
B
ellem

a
re

B
uild

ing
 a

n Event-D
riven D

a
ta

 M
esh

B
uild

ing
 a

n Event-D
riven D

a
ta

 M
esh

Adam Bellemare

Building an
Event-Driven
Data Mesh
Patterns for Designing & Building
Event-Driven Architectures

SOF T WARE ARCHITEC TURE

”Adam Bellemare
offers a concrete and
practical architectural
approach to realize the
promise of data mesh.”

—Chris Ford
Head of Technology,

Thoughtworks

Building an Event-Driven Data Mesh

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

The exponential growth of data combined with the need
to derive real-time business value is a critical issue.
An event-driven data mesh can power real-time
operational and analytical workloads, all from a single
set of data product streams. With practical real-world
examples, this book provides patterns that show
software architects and developers how to successfully
design and build an event-driven data mesh.

Author Adam Bellemare demonstrates what events and
streams are, where they come from, and how you can use
them. You’ll also examine design patterns, their implications,
and trade-offs inherent in their use.

This book provides:

• A foundation for how events and event streams
relate to the four pillars of data mesh

• Practical tips for building an event-driven data mesh,
including incremental integration with your existing systems

• A clear understanding of how events relate to systems and
other events, both in the same stream and across streams

• A realistic look at event design options such as fact,
delta, and command event types, including how
these choices will impact your data products

• Best practices for privacy, handling events
at scale, and regulatory compliance

• Advice on asynchronous communication
and handling eventual consistency

Adam Bellemare is a staff technologist,
Office of the CTO, at Confluent. He
previously served as staff engineer for
data platforms at Shopify and Flipp,
and has worked extensively with
microservices, data pipelines, and
distributed computing systems and
infrastructure. Adam’s expertise includes
technical thought leadership, software
development, microservices, and data
engineering. He’s the author of Building
Event-Driven Microservices (O’Reilly).

US $65.99 CAN $82.99
ISBN: 978-1-098-12760-2

B
ellem

a
re

Adam Bellemare

Building an Event-Driven
Data Mesh

Patterns for Designing and Building
Event-Driven Architectures

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-12760-2

[LSI]

Building an Event-Driven Data Mesh
by Adam Bellemare

Copyright © 2023 Adam Bellemare. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (https://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Melissa Duffield
Development Editor: Melissa Potter
Production Editors: Jonathon Owen and Beth Kelly
Copyeditor: Stephanie English
Proofreader: Penelope Perkins

Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

April 2023: First Edition

Release History for the First Edition
2023-04-04: First Release

See https://oreilly.com/catalog/errata.csp?isbn=9781098127602 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Building an Event-Driven Data Mesh,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

https://oreilly.com
https://oreilly.com/catalog/errata.csp?isbn=9781098127602

Table of Contents

Preface. ix

1. Event-Driven Data Communication. 1
What Is Data Mesh? 2
An Event-Driven Data Mesh 3
Using Data in the Operational Plane 5

The Data Monolith 5
The Difficulties of Communicating Data for Operational Concerns 6
The Analytical Plane: Data Warehouses and Data Lakes 10
The Organizational Impact of Schema on Read 13
Bad Data: The Costs of Inaction 17
Can We Unify Analytical and Operational Workflows? 19

Rethinking Data with Data Mesh 20
Common Objections to an Event-Driven Data Mesh 21

Producers Cannot Model Data for Everyone’s Use Cases 21
Making Multiple Copies of Data Is Bad 22
Eventual Consistency Is Too Difficult to Manage 23

Summary 24

2. Data Mesh. 25
Principle 1: Domain Ownership 26

Domain-Driven Design in Brief 26
Selecting the Data to Expose from Your Domain 28

Principle 2: Data as a Product 29
Data Products Provide Immutable and Time-Stamped Data 30
Data Products Are Multimodal 31
Accessing a Data Product Via Push or Pull 32
The Three Data Product Alignment Types 33

iii

Event-Driven Data Products as Inputs for Operational Systems 36
Principle 3: Federated Governance 37

Specifying Data Product Language, Framework, and API Support 38
Establishing Data Product Life Cycle Requirements 38
Establishing Data Handling and Infosec Policies 38
Identifying and Standardizing Cross-Domain Polysemes 39
Formalizing Self-Service Platform Requirements 39

Principle 4: Self-Service Platform 39
Discovering Data Products and Dependencies 40
Data Product Management Controls 41
Data Product Access Controls 42
Compute and Storage Resources for Building and Using Data Products 42
Providing Self-Service Through SaaS 43

Summary 44

3. Event Streams for Data Mesh. 47
Events, Messages, and Records 49
What’s an Event Stream? What Is It Not? 51

Ephemeral Message-Passing 52
Queuing 53

Consuming and Using Event-Driven Data Products 55
State Events and Event-Carried State Transfer 55
Materializing Events 56
Aggregating Events 57

The Kappa Architecture 59
The Lambda Architecture and Why It Doesn’t Work for Data Mesh 62
Supporting the Requirements for Kappa Architecture 65
Selecting an Event Broker 67
Summary 69

4. Federated Governance. 71
Forming a Federated Governance Team 73
Implementing Standards 74

Supporting Multimodal Data Product Types 74
Supporting Data Product Schemas 75
Supporting Programming Languages and Frameworks 76
Metadata Standards and Requirements 77

Ensuring Cross-Domain Data Product Compatibility and Interoperability 81
Defining and Using Common Entities 82
Event Stream Keying and Partitioning 82
Time and Time Zones 83

What Does a Governance Meeting Look Like? 84

iv | Table of Contents

1. Identifying Existing Problems 84
2. Drafting Proposals 85
3. Reviewing Proposals 86
4. Implementing Proposals 86
5. Archiving Proposals 87

Data Security and Access Policies 87
Disable Data Product Access by Default 88
Consider End-to-End Encryption 88
Field-Level Encryption 89
Data Privacy, the Right to Be Forgotten, and Crypto-Shredding 90

Data Product Lineage 92
Topology-Based Lineage 93
Record-Based Lineage 93

Summary 95

5. Self-Service Data Platform. 97
The Self-Service Platform Maturity Model 98
Level 1: The Minimal Viable Platform 99

The Schema Registry 99
An Extremely Basic Metadata Catalog 100
Connectors 101
Level 1 Wrap-Up: How Does It Work? 102

Level 2: The Expanded Platform 103
Full-Featured Metadata Catalog 104
The Data Product Management Service and UI 106
Service and User Identities 110
Basic Access Controls 112
Stream Processing for Building Data Products 114
Level 2 Wrap-Up: How Does It Work? 116

Level 3: The Mature Platform 116
Authentication, Identification, and Access Management 118
Integration with Existing Application Delivery Processes 119
Programmatic Data Product Management API 120
Monitoring and Alerting 122
Multiregion and Multicloud Data Products 123
Level 3 Wrap-Up: How Does It Work? 125

Summary 125

6. Event Schemas. 127
A Brief Introduction to Serialization and Deserialization 128
What Is a Schema? 129
What Are Our Schema Technology Options? 132

Table of Contents | v

Google’s Protocol Buffers, aka Protobuf 133
Apache Avro 134
JSON Schema 135

Schema Evolution: Changing Your Schemas Through Time 137
Negotiating a Breaking Schema Change 140

Step 1: Design the New Data Model 141
Step 2: Iterate with Your Existing Consumers and the

Federated Governance Team 141
Step 3. Create a Release Schedule, a Data Migration Plan, and a

Deprecation Plan 142
Step 4. Execute the Release 143

The Role of the Schema Registry 143
Best Practices for Managing Schemas in Your Codebase 146
Choosing a Schema Technology 148
Summary 150

7. Designing Events. 151
Introduction to Event Types 151
Expanding on State Events and Event-Carried State Transfer 152

Current State Events 153
Before/After State Events 154

Delta Events 156
Event Sourcing with Delta Events 156
Why Delta Events Don’t Work for Event-Driven Data Products 159

Measurement Events 168
Measurement Events Often Form Aggregate-Aligned Data Products 168
Measurement Event Sources May Be Lossy 168
Measurement Events May Power Time-Sensitive Applications 169

Hybrid Events—State with a Bit of Delta 170
Notification Events 172
Summary 173

8. Bootstrapping Data Products. 175
Getting Started: Bootstrapping with Connectors 176
Dual Writes 176
Polling the Database to Create Data Products 177
Change-Data Capture 179

Change-Data Capture Using a Transactional Outbox 182
Denormalization and Eventification 186

Eventification at the Transactional Outbox 189
Eventification in a Dedicated Service 190
What Should Go In the Event? And What Should Stay Out? 192

vi | Table of Contents

Slowly Changing Dimensions 193
Bootstrapping Cloud Storage Files to an Event Stream 195
Summary 197

9. Integrating Event-Driven Data into Data at Rest. 199
Analytics and the Medallion Architecture 199
Connecting Event Streams Into Existing Batch-Data Flows 201

Through the Lens of Data Mesh: What’s Going On? 204
Through the Lens of Data Mesh: How Do We Solve It? 204
Balancing File Sizes, SLAs, and Latency 206
Budget Blues: A Tale of Overspending 207

Extending the Self-Service Platform for Nonstreaming Data Products 211
Summary 212

10. Eventual Consistency. 215
Converging on Consistency, One Event at a Time 217
Strategies for Dealing with Eventual Consistency 220

Prevent Failures to Avoid Inconsistency 221
Use Event-Driven Data Products Instead of Request-Response

Server API Calls 221
Expose Eventual Consistency in the Server Response 223
Plan for New Services and Reprocessing of Data 224
Synchronize Data Products on Time Boundaries 226

Out-of-Order Events 227
Resolving Late-Arriving Events 228
Summary 230

11. Bringing It All Together. 233
Event Streams for Data Mesh 235
Integrating with Existing Systems 235
Operations, Analytics, and Everything in Between 236
Summary 236

Index. 239

Table of Contents | vii

Preface

Data mesh is a fundamental shift in the way we think about, create, share, and use
data. We promote data to a first-class citizen by carefully curating and crafting it into
data products, supported with the same level of care and commitment as any other
business product. Consumers can discover and select the data products they need for
their own use cases, relying upon the commitment of the data product producer to
maintain and support it. At its heart, data mesh is as much about technological reor‐
ganization as it is about the renegotiation of social contracts, responsibilities, and
expectations.

Back when I wrote Building Event-Driven Microservices (O’Reilly) I made reference to
(and a bit vaguely defined) a data communication layer, very similar yet not nearly so
well thought out as data mesh. The principles of the data communication layer were
simple enough: treat data as a first-class citizen, make it reliable and trustworthy, and
produce it through event streams so that you can power both operational and analyti‐
cal applications.

The beauty of data mesh is that it’s not a big-bang total revision of everything we
know about data. In fact, it’s really an affirmation of best practices, both social and
technical, based on the collective hard work and experiences of countless people. It
provides the framework necessary to discuss how to go about creating, communicat‐
ing, and using data, acting as a lingua franca for the data world.

Zhamak Dehghani has done a phenomenal job in bringing data mesh to the world. I
remember being blown away by her initial article in Martin Fowler’s blog from 2019.
She very eloquently described the problems that my team was facing at that very
moment and identified the principles we would need to adopt for working toward a
solution. Her work really influenced my thinking on the need to have a well-defined
data communication layer to make sharing and using data reliable and easy.
Dehghani’s data mesh is precisely the social-technical framework we need to build a
better data world.

ix

https://learning.oreilly.com/library/view/building-event-driven-microservices/9781492057888

Events and event streams play a critical role in a data mesh, as your business opportu‐
nities can only ever be solved as fast as your slowest data source. Classic analytical use
cases, such as computing a monthly sales report, may be satisfied with a data product
that updates just once a day. But many of your most important business use cases,
such as fulfilling a sale, computing inventory, and ensuring prompt shipment, require
real-time data. An event-driven data mesh provides the capabilities to power both
operational and analytical use cases, in both real time and batch.

There is real value in adopting a data mesh. It streamlines discovery, consumption,
processing, and application of data across your entire organization. But one of the
best features of data mesh is that you can start applying it wherever you are today. It is
not an all-or-nothing proposition. You can take the pieces, principles, and concepts
that work for improving your situation, and leave the rest until you’re ready to adopt
those next.

I’m quite excited about data mesh. It provides us with a principled social and techno‐
logical framework for building out our own data meshes, but just as importantly, the
language to talk about and solve data problems with all of our colleagues. I hope
you’ll enjoy reading this book as much as I did writing it.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

This element signifies a tip or suggestion.

This element signifies a general note.

x | Preface

This element indicates a warning or caution.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/build-data-mesh.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia

Preface | xi

https://oreilly.com
https://oreilly.com
https://oreil.ly/build-data-mesh
mailto:bookquestions@oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

Acknowledgments
There are many people who I would like to thank for supporting, reviewing, and
advising me while writing this book. I’d like to thank my development editors, Nicole
Tache and Melissa Potter, who both provided a ton of great support and really helped
keep me focused and accountable. I’ve also been fortunate enough to have two stellar
production editors, Beth Kelly and Jonathon Owen. They really helped take a kludge
of TODOs, mostly completed figures, and run on sentences and reshape it into some‐
thing coherent and sensible. Thanks as well to Stephanie English who provided the
copyediting as we moved from draft into production.

My reviewer and former Confluent colleague Hubert Daley provided initial thoughts
and feedback that helped shape the rest of the book. Chris Ford, Head of Technology,
Thoughtworks, provided critical feedback, helping me identify what worked and
what didn’t. Pramod Sadalage of Thoughtworks, Data Mesh leader for North Amer‐
ica, similarly provided me a wealth of constructive criticisms and support. Thanks to
each of you for taking the time to help me improve this book.

Thanks to my Confluent colleagues Ben Stopford, Andrew Sellers, Jack Vanlightly,
Ian Robinson, and Travis Hoffman with whom I had many discussions on the merits,
drawbacks, and implementation of data mesh. I greatly value your thoughts, com‐
ments, constructive criticisms, and helpful insights.

And finally, thanks to my family and friends who provided me with the emotional
support and encouragement to keep on keeping on.

xii | Preface

CHAPTER 1

Event-Driven Data Communication

The way that businesses relate to their data is changing rapidly. Gone are the days
when all of a business’s data would fit neatly into a single relational database. The big
data revolution, started more than two decades ago, has since evolved, and it is no
longer sufficient to store your massive data sets in a big data lake for batch analysis.
Speed and interconnectivity have emerged as the next major competitive business
requirements, again transforming the way that businesses create, store, access, and
share their important data.

Data is the lifeblood of a business. But many of the ways that businesses create, share,
and use data is haphazard and disjointed. Data mesh provides a comprehensive
framework for revisiting these often dysfunctional relationships and provides a new
way to think about, build, and share data across an organization, so that we can do
helpful and useful things: better service for our customers, error-free reporting,
actionable insights, and enabling truly data-driven processes.

To get an understanding of what we’re trying to fix, we first need an idea of the main
data problems facing a modern business.

First, big data systems, underpinning a company’s business analytics engine, have
exploded in size and complexity. There have been many attempts to address and
reduce this complexity, but they all fall short of the mark.

Second, business operations for large companies have long since passed the point of
being served by a single monolithic deployment. Multiservice deployments are the
norm, including microservice and service-oriented architectures. The boundaries of
these modular systems are seldomly easily defined, especially when many separate
operational and analytical systems rely on read-only access to the same data sets.
There is an opposing tension here: on one hand, colocating business functions in a
single application provides consistent access to all data produced and stored in that

1

system. On the other, these business functions may have absolutely no relation to one
another aside from needing common read-only access to important business data.

And third, a problem common to both operational and analytical domains: the
inability to access high-quality, well-documented, self-updating, and reliable data.
The sheer volume of data that an organization deals with increases substantially year-
over-year, fueling a need for better ways to sort, store, and use it. This pressure deals
the final blow to the ideal of keeping everything in a single database and forces devel‐
opers to split up monolithic applications into separate deployments with their own
databases. Meanwhile, the big data teams struggle to keep up with the fragmentation
and refactoring of these operational systems, as they remain solely responsible for
obtaining their own data.

Data has historically been treated as a second-class citizen, as a form of exhaust or by-
product emitted by business applications. This application-first thinking remains the
major source of problems in today’s computing environments, leading to ad hoc data
pipelines, cobbled together data access mechanisms, and inconsistent sources of
similar-yet-different truths. Data mesh addresses these shortcomings head-on, by
fundamentally altering the relationships we have with our data. Instead of a secon‐
dary by-product, data, and the access to it, is promoted to a first-class citizen on par
with any other business service.

Important business data needs to be readily and reliably available as building block
primitives for your applications, regardless of the runtime, environment, or codebase
of your application. We treat our data as a first-class citizen, complete with dedicated
ownership, minimum quality guarantees, service-level agreements (SLAs), and scal‐
able mechanisms for clean and reliable access. Event streams are the ideal mechanism
for serving this data, providing a simple yet powerful way of reliably communicating
important business data across an organization, enabling each consumer to access
and use the data primitives they need.

In this chapter, we’ll take a look at the forces that have shaped the operational and
analytical tools and systems that we commonly use today and the problems that go
along with them. The massive inefficiencies of contemporary data architectures pro‐
vide us with rich learnings that we will apply to our event-driven solutions. This will
set the stage for the next chapter, when we talk about data mesh as a whole.

What Is Data Mesh?
Data mesh was invented by Zhamak Dehghani. It’s a social and technological shift in
the way that data is created, accessed, and shared across organizations. Data mesh
provides a lingua franca for discussing the needs and responsibilities of different
teams, domains, and services and how to they can work together to make data a first-
class citizen. This chapter explores the principles that form the basis of data mesh.

2 | Chapter 1: Event-Driven Data Communication

https://oreil.ly/P-SQc

In my last book, Building Event-Driven Microservices (O’Reilly), I introduced the term
data communication layer, touching on many of the same principles as data mesh:
treat data as a first-class citizen, formalize the structure for communication between
domains, publish data to event streams for general purpose usage, and make it easy to
use for both the producers and consumers of data. And while I am fond of the data
communication layer terminology, the reality is that I think the language and formal‐
ized principles of data mesh provide everything we need to talk about this problem
without introducing another “data something something” paradigm.

Dehghani’s book, Data Mesh (O’Reilly), showcases the theory and thought leadership
of data mesh in great depth and detail, but remains necessarily agnostic of specific
implementations.

In this book, we’ll look at a practical implementation of data mesh that uses the event
stream as the primary data product mode for interdomain data communications. We
can be a bit more pragmatic and less intense on the theory and more concrete and
specific on the implementation of an event-driven design. While I think that event
streams are fundamentally the best option for interdomain communication, they do
come with trade-offs, and I will, of course, cover these too, mentioning nonstreaming
possibilities where they are best suited.

Data mesh is based on four main principles: domain ownership, data as a product,
federated governance, and self-service platform. Together, these principles help us
structure a way to communicate important business data across the entire organiza‐
tion. We’ll evaluate these principles in more detail in the next chapter, but before we
get there, let’s take a look at why data mesh matters today.

An Event-Driven Data Mesh
The modern competitive requirements of big data in motion, combined with modern
cloud computing, require a rethink of how businesses create, store, move, and use
data. The foundation of this new data architecture is the event, the data quantum that
represents real business activities, provided through a multitude of purpose-built
event streams. Event streams provide the means for a central nervous system for ena‐
bling business units to access and use fundamental, self-updating data building
blocks. These data building blocks join the ranks of containerization, infrastructure as
a service (IaaS), continuous integration (CI) and continuous deployment (CD)
pipelines, and monitoring solutions, the components on which modern cloud appli‐
cations are built.

An Event-Driven Data Mesh | 3

https://learning.oreilly.com/library/view/building-event-driven-microservices/9781492057888
https://learning.oreilly.com/library/view/data-mesh/9781492092384

Event streams are not new. But many of the technological limitations underpinning
previous event-driven architectures, such as limited scale, retention, and perfor‐
mance, have largely been alleviated. Modern multitenant event brokers complete with
tiered storage can store an unbounded amount of data, removing the strict capacity
restrictions that limited previous architectures. Producers write their important busi‐
ness domain data to an event stream, enabling others to couple on that stream and
use the data building blocks for their own applications. Finally, consumer applica‐
tions can in turn create their own event streams to share their own business facts with
others, resulting in a standardized communications mesh for all to use.

Data mesh provides us with very useful concepts and language for building out this
interconnected central nervous system. Figure 1-1 shows a basic example of what a
data mesh could look like.

Figure 1-1. A very basic Hello Data Mesh implementation

The team that owns operational system Alpha selects some data from their service
boundary, remodels it, and writes it to a source-aligned data product, which they also
own (we’ll cover data product alignments more in “The Three Data Product Align‐
ment Types” on page 33). The team that owns operational system Beta reads data
from this data product into its own service boundary, again remodeling it, transform‐
ing it, and storing only what they need.

Meanwhile, a third team connects to Alpha team’s data product and uses it to com‐
pose their own aggregate-aligned data product. This same team then uses its
aggregate-aligned data product to both power a streaming analytics use case and to
write a batch of files to cloud storage, where data analysts will use it to compose
reports and power existing batch-based analytics jobs.

4 | Chapter 1: Event-Driven Data Communication

This diagram represents just the tip of the data mesh iceberg, and there remain many
areas to cover. But the gist of the event-driven data mesh is to make data readily avail‐
able in real time to any consumers who need it.

Many of the problems that data mesh solves have existed for a very long time. We’re
now going to take a brief history tour to get a better understanding of what it is we’re
solving and why data mesh is a very relevant and powerful solution.

Using Data in the Operational Plane
Data tends to be created by an operational system doing business things. Eventually,
that data tends to be pulled into the analytical plane for analysis and reporting pur‐
poses. In this section, we’ll focus on some of the operational plane and the common
challenges of sharing business data with other operational (and analytical) services.

The Data Monolith
Online transaction processing (OLTP) databases form the basis of much of today’s
operational computer services (let’s call them “monoliths” for simplicity). Monolithic
systems tend to play a big role in the operational plane, as consistent synchronous
communication tends to be simpler to reason and develop against than asynchronous
communication. Relational databases, such as PostgreSQL and MySQL, feature heav‐
ily in monolithic applications, providing atomicity, consistency, isolation, and dura‐
bility (ACID) transactions and consistent state for the application.

Together, the application and database demonstrate the following monolith data
principles:

The database is the source of truth
The monolith relies on the underlying database to be the durable store of infor‐
mation for the application. Any new or updated records are first recorded into
the database, making it the definitive source of truth for those entities.

Data is strongly consistent
The monolith’s data, when stored in a typical relational database, is strongly con‐
sistent. This provides the business logic with strong read-after-write consistency,
and, thanks to transactions, it will not inadvertently access partially updated
records.

Read-only data is readily available
The data stored within the monolith’s database can be readily accessed by any
part of the monolith. Read-only access permissions ensure that there are no inad‐
vertent alterations to the data.

Using Data in the Operational Plane | 5

Note that the database should be directly accessed only by the service that owns it,
and not used as an integration point.

These three principles form a binding force that make monolithic architectures
powerful. Your application code has read-only access to the entire span of data stored
in the monolith’s database as a set of authoritative, consistent, and accessible data
primitives. This foundation makes it easy to build new application functionality pro‐
vided it’s in the same application. But what if you need to build a new application?

The Difficulties of Communicating Data for Operational Concerns
A new application cannot rely on the same easy access to data primitives that it would
have if it were built as part of the monolith. This would not be a problem if the new
application had no need for any of the business data in the monolith. However, this is
rarely the case, as businesses are effectively a set of overlapping domains, particularly
the common core, with the same data serving multiple business requirements. For
example, an ecommerce retailer may rely on its monolith to handle its orders, sales,
and inventory, but requires a new application powered by a document-based database
(or other database type) for plain-text search functionality. Figure 1-2 highlights the
crux of the issue: how do we get the data from Ol’ Reliable into the new document
database to power search?

Figure 1-2. The new search service team must figure out how to get the data it needs out
of the monolith and keep it up to date

This puts the new search service team in a bit of a predicament. The service needs
access to the item, store, and inventory data in the monolith, but it also needs to
model it all as a set of documents for the search engine. There are two common ways
that teams attempt to resolve this. One is to replicate and transform the data to the
search engine, in an attempt to preserve the three monolith data principles. The sec‐
ond is to use APIs to restructure the service boundaries of the source system, such

6 | Chapter 1: Event-Driven Data Communication

https://oreil.ly/SQ9Hb

that the same data isn’t simply copied out—but served completely from a single sys‐
tem. Both can achieve some success, but are ultimately insufficient as a general solu‐
tion. Let’s take a look at these in more detail to see why.

Strategy 1: Replicate data between services
There are several mechanisms that fall under this strategy. The first and simplest is to
just reach into the database and grab the data you need, when you need it. A slightly
more structured approach is to periodically query the source database and dump the
set of results into your new structure. While this gives you the benefit of selecting a
different data store technology for your new service, there are a few major drawbacks:

Tight coupling with the source
You remain coupled on the source database’s internal model and rely on it exclu‐
sively to handle your query needs.

Performance load on the source
Large data sets and complex queries can grind the database to a halt. This is espe‐
cially true in the case of denormalizing data for analytical use cases, where multi-
table and complex joins are common.

The second most common mechanism for the data replication strategy is a read-only
replica of the source database. While this may help alleviate query performance
issues, consumers still remain coupled on the internal model. And, unfortunately,
each additional external coupling on the internal data model makes change more
expensive, risky, and difficult for all involved members.

Coupling on the internal data model of a source system causes
many problems. The source model will change in the course of
normal business evolution, which often causes breakages in both
the periodic queries and internal operations of all external consum‐
ers. Each coupled service will need to refactor its copy of the model
to match what is available from the source, migrate data from the
old model to the new model, and update its business code accord‐
ingly. There is a substantial amount of risk in each of these steps, as
a failure to perform each one correctly can lead to misunderstand‐
ings in the meaning of the models, divergent copies of the data, and
ultimately incorrect business results.

Data replication strategies become more difficult to maintain with each new inde‐
pendent source and each new required replica. This introduces a few new issues:

Using Data in the Operational Plane | 7

The original data set can be difficult to discover
It’s not uncommon for a team to accidentally couple its service on a copy of the
original data, rather than the original data itself. It can be difficult to discover
what the original source of data is without resorting to informal knowledge
networks.

Increase in point-to-point connections
Additionally, each new independent service may become its own authoritative
source of data, increasing the number of point-to-point connections for inter-
service data replication.

Point-to-point replication of data between services introduces additional complexity,
while simultaneously introducing tight coupling on the internal data model of the
source. It is insufficient for building the modern data communications layer.

Strategy 2: Use APIs to avoid data replication needs
Directly coupled request-response microservices, also sometimes known as synchro‐
nous microservices, are another common approach to dealing with accessing remote
data. Microservices can directly call the API of another service to exchange small
amounts of information and perform work on each other’s behalf.

For example, you may have one microservice that manages inventory-related opera‐
tions, while you have other microservices dedicated to shipping and accounts. Each
of these service’s requests originate from the dedicated mobile frontend and web
frontend microservices, which stitch together operations and return a seamless view
to users, as shown in Figure 1-3.

Figure 1-3. An example of a simple ecommerce microservice architecture

8 | Chapter 1: Event-Driven Data Communication

Synchronous microservices have many benefits:

• Purpose-built services serve the needs of the business domain.
• The owners have a high level of independence to use the tools, technologies, and

models that work best for their needs.
• Teams also have more control over the boundaries of their domains, including

control and decision making over how to expand them to help serve other cli‐
ents’ needs.

There are numerous books written on synchronous microservices, such as Building
Microservices by Sam Newman (O’Reilly) and Microservices Patterns by Chris
Richardson (Manning), that go into far more detail than I have space for, so I won’t
delve into them in much detail here.

The main downsides of this strategy are the same as with a single service:

• There is no easy and reliable mechanism for accessing data beyond the mecha‐
nisms provided in the microservices’ API.

• Synchronous microservices are usually structured to offer up an API of business
operations, not for serving reliable bulk data access to the underlying domain.

• Most teams resort to the same fallbacks as a single monolith does: reach into the
database and pull out the data you need, when you need it, (see Figure 1-4).

Figure 1-4. The microservice boundaries may not line up with the needs of the busi‐
ness problem

Using Data in the Operational Plane | 9

https://learning.oreilly.com/library/view/building-microservices/9781491950340
https://learning.oreilly.com/library/view/building-microservices/9781491950340
https://learning.oreilly.com/library/view/microservices-patterns/9781617294549

In this figure, the new service is reliant on the inventory, accounts, and shipping
services just for access to the underlying business data—but not for the execution
of any business logic. While this form of data access can be served via a synchronous
API, it may not be suitable for all use cases. For example, large data sets, time-
sensitive data, and complex models can prevent this type of access from becoming
reality. In addition, there is the operational burden of providing the data access API
and data serving performance on top of that of the base microservice functionality.

Operational systems lack a generalized solution for communicating important busi‐
ness data between services. This isn’t something that’s isolated to just operations. The
big data domain, underpinning and powering analytics, reporting, machine learning,
AI, and other business services, is a voracious consumer of full data sets from all
across the business.

While domain boundary violations in the form of smash and grab data access are
the foundation on which big data engineering has been built (I have been a part of
such raids during the decade I have spent in this space), fortunately for us, it has pro‐
vided us with rich insights that we can apply to make a better solution for all data
users. But before we get to that, let’s take a look at the big data domain requirements
for accessing and using data and how this space evolved to where it is today.

The Analytical Plane: Data Warehouses and Data Lakes
Whereas operational concerns focus primarily on OLTP and server-to-server com‐
munication, analytical concerns are historically focused on answering questions
about the overall performance of the business. Online analytical processing (OLAP)
systems store data in a format more suitable to analytical queries, allowing data
analysts to evaluate data on different dimensions. Data warehouses help answer ques‐
tions such as “How many items did we sell last year?” and “What was our most popu‐
lar item?” Answering these questions requires remodeling operational data into a
model suitable for analytics, and also accounting for the vast amounts of data where
the answers are ultimately found.

Getting data into a data warehouse has historically relied on a process known as
Extract, Transform, and Load (ETL), as shown in Figure 1-5.

A periodically scheduled job extracts data from one or more source databases and
transforms it into the data model required by the data warehouse. The data is then
loaded into the data warehouse, where data analysts can run further queries and anal‐
yses. Data warehouses typically enforce well-defined schemas at write time, including
column types, names, and nullability.

10 | Chapter 1: Event-Driven Data Communication

Figure 1-5. A typical data warehouse ETL workflow

Historically, data warehouses have proven to be successful at providing a means for
analytical results. But the ever-increasing data and compute loads required larger disk
drives and more powerful compute chips and ultimately ran into the physical limits
of computer hardware. So instead of further scaling up, it became time to scale out.

The need for massive scale was plainly evident to Google, which published The Goo‐
gle File System in October, 2003. This is the era that saw the birth of big data and
caused a massive global rethink of how we create, store, process, and, ultimately, use
data.

Many modern data warehouses also offer high scalability, but it
wasn’t until the advent of the big data revolution that this became a
reality. Historically, data warehouses were limited by the same fac‐
tors as any other system operating on a single server.

Apache Hadoop quickly caught on as the definitive way to solve the scaling problems
facing traditional OLAP systems. Because it’s free and open source, it could be used
by any company, anywhere, provided you could figure out how to manage the infra‐
structure requirements. It also provided a new way to compute analytics, one where
you were no longer constrained to a proprietary system limited by the resources of a
single computer.

Hadoop introduced the Hadoop Distributed File System (HDFS), a durable, fault-
tolerant filesystem that made it possible to create, store, and process truly massive
data sets spanning multiple commodity hardware nodes. While HDFS has now been
largely supplanted by options such as Amazon S3 and Google Cloud Storage, it paved
the way for a bold new idea: copy all of the data you need into a single logical loca‐
tion, regardless of size, and apply processing to clean up, sort out, and remodel data
into the required format for deriving important business analytics.

Using Data in the Operational Plane | 11

https://oreil.ly/iakeU
https://oreil.ly/iakeU
https://oreil.ly/T0Hde

Big data architecture introduced a significant shift in the mentality toward data. Not
only did it address the capacity issues of existing OLAP systems, it introduced a new
concept into the data world: it was not only acceptable, but preferable, to use unstruc‐
tured or semi-structured data, instead of enforcing schema on write as in a data
warehouse. In this new world of big data, you were free to write data with or without
any schema or structure and resolve it all later at query time by applying a schema on
read. Many data engineers were pleased to get rid of the schema on write require‐
ment, as it made it easier to just get data into the ecosystem.

Consider Table 1-1, comparing the data structures and use cases between the rela‐
tional database and MapReduce. MapReduce is an early Hadoop processing frame‐
work and is what you would use to read data, apply a schema (on read), perform
transformations and aggregations, and produce the final result.

Table 1-1. A comparison of a relational database management system and Hadoop, circa
2009

Traditional RDBMS MapReduce
Data size Gigabytes Petabytes

Access Interactive and batch Batch

Updates Read and write many times Write once, read many times

Structure Static schema Dynamic schema

Integrity High Low

Scaling Nonlinear Linear

Note that this definitive guide from 2009 promotes MapReduce as a solution for han‐
dling low integrity data with a dynamic schema, emphasizing the notion that HDFS
should be storing unstructured data with low integrity, with varying and possibly con‐
flicting schemas to be resolved at runtime. It also points out that this data is write
once, read many times, which is precisely the scenario in which you want a strong,
consistent, enforced schema—providing ample opportunity for well-meaning but
unconstrained users of the data to apply a read-time schema that misinterprets or
invalidates the data.

A schema on write, including well-defined columns with types, defaults, nullability,
and names, doesn’t necessarily restrict downstream transformations in any way. It
also doesn’t force you to denormalize or join any data before writing.

A schema does provide you with a sanity check, ensuring that the data you’re ingest‐
ing at least fits the most basic expectations of the downstream processors. Abandon‐
ing that sanity check pushes the detection of errors downstream, causing significant
hardships for those trying to use the data.

12 | Chapter 1: Event-Driven Data Communication

In the early days of Hadoop, I don’t think that I—or many others—appreciated just
how the notion of schema on read would end up changing how data is collected,
stored, and analyzed. We believed in and supported the idea that it was okay to grab
data as you need it and figure it out after the fact, restructuring, cleaning, and enforc‐
ing schemas at a later date. This also made it very palatable for those considering
migrating to Hadoop to alleviate their analytical constraints, because this move didn’t
constrain your write processes or bother you with strict rules of data ingestion—after
all, you can just fix the data once it’s copied over!

Unfortunately, the fundamental principle of storing unstructured data to be used with
schema on read proved to be one of the costliest and most damaging tenets intro‐
duced by the big data revolution. Let’s take a look at precisely how this negatively
affects distributed data access and why well-defined schematized data is such an
important tenet of data mesh.

The Organizational Impact of Schema on Read
Enforcing a schema at read time, instead of at write time, leads to a proliferation of
what we call “bad data.” The lack of write-time checks means that data written into
HDFS may not adhere to the schemas that the readers are using in their existing
work, as shown in Figure 1-6. Some bad data will cause consumers to halt processing,
while other bad data may go silently undetected. While both of these are problematic,
silent failures can be deadly and difficult to detect.

Figure 1-6. Examples of bad data in a data set, discovered only at read time

To get a better understanding of the damaging influence of schema on read, let’s take
a look at three roles and their relationship to one another. While I am limited to my
own personal experiences, I have been fortunate to talk with many other data people
in my career, from different companies and lines of business. I can say with confi‐
dence that while responsibilities vary somewhat from organization to organization,
this summary of roles is by and large universal to most contemporary organizations
using big data:

Using Data in the Operational Plane | 13

The data analyst
Charged with answering business questions, generating insights, and creating
data-driven reports. Data analysts query the data sets provided to them by the
data engineers.

The data engineer
Charged with obtaining the important business data from systems around the
organization and putting it into a usable format for the data analysts.

The application developer
Charged with developing an application to solve business problems. That appli‐
cation’s database is also the source of data required by the data analysts to do
their job.

Historically, the most common way to adopt Hadoop was to establish a dedicated
data team as a subset of, or fully separate from, the regular engineering team. The
data engineer would reach into the application developer’s database, grab the required
data, and pull it out to put into HDFS. Data scientists would clean it up and restruc‐
ture it (and possibly build machine learning models off of it), before passing it on to
be used in analytics.

Finally, the data analysts would then query and process the captured data sets to
produce answers to their analytical questions. This model led to many issues, how‐
ever. Conversations between the data team and the application developers would be
infrequent and usually revolve around ensuring the data team’s query load did not
affect the production serving capabilities.

There are three main problems with this separation of concerns and responsibilities.
Let’s take a look at them.

Problem 1: Violated data model boundaries
Data ingested into the analytics domain is coupled on the source’s internal data model
and results in direct coupling by all downstream users of that data. For simple,
seldom-changing sources, this may not be much of a problem. But many models span
multiple tables, are purpose-built for OLTP operations, and may become subject to
substantial refactoring as business use cases change. Direct coupling on this internal
model exposes all downstream users to these changes.

14 | Chapter 1: Event-Driven Data Communication

One example I have seen of a table modification that silently broke
downstream jobs involved changing a field from boolean to long.
The original version represented an answer to the question “Did
the customer pay to promote this?” The updated version repre‐
sented the budget ID of the newly expanded domain, linking this
part of the model to the budget and its associated type (including
the new trial type). The business had adopted a “try before you
buy” model where it would reserve, say, several hundred dollars in
advertising credits to showcase the effectiveness of promotion,
without counting it in the total gross revenue.
The jobs ingesting this data to HDFS didn’t miss a beat (no schema
on write), but some of the downstream jobs started to report odd
values. A majority of these were Python jobs, which easily evalu‐
ated the new long values as Booleans, and resulted in over-
attribution of various user analytics. Unfortunately, because no jobs
were actually broken, this problem wasn’t detected until a customer
started asking questions about abnormal results in their reports.
This is just one example of many that I have encountered, where
well-meaning, reasonable changes to a system’s data model have
unintended consequences on all of those who have coupled on it.

Problem 2: Lack of single ownership
Application developers are the domain experts and masters of the source data model,
but their responsibility for communicating that data to other teams (such as the big
data team) is usually nonexistent. Instead, their responsibilities usually end at the
boundaries of their application and database.

Meanwhile, the data engineer is tasked with finding a way to get that data out of the
application developer’s database, in a timely manner, without negatively affecting the
production system. The data engineer is dependent on the data sources, but often has
little to no influence on what happens to the data sources, making their role very
reactive. This production/data divide is a very real barrier in many organizations, and
despite best-efforts, agreements, integration checks, and preventative tooling, break‐
ages in data ingestion pipelines remain a common theme.

Finally, the data analyst, responsible for actually using the data to derive business
value, remains two degrees of separation away from the domain expert (application
developer), and three degrees separated if you have a layer of data scientists in there
further munging the data. Both analysts and data scientists have to deal with whatever
data the data engineers were able to extract, including resolving inconsistent data that
doesn’t match their existing read schemas.

Using Data in the Operational Plane | 15

Because data analysts often share their schemas with other data analysts, they also
need to ensure that their resolved schemas don’t break each other’s work. This is
increasingly difficult to do as an organization and its data grow, and, unfortunately,
their resolution efforts remain limited to benefiting only other analysts. Operational
use cases have to figure out their own way to get data.

Problem 3: Do-it-yourself and custom point-to-point data connections
While a data team in a small organization may consist of only a handful of members,
larger organizations have data teams consisting of hundreds or thousands of mem‐
bers. For large data organizations, it’s common to pull the same data sources into
multiple different subdomains of the data platform, depending on use cases, team
boundaries, and technology boundaries.

For example, sales data may be pulled into the analytics department, consumer
reporting department, and accounts receivable department. Each subgroup typically
independently creates, schedules, and executes ETL jobs to pull the data into its own
subdomain, resulting in multiple independently managed copies of the source data,
as shown in Figure 1-7.

Figure 1-7. Three analytical domains, each grabbing data from where it can to get its
work done

While purpose-built, point-to-point data connections let users access the data they
need where they need it, it ends up causing a messy tangle. It can be difficult to tell
who owns the ETL job, especially when users and teams share access credentials.
Tracing lineage, freshness, and determining ownership of a data set can similarly be
difficult, often leading to further proliferation of new ETL jobs. After all, if you’re not

16 | Chapter 1: Event-Driven Data Communication

sure the data is exactly what you need, you may as well just make your own job and
your own copy for safety’s sake.

Enforcing access controls on the source can help clear up who can access what data,
but only from the primary source. But restricting data access can backfire. A lengthy
or cumbersome process to gain access can result in people simply making copies
from other less protected sources. In Figure 1-7, notice that the Predictions domain
simply circumnavigates the source access controls by copying the sales data from the
User insights domain.

But are these copies really the same data? Synchronization frequency, transforma‐
tions, time zones, intermittent failures, and an incorrect environment (e.g., staging,
not production) are just a few issues that can affect the integrity of your copied
source. It’s possible that you think you’re getting the correct data, but you’re not and
you don’t know it. For example, you copy one data set thinking it’s synced to UTC-0
time, but it’s actually synced to UTC-6. The format, partitioning, and ordering of data
may appear identical, yet these hard-to-detect, undocumented differences still
remain.

Custom point-to-point connections can be a challenge to maintain, cause a sprawl of
data, and can result in many duplicate sync jobs that produce similar yet different
data.

This disjointed model and responsibilities of data ownership and distribution lead to
bad data, which is costly in terms of time, money, and missed opportunities. Let’s take
a look at the costs, before wrapping up with why data mesh purports to solve these
issues.

Bad Data: The Costs of Inaction
Bad data typically goes undetected until it is applied to a schema. For example, you
can’t insert TEXT into an Int32 column in a database. By using schema on read, how‐
ever, we effectively defer validating our data until the end of the data piping process.
And while our sources may use a schema, there’s no guarantee that our countless
point-to-point pipelines have correctly captured the schema alongside the data. There
have been many an Int32 captured as an String, or, at worst, an Object.

Bad data is costly to fix, and it’s more costly the more widespread it is. Everyone who
has accessed, used, copied, or processed the data may be affected and may require
mitigating action on their part. The complexity is further increased by the fact that
not every consumer will “fix” it in the same way. This can lead to divergent results
that are divergent with others and can be a nightmare to detect, track down, and
rectify.

Using Data in the Operational Plane | 17

Bad data is often inadvertently created by well-meaning individuals, simply because
of the point-to-point, “reach in and grab it” nature of many data transfer tools. This
has been further augmented by massive scale, where a team discovers that not only is
their copy of the data set wrong, but that it’s been wrong for several months, and the
results of each downstream job computed using that data set are also wrong. These
jobs may use hundreds or thousands of processing nodes, with 32x to 128x more in
GB of RAM, churning through hundreds of TBs of data each night. This can easily
amount to hundreds of thousands or millions of dollars just in processing costs to
rerun all of the affected jobs.

Business decisions may also have been affected. I have been privy to the details of one
scenario where a company had incorrectly billed its customers collectively by several
million dollars, in some cases by too much, and in others by too little. The cause of
this was actually quite innocent: a schema change compounded with a complex chain
of “reach in and grab it” data ETLs resulted in some data interpretation issues when
the schema was applied at read time. It was only when a customer noticed that their
billing costs far exceeded their engagement costs that an investigation was started and
the root problem discovered.

Data’s increasing prominence in modern computing has led others to research the
associated costs, especially regarding just how much bad data costs businesses. The
results are staggeringly high.

In 2016, one report by IBM, as highlighted by the Harvard Business Review (HBR) put
an estimate of the financial impacts of bad data at 3.1 trillion US dollars, in the US
alone. Though the original report is (frustratingly) no longer available, HBR has
retained some of the more relevant numbers:

• 50%—the amount of time that knowledge workers waste hunting for data, find‐
ing and correcting errors, and searching for confirmatory sources for data they
don’t trust.

• 60%—the estimated fraction of time that data scientists spend cleaning and
organizing data.

The problem of bad data has existed for a very long time. Data copies diverge as their
original source changes. Copies get stale. Errors detected in one data set are not fixed
in duplicate ones. Domain knowledge related to interpreting and understanding data
remains incomplete, as does support from the owners of the original data.

Data mesh proposes to fix this issue by promoting data to a first-class citizen, a prod‐
uct like any other. A data product with a well-defined schema, domain documenta‐
tion, standardized access mechanisms, and SLAs can substantially reduce the impact
of bad data right at the source. Consumers, once coupled on the data product, may
still make their own business logic mistakes—this is unavoidable. They will, however,

18 | Chapter 1: Event-Driven Data Communication

https://oreil.ly/43SJw

seldom make inadvertent mistakes in merely trying to acquire, understand, and inter‐
pret the data they need to solve their business problems. Inaction is not a solution.

Can We Unify Analytical and Operational Workflows?
There’s one more problem that sits at the heart of engineering—it’s not just the data
team that has these data access and quality problems. Every single OLTP application
that needs data stored in another database has the same data access problems as the
data team. How do you access important business data, locked away in another ser‐
vice, for operational concerns?

There have been several attempts at enabling better operational communication
between services, including service-oriented architecture, enterprise service buses,
and, of course, point-to-point request-response microservices. But in each of these
architectures, the service’s data is encapsulated within its own database and is out of
reach to other services. In one way this is good—the internal model is sheltered, and
you have a single source of truth. Applications provide operational APIs that other
applications can call to do work on their behalf. However, these solutions don’t
resolve the fundamental issue of wholesale read-only access to definitive data sets to
use as required for their own operational use cases.

A further complication is that many operational use cases nowadays depend on ana‐
lytical results. Think machine learning, recommendation engines, AI, etc. Some use
cases, such as producing a monthly report of top-selling products, can clearly be
labeled as “analytical,” to be derived from a periodically computed job.

Other use cases are not so clear cut. Consider an ecommerce retailer that wants to
advertise shoes based on current inventory (operational), previous user purchases
(analytical), and the user’s real-time estimated shopping session intentions (analytical
and operational). In practice, the boundary between operational and analytical is sel‐
dom neatly defined, and the exact same data set may be needed for a multitude of
purposes—analytical, operational, or somewhere in between.

Both data analytics and conventional operational systems have substantial difficulty
accessing data contained within other databases. These difficulties are further exacer‐
bated by the increasing volume, velocity, and scale of data, while systems are simulta‐
neously forced to scale outwards instead of upwards as compute limitations of
individual services are reached. Most organizations’ data communication strategies
are based on yesterday’s technology and fail to account for the offerings of modern
cloud storage, computing, and software as a service (SaaS). These tools and technolo‐
gies have changed the way that data can be modeled, stored, and communicated
across an organization, which we will examine in more detail throughout the remain‐
der of this book.

Using Data in the Operational Plane | 19

Rethinking Data with Data Mesh
The premise of the data mesh solution is simple. Publish important business data sets
to dedicated, durable, and easily accessible data structures known as data products.
The original creators of the data are responsible for modeling, evolution, quality, and
support of the data, treating it with the same first-class care given to any other prod‐
uct in the organization.

Prospective consumers can explore, discover, and subscribe to the data products they
need for their business use cases. The data products should be well-described, easy to
interpret, and form the basis for a set of self-updating data primitives for powering
both business services and analytics.

Event streams play the optimal role for the foundation of data products because they
offer the immutable, appendable, durable, and replayable substrate for all consumers.
These streams become a fundamental source of truth for operational, analytical, and
all other forms of workloads across the organization.

This architecture is built by leveraging modern cloud computing and SaaS, as covered
more in Chapter 5. A good engineering stack makes it easy to create and manage
applications throughout their life cycle, including acquiring compute resources, pro‐
viding scalability, logging, and monitoring capabilities. Event streams provide the
modern engineering stack with the formalized and standardized access to the data it
needs to get things done.

Let’s revisit the monolith data principles from earlier in this chapter through the lens
of this proposal. These three principles outline the major influences for colocating
new business functionality within a monolith. How would a set of self-updating event
streams relate to these principles?

The database is the source of truth → The event stream is the source of truth
The owner of the data domain is now responsible for composing an external-
facing model and writing it as a set of events to one (or more) event streams. In
exchange, other services can no longer directly access and couple on the internal
data model, and the producer is no longer responsible for serving tailored busi‐
ness tasks on behalf of the querying service, as is often the case in a microservices
architecture. The event stream becomes the main point of coupling between sys‐
tems. Downstream services consume events from the event stream, model it for
their purposes, and store it in their own dedicated data stores.

Data is strongly consistent → Data is eventually consistent
The event stream producer can retain strong read-after-write consistency for its
own internal state, along with other database benefits such as local ACID transac‐
tions. Consumers of the event stream, however, are independent in their process‐
ing of events and modeling of state and thus rely on their own eventually

20 | Chapter 1: Event-Driven Data Communication

consistent view of the processed data. A consumer does not have write-access to
the event stream, and so cannot modify the source of data. Consumer system
designs must account for eventual consistency, and we will be exploring this sub‐
ject in greater detail later in this book.

Read-only data is readily available (remains unchanged!)
Event streams provide the formalized mechanism for communicating data in a
read-only, self-updating format, and consumers no longer need to create, man‐
age, and maintain their own extraction mechanism. If a consumer application
needs to retain state, then it does so using its own dedicated data store, com‐
pletely independent of the producer’s database.

Data mesh formalizes the ownership boundaries of data within an organization
and standardizes the mechanisms of storage and communication. It also provides a
reusable framework for producing, consuming, modeling, and using data, not only
for current systems, but also for systems yet to be built.

Common Objections to an Event-Driven Data Mesh
There are several common objections that I have frequently encountered when dis‐
cussing an event-driven data mesh . Though we will cover these situations in more
detail throughout the book, I want to bring them up now to acknowledge that these
objections exist, but that each one of them is manageable.

Producers Cannot Model Data for Everyone’s Use Cases
This argument is actually true, though it misses the point. The main duty of the pro‐
ducer is to provide an accurate and reliable external public model of its domain data
for consumer use. These data models need to expose only the parts of the domain
that other teams can couple on; the remainder of their internal model remains off-
limits. For example, an ecommerce domain would have independent sales, item, and
inventory models and event streams, simply detailing the current properties and val‐
ues of each sale, item, and inventory level, whereas a shipping company may have
event streams for each shipment, truck, and driver.

These models are deliberately simple and focused on a single domain definition,
resulting in tight, modular data building blocks that other systems can use to build
their own data models. Consumers that ingest these events can restructure them as
needed, including joining them with events from other streams or merging them with
existing states, to derive a model that works for solving their business use cases. Con‐
sumers can also engage the producer teams to request that additional information be
added to the public model or for clarification on certain fields and values.

Common Objections to an Event-Driven Data Mesh | 21

Because the producer team owns the original data model, it is the most qualified to
decide what aspects of the model should be exposed and allow others to couple on. In
fact, there is no other team more qualified than the team that actually creates the orig‐
inal source of data to define what it means and how others should interpret what its
fields, relationships, and values mean. This approach lets the data source owners
abstract away their internal complexities, such as their highly normalized relational
model or document store. Changes to the internal source model can be hidden from
consumers that would otherwise have coupled directly on it, thereby reducing break‐
ages and errors.

Making Multiple Copies of Data Is Bad
This objection, ironically, is implicitly in opposition of the first argument. Though
just like the previous argument, it does have a grain of truth. Multiple copies of the
same data set can and do inadvertently get out of sync, become stale, or otherwise
provide a source of data that is in disagreement with the original source. However,
our proposal is not to make copying data a free-for-all, but rather to make a formal‐
ized and well-supported process that establishes clear rules and responsibilities,
embracing this reality rather than hiding from it.

There are three main subtypes of this argument.

There should only be a single master copy of the data, and all systems should
reference it directly
This belief fails to account for the fact that big data analytics teams worldwide have
already been violating this principle since the dawn of the big data movement (and
really, OLAP in general) because their needs cannot be met by a single master copy,
stored in a single database somewhere. It also fails to account for the various needs of
other operational systems, which follow the same boundary-breaching data acquisi‐
tion strategies. It’s simply untenable.

Insufficiency of the source system to model its data for all business use cases is a
prime reason why multiple copies of the same data set will eventually exist. One sys‐
tem may need to support ACID transactions in a relational model, whereas a second
system must support a document store for geolocation and plain-text search. A third
consumer may need to write these data sets to HDFS, to apply MapReduce style pro‐
cessing to yield results from the previous 364 copies of that data it made, cross-
referenced to other annual data sets. All of these cannot be served from a single
central database, if not just for the modeling, then for the impossibility of satisfactory
performance for all use cases.

22 | Chapter 1: Event-Driven Data Communication

It’s too computationally expensive to create, store, and update multiple
copies of the same data
This argument is hyper-focused on the fact that moving and storing data costs
money, and thus storing a copy of the same data is wasteful (disregarding factors such
as remodeling and performance, of course). This argument fails to account for the
inexpensiveness of cloud computing, particularly the exceptionally cheap storage and
network costs of today’s major cloud providers. It also fails to account for the devel‐
oper hours necessary to build and support custom ETL pipelines, part of the multi‐
trillion dollar inefficiencies in creating, finding, and using data.

