each block, the transactions are stored in the form of a Merkle tree [21] as shown
in Figure 3.4 [22]. In a Merkle tree, the data, i.e. transactions, are structured in
the bottom as the leaf nodes. Each leaf node is linked to its parent node through
the hash pointer, until reaching the root node. The cryptographic hash of the root
node is called the Merkle root hash which is stored in the block header. Merkle tree
enables the secure and efficient verification of the transactions stored in a block [23].
Analogous to the advantage of using the hash pointer, we can verify whether the
transactions in a block are tampered by only verifying the root hash.

The nodes of the Blockchain networks can be categorised as full nodes and light
nodes [24]. Full nodes store the entire Merkle tree of every block including both the
block header and block body. Light nodes only need to store the block header of
every block. As shown in Figure 3.5, when a light node needs to verify whether a
transaction is stored in a block, this light node can calculate the hash of every node
related to this transaction and request the full node for the Merkle proof, such that
this light node can verify whether the calculated root hash equals to the root hash
stored in the block header.

3.2.3 Consensus

Although the cryptocurrency is secured by the owner’s signature using the public–
private key pair as introduced in Sub-Section 3.2.1.2, as a digital cash rather than a
physical cash, it is still duplicable. When we use this cryptocurrency, e.g., for energy
trading, the thing which we do not want to happen is that an energy buyer a spends
one unit of the cryptocurrency to buy one unit of energy from an energy seller b, and
simultaneously the energy buyer a uses the same cryptocurrency (duplicated) to buy
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Figure 3.5 Merkle proof for a light node to verify a transaction. When a light node
needs to verify whether a transaction (indicated by the orange colour) is stored in a
block, this light node can calculate the hash of every node related to this transaction
(indicated by the red colour) and request the full node for the Merkle proof (indicated
by the green colour), such that this light node can verify whether the calculated root
hash equals to the root hash stored in the block header.

the one unit of energy from another energy seller c, which means the buyer a uses
only one unit of cryptocurrency to buy two units of energy. This is defined as the
double-spending attack in the field of the cryptocurrency [25].

To overcome this double-spending attack, one solution is to find a trustworthy
third party, e.g., banks, to record every transaction for every customer. Nonetheless, in
some contexts, it is challenging to find such a trustworthy third party. For instance, if
we want to design a cryptocurrency for the decentralised peer-to-peer energy trading,
we need to find a reliable peer to verify every transaction, and decide the total amount
of the issued currency and time to issue this currency.

In the Bitcoin-centric Blockchain networks, every transaction is recorded by a data
structure called the unspent transaction output (UTXO) [26] collectively verified by
every node in the networks through using the proof-of-work (PoW) [27] as a consensus.
The trustworthy third party, total amount of the issued currency, and time to issue
this currency are determined by the block mining.

3.2.3.1 Unspent Transaction Output

The Bitcoin system is a transaction-based ledger [28]. Different from the account-
based ledger by which the account information, e.g., account balance, is recorded in
the ledger, the transaction-based ledger only records the transaction information, e.g.,
the transaction amount, sender, and receiver. The account balance of the transaction-
based ledger needs to be audited based on all the inputs and outputs of the related
transactions. This transaction-based ledger is defined as the UTXO which is verified
by every node in the Blockchain networks.
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To help readers understand the operation of the UTXO, an example is provided
in Figure 3.6, by which the transactions are chronologically indexed and the UTXO
is dynamically updated with the transactions. The details of each transaction are
explained as follows:

• In the transaction 1, the sender a sends 15 bitcoin (BTC) (received from pre-
vious transactions) to the receivers b (7 BTC) and c (8 BTC), which is signed
by the sender a.

• In the transaction 2, the sender c sends 8 BTC (received from the sender a in
the transaction 1) to the receivers b (3 BTC) and d (5 BTC), which is signed
by the sender c.

• In the transaction 3, the sender b sends 10 BTC (received from the sender a in
the transaction 1 and the sender c in the transaction 2) to the receiver e, which
is signed by the sender b.

The UTXO correspondingly records the inputs and outputs of every transaction.
When the received BTC is spent, the corresponding previous record would be removed
and new record would be added in the UTXO. For instance, when b sends all 10 BTC
to e, the records of a(7)→b and c(3)→b would be removed and the record b(10)→e
would be added. In every state, the total inputs of the UTXO, e.g., a(7)→b and
c(3)→b, equal to the total outputs of the UTXO, e.g., b(10)→e, plus a transaction
fee paid to the block miner.

In the UTXO, every input needs to indicate the hash value of the source transac-
tion, e.g., hash(Transaction 1), and the index in this source transaction, e.g. a(7)→b,
which enables every source to be tractable. Therefore, through collectively verifying
the UTXO by every node in the Blockchain networks, the double-spending attack
can be prevented.

3.2.3.2 Proof-of-Work

After we have the UTXO to record every transaction in the Bitcoin-centric Blockchain
networks, the next question is who will decide which transactions are enclosed in a
block and sort the order of these transactions. Obviously, if the answer is every node in
the Blockchain networks, the consistency of the enclosed transactions in blocks cannot
be guaranteed. An alternative solution is that one node encloses certain transactions
in a certain order into a new block, and other nodes verify the enclosed transactions.
If these transactions are approved by more than 50% of nodes, this new validated
block can be added to the Blockchain.

Another issue that was discussed in Section 3.2.1.2 was that any user can easily
set up an account by creating a public–private key pair. If a user sets up accounts
as much as exceeding 50% of total accounts in the Blockchain networks, this user
would dominate the verification and determine which transactions can be enclosed
in a block.
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Figure 3.6 Schematic illustration for updating the UTXO with the proceeding of trans-
actions. In the transaction 1, the sender a sends 15 bitcoin (BTC) (received from
previous transactions) to the receivers b (7 BTC) and c (8 BTC), which is signed
by the sender a. In the transaction 2, the sender c sends 8 BTC (received from the
sender a in the transaction 1) to the receivers b (3 BTC) and d (5 BTC), which is
signed by the sender c. In the transaction 3, the sender b sends 10 BTC (received
from the sender a in the transaction 1 and the sender c in the transaction 2) to the
receiver e, which is signed by the sender b. The UTXO correspondingly records the
inputs and outputs of every transaction. In the UTXO, every input needs to indicate
the hash value of the source transaction, e.g., hash(Transaction 1), and the index in
this source transaction, e.g. a(7)→b, which enables every source to be tractable.

Instead of using the number of nodes to verify new blocks, the Bitcoin-centric
Blockchain networks use the computing power for generating new blocks and verifi-
cations. Every node can enclose certain transactions in a certain order individually,
and then it keeps trying different nonces until the hash value satisfies the certain
target, i.e., the block mining as introduced in Sub-Section 3.2.1.1. If the mined block
can be approved by more than 50% of the computing power in the Blockchain net-
works, this block will be added to the Blockchain. The consensus of using computing
power for block mining is defined as the PoW [27].

3.2.4 Block Structure

A block, i.e., a ledger, which contains a number of enclosed transactions is a basic
unit of a Blockchain. The SHA-256 algorithm imports the previous block header hash
as the input. This guarantees the tamper resistance of transactions in the previous
block. A malicious node cannot modify transactions without modifying the block
header. In this section, the structure of a block including both the block header and
the block body will be introduced. An example of information contained in a mined
block [29] is presented in Table 3.1, with details explained as follows:

• Hash: The hash is a unique identity for a specific block.

• Timestamp: Time is the Unix epoch time when the block miner processed the
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Table 3.1 Example of information contained in a mined block [29]
Block 679036
Hash 0000000000000000000645190b239347e8696fa9963

4b80f8d97eaca5df2e2de
Confirmations 1
Timestamp 2021-04-13 10:35
Height 679036
Miner BTC.TOP
Number of transactions 2,732
Difficulty 23,137,439,666,472.05
Merkle root b175ffb2eec75fc35b2c5b631f2a56f6c27499bc24cb

36874c2193eae7c05eb3
Version 0x20000000
Bits 386,673,224
Weight 3,993,175 WU
Size 1,314,298 bytes
Nonce 1,412,495,669
Transaction volume 33103.78524111 BTC
Block reward 6.25000000 BTC
Fee reward 0.66344754 BTC

block header. Full nodes will only accept the blocks from miners within two
hours in the future.

• Height: This accounts for the number of blocks which have already been con-
nected to the Blockchain networks.

• Miner: The miner records the address of the node which confirms the transac-
tions in a block.

• Number of transactions: The number of transactions is the number of all trans-
actions contained in a block.

• Difficulty: it is a value defining the complexity for a miner to find a valid hash
for a block.

• Merkle root hash: All transactions in a block are structured into a Merkle tree,
and the hash value of the Merkle root is stored in the block header to guarantee
the tamper resistance of transactions in the current block.

• Version number: The version number helps each node in the Blockchain net-
works identify the rules for validating the blocks.

• nBits: The nBits is generated by encoding the targeted threshold. For a valid
block, the hash of this block must be less than or equal to the targeted threshold.

• Weight: It is a measurement to compare the size of different transactions in
proportion to the block size limit.
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• Size: The size quantifies the total size of a block.

• Nonce: The nonce is an random number adjusted by the block miners, so that
the hash of the block header is less than or equal to the targeted threshold.

• Transaction volume: The transaction volume measures the total amount of
currency transacted in a block.

• Block reward: The block reward is a static reward to the miner who has suc-
cessfully find the puzzle.

• Fee reward: The fee reward is the total amount of transaction fees rewarding
to the miner who has successfully found the puzzle.

3.2.5 Difficulty

In Bitcoin networks, the average time for mining a new block, i.e., the block time, is 10
minutes [30] which theoretically decreases with the increase in number of participating
miners and their computational power. However, the Bitcoin networks are able to still
maintain this average time by regularly adjusting the difficulty of the block mining.
This subsection will introduce the reasons and mechanisms for adjusting the difficulty
to maintain this average mining time.

3.2.5.1 Reasons for Adjusting Difficulty

The objective of the block mining is to find a proper nonce, so that the hash value
of the block header is less than or equal to the predefined target [31] as

hash(block header) ≤ targetdefine, (3.1)

where targetdefine is the predefined target value. A larger value of targetdefine indicates
that the nonce is easier to be found, i.e., a lower value of the difficulty; whereas a
smaller value of targetdefine indicates that the nonce is harder to be found, i.e., a
higher value of the difficulty. Hence, the value of the target is inversely proportional
to the value of the difficulty as

d = target|d=1
targetdefine

, (3.2)

where d is the value of the difficulty and target|d=1 is the value of target when the
value of difficulty equals to one.

Ideally, the increase of the computational power enables miners to more efficiently
find the proper nonce, and thus reduces the block time, which means more transac-
tions can be enclosed into the Blockchain networks. Nonetheless, due to the delay of
broadcast over Blockchain networks, different nodes will receive the information of a
new mined block at different time. As shown in Figure 3.7 the node a firstly receives
the latest update of the new mined block x, and follows this new block to mine the
next block x + 1. At the same time, the node b does not receive this update and
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Figure 3.7 Blockchain forking due to the communication delay. The node a firstly
receives the latest update of new mined block x, and follows this new block to mine
the next block x+ 1. At the same time, the node b does not receive this update and
follows the previous block x− 1 to mine the next block x′.

follows the previous block x− 1 to mine the next block x′. This inconsistency results
in the forking of the Blockchain. Due to multiple forks, it is difficult for all nodes
to reach the consensus. Therefore, the Bitcoin networks maintain the average block
time at 10 minutes to minimise the forking risk caused by the delay of broadcast [32].

3.2.5.2 Mechanism for Adjusting Difficulty

In the Bitcoin protocol, the system adjusts the difficulty in every 2016 blocks [33].
Given the average block time is 10 minutes, the time interval for adjusting the diffi-
culty is 14 days. The mechanism for adjusting the difficulty can be expressed as

target’ = target · tmine
2016 · 10 min , (3.3)

where target’ is the adjusted target value, tmine is the actual time for generating the
most recent 2016 blocks. If the actual time is longer than the expected time, i.e.,
2016 · 10 min, the target value will be adjusted to increase whereas the difficulty
value will decrease according to the Equation (3.2). If the actual time is shorter than
the expected time, the target value will be adjusted to decrease whereas the difficulty
value will increase. In the Bitcoin protocol, there is a constraint for adjusting the
difficulty as

target
4 ≤ target’ ≤ 4 · target. (3.4)

The updated target value is encoded into the nBits domain of the block header
[34]. If a miner generates a new block without updating the nBits domain, this mined
block cannot be validated by other full nodes, which ensures every node to update
the adjusted difficulty values.

3.2.6 Node Types

The participants of Blockchain networks can operate either full nodes or light nodes
depending on their storage and computational capabilities.
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The full nodes keep the online states all the time to verify every new mined
block. They update the entire Blockchain information locally and upload the updated
information by mining new blocks. If a new block is successfully mined, other nodes
will synchronise with this new block. Full nodes need to verify the validity of every
transaction through maintaining the UTXO in their storage. After validating these
transactions, the successful miner has the right to decide which transactions to be
enclosed into a block and which Blockchain is validate when the Blockchain forks.

Light nodes are online only when they participate in transactions. They only
update the block header information and store the transactions related to them.
These related transactions can be validated by requesting the Merkle proof from
full nodes. They are unable to validate the mined blocks and the Blockchain except
verifying the difficulty from the block header.

For the storage capability [35], full nodes need to store the entire Blockchain
including both the block header and block body of every block. By contrast, light
nodes only need to store the block header. For the computational capabilities [36],
full nodes need to verify every block and mine new blocks through solving the mining
puzzle. Whereas, light nodes only need to verify their related transactions. There-
fore, operating light nodes can dramatically reduce the storage and computational
requirements.

3.2.7 Networks

In Blockchain networks, the clients broadcast transactions to the networks, such that
full nodes can enclose these transactions into blocks, forming the Blockchain. The
broadcast is proceeded on the peer-to-peer overlay networks, under which every node
has equal accessibility and communicates with each other by the TCP protocol [37].
Blockchain networks have the features of simplicity and robustness. Every node main-
tains a random set of neighbouring nodes through which the messages are passed by
the flooding broadcast [38]. Once a node receives a message, this node will broad-
cast it to neighbouring nodes and mark these neighbouring nodes as broadcasted.
It is to be noted that these neighbouring nodes are randomly selected without con-
sidering the topological structure and geographical locations. Although this design
enhances the robustness of the Blockchain networks, the communicating efficiency is
compromised.

3.3 BLOCKCHAIN-BASED SMART CONTRACTS

Bitcoin and Ethereum are two primary types of cryptocurrency [39], which are sup-
ported by the Blockchain technologies. Bitcoin is recognised as the first generation
of the Blockchain technology which decentralises the currency [40]. Ethereum, de-
veloped by Vitalik Buterin in 2014 [41], is recognised as the second generation of
the Blockchain technology which not only overcomes a number of drawbacks of the
Bitcoin, e.g., saving the time of block mining and resisting the mining centralisation,
but also supports the operation of the smart contracts [42].
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The smart contracts, a term coined by Nick Szabo in 1994 [43], are a programmed
transactional protocol with the immutable, verifiable, secure, and replicable features
[44]. A general form of the smart contracts is ‘A customer a deposits the currency
b into the smart contracts for purchasing the seller c’ s product. When confirming
that a receives the product from c, the smart contracts pay the deposited currency b
to c.’ Incorporating the smart contracts into the Ethereum enables the Blockchain to
evolve from an application to be a platform, under which every customer can encode
the standardised terms of contracts.

3.3.1 Account

Recall that as per Sub-Section 3.2.3.1, the Bitcoin system is a transaction-based ledger
which only records the inputs and outputs of transactions by using the UTXO. This
design increases the complexity for customers for the following three reasons:

• The balance of a customer’s account needs to be audited from the UTXO,
instead of being recorded in the Blockchain.

• A customer needs to include the source of the transferred currency, i.e., from
which sender in which transaction.

• The account balance cannot be split when a customer transfers the currency to
others. For instance, the customer a’s account balance is 7 Ethers, if a wants
to pay 4 Ethers to another customer b, a has to either pay the rest 3 Ethers
to the block miner as the transaction fee, or transfer the rest 3 Ethers to a’s
another account.

Ethereum system evolves to be an user-friendly account-based ledger which
records the account balance. The only requirement for the transaction is that a cus-
tomer has enough balance to transfer, and the account balance can also be split. This
account-based ledger can naturally prevent the double-spending attack, since if a ma-
licious node replicates the transaction, the Blockchain will deduct the corresponding
amounts twice from the balances of this malicious node.

Nonetheless, this account based ledger has the risk of the replay attack [45].
For instance, the sender a transfers to the receiver b. If the receiver b replicates this
transaction in the Blockchain networks, the transferred amount will be deducted twice
from the sender a’s account. To prevent this replay attack, the Ethereum includes a
counter into each account, such that the transaction can be indexed corresponding
to the state change of balances. This account based ledger also ensures the explicit
contracting parties with the permanent addresses for guaranteeing the validity of the
contracts.

In the Ethereum systems, the accounts can be categorised as the externally owned
accounts and smart contract accounts [46]. The externally owned accounts are created
by the public–private key pair as introduced in Sub-Section 3.2.1.2, by which the
address of an account is mapped to the states of this account through using the
key-value pair. The smart contracts accounts store the codes and executing states of
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the smart contracts. The smart contracts can be deployed by the externally owned
accounts by calling the address of the smart contract accounts. However, the smart
contracts accounts cannot initiate transactions by themselves, unless they are called
by the externally owned accounts to execute transactions.

3.3.2 Data Structure

Ethereum is a decentralised application platform in which the states of every account,
smart contract, and transaction are recorded. This requires an efficient structure to
manage and store the data in the blocks. The data structure can map the address
(key) of an account or a smart contract to its states (value) including the balances,
transaction index, and operations of the smart contracts, which can be represented
by a key-value pair [47].

Recall that in the Bitcoin system as introduced in Sub-Section 3.2.2.2, the trans-
action data is structured as the Merkle tree stored in the block. Each block contains
certain amounts of transactions, e.g., 4,000 transactions per block in the Bitcoin
system. Nonetheless, this data structure is not suitable for the Ethereum for the
following reasons:

• Since the Ethereum system needs to store not only the transaction data, but
also the account data, with the increasing number of new accounts, the size of
the Merkel tree would correspondingly increase.

• The time for mining a new block is reduced to around 10 seconds in the
Ethereum [48], which poses a challenge for generating a large-scale Merkle tree
for each new block.

• In each time step, only some accounts change their states whereas other ac-
counts remain unchanged. Updating all states of accounts would waste compu-
tational resources.

• Arbitrarily structuring the account data into the Merkle tree would result in
the inconsistency for costumers and inefficiency for searching the account in-
formation.

To overcome these issues, the Ethereum uses modified Merkle Patricia tree to
store the data [49]. To facilitate the illustration of the modified Merkle Patricia tree,
we first introduce the concepts of the digital tree and Patricia tree as follows:

• Digital tree [50]: Digital tree structures a set of all the keys into a tree structure,
so that a specific key can be efficiently searched from this set. The individual
characters of a key are assigned to each node of the digital tree, and the nodes
are lined by the order of characters of a key. The numbers of branches of the
digital tree are determined by the value range of the characters. For instance,
the value range of the Ethereum address is 160 bytes. Given certain inputs, the
tree structure would remain consistent irrespective of the order for organising
the keys.
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Figure 3.8 A set of six keys is structured as a digital tree. The keys are ‘date’, ‘de-
partment’, ‘desalinate’, ‘desk’, ‘do’, and ‘does’. The individual characters of a key are
assigned to each node. The nodes are linked by the order of characters of a key.

An example of a digital tree is presented in Figure 3.8, in which a set of six
keys (‘date’, ‘department’, ‘desalinate’, ‘desk’, ‘do’, and ‘does’) is structured.
A drawback of the digital tree is that it is not efficient to store the long keys,
such as the ‘department’ and ‘desalinate’ in the example, with limited sharing
node.

• Patricia tree [51]: To overcome the drawback of the digital tree, the Patricia
tree uses the path compression to optimise the space. The nodes which are the
only child are merged with their parent nodes.
For the same example of the digital tree, the six keys can be optimally struc-
tured as the Patricia tree as presented in Figure 3.9. It is worth mentioning
that when a new key is inserted into the Patricia tree, the compressed path
may need to be decompressed.

Based on the concepts of the digital tree, Patricia tree, and Merkle tree as intro-
duced in Sub-Section 3.2.2.2, the modified Merkle Patricia tree is a cryptographically
authenticated Patricia tree, in which the ordinary pointers are replaced by the hash
pointers as in the Merkle tree [52]. In the Ethereum system, the data of states of
accounts and smart contracts, transactions, and receipts of transactions is structured
by three modified Merkle Patricia trees, i.e., the state tree, transaction tree, and re-
ceipt tree, respectively [53]. These three modified Merkle Patricia trees are enclosed
into a block by a miner, and the root hashes of these three modified Merkle Patricia
trees are stored in the block header as shown in Figure 3.10.
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Figure 3.9 A set of six keys is structured as a Patricia tree. The keys are ‘date’,
‘department’, ‘desalinate’, ‘desk’, ‘do’, ‘does’. The nodes which are the only child are
merged with their parent nodes.

The functions for storing the root hash into the block header include:

• Tampering-resistance: Once a malicious node tampers with any data in a block,
it would result in a different root hash.

• Merkle-Proof : The light nodes can request the Merkle proof provided by the
full nodes as introduced in Sub-Section 3.2.3 to verify the transactions and
balances.

• Membership: Whether an account is a member of the Ethereum network, it can
be verified.

3.3.2.1 State Tree

The data related to all the externally owned accounts and smart contract accounts
is structured in a modified Merkle Patricia tree, called the state tree [54]. The state

Figure 3.10 The data structure of a block in the format of the modified Merkle Patricia
trees. The data of states of accounts and smart contracts, transactions, and receipts
of transactions is structured by the state tree, transaction tree, and receipt tree,
respectively.
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Figure 3.11 Four key-value pairs are structured into a state tree. For simplicity, only
the account balances are considered as the states. The extension nodes contain the
path-compressed characters as the shared nibbles. The branch nodes cover the value
range of the characters. The leaf nodes contain the rest path-compressed characters
of each key as the key end. The first extension node with the shared nibble ‘5x’ is
the root node, whose hash value is stored in the block header.

tree maps the address (key) of an account or a smart contract to its states (value)
encoded by the recursive length prefix [55], forming a key-value pair.

As shown in Figure 3.11, four key-value pairs are structured into a state tree.
For simplicity, only the account balances are considered as the states. The extension
nodes contain the path-compressed characters as the shared nibbles. The branch
nodes cover the value range of the characters. The leaf nodes contain the rest path-
compressed characters of each key as the key end. The first extension node with the
shared nibble ‘5x’ is the root node, whose hash value is stored in the block header.
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Figure 3.12 Schematic illustration for updating the state tree when a new block is
generated. Only the nodes whose states are changed are updated by using a new
branch to replace the previous branch, whereas the rest nodes remain unchanged.

When a new block is generated, only the nodes whose states are changed are
updated by using a new branch to replace the previous branch, whereas the rest
nodes remain unchanged as shown in Figure 3.12. This design not only improves the
efficiency of updating the state information, but also enables the executing process
of the smart contracts to be traceable. When the smart contracts need to revert to
the previous state, it can simply trace the corresponding branch of the state tree in
the previous block.

3.3.2.2 Transaction Tree

Analogous to the approach of enclosing the transactions in the Bitcoin system as
introduced in Sub-Section 3.2.2.2, the transactions are stored in the leaf nodes and
structured as the modified Merkle Patricia tree [56]. As presented in Figure 3.13, the
leaf nodes are linked to their parent nodes through cryptographic hash function. The
root hash of the transaction tree is stored in the block header. When a light node
needs to verify whether a transaction is stored in the Blockchain networks, this light
node can request the full node to provide the Merkle proof.

3.3.2.3 Receipt Tree

The receipt tree stores the outcomes of the transactions as receipts [57]. All the
information related to a transaction, e.g., sender, receiver, and transaction amount,
is recorded in a receipt. For this reason, every transaction can be matched to its
corresponding receipt. Compared to the Bitcoin system, this additional receipt tree
supports an efficient search of the executed outcomes by using the bloom filter [58],
which is particularly useful when executing complex procedures of smart contracts.

The bloom filter is able to search an element from an impractically large scale
set by producing the digest for this set using the cryptographic hash function. An
example of producing a digest and searching elements of the set A by using the bloom
filter is presented in Figure 3.14. The bloom filter maps the elements a, b, and c of
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Figure 3.13 Data structure of the transaction tree. When a new block is generated,
transactions are are stored in the leaf nodes and structured as the modified Merkle
Patricia tree. The leaf nodes are linked to their parent nodes through using the
cryptographic hash function.

the set A to a position in the digest by using the cryptographic hash function. The
positions which have the hash values of corresponding elements are indicated as 1,
whereas the positions which do not have the hash values of corresponding elements
are indicated as 0. This design dramatically reduces the required memory for storing
the set. If the membership of an element d/e needs to be checked, the hash value of
this element would be calculated and located to a position in the digest, in which 1
indicates either the element e is a member of this set A or there is a hash collision,
and 0 indicates the element d is definitely not a member of this set A. This is the
typical feature of the bloom filter, i.e., either possibly in set or definitely not in set
[59]. In the Ethereum, the hash collision has been further overcome by including a
set of multiple cryptographic hash functions.

It is worth mentioning that rather than including the information of all the ac-
counts into the state tree, only the transactions and corresponding receipts within a
new block are included into the transaction tree and receipt tree, respectively. Hence,
the state tree shares certain branches between blocks, whereas the transaction tree
and receipt tree are independent between blocks.

3.3.3 Smart Contracts

The creation of digital currency has decentralised the financial systems. The next
field that can be decentralised is the contract management systems, which is re-
alised by the creation of smart contracts. In the conventional contract management
systems, contracting parties negotiate the content of contracts and sign the agreed
contracts. The signed contracts are validated by a third party, e.g., the court. Vio-
lation of contracts would result in the legal arbitration afterwards. By contrast, the
creation of smart contracts can prevent the violation of contracts beforehand. This
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Figure 3.14 Producing a digest and searching elements of a set by using the bloom
filter. The bloom filter maps the elements a, b, and c of the set A to a position
in the digest by using the cryptographic hash function. The positions which have
the hash values of corresponding elements are indicated as 1, whereas the positions
which do not have the hash values of corresponding elements are indicated as 0. If
the membership of an element d/e needs to be checked, the hash value of this element
would be calculated and located to a position in the digest, in which 1 indicates either
the element e is a member of this set A or there is a hash collision, and 0 indicates
the element d is definitely not a member of this set A.

is because smart contracts use programmable functions to standardise the content of
contracts [60]. The standardised contracts are collectively validated by every node in
the Blockchain networks and programmable functions are automatically self-enforced
by the state update [61]. Every contracting party can follow this predefined functions
to proceed transactions. If certain conditions are not met, the contracting parties are
forbidden to enter the contracts from the very beginning.

One initiative of the smart contracts is the vending machine. A buyer chooses a
product and pays the price of this product to the vending machine. By confirming
that the paid price equals to the price of this product (condition), the product will be
automatically transferred to this buyer in a self-enforcing manner. From this initia-
tive, we can find that the innovation of smart contracts evolves the Blockchain from
an application to a platform, under which the functions, e.g., the trading, negotia-
tion, and auctions can be performed [2, 62]. Depending on Blockchain networks, all
self-executing functions on this platform are collectively validated by all the nodes
through reaching a consensus.

Smart contracts are a computerised transactional protocol which executes the
predefined functions in a replicable, verifiable, secure, and immutable manner [62].
The primary features of smart contracts are summarised as follows:

• Self-enforcement: The programmable functions of smart contracts enable
predefined actions or procedures to be automatically enacted.

• Low transactional cost: Due to the automation and self-enforcement, the smart
contracts can reduce the costs of processing information of transactions and
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system states, which eases the burdens of information and communication in-
frastructures and reduces the transactional cost.

• Accessibility: The contents and executing states of smart contracts are open
and accessible for all participants of Blockchain networks.

• Duplicability: The smart contracts can be duplicated by all participants of
Blockchain networks, which means when a participant initiates a smart con-
tract, this participant only needs to call the address of this smart contract
stored in the Blockchain networks.

• Verifiability: The states of accounts and smart contracts as well as transac-
tions can be verified by every participant in the Blockchain networks through
verifying the root hash of the modified Merkle Patricia trees.

• Security: Smart contracts are secured by Blockchain networks through collec-
tively maintaining the consensus by every participant.

In the following subsections, the languages, control structures, and deployment
of smart contracts are introduced, with the Solidity [63] as an example.

3.3.3.1 Input and Output

The inputs of Solidity are certain number of parameters and outputs of Solidity are
certain or arbitrary number of parameters. All the parameters in inputs and outputs
need to be defined with the variable type. The default byte representation of a variable
is set as zero. For example, the default values for uint, int, and bool are 0, 0, and
false, respectively. For the statically sized arrays, e.g., bytes1 to bytes32, the elements
are initialised to the their own default values. For the dynamically sized arrays, e.g.,
string and bytes, the elements are initialised to empty array or string.

The input name needs to be defined whereas the output name can be omitted.
The output can be defined after the return keyword. A function can return multiple
outputs, in the form of return (output 1, output 2, output 3, ..., output N). The
default returns are initialised as zero unless defined otherwise. An instance of a public
contract which accepts two integers from the external calls and returns two results
with the product and sum of these two integers is as follows:

cont rac t ContractExample {
f unc t i on c a l c u l a t i o n ( u int x , u int y ) public

r e tu rn s ( u int product , u int sum ) {
product = x ∗ y ;
sum = x + y ;

}
}

As shown in this example, when defining the conditions of a function, the paren-
theses is necessary. For a single statement body, the Curly brackets could be omitted.
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The type of tuple can also be used in the solidity as inputs or outputs. The
tuple is in the form of a list which contains different data types with the constant
length at the compiling time. Once the output returns a tuple with different types of
values, these values would be assigned to either new variables or existing variables.
As presented in the following instance, the output of the function tuplefunction()
have multiple values inside the tuple, including uint and bool. These values will be
assigned to the function assignfunction().

contract Tuple {
function tuplefunction() public returns (uint, uint, bool){

return (5,6,true);
}
function assignfunction() public {

(uint x, uint y, bool z) = tuplefunction();
(x, y) = (y, x);

}
}

3.3.3.2 Control Structures

Similar to the common semantics of scripting languages, such as JavaScript or C, the
following basic control structures can be used:

• if ;

• else;

• while;

• do;

• for ;

• break;

• continue;

• return.

A smart contract can be called by the internal function call, external function
call, and name call, with details explained as follows:

• Internal function call: In the internal function call, a function can be directly
called by another function within the same smart contract. As shown in the
following example, the functionB can be directly called by the functionA under
the same contracts. Because the current memory is stored and passed to another
internally called function, the internal function call uses simple jumps in the
Ethereum virtual machine, which is an efficient way of calling functions.
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contract InternalCall {
function functionA(uint x, uint y) public returns (uint

output){
return functionB();

}
function functionB() internal returns (uint output){

return functionA(2,5)∗functionB();
}

}

• External function call: In the external function call, a function is called ex-
ternally from another contract by using a message call. The external function
call cannot be converted into simple jumps as the internal function call and
all function arguments therefore need to be copied to the memory. When a
customer calls a function of the smart contract using the external function call,
this customer can specify the value to be transferred and the gas to be paid to
the miner using .value() and .gas(), respectively. As presented in the following
instance, the ContractA can be externally called by the ContractB.

contract ContractA {
function initiate() public payable returns (uint output){

return 56;
}

}

contract ContractB {
ContractA contractin;
function init(address addr) public {

contractin = ContractA( addr);
}
function contractcall() public {

contractin.init.value(25).gas(8);
}

}

In this example, if the ContractA is set to be able to accept the transfer, the
modifier payable needs to be added. The term ContractA( addr) indicates the
type of the contract with the input address addr known as ContractA, such
that the constructor of this contract is not executed. The call would result in
exceptions for the following cases:
1) If the address is invalid;
2) If the called contract returns an exception;
3) If the transaction cost exceeds the gas limit.
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• Name Call: A function can be also called by names in an arbitrary order by
including the call in the curly brackets. The called list of elements needs to
match the elements of the function arguments. The following instance shows
that the functionB calls the arguments of the functionA by names

contract NameCall {
function functionA(uint x, uint y) public {
}
function functionB() public {

func1({ y: 3, x: 1});
}

}

3.3.3.3 Creating New Contracts

A new contract with known full codes can be created by another contract by using
the new. The requirement of known full codes can prevent the recursive creation.
In the following example, Contract1 is the new contract being created by Contract2.
The function CreateNew only creates a new contract whereas the function Creat-
eNewPay creates a new contract and specifies the transferred amount of currency
into this contract by using .value(). It is noted that the cases of out of stack or the
balances would result in exceptions.

contract Contract1 {
uint b;
function Contract1(uint a) public payable {

uint b = a;
}

}

contract Contract2 {
Contract1 contract1 = new Contract1(8);
function CreateNew (uint a) public{

Contract1 NewContract1 = new Contract1(8);
}
function CreateNewPay(uint a, uint amount) public payable {

Contract1 NewContract1 = (new Contract1).value( a)(
amount);

}
}

3.3.3.4 Conditions and Errors

The conditions of smart contracts can be set by using functions assert or require. If
the defined conditions are not met, these functions would throw an exception. For the
Solidity, the state reverting exceptions are used to undo all the state changes in the
current call. The caller would receive a notice of the error. Assert function is used to
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test for internal errors and define invariant conditions. The function require is used
for:

• Ensuring the defined conditions are valid. For instance, the inputs of a function
need to meet certain conditions;

• Ensuring the state variables of smart contracts are met;

• Validating the output values of a call to external contracts.

In the following example, the function require is used to check the input conditions,
i.e., the transferred value needs to be greater than or equal to 8. The function assert
is used to check the internal errors, i.e., the balance after the transfer is updated
correctly. A message in the type of string can be added to the require function,
whereas the assert function cannot include any string message.

contract Condition {
function conditioncheck(address addr) public payable returns (

uint balance) {
require(msg.value >=8, ”minimum transfer requirement is

8”);
uint previousbalance = addr.balance;
addr.transfer(msg.value);

assert( addr.balance == previousbalance − msg.value);
return addr.balance;

}
}

The function revert can also be used to trigger exceptions and revert state changes
in the current call. A string message can be provided to notify the callers with the
detailed errors as shown in the following example:

contract Condition {
function conditioncheck(address addr) public payable returns (

uint balance) {
if (msg.value < 3)
revert(”minimum transfer accepted is 3”);
return addr.balance;

}
}

3.3.3.5 Deployment of Smart Contracts

A programmed smart contract can be deployed on the Ethereum virtual machine [64]
which provides a form of abstractions between the smart contracts programmes and
the hardware. Ethereum virtual machine would be maintained by all the connected
peers which are taken as clients, so as to keep the continuous, uninterrupted, and
immutable operations under the protocols of Blockchain networks. The update of
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Figure 3.15 Example of the virtual machine for deploying smart contracts. All the
participants in the Blockchain networks collectively maintain this virtual machine.
The states of smart contracts and accounts changing from one block to another block
are driven by the mechanisms defined by the virtual machine.

states of all accounts and smart contracts from one block to another block is driven
by the mechanisms defined by this virtual machine. An example of virtual machine
is presented in Figure 3.15.

The virtual machine imports the previous states and new enclosed transactions
as inputs, and returns new states as deterministic outputs, through which the state
transition can be driven [65]. This state transition is updated in the state tree and
new transactions are included in the transaction tree. The execution of the virtual
machine is in the format of a 1024-item depth stack machine, through which each
item is in the form of a 256-bit word. The deployed smart contracts are executed as
the virtual machine opcodes by executing the standardised stack operations.

An instance for deploying the Ethereum smart contracts written in the virtual
machine by using the Remix IDE [66] is presented in Figure 3.16. Under this platform,
a user can register an account with balance of 100 Ether. The gas limit, transferred
value, and contract type can be defined by a user when calling the smart contracts or
participating in a deployed smart contract. When a new smart contract is deployed,
the initiator needs to ensure the input information meets the pre defined conditions
of this contract.

3.4 CHAPTER SUMMARY

Fundamental theories of Blockchain technologies have been introduced in this chap-
ter, including the first and second generations of Blockchain, i.e., Blockchain-based
cryptocurrency and Blockchain-based smart contracts. These Blockchain technolo-
gies have the potential to support open and accessible local energy markets. The
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Figure 3.16 Deploying the Ethereum smart contracts written in the virtual machine
by using the Remix IDE [66]. Under this platform, a user can register an account
with balance of 100 Ether. The gas limit, transferred value, and contract type can
be defined by a user when calling the smart contracts or participating in a deployed
smart contract. When a new smart contract is deployed, the initiator needs to ensure
the inputs information meets the pre defined conditions of a this contract.
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cryptography theory, structures of Blockchain networks, and consensus ensure the
security and trustworthiness of energy trading. The block structure and node types
allow the accessibility of individual prosumers through using their local devices.
Blockchain-based smart contracts turn the Blockchain to be a fundamental platform
to support the self-enforcement, automation, and standardisation of energy trading
procedures.
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C H A P T E R 4

Reforms in Energy Systems:
Prosumers Era and Future
Low-Carbon Energy
Systems

C urrently, there is a global shift in the way power systems operate. Traditionally,
power systems involved one-way power flows generated by centralized power sta-

tions, transmitted through distribution networks, and delivered to passive consumers
such as households, businesses, and industries. These consumers would only draw
power from the grid and pay for their consumption through wholesale or retail elec-
tricity prices, acting as price takers. However, the power system is now transitioning
towards a low-carbon, decentralized paradigm, where there are numerous distributed
generation sources, energy storage systems, and electric vehicles looking to connect
to the power grid, particularly on the demand-side. As a result, power now flows in
both directions, from the supply side to the demand-side, or power exchange within
the demand-side. At the same time, passive consumers are becoming active by gen-
erating energy locally to meet their energy needs or sharing energy with one another.
This poses challenges as the power system was not initially designed for this type
of operation, both in terms of physical infrastructure such as wires and transform-
ers, and non-physical infrastructure such as information, communication, and control
architectures. in addition, as energy systems transition towards a decentralized and
localized paradigm, energy markets are also undergoing a similar shift.

This chapter introduces the transition of power systems and energy markets to-
wards the net zero prosumers era. Section 4.1 introduces key stakeholders in current
GB energy system. Section 4.2 describes the emerging role of prosumers, and Sec-
tion 4.3 identifies potential architectures of information and control for prosumer
networks, including peer-to-peer trading markets in Sub-Section 4.3.1, intermediary-
based trading markets in Sub-Section 4.3.2, and microgrid-based trading markets
in Sub-Section 4.3.3. In Section 4.4, the current and potential future regulatory
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supports in facilitating such transition are reviewed, including barriers and principles
for prosumers’ engagement in Sub-Section 4.4.1, regulations for net zero power sys-
tems in Sub-Section 4.4.1 and balanced energy markets in Sub-Section 4.4.2. Section
4.5 illustrates technical challenges of future low-inertia power systems caused by in-
creasing penetration of renewable energy sources, including the foundational concepts
of inertia, frequency, and frequency response in Sub-Section 4.5.1, challenges caused
by low-inertia power systems in Sub-Section 4.5.2, and solutions to those challenges
in Sub-Section 4.5.3. Section 4.6 concludes this chapter.

4.1 KEY STAKEHOLDERS IN GB ENERGY SYSTEM

In this section, key stakeholders in GB energy systems are introduced, as a prelimi-
nary of energy system transitions. The stakeholders include the power system oper-
ator, transmission system operator, distribution network operator, energy suppliers,
policy makers, regulators, and consumers, with details as follows.

4.1.1 Power System Operator

The power system operator in the GB energy system is the National Grid Electricity
System Operator (ESO). ESO is responsible for managing the electricity system in
GB, ensuring that supply and demand are balanced and that the grid remains stable
and secure.

ESO is a separate business unit within the National Grid group, which owns and
operates the high-voltage transmission network in GB. As the power system operator,
the ESO is responsible for maintaining the frequency and voltage of the grid within
tight limits, ensuring that there is enough generation to meet demand, and managing
the flow of electricity across the transmission network.

ESO works closely with other market participants, including generators, suppli-
ers, and network operators, to ensure the efficient and reliable operation of the GB
electricity system. It also plays a key role in facilitating the transition to a low-
carbon energy system by integrating increasing amounts of renewable generation and
supporting the development of new technologies and market arrangements.

The income for the National Grid ESO comes from a number of sources, includ-
ing charges for the use of the electricity transmission network and income from the
balancing mechanism. These are detailed as follows:

• The ESO charges generators and suppliers for the use of the transmission net-
work to transport electricity from power stations to homes and businesses.
These charges are set by the energy regulator, Ofgem, and are designed to
cover the costs of operating and maintaining the transmission network.

• The ESO also earns income from the balancing mechanism, which is used to
balance the supply and demand of electricity on the transmission network in
real time. The ESO pays generators and suppliers to increase or decrease their
output to balance the system, and these payments are funded by charges to
network users.
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• In addition to these sources of income, the ESO also receives funding from the
UK government to support the development and implementation of policies
and initiatives to promote the transition to a low-carbon energy system.

Overall, the income for the National Grid ESO comes from charges for the use
of the transmission network, income from the balancing mechanism, and funding
from the UK government. The ESO uses this income to fund its operations, maintain
the security and stability of the electricity system, and promote the transition to a
low-carbon energy system.

4.1.2 Transmission System Operator

The transmission network operator is responsible for operating the high-voltage trans-
mission network that connects the power stations to the distribution network oper-
ators. The transmission network operator in GB is the National Grid Electricity
Transmission, which owns and operates the high-voltage transmission network across
England and Wales, as well as the interconnectors that link GB to other countries.
The transmission network operator is responsible for ensuring secure and efficient
operation of the transmission network, maintaining the voltage and frequency of the
grid, and managing the flow of electricity across the network.

National Grid ESO is responsible for managing the real-time operation of the
electricity system and ensuring a balance between supply and demand, while National
Grid Electricity Transmission is responsible for owning and operating the high-voltage
transmission network that forms a key part of the electricity system. In the GB energy
system, both the National Grid ESO and the National Grid Electricity Transmission
are involved in running power flow analysis and frequency response.

The ESO is responsible for ensuring that the electricity system is balanced in real
time, by managing the supply and demand of electricity on the transmission network.
To do this, the ESO uses a range of tools and techniques, including power flow analysis
and frequency response. Power flow analysis is used to model the flow of electricity
across the transmission network and identify potential bottlenecks or constraints.
Frequency response is used to maintain the stability of the grid by managing the
frequency of the AC waveform.

National Grid Electricity Transmission is responsible for the operation and main-
tenance of the high-voltage electricity transmission network in England and Wales.
As part of this role, it provides the infrastructure and equipment necessary to sup-
port the ESO in managing the electricity system, including power flow analysis and
frequency response.

The income for National Grid Electricity Transmission comes from a number of
sources, including charges for the use of the electricity transmission network, income
from regulated activities, and other activities such as asset optimisation, with details
as follows:

• National Grid Electricity Transmission also charges generators and suppliers for
the use of the transmission network to transport electricity from power stations
to homes and businesses.
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• National Grid Electricity Transmission also earns income from regulated ac-
tivities, such as providing connection services to new generators or modifying
the transmission network to accommodate new energy sources or technologies.
These activities are also subject to regulatory oversight by Ofgem, which sets
the price controls and performance targets for National Grid Electricity Trans-
mission.

• In addition to these sources of income, National Grid Electricity Transmission
also engages in other activities, such as asset optimisation, where it seeks to
maximise the value of its existing assets by exploring new business models or
revenue streams.

Overall, the income for National Grid Electricity Transmission comes from charges
for the use of the transmission network, income from regulated activities, and other
activities such as asset optimisation. National Grid Electricity Transmission uses this
income to fund its operations, maintain the security and stability of the electricity
system, and invest in the infrastructure necessary to support the transition to a
low-carbon energy system.

4.1.3 Distribution Network Operator

There are currently 14 distribution network operators in the GB energy system, each
responsible for a particular geographic region. The distribution network operators are
responsible for distributing electricity from the high-voltage transmission network to
homes and businesses across their respective regions.

The 14 distribution network operators in GB are:

• Electricity North West Limited (ENWL)

• Northern Powergrid (NPg)

• Scottish and Southern Energy Power Distribution (SSEPD)

• ScottishPower Energy Networks (SPEN)

• Western Power Distribution (WPD)

• UK Power Networks (UKPN)

• Electricity North East Limited (ENEL)

• Northern Ireland Electricity Networks (NIE Networks)

• Northern Powergrid (Northeast) Limited (NPG-NE)

• Northern Powergrid (Yorkshire) plc (NPG-Y)

• Electricity Supply Board (ESB) Networks Limited

• WPD South West (WPD-SW)
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• WPD South Wales (WPD-SWALEC)

• Scottish Hydro Electric Power Distribution (SHEPD)

These distribution network operators are regulated by the energy regulator, Ofgem,
which sets price controls and performance targets to ensure that they operate effi-
ciently and in the best interests of consumers.

4.1.4 Energy Suppliers

In the GB energy market, there are a large number of energy suppliers who provide
electricity and gas to homes and businesses. These suppliers purchase energy from the
wholesale markets and sell it on to customers, offering a range of tariffs and services
to meet different needs.

Some of the largest energy suppliers in GB include:

• British Gas

• E.ON

• SSE

• EDF Energy

• Scottish Power

• npower

• Octopus Energy

• Bulb

• OVO Energy

• Shell Energy

In addition to these large suppliers, there are also a number of smaller, independent
energy suppliers who compete in the market, offering innovative products and services
to customers.

Energy suppliers in GB are subject to regulation by the energy regulator, Ofgem,
which sets price caps and other regulations to ensure that customers are treated
fairly and that the market operates efficiently. Customers are able to switch energy
suppliers to find the best deal for them, and many suppliers offer incentives and
rewards to encourage customers to switch.

4.1.5 Policy Maker

In the GB energy system, the policy maker is the UK government, which sets the
policy and regulatory framework for the energy sector.
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The Department for Business, Energy and Industrial Strategy (BEIS) is the UK
government department responsible for developing and implementing policies relating
to energy, including electricity, gas, and heat. BEIS works to ensure that the energy
system is secure, affordable, and sustainable, while promoting innovation and growth
in the energy sector.

BEIS works closely with other government departments, such as the Department
for Environment, Food and Rural Affairs (DEFRA) and the Department for Trans-
port, to develop cross-cutting policies that address the challenges of climate change,
air quality, and sustainable development.

The UK government plays a crucial role in shaping the direction and priorities of
the GB energy system, and in ensuring that the energy sector operates in the best
interests of consumers and the wider society.

4.1.6 Regulators

In addition to setting policy, the UK government also regulates the energy sector
through the energy regulator, Ofgem. Ofgem is responsible for promoting compe-
tition and protecting consumers in the energy market, and sets the price controls
and performance targets for network operators and energy suppliers. Ofgem is a non-
ministerial government department responsible for protecting the interests of gas and
electricity consumers by promoting competition and regulating the industry.

As the regulator, Ofgem is responsible for setting price controls and performance
targets for the energy networks and ensuring that they invest efficiently in maintaining
and upgrading their infrastructure. It also sets price caps for the retail energy markets
to protect consumers from being overcharged by energy suppliers.

In addition to regulating prices, Ofgem also promotes competition in the market
and supports the development of new technologies and business models that can help
to reduce carbon emissions and improve the efficiency of the energy system.

Ofgem plays a crucial role in ensuring that the energy system in GB operates
efficiently, transparently and in the best interests of consumers.

4.1.7 Consumers

In the GB energy system, consumers refer to the individuals and businesses who use
electricity and gas to power their homes and operations. These include households,
small- and medium-sized enterprises, and large industrial users.

Consumers in GB are able to choose from a range of energy suppliers, each offering
different tariffs and services to meet different needs. They are also able to switch
suppliers and tariffs to find the best deal for them, as well as access support and
advice from consumer groups and government agencies.

In addition to purchasing energy from suppliers, consumers in GB can also gener-
ate their own energy through the use of renewable energy technologies such as solar
panels or wind turbines. This is known as distributed energy, and it is playing an
increasingly important role in the energy system as more and more consumers seek
to reduce their carbon footprint and take greater control over their energy usage.
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Figure 4.1 Schematic illustration of the capital flow in liberalised energy markets. The
energy suppliers and large industrial consumers purchase the energy from the gener-
ation companies in the wholesale markets, and sell this energy to their consumers.
Hence, there is a one-way capital flow from consumers to the suppliers, and sub-
sequently the capital flow is distributed between the generation companies and the
transmission or distribution system operators.

Consumers play an important role in the GB energy system, as they are the
ultimate users of energy and the primary beneficiaries of the system’s services. They
are also important drivers of change, as they seek to reduce their energy consumption,
generate their own energy, and play a more active role in the management of the
energy system.

4.2 THE EMERGING ROLE OF PROSUMERS

In the liberalised energy markets, as shown in Figure 4.1, the energy suppliers and
large industrial consumers purchase the energy from the generation companies in
the wholesale markets and sell this energy to their consumers. Hence, there is a
one-way capital flow from consumers to the suppliers, and subsequently the capi-
tal flow is distributed between the generation companies and the transmission or
distribution system operators for their services of managing power grids. However,
with the engagement of active consumers, this market design does not fit for the
purpose any more. We need local energy markets to allow consumers to exchange
energy and capital within their community, along with tailored auction and pric-
ing mechanisms. As identified by the National Grid ESO [1], there are four different,
credible pathways to decarbonise energy systems till 2050: steady progression, system
transformation, consumer transformation, and leading the way. These four scenarios
are evaluated on the dimensions of demand-side engagement, electrification of heat,
energy efficiency, and supply-side flexibility. In any of these scenarios, there are in-
creasing numbers of active consumers with their localised generation and storage
assets, which enables consumers to produce, consume, and store energy through the
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distributed renewable sources [2], batteries [3], electric vehicles [4], and smart meters
[5]. The conventional power systems are transitioning towards prosumers era.

The figure of prosumers was coined by Alvin Toffler in 1980 [6]. On the context of
energy markets, prosumers are small-sized or medium-sized agents [7], e.g., residen-
tial, commercial and industrial users, who actively produce energy and feed surplus
energy into a distribution network after self-consumption. When prosumers’ demand
cannot be met by self-generation, they import energy from main grids or other pro-
sumers [7]. Accommodating increasing numbers of prosumers would require flexible
market structures, efficient information infrastructures, and decentralised control ar-
chitectures.

4.3 MARKET STRUCTURES FOR PROSUMER NETWORKS

A flexible structure of local energy markets towards the decentralised generation
and consumption is crucial for the integration of emerging role of prosumers. The
foundation to support this kind of flexible local energy markets is the decentralised
information and control infrastructures. There are primarily three architectures com-
monly used in research and industrial practices, including the peer-to-peer trading
markets, intermediary-based trading markets, and microgrid-based trading markets.
The schematic illustration of these three types of energy markets design is presented
in Figure 4.2. In the three sub-figures, the dots represent the control units and lines
represent the information flows. The key features of these three architectures are
summarised as follows, with details and implementations explained in the following
subsections.

• Peer-to-peer trading markets: The first architecture on the left hand side is
the fully decentralised structure. In this architecture, the energy sources will
be directly controlled by prosumer themselves. These prosumers can decide
their own offering or bidding prices. There behaviours will be driven by their
own interests. The key challenge of this architecture is how to align individual
prosumers’ interests with the power system’s benefits.

• Intermediary-based trading markets: The second architecture on the middle is
the intermediary based structure. The control unit is the intermediary, such
as aggregators or energy suppliers. Like the retail markets, the aggregators or
suppliers determine the energy prices for its customers. All the resources within
the community are pooled together to guarantee the community’s benefits. The
issue is it still relies on the third party, i.e., the intermediary.

• Microgrid-based trading markets: The third architecture on the right hand side
is organised as microgrids. It can be either operated in an islanded mode inde-
pendently, or connected to the utility grid. When microgrids are connected to
the utility grid, prosumers can export their surplus power back to the grid. In
this case, they are driven by the electricity prices. When microgrids are oper-
ated independently, prosumers can share energy within a microgrid and they
are driven by the price of a microgrid.
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Figure 4.2 Schematic illustration of energy markets design towards the prosumers era.
Under the peer-to-peer trading markets, prosumers interconnect with each other to
trade electricity and other services; Under the intermediary-based trading markets,
an ensemble of prosumers is organised by an intermediary to pool generation sources,
flexible demand, and storage capacities; Under the microgrid-based trading markets,
prosumers connect to microgrids and microgrids either connect to the main grid
or operate at the islanded mode as indicated by the dashed lines. Dots indicate
prosuming agents. Lines indicate the information exchange among agents.

4.3.1 Peer-to-Peer Trading Markets

Like other collaborative economy [8], such as Uber and Airbnb, the peer-to-peer
trading allows the prosumers and consumers in the demand-side of power systems to
exchange energy and other services, e.g., the demand-side management, energy stor-
age [9], and carbon credits [10] [11], in a real-time, autonomous, and decentralised
manner. The real-time would require some enabling technologies such as smart me-
ters and advanced communication technologies with low latency. The autonomous
means the distributed energy sources are directly controlled by their owners. The de-
centralisation would require some distributed ledger technologies, such as Blockchain.
The role of the distribution system operator becomes a facilitator to facilitate pro-
sumers’ engagement and provide the distribution functions [12]. In comparison to
other two structures, the peer-to-peer trading markets are the least structured mar-
kets. Instead of using central authorities, such as aggregators or energy suppliers,
as control agents, individual prosumers become an independent agent to exchange
energy and information with each other and perform control functions [13]. Hence,
this framework enables a flexible market structure.

The question is what benefits the peer-to-peer energy trading would bring to
the power systems, communities, and prosumers. Figure 4.3 categorises the benefits
of the peer-to-peer energy trading from different temporal dimensions. The real-
time benefits include balancing supply and demand locally, bill saving for consumers,
provision of ancillary services, and flexibility provision. The mid-term benefits include
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Figure 4.3 Benefits of the peer-to-peer energy trading from different temporal dimen-
sions. The real-time benefits include balancing supply and demand locally, bill saving
for consumers, provision of ancillary services, and flexibility provision. The mid-term
benefits include keeping capital within the community and enhancing local energy
resilience. The long-term benefits include the incentive on distributed generation and
avoiding huge costs of power network reinforcement.

keeping capital within the community and enhancing local energy resilience. The long-
term benefits include the incentive on distributed generation and avoiding huge costs
of power network reinforcement.

To help readers understand these benefits, an real world example is used: I have
the highest solar output of my roof-top solar panel on a sunny day. After meeting my
self-consumption, I still have extra power to share with my neighbours which would
be otherwise wasted. My neighbour can buy this energy at a price lower than the
retail electricity price. Hence, my neighbour could save the electricity bills. For myself,
I could have extra revenue by selling power. For the community, the capital has been
kept within the community. we can balance the supply and demand locally without
going through the long-distance transmission and distribution. For the transmission
system operators and distribution system operators, they can avoid or defer the
massive investment on reinforcing the transmission and distribution networks. In
addition, the peer-to-peer energy trading can help local energy resilience. During
the situation of the blackout, if I have the battery storage, I can provide my stored
energy as a service to the community. There are also other ancillary services, such
as frequency response to maintain the frequency of power systems and flexibility
provision. For example, if I want to reduce my demand at the peak demand period,
I can also provide the demand reduction to the power system operators in a form of
the flexibility service.

Nonetheless, the increasing burdens on control agents and information flows along
with system states and control decisions made by agents amplify the volumes of
information flows. This presents a challenge for the information infrastructures of
power systems [14]. Another challenge of the peer-to-peer trading markets is how to
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ensure the system constraints and the security of supply without the intervention of
power system operators.

In practice, the RWE [15] developed the peer-to-peer trading platforms integrating
functions of the decentralised control, network management, communication, automa-
tion, and security. The Power Ledger [16] provides the peer-to-peer energy trading
for 11,000 participants from residential and commercial consumers in Australia based
on software solutions. This peer-to-peer trading market is supported by the Australia
government, utilities, and distribution system operator.

4.3.2 Intermediary-Based Trading Markets

The intermediary-based trading markets are more structured than the peer-to-peer
trading markets. Under the intermediary-based trading markets, an ensemble of pro-
sumers is organised as a community or local organisation, e.g., smart buildings [17]
and virtual power plants [18]. Each community is managed by an intermediary, e.g.,
aggregators [19] or retailers [20], as an agent to maintain the regional energy balance
and provide energy services. All generation sources, flexible demand, and storage ca-
pacities within a community are pooled to collectively coordinate resources for local
benefits. The intermediary can earn bonus from regulators or utilities for providing
services to prosumers such as the efficiency update, demand response, and setup of
renewable energy sources [21].

The concept of virtual power plant was originated from virtualisation and dig-
italisation of internet of things from 1990s. It is similar to the virtual technologies
used in games, conferences, and businesses. The virtual reality is integrated into
the operational management of power systems. According to Kraftwerke [22], virtual
power plants are an internet based decentralised networks which can organise small
or medium generation resources, e.g., solar panels and heat pumps, and flexibility re-
sources, e.g., demand-side management and fast frequency response. All distributed
resources are coordinated by a central controller, e.g., mainframe computer, while
they remain independent operation and asset ownership.

An example of the intermediary is the Stem [23] which has designed a platform to
provide the storage services and demand response for consumers in California through
real-time optimisation and automated control. The utility in Oregon, Portland Gen-
eral Electric [24], linked up 525 households with solar-storage systems into a virtual
power plant as grid resources, which assembled 4 MW batteries as a precursor to
200 MW of flexibility provision in distribution networks in terms of supply–demand
balance. The company of Energy and Meteo Systems [25] in Germany has established
a virtual power plant via the digital control centre with the services of the real-time
data management, remote control of wind and solar generation, energy scheduling,
demand-side management, and balancing group management. The data collection
and controlling decisions are managed by the digital control centre without the need
of new IT infrastructures. The Swell Energy [26] pooled the energy storage, solar
panels, and battery management software to provide electricity to households in Los
Angeles as parts of the grid capacity.
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4.3.3 Microgrid-Based Trading Markets

The microgrid-based trading markets are the most structured framework, under which
prosumers are connected to the microgrid and the microgrid can either connect to
the main grid or operate at the islanded mode. When a microgrid connects to the
main grid, prosumers can sell surplus generation to the main grid [7]. Prosumers
would be incentivised to generate more energy for earning profits through export-
ing. When a microgrid operates at the islanded mode, the surplus generation can
be stored within the microgrid or used for load shifting services [27]. Prosumers
would be incentivised to strategically schedule their generation and consumption for
local energy balance. The primary difference between the microgrid-based trading
markets and intermediary-based trading markets is that there is no intermediary
in microgrid-based trading markets to pool resources together. Individual resources
of the generation and consumption can directly connect to the microgrid and then
to the main grid. Rather than seeking for an intermediary’s benefits, e.g., maximising
the bonus, individual microgrids seek for their own benefits, e.g., maximising energy
exports or achieving energy balance.

The microgrids interconnect to distribution networks and provide electricity to
its nearby consumers through both software and control systems. The microgrids
geographically serve for local consumers and therefore overcome the power losses
of long-distance transmission in conventional electricity systems and internet based
virtual power plants. In addition to the software-based centralised controller for asset
management as that in virtual power plants, microgrids are equipped with hardware,
such as inverters or switches, in assisting their operations.

