

 Supervised Machine
Learning for Text

Analysis in R

http://www.taylorandfrancis.com

 Supervised Machine
Learning for Text

Analysis in R

Emil Hvitfeldt
Julia Silge

First edition published 2022
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2022 Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and pub-
lisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.
com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermis-
sions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

ISBN: 978-0-367-55418-7 (hbk)
ISBN: 978-0-367-55419-4 (pbk)
ISBN: 978-1-003-09345-9 (ebk)

DOI: 10.1201/9781003093459

Typeset in LMR10 font
by KnowledgeWorks Global Ltd.

http://www.copyright.com
http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003093459

In loving memory of my mother-in-law Lisa, who was the first soul to hear
about and fully encourage the idea that eventually became this book —E.H.

For Grace, Violet, and Lewis, who (thanks to the pandemic and remote
school) had a front row seat to most of my work on this book —J.S.

http://www.taylorandfrancis.com

Contents

Preface xiii

I Natural Language Features 1

1 Language and modeling 3
1.1 Linguistics for text analysis 3
1.2 A glimpse into one area: morphology 5
1.3 Different languages . 6
1.4 Other ways text can vary . 7
1.5 Summary . 8

1.5.1 In this chapter, you learned: 8

2 Tokenization 9
2.1 What is a token? . 9
2.2 Types of tokens . 13

2.2.1 Character tokens . 16
2.2.2 Word tokens . 18
2.2.3 Tokenizing by n-grams 19
2.2.4 Lines, sentence, and paragraph tokens 22

2.3 Where does tokenization break down? 25
2.4 Building your own tokenizer 26

2.4.1 Tokenize to characters, only keeping letters 27
2.4.2 Allow for hyphenated words 29
2.4.3 Wrapping it in a function 32

2.5 Tokenization for non-Latin alphabets 33
2.6 Tokenization benchmark . 34
2.7 Summary . 35

2.7.1 In this chapter, you learned: 35

3 Stop words 37
3.1 Using premade stop word lists 38

3.1.1 Stop word removal in R 41
3.2 Creating your own stop words list 43
3.3 All stop word lists are context-specific 48
3.4 What happens when you remove stop words 49
3.5 Stop words in languages other than English 50
3.6 Summary . 52

vii

viii Contents

3.6.1 In this chapter, you learned: 52

4 Stemming 53
4.1 How to stem text in R . 54
4.2 Should you use stemming at all? 58
4.3 Understand a stemming algorithm 61
4.4 Handling punctuation when stemming 63
4.5 Compare some stemming options 65
4.6 Lemmatization and stemming 68
4.7 Stemming and stop words . 70
4.8 Summary . 71

4.8.1 In this chapter, you learned: 72

5 Word Embeddings 73
5.1 Motivating embeddings for sparse, high-dimensional data . . 73
5.2 Understand word embeddings by finding them yourself . . . 77
5.3 Exploring CFPB word embeddings 81
5.4 Use pre-trained word embeddings 88
5.5 Fairness and word embeddings 93
5.6 Using word embeddings in the real world 95
5.7 Summary . 96

5.7.1 In this chapter, you learned: 97

II Machine Learning Methods 99

Overview 101

6 Regression 105
6.1 A first regression model . 106

6.1.1 Building our first regression model 107
6.1.2 Evaluation . 112

6.2 Compare to the null model 117
6.3 Compare to a random forest model 119
6.4 Case study: removing stop words 122
6.5 Case study: varying n-grams 126
6.6 Case study: lemmatization 129
6.7 Case study: feature hashing 133

6.7.1 Text normalization . 137
6.8 What evaluation metrics are appropriate? 139
6.9 The full game: regression . 142

6.9.1 Preprocess the data 142
6.9.2 Specify the model . 143
6.9.3 Tune the model . 144
6.9.4 Evaluate the modeling 146

6.10 Summary . 153
6.10.1 In this chapter, you learned: 153

Contents ix

7 Classification 155
7.1 A first classification model 156

7.1.1 Building our first classification model 158
7.1.2 Evaluation . 161

7.2 Compare to the null model 166
7.3 Compare to a lasso classification model 167
7.4 Tuning lasso hyperparameters 170
7.5 Case study: sparse encoding 179
7.6 Two-class or multiclass? . 183
7.7 Case study: including non-text data 191
7.8 Case study: data censoring 195
7.9 Case study: custom features 201