Optimizing for minimizing data transfer, application size, and disk usage are no
longer as important as they once were for the majority of business applications.
Instead, the priority should be on minimizing developer efforts for accessing data
building blocks, with a focus on operational flexibility.

Managing information security policies across systems and distributed data sets is too hard
Formalizing access to data via data products allows you to apply user and service
access controls. Encryption lets you secure all of your sensitive data to unauthorized
consumers, so that only those with permission can read the sensitive data.

The self-service platform plays a big role in a data mesh architecture, as it enforces all
the security policies, access controls, and encryption requirements. Infosec adherence
becomes integrated into the normal workflows of data product producers and con‐
sumers, making it far easier to enforce and audit compliance.

Eventual Consistency Is Too Difficult to Manage
Data communicated through event streams does require consideration of and plan‐
ning for eventual consistency. However, the complaint that eventual consistency is
too difficult to manage is typically founded on a misunderstanding of how much of
an impact it can have on business processes as a whole. We can properly define our
system boundaries to account for eventual consistency between systems, while having
access to strong consistency within a system. There’s no getting around it—if a cer‐
tain business process needs perfect consistency, then the creation and usage of the
data must be within the same service boundary. But the majority of business pro‐
cesses don’t need this, and for those that do, nothing we’re proposing in this book pre‐
cludes you from obtaining it. We’ll be discussing how to handle eventual consistency
in more detail in Chapter 10.

Common Objections to an Event-Driven Data Mesh | 23

Summary
Existing data communication strategies fall flat in the face of real business require‐
ments. Breaching a service’s boundary by reaching in to grab its data is not a
sustainable practice, but it is extremely common and often supports multiple critical
systems and analytics workflows. Restructuring your systems into neat modular
microservices does not solve the problem of data access; other parts of your business,
such as the big data analytics and machine learning teams, will still require wholesale
access to both current and historical data from domains across the organizations.
One way or another, copies of data will be created, and we can either fight this or
embrace this fact and work to make it better. In choosing the latter, we can use event
streams to standardize and simplify the communication of data across the organiza‐
tion as self-updating single sources of truth.

Events form the basis of communication in event-driven architectures and funda‐
mentally shape the space in which we solve our problems. Events, as delivered
through event streams, form the building blocks for building asynchronous and reac‐
tive systems. These building blocks are primitives that are similar to synchronous
APIs: other applications can discover them, couple on them, and use them to build
their own services. Eventual consistency, consumer-specific models, read-only repli‐
cas, and stream materializations are just some of the concepts we’ll explore in this
book, along with the roles that modern cloud compute, storage, and networking
resources have in this new data architecture.

The following chapters will dig deeper into building and using an event-driven data
mesh. We’ll explore how to design events, including state, action, and notification
events, as well as patterns for producing and consuming them. This book covers han‐
dling events at scale, including multicluster and multiregion, best practices for pri‐
vacy and regulatory compliance, as well as principles for handling eventual
consistency and asynchronous communication. We’ll explore the social and cultural
changes necessary to accommodate an event-driven data mesh and look at some real-
world case studies highlighting the successes and lessons learned by others.

Finally, we’ll also look at the practical steps you can take to start building toward this
in your own organization. One of the best things about this architecture is that it’s
modular and incremental, and you can start leveraging the benefits in one sector of
your business at a time. While there are some initial investments, modern cloud com‐
pute and SaaS solutions have all but eliminated the barriers to entry, making it far
easier to get started and test whether this is the right solution for you.

24 | Chapter 1: Event-Driven Data Communication

CHAPTER 2

Data Mesh

A helpful elevator pitch I often heard referred to data mesh as “microservices for
data”—the same principles, but you’re applying them to data instead of services. An
organization using microservices will have a catalog to look up available services,
including their APIs, SLAs, domain owners, security information, and access
controls, along with any other organizational-specific information. The microservice
catalog provides you with a view into the functions you have available to stitch
together new business applications.

In both the microservice and data mesh worlds, common infrastructure services (e.g.,
Git, Kubernetes, containers, continuous integration, monitoring) provide self-service
tooling that lets you focus on building useful business services instead of getting lost
in the infrastructure and platforms. Data mesh draws a direct parallel to the
microservices architecture—but with data sets, instead of services.

The benefits of a well-built data mesh include:

• Discovering trustworthy and reliable data, making it cheaper and faster to put it
into use.

• Making it easier to publish new data sources, such that others can make use of
them quickly and easily.

• Treating data as a first-class product, just like any other mission-critical product,
including dedicated resourcing, well-defined responsibilities, SLAs, and product
release cycles.

• Reducing and eventually eliminating unreliable, fragile, and expensive data pipe‐
lines and ETLs.

25

• Eliminating data inconsistencies between analytics and operational systems by
using event streams as the single source of truth.

Data mesh relies on four interrelated principles. We’ll investigate each of these
principles in brief, along with the role that event-driven data plays in them. The fol‐
lowing chapters will dig into a deeper discussion of the principles, the relationships
between them, and specifics for building a data mesh powered by event streams.

Principle 1: Domain Ownership
Domain ownership is all about enforcing sovereignty over one’s own domain, without
having to seek approval or permission from others to change or modify it. This
principle ensures a definitive answer to the question of “Who is in charge of this data
set?” by unequivocally answering, “the domain owner.” But with total ownership
comes an important set of responsibilities: to export a selection of internal domain
data in a mode suitable for use by those outside your domain boundaries.

In a data mesh, the owner of that data becomes responsible for making it readily
available—it is no longer up to prospective users of the data to try to figure out the
means to access it. For one, the team that owns the source data is the best qualified to
determine what parts of the model should (and should not) be exposed to down‐
stream consumers. Secondly, establishing data ownership at the source formalizes the
boundaries of responsibility, simplifying the ownership issues that have plagued tra‐
ditional centralized data teams.

But responsibility extends beyond modeling data for export to include handling on-
call data issues, ensuring that the modes of access remain reliable, ensuring that evo‐
lution of the data model remains compatible with historical expectations (covered
more in “Schema Evolution: Changing Your Schemas Through Time” on page 137),
and ensuring that the agreed upon SLAs are met. This isn’t simply a change in who
models the data for export but rather a total shift in ultimate responsibility. Moving
ownership of data modeling and availability to the producer is a fundamental shift
away from the centralization common to today’s data warehousing and data lake
strategies. Instead of data engineers and data scientists trying to figure out how to get
data from within a service’s boundary (e.g., smash and grab into an ETL job), the
owner of the source data must strive to make the necessary data available through a
well-supported and reliable medium.

Domain-Driven Design in Brief
Domain-driven design (DDD), as created and articulated by Eric Evans in Domain-
Driven Design (Addison-Wesley), is a software design approach applied to data and
domain modeling. It focuses on modeling the structure and language of the software
model to match that of the business domain. Much like data mesh, it too provides us

26 | Chapter 2: Data Mesh

https://oreil.ly/UVes7
https://oreil.ly/UVes7

with a common language to discuss software and data models. We’ll borrow from
DDD’s common language to start the discussion on how to share data between sys‐
tems. Distinguishing between data in here and data out there is essential for navigat‐
ing the social changes and delegation of responsibility necessary for data mesh to
succeed.

To begin with, we have the domain, as in domain-driven design. A domain is the area
of interest or concern over which a person or team has control, including all of the
entities, aggregates, business logic, and context that compose it. The domain, in a
nutshell, consists of the things that we concern ourselves with, in a specific area, as we
try to build a solution for a problem.

Next is the bounded context. A bounded context is defined as the boundary within a
domain where the domain model applies. In practice, a bounded context also
contains what’s known as a ubiquitous language, which describes every component
within the boundary, including how it can be identified, its relations to other
components, and how it’s modeled.

Ubiquitous language is ubiquitous only within the bounded
context—in another bounded context, the same term may (and
often does) mean something different. Subtly different meanings
may cause confusion and inconsistent data interpretation and
usage.

Entities are uniquely identifiable things or items that are defined within the domain.
These are best thought of as objects with unique attributes that often change and
evolve over time. For example, an ecommerce platform’s entities include items for
sale, coupons, deals, shipments, and warehouse-related matters like creating the
package and managing inventory levels.

Finally, an aggregate is a cluster of entities that can be treated as a single unit. Further
to our ecommerce example, aggregating the coupons, items, deals, shipping, and
payment information forms the basis of an order. To compose this order aggregate,
however, you need to apply domain-specific business logic to integrate each of the
entities into the aggregate—the ordering and manner in which it’s applied is a con‐
cern solely for the domain’s aggregate owner.

Figure 2-1 shows a simplified automotive manufacturing domain, with a single
bounded context containing entities, aggregates, and business logic. Each entity,
aggregate, and process has a fully consistent meaning within the boundary, and any
exposure of the inner data to the outside world is through the anti-corruption layer.

With these definitions, we can start discussing precisely what it is we’re trying to do:
publish important entities and aggregates from within a domain’s bounded context
for use in other domains. All data made accessible outside the domain will be

Principle 1: Domain Ownership | 27

through an anti-corruption layer, as we want to control what data is and isn’t exposed
to ensure that external parties do not couple directly on the internal model. This
provides the domain owner with the ability to evolve and change the internal imple‐
mentation without unduly affecting external data consumers.

Figure 2-1. An example of an automotive manufacturing domain, including the anti-
corruption layer

But how do we know what data to select and share outside our domain?

Selecting the Data to Expose from Your Domain
Deciding what data to expose from your domain can be a bit tricky. One of the best
places to start is to identify the entities that are fundamental to your domain, as they
are often good first candidates to evaluate. Given the ecommerce example of the
previous section, we could expose data relating to the items available and the orders
that have been created. Since this domain also maps to the physical world, it would be
reasonable to also expose the current inventory to ensure that stock on hand is cor‐
rectly displayed to our end users.

We would also likely expose select payment information as its own data set because
this would provide important information for finance teams. We can link payments
to orders via unique ID mappings, allowing downstream consumers to merge them
together as they need, or simply use the data that is only relevant to their use cases.

28 | Chapter 2: Data Mesh

However, the best way to determine which domain data is necessary for others to use
is to simply ask them. Take a customer-focused approach and lean into the needs of
those business processes that depend on your domain. And this brings us to the next
data mesh principle.

Principle 2: Data as a Product
This principle elevates data to the status of first-class citizen, the same as any other
product created by the organization. This is a complete reenvisioning of how data is
created, stored, and communicated to other domains. By applying the same product
rigor of existing production products, we can formalize how data is built and
communicated across domains.

The domain owners are responsible for identifying, extracting, and modeling their
data to present as a data product for external access. After all, who better than the
domain model experts to construct the data for export? And like any other product,
prospective consumers are identified and consulted to ensure that the data product is
built to serve their needs. But a data product isn’t just the data itself—it’s also the code
that builds it, the infrastructure that stores it, and the ports (or modes) by which you
can access it, as shown in Figure 2-2.

Figure 2-2. The code, data, infrastructure, and ports that comprise a data product

These four components are common to all data products. Every data product creator
is going to need to identify and construct their data products with these in mind.

We’ll streamline the creation and management of data products, much like we do with
microservices, to reduce the overhead and toil of each data product owner. We want
it to be easy to build and support data products without getting bogged down in the
operational overhead. We’ll cover self-service later in this chapter, but keep it in mind
as we talk about serving data as a product.

Principle 2: Data as a Product | 29

There are four major factors to consider when building data products. Data products
must provide immutable and time-stamped data, such that consumers obtain consis‐
tently reproducible results. Data products are multimodal, though some modes suit
certain use cases better than others. Depending on the mode, you may end up need‐
ing to pull data via a query, or your data may be pushed to you via a subscription,
affecting the kinds of use cases you can support. Finally, data products are construc‐
ted in alignment with the source domain, an aggregation, or the consumer domain,
further affecting use case possibilities. Let’s look at each one of these in turn.

Creating a data product is a formal commitment by the domain
owner to provide the time, resources, and know-how to make parts
of their domain data usable to external customers. This includes
providing a stable API, an SLA (e.g., do we get up at night to fix
it?), and prioritizing and handling customer feature requests.

Data Products Provide Immutable and Time-Stamped Data
The data provided by a data product must be immutable and time-stamped. Consum‐
ers must obtain a consistent result when querying the data, regardless of when the
query is executed. For example, a query executed today on a given date range and one
executed in a month from now on that same date range must yield the same results.
Similarly, two separate consumers reading the same data product must be able to
obtain precisely the same data. Any modifications to that data need to be published as
new, incremental changes to the data set.

These requirements are made a bit trickier to uphold when considering late-arriving
data. How does the data product owner fold in data that is clearly late but that may
still be essential to the data product? In consultation with consumers, one option is to
forgo publishing the new data until a grace period has elapsed—say one-hour—after
which all other late-arriving data is discarded. A second option is to simply drop the
data on the floor and ignore it. While consistent, this may be problematic for some
data product consumers who care more about accuracy than timeliness.

A third option, enabled by event streams, is to publish the late data as soon as it
arrives. The late data is published as an event with the accurate but late timestamp of
its occurrence. A stream consumer will see the event timestamps steadily increasing
until they hit the late event, at which point they can choose their own course of action
for handling it.

Immutable and time-stamped data unlocks the ability of multiple consumers to con‐
sistently and repeatedly use data products over time. As for late-arriving data, we’ll
take a look at this in more detail in Chapter 10.

30 | Chapter 2: Data Mesh

Data Products Are Multimodal
There is no definitive “right way” to create a data product, nor is there a single
expected form, format, or mode that it is expected to take. Data products are intrinsi‐
cally multimodal, and precisely which modes you use for sharing data is open to
negotiation. We’ll return to this subject of mode selection in more detail in Chapter 4.

In the meantime, the same data product can be served up in a number of different
formats and APIs. For example, a single data product may be:

• Produced to an event stream and updated as changes occur
• Composed into a set of Parquet files, updated daily to a cloud storage bucket
• Remain stored behind a REST API, provided to clients on demand

Figure 2-3 illustrates the composition of a multimodal data product. The data prod‐
uct code extracts the data from the operational database and composes it into a form
of internal intermediate state. A secondary executable then converts the intermediate
state into a format suitable for the output modes, such as events for an event stream
or batch files for cloud storage.

Figure 2-3. A multimodal data product, with data available through three different
ports: a REST API, an event stream, and a cloud storage bucket

Batch-computed data products do have a place in a data mesh. After all, data ware‐
housing and data lake architectures rely extensively on periodically computed batches
of data to power their periodically executed jobs. The vast majority of analytical
workloads have been built extensively on batch-computed data sources.

Principle 2: Data as a Product | 31

Most operational systems cannot rely on the ponderous frequency of batch-
computed jobs, however. No one wants to wait 30 minutes for a batch of data to pro‐
cess to find out if their flight was actually booked. Event streams provide a substrate
for rapidly changing data in motion and enable far quicker and more responsive
applications, be they analytical or operational. They also provide the flexibility to
aggregate the data into big batch files to power classic data analytics cases. We’ll inves‐
tigate these use cases more in Chapter 9. While batch data products will remain useful
for batch-based analytical workloads, event streams form the overarching medium to
power both event-driven operational and analytical workloads and support fast and
effective data communication between domains.

Accessing a Data Product Via Push or Pull
There are two main ways in which users can access a data product: via a pull or a
push mechanism. The pull mechanism is more familiar to most people—this is the
type provided by a REST API, SQL, graph query language, or files stored in cloud
storage. Data is stored behind some form of query-handling interface and, eventually,
a consumer client will issue a query to pull that data into its domain.

Pull queries return all of the data that matches the query clause, which can be a signif‐
icant amount. The consumer has to wait until the query completes and the data is
returned before it can begin processing the data. Upon completion, the resultant
batch of data needs to be written to its own output location, which, depending on the
final record count, can also take some time. Pull-based data APIs lead to periodic
querying and processing of large amounts of data in parallel: high throughput, but
also high latency. The main issue with pull queries is that the only way you’ll know if
the updated data is available is to issue a query—and this can be quite expensive if
you need to poll it every second.

Ask your database administrator how comfortable they would be if
you issued a tight-polling loop on a relational database (SQL API)
to query it for new records. They’ll probably feel uncomfortable
once you start talking about polling frequencies in the single sec‐
ond count and suggest (or require) that you query less often.

In contrast, the push mechanism, as provided by the event stream, notifies down‐
stream services when new data is available. A service need only subscribe to the event
stream to be registered as a listener and be notified shortly after a new event is avail‐
able for consumption. Consumers process events at their own rate, ideally keeping up
with the rate of inflow to avoid falling behind.

Event streams tend to use very little overhead for managing consumer subscriptions,
especially in contrast with pull APIs. There is low latency between when an event
occurs and when the registered consumers are notified that there is an event for

32 | Chapter 2: Data Mesh

processing. And, if you want to serve both operational and analytical use cases, you’re
going to need data products with real-time performance. Pull-based query APIs are
simply not well-suited for providing real-time access to up-to-date data product
changes.

The reason that pull and push mechanisms matter is that like begets like. The more
data products you serve via pull APIs, the more data products you’ll have with pull
APIs. The more data you serve with push-based event streams, the more data prod‐
ucts you’ll have using push-based event streams. The choices that you make in regard
to how others can access your data product ripple across the organization, affecting
more than just your immediate consumers.

In the next section, we’ll take a look at the most common types of data products that
you can build.

The Three Data Product Alignment Types
Data products can be aligned to the source domain, to an aggregate, or to the con‐
sumer domain. Let’s take a look at each of them now.

Source-aligned data products
Source-aligned data products are aligned to the operational system of the source
domain and are ideal candidates for powering both event-driven operational and
analytical systems. For example, a source-aligned data product may emit sales facts
containing detailed information about the items, prices, shipping, and payment infor‐
mation, as shown in Example 2-1.

Example 2-1. The data contents of a source-aligned sales event

Value: {
 sales_id: 8675309,
 item_ids: [4625382, 4625382, 4625382, 100900],
 total_usd: 89.12,
 datetime: "2022-11-12T03:51:19Z",
 shipping_address: "123 Fake Street, Springfield"
}

Aggregate-aligned data products
Aggregate-aligned data products provide an aggregation of multiple data points
against specific business criteria—for example, an hourly aggregate of sales per store
containing a set of sales IDs and dollar amounts, including the total quantity of sales
and the total dollar amount. The data product owner is responsible for building the
aggregation, but will need to consult with the intended consumers to ensure that they

Principle 2: Data as a Product | 33

have a common understanding of the aggregate. The following shows the data con‐
tents of an aggregate-aligned daily sales event:

Value: {
 date: "2022-11-12",
 total_items_sold: 41292,
 total_items_value_usd: 1902712.22
}

Consumer-aligned data products
A consumer-aligned data product is highly customized and built to serve a specific
use case for a single domain. For example, a consumer may mix in sales aggregates,
inventory aggregates, and customer profile aggregates, enrich the data, and then pro‐
cess it through a set of complex business logic to get the data ready for further use
within its domain. The following shows the data contents of a consumer-aligned
event, composed to predict the value of a given consumer for advertisement
targeting:

Value: {
 user_id: "UUID-123456789",
 predicted_item_ids_to_advertise: [4625382, 100901],
 cost_tolerance: "high",
 conversion_probability: 0.1233,
 estimated_spend_usd: 500.00,
 ad_bid_limit_usd: 9.75
}

These three data product alignments make trade-offs between the responsibilities of
the owners and the consumers. On one end, source-aligned data products are fairly
general purpose. Constructing them is relatively easy, and consumers can use them
for a variety of purposes. However, consumers must apply their own business logic
and transformations, and perform any remodeling to generate anything more specific
to their needs.

Aggregate-aligned data products are the result of the domain owner applying busi‐
ness logic to internal domain data. While a simple version could include an aggrega‐
tion of a source-aligned domain, aggregate-aligned data products often mix in data
sourced from other data products. This is quite often in the name of usability: for
example, we enrich the sales aggregates with store location, sales representative infor‐
mation, and product categories because these are the most common use cases of the
data by our downstream consumers.

By taking the common consumer use cases and applying them to the source product,
we avoid the risk of consumers incorrectly computing their own aggregates, while at
the same time reducing the overall burden across the data product users. However,
this does require that the data product owner have sufficient resources to support the

34 | Chapter 2: Data Mesh

data product improvement requests, which may not always be possible. This brings
us back to our third type, the consumer-aligned data product.

Consumer-aligned data products are a recognition that a data product owner cannot
possibly provide every consumer with all the data it needs. In fact, one of the most
common reasons for creating a consumer-aligned data product is to mix data prod‐
ucts from several distinct domains together, where no single data product owner
could have provided it on their own. Consumer-aligned data products are highly
focused on serving the specific domain needs of the consumer, be it for just one
application or for several applications within their domain.

Consider an ecommerce shipping domain that needs sales data, payment data, inven‐
tory data, and warehouse data. Since this data crosses many domains and needs spe‐
cial business logic to correlate and remodel, the consumer creates a consumer-aligned
data product focused on meeting these needs. Figure 2-4 shows these four domains
providing source-aligned data products to the shipping domain’s consumer-aligned
data product (1).

Figure 2-4. Consumer-aligned data product created using data products from four sepa‐
rate domains

The consumer-aligned data product, if powered by event streams, provides a real-
time updated data product for products that the shipping domain can send out to
customers, powering both the shipping service and the shipping analytics service. A
second data product (2 in Figure 2-4) can be created from shipping analytics results,

Principle 2: Data as a Product | 35

aggregated to highlight key performance indicators to monitor overall shipment
domain health.

But data products are not simply for analytics. Event streams provide an optimal sol‐
ution for driving both operational and analytical use cases.

Event-Driven Data Products as Inputs for Operational Systems
Data products may be used to serve both analytical and operational use cases, but
suitability depends heavily on the modality of the data product and the latency toler‐
ance of the operational consumers. The boundary between operational and analytical
use cases gets blurrier the closer you get to real-time data. Fortunately for us, it
doesn’t really matter too much how the workload is defined—the important thing is
that the performance objectives of the consumer are satisfied by the limitations of the
data product’s service level.

Data mesh was originally conceived for the purposes of serving
analytical data products between domains. But data products com‐
posed in real time and provided by event streams can satisfy both
operational and analytical needs. Consider powering of operational
systems to be an “off-label” application of data mesh, much like
how some pharmaceutical drugs are used off-label for purposes
other than what they were originally created for.

Event streams provide the optimum solution for this dual use case and we will
explore them further in Chapter 3. A payments microservice can obtain a sales event
from an event stream in milliseconds, whereas obtaining the data from a data product
that writes hourly batches to cloud storage is simply far too slow. The closer to real
time the data, the more suitable it is for operational use cases.

Promoting event-stream data products as a means of powering operational systems
makes for a strong selling point for building internal organizational support for data
mesh. Nonanalytical teams may be skeptical of the need to take on new responsibili‐
ties for formulating data products when they get nothing themselves out of the deal.
However, promoting data product access through real-time event streams can serve
as a strong incentive, as event streams also unlock operational event-driven services,
not just analytics, all for the price of one data product.

Next, let’s take a look at the role that governance plays in a data mesh.

36 | Chapter 2: Data Mesh

Principle 3: Federated Governance
Creating data products requires that domain owners have a degree of autonomy in
modeling, building, and delivering data to their consumers. However, by empowering
them with autonomy and independence, you run the risk of a significant technologi‐
cal sprawl across data product implementations, making it more difficult for consum‐
ers to use the data products for their own ends. Federated governance focuses on
finding an equilibrium between the needs of the consumers, the autonomy of the data
product owners, the business compliance and security requirements, and global data
product requirements.

Data product creators benefit from the freedom to compose it as they see fit, while
data product consumers benefit from a simple and easy data access interface that
matches other existing data products. Compliance and security requirements may
prohibit autonomy and ease of consumption, while protecting the business from
severe financial and legal repercussions. Federated governance is a balancing act.
Finding the middle is no easy feat and requires participation and input from a whole
host of people from across your organization.

Federated governance can be roughly broken down into two main tasks. The first is
establishing cross-organization policies, including data product standards and data
handling requirements, that apply to all users of the data mesh. The second is provid‐
ing guidance on creating and using data products with self-service tools to make it
easy to participate in the data mesh.

The governance team is a purpose-built team composed of individuals representing a
cross-section of domains, technical requirements, and business use cases. Their job is
not to dictate to others what can and cannot be done, but rather to discuss the prob‐
lems inherent with a multidomain problem space, explore solutions, and try to find
common ground for reducing the scope of potential sprawl.

For example, a federated governance body may decide that the organization should
use PostgreSQL databases over MySQL databases in the implementation of data prod‐
ucts—not because one is necessarily superior to the other, but because the organiza‐
tion has the technical expertise, familiarity, monitoring, and on-call playbooks to
support one but not the other. Similarly, an organization may choose to use one pro‐
gramming language over another or one cloud service provider over another. The
governance team seeks to reduce technological sprawl by selecting, supporting, and
promoting just a few proven technologies for creating data products.

Principle 3: Federated Governance | 37

Building a data mesh with a wide range of technologies, languages,
conventions, and APIs makes it difficult to use and support. A
well-built data mesh is quite similar to a well-built microservice
platform. The fewer technology choices you support, the easier it is
to build support tooling and apply access controls, security meas‐
ures, and data management policies. Finding the balance point
between which technologies you’ll provide first-class support for,
and those which you will not, is one of most contentious points of
federated governance. It requires a healthy and fact-based debate to
be successful.

Let’s dig into a few specific areas of concern for federated governance. Chapter 4 will
cover each of these areas in much greater detail.

Specifying Data Product Language, Framework, and API Support
Which data product technologies and formats will you support? The previous
MySQL/PostgreSQL example touched on this issue, but it goes beyond just databases.
The most common technological choice of a company is usually which programming
languages to support. It’s only natural for a software developer to want to branch out
and try new languages, frameworks, and technologies when it comes to implement‐
ing applications. But this comes at the incremental expense of requiring additional
long-term support, such as monitoring integration, testing frameworks, and domain
expertise. The types of data products, the data format, and the schema technologies
used are just a few examples of the standards under the purview of federated gover‐
nance.

Establishing Data Product Life Cycle Requirements
A data product has a life cycle just like any other product. Federated governance is
responsible for outlining precisely how a data product owner goes about publishing it
to the data mesh. Specifying the data product metadata to collect, determining quality
and SLA classifications, and establishing the publishing process are only a few exam‐
ples of the necessary life cycle requirements. A data product, much like a software
application, will be created, updated, and eventually deprecated and deleted. It is
important to streamline this process and ensure that every participant in the data
mesh is aligned and shares the same expectations.

Establishing Data Handling and Infosec Policies
Data handling policies are varied and heavily influenced by regional laws, such as
General Data Protection Regulation (GDPR) and the California Consumer Privacy
Act (CCPA). A person’s right to be forgotten by having all personally identifiable
information (PII) scrubbed out or deleted from associated data is an important tenet

38 | Chapter 2: Data Mesh

for building and serving data products. Precisely how your organization achieves this
is up to you, but include options such as crypto-shredding and default anonymiza‐
tion. We’ll cover these subjects in more detail in Chapter 4.

Identifying and Standardizing Cross-Domain Polysemes
Domains often have different yet similar definitions for common business entities.
Identifying and standardizing these across domains is an important step to ensuring
interoperability of data products. One common example is the user entity: one
domain may use an auto-incrementing long type as the unique identifier, whereas
another may use a string UUID. Standardizing polysemes to use a common identi‐
fier is the responsibility of the federated governance team and makes using data prod‐
ucts much simpler and less prone to user error.

Formalizing Self-Service Platform Requirements
The self-service tools that underpin the day-to-day functionality of data mesh are
guided by the federated requirements. Relying on common tooling reduces the barri‐
ers for creating, publishing, discovering, and using data products. Federated gover‐
nance is best suited for gathering requirements for the broad cross-cutting concerns
such as monitoring, logging, access controls, compute services, and storage services.
These requirements are codified and provided to the self-service platform team to
build out the necessary tooling to support data mesh.

Now let’s briefly take a look at the fourth and final data mesh principle before wrap‐
ping up this chapter.

Principle 4: Self-Service Platform
Self-service is the final principle underpinning data mesh. Precisely what it consti‐
tutes will vary from organization to organization, so instead of telling you what it
should consist of, I think it’s more helpful to illustrate the service needs of the partici‐
pants. Their needs will help inform your own decisions about how to build your self-
service platform. The three main user roles include:

Prospective consumers
Consumers must be able to find the data products they need, subscribe as con‐
sumers, and extract/acquire the data into their own domains. They may in turn
create their own data products from the data.

Data product creators
These folks want to use the self-service platform for support in creating their data
product. This includes self-service compute, storage, and processing, as well as a
streamlined way to integrate it with their codebase, test it, and deploy it.

Principle 4: Self-Service Platform | 39

Data product owners
Owners must be able to manage their data products long term. This includes
notifying existing consumers of upcoming changes, handling feature requests,
issuing guidance on breaking changes, managing alerts and on-call rotations, and
managing the data product life cycle, such as deprecation and deletion.

The stricter your federated governance requirements around the
modality of your data products, the easier it is to build the self-
service platform. A self-service platform that enables just one or
two data product formats with very opinionated processing frame‐
works is much easier to support than myriad options. This is a
hard-learned lesson from the microservices world, and it’s one that
we would do well to apply to data mesh.

At a minimum, the precise makeup of the self-service will vary depending on your
priorities, existing tools and frameworks, and culture. There is no one-size-fits-all
solution, but there are a few things that we can take a closer look at to help you figure
out what this could look like for you.

Discovering Data Products and Dependencies
Everyone participating in the data mesh needs to be able to easily browse, search, and
find available data products. This includes, but is not limited to, the data product
location, API, metadata, ownership, documentation, data samples, and links to exist‐
ing applications that are already using it. A data catalog is a common tool for central‐
ized lookup of available data products, with each data product owner responsible for
updating and maintaining their records (more on this subject in Chapter 5).

Prospective consumers can make informed decisions about the suitability of the data
product for solving their business needs. While a simple alphabetical list may be suffi‐
cient for discovery in a small data mesh, it quickly becomes untenable as your data
product count increases. Search and filtering functionality become key, especially for
identifying relevant data products by more complex querying of schemas and docu‐
mentation.

You can make data product owners readily reachable by integrating email or instant
messaging into the platform. With just a click of a button your prospective consumer
could be forwarded to the relevant instant messaging channel and put into direct
contact with the data product owner or on-call support specialist. Highly popular
data products could even feature a collection of frequently asked questions as part of
their data catalog metadata, sourced from these very conversations.

Finally, lineage tracking of data products’ producers and consumers remains an
important element of dependency tracking. A well-built self-service platform will

40 | Chapter 2: Data Mesh

provide not only current lineage of the entire data mesh but also snapshots of histori‐
cal lineages. A data product owner can use lineage tracking to identify all consumers
of their data product, communicating with them to identify any unmet or common
needs or to inform them about upcoming changes to the data product. Data product
consumers can similarly use lineage to identify where their data is coming from, to
further validate their data product selections, or to exclude any upstream data prod‐
ucts due to potential infosec or legal issues.

Data Product Management Controls
The self-service platform needs to standardize the management of the data product
life cycle, as we outlined in “Establishing Data Product Life Cycle Requirements” on
page 38. Creating data products requires not only the acquisition of compute and
storage resources but also requisitioning a core repository, a deployment pipeline,
monitoring integrations, and collection and display of metadata. Deprecating and
removing data products requires notifying consumers, communicating expectations
and migration strategies, and following established policies for data deletion and
removal. Creating controls to manage data products requires integration with each of
these services as well as ensuring compatibility among the data products published to
the data mesh.

This is all to say that the data product management controls are difficult and expen‐
sive to do well across polyglot data product implementations. This also extends into
the world of data policy application, such as legally required regulatory compliance. If
you need to ensure your data products are free of PII, it’s a lot easier to scan a set of
data products created with a single data storage mode than it is to scan across a wide
swath of relational, NoSQL, graph, time series, and event-stream data stores. The
more types and languages you support, the more extensive your self-service tooling
needs to be to ensure the correct application of data management policies across your
data products.

The more options a self-service platform provides to data product
owners, the more work the self-service platform team needs to do
to ensure that the options fall in line with the governance policies,
data security policies, and regulatory policies. For some organiza‐
tions, this may simply mean that they’ll leave it up to the data prod‐
uct owners to figure out, because the impact of a policy failure is
low and they simply don’t care too much. But many organizations
do not have this luxury, and a policy breach can be an extremely
costly and damaging scenario that must be avoided. Supporting a
wide variety of data products increases the risk of a policy breach,
while supporting only a few reduces the risk.

Principle 4: Self-Service Platform | 41

Data Product Access Controls
Self-service access control to data products is another area of concern. Registering for
data product access should be easy for a consumer to do. A distinct set of credentials
for each consumer enables permissions and access control at a per-consumer level,
identification of dependencies, and, when combined with producer permissions, the
ability to create a full dependency graph of who has access to what data. It’s important
to note that this data is obtained directly from real operational access controls—not
as part of an opt-in solution that is almost always incomplete.

Access restrictions due to sensitive information should go through a more rigorous
process of approval, in line with federated governance requirements. This allows for a
paper trail for sensitive information access with the ability for infosec to audit con‐
sumer’s adherence to data handling policies.

Compute and Storage Resources for Building and Using Data Products
Composing a data product can require additional compute and data storage resources
beyond what is already available to the source domain. For example, an operational
system may create and record a sale inside its database but be largely incapable of
providing an aggregate-aligned data product of daily sales, split by salesperson,
department, and promotional offers. Instead of tasking the domain owner with
extending and supporting their own tooling to meet the data product composition
needs, we provide them with a set of tools and options through a shared self-service
platform.

Now, this part of the platform is highly implementation-dependent and will vary sig‐
nificantly depending on the tools and technologies you’re already using. Since we’re
looking at building an event-driven data mesh, we need the ability to easily requisi‐
tion an event stream (or topic) to write our events to. I’m a longtime user and contrib‐
utor to Apache Kafka, which you may want to take a few minutes to familiarize
yourself with if you haven’t heard of it before. I suggest Confluent’s “What is Kafka?”
to get you started.

There are a whole host of controls that users of the self-service data mesh may need
access to. Users may need to specify the topic ownership via access controls, duration
of record retention (infinite, for the majority of cases), and permission restrictions for
who can and cannot read the data. Users must also be able to associate the Kafka
topic with the data product metadata, so that it is easily discoverable and has well-
documented schema and documentation.

Users also need to be able to requisition data processing resources so they can popu‐
late their data products. While there are many possible options for compute resources
that can compose a data product, we may want to narrow it down to just a handful of

42 | Chapter 2: Data Mesh

https://oreil.ly/2QA11
https://oreil.ly/qUJ8e

technologies. As the single member of my governance team, I may decide to select the
following technologies to help me build my data mesh:

Stream processing
A native event-stream processor such as Kafka Streams or Apache Flink. Both
provide a framework for handling data products provided through Kafka topics,
including rich functionality such as stream-table and table-table joins.

Batch processing
A big data processing framework that can handle large amounts of batch data,
with some bonus points for also being able to handle some streaming use cases
(e.g., Apache Spark, Apache Flink). These frameworks can make it easier to use
data products provided by periodically updated batch data sets or those served
via a mixture of batch data and event streams.

Stream↔batch data processing
A tool to translate data from streams to batch data or vice versa. Kafka Connect is
a prime example of this technology, where you can use a variety of connectors to
put batch data into a Kafka topic for streaming use or take data from an event
stream and write it into a batch data store.

Regardless of the sorts of processing framework options you choose to support, your
self-service team will also be on the hook for maintaining and supporting them. We’ll
cover self-service capabilities in more detail in Chapter 5.

But your options are not limited to simply what you can support in-house. Cloud
computing and SaaS can provide you with the building blocks you need to create
your data mesh.

Providing Self-Service Through SaaS
SaaS solutions are changing the way that end users relate to their compute, storage,
and processing resources. For a data mesh, they ideally provide easy-to-use services
right out of the box for accessing data, transforming it in some way, and writing it
back to a data storage location. Here are a few examples:

Confluent with Apache Kafka
Offers Apache Kafka and supportive tooling as a service, including Kafka Con‐
nect and SQL-based stream processing. "Apache Kafka is an open-source dis‐
tributed event streaming platform used by thousands of companies for high-
performance data pipelines, streaming analytics, data integration, and mission-
critical applications.”

StarTree with Apache Pinot
A huge supporter of Dehghani’s Data Mesh paradigm, StarTree offers Apache
Pinot and supportive tooling as a service. Pinot is described as “a realtime

Principle 4: Self-Service Platform | 43

https://oreil.ly/2QA11
https://oreil.ly/SdrX9
https://oreil.ly/SdrX9

distributed OLAP datastore, which is used to deliver scalable real-time analytics
with low latency.”

Databricks with Apache Spark
Offers Apache Spark and supportive tooling as a service to streamline your use of
Spark. "Apache Spark is a multilanguage engine for executing data engineering,
data science, and machine learning on single-node machines or clusters.”

One important part of each of these SaaS offerings is that they make it easy to acquire
processing and storage resources for data, though only within the confines of their
own services. They provide you with off-the-shelf building blocks to compose your
own data mesh solution based on your teams’ needs and capabilities. While you are
certainly free to spin up and manage your own services, modern computing has
pivoted strongly in favor of cloud-based services.

Unless you already have a robust compute, disk, and stream-processing platform
available to build your data mesh with, you would do well to rely on SaaS solutions to
kick-start your implementation. You’ll be able to start getting immediate value out of
your data products, and you can start working on figuring out what works well and
what you’ll need to change. Trying out a SaaS solution for a few months and finding it
doesn’t suit your needs is much better than building out the entire in-house platform
first and then discovering that it doesn’t meet your needs.

Keep your expenses and overhead low when you’re starting out. You can always
worry about optimizing for costs later, when you’ve found which technologies work
best for your use cases. You’ll likely need to use several technologies, especially if
you’re looking to support multiple data product modes. But at the very least, you’re
going to need a robust and reliable event broker, such as Apache Kafka, to serve your
event-driven data products.

Summary
Data mesh covers a lot of ground. On one hand, it’s a rigorous renegotiation of
responsibilities and social norms in an organization. Domains and their teams
become responsible for creating and publishing their own first-class data products,
substantially reducing the scope of duties of the ubiquitous centralized data team. On
the other hand, it’s a streamlining of technical support for the definition, creation,
modeling, and usage of data products via self-service capabilities.

Much like a parliament, a federated governance team, representing members, applica‐
tions, products, and business use cases from across the organization, gathers to dis‐
cuss, argue, fight, and legislate. Each member ensures the representation of their
constituents with the goal of finding a balance between total domain autonomy and
heavy-handed, top-down edicts.

44 | Chapter 2: Data Mesh

https://oreil.ly/pRTlL

Discovering the common ground will yield a landscape of desired languages, frame‐
works, tools, and technologies. The self-service platform team will need to focus their
efforts toward creating a well-supported toolbox supporting common use cases and
workflows. Meanwhile, the data product owners can start putting the platform tools
to work by building and sharing their data products.

Figure 2-5 shows an overview of a basic event-driven data mesh. Domain owners can
either write their data natively (1) or by using connectors (2) to the event streams (3)
stored in the event broker. Domain owners may publish their data products and asso‐
ciated metadata to the discovery endpoint (4), allowing others to discover and use the
data products for themselves.

Figure 2-5. A birds'-eye view of an event-driven data mesh

Both operational (5) and analytical (6) services can natively source their data from
the event-driven data products, selecting from source-aligned, aggregate-aligned, and
consumer-aligned products as they see fit. Existing services that don’t natively sup‐
port event streaming can rely again on the self-service connectors (7) to consume,
remodel, and insert data as required.

Finally, an organization-spanning governance (8) and self-service platform (9) under‐
pin the common use cases of every data product. Governance focuses on security

Summary | 45

policies, roles, ownership, access controls, and lineage, while the self-service platform
focuses on making it easy to find, use, and manage data products within the require‐
ments of the organization.

Event streams play a pivotal role in data mesh because they provide a single unified
mechanism of providing data for both real-time and batch processes, be they opera‐
tional, analytical, or somewhere in between. Unlike periodically computed batch data
sets, event streams can be used not only by analytical users, but by operational appli‐
cations too. This choice greatly reduces the quantity of similar-yet-different data sets
that can regularly cause problems and provides you with a common baseline for
building all of your data-powered applications.

In the next chapter, we’ll take a closer look at how to use event streams to build data
products, including some fundamental event-stream properties, the relationship
between the stream and the consumer, historical data, and composing state.

46 | Chapter 2: Data Mesh

CHAPTER 3

Event Streams for Data Mesh

An event is published to an event stream for use by any interested subscribers. But
what are the properties of an event stream and are they any different than a queue?
Or a messaging system? What makes up an event, and how do we ensure we correctly
compose reusable event streams? In this chapter, we’ll take a good look at events and
event streams, including requirements, differentiation from other similar architec‐
tures, and some of the modes of use that they unlock for our consumer services.

First, let’s start with the event. An event is a well-defined record of an occurrence con‐
taining all of the information about what happened. Events are commonly based on
business entities or on relationships between entities. For a simple automotive exam‐
ple, we could expect to see entity events detailing information about items, orders,
and coupons. In terms of relationships between entities, you may expect to see events
such as item_added_to_cart and coupon_applied_to_order.

We’ll get more into precisely what events are, how they’re structured, and the sup‐
porting technologies we’ll need to use in a moment. First, it’s important to under‐
stand a few key concepts about the role that event streams play in an event-driven
data mesh.

Figure 3-1 shows an extension of the automotive domain bounded context from
Figure 2-1. The internal implementation uses a relational database, with tables repre‐
senting the components/entities required to compose an automobile. The anti-
corruption layer provides the REST API for operational use cases, such as requesting
the assembly of a new automobile and modifications to existing inventory.

Additionally, the domain publishes two data products to event streams—one based
on items and the other based on orders. Specialized business logic extracts and iso‐
lates the internal model from the data published to the event stream. Whatever you

47

choose to expose via your anti-corruption layer becomes part of the public API, so be
careful about what you add and how you add it.

Figure 3-1. An ecommerce domain including an event-stream API for data products and
a REST API for operational concerns

Note that the internal implementation need not be event-driven to extract or use
event-driven data products. Chapter 8 covers integrating nonevent-driven systems
with event-driven ones and the options you have for bridging the gap. You may also
note that we’re incorporating traditional request-response options alongside event
streams. This is a very common pattern for systems of record that are not event-
driven but need to provide well-formed data products for external consumers. We
simply maintain the existing APIs and add on event-driven data products based on
consumer needs and the existing data requirements.

Figure 3-2 shows an abstracted implementation of an event-driven automotive
domain, complete with domain events specific to the internal operational of the
system.

You may choose to expose certain domain events to the outside world, but you must
be careful about about which ones you select to expose. We’ll cover event design and

48 | Chapter 3: Event Streams for Data Mesh

selecting which events to expose (and which to conceal) more in Chapter 7. At this
stage, just be aware that you don’t need an event-driven system to produce event
streams and that not all event types are suitable for production as a data product.

Figure 3-2. Data products are purpose-built for external usage and are meant to be cou‐
pled on. Domain events may not be suitable for data product purposes

For now, let’s now take a closer look at events, records, and messages, as well as the
relationship between an event stream and an event broker.

Events, Messages, and Records
An event is an occurrence in an application recorded into a record (the container
holding the event data) and published to an event stream hosted by an event broker.

I generally avoid using the term message when discussing event streams and event-
driven architectures because it’s a term that has adopted different meanings to differ‐
ent people over time. In common parlance, we send a message to a person or to a
specific private group—an intended recipient and not a posting (like a message
board) for public general-purpose use. In contrast, data products are meant to be

Events, Messages, and Records | 49

broadcast and shared widely, with the intention of letting others subscribe to and use
them however they choose (much like a public post on channel-based social media).
For clarity’s sake, I’ll use event or record instead of message for the remaining chapters
of this book.

Each logical record is made up of three components:

The key
The key is optional, but extremely useful. It contains a unique ID associated with
the contents of the event, just like the primary key of a relational table. Data is
almost always partitioned according to the key, such that all data of the same key
goes to the same partition and consumer instance, allowing for vast amounts of
data to be processed in parallel.

The value
Contains the bulk of the data relating to the event. If the key can be thought of as
the primary key of a row in a database table, then the value can be thought of as
all of its column values. Every property and field recorded during the creation of
the event should go in the value component. Values should always have a well-
defined schema, whereas a key can contain a schema or a primitive.

The header (also known as “record properties”)
Contains metadata about the event itself, such as timestamps, tracking IDs, and
other custom user-defined fields. Both the presence of a header and its format
depend on what technologies you’re using to create and communicate events.
Headers are commonly composed of a simple key-value map appended to the
key-value pair.

Figure 3-3 shows the structure of an event recording a sale of six items (in an array)
purchased by user-id-6384291. The header contains both the timestamp that shows
when the event was created as well as a custom_tracking_id specified by the event
producer.

Figure 3-3. A sales event showing the purchase of six items

50 | Chapter 3: Event Streams for Data Mesh

One final thing to note: events are immutable. You can never modify an event once it
is published to the event stream. Instead, you create and publish a new event contain‐
ing the necessary correction or update. Immutability is essential for ensuring that
every consumer has access to precisely the same data set and can reproduce the same
results of a computation at a later point in time.

What’s an Event Stream? What Is It Not?
The business facts are best presented as business Domain Events, can be stored and
served as distributed logs of time-stamped events for any authorized consumer to
access.

—Zhamak Dehghani

Event streams are hosted on an event broker, with perhaps the most common option
being Apache Kafka (a personal favorite of your author). The event broker, such as in
the case of Kafka, provides a structure known as a topic that we can write our events
to. It also handles everything from data replication and rebalancing to client connec‐
tions and access controls. Publishers write events to the event stream hosted in the
broker, while consumers subscribe to event streams and receive the events.

In its most basic form, an event stream is a time-stamped sequence of business facts
pertaining to a domain. Events form the basis for communicating important business
data between domains in a reliable and repeatable way, leading us to the following
requirements:

Immutable
Events cannot be modified once written to the log. Only new events may be
added.

Durable and replayable
Events are durable, such that they can be consumed immediately or in the future.
Events can be replayed by new and existing consumers alike, provided the event
broker has sufficient storage to host the historical data.

Scalability and indefinite storage
The event broker provides high availability, scalability, and indefinite retention,
allowing the event stream to become the single source of truth for specific
domain data.

Event streams rely on the durable append-only log, an immutable data structure that
only permits appending of new data. Once written, data cannot be altered. The log is
durable, such that consumers can consume the data as many times as they need.
Events are not deleted once they are read, nor are they simply discarded in the case of
an absence of consumers.

What’s an Event Stream? What Is It Not? | 51

https://oreil.ly/P-SQc

Figure 3-4 shows a durable append-only log with two partitions. New data is
appended to the end of one of the two partitions. Each individual logical consumer is
represented by a consumer group and is responsible for consuming the events and
incrementing the offset pointer pertaining to its group. With sufficient processing
power, a logical consumer can remain up to date with real-time data flows, while a
new consumer beginning at an earlier offset will need to process all of the events to
catch up to current time.

Figure 3-4. A durable append-only log with two partitions and two individual consumer
groups

Unfortunately, due to a long and often messy history, event brokering has been often
confused with ephemeral messaging and queuing. Each of these three options is differ‐
ent, and neither ephemeral message-passing nor queues are suitable for building an
event-driven data mesh. Let’s take a quick look at why.

Ephemeral Message-Passing
A channel is an ephemeral substrate for communicating a message between one pro‐
ducer and one or more subscribers. Messages are not stored for any significant length
of time, nor are they written to durable storage by the broker. In the case of a system
failure or a lack of subscribers on the channel, the messages are simply discarded,
providing at-most-once delivery. NATS.io is an example of this form of implementa‐
tion.

Figure 3-5 shows a single producer sending messages to the ephemeral channel
within the event broker. The ephemeral messages are then passed on to the currently
subscribed consumers. In this figure, Consumer 0 obtains messages 7 and 8, but Con
sumer 1 does not because it is newly subscribed and has no access to historical data.
Instead, Consumer 1 will receive only message 9 and any subsequent messages.

52 | Chapter 3: Event Streams for Data Mesh

https://nats.io

Figure 3-5. An ephemeral message-passing broker forwarding messages

Ephemeral communication lend itself well to simplicity, low overhead (no disk!), and
ease of use. It facilitates a message-passing architecture, though the lack of reliability
guarantees may limit its usefulness. It may or may not be highly available, depending
on your deployment.

Message-passing architectures facilitate point-to-point communication between sys‐
tems that don’t necessarily need at-least-once delivery and can tolerate some data
loss. As an example, the online dating application Tinder uses NATS to notify users of
updates. If the message is not received, not a big deal—a missed push notification to
the user only has a minor (though negative) effect on the user experience.

Ephemeral message-passing brokers lack the necessary indefinite retention, durabil‐
ity, and replayability of events that we need to build event-driven data products.
Message-passing architectures are useful for event-driven communication between
systems for current operational purposes but are completely unsuited for providing
the means to communicate data products.

Queuing
A queue is a durable sequence of stored events or messages awaiting processing. One
of the more common use cases is that of a work queue, where the producer publishes
“work to do” events. A subscriber dequeues an event, processes it, and signals to the
queue broker that the work is complete, whereby the broker then deletes the event.
Figure 3-6 shows two subscribers consuming events from a queue. Note that the
queue predominantly contains events currently being processed and those yet to be
processed. Already processed events are deleted after they have been consumed and
marked as processed by the consumer.

Processing order may or may not be guaranteed in a queue. While you can enforce
processing order by allowing only a single consumer instance per partition (or
queue), this can significantly limit throughput. It is fairly common to have multiple
subscribers that asynchronously (and competitively) select, process, and acknowledge
events on a first-come, first-served basis. Additionally, latency and network partition‐
ing may result in competitive subscribers processing the same events multiple times.

What’s an Event Stream? What Is It Not? | 53

https://oreil.ly/rTZrp
https://oreil.ly/rTZrp
https://oreil.ly/JQgyB

Figure 3-6. A queue with two subscribers each processing a subset of events

Historically, queue brokers have required a maximum retention time for events
stored in the queue. If events are not processed within a certain time frame, they are
marked as dead, are no longer delivered to the subscribers, and are subsequently
deleted. Similar to ephemeral communications, time-based retention and non-
replayable data has influenced the (incorrect) idea that brokers cannot be used to
retain data indefinitely.

Event-driven data products need replayability and each consumer must get all of the
events in precisely the same order that they were published.

Modern queue brokers tend to support both replayability and
infinite retention of events via the adoption of the durable append-
only log, which we will cover more in the next section. For exam‐
ple, both Solace and RabbitMQ Streams allow for individual
consumers to replay queue events. However, these systems struggle
to support the strict ordering semantics, indefinite replayability,
and scalability requirements of a modern data mesh.

Queues are best used at the individual application level to act as a buffer, either for
input events or for interprocess communications. They are very useful at ensuring
that each event is processed by only one consumer, but are not suitable as a conduit
for communicating complete data sets as event-driven data products.

In the next section, we’ll take a look at how consumers can use events provided by the
event stream.

54 | Chapter 3: Event Streams for Data Mesh

https://oreil.ly/Tuphg
https://oreil.ly/40BK5

Consuming and Using Event-Driven Data Products
Event streams enable event-driven business logic. Upon consuming the event, the
consumer application can update its state, execute logic, contact other systems, and
produce its own events, just to name a few possibilities. Consumers subscribing to
more than one event stream execute business logic specific to that stream, integrating
the data into its application space.

State events form a critical component for composing the majority of event-driven
data products. Let’s take a look at these more closely.

State Events and Event-Carried State Transfer
A state event contains the entire public state of a specific business entity at the time the
event was created. Think of a state event like a row in a database table—it contains all
of the data relating to that entity that you, as the data product owner, would want to
expose to the outside world. It does not contain any state that is private to the source
domain.

Any changes to the row would simply result in a new event with a full copy of the
now-updated data, including everything that hasn’t changed, appended to an immut‐
able event stream. This model is quite powerful, and it forms the basis of the event-
driven data mesh through a pattern known as event-carried state transfer (ECST).

As the name suggests, events carry state about the entity and permit the transfer of
asynchronous, eventually consistent state to the consumers of the data. Each con‐
sumer can re-create the state through a process known as materialization (see the
next section), where a read-only model of the state can be re-created and processed
by any consumer who needs it.

Your event definitions can change and evolve over time, as we’ll discuss more in
Chapter 6. Upon adding a new field to an event, the data product owner will need to
decide whether to republish updated state events containing the new field or t include
it only for new events going forward. In a relational database table, this would be akin
to adding a new column and then running a migration job to populate that column
for every single row in the table.