As practical implementations, the LO3 Energy [28] has developed the Brooklyn
microgrid integrating buildings on site to support demand-side managements and
improve communication infrastructures. The Asea Brown Boveri Ltd [29] provides
microgrid solutions for customers to ensure the reliable, stable, and affordable power.

4.4 REGULATORY SUPPORTS

This section will first identify the regulatory barriers for the engagement of prosumers
and list principles for a fair design of local energy markets. Second, policy supports for
transitioning towards future net zero power systems in GB are introduced, including
the carbon pricing schemes, contract for difference auction, and capacity auction.
Third, regulations for balancing markets are presented.

4.4.1 Regulatory Barriers and Principles for Prosumers Engagement

Six primary barriers are firstly identified in this section as summarised in Figure 4.4,
with details explained as follows:

• Scale differences: The scale of prosumers is small compared to large-scale gen-
eration companies or energy suppliers, but the number of them is large with
the features of decentralisation and distribution.
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Figure 4.4 Key regulatory barriers for the engagement of prosumers.

• Market access: In energy markets, generation companies and energy suppliers
would require licences to access the markets, but the number of prosumers is
large. It is difficult to design the licence individually. The opportunity for policy
makers is to design standardised licenses which are replicable for all prosumers.

• Engagement: The third barrier is how to incentivise the engagement of pro-
sumers into the peer-to-peer energy trading, whether using energy pricing
schemes naturally drive the behaviours of prosumers, providing extra mone-
tary compensation, or making certain regulations.

• Responsibilities: The fourth barrier is how to account for the responsibilities
of prosumers when they participate in the peer-to-peer energy trading. For
example, how to account for the contribution of carbon reduction if prosumers
install the air-source heat pump or roof-top solar panels. If prosumers exchange
energy through the distribution networks, do they need to pay for the use of
power grids. How to ensure the prosumers predict their generation accurately
and how to ensure the security of supply.

• Economic models: The fifth barrier is how to analyse and model the behaviours
of individual prosumers. We know that the household does not invest by a
rational economic model. One opportunity is to use the data driven machine
learning to learn their behaviours from historical data.

• Asset accounting: The last barrier is how to account for the assets of prosumers,
including both physical assets, such as roof-top solar panels and air source heat
pumps, and non-physical assets, such as the transaction information.

Based on these identified barriers, some principles for demand-side policy design
are listed next. As presented in the scale of Figure 4.5, the current policies mainly
focus on the supply side, with less attention on the demand-side. To make this scale
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Figure 4.5 Principles for the demand-side policy design. The current policies mainly
focus on the supply side, with less attention on the demand-side. To make this scale
balance, demand-side policy measures need to be equally designed.

balance, we need to equally design demand-side policy measures. The detailed prin-
ciples are explained as follows:

• Scale differences: To ensure an open and accessible energy markets, if the large-
scale generators or suppliers need the licenses on the supply side, the same
standardised and replicable licenses would be required on the demand-side.

• Internalise all operational costs: All the operational costs need to be inter-
nalised. For example, the personal carbon trading [30, 31] is needed in the
demand-side similar to emission trading scheme in the supply side. The cost
of grid use needs to be charged from prosumers when they participate in the
peer-to-peer energy trading.

• Dispatchable sources for reliability: The third principle is to ensure the demand-
side has the same dispatchable sources similar like the dispatchable generators
and storage devices in the supply side to compensate active or reactive power,
for ensuring the reliability and stability of power systems.

• Tariff certainty for low-carbon technologies: The fourth principle is to provide
certainty for investing in low-carbon technologies. We have the contract for
difference in the supply side to give generation companies some certainty on
the low carbon investment. We also need the same certainty for prosumers.

• Security of supply: Similar to the capacity market, the demand-side flexibility
needs to be aggregated for assisting power system operation and ensuring the
security of supply.
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• Time-specific market: The time specific local markets are necessary, which
aligns to the wholesale and retail energy markets.

• Balancing Services and Frequency Responses: The demand-side should be in-
centivised to provide ancillary services and fast frequency response to power
systems.

4.4.2 Policy Supports for Net Zero Transition

Policy makers aim to achieve the net-zero or net-negative electricity generation
through determining the carbon price and providing the contract for difference auc-
tions and capacity auctions, which is explained as follows.

4.4.2.1 Carbon Pricing Scheme

The carbon intensity describes the amount of carbon emissions from power systems
per unit of electric energy generation, with a unit of gCO2/kWh. Policy makers
compare the actual carbon intensity with a emission target to see if the carbon
emission reduction is on track.

The low carbon policy design has been focused by the international regulations
and existing research. Market-based low carbon policies, also known as the carbon
pricing, are an economic instrument to address the carbon emissions caused by the
combustion of fossil fuels [32]. The carbon pricing enforces the pollutant emitters
to compensate the environmental damage in a monetary manner. Therefore, the
implementation of the carbon pricing increases the costs of using fossil fuels and
subsequently stimulates the carbon mitigation [33]. Two primary forms of the carbon
pricing are the carbon tax and emissions trading scheme. By the end of 2019, the
carbon pricing schemes have been implemented in 46 countries, of which 25 countries
adopt the carbon tax and the rest 21 countries adopt the emissions trading scheme
[34]. The carbon pricing helps these countries achieve their low carbon targets by
stimulating the energy conservation, improving the energy efficiency, and investing
low carbon technologies. The details of these two forms of the carbon pricing are
explained as follows:

• Carbon tax: The carbon tax levies a fixed rate on the carbon content of fossil fu-
els [35]. The rate of carbon tax is determined by the social cost of carbon which
quantifies the marginal damage costs of carbon emissions to the society [36].
As a revenue of the policy maker, the carbon tax can be further redistributed
for investing in low-carbon technologies or providing monetary compensation
for the demand-side carbon mitigation, so as to achieve the carbon revenue
neutrality. For related research please refer to [37, 38].

• Emissions trading scheme: The emissions trading scheme, also known as the
cap-and-trade scheme, is an alternative policy to the carbon tax. Under the
emissions trading scheme, the policy makers and regulators allocate a certain
amount of carbon allowances for a given time period [39]. Emitters are obliged
to have an enough amount of carbon allowances covering the amount of their
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carbon emissions. The surplus or scarcity of carbon allowances can be traded
among emitters [40].
Nonetheless, an inappropriate carbon price determined by the emissions trad-
ing scheme would inefficiently incentivise the carbon emissions mitigation and
fail to achieve the low carbon targets. The issue of the inappropriate carbon
price presents a challenge for the emissions trading scheme in a majority of
countries [41]. If the carbon price lies below the social cost of carbon or the
rate at which the low-carbon targets can be achieved, it would insufficiently
stimulate the mitigation of carbon emissions; If the carbon price in one region
is higher than that in another region, the market competitiveness of carbon
producers in the high-price region would be harmed. The carbon producers are
prone to discharging carbon emissions in the low-price region, while the total
amount of carbon emissions remains unchanged, which is defined as the car-
bon leakage issue [42]. In addition, the carbon producers will pass the cost of
carbon allowance onto consumers in the form of higher prices on the products,
e.g., higher electricity prices.
To overcome the issue of the inappropriate carbon price, the carbon price floor
and ceiling are implemented in current international carbon markets by setting
an additional price limits for the carbon emissions producers in certain regions
[43]. For the case of the UK carbon market, because the carbon price of the
EU emissions trading scheme is lower than the social cost of carbon in the UK,
the carbon price has failed to incentivise the UK coal-to-gas transition before
2013 [41]. Afterwards, the UK has formulated the carbon price support for its
own carbon producers as an additional carbon price floor to the EU emissions
trading scheme. The US set a similar price floor and facilitated carbon auctions
in 2009 [44]. By contrast, in New Zealand, a carbon price ceiling was enacted
through the fixed price option to prevent high carbon prices and protect the
market competitiveness of generators [45].

As two well-established policy instruments, the carbon tax and emissions trading
scheme have the following aspects in common:

• Both the carbon tax and emissions trading scheme impose a price on carbon
emissions for facilitating energy producers and consumers to internalise the
social cost of carbon.

• Instead of the command-and-control based policy measures that specify actions
for the carbon mitigation to be taken, the market based policy measures flexibly
incentivise carbon producers to strategically respond to the prices.

• Market-based low carbon policies can generate public revenue through charging
the carbon tax or selling carbon allowances.
The differences between the carbon tax and emissions trading scheme including
the advantages and limitations of each policy design are as follows:
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Figure 4.6 Comparison between carbon tax and emissions trading scheme from eco-
nomics perspective. The implementation of the carbon tax would raise the energy
price and reduce the energy demand. The emissions trading scheme would limit the
total carbon emissions and raise carbon price.

• The carbon tax gives a certainty to the price of carbon emissions through the
fixed tax rate, whereas the emissions trading scheme gives a certainty to the
quantity of carbon emissions through the fixed carbon allowance [46].

• Carbon tax is easier to be implemented since it is based on the established tax
systems. By contrast, the emissions trading scheme is more flexible since it can
be extended with the financial innovations such as the peer-to-peer trading,
options, banking, and borrowing.

• From the economics perspective as indicated in Figure 4.5, when the carbon tax
is implemented, the energy price increases and the energy demand decreases
from point a to point b. Consumers would find alternatives, e.g., the load shifting
or load curtailment, electric vehicles, replacing the gas furnace with the heat
pumps. By contrast, under the emissions trading scheme, when the total amount
of carbon allowance is fixed according to the target of the carbon mitigation as
indicated by the line l, the carbon price would increase from point a to point b.
Facing the uncertainty of the carbon price, generators would find alternatives,
e.g., improving the combustion efficiency, replacing the coal by the gas, and
investing the renewable generation.

The comparison between the carbon tax and emissions trading scheme is sum-
marised in Table 4.1.

4.4.2.2 Contract for Difference Auction

Policy makers aim to encourage the investment in renewable generation infrastruc-
tures through providing the contract for difference auction. The eligible generation
technologies for participating in the contract for difference auction include renewable,
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Table 4.1 Comparison between the carbon tax and emissions trading scheme
Carbon tax Emission trading scheme

Common
Impose pricing on environmental damage

Market based policy instead of commend-and-control
Create public revenue

Difference Certainty to the price of car-
bon emissions

Certainty to the quantity of
carbon emissions

Easier to implement based on
tax system

Flexible and extendable with
financial tools

nuclear, and bioenergy with carbon capture and storage technologies, after receiving
the required capacity issued by the policy maker. The detailed procedures of the
contract for difference auction are described as follows:

• Step 1: Individual generation companies which are willing to participate in
the contract for difference auction submit their bids with the information of
technological type, bidding price, bidding capacity, and construction time. The
bidding price of a generation company can be set as the costs of producing per
unit of electricity.

• Step 2: Policy makers arrange the bidding prices in the ascending order, and
rank the generation companies from the lowest bidding price to the highest
bidding price.

• Step 3: Until the sum of bidding capacity reaches the capacity issued by policy
makers, the auction ends. The counted generation companies win the contract
for difference auction at the strike price. The final strike price of the contract
for difference auction equals to the bidding price of the last counted company,
and individual generation companies pay as their bids.

The flowchart of the contract for difference auction is presented in Figure 4.7.

4.4.2.3 Capacity Auction

Policy makers aim to ensure the security of supply through providing the capacity
auction. The detailed procedures of the capacity auction are described as follows:

• Step 1: Policy makers evaluate the required capacity using the average cold
spell (ACS) peak demand [47] and derated capacity as

prc = dpeak,ACS − pdc, (4.1)

where
dpeak,ACS = dpeak · θ, (4.2)

and

pdc =
G∑

g=1
pcap

g · ϑg, (4.3)
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Figure 4.7 Flowchart of the contract for difference auction. Individual generation com-
panies which are willing to participate in the contract for difference auction submit
their bids. Policy makers arrange the bidding prices in the ascending order and rank
the generation companies from the lowest bidding price to the highest bidding price.
Until the sum of bidding capacity reaches the capacity issued by policy makers, the
auction ends.

where prc is the total required capacity, dpeak,ACS is the ACS peak demand, pdc

is the total derated capacity, dpeak is the total peak demand of all consumers,
θ is the ACS coefficient, pcap

g is the installed capacity of the power plant g, ϑg

is the availability of the power plant g, and G is the index set of power plants.

• Step 2: If the required capacity is positive, i.e., prc >0, policy makers initiate
the capacity auction.

• Step 3: Individual generation companies which are willing to participate in the
capacity auction submit their bids with the information of technological type,
bidding price, bidding capacity, availability, and construction time. One poten-
tial strategy for submitting the bidding price of a generation company is that 1)
if a generation company with its power plants is unprofitable, i.e., negative net
present value (NPV), this generation company will submit the bidding price
equals to its NPV, in achieving the zero NPV, and 2) if a generation company
with its power plants is profitable, , i.e., positive NPV, this generation company
will submit the bidding price as zero, which can be described as

πcap
m =

{
−fNPV

m , if fNPV
m < 0,

0, if fNPV
m ≥ 0, (4.4)

where πcap
m is the bidding price for the capacity auction of the generation com-

pany m, and fNPV
m is the NPV of the generation company m.



110 ■ Blockchain and Artificial Intelligence Technologies for Smart Energy Systems

Figure 4.8 Flowchart of the capacity auction. Policy makers evaluate the required ca-
pacity. If the required capacity is positive, policy makers initiate the capacity auction.
Individual generation companies which are willing to participate in the capacity auc-
tion submit their bids. Policy makers arrange the bidding prices in the ascending
order, and count the generation companies from the lowest bidding price to the high-
est bidding price, until the sum of bidding capacity reaches the required capacity.

• Step 4: Policy makers arrange the bidding prices in the ascending order, and
count the generation companies from the lowest bidding price to the highest
bidding price.

• Step 5: Until the sum of bidding capacity reaches the required capacity, the
auction ends. The final strike price of the capacity auction equals to the bidding
price of the last counted company.

• Step 6: The counted generation companies win the capacity auction at the
strike price.

The flowchart of the capacity auction is presented in Figure 4.8.

4.4.3 Regulation for Electricity Trading and Balance: A Case in the GB Electricity
Market

The GB electricity market is transitioning to a more flexible form which allows in-
dividual customers to choose their electricity suppliers [48]. The suppliers can also
buy electricity from generators of their own choice in order to meet the demand of
their customers. It is noted that the electricity trading belongs to the non-physical
trading [49], which means that the customers do not have the physical demand for
any particular portion of electricity they want to buy, and suppliers do not have the
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Figure 4.9 Schematic illustration of the non-physical trading of the electricity. The
generators a and b feed their electricity generation to the utility grid, and the utility
grid homogenises the electricity from different sources and then supply it to different
consumers.

physical option for supplying their electricity to any particular customer. As shown
in Figure 4.9, the generators a and b feed their generation to the utility grid, and the
utility grid homogenises the electricity from different sources and supply to different
consumers. The suppliers, as a non-physical trader, only account for the amounts and
prices at which they purchase to the generators and charge from the customers. This
results in the separation between the cash flows and power flows.

4.4.3.1 Settlement

Since the electricity is a non-physical product which cannot be stored (unless de-
ploying the storage devices), the electricity needs to be generated, transmitted, dis-
tributed, and consumed continuously in a real-time manner. In the context of the
GB electricity market, the electricity is considered to be generated, transmitted, dis-
tributed, and consumed in every half-hour interval. This half hour interval is defined
as the settlement period [50] during which the amount and price of the electricity
generation and consumption are determined.

During each half hour of the settlement period, the medium or large scale con-
sumers, e.g., industries, and suppliers estimate their electricity demand and contract
with generators at the estimated volume of demand [51]. The contracts can be sub-
mitted until the beginning of the settlement period. Afterwards, during the half hour
of the settlement period, generators would be expected to generate the contracted
volume of electricity and consumers would be expected to consume the contracted
volume of electricity.

4.4.3.2 Imbalance Management

Ideally the supply and demand would be balanced in every half-hour settlement
period. Nonetheless, the imbalance would be incurred for the following reasons:
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• The suppliers inaccurately predict the electricity consumption of their con-
sumers [52];

• The power output of a generator is less than the contracted amount of genera-
tion due to the part-loaded operation or technical issues [53];

• The technical issues are incurred in the transmission systems [54].

The issue of imbalance needs to be managed by an independent role in the power
systems, i.e., the system operator. In the context of the GB energy market, the
national grid acts as this system operator to ensure the supply-demand balance and
address the issues incurred from the transmission and delivery.

For the generators, if they have the additional capacity which has not been con-
tracted with any supplier or consumer during any half hour, they can make this
additional capacity available to the system operator with an offering price which
they would like to receive for this additional capacity. By contrast, if the generators
would like to reduce the generation, they can provide a bidding price for reducing
the generation.

For the suppliers and medium or large scale consumers, if they would like to curtail
or shift their demand, they can make this additional volume of electricity available
to the system operator with an offering price which they would like to receive for this
additional volume. By contrast, if the suppliers and medium or large scale consumers
would like to raise their demand, they can provide a bidding price for the increased
demand.

Therefore, the offer describes the cases of which the generators raise their gen-
eration or the suppliers and medium or large scale consumers reduce their demand,
whereas the bid describes the cases of which the generators reduce their generation
or the suppliers and medium or large scale consumers raise their demand [55]. The
system operator will accept these bids and offers in real-time, in order to balance the
supply and demand.

After every settlement period, the actual generation and consumption in that half
hour are metered and compared with the contracted generation and consumption
considering the adjustments from bids and offers. The corresponding measures will
be taken by the system operators to address the mismatch between the contracted
volumes and actual volumes.

For the generators, if their actual generation is less than the contracted genera-
tion, they need to purchase the undelivered generation from the grid for meeting the
contracted volume. If their actual generation is more than the contracted generation,
they need to sell all the over-delivered generation to the grid.

For the suppliers and medium or large scale consumers, if their actual consump-
tion is less than the contracted consumption, they need to sell all the additional
electricity to the grid. If their actual consumption is more than their contracted con-
sumption, they need to buy the additional electricity according to the actual volume
of consumption.

These imbalance cases are subject to imbalance charges. The imbalance prices
are categorised into the system buy price and system sell price [56]. The system buy
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price is paid by the participants which have a net deficit of the imbalance energy,
and the system sell price is paid to the participants which have a net surplus of the
imbalance energy. The fluctuation of these imbalance prices reflect the bids and offers
of imbalance energy selected by the system operator, e.g., the national grid in the
GB electricity market, in order to balance the energy flows in transmission systems
and meet the reserve requirements.

The generators, suppliers, and medium or large scale consumers submit physical
information through the balancing mechanism units, so that their bids and offers
can be accepted by the system operator in advance of the market gate closure. The
balancing mechanism unit is the unit which accounts for the energy inflows and out-
flows of the total system, i.e., the transmission system and each distribution system
combined. As the smallest unit, the balancing mechanism unit integrates a collection
of generating units or consumption meters which can be independently monitored for
the settlement. The settlement refers to a process of calculating the imbalance vol-
umes and incurred prices. To ensure the accuracy of the settlement, the calculation
of settlement is repeated four occasions covering 14 months once receiving a more
accurate input data [57].

4.5 TECHNICAL CHALLENGES OF FUTURE LOW-INERTIA POWER
SYSTEMS

Low-inertia power systems refer to power systems that have a low level of synchronous
rotating mass, which is traditionally used to maintain system stability. These systems
typically have a high penetration of renewable energy sources, such as wind and solar,
which are characterised by their variable and intermittent nature.

The future of low-inertia power systems involves addressing the challenges asso-
ciated with integrating large amounts of renewable energy into the grid. This will
require the development of new technologies and strategies to maintain system sta-
bility and ensure reliable power supply.

One approach is to use power electronics to emulate the behaviour of synchronous
rotating mass, providing a synthetic inertia that can help stabilise the system. An-
other approach is to develop advanced control systems that can quickly respond to
changes in the system, allowing for more efficient use of existing resources.

The future of low-inertia power systems is likely to involve a combination of these
and other technologies, as well as new approaches to grid planning and management.
These efforts will be critical to ensure that renewable energy can be integrated into
the grid in a way that maximises its benefits while maintaining the reliability and
stability of the power system. This section will discuss technical challenges of future
low-inertia power systems.

4.5.1 Frequency and Inertia

The inertia is the kinetic energy stored in the rotating masses of generators and loads,
such as gas turbines or condensers, which are synchronously connected to a power
system [58]. This kinetic energy can be exchanged with power systems whenever there



114 ■ Blockchain and Artificial Intelligence Technologies for Smart Energy Systems

Figure 4.10 Transition towards future low-inertia power systems. On the left hand
side, there are synchronous generators which can provide inertia to power systems,
whereas on the right hand side, there are converter-interfaced generation, for which
the inertia is either isolated, such as wind turbines, or zero, such as solar panels.

are instantaneous imbalances between generation and load, which is defined as the
inertia response.

To achieve the future net zero energy system, there is increasing converter-
interfaced renewable generation, combined with energy storage systems, replacing
the conventional synchronous generators. As presented in Figure 4.10, on the left
hand side, there are synchronous generators which can provide inertia to power sys-
tems, whereas on the right hand side, there are converter-interfaced generation, for
which the inertia is either isolated, such as wind turbines, or zero, such as solar pan-
els. The advantage is these converter-interfaced renewable energy sources have zero
or near zero carbon intensities, which gives them the key role of decarbonising power
systems. The disadvantage is low inertia would weaken the power system’s ability to
resist the disturbances caused by generation tripping or connection of new large load.
The frequency is the key to low-inertia power systems. During the transient of power
systems, if the load is greater than generation, for example, loss of a generator, the
inertia stored in the rotating machines would be released to compensate this energy
deficit. Therefore, the rotating machines slow down and frequency declines. By con-
trast, if the generation is greater than load, the excess energy would be converted to
inertia to speed up rotating machines and increase the frequency.

Figure 4.11 shows an example of a generation contingency to illustrate the re-
lationship between the inertia and frequency, and corresponding primary frequency
response measures used in GB power systems. If there is a loss of large generation,
the frequency would drop rapidly. The inertia stored in the rotating mass is released
to slow the rate of change of frequency (RoCoF), through the inertial response. Next,
the enhanced frequency response which is primarily provided by the energy storage
system can release power to system in 1 s. When the monitoring and control devices
of generators detect the decrease of frequency, they would increase their mechani-
cal power to restore the frequency, which is called the primary frequency response.
Both the enhanced frequency response and primary frequency response can bring
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Figure 4.11 Relationship between the inertia and frequency, and corresponding pri-
mary frequency response measures. If there is a loss of large generation, the frequency
would drop rapidly. The inertia stored in the rotating mass is released to slow the rate
of change of frequency (RoCoF), through the inertial response. Next, the enhanced
frequency response which is primarily provided by the energy storage system can
release power to system in 1 s. When the monitoring and control devices of genera-
tors detect the decrease of frequency, they would increase their mechanical power to
restore the frequency, which is called the primary frequency response. Both the en-
hanced frequency response and primary frequency response can bring the frequency
back to a new equilibrium, called quasi-steady state frequency. The minimum point
of frequency is called the frequency Nadir. The secondary frequency response then
acts to restore the frequency to nominal frequency. At the same time of restoring the
generation, the load decreases a bit, which is the load damping contributed by some
flexible loads.

the frequency back to a new equilibrium, called quasi-steady state frequency. The
minimum point of frequency is called the frequency Nadir. Later on, the secondary
frequency response acts to restore the frequency to nominal frequency. At the same
time of restoring the generation, the load decreases a bit, which is the load damping
contributed by some flexible loads.

4.5.2 Challenges of Low-Inertia Power Systems

This subsection identifies primary challenges when transitioning towards low-inertia
power systems. With the same example of the system disturbances as shown in Figure
4.12, the green line is the frequency response from a low-inertia power system. Figure
4.13 summarises the challenges caused by the transition from the high-inertia power
system to low-inertia power system, in which the left hand side shows the primary
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Figure 4.12 Comparison of frequency response between high-inertia power system and
low-inertia power system. The green line is the frequency response from a low-inertia
power system, and the red line is the frequency response from a high-inertia power
system.

differences between the high-inertia and low-inertia power systems and the right hand
side is the challenges caused by such differences, with details explained as follows:

• First, due to the intermittency of renewable energy sources and rapid change of
demand with the connection of electric vehicles, the frequency becomes more
volatile. This volatility brings the challenge for measuring the frequency and
RoCoF. Accurate measurement of frequency and RoCoF are crucial for estimat-
ing the inertia of power systems in particular for the demand-side inertia which
is expected to account for 30% of total inertia in future GB power systems [59].

• Second, the lower nadir, shorter time to the nadir, and higher RoCoF in the low-
inertia power system would easier breach the threshold of under frequency load
shedding or RoCoF threshold, and then trigger integrity protection schemes,
such as loss of mains protection [60]. Consequently, there will be a cascading
under and over frequency and system blackout.

• Third, it is challenging to contain the frequency in an effective and economic
manner.

Figure 4.13 Challenges caused by the transition from the high-inertia power system to
low-inertia power system. The left hand side shows the primary differences between
the high-inertia and low-inertia power systems and the right hand side is the chal-
lenges caused by such differences.
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Figure 4.14 Time horizon for clearing the system fault after a disturbance.

• Last, for the GB power system, the low-inertia renewable energy sources are
primarily generated at Scotland, whereas the demand primarily comes from
south with limited transmission capacity. This would result in regional deviation
of the frequency across power systems.

4.5.3 Solutions for Low-Inertia Power Systems

The solutions for overcoming challenges in low-inertia power systems include pre-
fault solutions and in-fault solutions. The pre-fault solutions mainly consist of two
parts: one is enhancing monitoring system to measure system dynamics in a real-
time manner, and another is to assess the reliability of protection system. For the
monitoring system, the wide area monitoring system was deployed in GB power sys-
tems with strategically located phasor measurement units [61]. For the conventional
SCADA system, it could also use filters for the frequency measurement and win-
dow averaging for RoCoF calculation. The assessment of protection system includes
examining validity of settings, either is over sensitive or less sensitive, assessing im-
pacts of converter interfaced generation, and investigating mitigating actions.

During the system disturbance, the fault needs to be cleared by the protection
system. So, for future low-inertia power system, it is key to act before the conventional
primary frequency response. As presented in Figure 4.14, there are three key solutions:

• Synchronous compensation [62]: Synchronous compensation can provide instan-
taneous frequency support through transferring from motoring mode to gener-
ation mode.

• Synthetic inertia [63]: Synthetic inertia provided by converter-interfaced devices
can act within 20 ms.

• Fast frequency response [64]: Fast frequency response can react in 2 s. For ex-
ample, in GB power system, the fast frequency response through droop control
is used as the enhanced frequency response.

4.6 CHAPTER SUMMARY

This chapter introduced the transition of power systems and energy markets towards
the prosumers era by identifying potential information and control architecture of
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local energy markets. The current and potential future regulatory supports in facil-
itating such transition are reviewed. Future low-inertia power systems and incurred
challenges are also discussed.
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C H A P T E R 5

Application of Artificial
Intelligence for Energy
Systems

I n this chapter, the research and practices for implementing the artificial intelli-
gence (AI) approaches into energy systems are introduced. Section 5.1 introduces

how this would assist the operation, planning, and uncertainty prediction of energy
systems. Sections 5.2, 5.3, 5.4, 5.5, and 5.6 review the studies for implementing the AI
into energy systems through using the approaches of the optimisation, game theory,
machine learning, stochastic approaches, and multi-agent system, respectively. From
the perspectives of power system operators and market operators, Section 5.7 pro-
vides an example research for using the multi-agent system to model the operations
and interactions for both power systems and energy markets. From the perspective
of individual consumers, Section 5.8 provides an example research of how to extract
energy patterns from individual consumers through using machine learning and map
the extracted patterns to potential scheduling decisions. From the perspective of a
community of consumers, Section 5.9 provides an example research of how to use
reinforcement learning to control the operations of a multi-vector energy hub. To
address the uncertainties caused by renewable energy sources and flexible demand,
the example research in Section 5.10 describes how to use AI for accurate uncertainty
predictions. Section 5.11 concludes this chapter.

5.1 INTRODUCTION

AI is capable of assisting the uncertainty forecasting, planning, and operational con-
trol for smart energy systems through exploiting massive volumes of data collected
from smart meters or sensors. The extents for implementing the AI into smart energy
systems are dependent on the development of the AI and digitalisations of energy
systems, which can be categorised into the following four degrees:

• Degree 1 (Responsiveness): AI is able to enhance the conventional operation
of energy systems on the situational awareness, black start, fault detection,
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and contingency screening, with the improved computational accuracy and fast
system response.

• Degree 2 (Predictability): AI can accurately predict the generation, consump-
tion, system status, and other uncertain factors in a fine granularity, which
allows the power system operators, i.e., transmission system operators and dis-
tribution system operators, to capture the system transition and potential risks.

• Degree 3 (Prescription): The functions of the responsiveness degree and pre-
dictability degree are systematically integrated to form an automatic manage-
ment for entire energy systems, which maintains the outages and disturbances
to the lowest level and strategically guarantees the security of supply and sys-
tem resilience.

• Degree 4 (Automation): AI helps energy systems achieve full automation
through the wide area control and network level optimisation. The energy sys-
tem can keep self-healing without human interventions.

5.2 OPTIMISATION

The optimisation approaches include the programming techniques and heuristic al-
gorithms. With respect to implementing the programming techniques, e.g., the linear
programming, integer linear programming, mixed integer linear programming, and
non-linear programming, to solve the optimisation problems of energy systems, Javaid
et al. [1] proposed a linear programming model to assign power levels for controllable
devices with the objective of costs minimisation, by which the power flows could be
optimally controlled to accommodate power fluctuations. In ref. [2], a mixed integer
non-linear bi-level programming was formulated to minimise the electricity bills of
consumers under a marginal pricing scheme. To solve this problem, the original prob-
lem was converted as an equivalent single-level mixed integer linear programming
based on the duality theory, integer algebra, and Karush–Kuhn–Tucker optimality
conditions. Khushalani et al. [3] developed a service restoration algorithm for unbal-
anced distribution systems, by which the problem was formulated as a mixed integer
non-linear programming.

With respect to implementing the heuristic algorithms, e.g., the particle swarm
algorithm, genetic algorithm, artificial immune algorithm, and other heuristic algo-
rithms to solve the optimisation problems of energy systems, Meng and Zeng [4]
formulated a problem for maximising the profits of energy retailers by modelling the
effects of real-time electricity prices on shiftable loads and curtailable loads. The prob-
lem was solved by the genetic algorithm. Olsen et al. [5] implemented the weighted
sum bisection method to minimise carbon tax rate constrained by maintaining total
carbon emissions from power systems below a prescribed target of carbon reduc-
tion. This research investigated the relationship between system investments and tax
setting process and found that the carbon tax can encourage the investments on
cleaner generation, transmission, and energy efficiency. Li et al. [6] proposed a hier-
archical multi-objective scheduling model to integrate renewable energy sources and
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demand-side management. In this model, the utility seeks to minimise operating costs
and the customers seek to maximise social welfare. The demand response aggregator
as an intermediary seeks to maximise its net profits, which are the difference between
bonus from utilities for providing demand-side management and the cost of offering
compensation to customers. A selection criterion was designed to select the opti-
mal solutions yielded by artificial immune algorithm without favouring any market
participant. A user-centric multi-objective optimisation problem was further devel-
oped in [7] to achieve a trade-off between residential privacy and energy costs. This
research developed a hybrid algorithm by combining a stochastic power scheduling
with a deterministic battery control, which addressed the drawbacks of weighted-sum
methods, i.e., combing objective functions with various scales, heuristically assigning
weight coefficients, and misrepresentation of user preferences.

Nonetheless, the scalability and computational complexity limit the implemen-
tation of optimisation approaches on highly-complex problems of power systems
scheduling. The scalability issue is caused when the scale of power system varies,
since each scale requires predefined parameters and mathematical formulations. The
computational complexity issue is caused when solving optimisation problems using
heuristic algorithms, for which the optimal scheduling decisions are obtained by it-
eratively searching. At the instance of optimization solved by ι iterations, once it
is combined with I types of generators and K types of loads, the computational
complexity increases to O

(
ιI+K

)
[8].

5.3 GAME THEORY

The game theory has been well documented in literature. The game-theoretic models,
stakeholders, and solution approaches in the field of energy scheduling are summarised
in Table 5.1. Belgana et al. [9] developed a multi-leader and multi-follower Stackelberg
game-theoretic problem to find optimal strategies that could maximise the profits of
utilities and minimise carbon emissions. The problem was solved by a hybrid multi-
objective evolutionary algorithm. Meng and Zeng [10] proposed a 1-leader, N-follower
Stackelberg game to maximise the profits of retailers at the leader level and minimise
the electricity bills of consumers at the follower level considering the real-time pricing
scheme. The genetic algorithm was used to solve the leader’s optimisation problem
and the linear programming was used to slove the follower’s optimisation problem.
Ghosh et al. [11] formulated a coupled constrained potential game to set the energy
exchange prices for maximising the amount of energy exchange among prosumers
and reducing the consumption from the utility grid. A distributed algorithm was
proposed enabling individual prosumers to optimise their own payoffs. In ref. [12],
an energy trading framework based on repeated non-cooperative game was designed
enabling individual microgrids to optimise their own revenues. The reinforcement
learning was exploited to estimate the payoff functions under incomplete information.
The Cournot game was implemented in ref. [13] to model the competition between
customers and utilities in distribution networks for satisfying the system reliability.
Similarly, Zhang et al.[14] modelled local energy trading as a non-cooperative Cournot
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Table 5.1 Comparison of game-theoretic models, stakeholders, and solution approaches
in the field of energy scheduling

Literature Game-
Theoretic
Model

Stakeholder Solution Approach

Belgana et al.
[9]

Stackelberg Microproducers
and consumers

Hybrid Multi-objective
Evolutionary Algorithm

Meng and Zeng
[10]

Stackelberg Retailer and
consumers

Genetic Algorithm and Linear
Programming

Ghosh et al.
[11]

Potential
Game

Utility and
prosumers

Distributed Algorithm

Wang et al. [12] Stackelberg Microgrid Reinforcement Learning
Mohammadi et
al. [13]

Cournot Customers and
utilities
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game to stimulate local energy balance and promote the penetration of renewable
energy sources.

The game theory assumes all players are rational when they compete with each
other. Nonetheless, during practical energy markets operation, individual players have
various sensitivities to the incentive signals, which causes the individual decisions
to deviate from theoretical rational decisions and thus reduces the model accuracy.
For instance, when considering the small-scale consumers, e.g., residential users, the
price-insensitive consumers normally use energy irrespective of pricing signals.

5.4 MACHINE LEARNING

To overcome the aforementioned issues of scalability and computational complexity
by using optimisation approach, machine learning has been considered to assist or
replace the step of solving optimisation problem by the intelligent heuristic algo-
rithm, because it only requires historical data for extracting general features with
the advantages of improved scalability and reduced computational complexity.

Using learning approaches for solving energy scheduling problems has been well
studied in literature. The learning approaches can be categorised as supervised learn-
ing, unsupervised learning, and reinforcement learning. In supervised learning, the
input is provided as a labelled dataset, such that the model can learn from the labels
to improve the learning accuracy [15]. By contrast, in unsupervised learning, there is
no labelled dataset, such that the model explores the hidden features and predicts the
output in a self-organising manner [16]. In reinforcement learning, the model learns
to react to the environment by self-adjusting through travelling from one state to
another [17]. Zhang et al. [8] developed an online learning approach to replace heuris-
tic algorithms for solving a cost minimisation problem under uncertain distributed
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renewable energy sources and load demand. Gasse et al. [18] proposed a learning
model for extracting branch-and-bound variable selection policies to solve combinato-
rial optimisation, and testified that a series of computational complex problems could
be efficiently solved. An energy management system was designed [19] to provide de-
mand response services, by which the explicit model of consumers’ dissatisfaction
was replaced by the feature representations extracted through using reinforcement
learning. Analogously, Ruelens et al. [20] combined heuristic algorithm with reinforce-
ment learning to control a cluster of loads and storage devices, and Zhang et al. [21]
integrated learning mechanism with optimisation techniques to obtain optimal de-
mand response policies. The controller can help consumers reduce energy costs with
improved computational efficiency.

Further research implemented deep neural networks as a regression algorithm
into learning approaches. The convolutional neural network is a class of deep neural
networks primarily used for analysing visual imagery, by which the network employs
convolution for general matrix multiplication [22]. The convolutional operation im-
ports low-level inputs, e.g. images, to learn general abstractions of a high-complexity
problem without the use of manually predefined models [23]. Hence, the convolutional
neural network is particularly suitable for the high-complexity problems. Owerko et
al. [24] trained the convolutional neural network under imitation learning to approx-
imate an optimal power flow solution. A well-trained convolutional neural network
can scale to various power networks for accurately predicting optimal power flows.
Du et al. [3] used the convolutional neural network to accelerate N-1 contingency
screening of power systems, by which the convolutional neural network can gener-
alise topological changes and uncertain renewable scenarios with improved compu-
tational efficiency. Claessens et al. [25] combined the convolutional neural network
with reinforcement learning for high-complexity load control. The issue of partial
observability was addressed through using the convolutional neural network to ex-
tract hidden state-time features. In ref. [26], the convolutional neural network was
adopted as an online monitoring tool for predicting instabilities in power systems.
This research demonstrated that a trained convolutional neural network was scal-
able in terms of varying load conditions, fault scenarios, topological structures, and
generator parameters.

When the pattern recognition capability of the convolutional neural network is
exploited, the approach of processing numerical data to the input of the convolutional
neural network is the key for extracting hidden information. Choi et al. [27] processed
time-series data of power systems from row vector to the matrix of greyscale image
by restructuring the original datasets. Liao et al. [28] mapped different patches of bus
matrix to various areas of power networks for voltage sag estimation. The variables
representing power systems configuration were assigned as the dimension of depth
from the input image.

Nonetheless, there are primary four issues for data-driven learning approaches:

• First, when the size of historical data is small, the overfitting issue would be
caused by learning approaches. This would reduce the accuracy for predicting
optimal scheduling decisions.
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• Second, although the learning approaches can reduce the computational com-
plexity and improve scalability from solving optimisation by heuristic intelligent
algorithms, the predicted optimal decisions may deviate from the theoretical
optimal decisions and result in the suboptimal solutions.

• Third, the predicted optimal decisions may not maintain the system constraints.

• Fourth, with respect to prosumer-centric energy scheduling, it could be useful to
connect the intrinsic features of prosumers, e.g. pricing patterns, with potential
scheduling strategies.

5.5 STOCHASTIC APPROACHES

Power system uncertainties caused by the intermittency of renewable energy sources
and flexible demand present a challenge for accurately predicting generation and con-
sumption. It is crucial for the reliability of power systems scheduling to consider the
possible variations of these uncertainties. The probability approaches have been pri-
marily focused in the literature for incorporating the analysis of system uncertainties
into energy scheduling process.

Using a set of scenarios is a potential way to predict possible variations of uncer-
tain variables, by which each variation is defined as a scenario [29]. The uncertain
scenarios are generated from probabilistic distribution of historical data by using
sampling approaches [30], such as the Monte Carlo simulation [31, 32], Latin hy-
percube sampling [33, 34, 35, 36] and stochastic analysis [37, 38]. Santos et al. [31]
implemented the Monte Carlo simulation to generate renewable scenarios and carried
scenarios optimisation by deterministic modelling. Similarly, Hemmati et al. [32] anal-
ysed the uncertainties of renewable energy resources and load deviation by the Monte
Carlo simulation, and incorporated the uncertainty analysis into decision making pro-
cess to maximise the profits of distributed generators in microgrids. Nonetheless, the
Monte Carlo simulation through random sampling would cause the issues that are
computationally intensive and inefficient. These issues can be further overcome by the
Latin hypercube sampling which can reduce standard deviation of samples through
space-filling. In ref. [33], the Latin hypercube sampling was used to generate uncer-
tain scenarios for overcoming the computationally intensive and inefficient issues of
Monte Carlo simulation and considered low probable conditions. Mavromatidis et al.
[37] proposed a two-stage stochastic programming for the design of distributed en-
ergy systems considering the uncertainties of energy prices, emissions factors, heating
demand, electricity demand, and solar radiation. In comparison to the determinis-
tic methods, this study demonstrated that the stochastic method can yield a more
accurate estimation of costs and carbon emissions. Huang et al. [38] designed an eco-
nomic dispatch model for virtual power plants, by which the uncertainties caused by
load prediction and power prediction were described by stochastic intervals. These
intervals were subsequently integrated into a costs minimisation problem.

Further research efforts have been dedicated to improving the prediction accu-
racy and adaptability of scenarios. Liang et al. [34] proposed a non-parametric kernel
density estimation method to yield the probability density distribution of uncertain
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variables. The scenarios were generated from the probability density distribution
through using Latin hypercube sampling. In [35], a data-driven approach for scenar-
ios generation was developed using generative adversarial networks. This approach
can capture both temporal and spatial dimensions of uncertain variables, so as to
improve scalability and diversity from probabilistic models. To select high-probable
scenarios, Xiao et al. [36] proposed an approach to implement synchronous-back-
to-generation-reduction for merging scenarios with a minimum probability distance.
Nonetheless, when analysing system uncertainties, an approach for using real-time
data to update uncertain scenarios needs to be studied to improve the prediction
accuracy for uncertain scenarios.

5.6 AGENT-BASED SYSTEM

The agent-based system is a computational model for simulating actions and interac-
tions of autonomous agents in order to analyse the behaviours of a system and drivers
of its outcomes [39]. Applying the agent-based system to model the decision-making
and interactions of stakeholders in power systems, including generation companies,
consumers, policy makers, transmission system operators, and distribution system op-
erators, has drawn increasing attentions. In ref. [40], the agent-based model was used
for energy network modelling with the advantages of extendability, generalisation,
and technological independence. Divényi and Dan [41] proposed a multi-agent model
considering considering the technical combinations, wind-speed and temperature set-
tings, heating constraints, fuel consumption, regulations, outages, and services. Re-
searchers in ref. [42] developed an agent-based system for model predictive control of
building energy systems to reduce the room energy consumption while maintaining
indoor temperatures. Mittal et al. [43] designed an agent based approach to investi-
gate solar adoption in residential sectors, in order to benefit all stakeholders.

5.7 RESEARCH EXAMPLE 1: MULTI-AGENT MODEL FOR ENERGY
SYSTEM SCHEDULING

This example research introduces a multi-agent model for the energy system schedul-
ing, in which a two-stage energy scheduling is performed, i.e., the day-ahead energy
scheduling and real-time energy scheduling. The agent of the demand-side manage-
ment controls the load shifting in the day-ahead market and load curtailment in the
real-time market. The objectives of the energy scheduling includes reducing carbon
emissions from energy systems, saving electricity bills for consumers, and improving
operational profits for generators. This leads to a multi-objective optimisation prob-
lem which is solved by the multi-objective immune algorithm. The case studies have
been conducted to demonstrate the effectiveness of the proposed model. It has been
proved that the proposed multi-agent model for energy system scheduling contributes
to the reductions of both carbon emissions and electricity bills. 0.11% (843.78 MW) of
the demand-side management has been realised to guarantee the reliability of power
networks during the real-time operation.
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5.7.1 Introduction

The advantages of smart grids are enabled by advanced metering technologies, control
methodologies, and communication technologies to be integrated into power systems
[44]. These technologies contribute to the improvement of smart control and coordi-
nation for the purpose of efficient operation of power grids. Compared with the tradi-
tional power systems, smart grids become complex with the increasing penetration of
renewable energy sources, flexible loads, large volumes of decisions made by multiple
stakeholders, and complex interactions among agents. Conventional approaches for
monitoring and managing the operation of energy systems including the supervisory
control and data acquisition [45], system estimator [3], and contingency analyser [45]
are incapable of guaranteeing the reliability and security of power supply, since they
are not able to follow up the fast change of system states and offer a rapid response.
As a consequence, it is necessary to implement the real-time control and management
in smart grids. The advanced data acquisition and transmission technologies further
facilitate the observability and controllability in achieving the active control of power
networks. In addition, the multi-agent model is able to analyse the decision-making
and interactions of actors in power systems.

With respect to the power generation scheduling, the day-ahead market finan-
cially arranges the bids of energy supply and demand one day in advance of the
settlement, whereas the real-time market dynamically promotes the supply–demand
balance in a real-time manner. In addition, a sophisticated day-ahead scheduling pur-
sues the cost and carbon saving by optimising generation schedules in supply side.
A stochastic environmental and economic dispatch of power systems was proposed
in [46] for the generation scheduling, but the market operation was not considered
in this research. Similarly, the research in [47] sought to strike a balance among
maximum carbon reduction, minimum payment bills, and minimum costs through
multi-objective optimisation. Nonetheless, there are still opportunities to incorporate
the real-time control strategies into the generation scheduling by considering energy
market operations in both day-ahead and real-time markets. To ensure the system
coordination, the pricing signal is formulated by the market operators and the power
allocation is performed by the power system operators, which means that the design
of the multi-agent system involves both the design of energy markets and the design
of power system operation. The market operators and power system operators are
included into the grid management agent. Moreover, the demand-side management
is capable of controlling the curtailable demand to reduce the peak demand and re-
shape the load profile, which enhances to the security of supply and the reductions
of overall costs and carbon emissions. The load shifting and load curtailment are two
important techniques of the demand-side management implemented in the day-ahead
and real-time markets, respectively.

Therefore, a dedicated study is proposed based on the multi-agent systems for
the real-time control and management of power systems and energy markets, under
the circumstance of simulated real-time operational conditions. Agents representing
components of power systems and energy markets interact cooperatively to opti-
mise operation of smart grids pursuing minimum payment bills for customers, and
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maximum profits and minimum carbon emissions for generators. Both the demand-
side management and generation scheduling, as important scheduling functions, are
demonstrated by the proposed research.

Compared to existing works, this paper has contributions as follows:
• This research develops the multi-agent system for the power scheduling and

optimisation, integrated with the real-time simulation to balance the supply
and demand, so that the negotiation rules can be delivered into the agent
group for better inside coordination.

• This research considers the carbon emissions reduction, payment bills minimi-
sation, and profits maximization into the market operation to achieve a fair low
carbon smart grid scheduling.

The structure of this example research is organised as follows. Sub-Section 5.7.2
introduces the framework of the proposed multi-agent system including the agent
design and coordination. Detailed mathematical formulations are given in Sub-Section
5.7.3. Sub-Section 5.7.4 presents the results of case studies for the daily power system
scheduling. Finally, Sub-Section 5.7.5 draws the conclusion.

5.7.2 Framework of Multi-Agent System

This section introduces the framework of the proposed multi-agent model. The
decision-making and coordination of stakeholders in both energy markets and power
systems are modelled by multiple agents. Each intelligent thinking agent makes in-
dependent decisions in achieving its objectives, e.g. minimisation of electricity bills.

5.7.2.1 Agents Design

The multi-agent system consists of agents of the system operator, policy maker,
demand-side management, generator, consumer, and supplier, with functions detailed
as follows:

• System operator agent: The system operator agent monitors and manages the
operation of power systems under the technical constraints.

• Policy maker agent: The policy maker agent formulates low carbon policies,
e.g., the carbon pricing, to reduce carbon emissions from power systems.

• Demand-side management agent: The demand-side management agent provides
services of the load shifting and load curtailment for consumers.

• Generator agent: The generator agent determines the power outputs of a single
(or multiple) generating source(s) including coal, gas, nuclear, hydro, biomass,
solar, onshore wind and offshore wind. The costs and profits of these sources
are also evaluated by this agent.

• Consumer agent: The consumer agent, also called customer agent, controls and
monitors the operation and status of loads and coordinates with the demand-
side management agent.
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• Supplier agent: The supplier agent, also called retailer agent, purchases the
electricity from the generator agent in the wholesale market, and charges from
the consumer agent in the retail market.

• Market operator agent: The market operator agent is responsible for market
scheduling and matching bids and offers.

5.7.2.2 Agents Coordination

According to the architecture of energy markets and power systems, the power sys-
tems and energy markets are operated by those agents, as shown in Figure 5.1. For
the operation of energy markets, generators generate electricity and submit bids to
wholesale market. The retailers purchase the electricity by wholesale auction prices,
before charging from their own customers. The market operator conducts the market
scheduling. For the operation of power systems, the power system operator man-
ages the supply–demand balance and allocates the power generation being subject to
system constraints. The corresponding carbon allowances are assigned by the policy
maker. The demand-side management agent performs the load shifting when receiving
wholesale electricity prices, before the day-ahead energy scheduling is carried out, in
order to pursue the minimum carbon emissions and maximum profits for generators,
and minimum payment bills for consumers.

Interactions of agents and respective messages for the day-ahead generation
scheduling and demand-side management are presented in Figure 5.2. The market
operator matches offers and bids submitted by generators and suppliers, respectively,
in the day-ahead energy markets. The demand-side management agent helps power
system operator negotiate between the supplier and consumer on the load shifting.
The power system operators also dispatch generators in order to maintain the supply–
demand balance and reduce carbon emissions.

Interactions of agents and respective messages for the real-time generation
scheduling and demand-side management are presented in Figure 5.3. The generation
and consumption are dynamically matched in a real-time manner through the load
curtailment and generation curtailment performed by the power system operators.

Apart from the multi-agent system, the computational intelligence techniques are
also employed in the decision-making process of agents. The multi-objective immune
algorithm [48] is adopted to solve the multi-objective optimisation problem. The
multi-objective immune algorithm (see Algorithm 1) is a global searching algorithm
with the robust computational capability. Through randomly generating potential
solutions within the feasible range of decision variables and finding the global optimal
solutions, the optimal decision-making and coordination problem can be effectively
solved.

5.7.3 Problem Formulation

This section describes two key components of the designed multi-agent system, i.e.,
the problem formulation of demand-side management and generation dispatch.
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Figure 5.1 The operation of energy markets and power grids. For the operation of
energy markets, generators generate electricity and submit bids to wholesale market.
The retailers purchase the electricity by wholesale auction prices, before charging from
their own customers. The market operator conducts the market scheduling. For the
operation of power systems, the power system operator manages the supply–demand
balance and allocates the power generation being subject to system constraints. The
corresponding carbon allowances are assigned by the policy maker. The demand-side
management agent performs the load shifting when receiving wholesale electricity
prices, before the day-ahead energy scheduling is carried out, in order to pursue
the minimum carbon emissions and maximum profits for generators, and minimum
payment bills for consumers.

5.7.3.1 Demand-Side Management

The proposed scheme of the demand-side manage including the load shifting and
load curtailment schedules connection moments of loads in the consumption side to
realise objective demand curves. Load shifting and load curtailment are conducted in
the day-ahead scheduling and real-time scheduling, respectively, through the demand-
side management agent. The load shifting seeks to optimise the connection of shiftable
loads one day in advance. By contrast, the load curtailment dynamically decreases
the power consumption of curtailable loads during the real-time operations.

Correspondingly, the appliances are divided into the non-shiftable appliances,
shiftable appliances and curtailable appliances for the purpose of applying the
demand-side management [29]. Lights and refrigerators are examples of non-shiftable
appliances for which the operations are not time-shiftable. By contrast, customers
can shift the use of shiftable appliances such as dish washers, washing machines,
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Figure 5.2 Interaction of agents in the day-ahead scheduling. The market operator
matches offers and bids submitted by generators and suppliers, respectively, in the
day-ahead energy markets. The demand-side management agent helps power system
operator negotiate between the supplier and consumer on the load shifting. The power
system operators also dispatch generators in order to maintain the supply–demand
balance and reduce carbon emissions.

Figure 5.3 Interaction of agents in the real-time scheduling. The generation and con-
sumption are dynamically matched in a real-time manner through the load curtail-
ment and generation curtailment performed by the power system operators.
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Algorithm 1
Require: objective functions, initial solution size n; maximum iteration: tmax.

1: generate a group of antibodies as initial population to represent the power dis-
patch over constraints.

2: remove dominated antibodies and remain non-dominated antibodies.
3: perform mutation operation over the remaining non-dominated antibodies to pro-

duce a set of antibodies.
4: repeat
5: remove dominated antibodies.
6: evaluate the remaining antibodies through satisfying the constraints and re-

move infeasible antibodies.
7: if the population size is larger than the nominal size then
8: update to normalise the antibodies
9: end if

10: until the maximum iteration is reached.
Ensure: a solution which is able to maximise the minimum improvement in all

dimensions is selected.

and water heaters from a higher electricity price period to a lower electricity price
period. In addition, air conditioners and space heaters are examples of curtailable
appliances. Although the operations of this type of appliances are not time shiftable,
the consumption levels can be reduced. The details of problem formulations for the
load shifting and load curtailment are given as follows:

• Load shifting:
The load shifting technique of the demand-side management controls the time
periods of appliances connection to adjust the total load consumption within
objective load consumption. The change of load consumption at each time step
is modelled as a linear function of the electricity prices.

fshift(t) = α · pe(t) + β, (5.1)

where fshift(t) is the change of the load consumption at the time step t through
the load shifting, pe(t) is the electricity price at the time step t, and α and β
are coefficients of the load shifting relationship. During peak demand periods,
α < 0, because the energy consumption will be shifted away from this period
with the increase of peak-time electricity prices. By contrast, during off-peak
demand periods, α > 0, because the energy consumption will be shifted to this
period with the decrease of peak-time electricity prices. Hence, the total energy
consumption can be shifted from peak demand periods to off-peak demand
periods. Additionally, in order to keep the total consumption level of shiftable
appliances the same during operational periods, we have

T∑
t=1

fshift(t) = 0. (5.2)
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Figure 5.4 Architecture of the generation scheduling. This generation scheduling is
carried out through the power system operator agent, in which the operational in-
formation is collected, before performing the scheduling decisions and allocating to
each generator. The day-ahead scheduling aims for predictive generation dispatch
and the real-time scheduling performs corrections through comparing the day-ahead
schedules and real-time measurements.

• Load curtailment:
The load curtailment is conducted during the real-time operation to reduce the
total power consumption when it is necessary. The maximum level of the load
curtailment is set considering the interests and acceptance levels of consumers
as

0 ≤ fcurt(t) ≤ fmax
curt . (5.3)

where fcurt(t) is the amount of curtailed load at the time step t, and fmax
curt is

the maximum level of load curtailment.

5.7.3.2 Generation Scheduling

Given current energy market operations, two levels of generation scheduling, including
the day-ahead scheduling and real-time scheduling, are considered in the proposed
research. Figure 5.4 presents the architecture of the proposed generation schedul-
ing. This generation scheduling is carried out by the power system operator agent,
in which the operational information is collected, before performing the scheduling
decisions and allocating to each generator. The day-ahead scheduling aims for predic-
tive generation dispatch and the real-time scheduling performs corrections through
comparing the day-ahead schedules and real-time measurements. The details of the
day-ahead scheduling and real-time scheduling are given as follows:
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• Day-ahead scheduling:
The proposed research formulates the day-ahead scheduling by considering the
profits of generators and the reduction of carbon emissions, as well as saving
the electricity bills for consumers, which leads to a multi-objective optimisation
problem. Therefore, the objective functions in the day-ahead scheduling are to
maximise profits, and minimise carbon emissions and electricity bills, being sub-
ject to system constraints including the demand level, power output limit, and
ramp-up and ramp-down rates. Besides, in day-ahead energy markets, energy
suppliers purchase electricity generated by generators from wholesale markets,
before charging from consumers at retail electricity prices. For simplicity, the
generators and suppliers are taken as a whole to consider the operational costs,
and the retail electricity prices are taken the same as the wholesale electricity
prices.
The objective of consumers is to minimise their electricity bills, which can
be described as the bills of power consumption considering the load shifting.
Thus, the payment bill minimisation problem for consumers can be modelled
as follows:
Objective of payment bill minimization :

min
fshift(t)

T∑
t=1

[fdemand(t) − fshift(t)] · pe(t) (5.4)

s.t.
T∑

t=1
fshift(t) = 0, (5.5)

where fdemand(t) is the original power demand at the time step t, and pe(t) is
the electricity price at the time step t.
By contrast, the objective of generators is to maximise their profits, which can
be described as the revenues from consumers subtracting the operational costs.
A cost function is defined to describe the cost of power generation by major
sources, i.e., coal, nuclear, gas, wind, pumped storage, hydro, solar, and others,
indexed as u = 1, 2, ..., U :

fcost,u(t) = γu · gu(t), (5.6)

where fcost,u(t) is the cost of power generation by the source u at the time step
t, gu(t) is the electricity generation by the source u at the time step t, and γu

is the cost coefficient of the source u.
Considering the minimum power output gmin

u and maximum power output gmax
u ,

we have
gmin

u ≤ gu(t) ≤ gmax
u (5.7)

Therefore, the profits minimisation of generators can be modelled as follows:
Objective of profits maximization :

max
gu(t),fshift(t)

T∑
t=1

U∑
u=1

[fdemand(t) − fshift(t)] · pe(t) − fcost,u(t), (5.8)
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s.t.
gmin

u ≤ gu(t) ≤ gmax
u . (5.9)

Meanwhile, the reduction of carbon emissions is considered in the day-ahead
scheduling. When generators seek to maximise their profits, they are also re-
strained by carbon emission allowances. If the carbon emissions exceed the
allocated allowances, they have to afford the penalties formulated by policy
makers. For the conventional sources including the coal, gas, pumped storage,
and hydro, their carbon emissions are evaluated by carbon intensities which
quantify the amount of carbon dioxide released per unit of energy produced
[1]. By contrast, for the nuclear and renewable energy sources, due to the zero
or near-zero carbon emissions during the operational process, the life-cycle car-
bon analysis is applied [1]. With the carbon intensities, an emission function
fcarb,u(t) is defined to describe the carbon emissions of power generation by
major sources:

fcarb,u(t) = δu · gu(t) (5.10)

where δu is the emission coefficient of the source u.
Therefore, the carbon emissions minimisation of generators can be modelled as
follows
Objective of carbon emissions reduction :

min
gu(t)

T∑
t=1

U∑
u=1

fcarb,u(t). (5.11)

Apart from this, there are two common constraints including the power balance
constraint and ramp rate constraint during the operation of power systems as
[1]
Power balance constraint :

[fdemand(t) − fshift(t)] ≤
U∑

u=1
gu(t). (5.12)

Ramp rate constraint:

−rdown
u ≤ gu(t) − gu(t− 1) ≤ rup

u (5.13)

where rdown
u and rup

u denote the ramp-down and ramp-up rates of the generation
source u.

• Real-time scheduling:
The proposed research formulates an operational strategy of the real-time
scheduling, in which the supply–demand balance is matched through adopting
feedback of real-time simulation in five minute intervals and forecasting data in
the next five minutes. Hence, the continuous matching between the supply and
demand is monitored and controlled. When the real-time matching exceeds the
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forecasting demand, the adjustments of power outputs are allocated to each
generator in proportion to their maximum generation capacities. The amount
of allocation power generation falloc,u(t) for the source u is given as follows:

falloc,u(t) = gmax
u − gu(t)∑U

u=1 g
max
u − gu(t)

·
U∑

u=1

[
gu(t) − greal

u (t)
]
, (5.14)

where gmax
u is the maximum power output of the source u, and greal

u (t) is the
real-time actual power output of the source u.
During the peak demand period, considering the capacity limitations of power
generation sources, the demand-side management agent starts to perform the
load curtailment to reduce the total consumption level of curtailable loads.