7.9.1 Detect credit cards . 202
7.9.2 Calculate percentage censoring 204
7.9.3 Detect monetary amounts 205

7.10 What evaluation metrics are appropriate? 206
7.11 The full game: classification 208

7.11.1 Feature selection . 209
7.11.2 Specify the model . 210
7.11.3 Evaluate the modeling 212

7.12 Summary . 220
7.12.1 In this chapter, you learned: 221

III Deep Learning Methods 223

Overview 225

8 Dense neural networks 231
8.1 Kickstarter data . 232
8.2 A first deep learning model 237

8.2.1 Preprocessing for deep learning 237
8.2.2 One-hot sequence embedding of text 240
8.2.3 Simple flattened dense network 244
8.2.4 Evaluation . 248

8.3 Using bag-of-words features 253
8.4 Using pre-trained word embeddings 257
8.5 Cross-validation for deep learning models 263
8.6 Compare and evaluate DNN models 267
8.7 Limitations of deep learning 271
8.8 Summary . 272

8.8.1 In this chapter, you learned: 272

9 Long short-term memory (LSTM) networks 273
9.1 A first LSTM model . 273

9.1.1 Building an LSTM . 275
9.1.2 Evaluation . 279

x Contents

9.2 Compare to a recurrent neural network 283
9.3 Case study: bidirectional LSTM 286
9.4 Case study: stacking LSTM layers 288
9.5 Case study: padding . 289
9.6 Case study: training a regression model 292
9.7 Case study: vocabulary size 295
9.8 The full game: LSTM . 297

9.8.1 Preprocess the data 297
9.8.2 Specify the model . 298

9.9 Summary . 301
9.9.1 In this chapter, you learned: 302

10 Convolutional neural networks 303
10.1 What are CNNs? . 303

10.1.1 Kernel . 304
10.1.2 Kernel size . 304

10.2 A first CNN model . 305
10.3 Case study: adding more layers 309
10.4 Case study: byte pair encoding 317
10.5 Case study: explainability with LIME 324
10.6 Case study: hyperparameter search 330
10.7 Cross-validation for evaluation 334
10.8 The full game: CNN . 337

10.8.1 Preprocess the data 337
10.8.2 Specify the model . 338

10.9 Summary . 341
10.9.1 In this chapter, you learned: 342

IV Conclusion 343

Text models in the real world 345

Appendix 347

A Regular expressions 347
A.1 Literal characters . 347

A.1.1 Meta characters . 349
A.2 Full stop, the wildcard . 349
A.3 Character classes . 350

A.3.1 Shorthand character classes 352
A.4 Quantifiers . 353
A.5 Anchors . 355
A.6 Additional resources . 355

B Data 357
B.1 Hans Christian Andersen fairy tales 357

Contents xi

B.2 Opinions of the Supreme Court of the United States 358
B.3 Consumer Financial Protection Bureau (CFPB) complaints . 359
B.4 Kickstarter campaign blurbs 359

C Baseline linear classifier 361
C.1 Read in the data . 361
C.2 Split into test/train and create resampling folds 362
C.3 Recipe for data preprocessing 363
C.4 Lasso regularized classification model 363
C.5 A model workflow . 364
C.6 Tune the workflow . 366

References 369

Index 379

http://www.taylorandfrancis.com

Preface

Modeling as a statistical practice can encompass a wide variety of activities.
This book focuses on supervised or predictive modeling for text, using text
data to make predictions about the world around us. We use the tidymodels1

framework for modeling, a consistent and flexible collection of R packages
developed to encourage good statistical practice.

Supervised machine learning using text data involves building a statistical
model to estimate some output from input that includes language. The two
types of models we train in this book are regression and classification. Think
of regression models as predicting numeric or continuous outputs, such as
predicting the year of a United States Supreme Court opinion from the text
of that opinion. Think of classification models as predicting outputs that are
discrete quantities or class labels, such as predicting whether a GitHub issue
is about documentation or not from the text of the issue. Models like these
can be used to make predictions for new observations, to understand what
features or characteristics contribute to differences in the output, and more.
We can evaluate our models using performance metrics to determine which
are best, which are acceptable for our specific context, and even which are
fair.

Text data is important for many domains, from healthcare to marketing to
the digital humanities, but specialized approaches are necessary to create
features (predictors) for machine learning from language.