Chapter 7 covers both state and action event types in much more detail, including a
discussion of the variations of each, trade-offs, and when each are best used. In the
meantime, let’s stick with the state model for now, as it forms the basis of the majority
of event-driven data mesh communications.

Consuming and Using Event-Driven Data Products | 55

Materializing Events
Materialization is the process of consuming an event and merging it into your own
local data store. If a record with the same primary key already exists in that store, it is
usually simply overwritten, though you may choose to implement more complex
merging logic if you choose.

In practice, consumers don’t usually need to store the entire event contents, but only
the subset of data relevant to its domain. This substantially reduces the amount of
data stored and processed, and helps keep the footprint of the consumer service
small.

Figure 3-7 shows a consumer materializing the item event stream into its own state
store. The consumer has decided to keep only the most recent record and to discard
the older values for a given item. In this example, item key = 123 has been updated
by the change of type from hat to helmet, as represented by the event at offset 2.
Upon consumption, the consumer commonly evicts the previous materialized value
for that key (offset 0) by overwriting the data in the database with the newest values.
In some cases, you may want to keep a list of previous entries for a given key, a sub‐
ject we’ll cover more in “Slowly Changing Dimensions” on page 193.

Figure 3-7. A consumer materializing the item event stream into its local database

Thanks to materialization, consumers can also execute logic based on changes from
one event to another, since they retain the “current” state in memory and obtain the
“new” state from the event stream. They can infer changes to any field within the
event, which provides them with exceptional flexibility in how they use and process
the event data.

Up next: materialization’s fancier and often more complex cousin, aggregation.

56 | Chapter 3: Event Streams for Data Mesh

Aggregating Events
An aggregation is an entity composed by merging multiple state events together. An
aggregation could be as simple as a running sum but could also entail using multiple
event types to build a more complex result. Figure 3-8 shows two instances of a single
consumer application processing two partitions from a single event stream.

Figure 3-8. Aggregating state local to each consumer instance. The key is represented by
the shape of the event.

Consumer instance 0 has processed all of the events in its assigned partition 0 and is
awaiting new incoming events. The database within its boundary shows the current
SUM aggregations that it has computed. Meanwhile, Consumer instance 1 is still pro‐
cessing historical data from its assigned partition 1 and is catching up to the current
head event.

One of the major advantages of event-driven data products is that they make it very
easy for you, as a consumer, to build your own aggregates. Instead of relying on the
data product owner to build your aggregates for you, you can simply ingest the data
into your own domain and aggregate it according to your own needs. If your derived
data product is “just” an aggregation, you could consider republishing it to the data
mesh as an aggregate-aligned data product (recall “The Three Data Product Align‐
ment Types” on page 33). Alternatively, you may choose to make a consumer-aligned

Consuming and Using Event-Driven Data Products | 57

data product if you end up building an aggregation with more complex business logic
that joins and mixes multiple input streams.

While this strategy does require extra work on your part, it also provides you with
substantial operational freedom: you can simply change your computation and replay
the event stream to rebuild the results instead of relying on the upstream data prod‐
uct owner to redefine and re-create the aggregate for you.

However, building your own aggregates brings the risk that a peer in another domain
may be computing the same aggregate, with logic that doesn’t match yours. As your
data mesh evolves, expect to see aggregations in consumer domains moved upstream
to become formal aggregate data products, reducing the risk of similar-yet-different
and duplicate aggregates.

Operations, Analytics, and Limited Resources
Renegotiating team responsibilities is part of implementing a data mesh. But one of
the risks is that this renegotiation can become untenable for those holding new
responsibilities, especially if they lack sufficient resources. For example, a very popu‐
lar source domain may find itself responsible for creating a large number of different
kinds of data products but be unable to dedicate sufficient resources to the efforts.

The reality is that we live in a world with multiple competing requirements. While
data mesh can prescribe clean and neat boundaries about who should be responsible
for creating, building, and maintaining a data product, the reality is often quite a bit
messier. Operational concerns tend to take precedence over creating new data prod‐
ucts unless those data products also serve operational use cases. For example, the sales
data product of “Source-aligned data products” on page 33 illustrates operational con‐
cerns—a sale has occurred, the data is published in an event, and consumers will now
react to it to fulfill it. At the same time, this data product can also be used to compute
analytical results, such as the daily sales aggregate-aligned data product in “Aggregate-
aligned data products” on page 33.

Building your own aggregates from source-aligned and other aggregate-aligned data
products is an essential escape hatch to the problem of insufficient resources. Source-
aligned data products are fairly easy to create in comparison to aggregates, and the
fact that they can be tailored to support operational use cases tends to give them a
much higher priority in the responsibility queue of the data domain owner. When
resources are tight, focus on creating general-purpose source-aligned data products
that can be used by many different teams.

There remains a popular though incorrect notion that event streams are incapable of
storing data indefinitely. And that even if you could do it, you shouldn’t, because
they’re not built for that purpose. This mentality is an extremely outdated viewpoint,
often based on the historical limitations of messaging systems, queues, and nascent

58 | Chapter 3: Event Streams for Data Mesh

event brokers. In the next section, we’ll evaluate the role of event streams from the
lens of data through time, the Kappa and Lambda architectures, and the modern way
to think about event streams.

The Kappa Architecture
The Kappa architecture posits the use of an event stream as the source of both current
and historical data. Consumers who want a complete picture of the data simply set
their offset to the beginning of the stream and consume all of the data in sequence,
eventually reaching the real-time head of the stream. This architecture is in contrast
to the Lambda architecture, which posits two separate storage layers, one for histori‐
cal data and one for near real-time data. We’ll come back to Lambda in a bit.

The Kappa architecture was first presented in 2014 by Jay Kreps, cocreator of Apache
Kafka and cofounder of Confluent. The Kappa architecture has only relatively
recently become feasible, in large part due to technical advances in modern event
brokers.

Indefinite retention provided by tiered storage is now the norm for modern event
brokers, making it easy and affordable to store as much data as you need in the
stream. Deletion of old records through compaction keeps the size of streams built
for ECST to a minimum, in line with the scope of the actual data domain. Figure 3-9
shows the end-to-end workflow in a Kappa architecture. The producer (1) writes
events as they occur into the event stream (2), and each consumer is responsible for
processing that data, including storing it in its own internal state store (3).

Figure 3-9. In the Kappa architecture, each consumer independently consumes events
and builds its own state

The Kappa Architecture | 59

https://oreil.ly/oHgGP

Of course there are some trade-offs with the Kappa architecture. For example, you
must build your service’s state by processing the entire history of events. For
extremely large data sets, particularly if there is an insufficient partition count, you
could be looking at many hours. New and existing applications that need to build or
rebuild their state will need to account for that with historical data processing time.

Consumer applications can rely on maintaining their own snapshots of materialized
state to bootstrap loading their application. In the event of an outage or a failure, a
restarted application can simply load its own personal snapshot, complete with offset
tracking history, and resume processing from precisely where it left off. The applica‐
tion remains responsible for building and loading its own snapshots, though this
functionality comes out of the box with leading stream-processing technologies such
as Apache Kafka Streams, Apache Flink, and Apache Spark.

The Kappa architecture is key to building decoupled event-driven services (and
microservices) and provides your applications’ builders with unparalleled flexibility
for application development. The business logic for consuming, transforming, stor‐
ing, and reacting to state changes is completely within the consumer’s control.
Modern cloud service providers offer easy access for requisitioning storage space,
memory, compute, network I/O, and durability to help build and use data products.

Example 3-1 shows a Kafka Streams application with two KTables, which is just a
stream materialized into a table using ECST. Next, the inventory KTable and the
sales KTable are joined using a nonwindowed INNER join to create a KTable of
denormalized and enriched item inventory. Stream-processing frameworks make it
very easy to handle event streams, build up internal state using ECST, and merge and
join data from various data products, in just a few lines of code.

Example 3-1. Showcasing joins with Kafka Streams

StreamsBuilder builder = new StreamsBuilder();
//Materialized state of the "inventory" stream
KTable inventory = builder.table("inventory")
//Materialized state of the "items" stream
KTable sales = builder.table("items")

//Join events on primary key and apply custom business logic
//Note that inventory and items need to be keyed on the same itemId
KTable enrichedItemInventory = inventory.join(items, ...)

Something similar can be accomplished in SQL code using Apache Flink. In
Example 3-2, Inventory and Items are materialized tables based on the associated
Kafka topics. An Enriched_Item_Inventory table is created by INNER joining on the
item_id (primary key) of the two tables.

60 | Chapter 3: Event Streams for Data Mesh

Example 3-2. Showcasing joins with Flink SQL

CREATE TABLE Inventory (
 item_id VARCHAR,
 quantity BIGINT,
 timestamp TIMESTAMP(3),
 PRIMARY KEY (item_id) ENFORCED,
) WITH (
 'connector' = 'kafka',
 'topic' = 'inventory',
 'properties.bootstrap.servers' = 'localhost:9092',
 'properties.group.id' = 'my_app_group_id',
 'format' = 'avro',
 'scan.startup.mode' = 'earliest-offset'
);

CREATE TABLE Items (
 item_id VARCHAR PRIMARY KEY,
 name VARCHAR,
 description VARCHAR,
 brand VARCHAR,
 timestamp TIMESTAMP(3),
 PRIMARY KEY (item_id) ENFORCED,
) WITH (
 'connector' = 'kafka',
 'topic' = 'items',
 'properties.bootstrap.servers' = 'localhost:9092',
 'properties.group.id' = 'my_app_group_id',
 'format' = 'avro',
 'scan.startup.mode' = 'earliest-offset'
);

CREATE TABLE Enriched_Item_Inventory AS
 SELECT *
 FROM INVENTORY
 INNER JOIN ITEMS
 ON ITEMS.item_id = INVENTORY.item_id;

The Flink SQL code is concise, clean, and powerful. You can write extremely useful
data transformations quickly and easily, leveraging the Kappa architecture with little
heavy lifting on your part. Kafka Streams and Flink are among the most popular
stream-processing frameworks, and either one is a good choice if you’re looking for a
full-featured, event-driven framework. For the sake of brevity, I won’t cover each of
the possible options and frameworks but I do encourage you to familiarize yourself
with your options before selecting one for your use cases.

Kappa architecture is the best way to build and use event-stream data products. It is
simple and effective, allowing consumers to use a single data product API for acquir‐
ing both historical and real-time data. Despite Kappa’s clear advantages, you will
likely encounter recommendations to use the Lambda architecture, based on the

The Kappa Architecture | 61

now-false assumption that an event stream cannot indefinitely retain data. Let’s now
take a look at exactly what the Lambda architecture is and why it falls short of Kappa.

The Lambda Architecture and Why It Doesn’t
Work for Data Mesh
The Lambda architecture is a composite of offline historical batch data and online
event-streamed data. In this architecture, consumers obtain their data from these two
sources and must recombine it into a consistent model within their own domain.
There are two main versions of this architecture, and we’ll look at each in turn.

In the first version, the batch data layer comprises the results of some sort of compu‐
tation made by the domain owner, such as a materialization or aggregation. At
startup time, the consumer loads the batch layer data into its context, then switches
over to the event-streaming layer to read and process events.

Figure 3-10 shows a simplified implementation of the Lambda architecture. The pro‐
ducer writes a new event (1) to both the event stream (2) and the batch data layer (3).
Note that the batch data store does not source its data from the event stream but
directly incorporates the new data (1) into its database. The serving layer (4) contains
two periodically updated materialized views of the batch data. In this case, one view is
for consumer A and the other view is for consumer B.

Figure 3-10. Lambda architecture, with data written to both batch and the event stream

Why two materialized views? Consider two consumers with different yet similar
requirements. One consumer needs an hourly net sales aggregation, split up by sales
area, while the other needs daily gross sales, excluding seasonal items. Without access
to the full history of events, the two consumers remain beholden to the Lambda batch
owner to maintain, compute, and provide the historical results to them.

62 | Chapter 3: Event Streams for Data Mesh

You may also notice another problem with this approach—the consumers each
require their own business logic requirements to be computed and maintained by the
serving layer’s owner! This leads to a shared responsibility model where the consum‐
ers do not have full ownership of their business logic. If they need to change their
business logic, it must then be changed at the producer side during the composition
of the batch data and at the consumer side for merging in the event-stream data.

In the second version of Lambda architecture, the batch data layer is simply a long-
term store for events maintained outside of the event broker, as shown in Figure 3-11.

Figure 3-11. Lambda batch store built from event stream

In this version, new data (1) is written to the event stream (2) and eventually copied
(3) into the batch data store (4). The batch store applies no special business logic and
is simply a secondary store for immutable, incrementing events, exposed via a query‐
able API (5) for consumers (6). Each consumer is responsible for side-loading/boot‐
strapping the events they need from the batch data store into their own context,
building up their own state as they go. Once they build up their current state, they
then switch over to the real-time event stream (2).

This places the business logic related to the interpretation and modeling of events
squarely within the domain of each consumer. The producer is no longer required to
support any custom, precomputed views for the consumer, greatly simplifying opera‐
tional concerns.

Now, you may think this Lambda variation is a bit odd—why use a second state store
if you’re just going to store raw events? Remember when I mentioned the tendency of
designs to assume it’s not possible to store events in a broker indefinitely? Lambda
architecture is based on the notion that it’s simply not possible to store a comprehen‐
sive history of events in an event broker.

The Lambda Architecture and Why It Doesn’t Work for Data Mesh | 63

However, modern event brokers, in conjunction with cheap disk and cheap cloud
storage, have made indefinite retention a reality. And though once promising, the
Lambda architecture has proven to be more complicated and difficult to implement
than many originally thought. Let’s look at some of the main issues that make
Lambda architecture fiendishly difficult to use at scale:

The producer must maintain two code paths
One path handles the insertion of data into the batch data store and one con‐
structs events to publish to the event stream. Atomic commits for both the event
stream and the batch data store are not readily available, so you run the very real
risk of duplicate or missing data. Reading the data from the batch may give you
different results than reading from the stream.

The consumer must maintain two code paths
Just as the producer must maintain two code paths for publishing data, the con‐
sumer must maintain two code paths for resolving data. Both the stream and the
batch representations of the data need to be consistent, which is hard to do in
practice, especially over a long period of time as data changes and evolves.

A batch data-sourced consumer and a stream-sourced consumer may not converge on
the same result

You have one consumer running since day 0. It has never loaded any data from
the batch data store. Its internal state has been constructed solely by consuming
and aggregating the event stream. You start a second consumer, which is an iden‐
tical copy of the first, but it bootstraps its state from the batch data store. Once
they’re both up to date with the latest offset, you pause the inputs of new data.
Are their states identical? The answer should be a resounding “Yes!”, but unfortu‐
nately, in practice, it is usually a sad “No.” Resolving consistent state from multi‐
ple sources with multiple code paths tends to be very complex in practice.

The batch data store and stream data models must evolve in sync
As the source domain model evolves, the representation of the data in the event
streams usually changes too—but so too does the format of the batch store. The
producer must ensure that what it writes to the event stream is fully consistent
with the model in the batch serving layer. And through all of this, a historical
consumer reading mostly from batch and a real-time consumer who only ever
reads from the event stream must end up with copies of identical data. If this
sounds like it’s difficult to do well, you’re right. I’ve seldom seen it used with
success.

Merging multiple Lambda-based data products is difficult
The final nail in the coffin of the Lambda architecture is due to the difficulty of
merging multiple Lambda data products. Each Lambda data product maintains its
own rules pertaining to event-stream retention, when the event data is folded

64 | Chapter 3: Event Streams for Data Mesh

into batch, how the events are folded into batch, and the period of duplicate data
overlap between the batch and stream. The result is a seam between the batch and
the stream data, and each data product has its own seam with its own nuances
that rarely line up with the seams of another data product.

Reconciling seams proves to be extremely difficult. Each consumer application must
reconcile not only every batch-to-batch relationship but also every batch-to-stream
and stream-to-stream relationship, too. Two Lambda data products result in four
unique relationships to manage, while three Lambda data products result in eight(!)
(2*2*2) unique relationships that must be interpreted and reconciled. Each additional
Lambda source increased the complexity exponentially.

To be blunt, I’ve never seen widespread successful use of Lambda-based data prod‐
ucts, simply because it is too difficult to resolve more than a single Lambda source.
While Lambda architectures can work in certain circumstances for limited applica‐
tion, in practice they’re simply insufficient for the purposes of a data mesh. Instead,
stick to using a Kappa architecture for the majority of your data product production
and usage.

Supporting the Requirements for Kappa Architecture
Modern-day event brokers, combined with cheap and efficient cloud storage, let us
store events for as long as they remain relevant to the business. For example, a user
account entity event created 10 years ago would remain in the stream indefinitely,
until perhaps there comes a day that the user is deleted or the account is purged for
inactivity. Otherwise, a new consumer reading from the beginning of the account
stream would see that account, regardless of how much time has elapsed.

Managing precisely what data is kept in a stream, how long it’s kept, and when it’s
deleted depends on four things: infinite event retention, infinite storage, compaction,
and deletions. Let’s take a look at each one:

Indefinite event retention
Your event broker should let you keep events in your stream indefinitely, just as
you would expect to store data in a relational database for as long as it remains
relevant to the business. Many event brokers do not let you do this, enforcing a
time-based maximum for data retention. Those event brokers are entirely unsuit‐
able for our purposes in building an event-driven data mesh.

Infinite storage
Retaining events indefinitely also requires having sufficient storage space. Tiered
storage is a common approach to this problem, where the event broker offloads
older segments to slower and cheaper “cold” storage, keeping the most recent
“hot” data in memory for fast service. Offloading and management of the

Supporting the Requirements for Kappa Architecture | 65

underlying data storage is entirely transparent to the clients, allowing us to use
just the single event broker streaming protocol.

Compaction
Compaction is the deletion of older events for a given key provided a newer event
of the same key exists in the stream partition. Compaction is essential for keeping
the size of the event stream proportional to the key space of the entity domain.
The event broker periodically scans the event stream, identifies the events to
remove, and purges them from the stream.

Event brokers with compaction support typically allow you to
select a minimum period of time (compaction lag time) where
events will not be compacted. This provides your consumers
with a time period where they can consume and process all
events, such that all state transitions are available. Apache
Kafka uses 24 hours as the default compaction lag, but in prac‐
tice it’s common to tweak compaction lag on a per use case
basis.

Deletions
ECST also requires the ability to delete data of a specific key from a stream parti‐
tion. A tombstone is a record containing the key of the entity to be deleted and a
null-value for the body. A tombstone tells the consumer that the entity with that
key has been deleted, and any data associated with it can (and usually should)
now be deleted from their state store. A tombstone record can be compacted like
any other record, although the tombstone itself is also deleted.

Figure 3-12 shows an example of event-stream compaction. The event broker iterates
through the log of events, keeping a list of keys that it has encountered. It marks any
older records that have a newer record with the same key for deletion. Since there is
an event with K=20 at offset 4 (newer), the compactor can delete all earlier events of
K=20, such as the event at offset 1. Meanwhile, K=10 at offset 2 is a tombstone event, so
both it and the event at offset 0 are deleted. All remaining events retain their offsets.

The compaction lag time is commonly set to several days (or weeks), meaning that
events younger than the lag time won’t be compacted. One common reason for set‐
ting it longer than a 24-hour default is to account for nonessential services that may
crash over the weekend. The operations team can wait until the next business day to
fix the crashed service and bring it back up, without worrying about missing uncom‐
pacted events.

Precisely how and when compaction occurs is specific to the event broker.

66 | Chapter 3: Event Streams for Data Mesh

Figure 3-12. Compacting older events of the same key due to updated values or
tombstones

Selecting an Event Broker
Selecting a suitable event broker that supports the Kappa architecture pattern is
essential for creating a self-service data mesh. Both ephemeral message-passing and
queues are insufficient to underpin a data mesh—you will need to ensure your event
broker supports event streams in the form of durable append-only logs.

To select a broker, you need to focus on the essential requirements and make your
own informed decision. These include:

Unlimited durable data capacity
You must be able to store all pertinent events for as long as they are relevant. For
most data products, you’ll need to store them indefinitely. Data product consum‐
ers must be able to access and replay the events whenever they want.

Scalability
Though scalability is largely a given in the era of cloud computing, you need to
ensure that your event broker can scale up to extremely high throughputs and
number of clients. Additionally, the event broker must be able to serve the stored
data with high performance, as data products follow a write-one, read-many-
times access pattern.

Selecting an Event Broker | 67

Support tooling
Schema registries, access controls, metadata cataloging systems, and governance
and lineage systems all play an important role in building a data mesh. We’ll
cover these in more detail in Chapter 5, but it’s important that you consider what
options you have available based on your event broker choice.

Broker as a service deployments
By using cloud services, you can bypass managing your own event broker
deployments and all the overhead that comes with it. If you’re focused on build‐
ing a data mesh, not having to manage your own infrastructure can be a big time
and money saver. The event broker will often come as part of a larger platform
providing support tools, so ensure that you investigate the full platform offering.

Retention period
The final but deal-breaking criterion is that of retention. How long can you keep
the events in your event stream? A data product must be available in its entirety
upon demand by any consumer, so any event broker that limits retention is
unsuitable for use in a data mesh. Table 3-1 compares retention periods of several
popular event brokers. You’ll note that only Kafka and Pulsar provide the ability
to store events indefinitely.

Table 3-1. Maximum event retention periods of popular event brokers

Broker name Retention period
Kafka Unlimited

Pulsar Unlimited

Amazon Kinesis 365 days

Microsoft Event Hubs Premium 90 days

Google Pub/Sub 31 days

Apache Kafka is my current preferred choice for an event broker due to its domi‐
nance in the streaming industry, the excellent supporting software and tools, and the
wide base of user knowledge. I am also biased in my selection, as I have been working
with Kafka since 2014, have contributed to its codebase, and have also worked at
Confluent with its cocreators.

The most popular projects also tend to have the most community-built tools and
contributions. Schema registries, code generators, processing frameworks, opera‐
tional system integrations, and data catalog integrations are just a few of the neces‐
sary dependencies to consider. KIP-405 for Apache Kafka provides an excellent
example of some large players in the community coming together to collaborate on
building tiered storage support directly into Kafka, making indefinite topic retention
and scalable storage both cheaper and more reliable.

68 | Chapter 3: Event Streams for Data Mesh

https://oreil.ly/VoyXU
https://oreil.ly/qigVS
https://oreil.ly/lD_Ed
https://oreil.ly/xOiHt
https://oreil.ly/bSzPz
https://oreil.ly/eYsOD

Technology will continue to change with time, and new options will certainly come
into existence. Thus it’s important to note that should AWS, Microsoft, or Google
choose to support indefinite retention in their event brokers, they too may become
viable candidates for supporting an event-driven data mesh.

The event broker you choose is a critical component for the success of your data
mesh. Choose a safe, reliable, and extensively tested option for building the founda‐
tions of your data mesh.

Summary
Event streams form the best option for serving the majority of data products because
they offer a real-time, immutable, durable, replayable, and scalable way to serve data.
Their real-time interface can power both operational and analytical use cases. Queues
and ephemeral message systems are often misconstrued as equivalent to an event
stream. This is not the case, as covered in this chapter.

Materialization and aggregation are two common operations for event-stream con‐
sumers. These operations enable consumers to generate their own eventually consis‐
tent state by storing event-driven data within their own boundaries. Accessing a
replayable source of historical data is another significant data product requirement.
Event streams have typically been seen as unsuitable for maintaining data indefinitely,
partially due to historical limitations in technology and partially due to preconceived
notions that events should only ever be ephemeral or short-lived. This chapter
addressed these issues and discussed both historical and modern options for dealing
with event streams. The Kappa architecture enables the event stream to be a single
source of both current and historic data and is far easier to use in practice than the
older and less useful Lambda architecture.

Finally, I have also outlined the requirements and considerations for selecting an
event broker. The reality is that there are only a few options at the moment, though
there is room for improvement as event-driven architectures continue to increase in
popularity. A data mesh can be challenging enough to implement, so ensure you
select a popular and well-supported technology. You’ll find it easier to hire talent to
help build your data mesh, as well as leverage SaaS solutions and open source projects
to increase your productivity.

In the next chapter, we’re going to take a look at governance. If we’re planning to pub‐
lish data for others to use and consume, we’re going to need some standards, security,
and a degree of oversight and control.

Summary | 69

CHAPTER 4

Federated Governance

Data mesh architectures are inherently decentralized, and significant responsibility is
delegated to the data product owners. A data mesh also benefits from a degree of cen‐
tralization in the form of data product compatibility and common self-service tool‐
ing. Differing opinions, preferences, business requirements, legal constraints,
technologies, and technical debt are just a few of the many factors that influence how
we work together.

Federated governance allows us to sort out the decisions that should remain at the
local level from those that must be made globally, for all domains. To quote Deh‐
ghani, “Ultimately global decisions have one purpose, creating interoperability and a
compounding network effect through discovery and composition of data products.”
We need to figure out, enforce, and support the common building blocks and modes
of operating to make data mesh work for everyone.

Founding a federated governance team is one of the first steps toward discovering
common ground to work toward mutually beneficial solutions. Precisely what your
governance team will do will vary based on your own business needs, but there are
several common duties that we’ll cover in this chapter.

Federated governance is about finding an appropriate balance between individual
autonomy and top-down centralized control, between the delegation of responsibili‐
ties and the creation of overarching rules and guidelines for consistency and order.
Like any form of effective government, we need participation, representation, debate,
and collaborative action to actually get stuff done.

71

https://oreil.ly/toG45
https://oreil.ly/toG45

Creating a charter is an important first step in founding a federated
governance team. This outlines duties and responsibilities of the
group, such as establishing standards for data product formats,
quality levels, interoperability, security, and supported technolo‐
gies. It also lays out producer, consumer, and manager responsibili‐
ties, as well as any other social and technical aspects.

Federated governance is primarily focused on several main areas:

Data concerns
Pertains to how data is created and used within an organization. Specifically, data
product types, metadata, schemas, support, discoverability, lineage, quality, and
interoperability.

Technology concerns
Includes programming languages, frameworks, and processes that you’d like to
incorporate into your data mesh. Assessing your existing technologies for suita‐
bility, as well as vetting new options, remains a key component of federated gov‐
ernance.

Legal, business, and security concerns
Pertains to regulatory compliance and security issues, such as handling financial,
personally identifiable, and other forms of sensitive data. Business-level require‐
ments may also factor in, such as internal data security, access policies, and reten‐
tion requirements.

Self-service platform concerns
Makes it easy for your users to do the right thing. Users need a reliable self-
service platform to build and use data products. Streamlining tooling, reducing
friction, and making it easy for everyone to get things done is at the bedrock of
data mesh. A self-service platform provides an opportunity to apply regulatory
and security policies at the source, providing insight into how data flows through
the organization.

Each of these areas relates to one another and offers a helpful lens through which to
view the priorities for your governance team. Keep these four areas in mind as we go
through the remainder of the chapter, because each section will touch on one of more
of these main concerns.

But first—who gets to govern?

72 | Chapter 4: Federated Governance

Forming a Federated Governance Team
A governance team requires a mandate to be effective in its work. A mandate includes
two main components. The first is an institutional component, where the “higher-
ups” endorse the data mesh and the governance team, providing members with some
degree of authority, ownership, and responsibility. The second component is a social
component, where those who are meant to use the data mesh appreciate its impor‐
tance and buy into it. An absence of either component will likely result in a failed ini‐
tiative.

The governance team is composed of people from across the organization who act as
representatives of the teams, products, technologies, and processes pertaining to
building and supporting a well-defined data mesh. As representatives of their peers,
each member brings forward ideas, requirements, and concerns from their problem
space and works together to come up with satisfactory solutions.

Finding representatives is often as simple as asking for a volunteer to represent the
team for a fixed period of time (say three months), though they must be well-versed
in the challenges that the team is facing. Senior technical people often get “volun‐
teered” (selected) for this role, as they usually have the best understanding of team
needs, the problem space, and historical contexts, such as past attempts at reform.
There are often fairly important technical reasons why past efforts at reformation
may have failed, and this historical context often helps guide the discussion in finding
a way to a new successful resolution.

The size of the federated governance team will vary with the organization’s size, but
should be limited to a size that would make for an effective one-hour meeting. With
too small of a group, you may find you lack sufficient representation, alienating team‐
mates and damaging trust and support. With too large of a group, you may find that
people start to feel like their input doesn’t really matter or that someone else in the
group will make the difficult choices. Finding the optimal size of the federated gover‐
nance team is, perhaps ironically, up to the federated governance team. Start small,
and feel free to pull in more members when you hit representation boundaries.

Collect anonymous feedback on how the group thinks it’s doing, as
well as feedback from teammates and stakeholders outside of the
group. This will help the group have more effective meetings, find
appropriate boundaries for the areas of governance, and dial in on
an effective group size and charter.

Once you have an initial body, you can start implementing standards to streamline
the data mesh experience.

Forming a Federated Governance Team | 73

Implementing Standards
The federated governance team is responsible for coming up with a set of data prod‐
uct and technology standards. Think about the technologies your organization must
support as a physical toolbox with limited space. If you want to add new tools to the
toolbox, you’ll need to make sure there’s room and that there aren’t other suitable
tools that can do the job just as well. Imposing a reasonable limit on the toolbox
ensures that technological sprawl is kept in check and that only tools that offer a sub‐
stantial improvement are added.

Establishing barriers to entry for new tools, languages, standards,
and technologies is essential for reducing sprawl, fencing out
marginal options, and protecting against flavor-of-the-week imple‐
mentations. Keeping your toolbox small and lean makes it far eas‐
ier to provide first-class support for each tool in your self-service
data mesh platform.

Standards should be introduced by proposal, with a detailed explanation of why the
new option is better than what’s already in the toolbox. A new option may cover a
sorely needed use case for which there is nothing in the toolbox. Or the new option
may be categorically better than something already in use. The proposer must craft a
story and provide examples as to why their recommendation is a good one and what
effects it’ll have on tool and option selection.

It’s very important to trial a proposed standard or technology before adding it to your
first-class sanctioned toolbox. Ensure that the trial highlights the importance of the
technology, how it is better than something that already exists, and what trade-offs it
imposes given the current tools and support.

Be careful that trial systems don’t get promoted into production on
a “temporary” (but actually permanent) basis. It’s important to test
new technologies and frameworks in systems outside the critical
path so that you can rewrite or abandon them without causing
business delays.

Let’s go through some of the main standards that your governance team will need to
establish.

Supporting Multimodal Data Product Types
As introduced back in “Data Products Are Multimodal” on page 31, your federated
governance team will need to decide what data product types and ports you do and do
not support. Event streams form the core data product type covered in this book, but

74 | Chapter 4: Federated Governance

you may also choose to support others, such as batch-computed Parquet files in a
cloud data store, as we’ll discuss more in Chapter 9.

Supporting multiple data product types provides additional options to data product
owners, but comes at the expense of significantly more complexity for both gover‐
nance and self-service tools. It’s important to understand the opportunity cost and
the amount of work required to support each data product type.

For example, you’ll need to ensure that infosec, encryption, access controls, data
product interoperability, and self-service data platform integrations are all accounted
for. There can be a substantial amount of work adding a new data product type, and if
the return on that investment is marginal, it may make more sense to simply serve the
data product using an existing (if somewhat suboptimal) type instead.

If you believe that support for a new data product type is merited, then you should
create a proposal and present it for consideration at the federated governance meet‐
ing. We’ll investigate proposals more in “2. Drafting Proposals” on page 85.

The goal here isn’t to constrain data product owners but to ensure that the tools that
are made available are supported, meet governance requirements, are easy to use, and
cover the necessary business use cases. Do not add new tools to the toolbox for the
sake of variety or novelty, especially when there are existing and well-supported ways
to provide sufficient access and usage.

Supporting Data Product Schemas
Schema frameworks are effectively programming languages for data. Much as you
compose an application with code, you compose a data product schema with its own
code. Precisely what that code looks like and which options are the best for you to
choose are covered in more detail in Chapter 6. For now, consider how many, and
what kind of, schemas and formats you may support. The two most common consid‐
erations include:

Event schemas
Apache Avro, Protocol Buffers (Protobuf), and JSON Schema tend to be the most
common formats for events. Each of these has its own trade-offs, in particular
regarding type enforcement, schema evolution capabilities, default values, enu‐
merations, and documentation.

File formats
Batch files written to a cloud storage bucket have traditionally followed big data
file conventions, including CSV, JSON, Avro, Protocol Buffers, Parquet, and
ORC—to name a few. Additionally, consider the newer open source technologies
that sit on top of these basic file formats, such as Apache Iceberg, Apache Hudi,
and Delta Lake. Each of these provides higher-level filesystem-type features, such
as hidden partitioning, transactions, and compaction and can make using

Implementing Standards | 75

https://oreil.ly/NPxSx
https://oreil.ly/HGv8f
https://delta.io

batch-hosted data products easier to use, at the expense of tighter coupling to the
technology.

It’s best to standardize on just one event schema framework or file format for each
data product type. For example, Avro for streams and Parquet for batch-computed
files kept in your data lake. Only expand to support other formats if it’s absolutely
essential. Single formats greatly simplify tooling and the consumer experience while
keeping complexity and risk low.

If you must support multiple file formats or event schemas, ensure
that data product owners can find easy-to-follow instructions on
which one they should use and why. A failure to do so will intro‐
duce friction when neighboring teams end up implementing their
data products with completely different schema frameworks, mak‐
ing consumption and use more difficult for their common
consumers.

Next, let’s look at some of the programming language questions and concerns.

Supporting Programming Languages and Frameworks
One common approach to producing data products is to use a language already in
use within the source domain. The team would already be well-versed in it, which
simplifies both creation and support of the data product. Another option is to select a
language (or tool) in use in another part of the organization, perhaps because it is
much more suited to the creation of the data product. We’ll look into the specifics of
bootstrapping existing data into event-driven data products in Chapter 8.

Sometimes developers use data product creation as an opportunity to try out a new
esoteric language, regardless of whether it’s officially supported. This puts that devel‐
oper on the hook for all support and maintenance well into the future and will put
the product at risk should no one else learn the language. In time, the developer who
built the data product will likely move on to new projects or job opportunities, fur‐
ther increasing risk.

It is important to only implement data products in languages that are well-used or
otherwise officially supported by your organization. If you think a language has merit
to be used more widely, then you would do well to create a proposal (see “2. Drafting
Proposals” on page 85) and discuss it with the federated governance team.

Deciding which languages (and frameworks) to support for building data products is
based largely on the same criteria as building any other service. Such factors include:

76 | Chapter 4: Federated Governance

Social factors
Is it a well-known technology? Are our developers familiar with it? Are there
other people in the industry using it, and have they shown success with it? Will
people want to work with it? Will it be appealing for new hires and can we find
people with these skills in the market?

Technology factors
Does it solve our problems in a simple and effective way? Is it a proven technol‐
ogy that will continue to be updated and improved for years to come?

Integration factors
Is it easy to support? Does it integrate well with our existing development, test,
build, and deploy pipelines? Can you get linters, debuggers, memory analyzers,
testing tools, and other productivity enhancement tools that integrate with it?

Event broker clients
Does your event broker have high-performance clients written in the language of
your choice? Will you be able to produce and consume events fast enough?

Supportive tooling
Does your language and framework work well with your event schemas (Chap‐
ter 6)? Do they support code generators? Can you generate test events to test
your data product inputs and outputs?

Deciding which languages to support, and how extensively to support them, will be
up to your organization and governance team. Choose languages that your organiza‐
tion is familiar with and that have event-broker support.

Metadata Standards and Requirements
A good data mesh requires well-defined metadata for each data product. Data mesh
users should be able to discover and identify the data products that they need for
their business use cases. A data product owner must provide all required metadata
during registration of the data product to be allowed to publish the data product to
the mesh. Enforcing metadata requirements is essential for ensuring that only well-
defined and well-supported data products are made available to others, lest we repeat
the mistakes of previous data strategies as discussed in “Bad Data: The Costs of Inac‐
tion” on page 17.

There are several fields that are essential for a healthy data mesh. In this section, we’ll
cover each of them and provide you with some basic examples for your own gover‐
nance team to consider.

Implementing Standards | 77

Domain and owner
First up is ownership. Who owns the data product? And where is it from? This meta‐
data includes the domain namespace and the name of the data product owner. The
name of the data product owner is an individual person, who represents the data
product from that domain.

Tiered service levels
A data product requires support and uptime guarantees. But to what degree? If the
data product encounters a failure, what is the appropriate course of action? Many
companies already organize their applications into a tiered system, with the highest
tier having 24-hour on-call rotations and the lowest tier having simple best-effort
support. You should apply the same tier system to data products and offer the same
support and guarantees as you would any other service or product of the same tier.
The following is an example of a four-tier system:

Tier 1
Data products that are critical to the operation of your business, where an outage
or failure will result in significant impact to either the customer or to the busi‐
ness’s finances. Data products that power real-time operational applications often
fall into this category.

Tier 2
Data products that are important to the business but are less critical than Tier 1.
A failure in this tier may cause a degraded customer experience but does not
completely prevent customers from interacting with your system. Data products
in this tier also often power real-time operational applications.

Tier 3
Data products that may affect background tasks and operations in the business,
but are likely not visible to consumers nor impact them significantly. However, a
failure in this tier may still require intervention should the data product be pow‐
ering time-sensitive use cases.

Tier 4
Data products that have the largest time window for recovery. It is not essential
to have an on-call rotation to support these data products; they can wait until the
next business day to resolve.

Uptime and availability are not the only considerations of a data product’s service
level. You will also need to monitor your data products to ensure they’re meeting
their SLAs, something that we’ll cover in a bit more depth in “Monitoring and Alert‐
ing” on page 122.

78 | Chapter 4: Federated Governance

Data quality classifications
The quality of the data provided by the data product should also be categorized, simi‐
lar to the approach of the SLA tier system. One choice is to leverage the medallion
classifications of bronze, silver, and gold commonly used in data lake architectures.
Let’s look at each classification:

Bronze
Unstructured and raw data that is untransformed from the original source for‐
mat. May be strongly coupled on the internal data model of the source system,
and may also contain fields that need to be sanitized or scrubbed. May also
include data that is well-structured and defined, but for which quality is intermit‐
tent or the data owners simply cannot provide a higher guarantee.

Silver
Well-structured data with strong typing and typically sanitized and standardized.
Usually denormalized to be sufficiently useful as is, with the most common
foreign-key relationships having been joined and resolved to provide ease of use
to consumers. Type-checking and constraints have been applied to ensure a min‐
imum data quality (e.g., 99.99% of events pass quality checks). The context of the
event is clearly defined and documented, as are the type checks and constraints.
If a consumer wants to impose their own further, tighter constraints on the data,
they would do best to communicate with the data product owner to evaluate
options.

Gold
The highest level of quality. Often referred to as “authoritative,” data products
with the gold level of quality are meant to be relied on without reservation. Data
products are rigorously tested and monitored, with type-checking and con‐
straints exceeding that of the silver quality level (e.g., 99.9999% of events pass
quality checks). Gold data products are often more complex, built up by signifi‐
cant aggregations and transformations that offer significant value, and would be
quite difficult for consumers to replicate on their own.

Data quality classification is separate from the data product align‐
ments (source-aligned, aggregate-aligned, and consumer-aligned),
and is concerned only with data quality.

You are free to select alternative classification models as you see fit. The important
part is that your data mesh users must be able to easily understand and apply the
modeling to their own data products, preserving a common understanding between
producers and consumers of the data.

Implementing Standards | 79

Privacy, financial, and custom tagging
In conjunction with security and financial information representatives, the gover‐
nance team can come up with tags to apply to data products to help automate special‐
ized treatment. For example, you may choose to include a tiered system for security
classifications similar to that of SLAs. You may also choose to use tags that pertain to
the type of data included within the event stream, such as financial, PII, or region-
based tags.

Supporting tags on data products makes it easier to apply governance rules because
they can be applied on a per-tag basis. For example, a consumer seeking to use a data
product with a financial tag will need to prove their compliance with their organiza‐
tion’s financial data handling requirements. Tags also enable easier auditing of data
usage on a per-consumer basis.

Upstream metadata dependencies
Upstream services and data products each have their own SLAs, data quality levels,
and other guarantees. Any service or data product that relies on upstream services or
data products must take these dependencies into account when specifying their own
guarantees. For example, a service cannot offer Tier 1 support when it depends on
data products with Tier 4 guarantees. We’ll touch more on lineage later in this chapter
in “Data Product Lineage” on page 92.

As part of your governance requirements, you may choose to establish minimum
upstream requirements for data quality and SLAs to power your production applica‐
tions, be they operational, analytical, service, or data product. One common conven‐
tion is to allow only services that have Tier 1 or Tier 2 SLA guarantees in production.

Upstream data quality requirements are not quite as strict—it’s entirely possible that
you can power a Tier 1 gold data product with a Tier 1 bronze data product. In fact,
this is usually how bronze data is transformed into a high-quality gold-layer data
product.

You can enforce upstream checks during the creation of a data product, as we’ll
explore more in Chapter 5.

Metadata wrap-up example
Figure 4-1 shows an example of what a user may see when looking up information
about a data product. While we’re going to explore metadata cataloging more in
Chapter 5, for the moment you can think of it as a read-only database where you can
look up the available data products and their properties.

The data product name, domain, and user are all mandatory pieces of metadata cre‐
ated at time of publishing. A description field is also included to describe context and
disambiguate the data product from other similar ones. Metadata about the service,

80 | Chapter 4: Federated Governance

quality, and security levels are also present, as are tags describing PII, financial, and
regional information.

Figure 4-1. An example of data product metadata you may expect to see as a data mesh
user

The schema field in the metadata is pulled in from the schema registry, which is a
component that stores and manages schemas for event streams and is an essential
piece of the self-service data platform. We’ll cover this in more detail in “The Schema
Registry” on page 99. The broker name and topic name are also pulled in to provide
the digital address of the data product.

Metadata helps us make informed decisions about what data products are available
for our use cases. Compatibility between data products is essential in enabling us to
merge data from different sources and is the subject of the next section.

Ensuring Cross-Domain Data Product Compatibility
and Interoperability
There are many factors that make up aggregating, merging, and comparing data
products between domains. As part of the data concerns outlined at the beginning of
this chapter, interoperability and ease of use remain two of the major concerns of fed‐
erated governance. Rules and guidelines about common entities, time zones, aggrega‐
tion boundaries, and the technical details of event mappings, partitions, and stream
sizes all fall under the governance team’s purview. Let’s take a look at these areas now.

Ensuring Cross-Domain Data Product Compatibility and Interoperability | 81

Defining and Using Common Entities
One of the first important steps is to define the minimal entities that are used across
many areas of your business. Let’s take a look at an example first.

An ecommerce company defines a common Item entity containing two fields: long
id and long upc_code. Data product owners are expected to use the Item entity in
any data product that references their ecommerce items, be it Order, Inventory entry,
or Return. Each of these related entities uses a common and standardized version of
Item, removing the need for consumers to interpret similar-yet-different representa‐
tions of the same data.

Common entities do not preclude you from adding more information about that
entity to your data product. You are free to extend your data products to include
other information about Item, such as size and color in the case of a clothing item
or weight and serving_size in the case of a food item. Think of a common entity as
an attachment point between data products in other domains and as an extendable
base for the entity’s data model.

Event Stream Keying and Partitioning
Interoperability of event-streaming data products is affected by the partition count of
the stream, the key of the event, and the partition assignment algorithm (see Chap‐
ter 3). An event stream contains one or more partitions, and each event is assigned to
a partition based on the partition assignment algorithm, the event key, and the num‐
ber of partitions. Here are some useful interoperability tips:

Partition count
Joining and aggregating data products from multiple streams can be made much
less computationally intensive if the event partition counts are the same size.
While event-stream processors like Kafka Streams and Flink can automatically
repartition event streams as needed, it requires more processing power and can
incur higher costs. Try using a T-shirt sizing approach to standardize partition
counts, such as x-small=1, small=4, medium=8, large=16, x-large=32, xx-
large=64, jumbo=256. As part of your self-service platform (which we’ll cover in
the next chapter), you can provide the data mesh users with instructions for
choosing partition count based on the key space, volume of events, and con‐
sumer reprocessing needs.

If you’re building a data product keyed on a common entity,
check the partition count of other data products also keyed on
that entity—if they’re all using the same partition count, you
would do well to use it, too.

82 | Chapter 4: Federated Governance

Event key
The event key is best served by using a primitive value, such as a string, int, or
long. The common entity’s unique ID is your best choice for interoperability.

Partition assignment algorithm
This algorithm takes the event key as an input and returns the partition ID to
write the event to. Event producer clients of different programming languages
and frameworks may use incompatible algorithms, resulting in event streams that
are not cross-compatible, despite using the same event key and the same parti‐
tion count. While using a single framework like Kafka Streams will ensure that
your partition assignment is consistent, you will need to do a bit of research to
evaluate other frameworks as part of your self-service platform.

Be careful about hot partitions where a disproportionate number of
events are assigned to a single partition. For example, 99% of all
events may be assigned to a single partition, while the remaining
partitions get only 1% of the data. While this is usually due to an
extremely narrow key space, it can also be due to an unsuitable
partition assignment algorithm.

It’s important to think about keying and partitioning for compatibility from the start,
since many of the data products you create will stick around for a while. Changing
partitions is possible, but it often requires rewriting the data to a new event stream
and migrating the consumers. Stick to using T-shirt sizes, come up with some recom‐
mendations for selecting partition counts based on consumers’ needs (e.g., reprocess‐
ing, parallelization), and define a common partition assignment algorithm based on
your available client frameworks.

Time and Time Zones
Data products may be associated with a window or period of time. For example, an
aggregate-aligned data product may represent data over a period of time, such as an
hourly or a daily aggregation. As part of a standard of ensuring interoperability,
establish a primary time zone such as UTC-0 for all time-based data products. Con‐
sumers will have a far simpler experience combining different time-based data prod‐
ucts if they do not have to contend with converting time zones and dealing with
daylight saving time.

Where applicable, you should include the aggregation period and
time zone-related information as part of the data product’s meta‐
data. This information will help your consumers decide what fur‐
ther processing, if any, they need to do to merge it in with their
other data products.

Ensuring Cross-Domain Data Product Compatibility and Interoperability | 83

Now that we’ve covered ways of providing data product compatibility, it’s time to get
into a bit more of the social side. How do we make effective decisions about our data
mesh standards and requirements?

What Does a Governance Meeting Look Like?
Covering the entirety of an effective meeting is beyond the scope of this book, but
there are a few pointers that should help you get started. First, ensure that you follow
best practices common to all technical meetings. Second, send out an invite well
ahead of time and provide an agenda for the meeting. Third, ensure that you have a
chairperson and someone to take notes and record action items, and ensure that
everyone knows what needs to be done for the next meeting. It’s common to rotate
responsibilities and duties to ensure equal representation.

It’s very important to get the people who work on operational systems into the same
meeting room with those who work on analytical systems. You may be surprised, or
possibly just disappointed, at how seldom this happens. The isolation of “data teams”
from “engineering teams” has long plagued the IT space, as we touched on in “Bad
Data: The Costs of Inaction” on page 17.

As with any meeting, people with a strong personality or a loud
voice may try to dominate the conversation. Ensure that you have a
chairperson to conduct the meeting and ensure that everyone has a
chance to speak uninterrupted. If the meeting gets heated and
starts to be unproductive, take a 5-minute recess or adjourn for
the day.

You should expect to meet frequently during the starting stages of your data mesh
transformation. You will have many things to discuss, solve, support, and standardize.
As time goes on, you can expect to meet less frequently.

But what are the main tasks that the governance team should focus on? Let’s go
through five main areas and discuss how they pertain to data mesh.

1. Identifying Existing Problems
The first task of the governance team is to identify where the problems are. Your team
should be composed of individuals from across the organization with a good view of
the technological and data landscape. A grassroots, bottom-up approach to reporting
problems and issues tends to work best. Ask your colleagues to identify the areas that
they’re having problems in, the barriers and obstructions they’re facing, and what it is
that they would like to be able to do—either in terms of business requirements or
simplifying operational complexity.

84 | Chapter 4: Federated Governance

Have everyone list their main problems and issues using cards or
sticky notes. Then you can cluster similar issues together, such that
you can find the areas of improvement that may have the biggest
impact.

Identifying problems is the first step forward in improving the data mesh for every‐
one. Common issues may include a lack of self-service tooling, inconsistent data in
existing products, and a lack of policies regarding duplicate data, infosec, PII, and
financial information. Once the problems are identified, you can prioritize which
ones are the most important and dedicate resources toward solving them.

2. Drafting Proposals
The next step is to create a proposal that frames the problem, explains why it is
important to solve, articulates challenges and opportunities, and identifies a possible
solution. A proposal is much like a bill as introduced in the houses, senates, and par‐
liaments of many democratic systems. It proposes changes, provides details, and
specifies scope, all packaged up in a single debatable unit.

It’s not just the governance team that can create proposals for review—anyone in the
organization can create one. In fact, you’ll get the best results by following up with
the folks who have identified the problems—they usually have some idea about how
to make things better and just need someone to organize and promote the necessary
work. Proposals should be focused on solving specifically identified problems that
have a real-world impact to users of the data mesh.

Some examples of proposals could include:

• Introduce field-level encryption to restrict access to some sensitive information
in a data product

• Implement regulations for handling data products spanning multiple cloud
deployments

• Add custom tagging to data product metadata to improve search functionality
• Add namespacing to data products to enable security access at a namespace level
• Introduce a centralized authentication and authorization service to unify identity

management from across each cloud service in the self-service platform

Although proposals can cover a wide area of concerns, the majority of the time they
should lead to an improvement in the self-service tools and platforms available to
data mesh users. Mandating a new process is all fine and dandy, but if it’s not baked
into the tools and services that data mesh users use every day, there’s a good chance it
won’t be followed or used.

What Does a Governance Meeting Look Like? | 85

Proposals should illustrate what a successful resolution of the prob‐
lem looks like. Prototyping a solution to showcase precisely how it
will work keeps ideas anchored in the practical realm instead of the
theoretical. Devise experiments, run trials, assign research, investi‐
gate options, and prototype technological solutions before rolling
them out for general usage.

3. Reviewing Proposals
The federated governance team reviews the proposals to determine the viability of the
solution and the required implementation resources. How you review these proposals
will vary from team to team, especially as remote work, time zones, and other distri‐
bution factors are taken into consideration. One option that works well is to have
members of the federated governance team individually review the proposals, making
any notes or marking any concerns, before getting together in a larger group. If you
can get everyone into a room, digital or physical, you may find it easier to ask ques‐
tions, debate options, and come up with a unified plan. You could also meet asyn‐
chronously, and decide to get together only if there is sufficient disagreement or
confusion.

Keep reviews open and inclusive. Invite individuals from across
your organization that you think could help by providing addi‐
tional context and information. You may need to explicitly seek out
and invite them as most people tend to be pretty busy. Ensure that
you do not rely on the same people to review every proposal, lest
you give the idea that no one else is welcome to contribute to feder‐
ated governance.

The main goal of the review should be to validate the proposed solution, vet any pro‐
totypes, identify any missed considerations, and assess the boundaries of the work
involved. The review may result in the proposal being rejected—either sent back to
the creator for additional work or declined outright due to other insurmountable
issues. An accepted review will require a final step—planning and executing the
implementation work.

4. Implementing Proposals
An accepted proposal must next be converted to detailed work items. Break up the
proposal into incremental steps to build, test, deploy, and validate your data mesh
changes. Use your existing work ticket system to detail each work item, including a
description of work to be done, what success looks like, and an estimate of how much
time and effort it’ll take to complete.

86 | Chapter 4: Federated Governance

Implementing a proposal is identical to the process of implement‐
ing features for any other product. While you may be able to avoid
having a self-service data platform product manager at the start of
your data mesh journey, you’ll come to find that it’s an essential
role for getting things done.

You’re also going to need to get someone to do the work! Depending on your organi‐
zation, you may have chosen to assign one or more people to implementing data
mesh platform tickets. Alternatively, you may request that the proposal creator pro‐
vide the people-hours to get the work done, given that they are likely to be the most
familiar with the solution.

However you choose to get the work implemented, focus on getting iterative
improvements into use in a reasonable time frame. Like any other product, your data
mesh itself needs to help your colleagues solve their data access, usage, and publish‐
ing problems. If you fail to build confidence in your data mesh platform, people will
simply not use it and will instead resort to their own ad hoc data access mechanisms.
In this case, your data mesh will be nothing but a waste of time.

5. Archiving Proposals
Keep all of your accepted and rejected proposals, along with notes (or recorded vid‐
eos) about their discussion in a commonly accessible location such as a cloud file
drive. People should be able to look up the proposals to see their status, as well as
which ones have been accepted or rejected, and why. Transparency is essential
because it provides a record as to why a technology or decision was or was not
adopted.