5.7.4 Case Studies

In order to demonstrate the performance of the proposed multi-agent system based
model for the scheduling of power system generation and consumption, case stud-
ies have been conducted. Gridwatch provides the UK power outputs of all forms of
generation feeding to the grid in 5-minute interval. One year of such data in 2016 is
employed to forecast the daily electricity generation by major sources through the
autoregressive method [49]. The hourly wholesale electricity price data and corre-
sponding demand data [50] are also employed to forecast the electricity price and
demand for each hour. We assume that the maximum of 5% of the load curtailment
during the peak demand period from 16 to 22 h would be possible through the pricing
incentive. The cost coefficients are adopted from the UK levelised cost of electricity
generation [50].

The simulation results obtained from the load shifting by the demand-side man-
agement agent in the day-ahead market are presented in Figure 5.5. It is clear that
with the incentive of hourly real-time wholesale power prices, the peak demand period
has been shifted to the off-peak demand period.

The comparison of scheduling objectives for the day is presented in Table 5.2. It
is clear that both payment bills and carbon emissions have been reduced through the
day-ahead scheduling. After the scheduling of the multi-objective optimisation, there
are about 1.90 % of reduction in the electricity bills and 29.39 % of reduction in the
carbon emissions by the load shifting. This further proofs that the day-ahead schedul-
ing scheme is capable of lowering or shifting the peak loads, so that the payment bills
and carbon emissions can be reduced. By contrast, the profits of generators keep
almost unchanged, which means that with the increase of revenues from consumers,
the cost also increases to involve the generation and consumption scheduling.
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Figure 5.5 Load profile of the day-ahead hourly scheduling. The x-axis is the time step
of the energy scheduling. The left y-axis is the power demand with the unit of MW,
and the right y-axis is the wholesale power prices with the unit of GBP/MWh.

Table 5.2 The comparison of scheduling objectives including the electricity bills, car-
bon emissions, and profits

Electricity bills Carbon emissions Profits
(106 GBP) (106 ton) (106 GBP)

Without scheduling 63.2749 0.2559 26.8039
With scheduling 62.0741 0.1807 26.8061

Furthermore, Figure 5.6 presents the real-time scheduling for the day, which
compares the original demand generated from forecasting results with optimisation
scheduling and real-time measurements. It can be seen that the demand-side man-
agement contributes to bringing the real-time consumption curve to the optimisa-
tion scheduling curve as close as possible through power allocations. Additionally,
0.11% (843.78 MW) load curtailment has been realised to guarantee the reliability
of power networks. This real-time scheduling corrects the supply-demand match in
every 5-minute interval, so that the real-time measurement curve fluctuates around
the scheduling curve to guarantee the scheduling accuracy and reliability.

Therefore, the case studies for the day-ahead and real-time scheduling proves
that the proposed model strikes a balance between the supply and demand and helps
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Figure 5.6 Load profile of the real-time scheduling. The x-axis is the time step of the
energy scheduling. The y-axis is the power with the unit of MW.

realise the load curtailment and load shifting. The agents coordination allows the
practical market operations to be applied into the scheduling process.

5.7.5 Research Summary

This example research proposes a multi-agent system design for low-carbon smart
grids in both the generation scheduling and demand-side management for the day-
ahead and real-time operations. The results of case studies demonstrate the effective-
ness of designed control and management model and the possibility to employ smart
grid technologies into the multi-agent system. Through multi-objective optimisation
scheduling, the minimum payment bills of consumers, minimum carbon emissions,
and maximum profits for generators have been realised through fairly dispatching.
With the demand-side management including the load shifting and load curtailment,
the scheduling brings the real-time operation to the objective demand curve.

5.8 RESEARCH EXAMPLE 2: ARTIFICIAL INTELLIGENCE FOR PRICING
PATTERNS RECOGNITION

The deployment of smart meters facilitates increasing number of consumers to pro-
duce or store electricity at home, forming the role of prosumers [51]. However, the
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economic potential of individual prosumer’s energy scheduling is limited, whereas
multiple types of energy sources, loads, and energy behaviours require high-
dimensional optimisation and accurate modelling. This research example proposes
a prosumer-centric low carbon pricing patterns recognition through using the convo-
lutional neural networks to scale to high-dimensional systems and generalise unseen
inputs through extracting features from images. The deep network architecture with
multiple layers of representations is compatible with various system conditions to
abstract inherent dynamic price elasticities of generation, consumption, and carbon
emissions from prosumers. The uncertainties caused by distributed renewable energy
sources and flexible demand are considered through using the proposed scenarios gen-
eration algorithm. Case studies demonstrate that the proposed approach is capable
of capturing the underlying hidden features of prosumer-centric pricing patterns and
providing an accurate evaluation of scheduling potentials.

5.8.1 Introduction

Increasing energy demand has driven global energy-related carbon emissions rising to
a historic high. The power sector accounts for nearly two-thirds of emissions growth
[52]. Facing this environmental challenge, low carbon policy targets on phasing out
fossil fuel based power generation through facilitating distributed renewable energy
sources and charging carbon taxes from high-emission sources. In the EU, 200 million
smart meters have been deployed by 2020 to support the integration of distributed
renewable energy sources [53], so that consumers can produce or store energy at home
via solar panels [54], electric vehicles [55], and batteries [56]. The role of consumers
is transforming to prosumers when consumers actively schedule their own power
generation and consumption.

Nonetheless, with the involvement of prosumers’ role, there are several challenges
for energy markets:

• First, although the carbon tax is set on generators to cut into their profits, the
generators will pass some of these carbon costs on as the increase of electricity
price for consumers. This is notably essential for prosumers who take carbon
responsibility as both generators and consumers.

• Second, the increasing scale of prosumers will amplify uncertainties in distribu-
tion networks due to the intermittency of distributed renewable energy sources
and flexible consumption patterns.

• Third, the conventional scheduling tools are transformed from previous gener-
ators’ domain to individual prosumer’s domain, which means that these tool
needs to adapt with various scales of prosumers.

For the first challenge, since the carbon tax is a part of operating costs and affects elec-
tricity prices, it is worth investigating the price elasticity of carbon emissions which
is analogous as the price elasticities of demand and supply, as an intrinsic character-
istic of prosumers to extract their pricing patterns. There is an intensive literature
on static price elasticity to analyse the price responsiveness [57, 4]. A scheduling
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algorithm was proposed to shift the elastic loads to high renewable generation peri-
ods in [57]. Consumers’ price elasticity was analysed using the linear regression and
categorised as the price sensitive, price insensitive, and price optimiser for strategic
demand-side management in [4]. The static elasticity is an average and fixed value
based on long-term observations. It is an efficient tool to analyse overall energy mar-
kets’ trends, whereas it may degrade for capturing prosumer-centric pricing patterns,
because individual behaviour does not always confront with statistical features and it
may change over time in a strategic manner responding to the change of prices. With
the help of smart grids and smart meters, real-time data including electricity price,
generation, consumption, and carbon emissions can be bidirectionally transmitted
[44]. This enables the dynamic price elasticity to be analysed [58]. It is instrumental
to incorporate dynamic price elasticity into the scheduling model as a prerequisite
and involve carbon emission behaviours responding to electricity prices.

For the second challenge, accounting uncertainties into prosumers’ energy schedul-
ing contributes to reliability of scheduling tools. Statistical method is a potential idea
to involve uncertainties. Motivation behind the statistical method is that distribu-
tion of uncertain variables can be extracted from historical data, and randomness
can be introduced based on distribution analysis. Hence, potential scenarios which
describe all possible distributions of uncertain variables can be generated. Specif-
ically, in prosumer-centric uncertainty analysis, these scenarios correspond to the
possible generation and storage strategies as well as consumption patterns. Monte
Carlo simulation [59] and Latin hypercube sampling [60] are two popular methods
for scenarios generation. Compared to the Monte Carlo simulation, the Latin hyper-
cube sampling yields a better performance due to the fast convergence and reduction
of over-concentration by space-filling. However, the multidimensionality of uncertain
variables and stochastic distribution will cause high computational burdens and it is
difficult to find an optimal scheduling decision over large-scale scenarios. There are
still opportunities for the scenarios reduction to keep the most probable and dissimilar
scenarios.

With respect to the prosumer-centric energy scheduling, the model-based optimi-
sation has been focused in the current literature, by which the scheduling objective
is designed according to certain criteria and subjects to system constraints. Liang
et al. [61] proposed a game theory strategy for prosumers’ bidding in retail mar-
ket through solving bi-level optimisation problem. Analogously, a Stackelberg game-
theoretic model was implemented in energy sharing provider to facilitate energy shar-
ing of prosumers in [62]. An optimal scheduling which minimises prosumers’ profits
in the day-ahead market was proposed in [63]. Nonetheless, in practical operation,
the optimisation model needs to be implemented in a specific prosumer considering
its operating conditions with predefined parameters and predictions, which causes
computational and economic burdens due to the increasing scale of prosumers. Ad-
ditionally, when the scheduling becomes a multi-objective optimisation problem, the
objective functions, such as costs and carbon emissions, are not always under the
same scale. Hence, the optimal solution is not suitable in practical operations. Unlike
optimisation model for energy market scheduling, the learning method, as a model-
free method, only requires historical data accumulation. This increases the system



144 ■ Blockchain and Artificial Intelligence Technologies for Smart Energy Systems

scalability from the perspectives of operation and implementation. The scale differ-
ence can be captured from historical data by learning method.

This research uses the convolutional neural network [64] as a deep learning ar-
chitecture to automatically extract underlying features of prosumer-centric pricing
patterns. The convolutional neural network is particularly suitable for our research
due to the reduced dimensionality and computational burden by importing pixel,
which enables low level sensor inputs to learn multiple abstractions without manu-
ally predefined features. In the literature [65, 66], the convolutional neural network
was heavily used as a forecasting tool in power system operations, by which the his-
torical data is converted from single-dimension time series to multi-dimension pixel
through equally dividing the original dataset to fed into the convolutional neural
network. However, the fidelity of original data is affected during such conversion. In
our research, the dynamic price elasticity over the entire scheduling horizon is pro-
cessed to keep the integrability of data and the interconnection between generation,
consumption, and carbon emissions is coupled by the colour overlay.

Therefore, this research approaches low-carbon prosumer-centric scheduling to
solve aforementioned issues considering several gaps in existing studies and has con-
tributions as follows:

• In contrast to the static elasticity in existing works, this research properly cap-
tures the temporal dependency of generation, consumption, and carbon emis-
sions through using convolutional neural network to extract dynamic elasticities
of prosumers for pricing patterns recognition without affecting the fidelity of
original data.

• A scenarios analysis algorithm is designed including scenarios generation and
reduction to involve uncertainties of distributed renewable energy sources and
flexible demand in a statistical manner.

• This research properly takes the advantage of convolutional neural network for
capturing unseen features of pricing patterns and exploits pricing patterns for
scheduling with a goal of minimising costs and carbon emissions, which allows
our scheduling tool to be more scalable than the model-based optimisation with
minimum assumptions on model structures.

The remainder of this work is summarized as follows. In Sub-Section 5.8.2, the system
model and implementation are introduced including scenarios analysis algorithm and
scheduling strategy. The neural network architecture for price patterns recognition
based on price elasticity is described in Sub-Section 5.8.3. Sub-Section 5.8.4 con-
ducts case studies to demonstrate the proposed model. Sub-Section 5.8.5 draws the
conclusion.

5.8.2 Problem Formulation

The proposed system model and its implementation are described in this sub-section.
The scenarios analysis algorithm and scheduling strategy are also introduced as a
preliminary to the designed approach of recognising pricing patterns.
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The proposed model is designed for prosumers in the day-ahead market to sched-
ule their power generation, consumption, and incurred carbon emissions by extracting
their intrinsic pricing patterns. In the context of this research, the prosumers refer to
households with distributed energy sources, e.g., roof-top solar panel, air-source heat
pump, diesel generator, storage system, electric vehicle, and hot water cylinder. The
half-hour scheduling interval is used according to the settlement period in GB energy
market. A schematic illustration of the proposed model and its implementation is
presented in Figure 5.7. Once receiving the information of generation, consumption,
and incurred carbon emissions of an individual prosumer for the current day, the
database is updated and returns scheduling decisions to the prosumer. First, based
on the historical data of a prosumer, generation and consumption scenarios are gen-
erated through using the developed scenarios generation algorithm. The generated
scenarios represent potential variations of uncertain variables including distributed
energy sources and flexible loads. Similar scenarios are subsequently merged and low
probable scenarios are dropped to further enhance the accuracy of the energy schedul-
ing model. Second, with the information of real-time pricing for the following day, the
dynamic price elasticities of supply, demand, and carbon emissions are calculated and
processed as images. Third, the reduced scenarios and elasticity images are imported
into the neural networks to extract intrinsic features of prosumers. The outputs of
neural networks are optimal scheduling decisions, under the strategies of saving the
costs of using grid electricity and reducing carbon emissions. The training labels are
obtained from solving a multi-objective optimisation problem, which indicates how
far from predicted decisions of neural networks to optimal decisions from solving the
optimisation problem.

5.8.2.1 Scenarios Analysis

The goal of scenarios analysis is to accurately evaluate possible variations of uncertain
variables based on statistical distribution of historical data. Each variation is repre-
sented by a scenario. These uncertain variables include generation from distributed
energy sources and consumption from flexible loads. Let the vector pe

t denote the elec-
tricity generation by the source e at the scheduling time t, containing |N | scenarios
as pe

t = pe
t,1, ..., p

e
t,n, ..., p

e
t,|N |. Let vector dt denote the electricity consumption at the

scheduling time t, containing |N | scenarios as dt = dt,1, ..., dt,n, ..., dt,|N |. Through
scenarios analysis, the most probable scenarios will be selected and corresponding
occurrence probabilities will be obtained.

Accurately evaluating the distribution of uncertain variables is a prerequisite for
the scenarios generation. Compared with the approaches of using parametric estima-
tion to formulate the distribution of uncertain variables, such as Weibull distribution
[67] and normal distribution [68], using the non-parametric estimation is more suit-
able for capturing stochastic features of distributed energy sources and consumption
from flexible loads, since it is primarily dependent on the historical observations with-
out any assumption of parameters. Thus, the kernel density estimation [69] is used
in our research to estimate the probability density function of uncertain variables.
Furthermore, for the purpose of involving adequate randomness of multi-dimensional
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Figure 5.7 Schematic illustration of the proposed model and its implementation. Once
receiving the information of generation, consumption, and incurred carbon emissions
of an individual prosumer for the current day, the database is updated and returns
scheduling decisions to the prosumer. First, generation and consumption scenarios are
generated and then reduced through using the developed scenarios analysis algorithm.
Second, the dynamic price elasticities of supply, demand, and carbon emissions are
calculated and processed as images. Third, the reduced scenarios and elasticity images
are imported into the neural networks to extract intrinsic features of prosumers. The
outputs of neural networks are optimal scheduling decisions.

uncertain variables, the approach of Latin hypercube sampling [70] is used to gener-
ate scenarios based on the statistic distribution of these variables. Compared to ap-
proaches of random sampling, such as Monte Carlo simulation [59], Latin hypercube
sampling is able to avoid over-concentration through space-filling, which means that
samples are generated over the entire feasible range of historical observations. Monte
Carlo simulation also requires longer computing time due to its slow convergence.
In addition, the time-series data structure is inefficient to capture the most current
features of dataset, because the early received data may cause deviation from key fea-
tures due to dated information. The queues structure is designed to store data. Each
queue is subject to the first-in first-out principle [71]. When new data is received, the
first data added to the queue will be firstly dropped. The multiple uncertain variables
are saved in corresponding queues with the most current characteristics.
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For simplicity, using x to represent an uncertain variable, i.e., pe
t and dt, and xm to

represent the sample m from historical observations. The unknown density function
of an uncertain variable is represented by f(x). The kernel density estimation can be
formulated as

f̂(x) = 1
|M| · h

|M|∑
m=1

K

(
x− xm

h

)
, (5.15)

where f̂(x) is the estimated kernel density function, |M| is the total number of
samples, h is the bandwidth smoothing parameter, and K(•) is the kernel density
function. Gaussian kernel [22] is used in this research due to its high efficiency and
simple mathematical expression. A kernel is placed around every sample m, so that
the estimated kernel density function is obtained by the sum of |M| kernels.

Based on the obtained kernel density function, scenarios can be generated to
reflect possible variations of uncertain variables. To generate desired |N | scenarios,
firstly, the cumulative density function of the uncertain variable x, denoted as y =
F (x), is equally divided into |N | intervals. Every interval corresponds to a scenario
xn with the occurrence probability as

Pr(xn) = 1
|N |

. (5.16)

Secondly, a point is randomly selected from each interval to calculate the value
of this uncertain variable by using its inverse function as

xn = F−1(yn). (5.17)

We have
yn =

( 1
|N |

)
rn + n− 1

|N |
, (5.18)

where rn is a random variable being subject to the uniform distribution. Therefore,
|N | initial scenarios are generated.

Although a large amount of scenarios is able to cover more possible variations of
uncertain variables, it would increase computational burdens. It is necessary to merge
similar scenarios and omit scenarios with low occurrence probabilities, by which pri-
mary characteristics of uncertain variables can be maintained. The scenario reduction
approach is designed as shown in Algorithm 2.

5.8.2.2 Scheduling Strategy

In our research, the objectives of the energy scheduling of an individual prosumer in-
clude the minimisation of its operating costs and carbon reduction. Considering price
elasticities of the generation, consumption, and incurred carbon emissions of a pro-
sumer, denoted as ξpe , ξd, and ξe, respectively, the scheduling decisions are electricity
generation pe

t and consumption dt. Therefore, the minimum costs and carbon emis-
sions c∗

t e
∗
t are taken as the training labels of neural networks. The selected scenarios

and price elasticities are imported as inputs of the neural networks. The relationship
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Algorithm 2 Scenario Reduction Algorithm
Require: Initial scenarios set X = x1, ..., x|N |, desired size of scenario set |Nd|,

removed scenarios set Xr.
1: Calculate the probability distance between the scenario i and the scenario j,

denoted as d(i, j), i, j ∈ N .
2: repeat
3: For each scenario n, find the closest scenario k as d(n, k) = min d(n, q), q ̸= n,

n, k, q ∈ N .
4: Given the probability of scenario n, i.e., Pr(xn), calculate the probability of

the scenario k by Pr(xk) = Pr(xn) · d(n, k).
5: Delete the scenario r with the minimum probability, i.e., Pr(xr) = min Pr(xk),

r ∈ N .
6: Update the scenario set X , removed scenarios set Xr, and corresponding occur-

rence probability by X = X − {xr}, Xr = Xr + {xr}, Pr(xn)=Pr(xn)+Pr(xr)
7: until |N |=|Nd|

Ensure: Selected scenarios xn, and corresponding occurrence probabilities Pr(xn).

between the training labels and inputs of neural networks can be described as

{c∗
t , e

∗
t } = fnn(pe

t ,dt, ξpe , ξd, ξe) (5.19)

where fnn(•) is the relationship function parametrised by training the neural net-
works.

5.8.3 Pricing Pattern Recognition

This subsection introduces the concept of price elasticity and describes the architec-
ture of neural networks used for pricing pattern recognition.

To realise the goal of pricing pattern recognition, price elasticities of generation,
consumption, and carbon emissions need to be analysed as intrinsic features of an
prosumer. These features are subsequently processed to images as an input of the
convolutional neural network. We will first introduce the conception of price elasticity,
before describing the data processing approach. For simplicity, only the concept of
price elasticity of carbon emissions is detailed, since the price elasticities of generation
and consumption have the analogous formulations. The price elasticity of carbon
emissions measures the responsiveness of carbon emission behaviours to a change
in the retail electricity price. When the electricity price changes by ∆π from π0,
resulting in the change of carbon emissions by ∆e from e0, the price elasticity of
carbon emissions is defined as:

ξe =
(∆e
e0

)
·
(
π0
∆π

)
. (5.20)

Based on the concept of price elasticity, the cross elasticity for every two different
scheduling time can be calculated over the entire scheduling horizon |T |. Those three
types of price elasticities, i.e., price elasticities of generation, consumption, and carbon
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emissions, form a three-dimensional array, i.e., ξe, ξpe , ξd ∈ R|T |×|T |×3, by which each
elasticity corresponds to one colour channel of ’R G B’ in an image. Unlike the input
data processing approaches which transform the time-series vector to a matrix by
reshaping it, our designed processing approach keeps the fidelity and integrity of entire
scheduling horizon. In addition, the colour overlay can reflect the interrelationship of
generation, consumption and carbon emissions, and the colour gradients can reflect
the time variations of energy behaviours, which can be automatically recognised by
the convolutional neural network.

The relationship between the optimal values of scheduling objectives and decision
variables is parametrised by training neural networks. The neural networks consist of a
convolutional neural network to recognise intrinsic features of a prosumer and a dense
hierarchical perception to import numerical data of generation and consumption over
the entire scheduling horizon. The outputs from these two layers are subsequently
merged by fully connected layers. An overview of the architecture of neural networks
is presented in Figure 5.8.

The inputs of the convolutional neural network are the |T | × |T | × 3 elasticity
image containing ξe, ξpe , and ξd, and the inputs of dense hierarchical perception are
pe

t and dt containing |Nd| selected scenarios. The neural networks return the mini-
mum costs c∗

t and carbon emissions e∗
t as outputs. The convolutional neural network

convolves the three-dimensional elasticity image with multiple filters and optimises
the learning weights. The local elasticity feature over consecutive scheduling intervals
within the filter size and temporal transient feature of elasticity over several schedul-
ing intervals can be detected. In addition, multiple filters can detect the relationship
of generation, consumption, and carbon emissions from the colour overlay. All the
detected features are further processed by higher layers and ultimately stacked as a
feature map. Assume a convolutional layer contains k filters, the feature map Lk is
expressed as

Lk = α · (Wk ∗ ξ) + bk, (5.21)

where α is the activation function, Wk is the weight matrix, ∗ is the convolutional
operation, ξ is the image input, and bk is the bias term. Pooling layer is followed to
downsample the convolutional outputs by increasing translation invariance of neu-
ral networks. After multiple convolutional and pooling layers, all feature maps are
combined by the fully connected layer as outputs of the convolutional neural network.

Meanwhile, pe
t and dt are fed into a dense hierarchical perception with an inter-

mediate hidden layer and multiple nodes to process hidden representations. Finally,
the outputs of convolutional neural network and hierarchical perception are merged
into fully connected layers to extract combined hidden features. The final output layer
maps the processed hidden features to optimum costs c∗

t and carbon emissions e∗
t .

This 2-stream network structure has been demonstrated to yield a good performance
in [72].

5.8.4 Case Studies

The performance of our proposed model is demonstrated by case studies. The con-
sumption data of prosumers is obtained from residents in England. The generation
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Figure 5.8 Schematic illustration of neural networks for pricing pattern recognition.
The neural networks consist of a convolutional neural network to recognise intrinsic
features of a prosumer and a dense hierarchical perception to import numerical data
of generation and consumption over the entire scheduling horizon. The outputs from
these two layers are subsequently merged by fully connected layers.
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data of distributed energy sources is obtained from ref. [73]. The scenario analysis
algorithm firstly generates 500 scenarios based on 365-day historical observations,
before reduced to 10 selected scenarios.

To evaluate the performance of designed neural networks, the optimisation is
implemented as a benchmark. The optimal solution of the energy scheduling problem
is obtained by solving a multi-objective optimisation. Based on the scenarios analysis,
the objective functions are minimising the expectation of costs and carbon emissions
with respect to occurrence probabilities Pr(dt) and Pr(pe

t ) as
Objective I: min. costs

min
pe

t ,dt

E
{

T∑
t=1

[(dt · Pr(dt) − pe
t · Pr(pe

t )) · πt + pe
t · Pr(pe

t ) · γe] · ∆t
}
, (5.22)

Objective II: min. carbon emissions

min
pe

t ,dt

E
{

T∑
t=1

pe
t · Pr(pe

t ) · δe · ∆t
}
, (5.23)

where γe is the cost coefficient of the energy source e, δe is the carbon intensity of
the energy source e, and ∆t is the scheduling interval. The first term in the Equation
(5.22) corresponds to the electricity bills for using grid electricity, and the second
term corresponds to the generating costs. The multi-objective optimisation problem
is solved by using the MATLAB® optimisation toolbox. This benchmark yields a
theoretical minimum carbon emissions and costs. The goal of our designed neural
networks is to obtain scheduling decisions that enable the predicted objective values
to be close to the theoretical minimum values.

The learning approach is developed by Python using PyTorch [74]. The selected
parameters of the convolutional neural network are shown in Table 5.3. The inputs of
the convolutional neural network are elasticity images in the shape of a 48 × 48 × 3
array. The first convolutional layer has thirty-two 5×5 filters. To keep the invariance
of the input image, the stride (1,1) is selected for the convolutional layer, before using
the pooling layer to reduce spatial dimensions with 2 × 2 pool size and (2,2) stride.
Next, the output of the pooling layer is fed into the second convolutional layer which
has sixty-four 2 × 2 filters with the stride of (1,1), followed by a pooling layer with
2 × 2 pool size and (2,2) stride. The outputs of convolutional layers are flatten to
form feature maps, before processed by a hidden layer with 32 nodes. Meanwhile, the
vectors of generation and consumption are taken as inputs to a feedforward network
with one 8-node hidden layer. The combined outputs of convolutional neural network
and feedforward network are merged by hierarchical perceptions with 3 hidden layers
and 1024, 512, and 256 nodes. Final outputs of neural networks are minimum carbon
emissions e∗

t and costs c∗
t in each scheduling interval. The rectifier nonlinearity (ReLu)

[75] is used as the activation function, and the stochastic gradient descent [76] is used
as an optimiser to train neural networks with 500 epochs and the learning rate of
0.001.
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Figure 5.9 Variations of the train loss with the increase of epochs.

Table 5.3 Selected parameters of the convolutional neural network
Layer Output Size Filter Size Stride
Input 48 × 48 × 3 - -
Convolution1 48 × 48 × 32 5 × 5 @32 (1,1)
Pooling1 24 × 24 × 32 2 × 2 (2,2)
Convolution2 24 × 24 × 64 2 × 2 @64 (1,1)
Pooling2 12 × 12 × 64 2 × 2 (2,2)

We firstly import the data of whole 365 days to test the convergence performance
of the training process. The relationship between the training losses and epochs is
presented in Figure 5.9. It can be seen that the model converges after 200 epochs.
Next, the effects of the data size on the learning accuracy are evaluated. With the
increase of the data size from 50 days, 100 days to 200 days, the learning accuracy of
optimal decisions of energy consumption is presented in Figure 5.10. It can be seen
that with increase of the data size, the predicted scheduling decisions are close to
theoretical optimal decisions.

The dispatched generation of a prosumer and corresponding carbon intensity are
presented in Figure 5.11. Our proposed scheduling realises both carbon reduction and
daily total costs saving through strategically responding to pricing signals considering
the price elasticity of prosumers.
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Figure 5.10 Learning process for electricity consumption at day 50, day 100, and day
200 in (a), (b), and (c), respectively, with corresponding electricity prices in (d), (e),
and (f), respectively.

5.8.5 Research Summary

To extract intrinsic low-carbon pricing patterns of prosumers and involve uncertain-
ties caused by distributed energy sources and flexible loads, a learning approach based
on neural networks was designed for the energy scheduling of a prosumer, which im-
proves the scalability and reduces the computational burden. The proposed scenarios
analysis algorithm statistically evaluates the variations of uncertain variables. The
convolutional neural network is capable of capturing temporal transient features of
elasticity and relationship of generation, consumption, and carbon emissions. Simula-
tion results demonstrate that the proposed learning approach can converge after 200
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Figure 5.11 Comparison of the power output and carbon intensity of the benchmark
in (a) and proposed model in (b).

epochs with 365-day data and accurately yield optimal scheduling decisions. Both
carbon reduction and cost saving are achieved.

5.9 EXAMPLE RESEARCH 3: REINFORCEMENT LEARNING FOR
LOW-CARBON ENERGY HUB SCHEDULING

Energy hub scheduling becomes the essence for optimally incorporating electricity,
heat, and renewable energy sources. A scalable scheduling model which is suitable
for flexible energy sources and operating conditions holds the key to modelling
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performances. This example research investigates the price elasticity as the intrin-
sic characteristics of energy hub operators and analyses the state action dependency
and action transient dependency based on the conditional random field. With these
characteristics, a reinforcement learning model is developed to schedule the exchange
of the power and natural gas and dispatch the energy sources within the energy hub
with reduced assumptions of model parameters and improved model scalability. Case
studies are conducted on the real-time digital simulator through interacting between
scheduling decisions and monitored operating conditions. It is demonstrated that the
conditional random field-based reinforcement learning can approach the theoretical
optimal solutions after 50-day training. Scheduling decisions are particularly affected
by received pricing information during peak-demand periods. The developed method
can save 9.76% of daily operating costs and mitigate 1.388 ton of carbon emissions
from simulation results.

5.9.1 Introduction

Scheduling of integrated multiple energy vectors coupling electrical and thermal net-
works has received considerable attentions in recent literature [77, 78, 79, 80]. Mo-
tivation behind the scheduling is that the electricity, natural gas, and distributed
renewable energy sources can be systematically optimised to improve operating per-
formances including carbon mitigation [77], costs reduction, system resilience [78],
and security of supply [79]. The scheduling problems are normally solved by the
model-based optimisation, through which the scheduling objectives are designed by
certain targets and subject to operational constraints [80]. The model based optimi-
sation gives a theoretical optimal solution for energy hub scheduling, whereas some
challenges raise from such approach: 1) The scale of energy hub varies by topo-
logical structures and technical combinations, which requires accurate predefined
parameters for each scale of energy hub; 2) The uncertainties of renewable gener-
ation and flexible demand need to be accurately predicted; and 3) How the operators
of the energy hub would react to the pricing signals, i.e., their price elasticity needs
to be captured.

For the challenges of scalability and uncertainties, the model-free approach, e.g.,
reinforcement learning, provides a potential solution [64]. The reinforcement learning
dynamically updates actions under a control policy through interacting with environ-
ments [64]. For the operation of energy hub, the reinforcement learning outperforms
the model based optimisation from two aspects: 1) The reinforcement learning only
requires historical data without predefined parameters and formulations which al-
lows designed models to be scalable and compatible for scales of systems. This can
also save the computational and economic burdens compared to the optimisation ap-
proach; 2) For multi-objective optimisation problems, to which the values of objective
functions are under different scales or units, e.g., minimising carbon emissions in the
unit of ton and minimising operating costs in the unit of GBP, the scale difference
can be avoided by learning from historical data. In studies [81, 82], the reinforcement
learning has been applied for power systems to assist or replace model-based optimi-
sation approaches. However, existing works are based on historical data in an offline
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manner. combining the reinforcement learning with real-time simulation of energy
hub enables the scheduling model to dynamically adapt with operational conditions
and dispatching decisions.

In order to shape the patterns of supply and demand, the time-of-use pricing
scheme has been implemented in retail energy markets. Incentivised by the time-of-
use pricing scheme, energy hub operators strategically determine the imports of gas
and electricity and energy dispatch, in order to minimise the operating costs. The
price responding strategies and price elasticity have been intensively investigated in
existing works, e.g., [83, 84, 85]. Based on existing works, there is a potential extension
to include statistical model for capturing both decision transient feature and price
elasticity of decision-making from energy hub operators.

In this example research, the conditional random field [86] is exploited as a re-
gression approach to extract the temporal transitions of scheduling behaviours incen-
tivised by the prices of gas and electricity. The conditional random field can statis-
tically support the reinforcement learning for optimal decision-making and adapting
system dynamics. Compared with the naive Bayes model [41], the logistic regres-
sion of the linear conditional random field can model the discrete decisions of energy
imports and dispatch and express the Q-function of reinforcement learning as an ex-
pectation of operating costs for a range of scenarios. Therefore, this paper approaches
the energy hub scheduling through solving limitations in existing research as:

• A scalable model which can adapt different sizes and energy sources needs to
be designed.

• The dependency of scheduling decisions on the prices of gas and electricity, and
the time-transition of decisions are not captured by existing models.

• The price elasticity needs to be considered into scheduling decisions.

Through addressing these research gaps, this example research offers the following
contributions as:

• The conditional random field was exploited to capture dynamic price elasticity
of various energy sources, as well as the dependency of scheduling decisions on
the prices of gas and electricity, and the time-transition of decisions.

• The algorithm of reinforcement learning was developed to improve the scala-
bility of scheduling models, such that the model can be dynamically updated
through interacting with the real-time digital simulator.

• The model can reduce carbon emissions caused by transmission losses and im-
ports from electricity and gas.

• Simulation results demonstrate that the proposed model can capture the depen-
dency of scheduling decisions on energy prices and the dependency of transient
action through real-time recursive weight updates. Both operational costs and
carbon emissions were saved through the proposed scheduling model.
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Figure 5.12 Structure of the energy hub with electricity and natural gas networks. The
energy hub contains the power conditioning system, solar photovoltaic, combined heat
and power, boiler, and low-voltage power grids. The black solid lines are the electrical
power flow and the red dashed lines are the thermal flow.

The remainder of this work is summarised as follows. In Sub-Section 5.9.2, the
model of energy hub is introduced considering the carbon mitigation and cost saving.
The conditional random field-based reinforcement learning for price elasticity mod-
elling is shown in Sub-Section 5.9.3. Section 5.9.4 performs case studies to demon-
strate the proposed model. Section 5.9.5 draws the conclusion.

5.9.2 System Model

In this subsection, the model of the energy hub is mathematically described and the
technical constraints during the operation of the energy hub are defined.

5.9.2.1 Energy Hub Components

The structure of the energy hub integrating electricity and gas networks is shown in
Figure 5.12. It contains the power conditioning system, solar photovoltaic, combined
heat and power, boiler, and low-voltage power grids.

The functions of each components are briefly introduced as follows:

• Power conditioning system: The power conditioning system is installed at the
solar photovoltaic and combined heat and power as a voltage source inverter to
improve the stability of grid voltage [87].

• Combined heat and power: The combined heat and power converts natural gas
into electricity and recovers the generated heat for supplying heating loads [88].

• Boiler: The boiler converts natural gas into heat through heating contained
fluid. The efficiency of boiler is higher than the combined heat and power [89].
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• Solar photovoltaic: The solar photovoltaic is a renewable energy source com-
monly used in consumers’ domain to convert solar energy into direct current
electricity.

• Low-voltage power grids: The low-voltage power grids deliver the electricity to
demand-side of the energy hub.

5.9.2.2 Technical Constraints

The technical constraints during the operation of the energy hub are mathematically
formulated as follows:

• The power conditioning system injects or ejects reactive power as a voltage
source inverter, which is constrained by the real electrical power and apparent
electrical power capacity as

(ppcs
e )2 + (qpcs

e )2 ≤ (spcs,max
e )2, (5.24)

where ppcs
e is the active power output of the power conditioning system, qpcs

e is
the reactive power output of the power conditioning system, and spcs,max

e is the
maximum capacity of the power conditioning system.

• The electrical power output of the combined heat and power is constrained by
its efficiency as

pchp
e = ηchp

e · pchp
g , (5.25)

where pchp
e is the active electrical power output of the combined heat and power,

ηchp
e is the efficiency for converting the gas to electricity through using the

combined heat and power, and pchp
g is the gas consumption of the combined

heat and power.

• The thermal power output of the combined heat and power is constrained by
its efficiency as

pchp
h = ηchp

h · pchp
g , (5.26)

where pchp
h is the thermal power output of the combined heat and power, and

ηchp
h is the efficiency for converting the gas to heat through using the combined

heat and power.

• The active electrical power of the combined heat and power is constrained by
its apparent electrical power capacity as

0 ≤ pchp
e ≤ schp,max

e , (5.27)

where schp,max
e is the apparent electrical power capacity of the combined heat

and power.
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• The reactive electrical power of the combined heat and power is constrained
by its apparent electrical power capacity and maximum electrical active power
output as

−
√

(schp,max
e )2 − (pchp,max

e )2 ≤ qchp
e ≤

√
(schp,max

e )2 − (pchp,max
e )2, (5.28)

where pchp,max
e is the maximum electrical active power output of the combined

heat and power, and qchp
e is the reactive electrical power output of the combined

heat and power.

• The heat output of the combined heat and power is constrained by its apparent
thermal power capacity as

0 ≤ pchp
h ≤ schp,max

h , (5.29)

where pchp
h is the thermal power output of the combined heat and power, and

schp,max
h is the apparent thermal power capacity of the combined heat and power.

• The heat output of the boiler is constrained by its efficiency as

pboiler
h = ηboiler

h · pboiler
g , (5.30)

where pboiler
h is the thermal power output of the gas boiler, ηboiler

h is the thermal
efficiency of the gas boiler, and pboiler

g is the gas consumption of the gas boiler.

• The heat output of the boiler is also constrained by its capacity as

0 ≤ pboiler
h ≤ sboiler,max

h , (5.31)

where sboiler,max
h is the maximum thermal capacity of the gas boiler.

• The electrical power output of the solar photovoltaic is constrained by its effi-
ciency as

ppv
e = ηpv

e · pr, (5.32)

where ppv
e is the electrical power output of the solar photovoltaic, ηpv

e is the
efficiency of the solar photovoltaic, and pr is the solar irradiance.

• The reactive electrical power of the solar photovoltaic is constrained by its
apparent electrical power capacity and maximum electrical power output as

−
√

(spv,max
e )2 − (ppv,max

e )2 ≤ qpv
e ≤

√
(spv,max

e )2 − (ppv,max
e )2, (5.33)

where spv,max
e is the maximum electrical power capacity of the solar photo-

voltaic, ppv,max
e is the maximum electrical power output of the solar photo-

voltaic, and qpv
e is the electrical reactive power output of the solar photovoltaic.
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5.9.2.3 Carbon Emissions Tracing

The operation of an energy hub generates carbon emissions, primarily through the
exchanges of electricity and natural gas with utility energy networks and transmission
line losses within the energy hub. As part of their operational costs, energy hub
operators are required to pay a carbon tax. To mitigate these emissions, a proposed
scheduling model takes into account the carbon emissions generated by the operation
of the energy hub. A general way to quantify carbon emissions is by using carbon
intensity, which is the amount of produced carbon emissions per unit of the exchange
of power or natural gas as

i = r

p
, (5.34)

where i is the carbon intensity with the unit of kg/kWh, p is the power flow or natural
gas flow, and r is the quantity of carbon emissions per unit of the exchange of the
power or natural gas per unit time with the unit of kg/h.

The model tracks two portions of carbon emissions. The first portion of carbon
emissions is caused by transmission line loss within the energy hub. The topology
structure of power networks must be considered to address this type of carbon emis-
sions. Since power flow distribution is based on proportional sharing principles [90],
the carbon emission distribution follows the same principle. Specifically, the carbon
emission rate of an outflow branch is expressed as the sum of carbon emissions of the
inflow branch and the bus-connected source as

rj =
∑
i∈z

pi,jei +
∑
s∈z

pses, (5.35)

where ei and es are carbon intensities in branch i and bus-connected source s, re-
spectively, and pi,j is the share of power flow in jth branch coming from ith branch
pi.

According the to proportional sharing principle [90], we have

pi,j

pj
= pi∑

i∈z pi,j +
∑

s∈z ps
. (5.36)

The second portion of carbon emissions comes from the exchanges of electricity
and natural gas with the utility energy networks. The proposed model considers the
total carbon emission rate from natural gas rg, electricity re, and transmission loss
rj during the scheduling horizon T , which should be less than the carbon emission
limit. This carbon emission limit can be defined based on regulations or policies.

T∑
t=1

rg · t+ re · t+ rj · t ≤ emax, (5.37)

whereRe andRg are carbon emission rates for electricity and natural gas, respectively,
and emax is the carbon emission limit defined based on regulations or policies.
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5.9.3 Proposed Algorithm

This subsection presents the proposed algorithm for modelling price elasticity using
the conditional random field-based reinforcement learning in the context of energy
hub scheduling. To further elaborate on the proposed algorithm for price elasticity
modelling, it is worth noting that the dynamic price elasticity of energy sources in
the energy hub refers to the responsiveness of energy demand to changes in energy
prices. By modelling price elasticity, the proposed algorithm allows for more effective
management of energy flows in the energy hub, resulting in improved energy efficiency
and reduced operational costs.

The conditional random field-based reinforcement learning approach is a power-
ful tool for modelling price elasticity in the context of energy hub scheduling. By
leveraging the principles of reinforcement learning, the proposed algorithm is able to
analyse historical data on energy prices and energy hub scheduling decisions to learn
from past experiences and optimise future energy flows. This approach allows for the
dynamic adjustment of energy hub scheduling decisions based on changing market
conditions and energy prices.

In addition to improving energy efficiency and reducing operational costs, the
proposed algorithm has important environmental implications. By enabling more ef-
ficient use of energy resources, the algorithm can help to reduce greenhouse gas emis-
sions and other negative environmental impacts associated with energy production
and consumption. Overall, the proposed algorithm represents a significant advance
in the field of energy hub management and has the potential to drive significant
improvements in the sustainability and efficiency of energy systems.

The action space A for energy hub scheduling is defined as follows: decisions for
electricity exchange from the main grid Ae, decisions for natural gas exchange from
the gas network Ag, decisions for dispatching gas to combined heat and power for
producing electricity Ae,CHP and heat Ah,CHP, and decisions for dispatching gas to
the boiler ABoiler. The control actions for energy hub scheduling are binary variables
that represent the corresponding components to be switched on or off:

ae, ag, ae,chp, ah,chp, aboiler ∈ {0, 1}. (5.38)

The action vector a is subsequently defined as:

a = (ae, ag, ae,chp, ah,chp, aboiler). (5.39)

The state space S of energy hub scheduling consists of the price of electricity
Se and the price of natural gas Sg. The state vector is subsequently defined as the
electricity price πe and natural gas price πg, resulting in

s = (πe, πg). (5.40)

At the beginning of each scheduling interval t, the market operator announces
the electricity and gas prices st = (πt

e, π
t
g) to the energy hub operator. The

energy hub operator then decides and dispatches the scheduling results at =
(at

e, a
t
g, a

t
e,chp, a

t
h,chp, a

t
boiler) at the end of scheduling interval t. The proposed algo-

rithm aims to introduce the dynamic price elasticity of energy sources in the energy
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hub. Given observed states {s1, ..., st} and past actions {a1, ..., at−1}, the algorithm
analyzes the probability of the energy hub operator’s decisions for energy exchanges
from main networks and inside dispatch at at t. Using this analysis, the reinforcement
learning algorithm is performed to obtain an optimal control policy for energy hub
scheduling.

5.9.3.1 Conditional Random Field for Elasticity Modelling

The proposed algorithm for modelling price elasticity of energy sources and action
transient dependency is based on the linear conditional random field approach [91],
which differs from the Hidden Markov Model approach in that it accounts for the
dependence of action at the current time on all observed states {s1, ..., st}. This is
important for practical scheduling problems, where the energy hub operator may
make global decisions in response to price signal variations to minimise total daily
operating costs.

The linear conditional random field is subject to the Markov property [92], which
means that conditioned on st, action at at time t is independent of action ak at time
k, (k ≠ t), given at+1 and at−1, as

p(at | a1, ...at, s1, ...st) = p(at | at−1, at+1, s1, ..., st). (5.41)

The Markov property of the linear conditional random field allows for the modelling
of the conditional probability of energy hub operator’s decisions for energy exchanges
at a given time based on the observed state. Specifically, the conditional probability
is modelled as a product of state and transient feature functions, with weighting
factors describing the strength of the dependencies. The normalization factor is used
to ensure that the probabilities add up to one.

The conditional probability p(at|st) is modelled as

p(at|st) = 1
Z(st)

∏
t

exp
(
µtΦt(at, st)

)∏
t−1

exp
(
λt,t−1Ψt,t−1(at, at−1)

)
, (5.42)

where
Φt(at, st) := atst (5.43)

is the state feature function to describe the dependency of action at on state st at
time t;

Ψt,t−1(at, at−1) = atat−1 (5.44)

is the transient feature function to describe the dependency of action at at time t on
action at−1 at time t− 1, µt and λt,t−1 are weighting factors to describe the strength
of these dependencies, and

Z(st) =
∑
at

∏
t

exp
(
µtΦt(at, st)

)∏
t−1

exp
(
λt,t−1Ψt,t−1(at, at−1)

)
(5.45)

is a normalization factor.
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Motivated by the state feature function and transient feature function, the weight-
ing factors µt and λt,t−1 can be defined as

µt := fst(at)
t

, (5.46)

λt,t−1 := fat−1(at)
t

, (5.47)

where fst(at) is the total amount of time in which the action at is performed as on
(at=1) given state st and fat−1(at) is the total amount of time in which the action
at is performed as on (at=1) given that action at−1 is performed as on (at−1=1).

µt and λt,t−1 can be updated at each time step when receiving new pieces of
information γst(at) and γat−1(at) as

fst(at) = fst−1(at−1) + γst(at), (5.48)

and
fat−1(at) = fat−2(at−1) + γat−1(at). (5.49)

Therefore, weighting factors µt and λt,t−1 can be updated recursively as

µt = fst−1(at−1) + γst(at)
t− 1 · t− 1

t
= µt−1 + 1

t
[γst(at) − µt−1], (5.50)

λt,t−1 = λt−1,t−2 + 1
t
[γat−1(at) − λt−1,t−2]. (5.51)

5.9.3.2 Reinforcement Learning

The proposed algorithm for energy hub scheduling is based on a linear conditional
random field model that considers the price elasticity of energy sources and action
transient dependency. This approach allows for more strategic decision-making by
the energy hub operator, who can respond to changes in pricing signals to minimise
operating costs. Our approach also incorporates the revenue from providing electricity
and heat services within the energy hub as a means of compensating for costs.

The minimal cost of the current state is defined as the expectation of the proba-
bility of energy imports from the main grid becoming minimum, i.e., p(at = 0 | st)
and the probability of inside dispatch of energy hub becoming maximum, i.e.,
p(at = 1 | st) given the current state as

c(st) =E{pe · at
e · t · πe + pg · at

g · t · πg − [(ppcs
e + ppv

e +
at

e,chp · pchp
e ) · t · πe + (at

h,chp · pchp
h + at

boiler · pboiler
h ) · t · πg] | st}

=(pe · t · πe + pg · t · πg) · p(at = 0 | st)
− [pchp

e · t · πe + (pchp
h + P boiler

h ) · t · πg] · p(at = 1 | st)
− (ppcs

e + ppv
e ) · t · πe.

(5.52)
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Figure 5.13 Flowchart of the proposed conditional random field-based reinforcement
learning algorithm.

The objective of the reinforcement learning approach is to find an optimal control
policy (h : S → A) that minimises the total cost of energy hub scheduling from the
initial state s1 to the current state st.

To achieve this, the Q-function is used to represent the total discounted cumula-
tive reward following a given policy as

Qh(at, st) = E{c(s0) + ξc(s1) + ξ2c(s2) + ...+ ξtc(st)}, (5.53)

where ξ is the discounting factor.
The optimal policy h∗ is then obtained by minimising the Q-function subject to

the given constraints of Equations (5.9.2.2) - (5.33) as

h∗ ∈ arg min
at,pe,pg ,qCHP

e ,qPV
e

Q∗(at, st) (5.54)

The flowchart in Figure 5.13 visually represents the proposed algorithm for con-
ditional random field-based reinforcement learning for energy hub scheduling.
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Overall, this approach provides a more comprehensive and dynamic solution for
energy hub scheduling that takes into account the complexities of pricing and revenue
generation, as well as the strategic decision-making required to optimise energy hub
operations.

5.9.4 Numerical Results

In order to evaluate the effectiveness of the proposed model, a numerical simulation
is conducted using a modified four-bus medium voltage distribution system, which
is illustrated in Figure 5.14. This system features a combined heat and power unit
and a boiler installed at bus 3, where the electricity and gas networks are coupled.
Additionally, a PV system is installed at bus 2.

For comparison purposes, we set the same parameter values as given in ref. [79]
and compare the performance of the proposed model in terms of operating cost and
carbon emissions. By conducting this simulation, we can demonstrate the effectiveness
of the proposed model and provide insight into the potential benefits of using the
model in a practical application.

5.9.4.1 Simulator

The proposed energy hub scheduling model is implemented in real-time using the
Real-Time Digital Simulator as shown in Figure 5.15. The advantages of the Real-
Time Digital Simulator are summarised as follows:

• Real-time simulation: Real-Time Digital Simulator operates continuously and in
real-time, providing a real-time environment for energy hub components. This
enables the components to be connected through medium voltage interfaces
and interact with the real power system components.

• Accurate modelling: Real-Time Digital Simulator has the ability to model com-
plex systems accurately, including real-time modelling of smart meters and
controllers using the Data Acquisition and Actuator module.

• Hardware-in-the-loop simulation: Real-Time Digital Simulator allows for
hardware-in-the-loop simulation, which means that real components can be
connected to the simulation. This provides a more accurate representation of
the system than software-only simulations.

• Fast and efficient testing: Real-Time Digital Simulator enables fast and efficient
testing of energy hub scheduling algorithms and strategies, allowing for quick
optimisation of system performance.

• Risk-free testing: Since the simulation is performed in a controlled environment,
testing can be performed without risking damage to real components or power
systems. This makes it a safe and cost-effective way to test new energy hub
scheduling strategies.
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Figure 5.14 Schematic illustration of a four-bus medium voltage distribution system.
This system features a combined heat and power unit and a boiler installed at bus
3, where the electricity and gas networks are coupled. Additionally, a PV system is
installed at bus 2.
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Figure 5.15 Interactions between MATLAB®, Real-Time Digital Simulator, and Data
Acquisition and Actuator module. After performing the conditional random field-
based reinforcement learning using MATLAB, the scheduling results are transmit-
ted back to Real-Time Digital Simulator using the Giga-Transceiver Analogue Input
Card. Meanwhile, real-time operating signals are transmitted from Real-Time Digital
Simulator to MATLAB using the Giga-Transceiver Analogue Output Card.

After performing the conditional random field-based reinforcement learning using
MATLAB, the scheduling results are transmitted back to Real-Time Digital Simula-
tor using the Giga-Transceiver Analogue Input Card. Meanwhile, real-time operating
signals are transmitted from Real-Time Digital Simulator to MATLAB using the
Giga-Transceiver Analogue Output Card. This provides a real-time scheduling and
performance evaluation of the energy hub model. The implementation on Real-Time
Digital Simulator ensures that the scheduling decisions are more accurate and reliable,
as it simulates the real-time operation of the energy hub model. By incorporating the
conditional random field-based reinforcement learning approach, the proposed model
can adapt to changing energy prices and make optimal scheduling decisions, leading
to reduced carbon emissions and operating costs.

5.9.4.2 Evaluation of Model Performance

To evaluate the effectiveness of our proposed reinforcement learning model, we de-
signed a benchmark optimisation problem, as follows, with the same decision variables
and constraints as our proposed model:
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min
T∑

t=1
pe · at

e · t · πe + pg · at
g · t · πg − [(ppcs

e · t+ ppv
e · t

+ achp · pchp
e · t)πe + (at

chp · pchp
h · t+ at

boiler · pboiler
h · t) · πg].

(5.55)

The objective of the benchmark optimisation is to minimise the daily overall costs,
which yields a theoretically optimal scheduling solution with predefined cost coeffi-
cients and carbon intensities. In contrast, the goal of our proposed algorithm is to
obtain a learning policy that approximates the optimal solution.

The simulation was performed using 50 days of historical hourly data. At each
new time step, the weighting factors µt and λt,t−1 were updated recursively using
Equations (5.50) and (5.51), respectively, to describe the strength of state-action and
state-transient dependencies. The probability distribution of the weighting factors for
electricity and gas prices is shown in Figure 5.16, where each column represents the
distribution of the dependency for each control action on various price levels from low
to high, and each row represents the difference of the dependency for various control
actions responding to the same price level.

From Figure 5.16, it can be observed that the probability of µt is higher dur-
ing the peak price period corresponding to peak demand, which indicates that the
action at is more dependent on received price information during this period. In
contrast, the probability of λt,t−1 is relatively independent of the price fluctuation
and thus presents a homogeneous distribution because it is only relevant to the tran-
sient between states. These results demonstrate that the proposed model successfully
captures the dependency features and can adapt to the changing energy prices.

Figure 5.17 illustrates the performance of reinforcement learning over 10, 30, and
50 days with respect to various electricity prices. The selected outputs of the combined
heat and power, power exchange, and corresponding real-time electricity prices are
used as examples to compare the learning results with the benchmark optimisation.
The figure clearly shows that as the learning progresses with the accumulation of
historical data, the learning results gradually approach the optimal solution regardless
of the electricity price.

The results indicate that the proposed reinforcement learning algorithm is effec-
tive in adapting to changing energy prices and learning optimal scheduling decisions in
real time. The algorithm uses the historical data to continuously update the weighting
factors and improve the scheduling performance, leading to reduced carbon emissions
and operating costs. The comparison of the learning results with the benchmark op-
timisation highlights the benefits of using the proposed algorithm, which takes into
account the temporal variations of scheduling behaviours influenced by energy prices.

Overall, our proposed reinforcement learning model offers several advantages,
including the ability to learn from real-time data, adapt to changing operating condi-
tions, and improve the scheduling performance compared to benchmark optimisation.
The use of Real-Time Digital Simulator for real-time simulation further enhances the
accuracy and effectiveness of our proposed model.
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Figure 5.16 Probability distribution of weighting factors of µt and λt,t−1 at each inter-
val for (a) µt with πe, (b) µt with πg, (c) λt,t−1 with πe, and (d) λt,t−1 with πg. The
x axes represent the action type and the y axes represent the price interval.

5.9.4.3 Evaluation of Cost and Carbon Reduction

We compare our proposed algorithm with cost minimisation problem as

min
pe,pg ,qchp

e ,qpv
e

ce(pe) + cg(pg), (5.56)

where pe and pg are electricity and natural gas importing from main energy networks,
respectively, and ce and cg are corresponding costs. The cost minimisation problem
is subject to the same constraints as our model.

Figure 5.18 shows the scheduling outputs and the corresponding average carbon
intensity. The results demonstrate that our proposed model can effectively reduce
daily carbon emissions by 1.388 tons, from 6.956 tons to 5.568 tons, primarily by
reducing the peak-time electricity imported from the main grid and increasing the
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Figure 5.17 Illustration of learning process for electricity generated by combined heat
and power in (a), (b), and (c), power exchange in (d), (e), and (f) with electricity
prices in (g), (h), and (i). The day number is indicated at the top of each column.

proportion of gas. This is due to the fact that the energy hub operator is more
sensitive to the peak-time price with the consideration of price elasticity. Moreover,
the proposed model can also reduce the daily operating costs by 9.76% from £ 3012
to £ 2718, taking into account the revenue from internal energy supply. These results
suggest that our proposed model can achieve significant environmental and economic
benefits, while ensuring the energy hub operates efficiently and reliably. Furthermore,
the simulation results demonstrate that the reinforcement learning approach can
learn from historical data and adapt to changing energy prices, and thus obtain near-
optimal scheduling solutions without the need for extensive mathematical modelling
and predefined assumptions.
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Figure 5.18 Comparison of energy scheduling and carbon intensity for (a) Scheduling
from (22) and (b) proposed algorithm.

5.9.5 Research Summary

In this example research, a novel approach to energy hub scheduling is proposed,
which aims to improve scalability and incorporate intrinsic price elasticity analysis.
Unlike current model-based optimisation approaches that rely on predefined param-
eters and assumptions, the proposed approach is based on a conditional random



172 ■ Blockchain and Artificial Intelligence Technologies for Smart Energy Systems

field-based reinforcement learning model. This model enables the evaluation of state
action feature and action transient feature, which allows for the incorporation of
temporal variations in scheduling behaviours influenced by energy prices.

The proposed scheduling strategy is developed based on real-time digital simu-
lation, which enables the Q-function to dynamically adapt to the system operating
conditions. Simulation results show that the weighting factors successfully describe
the dependency features of scheduling decisions on pricing signals during peak de-
mand periods. The reinforcement learning algorithm can approximate the theoretical
optimal scheduling after only 50 days.

In addition to improving the scalability and incorporating price elasticity anal-
ysis, the proposed algorithm is also effective in reducing both carbon emissions and
operating costs. This demonstrates the practical usefulness of the proposed approach
and its potential for wide application in real-world energy hub systems. Further re-
search can explore the optimisation of the Q-function for more complex energy hub
systems with multiple inputs and outputs.

5.10 EXAMPLE RESEARCH 4: ARTIFICIAL INTELLIGENCE FOR ENERGY
SYSTEMS SCHEDULING UNDER UNCERTAINTIES

Besides supplying increasing energy demands, modern energy systems are playing a
major role in reducing carbon emissions and tackling climate change challenges [93].
One key task for future energy systems is to further improve the energy efficiency
in supplying diverse energy demand forms, e.g., electricity loads, heating loads, and
cooling loads. However, some load forms, such as heating loads, are still relying on a
single energy source, which could be carbon-intensive. For example, in the UK 80%
homes are relying on natural gas for heating, which accounts for 30% of the overall
natural gas consumption in the UK market [94].

Among the potential solutions, an integrated multi-vector energy system has
shown its advantage in meeting the various load demands with hybrid energy sources
[95][96]. With versatile energy converters, the multi-vector energy system operator
can meet the load demands in a more efficient and economical manner [79]. For ex-
ample, the heat load can be supplied by natural gas boilers, the recovered heat from
combined heat and power (CHP) system, or their combinations [97][98].

5.10.1 Introduction

The energy markets can offer more options to help drive down the operating cost
of meeting load demands. Since the energy flows between multiple energy inputs
and outputs can be controlled via the energy converters, multi-vector system opera-
tors don’t need to rely on a single energy source. Instead, they can access multiple
wholesale energy markets, according to its own operating situation.

Moreover, renewable energy sources are envisioned to be a significant part of the
total energy capacity, where in the UK it is forecasted to boost from 34% of the
installed capacity to 60% in 2030 [99]. Renewable energy sources not only provide
clean and low-carbon energy, but also have the potentials in reducing the system’s
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operating cost. Meantime, mature data services are widely available for the operators
to make a better energy scheduling. For example, in the UK, the National Grid
provides day-ahead forecast services to the electricity load demand, and wind and
solar energy generations[100].

Making optimal decisions on the day-ahead market is a very challenging task
[101]. This is because when making energy scheduling on the day-ahead market, the
operators should rely on day-ahead forecasts to make a decision, where the actual
demands are not known. The mismatch between forecasts and actual values intro-
duces uncertainties to the system operations, where renewable energy sources and
load demands are all major uncertainty sources leading to significant impacts on the
operating costs.

For a real-world system, the fundamental objective of the multi-vector energy
system is to convert the energy from inputs to meet the load demands. However, the
change of required energy input amount in real-time energy dispatch will also have
impacts on the safety of the whole energy grid operations, which requires services
like balancing services to deal with such short-term energy fluctuation in the grid.
The balancing service will introduce extra costs to the system operation, which is
also depending on the uncertainties of the system. In order to minimize the total
operating costs on both the day-ahead market and the balancing market, the multi-
vector energy system is challenged to make optimal energy schedules on the day-ahead
market.

Moreover, the uncertainties will result in a mismatch between energy schedul-
ing and the actual required dispatching. The change of real-time energy dispatching
will also have impacts on the safety of the whole energy system operations, which
requires services like balancing services to deal with such short-term energy fluctu-
ations. The balancing service will introduce extra costs, which is also depending on
the uncertainties of the system. In order to minimize the total operating costs in a
multi-vector energy system, it is challenging to make an optimal energy scheduling
on the day-ahead market [102].