Natural language that we as speakers and/or writers use must be dramatically
transformed to a machine-readable, numeric representation to be ready for
computation. In this book, we explore typical text preprocessing steps from
the ground up and consider the effects of these steps. We also show how to
fluently use the textrecipes R package (Hvitfeldt 2020a) to prepare text data
within a modeling pipeline.

1https://www.tidymodels.org/

xiii

https://www.tidymodels.org/
https://www.tidymodels.org/

xiv Preface

Silge and Robinson (2017) provides a practical introduction to text mining
with R using tidy data principles, based on the tidytext package. If you have
already started on the path of gaining insight from your text data, a next step
is using that text directly in predictive modeling. Text data contains within
it latent information that can be used for insight, understanding, and better
decision-making, and predictive modeling with text can bring that information
and insight to light. If you have already explored how to analyze text as
demonstrated in Silge and Robinson (2017), this book will move one step
further to show you how to learn and make predictions from that text data
with supervised models. If you are unfamiliar with this previous work, this
book will still provide a robust introduction to how text can be represented in
useful ways for modeling and a diverse set of supervised modeling approaches
for text.

Outline

The book is divided into three sections. We make a (perhaps arbitrary) dis-
tinction between machine learning methods and deep learning methods by
defining deep learning as any kind of multilayer neural network (LSTM, bi-
LSTM, CNN) and machine learning as anything else (regularized regression,
naive Bayes, SVM, random forest). We make this distinction both because
these different methods use separate software packages and modeling infras-
tructure, and from a pragmatic point of view, it is helpful to split up the
chapters this way.

• Natural language features: How do we transform text data into a rep-
resentation useful for modeling? In these chapters, we explore the most
common preprocessing steps for text, when they are helpful, and when
they are not.

• Machine learning methods: We investigate the power of some of the
simpler and more lightweight models in our toolbox.

• Deep learning methods: Given more time and resources, we see what
is possible once we turn to neural networks.

Some of the topics in the second and third sections overlap as they provide
different approaches to the same tasks.

Throughout the book, we will demonstrate with examples and build models
using a selection of text data sets. A description of these data sets can be
found in Appendix B.

Preface xv

We use three kinds of info boxes throughout the book to invite attention
to notes and other ideas.

Some boxes call out warnings or possible problems to watch out for.

Boxes marked with hexagons highlight information about specific R pack-
ages and how they are used. We use bold for the names of R packages.

Topics this book will not cover

This book serves as a thorough introduction to prediction and modeling with
text, along with detailed practical examples, but there are many areas of nat-
ural language processing we do not cover. The CRAN Task View on Natural
Language Processing2 provides details on other ways to use R for computa-
tional linguistics. Specific topics we do not cover include:

• Reading text data into memory: Text data may come to a data prac-
titioner in any of a long list of heterogeneous formats. Text data exists in
PDFs, databases, plain text files (single or multiple for a given project),
websites, APIs, literal paper, and more. The skills needed to access and
sometimes wrangle text data sets so that they are in memory and ready
for analysis are so varied and extensive that we cannot hope to cover them
in this book. We point readers to R packages such as readr (Wickham and
Hester 2020), pdftools (Ooms 2020a), and httr (Wickham 2020), which
we have found helpful in these tasks.

2https://cran.r-project.org/web/views/NaturalLanguageProcessing.html

https://cran.r-project.org/web/views/NaturalLanguageProcessing.html
https://cran.r-project.org/web/views/NaturalLanguageProcessing.html

xvi Preface

• Unsupervised machine learning for text: Silge and Robinson (2017)
provide an introduction to one method of unsupervised text modeling,
and Chapter 5 does dive deep into word embeddings, which learn from the
latent structure in text data. However, many more unsupervised machine
learning algorithms can be used for the goal of learning about the structure
or distribution of text data when there are no outcome or output variables
to predict.

• Text generation: The deep learning model architectures we discuss in
Chapters 8, 9, and 10 can be used to generate new text, as well as to
model existing text. Chollet and Allaire (2018) provide details on how to
use neural network architectures and training data for text generation.

• Speech processing: Models that detect words in audio recordings of
speech are typically based on many of the principles outlined in this book,
but the training data is audio rather than written text. R users can ac-
cess pre-trained speech-to-text models via large cloud providers, such as
Google Cloud’s Speech-to-Text API accessible in R through the google-
LanguageR package (Edmondson 2020).