Archived proposals also remove some operating complexity. You can search the exist‐
ing proposals to see if something similar has already been proposed before, and, if so,
what the results were. The original rationale for not adopting something may no
longer apply, making it worth revisiting with a new proposal.

In the next section, we’ll take a look at security and access controls. Both of these are
essential for establishing a reliable framework of ownership and security and also for
protecting against unauthorized access and accidental modification of each other’s
data products.

Data Security and Access Policies
Your data mesh’s security and access practices depend heavily on the legal and busi‐
ness requirements of your business. For example, a bank will have far higher security
and access control requirements than an anonymous message board website. Since
this is a large field of study, we’re going to assume you’re following “good security

Data Security and Access Policies | 87

practices,” and instead focus on a few important concepts and techniques specific to
making and using event-driven data products.

Defense in depth should be your guiding principle when dealing
with security and access controls. There is no one single thing that
will keep your data secure from unauthorized use, be it from a
well-meaning but unauthorized colleague or from an external
intruder. Limiting access by default, mandatory authentication of
users and services, and securing and encrypting private, financial,
and other sensitive information each help reduce the blast radius
and mitigate fallout.

Identity management is a foundational component of data security, as all of the user
and service permissions will be tied back to it. We’ll look at this subject more in the
next chapter in “Service and User Identities” on page 110. For now, let’s investigate a
few of the most important security principles that your governance team may choose
to implement and support in your data mesh.

Disable Data Product Access by Default
Data products should only be available for use by registered consumers. If you’re not
registered as a consumer of the data product, you can’t read it. While this principle
introduces a hurdle, compared with allowing a data product to be read-only to any‐
one who may want it, it forces users and services to register as explicit consumers. We
need to know who is reading what, so that any changes and requests can be effectively
communicated both upstream and down.

Consider End-to-End Encryption
Depending on infosec requirements, you may need to encrypt your data product data
prior to publishing it to the event broker. The data remains encrypted in the event
broker, preventing any unauthorized backdoor access to the data on disk. A regis‐
tered consumer with the assigned decryption keys can consume and decrypt the data
locally for its own use.

Streamlining data encryption and decryption is a function of the
self-service platform. However, it’s up to the governance team to
determine the requirements and supported use cases.

End-to-end encryption is often required for handling sensitive data. Encrypting data
at the producer side provides extra security during the network communications
and data storage of the event and ensures that the cloud provider of the event broker

88 | Chapter 4: Federated Governance

cannot somehow read (or leak) the unencrypted data. Additionally, end-to-end
encryption acts as defense in depth—it is possible that someone may gain access to
read your event data, but without the decryption keys, will not be able to decode and
use the original data.

Figure 4-2 showcases a producer and a consumer client using end-to-end encryption.
The producer has encrypted the data before writing to the event stream and has pub‐
lished the key to a key management service (KMS). A consumer that wants to read
the data product must obtain access to the decryption keys from the KMS and then
apply them to each event read from the stream.

Figure 4-2. End-to-end encryption at work in a data product served as an event stream

A KMS provides you with a mechanism for safely creating, sharing, storing, and
rotating your keys. While you can get started without any formal self-service data
platform support, you’re most likely going to need to invest in streamlining this pro‐
cess if you end up using a lot of encryption.

You may not always need to encrypt the entire event—sometimes encrypting just the
sensitive fields is more than enough. Let’s take a look.

Field-Level Encryption
Field-level encryption offers the ability for a data product owner to encrypt specific
fields, so that only select consumers can access the data. Personally identifiable,
account, and financial information are common use cases for field-level encryption.
For example, when modeling a bank transfer, you may use field-level encryption on
the user and account fields, but leave the amount and datetime fields unencrypted.
Consumers with decryption permissions can access the decrypted information to set‐
tle account balances, while an analytical system without decryption permissions can
still track how much money is moving around during a period of time, all from the
same data product. Table 4-1 shows the encryption of the email, user, and account
fields of an event.

Data Security and Access Policies | 89

Table 4-1. Using field-level encryption to partially encrypt an event

Field name Original event Partially encrypted event
email adam@bellemare.com n2Zl@p987NhB4.L0P

user abellemare 9ajkpZp2kH

account VD8675309 0PlwW81Mx

amount $777.77 $777.77

datetime 2022-02-22:22:22:22 2022-02-22:22:22:22

You may also choose to use format-preserving encryption to maintain the format of
the event data. In this case, we used format-preserving encryption for the email,
user, and account fields—the same alphanumeric characters, spacing, and character
count of the original fields, but without exposing any of the PII to users without
decryption permissions.

One of the advantages of using field-level encryption is that it per‐
mits finer-grained access controls for consumers. Your consumers
can request decryption keys only for the data they need, instead of
for the entire payload, reducing the potential for inadvertently
leaked information.

Format-preserving encryption is particularly useful for applying encryption to data
after the fact because you don’t need to renegotiate the schemas with downstream
consumers. In contrast, using nonformat preserving encryption often results in mal‐
formation, such as converting a long bank account ID into a 64-character string or
encrypting a complex nested object into an array of hashed bytes.

Encryption of sensitive data, whether end-to-end or field-level, can also help us with
another significant governance requirement: the right to be forgotten and have our
data deleted.

Data Privacy, the Right to Be Forgotten, and Crypto-Shredding
General Data Protection Regulation (GDPR) is (among other things) a law requiring
the careful handling, storage, and deletion of data. It is an excellent example of a legal
constraint that your organization may need to adhere to in order to stay on the right
side of the law. And if you’re looking to create a data mesh of useful data products, it’s
very likely you’re going to end up dealing with personal, account, and financial infor‐
mation that may require you to take extra steps and precautions to secure.

90 | Chapter 4: Federated Governance

mailto:adam@bellemare.com
https://oreil.ly/mW7fs

Article 17 of the GDPR requires that individuals have the ability to request that all of
their personal data be deleted, without undue delay. At first glance this stipulation
may appear to be directly in opposition to the tenets of a data mesh: publishing well-
defined data products for other teams and services to use as they see fit. Event-driven
data products may seem to further exacerbate the issue, as consumers read the data
into their own local data stores and caches.

Crypto-shredding is a technique you can use to ensure that data is made unusable by
overwriting or deleting the encryption keys. In short, you allow the end user full con‐
trol over when they want to delete their keys, making their data cryptographically
unavailable once the keys are deleted. You can use crypto-shredding with any form of
encryption, including end-to-end and field-level.

Meanwhile, the consumers of the encrypted data products simply contact the central
KMS and request access to the decryption keys. Provided the consumer has the cor‐
rect permissions, the decryption keys are passed back to them and they can then
decrypt and process the data as needed.

Why do it this way? Can’t we simply sort through the data in the data product and
just delete it outright? Wouldn’t that be far safer?

Deleting data product data remains a reasonable choice; however, there are several
complications that make encryption and crypto-shredding an important
consideration:

Large amounts of data
Large amounts of data may be stored in backups, tape drives, cold cloud storage,
and other expensive and slow-to-access mediums. It can be very expensive and
extremely time-consuming to read in all of the historical data, selectively delete
records, and then write it back to storage. Crypto-shredding enables you to avoid
having to search through every single piece of old data in your organization.

Partially encrypted data is still useful
Deleting just a user’s PII is often sufficient for meeting the GDPR Article 17
requirements. The remaining data in the event may still be of use for certain con‐
sumer use cases, like building up analytical aggregations. We can leave the
remaining data in place and still obtain limited benefit from it.

Data across multiple systems
Deleting the decryption keys simultaneously invalidates all data access across all
consumer services. We don’t need to worry about when the data is deleted, espe‐
cially for systems that are slow to delete their data.

Data Security and Access Policies | 91

https://oreil.ly/d3620
https://oreil.ly/HtQOC

Further defense in depth
Crypto-shredding provides an additional layer of security for preventing data
security incidents. Leaking encrypted data is far less damaging than leaking
unencrypted data and helps reduce both the risk and the impact of a data security
breach.

Crypto-shredding doesn’t protect you from consumers who negligently store decryp‐
ted data or the decryption keys. You can counter this by ensuring that consumers
have clear and simple infosec policies to follow, such as retaining the decryption keys
for only 10 minutes, prior to deleting them and having to request them from the
KMS again. You can also use the access-control list to keep track of which services
request access for data decryption, so that your infosec team can audit them for
compliance.

The rules and regulations for securing and handling data are a major component of
the governance team’s responsibilities. These concerns are fundamental to the viabil‐
ity and survival of an organization and cannot be left up to individual data product
owners to implement ad hoc. Ensure that you and your federated governance team
have a solid understanding of the legal and business requirements for handling your
data so that you can guide the security requirements of the self-service data platform.

The next related component is data product lineage. While access controls and
encryption help with meeting legal data handling requirements, it’s important to
know all of the upstream and downstream dependencies of a data product. Let’s take
a closer look at lineage to see how it can improve our data mesh.

Data Product Lineage
Lineage allows us to track which services are reading and writing a data product,
including if the consumer client is actively reading the stream. Basic read/write per‐
missions, along with client identities, provide us with a pretty good picture that we
can use to track dependencies and lineage. We can determine which systems and
users do or do not have access to sensitive data, as well as the routes and paths that
data takes as it travels from one client and product to the next.

For an event-driven data mesh backed by open source Apache Kafka, the access con‐
trols are established at the event broker itself. Many SaaS providers also provide
higher-order functionality in the form of role-based access controls (RBAC), letting
you compose roles based on rules and personas. In either case, permissions are essen‐
tial for keeping track of and constructing lineages.

There are two main types of data lineage to consider for your own implementations.
The first is topology-based lineage, which shows dependencies between services and

92 | Chapter 4: Federated Governance

data products at a point in time. The second is record-based lineage, which tracks the
propagation of a record through services. Let’s take a look at each in turn.

Topology-Based Lineage
Topology-based lineage shows the dependencies between data products and their
consumers as a graph, with arrows pointing from the data product to the registered
consumers. New data products show up as nodes on the graph, as do data product
consumers. The graph may show which clients are actively consuming events, at what
rate, if they’re up to date, or if they’re replaying historical data. It’s also possible to add
service and data product information and metadata to the topology, providing an
alternate mode of discovery for your prospective data mesh users.

Topology-based lineage is relatively easy to obtain given that permissions and client
identities are already essential for infosec and are frankly just good practices all
around. You could even build your own by dumping your client identities and per‐
missions into a file and reconstructing them into a graph using the graph framework
of your choice.

A significant majority of lineage tools today focus on topology-based lineage, usually
with an attractive and interactive graph that you can click on to see additional infor‐
mation, such as upstream and downstream dependencies. While many can give you
only the topology as it is right now, others have started rolling out point-in-time line‐
age, where you can examine and download the lineage at a specific point in time.

Topology-based lineage is useful for tracking which consumers have accessed which
data products. In the event of erroneous data in a product, you can also detect which
downstream consumers may have been affected so that compensatory actions can
begin. Finally, a data product owner can simply consult the lineage graph to see who
is consuming its data products to coordinate with them on upcoming changes.

Record-Based Lineage
Record-based lineage focuses on tracking a single record through its history, record‐
ing everywhere it goes, which systems process it, and any derivative events that it may
be related to. Record-based lineage should provide an auditor with a comprehensive
history of the event’s life cycle, such that further investigation is possible. Record-
based lineage is far more complex to implement because there are many corner cases
to consider. Record-based lineage can be used in conjunction with topology-based
lineage, though it tends to be the less commonly implemented of the two.

One simple implementation option is to record an event’s progress through its jour‐
ney from data product to consumer. At each stage of its journey, a unique service ID,
processing time, and any other necessary metadata is attached to the record, usually

Data Product Lineage | 93

in the header. However, record-based lineage tends to be much more difficult to
achieve at scale, as there are several major complicating factors:

Multiple consumers of the same events
A record can be consumed by many different users, resulting in multiple copies
of the same event, each with its own lineage.

Not all consumers emit events
Some consumers do not emit events and may instead serve up access to data via a
REST API. They would need to take additional steps to create a log of which
records they have ingested and ensure that the data is made available for query.

Aggregating and joining events
An aggregation can be composed of a large number of events, making it imprac‐
tical to track all of the records associated with its composition. The same is true
for joins, though in practice joins tend to only span a small quantity of events.

Complex transformations
Consumers can have fairly complex use cases where input events simply do not
map easily to outputs.

An alternative to storing record lineage in the record is to instead use an external
database. Each service must report to the endpoint the events that it has consumed,
processed, and emitted. This option does make it easier to track record usage when
multiple services have consumed and used the data product, including those where
new events are not emitted after use.

However, it does not solve the issues relating to joins, aggregations, and complex
transformations, leaving a potential gap in record-level lineage. Furthermore, you will
also need to invest in client tooling that automatically reports each record’s status to
the central service, including accounting for scaling, outages, and client language
support.

It’s important that you consider why you want lineage and what problems it’s meant
to help solve. There is no one-size-fits-all solution to lineage. A bank will have far
greater lineage requirements than a store that sells socks, so you’ll need to ensure that
your governance team has a good idea about its own organization’s true require‐
ments. There are lineage solutions that can conceivably solve the issues that we’ve dis‐
cussed in this section, but they require time and effort to accomplish—time and effort
that may be best spent elsewhere.

If you don’t have a good understanding of what problems your lineage solution is
meant to solve, you run the risk of building something completely irrelevant. You
must figure out what audits you need and what the risks to your systems are, and
then come up with a detailed proposal for how a lineage solution can help you meet
your needs.

94 | Chapter 4: Federated Governance

Summary
Federated governance covers a large territory.

Data mesh requires a governance team to help bring order to the varied technologies,
domains, data models, and use cases of the organization. Governing is an intensely
social commitment to work together with your peers and come up with effective sol‐
utions for the hurdles of implementing data mesh. As part of the governance team,
you’ll focus on identifying common standards, frameworks, languages, and tools to
help support data mesh use cases.

The governance team works together with technical domain experts to identify areas
of improvement in the self-service platform. If you want everyone in your organiza‐
tion to adhere to data encryption policies, it’s far easier to ensure that they’re integra‐
ted into the data product platform by default and not left up to each team to
implement for themselves. Similarly, the governance team makes sure that those who
use the data mesh are heard, their complaints are addressed, and success stories are
shared and exemplified.

Federated governance is also about tracking data usage, ensuring it adheres to legal
requirements and good infosec practices. You will need strong access controls to
ensure you know which systems and people have access to which data, but you’ll need
to balance it against making sure that your teams can get access to most data when
they need it. Data may also need to be encrypted, either partially or fully, and may
also need to be archived indefinitely, again depending on your data handling
requirements.

Finally, governance is also about providing direction for the implementation of the
self-service platform. The governance team, in conjunction with its technical experts,
should codify and streamline the self-service platform functionality, such that it’s easy
for users to do the right thing and hard for them to do the wrong thing. We’ll take a
look at this more in the next chapter.

Summary | 95

CHAPTER 5

Self-Service Data Platform

A self-service data platform makes it easy to discover, use, publish, manage, and
secure data and data products for all mesh users. We’ve already introduced some of
the components that go into making this platform: the event broker for serving event
streams, a metadata store for tracking essential metadata, and access controls for
managing data product access. In this chapter, we’ll cover the features of a self-service
platform beginning with minimalism and ending with ideal.

There are a few important overarching questions yet to be addressed: How do pro‐
spective consumers discover available data products? Once discovered, how do they
plug them into their existing applications and analytics? How do they build new
applications on top of the data products? Similarly, what does the workflow for a data
product publisher look like? How do they go about managing their data products and
actually communicating with their customers? The self-service platform must pro‐
vide a streamlined solution for each of these questions.

The self-service data platform consists partially of components that are already in use
in your organization and partially of components that you’ll need to build or buy. For
example, you may already have a metadata catalog that tracks important data sets that
you can also use for tracking data product metadata. You may be deploying applica‐
tions using Docker images, running them on Kubernetes, and monitoring them with
a cloud-based monitoring service. But you may be lacking the stream-processing
frameworks, connector systems, and workflow standardization to get a data mesh up
and running. Precisely what you have and what you’re lacking will vary from what
others have, so it’s best to focus on the central needs to identify what to work on.

At its core, the data mesh self-service platform is simply glue code that binds together
the individual components and subplatforms that your organization uses. It stream‐
lines the processes your teams, people, and services use to make data mesh into a
reality. While I realize that this description may be a bit amorphous, the reality is that

97

every organization’s data mesh is heavily influenced by the existing systems, pro‐
cesses, governance, people, teams, and technologies already at play. Your self-service
platform will be unique to your organization, but it will share some common themes
that we’ll cover in this chapter: identity, discovery, authentication, authorization,
management, communication, and computation.

In this chapter, we’ll cover all of the important features that a data mesh self-service
platform should have—and we’re going to be very pragmatic about it. The most
important thing about building a data mesh is that you get short-term benefit to test,
try, and reiterate what works and what doesn’t. For this purpose, we’re going to split
up our approach to data mesh into a three-level maturity model that focuses on itera‐
tively building and improving self-service functions while still deriving real business
value.

The Self-Service Platform Maturity Model
There are three main maturity levels for the self-service platform.

A colleague of mine has often referred to building the self-service platform as “build‐
ing the airplane while you’re flying it,” and for good reason: as with most things in the
software space, we want to get this up and running as a minimum project so we can
start getting value from it:

Level 1: The minimal viable platform (MVP)
Defines the minimum required investment to have a passably functional plat‐
form. This model will help you obtain immediate value from available data prod‐
ucts while also providing an opportunity to garner feedback and plan iterative
improvements.

Level 2: The expanded platform (EP)
Defines a much more robust and production-capable self-service platform, reme‐
diating many of the shortcomings of the MVP. Data mesh user operations are far
more streamlined and integrated into the platform, such that room for manual
error is substantially reduced.

Level 3: The mature platform (MP)
Defines the fully developed and integrated platform. Users can easily discover,
publish, manage, evolve, and remove data products. Data products can effort‐
lessly power both operational and analytical applications.

These maturity levels are not gospel, and you don’t need to accomplish everything at
one level before you move to the next. The construction and evolution of your own
platform will look similar to what’s outlined in this chapter, but will vary according to
your starting position, the needs of your business, and your unique governance
requirements.

98 | Chapter 5: Self-Service Data Platform

In the following sections, we’ll take a look at each of these levels in greater detail.
We’ll evaluate the platform levels, identify strengths and shortcomings, and discuss
how to incrementally resolve the deficiencies.

As you source feedback and observe use cases, you’ll discover the areas that need
more investment that will lead you from one level to the next. Focus on getting incre‐
mental value, and ensure that the features you’re adding are indeed solving the use
case problems that people have. A data mesh self-service platform needs to be only as
complicated as you make it—so what’s the minimum that you can get away with? Let’s
find out.

Level 1: The Minimal Viable Platform
The MVP is meant to act as a starting point for your data mesh journey. The MVP is
not an ideal implementation by any means—it contains just enough functionality to
implement the core data mesh principles and provides a quick and dirty yet strong
base for your users to gain practical experience.

The four main components in the MVP include an event broker, a schema registry, a
metadata catalog, and a connector service. Event broker selection was covered in
“Selecting an Event Broker” on page 67, and for the purposes of this chapter we’re
going to consider using Kafka as our broker of choice.

Let’s take a look at the remaining three components in turn.

The Schema Registry
An event schema definition details the names, types, ranges, mandatory fields, default
values, and documentation of an event, much like a table schema details the data for a
relational database table. Chapter 6 will cover schemas in far more detail, but for the
purposes of this chapter, you can think of a schema as a strongly typed data definition
that gives both the producer and the consumer of the data a common protocol.
Example 5-1 shows a simplified Person Protobuf schema that details the id, name,
and height of a Person object, published to an event stream.

Example 5-1. Simplified Person Protobuf schema definition

message Person {
 int32 id = 1;
 string name = 2;
 int32 height = 3;
}

Level 1: The Minimal Viable Platform | 99

https://oreil.ly/y-TRW

The schema registry is a repository of event schema definitions that maps each
schema to the event stream that it belongs to. It acts as a gatekeeping component by
preventing events that do not adhere to the registered schema from entering an event
stream, ensuring strict data quality. It also provides users an API to look up an event
stream’s schemas as part of the process for choosing the data product best suited for
their use. We’ll cover the schema registry more thoroughly in “The Role of the
Schema Registry” on page 143. For now it’s sufficient to think of the schema registry
as both a gatekeeping component and one that provides an easy way to look up the
event-stream data product schema.

Confluent provides a commonly used and simple to integrate open source schema
registry for Kafka that provides all of this functionality out of the box. As we dis‐
cussed back in “Selecting an Event Broker” on page 67, easy and free access to
community-built tools and services makes implementing and maintaining a data
mesh much easier, versus building and maintaining your own tools in house.

Next, let’s look at the metadata catalog.

An Extremely Basic Metadata Catalog
The metadata catalog of our MVP platform is a simple cloud-based spreadsheet. Reg‐
istering a data product is as simple as filling in the metadata of your event stream and
schema. Write permissions are restricted to data product owners and remain read-
only for everyone else in the organization. Alternatively, only team leads can have
access to modifying the spreadsheet, to avoid accidental mutations or deletions.

Table 5-1 shows an example of what a minimal basic spreadsheet could look like.

Table 5-1. An extremely basic metadata spreadsheet with headers

Name Topic Bootstrap URI Owner SLA Quality Schema URI Description
Sales gold_sales k1.brk.kek:9093 @bondolabs Tier 1 Gold ../gold_sales Canonical sales data,

including sanitized payment
types

Orders gold_orders k1.brk.kek:9093 @smahmood Tier 1 Gold ../gold_orders Canonical orders data,
excluding PII

Page
views

page_views x3.brk.uwu:
9093

@vsalamanca Tier 3 Bronze ../page_views Page view metrics piped in
from Google Analytics

Name indicates the data product name, while the combination of topic and bootstrap
Uniform Resource Identifier (URI) indicates how you could go about connecting to
the event stream, served by a Kafka broker. The owner indicates the Slack handle (or
email address) to communicate with the data product owner. SLA and Quality are
just two examples of the kinds of metadata made mandatory by the governance team,
as discussed previously in “Metadata Standards and Requirements” on page 77.

100 | Chapter 5: Self-Service Data Platform

https://oreil.ly/oIUsZ
https://oreil.ly/oIUsZ

Schema URI provides a link to the schema registry API that produces a human read‐
able page of the schema for that event stream. Finally, description offers a human
readable string of text describing the data product and explaining any context that
may otherwise be missing from the metadata.

A spreadsheet is a very easy and simple way to get started with communicating what
data products are available, where they’re located, their format, and who owns them.
You could also choose to use something like a relational database, but given that at
this stage of the product there’s no need for a programmatic API, a shared spread‐
sheet tends to be the absolute quickest way to get started.

Next, let’s take a look at the last component: connectors.

Connectors
Connectors allow you to easily source data from a database and write it into an event
stream. They also allow you to sink data, reading it from an event stream and writing
into a destination database. Individual connectors typically run on top of a dis‐
tributed connector framework, offering scalability, redundancy, and resource isola‐
tion. The connect framework generally comes as an add-on component for the event
broker, such as Kafka and Kafka Connect.

Connectors provide a rudimentary way to construct data products by enabling you to
extract data from a source database, transform it, and sink it to an event stream.
Kafka offers a whole host of connectors, enabling you to source data from MySQL,
Postgres, Oracle, MongoDB, Microsoft SQL Server, and DynamoDB (just to name a
few). Similar to source connectors, matching sink connectors provide an easy way to
take data in the event stream and write it to the database of your choice. You can also
write your own custom connectors to connect to less common or legacy systems that
don’t have readily available connectors.

Transformations are an essential part of selecting and modeling a data product and in
the subsequent, more mature platforms in this chapter we will evaluate some more
powerful options. But for our MVP, we can look at using the built-in transformation
components to remodel and select just the data we want from our source. Kafka’s sin‐
gle message transforms allow you to chain together out-of-the-box transformations
to filter, modify, and transform your data with minimal effort. Just as with custom
connector code, you can also implement your own custom transformations if none of
the existing ones suit your needs.

We’re going to talk more about bootstrapping data from existing systems using con‐
nectors later in Chapter 8. For now, let’s wrap up this MVP.

Level 1: The Minimal Viable Platform | 101

https://oreil.ly/XjvYZ
https://oreil.ly/7wddi
https://oreil.ly/7wddi

Level 1 Wrap-Up: How Does It Work?
Figure 5-1 illustrates the four main components of the MVP along with a basic regis‐
tration and usage workflow.

Figure 5-1. The minimal viable self-service platform for powering an event-driven data
mesh

The data product owner creates a source connector (1) and grants it read permissions
to a specific table in their team’s database. The connector starts up, reads the table
schema, and automatically creates a schema (2) to register with the schema registry.
Next, the connector incrementally reads the source table rows and converts it auto‐
matically into events that match the registered schema. The events are then written
into the event stream associated with that table (3).

The data product owner can then choose to register the event stream as a data prod‐
uct (4). Using their write-access permissions, they add the governance-required
metadata to the spreadsheet, tag themselves as the owner of that product, and com‐
plete any other mandatory fields. They also link the metadata in the spreadsheet to
the URL of the schema stored in the event broker (5). The schema registry is used not
only for serializing and deserializing events but also for data discovery purposes for
human users by answering the question “What is the format of data in this event
stream?”

102 | Chapter 5: Self-Service Data Platform

Finally, a prospective consumer can discover what data products are available in the
metadata spreadsheet and choose those necessary for their use case. Then they can
either create a new sink connector to write the data into their own database (6a), or
they can simply consume the data natively using a stream-processing framework like
Kafka Streams or Flink (6b).

The MVP self-service data platform makes it easy to get started with the practice of
data mesh without over-investing in tools, systems, or processes that you may not
need. You can begin practicing publishing data products, and arguing and negotiating
roles and responsibilities, metadata requirements, service levels, connection inter‐
faces, and schema types. You’ll get a taste for the social changes that data mesh brings
as well as identify the people and teams that are amenable to change and those who
are going to have a much more difficult time with it.

The most important thing when getting started with a self-service platform is to
internalize and practice the principle that “You aren’t gonna need it”. Build new func‐
tionality as you need it, guided by the pain points you and your teammates are expe‐
riencing. Express the issues you encounter to the federated governance team so that
together, you can come to a decision about the next set of features and improvements
to make to the self-service platform.

Focus on resolving a selection of major pain points when building
out your data mesh MVP. Then you can evangelize the successful
pain point resolution as a way to build trust in your data mesh plat‐
form and gather feedback from others who may have their own
adjoining pain points.

There are some deficiencies with the MVP that we will look at solving in the next sec‐
tion. First, since registration is a voluntary process, it’s possible that the metadata
spreadsheet doesn’t accurately represent what’s available. Second, there are no permis‐
sions—anyone can read or write to any event stream, which is bad practice. Third,
you can’t really tell who is using your data products. And fourth, there is no enforce‐
ment of security or data quality standards. We’ll look at resolving each of these issues
with further evolution of the self-service platform to Level 2 and Level 3.

Level 2: The Expanded Platform
The expanded platform (EP) addresses a number of the shortcomings of the MVP,
such as a lack of user and service identity, a lack of permissions, and a fairly low-
effort data catalog that doesn’t necessarily reflect reality.

It’s best to think about the EP as focused on two main outcomes. The first is to make
it easy for data product owners and prospective data product consumers to use the
data mesh. For data product owners, this means making it possible for them to

Level 2: The Expanded Platform | 103

https://oreil.ly/DRZcT

publish their event streams as data products, while for consumers it means making it
easy for them to find data products, register as consumers, and set up any connectors
they may need to pipe the data into their own service space.

The second main outcome is to implement basic service identity and controls. At a
minimum, services need unique identities for the assignment of permissions. Though
seemingly simple, we also must consider that the self-service platform will typically
span many subplatform components—code repositories, event brokers, and compute
resources, just to name three common inclusions.

The components and features of the extended platform include:

• Full-featured metadata catalog
• Data product management service and UI
• Service and user identities
• Basic access controls
• Stream processing for building data products

Start talking to your infrastructure and platform engineering peo‐
ple. You’re going to need to figure out how to leverage existing sys‐
tems and tools for usage in the data mesh self-service platform.
Your engineering team likely already has a process for building,
Dockerizing, testing, deploying, and monitoring applications.
Don’t reinvent the wheel—copy what they already have to build
and deploy data products and tweak it as needed.

First, let’s take a look at improving that shared spreadsheet “data catalog” with some‐
thing a bit more robust and useful.

Full-Featured Metadata Catalog
The first order of business is to replace the spreadsheet with a proper data catalog.

There are many options available for you to choose from. Popular open source soft‐
ware (OSS) projects include Apache Atlas and Amundsen, just to name two that I
have successfully used in data mesh implementations. While you could also model
and build your own data catalog using a relational database, these off-the-shelf, dedi‐
cated data catalog products include their own discovery UIs, well-formed APIs, and
publishing, searching, and modeling functions.

104 | Chapter 5: Self-Service Data Platform

https://oreil.ly/U_AlO
https://oreil.ly/2d42w

Some important features of a full-feature metadata catalog include:

Metadata modeling
Aside from data product metadata, you can create metadata for people, teams,
applications, event brokers, and connectors. You can also create metadata models
for the relationships between these elements, resulting in a traversable graph of
relationships.

Search functionality
A data catalog may also provide search functionality for you to query the meta‐
data entries. Depending on the data catalog you select, you may have availability
to SQL or SQL-like querying capabilities in addition to basic string matching.
Search functionality is an essential component in making the platform self-
service, so ensure you have evaluated the catalog’s capabilities before investing in
it.

Dependency identification through graph traversal
Identifying upstream and downstream dependencies via graph traversal is impor‐
tant for validating the integrity of your data mesh. For example, you could vali‐
date that all upstream data products and services meet a minimum service tier
when adding a new dependent data product or consumer application, such that
you don’t violate your own SLA. Similarly, you could use this same graph func‐
tionality to identify all existing consumers of your data, so that you could then
notify them of upcoming changes.

Data catalogs have a tendency to be chronically out of date, usually
because they’re treated like documentation—updated later, after the
fact, if someone remembers to do it. It’s essential for a data catalog
to be part of the operational workflow for creating, discovering,
and using data products, updated automatically as new products
are created, removed, and subscribed to.

Once you have selected a new full-featured data catalog, your next step is to ensure
that it’s properly integrated into your data product management workflow. You can
measure how successful you are in integrating your data catalog by the amount of
manual interaction required to keep it up to date, with zero manual interactions
being an indicator of success. Your data catalog should be populated and altered only
via the confines of the data product management service. We’ll look at this in more
detail in the next section.

Level 2: The Expanded Platform | 105

The Data Product Management Service and UI
The UI in the MVP is nonexistent. The data mesh user has to create their data prod‐
ucts, manually add them to the spreadsheet, and hope that others have followed the
same rules. It’s likely that someone will forgo filling out the mandatory metadata,
accidentally delete someone else’s entry, or simply not register the data product for‐
mally. After all, you can still use the data even if it’s not in the spreadsheet!

The easiest way to get a data product UI is to use a data catalog that already contains a
UI and search elements. Bonus points if it also contains a way to set fine-grained per‐
missions so that the majority of users have only read-only permissions (more on that
in the next section). However, if you decide to craft your own UI, you’re going to
need to think about how your consumers can browse and search available data prod‐
ucts as well as manage their own. The basic operations that it must support include:

Browse data products
Users will need to browse through existing data products to see what’s available.
Figure 5-2 shows a sample of what the UI could look like, including the name, a
description, and some metadata-related information. Clicking on a data product
would provide you with more information about the product.

Figure 5-2. A data product browsing UI, including domain information, registered
consumer list, and metadata

View data product information
Each data product should have a detailed page that showcases the full range of
data, including owners, description, schema, digital location, and any other
information your governance team deems relevant. Figure 5-3 shows informa‐
tion that you could expect to see when viewing a data product. Note that there
are some buttons that enable self-service actions, including messaging existing
consumers, messaging the data product owner, and requesting registration as a
consumer.

106 | Chapter 5: Self-Service Data Platform

Figure 5-3. Data product information viewable to data mesh users

Search portal
The search engine enables queries of metadata, schemas, descriptions, and docu‐
mentation. Figure 5-4 shows a sample search interface where the user specifies
both keywords and fields to search. You may also choose to expose the search
API for your data catalog directly as a lower-effort option—just provide some
query examples to ensure that your consumers can figure out how to use it.

Figure 5-4. A search UI for searching through data products

Level 2: The Expanded Platform | 107

The ability to self-register as a new consumer is a good acid test for
self-service capabilities because it requires integration between the
user’s identity, application service accounts, and event-stream read/
write access controls.

Data product management remains a second major requirement of a self-service plat‐
form. Users must be able to identify streams that they could publish, register them as
data products, and deprecate any data products that are no longer needed:

Identify candidate data products
The system must provide the user with a list of event streams that they could reg‐
ister. Semantically, these are streams that fall within the domains that the user
belongs to or otherwise has some form of jurisdiction over. One simple option is
to allow only the user who created the event stream to register it as a data prod‐
uct. A more advanced option consists of integration with the event broker’s user
and organization accounts (covered next in “Service and User Identities” on page
110), such that only users belonging to the team or group that own the stream
can manage it.

Register a data product
Once the data product owner identifies an event stream they want to publish as a
data product, they can ideally click a big Register button to start the registration
process. They should then be prompted for the mandatory metadata as specified
by federated governance, such as Name, Owner, SLA, Quality, and Description.
Additional properties should automatically be pulled in, such as the underlying
stream name, event broker address, schema, and metadata pertaining to permis‐
sions and access controls.

Deprecate and deregister a data product
Eventually a data product may need to be removed. Deprecation would lock the
data product down so that only existing consumers could continue to use it,
while simultaneously marking it as deprecated and concealing it from search
results. The data product owner is then responsible for providing a deprecation
plan for its current users, including a migration plan and a timeline for when the
work must be completed. You should ensure that only deprecated data products
with zero existing registered consumers can be deleted, to prevent accidental
deletion of system-critical data products.

Figure 5-5 is an example of what a management UI may look like. Starting from the
top, you can see both the domain and user logged into the console. Under the
“Unregistered streams” header are possible candidates for publishing as a data
product—there is currently only one, the stream named Ecom.Orders.USA. These
streams are shown to only the active user because they’re associated with the owner‐
ship of this stream. Finally, the two currently registered data products are shown

108 | Chapter 5: Self-Service Data Platform

under the “Registered data products” header, including all of the mandatory metadata
as well as several controls for viewing, updating, and deprecating them.

Figure 5-5. A management UI for registering and unregistering data products

The data product management UI provides the main hub for browsing, discovering,
managing, registering, deprecating, and removing data products in the data mesh. A
word of advice when building out your data management service—begin by focusing
on data product consumer needs, such as discovery, because both current and pro‐
spective consumers will make up the largest segment of self-service platform users. If
your process for registering data products remains a bit hacky, that’s okay, as you’ll be
far more often using and discovering them than you will be publishing new ones.

In the next section we’ll answer: how do we know who owns a data product? Or what
service may be requesting access?

Level 2: The Expanded Platform | 109

Service and User Identities
Identification is an important component for managing and tracking access to data in
a data mesh. For a data product, it’s important to know who the owner is and which
services are using it. Similarly, it’s also important to know the upstream dependencies
of the data product itself. Identity forms the foundation of data product ownership as
well as streamlining publishing controls, access requests, and dependency tracking, as
we shall see later in this section. But first, here are a few concepts that we’ll be revisit‐
ing in the next few sections:

Principal
A principal is a unique string that identifies a user or a service. For example,
Google uses an email address as the service account principal, whereas a Secure
Sockets Layer (SSL) certificate principal following RFC1779 looks like CN=Common
Name,O=Organization,L=Location,ST=State,C=Country. Regardless of the for‐
mat, uniqueness and association with the service or user is essential.

User account
A user account represents a human user. These types of accounts are commonly
used to log into systems and access resources assigned to the user.

Organization account
An account representing an organization. For example, GitHub provides organi‐
zation accounts as a means of assigning ownership of projects, repositories, and
packages to a group instead of an individual user. Both Confluent Cloud and
Google Cloud also have their own versions of organization accounts, allowing for
additional organization of users, services, and other resources.

Service account
An account created specifically to represent a service. Applications use service
accounts to access resources, connect to APIs, and access event streams. Each
data product is assigned a service account for both the application that creates
the data product and the event stream that stores the data.

Creating a self-service platform requires facing the challenge of unifying multiple ser‐
vice accounts and user accounts from the underlying subplatforms.

Figure 5-6 shows a sample of just three subplatforms that you may choose to use in
building your data mesh: GitHub/GitLab, Google Cloud, and Confluent Cloud. Each
of these has its own set of user accounts and organization accounts as well as service
accounts for both Google and Confluent. The result is that each service (cloud or
otherwise) ends up with its own set of accounts for users and services as well as simi‐
lar yet different ways of managing resources, permissions, and memberships.

110 | Chapter 5: Self-Service Data Platform

https://oreil.ly/Ywsit
https://oreil.ly/u5thv
https://oreil.ly/u5thv
https://oreil.ly/MicMJ
https://oreil.ly/MicMJ
https://oreil.ly/SR9Ll
https://oreil.ly/cmICP

Figure 5-6. Managing separate accounts and resources for each subplatform in the data
mesh is a challenging affair

The Sales data product resides in the SalesDP repository as part of the BrawndoLabs
organization. The project is then compiled and deployed within Google Cloud using,
for example, the Kubernetes platform. The Kubernetes pod that hosts the data prod‐
uct application code runs under the sales-dp@brawndolabs.gcp Kubernetes-specific
service account. Additionally, the code within the Sales data product needs to have
its own set of credentials to access the sales-dp.cc Confluent Cloud service account
so that it can successfully write data to its event stream.

One of the most challenging parts of building a data mesh is inte‐
grating the various identity mechanisms, user accounts, service
accounts, and organizations into an streamlined self-service solu‐
tion. The more technologies, platforms, and service types you try
to support, the more complex and challenging your experience will
be.

For the EP solution, ensure that you have created and are using user accounts, service
accounts, and organizations. Services should have a 1:1 mapping to a service account.
Users should be mapped to organizations that allow them appropriate access to only
the data products and services that they are involved with. Let’s take a look at what
basic access controls entail.

Level 2: The Expanded Platform | 111

https://oreil.ly/5GC6y
https://oreil.ly/5GC6y

Basic Access Controls
Access controls are predicated on the implementation of service and user identities
within your data mesh. Just as each subplatform has its own concept and boundary
for its identities, so too does each platform have its own means of controlling access
and granting permissions. Figure 5-7 shows a small sample set of the types of user
and service access controls you’ll have to account for, in continuation of the GitHub/
GitLab, Google Cloud (GCP), and Confluent Cloud example.

Figure 5-7. Each subplatform has its own set of permissions related to its own user and
service identities

Access keys are a common way to grant permissions to both user and service
accounts. An administrator generates an access key and secret key that effectively act
as a username and a password, fulfilling the identity needs.

Next, the administrator grants permissions for each access key assigned to a service
account, within its respective platform. In the case of the GitHub, GCP, and Conflu‐
ent Cloud example, a user needs to be granted access to push commits to GitHub and
compile and deploy it into a Kubernetes application in GCP. Meanwhile, the service

112 | Chapter 5: Self-Service Data Platform

accounts associated with the application need certain Kubernetes and GCP API per‐
missions to run the application, as well as Confluent Cloud permissions to create the
topic, write the events, update the schema, and update any other metadata.

While it may be a bit tedious to have a human involved in assigning and managing
service accounts and permissions, at this stage of the data mesh evolution it’s still
your best option. You should aim to keep your processes flexible, with low overhead.
For example, simply open up a work ticket, assign it to the administrator, and then
give them a friendly heads up in your company’s channel-based instant messaging
application.

Hi Seedle!

Can you please add the following Kafka permissions to our microservice?

service name: ShippableOrdersResolver

topic name: Shopping.Orders.v1
permissions: read, describe

topic name: Shopping.Payments.v2
permissions: read, describe

topic name: Sales.ShippableOrders.v1
permissions: write, describe

Thanks!

A ticket will give you a minimum amount of auditing as to who requested the per‐
missions, who granted them, and when this occurred. You also get to dodge the prob‐
lem of having to fully automate the orchestration of permission management between
all the subplatforms within your self-service platform. That can wait until later, when
you have a better understanding of your data mesh technology stack and user needs.

But now, let’s get back to talking about these secret keys. While you can save them
locally to your own system for personal usage (security risks aside), it’s unfortunately
not quite so easy for containerized applications. Instead, we can store the keys in a
purpose-built secrets store—for example AWS KMS, Google KMS, or any other key
management store that suits your cloud provider requirements.

Once your keys are generated and safely stored in a KMS, the next step is to integrate
them with your containerized applications. One common mode is to inject the secrets
into your containers at runtime, such that no other system can see or view them.
However, this requires careful setup and configuration and runs the risk of inadver‐
tently leaking secrets.

Level 2: The Expanded Platform | 113

https://oreil.ly/sCdZb
https://oreil.ly/S1cER

There are many security risks to using secrets as your main mode
of authentication and access control, especially when it comes to
storing them and properly restricting access. I recommend you
pick up a book on modern services security to learn about the new
best practices, as they are all far beyond the scope of this book.

Access keys are just one way of managing permissions; we’ll explore a more robust
option in Level 3. Since permissions are so closely linked to identity, it is difficult to
get a simple view of the end-to-end permissions when crossing multiple sub-
platforms and services. I won’t paint a rosy picture of this step—it is difficult to
orchestrate and streamline the permissions and identities of multiple platforms
together into a single unified identity system.

You can let users freely register their services as event-stream con‐
sumers without requiring security checks, unless the stream con‐
tains PII, financial, or other sensitive data. If permissions are
required, you can either have the consumer issue a work request
ticket (human-in-the-loop) or have them run through an explicit
terms-and-conditions acknowledgment before access is granted.
Consult with your governance team about how you should
proceed.

Stream Processing for Building Data Products
For the MVP, we relied on connectors to do the bulk of the processing work for sim‐
ple stream transformations—things like masking sensitive information or converting
data from one format to another. But the reality is that you’re going to need more
powerful stream processors to build full-featured, event-driven data products. For
example, you’ll need to be able to maintain state and aggregate events to build
aggregate-aligned data products (see “The Three Data Product Alignment Types” on
page 33). You’ll also need to join streams together to make up consumer-aligned data
products, as data often comes from disparate parts of the business and needs to be
reconciled for many use cases.

Popular stream-processing frameworks include Kafka Streams, Apache Flink, and
Apache Spark Structured Streaming, to name a few. Each of these provide a wide
range of higher-order stream-processing functionality to build, use, and consume
event-driven data products and will be entirely suitable for your own data mesh
needs. Aside from figuring out the tech you want to use, you’re also going to need to
figure out how to run it and integrate it with your own application operations. Your
choice really comes down to “Do I manage it on my own?” or “Do I rely on a cloud
service provider to manage it for me?” The most important part is to make it easy for
your teammates to create, run, and manage code to build and use data products,
regardless of your technology choice.

114 | Chapter 5: Self-Service Data Platform

You do not necessarily need to use a stream-processing framework
to build an event-driven data product—a basic event-producing
application can work just fine. However, without an event-driven
processing framework, you will likely find it more difficult to use
event-stream data products, for tasks such as joining streams
together and building up complex event-driven state machines.

Running your own technology in house (or in your own cloud) is fairly self-
explanatory. There is an absolute metric ton of information on this topic, so I’ll leave
it up to you to figure out how you’d host a stream-processing framework on your
own. However, you should really look into cloud service providers to see what they
offer and how they can reduce your efforts to get a data mesh up and running. Cloud
service providers play an increasingly significant role in modern architectures, with
the most significant contributions revolving around reducing toil and overhead for
getting things done.

Stream processors can be both quite powerful and complex to run. As an example,
Apache Spark Notebook has been a common way to perform big data analytics work
for many years now; analysts simply write the code into a notebook and deploy it
as is—just like a containerized application. One of the earliest value propositions
undertaken by Databricks (founded by the creators of Apache Spark) was to reduce
the toil of managing a Spark cluster and deploying the data processing applications.
Instead, the focus is on making it easy for users to write, test, deploy, and monitor
notebooks—the very same properties that we want in our own event-driven data
mesh.

In the event-driven world, we run into a number of other issues: not only do we need
the stream-processing framework, we also need to run the event broker that hosts
and serves all of the streams. A cloud service provider like Confluent not only elimi‐
nates all of the stream-processing overhead, but also takes care of all of the event
broker and data storage scaling, as well as provides a data catalog, managed connec‐
tors, identity management, and access controls.

Hosted stream processing lets you create persistent streaming queries that restruc‐
ture, join, aggregate, and remodel events, letting you create new data products from
other streams. You simply write the code, kick off the job, and the cloud service takes
care of the rest—scaling it up and down as the load changes and restoring it in the
case of a fault or exception.

There are, of course, many other cloud service providers that offer a wide range of
alternative technologies and features. You’ll need to figure out which ones work best
for you based on your own organization’s needs.

Cloud computing jump-starts your journey into data mesh. Instead of focusing on
hosting, monitoring, and tuning commonly used technology, you simply outsource it

Level 2: The Expanded Platform | 115

all and focus on deriving value from the data itself, building the data products, and
learning to use the cloud platform. You’ll get feedback on what works and what
doesn’t far sooner, and you can switch technology selections if you find your initial
choices unsuitable, without having invested heavily in infrastructure and operations.
Your main goal should be to try things out to find what works before overinvesting.
You can always optimize later; at this point, you’re trying to find what works and
what doesn’t. Cloud computing makes this a far easier task.

That’s it for Level 2. Let’s take a look at what we covered and how it’s all supposed to
work together.

Level 2 Wrap-Up: How Does It Work?
The EP seeks to address the deficits of the MVP pertaining to service and user iden‐
tity. It also provides the means for improved data product management and discov‐
ery, based on a full-featured data catalog.

The centralized data product management service and UI form the basis of the user-
facing controls. Users can discover published data products, view metadata, and
decide which data products they need for their own service’s use cases. The manage‐
ment service stitches together the event broker, metadata catalog, schema registry,
and subplatforms into a self-service experience. The self-service UI exemplifies the
consumer-focused aspect of building a data mesh: make it easy for users to find and
use data products.

However, the code and compute power that create data products remain outside the
scope of what we’ve covered so far. We’ve alluded to using services like GitHub, Con‐
fluent Cloud, and Kubernetes to store code, host event streams, and provide general-
purpose compute, respectively. But we haven’t integrated these into our full-fledged
self-service platform yet.

The self-service platform is also far from fully automated. Humans remain involved
in the day-to-day servicing of platform requests. Administrators manually manage
roles, accounts, and permissions for both services and humans.

Getting to Level 3 is fairly difficult, and like all things data mesh, should only be
attempted if you’re finding that the pain points of Level 2 exceed the investment costs
of the self-service platform. In the next section, we’ll investigate the features of the
fully mature platform.

Level 3: The Mature Platform
The mature platform (MP) is the culmination of stitching together identities, serv‐
ices, processes, and data products into a cohesive set of streamlined operations. It
leans heavily on implementing identities, access controls, and workflows spanning

116 | Chapter 5: Self-Service Data Platform

multiple services, platforms, and technologies. The MP focuses on reducing the man‐
ual steps and repetitive overhead encountered in the earlier self-service platforms and
on hardening and streamlining a select set of data mesh operations for daily
operations.

For example, creating a data product consumer application using Kafka Streams may
be a primary use case for your business. So you streamline the creation of the Git
repo, the Docker container and repository storage, the Kubernetes task, the testing,
compilation, and deployment pipeline, as well as the monitoring, permission assign‐
ment, and service ownership rights—all in a single button from the self-service UI. If
this sounds like a lot of work, well…it is! But as your data mesh needs grow, so too
will your need to streamline its use by investing in new functionality.

The MP is a target more than an actual destination. If you find that your simpler plat‐
form with less automation and streamlining works fine, then great! Keep on using it
until you find it’s not meeting your needs. Stitching together multiple services, cross-
platform identity management, teams, people, and systems into a centralized control
panel is pretty tough. Remember, there are entire cloud service providers who have
spent a ton of time trying to get this right. If you find it challenging, there’s a good
reason for it.

You’re most likely going to need to use an Infrastructure as Code
solution like Terraform to help manage the infrastructure compo‐
nents of your data mesh. Terraform is one of the leading infrastruc‐
ture management solutions and can integrate “stitching” operations
between many cloud providers, SaaS solutions, and platforms.

Efficiency is your largest gain from implementing the features of the mature platform.
It’ll be far easier for your average user to create, publish, manage, and consume data
products. You will encounter far fewer incidents and outages, data quality issues, and
end user-affecting data discrepancies. You can expect to see a substantial reduction in
the overhead for finding and using data, as discussed earlier in “Bad Data: The Costs
of Inaction” on page 17.

The components and features of the MP include:

• Authentication, identification, and access management
• Integration with existing application delivery processes
• Programmatic data product management API
• Monitoring and alerting
• Multiregion and multicloud data products

Level 3: The Mature Platform | 117

First, let’s take a look at standardizing identity and access management across the self-
service platform.

Authentication, Identification, and Access Management
Authentication and identification and access management (IAM) is an extensive area
in its own right, and we won’t be able to do it full justice in the confines of this chap‐
ter. Much of the work regarding authentication and IAM is related to stitching
together the various identities, roles, and permissions across each of the major infra‐
structural components in your platform. For example, Kubernetes, Apache Kafka,
and GitHub/GitLab each offer their own identity management system, but only
within the confines of their own service. Given that our data products consist of code,
data, and infrastructure, we’re going to need to find a way (like using Terraform) to
bridge the gaps and stitch together a unified identity experience.

But what is authentication, and what is authorization? Think about when you check
into a hotel. The front desk staff authenticates you by asking for your ID or your
booking code to make sure you are who you say you are. Next, they authorize you to
access your room by giving you a key card—the card works on only that room and
will expire when it’s time for you to check out. Both authorization and authentication
are essential for stitching together a data mesh, and these requirements are best fulfil‐
led using standard frameworks like OAuth2 and the accompanying OpenID Connect
(OIDC).

Fortunately, the roots of this problem have largely been solved over time. There are
best practices that we can follow and existing technologies that provide a good place
to start building your self-service platform.

OAuth2 is one of the leading industry protocols for authorization. As described in the
original Internet Engineering Task Force (IETF) specification, “The OAuth 2.0
authorization framework enables a third-party application to obtain limited access to
an HTTP service, either on behalf of a resource owner by orchestrating an approval
interaction between the resource owner and the HTTP service, or by allowing the
third-party application to obtain access on its own behalf.”

Kubernetes, GitHub, GitLab, and Apache Kafka each integrate and support OAuth2,
so you’ll be able to go quite a long way in unifying your authentication and authoriza‐
tion controls. OAuth2 is a fairly common standard, so you’ll most likely find it easy to
extend into the other cloud services and platforms that you’re already using.

An OAuth2 service provides authorization through the use of access tokens. When
one application wants to talk to another application, it first makes a request to the
OAuth2 server for an access token. The requesting application identifies itself to the
OAuth2 server and, depending on business rules and permissions, may obtain a

118 | Chapter 5: Self-Service Data Platform

https://oauth.net/2
https://oreil.ly/o8IAW
https://oreil.ly/EWXaa
https://oreil.ly/QKtVG

bearer token. The requesting application can then take that bearer token and present
it to the original application it initially wanted to connect to.

OIDC works hand-in-hand with OAuth2, making it possible to enable data sharing
between applications without directly sharing user and service credentials. OIDC
extends OAuth2 by focusing primarily on authentication rather than authorization.
Once an account is authenticated using OIDC, it then uses OAuth2 specifications for
authorization. OAuth2 helps alleviate the major issues inherent in dealing with multi‐
ple different services and frameworks in your data mesh and allows you to stitch
together a cohesive experience.

There are several major benefits of uniting under OAuth2. Your self-service users will
be able to:

• Declare and manage user and service accounts in a single place
• Rely on the OAuth2 standards and tools to integrate with your cloud service pro‐

vider platforms and applications
• Manage most permissions and access controls from a single location
• Enforce authentication and authorization as a mandatory step for building and

using data products

There are other technologies you could use to achieve similar ends; this is just one
option. For example, Security Assertion Markup Language (SAML) 1.0 was released
in 2002 and remains a commonly used alternative. In any case, the end goal remains
the same: unify and streamline identity management and access controls among peo‐
ple, systems, and data products.

Next, let’s take a look at how we want to be able to deliver and deploy data products.

Integration with Existing Application Delivery Processes
There’s a pretty good chance that you already have some sort of existing application
development and deployment pipeline. A useful and sustainable self-service data
platform should reuse as much of this existing pipeline as possible. A data product is
quite similar to any other application, is particularly similar to microservices, and
especially similar to event-driven microservices. In fact, if you were to look at them
side by side, you would probably have a hard time defining the difference between an
event-driven data product and an event-driven microservice: both use code, compute
resources, and memory, and bundle up their results as data served out into event
streams.