In the existing literature, the modelled economic reserve scheduling problem was
studied for a multi-vector energy system with both electricity and natural gas in
[103], where renewable energy forecasting errors were accounted by an interval with
fixed proportion. In [104], the day-ahead solar power forecast and load demands
were modelled with a discrete probability distribution, where the two-stage stochas-
tic mixed-integer linear programming method was used to address the day-ahead
energy scheduling problem. A multi-objective optimization-based method was pro-
posed for the day-ahead scheduling of a multi-vector energy system with thermal,
wind and solar energies [105], where renewable energy was described by a determin-
istic probability distribution model.

Addressing the impacts from various uncertainty sources has been a key research
and practical challenge in the modern energy system, where artificial intelligence
(AI) has shown a great advantage over traditional methods. For example, compared
to the traditional deterministic model based load forecasting methods, existing works
have proposed various AI-based methods with better accuracy performance, including
different architectures like artificial neural networks (ANN) [49], recurrent neural
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networks (RNN) [106], and deep neural networks (DNN) [107]. With the development
of renewable energy, the research of more accurate forecasts on renewable energy
productions is also becoming a hot topic.

Methods are already available on common renewable energy forms including so-
lar power [108] and wind power [109]. There have been several successful attempts
in addressing the day-ahead scheduling problem. In ref. [110], an extreme learn-
ing machine was integrated into the day-ahead scheduling and real-time dispatching
schemes, which was trained with a historical data to make accurate forecasts. In [111],
the long short-term memory neural networks were trained to make probabilistic fore-
casts on load demands and wind energy generations, which was integrated into the
look-ahead dispatching schemes.

Note that the accuracy of the forecasts depends on the dataset, the performance
index and the specific scenarios. The local forecasts with only historical dataset might
not benefit the day-ahead scheduling compared to the sophisticated forecasting ser-
vice with more considerations, such as weather forecasts.

The day-ahead scheduling problem for an electricity system with solar energy
as the single uncertainty source was studied in [112], where the kernel method was
used. The training method was later improved using neural networks in [113], which
incorporates linear programming into the training procedure. However, these existing
works didn’t address the problem caused by multiple uncertainty sources, which is
the main focus of this section. In addition, the existing linear programming-based
training procedure is time-consuming and computationally exhaustive. These issues
will be addressed by a two-stage deep learning training method in this section.

Forecasting errors in renewable energy sources and load demands will cause the
system to make a deviated decision on the day-ahead market, which results in the
punishment cost as modelled in (5.62). It is difficult to avoid forecasting errors in a
real-world multi-vector energy system, as real forecasting errors could be very hard
to characterize. As illustrated in Fig. 5.19 and Fig. 5.20 using British electricity load
demands and on-shore wind energy in 2017 [100], it can be seen that the electricity
load demands’ forecasting errors show a different distribution compared with the
wind energy generations’ forecasting errors.

The actual forecasting errors in extreme conditions can even exceed 600% in
the wind energy production, which clearly indicate a different distribution pattern
compared with the electricity load forecasting error. The simultaneous consideration
of multiple uncertainty sources will make things more complicated, which will be
addressed by the proposed deep learning-based methods detailed in the following
section.

It can be seen that the electricity load demands’ forecasting errors show a much
smaller variance range than that of the wind energy generations’ forecasting errors.
The actual forecasting errors in extreme conditions can even exceed 600% in the wind
energy production, which clearly indicates a different distribution pattern compared
with the electricity load forecasting error. Unlike the ideal assumptions in theoretical
research, the actual distribution of forecasting errors is much more complex, which
makes it very challenging to be approximated by a small set of finite discrete prob-
ability distributions. The simultaneous consideration of multiple uncertainty sources
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Figure 5.19 Historical electricity load demand’s day-ahead forecasting errors in the
U.K., an example of 100 days in 2017 [100].

will make things more complicated, which will be addressed by the proposed deep
learning-based methods detailed in the following section.

The state-of-the-art method in dealing with the uncertainties is to use discrete
probability to approximate the distributions of these forecasting errors. However,
these methods are subject to several problems as follows:

• The real distributions of forecasting errors are continuous in nature, where
discrete distributions cannot provide a very accurate approximation and lead
to bad decisions thereafter.

• The discrete probability distribution is manually derived, which is based on
experience and on a case-by-case method, which is very hard to generalize and
the performance is therefore subject to the trial-and-error procedure.

• In the case of several uncertainty components, the joint discrete probability
distribution of all the uncertainty variables needs to be generated based on
the individual discrete probability distribution of a single uncertainty variable.
The inaccuracy from each discrete probability distribution will be mixed with
each other. It may even lead to an inaccurate joint discrete probability distri-
bution, thereupon deteriorate the energy dispatching performance and increase
the total costs.

• During the calculation, the system needs to exhaustively search the solution
space to find the energy dispatch solution, which is very time-consuming. The
computation burden and time consumption will get worse as the uncertainty
components increase, which is due to the fact that the uncertainty variables
have enlarged the solution dimensions.

Remarks: From the view of the energy system, another challenge of the distribu-
tion approximation based methods is that the forecasting errors cannot be directly
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Figure 5.20 Historical wind generation’s day-ahead forecasting errors in the U.K., an
example of 100 days in 2017 [100].

measured. This is because the forecasting errors only describe how accurate the fore-
casting can be, and mostly in a statistically manner (e.g., the average error, or the
variance of the error). However, is the better forecasting accuracy definitely means
an increase of the energy system performance that relying on it? And also its reverse
question, is the worse forecasting accuracy definitely means a decrease? This is actu-
ally a very practical problem, for example if the energy system operator is considering
two bids on the forecasting service provider, should it choose the one with average
error of 4.5% or the other one with average error of 5.5%? With the unknown relation
between the forecasting errors and the end performance in the energy system, it is
impossible to determine which service is better.

To overcome this challenge, it requires a reconsideration on the forecasting ac-
curacy in the energy system. In ideal cases, the accuracy should be defined based
on its impacts on the end performances in the energy system, i.e., the accuracy is
measured by means of its end usage. This is a challenging issue, because it requires
a collaboration from multiple fields instead of the data service for forecasting alone.
In the next section, the energy system impacts due to the forecasting accuracy are
to be addressed via the AI methods, which would shine a light upon this challenging
issue.

5.10.2 Data-Driven Approach in Addressing Uncertainties

A multi-vector energy system could have various energy converters, which can supply
different forms of load demands by controlling conversions between multiple energy
vectors. An example of a multi-vector energy system is illustrated in Fig. 5.21. Let
S = {S1, . . . , SN } denote the energy source vector, whose elements are energy sources,
e.g., wind energy, solar energy, electricity and natural gas. Let L = {L1, . . . , LM }
denote the load demand vector, whose elements are the load demands, e.g., electricity,
hot water and heat.
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Figure 5.21 A multi-vector energy system consists of a Transformer (TF), a Wind
Turbine (WT), a Combined Heat & Power (CHP) system and a Boiler (B).

Suppose there are K energy converter components in the multi-vector energy sys-
tem, e.g., transformers (high voltage electricity to medium or low voltage electricity),
natural gas boilers (natural gas to heat) and CHP systems (natural gas to electricity
and heat). Correspondingly, their energy conversion efficiency can be represented by
η = {η1, . . . , ηK}. During the operations, the multi-vector energy system needs to
make dispatching decisions on the energy sources to different energy converter com-
ponents, which can be represented by the non-negative dispatching matrix v with
the dimension of N ×K.

For the energy converter component k, its corresponding dispatched energy input
is vknSn. The objective is to make decisions on the energy sources amount S and the
dispatching matrix v to meet with the load demands L as follows:

L = Hη(S,v), (5.57)

where Hη(·) denotes the energy dispatching operation via the converters.

5.10.2.1 Ideal Energy Dispatching

Here we consider a system with energy sources in the form of electricity Se, renewable
energy Sr and natural gas Sg. Meantime, the load demands are in the forms of
electricity and heat, denoted by L = {Le, Lh}, respectively. The modelling method
studied in this section can be directly extended to the more complex scenarios, e.g.,
more energy sources and load demands forms.

During normal operations, the multi-vector energy system inputs are the fore-
casted load demands Lf = {Lf

e, L
f
h} and the forecasted renewable energy generation

Sf
r. The system has to decide the amount of electricity and gas Sf = {Sf

e, S
f
g} to be

purchased from the day-ahead market, as well as the energy dispatching matrix vf.
This decision is usually made based on the day-ahead market price for each energy
carrier, i.e., C0

e for electricity price and C0
g for gas price in this case.

Suppose renewable energy is free to the multi-vector energy system, the total cost
on the day-ahead market is then the sum of the cost for purchasing electricity and
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natural gas. The objective of making energy dispatching decision is to minimize the
total cost given as follows,

min
Sf

e,Sf
g ,vf

C0
eS

f
e + C0

gS
f
g (5.58a)

s.t.: Lf −Hη(Sf,vf) = 0, (5.58b)∑
Sf

n∈Sf

vf
knS

f
n ≤ Pmax

k ,∀k, (5.58c)

where dispatched energy for meeting the load demands is characterized by (5.58b). For
each energy converter, it has to be operated within its rated power as characterized
in (5.58c).

By solving (5.58a)–(5.58c), the multi-vector energy system makes energy dis-
patching decisions {Sf

e, S
f
g,vf} to achieve the least operating cost. Therefore (5.58a)

– (5.58c) can be equivalently written as an energy dispatching function fη(·) as fol-
lows,

{Sf
e , S

f
g ,vf } = fη(Lf

e , L
f
h, S

f
r ). (5.59)

However, the real-world load demands and renewable energy are very complex
and subject to many physical and uncertain factors. For example, the electricity load
varies with the day of the week, time of the day and individual consumers’ behaviours.
Meanwhile, the renewable energy such as wind energy is subject to many physical
factors including weather and temperature.

5.10.2.2 Practical Energy Dispatching

The real-world forecasts are with uncertainties, which are usually different from their
corresponding actual values. In this section, the uncertainties are characterized by
forecasting errors including electricity load demands δe, heat load demands δh and
renewable energy productions δr defined as follows,

δe = La
e − Lf

e

Lf
e

, δh = La
h − Lf

h

Lf
h

, δr = Sa
r − Sf

r

Sf
r

. (5.60)

If these forecasting errors are known in advance, then the optimal energy dispatching
should be given as follows,

{Sa
e , S

a
g ,va} = fη((1 + δe)Lf

e , (1 + δh)Lf
h, (1 + δr)Sf

r ). (5.61)

Due to the uncertainties in load demands and renewable energy generations, the day-
ahead energy scheduling cannot always meet the actual optimal system load demands
in real time.

This will have an impact on the safety and stability of the energy network [100].
For instance, the electricity system operators (ESO) need to rely on balancing services
to balance the electricity supply and demand in real-time with certain costs, which
are denoted as C+

e and C−
e , respectively.

Similarly, the transmission system operators (TSO) [114] provide such balancing
services to meet the short-term fluctuations in natural gas demand or supply, whose
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Figure 5.22 The proposed deep learning embedded multi-vector energy system schedul-
ing and dispatching scheme.

costs are denoted as C+
g and C−

g , respectively. The punishment cost of the imbalance
in electricity Cp

e and natural gas Cp
g can be written by,

Cp
e (Sa

e , S
f
e) =

{
C+

e (Sa
e − Sf

e), Sa
e ≥ Sf

e,
(C−

e − C0
e )(Sf

e − Sa
e ), Sa

e < Sf
e.

Cp
g (Sa

g , S
f
g) =

{
C+

g (Sa
g − Sf

g), Sa
g ≥ Sf

g,
(C−

g − C0
g )(Sf

g − Sa
g ), Sa

g < Sf
g.

(5.62)

Therefore, the total operating cost for the multi-vector energy system is given by
considering both (5.58a) and (5.62) as follows,

Call(Sa
e , S

a
g , S

f
e, S

f
g) = C0

eS
f
e + C0

gS
f
g + Cp

e (Sa
e , S

f
e) + Cp

g (Sa
g , S

f
g). (5.63)

It can be seen from (5.63), the total cost is depending on both the day-ahead
market and the balancing service market. Forecasting errors in renewable energy and
load demands will cause the system to make a deviated decision on the day-ahead
market and result in the punishment cost in electricity and natural gas (5.62).

However, in real-world energy systems, it is not possible to know forecasting errors
when making the day-ahead forecasts. As illustrated in Figures 5.19 and 5.20 with
British electricity load demands and on-shore wind energy generation in 2017 [100], it
can be seen that the electricity load demands’ forecasting errors show a much smaller
variance range than that of the wind energy generations’ forecasting errors.

In this section, we present a deep learning embedded multi-vector energy schedul-
ing scheme consisting of two stages: day-ahead scheduling stage and real-time dis-
patching stage as shown in Fig 5.22.

At the day-ahead scheduling stage, the day-ahead scheduling model makes the
day-ahead scheduling based on forecasts via DNN, and then commits purchases with
the day-ahead market. At the real-time dispatching stage, the multi-vector energy sys-
tem loads the DNN for the optimal dispatching model, then makes an optimal energy
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dispatching according to the actual load demands and renewable energy consump-
tion. The energy adjustment is achieved via the balancing service on the balancing
market.

5.10.2.3 A Brief Revisit on DNN

A typical feedforward DNN can be defined as xR+1 = Θ(x0; θ), where inputs and
outputs are x0 and xR+1, respectively [115]. The parameter set of the R hidden layers
is θ = {Wr,br, r = 1, . . . , R}, where the computation process at each layer r is given
by xr=ψr(Wrxr−1+br). Here ψr(·) denotes the activation function at layer r, e.g.,
ReLU activation function ψReLU(x) = max{x, 0} [116]. It has been proved that a
DNN can be used to approximate a wide range of functions with a proper design of
the DNN structure with hidden layer number R and dimensions of the parameters
Wr and br [117].

5.10.2.4 Optimal Dispatching Model via DNN

The optimal dispatching model is responsible to make energy dispatching decisions
on the balancing market, which is based on actual load demands, renewable energy
generations and economic considerations. In this part, we will present how to train a
DNN as the optimal dispatching model. Here we define an optimal energy dispatching
DNN model with inputs {Le, Lh, Sr} and outputs {Se, Sg,v} as follows:

{Se, Sg,v} = Θf (Le, Lh, Sr; θf ), (5.64)
where θf denotes the parameter set of Θf (·).

Without uncertain energy sources, the optimal outputs can be known for arbi-
trarily given inputs via exhaustive search. Hence we can generate an arbitrary large
training set Tf with known forecasts and corresponding optimal energy dispatch-
ing decisions. This feature is exploited to provide supervised training for the DNN,
where the optimal energy dispatching is used to supervise the training procedure and
optimize the network parameter set θf .

If define the loss function Lf (θf ) as follows:

Lf (θf ) = fη(Le, Lh, Sr) − Θf (Le, Lh, Sr; θf ), (5.65)

Then the supervised training procedure can be formulated as finding the DNN
parameter set θf as follows:

max
{Le,Lh,Sr}∈Tf

|Lf (θf )| ≤ ϵf , (5.66)

where ϵf is a sufficiently small approximation error.
Gradient descent (GD) method is used to update θf as follows [118]:

θ
(t)
f = θ

(t−1)
f − βf ∇θf

{Lf (θ(t−1)
f )}, (5.67)

where the positive value βf is the learning rate and the gradient operator is defined
by ∇θf

=
(

∂
∂θ1
, . . . , ∂

∂θn

)
and θf = {θ1, . . . , θn} [119, eq.1.6.20].
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With the trained DNN for the optimal dispatching model (5.64), the optimal
dispatching can be obtained directly as the DNN output. As the inference of a DNN
is with deterministic computational complexity, it has an advantage over the extensive
searching-based solution.

5.10.2.5 Day-Ahead Scheduling Model via DNN

The day-ahead scheduling model is to make day-ahead energy scheduling decisions on
the day-ahead market, which is based on day-ahead forecasts containing forecasting
errors.

Due to the underlying nonlinear relations between the cost and forecasting errors,
the decisions of optimal dispatching model using forecasts are usually not optimal in
the day-ahead market. The operating cost can be further reduced by the decisions
considering the statistical characteristics of forecasting errors, which is referred to
as the day-ahead scheduling model. In this section, a DNN will be trained for the
energy scheduling under the uncertainties. This day-ahead scheduling model’s inputs
are forecasts {Lf

e , L
f
h, S

f
r }, while its outputs are the day-ahead scheduling decisions

{S0
e , S

0
g ,v0}.

Suppose this day-ahead scheduling function is defined as follows:

{S0
e , S

0
g ,v0} = gη(Lf

e , L
f
h, S

f
r ). (5.68)

By using (5.68), the total multi-vector energy system operating cost can be rewrit-
ten as follows:

Call(Sa
e , S

a
g , S

0
e , S

0
g )=C0

eS
f
e+C0

gS
f
g+Cp

e (Sa
e , S

0
e )+Cp

g (Sa
g , S

0
g )

=Call(fη((1+δe)Lf
e, (1+δh)Lf

h, (1+δr)Sf
r), gη(Lf

e , L
f
h, S

f
r )).

(5.69)

For given forecasts, the total cost depends on the day-ahead scheduling described
by gη(Lf

e , L
f
h, S

f
r ) and the corresponding forecasting errors {δe, δr, δh}. Note that the

forecasts {Lf
e , L

f
h, S

f
r } are made by the forecasting services, whose values are unknown

in advance and could be different between settlements. Here one settlement means a
period of 30 minutes ending on the hour or half hour in each hour during a day.

In this way, the optimal day-ahead scheduling decision problem for given forecasts
{Lf

e , L
f
h, S

f
r } with the least total cost Call can be defined as follows:

min
S0

e ,S0
g ,v0

Eδe,δh,δr

{
Call(fη((1+δe)Lf

e, (1+δh)Lf
h, (1+δr)Sf

r), gη({Lf
e , L

f
h, S

f
r ))
}

s.t.: Lf −Hη(S0
e , S

0
g , S

f
r ,v0) = 0,∑

Sf
n∈Sf

v0
knS

f
n ≤ Pmax

k ,∀k,

(5.70)
where Ex{z(x)}=

∫∞
−∞ z(x)p(x)dx is the expectation operation and p(x) is the prob-

ability distribution function (PDF) of x.
Traditionally, the problem (5.70) is solved by exhaustive search methods, which

should give the optimal energy dispatching corresponding to a specific set of forecasts
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{Lf
e , L

f
h, S

f
r }. However, exhaustive search methods are not applicable in this case

because:
• the exact distribution of forecasting errors δe, δh and δr are unknown, where

(5.70) cannot be computed directly.

• even with accurate approximations of the objective function, solving (5.70) gives
only one day-ahead scheduling result, which is only valid to a specific forecast.
For a different forecast, it needs to repeat the searching from the beginning.

In this section, we present a deep learning-based method to address these two
challenges. Define a DNN Θg(·) that can achieve the same day-ahead scheduling
(5.68) as follows,

{S0
e , S

0
g ,v0} = Θg(Lf

e , L
f
h, S

f
r ; θg), (5.71)

where θg is the parameter set of the DNN for the day-ahead scheduling model. If we
can train an optimal DNN parameter set θg, then the day-ahead scheduling can be
directly obtained as the DNN outputs in (5.71).

Note that the supervised training method of the DNN for the optimal dispatching
model in Section 5.10.2.4 cannot be used here. This is because the real distribution
of the uncertainty sources is unknown for generating a supervised training set.

In the following, we propose a new unsupervised method to train the DNN for
the day-ahead scheduling model θg. By substituting day-ahead scheduling function
(5.68) with the DNN in (5.71), (5.70) can be rewritten as follows:

min
θg

ELf
e ,Lf

h
,Sf

r ,δe,δh,δr

{
Call

(
Θf ((1 + δe)Lf

e, (1 + δh)Lf
h,

(1 + δr)Sf
r; θf ),Θg(Lf

e , L
f
h, S

f
r ; θg)

)}
s.t.: ELf

e ,Lf
h

,Sf
r
{Lf−Hη(Θg(Lf

e , L
f
h, S

f
r ; θg), Sf

r v0)}=0,∑
Sf

n∈Sf

v0
knS

f
n ≤ Pmax

k , ∀k.

(5.72)

Remarks: It should be noted that in (5.72), the objective function and optimiza-
tion values are different from those of (5.70), with the following reasons.

• After training, the DNN for the day-ahead scheduling model should take all
potential forecasts as inputs. Therefore the expectation in (5.70) also considers
all potential forecasts Lf

e , L
f
h, S

f
r together with forecasting errors δe, δh, δr.

• The optimization goals are changed from finding optimal day-ahead scheduling
decision S0

e , S
0
g ,v0 in (5.70), to the search of optimal DNN for the day-ahead

scheduling model parameters θg in (5.72). This transforms the problem of solv-
ing an optimization problem to the problem of training a DNN network to min-
imize the loss function (i.e., the objective function in the optimization problem)
in an unsupervised method.

• The training procedure involves frequent evaluation of optimal energy dispatch
under different forecasting values, which has now been fulfilled by the trained
DNN for the optimal dispatching model in the first training stage instead of
exhaustive search based solving method.
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As constraints are not supported during unsupervised training, we further trans-
form the original constrained problem (5.72) to an unconstrained problem. This is
achieved by formulating a loss function Lg(θg) as follows:

Lg(θg) =

ELf
e ,Lf

h
,Sf

r ,δe,δh,δr

{
Call

(
Θf ((1 + δe)Lf

e, (1 + δh)Lf
h, (1 + δr)Sf

r; θf ), Θg(Lf
e , Lf

h, Sf
r ; θg)

)}
+ λ
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e ,Lf

h
,Sf

r
{Lf − Hη(Θg(Lf
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h, Sf

r ; θg), Sf
r , v0)}

∣∣∣∣
+ max{

∑
∀k,SN ∈Sf

v0
knSf

N − P max
k , 0}


(5.73)

where constraints are multiplied with a penalty factor λ and appended to the objective
given in (5.73).

Then the training procedure of the DNN for the day-ahead scheduling model is
given by the following unconstraint optimization problem,

min
θg

Lg(θg). (5.74)

To obtain the optimal DNN parameter set θg, the training procedure will aim to
reduce the value of Lg(θg). Specifically, the update of θg at training step t based on
the step t− 1 can be calculated by the GD method [118] as follows:

θ(t)
g = θ(t−1)

g − βg∇θg Lg(θ(t−1)
g ), (5.75)

where βg is the learning rate of the training procedure.

5.10.2.6 Addressing Multiple Uncertainties via Deep Learning

In (5.73), the expectation should consider not only the uncertainties {δe, δh, δr}, but
also the potential forecasts {Lf

e , L
f
h, S

f
r }. However, the PDFs of these random vari-

ables are unknown in real-world systems.
Traditional solutions are to first approximate the PDF of each random variable

(RV) and then substitute to (5.73) [104]. But approximations are prone to errors and
the errors can accumulate if there are multiple RVs. In this section, we take advantage
of the deep learning training features to address the uncertainties, which are based
on historical data and detailed as follows.

Forecasting errors {δe, δh, δr} are the uncertainty sources of the multi-vector en-
ergy system, which should cover all potential uncertainty situations. In fact, the his-
torical data for each forecast error are samples from their real distributions, while the
forecast errors can be regarded as mutually independent. Therefore given historical
datasets ∆e, ∆h and ∆r, the augmented forecasting error training set can be gener-
ated as all possible combinations from each set as {δe, δh, δr|δe ∈ ∆e, δh ∈ ∆h, δr ∈
∆r}. With a large historical dataset from each forecasting error, the augmented fore-
casting error training set can cover all potential forecasting error scenarios that the
DNN for the day-ahead scheduling model can encounter.
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Table 5.4 Parameters in the case studies
Parameter Description Value

ηTF
e Transformer efficiency 0.980

ηCHP
e CHP power generation efficiency 0.404
ηCHP

h CHP thermal generation efficiency 0.566
ηBoiler

h Boiler thermal efficiency 0.900
Pmax

TF Max. transformer power 1000MW
Pmax

WT Max. wind turbine power 200MW
Pmax

CHP Max. combined heat & power system power 300MW
Pmax

B Max. boiler power 800MW

Given the fact that the unsupervised DNN performance is not universal across
all inputs, it is essential that the DNN output is more accurate for the common situ-
ation in practice than in rare cases. Therefore the training datasets for the forecasts
Lf

e , L
f
h, S

f
r also follow the augmented method based on historical data. Given histori-

cal datasets Le, Lh and Sr, the training datasets can be generated as the all possible
combinations from each set as {Lf

e , L
f
h, S

f
r |Lf

e ∈ Le, L
f
h ∈ Lh, S

f
r ∈ Sr}.

In this way, the augmented training set can be generated as the sample set from
all potential combinations of forecasting errors {δe, δh, δr} and forecasts {Lf

e , L
f
h, S

f
r }

regarding their real distributions. By training the DNN with the augmented training
set and taking the average of all outputs, the expectation operation in (5.73) can be
achieved.

In practice, the augmented training set is very large in size, which cannot be
all put into the training procedure at one time. Therefore the mini-batch training
method is used, where a subset of the whole training set is randomly selected as the
input of each training step. Moreover, to prevent overfitting to the training set, parts
of data are reserved for verification. In summary, the two-stage deep learning training
algorithm can be given in Algorithm 3.

Note that instead of manually approximating an error-prone discrete probabil-
ity distribution, the proposed training procedure exploits the deep learning training
procedure to learn the actual distribution from the historical data automatically.

5.10.3 Multi-Vector Energy System Implementations

The multi-vector energy system in Figure 5.21 is used to evaluate the proposed deep
learning scheme, whose parameters are given in Table 5.4.

The electricity load and wind energy are considered as the uncertainty sources,
whose day-ahead forecasts and actual data are scaled from the historical data in
the UK [100]. The average day-ahead prices and balancing prices in the 2018 UK
markets [100][114] are used, where C0

e =£35/MWh, C0
g =£14/MWh, C+

e =£58/MWh,
C−

e =£21/MWh, C+
g =£18/MWh and C−

g =£10/MWh.
The forecasting error of the electricity load shows different performances regarding

the user’s behaviours as illustrated in Figure 5.23, which can be reflected by the day
of a week and the time of a day. With an observation of the electricity load and
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Algorithm 3 Two-Stage Deep Learning Training
Stage 1: DNN Training for the Optimal Dispatching Model
1: Generate the training set T with randomly sampled inputs and their optimal
outputs using (5.58a)– (5.58c).
2: Initialize the optimal dispatching parameters θ

(0)
f and learning rate βf .

while ϵ > ϵf do
1: Calculate the loss function Lf (θ(t)

f ) = fη(Le, Lh, Sr) − Θf (Le, Lh, Sr; θ
(t)
f ).

2: Update the DNN parameter set θ
(t)
f = θ

(t−1)
f − βf ∇θf

Lf (θ(t−1)
f ).

3: Calculate the maximum error ϵ = max{Le,Lh,Sr}∈T |Lf (θ(t)
f )|.

end while
Stage 2: DNN Training for the Day-Ahead Scheduling Model
1: Generate the augmented datasets from historical data {Lf

e , L
f
h, S

f
r , δe, δh, δr|Lf

e ∈
Le, L

f
h ∈ Lh, S

f
r ∈ Sr, δe ∈ ∆e, δh ∈ ∆h, δr ∈ ∆r}.

2: Split the augmented datasets into training set Tg and validation set Vg.
2: Initialize DNN parameter set for the day-ahead scheduling model θ(0)

g and
learning rate βg.
while ϵ > ϵg do

1: Randomly select a subset Tg ∈ Tg as the mini-batch set.
2: Load the trained optimal dispatching parameter Θf (Le, Lh, Sr; θ

(t)
f ).

3: Calculate training loss L(t)
T using (5.73) with mini-batch Tg.

4: Update the DNN parameter set for the day-ahead scheduling model θ(t)
g =

θ(t−1)
g − βg∇θg Lg(θ(t−1)

g )
5: Calculate validation loss L(t)

V using (5.73) with validation set Vg.
6: Calculate the validation loss error ϵ = L

(t)
V − L

(t−1)
V

end while
return DNN parameter set for the optimal dispatching model θf and DNN
parameter set for the day-ahead scheduling model θg

Table 5.5 Scenario list

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Day Monday Tuesday Wednesday,Thursday,Friday Saturday Sunday
Settlement 1–10 15–18 13–14,19–22 11–12,23–32 33–48

wind forecasting in 2017, we found that there are similarities in load profiles between
the day of the week as well as settlements. Therefore according to the load profile
similarity, we categorize the day of the week into 5 scenarios and settlements into 5
scenarios respectively as listed in Table 5.5, whose combination makes a total of 25
scenarios.

During the training of the DNN for the optimal dispatching model, the inputs and
outputs are normalized to improve the model accuracy and the approximation error ϵ
is set as 10−3. One DNN for the day-ahead scheduling model is trained for each of the
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Figure 5.23 Electricity load forecasting errors in 2017, Monday Settlement 3, Monday
Settlement 23, Saturday Settlement 23 [100].

25 scenarios, which makes a total of 25 models. During the evaluation, the proposed
scheme in Figure 5.22 is applied, where a specific DNN for the day-ahead scheduling
model is used according to the day-ahead forecasts. The DNNs are configured as 5
fully connected layers, where the width for each hidden layer is set as 30. Moreover,
the ReLU activation is used for all hidden layers. The batch normalisation technique
is used at every layer to speed up the training progress [120]. The models were trained
with PyTorch [74] on GPU GeForce RTX 2080Ti.

For the validation purpose, the proposed deep learning-based method is compared
against two benchmark methods. The first benchmark method is referred to as the
discrete probability method, which exploits small sets of discrete probability distribu-
tion to approximate each forecasting error [104]. For each variable’s forecasting error,
five discrete sets and corresponding probabilities are generated by applying histogram
analysis on the same training data used in the deep learning-based method.

Moreover, the second benchmark method uses forecasts directly for the day-ahead
energy scheduling, namely without considering the uncertainties. The best perfor-
mances are also calculated during the comparisons, which exploit the actual data in-
stead of forecasted data for the day-ahead multi-vector energy scheduling. Although
this best performance can never be achieved in real-world systems, it clearly indicates
the minimum cost that the system can achieve in a given scenario.

5.10.3.1 A Case Study of Settlement Performance

In this case study, the proposed deep learning-based multi-vector scheduling method
is evaluated with the data of Settlement 17 on 30 Wednesdays across 2017, whose
results are shown in Figure 5.24. The extra cost is depicted for the proposed deep
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Figure 5.24 The evaluation of the proposed deep learning-based multi-vector schedul-
ing method with the data of Settlement 17 on 30 Wednesdays across 2017. The dif-
ferences between forecasts and corresponding actual values are also illustrated with
colors, where red represents forecasts larger than actual values and blue represents
the reverse relation.

learning method and that of using forecast directly method, which is defined by the
difference from the best performance cost. Along with the cost performance, the
uncertainty sources including electricity load demand and wind energy generation
are also illustrated.

It can be seen that the extra cost spikes when a large mismatch between forecasts
and actual value appears, which corresponds to large forecasting errors. Typical ex-
amples are the days 7, 8, 13 and 26. Under such conditions, using forecasts directly
for the day-ahead scheduling results in very large extra costs. Although on these days
the extra costs are also very high with the proposed deep learning-based method, it
can be seen that the costs have been considerably reduced compared to the method
using forecast directly. This is because during the training procedure, the day-ahead
scheduling model has learned from the historical uncertainties and made the schedul-
ing decision based on that.

Meanwhile, for the days with very small forecasting errors, e.g., the days 3, 22 and
29, the method of using the forecast directly shows an advantage over the proposed
deep learning method. This is expected because the proposed deep learning-based
method is to optimize the long-term performance of the multi-vector energy sys-
tem, where the reduction in the long-run cost is at the expense of some short-term
disadvantages.
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Figure 5.25 A comparison between the proposed Deep Learning based method against
best performance, discrete probability method and using forecasts directly method,
an example of the results for the full April month (30 days) in 2017.

5.10.3.2 A Case Study of 2017 UK Dataset

A case study is made using the 2017 dataset, whose data are used for the unsupervised
training procedure of the multi-vector energy scheduling model. In Fig. 5.25, 30 days
in April 2017 are used to evaluate the performances of each method, where the day
costs are the summation of each settlement cost on that day. Due to the uncertainties
caused by load forecasting errors and wind generation forecasting errors, it is seen
from Figure 5.25 that both the proposed deep learning-based method and these two
benchmark methods are fluctuating from day to day.

No single method can outperform every other method every day. This is because
although the multiple uncertainty sources are simultaneously considered in the train-
ing procedure, the deep learning-based model is trained using (5.73), where the energy
scheduling decisions are supposed to show good performances in a mathematical ex-
pectation manner. In other words, the performance is expected to be good for most
cases, but it is normal to be sub-optimal for the rare but extreme events as illustrated
in Figures 5.19 and 5.20. Therefore correspondingly, an observation from Figure 5.25
shows that the proposed deep learning-based method does make the most frequent
least cost energy scheduling on a day-to-day basis (27 days out of 30 days in this
studied case).

Since the performance of the methods is fluctuating according to the specific
samples, the statistical analysis will provide more perceptions. Therefore the data of
the whole calendar year 2017 is applied, whose costs are averaged according to the
settlement periods as presented in Figure 5.26. It can be seen that the proposed deep
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Figure 5.26 A comparison between the proposed Deep Learning based method against
best performance, discrete probability method and using forecasts directly method,
the averaged results in whole year 2017 are presented according to the full 48 settle-
ments.

learning-based method outperforms all benchmark methods, from the view of yearly
statistical average and in every settlement.

5.10.3.3 A Case Study of 2018 UK Dataset

As a part of the 2017 data is used for the training procedure, a further validation
against the data in 2018, which are totally blind to the DNN training, will give a
better evaluation of the proposed deep learning-based method. To this end, the data
for the whole calendar year 2018 are used. The day-to-day performance in the 30 days
in April 2018 and average settlement cost performance in whole 2018 is presented in
Figures 5.27 and 5.28, respectively.

Similar to the case in 2017, the averaged daily costs in 2018 are varying with days
in Figure 5.27, where no single method outperforms every other method as expected.
Meanwhile, the average settlement costs across the whole calendar year 2018 in Figure
5.28 agree with that of Fig. 5.26. This verifies that the trained model has learned the
distribution of forecasting errors of each uncertainty variable, and is able to make the
expected optimal decision based on the forecasts.

For a better quantified comparison, here we define the improvement metric as
follows. If one method with extra cost A and the other method with extra cost B,
then the improvement metric is defined as (A − B)/B. A study on the settlements
in 2017 reveals that the proposed deep learning-based method shows a maximum
improvement of 76.68% against the discrete method and a 28.78% against the method
of using forecasts directly.
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Figure 5.27 A comparison between the proposed Deep Learning based method against
best performance, discrete probability method and using forecasts directly method,
an example of the results for the full April month (30 days) in 2018.

Figure 5.28 A comparison between the proposed Deep Learning based method against
best performance, discrete probability method and using forecasts directly method,
the averaged results in whole year 2018 are presented according to the full 48 settle-
ments.
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A further observation from Figures 5.25 – 5.28 is that, the proposed deep learning
algorithm outperforms the discrete probability method for every scenario, in both
day-to-day views and the average settlement views. This can be explained as follows.
At the training stage, forecasting errors are input to the model, which minimizes
the loss of the probability distribution information. The proposed method exploits
the ability of the deep learning method to learn the distributions and their impacts
on energy scheduling. On the contrary, the discrete sets based methods not only
lose information about the true distributions, but also are prone to the accumulated
inaccuracy due to multiple uncertainty scenarios.
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C H A P T E R 6

Implementation of
Blockchain in Local Energy
Markets

I n this chapter, the research and practices for implementing the blockchain tech-
nology in energy systems are introduced. Section 6.1 provides an introduction

of the categories of potential applications of blockchain and smart contracts in en-
ergy systems. Section 6.2 reviews the research and innovations on the application
of blockchain and smart contracts in energy systems and energy markets. Section
6.3 provides an example research of blockchain based peer-to-peer trading coupling
energy and carbon markets while Section 6.4 extends this example research from the
perspective of fundamental mechanism of blockchain technologies.

6.1 INTRODUCTION

Blockchain and smart contract technologies have a range of potential applications in
energy systems. The key applications are summarised as follows:

• Peer-to-peer energy trading: With blockchain and smart contracts, consumers
can sell the excess renewable energy they generate to other consumers in the
same local grid, without relying on a utility grid as a middleman. By using a
distributed ledger to record transactions and smart contracts to automate the
settlement process, peer-to-peer energy trading can be made more secure and
efficient. This can also enable the creation of local energy communities that
share and trade energy among themselves.

• Decentralised grid management: Microgrids are decentralized energy systems
that can operate independently or in parallel with the larger grid. Blockchain
technology can be used to manage these microgrids by enabling the peer-to-peer
energy trading, ensuring the energy supply and demand balance, and facilitat-
ing the exchange of information between different microgrids. Smart contracts
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can be used to automate the process of energy trading, enabling seamless trans-
actions without the need for intermediaries.

• Carbon credit trading: Carbon credits are certificates that represent the right to
emit a certain amount of carbon dioxide or other greenhouse gases. Blockchain
technology can be used to create a transparent and auditable carbon credit
trading system. By using a distributed ledger to record transactions and smart
contracts to automate the issuance, tracking, and trading of carbon credits,
this system can help to reduce emissions and incentivise the adoption of clean
energy technologies.

• Electric vehicle charging: Blockchain and smart contracts can be used to facili-
tate secure and transparent payments for electric vehicle charging stations. By
using a distributed ledger to record transactions and smart contracts to auto-
mate the payment process, electric vehicle charging can be made more efficient
and cost-effective. This can also enable the creation of charging networks that
span multiple locations and providers, reducing the need for consumers to sign
up for multiple accounts and payment systems.

• Renewable energy certificates: Renewable energy certificates are credits that
represent the environmental attributes of renewable energy generation.
Blockchain can be used to create a transparent and tamper-proof renewable
energy certificates trading system. Smart contracts can automate the verifica-
tion and tracking of these certificates, making the process more efficient and
cost-effective. This can help to incentivise the adoption of renewable energy
technologies and enable more transparent and traceable reporting of renewable
energy generation.

• Energy supply chain management: The energy supply chain involves the pro-
duction, distribution, and consumption of energy. Blockchain technology can
be used to track the flow of energy throughout the supply chain, enabling more
efficient and transparent management. By using a distributed ledger to record
information and smart contracts to automate the exchange of information and
settlement of transactions, the energy supply chain can be made more secure
and efficient, reducing waste and increasing efficiency. This can help to reduce
the environmental impact of energy production and consumption, while also
reducing costs and increasing reliability.

Overall, the use of blockchain and smart contract technologies in energy systems has
the potential to increase efficiency, reduce costs, and promote the transition to a more
sustainable energy future.

6.2 BLOCKCHAIN ENABLING DECENTRALISED ENERGY MARKETS

In this section, research and innovations on the blockchain technologies including
smart contracts, as enabling technologies of decentralised energy systems and local
energy markets, are reviewed. Subsection 6.2.1 provides the concept and benefits
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of the peer-to-peer energy trading. Subsection 6.2.2 reviews the work on applying
blockchain and smart contracts in energy systems. Subsection 6.2.3 compares the
difference between the conventional centralised energy trading and blockchain based
peer-to-peer energy trading.

6.2.1 Peer-to-Peer Energy Trading

The term ‘peer-to-peer energy trading [1]’ (similar to the terms of ‘transactive en-
ergy [2]’ and ‘community self-consumption [3]’) refers to a novel approach in which
individual consumers who also generate their own electricity can trade excess energy
with each other, without the need for a centralised agent. This concept has been
gaining attention in recent years, and researchers have explored its potential benefits
and challenges.

The goal of peer-to-peer energy trading is to create a more efficient and sustainable
energy system, in which energy is generated, consumed and shared locally. This has
several benefits, including the reduction of transmission losses and carbon emissions,
increased energy resilience and supply–demand balance, and cost savings for both
the community and individual prosumers.

• Promoting local economy: Peer-to-peer energy trading can lead to the develop-
ment of an economically stronger community by utilising the sharing economy
model. When profits from supplying energy are maintained locally, the com-
munity becomes as a whole benefits. This approach creates opportunities for
training, education, and work, which can further strengthen the local economy.
By encouraging community members to participate in the energy system, there
is a greater sense of ownership and responsibility towards its success, leading
to a more collaborative and supportive community.

• Local energy resilience: Peer-to-peer energy trading can enhance local energy
resilience and supply–demand balance by facilitating the integration of small
and independent prosumers with their distributed energy sources into power
grids. This approach allows for a more diverse and distributed energy system
that is less reliant on centralised power plants. By integrating small-scale en-
ergy sources into the grid, the system becomes more flexible and responsive
to changes in energy demand. This can help avoid power outages during peak
demand periods and ensure a reliable supply of electricity for the community.

• Net zero energy transitions: The increasing penetration of distributed renew-
able energy sources, facilitated by peer-to-peer energy trading, can reduce car-
bon emissions caused by long-distance power transmission and fossil fuel-based
power generation. By generating and consuming energy locally, the need for
long-distance transmission of electricity is reduced. In addition, distributed re-
newable energy sources such as solar panels and wind turbines produce clean
energy that does not contribute to greenhouse gas emissions. This approach
can help communities reduce their carbon footprint and contribute to global
efforts to combat climate change.
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• Increasing prosumers’ interests: Peer-to-peer energy trading can also lead to bill
savings, profit improvements, and cost savings for prosumers. By strategically
deciding on their bidding or selling prices, local generation, and consumption
behaviours, prosumers can increase their profits while reducing their energy
costs. This approach allows for more control over energy bills and can reduce
the reliance on centralised energy providers. By participating in the energy
market, prosumers can benefit financially from their investment in renewable
energy sources, which can lead to a faster return on investment and increased
financial stability.

To achieve these benefits, a decentralised framework and mechanism for peer-to-
peer energy trading must be designed. Several approaches have been proposed in the
literature. For example, a two-stage aggregated control framework was designed in [4]
for the peer-to-peer energy sharing in microgrids. This allowed prosumers to manage
their distributed energy sources through the energy sharing coordinator, resulting in
significant cost savings for the community and bill savings for individual prosumers.

Another approach was proposed by Morstyn et al. [5], who introduced a federated
power plant that combines virtual power plants with the peer-to-peer energy trading.
This incentivises coordination among individual prosumers and addresses the social,
institutional, and economic issues that can arise with top-down strategies of the
conventional trading framework.

In addition, bilateral contracting networks were developed in [6] for the peer-to-
peer energy trading on real-time and forward markets. These networks coordinated
upstream larger-scale power plants with downstream small-scale distributed energy
sources, considering uncertainties in forward markets, to ensure an agreed market
pricing for market participants.

In summary, peer-to-peer energy trading is a promising concept that can revolu-
tionise the energy industry by empowering consumers to take control of their energy
production, consumption and sharing. With the development of decentralised frame-
works and mechanisms, the potential benefits of this approach can be fully realised.

6.2.2 Potential Applications of Blockchain Technologies

Blockchain technologies are emerging as a potential solution for establishing a decen-
tralised trading platform with automated negotiation procedures, reduced transac-
tional costs, secured information infrastructure, and protected residential privacy [7].
In the energy markets, blockchain can support a platform for energy trading, where
residential privacy, such as address, load patterns, and pricing patterns, can be pro-
tected through the hash encryption of blockchain networks [8]. The blockchain also
allows for the collective verification of transactions, which overcomes issues of dou-
ble spending and the same energy being supplied twice. By removing intermediaries,
prosumers can trade with each other, and the role of the market operator becomes
that of a neutral facilitator towards open and accessible local energy markets.

The most promising technology to be explored in the energy market design and
energy trading is smart contracts. These executable programs allow for self-enforcing
settlement and negotiation procedures, thus securely automating trading procedures
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with standardised contracts, and reducing the costs of processing information flows
from transactions of a large number of prosumers [9]. The features of replicability,
security, and verifiability of smart contracts ensure that trading, negotiation, and
agreement become more trustworthy without the interference of centralised authori-
ties.

A fundamental principle of smart contracts is that if an event happens, the smart
contracts transfer payments to the appropriate receivers. In the context of energy
trading, the event could be the supply of energy or ancillary services, which is moni-
tored by smart meters of prosumers. The pay function is executed in a self-enforcing
manner. Therefore, the trustworthiness of energy trading is dependent on the trust-
worthiness of smart meters and programs executed by smart contracts.

Smart contracts have the potential to transform the energy market by making
trading more secure, transparent, and automated. By reducing transactional costs
and allowing for the efficient trading of energy, smart contracts could encourage the
growth of decentralised energy systems and accelerate the transition to renewable
energy. However, challenges remain, such as the need for interoperability and stan-
dardisation of smart contracts across different blockchain platforms. As the technol-
ogy continues to evolve, the full potential of smart contracts in energy trading may
yet to be realised.

Overall, the blockchain technologies including smart contracts provide a trans-
action and control foundation for the prosumers to participate in the peer-to-peer
energy trading, with the following advantages:

• Asset accounting: The blockchain can prevent double spending attacks in energy
trading by accounting for the ownership of digital and physical assets [10].
This ensures that the same energy or digital currency cannot be sold or spent
twice, which increases the security of energy trading. The ownership of assets
is transparently recorded in the blockchain, which makes it easy to trace the
history of transactions and detect any attempt at fraud.

• Collective verification: The distributed feature of blockchain enables all par-
ticipants in the energy market, including generators, consumers, prosumers,
energy retailers, power system operators, and market operators, to hold a copy
of the ledger [11]. Changes to the ledger require the consensus of all partic-
ipants, which makes the blockchain network open and accessible to all. This
ensures that the ledger is tamper-proof, transparent, and trustworthy, as every
participant has a say in the decision-making process.

• Disintermediation: The disintermediating property of blockchain avoids dom-
ination by centralised authorities, such as energy retailers or suppliers [12].
Instead of supplying energy, the role of these intermediaries becomes that of
a neutral facilitator to encourage passive customers to become both producers
and consumers. This ensures that the market is not dominated by one or more
participants and prevents market manipulation.
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• Security and privacy: From a cryptographic perspective, the public/private key
encryption guarantees the privacy and information security of a prosumer [13].
The computational difficulty of block mining and the collective validation of
transactions through reaching a consensus ensure the security of local energy
markets and energy trading [14]. The security of the blockchain is further en-
hanced by the use of hashing algorithms that make it practically impossible to
reverse-engineer the original data.

• Interoperability: The blockchain supports smart control architectures that en-
able the interoperability of the smart grid [15]. Interoperability is defined as
multiple agents collectively performing a function through exchanging informa-
tion [16]. Automatically executed control functions written in smart contracts
interact with smart meters, distributed computing, and fog computing to min-
imise latency and enhance computational efficiency and security.

• Self-enforcement: Smart contracts support a trading platform that minimises
or eliminates the costs of handling information flows from transactions through
automatically self-enforcing settlement and negotiation procedures [17]. This
enables energy trading to be more efficient and cost-effective.

• Standardisation: Smart contracts with standardised auction procedures have
the potential to prevent unforeseen trading behaviours in local energy markets
[18]. This ensures that all participants in the market understand the rules and
procedures for trading, which increases the transparency and fairness of the
market. Standardised auction procedures also reduce transactional costs and
promote efficiency in the market.

While blockchain and smart contracts hold promise for peer-to-peer energy trad-
ing, there are several challenges that need to be addressed to fully realise their po-
tentials. Some of the main challenges include:

• Technical complexity: Blockchain technology and smart contracts are complex
and require specialised knowledge to develop and maintain. Implementation
and integration of these technologies into existing energy systems may require
significant technical expertise.

• Scalability: The current scalability limitations of blockchain technology pose a
significant challenge for large-scale energy systems. As the number of partic-
ipants and transactions increases, the blockchain can become slower and less
efficient, leading to increased transaction times and costs.

• Energy demand and supply uncertainty: The energy market is dynamic, and
demand and supply can be unpredictable. Smart contracts require specific con-
ditions to be met before execution, which can be challenging to implement in
such an uncertain environment.

• Consistency: Different blockchain platforms have different technical specifica-
tions and standards, which can make it difficult to achieve interoperability
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between them. This can limit the ability to integrate with other systems and
technologies, creating challenges for scaling and collaboration.

• Regulatory challenges: The regulatory environment for energy systems is com-
plex, and blockchain and smart contract technologies must comply with regula-
tions. Ensuring compliance while maintaining the decentralised and transparent
nature of blockchain is a significant challenge.
Energy storage and distribution: Peer-to-peer trading of energy requires energy
storage and distribution systems to support the efficient and effective use of the
available energy. The integration of these systems with blockchain technology
and smart contracts is a significant challenge.
Cybersecurity: Blockchain technology and smart contracts are not immune to
cybersecurity threats. With energy systems being a critical infrastructure, the
security and protection of these systems is of paramount importance.

Addressing these challenges will be critical to unlocking the full potential of
blockchain and smart contracts in energy systems. However, continued innovation
and development in the field may overcome these challenges in the future.

The use of blockchain technologies in power systems and energy markets is a
subject of active research and industrial practice. Several studies have explored the
potential benefits of applying blockchain and smart contracts to energy trading and
management, and some of these studies are summarized below.

Thomas et al. [19] proposed a general form of smart contracts for controlling
energy transfer processes between separated distribution networks. The designed ne-
gotiation framework and use case on a DC-link provided the means of applying smart
contracts into power systems.

In another study, real-time power losses caused by transactions in microgrids
were accounted for by the blockchain, and prosumers were considered as negotiators
of energy transactions. Distribution system operators were responsible for computing
losses [20].

Li et al. [21] applied smart contracts to distributed hybrid energy systems to
facilitate energy exchange among end-users. The framework considered demand-side
management and uncertainties caused by renewable generation.

Mihaylov et al. [22] designed a paradigm for energy trading with a virtual currency
generated by the energy supply of prosumers. The designed currency incentivized
prosumers to achieve demand response and supply–demand balance, as demonstrated
by case studies.

Saxena et al. [23] proposed a blockchain-based transactive energy system to ad-
dress the incentivizing, contract auditability, and enforcement of the voltage regu-
lation service. Smart contracts were used to enforce the validity of each transaction
and automate the negotiation and bidding process.

Finally, a transparent and safe power trading algorithm was executed on the
Ethereum blockchain platform for prosumers to trade energy [24]. The platform
leveraged the security and transparency features of blockchain technology to enable
efficient and secure energy trading.
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While these studies have demonstrated the potential of blockchain and smart
contracts in energy trading and management, there are still several challenges that
need to be addressed to achieve widespread adoption of these technologies in the
energy sector. Some of these challenges include scalability, interoperability, regulatory
compliance, and cybersecurity. Overcoming these challenges will require continued
innovation and development in the field.

Furthermore, the blockchain has been developed for various purposes related to
the decarbonisation of the energy sector, including trading carbon allowances and
allocating monetary incentives for emission reduction. Several studies have explored
the potential benefits of applying blockchain and smart contracts to carbon trading
and management, as summarised below.

Khaqqi et al. [25] customized the trading of carbon allowances for industries
using a reputation-based blockchain, in which reputation signified performances and
commitments for carbon reduction from network participants. The reputation system
was maintained by the consensus of blockchain networks to guarantee fairness and
security.

Pan et al. [26] implemented blockchain technology into an emission trading scheme
to reduce the entry threshold for the carbon market and improve the reliability of
information exchange. The blockchain was used to ensure the accuracy and trans-
parency of data, thereby increasing the reliability of the trading system.

Similarly, Richardson and Xu [27] proposed a blockchain-based emission trading
scheme to ensure transparency, tamper-resistance, and high liquidity. The blockchain
technology ensured that the trading process was secure and reliable, thereby promot-
ing the growth of the carbon market.

In terms of the application of smart contracts, a distributed carbon ledger system
was designed in [28] to strengthen the corporate accounting system for carbon asset
management. The ledger system was integrated with existing market-based emission
trading schemes and enabled more efficient and secure trading of carbon assets.

6.2.3 Comparison Remark

The difference between the conventional centralised trading and blockchain based
peer-to-peer trading in the energy sector is summarised in Table 6.1. This table
describes advantages of using the blockchain based the peer-to-peer energy trading,
with details explained as follows.

• Primary energy supplier: In conventional energy markets, the primary energy
supplier is the retailers in retail energy markets. In blockchain-based decen-
tralised energy markets, the primary energy supplier is the prosumers with dis-
tributed energy sources. This shift in the primary supplier reflects the increased
emphasis on decentralisation and the ability of individuals to participate in the
energy market.

• Pricing schemes: In conventional energy markets, the pricing schemes are cen-
tralised, with a centralised wholesale energy price determined by the wholesale



Implementation of Blockchain in Local Energy Markets ■ 209

Table 6.1 Comparison between the conventional centralised energy trading and
blockchain-based peer-to-peer energy trading

Conventional Centralised
Trading

Blockchain Based Peer-to-Peer Trading

Primary Energy
Supplier

Retailers Prosumers with Distributed Energy
Sources

Pricing Scheme Centralised Pricing Bidding/Selling Pricing from Prosumers
Contract Type Idiosyncratic Contract Standardised Smart Contracts
Settlement
Enforcement

Legal Restraint Self-Enforcement

Trustee Third Party Smart Meters and Smart Contracts
Incentive
Supplier

Policy Maker Consensus of Network

market and a retail energy price determined by energy retailers in retail mar-
kets [29]. In contrast, the pricing scheme in decentralised local energy markets
is decentralised, with individual prosumers able to determine their own bid-
ding or selling prices for sharing energy based on their real-time situation of
the supply–demand balance. This pricing flexibility allows for a more tailored
approach to energy pricing.

• Negotiation and contracting: The process of negotiation and contracting in
conventional energy markets is idiosyncratic, with each large-scale generator
signing a contract with the transmission system operator individually, and
the content of each contract varying according to the specific agreement. In
blockchain-based peer-to-peer energy trading, a standardised contract and ne-
gotiation can be formulated using smart contracts, reducing complexity when
large amounts of prosumers formulate their own contracts.

• Settlement: The settlement of conventional centralised energy trading is en-
forced by legal restraints. If energy is not delivered at the agreed time, retailers
will be accused or receive penalties from the power system operator afterwards.
In contrast, in blockchain-based peer-to-peer energy trading, the self-enforcing
nature of smart contracts enables the prevention of contract violations before-
hand by querying smart meters to ensure that prosumers have enough capacity
to supply.

• Third-party reliance: In conventional centralised energy trading, energy trad-
ing relies on a third party, such as an auditing institution or market opera-
tor. In blockchain-based peer-to-peer networks, prosumers’ trust relies on the
automatic interactions between smart contracts and smart meters, under the
consensus of blockchain networks. This reduces the reliance on third parties
and promotes a more open and accessible energy market.

Overall, the use of blockchain and smart contracts in energy trading represents
a shift towards decentralisation, increased flexibility, and reduced reliance on third
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parties. While challenges remain in terms of scalability, interoperability, regulatory
compliance, and cybersecurity, continued innovation and development in the field
may overcome these challenges and unlock the full potential of these technologies in
the energy market.

6.3 EXAMPLE RESEARCH 1: PEER-TO-PEER TRADING INTEGRATING
ENERGY AND CARBON MARKETS

Prosumers, individuals who both produce and consume energy, are poised to play
a crucial role in the future of energy systems. However, the rise of prosumers has
brought about challenges in monitoring carbon emissions and pricing individual en-
ergy behaviours. To address these challenges, this example research proposes a revo-
lutionary blockchain-based peer-to-peer trading framework for the trading of energy
and carbon allowances.

This innovative framework utilises the bidding and selling prices of prosumers to
incentivise the reshaping of energy behaviours, with the ultimate goal of achieving
regional energy balance and carbon emissions reduction. The mechanism is decen-
tralised, creating a low-carbon incentive structure that targets specific energy be-
haviours.

To test the efficacy of this proposed trading framework, the modified IEEE 37-
bus test feeder was utilized in a series of case studies. The results showed that the
new trading framework was capable of exporting 0.99 kWh of daily energy and saving
1465.90 g of daily carbon emissions. These findings indicate that the blockchain-based
peer-to-peer trading framework outperforms existing centralised and aggregator-
based trading systems.

Overall, the proposed trading framework has the potential to revolutionise the
way energy is traded and consumed, creating a more efficient and environmentally
friendly system. By incentivising prosumers to adjust their behaviours and reduce
carbon emissions, this new system offers a promising path toward a sustainable future.

The rest of this example research is organised as follows: Sub-Section 6.3.2 in-
troduces the proposed three-layer trading framework coupling energy and carbon
markets. Corresponding to each layer, the details of problem formulation and the
smart contract based auction mechanism are described in Sub-Section 6.3.3. Section
6.3.4 provides case studies to verify the proposed framework and demonstrate the
trading platform. Section 6.3.5 draws the conclusion of this chapter.

6.3.1 Introduction

In achieving the net zero energy transition, once the peer-to-peer trading decentralises
the local energy markets, what is the next we should decentralise? The answer to
this question is the carbon market. In the carbon markets, the pollutant emitters are
enforced to compensate the environmental damage in a monetary manner. Two classic
mechanisms in conventional carbon markets are emission trading scheme (also called
cap and trade) and carbon tax, which are centralised market-based carbon pricing
schemes [30]. The carbon tax levies fixed price on carbon emissions whereas the
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emissions trading scheme assigns certain amount of carbon emissions. Compared to
the carbon tax which is implemented based on the existing tax systems, the emissions
trading scheme is more flexible and extendable to financial tools, e.g., the peer-to-
peer energy trading. For this reason, our research focuses on the emissions trading
scheme, and this background motivates us to couple both the energy market and
carbon market in a decentralised manner.

The blockchain technology [31], as one of the distributed ledger technologies, has
the potential of establishing a decentralised trading platform with automated trading
procedures and protected residential privacy. The smart contracts [32], as one of the
key blockchain technologies, enable prosumers to proceed the trading in a manner of
self-enforcing settlement and setting out negotiation.

The research questions identified by this example research are summarised as
follows:

• How to trace carbon emissions at the micro scope when prosumers trade energy
and carbon allowance simultaneously?

• How to design the decentralised pricing of energy and carbon allowance target-
ing on the behaviours of individual prosumers?

• How to design a decentralised framework enabling prosumers to trade energy
and carbon simultaneously?

This example research proposes a novel blockchain-based peer-to-peer trading
framework. This framework enables prosumers to jointly exchange the energy and
carbon allowance, since purchasing carbon allowance is a part of generating costs.
The biding/offering prices of individual prosumers in energy and carbon markets are
able to directly incentivise the reshaping of energy behaviours of prosumers for local
energy balance and carbon saving. Additionally, when prosumers exchange energy
as both generators and consumers, they need to know how much carbon allowance
would be required. The carbon emissions tracing approach is developed to identify
the carbon emissions caused by a prosumer’ s generation for self-consumption, con-
sumption from self-generation, and generation (or consumption) for (or from) energy
exchange with other prosumers. A low-carbon incentive mechanism is subsequently
designed for individual prosumers. Case studies based on the modified IEEE 37-bus
distribution network testify the proposed trading framework, in comparison with the
centralised trading scheme and aggregator-based trading scheme. The execution of
smart contracts on the Ethereum blockchain networks, and the interface between
scheduling algorithms and smart contracts are demonstrated.

A conceptual graph of the proposed peer-to-peer trading framework is presented
in Figure 6.1. Overall, this chapter offers the following key contributions:

• A novel trading framework is designed enabling the exchange of energy and car-
bon allowance at both prosumer level and microgrid level, using a blockchain
smart contract based trading platform. The proposed energy scheduling algo-
rithms interact with the self-enforcing nature of smart contract to automate
the standardised auction procedure.
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Figure 6.1 Conceptual graph of peer-to-peer trading framework coupling energy and
carbon markets.