• Machine translation: Machine translation of text between languages,
based on either older statistical methods or newer neural network meth-
ods, is a complex, involved topic. Today, the most successful and well-
known implementations of machine translation are proprietary, because
large tech companies have access to both the right expertise and enough
data in multiple languages to train successful models for general machine
translation. Google is one such example, and Google Cloud’s Translation
API is again available in R through the googleLanguageR package.

Who is this book for?

This book is designed to provide practical guidance and directly applicable
knowledge for data scientists and analysts who want to integrate text into
their modeling pipelines.

We assume that the reader is somewhat familiar with R, predictive modeling
concepts for non-text data, and the tidyverse3 family of packages (Wickham
et al. 2019). For users who don’t have this background with tidyverse code,
we recommend R for Data Science4 (Wickham and Grolemund 2017). Helpful

3https://www.tidyverse.org/
4http://r4ds.had.co.nz/

https://www.tidyverse.org/
https://www.tidyverse.org/
http://r4ds.had.co.nz/
http://r4ds.had.co.nz/

Preface xvii

resources for getting started with modeling and machine learning include a
free interactive course5 developed by one of the authors (JS) and Hands-On
Machine Learning with R6 (Boehmke and Greenwell 2019), as well as An
Introduction to Statistical Learning7 (James et al. 2013).

We don’t assume an extensive background in text analysis, but Text Mining
with R8 (Silge and Robinson 2017), by one of the authors (JS) and David
Robinson, provides helpful skills in exploratory data analysis for text that
will promote successful text modeling. This book is more advanced than Text
Mining with R and will help practitioners use their text data in ways not
covered in that book.

Acknowledgments

We are so thankful for the contributions, help, and perspectives of people who
have supported us in this project. There are several we would like to thank in
particular.

We would like to thank Max Kuhn and Davis Vaughan for their investment
in the tidymodels packages, David Robinson for his collaboration on the
tidytext package, and Yihui Xie for his work on knitr, bookdown, and the
R Markdown ecosystem. Thank you to Desirée De Leon for the site design
of the online work and to Sarah Lin for the expert creation of the published
work’s index. We would also like to thank Carol Haney, Kasia Kulma, David
Mimno, Kanishka Misra, and an additional anonymous technical reviewer for
their detailed, insightful feedback that substantively improved this book, as
well as our editor John Kimmel for his perspective and guidance during the
process of writing and publishing.

This book was written in the open, and multiple people contributed via pull
requests or issues. Special thanks goes to the four people who contributed via
GitHub pull requests (in alphabetical order by username): @fellennert, Riva
Quiroga (@rivaquiroga), Darrin Speegle (@speegled), Tanner Stauss (@tm-
stauss).

Note box icons by Smashicons from flaticon.com.

5https://supervised-ml-course.netlify.com/
6https://bradleyboehmke.github.io/HOML/
7http://faculty.marshall.usc.edu/gareth-james/ISL/
8https://www.tidytextmining.com/

https://supervised-ml-course.netlify.com/
https://supervised-ml-course.netlify.com/
https://bradleyboehmke.github.io/HOML/
https://bradleyboehmke.github.io/HOML/
http://faculty.marshall.usc.edu/gareth-james/ISL/
http://faculty.marshall.usc.edu/gareth-james/ISL/
https://www.tidytextmining.com/
https://www.tidytextmining.com/

xviii Preface

Colophon

This book was written in RStudio9 using bookdown10. The website11 is
hosted via GitHub Pages12, and the complete source is available on GitHub13.
We generated all plots in this book using ggplot214 and its light theme
(theme_light()). The autoplot() method for conf_mat()15 has been modified
slightly to allow colors; modified code can be found online16.