Because you’re likely to be making a number of data products, you’ll be running into
the same sort of overhead that one runs into when using microservices—the micro‐
service tax. Each new data product will need a Git repository and a build pipeline,

Level 3: The Mature Platform | 119

https://oreil.ly/QKtVG
https://oreil.ly/yXkok
https://oreil.ly/xS1kW

plus a way to containerize the compiled application, deploy it to compute resources
(such as via Kubernetes), scale it, monitor it, and update it.

However you have chosen to build your existing application delivery process, you’ll
need to evaluate how to leverage it to deploy your data products. If you have a mono‐
lithic tech stack with only a handful of custom-built and deployed services, you’ll
likely find this to be quite challenging. However, if you’re already running multiple
services with a relatively well-formed deployment and management process, you’re
likely to find this much easier.

In “Stream Processing for Building Data Products” on page 114 we looked at some
options for building and using data products using stream-processing frameworks,
and, in particular, we looked at using cloud services instead of hosting your own solu‐
tions. If you chose to follow the cloud route, you’ll likely be able to leverage their rec‐
ommended best practices for delivering data product applications into production.
You’ll find that many of the cloud providers make it easy to manage and deploy the
“code container” of their choice, be it Docker images, Notebooks, or persistent quer‐
ies. Regardless of where you may be, my advice to you remains the same: try to find a
cloud service provider that can offer you an easy way to build, test, store, deploy, and
run your data product code.

Programmatic Data Product Management API
The data product management UI is expanded to provide a programmatic API that
integrates with your identity authentication and authorization service. The goal of
this feature is to provide an API for automated management of data products, includ‐
ing publishing, updating, deprecating, and deleting. This API will likely be just an
expansion of the API powering the self-service UI, extended to provide API access to
whatever tools and services may choose to integrate with it. Outside of direct user-
facing use cases, other candidates for API usage include deployment pipelines, moni‐
toring systems, and auditing use cases.

Let’s avoid the painstaking details of an in-depth API spec and focus on the areas that
we need to support with this API:

Identity management
Streamlining the creation and management of both human user and service
account identities is essential for coordinating the assignment of resources and
permissions for all candidate data products.

Resource creation
All the resources required for creating a candidate data product can be created in
the form of an application. Resources include a service identity, a code repo,
build and deployment pipelines, Kubernetes resources, Kafka topics, schema reg‐

120 | Chapter 5: Self-Service Data Platform

istry subjects, and monitoring resources. The candidate data product will need to
be assigned a data product owner with relevant access permissions.

Permissions management
A human owner (or a team of owners) needs to be assigned as the owner upon
creating a candidate data product. The owner will have full control over the data
product operations, including publishing, granting read permissions for, updat‐
ing, deprecating, and deleting the data product. Permission management may
also require integration with infosec reviews and controls to ensure that data pol‐
icies are followed.

Publishing, deprecating, and deleting a data product
The three main stages of a data product’s life cycle include publishing as a formal
data product for others to use, deprecation to prevent new users from using it,
and deletion to remove all possible usage of the data. The federated governance
team will need to specify the requirements for moving between these states,
including if reversal of steps is possible (deletion → deprecation) and the mini‐
mum transition times between deprecation and deletion.

Updating a data product
A data product may be updated during its lifetime. Schema evolution for accom‐
modating consumer needs remains one of the most common changes to an
event-driven data product. Other updates include changes to the metadata, such
as a lowering of the SLA or changing the owner of the data product in case of a
staff departure. New tags may be added, existing tags may be removed, and new
infosec regulations based on legal requirements may come into effect, changing
the permission access model to the data product. Updates may affect both cur‐
rent and prospective consumers, so it’s a good idea to have a notification and
messaging system set up to enable communication.

The breaking changes process
Communicating an upcoming breaking change such as a major restructuring of
the data product requires established rules of engagement. A data product owner
needs to provide consumers with sufficient forewarning to give them time to
understand the impact, plan, and react. We’ll cover the breaking change process
extensively in “Negotiating a Breaking Schema Change” on page 140.

Messaging
Self-service platform users should be able to subscribe to granular notifications
about data products. The person or team that owns a service account registered
as a data product consumer should receive notifications when the data product is
updated. Ideally, the data product owner should send out notification of an
upcoming change to all consumers so they can investigate if it requires action on
their end. Other users may want to receive notifications when new data products

Level 3: The Mature Platform | 121

are published, deprecated, or deleted or when ownership of an existing data
product changes to a new person or team. You will most likely need your messag‐
ing API to integrate with the corporate instant messaging service (like Slack or
Microsoft Teams) or your corporate email server. Don’t create your own messag‐
ing system.

Search and discovery
Users must be able to search through the available data products, people, teams,
and services to see what’s going on in the data mesh. Search functionality can
usually be provided by the data catalog itself, though you’ll need to pass sufficient
information to the API users to ensure they know how to compose their queries.
Discovery is largely a function of a simplified search—simply return all of the
data products, people, teams, or services that meet my criteria.

The decisions you make regarding your API should be based on the needs of your
users but will initially be driven entirely from the requirements of the UI (“The Data
Product Management Service and UI” on page 106). You are likely to find that you
can reuse the same API for both the UI and other automation use cases, but may need
to evolve some of the functionality and standardize the interface. Again, evolve it
based on the needs of your users, and don’t invest more into it than your immediate
needs.

Monitoring and Alerting
Monitoring data products and alerting on abnormal behavior is part and parcel for
building a reliable data mesh. In “Metadata Standards and Requirements” on page 77
we assigned an SLA of a data product using a tiered system: Tier 1 means “Get out of
bed and fix it,” while Tier 4 means “It can wait until we have some free time.” Simi‐
larly, we assigned tiered quality ratings, ranging from bronze to gold. The exact defi‐
nitions of the ratings aren’t as important as ensuring that we can measure the quality
and the SLAs to make sure they are met.

There are two main components to meeting the SLAs: update frequency and the time
since the last event was written to the data product. The more frequent the writes, the
more likely there is a problem if updates suddenly stop. It’s important to have a good
understanding of the update frequency of the data product, since a data product may
be updated rapidly and then remain unchanged for many hours or days. Smart alert
services can train against historical patterns to come up with a custom alert, that
takes into account cyclical update patterns.

Meeting data quality requirements starts with well-defined schemas, as will be cov‐
ered in Chapter 6. Schemas provide strong typing and clear requirements for the data
product’s data model and prevent malformed data from getting into the event stream.
Data quality measurements can go beyond simple type checking, however, and can
include operations such as validating field contents (e.g., verifying that numeric val‐

122 | Chapter 5: Self-Service Data Platform

ues fall within a certain range, strings are properly formed, or data is falling within
the expected distributions). Some data products, such as those pertaining to financial
transactions, will likely require perfect data quality—any abnormality is a problem
and must raise an alert. Others, such as analytical aggregations, may be able to toler‐
ate unexpected values within a certain margin. Data quality metrics can be measured
by creating a purpose-built data product consumer that reads the stream, compares
each event to expected values, and reports any abnormal values to the monitoring
system.

Monitor your data products like any other application.You should make sure that the
application code that composes the data product is healthy and has sufficient
resources, that the event stream contains the expected data, and guard against quality
issues through both rigorous testing and direct data analysis.

Multiregion and Multicloud Data Products
A data mesh may be composed of multiple cloud services across multiple regions. For
example, you may have multiple Kafka clusters, multiple Kubernetes deployments,
and multiple cloud storage buckets. Scalability requirements typically play a signifi‐
cant role in adopting multiple infrastructure deployments, though data locality and
regional regulations are also important considerations. Data regarding business activ‐
ities that may be illegal in other countries (e.g., marijuana and alcohol sales) should
remain in the country of origin. Similarly, GDPR and data privacy laws tend to
require that data about citizens also remain in the country of origin.

Applying governance controls at the self-service platform level gives you a primary
point of control for what is and isn’t allowed. There are several factors to consider
when building out your own multicloud deployments:

Regional permission requirements
Federated governance plays an important role in determining the boundaries for
where data products can be accessed and copied to. For example, an application
running in the United States may be unable to access a data product because of
legal restrictions. Similarly, you may be unable to copy a data product from one
region to another based on data domiciling restrictions.

Streamlined data product replication
Setting up cross-cloud or cross-region data product replication can be challeng‐
ing. Not only will you need to replicate the data itself, but you’ll also need to
update the metadata to reflect the new dependencies, the new cloud information,
and also the ownership permissions (e.g., who owns the replication process
itself). For Kafka-backed event streams, you may choose to use the open source
MirrorMaker 2.0. If you want precise byte-for-byte replication, including offsets,
consumer groups, permissions, and schemas, you’ll want to look into something
more powerful, like Confluent Replicator.

Level 3: The Mature Platform | 123

https://oreil.ly/gH6cZ
https://oreil.ly/gH6cZ
https://oreil.ly/3gJoF

Augmented data product metadata
You could augment your metadata to include regional and cloud service provider
restrictions and permissions. For instance, you could restrict copying a data
product with encrypted PII outside of the eurozone to ensure you keep
compliance with GDPR. Data product processing would similarly need to remain
within deployments from the curated list of permitted cloud environments
(e.g.,can use Azure or GCP, but can’t use AWS).

Cloud service providers can make it easy for you to spin up a whole
dedicated environment that mirrors your production environment.
You could then replicate production-level data products to your
new environment and perform development, QA, or testing on real
production data products. Once complete, you simply delete the
environments.

Figure 5-8 illustrates a visual topology of the data product source, dedicated replica‐
tor applications, and the destination clusters.

Figure 5-8. Metadata showcasing the topology of multiregion data product replication

Exactly what and how you choose to replicate will vary depending on your organiza‐
tion’s needs. However, one key aspect that remains the same is the need to track what
is being replicated, who owns the replication, and where it is going. Track this

124 | Chapter 5: Self-Service Data Platform

information and these dependencies as part of your self-service platform’s metadata
entries.

Level 3 Wrap-Up: How Does It Work?
The main themes of the Level 3 platform consist of unified identity management and
streamlined data product operations. There is a lot of work to put in to reach this
point, and the investment should be driven only by need—not simply for the chal‐
lenge. Governance requirements pertaining to infosec and limiting access to sensitive
information remain the biggest driving force toward unified identity management,
authentication, and authorization. Widespread adoption of data products and event-
driven applications drive the streamlining of all of the overhead related to simply cre‐
ating data products and putting them to use.

Summary
The precise evolution of your self-service data platform will be unique to your orga‐
nization but will touch on all of the features listed in this chapter. You may find that
you implement a feature from Level 3 before you implement another from Level 2—
and that’s completely fine. The levels presented in this chapter are simply a coarse
guideline for how your platform may evolve over time.

The guiding light you should follow in creating a self-service platform is to focus on
the use cases of your platform users: the data product owners and the data product
consumers, be they data analysts, data scientists, application developers, or any other
job title. You want to focus on making it possible for your colleagues to serve their
own needs, without letting them do things that they shouldn’t (like delete someone
else’s data product).

As we covered in Level 1, the minimum self-service platform is actually quite small
and lean, without much in the way of guardrails for what you can or cannot do. How‐
ever, it’s an excellent starting point to kick-start the real discussions about how your
platform should change, separating what it must have from that which is nice to have,
and focusing the discussion on useful iterative improvements. You will make mistakes
as you build your platform. Errors will happen. But it is part of the development pro‐
cess to figure out how your unique composition of legacy systems, technology
choices, business needs, and teammates’ skill sets relate to your business use cases.

Focus on using off-the-shelf components whenever possible, and don’t reinvent the
wheel. Leverage cloud services whenever possible and avoid writing custom in-house
tools unless absolutely necessary. For example, use Kubernetes instead of writing your
own cloud-scale container management system. Use Apache Kafka instead of writing
your own event broker. Use OAuth2 instead of writing your own identity manage‐
ment service. Use Terraform to streamline the coordination of infrastructure and

Summary | 125

service resources among your various platform components. The whole point of the
self-service platform is to make it easy to access and use important business data, and
this must remain your guiding principle for focusing your efforts.

The last few chapters have focused heavily on the whys and hows of data mesh and
the critical role that event streams play. In the next chapter, we’ll focus on event sche‐
mas and how they’re essential for defining a common data contract between the data
product producer and the each of its consumers.

126 | Chapter 5: Self-Service Data Platform

CHAPTER 6

Event Schemas

A well-defined schema is essential for any data product. For events, the schema con‐
sists of an explicit declaration of the field names, types, defaults, and boundaries, pro‐
viding clarity into the contents of the data for both human and machine alike.
Schemas provide a clear and common understanding of the data for both the data
product producer and consumer. Schemas eliminate ambiguity, support both discov‐
ery and self-service, and reduce the risk of misunderstanding the data by those who
use it.

Schemas simplify data discovery and self-service. You can embed documentation
within the schema itself, keeping the data definition and the documentation tightly
coupled. Code generators, in conjunction with the schema, can generate classes and
objects suitable to the consumer’s programming language of choice. Similarly, event
generators can use the schema to generate events that match the definitions, provid‐
ing a mechanism to generate a wide range of test data for boundary conditions.

Schemas provide a framework for evolving data through time, though your options
for schema evolution depend on your technology selection. The main goal of using
schema evolution is to update and change data as new business requirements are
added and as domains shift and expand, without unduly affecting consumers of the
data product.

This chapter is a prescriptive and opinionated look at schemas for your event-driven
data mesh. There are many different schema technologies and many different ways to
communicate data between systems through events. However, some methods and
technologies are better than others—they’re more common, they’re more flexible, and
they also reflect the ways most businesses use and communicate events.

127

Before we get too far into schemas, let’s step back and get a better picture of how they
relate to making important business data available through data products. For this,
we’re going to need to take a look at how an event is created, serialized, and sent
across a network for storage in an event stream. We’ll also take a look at the reverse of
this process, where an event is consumed from an event stream, deserialized, and
processed by the consumer.

A Brief Introduction to Serialization and Deserialization
Serialization is the action of taking an event object with a well-defined schema and
converting it into a sequence of bytes. The representation in the producer’s memory
is serialized (converted) into a sequence of bytes such that it can be easily sent across
the network and written to the event stream. The schema provides the constraints for
ensuring that the data can be converted into a sequence of bytes. For example, a
schema that specifies that the field named length must be an Integer will throw an
exception when attempting to serialize with length set to a String value of "six
feet".

Figure 6-1 shows the producer workflow of converting a producer-language object
into a sequence of bytes that is then written to the event stream. Note that the schema
is attached to the serialized event, such that the consumer is provided with a copy for
deserialization. There are some tricks we can use to remove the need for sending a
schema with every event, which we’ll look at later in this chapter.

Figure 6-1. Producer serializing the event object into bytes and writing it to the event
stream

On the other end of the event stream, a consumer reverses this process and deserial‐
izes the byte sequence into an object. Figure 6-2 illustrates the process of consuming,
deserializing, and converting the data into a representation of the event that can be
processed by the consumer’s business logic code.

Schema technologies are an essential part of an event-driven data mesh, because they
underpin the contract of the data product with its consumers.

128 | Chapter 6: Event Schemas

Figure 6-2. A consumer reading from the event stream and deserializing the bytes back
into an event representation

What Is a Schema?
An event schema is synonymous with the definition of a database table: at a mini‐
mum, it specifies names, types, restrictions, and default values. Schemas ensure that
both the event data producer and all of its consumers have a shared common under‐
standing of the data. The schema, in conjunction with the event-stream API, forms
part of the API of the event stream. You can think of this as equivalent to a REST API
that serves JSON-encoded data—both have a communications protocol and both
return a well-formed payload of information:

Event stream API + event schema == REST API + json schema

The data product owner is responsible for creating and managing the event schema
definition, including conformance with any federated governance standards, such as
standard time formats and PII requirements. Prospective consumers and stakehold‐
ers provide feedback to schema proposals, often in the form of code review in this era
of remote work.

We’ll start this section with a simple Protobuf-powered example to illustrate some of
the more compelling reasons for using schemas. Let’s start with Example 6-1, which
showcases a schema for Person.

Example 6-1. Person schema with Protobuf

message Person {
 //The person's unique ID
 int32 id = 1;
 //The person's full legal name
 string name = 2;
 //Measured in centimeters, rounded to the nearest centimeter
 int32 height = 3;

 enum CountryCode {
 ABW = 0;
 AFG = 1;
 ...

What Is a Schema? | 129

https://oreil.ly/TctNo

 ZWE = 248;
 }
 //ISO3166-1-alpha-3 standard. AAA=OTHER
 CountryCode country = 4;
}

The event schema details the id, name, and height of a person, along with their ISO
3166 three-letter Latin-script country code. This schema forms part of the data con‐
tract between the producer and the consumer of the data. It is the common under‐
standing of how one party writes the data and the other party reads the data.

Figure 6-3 shows two clients: a Java producer that writes to the event stream and a
C++ consumer that reads the events out of the stream and into its own memory
space. The producer can use the Protobuf code generator for Java to automatically
create classes and client code for the Person schema. The consumer can similarly
generate its own structs and client code using the C++ code generator.

Figure 6-3. The producer to event stream to consumer workflow of an event serialized
with a schema

Both Avro and Protobuf have many code generators that support a
wide variety of languages. You can find support and code genera‐
tors for C++, C#, Dart, Go, Java, Kotlin, and Python, to name a few.

Example 6-2 shows a producer Java client with which we create a Person named
“Mackenzie Bellemare” and the associated properties. Next, we serialize the object
and write it to a file named ProtoPerson.data (We’re using a file as a placeholder for
the event broker client, simply to avoid bogging this example down with the proper
event-broker client produce, retry, and error-handling code).

130 | Chapter 6: Event Schemas

https://oreil.ly/yw581
https://oreil.ly/yw581
https://oreil.ly/lrssD
https://oreil.ly/7_OTW

Example 6-2. Using Java to populate a Person object, generated from the Protobuf
schema

Person mack = Person.newBuilder()
 .setId(4291)
 .setName("Mackenzie Bellemare")
 .setHeight(45)
 .setCountryCode("CAD")
 .build();
output = new FileOutputStream("ProtoPerson.data");
mack.writeTo(output);

The consumer reads the Person data from the file (i.e., the event), deserializes it using
the schema, and finally converts it into an object or structure native to the consumer’s
language. Example 6-3 shows a C++ consumer using the ParseFromIstream function
to convert the serialized bytes into a well-structured Person class object.

Example 6-3. Using C++ to parse the serialized Protobuf Person object

Person mack;
fstream input(argv[1],
 ios::in | ios::binary);
mack.ParseFromIstream(&input);

//mack is now populated with the id, name, and height received in the event
id = mack.id();
name = mack.name();
height = mack.height();
cc = mack.countryCode();

So what are the main benefits of this approach?

Standardized data contract
The schema forms the basis of understanding between the producer of the data
and all of its consumers, both now and in the future. The producer responsible
for producing data according to the schema and will be prevented from serializ‐
ing the object if the data is not in compliance. The consumers in turn can rely on
the schema to provide strongly defined types, names, documentation, and addi‐
tional information about the data. Maintaining a high standard of quality from
the moment the data is created is essential for a healthy data mesh.

Provides a foundation for discussion
Schemas give us the basis for tangible arguments over the content and form of
the data. Explicit schemas, in conjunction with pull request reviews, enable pro‐
ductive discussions over what should and should not be in an event, and if the
data product will solve the problems it’s meant to solve.

What Is a Schema? | 131

Code generation
Code generation lets the application operate on the events as objects in its native
language, handling the parsing, conversion, and object creation for you. It greatly
simplifies business logic by letting you write code against well-defined classes in
your programming language instead of against a map of generic object types.

Schema evolution
Your data contract will change over time. The best schema options provide a safe
path for schema evolution, including rules, restrictions, and safeguards that pre‐
vent you from inadvertently violating your data contract with your consumers.
Schema evolution is covered in more detail later in this chapter.

Test event generators
Event generators let you create data that matches your schemas, including spe‐
cific parameter constraints such as foreign-key and primary-key relationships.
You can use these events to test your event-driven service code and use it to pro‐
duce sample events for consumers to try in their services. Kafka Connect Data‐
gen is an example of such a generator, where you can specify constraints and
ranges on the data being generated. Example 6-4 shows a snippet of a schema
that contains a userid, where the range of valid data output will vary from
User_1 to User_9.

Example 6-4. Kafka Connect Datagen specification

{"name": "userid",
 "type": {
 "type": "string",
 "arg.properties": {
 "regex": "User_[1-9]{0,1}"
 }
}},

As we can see, there are some significant benefits to schemas, so the next question is:
what schema technology should you use?

What Are Our Schema Technology Options?
There are many schema technologies available for building event-driven data prod‐
ucts. However, there are a few that stand above the rest of the field in terms of fea‐
tures, commonality, community development, ease of use, and supportive tooling.
Google’s Protobuf and Apache Avro both fit this bill. JSON Schema is somewhat pop‐
ular for those who favor JSON, but please do not confuse it with the tangled mess that
is schemaless JSON (more on this in a bit).

132 | Chapter 6: Event Schemas

https://oreil.ly/2J1kI
https://oreil.ly/2J1kI
https://oreil.ly/JgAYo
https://oreil.ly/ZpfTm
https://oreil.ly/r90bk

Martin Kleppman has written an excellent breakdown and analysis
of JSON, XML, Protobuf, Thrift, and Avro in Chapter 4 of _Design‐
ing Data-Intensive Applications (O’Reilly). Consider giving it a read
if you would like to learn more about how these schema technolo‐
gies work under the hood.

We won’t be touching on other serialization technologies (including Thrift), because
they’re not commonly used for event-driven data meshes. This isn’t to say they aren’t
ever used, or that they cannot be used, but rather they’re simply not in the top
choices. The three most common choices include Protobuf, Avro, and JSON Schema.
Let’s take a look at each.

Google’s Protocol Buffers, aka Protobuf
Protobuf became open source in 2008 and has long been popular for its gRPC format.
More recently, it has proven to be a strong competitor to Avro for top schema format.
Here are a few notable points about Protobuf ’s data types and schema management:

• There is support for scalar (e.g., string, integer, boolean, etc.) and complex data
types.

• The schema is not stored as part of the event but is maintained in a separate file.
Protobuf files are commonly shared via a schema registry, as covered later in this
chapter in “The Role of the Schema Registry” on page 143.

• You can compose complex schemas by referring to schema declarations stored in
other files.

• There is no support for dynamic types. However, this is not a significant short‐
coming given that data products require strongly typed and well-defined
schemas.

The following shows the Person object again as defined using the Proto3 version of
Protobuf:

message Person {
 //The person's unique ID
 int32 id = 1;
 //The person's full legal name
 string name = 2;
 //Measured in centimeters, rounded to the nearest centimeter
 int32 height = 3;

 enum CountryCode {
 ABW = 0;
 AFG = 1;
 ...
 ZWE = 248;
 }

What Are Our Schema Technology Options? | 133

https://learning.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/ch04.html
https://learning.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/ch04.html
https://oreil.ly/ie-Gj
https://oreil.ly/sozYk
https://oreil.ly/sozYk

 //ISO3166-1-alpha-3 standard. AAA=OTHER
 CountryCode country = 4;
}

Protobuf has two main versions with differing functionality regarding default values
and handling missing data. Protobuf v2 allows marking fields as either required or
optional, the ability to set custom default values, and the ability to determine if a
field is included in the message or if it is missing. These are all features that make
schema evolution much easier to manage as they provide both stricter boundaries for
producers and stronger guarantees for consumers.

Protobuf v3 brought support for JSON encoding, among a number of other features,
but this came at the expense of removing required/optional and custom default
values. As with any open source community, this decision has supporters and detrac‐
tors in both camps. Numerous organizations have chosen to remain on the Protobuf
v2 standard, while others have since moved on to Protobuf v3.

Apache Avro
Apache Avro is another extremely common schema and serialization format, created
under the Apache Software Foundation. Initially released in 2009, Avro has been
commonly associated with Apache Kafka over the years, as well as a row-based, big
data storage format. Here are a few notable points about Avro’s data types and schema
management:

• There is support for primitive (e.g., string, integer, boolean, etc.) and complex
data types.

• By default, the schema is stored as part of the data. The schema can also be
decoupled from the data and stored independently.

• By including the schema with the event, Avro offers dynamic deserialization. A
consumer can deserialize the event into a GenericRecord object built and popu‐
lated dynamically from the schema and data. This feature is typically used when a
consumer client does not have a code generator.

• You can compose complex schemas by referring to schema declarations stored in
other files.

• While schema evolution is possible, it is not explicitly defined as part of the
standard.

The following shows an Avro schema of the same Person object from the previous
code snippet:

134 | Chapter 6: Event Schemas

https://oreil.ly/hmJmt
https://oreil.ly/7w_k0
https://oreil.ly/7w_k0

{
 "type": "record",
 "name": "Person",
 "namespace": "com.event.driven.datamesh",
 "doc": "Example of a Person record",
 "fields": [
 {
 "name": "id",
 "type": "integer",
 "doc": "The person's unique ID"
 },{
 "name": "name",
 "type": "string",
 "doc": "The person's full legal name"
 },{
 "name": "height",
 "type": "integer",
 "doc": "Measured in centimeters, rounded to the nearest centimeter"
 },{
 "name": "countryCode",
 "type": "enum",
 "symbols": ["AAA", "ABW", ... "ZWE"],
 "doc": "ISO3166-1-alpha-3 standard. AAA=OTHER"
 }
]
}

You may have noticed that the Avro schema is a bit more verbose than Protobuf. In
Avro, all of the properties, such as type and doc, are contained entirely within the
field definition. In contrast, comments in Protobuf are simply added with C/C++
style syntax. Semantically, they are quite similar.

The next and final schema technology that we’ll look at in this chapter is JSON
Schema.

JSON Schema
JSON Schema format allows you to annotate and validate JSON documents. Unlike
Avro and Protobuf, you can use JSON documents without a schema. A schemaless
JSON means that there is really no definition of what should and should not be in the
schema nor of any typing or defaults. Schemaless JSON is not suitable for use in data
products as it leaves too much room for errors, misinterpretations, and missing data.

What Are Our Schema Technology Options? | 135

https://oreil.ly/r90bk

Here are a few notable points about JSON Schema’s data types and schema
management:

• There is support for six primitive types (null, boolean, object, array, number,
string) as well as some more complex typing.

• You can compose complex schemas by using references to schemas stored in
other files or locations.

• Data validation is similar to that of Protobuf and Avro. Producers validate their
data against their schema prior to writing it to the event stream.

• There is support for adding validation keywords for data quality enforcement to
numbers, strings, arrays, and objects.

The following shows a JSON Schema representation of the same Person object from
the previous code snippet:

{
 "$id": "https://example.com/person.schema.json",
 "$schema": "https://json-schema.org/draft/2020-12/schema",
 "title": "Person",
 "type": "object",
 "properties": {
 "id": {
 "type": "number",
 "description": "The person's unique ID"
 },
 "name": {
 "type": "string",
 "description": "The person's full legal name"
 },
 "height": {
 "type": "number",
 "description": "Measured in centimeters, rounded to the nearest centimeter",
 "minimum": 1,
 "maximum": 300
 },
 "countryCode": {
 "type": "string",
 "enum": ["AAA", "ABW", ... "ZWE"],
 "description": "ISO3166-1-alpha-3 standard. AAA=OTHER"
 }
 }
}

JSON Schema is the only technology discussed so far that contains both a language
for specifying schemas and validation parameters that restrict the ranges of certain
properties. As exemplified in the height property, the height of a person is restricted
to between 1 and 300 cm, with the description including further information about
rounding to the nearest number. These constraints will prevent a system from

136 | Chapter 6: Event Schemas

https://oreil.ly/DF7-F

accidentally inputting the height as millimeters, but would unfortunately still fail to
prevent it from writing it as inches.

Schema Evolution: Changing Your Schemas Through Time
Even if you create the perfect data model in your first attempt, it will inevitably need
to change over time. New business responsibilities can cause a domain to expand, in
turn creating new demands for the data products. While new systems may need
access to the latest data format, existing systems that have no need for the new data
require a guarantee that their data contract won’t change. Schema evolution allows us
to change our schemas such that we can meet the use cases of new consumers
without breaking compatibility for existing consumers.

There are a few properties of schema evolution that are common between Avro, Pro‐
tobuf, and JSON Schemas. The first is compatibility modes, where events can be con‐
verted forward or backward depending on the changes made between schema
versions. Compatibility modes are essential for change management, for guarding
against (unintentional) breaking changes, and for alleviating consumers of the need
to write custom code for each version of the schema (e.g., if schema.version==1 do
this, if schema.version==2 do that, etc.).

The main compatibility modes are as follows:

Backward compatibility
Consumers using the new schema can read data produced with the old schema.
This compatibility mode is important for ensuring that consumers using the lat‐
est schema can still read and process older data encoded under earlier versions.
For example, deleting a field is backward compatible. Say we have the record
shown in the following:

{
 "type": "record",
 "name": "Example",
 "doc": "This is Version 1",
 "fields": [
 { "name": "id", "type": "integer" },
 { "name": "foobar", "type": "string" }
]
}

We could remove the foobar field for Version 2, as shown in the following:

{
 "type": "record",
 "name": "Example",
 "doc": "This is Version 2",
 "fields": [

Schema Evolution: Changing Your Schemas Through Time | 137

 { "name": "id", "type": "integer" }
]
}

Note that the schema converter (as part of the Schema framework) can take Ver‐
sion 1 data and convert it to Version 2 simply by dropping the foobar field. Thus,
Version 2 is backward compatible with events written using Version 1.

Forward compatibility
Consumers using an old schema (Version 1) can still read new events written
with a newer schema (Version 2). They will only be able to access data that
matches their Version. This compatibility mode is important for when an existing
consumer coded against a current schema version rewinds its consumer offset to
read historical data in the event stream.

From the previous example, you’ll note that we can’t convert Version 2 to Version
1, so it is not forward compatible. Why? Version 1 lacks a default value for the
field foobar, which is needed by the consumer to fill in the missing value during
conversion.

We would need to modify our Version 1 schema to add a default value before we
published it (good thing we always create compatibility test cases as part of our
pull request, right?). In Avro, specifying a default is as simple as the following:

{
 "type": "record",
 "name": "Example",
 "doc": "This is Version 1, but with a default value for foobar",
 "fields":
[
{
 "name": "id",
 "type": "integer"
},{
 "name": "foobar",
 "type": "string",
 "default": "DEFAULT_VALUE_STRING"
}
]
}

The term “default value” can be a bit misleading. Unlike a relational database
table, where the default value is populated at write time, these default values are
used at read time. Furthermore, the default value is only applied if the record
itself does not contain the field. To further our previous example: if you try to
convert a record written with schema Version 2 to schema Version 1, the con‐
verter will notice that the field foobar does not exist in the original event. Thus,

138 | Chapter 6: Event Schemas

it will set foobar="DEFAULT_VALUE_STRING" upon creating the converted Version
1 record instead of throwing an exception.

Avro, JSON Schema, and Protobuf v2 each enable custom
default values. This can be a powerful option for ensuring that
records remain compatible through multiple changes.
Developers often use default values to flag the fact that data
is missing due to a compatibility conversion (e.g.,
DEFAULT_VALUE_STRING) and not because the payload was
actually received with foobar=null.
Google’s Protobuf v3 removed custom default values as a
deliberate design decision, so you may find Protobuf v3 a bit
more difficult to use for evolutionary purposes.

As with all things schema-related, ensure that you check out the specifics of your
schema selection for more details. Each of these four standards has much more
content than can comfortably fit into this single chapter.

Full compatibility
When an event can be converted both immediately forward and immediately
backward.

Full-transitive compatibility
When an event can be converted both forwards and backward to any other ver‐
sion in the event stream. This is the strongest guarantee, and it means that every
single schema evolution is fully compatible with previous schemas. A Version 3
schema would be able to be converted to Version 2 and Version 1, and vice versa.

Event-driven data products should adhere to full-transitive
compatibility whenever possible. It provides the strongest
guarantees for consumers and ensures that they need to
update their code only when business use cases change and
not because the schema was broken. While you can loosen the
compatibility level of your data product as you choose, you
will need to ensure that it does not adversely affect your
consumers.

While schema evolution is extremely helpful, there will inevitably come a time when
your domain shifts significantly enough that it is insufficient. A breaking change will
need to occur, and it must be navigated carefully.

Schema Evolution: Changing Your Schemas Through Time | 139

Negotiating a Breaking Schema Change
Breaking changes most commonly occur due to shifting boundaries of a source
domain model, often due to the expansion of the business model. Adding new prod‐
uct lines or services may necessitate rethinking and redefining data ownership, lead‐
ing to new boundaries that don’t map 1:1 to the existing data products. As a simple
example, a User data model may have previously modeled address with a simple
string, as shown in the following:

Example 6-5.

{
 "type": "record",
 "name": "User",
 "namespace": "user.namespace",
 "fields": [
 { "name": "first_name", "type": "string" },
 { "name": "last_name", "type": "string" },
 { "name": "address", "type": "string" }
]
}

But new locality features require the creation of an Address object containing
home_address, work_address, and phone_number.The following is an Avro schema of
the new standardized User_v2 object. Note that both home_address and
work_address are Address objects, and that the Address object allows for optional
inclusion of phone_number:

Example 6-6.

{
 "type": "record",
 "name": "User_v2",
 "namespace": "user.namespace",
 "fields": [
 { "name": "first_name", "type": "string" },
 { "name": "last_name", "type": "string" },
 { "name": "home_address",
 "type": {
 "type" : "record",
 "name" : "Address",
 "namespace": "user.namespace.inner",
 "fields" : [
 {"name": "phone_number", "type": ["null", "string"]},
 {"name": "address", "type": "string"},
 {"name": "city", "type": "string"},
 {"name": "country", "type": "string"}
]

140 | Chapter 6: Event Schemas

 }
 }, {
 "name": "work_address",
 "type": "user.namespace.inner.Address"
 }
]
}

The old, singular string address field will no longer be available to downstream
consumers. But do all of them know about this change? What happens to systems
that still rely on the string address field?

Coordinating a change that concerns multiple teams can be challenging, and the
same is true for renegotiating the boundaries of an already published data product.
However, we don’t have to reinvent the wheel; we can draw on existing precedents for
navigating this process.

It is common policy for a well-maintained API, be it a library, framework, or REST
API, to maintain a degree of backward compatibility with legacy clients. New clients
can use the latest calls to power their business logic, while older clients can continue
to use older API calls. Eventually, the API calls are deprecated and subsequently
removed, giving maintainers of the application time to migrate to the newer APIs. We
can adopt this same process for addressing breaking changes in data product sche‐
mas, as outlined in a series of steps.

Step 1: Design the New Data Model
The data product owner, in conjunction with their team, must come up with a new
candidate model for the data product. In cases where the entire source domain
requires substantial change, such as a single domain splitting into two or two
domains becoming three, the biggest challenge can be redefining the boundaries of
the new domains and the new constraints to the existing data products. The existing
data products need to be reviewed against the changes made to the source domains,
such that the new candidate data products can be presented to the existing consumers
for review.

Step 2: Iterate with Your Existing Consumers and the
Federated Governance Team
Once your candidate data product is ready, it’s time to book a meeting with your
existing customers (or a subset of the most important ones, at least for the earliest
feedback). Discuss the changes to the domain models, the proposed changes to exist‐
ing data products, and any new data products that you plan to create to account for
the shifting model. Similarly, some existing data products may have no direct equiva‐
lent in the new models and will subsequently be removed.

Negotiating a Breaking Schema Change | 141

These discussions usually yield rich feedback for the data product owners to bring
back to their teams and apply to their data products. This is an iterative process of
review and revision but provides the best overall result as it maintains the consumer-
driven nature of the data mesh while reducing the amount of wasted effort.

It’s a good idea to involve the federated governance team in the first couple of break‐
ing schema changes your organization undergoes, because it provides valuable expe‐
rience and feedback for refining the process. For example, the data product owners
may have trouble identifying all of the stakeholders and consumers (due to poor data
discovery and self-service tooling) or lack the ability to mark older data products as
deprecated. Just like we’re not likely to get our data product schemas right the first
time, we’re also likely to have some issues with our first breaking schema change.
Identifying and resolving common issues is critical to improving the self-service
nature of data mesh.

Step 3. Create a Release Schedule, a Data Migration Plan, and a
Deprecation Plan
Once the new schemas and data products are cleared to move forward, the next steps
involve creating a release guide and deprecation plan. Identifying the affected con‐
sumers in combination with the impact of the required changes provides us with an
idea of how much time and effort they’ll need to do the necessary migrations.
Accordingly, it will also provide an indication of how much support the data product
owners will need to provide during this migration. The release schedule should
reflect the estimated time it will take to migrate all of the consumers, along with some
extra padding for safety’s sake.

Data migration is a significant factor for a breaking data product change. Maintaining
a full history in the event stream will require either migrating the previous event data
model to the new one, or recreating the events from the source data. The former can
work when the breaking change is simply a remodeling of existing fields, but tends to
fall short when new data is created. In our example, we redefined Address, adding
both a work_address and a home_address. We lack information about whether the
current address is a work or home address, and even if we can find that out, we still
have only one address and need to collect information to populate the other field.

The data product owner could backfill the User_v2 event stream by creating new
records to match the new schema. However, these new records would only represent
the User at the current point in time. Historical events in the original User stream
would not be migrated without additional work.

Finally, the data product owner must support both User and User_v2 data products
for a period of time (such as 8 to 12 weeks) so that consumers can migrate from the
old one to the new one. The data product owner’s team will assist them with their

142 | Chapter 6: Event Schemas

migration needs, including clarifying details about the new domain, any changes to
semantics, and assisting in rebuilding internal state stores.

Step 4. Execute the Release
The new data products are released alongside the existing ones, such that consumers
have time to migrate over. Mark the original User data product as deprecated to block
new consumers from registering as readers, and instead redirect them to use the latest
version, User_v2. The User data product with the old string address value will co-
exist with the new User_v2 data product for a predetermined period of time.

While most consumers will work in a timely manner to migrate their applications to
the new data product, there will be those who lag behind due to lack of resources and
competing priorities. While you can certainly send them ever-more-frequent
reminder messages, at some point the integrity of the data mesh will become at risk: it
is unreasonable for the producer service to maintain two versions of the data product
indefinitely, especially since the business domain model has permanently shifted.
Noncompliance is not abnormal in a data mesh, and at this point it would be best to
consult your federated governance team on how to proceed: migrate the code of non‐
complying consumers, escalate up the business chain, or simply proceed with the
deprecation plan and halt production of new events to that event stream. Usually the
threat of a production outage is sufficient to finish the migrations.

Navigating a breaking schema change is a fairly involved process that requires explicit
communication between the data product owner and all of its consumers. The precise
steps in your process will depend on your own implementation details, but should
look similar to what we just covered.

Managing schemas well requires keeping track of previous versions and ensuring
compatibility rules are followed. Consumers additionally need the ability to discover
which schemas belong to which event streams as part of self-service tooling require‐
ments. A schema registry provides a solution for these needs, among others, and is an
essential part of an event-driven data mesh, as we shall see in the next section.

The Role of the Schema Registry
A schema registry is a service that allows us to register schemas in association with
their event streams. One of the main roles of the schema registry is to reduce the
number of bytes sent over the network. Back in “A Brief Introduction to Serialization
and Deserialization” on page 128, we saw that the basic serialization process appends
a full copy of the schema to each event record, which results in a significant amount
of duplicated data sent over the network. Figure 6-4 shows a producer writing events
with a full copy of each schema, reducing throughput, increasing data replication
costs, and increasing the load on consumers.

The Role of the Schema Registry | 143

Figure 6-4. Each serialized event published to the event stream with the entire schema,
resulting in excessive network utilization and storage overhead

A schema registry can absolve us of the need to write the schema with each event.
Instead, we can store the schema external to the event and just use a unique ID in its
place to track the associated schema. Thus, whenever a consumer reads an event, it
can simply reference the schema registry to obtain the schema associated with that
ID.

Figure 6-5 shows the entire end-to-end process. Instead of serializing the schema
along with the event, the producer service queries the schema registry (1), registers
the schema (2), then replaces the schema with a short unique ID (3 and 4). This event
is then produced to the event stream (5). The process is performed in reverse on the
consumer side: the event is read from the stream (6), the schema registry is queried
using the unique ID (7 and 8). Once the schema is obtained (9), the record can then
be deserialized (10 and 11) for processing by the consumer’s business logic.

Figure 6-5. Leveraging a schema registry in an event-driven producer/consumer
workflow

144 | Chapter 6: Event Schemas

Precisely how the schema is replaced by the unique ID depends on both the produc‐
er’s serialization logic and any limitations in the format of events in the schema regis‐
try. For example, Confluent’s Kafka Schema Registry replaces the schema with a 5-
byte prefix.

Using a schema registry requires serializers and deserializers to adhere to the propri‐
etary format. And while Confluent’s schema registry is fairly widely used with Kafka,
it’s not the only schema registry, and not all schema registries will use the same for‐
mat. As part of building self-service tools, your governance team will need to negoti‐
ate which schema to support for building your data mesh.

A schema registry provides other benefits in addition to network and disk I/O sav‐
ings. Here are a few other significant benefits provided by a schema registry:

Data discovery
The schema registry provides a mapping of event streams to its registered sche‐
mas. Prospective consumers can examine the schemas to see if the stream con‐
tains the data they’re interested in. Self-service tooling can provide search
functionality on top of the schema registry API to search for specific fields, docu‐
mentation, or metadata tags.

Schema evolution validation
Registering a schema with the schema registry is a mandatory part of the write
path of an event to a stream. This action provides a hook for validating the pro‐
ducer’s current schema against that stored in the registry. Did the user evolve the
schema in a way that is unauthorized by the schema registry (e.g., the new
schema does not support backward compatibility)? Throw an exception. Is the
schema completely invalid compared to what was registered under that ID
before? Throw an exception. Is the event malformed? Throw an exception. The
schema registry provides a safeguard against unintentional and unauthorized
changes, protecting the data integrity so that the data product can meet its quality
and reliability SLAs.

Automatically updated documentation
The schema registry provides a minimal form of automatically updated docu‐
mentation for each event stream. Users can view all the registered schemas,
including the names, types, and doc fields. Embedded schema docs are very use‐
ful for highlighting any idiosyncrasies or corner cases in the data. They are also
far more likely to be up to date because they are embedded, as opposed to docu‐
mentation maintained independently by an outside party.

Downloadable schemas to generate code
A consumer can download schemas to generate class definitions and test events
for their unit tests.

The Role of the Schema Registry | 145

https://oreil.ly/TTkv-
https://oreil.ly/kBGRz
https://oreil.ly/kBGRz

You can write a custom registration script to evaluate the schema
during the registration process. A simple and common check is to
verify that every value in a schema has a “doc” string of nonzero
length to ensure that there is some documentation for each field.
Another option is to scan for PII patterns and request an additional
verification step if something suspicious is found. Similarly, you
can automatically generate class definitions and run validation tests
prior to deployment.

Schema registries provide many benefits for a low overhead and are an essential com‐
ponent of an event-driven data mesh. The savings on network and storage costs alone
make them a valuable choice, with the remaining functionality providing the icing on
the cake.

So now that we’ve covered schemas, schema registries, and the benefits of using both,
we have one last schema-related question before winding up the chapter. How do
we manage schemas in relation to our data product producer and consumer
applications?

Best Practices for Managing Schemas in Your Codebase
There are several schools of thought for storing event schemas in your codebase. One
is to centralize all of your data product schemas in one big repository, using refer‐
ences to tie them to the codebase that actually owns the schema. Another is to decen‐
tralize and store schemas in the code repository of the producers and rely on the self-
service data platform to tie them all together.

However, the best practice is a combination of the two: a centralized code repository
for shared-use schemas with data product owners retaining their own schemas inter‐
nal to their projects. Let’s take a deeper look at how this works in practice by first
examining schema composition and its role in a data mesh.

Apache Avro, Protobuf, and JSON Schema each provide the ability to import schemas
from other files just as you would import a class or a library into your code. This is a
powerful feature that enables us to compose a schema from simple common building
blocks.

First, you’ll need to consult with your federated governance team to come up with
standardizations of common cross-domain entities. In this case, previous meetings,
discussions, and arguments have led to the standardization of two simple (but use‐
ful!) entities within the organization—base_user, representing the unique ID of a
user:

146 | Chapter 6: Event Schemas

package myorg.common;

message base_user {
 String uuid = 1;
}

and base_item, containing a unique ID of a specific ecommerce product:

package myorg.common;

message base_item {
 int64 id = 1;
}

The data product owner can import both of these base definitions into the
user_clicked_on_item schema definition, along with a common timestamp field, to
compose their event definition:

import "common_schemas/base_user.proto"
import "common_schemas/base_item.proto"
import "google/protobuf/timestamp.proto";

message user_clicked_on_item {
 myorg.common.base_user user = 1;
 myorg.common.base_item item = 2;
 google.protobuf.Timestamp timestamp = 3;
 String websiteURI = 4;
}

Composing schemas using standardized forms makes it much easier to combine data
products from across the organization. For example, this event can be aggregated
with other events by base_user, base_item, or Timestamp, or even a combination of
these three. Furthermore, adhering to common definitions means that you can also
leverage common unit tests and validation plug-ins to significantly reduce the chance
of making mistakes, keeping data quality and reliability high.

Common schema components should remain fairly minimal and only include fields
that are mandatory for the data product owner to populate. Keep in mind that you
can always create additional components that have more extensive field listings. For
example, you may choose to create a common item_details component containing
all of the standard information to extend base_item, and include it as an additional
component in your data product’s schema.

Store the common schema components in a centralized repository
and pull them into your local system at compile time. Store your
application’s schemas alongside the code in its own repository. You
can then choose to publish your event schema to the data product
discovery platform upon promoting it to a data product.

Best Practices for Managing Schemas in Your Codebase | 147

Keeping your data product’s schemas alongside the code that creates the events
streamlines the entire review process. Yoou can simply create a code review, deter‐
mine the existing consumers, and add them as reviewers. A strict approach requires
each consumer to approve the changes, ensuring that everyone is aware of changes
that could impact their applications.

In the next and final section of this chapter, we’ll take a look at how you go about
choosing which schema technology to use.

Choosing a Schema Technology
There are several major factors for choosing which schema format to adopt. The first
is precedence: are you already using a given schema format? If you are, this would be
the best candidate to look at first. Your federated governance team would be responsi‐
ble for investigating its suitability in your organization and discovering if there are
any significant impediments or pain points that need to be addressed that prevent
further adoption. Managing just a single schema format is much easier than manag‐
ing multiple.

The second major factor is the availability of supportive tooling and how it integrates
into your self-service environment. Code generators, event generators for testing pur‐
poses, schema registry support, and data discovery support are all significant sub-
factors. While both Avro and Protobuf tend to have a lot of support, other schema
frameworks may not have nearly as much support, adoption, and available tooling,
especially in the context of event streaming. The entire goal of using a schema tech‐
nology is to improve self-service capabilities, ensure high-quality data products, and
remove the margins for error. Use something that is reliable, widespread, and well-
supported.

The third major factor pertains to schema specific traits and if they’ll be suitable for
your use cases. For example, you may require nonnull and nonzero defaults, as pro‐
vided by JSON Schema, Protobuf v2, and Avro. You may also prefer to have JSON
Schema’s built-in data quality checks (e.g., minimum, maximum) or instead prefer
the faster serialization and deserialization of Avro and Protobuf.

For a real-world example, we can look to Paul Makkar from Saxo Bank. In his talk
“Kafka and the Data Mesh”, he outlines the decisions he and his team made in select‐
ing Protobuf over Avro. I have summarized the evaluation in the following sidebar.

148 | Chapter 6: Event Schemas

https://oreil.ly/yNjdI

Why Saxo Bank Chose Protobuf over Avro
Saxo Bank’s engineering organization is primarily a .NET shop, and it initially
attempted to use Apache Avro as the main schema technology for generating code,
validating schemas, and integrating with its workflows. However, the organization
found that this didn’t work as well as was hoped. Avro integration with .NET was sim‐
ply too difficult. The C# and Python clients for Avro lagged behind the Java imple‐
mentation, required more manual steps, and introduced a number of friction points.
You can read more about the specific issues and evaluation on Confluent’s blog.

Saxo Bank then trialed Protobuf as the schema of choice and encountered fewer
issues. The code generators worked precisely as needed for the data format specifica‐
tions, there were no issues with (de)serialization, and the company was more satisfied
overall with the experience for both the developer and the data product owner.

Based on the principle of building out self-service tooling, Saxo Bank also chose to
invest in using Buf, an opinionated tool for managing and using Protobuf schemas
that provided them with linting tools, style guides, naming conventions, and enum
usage tooling.

Protobuf annotation functionality allowed Saxo Bank’s engineers to directly embed
metadata, such as tagging of PII and specifications about encrypted data, into their
schemas. These annotations can be ignored by consumers that do not care about the
field, such as encrypted PII, but enabled by those consumers that do need access to
more information about how to unlock that data (such as a reference to the authenti‐
cation and decryption components).

The decision to move to Protobuf was based on identifying the pain points of using
Avro, investigation of alternatives, and assessment of common use cases. Further test‐
ing of Protobuf showed that it was far more suitable for the needs of Saxo Bank, so
the federated governance team chose to align on and support a single standard for all
to use.

For Saxo Bank, in-use technology (.NET) and important integrations with supportive
tooling (such as Buf) played significant roles in the adoption of Protobuf.

Choosing a Schema Technology | 149

https://oreil.ly/S-q1J

Summary
Schemas form an essential part of event-driven data products. They provide structure
and clarity for both the producers and consumers of the event stream and form a reli‐
able and explicit definition of the contents of the data product.

Code generators bridge the gap between the schema itself and the business logic and
provide a benefit to both the producer and the consumer. The former benefits from
the strict type definitions and distinction between optional and mandatory fields,
ensuring that no data is accidentally malformed or excluded. Subsequently, the latter
benefits from the same well-defined type-system, absolving it of the need to interpret
and standardize the data. Schemas provide the means to impose quality controls as
close to the source as possible.

Schema evolution provides the ability to evolve and change schemas over time, with
explicit up-front rules as to which changes are allowed given compatibility require‐
ments. While breaking changes can still occur, schemas provide the common frame‐
work for determining what the new data products may look like. And since they’re
commonly integrated as part of the codebase, schema changes can follow the same
review processes as standard business application code changes.

While there are many options available for you to choose from, Apache Avro and
Google’s Protobuf remain your best options, with JSON Schemas as a reasonable
third choice. Your investment into one of these will vary depending on your pre-
existing technology choices, but remains best discussed and decided centrally by your
federated governance team.

In the next chapter, we’ll take a look at leveraging what we’ve learned with schemas
and apply it to the problem of event design. There are many different ways to model
and design events. We’ll explore the best ways to do it and the pitfalls and gotchas
that are best avoided.

150 | Chapter 6: Event Schemas

CHAPTER 7

Designing Events

There are many ways to design events for event-driven architectures. However, some
are more suitable than others for use in an event-driven data mesh. This chapter cov‐
ers the best strategies for designing events for your event-driven data products,
including how to avoid the numerous pitfalls that you will encounter along the way.

Introduction to Event Types
There are two main types of events that underpin all of event design: the state event,
as we first introduced in “State Events and Event-Carried State Transfer” on page 55,
and the delta event, which we’ll cover in more detail in this chapter.

Figure 7-1 shows a simple square wave in steady state, periodically altering from one
state to another based on a delta. Similar to this square wave, we model our events to
either capture the state itself or the edge that transitions from one state to another.

Figure 7-1. State and delta during a change

151

There are three stages to any occurrence in a system:

1. The initial state
2. The delta that alters the initial state to produce the final state
3. The final state (which is also the initial state for the next change cycle)

The majority of events we encounter can be fully categorized as either state or delta.
Looking at events in this way helps separate concerns and focus design efforts:

State events
State events fully describe the state of an entity at a given point in time and are
the best choice for communicating data products between domains. State events
are typically the most flexibile and useful event types for use in an event-driven
data mesh.

Delta events
These describe the transition between states and typically only contain informa‐
tion about what has changed. Delta events have the distinction of being the first
type of event that many event-driven application developers encounter. However,
these events are generally not well-suited for an event-driven data mesh, as we’ll
discuss shortly.

While there can be hybrid events that have characteristics of each, these tend to be
less common because they can cause undesirable strong coupling. We’ll talk more
about those later in this chapter.

Let’s take a look at state events first.

Expanding on State Events and Event-Carried
State Transfer
“State Events and Event-Carried State Transfer” on page 55 introduced both state
events and ECST. As a refresher, a state event showcases the current state of an entity
at a precise moment in time, much like a row in a relational database. ECST allows
for any consumer of the event stream to materialize, aggregate, and store whatever
selection of data it needs in its own domain boundary, to use as it sees fit. In this sec‐
tion, we’ll look at some useful options for extending state events.