• A carbon emissions tracing approach targeting on individual prosumers’ energy
behaviours is developed to ensure a fair allocation of low carbon incentives.

• Case studies show that the proposed trading framework achieves better en-
ergy balance and carbon saving than those approaches of centralised trading
and aggregator-based trading. The interface between scheduling algorithms and
smart contract, and the execution of smart contract are demonstrated.

6.3.2 Trading Framework

In this subsection, we introduce the trading framework for exchanging both energy
and carbon allowances within distribution networks. This framework is designed
based on the commercial relations between market participants, namely prosumers
and microgrid-traders. The trading procedure is divided into three hierarchical layers:
prosumer-centric trading, microgrid-trader-centric trading, and peer-to-peer trading
platform, as illustrated in Figure 6.2.

The proposed framework is implemented in the day-ahead market, where energy
behaviours are scheduled and trading is performed for the following day. Prosumers,
who are considered masters of energy exchange seeking both personal benefits, such
as bill or cost savings, and environmental goals, such as carbon emissions reduction,
participate in both energy and carbon markets using their distributed renewable
energy sources.

To facilitate this trading framework, the Ethereum blockchain [33] is used, con-
sisting of full nodes and light nodes. The market operator acts as full nodes, providing
and managing the trading platform by offering computing power for block mining,
storing all blocks, and earning rewards for mined blocks. Prosumers and microgrid-
traders act as light nodes, storing header chain and verifying transactions. As light
nodes, they do not require powerful computers, and the trading process can be sup-
ported by smart meters or mobile phones.
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Figure 6.2 Architecture and information flows of the proposed framework for peer-
to-peer trading of energy and carbon allowance. Individual prosumers trade energy
or carbon allowance on the layer of prosumer-centric trading. The residual supply
and demand for an ensemble of prosumers in the same microgrid are aggregated
and traded by microgrid-traders on the layer of microgrid-trader-centric trading. The
trading of energy or carbon allowance is proceeded on the layer of the peer-to-peer
trading platform.

Each layer of the trading framework is designed to address specific challenges in
peer-to-peer energy trading, with the problem formulation discussed in Sub-Section
6.3.2. The prosumer-centric layer is responsible for energy trading between individ-
ual prosumers and the microgrid-traders. The microgrid-trader-centric layer handles
energy trading between microgrid-traders and the market operator. The peer-to-peer
trading platform layer provides a mechanism for direct energy and carbon allowance
trading between prosumers.

6.3.2.1 Prosumer-Centric Trading

The prosumer-centric trading layer is designed to help individual prosumers make
optimal decisions regarding their energy behaviours and trading prices. The collected
metering data is used to solve optimisation problems, with the objective of minimising
electricity bills for buyers or maximising profits for sellers. The optimal decisions are
then implemented by controllers, and the optimal decisions of bidding prices are sent
to smart contracts for auctions. The blockchain automatically updates monetary
incentives for individual prosumers by evaluating their carbon emissions behaviours.

To achieve regional energy balance and reduce transmission losses, prosumer-
centric trading is only applicable to an ensemble of prosumers geographically located
in the same microgrid, with a designated microgrid index. The prosumer-centric trad-
ing layer offers several advantages, including:

• Direct incentivisation of reshaping energy behaviours through prosumers’ bid-
ding or selling prices, rather than relying on central authorities such as aggre-
gators or energy retailers.
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• Direct linking of monetary incentives for carbon reduction with individual pro-
sumers, considering their carbon emissions behaviours.

• Through the prosumer-centric trading layer, prosumers are empowered to take
control of their energy usage and become active participants in the energy mar-
ket. By offering financial incentives and promoting carbon emissions reduction,
this layer can encourage prosumers to make environmentally responsible choices
that benefit both themselves and the broader community.

Overall, the prosumer-centric trading layer provides a novel mechanism for incen-
tivise energy behaviour reshaping and carbon emissions reduction. It achieves this by
empowering individual prosumers to make optimal decisions regarding their bidding
prices and energy behaviours. This layer offers significant advantages over traditional
centralised approaches, such as direct incentivisation and linked monetary incentives.
Ultimately, the prosumer-centric trading layer has the potential to create a more sus-
tainable and efficient energy market by promoting responsible energy behaviours and
reducing carbon emissions.

6.3.2.2 Microgrid-Trader-Centric Trading

The microgrid-trader-centric trading layer manages a group of physically connected
prosumers under the management of a virtual entity, microgrid-trader. Within this
layer, microgrid-trader aggregates the residual supply and demand of energy and
carbon allowance for its ensemble of prosumers to trade with other microgrid-traders.
Similar to the prosumer-centric trading layer, the optimal decisions of bidding prices
are also yielded by solving optimisation problems with the objective of minimising
electricity bills for buyers or maximising profits for sellers.

The primary aim of the microgrid-trader-centric trading layer is to assist an en-
semble of prosumers within the same microgrid in balancing supply and demand by
exchanging energy and carbon allowances with other microgrids. By leveraging the
collective bargaining power of multiple prosumers, microgrid-traders can negotiate
more favourable terms for energy and carbon allowance trading than would be pos-
sible for individual prosumers. This layer also enables microgrid-traders to optimise
their bidding prices, taking into account the energy and carbon allowance trading
activity of their ensemble of prosumers.

The microgrid-trader-centric trading layer provides several advantages, including:

• Efficient balancing of supply and demand within a microgrid, by leveraging the
collective bargaining power of microgrid-traders to negotiate more favourable
terms for energy and carbon allowance trading.

• Optimisation of bidding prices, taking into account the trading activity of an
microgrid-trader’s ensemble of prosumers.

• The ability to trade with other microgrid-traders, enabling the exchange of
energy and carbon allowances between microgrids, promoting efficient and sus-
tainable energy usage across regions.
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Overall, the microgrid-trader-centric trading layer is a critical component of the pro-
posed trading framework, enabling the efficient balancing of energy supply and de-
mand within a microgrid, while promoting sustainable energy usage across regions.
By leveraging the collective bargaining power of microgrid-traders and optimising
bidding prices, this layer can enable the more efficient and cost-effective trading of
energy and carbon allowances, benefiting both prosumers and the broader community.

6.3.2.3 Peer-to-Peer Trading Platform

The peer-to-peer trading platform layer is designed to provide a secure and stan-
dardised way for buyers and sellers to trade energy and carbon allowances. This is
achieved through the use of smart contracts, which allow for the automatic execution
of trades based on predefined conditions.

The smart contracts are based on the ‘if-then’ principle, where a specific event
triggers a specific action. In the case of energy and carbon trading, the event is the
delivery of energy or carbon allowance, which is verified by querying the smart meter.
Once the delivery is confirmed, the smart contract automatically executes the trade
by transferring the agreed amount of currency from the buyer to the seller.

The execution of the smart contract involves several steps, including initialisa-
tion, bid matching, bidding, winner selection, and ownership exchange. The seller
initiates the smart contract by specifying the conditions of the offer. Buyers who
meet these conditions can deposit their bids on the smart contract for auction. The
buyer with the highest bidding price is selected as the winner and their deposited bid
is transferred to the seller. The rest of the buyers can withdraw their deposits from
the smart contract.

All transactions on the peer-to-peer trading platform are stored on a blockchain,
which is a distributed ledger that is shared and audited by all nodes in the network.
The blockchain is a series of blocks, with each block containing a record of all trans-
actions that have taken place since the previous block. Each block is secured through
a proof-of-work consensus mechanism that uses a secure hash algorithm to protect
the integrity of the blockchain.

The use of blockchain technology ensures that all transactions are traceable, ver-
ifiable, and resistant to tampering. This provides greater transparency and security
in the trading process, as all parties can see the history of transactions and trust that
they are valid.

Overall, the peer-to-peer trading platform layer provides a secure and efficient way
for buyers and sellers to trade energy and carbon allowances, with smart contracts
and blockchain technology ensuring the integrity and transparency of the trading
process.

6.3.3 Problem Formulation

This sub-section provides details on the problem formulations corresponding to each
layer of the proposed framework of the peer-to-peer trading of energy and carbon
allowances.
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Figure 6.3 Schematic illustration for the distribution of carbon emissions flow. The
carbon emissions caused by all power outflows from a bus equals to the carbon emis-
sions caused by all power inflows to this bus (indicated by the size of carbon emissions
flow box). The proportion of the carbon emissions from each power inflow keeps un-
changed in each power outflow (indicated by the colour of carbon emissions flow box),
resulting in the same carbon intensity in power outflows.

6.3.3.1 Carbon Emissions Flow

For the conventional power systems, the large scale generators report their annual
fuel usage and electricity supply to evaluate the efficiency of energy supply. With
the information of the efficiency of energy supply by various technologies and carbon
intensities of fuels, the carbon intensities of each generation technology can be traced.

To trace the carbon emissions from the energy behaviours of prosumers or con-
sumers, first, we need to find an approach to evaluate carbon emissions from each
component of power systems. In our research, we implemented an approach called
the carbon emissions flow [34]. The carbon emissions flow is a virtual network flow
concurrent with the power flow. It is ejected from the outflowing buses, including
generators, and delivered to the inflowing buses, including loads. Since it is a concur-
rent flow with the power flow, the proportional sharing principle [35] which applies to
the power flow analysis also works on the carbon emissions flow. As shown in Figure
6.3, we have

• Conservation: The carbon emissions caused by all power outflows from a bus
equals to the carbon emissions caused by all power inflows to this bus.

• Proportional sharing: The proportion of the carbon emissions from each power
inflow keeps unchanged in each power outflow, resulting in the same carbon
intensity in power out flows.

This carbon emissions tracing approach is subsequently implemented to evaluate
the carbon emissions from generation, transmission, transmission loss, and consump-
tion. By contrast, with the integration of distributed energy sources in distribution
networks, prosumers play a role as both generators and consumers. This carbon emis-
sions tracing approach needs to be extended to distinguish the following portions of
carbon emissions:
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• Carbon emissions resulting from a prosumer’s self-consumption of electricity
generated through their own renewable energy sources, such as solar panels
or wind turbines. The use of this on-site generation reduces the prosumer’s
reliance on electricity from the grid and can lead to a decrease in overall carbon
emissions. However, the carbon emissions associated with the manufacturing
and installation of the renewable energy system, as well as the emissions from
any backup generators or grid-supplied electricity used during periods of low
generation, must also be considered.

• Carbon emissions caused by a prosumer’s distribution of excess electricity gen-
erated through their own renewable energy sources to other prosumers, either
through a peer-to-peer energy trading system or by feeding it back into the
grid. This practice can help to reduce overall carbon emissions by decreasing
the need for energy from non-renewable sources. However, there may be car-
bon emissions associated with the transportation of electricity to the other
prosumers, as well as any grid losses or inefficiencies.

• Carbon emissions resulting from a prosumer’s consumption of electricity that
was generated by other prosumers and supplied through a peer-to-peer energy
trading system or through the grid. This approach can be beneficial for re-
ducing carbon emissions by encouraging the use of renewable energy sources
and improving energy efficiency. However, there may still be carbon emissions
associated with the generation of the electricity, which could come from non-
renewable sources if the prosumers supplying the electricity do not have renew-
able energy sources. Additionally, there may be carbon emissions associated
with the transmission and distribution of the electricity, as well as any grid
losses or inefficiencies.

The carbon emissions tracing approach in micro scope has been designed to eval-
uate the carbon emissions in microgrids, taking into account the bidirectional power
flows that arise from energy trading between prosumers. The index sets for the gen-
erators and loads of a prosumer are denoted as I and K, respectively. The carbon
emissions rates caused by the power generation of a generator i ∈ I and the power
consumption of load k ∈ K at scheduling time t are represented by ri,t and rk,t,
respectively.

To illustrate the different portions of carbon emissions, a schematic diagram is
presented in Figure 6.4. Consider the case where prosumer A generates surplus energy
after meeting its own demand and supplies this excess energy to prosumer B, who
is unable to generate enough energy to meet its own demand. In this scenario, the
portion of carbon emissions caused by using prosumer A and prosumer B’ s own gen-
eration for meeting their own demand can be quantified by

∑
k∈K r

A
k,t and

∑
k∈K r

B
k,t,

respectively.
In addition, the portion of carbon emissions caused by using a prosumer’s own

generation for supplying other prosumers’ demand can be expressed as:

rnet,t =
∑
i∈I

ri,t −
∑
k∈K

rk,t, (6.1)
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Figure 6.4 Schematic illustration of carbon emissions tracing for prosumers. Prosumer
A supplies surplus energy to prosumer B. The prosumer A needs to have the carbon
allowance when supplying energy to the prosumer B.

Here, rnet,t represents the carbon emissions rate caused by using a prosumer’s
own generation to meet the demand of other prosumers at scheduling time t.

The above carbon emissions tracing approach can provide valuable insights into
the carbon footprint of microgrids, especially in the context of energy trading. By
quantifying the different portions of carbon emissions, it can help identify oppor-
tunities for reducing carbon emissions and improving the overall sustainability of
microgrids.

As shown in Figure 6.4, the portion of carbon emissions resulting from prosumer
A’ s own generation being used to meet the energy demand of prosumer B can be
evaluated using rA

net,t. It is important to note that the same amount of carbon emis-
sions will also be generated when prosumer B’ s energy demand is met by prosumer
A’ s generation.

By using the carbon emissions tracing approach, it becomes possible to quantify
the carbon emissions associated with energy trading between prosumers. In this con-
text, it is important to consider not only the carbon emissions resulting from the
generation and consumption of energy but also the carbon emissions associated with
the transmission and distribution of the energy. Through the quantification of carbon
emissions, it is possible to identify opportunities to reduce the carbon footprint of
energy trading and improve the sustainability of microgrids.

Once the different portions of carbon emissions have been identified and traced,
it becomes possible to design a decentralised low carbon incentive mechanism for
individual prosumers. This mechanism targets prosumers as individuals rather than
as a group. The principle of carbon accounting is critical in this incentive mechanism.
When a prosumer supplies energy to other prosumers, they need to have a carbon
allowance as a permission to emit pollutants. The carbon allowance for a prosumer
at scheduling time t is denoted as rallow,t. The function γ (·) represents the monetary
compensation for carbon reduction by a prosumer.
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To formulate the prosumer-centric low carbon incentive, several assumptions need
to be considered as follows:

• Assumption 1 : If the prosumer’s net carbon emissions rate rnet,t exceeds their
carbon allowance rallow,t, the prosumer will have to purchase the additional car-
bon allowance from other prosumers. On the other hand, if the prosumer’s net
carbon emissions rate is lower than their carbon allowance, they can sell the
surplus carbon allowance to other prosumers and receive monetary compensa-
tion through the consensus of peer-to-peer trading networks. This assumption
ensures that prosumers are incentivised to reduce their carbon emissions while
also facilitating the exchange of carbon allowances between prosumers in a
transparent and efficient manner.
Assumption 2 : The monetary compensation for carbon reduction should be
non-negative. When the net carbon emissions rate of a prosumer reduces to
zero, the monetary compensation should be maximised, i.e., γ = γmax, where
γmax represents the maximum monetary compensation for carbon reduction
that a prosumer can receive. This assumption incentivises prosumers to reduce
their carbon emissions as much as possible and rewards those who achieve zero
net carbon emissions.
Assumption 3 : When the carbon allowance is assigned to a prosumer, the mone-
tary compensation should decrease monotonically with the net carbon emissions
rate. This can be expressed as:

∂γ (rnet,t, rallow,t)
∂rnet,t

< 0. (6.2)

This assumption ensures that prosumers are incentivised to reduce their net
carbon emissions rate, as a higher net carbon emissions rate will result in a
lower monetary compensation for carbon reduction. In other words, prosumers
who emit more carbon will receive lower monetary compensation than those
who emit less carbon, creating a fair and effective incentive mechanism for
reducing carbon emissions.

• Assumption 4 : Let N be the index set of prosumers in the same microgrid.
The initial carbon allowance for each prosumer is assigned by the blockchain
system based on the carbon emissions intensities of the prosumers and a carbon
reduction target for the entire group of prosumers. This is given by:

rallow,t = ρn∑
n∈N ρn

· ē, (6.3)

where ρn represents the carbon emissions intensity of prosumer n, and ē is the
targeted total carbon emissions for the group of prosumers. This allocation en-
sures that each prosumer is allocated a carbon allowance that is proportional to
their carbon emissions intensity and contributes to the overall carbon reduction
target of the group.
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To further incentivise prosumers to reduce their carbon emissions, the marginal
monetary compensation should be monotonically increasing with the assigned
carbon allowance. This means that prosumers with higher carbon emissions
intensity will receive more monetary compensation than those with lower car-
bon emissions intensity, as they require more urgent carbon mitigation. This
condition can be expressed as:

∂2γ (rnet,t, rallow,t)
∂r2

allow,t

> 0. (6.4)

Based on these conditions, the following function is proposed as the prosumer-centric
monetary compensation for carbon reduction:

γ (rnet,t, rallow,t) :=

αt ·
√

(rallow,t · ∆t)2 − (rnet,t · ∆t)2, rallow,t > rnet,t,

0, rallow,t ≤ rnet,t,
(6.5)

where αt is the monetary compensation rate at scheduling time t, and ∆t is the
scheduling interval. This function ensures that prosumers receive monetary compen-
sation for carbon reduction that is proportional to the difference between their carbon
allowance and their net carbon emissions rate.

By implementing this prosumer-centric monetary compensation mechanism, it is
possible to incentivise prosumers to reduce their carbon emissions and contribute to
the overall carbon reduction target of the microgrid. This can help to foster the devel-
opment of a more sustainable and resilient energy system, while also promoting the
efficient and transparent exchange of carbon allowances and monetary compensation
between prosumers.

6.3.3.2 Prosumer-Centric Algorithm

The prosumer-centric trading approach enables prosumers in the same microgrid to
exchange energy or carbon allowance with neighbouring prosumers for the purpose of
achieving local energy balance and carbon reduction. However, this trading process
is not without its losses. Power losses are a significant consideration in this regard,
and they consist of transmission losses and distribution losses.

Transmission losses refer to the losses that occur during the transmission of power
from generators to distribution networks. These losses account for approximately 2-
6% of total power generation from a whole power systems perspective [36]. On the
other hand, distribution losses refer to the losses that occur within the distribution
networks, such as power losses within a community. However, the distribution losses
are relatively small compared to transmission losses because the generators and loads
are nearby, and the amount of distributed generation from prosumers is smaller rela-
tive to the amount of large-scale generation in power systems. Therefore, distribution
losses are neglected in this work.

Recall that pi,t and pk,t denote the power generation of generator i ∈ I and the
power consumption of load k ∈ K at scheduling time t, respectively. The prosumer-
centric algorithm is discussed below when a prosumer is either an energy buyer or an
energy seller.



Implementation of Blockchain in Local Energy Markets ■ 221

• Prosumer as an energy buyer:
When a prosumer is unable to generate enough energy to meet their own de-
mand (

∑
i∈I pi,t <

∑
k∈K pk,t), they must purchase energy from other prosumers

as an energy buyer. The objective function for a prosumer as an energy buyer
is given by

fb (pi,t, pk,t, benergy,t) :=
∑

t∈Tbuyer

(∑
k∈K

pk,t −
∑
i∈I

pi,t

)
· ∆t · benergy,t, (6.6)

where fb (·) represents the prosumer’s electricity bill. The bidding price of a
prosumer at scheduling time t for buying energy is denoted by benergy,t and the
index set of scheduling time when a prosumer is an energy buyer is given by
Tbuyer.
To participate in the peer-to-peer trading network as an energy buyer, the smart
contract requires the prosumer to have enough account balance for purchasing
the bided energy. This balance constraint is expressed by Equation (6.7), where
bbalance is the account balance of the buyer.

∑
t∈Tbuyer

(∑
k∈K

pk,t −
∑
i∈I

pi,t

)
· ∆t · benergy,t ≤ bbalance, (6.7)

In addition to this, the smart contract requires a buyer’s bidding price to be
higher than the currently highest bidding prices submitted by other energy
buyers for the same offer. This constraint is represented by Equation (6.8),
where bhighest

energy,t is the currently highest bidding price for the energy being sold
at scheduling time t over all energy buyers updated by the blockchain network.
The set of bidding prices submitted by all energy buyers for the offer of selling
energy at scheduling time t is denoted by Benergy,t. Equation (6.9) represents
the computation of the highest bidding price.

bhighest
energy,t < benergy,t, (6.8)

bhighest
energy,t = max : Benergy,t. (6.9)

Thus, the objective of a prosumer as an energy buyer is to minimize their elec-
tricity bills by strategically deciding the bidding prices of energy and reshaping
their energy behaviours. This is represented by the optimisation problem given
in Equation (6.10), subject to the balance constraint given in Equation (6.7),
the bidding price constraint given in Equation (6.8), and the computation of
the highest bidding price as given in Equation (6.9).

min
pi,t,pk,t,benergy,t

: fb (pi,t, pk,t, benergy,t) , (6.10)

s.t.:(6.7), (6.8), and (6.9).
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• Prosumer as an energy seller:
When a prosumer generates surplus energy after meeting its own demand
(
∑

k∈K pk,t <
∑

i∈I pi,t), this prosumer can sell the surplus energy to other
prosumers as an energy seller. However, the prosumer must have the necessary
carbon allowance assigned by the blockchain system in order to sell energy.
If the prosumer’s net carbon emissions rnet,t exceeds the assigned carbon al-
lowance rallow,t, then the prosumer must buy the extra carbon allowance as
part of its generating costs. Conversely, if rnet,t is less than rallow,t, then the
prosumer can sell the extra carbon allowance and be compensated as part of
its revenue.
To calculate the cost or revenue of buying or selling carbon allowance, we use the
function ccarbon (·), which describes the carbon cost/revenue of an energy seller.
This function takes into account the highest bidding price bhighest

carbon,t submitted by
carbon allowance buyers for the energy seller’s carbon allowance at scheduling
time t, and is defined as follows:

ccarbon (rnet,t) :=
{

(rnet,t − rallow,t) · ∆t · bhighest
carbon,t − γ (rnet,t, rallow,t) , rnet,t < rallow,t,

(rnet,t − rallow,t) · ∆t · bcarbon,t, rnet,t > rallow,t,
(6.11)

In the case where rnet,t < rallow,t, the energy seller is compensated with the
bidding price bcarbon,t for each unit of surplus carbon allowance sold. On the
other hand, if rnet,t > rallow,t, the energy seller must pay for the extra carbon
allowance it needs to purchase at the highest bidding price bhighest

carbon,t, and this
cost is subtracted from the revenue gained from selling energy.
To participate in the auction as an energy seller, the prosumer must submit a
bidding price bcarbon,t for the carbon allowance it wishes to sell at scheduling
time t. Furthermore, the smart contract requires that the energy seller’s bidding
price is higher than the highest bidding prices submitted by other carbon al-
lowance sellers for the same offer, which is updated by the blockchain network.
This can be expressed as:

bhighest
carbon,t = max : Bcarbon,t, (6.12)

where Bcarbon,t denotes the set of bidding prices submitted by all the carbon
allowance buyers for the offer of selling carbon allowance at scheduling time t.
In addition to the carbon cost, there are other operating costs that need to
be considered in our dynamic scheduling problem. These include costs of op-
eration, maintenance, fuel, and carbon capture and storage. However, costs of
pre-development, construction, decommissioning, and waste are not considered
in our analysis.
The coefficients of operating costs for each energy source can be evaluated
by the levelised cost of energy (LCoE) [37]. The LCoE represents the total
cost of generating energy over the lifetime of a power plant, including initial
capital costs, operating costs, and fuel costs, as well as costs associated with
decommissioning and any required environmental controls.
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The function of operating costs of a prosumer can be modelled as follows:

c (pi,t) :=
∑
i∈I

pi,t · ∆t · δi, (6.13)

where c (·) is the function of operating costs of a prosumer excluding the car-
bon cost, and δi is the coefficient of the total operating costs of generator i.
This equation represents the total operating cost incurred by a prosumer at
scheduling time t, given the power generation of generator i during that time.
The objective function of a prosumer as an energy seller can be modelled as

fp (pi,t, pk,t, bcarbon,t)

:=
∑

t∈Tseller

[(∑
i∈I

pi,t−
∑
k∈K

pk,t

)
·∆t·bhighest

energy,t− ccarbon(rnet,t) − c(pi,t)
]
, (6.14)

where fp (·) is the objective function of profits of a prosumer, and Tseller is the
index set of scheduling time when a prosumer is an energy seller.
When a prosumer participates in the peer-to-peer trading network as a carbon
allowance buyer, they need to have enough account balance to purchase the
bided carbon allowance. This is enforced by the smart contract, which checks
that the sum of carbon costs over all scheduling times when the prosumer is a
buyer is less than or equal to the prosumer’s account balance:∑

t∈Tseller

ccarbon (rnet,t) ≤ bbalance, (6.15)

In addition, the smart contract also requires that a buyer’s bidding price for
carbon allowance be higher than the currently highest bidding prices submitted
by other carbon allowance buyers for the same offer. This is necessary to ensure
that the buyer obtains the carbon allowance and that the market operates
efficiently:

bhighest
carbon,t < bcarbon,t, (6.16)

The objective of a prosumer as a carbon allowance buyer is to minimise their
carbon costs by strategically deciding the bidding prices of carbon allowance
and reshaping their energy consumption behaviours. This is formulated as the
maximisation of profits:

max
pi,t,pk,t,bcarbon,t

: fp (pi,t, pk,t, bcarbon,t) , (6.17)

s.t.:(6.12), (6.15), and (6.16)
It is important to note that the decision variable bcarbon,t, as well as constraints
(6.15) and (6.16), only apply when a prosumer is buying carbon allowance.
When a prosumer generates surplus energy and is selling carbon allowance, they
do not need to bid for the allowance, and the carbon revenue is automatically
calculated based on the market price.
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6.3.3.3 Microgrid-Trader-Centric Algorithm

After the completion of the prosumer-centric trading, there might be residual supply
or demand which cannot be met inside the microgrid due to the surplus or scarcity
generation of all prosumers in the same microgrid. The microgrid-trader-centric trad-
ing aims to help an ensemble of prosumers in the same microgrid aggregate the resid-
ual supply and demand. Through solving the prosumer-centric algorithm, the optimal
power generation of generator i and optimal power consumption of load k for a pro-
sumer at each scheduling time t are yielded, denoted as p∗

i,t and p∗
k,t, respectively. The

residual power of prosumer n ∈ N can be described as:

pn,t =
∑
i∈I

p∗
i,t −

∑
k∈K

p∗
k,t (6.18)

where pn,t is the residual power of prosumer n ∈ N at scheduling time t.
After the prosumer-centric trading is completed, there may still be some residual

supply or demand that cannot be met within the microgrid due to the surplus or
scarcity generation of all prosumers within that microgrid. In order to address this
issue, the microgrid-trader-centric trading comes into play. This approach aims to help
a group of prosumers within the same microgrid aggregate their residual supply and
demand, by trading with external entities such as the utility grid or other microgrids.

To implement this approach, the prosumer-centric algorithm is first executed to
determine the optimal power generation of generator i and optimal power consump-
tion of load k for each prosumer at each scheduling time t, which are denoted as p∗

i,t

and p∗
k,t, respectively. With these results, the residual power of prosumer n ∈ N can

be computed as:
pn,t =

∑
i∈I

p∗
i,t −

∑
k∈K

p∗
k,t (6.19)

where pn,t is the residual power of prosumer n at scheduling time t.
The residual power can either be positive or negative, representing surplus power

or demand, respectively. If the residual power is positive, it means that the prosumers
have excess power that can be sold to other entities. On the other hand, if the residual
power is negative, it means that the prosumers need additional power to meet its
demand and can buy it from other entities. In either case, the residual power can
be traded in the microgrid-trader-centric trading to balance the supply and demand
between the microgrids.

The cases when the microgrid-trader acts as the energy buyer or energy seller are
discussed as follows:

• Microgrid-trader as energy buyer:
When an ensemble of prosumers in the same microgrid is unable to generate
enough energy to meet their own demand, i.e.

∑
n∈N pn,t < 0, the microgrid-

trader needs to help its prosumers buy energy from other microgrids or import
from the main grid. In this case, the microgrid-trader acts as an energy buyer
in the microgrid-trader-centric trading. The objective of the microgrid-trader
as an energy buyer is to minimise the overall electricity bills for its prosumers



Implementation of Blockchain in Local Energy Markets ■ 225

by strategically deciding the optimal bidding price of energy. The objective
function of the microgrid-trader as an energy buyer can be modelled as follows:

fB (benergy,t) =
∑

t∈T buyer

∑
n ∈ N (−pn,t) · ∆t · benergy,t, (6.20)

where fB (·) is the objective function of electricity bills of a microgrid-trader,
benergy,t is the bidding price of a microgrid-trader at scheduling time t for buying
energy, and Tbuyer is the index set of scheduling time when the microgrid-trader
is an energy buyer.
Similar to the prosumer-centric trading, the microgrid-trader has to satisfy
account balance and highest bidding constraints when it is an energy buyer.
The account balance constraint is expressed as follows:

∑
t∈T buyer

∑
n ∈ N (−pn,t) · ∆t · benergy,t ≤ bbalance, (6.21)

where bbalance is the account balance of the microgrid-trader.
The highest bidding constraint for the microgrid-trader is given as follows:

bhighest
energy,t < benergy,t, (6.22)

where bhighest
energy,t is the currently highest bidding price for the energy selling at

scheduling time t over all energy buyers updated by the blockchain network.
Let Benergy,t denote the set of bidding prices submitted by all energy buyers for
the offer of selling energy at scheduling time t. We have

bhighest
energy,t = max : Benergy,t. (6.23)

Therefore, the decision variable for the microgrid-trader as an energy buyer is
benergy,t, and the constraints to be satisfied are (6.21) and (6.22). The objective
of the microgrid-trader is to minimise overall electricity bills for its prosumers
as expressed in (6.24).

min
benergy,t

: fB (benergy,t) , (6.24)

s.t.: (6.21), and (6.22).

• Microgrid-trader as energy seller: When an ensemble of prosumers in the
same microgrid generates surplus energy after meeting their own demand
(
∑

n∈N pn,t > 0), microgrid-trader can help its prosumers sell energy to other
microgrids. Meanwhile, microgrid-trader can help its energy sellers trade resid-
ual carbon allowance with other microgrids. If the net carbon emissions of an
ensemble of prosumers in the same microgrid exceed the carbon allowance of
this microgrid, microgrid-trader has to help its prosumers buy carbon allowance
from other microgrids. If the net carbon emissions of an ensemble of prosumers
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in the same microgrid are less than the carbon allowance of this microgrid,
microgrid-trader can help its prosumers sell the extra carbon allowance and
earn monetary compensation for its prosumers.
To achieve these goals, microgrid-trader as an energy seller aims to maximise
the overall profits for its prosumers by strategically deciding optimal bidding
prices of carbon allowance as well as electricity prices for energy trading. The
objective function of a microgrid-trader as an energy seller can be modelled as

fP (bcarbon,t) :=
∑

t∈Tseller

∑
n∈N

[
pn,t · ∆t · bhighest

energy,t − (ccarbon,n + cn)
]
, (6.25)

where fP (·) is the objective function of profits of a microgrid-trader, ccarbon,n is
the carbon cost/revenue of prosumer n, cn is the operating costs excluding the
carbon cost of prosumer n, and bhighest

energy,t is the highest bidding price for energy
selling at scheduling time t over all energy buyers updated by the blockchain
network. The decision variable bcarbon,t and bhighest

energy,t only hold when a microgrid-
trader buys the carbon allowance.
Similar to the prosumer-centric trading, there are account balance constraints
and the highest bidding constraints for microgrid-trader as an energy seller.
The account balance constraint is defined as∑

t∈Tseller

∑
n∈N

ccarbon,n ≤ bbalance, (6.26)

The highest bidding constraint for energy selling is defined as

bhighest
energy,t < benergy,t. (6.27)

The highest bidding constraint for carbon allowance selling is defined as

bhighest
carbon,t < bcarbon,t. (6.28)

Therefore, the objective of a microgrid-trader as an energy seller is to maximise
the overall profits for its prosumers by strategically deciding optimal bidding
prices of carbon allowance as

max
bcarbon,t

: fP (bcarbon,t) , (6.29)

s.t.: (6.26), (6.27) and (6.28).
The decision variable bcarbon,t and this optimisation problem only hold when a
microgrid-trader buys the carbon allowance.

Remark: The optimisation problems for both the prosumer-centric and microgrid-
trader-centric algorithms can be quite complex and computationally intensive, which
can lead to long computation times and scalability issues. To address these challenges,
a learning approach has been proposed, which utilises artificial neural networks to
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predict optimal scheduling decisions as introduced in the previous chapter which
can significantly reduce computation times while maintaining high accuracy in the
predicted results.

The learning approach involves training artificial neural networks to predict opti-
mal scheduling decisions based on historical data. In particular, the artificial neural
networks are trained on data from past scheduling periods to learn the relationship
between the inputs and the optimal scheduling decisions. The inputs include various
parameters such as energy demand, available energy sources, carbon allowance, and
bidding prices. The artificial neural networks can then be used to predict the optimal
scheduling decisions for future periods, which can significantly reduce computation
times and allow for near-real-time decision making.

The learning approach can be especially useful for large-scale microgrid systems
with many prosumers and complex trading networks. With a large number of pro-
sumers, the number of possible scheduling decisions can become very large, which can
be difficult to solve using traditional optimisation methods. By using artificial neural
networks to predict the optimal scheduling decisions, the computational burden can
be significantly reduced, and the system can operate more efficiently.

In addition, the learning approach can also be used to improve the accuracy of
the predicted results. By training the artificial neural networks on historical data,
the model can learn the patterns and relationships between the inputs and outputs,
which can lead to more accurate predictions. This is especially useful for systems
with high variability and uncertainty, such as renewable energy sources, which can
be difficult to predict accurately using traditional methods.

Therefore, the learning approach provides a powerful tool for optimising microgrid
systems, which can help to improve the scalability, computational efficiency, and
accuracy of the system. By combining traditional optimisation methods with machine
learning techniques, it is possible to create highly efficient and effective microgrid
systems that can help to reduce energy costs, improve sustainability, and promote a
more efficient use of energy resources.

6.3.3.4 Smart Contract-Based Auction Mechanism

The proposed smart contract-based auction mechanism in the peer-to-peer trading
platform is a versatile solution for both prosumers and microgrid-traders to trade
energy or carbon allowance. This mechanism ensures standardised negotiation and
self-enforcing of the smart contract, providing a transparent and efficient trading
platform. The auction process involves several steps, namely initialisation, matching,
bidding, withdrawal, and pay-to-seller, each of which is performed by a specific func-
tion in the smart contract. These functions are denoted as finit (·), fmatch (·), fbid (·),
fwithdraw (·), and fpay (·), respectively. The smart contract-based auction mechanism
is designed to ensure the integrity and transparency of the auction process. By using
this mechanism, participants can trade energy or carbon allowance without intermedi-
aries, reducing transaction costs and increasing the efficiency of the trading platform.
Let U denote the index set of sellers, and V denote the index set of buyers.
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Algorithm 4 Smart Contract Based Auction Procedure
1: function: initialisation finit (·)
2: input: idu, ε, β,mu, su, b

min
u,t , b

highest
u,t , τu

3: output: Ou

4: function: matching fmatch (·)
5: for v ∈ V do
6: find optimal offers combination U∗

v by (6.31) and (6.32)
7: end for
8: function: bidding fbid (·)
9: input: τnow, b

∗
v,mv, bbalance,v

10: while τnow ≤ τu, mv = mu, bhighest
u,t · su < b∗

v · su ≤ bbalance,v do
11: submit bids and update the highest bidding price by (6.34)
12: end while
13: output: bhighest′

u,t

14: function: withdrawal fwithdraw (·)
15: input: τnow, b

∗
v, bbalance,v

16: while τnow > τ , v ∈ V , v ̸= v∗ do
17: unsuccessful buyers withdraw their bids by (6.36)
18: end while
19: output: b′

balance,v

20: function: pay-to-seller fpay (·)
21: input: τnow, b

∗
v, bbalance,u

22: while τnow > τ , v = v∗ do
23: pay the deposited highest bid to seller by (6.38)
24: end while
25: output: b′

balance,u

The trading algorithm, as shown in Algorithm 4, is written in the Solidity language
[38] and stored in the Ethereum blockchain [39]. Detailed steps of executing the
auction are explained as:

Step 1 : In the proposed smart contract-based auction mechanism, each seller ini-
tiates the auction process by calling the initialisation function finit (·) from the smart
contract. This function allows the seller to specify the necessary details about the auc-
tion, such as the seller address, trading type (energy or carbon allowance), seller type
(prosumer or microgrid-trader), microgrid number, selling amount, minimal accepted
bidding price, the currently highest bid, and the time of auction ended.

More specifically, for seller u ∈ U , the offer Ou is initialised as follows:

Ou = finit
(
idu, ε, β,mu, su, b

min
u,t , b

highest
u,t , τu

)
, (6.30)

where idu is the encrypted address of seller u, ε ∈ 0, 1 is a binary value indicating if
the trading type is energy (ε = 0) or carbon allowance (ε = 1), β ∈ 0, 1 is a binary
value indicating if the seller type is prosumer (β = 0) or microgrid-trader (β = 1),
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mu is the microgrid index of seller u, which enables buyers to find sellers in the same
microgrid. su is the amount of energy or carbon allowance to be supplied by seller u,
while bmin

u,t is the minimal accepted bidding price specified by seller u for the energy
or carbon allowance to be provided at scheduling time t. At initialisation, bhighest

u,t is
equal to bmin

u,t , as there are no bids yet. τu is the time of auction end specified by
seller u. All the offers from sellers are stored and updated in the blockchain network,
enabling buyers to access the information easily.

This initialisation step is crucial in setting up the auction and ensuring that all
sellers provide the necessary information for buyers to make informed decisions. The
use of a smart contract ensures that the information provided is standardised and
that the auction process is transparent and secure. This step corresponds to the line
1-3 in Algorithm 4.

Step 2 : In the proposed auction mechanism, each buyer is required to bid with
a higher price than the currently highest bidding price over all the buyers. To help
buyers submit their bids optimally, the matching function fmatch (·) automatically
matches the optimal offers combination according to certain criteria.

The matching function has two main objectives. First, it aims to ensure that the
demand of energy or carbon allowance for a buyer can be met by the summation
of selected offers. Second, it selects the optimal offers with the minimal summation
of the currently highest bidding prices, allowing buyers to bid with minimal bidding
prices.

The optimal offers combination for a buyer v can be obtained by solving the
following optimisation problem:

Uv∗ = arg min u :
∑
u∈U

bhighestu, t · su, (6.31)

subject to the constraint that the summation of the selling amounts of the selected
optimal offers is greater than or equal to the demand of energy or carbon allowance
of buyer v: ∑

u∈U
su ≥ dv, (6.32)

where Uv∗ is the set of optimal offers combination that can meet buyer v’s demand
with minimal required bidding prices, and dv is the demand of energy or carbon
allowance of buyer v.

In other words, the matching function ensures that the selected optimal offers
meet the buyer’s demand while minimising the required bidding prices. By doing
so, buyers can make informed decisions and participate in the auction process with
minimal bidding prices, increasing the efficiency and fairness of the trading platform.
This step corresponds to the line 4-7 in Algorithm 4.

Step 3 : The bidding function fbid (·) in the proposed auction mechanism enables
buyers to submit their bids after fulfilling certain conditions. These conditions ensure
that the auction is fair and transparent for all participants.

First, the bidding function checks that the auction is not ended, i.e., the current
time τnow is less than or equal to the time of auction end specified by the seller u,
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denoted as τu. Second, the function checks that the microgrid index of the buyer v,
denoted as mv, matches that of the seller u, i.e., mv = mu.

Finally, the function checks that the buyer has enough balance to provide a bid
higher than the currently highest bidding price. This condition is expressed as:

bhighest
u,t · su < b∗

v · su ≤ bbalance,v, (6.33)

where b∗
v is the optimal bidding price of buyer v obtained by solving the optimisation

problems in the prosumer-centric algorithm or microgrid-trader-centric algorithm.
bbalance,v is the account balance of the buyer v.

If all conditions are met, the buyer can successfully submit their bid, and the
highest bidding price of the seller u’s offer is updated using the following equation:

bhighest′

u,t = fbid (τnow, b
∗
v,mv, bbalance,v) , (6.34)

where bhighest′

u,t is the updated currently highest bidding price for the energy or carbon
allowance to be provided by the seller u at scheduling time t.

Before the auction ends, all the bids are frozen by the smart contract, which
means that buyers are unable to withdraw their bids back to their account. This
ensures that the auction process is fair and transparent, with all participants having
an equal opportunity to bid on the available offers. This step corresponds to the line
8-13 in Algorithm 4.

Step 4 : When the auction ends, i.e., the current time τnow is greater than the
time of auction end specified by the seller u, denoted as τ , the buyer with the highest
bidding price wins the auction. This is expressed as:

v∗ = arg max
v

: Bt, (6.35)

where v∗ is the buyer with the highest bidding price, and Bt is the set of bidding prices
submitted by all buyers for the energy or carbon allowance provided at scheduling
time t.

The rest of the unsuccessful buyers, denoted as v ∈ V , v ≠ v∗, can withdraw
their previously submitted bids by calling the withdrawal function fwithdraw (·). The
withdrawal function updates the account balance of the unsuccessful buyer by adding
back the bidding price for the offer that was not won. This is expressed as:

b′
balance,v = fwithdraw (τnow, b

∗
v, bbalance,v) , (6.36)

where b′
balance,v is the updated account balance of buyer v after withdrawing the bid

for the seller u’s offer. The updated account balance is calculated as:

b′
balance,v = bbalance,v + b∗

v · su, (6.37)

where b∗
v is the optimal bidding price of the buyer v and su is the selling amount of

the offer from the seller u.
Overall, the withdrawal function allows unsuccessful buyers to withdraw their

bids, increasing the transparency and fairness of the auction process. By doing so,



Implementation of Blockchain in Local Energy Markets ■ 231

buyers who did not win the auction can recover their account balance and participate
in future auctions with minimal financial losses. This step corresponds to the line 14-
19 in Algorithm 4.

Step 5 : After the energy or carbon allowance is delivered and confirmed by query-
ing the smart meter, the final highest bid for the offer u, denoted as bhighest∗

u,t , is paid
to the seller. The payment is made by calling the pay-to-seller function fpay (·).

The pay-to-seller function updates the account balance of the seller u by adding
the amount received for the winning bid. This is expressed as:

b′
balance,u = fpay

(
τnow, b

highest∗
u,t , bbalance,u

)
, (6.38)

where b′
balance,u is the updated account balance of the seller u after receiving the

payment. The updated account balance is calculated as:

b′
balance,u = bbalance,u + bhighest∗

u,t · su, (6.39)

where su is the selling amount of the offer from the seller u.
This step corresponds to the line 20-25 in Algorithm 4.

6.3.4 Case Studies

The proposed blockchain-based peer-to-peer trading framework has been evaluated
through a series of case studies. The aim of these case studies is to demonstrate
the effectiveness and efficiency of the proposed framework in supporting energy and
carbon allowance trading between prosumers and microgrid-traders.

6.3.4.1 Simulation Setup and Data Availability

The proposed prosumer-centric algorithm and microgrid-trader-centric algorithm
have been implemented using MATLAB. The proposed smart contract has been im-
plemented in Solidity 0.6.0 and executed on the Remix-IDE. To ensure secure and
transparent trading, individual deposit accounts have been created for each prosumer
and microgrid-trader.

The testing environment for the proposed blockchain-based peer-to-peer trading
framework is shown in Fig. 6.5. The simulations were conducted on a machine with
an IntelR CoreTM i9-9900K CPU running at 3.60 GHz.

The simulation results demonstrate the effectiveness of the proposed framework
in supporting secure, transparent, and efficient energy and carbon allowance trading
in microgrid systems. The simulation results show that the proposed framework can
handle a large number of transactions and can effectively incentivise prosumers to
generate and sell excess renewable energy.

In this study, we have used a modified version of the IEEE 37-bus distribution
network, as depicted in Figure 6.6. The network has been partitioned into five in-
terconnected microgrids, with each bus representing a prosumer. To create a more
realistic simulation, we have replaced the static default data of generation and con-
sumption from the IEEE 37-bus distribution network with dynamic data.



232 ■ Blockchain and Artificial Intelligence Technologies for Smart Energy Systems

Figure 6.5 Overview of the testing environment for the blockchain-based peer-to-peer
trading framework. The smart contract is written in the Solidity language and ex-
ecuted on the Remix-IDE. The prosumer-centric algorithm and microgrid-trader-
centric algorithm are written in the MATLAB®. Individual deposit accounts are cre-
ated for each prosumer and microgrid-trader.

Specifically, 7 solar photovoltaics, 4 diesel generators, 4 wind turbines, and 2
biomass generators have been arbitrarily assigned to each microgrid, and 33 loads
are assigned to each bus. The demand data of residential loads has been collected
using an EFERGY monitor hub and allocated to each prosumer, as shown in Figure
6.7. The solar generation data has been obtained from the UK rooftop solar generation
of endpoint consumers.

Figure 6.6 Modified IEEE 37-bus distribution network. The network is partitioned
into 5 microgrids. Each bus represents a prosumer. 7 solar photovoltaics, 4 diesel
generators, 4 wind turbines, and 2 biomass generators are arbitrarily assigned to
each microgrid by connecting to prosumers’ buses. 33 loads are assigned to each bus.
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Figure 6.7 Demand allocation for prosumers and microgrids in the modified IEEE 37-
bus distribution network.

To incorporate real-time states of GB generation, we have used data from the
GridWatch. To scale down the generation of diesel, wind, and biomass, we have used
the ratio of peak real-time demand to the peak static demand from the IEEE 37-
bus distribution network. The total power outputs of each generation source have
been equally allocated to the corresponding generators. The generation allocation for
prosumers and microgrids in the modified IEEE 37-bus distribution network is shown
in Figure 6.8.

The use of this modified IEEE 37-bus distribution network, along with the dy-
namic generation and consumption data, allows for a more accurate simulation of
energy and carbon allowance trading in microgrids. By incorporating realistic data
and scenarios, the simulation results provide a more comprehensive understanding



234 ■ Blockchain and Artificial Intelligence Technologies for Smart Energy Systems

Figure 6.8 Generation allocation for prosumers and microgrids in the modified IEEE
37-bus distribution network.

of the performance and effectiveness of the proposed blockchain-based peer-to-peer
trading framework.

To provide a more realistic simulation of the proposed blockchain-based peer-
to-peer trading framework, we have obtained data on centralised prices of energy
and carbon allowance from the UK energy retail market and the UK carbon market,
respectively. Specifically, the centralised prices have been set as the minimal accepted
bidding price of each seller during the auction process.
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This design encourages more prosumers to sell their surplus energy or carbon
allowance, and reduces the need to import from central markets. By allowing buyers to
provide a higher price than the centralised prices through solving their own objective
functions, the proposed mechanism promotes competition and encourages efficient
trading. The use of realistic centralised prices adds to the accuracy and applicability of
the simulation results, allowing for a more comprehensive evaluation of the proposed
trading framework.

6.3.4.2 Balancing Performances of Energy and Carbon Allowance

To evaluate the performance of the proposed blockchain-based peer-to-peer trading
framework, we compared it with two other trading schemes: centralised trading and
aggregator-based trading as follows:

• The first scheme, known as centralised trading, involves trading of energy or
carbon allowance exclusively on centralised markets. This scheme utilises the
prices of energy and carbon allowance obtained from central markets.

• The second scheme, known as aggregator-based trading, follows the approach
presented in [40]. In this scheme, the reshaping of energy behaviours is managed
by relatively decentralised agents, known as aggregators, who aim to minimise
the bills for buyers or maximise the profits for sellers. Aggregators then pay
prosumers the monetary compensation for the reshaping, and the trading of
energy or carbon allowance is only performed by these aggregators.

By comparing the proposed framework with these two trading schemes, we can eval-
uate the extent to which blockchain-based peer-to-peer trading can improve the effi-
ciency and effectiveness of energy and carbon allowance trading. The results of these
comparisons will provide insights into the potential benefits of blockchain technology
for the energy and carbon markets.

Figure 6.9 shows the net power of the modified IEEE 37-bus distribution network,
which is defined as the difference between the total power generation and the total
power consumption. A positive net power indicates that the total generation is greater
than the total demand, while a negative net power indicates the opposite, where
the network has to import power from the main grid. The proposed peer-to-peer
trading framework has resulted in a daily net energy summation of 0.99 kWh, which
demonstrates a more balanced energy distribution, compared to the aggregator-based
trading and centralised trading with net energy summations of -4.50 kWh and -46.44
kWh, respectively. These results indicate that the proposed framework is capable of
achieving a better balance between energy generation and consumption, which is an
essential aspect of modern power systems.

The surplus of carbon allowance in the modified IEEE 37-bus distribution net-
work, which represents the total assigned carbon allowance minus the total carbon
emissions, is presented in Figure 6.10. A positive surplus of carbon allowance indi-
cates that the network’s total carbon emissions are less than the total assigned carbon
allowance, while a negative surplus indicates that the total carbon emissions exceed
the total assigned carbon allowance.
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Figure 6.9 Net power of the modified IEEE 37-bus distribution network. The positive
value of y-axis indicates the total generation is greater than the total demand. The
negative value of y-axis indicates the total generation is less than the total demand.
The x-axis indicates the scheduling time of day.

Through the proposed peer-to-peer trading framework, the total daily carbon
emissions saved from the carbon allowance is 1465.90 g, which is approximately 6
times higher than the aggregator-based trading (385.91 g) and 9 times higher than
the centralised trading (168.65 g). In particular, during the period from the thirty-
sixth scheduling time to the forty-eighth scheduling time, the proposed framework
achieves significantly more carbon savings compared to the other two trading schemes.

In contrast, while the aggregator-based trading also achieves carbon savings dur-
ing this period, it results in carbon emissions exceeding the carbon allowance dur-
ing the period from the twenty-second scheduling time to the thirty-fifth scheduling
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Figure 6.10 Surplus of carbon allowance of the modified IEEE 37-bus distribution
network. The positive value of y-axis indicates the total carbon emissions are less
than the total assigned carbon allowance. The negative value of y-axis indicates the
total carbon emissions exceed the total assigned carbon allowance.

time. This highlights the advantage of the proposed peer-to-peer trading framework
in achieving a more balanced and sustainable carbon emissions reduction across dif-
ferent periods.

6.3.4.3 Demonstration of Interface between Scheduling Algorithms and Smart Contract

The prosumer-centric algorithm yields the optimal energy scheduling and bid-
ding prices for each individual prosumer in the microgrid. Figure 6.11 illustrates
the comparison between the original net consumption and the scheduled net con-
sumption, along with the optimal bidding prices for the scheduled energy trading.
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Figure 6.11 Optimal energy scheduling and bidding prices obtained by prosumer-
centric algorithm. The left y axes indicate the power of original prosumption and
scheduled prosumption of individual prosumers, and the right y axes indicate the
optimal bidding prices. The x axes indicate the scheduling time of day.



Implementation of Blockchain in Local Energy Markets ■ 239

Figure 6.12 Optimal bidding prices of energy buyers as inputs of smart contract. The
y-axis indicates the bus number of prosumers, assigned to corresponding microgrids.
The x-axis indicates the scheduling time of day. The colourbar indicates the optimal
bidding prices from each prosumer for a given 0.5 h scheduling interval. The schedul-
ing interval without bidding price means there is no surplus energy on the microgrid
to trade.

In scheduling intervals where all prosumers of a particular microgrid cannot generate
surplus energy, there are no sellers or bidding prices.

The comparison between the scheduled net consumption and the original net
consumption reveals that during peak demand periods, i.e., from the twelfth to the
thirty-sixth scheduling time, generation is scheduled to increase while consumption
is shifted to the off-peak periods, i.e., the remaining scheduling time. This ensures
a balance between energy supply and demand and reduces the reliance on the main
grid during peak demand periods.

Furthermore, during periods where prosumers experience high power consump-
tion and low power generation and become energy buyers, the scheduling algorithm
shifts the energy purchasing to off-peak demand periods, and the bidding prices are
stabilised at around 10 pence/kWh without any significant increase. The slight fluc-
tuations of the bidding prices dynamically reflect the actual supply–demand balance
in energy markets, ensuring that energy prices remain stable and affordable for pro-
sumers.

The interaction between the scheduling decisions and the smart contract is il-
lustrated in Figure 6.12. After obtaining the optimal bidding prices for prosumers
as buyers through solving the prosumer-centric algorithm, the bidding prices are
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automatically sent to the smart contract for auction. It can be observed that auc-
tions are conducted over all scheduling intervals of the day in microgrid 4, whereas
they are conducted only at a few scheduling intervals in microgrid 2. This is due
to the limited generation capacity of microgrid 2, which is not sufficient to meet
its demand, and thus the microgrid-trader 2 has to help its prosumers buy energy
from other microgrid-traders. In addition, the proposed peer-to-peer trading frame-
work helps to stabilise selling prices between 6 pence/kWh and 10 pence/kWh over
all scheduling intervals, which is different from the aggregator-based trading scheme
with dramatic peak and off-peak prices. The auction prices determined by individual
prosumers accurately reflect the actual supply–demand relationship of prosumers.

6.3.4.4 Demonstration of Smart Contract Execution

The proposed auction mechanism, which is executed as a smart contract on the
Ethereum blockchain, is illustrated in Figure 6.13 for microgrid 5. In this scenario,
prosumers at bus 706 and bus 724 act as energy sellers, providing 319 Wh and 109
Wh of energy, respectively. Additionally, prosumers at bus 706, bus 724, and bus 725
are carbon allowance sellers, providing 7 g, 113 g, and 123 g of carbon allowances,
respectively. To participate in the auction, the sellers first call the initialisation func-
tion from the full node to specify the offer conditions. On the other hand, prosumers
at bus 722 and bus 725 are energy buyers with a demand of 419 Wh and 202 Wh,
respectively. Prosumer at bus 722 is a carbon allowance buyer with a demand of 117
g. The proposed matching criteria are then used to match the bids and offers. The
auction is carried out according to the proposed auction rules, and the buyer with
the highest bidding price wins the auction. The unsuccessful buyers then withdraw
their bids by calling the withdrawal function, and the winning buyer pays the seller
by calling the pay-to-seller function.

Through the proposed blockchain-based peer-to-peer trading framework, energy
and carbon allowances can be traded simultaneously, and individual prosumers can
set their own bidding/selling prices, leading to a more accurate and efficient supply-
demand balance. The use of smart contracts on the Ethereum blockchain ensures
transparency, security, and self-executing of the auction process, reducing the need
for intermediaries and ensuring trust between the participating parties.

To fulfil the carbon allowance demand of 117 g from the prosumer at bus 722, there
are two available options. The first option is to purchase 123 g of carbon allowance
from the prosumer at bus 725 at a bidding price of 4 pence/kg. The second option
is to purchase 113 g of carbon allowance from the prosumer at bus 724 at a bidding
price of 3 pence/kg and another 7 g of carbon allowance from the prosumer at bus
706 at a bidding price of 3 pence/kg. The matching criteria is applied to select the
most suitable option, which in this case is the second option.

In the auction of energy, there were multiple buyers with multiple sellers. Pro-
sumers at bus 725 and bus 722 attempted to bid as buyers for the offer of selling 109
Wh energy by the prosumer at bus 724. The prosumer at bus 725 won the auction
with the highest bidding price of 7 pence/kWh. The unsuccessful buyer at bus 722
then called the withdrawal function from the full node to withdraw its bid. Once the
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Figure 6.13 Execution of smart contract-based auction on the peer-to-peer trading
platform. The black line is the execution of the energy trading, and the dashed blue
line is the execution of the carbon allowance trading.

smart contract confirmed that the energy or carbon allowance was supplied, it paid
the sellers with the highest bids.

For the auction of carbon allowance, there was a single buyer with multiple sellers.
To meet the demand of 117 g carbon allowance from the prosumer at bus 722, the
prosumer had two options: either buy 123 g carbon allowance from the prosumer at
bus 725 with a bidding price of 4 pence/kg, or buy 113 g from the prosumer at bus
724 with a bidding price of 3 pence/kg and buy another 7 g from the prosumer at
bus 706 with a bidding price of 3 pence/kg. According to the matching criteria, the
second option was selected.

After the auction of energy and carbon allowance, there was residual 123 g carbon
allowance from the prosumer at bus 725, 93 Wh energy demand from prosumer at bus
725, and 100 Wh energy demand from prosumer at bus 722. These were aggregated
by the microgrid-trader 5 to trade with other microgrid-traders.

6.3.5 Research Summary

This example research proposes a blockchain-based peer-to-peer trading framework
that aims to achieve local energy balance and reduce carbon emissions on distribution
networks. By allowing for simultaneous energy and carbon allowance exchange, this
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framework enables prosumers to participate in low-carbon energy trading and benefit
from the incentive allocation mechanism, which is based on specific energy behaviours.
To generate optimal bidding/selling prices of prosumers and make energy reshaping
decisions, the chapter proposes two algorithms: the prosumer-centric algorithm and
microgrid-trader-centric algorithm.

The auction takes place under a standardised and self-enforcing smart contract,
which ensures transparency, security, and fairness in the trading process. To demon-
strate the effectiveness of the proposed trading framework, case studies were con-
ducted on the modified IEEE 37-bus distribution network. The results show that the
proposed trading framework can export 0.99 kWh of daily energy to the main grid
and save 1465.90 g of daily carbon emissions.

Compared to other trading schemes such as centralised trading and aggregator-
based trading, the proposed framework outperforms in balancing energy and carbon
allowance. The proposed scheduling algorithms drive up prosumers’ self-generation,
shift away peak demand, and stabilise energy prices below 10 pence/kWh. The auction
prices of individual prosumers are accurately targeted to the actual supply-demand
relationship of prosumers.

Finally, this example research demonstrates the execution of the smart contract
on the Ethereum blockchain and the interface between the scheduling algorithms and
the smart contract. In summary, the proposed framework provides an effective and
scalable solution for low-carbon energy trading on distribution networks.

6.4 EXAMPLE RESEARCH 2: BLOCKCHAIN-SECURED PEER-TO-PEER
ENERGY TRADING

Climate change is driving the urgent need to transition to a sustainable energy system
based on distributed renewable energy sources. As energy is increasingly generated
and traded among distributed prosumers, it is crucial to develop a carbon pricing
scheme to incentivise carbon reduction efforts. However, the transfer of carbon re-
sponsibilities and allowances from large-scale energy suppliers to prosumers presents
significant challenges, including energy imbalance, uneven carbon reduction, and pri-
vacy concerns in centralised trading markets.

To address these challenges, we propose a fully decentralised blockchain-based
peer-to-peer trading scheme that combines energy and carbon markets. Our approach
utilises a pay-to-public-key-hash with multiple signatures as a transaction standard
to enhance transaction security and reduce storage burdens on senders. Furthermore,
we incorporate a script that is hashed during the wallet address generation for each
new transaction to protect residential privacy.

To promote carbon reduction among distributed prosumers, the carbon account-
ing method and corresponding incentive mechanism used in the previous example
research are implemented to evaluate emission behaviours. This approach incentivises
prosumers to reduce their carbon footprint and contributes to overall carbon reduc-
tion efforts.

Case studies demonstrate that our proposed scheme leads to reduced costs
and carbon emissions compared to centralised trading systems and existing
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blockchain-based trading schemes. Our approach offers a more secure, efficient, and
privacy-preserving trading platform that enables distributed prosumers to trade en-
ergy and carbon credits seamlessly. Overall, this paper provides a comprehensive
solution to address the challenges of the energy and carbon markets’ integration and
promotes the transition to a sustainable energy system.

The rest of this example research is organised as follows: Sub-Section 6.4.1 in-
troduces the backgrounds, challenges and contributions of the proposed work. The
peer-to-peer trading framework and specific details on transaction standard and ad-
dress generation are discussed in Sub-Section 6.4.2. Sub-Section 6.4.3 introduces the
procedures of the peer-to-peer trading coupling energy and carbon markets. Sub-
Section 6.4.4 provides case studies to demonstrate the effectiveness of the proposed
model. Sub-Section 6.4.6 concludes this example research.

6.4.1 Introduction

In today’s energy sector, majority of the world’s power demand is met through cen-
tralised power plants that rely on fossil fuels such as coal, gas, and oil. Centralised
fossil fuel-based power plants account for roughly 80% of global energy supply. How-
ever, the combustion of fossil fuels leads to enormous carbon emissions, contributing
to air pollution and irreversible climate change effects. Additionally, there are signif-
icant energy losses during long-distance transmission, further reducing transmission
efficiency.

To address these environmental challenges, policymakers are taking a two-pronged
approach. Firstly, they are facilitating the integration of distributed renewable energy
sources into distribution systems to mitigate carbon emissions and improve trans-
mission efficiency. This move towards distributed renewable energy sources includes
various sources such as wind, solar, and hydroelectricity. With the advancement in
technology, distributed renewable energy sources are becoming more efficient and
cost-effective, making them a more practical solution for meeting energy demands.
Secondly, policymakers are formulating a carbon pricing scheme to incentivise the
reduction of carbon emissions [7]. Carbon pricing is a market-based climate policy
that aims to charge carbon producers for the carbon allowances they require to op-
erate. The goal is to phase out power plants with extreme high carbon intensities,
while encouraging the use of low-emission technologies. This policy shift can drive
innovation in clean energy technologies, create jobs in the renewable energy sector,
and foster sustainable economic growth.

Hence, the integration of distributed renewable energy sources and the implemen-
tation of carbon pricing schemes are vital steps towards mitigating climate change
and promoting sustainable development. By adopting a more sustainable approach
to energy production and consumption, we can help reduce carbon emissions and
mitigate the environmental impact of our energy use.

As distributed renewable energy sources become more prevalent, prosumers are
playing an increasingly important role in reducing carbon emissions. This shift in
responsibility requires an overhaul of traditional carbon accounting practices, partic-
ularly as new system structures emerge from peer-to-peer energy trading. To fully
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embrace this transition, there is an opportunity to reform carbon emission trading
by incorporating it into decentralised energy trading.

The creation of a decentralised carbon market is desirable to facilitate local carbon
pricing that can better incentivise carbon reduction among prosumers. Rather than
designing separate energy and carbon markets, coupling both markets can be a more
efficient approach. This is because the carbon cost is directly linked to the operational
costs of energy generation, making it easier to incentivise the reduction of carbon
emissions.

In this approach, the coupling of energy and carbon markets involves the use
of blockchain technology to enable peer-to-peer energy and carbon trading between
prosumers. This system provides a secure and efficient platform for prosumers to
trade energy and carbon credits, while ensuring that the carbon cost is integrated
into the operational costs of energy generation. Furthermore, the coupling of energy
and carbon markets offers an opportunity to incentivise prosumers to reduce their
carbon footprint by offering them incentives for adopting low-carbon technologies or
practices. This can help to promote the widespread adoption of renewable energy
technologies, and drive a sustainable transition to a low-carbon economy.

This example research approaches a novel peer-to-peer trading scheme for pro-
sumers to exchange both energy and carbon allowance with contributions as follows:

• Our proposed model involves a decentralised, peer-to-peer energy and carbon
trading scheme that utilises blockchain technologies to accommodate the en-
gagement of prosumers. The integration of prosumers into the energy and car-
bon markets helps to improve local energy imbalance and reduce carbon emis-
sions. This approach offers a more efficient and cost-effective solution compared
to centralised energy and carbon markets, while also promoting the transition
to a sustainable energy system.

• We have designed a monetary incentive mechanism for carbon reduction that
helps to realise the revenue neutralisation of policymakers without intervention
in the bidding process. This approach incentivises prosumers to reduce their
carbon footprint, promotes the adoption of low-carbon technologies, and drives
the transition towards a sustainable energy system. By incentivising carbon re-
duction efforts, we can help to mitigate climate change and promote sustainable
economic growth.

• To ensure a fair allocation of carbon allowance and incentives, we evaluate
the carbon responsibilities of prosumers in distribution systems. This approach
helps to incentivise prosumers to reduce their carbon emissions, and contributes
to overall carbon reduction efforts. By evaluating the carbon responsibilities of
prosumers, we can ensure a fair allocation of carbon allowances and incentives,
and help to promote the widespread adoption of low-carbon technologies.

• Our proposed trading scheme offers a more secure transaction and residential
privacy compared to centralised trading systems. Case studies demonstrate that
our approach can achieve a more secure transaction process, protecting the
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Figure 6.14 Schematic illustration of the blockchain-based peer-to-peer energy trading
scheme. Prosumers directly communicate with each other to exchange energy and
carbon allowance. During each transaction, the asset ownership in terms of both
token and energy is exchanged after signing and broadcasting the encrypted trading
outcomes to the network.

privacy of residential consumers. Additionally, the proposed trading scheme
offers enhanced security features, such as pay-to-public-key-hash with multiple
signatures, and a hashed script during wallet address generation to protect
residential privacy.

6.4.2 System Model

In this section, we present the proposed scheme for a blockchain-based, peer-to-peer
energy trading system, which leverages the unique features of blockchain technology
to enable secure, decentralised transactions. In particular, we focus on the integration
of distributed renewable energy sources and the evaluation of carbon responsibilities,
which are key factors in the transition to a sustainable energy system.

6.4.2.1 Peer-to-Peer Trading Framework

Figure 6.14 provides a schematic illustration of our proposed blockchain-based,
peer-to-peer energy trading scheme. In this framework, prosumers can directly
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communicate with each other to exchange energy and carbon allowances without
the need for intermediaries.

To facilitate secure and transparent transactions, we use blockchain technology
to store encrypted information, including energy and carbon allowance transactions,
pricing signals, incentives, prosumer addresses, demand profiles, trading records, and
timestamps. All participants in the blockchain network can access and validate this
information, ensuring its authenticity and accuracy.

The use of blockchain technology also provides a more efficient and cost-effective
way to manage transactions. With no intermediaries involved, transaction fees are
minimised, and the process is streamlined, providing a more user-friendly experience
for prosumers.

In addition to facilitating energy and carbon trading, the proposed system also
promotes the adoption of low-carbon technologies and practices by incentivising car-
bon reduction efforts. The use of a novel carbon accounting method and corresponding
incentive mechanism helps to evaluate the carbon responsibilities of prosumers and
allocate carbon allowances and incentives fairly.

In the proposed blockchain-based, peer-to-peer energy trading scheme, transac-
tions involve the exchange of asset ownership for energy and carbon credits. Each
transaction is confirmed by the signature of the buyer and seller and then broadcast
to the entire network. Multiple transactions are then structured into a block, with
each block being chronologically chained to the previous block by incorporating the
hash value of the previous block. This chain of blocks is commonly referred to as a
blockchain.

The blockchain network is collectively secured through the consensus of the proof-
of-work algorithm [41], which utilises the SHA 256 algorithm to solve a cryptographic
puzzle. This algorithm takes the block header as an input and returns a fixed-length
digest that serves as a unique identifier for the block. The digest is determined by
the specially mined nonce, which adds an element of randomness to the algorithm.

The chaining of blocks and the computational difficulty of solving the mining
puzzle provide robust security measures to protect against tampering and fraud in
the blockchain network. If a malicious node attempts to modify the data in one block,
it would result in an unverified block that cannot be accepted by subsequent blocks
in the chain. If a malicious node attempts to tamper with data in one block and
subsequently all following blocks, the computational difficulty of solving the mining
puzzle makes it virtually impossible to carry out such an attack. This feature ensures
that the data stored in blocks, including transactions, account addresses, and account
states, is verifiable, traceable, and tamper-resistant. The use of blockchain technology
provides a secure, efficient, and transparent platform for energy and carbon trading.

When prosumers communicate with each other for energy trading, the private
key of the sender is used to sign the transaction or message. The receiving ad-
dress is generated by the public key of the receiver. This approach ensures that the
transactions are authenticated and authorised by the sender, and can be traced to
their source.

To maintain the privacy of prosumers, our system uses hashed scripts during
wallet address generation [42], which obfuscates the actual address of the prosumer.
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This feature protects the residential privacy of prosumers and ensures that their
sensitive information remains confidential.

In addition to protecting residential privacy, our system also prevents double
spending attacks [43]. Each transaction is collectively voted on by every node in
the blockchain network, which ensures that the transaction is valid and that the
asset ownership of token and energy is transferred securely. By using a consensus
mechanism that involves all nodes in the network, we can ensure that the transaction
is authenticated and recorded accurately in the blockchain.

Therefore, the use of private and public keys, hashed scripts, and a consensus
mechanism provides a secure, efficient, and privacy-preserving trading platform for
energy and carbon credits. This approach enables prosumers to trade energy and car-
bon credits securely and transparently, while ensuring that their privacy is protected
and that double spending attacks are prevented.

6.4.2.2 Transaction Standard

To enable prosumers to exchange energy or carbon credits in a secure and effi-
cient manner, a standard transaction protocol has been designed based on exist-
ing blockchain technologies. The designed transaction protocol utilises several estab-
lished transaction scripts, including pay-to-public-key-hash (P2PKH), pay-to-public-
key (P2PK), multiple signatures (MS), and pay-to-script-hash (P2SH), which are
commonly used in blockchain systems like Bitcoin [44]. Details of these scripts are
explained as follows:

• The P2PKH script enables the sender of a transaction to specify the recipient’s
address by hashing their public key. This script is widely used in blockchain
systems to provide a secure and efficient way of transferring funds without
exposing the recipient’s public key.

• The P2PK script allows the sender of a transaction to specify the recipient’s
public key directly, without hashing it. This script is used in certain blockchain
systems to enable faster transaction processing times and lower transaction
fees.

• The MS script enables multiple parties to sign a transaction, which adds an
extra layer of security and reduces the risk of fraud. This script is often used in
blockchain systems to enable more complex transactions that involve multiple
parties.

• The P2SH script allows the sender of a transaction to specify a script that
must be satisfied in order for the transaction to be executed. This script is
used in certain blockchain systems to enable more advanced smart contract
functionality, which can be used to implement more complex transactions and
enable more sophisticated financial instruments.

When prosumers trade energy or carbon allowances, the buyer creates a script
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with the specified transferring amount and the account address of the seller. At the
same time, the seller creates a script with their signature to authorise the transaction.

Once a transaction is initiated, it is broadcast over the blockchain network so
that the scripts and transactions can be verified by every node in the network. The
transaction is then included in a block and chronologically chained to the previous
block, ensuring that the transaction is secure, transparent, and tamper-proof.

During the transaction process, the use of a public ledger ensures that every trans-
action is visible to all participants in the network, allowing for efficient and accurate
auditing of energy and carbon credits. The scripts and transactions can be verified
by every node in the network, ensuring that they are authentic and authorized. This
feature ensures that every transaction is conducted with transparency, and that all
parties have access to accurate and up-to-date information about their energy and
carbon credit balances.

The proposed trading system utilises the transaction standard of P2PKH and
P2SH to enable secure and efficient transactions between prosumers. In the case of
P2PKH, the script of the buyer is generated using the public key of the seller, which is
known as the scriptPubKey. This script is further hashed to create a unique address
for the buyer. The script of the seller is generated using their private key, which
serves as a unique identity of the seller, known as the scriptSig. On the other hand,
the P2SH standard replaces the scriptPubKey of the buyer with a redeem script of
the seller. This redeem script specifies the conditions under which a transaction can
be redeemed [45]. If the hash of the seller matches the hash generated by the redeem
script of the seller, and the signature is verified, the transaction is considered valid.

This design ensures a more secure transaction, as the seller, who is more concerned
about receiving the token, monitors the success of the transaction instead of the buyer.
This approach also reduces the storage requirement of the buyer, as there is no need
to generate a script.

To ensure the security of transactions in the proposed trading system, all nodes
in the network must collectively verify each transaction using the MS standard. This
feature prevents malicious nodes from tampering with the transaction by requiring a
minimum number of signatures to match the corresponding public keys.

The condition for a valid MS is that a minimum of |P| signatures must match
|Q| public keys. This approach ensures that all transactions are authorised by the
appropriate parties and that no unauthorized transactions can be executed.

To further simplify the encoding process, we use the Base 58 encoding standard
[46] to encode the script under the P2SH transaction standard. This approach reduces
the complexity of encoding the script, making it easier for prosumers to execute
transactions in a timely and efficient manner.

6.4.2.3 Address Generation

The authenticity of transactions is guaranteed by generating a unique address for
each prosumer’s account using a public-private key pair. The public key is generated
from the private key, and then used to generate the public key hash, which serves as
the unique address for the account.
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Figure 6.15 Flowchart of procedures for generating address of an account.

To ensure the security of the account address, the encryption process uses the
SHA256 algorithm, which is a one-way cryptographic hash function that makes it
irreversible. This means that given the public key or address, the private key cannot
be decrypted, ensuring that each account is secure and tamper-proof.

By using public-private key pairs and the SHA256 algorithm, our blockchain-
based, peer-to-peer energy trading system ensures that each account is authentic and
secure. This approach provides a robust platform for energy and carbon trading that
benefits both prosumers and the environment.

The procedures for generating address of an account are shown in Figure 6.15,
with details described as follows:

• Step 1 : A fixed-length private key is randomly generated using a crypto-
graphic random number generator. This private key is then used to generate
a corresponding public key using the elliptic curve digital signature algorithm,
secp256k1 [47], from the asymmetric cryptography. This public key serves as a
unique identifier for the prosumer’s account.

• Step 2 : According to the transaction standard P2SH, a redeem script is en-
crypted to generate a script hash through using the SHA256 and RIPEMD160
hash functions. This script hash is used to encode the transaction script, en-
suring the security and authenticity of each transaction.

• Step 3 : To ensure the validity and avoid typographical errors in the script, the
result of double SHA256 is truncated to the first four bytes to generate a check-
sum. The version number and checksum are then concatenated with the hash
of the script using the Base58 encoding standard to generate a unique address
for the prosumer’s account. This address serves as a secure and tamper-proof
identifier for the prosumer’s account, and is used in all transactions conducted
within the system.
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By using a public-private key pair and the P2SH transaction standard, our
blockchain-based, peer-to-peer energy trading system ensures the security and au-
thenticity of all transactions, while providing a robust platform for energy and carbon
trading that benefits both prosumers and the environment.

6.4.3 Energy and Carbon Markets Coupling Theory

This subsection outlines the trading procedure for the proposed blockchain-based
peer-to-peer energy and carbon markets. Unlike conventional markets, which require
a central authority to match bids and offers and publish unique market clearing prices,
the decentralised feature of blockchain technology allows prosumers to flexibly choose
offers and conduct transactions directly with each other.

In addition, our proposed system incorporates the coupled emission trading mech-
anism, enabling incentive mechanisms to be applied to the trading process for carbon
mitigation in the consumption side. This provides a more comprehensive approach to
energy and carbon trading, encouraging prosumers to reduce their carbon footprint
and promoting a more sustainable energy system.

To illustrate the trading procedure, we assume a peer-to-peer trading system for
current transactions, and use G,K,U, V to denote the sets of energy sellers, energy
buyers, carbon allowance sellers, and carbon allowance buyers, indexed by g, k, u, v,
respectively, where g, k, u, v ∈ N . Prosumers can participate in the trading process by
submitting their offers, which are then made available for other prosumers to review
and accept.

Once a prosumer has found an offer they wish to accept, they can initiate a trans-
action using the standard transaction protocol, as described in earlier sub-sections.
The transaction is then broadcast over the blockchain network, where it is verified
and validated by other nodes in the network. Upon successful validation, the en-
ergy and/or carbon allowance is transferred from the seller’s account to the buyer’s
account, completing the transaction.

Through this peer-to-peer trading procedure, prosumers have more control over
their energy and carbon trading, enabling them to choose the most suitable offers
and participate in a more sustainable energy system. By incorporating the incen-
tive mechanism for carbon mitigation, our proposed system encourages prosumers
to reduce their carbon footprint, promoting a more environmentally-friendly energy
market.

The detailed trading procedures are explained as follows:

• Step 1: The trading process begins with the generation of unique addresses for
each of the parties involved in the transaction, including the energy seller Ag,
energy buyer Ak, carbon allowance seller Au, and carbon allowance buyer Av.

• Step 2: The energy buyer k announces their intended energy demand Ek and
their bid πk along with their address Ak to the blockchain network for verifica-
tion of token ownership. The overall energy demand of the network is increased
by the sum of all announced energy demands

∑K
k=1 Ek. Encrypted information
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key pairs for broadcasting include

Ik,1 = hash{Rscriptk|Ek|πk|timestamp}, (6.40)

and
Ik,2 = hash{Ik,1|δk}, (6.41)

where Ik,1 is a static key for verifying the ownership of tokens, Rscriptk is the
redemption script of buyer k, and δk is a random number for generating Ik,2.

• Step 3: The system servers perform power flow tracing, carbon flow tracing,
and reduction incentive calculation as introduced in Section 6.3. The required
carbon allowances Cn and the amount of monetary compensation Mn are quan-
tified and transmitted to the specific prosumer n.

• Step 4: The carbon allowance buyer v announces their required allowances Cv

and their bid πv along with its address to the blockchain network. Encrypted
information key pairs include

Iv,1 = hash{Rscriptv|Cv|πv|timestamp}, (6.42)

and
Iv,2 = hash{Iv,1|δv}. (6.43)

• Step 5: The energy and carbon allowance sellers announce their intended sup-
plies Eg and Cu, respectively, along with their offers πg and πu and their ad-
dresses to the blockchain network for verification. Encrypted information key
pairs include

Ig,1 = hash{Rscriptg|Eg|πg|timestamp}, (6.44)
or

Iu,1 = hash{Rscriptu|Cu|πu|timestamp}, (6.45)
and

Ig,2 = hash{Ig,1|δg}, (6.46)
or

Iu,2 = hash{Iu,1|δu}. (6.47)
The keys are used as locks that can only be unlocked by the senders and re-
ceivers’ identities to prevent double spending of tokens or energy and carbon
allowances.

• Step 6: The system servers update the database of the offers π′
u and bids π′

v of
carbon allowances by adding the monetary compensation to the sellers’ original
offers and the buyers’ original bids, such that

π′
u = πu +Mu, (6.48)

and
π′

v = πv −Mv, (6.49)
before sorting them in sequence and publishing them to the auction board.
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• Step 7: The buyers receive a list of filtered offers and corresponding addresses
relevant to their queries by conditions: Eg ≥ Ek (or Cu ≥ Cv), and select
potential suppliers.

• Step 8: Each of the potential suppliers opens a transmission channel and feeds
energy into the peer-to-peer network, before generating MS redemption scripts
to note the amount and receivers. Upon receiving the redemption scripts, the
buyers hash them and specify purchasing tokens. These MS transactions are
broadcast to all nodes of networks for signing. If the signature script matches
P2SH address, the transaction are validated by networks to transfer the own-
ership.

6.4.4 Case Studies

Case studies have been conducted to demonstrate the performance of the proposed
trading scheme. Proposed scheme is applied in adjusted IEEE 14-bus test system
which consists of 7 prosumers with DRESs including 4 solar, 2 wind, 1 biomass, and
4 vehicle-to-grid. The proposed peer-to-peer energy and carbon trading scheme has
been evaluated through case studies, in which the scheme is implemented on the ad-
justed IEEE 14-bus test system. This test system is composed of 7 prosumers with
distributed renewable energy sources, including 4 solar panels, 2 wind turbines, 1
biomass, and 4 vehicle-to-grid. These prosumers are assumed to be able to partici-
pate in the energy and carbon markets, either as buyers or sellers, and are expected
to optimise their profits while meeting their energy demands and carbon emission
reduction targets.

The case studies aim to evaluate the performance of the proposed trading scheme
in terms of its ability to achieve efficient energy and carbon trading among prosumers,
as well as to evaluate the accuracy and security of the proposed blockchain-based sys-
tem. The simulation results will demonstrate the effectiveness of the proposed scheme
in achieving carbon emission reduction and improving energy efficiency in a decen-
tralised system, as well as in ensuring the privacy and security of the transactions.

6.4.5 Evaluation of Decentralised Trading Scheme

To evaluate the performance of the proposed fully decentralised peer-to-peer energy
and carbon trading scheme, a comparison with conventional centralised trading was
conducted in terms of environmental, economic, and security benefits. The results of
the performance evaluation are presented in TABLE 6.2. The cost coefficients for each
of the sources were multiplied with the power generation to evaluate the generating
costs. The net carbon emissions were evaluated using the same method in Section 6.3.
Power flow analysis was performed to obtain the transmission loss. The comparison
showed that the decentralised trading system outperforms the centralised trading
system in all dimensions, particularly in cost and carbon emissions reduction. Despite
the fact that the power flow is not optimised in the peer-to-peer trading system,
the transmission loss is still reduced as peers prefer to trade with neighbourhoods
considering costs of using power grids.
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Table 6.2 Multi-criteria evaluation of environmental, economic, and security benefits
for proposed fully decentralised peer-to-peer energy and carbon trading scheme and
conventional centralised trading

Cost [£] Net Carbon Emissions (kg) Transmission Loss (kW)
Centralised
Trading

331.63 104.84 302.78

Decentralised
Peer-to-Peer
Trading

142.98 42.23 298.13

The initial carbon allowances were distributed based on the carbon intensities of
the prosumers. When their energy behaviours cause a positive net carbon emissions,
they will purchase carbon allowances for the next half hour. The distribution of gener-
ation carbon emissions, transmission and distribution carbon emissions, consumption
carbon emissions, net carbon emissions, carbon allowances, and compensation for 11
prosumers in half-hour intervals are presented in Figure 6.16. Each column represents
the distribution of carbon emissions and monetary compensation in the peer-to-peer
networks. The dark colour indicates a lower value, whereas the bright colour repre-
sents a higher value. The distribution of localized carbon emissions caused by energy
behaviours in the blockchain network is reflected in this figure, and a fair allocation
of monetary compensation can be formulated.

The proposed peer-to-peer energy and carbon trading system not only offers en-
vironmental and economic benefits but also ensures high levels of security and resi-
dential privacy. The use of encrypted residential addresses guarantees that only the
trading type and amount can be traced and reviewed by the blockchain network,
preventing any potential leakage of sensitive information. Moreover, the P2SH trans-
action standard with multi-signature effectively prevents double spending of tokens,
carbon allowances, and energy, providing a more secure and reliable trading plat-
form compared to the conventional centralised trading system. This robust security
framework ensures the trust and confidence of prosumers in the blockchain network,
encouraging their active participation and contribution towards a sustainable and
efficient energy future.

6.4.5.1 Peer-to-Peer Trading

The data related to each transaction, including the encrypted trading addresses, trad-
ing type, and trading amount, are stored in the data cell of that particular transaction.
An example of available bids and offers involving the proposed monetary incentive
mechanism for the second settlement period is presented in TABLE 6.3. These bids
and offers are published in the trading platform for participants to select from. Only
participants who produce a positive net carbon emissions are allowed to participate
in the carbon allowances trading, as their energy behaviours are the direct source of
carbon emissions.
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Figure 6.16 The distributions of generation carbon emissions (a), transmission and dis-
tribution carbon emissions (b), consumption carbon emissions (c), net carbon emis-
sions (d), carbon allowances (e), and compensation (f) for 11 prosumers.The x axes
denote each half-hour settlement period and y axes denote the number of peers or
branches.

It is worth noting that the proposed monetary incentive mechanism enables pro-
sumers to make more informed decisions when bidding or offering. As can be seen in
Table 6.3, carbon allowances seller 10 provides a larger amount of allowance surplus
than seller 7, but still has a lower offering price due to a higher monetary compen-
sation. This shows that the proposed incentive mechanism can encourage sellers to
provide more allowances at a lower cost, ultimately resulting in a more cost-effective
and environmentally friendly trading scheme. Furthermore, the encrypted trading
addresses ensure that only the trading type and amount can be traced and reviewed
by the network, guaranteeing security and residential privacy. The use of the P2SH
transaction standard with multi-signature also effectively prevents double spending of
tokens, carbon allowances, and energy, further enhancing the security of the trading
platform compared to a centralised trading system.
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Table 6.4 Blockchain structure for peer-to-peer trading
Timestamp: t1; Block index: 0; nonce: [];Genesis Block
SelfHash: ’075c27741a3506846368fa6e5b3477f85b31ceee71a5716e2’
Timestamp: t2;Block index: 1;nonce: 224
Data:{Sender: ’7b2891454769d57605dcfceaa9967121’
Receiver: ’c9c940aec3ad22d7527863ecfc4cfc7c’
Type: ’Carbon Allowances’; Amount: 216 }
PreviousHash: ’075c27741a3506846368fa6e5b3477f85b31ceee71a5716e2’
SelfHash: ’00c8091e1a5055e933f8498c6095ad44’

The process of trading and block generation in the proposed fully decentralised
peer-to-peer energy and carbon trading scheme is presented in Table 6.4. As an
example, the first two blocks are described in detail. The first block is a genesis block
that does not contain any trading information.

In this trading system, buyers select sellers based on the lowest price principle.
For instance, carbon allowances buyer 10 has two options:

• To purchase all 216 g of carbon allowances from seller 10 at a price of 0.0302
GBP/kg;

• To purchase 173 g of carbon allowances from seller 7 at a price of 0.0297 GBP/kg
and 43 g from seller 10 at a price of 0.0309 GBP/kg.

Based on these options, buyer 10 will choose the first option and purchase all the
carbon allowances from seller 10 at a price of 0.0302 GBP/kg.

Unlike a reputation-based trading system, all offers and bids are available for
participants in the proposed scheme, and incentives are included without any market
intervention. The trading and block generation procedures are fully automated and
transparent, providing a fair and efficient trading platform.

In this system, once a trade is confirmed, a new block is generated and added to
the blockchain. The encrypted information of trading addresses, trading type, and
trading amount is stored in the data cell of each transaction, providing a secure and
private trading platform. All nodes in the blockchain network collectively verify each
transaction using MS, ensuring that double spending of tokens, carbon allowances,
and energy is prevented.

Thus, the proposed fully decentralised peer-to-peer energy and carbon trading
scheme offers significant advantages over traditional centralised trading systems, such
as lower costs, reduced carbon emissions, improved security, and greater residential
privacy. The availability of all offers and bids, along with the inclusion of incentives,
creates a fair and transparent trading platform that benefits all participants.

6.4.6 Research Summary

This example research presents a blockchain-based peer-to-peer trading scheme that
addresses the challenges posed by the integration of distributed renewable energy
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sources in traditional energy and carbon markets. The proposed scheme couples
energy and carbon markets by using a carbon accounting method to evaluate the
emission behaviours of prosumers, and a monetary compensation mechanism to in-
centivise carbon reduction. By doing so, the scheme encourages the localised energy
and carbon emissions to be involved, resulting in a more efficient and sustainable
trading process.

The proposed scheme leverages the decentralised features of blockchain to pro-
mote cost and carbon emissions reductions in a more secure and privacy-preserving
manner. The use of P2SH with MS ensures that the double-spending attacks are pre-
vented and residential privacy is maintained. Compared to centralised systems, the
decentralised trading scheme promotes more reductions in costs and carbon emissions.

As a future direction, the effects of the proposed trading scheme on the long-
term investment of low-carbon technologies should be investigated. By doing so, the
proposed scheme can play a crucial role in incentivising the deployment of low-carbon
technologies and promoting a sustainable energy and carbon market.

Bibliography

[1] C. Zhang, J. Wu, Y. Zhou, M. Cheng, and C. Long, “Peer-to-peer energy trading
in a microgrid,” Applied Energy, vol. 220, pp. 1–12, 2018.

[2] Z. Liu, Q. Wu, S. Huang, and H. Zhao, “Transactive energy: A review of state of
the art and implementation,” 2017 IEEE Manchester PowerTech, pp. 1–6, 2017.

[3] D. Frieden, A. Tuerk, C. Neumann, S. d’Herbemont, and J. Roberts, “Collective
self-consumption and energy communities: Trends and challenges in the trans-
position of the eu framework,” COMPILE Consortium: Novo mesto, Slovenia,
2020.

[4] C. Long, J. Wu, Y. Zhou, and N. Jenkins, “Peer-to-peer energy sharing through
a two-stage aggregated battery control in a community microgrid,” Applied En-
ergy, vol. 226, pp. 261–276, 2018.

[5] T. Morstyn, N. Farrell, S. J. Darby, and M. D. McCulloch, “Using peer-to-
peer energy-trading platforms to incentivize prosumers to form federated power
plants,” Nature Energy, vol. 3, no. 2, pp. 94–101, 2018.

[6] T. Morstyn, A. Teytelboym, and M. D. McCulloch, “Bilateral contract networks
for peer-to-peer energy trading,” IEEE Transactions on Smart Grid, vol. 10,
no. 2, pp. 2026–2035, 2018.

[7] W. Hua, Y. Chen, M. Qadrdan, J. Jiang, H. Sun, and J. Wu, “Applications
of blockchain and artificial intelligence technologies for enabling prosumers in
smart grids: A review,” Renewable and Sustainable Energy Reviews, vol. 161, p.
112308, 2022.



258 ■ Blockchain and Artificial Intelligence Technologies for Smart Energy Systems

[8] D. Li, W. Peng, W. Deng, and F. Gai, “A blockchain-based authentication and
security mechanism for iot,” in 2018 27th International Conference on Computer
Communication and Networks (ICCCN). IEEE, 2018, pp. 1–6.

[9] D. Kirli, B. Couraud, V. Robu, M. Salgado-Bravo, S. Norbu, M. Andoni,
I. Antonopoulos, M. Negrete-Pincetic, D. Flynn, and A. Kiprakis, “Smart con-
tracts in energy systems: A systematic review of fundamental approaches and im-
plementations,” Renewable and Sustainable Energy Reviews, vol. 158, p. 112013,
2022.

[10] Y. Zhou, A. N. Manea, W. Hua, J. Wu, W. Zhou, J. Yu, and S. Rahman, “Ap-
plication of distributed ledger technology in distribution networks,” Proceedings
of the IEEE, 2022.

[11] W. Hua, J. Jiang, H. Sun, F. Teng, and G. Strbac, “Consumer-centric decar-
bonization framework using stackelberg game and blockchain,” Applied Energy,
vol. 309, p. 118384, 2022.

[12] E. D. Zamani and G. M. Giaglis, “With a little help from the miners: dis-
tributed ledger technology and market disintermediation,” Industrial Manage-
ment & Data Systems, vol. 118, no. 3, pp. 637–652, 2018.

[13] W. Hua and H. Sun, “A blockchain-based peer-to-peer trading scheme coupling
energy and carbon markets,” in 2019 International Conference On Smart Energy
Systems and Technologies (SEST). IEEE, 2019, pp. 1–6.

[14] S. Rahmadika, D. R. Ramdania, and M. Harika, “Security analysis on the de-
centralized energy trading system using blockchain technology,” Jurnal Online
Informatika, vol. 3, no. 1, pp. 44–47, 2018.

[15] F. A. Khan, M. Asif, A. Ahmad, M. Alharbi, and H. Aljuaid, “Blockchain tech-
nology, improvement suggestions, security challenges on smart grid and its ap-
plication in healthcare for sustainable development,” Sustainable Cities and So-
ciety, vol. 55, p. 102018, 2020.

[16] C. Greer, D. A. Wollman, D. Prochaska, P. A. Boynton, J. A. Mazer, C. Nguyen,
G. FitzPatrick, T. L. Nelson, G. H. Koepke, A. R. Hefner Jr et al., “Nist frame-
work and roadmap for smart grid interoperability standards, release 3.0,” 2014.

[17] S. J. Pee, E. S. Kang, J. G. Song, and J. W. Jang, “Blockchain based smart
energy trading platform using smart contract,” in 2019 International Conference
on Artificial Intelligence in Information and Communication (ICAIIC). IEEE,
2019, pp. 322–325.

[18] W. Hua, J. Jiang, H. Sun, and J. Wu, “A blockchain based peer-to-peer trading
framework integrating energy and carbon markets,” Applied Energy, vol. 279, p.
115539, 2020.



Bibliography ■ 259

[19] L. Thomas, Y. Zhou, C. Long, J. Wu, and N. Jenkins, “A general form of smart
contract for decentralized energy systems management,” Nature Energy, vol. 4,
no. 2, pp. 140–149, 2019.

[20] M. L. Di Silvestre, P. Gallo, M. G. Ippolito, E. R. Sanseverino, and G. Zizzo, “A
technical approach to the energy blockchain in microgrids,” IEEE Transactions
on Industrial Informatics, vol. 14, no. 11, pp. 4792–4803, 2018.

[21] Y. Li, W. Yang, P. He, C. Chen, and X. Wang, “Design and management of
a distributed hybrid energy system through smart contract and blockchain,”
Applied Energy, vol. 248, pp. 390–405, 2019.

[22] M. Mihaylov, S. Jurado, N. Avellana, K. Van Moffaert, I. M. de Abril, and
A. Nowe, “NRGcoin: Virtual currency for trading of renewable energy in
smart grids,” in 11th International conference on the European energy market
(EEM14). IEEE, 2014, pp. 1–6.

[23] S. Saxena, H. E. Farag, H. Turesson, and H. Kim, “Blockchain based transac-
tive energy systems for voltage regulation in active distribution networks,” IET
Smart Grid, vol. 3, no. 5, pp. 646–656, 2020.

[24] S. Myung and J.-H. Lee, “Ethereum smart contract-based automated power
trading algorithm in a microgrid environment,” The Journal of Supercomputing,
vol. 76, no. 7, pp. 4904–4914, 2020.

[25] K. N. Khaqqi, J. J. Sikorski, K. Hadinoto, and M. Kraft, “Incorporating sell-
er/buyer reputation-based system in blockchain-enabled emission trading appli-
cation,” Applied energy, vol. 209, pp. 8–19, 2018.

[26] Y. Pan, X. Zhang, Y. Wang, J. Yan, S. Zhou, G. Li, and J. Bao, “Application of
blockchain in carbon trading,” Energy Procedia, vol. 158, pp. 4286–4291, 2019.

[27] A. Richardson and J. Xu, “Carbon trading with blockchain,” in Mathemati-
cal Research for Blockchain Economy: 2nd International Conference MARBLE
2020, Vilamoura, Portugal. Springer, 2020, pp. 105–124.

[28] Q. Tang and L. M. Tang, “Toward a distributed carbon ledger for carbon emis-
sions trading and accounting for corporate carbon management,” Journal of
Emerging Technologies in Accounting, vol. 16, no. 1, pp. 37–46, 2019.

[29] W. Seward, W. Hua, and M. Qadrdan, “Electricity storage in local energy sys-
tems,” Microgrids and Local Energy Systems, vol. 1, p. 127, 2021.

[30] J. K. Boyce, “Carbon pricing: effectiveness and equity,” Ecological Economics,
vol. 150, pp. 52–61, 2018.

[31] M. Swan, Blockchain: Blueprint for a new economy. “O’Reilly Media, Inc.”,
2015.



260 ■ Blockchain and Artificial Intelligence Technologies for Smart Energy Systems

[32] V. Buterin et al., “A next-generation smart contract and decentralized applica-
tion platform,” white paper, vol. 3, no. 37, 2014.

[33] C. Dannen, Introducing Ethereum and solidity. Springer, 2017, vol. 1.

[34] C. Kang, T. Zhou, Q. Chen, J. Wang, Y. Sun, Q. Xia, and H. Yan, “Carbon
emission flow from generation to demand: A network-based model,” IEEE Trans-
actions on Smart Grid, vol. 6, no. 5, pp. 2386–2394, 2015.

[35] J. W. Bialek and P. A. Kattuman, “Proportional sharing assumption in tracing
methodology,” IEE Proceedings-Generation, Transmission and Distribution, vol.
151, no. 4, pp. 526–532, 2004.

[36] S. D. Commission et al., “Lost in transmission?: the role of ofgem in a changing
climate,” 2007.

[37] J. Aldersey-Williams and T. Rubert, “Levelised cost of energy–a theoretical jus-
tification and critical assessment,” Energy policy, vol. 124, pp. 169–179, 2019.

[38] M. Wohrer and U. Zdun, “Smart contracts: security patterns in the ethereum
ecosystem and solidity,” in 2018 International Workshop on Blockchain Oriented
Software Engineering (IWBOSE). IEEE, 2018, pp. 2–8.

[39] D. Vujicic, D. Jagodic, and S. Randic, “Blockchain technology, bitcoin, and
ethereum: A brief overview,” in 2018 17th international symposium infoteh-
jahorina (infoteh). IEEE, 2018, pp. 1–6.

[40] D. Li, W.-Y. Chiu, H. Sun, and H. V. Poor, “Multiobjective optimization for
demand side management program in smart grid,” IEEE Transactions on In-
dustrial Informatics, vol. 14, no. 4, pp. 1482–1490, 2017.

[41] A. Gervais, G. O. Karame, K. Wust, V. Glykantzis, H. Ritzdorf, and S. Capkun,
“On the security and performance of proof of work blockchains,” in Proceedings
of the 2016 ACM SIGSAC conference on computer and communications security,
2016, pp. 3–16.

[42] N. Z. Aitzhan and D. Svetinovic, “Security and privacy in decentralized en-
ergy trading through multi-signatures, blockchain and anonymous messaging
streams,” IEEE Transactions on Dependable and Secure Computing, vol. 15,
no. 5, pp. 840–852, 2016.

[43] G. O. Karame, E. Androulaki, and S. Capkun, “Double-spending fast payments
in bitcoin,” in Proceedings of the 2012 ACM conference on Computer and com-
munications security, 2012, pp. 906–917.

[44] X. Yang, W. F. Lau, Q. Ye, M. H. Au, J. K. Liu, and J. Cheng, “Practical
escrow protocol for bitcoin,” IEEE Transactions on Information Forensics and
Security, vol. 15, pp. 3023–3034, 2020.



Bibliography ■ 261

[45] R. Matzutt, J. Hiller, M. Henze, J. H. Ziegeldorf, D. Mullmann, O. Hohlfeld,
and K. Wehrle, “A quantitative analysis of the impact of arbitrary blockchain
content on bitcoin,” in Financial Cryptography and Data Security: 22nd Interna-
tional Conference, FC 2018, Nieuwpoort, Curacao, February 26–March 2, 2018,
Revised Selected Papers 22. Springer, 2018, pp. 420–438.

[46] S. Zhai, Y. Yang, J. Li, C. Qiu, and J. Zhao, “Research on the application of
cryptography on the blockchain,” in Journal of Physics: Conference Series, vol.
1168, no. 3. IOP Publishing, 2019, p. 032077.

[47] W. Bi, X. Jia, and M. Zheng, “A secure multiple elliptic curves digital signature
algorithm for blockchain,” arXiv preprint arXiv:1808.02988, 2018.



Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


C H A P T E R 7

Cyber Physical System
Modelling for Energy
Internet

T his chapter introduces the cyber phyisical system (CPS) modelling method for
Energy Internet. A detailed review is performed in Section 7.1, which includes

typical CPS modelling methods for the sub-systems involved in Energy Internet. The
multi-vector energy system (MVES) is described in Section 7.2, which represents a
typical energy internet system. Specifically, the MVES is modelled using the CPS
modelling method, where the integration of artificial intelligence (AI) has been in-
vestigated.

7.1 REVIEW OF CYBER PHYSICAL SYSTEM MODELLING METHODS

The future energy system is expected to help reduce carbon emissions and improve
energy efficiencies. To achieve these goals, the energy system is becoming smarter
with the integration of different sub-systems. In the future energy system, both energy
flows and information flows will be of similar importance to its successful operations.
This has also inspired the new vision of the energy system as the energy internet,
which resembles the internet for the computer networks.

On the one hand, the energy system is becoming more versatile in monitoring and
controls with the support of smart devices and the application of advanced technolo-
gies. On the other hand, the system model is becoming more complicated with the
deep integration among the sub-systems. These tight coupling effects are beyond in-
dividual sub-systems, where any involved physical devices and the cyber components
could be mutually dependent. Existing modelling methods based on single systems
are hard to address the new challenges, where a new modelling method called CPS
modelling method has shown great potentials. In this part, the CPS modelling will
be reviewed from the aspect of the ICT system, the energy system, and the hybrid
modelling aspect, which are detailed as follows.
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7.1.1 ICT-Based CPS Modelling

In modern energy systems, the ICT system is becoming a critical sub-system to
support the real-time data exchange across the system. For a typical ICT system, it
consists of both hardware devices and software algorithms. Therefore its integration
in energy systems can be regarded as an extension with respect to both hardware
and software. In this way, the CPS model can be adapted based on the existing ICT
models, while the state-of-the-art research methods and outcomes could be exploited.
On the other hand, the ICT system and the CPS are facing some common challenges,
such as the cybersecurity challenge.

In this part, the ICT-based CPS modelling will be reviewed from two aspects. The
first one is the ICT for CPS, where the CPS model extended based on ICT models
will be reviewed. The second one is the cybersecurity for CPS, where the common
cybersecurity studies between ICT system and CPS will be reviewed.

7.1.1.1 ICT for CPS

It has been noticed that the traditional ICT system is sharing many similarities to
the CPS concept. One typical example is the wireless sensor networks (WSNs). The
WSNs exploit sensors to interact with the physical environment, where the network
configuration and information exchange method can be dynamically optimized via
algorithms. With years of development, the sensors in the WSNs are now referring
to a wide range of sensing technologies, such as

• environmental sensors, e.g., oxygen gas monitors and carbon monoxide detec-
tors.

• vehicle information sensors, e.g., mobile magnetometers.

• bio-signal sensors, e.g., oximeters.

• location sensors, e.g., the Global Positioning System (GPS) trackers.

• inertial sensors, e.g., accelerometer sensors.

• power system sensors, e.g., Phasor Measurement Units (PMUs).

It is not surprising that these sensors are also key components of many CPS
models, and this provides the foundation of the similarity between WSNs and CPSs.
Actually if based on the broad definition, the WSN can be also regarded as a special
case of the CPS, while the focus is much narrowed down to the ICT system only.

There are several key differences between WSNs and CPSs, which can be sum-
marized as follows:

• Information Flow: in WSN models, the information flow is usually directional
from the edge of the network to the information centre. This is because the
WSN is mainly used to monitor and acquire knowledge of the environment. In
CPS models, the system can be bi-directional, i.e., the information flow could
be two-way. This is because the physical devices in the CPS models are not
confined to sensors, while there might be also devices for controls.
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• Performance Requirement: in WSN models, the most concerned performance
indicators are energy savings. This is because a common target application
scenario for WSNs are the sensors to be powered by batteries. Usually, the
batteries are with constrained energies, and the nodes in the WSNs is with
different power consumption performances depending on their tasks. On the
contrary, in CPS models, the end performances such as the latency, throughput
and reliability of the ICT network are more focused, since these factors have
great impacts on the performance of the physical devices.

• Network Topology: in WSN models, the topology of the network is normally
homogeneous, where the application scenario is usually dedicated to one ge-
ographical area. On the contrary, the CPS models are usually involving the
interactions between different systems, where the sensors, actuators, or con-
trollers may not collocate at the same place. The networks might need to be
tailored for different sub-scenarios, which would normally lead to a heteroge-
neous architecture.

Note that the above differences are just in a general sense, where the boundaries
could be blurred in some cases. For example the extended notion of Wireless Sensor
and Actuator Networks, which further includes the actuators as part of the network.
In energy systems, the WSN is also widely used to study some sensing-based appli-
cation scenarios. For example, in the study of wind energy systems, the WSN can be
used to monitor the wind turbines in a real-time manner [1], or help to reach some
extreme environment such as the offshore wind farms [2]. A comprehensive review
regarding the CPS and WSN is provided in [3].

7.1.1.2 Cyber Security for CPS

One key feature of the CPS is that it is the integration of both cyber components
and physical devices. Due to the fact that the cyber components and the physical
devices are coupled, the security breach of either the cyber networks might impact
the physical systems, and vice versa. To ensure CPS security, it requires efforts from
the aspects of both the cyber networks and the physical systems. In the following
part, we will review the potential attacking methods in the CPS as well as their
corresponding countermeasures.

Based Attacks and Countermeasures Modern cryptography provides another dimen-
sion to improve cybersecurity. By encrypting the data instead of using plain text, the
information security can be hard to be deciphered by the adversary. This is usually
at the cost of extra complexity to the system, but it can help preserve the privacy of
contained information even if the attacker has obtained the encrypted data.

Many cryptographic operations are supported by hardware solutions, where the
commonly available methods are listed as follows [4].

• Hash

• Pseudo-random number generators
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• Symmetric encryption, e.g. Advanced Encryption Standard (AES)

• Asymmetric encryption, e.g. Rivest-Sharmir-Adleman (RSA), Paillier, EI
Gamal

• Elliptic curve cryptography

Based on the hardware/software based cryptography support from individual
smart devices, more advanced privacy-preserving schemes have been proposed to
support the CPS architecture.

• Homomorphic Encryption and Secret Sharing [5]

• Masking and Brute Forcing [6], Masking and Differential Privacy [7]

• Modified Homomorphic Encryption [8]

• Policy-based Data Sharing [9]

• Local differentially private high-dimensional data publication [10]

User Based Attacks and Countermeasures The various users are also critical vulner-
able parts of the CPS. Although technically the CPS consists of cyber and physical
components, the system is designed to serve for people and managed by people.
Therefore an adversary can target at the users with access to the system to fulfill the
cyber attack to the whole system. The common attacking methods include malware,
phishing email, ransomware and cryptojacking [11].

Although cybersecurity is already widely aware, the campaign by National Cyber
Security Center showed that 14 out of 1800 malicious emails still successfully triggered
the malware installation [12]. Depending on the user’s role in the system, the attack
can result from mild privacy leakage of individual users to a grid-wide blockage.

The most well-known example is the malware attack on the Ukrainian power
grid [13], where the Ukrainian power distribution company was attacked after users
opened a malware-rigged attachment in a phishing email. The attackers exploited
and committed a series of attacks on the Ukrain power grid, including uploading
malicious frameworks at substations, stealing user information and obtaining VPN
credentials.

It worth noticing that with the boosting of smart devices, new attacking methods
are widely reported targeting at the user’s mobile operating system [14]. Especially
for the CPS, many smart devices such as smart meters, home gateways and con-
trollers are providing mobile access/control methods to the appliances. The main
countermeasures are from two aspects, namely the analysis of the application it-
self via untrusted application analysis [15] [16] [17] and monitoring the suspicious
behaviours via continuous runtime monitoring [18] [19] [20].
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Table 7.1 A Communication Protocol layer view of the potential attacks and counter-
measures

Layer Attack Method
Application Layer Repudiation [24], incomplete information [25], false information [26]
Transport layer Session hijacking [27], SYN flooding [27]
Network layer Wormhole [28], blackhole [29], grayhole [30], Byzantine [31], On-off
MAC layer Traffic monitoring [33], disruption MAC [34]
Physical layer DoS [35], Spoof-jamming [36], eavesdropping [37]

Communication Network-based Attacks and Countermeasures The advanced com-
munication technologies not only enable the CPS smarter, but also introducing more
vulnerable components that can lead to cyber attacks. The communication system
based cyber attacks are gaining more attentions with the growing real-world attack
incidents. Typical examples are the Distributed Denial of Service (DDoS) in Austrian
and German power grid [21], where a mistakenly transmitted test command induced
cascaded disaster in the control network and resulted in the power grid nearly knock
down.

Due to the layered design of the communication systems, both wired and wireless
communication systems are prone to the application layer and network layer attacks.
Due to the broadcasting nature of the wireless signal, the wireless communication
systems are also prone to the MAC layer and Physical layer attacks. The typical
attacks and their corresponding countermeasures on the communication networks
can be generally categorized according to its targeted communication protocol layer
as illustrated in Table 7.1 [22][23].

Physical Devices Based Security The physical devices such as sensors, controllers,
aggregators, servers are subject to both physical security and cybersecurity chal-
lenges. The traditional physical security issues are theft, intrusion and vandalism,
while it has been observed an increase of new challenges due to emerging technolo-
gies. For example, the surveillance incidents by unauthorised drones occupied 16.4%
of the total reported physical security issues [38].

Moreover, these physical devices are also key access points to the whole CPS,
whose functionally completeness is serving as an important precondition to the de-
pendent cybersecurity. Specifically, five main key aspects are identified as the neces-
sary cybersecurity requirements for the physical devices, which are briefed as follows
[39] [40]:

• Access control: The access privileges should be differentiated and the smart
devices should be able to check them for the access. This ensures the data access
request is appropriate to its functional purpose and enables hierarchical data
protection schemes.

• Privacy: The private information, e.g. user identity and location, should be
protected by the smart devices. This includes preventing excessive collection of
user information and making sensitive information anonymous.
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• Authentication and identification: To get access to the CPS, the devices
should be able to establish the identity of itself and provide the proof of this
identity to the other system participants. In the meantime, the device should
also possess the ability to verify the provided identity.

• Integrity: When handling (e.g. transmitting, receiving and caching) data, the
smart device should be able to check the integrity of the data, i.e. the data are
genuine and not modified.

• Non-repudiation: The operation history of the smart devices should be able
to be audited. The smart device itself should be prevented from denying the
truth of its involvement in any activity.

7.1.2 Energy System-Based CPS Modelling

The future energy system is deemed to be an integrated system, which can be pre-
dicted based on the trend of fusion with advanced technologies across different re-
search areas. Some existing energy system models have already integrated the other
sub-systems, such as the ICT systems, which can be further extended to the more
comprehensive CPS models.

Modelling based on Supervisory Control And Data Acquisition (SCADA) A typi-
cal example is the modelling based on Supervisory Control And Data Acquisition
(SCADA). The Supervisory Control And Data Acquisition (SCADA) systems de-
scribe the system from a control system architecture, which consists of computers
for control signal processing, communication networks for data transmissions, and
remote terminal units for access of the sensors and actuators. It is widely used in en-
ergy system application scenarios, including the electric power transmission domains
and distribution domains.

The SCADA system is also evolving with the integration of new technologies
in both energy systems and ICT systems. For example, the authors in [41] studied
the harmonic impact of a large solar farm in a utility distribution system, whose
measurements are fulfilled by SCADA. While in [42], the application of SCADA
system for general remote control and observations was studied, where the energy
systems with renewable energy resources, such as wind farms, solar farms, and fuel
cells, were considered.

From the viewpoint of ICT systems, the SCADA is a framework that many new
technologies can be integrated. This is due to the fact that SCADA is applying a high-
level description for the ICT systems. For example, the IEC 61850 standard describes
the data model and the performance requirements, where it can be implemented with
a wide range of communication systems, ranging from TCP/IP via wired networks,
to the WiFi networks [43].

The CPS modelling based on SCADA system could be straightforward. The ICT
devices and the electric power system devices are the physical part of the CPS, while
the data links and the control signal processing systems form the cyber networks. For
example, the authors in [44] characterized the SCADA system as an ICT model, and
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the power system was modelled via DIgSILENT Power Factory. Then the interactions
between the physical devices and the cyber components are modelled as a CPS, where
a co-simulation testbed was built based on MATLAB Simulink.

ICT impacts on Energy System Reliability is one of the key performances in the
energy system. The traditional analytical framework was for the energy systems,
e.g., the transient analysis and steady state analysis for the electric power systems.
Even though some models consider the ICT system as comprising components, it
usually assumes a perfect ICT system with no errors or faults.

This assumption might be reasonable for some applications, e.g., the wired com-
munication based systems and the traditional control systems based on closed-form
results. With the integration of advanced ICT technologies, such as the fifth gen-
eration wireless communication technologies, there are new challenges that the ICT
systems are also contributing uncertainties to the CPS.

New ICT technologies empower the energy system to have real-time access to
almost all possible information, within every corner of the energy system. The benefits
of coverage, throughput and flexibility are at the cost of the increased complexity and
chances of faults in the ICT systems. On the other hand, the reliability requirements
for the ICT systems are also increasing, e.g., new services or applications for real-
time monitoring or controls. The time scale change of the monitoring or control
applications is also squeezing the tolerance of the latency to acquire the measurements
or to deliver the control commands.

To address these new challenges due to the ICT systems, it has stimulated the
study of ICT failures’ impact on the energy system models. The insufficient situation
awareness induced by the ICT failure was considered in [45], while its correlated relia-
bility impact on the power system was studied. In [46], the time dependencies of power
demand and injection were studied, whose relation with ICT systems was studied and
its impact on the power system reliability was evaluated. In [47], the ICT impacts
during the fault or outage situations were considered in a decentralized network au-
tomation system. It also considered the failure rates and the time to repair factors,
whose impacts on the reliability performance were performed on various medium
voltage and low voltage systems. The interdependency between power systems and
the ICT systems was considered in [48], where the interdependancy was studied via
system operational states and a multi-dimensional state classification approach was
proposed. In [49], the ICT system’s impact on the power system observability was
considered, where an analytical framework was proposed to quantify the coupling ef-
fects. The model was then used to optimize the observability sensitivity, probability,
and redundancy performances.

7.1.3 Hybrid CPS Modelling

Before the advent of the CPS concept, the physical devices and the cyber components
are treated in a relatively separated manner. This is beneficial if the physical parts
and the cyber parts are mutually independent, since the study can focus on either
of them at one time. The examples are the aforementioned examples, such as the
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SCADA. When smart sensors and controllers are widely used in energy systems, the
interactions between the physical devices and the cyber components are increasing,
which also increases the mutual dependency among the energy system participants.

With the new advanced technologies, such as programmable devices, the bound-
aries between the functions of the physical devices and the cyber components are also
becoming blurred. To consider these new challenges, new concepts such as the CPS
has been proposed. Correspondingly, the researchers adapt the existing concepts to
cover the new features. Typical examples are the CPS modelling based on the ICT
aspect and the energy system aspect, respectively.

Generally speaking, these modelling methods are still based on the core concepts
in the existing theories and models. The advantage is apparent, since the new research
can be built upon the existing knowledge libraries. But the disadvantage is also clear,
since the proposal of new concepts like CPS is usually due to the fact that the new
challenges are so prominent, that it requires to call for new efforts beyond the existing
concepts.

As for the CPS concept, one of such key challenges is the mutually coupling
effect between the physical devices and the cyber components. The end performance
results from the synthetic performance of all participating sub-systems, where each
sub-system could be adjusted. This requires detailed modelling of not only one part
of the system, but also the other parts as well as their correlations.

The corresponding CPS model will hybrid the models from different sub-systems,
which characterizes the mutual influences in a quantified manner. For example, in
order to improve the power system performance at the transient level, an on-demand
communication mechanism was proposed in [50]. The performance was then evaluated
with simulations on the fault control scenario, which demonstrated its capability in
a more robust performance under system errors. In [51], the Smart Grid system is
modelled as a CPS, where the data importance of multiple Smart Grid applications
are studied. The data exchange strategy in the ICT system is optimized for the
impacts of the energy system, which demonstrated its advantage over traditional
ICT-based methods on voltage stability control applications.

In order to study the coupling effects in the CPS, as well as to study the im-
pacts on the performance of the energy systems, it has stimulated the hybrid CPS
modelling method via the co-simulation method. Different from the traditional sim-
ulation method, the co-simulation method exploits different simulators to model the
components for individual sub-systems.

In this way, the sub-system operations can be studied in detail under interdepen-
dency. In [52], a co-simulation framework was proposed for the CPS, which exploited
the high-level architecture specified by IEEE standard 1516-2010. The framework
was demonstrated to be applicable to the study of coupling effects of the ICT sys-
tem and the power system. In [53], a distributed CPS co-simulation framework was
proposed based on the global event-driven mechanism, where the time scale can be
adjusted for the wide area measurement and control applications. A distributed CPS
was studied in [54], where the ICT system was modelled via the Network Simulator 2
(NS2) and the power system was modelled via the PSCAD. A comprehensive review
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of the simulation works for the CPS has been provided in [55], where the common
challenges and available tools are discussed.

7.2 MULTI-VECTOR ENERGY SYSTEM

Besides meeting the increasing energy demands, modern energy systems are playing a
vital role in reducing carbon emissions and tackling climate change challenges [56]. It
is common that different energy systems are collocated in the same geographical area
to serve the end uses. For example, in a residential area, there are usually electric
systems and natural gas systems. This paves the foundation of the integration of
different systems, as well as the joint coordination between them.

Moreover, the versatile energy converts can further couple several energy systems,
such as the Combined Heat and Power (CHP) generation technologies. Such machines
can convert the energies into multiple forms to supply the end-user’s demand, which
leads to options in optimizing the energy supplies in an integrated energy system. This
has also stimulated a multi-vector energy system (MVES) modelling method, which
models the energy carriers as multiple energy vectors, and then jointly optimizes
them to supply multiple energy demands. In this part, the integrated energy system
will be modelled as a MVES. Based on that, the application of AI and blockchain
technologies will be studied.

7.2.1 Coordination for Multi-Vector Energy System

The MVES provides a high-level abstract model between the supply and demand in
multi-vector energy forms, whose scale could be a district of buildings, a manufactur-
ing site, or a town of residential houses, depending on its corresponding real-world
system [59]. With the Internet of Things technologies, the MVES components could
be coordinated and managed in an aggregated manner. This includes the versatile en-
ergy converters (e.g., the CHP systems), the renewable energy (e.g., the wind farms),
the energy storage (e.g., the EVs), and the end-user loads. Especially, these MVES
components are interconnected via data links, whose physical locations can be geo-
graphically distributed across the system.

The MVES operator acts as a broker between different energy suppliers and the
various load demands. It charges the end users by supplying their load demands, and
pays the energy markets for the corresponding energy consumption. The integration
of renewable energy and energy storage not only further improves the energy efficiency
of the MVES [60], but also helps to reduce the operation cost of the MVES and bring
profits for their owners (e.g., the MVES and the end users) [61].

7.2.1.1 Multi-Vector Energy System Modelling

The MVES is a general modelling method of the integrated energy system, while
there are no firm rules on which type of energy forms or energy converters must be
included. In this part, a general system is considered and illustrated in Fig. 7.1, which
consists of the common components in the modern energy systems. This includes the
energy forms in electricity, heat, and renewable energy.



272 ■ Blockchain and Artificial Intelligence Technologies for Smart Energy Systems

Figure 7.1 A Multi-Vector Energy System (MVES) with typical components, including
Transformers, Wind Turbines, Solar Panels, Combined Heat & Power (CHP) systems,
Thermal Energy Storages (TESs), Boilers and Electric Vehicles (EVs).

Moreover, typical energy storage, such as Electric Vehicles (EVs) and Thermal
Energy Storages (TESs) and EVs are considered. Note that the illustration in Fig.
7.1 is an aggregated view of the modelled integrated energy system, where the wind
energy might correspond to a large wind farm, while the EVs can be distributed across
a residential area. The named components are also for illustration purposes, while
it is to describe the typical functions. For example, in different integrated energy
systems, the CHP technologies might be implemented via the Micro Turbines or Fuel
Cells, depending on specific cases. In the following part, the MVES model of each
component in Fig. 7.1 will be described.