State events can contain just the “now” state or they may contain the “before/after”
state (a pattern we’ll cover with “Change-Data Capture” on page 179 in the next chap‐
ter). Both options have their own advantages and disadvantages, which we’ll examine
in turn. For starters, let’s take a look at how each of these options affects compaction
of event streams.

152 | Chapter 7: Designing Events

There are two main design strategies for defining the structure and contents of ECST
events:

Current state
Contains the full public state at the moment the event was created.

Before/after state
Contains both the full public state before the event occurred and the full public
state after the event occurred.

Let’s look into each of these in detail to get a better understanding of their trade-offs.

Current State Events
The event contains only the current state of the entity and requires comparison with a
previous state event to determine what has changed. For example, an inventory
event for a given item_id will contain only the latest value for the quantity in stock
at that point in time. This design strategy has several main benefits:

Lean
The state events consume a minimal amount of space in the event stream. Net‐
work traffic is also minimized.

Simple
The event broker stores any previous state events for that entity, such that if you
need historical state, you simply rewind and replay your consumer offsets. You
can set independent compaction policies for each event stream depending on
your consumer’s needs for historical data.

Compactable
You can keep the number of events in the stream proportional to the key space of
the domain.

It also has a few nuances that are not quite drawbacks, but rather things to consider:

Agnostic to why the state changed
The downstream consumer is not provided with the reason why the data has
changed, only the new public state. The reason for this is simple: it removes the
ability of consumers to couple on the internal state transitions of the source
domain. Think about data in a relational database table—we typically do not
communicate why that data has changed in the data itself, and the same holds
true for state events (Note: We’ll look at bending this rule a bit with hybrid events
a bit later).

Expanding on State Events and Event-Carried State Transfer | 153

Consumers must maintain state to detect transitions
A consumer must maintain its own state to detect specific changes to certain
fields, regardless of how simple or complex its business logic is. For example, a
customer changing their address to another country may require you to send
them new legal documents, which can differ depending on the country they left
and the country they moved to. By making it the consumer’s responsibility to
materialize state for tracking transitions, the onus of computing these edges is
placed entirely within the domain of the consumer.

Data products built using current state events are flexible and fairly easy to use and
should form the basis of most of your data products. If you want to package up state
transitions into your event as well, look no further than before/after state.

Before/After State Events
This strategy relies on providing the state before a transition occurs and the state after
it has occurred. Change-data capture (CDC) systems, as covered in “Change-Data
Capture” on page 179, regularly make use of the before/after strategy. The following
showcases two before/after user events with a simple two-field schema:

Key: 26
Value: {
 before: { name: "Adam", country: "Atlantis" },
 after: { name: "Adam", country: "Canada" }
}

A follow-up before/after state event that shows the deletion of Key = 26. Note that
old data still remains in the before field:

Key: 26
Value: {
 before: { name: "Adam", country: "Canada" },
 after: null
}

There are some benefits to this design:

Simple state transitions in a single event
The before/after event showcases every field that has changed within a single
transaction, in addition to all of the fields that have not changed. The reason for
the change, however, is not included.

Consumers can detect simple changes without maintaining state
Some consumers can forgo maintaining state if they are only interested in detect‐
ing a simple state transition. For example, if we want to send documents to a user
who moves from Madagascar to Canada, then our consumer can simple check to
see if the before and after fields of the event match their criteria. However, this

154 | Chapter 7: Designing Events

doesn’t work if Adam moves from Madagascar to Ethiopia, and then soon there‐
after moves to Canada, causing two events to occur. The consumer business logic
would not be able to trigger on this sequence of events since it doesn’t maintain
any state. In practice, the theoretical stateless consumer is seldomly realized,
since the vast majority of services of any reasonable complexity need to maintain
state.

There are also a few drawbacks to this design:

Compaction is difficult
Deleting an event using the before/after logic results in the after field being set
to null—but the entire value itself is not null. By default, event brokers like
Apache Kafka will not recognize this as a tombstone and thus will not delete it.
While it may be technically possible to rewrite the compaction logic, it usually
isn’t feasible, especially if you are relying heavily on SaaS solutions.

There are, however, some options, depending on which tooling you use.
Debezium has worked around this limitation by allowing you to produce a tomb‐
stone after the before/after event, generating two events instead of just one.
According to Debezium’s documentation:

A database DELETE operation causes Debezium to generate two Kafka records:
• A record that contains "op": "d", the before row data, and some other

fields.

• A tombstone record that has the same key as the deleted row and a value of
null. This record is a marker for Apache Kafka. It indicates that log compac‐
tion can remove all records that have this key.

Risk of leftover information
As we saw earlier, previous data may be accidentally maintained indefinitely in
the before field unless you issue a series of deletions.

Doubled data storage and network usage
Before/after events double (on average) the amount of data going over the wire
and stored on disk. Consumers, producers, and the event broker each bear part
of this load. In some cases this may be trivial. Seldom-updated events or those
with low volume are probably nothing to worry about, but extremely high vol‐
ume event streams can quickly add up the costs. This can be particularly expen‐
sive depending on the cross-regional data transfer fees associated with high-
availability producer, consumer, and event broker deployments.

I recommend using current state events over before/after when designing event-
stream data products. The consumers will need to maintain state for the records they
care about for their business processes, but disk space is relatively cheap and they
need to select only a subset of the domain that they need. This also simplifies

Expanding on State Events and Event-Carried State Transfer | 155

https://oreil.ly/__Jq8

operations for the event broker when compared to before/after, with lower cross-
region traffic costs, less broker disk usage, and less broker network usage replication
overhead. Further, the risk of leaking data from improper compaction deletion is
eliminated.

In the next section, we’ll take a look at delta events, where an event is modeled after
the change and not the state itself.

Delta Events
The delta event represents a change that has occurred within a specific domain, rep‐
resented as the edge of a transition in Figure 7-1. Delta events contain only the infor‐
mation about the state change, not the past or current state. Delta events are usually
phrased as verbs in the past tense, indicating that something has occurred. For
example:

• itemAddedToCart

• itemRemovedFromCart

• orderPaid

• orderShipped

• orderReturned

• userMoved

• userDeleted

You may find that you’re more familiar with these types of events than you are with
the state types used for ECST. Delta events have historically been fairly common, par‐
ticularly in the context of the Lambda architecture (see “The Lambda Architecture
and Why It Doesn’t Work for Data Mesh” on page 62). Delta events are also com‐
monly used inside a domain for event sourcing, a subject we’ll now take a look at
before going back to data products.

Event Sourcing with Delta Events
Event sourcing is an architectural pattern based on recording what happened within a
domain as a sequence of immutable append-only events. These events are aggregated
to build up the current state by applying them in the order that they occurred, using
domain specific logic, one after another.

This architecture is often promoted as an alternative to the traditional create, read,
update, delete (CRUD) model commonly found in relational-database type frame‐
works. In the CRUD model, the fully mutable state of the entity is directly modified
such that only the final state is retained. Though the databases underpinning CRUD

156 | Chapter 7: Designing Events

can generate an audit log of the changes that occurred, this log is used primarily for
auditing purposes and not for driving business logic.

There are some limitations to the CRUD model that may make event sourcing an
attractive alternative. For one, operations must be processed directly against the data
store as they are invoked. Under heavy use, this can significantly slow down opera‐
tions and result in timeouts and failures. Second, high concurrency operations on the
same entities can result in data conflicts and failed transactions, further increasing
load on the system.

But the CRUD model also contains several distinct advantages. Though it depends
largely on the database, most CRUD implementations offer strong read-after-write
consistency. It’s also fairly intuitive and simple to use, with lots of tools and frame‐
works supporting it. For many software developers, this is the first model of main‐
taining state that they encounter. Figure 7-2 shows a series of CRUD events (one
create, two updates) applying changes to the refrigerator state. The state is completely
mutable, and only the updated state is retained after a create or update command is
applied.

Figure 7-2. Using CRUD commands to update the contents of the refrigerator, reflected
in the database

Under the event sourcing architecture, these create, update, and destroy operations
are instead modeled as events that are written to a durable append-only log that
retains them indefinitely. It is not uncommon to use a single database table to act as
the append-only log. It is also possible to use an event broker like Apache Kafka to
host the append-only log, although this does introduce additional latency. In either

Delta Events | 157

case, the current state is generated by consuming events in the order they are written
in the log and applying them one at a time to create the final state.

Figure 7-3 shows the same refrigerator example, with the CRUD operations instead
modeled as domain events. And although these sample events are CRUD-like, the
domain owner has free reign over designing the deltas to suit their own business use
cases. For instance, they could extend the set of events they’re creating to also incor‐
porate deltas such as:

• turn_lights_on/turn_lights_off
• turn_cooling_on/turn_cooling_off
• open_door/close_door

Figure 7-3. Building up the contents of a refrigerator using event sourcing

The domain aggregator (2) is separate from the process that writes the new domain
events into the log (1), and allows the write and aggregation processes to be scaled
independently. A domain can also contain multiple domain aggregators and may
aggregate the same log to two different internal state stores depending on the domain
needs.

One of the main drawbacks of event sourcing is that it is eventually consistent, which
can be a significant obstacle for some use cases. There will always be some delay
between writing the event to the log and seeing the materialized result in the state.
And because multiple concurrent clients can each write events about the same entity,

158 | Chapter 7: Designing Events

it becomes difficult to attribute any specific modification in final state to the delta
your client just appended. This can make it unsuitable in applications that require
strong consistency.

Event sourcing is a reasonable alternative to the CRUD model for building up inter‐
nal state. The problem with event sourcing comes when it is misused as a means for
interdomain communication, exposing the internal domain deltas to the outside world
for others to couple on (and misinterpret). These domain-specific events and their
relationship to the aggregate and to each other can change over time, so the events
defined within a domain for event sourcing are not suitable for interdomain communi‐
cation as a data product! Just as we do not allow services outside of our domain to
couple directly on our data model, we also must not allow services to couple on our
private domain events data model.

This isn’t to say you cannot expose any events outside of the domain’s boundaries. But
any event that you expose outside of your domain boundary becomes part of the pub‐
lic data contract and requires your domain data product owner to support it as such.
This means ensuring that its semantic meaning doesn’t drift over time, that the data
doesn’t evolve, and that others don’t try to use it to reconstruct your private internal
domain on the outside using a copy of your logic. A failure to maintain the bound‐
aries of “events in here” and “events out there” can lead to very tangled coupling,
excessive difficulty in refactoring, and subtle errors due to misinterpretation of events
by outside consumers.

Why Delta Events Don’t Work for Event-Driven Data Products
The next few sections illustrate the problems with using delta events for event-driven
data products. There are several issues with using delta events as the means of com‐
municating data between domains. Let’s take a look at each issue in turn.

There is an infinite set of possible event types
First and foremost, there is an infinite number of delta events that can occur in any
nontrivial domain. This alone should stop most folks from trying to create event-
stream data products with the delta model, but unfortunately it does not. But surely,
can it really be the case that there is an infinite number of delta events?

In reality, the actual set of delta events necessary for your domain is undoubtedly
finite. The real problem is that every consumer of a delta event needs to know pre‐
cisely how to correctly integrate it into the aggregate—without this ability, you cannot
effectively communicate state through your data product.

Let’s take a look at an example. Figure 7-4 shows a simple set of ecommerce events for
constructing the contents of a shopping cart.

Delta Events | 159

Figure 7-4. Shopping cart delta events, used to construct the current state of the shopping
cart

Add and remove are fairly simple: items can be added, or they can be removed. The
consumer will need to interpret and apply each of these events, in the correct order,
to build up its aggregate. Suppose, though, that a new feature in the domain allows
users to update the quantity of items they have in their cart: where previously the
domain owner may have issued a remove event first, then an add event with the new
quantity, now they may instead simply issue an update.

Figure 7-5 shows this new Update Item Quantity event stream published to the
world. Now if a consumer needs a model of the shopping cart, they must also account
for these updated events in their aggregation code. As the scope of the domain
changes, so do the meaning of the events and their relationship to the aggregate.

Figure 7-5. New updated event changes the way the shopping cart delta events are
interpreted

One of the common reasons that people (wrongly) choose to use delta events for
cross-domain communication is that they don’t believe that other consumers should
be required to maintain state to trigger on specific changes. However, the range of
possible deltas makes this untenable. The simple expansion of the shopping cart
domain to incorporate features such as coupons, shipping estimates, and subscrip‐
tions increases the amount of information that a consumer must account for, as
shown in Figure 7-6.

160 | Chapter 7: Designing Events

Figure 7-6. The delta events defining the shopping cart sprawl as new business function‐
ality is added

Exposing this expanded shopping cart domain to consumers requires that the con‐
sumers can identify, use, and build a correct aggregate out of these events. This leads
us to the next major problem of using delta events cross-domain.

The logic to interpret the events must be replicated to each consumer
How can a consumer know they’re correctly interpreting the delta events? And how
does the consumer stay up to date when new domain events are introduced? The key
is to make it possible for a consumer to correctly operate without having to continu‐
ally update their logic to account for new and varied delta events.

In the state model, a consumer only needs to materialize the state events to know
they’re getting the complete public domain. They may not know why the transition
occurred (we’ll touch on this a bit more later in the chapter), but they can be assured
that the entire public domain is there, and that as a consumer, they don’t need to
worry about correctly building an aggregation.

Figure 7-7 shows two consumers, each of which has replicated the logic from the pro‐
ducer for building up the aggregate state. Consumers are responsible for identifying,
understanding, and correctly applying the add, remove, and update domain events to
generate the appropriate final state of the aggregate. The complexity of the domain is
paramount; very simple domains may be able to account for this, but any domain of
meaningful complexity will find this solution untenable.

Intermittent issues can cause further complexities—an event stream hosted on a lag‐
ging broker may experience delays in providing some events, resulting in the con‐
sumer receiving them out of order from events in other streams. Deltas applied in the
wrong order often yield incorrect state transitions and may trigger incorrect business
actions.

Delta Events | 161

Figure 7-7. The logic to interpret delta events to build state is copied into multiple loca‐
tions

Additionally, each consumer may implement its own aggregation logic slightly differ‐
ently—often because a consumer fails to update the aggregation logic as the domain
evolves. One consumer may wait up to 30 seconds for late-arriving events, while
another consumer may not wait at all and simply discard any late arrivals, resulting in
similar yet different aggregates.

Any changes to how the producer aggregates its internal domain, including new
events or changed delta semantics, must be propagated to the consumer logic—if you
have worked on distributed services (or microservices) before, you may be shudder‐
ing at this idea. Using delta events to communicate between domains tightly couples
the producer, the event definitions, and the consumers together, and trying to man‐
age this is an exercise in futility.

These events map poorly to event streams
In the problems discussed so far, we’ve operated under the assumption that any new
delta events will be immediately identifiable and understandable to consumers,
though they may not yet understand how to apply those events to the domain. The
reality is far messier. Delta event consumers will need to be notified when new deltas
are created so that they can update their code to integrate the event into their data
model. Coordination can be quite difficult, particularly when there are many differ‐
ent consumers. Herein lies the main problem of this subsection: how do consumers
know about the new domain events that they must consider in their model?

162 | Chapter 7: Designing Events

One common suggestion that unfortunately misses the point is to simply “put it all in
the same event stream so that the consumers have access to it and can choose if they
need to use it.” Although existing consumers will end up receiving these new event
types, this proposal does nothing to solve the code changes and integrations for con‐
sumers to use that data.

Additionally, it is far more likely to cause the consumer to throw an exception, get
thrown away as “bad data,” or, worse yet, cause silent processing errors in the con‐
sumer’s business logic. This also violates the convention of using a single evolvable
schema per event stream, which is a de facto standard for many of the frameworks
and technologies that process event streams.

The critical issue here is that new event definitions require working with those that
aggregate the events into a model. If you put the new delta events into new individual
streams, you make discovery easier and follow the one-schema-per-stream conven‐
tion, but your consumers will still need to be manually notified that this new stream
exists! In either case, a code update is required to make any sense of this data, while a
failure to incorporate it runs the risk of an incorrect aggregate.

I like to contrast this with the state model, where the state domain can change as
needed and the composition of the data product is encapsulated entirely within the
producer service. Any modifications made to the business domain occur in one place
and are reflected in the updated data model published to the event stream.

Inversion of ownership: Consumers put their business logic into the producer
The fourth problem with deltas revolves around the ownership and location of busi‐
ness logic. For example, a consumer may need to know when a package has been
shipped so that it can send out an email to the intended recipient notifying them that
it’s on its way. The business logic for determining that the package has shipped must
necessarily live in the producer, as in Figure 7-8.

Figure 7-8. Consumer business requirements are pushed into the business logic of the
producer; in this case, Consumer A only wants to know when a package is shipped, but
not when the package has any other status

Delta Events | 163

However, this quickly becomes untenable with the growing scope of business use
cases. Each new business requirement that relies on state transition will similarly
need to place its business logic within the producer service (see Figure 7-9) to gener‐
ate events whenever that “edge” happens. This is prohibitively difficult to scale and
manage, let alone track ownership and dependencies.

Figure 7-9. The scope of consumer requirements can grow quite large, as there are many
possible deltas for most domains of any complexity

The entire purpose of delta events is to avoid maintaining state in the consumer ser‐
vice, but they require that the producer be fully able and willing to fulfill business
logic solely for the consumer. For example, consider these reasonably plausible use
cases:

• I want to track returns where a user had previously called in to complain: a user
ReturnedItemAfterTelephoneComplaint event.

• I want to know if the user has seen at least three ads for the item and then subse‐
quently purchased it: a userSawAtLeastThreeAdsThenPurchasedIt event.

These sample events may seem a bit over the top, but the reality is that these are the
sorts of conditions that businesses do care about. In each case, the consumer should
maintain its own state and build up its own computations of these occurrences but
instead avoids it by pushing the responsibility of detecting the edge back to the pro‐
ducer. The resultant highly specific events are not data products but a tightly coupled
system of untenable complexity.

A final factor is that a single system is seldom able to provide all of the information
necessary for these highly specialized events. Consider the example of Figure 7-10. In
this example, the consumer needs to act when state from the advertising service
and the payments service (both within their own domains) meet a certain criterion:
the user must have been shown an advertisement three times and then eventually
have purchased that item.

164 | Chapter 7: Designing Events

Even if we convinced the advertising team to produce userSawAdvertisementThree
Times and userRe turnedItemAfterTelephoneComplaint events, the consumer
would still need to store it in its own state store and await the matching purchase
from the payments service. Even the most complex and convoluted event definition
cannot account for handling data that resides entirely in another domain. The con‐
sumer must still be able to maintain state, despite our best efforts to avoid it.

Figure 7-10. Consumer-specific delta event triggering logic is pushed upstream to both
the advertising and payments service

And what if our consumer wants to change its business logic from three ads to four?
A whole new event definition needs to be negotiated and put in the producer’s
boundary, which should give you an idea of how poorly this idea fares in practice. It
is far more reasonable that the producer output a set of general purpose state and let
the consumer figure out what it wants to do with those data sets.

Inability to maintain historical data without excessive complications
The fifth and final point against delta events for event-driven data products is based
on the difficulty of maintaining usable historical data. Old state events can simply be
compacted, but delta events cannot. It becomes substantially more difficult to manage
the ever-increasing log of events as a source of historical information.

Each delta event is essential for aggregating the final state. And there may not only be
a single event stream to deal with, but multiple delta streams relating to different del‐
tas within the domain. Figure 7-11 shows an example of three simple shopping cart
delta events that have grown very large over the past 10 years—so large that a new
consumer might take, say, three weeks of nonstop processing to make it through the
volume of data, just to catch up to the current state.

Delta Events | 165

Figure 7-11. There are simply too many delta events in this stream for a new consumer
to reasonably consume

While purging old data is certainly one solution, another solution that I have seen
attempted is to offload older events into a large side state store, which can be sideloa‐
ded into a new consumer. The idea here is that the consumer can load all of these
events in parallel, booting up far more quickly. The problem is that the order in
which these events are applied can matter, and just moving the events to a non‐
streaming system only to stream them back into new consumers is a bit nonsensical.
So the next solution is to build a snapshot of the state at that point in time based on all
of the delta events. This is shown in Figure 7-12.

Figure 7-12. Loading the old events into a bootstrapping side store requires aggregating
into a state model

166 | Chapter 7: Designing Events

There is a bit of irony here. In the attempt to avoid creating a publicly usable defini‐
tion of state, we find ourselves doing exactly this to store the data in a side store. New
consumers can certainly boot up far more quickly using it, but now they have to both
read from the snapshot state store and then switch over perfectly to the event stream.

Figure 7-13. This brings us back around to the Lambda architecture involving both delta
events, aggregated state, and the need to handle both batch and streaming

Figure 7-13 shows that we have now come full circle, back to the very Lambda archi‐
tectures that we have been trying to avoid this whole time, along with all its opera‐
tional complexity and inherent problems.

The following are unfortunately common yet insufficient arguments for using delta
events for interdomain communication:

Maintaining duplicate state is wasteful, it’s going to take up too much disk.
The consumers will know what the event means. How could they possibly misinterpret
it?
C’mon, I really only care about this one transition, it’s not a big deal if I couple on it.
Just publish a custom event for me.

—That person who doesn’t want to use state events

Delta events are fine within the internal boundary of a private domain, where the
tight coupling of the event definitions and the logic required to interpret and apply
them can be applied consistently. However, using the same delta events across
domain boundaries is perilous, and using them as the means to build up state in
other applications is really out of the question. Focus on using state events for your
data products and leave delta events communicating within a closed system.

Delta Events | 167

That said, there are times when it may be reasonable and useful to look at event
design through a different lens. Let’s take a look at measurement events and what
makes them useful.

Measurement Events
Measurement events are commonly found in many domains and consist of a com‐
plete record of an occurrence at a point in time. There are common examples of this
in our everyday world: website analytics, perhaps most familiarly embodied by Goo‐
gle Analytics, is one. The user behavior tracking that occurs on every single website,
social media experience, and mobile application is another. Every time you click a
button, view an ad, or linger on an Instagram post, it is recorded as a measurement
event.

What does a measurement event look like? Here’s an example of a user behavior event
recording the event of a user seeing an advertisement on a webpage:

Key: "USERID-8271949472726174"
Value: {
 utc_timestamp: "2022-01-22T15:39:19Z"
 ad_id: 1739487875123
 page_id: 364198769786
 url: https://www.somewebsite.com/welcome.html
}

A measurement is a snapshot of state at a specific point in time. However, measure‐
ments have a few characteristics that differentiate them from the state events we dis‐
cussed earlier.

Measurement Events Often Form Aggregate-Aligned Data Products
Measurements are often used to create an aggregate-aligned data product. For exam‐
ple, the userViewedAd measurement could be used to compute a multitude of data
sets, answering questions like “What is the most popular page_id?”, “When do users
see the most ads?”, and “How many ads does each user see, on average, in a session?”
In contrast, basic state events are usually used as source-aligned data products.

Measurement Event Sources May Be Lossy
It is not uncommon to lose measurements somewhere between their creation and
ingestion into the event stream. For example, ad-blockers are very good at blocking
web analytical events, such that your reports and dashboards are unlikely to be com‐
pletely accurate. They are, however, often good enough for many analytical purposes,
especially for building aggregations.

168 | Chapter 7: Designing Events

https://oreil.ly/jdlm2
https://oreil.ly/jdlm2

Measurement Events May Power Time-Sensitive Applications
Consider a factory that measures temperature, humidity, and other air quality metrics
on its assembly line. One analytical use case for these measurements may be to track
and identify long-term trends of the factory environment. But an operational use case
may be to react quickly in the case of divergent sensor values, altering the assembly
line throughput or shutting it down altogether if the environmental conditions fail to
meet specifications.

In the case of network connectivity issues, it may be the case that the sensors are wait‐
ing to publish data that is now 30 to 60 seconds old, while new data piles up behind it.
Depending on the purpose of the measurement stream and its pre-negotiated service-
level objectives (SLOs), it may choose to discard the old events and simply publish the
latest. It really depends heavily on whether this data is being used for real-time pur‐
poses or whether it’s being used to build a comprehensive historical picture that is tol‐
erant of outages and delays, as is the case in web analytics.

Collecting and Using Measurements in Practice
Early in my career, I worked at RIM, now BlackBerry, collecting measurement data
from internal developer BlackBerry devices. Basically, whenever a “bad thing” hap‐
pened on a device, we would generate a dump of measurements, package it up, and
send it to our backend servers for further processing. “Bad things” included dropped
calls, dropped text messages, BlackBerry Messenger failing to send messages, cellular
modem chip resets, along with custom triggers generated by key business applica‐
tions. The purpose was to collect all of these measurements for both automated gen‐
eration of problem reports and to aid developers in debugging.

There are a couple of key things about collecting measurements that I learned then
and have carried with me ever since. For one, it was extremely important to have a
well-defined schema for the payloads under your control, as it made automated post-
processing so much easier (null pointers anyone?) and reduced time spent adding
special logic to handle malformed data. Secondly, measurement completeness was
more important than real-time performance. It wasn’t uncommon for us to receive
measurement events that were hours, days, or even weeks old—this could be due to
test devices that may have been temporarily disconnected, such as an executive flying
from North America to Asia, or even just one of our developers getting stuck in a
tunnel on their commute to work. But the SLOs that we had issued to our dependent
consumers reflected this, and we only started getting hounded for data if we missed
our daily report.

Measurement Events | 169

Hybrid Events—State with a Bit of Delta
Hybrid events are a mixture of state and delta. It’s best to think of these as state events
that may contain a bit of information about why or how something happened. Let’s
look at an example for clarity.

Consider the following scenario. A company provides an online service that requires
a user to sign up before using it. There are several that a user can sign up:

• Via the main sign up button on the home page
• Via an email advertising link
• Using a third-party account (a Google account, for example)
• The account was manually created for them by an administrator

The hybrid data product consumer wants to know how the user signed up. For opera‐
tional use cases, we want to know which onboarding workflow to serve them when
they next log in. For analytical purposes, we want to know which of our methods of
sign-up are the most common so we can allocate our development resources.

One way to model this sign-up is with a user state event, with a single enumeration
indicating the sign-up mechanism (after all, you can only sign up once!). An example
of the record would look like this:

Key: "USERID-9283716596927463"
Value: {
 name: "Randolf T. Bandit"
 signup_time: "2022-02-22T22:22:22Z"
 birthday: "2000-01-01T00:00:00Z"
 //An enum of (MAIN, VIA_AD_EMAIL, THIRD_PARTY, or ADMIN)
 method_of_signup: "VIA_AD_EMAIL"
}

To create the hybrid event, we incorporated what would otherwise be delta events
into a single state event. Instead of signed_up_via_email, signed_up_via_homepage,
signed_up_via_third_party, and signed_up_via_admin events, we flattened them
down into a single enum and appended them to the user entity. The domain of values
in the user state event needs to account for each of the possible enum settings: for
example, we may also want to include information about which third-party sign-in
provider was used or which email campaign got the user to sign up.

And herein lies the main issue with hybrid events. The precise mechanism of how
something came to be in a domain is by and large a private detail, but by exposing
this information we also expose the internal business logic process for coupling on by
downstream consumers.

170 | Chapter 7: Designing Events

The main risk to the consumer of this information is that how a user signs up will
change over time. This can be both a semantic change in meaning (what exactly is the
“main” way to sign up now versus 5 years ago and 5 years in the future?), as well as
the expansion or contraction of values in the enum. These semantics are usually only
the concern of the source domain, but by exposing these delta-centric seams, they
become a concern of the consumer.

There is also the chance (or likelihood) that the producer must update the hybrid
event to account for a new means of sign-up: via the company’s newly released mobile
application (add VIA_MOBILE_APP to the method_of_signup enum). Consumers of
this event must be kept informed of impending changes to this event and must con‐
firm that they can handle processing of this new method_of_signup before the event
definition is updated. If not, the consumers run the risk of encountering fatal errors
during processing, because their business logic won’t account for the new type. This is
just another aspect of the same issue we saw in “The logic to interpret the events must
be replicated to each consumer” on page 161.

However, in this example, the risk to the consumer is low, but not zero, for the follow‐
ing reasons:

• How a consumer signed up is immutable. The real risk lies in the meaning of
method_of_signup drifting over time. The owner of the event can prevent this by
providing very clear documentation of the enumeration’s meaning (e.g., in the
event schema itself) and adhering closely to its own definitions.

• The logic that populates method_of_signup is fairly simple overall, and so is
much less likely to drift over time. Registering via an email link is a binary
delta—you either registered via the email link or you didn’t. In contrast, an enum
based on the userReturnedItemAfterTelephoneComplaint delta event from ear‐
lier in the chapter has many more sequential dependencies and ways of misinter‐
preting it, and is far more likely to drift in meaning over time.

A hybrid event is a trade-off. The risk you incur in using a hybrid event is propor‐
tional to the complexity of the delta you are trying to track and the likelihood that it
will change over time (intentionally or not). I advise that you try to further decouple
your producer and consumer systems to avoid communicating the details of why or
how data has changed. If you choose to include a delta-type field in your event, be
aware that it becomes part of your data contract, and carefully consider the coupling
it introduces with the source system.

Hybrid Events—State with a Bit of Delta | 171

Notification Events
There’s one last event type to discuss before we wrap up the chapter. A notification
contains a minimal set of information that something has happened and a link or URI
to the resource containing more information. Mobile phones are probably the most
familiar source of notifications—you have a new message, someone liked your post,
or you have enough hearts to resume your free-to-play game—click here to go to it.

An example of a simple behind-the-scenes notification you may receive on your cell
phone could look something like the following. Your instant message application
sends out a “NEW_MESSAGE” notification, including a status (for icon display), the
name of the application, and a click-through URI to the application itself:

Value: {
 status: "NEW_MESSAGE"
 source: "messaging_app"
 application_uri: "/user/chat/192873163812392"
}

Notification events are often misused as a means of trying to communicate state
without sending state itself. Instead, a pointer to the state is sent in the notification,
with the expectation that the recipient will log into the source server and obtain the
data. The following shows just such an example, where the notification includes that
the status has changed, and there is an access URI to find the complete current state:

Key: 12309131238218
Value: {
 status: "PARTIAL_RETURN"
 utc_timestamp: "2021-21-13T13:11:42Z"
 access_uri: "serverURI:8080/orders/values/12309131238218"
}

At first glance, this seems to be a neat and trim solution: it allows the consumer to
simply query for the full public state upon receiving the event without copying or
exposing that data elsewhere. One of the major issues is that the event doesn’t actually
provide a record of the state at that point in time—unless the data contained at
access_uri is completely immutable (it usually isn’t). Since this anti-pattern is usu‐
ally built on top of a mutable state store, by the time you receive the PARTIAL_RETURN
notification, the associated state at access_uri may have already been updated again
to a new state.

This race condition makes notifications an unreliable mechanism for communicating
state. For example, a sale with status updates of SOLD -> PARTIAL_RETURN ->

FULL_RETURN will emit three distinct events, one for each state. A consumer lagging
behind on its processing may not be able to access the PARTIAL_RETURN state before it
finalizes to FULL_RETURN and thus completely miss that full state transition. To make

172 | Chapter 7: Designing Events

matters worse, a new consumer processing the backlog will not see any of the previ‐
ous state—only whatever is stored in the access_uri at the current wall-clock time.

A final blow to this design (further cementing it as unsuitable for use in a data prod‐
uct) is that it adds far more complexity. Not only must the domain owner of the noti‐
fication publish events, but it must also serve synchronous requests pertaining to that
state. This includes managing access control, authorization, and performance scaling
for both the event-stream producer and the synchronous query API.

Instead, it is far better just to produce the necessary state of the event as an immuta‐
ble record of that point in time. It takes very little effort and greatly simplifies data
communication between domains.

Summary
We covered a lot of ground in this chapter, so let’s take a moment to recap before
moving on.

Events can primarily be defined as state or delta. State events enable event-carried
state transfer and are your best option for communicating data between domains.
State events rely on event broker features, such as indefinite retention, durable state,
and compaction to help us manage the volume of events. The state design allows us
to leverage the event broker as the primary source for our data product, enabling the
use of the Kappa architecture while deftly avoiding the pitfalls associated with its pre‐
decessor, the Lambda architecture.

Delta events are a common way of thinking about event-driven architectures, but
they are insufficient for cross-domain communication. Deltas belong firmly in the
camp of the event sourcing and can be invaluable for communication within a singu‐
lar bounded context. Misuse of delta events occurs when coupling by external parties
is allowed. This results in the exposure of internal business logic, processes, and
events that should remain private. Simply put, do not use delta events for cross-
domain coupling.

Measurement events record occurrences, such as those from human users, dis‐
tributed systems, and Internet of Things (IoT) devices. Measurement events have
their roots in the data analytics domain and consist of a snapshot of the localized state
at a precise moment in time. These events are frequently used to compose detailed
aggregates or to react to rapid measurement changes.

Both hybrid and notification events should be used with caution, if at all. Hybrid
events are primarily a state event but can expose information pertaining to why some‐
thing happened, akin to a delta event. This forms a seam that introduces tight cou‐
pling, particularly when the why changes with time. Notifications are fairly

Summary | 173

inconsequential for the domain of data products unless they’re misused as a means to
communicate pointers to external mutable data. Avoid this at all costs.

In the next chapter, we’ll take a look at integrating what we’ve covered here with exist‐
ing data systems and how to go about making useful data products for our
consumers.

174 | Chapter 7: Designing Events

CHAPTER 8

Bootstrapping Data Products

There are two main scenarios for creating event-driven data products. The first
involves the creation of data products from existing data sources that are not already
in the form of events. As we have alluded throughout the book, these include conven‐
tional databases (relational, document, key-value, etc.), cloud filesystems, and even
FTP file dumps. In this chapter, we’ll be looking at bootstrapping these existing data
sources into the event-driven data mesh.

The second scenario involves data sources that are in event streams, such as data pro‐
duced by native event-driven services. Since the data source is already event-driven,
creating data products tends to be more a function of formalizing what data is emit‐
ted and what data should remain concealed within.

Don’t worry too much about getting your first data products exactly right. In fact, it’s
best to get some experience under your belt, find what works and what doesn’t work
so well, and iterate from there. You can draw a parallel between building data prod‐
ucts and building your self-service platform. “Level 1: The Minimal Viable Platform”
on page 99 is a basic but useful platform for getting started with a data mesh that
you’ll increment and improve as necessary. Think about your first data products in
this very same manner—MVP data products that will start you off on your road to
real-time, event-driven processing and get the data available for others to use as they
see fit.

In this chapter, we’ll look at several techniques, including CDC and the transactional
outbox, that help you bootstrap your data from wherever it is now into useful data
products. We’ll look at some of the pitfalls and issues that can crop up and some pos‐
sibilities for solving them. Let’s get into it.

175

Getting Started: Bootstrapping with Connectors
Connectors enable you to easily bootstrap existing data into event streams without
having to totally refactor your source applications. The reality is that most systems
that create data, such as business entities and operational facts, are also the only sour‐
ces for it. Similarly, these systems also have thousands (or millions?) of developer
hours poured into them—we’re not going to be substantially overhauling the system
just to get data out of it. Instead, we need to meet the systems where they currently
are. as we discussed in “Connectors” on page 101, this is where connectors come in.

Bootstrapping data starts the conversation of who owns the data, the connector, and
the transformations between the internal and external data model. Modifications to
the internal data domain may break the connector, which breaks the downstream
data product’s SLAs. Outages and failures tend to drive the need for remediation,
resulting in clearer delegation of responsibility.

When bootstrapping data, be sure it’s clear who owns what parts of
the process and that each party knows its responsibilities. Renego‐
tiating social contracts underpinning data mesh is as important as
technical considerations.

Bootstrapping existing data isn’t just about sourcing it from the ol’ reliable
monolith—data can be held in a database of any type, including relational, document,
key-value, time-series, streaming, and large files in cloud storage. And though each
mode of storage is different, obtaining data typically falls into two main camps: peri‐
odically querying the database or tailing a change log. Ultimately, we want to extract
the important business data, model it into a form that is useful to the intended con‐
sumers, and emit it as a well-formed data product. But before we get into querying
and change logs, let’s take a look at a common anti-pattern.

Dual Writes
The dual write, as shown in Figure 8-1, is one of the most common things that people
do when starting out with event-driven systems. In brief, the application’s owner tries
to write an update to a database record and to an event stream at the same time.
However, there is no atomic write guarantee between the two since the application’s
database and the event stream are completely independent data storage engines.

The tricky part to dual writes is that they work most of the time. As long as you don’t
have any intermittent failures, you’re not going to encounter an issue. But every now
and then you’re going to encounter an issue—the network may timeout, there may be
a bug in your application code, the event broker or database may be intermittently
unavailable, etc. If you do not test and monitor for these specific failure modes, you’ll

176 | Chapter 8: Bootstrapping Data Products

often find that a few weeks or months down the line some critical data is missing
from your data products. And tracking it back to the source will likely reveal that a
short intermittent outage resulted in dropped events.

Figure 8-1. Dual write between a database and an event stream

While it’s possible to create a coordinating system and introduce a two-phase commit
to orchestrate atomic write-guarantees across heterogeneous systems, it tends to be
complex and can generally be avoided. We’ll look at some other options in the
remainder of this chapter that can help you find better ways to get your data into
event streams.

Dual writes are fine if you don’t mind some data loss—for example, if you’re writing
measurements or other forms of loss-tolerant data to the data product. But for all
other instances where you need a complete representation of data in your event
stream, you’re going to want to use query-based polling, CDC, or the transactional
outbox table. Let’s take a look at each of these now.

Polling the Database to Create Data Products
Databases are built to be queried, and we can simply periodically query the database,
convert the results into events, and publish them to an event stream. Tools like Kafka
Connect are purpose-built to provide you with a framework to do just that, with both
a suite of off-the-shelf connectors and the means to code and deploy your own.

Query-based polling tends to work best when you can easily identify which records
have changed since the last poll. For example, an updated_at or modified_at time‐
stamp is a common choice, as illustrated by the Kafka Connect JDBC connector.
Each time your polling loop kicks off, it uses the highest updated_at timestamp that
it saw from the last loop and inputs it as the minimum timestamp for the current
loop. The returned rows are converted into events and the connector updates its
stored updated_at timestamp for the next loop.

Polling the Database to Create Data Products | 177

https://oreil.ly/WXfMV
https://oreil.ly/WXfMV
https://oreil.ly/IlT-E
https://oreil.ly/IlT-E
https://oreil.ly/zJBpQ

Event schemas are automatically inferred from the format of the query results. If the
upstream database definition is changed, the schema of the events may also change if
included as part of the query results.

Ensure that the ownership and responsibilities of the connector
platform, the connector execution, the connector code, and the
resultant events’ owners are clear. You and your peers should be
able to easily identify who to talk to when an issue arises.

There are several major pros for using query-based polling:

Query flexibility
Databases are purpose-built to serve queries in an efficient manner, so querying
the database is an easy and low-effort way to get started moving data from rest
into an event-driven data product.

Period flexibility
You can query as frequently as necessary to ensure your SLAs are met.

Data model isolation
You gain isolation between the internal data model and the data product model
published to the event stream. You can create views and materialized views to
denormalize the data model, selecting only the data that needs to be emitted
externally.

There are also several major cons for using query-based polling:

Database resource usage
A database query may be quite extensive in terms of complexity and performance
usage. You may find that you cannot get sufficient performance to meet your
SLAs due to query complexity, volume of results, or regular operational load.
While you may be able to mitigate this issue to some extent with read-only repli‐
cas, it does introduce additional costs and complexity, and not all database sys‐
tems may have this option.

Will miss hard deletes
Records that have been hard-deleted from a database will not be returned in a
query (they’re deleted, after all). You may need to convert your database to using
soft-deletes to track deletions. You will then have to convert the soft delete events
to tombstones or else your consumers will need to account for soft deletes on
their own. This complexity is overcome by using CDC.

Will miss intermittent changes
Since we’re polling at a specific interval, multiple changes that occur between one
poll and another will show up as only a single result in the query. If you’re trying

178 | Chapter 8: Bootstrapping Data Products

to capture all changes, you’re going to need to look at CDC, as covered in the
next section.

One more thing—when you bootstrap data from a database into an event stream,
you’ll likely need to ingest the entire set of existing data through a process known as
snapshotting. Taking a snapshot can be a resource-intensive activity because you’ll
need to load the entire data set from the data under capture into the event stream
before moving on to iterative polling loops. While snapshotting a few thousand
records will be quick, snapshotting a few billion will necessarily take much longer.

Snapshotting a database is further complicated by its operational requirements. A
database is often serving live traffic and cannot be interrupted or put into a state of
degraded performance. However, snapshotting most often requires that the table (or
data set) in question be locked to prevent any new writes while the snapshot process is
occurring. Depending on your database implementation and the size of the data, the
table may need to be locked for only a moment, or it may need to be locked through
the entire snapshotting process. Even if the lock is brief, the database in question may
have such a high rate of traffic that any locking is completely unacceptable.

Read-only replicas are a common solution for avoiding operational impediments
while snapshotting a database. The snapshot is performed against the replica, whose
tables are locked to writes (and replications) until the snapshot is complete. Next, the
replica table is unlocked and the queued updates are applied to the database tables.
The snapshotting connector then switches over to iterative update mode based on
updated_at time. Once caught up to the current time (or as close as is satisfactory),
the connector can be switched over to point at the main database, and the read-only
replica can be torn down.

Query-based polling and locking of tables is a dated process for bootstrapping data
out of a database. While it’s still perfectly valid, it’s becoming more common to use
CDC techniques for bootstrapping. Additionally, some recent innovations have made
it possible to get eventually consistent snapshots without the need to lock the data
source—but this relies on having access to the database’s change log. Let’s take a look
at using CDC and how this solution can provide a better solution to bootstrapping.

Change-Data Capture
CDC is the process of capturing changes from the database’s underlying log and con‐
verting them to events. What is a log, you may ask? PostgreSQL has a write-ahead log
(WAL) as part of the process of preserving data integrity—changes made to the data‐
base are first written into the durable WAL before being applied to the underlying
data model. In the event of a database failure, the WAL, in conjunction with the data
preserved to disk, ensures that no information is lost.

Change-Data Capture | 179

https://oreil.ly/6kksP
https://oreil.ly/6kksP

Many databases provide programmatic read-only access to these logs—for example,
MySQL provides a binary log, while others, like MongoDB, provide CDC events in a
more direct manner instead of tailing the log. CDC provides with many options for
constructing your data products.

First and foremost, CDC gives you everything about changes made in the database.
Your event stream will receive every update to a given row or document, such that
you will not miss any transitions. Second, CDC gives you options for what fields to
include in your event as well as specific metadata, such as information about the con‐
nector or database-specific information. Additionally, you can choose to include both
before and after fields detailing the full state of the row or document before the
change and the full state after the change. We touched on this previously in “Before/
After State Events” on page 154.

For more information on what you can and can’t do, you’ll need to check out your
CDC or database’s documentation. Debezium’s PostgreSQL documentation, for
example, includes a full description of all of the data available to you and how to con‐
figure your connector to select just what you need.

Some CDC frameworks also provide a way to snapshot certain databases much more
efficiently and without locking the table. Normal operational reads and writes can
continue uninterrupted with the resultant snapshot being eventually consistent with
the current table’s state. A Debezium blog post, explains this innovation. It was based
on a paper from Netflix that states:

DBLog utilizes a watermark based approach that allows us to interleave transaction log
events with rows that we directly select from tables to capture the full state. Our solu‐
tion allows log events to continue progress without stalling while processing selects.
Selects can be triggered at any time on all tables, a specific table, or for specific primary
keys of a table. DBLog executes selects in chunks and tracks progress, allowing them to
pause and resume. The watermark approach does not use locks and has minimum
impact on the source.

—Andreas Andreakis and Ioannis Papapanagiotou, Netflix

Live table snapshots that don’t block operational use cases are a huge boon for boot‐
strapping event-driven data products. The snapshot mechanism can be configured to
minimize resource usage, leaving plenty of headroom for surges in activity, though it
may result in the snapshot taking longer to complete. Meanwhile, behind the scenes,
the CDC system interleaves the results from the incremental snapshot queries and the
log events together, converting them to events and writing them to the stream.

Once the snapshot is complete, the CDC process continues tailing the database’s event
log and converting the changes into events.

180 | Chapter 8: Bootstrapping Data Products

https://oreil.ly/HsHwN
https://oreil.ly/wck0V
https://oreil.ly/wck0V
https://oreil.ly/XFTOp
https://oreil.ly/HzC57
https://oreil.ly/0RaUL

CDC has become increasingly popular in recent years. Many data‐
bases now provide native integration with popular CDC tools,
while some cloud service providers have their own fully managed
connectors that hook directly from your database to an event
stream with little to no work on your part.

CDC offers several pros:

Nonblocking snapshots
CDC can create snapshots without interfering with the normal operations of the
source database.

Minimal performance penalty
Capturing events from the database logs won’t affect normal operational perfor‐
mance. The CDC service runs on its own dedicated resources and needs only a
tiny bit of performance from the host machine in the form of tailing the output
logs.

Very low latency
Creating events via CDC is very fast. Changes made to the database tables are
typically reflected in the associated event stream within just a second or two.

Compatible with hard deletes
Hard deletes show up in the database log and can subsequently be converted into
deletion events. Deletions can also be modeled as tombstone events, such that
entities that are no longer relevant can be completely removed from both the
event stream and the downstream consumers’ materialized views (Figure 3-12).

There are also several cons to using CDC:

Exposure of the internal data model
The internal data model is directly reflected in the database log and thus in the
extracted events. Isolation of the underlying data model must be carefully and
selectively managed, unlike query-based updating, where views can be used to
provide isolation. Perfectly valid schema changes to the internal database model
will be reflected downstream in the event schema and may cause breakages for
your consumers.

Highly normalized event streams
Internal model coupling results in event streams that mirror the source relation‐
ships. Normalized database tables result in normalized event streams and often
require consumers to denormalize data before use. While joining events across
streams of data is possible, it remains more complex and less efficient than
resolving the joins inside a relational database built for this purpose. We’ll discuss
this in more detail in “Denormalization and Eventification” on page 186.

Change-Data Capture | 181

CDC connectors are a significant improvement over query-only connectors. They
reduce the barrier to bootstrapping data products and make it easier to get started
with event streams. However, there still remains room for improvement, particularly
as regards further isolating the internal data model from that which is published to
the external world. Let’s take a look at the transactional outbox pattern next.

Change-Data Capture Using a Transactional Outbox
A transactional outbox is a dedicated database table that acts as a temporary output
buffer for events to be written to the event stream. When you update your internal
domain model, you select only the data that you want to expose to the outside world
and write it to the outbox. Then, a separate asynchronous process, such as a dedica‐
ted CDC connector, consumes the data from the outbox and writes it to the event
stream. Figure 8-2 shows the end-to-end process.

Figure 8-2. Getting events from a database using a transactional outbox and a dedicated
connector

The transactional outbox pattern is a more invasive alternative to simply capturing
existing internal model tables because it requires altering both the database and the
existing code. First, we’ll need to create an outbox for the data we want to turn into
events. The most common option is to create one table per domain entity and enforce
data types based on the table’s schema.

Secondly, we’ll need to modify the application code by wrapping relevant internal
entity updates in a transaction. Your database must support transactions for this pat‐
tern to work. Within the transaction, you will need to select the data you want to
expose and write it to the outbox. Finally, you can close and commit the transaction.
Updates to the internal domain model either happen atomically or not at all.

The Python code of Example 8-1 illustrates an atomic update of an EcomItem in a
MySQL database. The internal model update is executed prior to the transactional
outbox update, though both are wrapped within a single transaction for consistency.

182 | Chapter 8: Bootstrapping Data Products

Example 8-1. Atomic update of the internal model and the transactional outbox

try:
 conn = mysql.connector.connect(host='localhost',
 database='python_db',
 user='abellemare',
 password='definitelynotpassword')
 conn.autocommit = False
 cursor = conn.cursor()

 # Perform the internal domain model update
 internal_model_update = """
 Update EcomItem
 set price = 1299.99
 where id = 4291"""
 cursor.execute(internal_model_update)

 # Select the subdomain of the internal model we want to write to
 # the transactional outbox
 internal_sub_model_query = """
 Select name, price
 from EcomItem
 where id = 4291"""
 cursor.execute(internal_sub_model_query)
 name_and_price = cursor.fetchone()

 if (name_and_price == None):
 raise Exception("Unexpected missing record. Can't get name_and_price")

 # Insert the selected data into the outbox
 outbox_insert = """INSERT INTO EcomItem_Outbox (id, name, price)
 VALUES (4291, %s, %s)"""

 # Pass the name and price in to replace the query wildcards
 cursor.execute(outbox_insert, name_and_price)

 # Commit the internal and outbox updates atomically
 conn.commit()

except mysql.connector.Error as error:
 # reverting changes because of exception
 conn.rollback()

finally:
 # Close the database connection
 if conn.is_connected():
 cursor.close()
 conn.close()

In this example, we first update the EcomItem price to $1299.99. Next, we select the
name and price from the table we just updated—we are forced to query name at the

Change-Data Capture | 183

very least since we want to produce a state-based event that contains all of the current
state for the item we just updated. Finally, we compose the event and write it into the
EcomItem_Outbox format, as shown in Table 8-1, just as we would any other relational
database table.

Table 8-1. EcomItem_Outbox table definition

id name price Datetime
4291 “Fancy Laptop” 1299.99 2022-06-22 11:33:12

There are two things to note about our SQL table definition. One, we are using NOT
NULL for each of the mandatory fields that we expect in our event. Inserting a new
event into the outbox will fail unless all constraints are met. Two, we’re populating the
Datetime field by default using CURRENT_TIMESTAMP if it is not provided by the appli‐
cation’s code. You may use this timestamp as part of the schema for your event, or you
may use it to populate the event’s metadata to indicate when the event was created.

Ensure that the internal model, the transactional outbox table
model, and the event schema are compatible. Use pre-deployment
to ensure that internal model updates correctly transcribe to the
outbox table model and event schema to avoid easily preventable
runtime errors.

Obtaining data from the outbox can be accomplished using exactly the same tech‐
niques we’ve talked about earlier in this chapter: either by directly querying the out‐
box via a polling connector or by using a CDC connector.

You’ll also need to clean up the outbox table from time to time. If you’re using a
query-based polling mechanism, cleanup is as simple as deleting each of the rows
from the outbox as they are written to the event stream.

Debezium offers a full-featured outbox to Kafka topic mechanism known as the out‐
box event router. It prevents propagation of DELETE events from outbox tables but can
still send out tombstones by setting route.tombstone .on.empty.payload to true.
Additionally, it will automatically clean up the outbox table to prevent it from grow‐
ing unbounded.

You should use off-the-shelf, freely available products such as
Debezium whenever possible to simplify your data mesh journey. A
great many developer hours and testing hours have gone into hard‐
ening it, and it’ll provide you with a far more robust solution than
most home-grown solutions. You’d be better off spending your
efforts on building your data products and establishing a self-
service platform than on trying to reinvent CDC solutions.

184 | Chapter 8: Bootstrapping Data Products

https://oreil.ly/rl_he
https://oreil.ly/rl_he

Some database storage engines allow you to create a table that doesn’t save the data to
the database but instead writes it to the database’s log. MySQL’s BLACKHOLE storage
engine simply discards all writes but preserves all INSERT, UPDATE, and DELETE opera‐
tions to the log. The BLACKHOLE storage engine requires minimal disk IO and it
absolves you of having to clean up the table since nothing is ever written to it.

There are a number of pros to using a transactional outbox:

Internal data model isolation
The outbox provides isolation of the internal data model from the external data
model, allowing both to evolve independently.

Exactly-once outbox semantics
Transactions ensure that both the internal model and the outbox data are created
together or not at all. A failure to update the internal model will prevent an event
from being written to the outbox, but so will the reverse. Test your code and
exercise each code path.

Early schema enforcement
The outbox table schema determines the event schema. All events written to the
outbox will comply with the event stream schema requirements, significantly
reducing the chance for errors.

Denormalized data
You can choose to denormalize data during the transaction, such that down‐
stream consumers do not have to join the data themselves. We’ll go into this
more in “Denormalization and Eventification” on page 186.

Producing events via a transactional outbox also has several cons:

Database must support transactions
It bears repeating that your database must support transactions. If it does not,
you’ll have to choose a different data access pattern.

Application code updates
The application code must be updated to enable this pattern, which requires
development and testing resources.

Outbox write may fail the transaction
A transaction failure due to a write issue to the outbox will also cause the write to
the internal model to fail. This may be unacceptable for your use case, but is
easily prevented by comprehensively testing your code and validating your trans‐
actional updates prior to deploying your code.

Change-Data Capture | 185

Database performance impact
The performance impact to the data store may be significant, especially when
large quantities of records are written, read, and deleted from the outbox. This
could have a negative impact on response times and customer experience.