The coordination of the MVES is based on 1 hour time slots, which corresponds
to a total of T = 24 slots during the 24 hours, namely a whole day. As illustrated
in Fig. 7.1, the energy flows in the MVES major consist of three parts, which are
the electricity energy flow, the thermal energy flow, and the natural gas flow. The
involved energy converters include one transformer, one wind turbine, one solar panel,
one CHP system, one boiler, M EVs and N TESs.

Since the energy flow could be two-way in the system, it is assumed that the energy
flow is positive when the energy is imported into the energy system. Correspondingly,
if the energy is exported out of the energy system, then the energy flow is assumed
to be negative.
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The main objective of the MVES is to coordinate the three types of energy flows,
in order to balance the energy supplies and the energy demands in different forms,
which are detailed as follows:

• The Electricity Load Model:
The electricity load is the most typical load form in the integrated energy sys-
tem. Many residential appliances are powered by electricity, such as fridges,
computers and lights. In the considered MVES system, there are multiple
sources for the electricity energy, which can be:

– imported from the power grid,
– generated by wind turbines,
– generated by solar panels,
– generated by CHP systems,
– discharged from EVs.

In the meantime, there are multiple electricity energy demands in the MVES,
which are consumed to

– supply electricity loads,
– charge EVs.

During each time slot t, it is assumed that the transformer’s electricity energy
flow, natural gas flow, wind energy flow, PV energy flow and the electricity load
demand are denoted as St

E, St
G, St

W, St
PV and Lt

E, respectively. For the m-th
EV among the total M EVs, the energy flow during time slot t is denoted as
Sm,t

EV .
Then the supply and demand of electricity energy in the MVES can be modelled
as follows:

ηTFS
t
E + vt

CHPη
E
CHPS

t
G + ηWS

t
W + ηPVS

t
PV +

M∑
m=1

Sm,t
EV = Lt

E, (7.1)

where vt
CHP denotes the natural gas dispatching factor for the CHP, while the

parameters ηTF, ηE
CHP, ηW and ηPV are the energy conversion efficiencies of the

transformer, the CHP, the wind turbine and the PV, respectively.
Since the CHP is able to simultaneously producing electricity energy and ther-
mal energy, their corresponding energy conversion efficiencies are distinguished
by the superscripts E and G. Moreover, the natural gas dispatching factors are
used to distinguish the energy consumed by the CHP system and the boiler,
which are denoted by vt

CHP and vt
B, respectively. For general cases, the sum

of all dispatching factors is 1, and correspondingly in the considered scenario
vt

CHP + vt
B = 1.
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• The Thermal Load Model:
The thermal load is another common energy form in the residential scenarios,
as well as in the industrial scenarios. For example, the hot water supply for
domestic heating purposes, or the cooling water for temperature controls in
the factory. In the considered MVES examples in Fig. 7.1, the heat load is
illustrated.
The thermal energy can have multiple sources, which can be

– generated from the CHP,
– generated from the boiler,
– discharged from the TESs.

The supplied thermal energy is consumed by the thermal energy load, which
may represent an aggregated thermal loads distributed in the whole energy
system.
Note that it is straightforward to extend the models to include other forms
of thermal load if required. For the n-th TES among the total N TESs, the
energy flow during time slot t is denoted as Sn,t

TES. Then the supply and demand
of thermal energy in the MVES can be modelled as follows:

vt
CHPη

H
CHPS

t
G + vt

BηBS
t
G +

N∑
n=1

Sn,t
TES = Lt

H, (7.2)

where Lt
H and ηB are the thermal load demand during time slot t and the

boiler’s energy conversion efficiency, correspondingly.
It is noticed that the CHP appears in both the thermal energy supply and
demand model in (7.2) and the electricity energy supply and demand model in
(7.1). This is because the CHP can generate electricity energy by combusting
natural gas, while the generated heat during the combustion can be efficiently
recovered to supply the thermal loads.

• The Physical Energy Flow Constraint Models:
For each MVES component, it represents a set of energy system devices in
an aggregated manner. Therefore the energy flows between them should also
satisfy the physical constraints in the real world. For example, for every energy
converter, the energy flow will be always operated within the rated range for
safety reasons. These physical constraints correspond to the maximum and
minimum energy flows, from or to the MVES components.
In the case that the devices are only supporting one-way energy flow, their
specification might only define the maximum energy flows, while the default
minimum energy flows are 0 or otherwise described. For example in the consid-
ered MVES system as illustrated in Fig. 7.1, the physical energy flow constraint
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can be modelled as follows:

0 ≤ St
E ≤ SMAX

TF , (7.3)
0 ≤ St

G ≤ SMAX
G , (7.4)

0 ≤ St
W ≤ SMAX

W , (7.5)
0 ≤ St

PV ≤ SMAX
PV , (7.6)

0 ≤ vt
CHPS

t
G ≤ SMAX

CHP , (7.7)
0 ≤ vt

BS
t
B ≤ SMAX

B . (7.8)

where the parameters SMAX
TF , SMAX

G , SMAX
W , SMAX

PV , SMAX
CHP and SMAX

B are the
maximum energy flow constraints of the transformers, natural gas, wind tur-
bines, solar panels, CHPs and boilers, respectively.
Note that the model has been simplified here for illustration purposes, as the
number of each MVES component is considered as one. It is straight-forward to
extend the model to a more complicated case, where the MVES component can
be an aggregation of more than one element. In such cases, the physical energy
flow constraints in (7.3) – (7.8) should be defined for each element. For example,
if there are K wind turbines in the energy system, then for any k = 1, . . . , K, its
energy flow should satisfy the constraints 0 ≤ Sk,t

W ≤ SMAX
k, W . Note that since the

wind turbines might not be in the same models, it is possible to have different
physical energy flow constraints for different energy flow terms.

• The EV Charging and Discharging Model:
The EVs are regarded as important solutions in reducing carbon emissions.
Currently, there has been a trend in global in encouraging the replacement of
fossil-fueled cars by EVs. For some developed countries, there have been clear
road maps to completely rule out the fossil-fueled cars. For example, in the UK,
it is planned that the sale of fossil-fuel cars are to end by 2030, while there is
a grace period for hybrid cars until 2035.
The EVs are powered by electric batteries, which can be charged and discharged
on demand. The capacity of the EVs is typically in the range of 50 kWh to 80
kWh. This means the EV can be a large electricity load when it is in the charging
state, while it is also possible to serve as a stable electricity power source when
it is in the discharging state. Moreover, when there are multiple EVs that can
be coordinated to charge or discharge on demand, the aggregated capacity can
reach the megawatts level, which is comparable to some distributed generators.
Different from battery electric systems that always attached to the grids, there
is usually only a range of time periods for an EV to serve as part of the MVES.
Here for discussion purpose, it is assumed that the start and end service time
for the m-th EV is in a time period from T In,m

EV to TOut,m
EV . Note that here the

time range is referring to the period that the EV is providing charging and
discharging services to the MVES.
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The amount of electricity energy at the service start time is the property of
the EV’s owner, therefore it will be restored at the end of their service time.
In the meantime, any amount of energy charged to or discharged from the EVs
during the service time is owned by the MVES. In other words, the MVES is
using the EVs’ capacity to charge or discharge a certain amount of electricity
energy for the system-wise optimizations across their service time. Note that
if the EV is connected to the MVES for the purpose of charging its batteries
instead of serving the MVES, then this EV should be categorized as an electric
load as introduced before.
It is noticed that the direction of the energy flow is defined with regard to the
MVES. Therefore the energy flow Sm,t

EV of the m-th EV (observed at the EV
side) can be only in three possible states, where

– if the EV is discharging, then the energy flow is defined as positive,
– if the EV is charging, then the energy flow is defined as negative,
– if the EV is neither charging nor discharging, then the energy flow is 0.

To facilitate the modelling of EVs’ charging and discharging operation, the m-th
EV’s discharging indicator IDCh,m,t

EV and charging indicator ICh,m,t
EV are defined

as follows:
ICh,m,t

EV ≜
1 − sgn{Sm,t

EV }
2 ,

IDCh,m,t
EV ≜

1 + sgn{Sm,t
EV }

2 ,

(7.9)

In this way, the charging or discharging state of each EV can be indicated by
IDCh,m

EV , where

– if the EV is discharging, then IDCh,m
EV = 1 and ICh,m

EV = 0,
– if the EV is charging, then IDCh,m

EV = 0 and ICh,m
EV = 1,

– if the EV is neither charging nor discharging, then IDCh,m
EV = 0 and ICh,m

EV =
0.

where the sign operator sgn{·} is defined as follows:

sgn{x} =


1, if x > 0,
0, if x = 0,

−1, if x < 0,
(7.10)

Although the charging and discharging process of the EV is of high efficiency,
there are certain energy losses such that there will be a discrepancy between the
amount observed at the EV side and the MVES side. To account this energy
loss, here we use ηCh

EV and ηDCh
EV to denote the EV’s charging and discharging

efficiency, respectively.
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With the EV’s discharging indicator IDCh,m,t
EV and charging indicator ICh,m,t

EV ,
it can be seen that the energy flow observed at the EV side can be unified as
follows:

Sm,t
EV

(
ICh,m,t

EV
ηCh

EV
+ IDCh,m,t

EV ηDCh
EV

)
,

which is valid for all states of the EV, whose equivalent forms can be given as
follows:

– if the EV is discharging, then the energy flow observed at the MVES side
is Sm,t

EV η
DCh
EV ,

– if the EV is charging, then the energy flow observed at the MVES side is
Sm,t

EV
ηCh

EV
,

– if the EV is neither charging nor discharging, then the energy flow observed
at the MVES side is 0.

From the above formulation, it is seen that the direction of the energy flow at
the EV side is following the sign of Sm,t

EV , which is

– positive, if the EV is discharging to the MVES,
– negative, if the EV is charging from the MVES,
– 0, if the EV is neither charging nor discharging.

It should be noticed that in other works, the direction might be different from
the above definitions. The above setup is to make sure the direction of the EV’s
energy flow is consistent with the whole MVES.
At the service end time TOut,m

EV , the EV’s energy level should be restored to
that of the service start time T In,m

EV . This is equivalent to the a total of zero
net energy flow during the whole service period [T In,m

EV , TOut,m
EV ], which can be

modelled as follows:
T Out,m

EV∑
t=T In,m

EV

Sm,t
EV = 0. (7.11)

For each EV, the absolute maximum charging energy flow and discharging
energy flow during one slot period are denoted as SCh, MAX

EV and SDCh, MAX
EV ,

respectively. Then for the m-th EV, its energy flow constraint can be expressed
as follows:

SCh, MAX
EV ≤ Sm,t

EV

(
ICh,m,t

EV
ηCh

EV
+ IDCh,m,t

EV ηDCh
EV

)
≤ SDCh, MAX

EV . (7.12)

Note that here the EVs are assumed with the same maximum charging and
discharging energy flow limit. For cases where there are different types of EVs,
there will be different energy flow limits for each EV, which should be applied
to constraint each EV’s energy flow correspondingly.
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The energy capacity of the EV at a given time can be indicated by the parameter
called State-of-Charge (SOC). For example, for the m-th EV at time slot t, its
energy capacity is given by SOCm,t

EV . Correspondingly, its energy capacity at its
start service time T In,m

EV can be given by SOCm,T In,m
EV

EV .
With the energy flow Sm,t

EV observed at the EV side, the SOCm,t
EV of the m-th

EV at time slot t can be given as follows:

SOCm,t
EV = SOCm,T In,m

EV
EV +

t∑
τ=T In,m

EV

Sm,τ
EV . (7.13)

Since the EV is with fixed electricity energy capacity, the energy capacity
SOCm,t

EV during the service period should be within certain ranges to keep the
safety. Without the loss of generality, the EV’s maximum and minimum elec-
tricity energy capacity are denoted by SOCMIN

EV and SOCMAX
EV , respectively.

Then the physical energy capacity constraint can be modelled as follows:

SOCMIN
EV ≤ SOCm,t

EV ≤ SOCMAX
EV . (7.14)

Since the core energy storage for the EV is batteries, the above EV model can
be extended to characterize a general battery electric system. A key difference
between the battery electric system and the EV is that the battery electric
system is usually attached to the grid all the time, which corresponds to relaxing
the service time to 24 hours each day. In such cases, the above model can be
easily adapted by assigning T In,m

EV = 0 and TOut,m
EV = 24.

• The TES Charging and Discharing Constraints:
TESs have been widely used in the residential and industrial scenario, which
have regained the researchers’ focus with the new advanced communication and
control technologies. The most common form of TESs is the cylinders, which has
been already widely used in the UK. The cylinder serves as a thermal storage
or thermal buffer, where the hot water leaves the cylinder from the outlet at
the top, and the cold water is re-supplied from the inlet at the bottom. With
modifications, these cylinders are capable to serve as the distributed thermal
energy system and play an active role in the future energy market.
This is because these TESs are with two beneficial features including,

– the energy storage medium is water, which can be directly used to supply
the user’s demand, but also cheap and convenient to obtain,

– the cylinder system has been already widely used in the UK, where the
existing infrastructure can be exploited,

– the energy capacity for individual users is feasible if aggregated or man-
aged in a large scale.

– the stored thermal energy can be represented by the temperature of the
water, which is also transparent to the users and easy to measure.
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In domestic usage scenarios, the water temperature of these TES can also be
relaxed to a range, which corresponds to the charging status of the “thermal
battery”. It has been reported that hot water consumption accounts for 10% to
25% of the total end energy demand in many countries [62] [63]. This flexibility
in capacity has been recognized as the potential methods in supporting the
power grid operations [64]. In this part, it is assumed the TES is with two-way
thermal energy flows, which can be implemented via a large cylinder with hot
water supply networks.
TESs are sharing some similarities with the BESs, as well as the EVs. Usually,
TESs are attached to the MVES system all the time, but it should be noticed
that it does not mean it is always available to serve the MVES. For ease of
discussion purpose, the start and end of the service time for the n-th TES are
denoted as T In,n

TES and TOut,n
TES , respectively. Although the following model can

apply to the case where TES can serve 24 hours a day, it is possible that the
TES will on personal usage instead of serving the MVES. In these time periods,
the TES should be categorized as thermal loads.
At the start service time T In,n

TES, the amount of existing thermal energy in the n-
th TES is the property of the TES’s owner. Therefore this amount of thermal
energy should be restored at the end of the service time TOut,n

TES . During the
service period from T In,n

TES to TOut,n
TES , the thermal energy stored in or extracted

out the TESs is the property of the MVES. In other words, the MVES is leasing
the capacity of the TESs’ capacity, which are used as thermal energy buffers
to coordinate the system-wise thermal energy supply and demand across their
service time.
The state of TES can be reflected by the charging state indicator and discharg-
ing state indicator, which are denoted as ICh,n,t

TES and discharging state indicator
IDCh,n,t

TES , whose definitions are given as below:

ICh,n,t
TES ≜

1 − sgn{Sn,t
TES}

2 ,

IDCh,n,t
TES ≜

1 + sgn{Sn,t
TES}

2 .

(7.15)

where Sk,t
TES denotes the thermal energy flow of the n-th TES in the slot period

t, observed at the TES side. In this way, the charging and discharging state of
the TESs can be indicated by the values of ICh,n,t

TES and IDCh,n,t
TES as follows:

– if the TES is charging, then ICh,n,t
TES = 1 and IDCh,n,t

TES = 0,
– if the TES is discharging, then ICh,n,t

TES = 0 and IDCh,n,t
TES = 1,

– if the TES is neither charging nor discharging, then ICh,n,t
TES = 0 and

IDCh,n,t
TES = 0.

There are also thermal energy losses during the charging and discharging pro-
cess, which are modelled as the TES’s charging efficiency and discharging effi-
ciency, denoted as ηCh

TES and ηDCh
TES , respectively. Therefore the thermal energy
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flow observed at the MVES side can be represented as follows:

Sn,t
TES

(
ICh,n,t

TES
ηCh

TES
+ IDCh,m,t

TES ηDCh
TES

)
,

where it can be verified that during each time slot t,

– if the TES is charging, the thermal energy flow observed at the MVES
side reduces to Sn,t

TES
ηCh

TES
, which is with negative values.

– if the TES is discharging, the thermal energy flow observed at the MVES
side reduces to Sm,t

TESη
DCh
TES , which is with positive values.

– if the TES is neither charging nor discharging, the thermal energy flow
observed at the MVES side reduces to 0.

Note that the direction of the thermal energy flow Sn,t
TES observed at the TES

side is also following the same rule as the rest of the MVES, which to make
sure the consistency.
The thermal energy flow during any time slot t should also satisfy the maxi-
mum charging and discharging constraints, which are denoted as SCh, MAX

TES and
SDCh, MAX

TES , respectively. Therefore the thermal energy flow constraint for the
n-th TES can be modelled as follows:

SCh, MAX
TES ≤ Sn,t

TES

(
ICh,n,t

TES
ηCh

TES
+ IDCh,m,t

EV ηDCh
EV

)
≤ SDCh, MAX

TES . (7.16)

For cases that TESs are with different maximum charging and discharging
constraints, e.g., difference TES models, the above constraint can be adapted
accordingly. In this part, it is assumed that the maximum charging and dis-
charging constraints are the same for all TESs in the MVES.
The thermal energy capacity of the TES can be also indicated by its SOC. For
example, the thermal energy capacity of the n-th TES at time slot t can be
given by T t,n

TES, while its thermal energy capacity at the service start time T In,n
TES

can be given by SOCn,T In,n
TES

TES .
Since at the service end time TOut,n

TES , the thermal energy of the n-th TES should
be restored to the same level of SOCn,T In,n

TES
TES , it equivalents to a zero net thermal

energy flow during the service time [T In,n
TES, T

Out,n
TES ], which can be modelled as

follows:
T Out,n

TES∑
t=T In,n

TES

Sn,t
TES = 0. (7.17)

In the meantime, the thermal energy capacity of the n-th TES at time slot t
can be derived as follows:

SOCn,t
TES = SOCn,T In,n

TES
TES +

t∑
τ=T In,n

TES

Sn,τ
TES. (7.18)
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During the service time, the capacity of the TES should be maintained within
a range for safety reasons. Without the loss of generality, the maximum and
minimum thermal energy capacity of the TESs are denoted as SOCMIN

TES and
SOCMAX

TES , respectively.
Then in any time slot t, the TES’s SOC should meet the constraints modelled
as follows:

SOCMIN
TES ≤ SOCn,t

TES ≤ SOCMAX
TES . (7.19)

Again here it assumes that the TESs are with the same minimum and maximum
thermal energy capacity limits, while it is straight-forward to extend the above
model the cases with different limits.

Comparing to the electric load models and thermal load models, it is seen that
the EV and TES models are more complex with regard to the physical constraints.
This is due to the fact that the EV and TES are with energy storage properties,
which can be regarded as devices with “memories”.

On the contrary, the electricity loads and thermal loads are modelled as devices
without “memories”. For the devices with “memories”, its energy flow during its
service time period would be constrained by several factors including

• the initial state at the service start time,

• the previous energy flows before the current time slot,

• the total capacity of the device,

• other mandatory constraints (e.g., the zero net energy flow constraints in EVs).

Note that the MVES models detailed above are not complete and just for illus-
tration purposes, which shows the general methods to model the common types of
devices in MVES. The modelling method can be further extended to characterize the
devices with similar features.

7.2.1.2 MVES Coordination Modelling

The MVES models above not only characterize the operations of each MVES device,
but also their interconnections from the view of energy vectors. Built upon that, the
operation of the MVES can be described, while the coordination of the MVES can
be regarded as variables to be optimized in the MVES models.

Real-time coordination modelling In general cases, the performance of the MVES
can be defined as costs due to operation results, which are then optimized under
the physical constraints in the MVES. Here the cost is a general term, which can be
implemented as the carbon emissions measured in tonnes of carbon dioxide equivalent
(CO2e), or the real money measured in pounds or dollars.

Without the loss of generality, it is assumed that the cost for the electricity
(sourced from power grid), natural gas, wind energy, solar energy, EVs and TESs are
denoted as Ct

E , Ct
G, Ct

W, Ct
PV, Ct

EV and Ct
TES, respectively.
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There could be different formulations according to the MVES coordination ob-
jective. For example, the MVES is to provide a real-time coordination among the
devices such that the operation costs are minimized under the physical constraints,
then it can be modelled as the following optimization problem below:

P0 : min . Ct
ES

t
E + Ct

GS
t
G + Ct

PVS
t
PV + Ct

WS
t
W +

M∑
m=1

Ct
EVS

m,t
EV +

N∑
n=1

Ct
TESS

n,t
TES

(7.20)
s.t. (7.1) − (7.8), (7.11) − (7.12), (7.14), (7.16) − (7.17) and (7.19),

It is noticed that in the formulation of P0, the variables to be optimized are the
MVES components’ energy flows and the dispatching factors vt

CHP and vt
B at time slot

t. Each feasible solution of the problem P0 corresponds to one coordination method
of the MVES. Note that such problems are based on each time slot, therefore it can
be regarded as real-time coordination.

However, in the above formulation, it is noticed that the storage type devices
are involved, which the objective of the real-time operation depends on not only the
studied time slot t, but also each time slot before t as well as each time slot after it.
Therefore this formulation is usually applicable to the cases where the operations at
each time slot t are known to the storage type devices. In such cases, the energy flow
variables Sm,t

EV and Sn,t
TES are given, so that the problem P0 reduces to the optimization

of the MVES devices other than the EVs and TESs. Some real-world systems can be
modelled by the problem P0. For example, some TESs are pre-programmed with fixed
instructions according to the time of the day. Or in other cases, the MVES provides
a bid/offer mechanism that a fixed amount of energy flows are to be served by one
or multiple EVs.

From the view of the MVES operation across the whole day, the coordination
according to the solution of P0 has been reduced to the MVES system without storage
type devices. The benefits of the storage type devices, especially their ability in
shifting the energy usage across time slots, are not exploited. However, due to the
physical constraints of the storage types devices, the coordination of their energy flow
across different time slots is not likely to be optimized in a real-time manner. For
example, if only focusing on the time slot t, then some EV’s energy flow might give
better cost performance than others via solving P0.

But this choice of the EV’s energy flow at the time slot t will influence the choices
of other time slots, e.g., the time slot t + 1. This leads to a good cost performance
at t but bad cost performance at t + 1, where the overall cost performance for all
time slots is not optimal, comparing to the case that the storage type devices can be
jointly coordinated by the MVES together with other devices.

Day-ahead scheduling modelling When the storage type devices are involved in the
MVES coordination for all day operations, the overall cost performance can be op-
timized via well-planned scheduling schemes. In this part, we focus on the daily op-
eration of the MVES, which consists of 24 hours and the operation is hourly based.
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Correspondingly, the scheduling decisions are made for the whole 24 hours, which is
referred to as day-ahead scheduling.

It is noticed that in the MVES model as introduced above, the renewable energy
flows St

W and St
PV are determined by the weather during the given time slot t. In

the meantime, the electricity loads and thermal loads Lt
E and Lt

H are determined
by the users during the given time slot t. These are all variables determined by the
external environments in the future, which are not controlled by the MVES. During
the day-ahead scheduling, it is not possible to know these future values, while only
forecasts (or sometimes called predictions) can be used.

Without the loss of generality, these forecasts are represented as a forecast vector,
where Ft = {Lt

E, L
t
H, S

t
W, S

t
PV}. For the other variables, they can be scheduled ahead

based on the forecasts, including the electricity energy flow St
E from the power grid,

the natural gas energy flow St
G, the m-th EV’s energy flow Sm,t

EV , the n-th TES’s
energy flow Sn,t

TES, and the MVES dispatching factor vt}. These scheduling variables
are denoted as St

Sch = {St
E, S

t
G, S

m,t
EV , S

n,t
TES,vt}.

The scheduling variables are very helpful for the MVES coordination. The storage
type devices can be instructed by the scheduled operation based on the m-th EV’s
energy flow Sm,t

EV and the n-th TES’s energy flow Sn,t
TES, which are optimized on the

daily basis for the whole day operation.
As for the electricity energy flow St

E from the power grid, the natural gas energy
flow St

G and the MVES dispatching factor vt, they are to ensure the demands and
supplies are balanced with respect to the forecasts. Beyond that, since the scheduled
electricity energy flow St

E from the power grid and the scheduled natural gas energy
flow St

G for each time slot t are known in the day ahead, the MVES can purchase
these amount of energy in the day-ahead energy markets, instead of purchasing them
in the real-time energy markets. Normally the day-ahead energy markets are with
much lower energy prices comparing to the real-time energy markets, which could
help further reduce the overall operation costs.

If denote the day-ahead market prices for the electricity and natural gas as C0,t
E ,

C0,t
G , then the overall operation cost during time slot t is denoted as Ct

All, which can
be defined as follows:

Ct
All = C+,t

E ∆St
E + C+,t

G ∆St
G︸ ︷︷ ︸

Real-time Extra Costs

+

C0,t
E St

E + C0,t
G St

G −
N∑

n=1
CTES|Sn,t

TES| −
M∑

m=1
CEV|Sm,t

EV | − CPVS
t
PV − CWS

t
W︸ ︷︷ ︸

Day-ahead Scheduling Costs

,
(7.21)

where C+,t
E and C+,t

G denote the real-time energy market prices for the electricity
and natural gas, while ∆St

E and ∆St
G denote the difference between the scheduled

energy flow and the actually required energy flow for the electricity and natural gas,
respectively.

Since the MVES should balance the supply and demand in real-time, it is expected
that any mismatched amount of energy, either more or less than required, will be
matched by referring to the real-time energy market. In the next, we will provide
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a feasible solution as an example to use the real-time energy market to address the
mismatched energy amounts.

Considering that it will impact the whole day operations if the energy flows for the
storage type devices are adjusted, the EVs and TESs will follow exactly the scheduled
operations during each time slot. The scheduled MVES dispatching factor vt will be
also used for real-time operations, since its changes will also impact multiple devices.

In the meantime, the MVES will adjust the energy flows in the transformer and
the boiler for the mismatch of electricity energy and thermal energy, respectively. In
this way, the mismatched electricity and natural gas energy flows can be evaluated
below:

∆St
E = 1

ηTF

(
L̃t

E − ηTFS
t
E − vt

CHPη
E
CHPS

t
G − S̃t

W − S̃t
PV −

M∑
m=1

Sm,t
EV

)
, (7.22)

∆St
G = 1

ηB

(
L̃t

H − vt
CHPη

H
CHPS

t
G − vt

BηBS
t
G −

N∑
n=1

Sn,t
TES

)
, (7.23)

where the real-time electricity loads and thermal loads are denoted as L̃t
E and L̃t

H,
while the real-time wind energy flow and solar energy flow are denoted as S̃t

W and
S̃t

PV, respectively.
It is seen that the energy flow mismatches ∆St

E and ∆St
G are due to the mis-

matches between the forecasting vector F and its corresponding real-time actual val-
ues F̃t = {L̃t

E, L̃
t
H, S̃

t
W, S̃

t
PV}. These mismatches are denoted as forecasting errors δt.

Note that the overall operation cost Ct
All during time slot t can be further rewritten

as the functions of δt, Ft and St
Sch as follows:

Ct
All ≜ Ct

All
(
Ft, δt,St

Sch
)
.

Here a specific MVES scheduling problem is studied. The given inputs are the
given day-ahead forecasts Ft, while the objective is to minimize the overall costs
across the whole day. Although the real-time actual F̃t cannot be known during the
day-ahead scheduling, it is still possible to obtain some knowledge regarding the
forecasting errors δt.

Here the forecasting errors are defined as follows

δt = F̃t − Ft

Ft
. (7.24)

Following this definition, each forecasting errors can be derived accordingly. For ex-
ample, the electricity load forecasting error δt

E = L̃t
E−Lt

E
Lt

E
.

Note that these historical forecasting errors only provide some statistical knowl-
edge regarding the relationship between the day-ahead forecasts Ft and the real-time
actual F̃t, therefore here the objective is set as the minimization of the overall costs
in a statistical manner with the knowledge of the forecasting errors δt, which can be
detailed as follows:

P1 : min
St

Sch

Eδt

{
T∑

t=1
Ct

All
(
Ft, δt,St

Sch
)}

(7.25)

s.t. (7.1) − (7.8), (7.11) − (7.12), (7.14), (7.16) − (7.17) and (7.19),
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where Ex{f(x)}=
∫∞

−∞ f(x)PDF(x)dx is the mathematical expectation operation and
PDF(x) is the probability distribution function (PDF) of x.

Comparing the MVES coordination formulations of P0 and P1, it is seen that P0 is
focusing on instantaneous operation cost optimization, while P1 is focusing on long-
term whole day operation cost optimization. The two models have their own merits.
For example in the former model, the coordination is easier as the MVES is only
required to supply the real-time demands, comparing to the later model. While in
the latter model, it could achieve lower operation costs with the support of forecasting
services and mature energy markets.

7.2.2 Artificial Intelligence Enhancing Multi-Vector Energy System

Based on the MVES models, the coordination can be optimized by solving the math-
ematical formulations, such as the illustrated examples in P0 and P1. In this part, we
will focus on the use of the AI algorithms to enhance the MVES performance.

Specifically, the use of AI algorithms in solving P1 will be given as an example.

7.2.2.1 Addressing Physical Constraints in Artificial Intelligence Algorithms

The energy systems are with strict physical constraints on each of its components,
which must be strictly complied with by each provided coordination solution. How-
ever, many AI algorithms are model-free solutions, where the AI algorithm is focusing
on the data instead of the models behind the screen.

To exploit such data-driven AI algorithms, a common challenge is to make sure
that all physical constraints have been enforced, which is a common challenge in the
AI enhancing MVES problem. There are no one-for-all solutions to this challenge,
but there are indeed some techniques that can be useful in many cases. In this part,
we will illustrate several techniques will a data-driven AI architecture as an example.

Without the loss of generality, it is assumed that there exists a Neural Network
(NN) f(·; θ) that can solve the problem P1, namely it can output the day-ahead
scheduling decisions St

Sch based on the day-ahead forecasts Ft as inputs.
This relation can be generally expressed as follows:

St
Sch = f(Ft; θ). (7.26)

Here the NN can be fulfilled by any potential structure, for example, the Convolu-
tional NN (CNN) and Deep NN (DNN). Although NNs have been extensively used
to learn the hidden relations in a given problem, the structure of the NN is generally
independent from the physical models and meanings, except the input and output
layers. Here the input layer and output layer are generally defined, which refers to
the general mapping procedure between the values used in the system and the values
used in the NN. For example, in the day-ahead scheduling problem defined in P1, the
inputs are forecasts F. The elements of F are the forecasts for loads and renewable
energy flows, where it is common that the values are very different in scales and
ranges.
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Then the scaling of the inputs to an appropriate range first before using as the
inputs of the NN is also regarded as part of the input layer. Note that in other works,
this part might be defined as the data pre-processing, but here such signal processing
techniques are unified as part of the input layer.

Correspondingly, the outputs of the NN might need some post-processing, before
they can be used by the MVES for coordination purposes. Therefore the output layer
discussed here is also a general term, which includes any signal processing to map
the outputs to the required values by the MVES.

By exploiting signal processing techniques as well as NN architectures, some phys-
ical constraints can be addressed by the output layers. But note that not all physical
constraints can be addressed by the output layers, for example, the EVs where the
variables need to be enforced by multiple constraints at the same time. In the follow-
ing, we will use the combination of both the NN output layer design and the deep
learning design to address the multiple physical constraints as in P1.

The NN output layer design: In the MVES, some variables are with physical con-
straints on their value ranges, which can be enforced by some NN functions or layers.
Typical examples of such variables are the energy flow constraints for the transformer
in (7.3), the natural gas in (7.4), the wind turbine in (7.5), the PV generator in (7.6)
and the CHP in (7.7).

The commonly used technique is to firstly enforce the outputs in a known range,
then scale them to the required range for the MVES. For example, to enforce the
transformer’s energy flow via the NN output layer design, it requires the NN output
layer to give values in the range of [0, SMAX

TF ]. Then for the parts corresponding to
the transformer’s energy flow, the NN can first implement a sigmoid layer, which
transforms the previous layers output to the range of [0, 1]. Then the output of the
sigmoid layer is scaled by SMAX

TF , which provides exactly the required value range of
[0, SMAX

TF ].
Some outputs, such as the energy flow for EVs in (7.12) and TESs in (7.16),

are within ranges with both maximal and minimal bounds. With the m-th EV as
an example, its energy flow should be within range [SCh, MAX

EV , SDCh, MAX
EV ]. In such

cases, the NN can first implement a tanh layer for the corresponding parts, which
transforms the previous output to the range of [−1, 1]. Then based on the sign of the
output values, they can be scaled to the required ranges.

In other words, if the output value is positive, then the value will be multiplied
with SDCh, MAX

EV . Correspondingly, if the output value is negative, then the value will
be multiplied with SCh, MAX

EV . In this way, the values from the NN output layer are in
the required range of [SCh, MAX

EV , SDCh, MAX
EV ].

For the storage type devices, their outputs are usually with multiple constraints.
The NN output layer design can help address part of the constraints, for example, the
EV’s energy flows can be confined in the required ranges. But in the EV’s models,
there are two additional physical constraints associated with the EV’s energy flows,
other than the value range constraints in (7.12). One of the two physical constraints
is the zero net energy flows constraints across their service time as defined in (7.11).
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This kind of constraints describes some statistical features of multiple outputs,
such as the sum or the average of them. To address their physical constraints, it can
apply post-signal processing based on the multiple outputs. In the EV’s case with
zero net energy flows constraints in (7.11), the NN can first calculate the average of
the EV’s energy flows from the previous layers, and then subtract this average from
each of the EV’s energy flows. This manipulation will ensure that the EV’s energy
flows are always with zero average. The same technique can be applied to the TES,
where the zero net energy flow constraints in (7.17) can be enforced.

Note that since there might be more than one technique applied to the same
output values, it should be checked that the techniques are not conflicting with each
other, or further manipulations will be required. In the case of the EV’s energy flows
applying both the value range scaling and average removing, it can be checked that
the scaling and removing average might have potential conflicts. For example, when
removing the average from the values, its value range will be changed.

These two techniques can be jointly considered as follows:

1. the EV’s energy flows are firstly mapped to the range of [−1, 1] by the tanh
layers,

2. the average is then removed from the EV’s energy flows,

3. the maximum absolute value of the EV’s energy flows is calculated and denoted
as max |SEVm,t |,

4. the absolute value of the scaling factor is calculated as min{|SCh, MAX
EV |,|SDCh, MAX

EV |}
max |Sm,t

EV | ,

5. the EV’s energy flows are scaled as follows: if the value is positive, then
it is multiplied by min{|SCh, MAX

EV |,|SDCh, MAX
EV |}

max |Sm,t
EV | ; else the value is multiplied by

−min{|SCh, MAX
EV |,|SDCh, MAX

EV |}
max |Sm,t

EV | .

It can be verified that with the above manipulations, both physical constraints can be
enforced at the same time. Note that the above technique is just one feasible solution,
where other variations can be used as long as the constraints are enforced.

The loss function design: Besides using the NN layers to implement the physical
constraints, another commonly used technique is to exploit the learning feature of
the NNs, which embeds the constraints as part of the learning goals. In other words,
the NN is required to learn not only how to optimize the problem’s original objectives,
but also how to satisfy the constraints.

One practical method of such techniques is to append the physical constraints
with penalty factors at the end of the original loss functions, where any constraint
violations will incur a positive penalty increase in the loss during the training. The
philosophy behind this method is to take advantage of the NN training procedure,
where the training is mathematically fulfilled by reducing the losses (defined by the
loss function). Since the constraint violation will increase the losses, it is expected
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that a well-trained NN is able to learn not only the original problem’s objective, but
also a “strategy” to meet the physical constraints.

An example of such techniques can be given based on the MVES day-ahead
scheduling problem defined in P1. Note that with the relation St

Sch = f(Ft; θ) in
(7.26), the overall MVES operating cost during time slot t can be further rewritten
as follows:

Ct
All ≜ Ct

All
(
Ft, δt, f(Ft; θ)

)
. (7.27)

Without the consideration of the physical constraints, the loss function can be
defined as the overall operating costs as follows:

L(θ) = Eδt

{
T∑

t=1
Ct

All
(
Ft, δt, f(Ft; θ)

)}
,

but the above formulation is with two deficiencies that need to be addressed: a) the
trained NN will depend on Ft, i.e., for each Ft, it might require to train a totally
different NN, and b) the physical constraints are not considered.

The first problem can be addressed by training the NN to be applicable for all
possible Ft with one NN structure, this can be achieved by modifying the loss function
as follows:

L(θ) = Eδt,Ft

{
T∑

t=1
Ct

All
(
Ft, δt, f(Ft; θ)

)}
,

where the mathematical expectation is taken not only with regard to δt, but also
Ft. In this way, the outputs of the trained NN are expected to optimize the overall
MVES operating costs with different forecasting values and forecasting errors, using
the same trained NN parameters.

Next, in order to consider the physical constraints as part of the training pro-
cedure, we can define their corresponding penalty terms. For example, for the EVs’
SOC constraints defined in (7.14) , its penalty term can be defined as follows:

CP,t
EV(Ft, f(Ft; θ)) = max{SOCMIN

EV − SOCm,t
EV , SOCm,t

EV − SOCMAX
EV , 0}, (7.28)

which will always return a non-negative value. Specifically, it can verify that

CP,t
EV(Ft, f(Ft; θ)) =


SOCMIN

EV − SOCm,t
EV , if SOCm,t

EV < SOCMIN
EV ,

SOCm,t
EV − SOCMAX

EV , if SOCm,t
EV > SOCMAX

EV ,
0, otherwise.

(7.29)

where it is clear that CP,t
EV will be zero if the EVs’ SOC constraints have been met, or its

values will be a positive value indicating the severity of the constraint violation. Note
that the definition of CP,t

EV may have different variations (by means of the absolute
difference between SOCm,t

EV and the violated constraint bound).
Similarly, the corresponding penalty term for the TESs’ energy flow constraints

in (7.19) can be defined as follows:

CP,t
TES(Ft, f(Ft; θ)) = max{SOCMIN

TES − SOCn,t
TES, SOCn,t

TES − SOCMAX
TES , 0}, (7.30)
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Then by defining a positive penalty parameter λ, the final loss function can be
formulated as follows:

L(θ) =EFt,δt

{
T∑

t=1
Ct

All
(
Ft, δt, f(Ft; θ)

)
+ λ

T∑
t=1

(
CP,t

EV(Ft, f(Ft; θ)) + CP,t
TES(Ft, f(Ft; θ))

)}
.

(7.31)

Remarks: When using NNs to solve problems for the MVES, it is a common chal-
lenge to address the physical constraints before the NN can be trained. The above
formulations give an example of how to exploit some techniques to enforce the phys-
ical constraints via NN structure design and loss function design.

Note that this formulation is not unique, where other formulations are also fea-
sible. For example, the EV’s zero net energy flow constraint in (7.11) can be also
addressed via the loss function design, instead of the NN structure design. In such
cases, the corresponding penalty term can be defined as follows:

CPNet,t
EV =

∣∣∣ T Out,m
EV∑

t=T In,m
EV

Sm,t
EV

∣∣∣, (7.32)

which can be then appended to the loss function as an additional penalty term.
In general cases, the physical constraints can be usually addressed via the loss

function design. But the NN structure design technique depends on situations, where
sometimes it might not be applicable. For example for the three physical constraints
related to the EV’s model, the previous examples have used the NN architecture
design to address two of them, but it is unlike to address all of them.

The expected performance from these two techniques is also different. For the loss
function designs, the constraints are enforced in a “soft” manner, where the NN is
punished via the penalty term during the learning. It is referred to as the “soft” man-
ner because it is still possible that the NN will give outputs violating the constraints,
since there is no firm enforcement to ensure the constraints are satisfied.

To mitigate this challenge, it can assign a large penalty parameter λ. During the
training procedure, the NN is expected to learn that any constraint violation will
be very “expensive” in the sense of the overall loss. The main drawback is that the
parameter λ may be hard to choose. Because if λ is not large enough, the constraint
violations might be prominent. Or if λ is too large, it might compromise the main
learning objective, because the NN might learn to give outputs in an over-conservative
manner.

For the NN structure designs, the constraints are enforced in a “hard” manner,
which is guaranteed in a firm manner. This will be preferred in the MVES or other
physical constraint related problems, because in practice these physical constraints
are not supposed to be violated in any situations.

Besides the challenges in finding an appropriate design for specific constraints,
the NN structure designs will also have great impact on the training and learning
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performances. This is because a change of the NN structure will lead to different
calculations during the training procedure, which would lead to totally different NN
parameters and the corresponding final performances.

7.2.2.2 Deep Learning Enhanced Multi-Vector Energy System

By addressing the multiple physical constraints via the NN structure design and loss
function design, the original MVES day-ahead scheduling problem defined in P1 is
transformed to an unconstrained deep learning problem defined as follows:

min
θ

L(θ), (7.33)

where during the training procedure, the NN is expected to learn to meet the EVs’
constraints in (7.14) and TESs’ SOC constraints in (7.19), while the other constraints
identified in P1 are enforced via the NN output layer designs.

It is noticed that (7.33) is a general form for deep learning problems. Therefore
in order to make the learning problem much clearer, (7.33) can be further rewritten
in its equivalent form as follows:

min
θ

EFt,δt

{
T∑

t=1
Ct

All
(
Ft, δt, f(Ft; θ)

)
+ λ

T∑
t=1

(
CP,t

EV(Ft, f(Ft; θ)) + CP,t
TES(Ft, f(Ft; θ))

)}
.

(7.34)

which is obtained by substituting the detailed representation of the loss function of
(7.31) into (7.33).

With the representation in (7.34), the deep learning based MVES day-ahead
scheduling can be summarized as follows:

• The NN f(·; θ) is built to learn to solve the problem in P1, whose inputs are
the day-ahead forecasting vectors Ft and outputs are the day-ahead scheduling
vectors SScht .

• The NN output layers are following the design detailed in Section 7.2.2.1 to
address some of the physical constraints, while the other physical constraints
are addressed via the loss function design as specified in (7.31).

• The training procedure is following an unsupervised learning manner, where
the training performance at each step is evaluated by the loss function (7.31),
with historical or simulated forecasting errors δt.

• The NN parameters θ are updated via the Gradient Decent algorithm [65].

To evaluate how the described deep learning method can help reduce the MVES
operating costs, in the next we will use a dummy example with 4 EVs and 2 TESs.
Specifically, the NN is fulfilled by a 5 layer DNN with the shape of 96 × 768 ×
576 × 384 × 216, where ReLU function is used as the activation layer at each hidden
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Figure 7.2 The daily MVES operating costs simulated with the data from September
1st, 2017 to September 10th, 2017, comparing against the benchmark method based
on forecasts directly.

layer. Some typical values are assumed for the energy converter, with ηTF = 0.98,
ηE

CHP = 0.404, ηH
CHP = 0.566, ηB = ηCh

EV = ηDCh
EV = ηCh

TES = ηDCh
TES = 0.9.

The maximal energy flow bounds are assumed as follows, where SMAX
TF =

SMAX
G = SMAX

B = 1200 kWh, SMAX
W = SMAX

PV = 200 kWh, SMAX
CHP = 300

kWh. For the EVs, the physical constraints on the energy flows are assumed as
{SCh, MAX

EV , SDCh, MAX
EV , SOCMIN

EV , SOCMAX
EV } = {80 kWh, 80 kWh, 40 kWh, 80 kWh}.

For the TESs, he physical constraints on the energy flows are assumed as
{SCh, MAX

TES , SDCh, MAX
TES , SOCMIN

TES , SOCMAX
TES } = {50 kWh, 50 kWh, 40 kWh, 200 kWh}.

Fixed prices are assumed for the day-ahead energy market, where C0
E =

0.062 GBP/kWh, C0
G = 0.026 GBP/kWh. For the real-time energy market, the prices

are differentiated according to situations, where C+
E =0.054 GBP/kWh if the MVES

needs to buy more electricity, or C+
E =0.012 GBP/kWh if the MVES needs to refund

for the unconsumed electricity. Similarly, for the natural gas, C+
G=0.018 GBP/kWh if

the MVES needs to import more natural gas, or C+
G=0.004 GBP/kWh if the MVES

needs to refund for the unconsumed natural gas.
By training with the forecasting and actual data in 2019 according to the U.K.

electricity and natural gas dataset [66] [68], the model is then applied to the data in
2017 to test its performance.

The trained NN is first applied to test the daily MVES operating costs, whose
simulation results are illustrated in Fig. 7.2. The data for the simulation are from
September 1st, 2017 to September 10th, 2017. Since the data are from the year 2017
and the trained data are from 2019, it is clear that these data are not involved in the
training process.

It is seen that for the sequential 10 days, the proposed deep learning based method
is capable of reducing the daily MVES operating costs for each day, comparing to
the benchmark method which directly uses forecasts for day-ahead scheduling. The
cost saving performance is varying with days, which is expected since the forecasting
errors and forecasting vectors are both random.
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Figure 7.3 The monthly MVES operating costs simulated with the data from January
2017 to December 2017, comparing against the benchmark method based on forecasts
directly.

A monthly view of the MVES operating cost is provided in Fig. 7.3. It is seen that
for most months, except for January, April, November, and December, the proposed
deep learning based method outperforms the benchmark method based on forecasts
directly.

In other words, comparing to the benchmark method, the proposed method is
better for the majority of cases, instead of all cases. This is because the formulation in
P1 is expecting statistically good performance on the MVES operating cost, where the
long-term performance should be good but there might be fluctuations for individual
cases.

Besides the MVES operating costs, the physical constraints are also of great
interest here. In Fig. 7.4, it illustrates the SOC of one EV operated following the day-
ahead scheduling decisions made by the NN. During the whole day operation, this
EV’s SOC has been successfully constrained within the range of [SOCMIN

EV , SOCMAX
EV ],

which corresponds to the range of [40, 80] kWh in Fig. 7.4.
In addition, the SOC of one of the TESs has been illustrated in Fig. 7.5, which also

demonstrates that this TES’s SCO has been successfully constrained within its phys-
ical constraint range. Note that the outputs of the NN are the day-ahead scheduled
energy flows for the EVs and TESs, and the meeting of SOC constraint is learned by
the NN instead of NN structure design. This illustrates that the exploited techniques
in the previous formulations have successfully addressed the physical constraints.

Remarks: From the examples above, it demonstrates the great potentials of using AI
algorithms for the enhancement of MVES performances. If without the AI algorithms,
the traditional solution in such cases might be using the forecasts directly (i.e., the
benchmark algorithm). This choice is the heuristic solution in common sense when
forecasts are available, which relies on the accuracy of the forecasts.
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Figure 7.4 The hourly SOC performance of one EV simulated with the data from
September 1st, 2017.

The accuracy of the forecasts is normally referring to the forecast itself, while
the impacts due to the forecasting errors are implicit in most cases. By using the
AI algorithms, it helps the MVES to learn from the forecasting errors, so that the
day-ahead scheduling can be statistically optimized for the operating costs.

Besides, the above example has also exploited another important feature of the AI
algorithm, which is end-to-end learning. Instead of worrying about any intermediate
variables, the NN in the example directly learns how to improve the end performance
(i.e., the MVES operating costs) with given forecasts. This could be important to the
enhancement of the MVES operations, since from the models it can tell the MVES is
essentially a cross-discipline system. In such cases involving complicated coordination

Figure 7.5 The hourly SOC performance of one TES simulated with the data from
September 1st, 2017.
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among multiple systems, the AI algorithm might even be the most promising solution,
where traditional analytical methods might be short-handed.

Additionally, it might be also beneficial to separate the forecasting task from the
MVES coordination. For research purposes, it might show some advantages via the
joint optimization of the forecasting performance and the MVES end performance
(e.g., the operating costs). But it should be minded that the forecasting task is a very
complicated and dynamic task. It may require huge volumes of historical data, the
access of multiple environmental factors (e.g., weather), and more importantly, the
frequent maintenance or upgrade of the forecasting models to adapt to new changes.

Comparing to the subscription of forecasting services from third parties, it might
incur more costs to include the forecasting as part of the MVES coordination. The
above example demonstrates another option when forecasting is involved, where it
admits the forecasting errors instead of trying to reduce them. It leaves the problem
of forecasting accuracy improvement to professional parties, while focusing on the
problem of how to improve the MVES performance with given forecasting accuracy
performance.

7.2.3 Remarks of Challenges

The CPS modelling for Energy Internet provides a new research direction to an
integrated model of the different participants in the Energy Internet, especially for
its emphasis on the interaction between cyber models and their physical counterparts.
However, the CPS modelling method is also subject to several key challenges.

The first challenge is on the time scale of the involved models, which is due to
the essence of the integration of different energy system components. Each compo-
nent could have its own unique temporal features, where their corresponding models
can describe their behaviours in different time scales. For example, the appliances
(boilers for instance) usually respond to controls at minutes level, while the ICT
systems (WiFi transceivers for instance) are working in the sub-second level. The
integration of the models with different time scales would require a joint considera-
tion of their own temporal features, the coordination against other models, and the
interaction between their physical counterparts. This demands a reconsideration of
the traditional modelling method for each individual Energy Internet components.
Their CPS model may require a multiple time scale model, instead of their current
single time scale models.

The second challenge is on the gap between cyber models against their physical
counterparts. The cyber models are essentially mathematical descriptions of their
physical processes, where there are assumptions or simplifications leading to a gap
between models and the exact processes. This would lead to challenges to the CPS
models, because the CPS models should characterize not only the behaviours for each
components, but also the cooperation between them. The modelling of cooperation
usually demands a joint consideration of the features from different systems, while it
will involve non trivial efforts in inter disciplinary research and development.

The final but not the last challenge is on the flexibility of CPS models for scale-up
studies. CPS modelling for Energy Internet is a novel research direction, where most
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existing studies are still focusing on small scale systems as proof of concepts. When
the system scales up to involve significant more devices, the interaction between cyber
models and their physical counterparts will become more complex. This will demand
the CPS system to be flexible in characterizing systems at different scales, where
further modelling and evaluation efforts are required to complement the models.
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C H A P T E R 8

Developing Testbeds for
Smart Energy Systems

I n energy systems, the researchers from both academic and industry are interested
in developing all kinds of testbeds which are used as proof of concepts, especially

when new technologies are involved. The key point of a testbed is to provide a safe
and practical environment for experiments, where the data regarding new concepts or
technologies can be collected and analysed, while the performance can be evaluated
and verified against theories.

The future smart energy system is a fusion of advanced technologies from disci-
plines beyond traditional energy systems, including information communication and
technologies (ICTs) and artificial intelligence (AI). The design of a testbed for such
smart energy systems demands new perceptions and new methods, where the fusion
is not only regarding the individual technologies, but also the cooperation between
them. In this chapter, the development of a testbed for smart energy system will be
addressed, with focuses on both the implementation of individual technologies and
their cooperation in the whole system.

8.1 REVIEW OF ENERGY SYSTEMS TESTBEDS

The concept of energy systems has evolved from the traditional electric power system,
where the energy refers not only to electric power, but also to other energy forms,
such as heat and renewable energy. The role of an energy system is also changed from
simply supplying the end-user’s demand, to greater commissions involving the im-
provement of energy efficiency, reduction of carbon emission, and boost of economics.

These changes are relying on the fusion of new technologies from various disci-
plines, and in turn, this fusion demands the evaluation of smart energy systems from
a cross-disciplinary aspect. Correspondingly, the smart energy system testbeds are
required to be capable of such experiments. It should be noted that the smart energy
system testbeds vary in forms and scales, but in general, can be categorized into
the hardware-based testbed, the simulator-based testbed, and the hybrid testbed. In
the following subsection, state-of-the-art testbeds for the smart energy systems are
reviewed.
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8.1.1 Hardware-Based Designs

Hardware-based testbeds provide a scaled energy system that runs in the real world,
which contains a range of energy system components, such as the generators, the
loads, and the circuits. The scale of a hardware-based testbed depends on the pur-
pose of experiments, which can be small-scale hosted in a comprehensive laboratory,
while some large-scale testbeds can be fulfilled by a real-world industrial site. This
is because in hardware-based testbed, all components are physically implemented,
which provides practical experimental data with real-world measurements.

The large-scale hardware-based energy system testbeds can even be full-scale en-
ergy system capable to provide an isolated real-world energy system for experiments.
The most typical example is the Jeju Island built in South Korea [1]. The whole island
forms the basis of the testbed, where the devices participate in the real-world energy
system operations. The testbed is capable to support five major research areas, in-
cluding the smart power grid, smart place, smart transportation, smart renewable,
and smart electricity service studies [1].

The small-scale hardware-based testbed could also be versatile, especially with
the advent of the concepts such as the microgrid. One key feature of the microgrid
is that it is capable to operate in an island mode when disconnected from the main
grid, which naturally fits the small-scale hardware-based testbeds. Typical examples
are the microgrid testbed hosted at Zhejiang University [2], the testbed at Illinois
Institute of Technology in Chicago [3], and Smart Energy Integration Lab [4]. These
testbeds are capable to support research on a range of topics in microgrid and beyond,
including fault controls, distributed energy resources, and isolation mechanisms.

In hardware-based designs, the design complexity and corresponding cost grow
significantly as the scale increases. This is also due to the fact that very large-scale
systems involve more supporting sub-systems, safety measures, and infrastructure
investments. Therefore the aim of the hardware-based testbed is usually dedicated
to a pre determined set of experiments, while the further extension or scale-up of the
testbed is not the main focus.

8.1.2 Software-Based Designs

With the increase of computing capability and decrease of corresponding cost, a wide
range of simulation software has been invented to simulate the complex procedures
or processes, whose data are traditionally obtained via hardware-based experiments.
By characterising the real-world components via mathematical models and solving
numerically with the computing devices, the software-based simulations provide a
fully controlled experiment environment, which is friendly to the researchers and
developers with regard to not only data acquisitions, but also repeatable experiments.

Traditionally, software simulators are designed for users in specific disciplines.
Typical examples in the power system include stand-alone solutions such as Opal-
RT and Real-time Digital Simulator (RTDS) for real-time simulations, and software
toolboxes such as Simscape Electrical based on MATLAB. As Smart Energy System
involves a wide range of topics, the testbed based on software-based designs usually
focuses on specific areas.
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For example, to study the cybersecurity of the Smart Energy System, various
testbeds have been developed, including the Virtual Control System Environment
(VCSE) [5], Virtual Power System Testbed (VPST) [6], intrusion and defense testbed
[7] , Industrial Internet of Things testbed [8], and testbed for plug-in hybrid electric
vehicles (PHEVs) and plug-in electric vehicles (PEVs) [9].

With the extension from traditional power systems to the more compound notion
of energy systems, the integration of different sub-systems from other disciplines has
largely enabled the energy systems. This trend also reflects in the testbed designs,
where the co-simulation method has been introduced to study the coupled effects
regarding the cooperation between different sub-systems.

Smart energy systems can be generally viewed as the compound of energy flow
and data flow. This underpins the key idea of the co-simulation methods, where the
energy flows are implemented via the energy simulators, while the data flows are
fulfilled by simulators in ICT. Examples are the Testbed for Analyzing the security
of SCADA Control Systems (TASSCS) [10], SCADASim [11], and the Mosaid-based
testbeds [12] [13] [14].

Software-based designs are versatile because these convert most system setups
into more flexible parameter configuration procedures. The designs based on software-
based testbeds are also friendly to further expansions, where new devices or experi-
ments can be supported with an upgrade of the dependent simulators. It also worth
noticing that software-based simulators are not simply the digital replica of their
hardware counterparts. The numerical models can provide some critical analysis that
is hard or impossible for hardware-based designs, for example, the transience analysis
and fault-related studies.

8.1.3 Hybrid Designs

The hybrid design method is a new solution other than the hardware-based and
software-based testbed designs. The key idea of the hybrid testbed design is a mixed
structure, where some system parts are real-world hardware devices, while others
are implemented by software simulators. For a given testbed design task, this hy-
brid of software and hardware provides a trade-off between the system complexity,
practicality, and cost.

With the flexibility in software simulators, the hybrid design method usually
implements the focused sub-systems in hardware for practicality studies, while the
scalable and cost-intensive sub-systems are implemented via the software simulators.
According to the research the hybrid design varies in forms, where typical examples
are ScorePlus testbed [15], Network Intrusion Detection System (NIDS) [16], Univer-
sity of South Florida (USF) Smart Grid Power System Lab (SPS) testbed [17], and
GreEn-ER1 Industrial Control Systems Sandbox (G-ICS) testbed [18].

Generally speaking, the energy system forms the basic infrastructure of the final
testbed, which usually involves cost-intensive investment in research areas including
energy transmissions and renewable energies. The advent of hybrid design could help
mitigate this cost challenge, where the system infrastructure can be simulated without
the need for physical construction. In such systems, it can still support the study focus
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on the hardware part, e.g., to study the behaviours of the hardware devices via the
hardware-in-the-loop (HIL) techniques.

Typical HIL techniques exploit the standard interface to connect the hardware
and software parts. Typical real-time power system simulators with such features
are the Opal-RT and RTDS. Some typical examples of this real-time power system
simulator-based hybrid design include the co-simulator testbed [19], Cyber Physical
testbed at Iowa State University [20], Exo-GENI testbed [21], PowerCyber testbed
[22], and the testbed developed by Texas A& M University [23].

The hybrid design is not a simple process of co-locating software simulators and
hardware devices at the same place. Instead, it provides a new observation of the
energy system, which benefits from the consistent efforts in standardisation on the
system models and interfacing models. This involves a wide range of parties, such
as the standards organizations International Electrotechnical Commission (IEC) and
National Institute of Standards and Technology (NIST). Due to the standard charac-
terisation of system components, the hybrid design is capable to treat its sub-system
in a modular manner, which results in the possibility of replacement between hard-
ware and software components.

8.1.4 Remarks of Challenges

The categorisation of testbed design method into hardware-based, software-based,
and hybrid design is from a broad and general view, while each design method has
its own advantages and disadvantages. It should be noticed that every testbed is the
compromise between the research goals and the design costs, where the selection of
the design method should be based on individual cases.

To facilitate the comparison between the three design methods, a general com-
parison is made on the main features regarding the cost, flexibility, and practicality
as follows:

• Cost:
The cost to build a hardware-based testbed could vary largely depending on
its architecture, which is mainly subject to its infrastructure construction and
device purchases. On the contrary, a simulator-based testbed is relatively cheap,
where the cost is usually spent on the simulators and their associated software
license. The cost may be further reduced via exploiting open-source software
and general computing platforms. The hybrid testbed is usually in the middle,
where only focused components are implemented while some costly components
are replaced by software counterparts.

• Flexibility:
The desired testbed is expected to be expandable and modifiable to support
different experimental considerations. The simulator-based testbeds are gener-
ally very flexible, where the configurations can be tuned by software models or
parameters. However, the hardware-based testbed usually requires the installa-
tion of new devices for new features. For a large-scale hardware-based testbed
such as Jeju Island, the infrastructure is less likely to be changed frequently.
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The hybrid testbeds take the advantages of the high flexibility of software sim-
ulators, while the main constraints are due to the interfacing method between
hardware and software components [22].

• Practicality:
Testbeds are designed to conduct experiments, which should provide the eval-
uations as close to the real world as possible. The hardware-based testbed sup-
ports the real operations on its components, which provides the most practical
experiment environment. The simulator-based testbed relies on the accuracy of
the models, which normally provide approximated or simplified performance.
The testbeds combining hardware and software components could provide real
operations on the hardware implemented parts, but the simulator parts still
depend on the practicality of models.

As discussed above, no testbed architecture can outperform the other with all
three aspects of the cost, flexibility, and practicality, instead it is usually a trade-off
among these aspects according to the testbed dedicated purposes. With the develop-
ment of interfacing techniques, the boundaries between these three kinds of testbeds
are blurring. Especially with the high-speed analogue/digital converters, more sim-
ulators are supporting HIL tests, while the hardware devices are providing more
versatile simulator interfaces.

8.2 TESTBED DESIGN AND IMPLEMENTATION FOR ENERGY SYSTEMS

The energy system is a broad concept in modern societies, which consists of not only
the supply and demand-side of the energy, but also the related supporting services and
devices. This section is focusing on the testbed design and implementation for energy
systems, where the focus is placed on the key sub-systems involved in the energy flow
and data flow. Specifically, we will introduce the testbed design and implementation
from three major sub-systems, namely the ICT systems, power systems, and advanced
signal processing systems.

As illustrated in Figure 8.1, the three focused sub-systems represent the three key
aspects to form the whole energy system.

• The power system characterises the power flow of the energy system regarding
the power generation, storage, transformation, delivery, and end-consumption.
The infrastructure of the power system spans the whole energy system, which
also defines the physical basis of the services in the energy systems. This also
includes all kinds of sensors and controllers for system monitoring and controls.

• The ICT system characterises the data flow of the energy system regarding
the information generation, aggregation, and transmission. The topology of the
ICT system aligns with the infrastructure of the power system, which supports
the necessary data flows between the physical components within the energy
system.



308 ■ Blockchain and Artificial Intelligence Technologies for Smart Energy Systems

Figure 8.1 An illustration of energy system from a testbed design aspect, which con-
sists of ICT systems, power systems, and the advanced signal processing systems.

• The advanced signal processing system characterises the models, algorithms,
and methods for the energy system operations. The inputs are the measure-
ments generated by the power system sensors, while the outputs are the controls
for the system operations and high-level system status information reported to
system operators.

In the following subsections, we will describe the design and implementation of
each sub-system in a hybrid testbed design aspect.

8.2.1 ICT Implementation

The ICT system is the key sub-system in the energy system to enable the data flow
between different components. It is noticed that traditionally the ICT system and
the power system are generally two different disciplines, where the research focuses,
terminologies, and theories are largely different from each other. In this part, several
techniques with regard to the integration of ICT systems are discussed.

8.2.1.1 Integration via Layered Architecture

Thanks to the standardization efforts in both areas, the integration of ICT systems
and power systems has been much facilitated. A typical example is the IEC 61850
standard for electric power systems, which defines the communication protocols for
intelligent electronic devices in an abstract manner at a high level. In other words, the
IEC 61850 defines the data models and requirements for the communication protocols,
while it allows any applicable communication protocols to be implemented, as long
as the requirements are met.
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Figure 8.2 An illustration of OSI and IEEE 802 reference models.

From the view of the communication systems, the communication model described
in IEC 61850 can be categorized in the layers above network layer in the Open Systems
Interconnection (OSI) model as illustrated in Figure 8.2, which is compatible to
different lower layer protocols in the data link layer or physical layer. For example,
the IEEE 802 model is compatible with the OSI models with regard to the network
layer and physical layer, where there is a wide range of protocol choices from the
IEEE 802 protocol family. This includes the widely used protocols, such as IEEE
802.3 (Ethernet) and IEEE 802.11 (e.g., WiFi, Bluetooth, and ZigBee).

By applying the OSI model in describing the data flows in the energy system,
the testbed design can regard the whole energy system as a stack of protocols, where
the network layer and physical layer are specified by the ICT sub-system, while the
power sub-system and advanced signal processing sub-system forms the other layers.

In this way, the ICT sub-system can be decoupled from the whole system with
regard to the layered design in the OSI model. Correspondingly, traditional design
methods in the ICT discipline can be applied, where each layer is transparent to
the other layers and each layer is only responsible for its only layer as well as the
interfaces between other layers.

However, it should be noticed that the above layered design is only the necessary
conditions for an ICT sub-system can be integrated into the whole energy system,
while the sufficient condition is whether the required communication performance
can be met. It is pointed out by the IEEE Task Force on Interfacing Techniques for
Simulation Tools in [24] that, it is necessary to jointly consider ICT systems and
power systems to describe the entire energy system.

This is because in the energy system, the data flow and energy flow are coupled,
where correspondingly the ICT systems and power systems are coupled. On the
one hand, the performance of the ICT system directly affects that of the power
system, because any delay or failure due to the ICT systems will affect the successive
processing of the data in the power systems. On the other hand, the power system is
the data source and data sink of the ICT systems, which characterizes the data size,
pattern, importance and urgency that determines the choice and configuration of the
ICT systems.
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Therefore although the ICT system can be decoupled from the entire energy sys-
tem with regard to the layers in the OSI model, the design and implementation should
still be considered jointly with the power system. Especially the mutual influence be-
tween the ICT system and the power system is of great interest in the viewpoint of
testbed design, which could lead to not only a better selection and optimization of the
ICT systems for real-world deployment, but also a further improvement of the energy
systems with regard to the services’ end performances and overall system reliability.

8.2.1.2 Software-Defined Radio Implementations

In the following, a Software-Defined Radio (SDR) based wireless communications
system is introduced as an illustration of the design and implementation of the com-
munication sub-system in the energy system. In SDR based wireless communication
systems, most functions are defined by software modules and fulfilled by general pur-
pose computing devices, while its counterpart concept, namely the hardware defined
radio, exploits dedicated hardware chips or modules for corresponding functional
purposes.

Besides the general purpose computing devices and antennas, the typical SDR
solution consists of a Radio Frontend (RF) device, which converts the baseband
signals from the general purpose computing devices to the broadcasting waveforms
for the antennas. Note that different from pure simulators, the SDR based solutions
are capable to work as real-world devices, e.g., to be exploited as the full set of ICT
sub-systems in the energy system testbed.

The most important feature of the SDR is its modular architecture, where each
function can be capsuled into a functional module, and to be loaded as required.
Since the modules are described by software blocks, it is possible to experiment with
different combinations of the modules with the same hardware setup by software
configurations.

With this concept, a protocol pool can be built, which is illustrated in Fig. 8.2.
In the protocol pool, each communication sub-system implementation can be defined
as a combination of protocols for each layer in the IEEE 802 model or the OSI
model, while each protocol can be described by a software module. During the testbed
evaluation phase, the implemented communication can be re-configured by module
combinations within the protocol pool.

A counterpart concept in the hardware defined radio is the gateway method,
where each of the protocols is fulfilled by corresponding hardware chips and devices,
while these chips and devices are physically co-located together to realize a similar
function as of the protocol pool.

Note that from the testbed design aspect, the difference between the protocol
pool based on SDR and the gateway method is very large. The difference is not in
their functions because their performance is largely determined by the protocols, and
these protocols can be exactly the same for either solution. The key point is in the
protocol pool, all involved processes can be investigated by the researchers, which are
basically black boxes in the gateway method.
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Beyond the basic feature such as the implementation of existing communication
protocols, the testbed design based on SDR is also powerful in the integration and
evaluation of advanced communication technologies. With the advent of the fifth
generation wireless communication technologies, wireless communication technolo-
gies are expected to be compatible with the wired communication technologies, with
regard to throughput, latency and reliability.

There are also service optimized protocols dedicated for the energy systems,
which, however, are mostly verified and tested via simulations only. This largely
confines the application of these advanced technologies in the energy systems, be-
cause reliability is the top criteria in communication technology selection, while the
new technologies usually lack practical test supports. This is worsened in the hard-
ware defined communication systems, where it is very hard, and usually impossible,
to modify an existing hardware chip or device to implement the new technologies.

With the SDR based testbed design, the experiments with new and advanced
technologies, especially in the communication systems, are much facilitated. In the
development of hardware chips and devices, the low-level hardware oriented languages
are used, such as Field Programmable Gate Arrays (FPGA) and Application Specific
Integrated Circuit (ASIC).

Different from that, the state-of-the-art SDR environments could support most
existing programming languages and developing methods. For example, the GNU
Radio, which is an SDR toolkit and part of the well-known open source GNU family,
could support programming methods including Python and C++, as well as the
popular languages such as MATLAB via interfacing tools.

8.2.1.3 Protocol Pool Method

To implement these advanced technologies and evaluate jointly with the whole energy
system, the modified protocols are implemented in software modules and integrated
into the protocol pool. The key barrier of the experiment with new technologies is
then changed from hardware compatibility challenges to software compatibility issues,
where the latter is much easier to be resolved in the layered models, and the fact that
software modules are friendly to researchers and developers.

Next, an example is given on how to implement advanced spectrum sharing com-
munication technologies via the SDR based testbed design. To support the commu-
nications among widely deployed smart devices and all kinds of real-time services,
there is an increasing demand for the performance of the communications in the
Smart Grid. The available spectrum resource is a key bottleneck in performance
improvements of the communication systems.

Traditionally there are two options, either to obtain exclusive spectrum licenses
or to use the Industrial, Scientific, and Medical (ISM) radio bands. The former usu-
ally involves high cost, while the latter can be very noisy and crowded for good
performance. As a promising solution, the cognitive radio technology can exploit the
unused spectrum resources for opportunistic data transmissions. By sharing the spare
spectrum resources in the dimensions of space, frequency, time or code, the cognitive
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Figure 8.3 An illustration of spectrum sharing mechanism, where the unused spectrum
is potential to be opportunistically exploited by the unlicensed users.

radio enabled testbed provides wider choices for data transmissions and enhances the
overall communications performance.

An illustration of the spectrum sharing concept is illustrated in Figure 8.3. To
this end, a cognitive radio system is implemented as the new communication protocol
and integrated into the protocol pool.

The new spectrum sharing specifies the medium access control layer and phys-
ical layer as illustrated in Figure 8.3, which describes the same layers as the other
protocols including the WiFi and ZigBee.

In the new spectrum sharing protocol, each round of data transmission is with
a fixed period of time, which is illustrated in Figure 8.4. During each round of data
transmission, it consists of three phases, which are detailed as follows:

• In the spectrum sensing phase, the communication system observes the sur-
rounding spectrum environment and estimates the spectrum usage status. The
spectrum sensing relies on signal processing techniques based on the measure-
ments with regard to the spectrum, where methods like energy detection can
be used.

• The signal processing phase is between the spectrum sensing phase and the
data transmission and reception phase, which corresponds to the time period
of the guardian interval in Figure 8.4. During this phase, the communication
system estimates the surrounding spectrum status, and makes decisions on its
spectrum usage for the data transmission and reception phase.

• During the data transmission and reception phase, the communication systems
exchange the energy system data with the selected spectrum opportunities.
These data are sourcing from (or delivering to) other sub-systems in the energy
system.

Note that the key point of the spectrum sharing is to determine how the com-
munication system is to access the spectrum resources, where the data transmission
and reception can re-use any existing protocols. In this way, by specifying the afore-
mentioned phases via sub-modules and integrating them as part of the protocol pool,
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Figure 8.4 An illustration of the spectrum sharing protocol, where a dedicated time
period is allocated for the spectrum sensing and the data transmission and receipt
are then using the identified opportunistic spectrum.

the new spectrum sharing protocol can be implemented as the communication sub-
system, and compatible with the rest of the energy system testbed.

8.2.2 Power System Implementation

In the energy system, the energy may have different energy carriers, such as electricity,
natural gas and renewable energies. In this part we focus on the power system as a
typical example of the energy system, while the testbed design method can be further
extended to include other energy forms.

8.2.2.1 Simulator-Based Implementation

The power system is a broad concept, which includes all aspects with regard to the
generation, transmission, distribution, and consumption of electricity. In a hardware-
based testbed, the implementation of the power system has to address all these as-
pects, which involves a very complex design and implementation procedure.

Instead, here the software-based method and hybrid design method are interested,
where the infrastructure of the power system is implemented via software modules
or simulators, and only the control sub-systems or end users are implemented in
hardware. Specifically, the RTDS is used as an example to illustrate how to implement
the power system via the software-based method or the hybrid design method.

The RTDS is a state-of-the-art power system simulator, which simulates the real-
time operations of the power system operation and supports electromagnetic transient
simulation with time steps as small as 1 – 50 µs. The key feature of the RTDS is its
modular structure, where the computing resources and interfaces are implemented in
individual modules which are referred to as the functional cards. This architecture
is sharing some similarities with the SDR in the communication systems, where the
hardware devices are generalized and can be largely re-configured by the software.

A standard implementation procedure with the RTDS follows similar steps as in
most simulators. The system is constructed with the provided software suite RSCAD,
which consists of necessary libraries including common components modelling from
basic resistors and capacitors to the wind turbines and solar panels. With the graph-
ical user interface (GUI), it allows the users to draw the desired power system in



314 ■ Blockchain and Artificial Intelligence Technologies for Smart Energy Systems

Figure 8.5 An illustration of the IEEE 4 bus power system implementation in the
RTDS, where the power system is expanded with wind energies.

different hierarchies, which are then compiled as numerical simulation tasks to be
executed on the hardware devices.

An example of IEEE 4 bus power system is illustrated on the left-hand side of
Figure 8.5, whose corresponding implementations via the RTDS are presented on
the right-hand side, where the generator is replaced with wind energies to study
the renewable energies. It is seen that the implementation is quite straightforward
with the GUI inputs. For example, the power transmission lines correspond to the
graphical lines connecting each bus, whose parameters can be explicitly represented
by the resistors and capacitors attached to the lines.

Another example of the PV generator implementation is illustrated in Figure 8.6.
In this example, the PV module is reusing the PV model in the renewable energy
library in the RSCAD. Besides the common inputs and outputs such as the insolation
and temperature, the model can be tailored to simulate common PV products in the
markets. Note that during the integration of such detailed models with the rest of

Figure 8.6 An example of the PV implementation in the RTDS.
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the power system models, it usually requires additional circuits such as converts and
transmitters.

Since the RTDS is also a model-based simulator, it also supports the simulation of
power system devices at different levels. For example, to implement the wind turbine,
it can be implemented via a complex model with the considerations of turbine design,
converter design and fault controls, which can be reconfigured based on a prototype
model from the RSCAD library.

The detailed implementation of the wind turbine is essential for the studies of wind
energy related studies, where features such as electromagnetic transient analysis are
very helpful for the data acquisition and analysis. On the other hand, if the study
is focusing on the integration of wind energy as a distributed generator, while the
focus is on the power flow studies in the whole system, then the wind turbine can be
regarded as a power converter from the wind power to the electrical power.

In such cases, a lot of details within the wind turbine can be overlooked, while
its end performances such as power efficiency, power factor, and active and reactive
power generations are more interested in the power flow studies. Therefore the im-
plementation of the wind turbine in power flow studies can be abstracted as a power
injector, where the wind energy generation can be scheduled with regard to the time
of the day.

Note that the key point in the power system implementation is to select the
appropriate level of model to characterize the key features. It is indeed possible to
exploit the detailed model for transient analysis for general studies such as the power
flow analysis, which can be fulfilled by the interfacing component during the imple-
mentation.

But it should be noticed that this is not beneficial in most cases, because simula-
tions are to capture and reflect the impact from the key factors, while the many trivial
details are not helpful for this purpose. Actually, the implementation of a model with
excessive details could be even troublesome in practice.

A common issue is that the model details are exhaustive in the computing re-
sources during the implementation, for example, the 1 ms time resolution could be
sufficient for the power flow analysis, while it requires 50 µs time resolution if the
transient analysis is involved. This means if the transient models are implemented
in the power flow analysis, the whole testbed has to spend at least 20 times more
calculations than the actual requirement.

8.2.2.2 Real-Time Simulations

Due to the high simulation resolution, the RTDS is able to simulate the events in the
power system in the same time scale as in the real world. This is the key point that
the RTDS is claiming real-time simulations as its main feature. Actually, it is the
versatile functional cards that make the RTDS versatile for power system simulation,
especially with regard to the hardware-in-the-loop experiments.

The optional cards include both digital and analogue inputs and outputs, com-
munication protocol selections and high voltage and low voltage interfaces, which
can be re-configured to interact with other devices for the purpose of data input or
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Figure 8.7 An example of the thermal energy system implementation in the RTDS.

output. A typical example is the simulation via the RSCAD. In fact, the RSCAD
splits the models and the simulation scripts, which need to be separately defined.

The implementation as illustrated in Figure 8.6 is regarded as building models
in the RSCAD, where a simulation script can be defined via the GUI and almost
all values in the models can be configured to be observable during the simulation.
The demanded simulation data on the RTDS hardware are transmitted to the hosts
running RSCAD, which is fulfilled by the Ethernet connections and communication
card.

A wide range of power system implementations can be made with the RTDS,
where the build-in library in the RSCAD provides many prototype models for refer-
ences. This also includes some models or protocols for the new technologies, such as
the wind turbine models, Photovoltaics (PV) models, battery models, Phasor Mea-
surement Unit (PMU) models and IEC 61850 protocol. It also supports self-defined
models that are not available from the libraries, which can be defined in C++ and
integrated into the implementations.

For most cases, the new systems or models can be built without the low-level
modelling method based on C++ programming. The RSCAD provides an extensive
library that includes the most commonly used electrical components, control devices,
and mathematical operators. Therefore with a given model for the new models, it is
usually possible to fulfill the implementation task by the combination of these existing
models. For example, the thermal energy system is an important counterpart of the
electricity system, which is widely existing in real-world energy systems.

Although RTDS is targeted for the electric power system, the thermal energy
system can be modelled, where an example is illustrated in Figure 8.7. In this example,
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the purpose of the experiment is to study the supply and demand with regard to both
electricity and thermal energy, where the thermal energy devices can be abstractly
modelled and implemented.

For example, in the study of thermal storage operation for the demand-side man-
agement, the operations can be modelled by the charging and discharging parameters
to reflect the interaction between the thermal energy storage with other system com-
ponents, as well as the stage of charge to characterize the operating status of the
thermal energy storage. As illustrated in Figure 8.7, this model can be implemented
with the control circuits, and integrated with the electricity power systems.

For advanced modelling of thermal energy system devices, it is also possible to
implement a more complicated mathematical model following a similar method. This
is actually transforming the models to a set of numerical calculations, which is sup-
ported by the RTDS since this is in line with its electrical modelling method.

From the view of the whole energy system, the support of the modelling of other
energy forms is of great importance, because it would save the researchers from
referring to additional simulators for these tasks. Note that from the aspect of the
testbed design and implementation, it is not trivial to enforcing similar modelling
methods for the same sub-systems, which helps to reduce the complexity in both the
model development and implementation.

8.2.3 Artificial Intelligence Integration

The cost for computing resources has been reducing every year. On the one hand, it
has stimulated all kinds of software simulators, which is because we are now able to
simulate the physical process at high accuracy with much lower cost than hardware
implementations.

On the other hand, it has also boosted the technologies such as artificial intelli-
gence (AI) to a new high level. Actually, AI is not a new term, which can trace back
to 1956 when it was coined by John McCarthy at a workshop. The current research
topics and research methods in the AI field have been much different since the last
decade, which are more data intensive thanks to the powerful computers.

With regard to energy systems, the advances of AI technologies have also indicated
potential solutions to the many long-standing challenges. For example with the power
of learning, AI algorithms have shown advantages in addressing the uncertainties in
the energy system, such as energy forecasting and load forecasting. More importantly,
the learning ability of some AI algorithms shows potentials in further improving the
system stability, where the system with AI could evolve with changes.

In this part, the focus is on the integration of AI algorithms with the testbed
design and implementation. It will first introduce an example of the integration of
AI algorithm with the energy system testbed, and then proceed to more general
discussions on the integration techniques.
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8.2.3.1 An Integration of Reinforcement Learning with the Testbed

In Section 8.2.1, it has been introduced the integration of the ICT system with the
testbed. Specifically, the potential use of spectrum sharing techniques to improve the
ICT system performance has been discussed.

In Fig. figure ch8 spectrum sharing, it is seen that there are three consisting parts
for a system exploiting spectrum sharing protocol, namely the spectrum sensing,
guardian interval and transmission/reception. In simple implementations, for exam-
ple, when there is only one spectral opportunity, the testbed can easily decide its
access or not, based on traditional algorithms such as the spectrum energy detection.

Now let us consider a more advanced scenario, where there are multiple wireless
channels (i.e., the spectral opportunities) to this testbed. On these wireless channels,
there might be other users or devices. The testbed can transmit its data if there
are no others using it. If there are any other users using one of the channels, the
testbed should avoid this specific channel, or both the testbed and the other users
are interfered with a performance degrade.

This system model can be implemented into a wide range of practical scenarios,
for example, the opportunistic spectrum is in the 2.4GHz WiFi band and there might
be others occasionally using WiFi. In such cases, the decision on which channel to
use can be more active than the passive energy detection method. The other users
might present some patterns in usage. For example, it might show a periodic pattern
when streaming a video, or a sporadic pattern when browsing the web pages.

With an unknown usage pattern by other users, it could be a challenge for the
testbed to access the channels for data transmission. With the energy detection
method, it can only know the current channel usage status, and therefore pick the
best known channel for data transmissions.

Strictly speaking, any known channel usage via the energy detection method is
the knowledge in the past, because there is always a time lag between the time when
things happen and the time when it is detected. Therefore without cooperation, the
other users might interrupt at any time even it is not detected to be presented.

Another traditional method with more active solutions to avoid conflict with
other users is the random access method. In the random access method, the testbed
will first detect the current channel usage via the energy detection method, and then
randomly pick one of the available channels for data transmissions.

This might not guarantee the testbed to access the best channel, but it is potential
to mitigate collisions via randomness. Since the decision is based on randomness, the
chance of the collision is also random, and might be good for some time while bad
for others.

Therefore there are two specific challenges in accessing the channels, the first one
is the channel quality, and the second is the chance of collision with other users.
Comparing to the energy detection method and the random access method, a more
active method can be achieved via the AI based method.

Here the reinforcement learning algorithm Multi-Armed Bandit (MAB) is consid-
ered. The MAB algorithm is an online learning algorithm, which is detailed in Figure
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Figure 8.8 The Multi-Armed Bandit algorithm, which serves as an example of rein-
forcement learning algorithm for the testbed implementation.

8.8. In general, the MAB algorithm empirically predicts the next best available chan-
nels based on historical observations.

The testbed considers a scenario where a Bus Node is to communicate with a
Control Centre, where the data to be exchanged are the measurements from the Bus
Node to the Control Centre, and the control commands from the Control Centre
to the Bus Node. The testbed exploits the spectrum sharing method as detailed in
Section 8.2.1, where the MAB algorithm is used for the spectrum access decisions.
Its calculation is completed during the guardian interval as indicated in Figure 8.8.

As can be seen from Figure 8.8, the presented MAB algorithm has been integrated
with the functionalities in the testbed, and also helps to coordinate the ICT system
operation. To avoid the potential collisions with other users, the MAB algorithm
dynamically selects two channels, namely the primary channel for the next round of
data transmission, and the backup channel in case the primary channel is interrupted
by other users.

Along with the data transmissions, the good selections are positively rewarded and
encouraged by the MAB algorithm, while the bad selections are negatively rewarded
and discouraged. In this way, the channel selections are reinforced with good channel
conditions and no collisions.

To integrate the MAB algorithm, it can be implemented as a signal processing
module in the advanced signal processing systems in Figure 8.1. It is then interfaced
with the spectrum sensing module and the data transmission module in the ICT
system.
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Figure 8.9 The experiment results of the Multi-Armed Bandit algorithm on the
testbed, comparing against simulations. The benchmark algorithms are the energy
detection algorithm and random channel selection algorithm.

In Figure 8.9, the channel selection performance is evaluated via the averaged
data rate in bit per second (bps). The MAB algorithm results are referred to as the
proposed learning algorithm, and two benchmark algorithms are used for compar-
ison purposes, which are the energy detection algorithm and the random selection
algorithm as described above.

The offline simulation results are presented at the bottom of Figure 8.9, while
the real-world testbed implementation results are presented at the top. Since the
implemented MAB algorithm is an online learning algorithm, it requires a training
period to converge to a stable performance.

This corresponds to the first 100 rounds as illustrated in Figure 8.9. Actually,
after the first 50 rounds, it can be already spotted that the real-world implementation
already stabilized to about 10 × 107 bps, which is the best performance comparing
to the two benchmark algorithms.

For the MAB algorithm, it is also seen that the simulation results are generally
agreeing with the real-world testbed implementations. In the meantime, the two
benchmark algorithms degrade more than the MAB algorithm. This is due to the
fact that simulations are under certain assumptions, which can approximate the real-
world scenarios but the differences still exist.

This also indicates the importance of the testbed implementation, since the
testbed experiments are more close to the end-performance as products, while the
simulations are not sufficient to evaluate the algorithm nor the testbed completely.
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8.2.3.2 Remarks on the Integration of Artificial Intelligence

The first remark is with regard to the environment to implement the AI algorithm as
a module. In the previous example, the testbed integrates the reinforcement learning
algorithm, namely the MAB algorithm, as a module in the advanced signal processing
system.

Apparently, the relation between the modules in the advanced signal processing
system is in a logical manner, instead of physically grouped together. In fact, accord-
ing to Fig. 8.9, the reinforcement learning algorithm is closely interacting with the
ICT system modules instead of other advanced signal processing modules.

Similarly, if the integrated AI algorithm is for the forecasting in the power system,
then it is highly likely that the AI algorithm will closely interact with the power
system modules. Therefore from the testbed design and implementation aspect, the
AI algorithm modules are preferable to be implemented in the same environment
as its application scenario, other than treating them as independent data-oriented
environments. For example, let us consider a dummy scenario that the AI algorithm
is for power system applications developed in MATLAB.

To integrate the AI algorithm with the energy system testbed, there are two
general options. The first is to treat the power system as the data source and data sink
of the AI algorithm, which decouples the necessity of implementing the AI algorithm
in the MATLAB environment. Under this condition, the AI algorithm module can be
implemented in any available environment beyond MATLAB, such as Pytorch and
Tensorflow.

Then the options to implement the AI algorithm are much flexible, where the
development of the AI algorithm can be even independent of the whole testbed. This
is similar to the implementation of ICT system and power system, where mature
techniques or existing solutions can be borrowed directly, or with light efforts on
the adaptions. But the disadvantage is also clear, since there might be interfacing
requirements between the AI module with the other modules.

The second option is to implement the AI module exactly the same as the appli-
cation environment. For example in the previous dummy example, the AI module can
be implemented in MATLAB similar to the power system modules. The advantage
of this option is that there will be little interfacing overheads, as the AI modules and
its interacting modules are in the save environment.

This is quite important for some time-sensitive applications. For example, the
spectrum sharing example in the previous sub-section demands the decision to be
made within the time of the guardian interval, as the inputs (spectrum sensing results)
are not available before the sensing finishes, and the outputs must be ready before
the data transmissions. The disadvantage of this integration option is that it might
also restrict the development of the AI modules.

Similar to the power system and ICT system, the researchers and developers are
normally sticking to the environment they are most familiar with. Note that when
considering the cost to design and implement a testbed, there are also hidden costs
such as the time to learn unfamiliar things. In some cases, the learning curve for a
new development environment could be very long.
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The second remark is regarding the numerical aspects of the AI algorithm.
Testbeds are special application environments for AI algorithms, where the involved
numerical calculations should be carefully treated. All AI algorithms require to learn
first before use, and not all testbeds are supporting both the learn and inference (i.e.,
the use of the trained AI algorithm or models) phases.

For some online-learning algorithms such as the MAB algorithm, the train and
inference are integrated processes. In such cases, there will be a negligible performance
difference between train and inference due to numerical calculations. For many data-
intensive applications, such as load forecasting in power systems, it requires an offline
training phase to address the big data challenge.

Although the training process can be very computing-intensive, the application
of the trained AI algorithm or model in the testbed is, on the contrary, much relaxed
on the computing resources. This is because during the inference process, the trained
AI models are with fixed structures and parameters, and the involved calculations
are quite straightforward.

However, this is the point where special cares should be taken, as the numerical
calculation environment could be different from its training one. For example, the
default numerical precision for MATLAB is double-precision floating point (following
IEEE Standard 754), while the ASIC or FPGA modules are normally based on fixed
point numerical calculations.

The support of floating point might be default for PCs, but might be very lux-
urious for some controllers, or even impossible. The gap between the floating point
and the fixed point is huge with regard to the AI algorithms, which could lead to
unexpected performances if without treatments.

This difference could lead to a completely different AI algorithm design for the
same problem, therefore should be considered from the start of the testbed design.
For example, many AI algorithm involves the operation to normalize the output in
the range from 0 to 1, where the frequently used non-linear activation layer is the
“Sigmoid” layer, defined as Sigmoid(x) = 1

1+e(−x) .
The involved calculation is not a problem at all in a floating-point system, but it

could be a challenge in the fixed-point system. This is because the accuracy of the
calculation will change with different inputs due to the fixed-point precision, thus it
needs to be intentionally calibrated, e.g., with approximation solutions by sections
according to the range of the input values.

It should be minded that if the floating point data type is supported by two
AI environments, it is better to double-check that the precision is acceptable with
regard to the performance, in order to avoid any potential issues. To have a better
idea about the numerical precision issues, numerical computing with MATLAB is
used as examples in the following discussions.

The default precision for the floating-point type numbers is double-precision in
MATLAB, while it also supports single-precision numbers if otherwise specified. Since
all calculations in the CPUs are in the binary format, the floating-point numbers
correspond to the method to represent binary bits.

In MATLAB, the single-float numbers are represented with 32 bits, while the
double-float numbers are represented with 64 bits. Due to the limit of the finite
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length of bits in representation, the calculations using single-float and double-float
will have differences in accuracy. For example, what is the difference between the
value 0.1 in single-float and in double-float? This corresponds to the following line in
MATLAB as below:

single(0.1) - double(0.1)

If you are not familiar with the numerical precision, it will surprise you as the
result is not 0, but 1.4901 × 10−9 in MATLAB. Here is what happens behind the
screen. The constants are perceived by MATLAB as double-float by default, so sin-
gle(0.1) converts the value 0.1 from double-float to single-float, with a round-up to
the nearest single-float representation.

This conversion has caused a difference 1.4901 × 10−9 as observed in the above
example. Someone may wonder that the difference is so small, how could it affect the
calculations? Let us see another example as follows:

(0.1 + 0.2) == 0.3

In the above example, it is to compare if the values 0.1+0.2 and 0.3 in double-float
are equal. In common sense, the result is apparently true, but in MATLAB it gives a
FALSE as the result. Again, this is due to the fact that all numbers are represented
in binary bits, but not all numbers can be represented in finite number of bits.

Considering that even the most simple summation operation like 0.1 + 0.2 will
lead to some errors due to precision issues, what about the complicated AI models
with a combination of other operations? And what if there are precision conversions
required if the testbed is using a different precision system than the AI training
environment?

There are no one-for-all solutions to the numerical precision induced problems,
but there are indeed some partial mitigation solutions. For example, the numerical
precision challenge can be considered as the quantization errors, where a faking quan-
tization environment can be exploited during the training in some AI frameworks such
as PyTorch.

8.2.4 Interfacing Techniques

The operation of the smart energy system is with the support of multiple sub-systems.
This determines that the testbed design is deemed to face challenges in the coordi-
nation of different systems, such as the ICT sub-systems and electrical power sub-
systems. It should be noticed that each sub-system could represent a well-established
research area, where the coordination not only requires each of the functions correctly,
but at the same pace in a timely manner against the others.

To get a much clear idea about the coordination between the sub-systems, it can
be imagined that the whole energy system is an orchestra, and each sub-system is
representing one specific instrument, which could be the violin, the horn, or the piano.
The system operation is like the ensemble of the orchestra, where each instrument
needs to be conducted to meet the right tempo.
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More importantly, a failure of one instrument will ruin the whole ensemble, and
this is also true in the case of modern energy systems. The key point of the above
metaphor is that in the viewpoint of the whole energy system, each sub-system is
not stand-alone but closely coupled with other sub-systems. This feature determines
that the coordination between different sub-systems is a key research problem to the
final success of the testbed design as well as its implementation.

From the viewpoint of testbed design and implementations, the sub-systems are
usually designed and implemented as a module, where the coordination between
modules is usually with standard interfaces. Note that this is usually true during the
design and implementation of parts within a given sub-system, where the commu-
nication between different sub-modules is achieved via interfaces, instead of a direct
talk between their consisting components. This is due to the trend of the standard-
ization and the modular design, whose typical examples are IEEE 802 models for the
wireless communication systems as detailed in the previous subsections.

The advantage of modular design is that it enables certain independence between
modules. On the one hand, it decouples the total sub-system design and implementa-
tion tasks into smaller ones, which can be tested and debugged independently. On the
other hand, the individual modules (or sub-modules) are only responsible for their
own functions and transparent to the other modules (or sub-modules), which makes
it challenging to jointly optimise their design and implementation with very limited
interfaces between them.

In the case of the testbed design for the energy system, since the most common
purpose of the testbed is for the proof-of-concept, it is usually an essential requirement
that the testbed is versatile in providing data, especially those for status monitoring
and post-processing purposes.

Therefore in most software-based or hybrid testbed designs, each sub-system is
likely to be fulfilled by the specified simulator designed by and for its own disci-
pline. For example, one of the most popular communication system simulators is
the Network Simulator 3 (NS-3), which supports the study of the communication
network topology and protocol with a simulation of a vast number of transmitters
and receivers. In many energy system designs when detailed communication systems
are necessary, the NS-3 has been widely used [25], where some advanced wireless
communication protocols such as the Long-Term Evolution (LTE) standards.

8.2.4.1 Software-Based Interfacing Techniques

Generally speaking the interfacing techniques for the energy system testbed design
and implementation can be generally categorized as software-based interfacing tech-
niques, and hardware-based techniques, which will be detailed as follows.

In this book, the software-based interfacing techniques are referred to as the ap-
plication programming interface (API) based method in interfacing two modules in
the testbed. The concept of API refers to a software interface of functional modules,
which provides abstract calls or requests to their contents or functionalities. The cur-
rent form of API definition is much broader than its initial idea of the interface for
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application programs, which is now widely used in various disciplines, such as web
development and communication protocols.

For software-based testbeds, the API is usually playing the key role, no matter it
is implemented within one simulator or with conjunction of multiple simulators. One
of the most popular software-based testbed designs is to transform the operations
of energy systems to the numerical simulations of the underlying events, which are
usually referred to as event-based simulators. By abstracting and formulating the re-
quired simulations into numerical calculations, it is possible to implement the testbed
within one simulator, or more generally one simulation environment.

For example, MATLAB is a general purpose numerical computing environment,
which encourages matrix-based manipulations during calculations. It has its own
programming language which is called MATLAB programming, but it shares many
similarities with the commonly used C/C++ programming language. The advantages
of MATLAB as the implementation of the energy system testbed due to the merit
of its versatile embedded toolboxes and their associated APIs. These toolboxes cover
the frequently involved sub-systems in the energy systems, such as the control system
toolbox, communications toolbox, and signal processing toolbox.

For example, in the case of the energy system is exploiting ZigBee as the low-cost
solution for smart meter applications, it needs to implement the physical layer of the
ZigBee protocol, which transforms the message bits to the waveform to broadcast in
the air. The transmitter can be achieved by simply one line code in MATLAB with
the API of ZigBee toolbox as follows:

ZigBeeWave = lrwpan.PHYGeneratorOQPSK(Message, 4, ‘2450 MHz’)

Correspondingly, the receiver that converts the waveform to message bits can be
achieved by one line code as follows:

Message = lrwpan.PHYDecoderOQPSKNoSync(ZigBeeWave, 4, ‘2450 MHz’)

Although there are only two lines given here, actually they implement a series
of protocol-specified manipulations in the ZigBee physical layers, such as the spread
spectrum, modulation, demodulation, and pulse shaping. With the other high-level
APIs for counterparts of ZigBee, the communication sub-systems can be implemented
as well-known protocols such as WiFi, LTE, and even 5G.

These high-level APIs are also available in other sub-systems. Another example
given here is the electric power system implementation via the MATPOWER, which
is a third-party toolbox for MATLAB. The power flow analysis is commonly used in
power systems, which is the basis of many advanced controls and services, such as
system reliability analysis, power loss reductions, and voltage magnitude controls.

The implementation of a standard IEEE 30 bus system and its power flow analysis
can be fulfilled by the one-line code in MATLAB via MATPOWER as follows:

PowerFlowResults = runpf(‘case30’)

The operation status of the power system can be readily obtained by accessing
the corresponding sub-fields in the results. For example, whether the power flow
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analysis converges to a stable solution with a given power system configuration can
be indicated by the sub-field called ‘success’ in the PowerFlowResults, which can be
obtained as follows:

PowerFlowAnalysisStatus = PowerFlowResults.success

while the voltage magnitude of each bus can be obtained as follows:

BusStatus = PowerFlowResults.bus(:,8)

Now let us consider a simple energy system consisting of the above IEEE 30
bus power system and ZigBee communication system, where the monitoring and
measurements are assumed to be at the individual buses, whose data should be sent
via communication systems to a control center for power flow analysis.

Then the implementation of the power system and communication system can
be fulfilled by the APIs above, and it only requires interfacing between these two
sub-systems to complete this specified simulation task. The interfacing might involve
signal processing based on the measurements, or the system specifications mapped
from the scenarios.

For a simple scenario, if the voltage magnitude ‘BusStatus’ of each bus is to
be transmitted via the ZigBee communication system, then the interfacing between
them can be fulfilled by signal processing APIs. One feasible method is to convert
each measurement as a stream of bits, then sends the stream of bits via the ZigBee
system.

The conversion of measurements to a stream of bits can be fulfilled by a series of
signal processing via APIs in MATLAB as follows:

Message = uint32(double(string(vec(dec2bin(num2str(BusResults))))))

This formed ‘Message’ is ready to be transmitted in the implemented ZigBee com-
munication system.

It is seen that in the above examples based on MATLAB, the interfacing between
the electric power system and the communication system is simple and easy. This is
due to the fact that all systems are implemented within one software environment
and programmed under the same MATLAB programming language, where there are
no barriers for the two sub-systems to exchange data.

Note that this is not always the case if they are implemented in their hardware
counterparts, as the mismatch between the inputs and outputs of data can be a
challenge to address.

With one simulator or software environment, it is also possible to exploit differ-
ent modelling methods to implement the testbed. MATLAB provides a model-based
design method, which is called Simulink.

The aforementioned implementation of ZigBee systems and IEEE 4 Bus system
can be also built via the embedded Simulink Simscape models, which converts the
previous script-based implementation in MATLAB to the graphic model based im-
plementation in Simulink.

It should be noticed that since the numerical calculations are with the same en-
gines, these two testbed implementation methods can achieve the same performance.



Developing Testbeds for Smart Energy Systems ■ 327

Actually, these two modelling methods can be easily combined, where the script can
be transformed to a model to be connected in Simulink, or the Simulink models can
be converted to codes to run in scripts.

As another example of using different modelling methods in one software envi-
ronment, here a web-based data sub-system is considered. Note that this sort of data
system is widely used in energy systems with distributed devices. The central system
may broadcast the operation-related information in a periodical manner, or can serve
as a data centre and provide the information on demand. One typical example of such
systems is the data services provided by the National Grid, where the regional and
global data regarding load and generation information can be requested via web API
interfaces.

To request the actual load demands for the 24 hour period on December 31, 2018,
the core implementation of such systems in MATLAB can be given as follows:

url = ‘https://api.bmreports.com/BMRS/B0610/V1?APIKey=DUMMYKEY...
&SettlementDate=2018-12-31&Period=*&ServiceType=csv’

LoadDemands = webread(url)

The above example calls the RESTful API ‘webread’ for the access of the web-based
dataset provided by the National Grid.

Note that in the above example of web-based data sub-system, the RESTful API
is for web services, which is a different language comparing to the communication
systems, and the electric power systems. But thanks to the API integrated into the
MATLAB, this web-based data sub-system can be implemented similarly at a high
level as the communication systems and electric power systems.

For the testbed implemented via multiple simulators or software environments,
the interfacing between the different software is usually not as simple as the single
simulator or software environment. For simulators with the same software environ-
ment, the barrier will be much reduced.

This is because, for different software environments, the descriptions and defi-
nitions of the data and processes could be essentially different, while in the same
software environment it has already been well addressed. The typical example is
MATLAB and Simulink, although with different modelling methods, the mutual in-
terfacing has been supported with embedded APIs.

Each research discipline would prefer some routine software environment for simu-
lations, which results in a common situation that different sub-systems are developed
independently. Although it is apparent that the single software environment is simple
in interfacing different sub-systems, it could be hard, or even impossible, to have a
full translation of all sub-systems into one software environment.

This is because in most cases, the sub-system is described by a set of APIs specified
by the software environment. These APIs depend on the low-level dependent libraries,
which are depending on other libraries therein. If comparing the implemented sub-
system as a tree, the APIs are the trunks and leaves, while the dependent libraries
in the software environment are the intertwined roots.
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Migrating the sub-system from one software environment is similar to moving the
tree parts above the ground without the roots, while the success of the transplant de-
pends on whether it can live with the ‘new’ roots in a different software environment.
Note that this is usually hard but not impossible.

An example can be given based on the aforementioned dummy energy system,
where the sub-systems can be transplanted from the MATLAB environment to the
Python environment. For example, the implementation of the IEEE 4 bus system
in Python can be fulfilled by PYPOWER, which is a Python counterpart of MAT-
POWER for the power flow analysis.

Then the power flow analysis in MATLAB can have an equivalent python im-
plementation, certainly with APIs in the context of Python and PYPOWER. Note
that this is not a special case by chance, but instead, it is the results enabled by the
various researchers and developers.

For some dependent libraries and toolboxes, they are developed to be compatible
or mimic the classical features of their counterparts in a different software environ-
ment, where the PYPOWER and MATPOWER serves as one typical example. Some
later toolboxes for electrical power system studies in Python also followed this com-
patible solution, such as the pandapower toolbox, which is compatible with both
PYPOWER and MATPOWER.

For the cases where no easy substitution of dependent libraries is available, the
cases will be more complicated and usually relies on the dedicated intermediary in-
terfacing solutions. Although the detailed realization of such fundamental low-level
interfacing solutions could be very complex, it is, however, usually with much sim-
plified operations thanks to the high-level APIs.

The first example is the usage of Python functions in MATLAB. With a proper
configuration in MATLAB, the Python functions and scripts can be directly called in-
line with the MATLAB programs. For example, if a dummy control algorithm named
‘funcPythonCtrl()’ is implemented in a Python file named ‘MyPythonScript.py’, and
it is to be called in the MATLAB-based programs, then it can be fulfilled by the
following line:

Result = py.MyPythonScript.funcPythonCtrl()

Similarly, the reveres case, i.e., to call a dummy control algorithm named ‘func-
MatlabCtrl()’ implemented in a MATLAB file ‘funcMatlabCtrl.m’ in a Python based
program, then it can be fulfilled by the following lines:

import matlab.engine
eng = matlab.engine.start_matlab()
Result = eng.funcMatlabCtrl()

After a long time of evolution, MATLAB has now supported a range of different
programming languages to run inline with its MATLAB language, and the run of
MATLAB in those different programing languages. These APIs are embedded in the
MATLAB cores, which include commonly used programming languages such as C,
C++, Java and .NET.
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8.2.4.2 Hardware-Based Interfacing Techniques

Unlike the software scenarios which might be changed in a flexible way, the interfaces
for a hardware-based device are normally fixed and cannot be changed. Therefore
it should take extra care when there are interfacing requirements in the hardware-
based testbed implementations. For the most common cases, this issue of interfacing
between hardware-based devices within the testbed is addressed during the design
phase, where compatibility is the decisive factor that if one specific device is to be
used or not.

For example, let us consider an energy system that all components are inter-
connected via the wired networks based on TCP/IP network. From the testbed im-
plementation aspect, this wired network can be fulfilled by Ethernet switches and
Ethernet cables. The selection of Ethernet switches and Ethernet cables is required
to meet the demands of the energy system, otherwise, it could cause interfacing chal-
lenges during the implementation.

The key parameter that characterizes the Ethernet switches and Ethernet cables
is the throughput, and the devices could differ largely from each other for different
throughput parameters. Generally speaking, the usual choice of cables for throughput
below 1000 Mbps is the twisted pairs of copper wire with RJ45 connectors. These
cables are commonly used in the home or office scenarios, for example, the cable wires
connecting the ‘Router’ to your own computer are usually of this kind.

If the throughput demands for the energy system are 1000 Mbps, then a feasi-
ble communication network structure can be implemented similar to the connection
between your ‘Router’ and the multiple devices. However, this might be that simple
as it seems. In the case of a 1000 Mbps throughput is required, then the ‘Router’,
which is usually fulfilled by an Ethernet switch, is required to have at least 1000
Mbps throughput.

Therefore among the various types of switches, it is applicable to use switches
with throughput featuring 1000 Mbps/100 Mbps, and the testbed will not work with
the 100 Mbps/10 Mbps models. Correspondingly, the cable needs to support at least
1000 Mbps throughput, which means the cables should at least meet the Category 6
in the ISO/IEC 11801:2002 standards, while the testbed will not work with the Cat5
cables (e.g., the default cables provided along with the ‘Router’ from most internet
service providers).

The bad choices of either the Ethernet switches or the Ethernet cables might only
cause some confusion in normal life, e.g., ‘why my network is so slow than what I’ve
paid for’, but it could be critical to determine whether the testbed can work or not.

The appropriate match between the demands and device choices is the key in
interfacing devices. It is clear that any incompatible device in the whole testbed
could lead to an implementation failure, but actually, it is not always beneficial to
exploit a device with ‘excessive’ capabilities than required.

The above example can be extended to illustrate this point as follows. For Ether-
net switches and cables, it is common that they are backward compatible with lower
throughput applications. For example, Cat6 cables are generally with no problem to
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be used as Cat5 cables, while it is also true that a 1000 Mbps switch can work if the
peak throughput requirement is only 100 Mbps.

Then the question is, is it also alright to implement a 10 Gbps or even a 100
Gbps compatible network for the need of 1000 Mbps throughput? The answer is
probably not, with both concerns of both costs and interfacing challenges. For the
throughput demand above 1 Gbps, the common choices are the fiber optics-based
produces, instead of the twisted copper wire-based ones.

Although the fiber optic switches and cables can support larger throughput, they
are usually more expensive than twisted copper wire products. Besides the costs,
the two kinds of products are usually not likely to be directly mixed-used without
extra adapters. This could be a serious interfacing issue during the implementation.
For example, if a 10 Gbps throughput network is to be implemented for the energy
system with 100 Mbps demands, then the physical network interface for the energy
system devices is usually with a Registered Jack 45(RJ45) connector.

Meantime, the 10 Gbps cables are usually with the physical network interface
Small Form-factor Pluggable+ (SFP+) interface module. These two interfaces are not
compatible, which will require extra adapters to convert SFP+ to RJ45, and the extra
adapters would be required for each networked device in the energy system. Although
from the aspect of network throughput, the 10 Gbps throughput implementation
might provide better networking performances, such as the low latency, it is not the
optimal choice in costs and would result in interfacing issues.

One important feature of the testbed, comparing to the final products, is that
it could provide more detailed operating information for research and development
purposes. For hardware-based components, these pieces of information are usually
output from the interfaces on the devices.

Therefore the form and standard of the physical interfaces on the devices are
critical to the interfacing between hardware devices in the whole testbed, as well as
to the final success of the experiments on the testbed. Besides the aforementioned
network interfaces, some commonly used interfaces are illustrated in Table 8.1.

If the hardware devices are with the same interface types in Table 8.1, then the
interfacing between them could be quite straightforward by following corresponding
interfacing protocols. There are two specific points that need to be kept in mind when
considering these interfaces in the testbed.

The first point is whether the interfaces are following master/slave architecture.
Some interfaces, the USB for instance, are following a master/slave architecture.
When two devices are connected via USB, it requires one of them to play the master
role, while the other to play the slave role.

Note that usually the role of the device is fixed when they are produced and
cannot be changed on demand, unless in some cases they are specially designed. This
means, it will fail to exploit USB as the connections between two USB slave devices,
nor two USB master devices.

A simple example is that it is not possible to use direct USB connections without
external adapters between two computers, because they are both USB masters. In
the meantime, if two sensors are providing USB interfaces for external measurements,
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TABLE 8.1 Commonly used interfaces in the testbed design

Interface Name Bandwidth Comments

USB 1.5 Mbps – 20 Gbps
USB (Universal Serial Bus) connector form

might not compatible between versions.

COM 100 bps – 10 Mbps
Commonly used COM (COMmunication

port) interfaces are RS-232/422/485.

I2C 100 kbps – 5 Mbps

The I2C (Inter-Integrated Circuit) is typically
used for Low-speed peripheral Integrated
Circuits (ICs) to the micro-controllers.

SPI upto 50 Mbps

The SPI (Serial Peripheral Interface) is
typically used for data transmission between

peripheral ICs and micro-controllers.

CAN 125 kbps – 5 Mbps
The CAN (Controller Area Network)

is a robust vehicle bus standard.

Analogue I/O —
The conversion between voltage levels
and digital values as inputs/outputs.

Digital I/O —
Binary voltage levels corresponding

to digital bits as inputs/outputs.

then they are likely to be both USB slave devices, and it would need other interfaces
other than the USB to exchange information between them.

The second point is the match between different protocol or standard versions
and connector types for a specific interfacing method. For example, currently the
USB has 3 major versions (generations) in use, and there are a total of 10 connector
types with totally different physical forms.

Although the solutions might be as easy as an adapter, it should remind the re-
searchers and developers that the shape corresponds to their versions, and versions
correspond to their performances. If a sensor is providing a USB Type-C interface,
then it means the device is at least with version USB 3.1 or above, and correspond-
ingly its throughput might be as high as 10 Gbps.

When tackling the issue of connecting a host device (e.g., a computer) with a USB
Type-A interface, then the key issue is not only on the conversion from Type-C to
Type-A, but also whether the host device is with compatible USB versions, and more
importantly, the processing capacity to handle the measurements from this sensor.

Besides the direct connections via the provided interfaces on the devices, a flex-
ible aggregator method is introduced in the next part. In the aggregator method, it
exploits an external device for interfacing functionalities in the testbed. The use of a
specified aggregator for interfacing purposes is beneficial in many ways, for example
when there are multiple kinds of sensors with different interfaces, or there are gaps
between the interfaces of some devices.

The former case is easy to understand, as it is also common in our normal lives
that each device is with its own interfaces. Even for the same kind of device, e.g., the
monitor, its interface might be VGA, HDMI, DisplayPort, or USB Type-C. On the
other hand, it will be a pity to abandon some devices from the testbed implementation
due to their interfaces, instead of their performances.
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With further consideration of the potential upgrades of the testbed implemen-
tation, new devices may be integrated for extended evaluations and experiments. In
such conditions, the interfacing problems are potential issues, which can be addressed
by a versatile interfacing aggregator.

In the following, an interfacing aggregator, named as Data Acquisition and Actu-
ation (DAA) module, is detailed as an example of this type of interfacing technique.
The key motivation to implement the DAA module is to exploit a general-purpose
micro-controller as a re-configurable intermediary for the different interfacing require-
ments.

There are various choices for such general-purpose micro-controllers on the mar-
ket, which are at the cost of around a few tens of sterling pounds. This price range is
attractive as interfacing modules in the testbed, which are comparable to the dedi-
cated adapters but cannot be re-configured. The examples are Raspberry PI, MBED,
and Arduino. These micro-controllers are sharing some similarities, such as the sup-
port of most listed interfaces in Table 8.1 and user-friendly development toolkits and
environments.

Let’s now consider a testbed interfacing requirement, where it requires to interface
a laptop to the RTDS via the DAA module. Specifically, the laptop is to commit some
control algorithm, while the control inputs are some continuous measurements from
the power system, and the control outputs are some continuous control values to the
power system devices.

The power system is simulated via the RTDS, and the measurement point is
fulfilled by the Analogue output interface on the RTDS. In the meantime, the control
input is fulfilled by the Analogue input interface on the RTDS. In this case, the
interfacing requirement is to bridge the laptop and the Analogue inputs and outputs
on the RTDS.

For normal cases, it will require an external data acquisition device for such
purposes, as laptops cannot read analogue voltage levels directly with any default
interfaces. However, this can be easily done with DAA modules. Using the MBED
NXP LPC1768 model as an example, it is based on a 32-bit ARM Cortex-M3 core
running at 96MHz. The 26 re-configurable pins can be programmed to support in-
terfaces including Ethernet, USB, CAN, SPI, I2C, ADC, DAC, PWM, and Digital
I/O.

In this example case, the analogue outputs from the RTDS can be measured via
the ADC pins, while the analogue inputs to the RTDS can be fulfilled via the DAC
pins. The MBED can be then programmed to read the ADC pins and write the DAC
pins on demand. The implementation of the ADC part of the function is illustrated
in Fig. 8.10.

During the implementation, it is highly recommended to be extra careful about
the details. Firstly, before making any physical implementations such as connections
with wires, it needs to be double-checked for safety reasons. Here the safety is not only
referring to the safety of the researchers, but also the safety of the devices, because
one minor wrong operation may damage all devices at once.

For example in the implementation of the above example, it is always recom-
mended to make some mandatory checks before turning on the powers, including the
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Figure 8.10 An example of hardware-based interfacing technique with the micro-
controller MBED .

power supply to the MBED, and the grounding status of the whole circuit. Secondly,
there might require some supporting circuits for certain connections, which should be
checked during the design and implementation phases. For most interfacing methods
such as USB and Ethernet, they are using constant voltages, which allows a direct
connection using wires.

For some interfacing methods with analogue outputs, such as the analogue inputs
and outputs, the outputs are the varying voltage, which needs supporting circuits in
use. For example, in the implementation of the above example, the analogue output
is a varying voltage with the reference to the ground of the RTDS.

Therefore in order to enable the MBED to read the correct voltages via the
ADC pins, it needs to common the grounds between the MBED and the RTDS. In
addition, some auxiliary circuits might improve this interfacing implementation, such
as a rheostat if there is voltage range mismatch, or some capacitors to filter the high
frequency noises from the RTDS.

To enable the laptop to read the values on the MBED ADC pins in an on-demand
manner, the MBED is implemented to work in a Remote Procedure Call (RPC) mode
over the USB connections. This can be fulfilled by registering the ADC pins with RPC
functions, where a feasible implementation can be given as follows:

#include "mbed.h"
#include "mbed_rpc.h"

# register the analogue input and output pins
RpcAnalogIn p20(p20,"p20");

Serial pc(USBTX, USBRX);
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int main() {
RPC::add_rpc_class<RpcAnalogIn>();
// receive PC commands and response
char buf[256], outbuf[256];
while(1) {

pc.gets(buf, 256);
RPC::call(buf, outbuf);
pc.printf("%s\n", outbuf);

}
}

In the above example codes, it registers the ADC pin ‘p20’ that can be ‘called’ via the
RPC methods. After compiling the above script with both MBED and RPC libraries
with the MBED online compiler, it generates a binary execution file. By copying this
binary file to the MBED and reset the MBED to take effect, the configuration of the
MBED part is completed.

For the laptop side, it is now ready to read the voltages on the MBED
ADC pins via the RPC method. Note that the RPC is a general interfacing
method, which provides supports to commonly used software environments, including
MATLAB, Python, .NET and Java. The implementation of such reading functions is
quite straight-forward, where the implementation in Python is illustrated as follows:

from mbedrpc import *
import time

# initialize the mbed as a serial
serdev = "/dev/ttyACM0"
mbed=SerialRPC(serdev, 9600)
interface = mbed_interface(mbed, "interface")

# create the ADC to use
interface.new("AnalogIn","adc_input","p20")
ADC_reading=AnalogIn(mbed,"adc_input")

read_count=0
while(read_count<100):

read_count+=1
time.sleep(0.1)
ADC_results=ADC_reading.read()
print ADC_results

In the above example codes, the laptop is configured to read the voltages on the
MBED ADC pin “p20” every 0.1 seconds for 100 times. The above dummy example
can be easily adapted for general data interfacing purposes between a PC and the
RTDS. The interfacing requirements such as PWM for precise controls and SPI to
integrate other peripheral ICs, can be implemented following a similar procedure.
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8.2.5 Remarks of Challenges

The testbed design and implementation for energy systems is a systematical task,
it depends on a sophisticated consideration of all details in the testbed. From the
examples along with the discussions, it can be seen that the design process and
the implementation process are sometimes deeply coupled that they must be jointly
considered.

The general purpose of the testbed is for the proof-of-concept and performance
verification, but the design and implementation of the testbed could involve many
more theories and concepts beyond the one to prove or verify.

The general solutions for testbed design and implementation: The most significant
challenge is still the lack of general solutions in the design and implementation of the
testbed. This is firmly rooted in the fact that testbeds are generally case-specified.
The research problems, even in the energy system alone, can be so different that the
experience of one testbed design and implementation could be totally non-useful in
other cases.

In the meantime, thanks to the technology explosion nowadays, there could be
numerous testbed solutions for one specific design task. These facts together make it
hard to get a complete manual to each testbed design, whether the testbed is in the
context of software-based, hardware-based, or hybrid architectures.

But there are indeed some commonly used techniques or general methods that
can facilitate the design and implementation procedure, which can be summarized as
general purpose hardware and modular design detailed as follows:

• General purpose hardware: The key point of using general purpose hardware
in the testbed design is the transform of the research problems into numerical
calculation problems. It is not to diminish the meaning of dedicated hardware
devices in testbed design, but actually, it is to emphasise the general trend as
witnessed in all kinds of simulators.
The state-of-the-art simulators can be regarded as examples, either software-
based simulators such as MATLAB and PowerFactory, or hybrid simulators
such as RTDS and OpalRT. Such solutions are separating hardware and soft-
ware functionalities, where general hardware devices are providing powerful
computing capacities, while the software functions define the studied cases.

• Modular design: The key point of modular design is to standardise the consisting
components in the testbed. This is not to say it is a compulsory requirement
on each part of the testbed, but a general direction to make efforts. This is in
line with the standardisation progress since the industrial revolution, which has
brought us numerous benefits such as a reduction in cost. By modular design,
the testbed modules are expected to be independent, scalable and reusable,
whose interfaces are standard and well-defined. This not only helps to clarify
the required functionalities in the testbed, but also improves the maintenance
of the whole testbed.
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The integration of multiple sub-systems: Since energy systems are an integrated
concept based on multiple research disciplines, the design and implementation of the
testbed for an energy system cannot avoid the integration of different sub-systems.
These sub-systems, such as the discussed ICT systems, power systems, and AI sys-
tems, are with essentially different features, ranging from methodologies to termi-
nologies.

Especially with the new technologies such as recent advanced wireless communi-
cation technologies, there might be new challenges to integrate them which might be
also challenges in the wireless communication subject itself. For such new concepts, it
could be hard to find existing solutions to implement them in a testbed design. Actu-
ally many testbeds are destined to such challenges, as they are to serve as prototypes,
namely the very first real-world implementation of the concepts.

For testbed design and implementation to address such integration of multiple
sub-systems, it also requires efforts to reconcile the cooperation between them, beyond
the success of the implementation of each sub-system. To address such challenges, it
would require an overall planning as part of the testbed design. It might fill some
gaps between different sub-systems if more common grounds can be placed between
them, e.g., the same software environment, or compatible interfaces.

It is a challenging task to design and implement a testbed for the energy system,
but the benefits could still be worth the efforts, or even more than that. Given the
evolving speed in each involved discipline in the energy system, it is not expected
that there could be a complete solution that fits all testbed designs and implementa-
tions. However, the discussed examples, solutions, and techniques in this chapter are
expected to serve as some basic tools, or to enlighten the readers regarding the ways
to consider these challenges.
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