The outbox provides an abstraction layer between the internal domain model and the
external event model. We can use this layer to further denormalize and restructure
our data to suit the needs of our data product consumers. Let’s take a closer look at
this aspect.

Denormalization and Eventification
One of the main goals of normalizing data is to minimize redundancy. However, nor‐
malization tends to work best when the stored data is attached to a processing engine
that can easily resolve and denormalize it as needed.

Some consumers will want only a really simple event-driven data product with a min‐
imal amount of information. Others may want one that has a lot of extra information
about the entities and request extensive denormalization to get the flattened result. It
is more challenging to deal with denormalization in a set of event streams than it is a
set of tables, so it’s a very good idea for us to carefully consider what should and what
should not go into a denormalized event stream.

For example, consider the following relational ecommerce, merchant, and inventory
data model. The EcomItem shown in Table 8-2 has a foreign-key relationship
(merchant_id) to the Merchant table in Table 8-3. EcomItem also has a primary-key
relationship (inventory_id) to the Inventory table in Table 8-4, which contains the
quantity of items currently in stock.

Table 8-2. EcomItem table definition

id name price merchant_id inventory_id updated_at
4291 “Mirage Block Set” 1299.99 4 44291 2021-03-22 13:05:00

Table 8-3. Merchant table definition

id name premium_partner updated_at
4 “Devin’s Trading Cards” true 2019-08-12 19:00:37

Table 8-4. Inventory table definition

id quantity_in_stock updated_at
44291 3 2021-01-09 07:33:13

186 | Chapter 8: Bootstrapping Data Products

Though this model is simplified, you’ll commonly find similar models in many online
ecommerce marketplace platforms—think of businesses like Amazon, eBay, Alibaba,
Etsy, and Shopify, to name a few.

Merchant.premium_parter specifies if the merchant has signed on and paid for the
premium business experience: better advertising deals, preferred advertisement
placement, and preferred search result placement. Additional operational features
include the ability to upload videos and additional pictures per EcomItem, create item
bundles, and offer AI-generated custom deals to find satisfactory price points for
cost-savvy customers. Most of these services require the EcomItem information to
serve to the end customer—but they each also require the merchant information for
branding and display purposes as well as determining if the merchant requires
premium_partner treatment.

Due to the highly relational nature of these streams, each consumer service will need
to do the same foreign-key joins of EcomItem to Merchant to get the data into a
proper format for its business use cases. Figure 8-3 shows a small subset of consum‐
ers that each need to consume and join each event stream.

Figure 8-3. Each consumer has to join the same data to determine premium partner sta‐
tus

There are some significant downsides to this arrangement:

Repeated processing
Each consumer needs to execute these joins on its own. Each client will have
duplicate code and use a similar amount of resources for the joins. For small data
sets, it may be inconsequential, but for processing data at scale, including dealing
with partitioned event streams, it can become quite expensive in terms of pro‐
cessing resources.

Denormalization and Eventification | 187

Significant client code constraints
Each consumer client needs to be able to resolve the joins on its own. The major‐
ity of scalable streaming join solutions, such as Apache Kafka Streams, Flink, and
Spark, are Java virtual machine (JVM)-based, but some also support Python and
SQL. However, there is no first-class support for other popular programming
languages such as Go, JavaScript, Ruby, Rust, and so on. You may also resolve
joins by using a dedicated relational database, but your client may require a
document, key-value, geo, or time-series database instead.

Eventification is a implementation pattern for converting, denormalizing, and remod‐
eling highly relational streams into a format that is more suitable for event-driven
consumers. In DDD terminology, we’re creating an aggregate root as an event. Our
earlier evaluation of using EcomItem identified that we’d also need to include the
information about the Merchant, particularly its premium_partner status. In the same
vein, we can consider Inventory information to be outside the scope of the aggregate
root, as it’s seldom used by our consumers outside of one or two specific use cases.

There are several factors to consider when performing eventification:

Consumer requirements and use cases
Increasing ease of use is the chief goal of eventification and requires knowledge
of your consumers’ needs. The aggregate root provides the essential core infor‐
mation in an easy-to-access and readily available format so that your consumers
do not have to individually and repetitively do the work themselves.

Degree of denormalization
How much you denormalize the data depends on the consumer use cases as well
as the size of the data and the frequency of change. We’ll cover this in more detail
in “What Should Go In the Event? And What Should Stay Out?” on page 192.

Keys for joining on related streams
As we discussed back in “Event Stream Keying and Partitioning” on page 82, the
event keys you select during eventification should enable easy joining on other
event streams. Ensure your event is keyed in a way that makes it compatible for
joining to related streams that are not required by most consumers. Inventory
would be an example of such a stream.

Structuring the external data model
Eventification provides you with the opportunity to convert and standardize data
as well as conceal portions of the internal data model from downstream coupling.
The resultant denormalized and remodeled schema becomes a part of the the
data product’s API.

188 | Chapter 8: Bootstrapping Data Products

https://oreil.ly/sCYr7

There are two main areas where you can implement the eventification pattern: when
writing to the outbox table and when using a dedicated service to join normalized
streams. Let’s look at each of these in turn.

Eventification at the Transactional Outbox
One option is to select internal model data and denormalize it prior to writing it to
the outbox. If we take the sample code from “Change-Data Capture Using a Transac‐
tional Outbox” on page 182, we can tweak it to add a query to select and join the
EcomItem and Merchant data, then remodel it into the outbox table’s external model.
Example 8-2 shows a code sample for remodeling the relational data into a more suit‐
able denormalized event format.

Example 8-2. Eventification prior to writing to the outbox

...
 # Assume that we have just updated the internal model
 # Next, we select fields from the internal model and denormalize it
 # by joining against the Merchant table.
 internal_model_query = """
 select e.name, e.price, m.name as merchant_name, m.premium_partner
 from EcomItem as e, Merchant as m,
 join on e.merchant_id = Merchant.id
 where e.id = 4291"""

 cursor.execute(internal_sub_model_query)
 result = cursor.fetchone()

 # Create the insert statement for the outbox table
 outbox_insert = """
 INSERT INTO
 Enriched_EcomItem_Outbox (id, name, price, merchant_name, premium_partner)
 VALUES (4291, %s, %s, %s, %s)"""

 cursor.execute(outbox_insert, result)
 # Commit the internal and outbox updates atomically
 conn.commit()
...

In this code snippet, we create an entry for Enriched_EcomItem_Outbox in response
to the application creating or updating the data for EcomItem.id=4291. The internal
relational model remains encapsulated within the database, while the outbox provides
a data model more suitable for event-driven consumers. But what about when the
Merchant data changes? Consider a single merchant that decides to pay for premium
partner status.

Denormalization and Eventification | 189

Any previously created Enriched_EcomItem events must also be updated to reflect the
current premium status. A failure to do so means that the event stream is perma‐
nently inaccurate and no longer reflects reality, which will likely cause problems in
how downstream consumers react to and process that merchant’s data. Simply put, if
you’re going to denormalize data, you’re going to need to update the event whenever
any field changes. This remains true regardless of how you go about denormalizing
data, be it from the inside with an outbox table or with a dedicated eventification ser‐
vice, as we shall see in the next section.

A transactional outbox table works really well as a low-overhead way of isolating the
internal and external data models. If your source data resides inside a relational data‐
base, it’s very easy to rely on the database engine to quickly and efficiently denormal‐
ize data into an event-friendly format instead of leaving it up to each consumer to
handle. By making event streams easy to use, you improve the data product user
experience for your consumers, helping them get on with the business of using the
data instead of just struggling with it.

However, it’s not always possible to build an outbox table into a database, let alone
denormalize your data within the transaction. Aside from databases that simply do
not support transactions, legacy systems with no active development as well as those
with strict performance requirements may not be suitable candidates. Whenever a
transactional outbox isn’t feasible, it’s best to look at eventification in a dedicated ser‐
vice residing outside of the source domain. Let’s take a look at that now.

Eventification in a Dedicated Service
Eventification outside of the source database requires a purpose-built microservice or
stream SQL application. For example, Figure 8-4 shows a high-level overview of a
dedicated eventification service joining EcomItem and Merchant data together to form
a single enriched stream for downstream use. Event-driven processing technologies
like Apache Kafka Streams and Flink provide simple high-level frameworks for join‐
ing data together.

Figure 8-4. Eventification within a dedicated service using CDC event streams

Take Kafka Streams for instance—if we take the same Merchant and EcomItem models
from the previous section, we could create a simple Java application to join two into a
single state-based event. The code would look something like Example 8-3, though
you may also prefer to look at a full-featured example:

190 | Chapter 8: Bootstrapping Data Products

https://oreil.ly/m7Qb_

Example 8-3. A Kafka Streams microservice joining and enriching EcomItem with
Merchant data

public Topology buildTopology(Properties envProps) {
 //Configuration code not shown for brevity
 //Create the Serdes
 MerchantSerde merchantSerde = new MerchantSerde(...);
 EcomItemSerde ecomItemSerde = new EcomItemSerde(...);
 EnrichedEcomItemSerde enrichedEcomItemSerde = new EnrichedEcomItemSerde(...);

 //Create the application builder and create two tables.
 KStreamBuilder builder = new KStreamBuilder();

 //A KTable is the materialization of a state-modeled event stream
 KTable<Long, Merchant> merchantTable =
 builder.table(Serdes.Long(), merchantSerde, merchantTopic);
 KTable<Long, EcomItem> ecomItemTable =
 builder.table(Serdes.Long(), ecomItemSerde, ecomItemTopic);

 ecomItemTable
 .join(merchantTable,
 EcomItem::getMerchantId,
 new EcomToMerchantJoiner())
 .toStream()
 .to(enrichedEcomItemTopic, Produced.with(Serdes.Long(), enrichedEcomItemSerde));

 return builder.build();
}

The EcomToMerchantJoiner class is shown in Example 8-4. It specifies how to join
the two entities together by extending the ValueJoiner class.

Example 8-4. The EcomToMerchantJoiner definition used by the joiner service to
populate the EnrichedEcomItem

public class EcomToMerchantJoiner implements
 ValueJoiner<EcomItem, Merchant, EnrichedEcomItem> {
 public EnrichedEcomItem apply(EcomItem e, Merchant m) {
 return EnrichedEcomItem.newBuilder()
 .setId(e.getId())
 .setName(e.getName())
 .setPrice(e.getPrice())
 .setMerchantName(m.getMerchantName())
 .setPremiumPartner(m.getPremiumPartner())
 .build();
 }
}

Denormalization and Eventification | 191

https://oreil.ly/L775t

Or if you want to simplify it even further, you can rely on something like Flink SQL
to do the same thing using a pretty simple SQL-like query. Example 8-5 shows a
much simpler way of joining the same entities together using Flink SQL.

Example 8-5. A Flink SQL version of the eventification service

SELECT *
FROM EcomItem
INNER JOIN Merchant
ON EcomItem.merchantId = Merchant.id

The SQL layer makes it even easier to resolve streaming joins and denormalize enti‐
ties, and it opens up the self-service platform capabilities to non-JVM developers. A
simple SQL layer is ideal for the purposes of eventification since we’re not executing
any complex business logic, simply resolving joins and emitting enriched entities.

There are some significant advantages to using an external eventification microser‐
vice, including:

• Reduced demand on the database’s resources
• Simplification of the source domain’s application logic

However, there are also some challenges to handle:

• Synchronizing changes to the database tables, the connectors, and the eventifica‐
tion microservice

• Finding a robust stream joiner framework; there are only a few options, and
they’re all JVM-based

• Arguing over ownership of the microservice (hint: the domain owner is responsi‐
ble for building useful data products)

Regardless of whether you choose to denormalize your business entities inside the
source database, outside the database using a purpose-built microservice, or at the
consumer itself, it’s important to consider the impact on your consumers. Focus on
making your domain data as easy to use as possible for them and work together to
come up with an agreeable solution.

What Should Go In the Event? And What Should Stay Out?
There is a fine balancing act for determining what data to include and what data to
exclude in an event. There are several factors that influence this decision. Consumer
needs, the update frequency, the data size, and the resultant total load are all
considerations.

192 | Chapter 8: Bootstrapping Data Products

https://oreil.ly/FD_r1

Let’s consider an extension of our ecommerce example. EcomItem.inventory_id
specifies a relationship with the Inventory data (Table 8-4), indicating how many of
the item are in stock.

Every time the inventory changes, say due to a sale, a return, or a received shipment,
the inventory domain can emit a new state event with the updated inventory. For
products that change extremely frequently (think a Black Friday “door crasher” sale),
you could end up with a veritable barrage of inventory events. While it remains a
valid option to publish only a sample of the events, you lose accuracy about exactly
what happened while increasing the latency for an event occurring and a consumer’s
ability to react to it.

If we join the EcomItem with Inventory (EcomItem.inventory_id = Inventory.id),
then every single Inventory update will trigger a corresponding join on the material‐
ized EcomItem table. This can be quite a lot of events, and consumers that don’t care
about the inventory quantity will be spammed with inconsequential updates.

Similarly, consider a Reviews aggregate data product that contains the top 100
reviews for a given EcomItem. While this data may not change frequently, joining it
with EcomItem means that every single time we update either Reviews or EcomItem,
we also re-emit the entire payload containing the top 100 reviews. Just like with fre‐
quent updates, many consumers may not care at all about the contents but still need
to contend with the very large data size coming through the stream.

Finally, you may discover that you have both data with a very high rate of change
from one stream and data with a very large payload size from another stream. Joining
the two means that you’ll now have a lot of data with a high rate of change. This can
cause a compounding high load on your event broker, your eventification process,
and your consumers.

You’ll need to find your own appropriate balance for your data products by talking to
your consumers and working with your federated governance team to come up with
some guidelines for helping your peers make similar decisions.

As a general rule, avoid joining in data that changes frequently or is a very large size.
You may be better off leaving those components out of the enriched event and letting
your consumers choose to integrate it into their own service. Of course, you can
always create a new data product that includes Inventory as part of EcomItem.

Slowly Changing Dimensions
Let’s continue with our ecommerce example. We saw that there are many EcomItems
for a given Merchant, and if we want to denormalize the EcomItem.merchantId data,
we’ll have to join against Merchant. However, Merchant data may not change for a
very long time, though it certainly could be changed at any moment.

Denormalization and Eventification | 193

This type of data is known as a slowly changing dimension (SCD), which is usually
static but can change unpredictably. SCDs have long been the provenance of data
warehouse and data lake models, deliberately modeled for handling large analytical
queries that span wide time ranges. But how do we model them? And what impact
will they have on our data products?

Although there are numerous SCD subtype classifications, the two most relevant for
data products are the Type 1 and Type 2 data model approaches. Let’s take a closer
look at each of these to see how they affect the way we build our data products.

Type 1: Overwrite with the new value

With Type 1 modeling, only the most recent value is retained. Say we have a mer‐
chant without premium status, as per the account shown in Table 8-5. If this mer‐
chant decides to pay for premium status, we’d need to produce a new entity event to
overwrite the previous one.

Table 8-5. Type 1: The first state event of Devin’s Trading Cards

id name premium_partner updated_at
4 “Devin’s Trading Cards” false 2010-04-22 23:15:01

Table 8-6 shows the results of the updated merchant entity event with premium_part
ner=true.

Table 8-6. Type 1: Updated premium status for Devin’s Trading Cards

id name premium_partner updated_at
4 “Devin’s Trading Cards” true 2019-08-12 19:00:37

The previous record is no longer required, and the event broker can compact away
the old event at a later date. While you may choose to retain the data for a longer
period of time, Type 1 dimensional modeling doesn’t account for a history of
changes—this is where Type 2 comes in. Let’s take a look.

Type 2: Append the new value

With Type 2 dimension modeling, the changed value of Merchant.premium_partner
is appended to and integrated with a single new state event. The event consumer has
access to the previous versions of that field and can use it for determining what the
entity looked like at a specific point in time. For example, building an analysis of
engagements over time, based on the merchant’s premium_partner status. Similarly,
the same event provides the latest premium_partner value for operational purposes,
ensuring that the merchant receives the proper premium treatment by the endpoints
serving its content.

194 | Chapter 8: Bootstrapping Data Products

https://oreil.ly/4liIP

Table 8-7. Type 2: Updated Merchant data is appended to the event, complete with version
IDs for previous updates

id name premium_partner updated_at version
4 “Devin’s Trading Cards” false 2010-04-22 23:15:01 0

4 “Devin’s Trading Cards” true 2019-08-12 19:00:37 1

Both the Type 1 and Type 2 SCD modeling strategies can power both operational
and analytical use cases. Operational cases typically only care about the most recent
value—when a change occurs, the operational system can react to the new state event
and act accordingly. Analytical systems tend to need a history of data, including when
the fields changed, so that they can build accurate aggregates based on those proper‐
ties.

The default selection for a state event is usually Type 1 modeling—your application
publishes only the latest data, leaving it up to the event stream to provide the history
of previous values. Your consumer model needs to opt in to maintaining the previous
values within its own domain data store.

Type 2 models force the consumer to consider the impact of SCDs as the state event
data model contains the full history of previous values. If the consumer wants only
the latest value, it still needs to explicitly select out of the history. Thus, while Type 2
models are more verbose and require a bit more overhead for consumers to use, they
reduce the chance of a consumer overlooking the history of changes.

Before we wrap up this chapter, let’s take a look at one more necessity: getting data
out of files stored in cloud storage (HDFS, S3, etc.) and into an event stream.

Bootstrapping Cloud Storage Files to an Event Stream
Connectors let us acquire data from an event stream, recompose it into files, and
write it to cloud storage so that it can connect up with existing batch-based pipelines.
But what if we want to do the reverse and take data stored in cloud storage and load it
into an event stream? Migrating to an event-driven data mesh doesn’t happen over‐
night, and bootstrapping existing data at rest into event streams is an important
option.

Batch-computed data has long been a staple of many data analytics platforms. Data is
usually structured as a set of large files in a columnar format such as Parquet. This
data is periodically computed by a scheduled job, which reads an input data batch,
processes it, and writes a resultant data batch back out to cloud storage. Batch-
computed data is also typically partitioned based on time, often aligned on natural
periods such as hourly, daily, weekly, and yearly.

Bootstrapping Cloud Storage Files to an Event Stream | 195

There are a few main ways that we can get data at rest into event-driven data prod‐
ucts. These options include:

Refactoring the job to produce events
This option requires that you have an event-producer client available in the lan‐
guage of your job. You simply include the event-broker producer code within
your job, such that it writes to both the cloud storage and the event broker. This
approach does introduce a dual write risk, as covered earlier in “Dual Writes” on
page 176.

Writing to broker after job completes
Since you’re already using a scheduled batch job, you can simply add a step to
read the new data, convert it into events, and write it to the event broker. One of
the big benefits of this approach is that you can use any technology or language
you want. Your initial job could be an old Apache Pig workflow that you don’t
want to touch with a 10-foot pole, while your event-broker job could be a very
simple and lean application in another language. The downside is that you’ll have
to read the data back into memory again, which increases both cost and latency.

Using a connector
You can also use a connector to simply listen for the creation of new files and
folders. For instance, this Kafka Connector can read files formatted with Avro,
Parquet, CSV, text, JSON, or binary/byte information from an S3 bucket and
write the data into a Kafka topic. This option allows you to rely on your existing
batch jobs to create the data and on the self-service connectors to bring that data
into your event streams. From here, you can start remodeling the data into well-
formed data products.

Bootstrapping your data into event streams is a big step toward an event-driven data
mesh. These bootstrapped streams are usually too slow for operational use cases, but
they usually suffice for transitioning batch-based analytical jobs over to streaming
applications. Your consumers will be able to use a single streaming protocol for all of
their data sources instead of having to mix and match various cloud and stream
protocols.

Once you have bootstrapped your batch data into an event-driven data product, start
sourcing feedback from your consumers. Once they get used to using streams, they
may ask that you bring the data product up to real-time speed. By following data as a
product principle, you can plan out the work, prioritize it, and build a roadmap of
data pipelines to port over to real-time streams.

196 | Chapter 8: Bootstrapping Data Products

https://oreil.ly/KsVC9
https://oreil.ly/KRaL9

Summary
A data mesh is built upon the foundations of your existing systems and data stores.
Bootstrapping data from existing sources into preliminary data products is an essen‐
tial step in building a successful data mesh. Many existing systems and data sources
are simply going to remain as they are, with no real chance of extensive refactoring
and re-creating into something new. It’s critical that we can meet these systems where
they are and get the data out, with minimal trouble.

Connectors play a pivotal role in the self-service bootstrap process. They fulfill the
basic goal of extracting data into a stream form, where you can start negotiating the
finer points of the data product: latency, event size, denormalization, and update fre‐
quency. Precisely what you put in and what you leave out varies depending on the
consumers’ needs. Talk to them, work with them, and iterate on your products.

But what if you don’t want to provide all of your data products via event streams?
What if you can’t, due to third-party APIs and the sheer gravity of existing batch-
processed data? The next chapter takes a look at these questions and discusses how
you can integrate nonevent-driven data products into your data mesh.

Summary | 197

CHAPTER 9

Integrating Event-Driven Data
into Data at Rest

Event-driven data products provide exceptional flexibility for consumers but they
may not be suitable for every use case. Existing systems and dependencies play a big
role in any architecture, and shifting to a data mesh depends on supporting existing
use cases while simultaneously promoting incremental change. Many systems, pro‐
cessing jobs, and computations rely heavily on data at rest, particularly those in the
analytics domain.

In this chapter, we’ll focus on integrating event-driven data into data at rest. We’ll
look at the Medallion architecture and the role it plays in modern data analytics
workflows. We’ll explore strategies and trade-offs for determining when to convert
data from a flow of events into a batch of files at rest. Finally, we’ll take a look at a
real-world example to tie theory into practice. Let’s get into it.

Analytics and the Medallion Architecture
Change works best by first meeting your users where they are. Batch-based data ana‐
lytics pipelines and workflows are extremely common in most industries, and many
organizations have invested heavily in batch-based data engineering, data science,
data analytics, and reporting workflows. “Data Products Are Multimodal” on page 31
introduced the idea of multimodal data products, but until now we’ve been working
primarily in event streams. While they’re often the best choice for driving both opera‐
tional and real-time analytical use cases, we still need to integrate with our batch-
driven workflows.

Figure 9-1 shows the typical end-to-end distribution of a data analytics pipeline using
the Medallion terminology introduced in “Data quality classifications” on page 79.

199

Generally speaking, data engineers extract (E) data from a source, load (L) it into a
staging ground, and perform any necessary initial transformations (T)—an ELT pro‐
cess. This bronze data then feeds the next step of the pipeline, further cleaning up and
standardizing the data, and composing it into a higher-quality silver data format.

Figure 9-1. A typical batch data processing workflow spanning multiple teams

Silver data may then undergo further processing and aggregation into a gold data set,
representing the highest level of quality, most often built to serve a singular business
function. It may also be used as is to build business-specific aggregations that are not
part of the Medallion-graded data sets available for others to use.

Data analysts rely on the well-modeled silver and gold data (along with SLAs and
support), ingesting it into business intelligence (BI) and analytical tools. Here they
perform analyses, compose reports, and influence data-driven decisions.

Integrating event-driven data products into existing batch-data workflows is an acid
test to see if your data mesh is actually the foundation of a new means of data com‐
munication or simply another ad hoc mechanism serving only a limited subset.
Figure 9-2 illustrates how to integrate event streams as the source of the batch-data
workflow instead of using the existing purpose-built code.

Figure 9-2. Powering an existing workflow using event streams and connectors

200 | Chapter 9: Integrating Event-Driven Data into Data at Rest

You may first notice that the data engineering team is no longer to be seen—they’re
now off building the data mesh’s self-service platform and supporting its adoption.
Additionally, the work of ensuring data quality and standardization has been pushed
upstream to the data product owner. A data scientist or analytics engineer may yet
still be involved in building the data products, though their participation is not
mandatory.

The remaining duties of the data product users in Figure 9-2 involve creating and
configuring the connectors that sink the event-driven data into cloud storage. The
self-service platform should provide them with everything they need to serve their
own connector use cases, as discussed back in “Connectors” on page 101.

Event-driven data products let us remove custom-built, point-to-point data pipeline
jobs that often connect one system to another. But it requires that we provide the data
in a format and cadence that the consumers are already expecting, based on the exist‐
ing jobs. Let’s take a look at this in the next section.

Connecting Event Streams Into Existing Batch-Data Flows
Data flows are rarely simple and clean—they’re often layers upon layers of unsatisfac‐
tory compromises, “temporary” solutions that become permanent, and hacky work‐
arounds that end up supporting critical business use cases. The codebase is littered
with "TODO—Temporary hack! Fix this!" and ancient backlogged work tickets
detail essential changes that need to be implemented, written by people who often no
longer work at the organization. In short, data flows look a lot like any other applica‐
tion’s code—but they’re also spread across multiple jobs incorporating diverse frame‐
works, languages, and databases.

Just as building up a data mesh’s self-service platform is an incremental process, so is
connecting data products to existing batch-based data flows. First and foremost,
you’re not going to refactor and replace years of extensively crafted business logic any
time in the near future. And in many cases you shouldn’t even try. It’s not worth try‐
ing to change things that work good enough just for the sake of change. Instead, you
should focus your efforts on the critical business use cases that are either sensitive to
bad data or that require results much more quickly than existing data flows can
support.

Integrating event-stream data products requires consuming the events, converting
them into a suitable format (e.g., Parquet), and sinking them to the cloud filesystem.
Our integration strategy is to replace the batch-created data sets with those new ones
derived from our purpose-built data products. But that’s not the only thing we’ll need
to do. In fact, it’s probably best if we just take a look at an example to see how this
strategy can work in practice.

Connecting Event Streams Into Existing Batch-Data Flows | 201

Consider an ecommerce and advertising platform company that offers its business
partners pay-to-promote advertisements. Business partners create advertising cam‐
paigns, allocate budgets, and bid against one another for the right to display their
advertisement to the end user. The advertising platform company must provide both
billing results and insight reports for their business partners. After all, they want to
know how effective their advertisements are, who is clicking on them, and how much
they owe.

However, there is a problem. Business partners routinely receive bills from the
finance team that do not match the engagements that the analytics team is reporting.
For example, a partner may be billed for 1,200 unique engagements, yet their analyt‐
ics report shows only 1,154 unique engagements. What gives? Let’s take a look at the
data flow that has built up over the years to get a sense of the complexity and where
errors can creep in.

Figure 9-3 shows the end-to-end process, beginning with ingesting and parsing raw
data from the analytics server logs (1). The data is extracted (2) from the server logs
every 15 minutes, transformed into a rough unstructured batch file, and loaded into
the cloud filesystem (3) as basic HTTP log events. Next, a periodic job that kicks off
every 15 minutes processes the previous 15 minutes’ worth of data, cleans it up, stand‐
ardizes the fields, and emits it into distinct data sets (4) depending on the user actions
(e.g., click, view, scroll).

Figure 9-3. Divergent batch-computed engagement and budget reports

202 | Chapter 9: Integrating Event-Driven Data into Data at Rest

Thus, we want to take batches of server log events that look like the following:

42.241.222.101 - - [22/Jan/2021:23:27:13 +0000]
"GET /ad/131241232?a=click&b=29&uid=A675E09&device=iPhone12
 HTTP/2.0" 200 5316 "https://sample.domain.com/"
"Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36
 (KHTML, like Gecko) Chrome/72.0.3626.119 Safari/537.36" "2.75"

And convert them into batches of well-structured data with a schema that looks like
the following table:

long string datetime int string enum
adId userId datetime bidInCents url device

131241232 A675E09 22/Jan/2021:23:27:13 +0000 29 sample.domain.com/ iPhone12

Next, we source data from the advertisements and budgets database (5) and ELT it
into a data set available on the cloud filesystem (6). This job kicks off every 60
minutes and creates a full snapshot of budget data, including any rows that haven’t
changed since it last ran.

Both the finance team (7) and the analytics reporting team (8) begin their work from
the same set of click events—a good practice and one we’ll return to later in this chap‐
ter. But each team acts independently of the other, and this is where differences in
reporting (9) can creep in, causing confusion as to which report, if either, is correct.

First up: user-session definitions. Each team computes user-sessions in its own way.
While both teams know that the advertisements are only unique within a session, the
precise business logic that each team uses to compute the sessions varies. One com‐
mon definition relies on a 30-minute timeout—the session will remain open so long
as the user performs some sort of activity within that 30 minute period. But it’s also
common practice to cut off a session at the midnight mark, closing the session at
midnight and opening another immediately after.

The financial team respects the midnight cutoff—after all, it’s a good way to get
another billable event in and it’s also a pretty standard (though dated) practice. Mean‐
while, the analytical reporting team simply uses a 30-minute timeout. That’s discrep‐
ancy number one.

Second up: unique-user attribution. The analytics team started a long time ago and
has been struggling to identify unique users through a period of many years. Account
IDs, phone numbers, device IDs, and, more recently, iOS and Android advertising
IDs have complicated the legality and logic of identifying and tagging unique users.
In contrast, billing for pay-for-promotion advertising is fairly new—but they believe
that unique identification is simply a matter of using the device-advertising ID. After
all, “everyone knows” that’s what you’re supposed to do.

Connecting Event Streams Into Existing Batch-Data Flows | 203

The end result is that both teams have well-defined business logic that passes their
unit tests, identifies unique users according to their test cases, and outputs a reasona‐
bly accurate result. Sure, they may not match, but they’re off by only a few percentage
points. That’s discrepancy number two.

It’s no wonder that there are some problems, and while there are many other and
more nuanced areas where issues can creep in, these two will suffice for our analysis.
And while I have no doubt that you’re probably already envisioning a solution, let’s
back up and take a look at where things went wrong through the lens of data mesh.

Through the Lens of Data Mesh: What’s Going On?
First, these original data sets are not data products. They are not purpose-built, they
are not created with a well-defined structure, and there is no requirement to meet the
specific requirements of downstream consumers. Logs are simply extracted and
parsed into a batch of data with best-effort. Structure is added after the fact, by people
that neither own the data nor own the application that emits it.

Second, there is no domain ownership. How does a user go about asking questions
about what the data means? While you may be able to talk to the team that owns the
advertisements and budgets database and get an answer out of them, you’re going to
be hard-pressed to get a clear explanation of bootstrapped nginx logs from the appli‐
cation developers that wrote the frontend service. There’s no data product owner.
There’s no official point of contact. Communication to downstream users is based
almost entirely on tribal knowledge and manual investigation of currently registered
data pipelines. Changes to upstream data are detected by downstream consumers
when their jobs break.

Third, the lack of domain owners and data product owners has cultivated a protective
and siloed culture. Why rely on upstream data sets when they’re prone to sudden and
unexpected breaking changes? It’s best to get your data from as close to the source as
possible so that others can’t break it on you. Rely only on your own team’s work and
minimize dependencies on others. While your company’s colleagues are certainly
well-meaning, you know your direct teammates and work together tightly to ensure
that your data flows work.

The end result is a reactive, protective, and isolationist culture, not caused by mali‐
ciousness or negligence, but rather the complete absence of codified duties and roles.

Through the Lens of Data Mesh: How Do We Solve It?
Let’s look back at Figure 9-3. I suspect that one of the first things you thought of was
that we should push the duplicate logic in (7) and (8) back upstream to do session-
building and unique user identification in one common location. If so, your instincts

204 | Chapter 9: Integrating Event-Driven Data into Data at Rest

are correct. Let’s take a look at Figure 9-4 to see what this same workflow may look
like when powered by an event-driven data mesh.

Figure 9-4. Integrate with event-driven data products and push common computational
logic upstream

The first thing to note is that click events (1) have been promoted to a source-aligned
data product and made available through an event stream. This was a fairly easy con‐
version since all it took was to natively produce the click events from the analytics
server whenever they occurred. No need to parse nginx logs when the data was
already fully available. The domain owner accepted the mantle of data product owner
and committed to creating a click-event data product. Data that starts in motion sim‐
ply stays in motion, and we can just slow it down to a 15-minute batch format file
when we connect it (2) to cloud storage.

The schema for the source-aligned click-stream data product is specified as follows:

Key: String, //user_account
Value: {
 user_account: String,
 utc_timestamp: Datetime,
 ad_id: long,
 page_id: String,
 bid_in_cents: int
}

Next, we got representatives from the finance and the analytics reporting teams
together to work out the common unique-user and session-creation logic. We extrac‐
ted the existing business logic from their domains, unified it, and came up with a

Connecting Event Streams Into Existing Batch-Data Flows | 205

common definition for both. As their use cases require both sessions and uniqueness,
both steps occur within a single process (3) and the data is emitted in batch every 15
minutes (4). Note that if we decide to treat the data in (4) as an aggregate-aligned data
product, we will need to assign a data product owner and ensure we follow all com‐
mon data product management and metadata requirements.

The hourly engagement report (5) has been updated to draw from the common data
in (4). While the hourly engagement report still remodels the data according to its
own requirements, it does not make decisions about unique user or session classifica‐
tions. The bidding system (6) remains untouched for now. It continues to receive
hourly budget spend inputs from the analytics reporting team.

The budget report (7) continues to draw on hourly snapshots of data batch-created by
the ETL job attached to the advertisements and budgets database. Why not upgrade
to an event-driven data product? Because in the constraints of our example, there is
simply no business need to make the change—the batch-based budget file creation
works well enough and isn’t causing any problems.

Implementing a data mesh is incremental, and it’s important to identify the problem
areas that benefit most from data as a product. While in an ideal world we would
want to have every source a well-formed data product with no duplicate business
logic anywhere, the reality is that we need to pick and choose where to invest our
time and efforts.

Balancing File Sizes, SLAs, and Latency
There are a few technical issues to address when integrating event-driven data prod‐
ucts from streams into batches, particularly when writing to a cloud filesystem. Here
are some of the main factors you’re going to need to consider:

Performing data format conversions
Event schemas are generally unsuitable for modern big data processing, so you’re
going to need to convert your events into blocks of files with a suitable schema
format. While Avro and Protobuf remain common choices for event streams,
columnar formats such as Parquet tend to be the most common for cloud filesys‐
tems because they offer significantly higher performance processing for batch
workloads than do the event-centric formats of Avro and Protobuf.

Handling schema evolution
Schema evolution adds some complexity to the picture. Typically, each event evo‐
lution requires its own file because the columnar format schema is determined
on a per-file basis. Thus, version 1 events go to the version 1 file, while version 2
events go to the version 2 file. The more schemas you have in an event stream,
the more files you’re going to end up with in the cloud filesystem.

206 | Chapter 9: Integrating Event-Driven Data into Data at Rest

Balancing file size versus latency
Your downstream consumers can’t use the data until the files are written to the
cloud filesystem. If you want to minimize the delay between an event occurring
and it showing up in the cloud filesystem, you’ll to end up with a large number of
small files written frequently. Your latency will be quite low, but applications that
want to load and process this data will be slow and inefficient. One major issue
with cloud filesystems is that they need to reconcile schemas for all the data that
they’re loading—and by having a vast amount of small files, you end up with a lot
of overhead for processing. Alternatively, you may choose to write files only
when they’ve reached a certain size (e.g., 100 MB) or a certain time boundary
(e.g., hourly), with the trade-off being a longer delay until the data is available.

Implementing post-connect file amalgamation
A common technique is to frequently write many small files (e.g., every minute)
to ensure a very low latency for specific batch consumers. Then, at the end of a
time boundary (e.g., every hour), you kick off a new batch job to recombine the
many small files into just a few large ones. As a final step, you update the cloud
filesystem’s metadata entry (such as Apache Hive) to redirect future batch jobs to
the amalgamated files, substantially increasing their performance.

Integrating events from streams into data at rest requires careful consideration of
your data product’s use cases. If your organization has existing batch-computed data,
you can usually repurpose the existing conventions and SLAs for your own. If people
are used to having their data updated every 30 minutes, it’s fine to start with a 30-
minute update cadence as your SLA. Data format conversions and schema evolution
are similarly not new to event streams, and you may find you can draw inspiration for
handling these issues from your existing data pipelines and workflows.

Budget Blues: A Tale of Overspending
Migrating to a common Ad-Click Sessions per Unique User data product has
worked well—the discrepancies have disappeared and there have been no more busi‐
ness partner complaints. However, there’s still an issue that we’ve simply chosen to
ignore until now.

Currently, ads are served to an end user via a bidding process. Business partners are
presented with information about the end user, such as age, location, and interests,
and can submit a bid for the right to serve the end user an advertisement based on
relevance. The winning bidder’s advertisement is then pushed to the end user’s UI.
However, the business partners are charged only in the event that the end user clicks
on the event. Viewing it is simply not enough.

Ads are served on a wide variety of properties and across many systems, and we don’t
know that an ad has been clicked on until after we’ve already served out the ad and
loaded the page. At that point, we can only wait to see if the end user clicks on it.

Connecting Event Streams Into Existing Batch-Data Flows | 207

Currently, the budget spend report is computed in hourly batches. Every hour we
export the data from the Bidding System to get the new and updated bidding budget
facts. The consequence of an hourly cadence is that the absolute earliest that we can
compute budget fulfillment is one hour—in practice, it’s going to take longer than
this, as we’ll also need to account for the processing time and the time to ETL it back
into the Bidding System. Our goal is to shorten the time between aggregating clicks,
computing the remaining budget, and informing the Bidding System about which
budgets should and shouldn’t be allowed to bid anymore.

As it currently stands, we often have business partners whose budgets have techni‐
cally already been filled, but the Bidding System has not yet received the hourly
report with the updates. In the meantime, the algorithms continue to use the business
partner’s budget entry to aggressively bid on advertisement placement, out-bidding
other business partners who do have budget left, but have bid a lower amount.

The end result is lost income because we cannot bill a business partner for additional
ad-clicks beyond their explicitly stated budget limit. Instead, we need a much tighter
loop to reduce the time between a budget fill and the Bidding System deactivating
the associated bids.

Figure 9-5 illustrates the evolution of our architecture to one that will help us meet
these goals.

Figure 9-5. Further evolution of the budget fulfillment system to use event-driven data
products

208 | Chapter 9: Integrating Event-Driven Data into Data at Rest

The source-aligned click events (1) are aggregated into sessions by a purpose-built
microservice (2), resulting in an aggregate-aligned data product (3). This stream has
been deliberately promoted to data product status by the Ad-Click Team domain
owners because it powers not only the workflow in Figure 9-5, but other applications
and processes as well (not shown). The aggregate data product has the following
schema:

Key: String, //user_account
Value: {
 user_account: String,
 session_start: Datetime,
 session_end: Datetime,
 //Map of unique ad_id clicked and the corresponding bid amount
 unique_ad_id_to_bid_price_in_cents: Map[Long, int]
}

unique_ad_id_to_bid_price_in_cents is simply a map that contains the unique set
of ad_ids mapped to a bid amount. For example, consider the following snippet:

 unique_ad_id_to_bid_price_in_cents: Map[Long, int] =
 [[77883344, 29],
 [12937163, 14],
 [01845672, 0]
]
}

The user in this session clicked on three ads. The winning bid for each ad was 29
cents, 14 cents, and 0 cents, respectively. The last value indicates that no one was will‐
ing to pay any money for the right to serve that ad.

Further to Figure 9-5, the Bidding Team has set up a CDC connector (4) to emit a
stream of facts detailing the Bidding Budgets (5). This enables the Bidding Budget
Fulfillment Service (6) to accommodate new, modified, and canceled budgets as
soon as the updates occur.

Note that the Bidding Team did not establish the CDC stream of Bidding Budgets as
a data product. It remains a private event stream within the team’s domain and is only
visible and usable by the service (6) owned by the Analytics Reporting Team. If
Bidding Budgets becomes more widely needed, the Bidding Team can revisit the
decision to promote it to a data product, complete with all the governance and sup‐
port requirements.

The Bidding Budgets entities have the following schema:

Key: long, //budget_id
Value: {
 budget_id: long,
 ad_id: long,
 amount_in_cents: long,
 remaining_amount_in_cents: long,

Connecting Event Streams Into Existing Batch-Data Flows | 209

 maximum_bid_in_cents: int,
 start: Datetime,
 end: Datetime
}

For simplicity in this example, each budget_id is attributed 1:1 to a specific ad_id.
Each budget contains the full budget amount, the remaining amount to spend, and
the maximum bid, all expressed in cents. Because most campaigns are run against a
date range, there is also a start and end date for further bidding eligibility differentia‐
tion.

The Bidding Budget Fulfillment Service (6) materializes Bidding Budgets into
its own state store. It also materializes each Ad-Click Sessions Per Unique User
session, assigning the unique session clicks to each budget. The service checks every
new fact for changes, be it another attributed click, closing out of the session, or a
modification to the budget, and updates the allocated budget spend accordingly.

To reduce the potentially extremely high frequency production of Bidding Budget
Status Stream events (7), only one update per budget_id is emitted every 60 sec‐
onds, unless the event indicates a fulfilled budget. In that case it is emitted immediately
to reduce the end-to-end latency between when a budget is filled and when it is
removed from paid promotion.

Finally, the Bidding Budget Status Stream events (7) are integrated back into the
Bidding System via a Database Sink Connector (8), which converts the events into
database UPSERT commands. This completes the budget calculation loop, providing
the Bidding System with nearly real-time data about the fulfillment of its budgets,
drastically cutting the unrecoverable bidding costs in comparison to the legacy-based
hour-plus feedback loop.

The Bidding Budget Fulfillment Service (6) remains owned by the Analytics
Reporting Team due to legacy reasons. After all, they computed the batch report
before, and therefore they still remain responsible for it now. Social change may come
slowly, and perhaps one day the Bidding System will be able to compute its own
results inside its own domain. Accepting and focusing on incremental change
remains a key part to adopting a data mesh.

Technical change may also come slowly. While there are two event-driven microser‐
vices in this example, the Bidding System remains firmly a nonevent-driven applica‐
tion that simply needs access to a stream of data. “Connectors” on page 101 are a vital
tool for bridging the gaps between existing nonstreaming systems and event-driven
data products and really make incremental changes both possible and practical.

If you decide to support nonstreaming data products, you’ll have to consider how
they fit in alongside your event streams. Let’s take a look at that now.

210 | Chapter 9: Integrating Event-Driven Data into Data at Rest

Extending the Self-Service Platform for Nonstreaming
Data Products
You’ll need to choose which nonstreaming data products to incorporate into your
platform based on your unique use cases. “Data Products Are Multimodal” on page
31 introduced the multiple modes that a data product may have, including batch-
computed files, request-response APIs, and event streams. But what counts as a sepa‐
rate data product and what counts as a mode of a single data product? How do you
represent it in your self-service platform? Let’s take a look at a few factors that influ‐
ence our options:

Ownership
The person with the role of data product owner is the sole individual who can
own a data product. There cannot be multiple owners. If a single data product is
to be made available via multiple modes, there must be a common owner that
can guarantee support and consistency for each of the modes.

Technical boundaries
“Change-Data Capture” on page 179 is very useful for extracting events from
databases, particularly when the database owner is not willing or able to provide
the business data as a natively produced event stream. In this case, the CDC
stream is a separate data product with ownership that is separate from any
request-response data product provided by the source database owners. Keep in
mind that if the owner of the transaction system is not willing or able to work
with the CDC stream owner, you will have at best a Band-Aid solution prone to
failed SLAs and broken data models. It’s essential to work together to maintain
data product continuity and schema compatibility whenever possible.

Alignment and composition logic
A batch of 60-minute sales aggregates derived from a stream of 1-minute sales
aggregates are two separate data products, despite both being aggregations of the
same data.

A multimodal data mesh should identify the relationships between data products,
presented either as modes of the same product or via their relationships to other
products. For example, you may choose to put SQL-queryable and event streaming as
two modes of a single data product. The metadata entry, as found through your self-
service discovery tooling, would look something like Figure 9-6.

Regardless of how you display your batch-created data products, you’ll need to ensure
that you have first-class support for discovery, compute, and publishing. There are no
shortcuts or easy outs when integrating multiple data product modes, which is why
it’s always easier to start with as few as possible and expand your selection only as
necessary.

Extending the Self-Service Platform for Nonstreaming Data Products | 211

Figure 9-6. A self-service UI showing both a Hive table and Kafka topic mode for a sin‐
gle data product

Summary
A data mesh is inherently multimodal, and data products can be provided via a vari‐
ety of means. Event streams remain the best option for the majority of data products,
as it is far easier to power both operational and analytical use cases through a stream
than a batch of files at rest.

Batch-based compute has been the predominant way to build data pipelines and pro‐
vide analytical results since the inception of big data. Replacing the batch-computed
files with an event-stream source is one of the most common first integration steps. A
sink connector recomposes the event stream into a batch of files, matching the format
and aggregation requirements. The end result is a set of event streams that can power
real-time operational and analytical systems while simultaneously powering the sour‐
ces that power the existing batch-based data pipelines.

How you choose to classify a batch of files created by a sink connector is up to you.
You may choose to consider it to be two modes of the same data product, but you
must ensure singular ownership and responsibility. You may also choose to consider
them different data products. An event stream may be source-aligned, while the data
sunk to the cloud storage may be an hourly aggregate-aligned data product. Lineage

212 | Chapter 9: Integrating Event-Driven Data into Data at Rest

and dependency tracking remain important for discovery of closely related data
products.

Self-service platform support for multimodal data products remains a key require‐
ment. Aside from discovery, you’ll need to ensure that your data mesh users can reg‐
ister their services as consumers and manage the publication of their own
nonstreaming data products. Metadata requirements will vary from product mode to
product mode, as will the means of secure access, information handling, scaling, and
evolution. Ensure that representatives from your federated governance team have
carefully evaluated and prioritized the features necessary to support your data prod‐
uct modes.

There’s one more subject to deal with as we approach the end of the book. Distributed
systems must often deal with eventual consistency, and a distributed and asynchro‐
nous event-driven architecture is no exception, as we will see in the next chapter.

Summary | 213

CHAPTER 10

Eventual Consistency

Eventual consistency is one of the main concerns that people have with distributed
systems and event-driven data products. But eventual consistency can mean different
things to different people. For example, an application developer may be using a data‐
base that doesn’t offer consistent read-after-writes, such as in the case of a large dis‐
tributed database or when using event sourcing to build up state. In an event-driven
data mesh, we’re more concerned with the effects of multiple consumer systems sub‐
scribing to event-driven data products and how to work with individual consumers
each reading data at their own rate.

There are people who have been looking at, working on, and thinking about eventual
consistency for quite a long time. Pat Helland is just such a person and has written an
excellent piece that collates insights and opinions from numerous thought leaders on
the subject.

Since Doug [Terry] coined the phrase eventual consistency in the Bayou paper in 1995,
I was interested in his perspective. When he defined eventual consistency, it meant that
for each object in a collection of objects, all the replicas of each object will eventually
have the same value. Then, he said: “Yeah, I should have called it eventual conver‐
gence.”

—Pat Helland

Helland goes on to discuss a definition by Peter Alvaro, from his 2015 PhD thesis
“Data-Centric Programming for Distributed Systems”:

A system is convergent or “eventually consistent” if, when all messages have been deliv‐
ered, all replicas agree on the set of stored values.

—Peter Alvaro

Both Terry and Alvaro converged (ha!) on the same definition of eventual consis‐
tency, putting the focus on independent replicas eventually converging on the same

215

https://oreil.ly/gym1j
https://oreil.ly/LmBEu
https://oreil.ly/85Yli

set of stored values. We’ll keep using the “eventual consistency” terminology, but keep
in mind we’re really talking about convergence of data.

A consumer that is continually materializing an event stream can easily provide you
information on what data it does have in its data store, but it can’t tell you what it
doesn’t have. Because the data store is eventually converging, it may tell you it doesn’t
have a piece of data when queried, but then immediately receive and process that data
in the very next clock cycle. However, a consumer does have the ability to tell you if it
is caught up to a given offset, and we can use this knowledge when resolving questions
about convergence.

Many of the questions and concerns regarding eventual consistency in the event-
driven world stem from a concern that “bad things” will happen because of it. It’s
often used as a threatening term, listed in the cons section of a architectural rundown
treatise. But it doesn’t have to be a con, because there are only a few big things to
watch out for. There are two main reasons why two independent consumer services
may have not yet converged:

A service is lagging behind
All of the data in the data products is consistent, but one service is simply lagging
behind on its consumption, processing, and storage of the data.

A data product is lagging behind
The data within the data products is not consistent, but each service is fully up to
date with the latest data. For an event-driven data product, either the producer
has failed to write the data or the event stream may be unavailable. In the worst
case scenario, the data product would lag so far behind that it may violate its
SLAs.

Note that these two options are not mutually exclusive. It is entirely possible that one
or more consumers’ services and one or more streams are both lacking data.
Although convergence will eventually bring consistency, it will only be fleeting until
again our services and data products are temporarily lacking data and in need of pro‐
cessing to catch up.

The thing is, eventual consistency isn’t really as impactful as you may think, and we’ll
examine some good ways to handle it later in this chapter. The vast majority of time
your event-driven services will be up to date with the latest events and effectively
within the same time bubble, much like regular old synchronous services. This is one
of the reasons why I think it generates a lot of apprehension—you never know when
your service is going to start lagging and shifting into its own time bubble, and if it
does, how to detect it and what to do about it.

The crux of the matter is that eventual consistency really only starts to become an
issue when one independent context asks a synchronous question to another inde‐
pendent context, with no guarantees that their internal data sets are synchronized.

216 | Chapter 10: Eventual Consistency

Let’s take a deeper look at how contexts, event time, and boundaries relate to
convergence.

Converging on Consistency, One Event at a Time
Each event-driven processing instance effectively exists in its own time bubble, with
its internal time based solely on the event timestamps that it has consumed and inte‐
grated into its state. The vast majority of event streams provide data in an increment‐
ing offset and timestamp order, though certainly the events can also be out of order
(more on this later in the chapter). Thus, while the consumer service is free to look at
the wall-clock time, its own internal time is based completely on the timestamps of
the events that it has consumed.

Take Figure 10-1, which shows two independent consumers reading from a single
event stream. Each service is fully independent, chugging along on processing the
events, applying business logic, and saving the data in state.

Figure 10-1. The crux of the eventual consistency issue

The results that each service provides to the outside world, be it by request-response
API, an output event stream, or other means, are very unlikely to be precisely synced
with similarly materialized data in another service. This is where discrepancies and
confusing results can creep in. Consumer 2 at time t=900 asks Consumer 1 at t=220
for its copy of Sunflowers data. Having never even heard of Sunflowers, all Con‐
sumer 1 can do is reply with Error, not found.

In contrast to event-driven data product consumers, think of two synchronous serv‐
ices that communicate over request-response APIs and that own and store all of their
data within their own services. When one of these services issues an API call to
another, it’s not thinking, “I wonder what time it is over there.”

Converging on Consistency, One Event at a Time | 217

In addition to using offsets or incrementing event IDs, you may
choose to use the event time, representing when the event occur‐
red, to account for convergence. In cases where events are created
via CDC, event time is typically defined as the time the data was
upserted into the source database.

The assumption is that these two services are in the same time bubble and have the
same wall-clock time or are close enough that we don’t care. This assumption is
largely true, because a synchronous service doesn’t buffer work in a large queue to get
to at a later date like an event-driven system does. Rather, it handles or fails the
requests immediately and returns the most up-to-date data that it has available, rep‐
resenting the current wall-clock time.

Let’s take a look at a simple shipping and delivery company. In this model, a driver is
an employee who can drive a truck. We need a driver for each truck we want to send
out for deliveries, otherwise that vehicle isn’t going anywhere. How would the assign‐
ment of a driver to a truck be affected in synchronous and asynchronous systems?

Figure 10-2 shows a set of synchronous services on the left residing in a single time
bubble. All data is maintained in a fully consistent state, such that a point-in-time
query will return a complete list of both trucks and drivers at that instant.

Figure 10-2. The internal time of a service is determined by the union of its input offsets

Meanwhile, the services on the right are sourced from event streams. In this example,
notice that there is a time lag of 7 hours for the truck lookup service, as it has fallen
behind in materializing its incoming events. If the driver service asks the truck ser‐
vice to provide a new truck for assignment, it may not have any available, despite new

218 | Chapter 10: Eventual Consistency

trucks having been published to the event stream. The service must catch up; other‐
wise, it’ll give nondeterministic results.

Though it may seem tempting to require that all drivers and trucks be registered
together in a single atomic event, it unfortunately doesn’t work out for our business
use cases. There are many professional drivers who do not own their own truck and
there are companies that lease trucks but do not provide drivers. Each must be regis‐
tered independently.

System times are largely synchronized to within milliseconds,
thanks in large part to frequent synchronizations with Network
Time Protocol (NTP) servers. If you require perfect time alignment
between two events, you should refactor your domain to put the
critical time-sensitive data into the same singular event. Otherwise,
you’ll have to plan to handle eventual consistency.

While a lagging service is one source of convergence issues, a second source is an
event stream that is not yet updated despite all consumers being fully caught up. This
is especially problematic when the events in one stream are related to the data in the
other stream, such as by a foreign or primary key. Let’s do away with lag, latency, and
processing time and just pretend for a moment that you have a service that can
instantly consume and materialize any number of events, from any number of
streams. In the case of Figure 10-3, we have a Flower Pot Builder service that is
consuming and joining data from two streams to determine what’s the best soil to put
in the pot for each flower type.

Figure 10-3. The data in the source event streams hasn’t yet converged

Converging on Consistency, One Event at a Time | 219

Although the service is fully up to date with each event stream, there are no matching
records in the Preferred Soil stream for Sunflowers and Poppies. The Flower Pot
Builder service will need to wait until it can obtain the matching Preferred Soil
events for those flowers. There are many reasons why these two streams may be out
of sync: they may be sourced from different domains, they may have different SLAs,
the producer for Preferred Soil may be down, the network may be partitioned, or
the event broker may be unavailable, to name just a few.

While it’s possible that the data may simply not exist at all, anywhere, in many cases
we expect data to exist based on certain business rules and properties. For example,
Preferred Soil has a foreign key relationship with Flowers, so we can expect any
Flower record with a populated Soil Type field to have a corresponding Preferred
Soil record. The records for both Sunflowers and Poppies are missing, however.
This data may yet show up, but as this example shows, even fully up-to-date consum‐
ers of the existing event streams may be inconsistent with upstream systems through
no fault of their own.

The eventual consistency issues we face basically boil down to consumers that have
not yet converged and event streams that have not yet converged. Next, let’s take a
look at a few more detailed practical scenarios and some strategies for dealing with
eventual consistency.

Strategies for Dealing with Eventual Consistency
You have two main options when dealing with eventual consistency, either between
services or within a single service. The first option is to simply wait for the state to
become consistent, such as waiting for the event that completes the join, ends the ses‐
sion, or finalizes an aggregation. This option works equally well when querying an
external service that gives you an inconsistent answer—you can simply wait and retry
the query again at a later time. You may also choose to output an incomplete result
that indicates a lack of consistency, but you will need to update it with the final results
when you receive the appropriate data to act.

The second option is to give up after a certain period of time. Giving up is final. If the
missing event you were waiting for shows up a split-second after you give up, it’s still
too late to do anything with it. If the server you were querying finally has the result
you need, it doesn’t matter as you won’t be notified or sent a follow-up request. Time‐
outs are indicative of a failure in your data product SLAs that needs to be addressed.

Let’s take a look at several strategies for dealing with eventual consistency.

220 | Chapter 10: Eventual Consistency

Prevent Failures to Avoid Inconsistency
Data meshes are distributed, and as such, we must contend with all of the problems of
distributed systems. Systems will crash. Networks will partition. Event streams will be
unavailable. Cloud storage will be inaccessible. Amazon S3 will go down, resulting in
a host of bored software developers creating memes. Figure 10-4 showcases the areas
of major concern in a basic data product creation and usage workflow.

Figure 10-4. Intermittent issues can cause delays in convergence to consistent states

Each of the numbered components can suffer its own range of failures, causing a
delay in the events arriving at their final destination. The database (1) can suffer from
crashes, network unavailability, and even disk failures. The connectors (2 and 4) can
similarly crash, throw exceptions, or fail to connect to the broker (3), a cloud data
store (5), or a native event-driven consumer (6).

You can seek to reduce your chance of failure through good DevOps practices, moni‐
toring, resource scaling, and testing. It’s also important to ensure your consumer
services have sufficient resources to scale up and stay up to date with the latest events
and that any outages or failures on your producer side are identified and fixed
quickly, in line with your agreed upon SLAs (“Tiered service levels” on page 78).

Use Event-Driven Data Products Instead of Request-Response
Server API Calls
Consider the business use case where we need to assign a truck and a driver to a
delivery route. Instead of storing the truck data in one service, the driver data in
another, and the route in a third, we simply publish the data to streams and leave it
up to each consumer to use it as they see fit. We don’t make API calls across multiple
of systems, but instead ingest it into a single service, with a single temporal bubble,
purpose built for composing the driver route assignments.

Strategies for Dealing with Eventual Consistency | 221

Adding data sources in the form of event streams is a fairly simple extension for your
service. Figure 10-5 shows the addition of a package stream that helps improve the
selection of trucks and drivers to assign to a route, emitting a waybill to indicate the
distribution of packages.

Figure 10-5. Sourcing data only from event streams provides eventually consistent data
for making business decisions

The consumer service has full visibility into the timestamps of each event, along with
the ability to ask the broker if it’s caught up to date on any given input stream. Thus,
the consumer service can figure out for itself if it’s in a converged state or not and act
accordingly.

The human user in Figure 10-5 can act as part of the business logic that assigns trucks
and drivers to routes. The shipment administration system can propose assignments,
and the human user can either accept or reject those assignments, or override them as
she sees fit.

You must ensure that your consumer service logic can correctly handle data arriving
in any temporal order between streams and partitions. For example, consider a driver
that owns their own truck, is the sole driver for it, and won’t drive any other truck. It
is possible that your consumer service may receive the truck registration event before
the driver registration event or vice versa. Your business logic must account for the
data arriving in any order, as both are perfectly valid use cases and could be equally
likely to happen.

222 | Chapter 10: Eventual Consistency

Stream-processing frameworks like Kafka Streams, Flink, and Spark accommodate
asynchronicity by default, which makes them ideal candidates for processing event-
driven data products for more complicated purposes. Simple event-stream consumer
clients seldom have the capabilities to account for asynchronous temporal arrival and
thus offload the complexity of managing it onto the consumer. Ensure you have a
good understanding of what your consumer clients do and do not offer you.

Expose Eventual Consistency in the Server Response
You’ve probably seen this strategy employed before. Ever book a flight, a hotel, or rent
a car online, and see the little spinning icon saying “Please wait to confirm, do not hit
refresh”? Exposing the eventually consistent nature of a system is common practice in
the world of UIs, and we can adopt this strategy for use in server-to-server communi‐
cation.

There are a few options for this strategy:

Halt serving when lag exceeds threshold
The queried service monitors its own consumer lag of its input event stream off‐
sets, and only serves data if the lag is lower than the threshold. Instead of return‐
ing the data, your service returns a message indicating that it is not ready, such as
an HTTP 503 (Service Unavailable). You may also choose to return a Retry-After
response indicating when the service should be ready based on typical through‐
put processing. If the consumer lag is less than the threshold, the service will
serve the queries and provide a response as normal.

Provide stale data to requester
Your service can provide a response to the requester regardless of how stale the
data is. You can include a response in the payload indicating that the data is stale
and make it clear that it’s up to the requesting client to choose how to proceed. In
some cases a client doesn’t much care about stale data—in other cases it’s critical,
and the client may choose to hold off further processing until it can have its
request served with up-to-date data.

Provide a callback API
Clients can register to have their request handled when your service is no longer
lagging and receive a callback with the requested data. This strategy is more com‐
plicated to implement because either the client will have to block and wait for the
callback or it’ll need to implement context switching logic to work on other tasks
until the callback occurs. Additionally, your service will need to buffer and han‐
dle the callbacks, plus provide SLAs for its users.

Strategies for Dealing with Eventual Consistency | 223

https://oreil.ly/qqMro
https://oreil.ly/qqMro

But what about event time? Can you use time since your last new event to detect if
you’re lagging? For some cases you can, but in many others you cannot. Let’s consider
an example.

A source-aligned data product of user click events provides hundreds or thousands
of events per second. Based on historical trends, if more than a few minutes go by
without a new click event, your service can fairly safely infer that it is lagging
behind, or that the source data product has violated its SLA.

However, consider a source-aligned compacted data product of user entity state,
where each event represents the user’s current state. New events are published only
when a user updates a field, when a new user is registered, or when an existing user is
deleted. While there could be many hours (or days) between events, the data in the
stream remains valid and any service that has consumed the stream remains con‐
verged and up to date. It just simply hasn’t received any new events (because there are
none!), and so cannot tell you any more information than the event time of the last
event.

It is easy to falsely infer lag by using the event time of the last-processed event alone.
And while you can use event time to infer lag in cases of high-frequency updates, it
remains unsuitable for many other use cases. You would do well to rely on offsets to
detect and expose lag whenever possible.

Plan for New Services and Reprocessing of Data
When you bring up a new consumer service, you’re going to need to decide if it’s
going to process historical data or if it’s just going to start from the current wall-clock
time. Processing historical data is pretty straightforward for a new service: you simply
point the consumer offsets to the start of the input streams and let it go! The service
will consume and process the events as rapidly as possible, materializing state, com‐
puting results, and writing resultant output events as necessary. The nice thing about
new services is that no existing services are querying them or dependent on their out‐
put yet, so you don’t need to worry about inadvertently breaking anything.

Reprocessing historical data for existing services, however, can be more nuanced.
Look to your business use case to figure out how much of the historical data you’ll
need. For some streams and application use cases, you can restart your consumers to
read from an offset based on time (e.g., the last 30 days worth of data). Other streams
and use cases, such as creating the fully materialized state of all users from the previ‐
ous section, require consuming the entire history of the compacted User event
stream.

One common reason for reprocessing historical data is because you had a bug in your
consumer system and it did some bad things. Exactly what these bad things are can
vary from service to service but fall into two main buckets: either you served bad data

224 | Chapter 10: Eventual Consistency

to others via synchronous request-response, or you wrote bad records to an output
event stream. With the former you’re out of luck—there’s nothing you can do to go
back and unserve the data. With event stream outputs, you do have a few options, but
it all depends on how the output affects your consumers.

Fixing issues due to bad data is not solely the provenance of event-
driven data products. Bad data can also be communicated via
request-response APIs, batch-computed files in cloud storage and
direct database queries. The science of fixing the user impacts of
bad data lies heavily in proper workflow design, identification of
failure modes, and implementing recovery options ahead of time.

Options to remedying bad event data include:

Publish corrected data to the data product
Produce new events with the corrected data and publish it to the existing output
event streams. You may need to rewind your input offsets as part of this process if
your service is itself driven by event streams. Your consumers will obtain the cor‐
rected events, and it’s up to them how to handle reconciliation. This option is
suitable when the repaired event streams aren’t driving consumer use cases that
can’t be reversed. For example, a suitable use case involves publishing the correc‐
ted translations of product reviews shown on an ecommerce website.

A bug in a data product may require a formal declaration of an
incident. Depending on the severity of the bug, the data product
contents, and the importance of the data, you may need to notify
all of your consumers and start an incident resolution process. This
remains true regardless of whether the data was served via direct
requests or via an event stream.

Purge and re-create the data product
In some cases you’ll need a much more involved solution to handle the previous
bad data. Not all workflows are easily reversible, and you may instead need to
create an entirely new stream, deprecate the old one, and move all of your con‐
sumers over to the corrected data. This is a heavyweight option that requires
stop-the-world coordination, but may be the only choice when further dissemi‐
nation of bad data is unacceptable.

Finally, if you find you need to reprocess event streams from the start of time (it was a
really bad bug!), consider the impact to downstream consumers. They’ll have to con‐
sume every single event that your service writes to the output topic. If you find your‐
self in a spot where you’re going to be doing this, be sure to warn them and
coordinate accordingly. You may need to throttle your output, and they may need to
horizontally scale their consumers to account for it.

Strategies for Dealing with Eventual Consistency | 225

Synchronize Data Products on Time Boundaries
Event-stream data products serve a wide range of consumer use cases, including, of
course, sinking the data via a connector to cloud storage. Big data analytical process‐
ing by the likes of Apache Spark, Flink, Presto, or BigQuery relies on well-formed,
batch-created data, often in the form of a Parquet, ORC, Avro, or other big data for‐
mat. Many organizations have developed extensive data engineering, science, and
analytics pipelines relying heavily on batch data. A well-built data mesh should meet
the needs of these people where they are and not force them to move onto event
streams.

An event stream is a continuous flow of data, whereas you can consider cloud storage
data as data at rest. This means that we really need to be cognizant about how we
write the data to disk and should adhere to any partitioning standards already in
place by the big data folks. It’s quite common to partition data based on timestamps,
be it in 1-minute, 5-minute, 30-minute, or 1-hour partitions. Partitioning allows the
aforementioned big data processing engines to load only the range of data they care
about and nothing else. You may, of course, partition data on many other attributes,
such as event type, location, infosec regulations, and PII details, but these are policies
that you’ll need to discuss with your governance team and ideally the people who
know and use the data.

Temporal boundaries are important for batch processing in the big data space for sev‐
eral reasons. One, it’s much more efficient and affordable to only load and process the
required data for computing the pipeline results instead of reading a massive data set
from cloud storage into memory just to discard most of it. Second, batch processing
jobs require that all of the data be present in a time slot before it can start processing.
If data is collected in 30-minute chunks, it means we can kick off a processing job
every 30 minutes to compute the next batch of results. Many big data analytics com‐
putations deal with temporal analysis, and having a precise time range is essential for
accuracy.

Third, but not least, big data jobs often need to join on other data sets. By partition‐
ing all cloud storage data sets in the same manner, on the same date and time bound‐
aries, we enable the users of that data to select and choose the time ranges suitable for
their use cases. If they only need the last half-hour, no problem. If they need the last
30 days, it’s available.

The simplest way to get started is to check out what sink options you have for your
event broker. For example, Confluent offers an AWS S3 sink for free usage with Kafka
Connect. It has an easily configurable format option (Avro, Parquet, JSON, Raw
Bytes), along with a wide range of data partitioner options, including custom time-
based, daily, and hourly options. The flexibility of sink solution options makes it easy
for you to get your event-streaming data into the format necessary to power your
existing batch data pipelines.

226 | Chapter 10: Eventual Consistency

https://oreil.ly/9K2Br
https://oreil.ly/ECNvm

There’s one more important subject to take a look at before we close out the chapter.
Despite all of our best efforts, events may be published out of order to an event
stream and require resolution by our downstream consumers. Let’s take a look at
what options we have for handling these events.

Out-of-Order Events
While it’s not too difficult to imagine a world where each event in a stream partition
is in perfect incrementing timestamp order, the reality of accomplishing it is much
more challenging. Consider the pair of producers in Figure 10-6 that take user-
behavior click events on a website and convert them into events.

Figure 10-6. Intermittent failures can cause events to be written out of temporal order

Instance 1 is temporarily unable to connect to the event broker but buffers the click
events internally until the connection is restored. When connectivity resumes,
Instance 1 can write its backlog of events to the event stream with no loss of data.
However, the events in stream, time-stamped with the time that the Instance 1
received them, are now temporally out of order with the events from Instance 0.

A temporary outage is not the only scenario where you’ll encounter this issue. In fact,
the most common source of out-of-order data is due to the inability to perfectly syn‐
chronize distributed clocks. Though NTP servers and atomic clocks can bring us
pretty close to perfect event-time synchronization, the fact of the matter is that we’ll
always have a bit of skew—a few milliseconds here, a few hundred milliseconds there.
Misconfiguration, bugs, and human error also inevitably add their own sources of
skew and drift.

You may choose to stamp events with the wall-clock time of the receiving event
broker when it receives the event for publishing to the stream. Using the broker-
received event time only papers over the clock skew issue as the true event time is

Out-of-Order Events | 227

when the event actually occurred, not when it was recorded to the broker. It’s up to
you if you choose to use it, but you’d be better off maintaining the original event
timestamps and instead commit to handling out-of-order data at the consumer side.

Out-of-order events are important to consider because they affect the state that a con‐
sumer converges to. Two independent consumers that treat out-of-order events dif‐
ferently can arrive at permanently different states and never converge at all. In some
situations it may not matter, but in others it may be of critical importance.

I cover the major techniques that stream-processing frameworks
use to process events, progress through time, and identify out-of-
order data in Building Event-Driven Microservices, Chapter 6. Please
refer to this chapter if you are interested in the under-the-hood
details.

Since events can be written out of order and aren’t guaranteed to have monotonically
increasing timestamps—how do we handle them? Let’s take a look.

Resolving Late-Arriving Events
Events can only be considered late from the perspective of a consumer, and each con‐
sumer is free to maintain its own definition of what is late and what is not. Take for
instance a consumer maintaining a time-bound window of aggregated data, say
advertisement clicks per hour, derived from the source-aligned Ad Clicks stream.
Windowing operations are excellent forcing functions for handling late arriving data,
as they require that you answer just one simple question: “Is this specific event part of
your time window, or not?”

Figure 10-7 shows the advertisements that the users clicked on, the incrementing off‐
sets, and the event time of when the user clicked on it.

Figure 10-7. Out-of-order events representing advertisment clicks, based on event time

228 | Chapter 10: Eventual Consistency

https://learning.oreilly.com/library/view/building-event-driven-microservices/9781492057888

There isn’t always a well-defined line between one window of time and another. Note
that from offset 2 to 5, the event time oscillates back and forth, indicating a very close
race condition, possibly between two producer instances that are almost in sync.
Overlapping oscillating event times like these are relatively common in event streams
created by more than one producer instance, and you’ll need to plan accordingly for
dealing with them.

Full-featured, event-processing frameworks, like Kafka Streams, Apache Spark, and
Apache Flink, have functionality to select and process events in a predictable and
deterministic order. Each processing thread selects the event with the lowest (earliest)
timestamp and lowest (earliest) offset from among the next possible events, then dis‐
patches it through its business logic. Each of these frameworks has its own way of
keeping track of time as seen by the processing instance—Spark and Flink use water‐
marks, and Kafka Streams uses a stream time. I discuss this in more detail in Chapter
6 of my book Building Event-Driven Microservices.

When your stream processor windowing operation sees an event with an event time
greater than the window cutoff, it starts a new window and closes off the old window,
emitting it to the downstream output. Since the input event streams can be tempo‐
rally out of order, what happens to the next event that should have gone into the ini‐
tial window? Well, you have a few options:

Discard it
You can just drop the event as the window is closed, and any time-based aggrega‐
tions can conceivably be complete. However, this option is much like slamming
the airplane door shut when you can see people sprinting to make their connec‐
tion—perhaps waiting a couple more seconds isn’t too bad.

Keep window open and delay output
You can also delay closing the window until a given amount of time has elapsed.
You’ll gain a higher likelihood of completeness, but it’ll require that your down‐
stream consumers can tolerate the higher latency.

Keep window open and output multiple updates
You can output the windowed results as soon as the event-time threshold is hit,
but then maintain the old window and the new window in parallel. The old win‐
dow will stick around for the duration of the grace period, and you can merge in
late-arriving events up until the the grace period expires. At that point, you
finally close the old window and output the results again if they have been upda‐
ted during the grace period. From then on, any late-arriving events are simply
dropped.

There are no hard-and-fast rules for how your consumers should handle out-of-order
events—it’s really up to each consumer. Because each consumer is independent,
you may find that it introduces nonconvergent behavior, especially when directly

Resolving Late-Arriving Events | 229

https://learning.oreilly.com/library/view/building-event-driven-microservices/9781492057888

comparing data across synchronous boundaries, such as a query via a synchronous
request-response API. If you can’t risk nonconvergence, then you should ensure that
your application or service is consuming directly from the source data products and
computing its own results.

The SLAs of your upstream data products are extremely important.
Make sure that your service consuming services can tolerate an
input data product outage for the period of time specified in the
SLA. For instance, if it’s possible that your source data product may
be unavailable (or not producing data) for say, 5-minutes, then you
should ensure your consumer service can handle at the least a 5-
minute outage (though 15 to 20 minutes would be far safer).

Late-arriving data is not strictly a problem in event-driven data products. Batch-
computed data sets can be late as well—a processing job may simply take too long
due to resource starvation, failures, or greater-than-usual input data volumes. Down‐
stream batch jobs that rely on the upstream data sets will either themselves be delayed
or produce incomplete results and need to be rerun later. Event streams simply bring
consideration for temporal ordering to the fore.

Summary
Eventual consistency can be a bit tricky to manage, but by and large it’s about becom‐
ing aware of how it can be introduced and figuring out if it needs to be mitigated at
all. Event streams offer each consumer the means to converge on the same final state.
While each consumer must uphold its own end of the bargain by correctly processing
and integrating the data into its own domain, this responsibility remains the same
regardless of whether the data is sourced by event stream, batches of data at rest, or
via a request-response API.

In the event-driven space, a lagging consumer service will often be inconsistent with
another service or data set that is fully up to date. Comparing data between them will
likely show inconsistencies, which is only to be expected, as both are operating within
their own frame of relative time. There are many solutions to deal with this issue.
One is to simply source data from other contexts via their own event streams. If this
is not possible, then plan for inconsistencies and have retry and mitigation strategies
in place to deal with them.

Eventual-consistency issues can also arise when data in one data product references
data in another that may not yet have been produced, such as any data product where
events would be joined by a primary or foreign key. While the consumers may all be
up to date with the latest written events, they have not converged to the same state as
the upstream producers of the data.

230 | Chapter 10: Eventual Consistency

Finally, out-of-order data can introduce additional complications, particularly when
many parallel producers write events to the same stream with slightly skewed time‐
stamps. Consumers can independently handle out-of-order events using late-arrival
logic, but they must be cognizant that they may end up interpreting data differently
than a neighbor. A best practice is to tie the implementation of late-arrival logic to the
SLA of the data product so that your consumers are resilient to any availability or
consistency issues within the guarantees of the SLA.

In our next and final chapter, we’ll review what we’ve covered across this book and
wrap up with what to look out for in the future of data mesh.

Summary | 231

CHAPTER 11

Bringing It All Together

Data mesh is founded on four principles, based on hard-learned lessons of dealing
with difficult-to-use data, often provided as no more than a form of exhaust emitted
by operational applications. Mechanisms for obtaining and accessing data outside of
its original source are typically added as an afterthought, bolted onto the source sys‐
tem in an ad hoc manner.

Data mesh promotes data to a product with the same rigor, ownership, and feature
management of any other product in your business. The free-for-all, “figure it out
yourself ” data access is replaced with purpose-built, maintained, and supported
modes. It is as much a social shift as it is a technological shift and requires both top-
down and bottom-up buy-in. We reevaluate how we own, create, discover, and access
data, and then build out the processes, governance, and technology required to make
it work.

Event streams provide the number one option for making data mesh a reality. They
provide a singular mechanism for both historical and real-time data communica‐
tions, forming the data mesh’s basic building blocks for consumers to use, mix, and
match to their needs.

Data mesh is based on four main principles: domain ownership, data as a product,
federated governance, and self-service platform. Together, these principles help us
focus on communicating important business data across the entire organization
safely, effectively, and at-scale:

Domain ownership
Those who know the data best are charged with the responsibility of making it
readily available for their peers and colleagues to use and access as they see fit.
Domain owners consult with prospective consumers to source data requirements
and ensure that business needs are met. They remain responsible for protecting

233

the internal domain model from overexposure and unacceptable levels of cou‐
pling by external parties so that both the internal model and the external data
product can independently evolve and change.

Data as a product
Important business data needs to be readily and reliably available as building
block primitives for your applications, regardless of the runtime, environment, or
codebase of your application. We can accomplish this goal by focusing on creat‐
ing data as a product, treating data as a first-class citizen, complete with dedica‐
ted ownership, minimum quality guarantees, SLAs, and scalable mechanisms for
clean and reliable access.

Data products act as the basic building blocks for composing your business serv‐
ices, enabling consumers to access and use the data for their own use cases.

Federated governance
Federated governance concerns itself with maintaining stability and order, bal‐
ancing individual autonomy and top-down centralized control.

A governance team, drawn from those participating in the data mesh, is empow‐
ered with addressing the needs of domain owners, data product creators, data
product users, and infrastructure providers. Like any form of effective govern‐
ment, the governance team needs participation, representation, debate, and col‐
laborative action to get meaningful work done. The governance team guides the
requirements for the self-service platform, focusing on increasing discoverability,
ease of use, and intercompatibility with other data products.

Successful federated governance results in data products that are easy to build,
manage, and use. Data product owners should have reasonable options for build‐
ing and managing their data product in the self-service platform. They should
also be provided with guardrails to support necessary nonfunctional business
requirements, like encryption, access controls, and automated data retention
management.

Self-service platform
Just as every data mesh implementation will be unique unto itself, so will its self-
service platform. The main goals of creating a self-service platform include mak‐
ing it easy to:

• Browse, discover, and search through available data products
• Grant, restrict, and manage access controls
• Requisition compute, storage, and serving components, including event

streams
• Manage the data product life cycle, including prototyping, publishing, depre‐

cating, and deleting

234 | Chapter 11: Bringing It All Together

Building a self-service platform requires working closely with data product owners
and the federated governance team. Your best chance for success involves starting
with a minimum viable product consisting of technologies and control systems you’re
already using. Treat your self-service data platform like any other product, iteratively
adding and testing new capabilities as usage patterns and requirements become
clearer.

Event Streams for Data Mesh
An event is an immutable and self-contained record of something that happened. An
event stream is a continuously updating data structure of events, with each stream
representing a selection of important business facts.

Event streams are the ideal mechanism for serving data products, as they provide a
simple yet powerful way of reliably communicating important business data across an
organization. Event streams are fast, scalable, and efficient, letting consumers know
when new data is available as it happens and enabling real-time reaction across your
business for any use case.

State events form the best option for building data products, though you do have
some leeway in your options. You can include information such as why the state
changed, combining some of the aspects of a delta event with the state event. But
remain cautious about overexposing specific business logic transitions from the
source domain in your data products because they introduce strong coupling seams.

The Kappa architecture works hand-in-hand with state events. You can source the
entire history of the data product from just the event stream instead of splitting his‐
torical and real-time data access in two, as with the Lambda architecture. Historical
state can be accessed by consuming the event stream from an earlier point in time.
You can use compaction to eliminate older, no-longer-relevant state events, making it
fast, easy, and inexpensive for consumers to access the data.

Simplicity is key for making a data mesh work, and event streams provide a simple
yet powerful solution for making data readily available.

Integrating with Existing Systems
Data mesh implementations are rarely (if ever) greenfield developments. The pains
that data mesh resolves are incurred largely by the growth of an organization and the
demands for important business data by multiple disparate use cases. Thus, when
building a data mesh, you’re going to need to contend with all of your existing sys‐
tems and iteratively work toward improving how data is created, shared, and used
across your organization.

Integrating with Existing Systems | 235

Bootstrapping data out of existing databases and systems is an important part of get‐
ting started with data mesh. You can get data published to an event stream quickly
and easily so that consumers can start trialing it for use in their own domains. It also
kick-starts conversations about who owns the connector, and in turn, who owns the
data, the domain, and managing feature requests to change what data is available and
how it’s represented.

Typically, bootstrapped data reflects the internal domain model of the source system.
Highly normalized data sourced from relational databases tends to be difficult to use,
requiring complex and often expensive denormalizations by downstream users. The
frequency of events, the size of events, and the tight internal coupling all remain con‐
cerns for bootstrapped data products.

Bootstrapped data products remain a stepping stone on the way to generating first-
class data products, with an explicit schema, denormalized data structures, and isola‐
tion from the internal data model. But they remain an important part of the iterative
growth of a data mesh.

Operations, Analytics, and Everything in Between
Data mesh was originally prescribed for solving the data access and reliability prob‐
lems inherent in the analytics domain. However, it has proven to be a powerful off-
label solution for powering operational systems as well as those that defy
categorization as one or the other. Reliable access to clean, well-defined, low-latency
data is the bedrock of a strategically flexible architecture. You have the freedom to
create, test, and trial new business systems without having to struggle for data access.
Your systems will no longer look like Frankenstein’s monster, grafted together simply
to access the underlying data.

Event streams play a critical role in powering time-sensitive applications. Operational
systems, especially those with a human in the loop, benefit heavily from low-latency
state events. Analytical systems benefit by drawing their data from the same sources
of the operational systems, alleviating the “similar-yet-different” data sources that
have historically plagued the data space.

Summary
An event-driven data mesh is an investment in the future. Successfully adopting it
requires identifying the data pain points in your organization so you can begin apply‐
ing the four principles. Obtain buy-in from your colleagues by helping them under‐
stand how a data mesh can solve their chronic data problems.

Work iteratively. Your data mesh won’t suddenly spring up overnight. Trial new solu‐
tions, learn from mistakes, and make iterative improvements. Finding value along the

236 | Chapter 11: Bringing It All Together

way is essential for keeping people invested and reaping the benefits of your data
products.

Finally, celebrate success as you create your data mesh. The road will be winding, and
sometimes it may feel like you’re going backwards. Share your trials and tribulations
with your peers, and work together to find common ground and new ways forward.
Good luck in your journey ahead.

Summary | 237

Index

A
access controls, 87

data products, disabling, 88
defense in depth, 88
enforcing, 17
EP (expanded platform), 112-114

aggregate-aligned data products, 4, 33, 34
aggregates, 27
aggregation, 57-59
analytical workflows, 19
analytics, 236
anti-corruption layer, REST API and, 47
Apache Avro, 75, 134-135

default values, 139
Apache Flink, 43, 60, 114
Apache Pinot, StarTree, 43
Apache Spark, 44, 114
APIs (application programming interfaces)

data replication avoidance, 8-10
support, 38

authentication, 118
authorization, 118

B
backward compatibility, event schemas, 137
bad data, 17-19
batch processing, 43

temporal boundaries, 226
batch-compounded data products, 31
batch-data flows, event streams and, 201-210
before/after state events, 154-156

compaction, 155
leftover information, 155
transitions, 154

big data, batch processing, 43
bootstrapping data

CDC (change data capture), 179-182
cloud storage files to event stream, 195-196
connectors, 176
database polling, 177-179
dual writes and, 176-177
transactional outbox, 182-186

bounded context, 27, 47
breaking changes, 121
breaking schema changes, 140-143
bronze-level data, 79
business concerns, federated governance, 72

C
CCPA (California Consumer Privacy Act), 38
CD (continuous delivery) pipeline, 3
CDC (change data capture), 179

atomic updates, 182-184
cons, 181
event streams, 181
latency, 181
pros, 181
snapshotting, 181
snapshotting databases, 180
transactional outbox, 182-186

charter of duties, 72
CI (Continuous Integration) pipeline, 3
classifications, data products, 79
code generators

event schemas, 132
schema registry, 145

communication
data communication layer, 3

239

difficulties with, 6-10
replicating data between services, 7-8

compatibility, event schemas
backward, 137
forward, 138
full, 139
full-transitive, 139

connectors
bootstrapping and, 176
MVP (minimal viable platform), 101

consumer-aligned data products, 34, 35
convergence, eventual consistency, 217-220
cross-domain polysemes, 39
CRUD (create, read, update, delete)
CRUD (create, read, update, delete) versus

event sourcing, 156-159
crypto shredding, 90-92
current state events, 153-154

D
data

federated governance, 72
historical, 224
ownership, 15
selecting for exposure, 28
write once, read many, 12

data analyst responsibilities, 14
data as a product, 234
data as product, 3
data at rest, Medallion architecture, 199-201
data capacity, event brokers, 67
data communication layer, 3
data connections

do-it-yourself, 16
point-to-point, 16

data contracts
event schemas, 130
standardized, 131

data discovery, schema registry, 145
data engineer responsibilities, 14
data format conversion, 206
data handling policies, 38
data lakes, 10-13
data mesh

benefits, 25
description, 2
microservices and, 25

data migration, breaking schema changes,
142-143

data models
boundary violation, 14
breaking schema changes, 141
internal, 14

data processes, stream processing, 114-116
data product management API, 120
data products, 20, 29

access controls, 42
disabling, 88

aggregate aligned, 4
aggregate-aligned, 33, 34, 168
alignment, 4
batch-computed, 31
bootstrapping

connectors, 176
dual writes, 176-177

breaking changes, 121
browsing, 106
candidate data products, 108
compute resources, 42
consumer-aligned, 34, 35
corrected data, 225
coupling, 49
cross-domain compatibility

common entities, 82
event streams, 82-83
partitioning, 82-83

database polling, query-based, 177-179
deleting, 121
deprecating, 121
deprecation, 108
deregister, 108
discovering, 40
event key, 83
event streams, 36

integrating, 201-210
event-driven

as inputs, 36
delta events and, 159-168
versus request-response server API,

221-223
federated governance, 37-39
file formats, 75
immutability, 30
information viewing, 106
life cycle, 38
lineage, 92

record-based, 93
topology-based, 93

240 | Index

lineage tracking, 40
management controls, 41
messaging, 121
metadata

augmented, 124
custom tags, 80
data quality classification, 79
dependencies, upstream, 80
domain, 78
financial tags, 80
ownership, 78
privacy, 80
tiered service levels, 78

multicloud, 123-125
multimodal, 31-32
multimodal data, 74-75
multiregion, 123-125
permissions, 121
permissions, regional, 123
promoting to, 233
publishing, 121
pull mechanisms, 32-33
purging, 225
push mechanisms, 32-33
re-creating, 225
registering, 108
replication, 123
schemas, 75-76

event schemas, 75
search portal, 107
searches, 122
self-service platform

creators, 39
owners, 40

source-aligned, 33, 34
storage resources, 42
synchronization, temporal boundaries,

226-227
time, 83
time zones, 83
time-stamped, 30
UI (user interface), 106-109
updating, 121

data team, 14
data warehouses, 10-13

schema on read, 12, 13
schema on write, 12

databases
CDC (change data capture), 179

latency, 181
snapshotting, 181
snapshotting databases, 180

DBLog, 180
programmatic read-only access, 180
query-based polling, 177

cons, 178
event schemas, 178
hard deletes, 178
intermittent changes, 178
pros, 178
read-only replicas, 179
snapshotting databases, 179

snapshotting, 179
source

coupling, 7
performance load, 7
read-only replica, 7

dataset, discovering, 8
DBLog, 180
DDD (domain-driven design), 26-28

aggregates, 27
bounded context, 27
entities, 27

Debezium, 184
decoupled services, Kappa, 60
dedicated services, eventification in, 190-192
defense in depth, 88
delta events, 151, 152, 156, 170

(see also hybrid events)
cross-domain communication, 160
event sourcing, 156-159
event-driven data products and, 159-168

denormalization, 189
dimension changes, 193

appending values, 194-195
overwriting values, 194

dependencies
discovering, 40
upstream, 80

deprecating data products, 121
breaking schema changes, 142-143

deserialization, 128
dimension changes, denormalization, 193

appending values, 194-195
overwriting values, 194

do-it-yourself data connections, 16
documentation, schema registry, 145
domain ownership, 3, 26, 233

Index | 241

DDD (domain-driven design), 26-28
domains, 27
dual writes, bootstrapping, 176-177
durability, events, 51
durable append-only log, 51
dynamic schema, MapReduce, 12

E
ECST (event-carried state transfer), 55, 152

before/after state, 153
current state, 153

encryption
end-to-end, 88-89
field-level, 89
format-preserving, 90

end-to-end encryption, 88-89
entities, 27
EP (expanded platform), 98, 103

access controls, 112-114
data product UI, 106-109
metadata catalog, 104

dependencies, identifying, 105
metadata modeling, 105
search functionality, 105

service identities, 110-111
stream processing, 114
user identities, 110-111

ephemeral messaging, 52
channels, 52

event brokers, 51
as service deployment, 68
compaction, 66
data capacity, 67
retention period, 68
scalability, 67
selecting, 67-69
support tooling, 68

event generators, 127
testing, 132

event key, 83
event schemas, 75, 127

best practices, 146-148
breaking changes, 140-143
code generation and, 132
compatibility

backward, 137
forward, 138
full, 139
full-transitive, 139

data contract and, 130
standardized, 131

event generators, testing, 132
evolution of, 132, 137
query-based database polling, 178
schema registry, 143

code generation, 145
data discovery, 145
documentation updates, 145
process, 144
schema evolution validation, 145

technologies, 132
Apache Avro, 134-135
JSON schema, 135-137
Protobuf, 133-134
selection tips, 148-149

event streams, 36, 47, 235
batch-data flows and, 201-210
bootstrapping cloud storage files, 195-196
CDC (change data capture), 181
data products, 36

integrating, 201-210
dual writes and, 176
event brokers, 51
records

headers, 50
keys, 50
values, 50

event-driven data products
delta events and, 159-168
versus request-response server API calls,

221-223
event-driven mesh

objections, 21-23
overview, 3-5

event-driven services decoupled, 60
eventification

in a dedicated service, 190-192
selecting data, 192-193
transactional outbox and, 189-190

events, 47
aggregation, 57-59
definitions, 55
delta, 151, 152, 156

event sourcing, 156-159
description, 49
durability, 51
exposing, 48
hybrid, 170-171

242 | Index

late-arriving, resolving, 228-230
materialization, 56
measurement events, 168

aggregate-aligned data products, 168
time-sensitive applications, 169

mutability, 51
notification, 172-173
out-of-order, 227-228
replayable, 51
retention, indefinite, 65
scalability, 51
sourcing, 156-159
sourcing versus CRUD model, 156-159
state, 151, 152

before/after state, 152
compaction, 155
current state, 152
leftover information, 155
transitions, 154, 154

state events, 55
before/after, 154-156
current, 153-154

storage, indefinite, 51
eventual consistency, 215

convergence, 216, 217-220
events

late-arriving, 228-230
out-of-order, 227-228

exposing in server response, 223-224
inconsistencies, preventing, 221
new services, 224-225
reprocessing data, 224-225
strategies, 220-227

expanded platform (EP) (see EP (expanded
platform))

F
federated governance, 3, 37-39, 71, 234

access controls, 87
data products, 88

breaking schema changes, 141-142
business concerns, 72
crypto shredding, 90-92
data concerns, 72
data product schemas, 75-76

event schemas, 75
data products

file formats, 75
lineage, 92-94

metadata, 77-81
multimodal, 74-75

data products, cross-domain compatibility,
81-84

data security, 87
frameworks, 76-77
groups, 73
legal concerns, 72
meetings, 84-87
privacy, 90-92
programming languages, 76-77
security

end-to-end encryption, 88-89
field-level encryption, 89
format-preserving encryption, 90

security concerns, 72
self-service platform, 72
standards, 74

introducing, 74
technology, 72
trial systems, 74

field-level encryption, 89
file amalgamation, 207
file formats, federated governance, 75
financial tags, data products, 80
Flink SQL, 60
format-preserving encryption, 90
forward compatibility, event schemas, 138
frameworks

federated governance, 76-77
support, 38

full compatibility, event schemas, 139
full-transitive compatibility, event schemas, 139

G
GDPR (General Data Protection Regulation),

38, 90
gold-level data, 79
governance, federated (see federated gover‐

nance)

H
Hadoop

HDFS (Hadoop Distributed File System), 11
MapReduce, 12

HDFS (Hadoop Distributed Files System), 11
headers, records, 50
historical data reprocessing, 224
hosted stream processing, 115

Index | 243

hybrid events, 170-171

I
IaaS (infrastructure-as-a-service), 3
IAM (Identity and Access Management) service

MP (mature platform), 118
OAuth2, 118

identity management, data product manage‐
ment API, 120

immutability, data products, 30
inconsistencies, eventual consistency, 221
indefinite storage, 51
infinite storage, 65
infosec, policies, 38
inputs, event-driven products, 36
integration, systems, 235
internal data model, 14

J
JSON Schema, 75, 135-137

default values, 139

K
Kafka, 51

Confluent, 43
Kafka Connect, 43
Kafka Streams, 43, 114
Kappa

architecture, 59-65
deletions, 66
events, indefinite retention, 65
KTables, 60
storage, infinite, 65

keys, records, 50

L
Lambda architecture, 62-65
language support, 38
late-arriving events, resolving, 228-230
latency

CDC (change data capture), 181
file size and, 207

legal concerns, federated governance, 72
lineage

data products, 92
record-based, 93
topology-based, 93

logs, append-only, 51

M
MapReduce, 12

dynamic schema and, 12
materializing events, 56
mature platform (MP) (see MP (mature plat‐

form))
measurement events, 168

aggregate-aligned data products, 168
collecting measurements, 169
time-sensitive applications, 169

Medallion architecture, 199-201
messages (see events) (see records)
metadata

catalog
EP (expanded platform), 104-105
MVP (minimal viable platform),

100-101
data products

custom tagging, 80
data classification, 79
domain, 78
financial tags, 80
ownership, 78
privacy, 80
tiered service levels, 78

dependencies, upstream, 80
visual example, 80

microservices, 25
synchronous, 9-10

minimal viable platform (MVP) (see MVP
(minimal viable platform))

monolith data principles, 20
consistency, 5
read-only data, 5
source of truth, 5

monolithic systems, 5-6
MP (mature platform), 98, 116

alerting, 122-123
application deployment, 119
data product management API, 120
IAM (authentication and identification and

access management), 118
OAuth2, 118

monitoring, 122-123
multicloud data products, 123-125
multiregion data products, 123-125

multimodal data products, 31-32
multimodal data, federated governance, 74-75
mutability

244 | Index

events, 51
mutability, events, 51
MVP (minimal viable platform), 98, 99

connectors, 101
metadata catalog, 100-101
schema registry, 99-100

N
Network Time Protocol (NTP), 219
notification events, 172-173
NTP (Network Time Protocol), 219

O
OAuth 2.0, 118
operational plane, monolithic systems, 5-6
operational systems as off-label application, 36
operational workflows, 19
operations, 236
out-of-order events, 227-228
ownership, 15, 233

domains, 26
DDD (domain-driven design), 26-28

P
partition assignment algorithm, 83
partitioning, 82
permissions, data product management API,

121
PII (personally identifiable information), 38
point-to-point connections

custom, 16
replication and, 8

polysemes, cross-domain, 39
privacy

data products, 80
federated governance, 90-92

processing, queues, 53
programming languages, federated governance,

76-77
Protobuf, 75, 133-134

default values, 139
publishing data products, 121
pull mechanisms, 32-33
purging data products, 225
push mechanisms, 32-33

Q
query-based polling, 177

cons, 178
event schemas, 178
hard deletes, 178
intermittent changes, 178
pros, 178
read-only replicas, 179
snapshotting databases, 179

queuing, 52, 53-54

R
read-only replicas, databases, 179
record-based lineage, 93
records

headers, 50
keys, 50
values, 50

replayable events, 51
replication

APIs to avoid, 8-10
between services, 7-8
point-to-point connections and, 8

request-response server API, 221-223
REST (representational state transfer) API, 31,

47
retention, tiered storage, 59

S
SaaS (software-as-a-service), self-service and,

43
scalability

event brokers, 67
events, 51

schema on read, 12, 13
impact of, 13-17

schema on write, 12
schema registry, 143

code generation, 145
data discovery, 145
documentation updates, 145
MVP (minimal viable platform), 99-100
process, 144
schema evolution validation, 145

schemas, 127
(see also event schemas)
event schemas, 75
evolution, 206
evolution of, 145

security
access policies, 87

Index | 245

defense in depth, 88
end-to-end encryption, 88-89
field-level encryption, 89
format-preserving encryption, 90

security concerns, federated governance, 72
self-service, 3
self-service platform, 234

data products
creators, 39
owners, 40

federated governance and, 72
maturity model, 98

EP (expanded platform), 98, 103-116
MP (mature platform), 98, 116-125
MVP (minimal viable platform), 98,

99-103
nonstreaming data products and, 211
prospective consumers, 39
SaaS and, 43

serialization, 128
server response, eventual consistency, 223-224
service deployment, event brokers as, 68
silver-level data, 79
sinking data, 101
snapshotting databases, 179

CDC (change data capture), 181
source database

coupling, 7
performance load, 7
read-only replica, 7

source-aligned data products, 4, 33, 34
StarTree, 43
state events, 55, 151, 152, 170

(see also hybrid events)
before/after, 152, 154-156

compaction, 155
leftover information, 155
transitions, 154

current, 153-154
current state, 152
transitions, 154

storage

indefinite, 51
infinite, 65
tiered, indefinite retention, 59

stream processing, 43
data processes, 114-116
hosted, 115

synchronous microservices, 9-10
system time, 219
systems integration, 235

T
technology, federated governance, 72
temporal boundaries, data product synchroni‐

zation, 226-227
temporary outages, 227
tiered service levels, 78
tiered storage, indefinite retention, 59
time stamps, 227
time zones, 83
time-sensitivity, measurement events, 169
time-stamped data, 30
topology-based lineage, 93
transactional outbox, 182-186

eventification, 189-190

U
ubiquitous language, 27
unique-user attribution, 203
URI (Uniform Research Identifier), 100
user sessions, 203

V
values, records, 50

W
workflows

analytics, 19
operational, 19

write once, read many data, 12

246 | Index

About the Author
Adam Bellemare is a staff technologist, office of the CTO at Confluent. Previously, he
was a staff engineer, data platform at Shopify, and he was at Flipp from 2014, first as a
senior developer, followed by a staff role. He has also held positions in embedded
software development and quality assurance. His expertise includes DevOps (Kafka,
Spark, Mesos, Zookeeper Clusters; programmatic building, scaling, destroying); tech‐
nical leadership (bringing Avro formatting to our data end-to-end, championing
Kafka as the event-driven microservice bus, prototyping JRuby, Scala, and Java Kafka
clients and focusing on removing technical impediments to allow for product deliv‐
ery); software development (building microservices in Java and Scala using Spark and
Kafka libraries); and data engineering (reshaping the way that behavioral data is col‐
lected from user devices and shared with machine learning, billing, and analytics
teams). He is the author of Building Event-Driven Microservices (O’Reilly).

Colophon
The animal on the cover of Building an Event-Driven Data Mesh is a red bird-of-
paradise (Paradisaea rubra). These birds are found on only two islands of Indonesia:
Waigeo and Batanta.

Males of the species are known for their bright plumage. They have long red feathers
on each side of the breast, a green face with feather pompoms above each eye, and
long corkscrew-shaped tail wires. Females are mostly brown, with no ornamentation.
The birds have a lek mating system, where males gather to perform competitive
courtship rituals while females survey and choose a mate.

The birds’ diet predominantly consists of fruit, berries, and insects. The family Para‐
disaeidae is instrumental in dispersing seeds throughout the forests of New Guinea.

Due to habitat loss, the conservation status of the red bird-of-paradise is Near Threat‐
ened. Many of the animals on O’Reilly covers are endangered; all of them are impor‐
tant to the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from Lydekker’s Royal Natural History. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

https://learning.oreilly.com/library/view/building-event-driven-microservices/9781492057888

Learn from experts.
Become one yourself.
Books | Live online courses
Instant Answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

22
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://www.oreilly.com/

	Cover
	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Event-Driven Data Communication
	What Is Data Mesh?
	An Event-Driven Data Mesh
	Using Data in the Operational Plane
	The Data Monolith
	The Difficulties of Communicating Data for Operational Concerns
	The Analytical Plane: Data Warehouses and Data Lakes
	The Organizational Impact of Schema on Read
	Bad Data: The Costs of Inaction
	Can We Unify Analytical and Operational Workflows?

	Rethinking Data with Data Mesh
	Common Objections to an Event-Driven Data Mesh
	Producers Cannot Model Data for Everyone’s Use Cases
	Making Multiple Copies of Data Is Bad
	Eventual Consistency Is Too Difficult to Manage

	Summary

	Chapter 2. Data Mesh
	Principle 1: Domain Ownership
	Domain-Driven Design in Brief
	Selecting the Data to Expose from Your Domain

	Principle 2: Data as a Product
	Data Products Provide Immutable and Time-Stamped Data
	Data Products Are Multimodal
	Accessing a Data Product Via Push or Pull
	The Three Data Product Alignment Types
	Event-Driven Data Products as Inputs for Operational Systems

	Principle 3: Federated Governance
	Specifying Data Product Language, Framework, and API Support
	Establishing Data Product Life Cycle Requirements
	Establishing Data Handling and Infosec Policies
	Identifying and Standardizing Cross-Domain Polysemes
	Formalizing Self-Service Platform Requirements

	Principle 4: Self-Service Platform
	Discovering Data Products and Dependencies
	Data Product Management Controls
	Data Product Access Controls
	Compute and Storage Resources for Building and Using Data Products
	Providing Self-Service Through SaaS

	Summary

	Chapter 3. Event Streams for Data Mesh
	Events, Messages, and Records
	What’s an Event Stream? What Is It Not?
	Ephemeral Message-Passing
	Queuing

	Consuming and Using Event-Driven Data Products
	State Events and Event-Carried State Transfer
	Materializing Events
	Aggregating Events

	The Kappa Architecture
	The Lambda Architecture and Why It Doesn’t
Work for Data Mesh
	Supporting the Requirements for Kappa Architecture
	Selecting an Event Broker
	Summary

	Chapter 4. Federated Governance
	Forming a Federated Governance Team
	Implementing Standards
	Supporting Multimodal Data Product Types
	Supporting Data Product Schemas
	Supporting Programming Languages and Frameworks
	Metadata Standards and Requirements

	Ensuring Cross-Domain Data Product Compatibility
and Interoperability
	Defining and Using Common Entities
	Event Stream Keying and Partitioning
	Time and Time Zones

	What Does a Governance Meeting Look Like?
	1. Identifying Existing Problems
	2. Drafting Proposals
	3. Reviewing Proposals
	4. Implementing Proposals
	5. Archiving Proposals

	Data Security and Access Policies
	Disable Data Product Access by Default
	Consider End-to-End Encryption
	Field-Level Encryption
	Data Privacy, the Right to Be Forgotten, and Crypto-Shredding

	Data Product Lineage
	Topology-Based Lineage
	Record-Based Lineage

	Summary

	Chapter 5. Self-Service Data Platform
	The Self-Service Platform Maturity Model
	Level 1: The Minimal Viable Platform
	The Schema Registry
	An Extremely Basic Metadata Catalog
	Connectors
	Level 1 Wrap-Up: How Does It Work?

	Level 2: The Expanded Platform
	Full-Featured Metadata Catalog
	The Data Product Management Service and UI
	Service and User Identities
	Basic Access Controls
	Stream Processing for Building Data Products
	Level 2 Wrap-Up: How Does It Work?

	Level 3: The Mature Platform
	Authentication, Identification, and Access Management
	Integration with Existing Application Delivery Processes
	Programmatic Data Product Management API
	Monitoring and Alerting
	Multiregion and Multicloud Data Products
	Level 3 Wrap-Up: How Does It Work?

	Summary

	Chapter 6. Event Schemas
	A Brief Introduction to Serialization and Deserialization
	What Is a Schema?
	What Are Our Schema Technology Options?
	Google’s Protocol Buffers, aka Protobuf
	Apache Avro
	JSON Schema

	Schema Evolution: Changing Your Schemas Through Time
	Negotiating a Breaking Schema Change
	Step 1: Design the New Data Model
	Step 2: Iterate with Your Existing Consumers and the
Federated Governance Team
	Step 3. Create a Release Schedule, a Data Migration Plan, and a Deprecation Plan
	Step 4. Execute the Release

	The Role of the Schema Registry
	Best Practices for Managing Schemas in Your Codebase
	Choosing a Schema Technology
	Summary

	Chapter 7. Designing Events
	Introduction to Event Types
	Expanding on State Events and Event-Carried
State Transfer
	Current State Events
	Before/After State Events

	Delta Events
	Event Sourcing with Delta Events
	Why Delta Events Don’t Work for Event-Driven Data Products

	Measurement Events
	Measurement Events Often Form Aggregate-Aligned Data Products
	Measurement Event Sources May Be Lossy
	Measurement Events May Power Time-Sensitive Applications

	Hybrid Events—State with a Bit of Delta
	Notification Events
	Summary

	Chapter 8. Bootstrapping Data Products
	Getting Started: Bootstrapping with Connectors
	Dual Writes
	Polling the Database to Create Data Products
	Change-Data Capture
	Change-Data Capture Using a Transactional Outbox

	Denormalization and Eventification
	Eventification at the Transactional Outbox
	Eventification in a Dedicated Service
	What Should Go In the Event? And What Should Stay Out?
	Slowly Changing Dimensions

	Bootstrapping Cloud Storage Files to an Event Stream
	Summary

	Chapter 9. Integrating Event-Driven Data
into Data at Rest
	Analytics and the Medallion Architecture
	Connecting Event Streams Into Existing Batch-Data Flows
	Through the Lens of Data Mesh: What’s Going On?
	Through the Lens of Data Mesh: How Do We Solve It?
	Balancing File Sizes, SLAs, and Latency
	Budget Blues: A Tale of Overspending

	Extending the Self-Service Platform for Nonstreaming Data Products
	Summary

	Chapter 10. Eventual Consistency
	Converging on Consistency, One Event at a Time
	Strategies for Dealing with Eventual Consistency
	Prevent Failures to Avoid Inconsistency
	Use Event-Driven Data Products Instead of Request-Response
Server API Calls
	Expose Eventual Consistency in the Server Response
	Plan for New Services and Reprocessing of Data
	Synchronize Data Products on Time Boundaries

	Out-of-Order Events
	Resolving Late-Arriving Events
	Summary

	Chapter 11. Bringing It All Together
	Event Streams for Data Mesh
	Integrating with Existing Systems
	Operations, Analytics, and Everything in Between
	Summary

	Index
	About the Author
	Colophon