This version of the book was built with R version 4.1.0 (2021-05-18) and the
following packages:

package version source
bench 1.1.1 CRAN (R 4.1.0)
bookdown 0.23 CRAN (R 4.1.0)
broom 0.7.9 CRAN (R 4.1.0)
corpus 0.10.2 CRAN (R 4.1.0)
dials 0.0.9 CRAN (R 4.1.0)
discrim 0.1.1 CRAN (R 4.1.0)
doParallel 1.0.16 CRAN (R 4.1.0)
glmnet 4.1-1 CRAN (R 4.1.0)
gt 0.3.1 CRAN (R 4.1.0)
hcandersenr 0.2.0 CRAN (R 4.1.0)
htmltools 0.5.1.1 CRAN (R 4.1.0)
htmlwidgets 1.5.3 CRAN (R 4.1.0)
hunspell 3.0.1 CRAN (R 4.1.0)
irlba 2.3.3 CRAN (R 4.1.0)
jiebaR 0.11 CRAN (R 4.1.0)
jsonlite 1.7.2 CRAN (R 4.1.0)
kableExtra 1.3.4 CRAN (R 4.1.0)
keras 2.4.0 CRAN (R 4.1.0)
klaR 0.6-15 CRAN (R 4.1.0)
LiblineaR 2.10-12 CRAN (R 4.1.0)
lime 0.5.2 CRAN (R 4.1.0)
lobstr 1.1.1 CRAN (R 4.1.0)
naivebayes 0.9.7 CRAN (R 4.1.0)

9https://www.rstudio.com/ide/
10https://bookdown.org
11https://smltar.com
12https://pages.github.com
13https://github.com/EmilHvitfeldt/smltar
14https://ggplot2.tidyverse.org
15https://yardstick.tidymodels.org/reference/conf_mat.html
16https://github.com/EmilHvitfeldt/smltar/blob/master/_common.R

https://www.rstudio.com/ide/
https://www.rstudio.com/ide/
https://bookdown.org
https://bookdown.org
https://smltar.com
https://smltar.com
https://pages.github.com
https://pages.github.com
https://github.com/EmilHvitfeldt/smltar
https://github.com/EmilHvitfeldt/smltar
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://yardstick.tidymodels.org/reference/conf_mat.html
https://yardstick.tidymodels.org/reference/conf_mat.html

Preface xix

package version source
parsnip 0.1.6 CRAN (R 4.1.0)
prismatic 1.0.0 CRAN (R 4.1.0)
quanteda 3.1.0 CRAN (R 4.1.0)
ranger 0.13.1 CRAN (R 4.1.0)
recipes 0.1.16 CRAN (R 4.1.0)
remotes 2.4.0 CRAN (R 4.1.0)
reticulate 1.20 CRAN (R 4.1.0)
rsample 0.1.0 CRAN (R 4.1.0)
rsparse 0.4.0 CRAN (R 4.1.0)
scico 1.2.0 CRAN (R 4.1.0)
scotus 1.0.0 Github (EmilHvitfeldt/scotus)
servr 0.23 CRAN (R 4.1.0)
sessioninfo 1.1.1 CRAN (R 4.1.0)
slider 0.2.2 CRAN (R 4.1.0)
SnowballC 0.7.0 CRAN (R 4.1.0)
spacyr 1.2.1 CRAN (R 4.1.0)
stopwords 2.2 CRAN (R 4.1.0)
styler 1.5.1 CRAN (R 4.1.0)
text2vec 0.6 CRAN (R 4.1.0)
textdata 0.4.1 CRAN (R 4.1.0)
textfeatures 0.3.3 CRAN (R 4.1.0)
textrecipes 0.4.1 CRAN (R 4.1.0)
tfruns 1.5.0 CRAN (R 4.1.0)
themis 0.1.4 CRAN (R 4.1.0)
tidymodels 0.1.3 CRAN (R 4.1.0)
tidytext 0.3.1 CRAN (R 4.1.0)
tidyverse 1.3.1 CRAN (R 4.1.0)
tokenizers 0.2.1 CRAN (R 4.1.0)
tokenizers.bpe 0.1.0 CRAN (R 4.1.0)
tufte 0.10 CRAN (R 4.1.0)
tune 0.1.5 CRAN (R 4.1.0)
UpSetR 1.4.0 CRAN (R 4.1.0)
vip 0.3.2 CRAN (R 4.1.0)
widyr 0.1.4 CRAN (R 4.1.0)
workflows 0.2.3 CRAN (R 4.1.0)
yardstick 0.0.8 CRAN (R 4.1.0)

http://www.taylorandfrancis.com

Part I

Natural Language Features

http://www.taylorandfrancis.com

1
Language and modeling

Machine learning and deep learning models for text are executed by com-
puters, but they are designed and created by human beings using language
generated by human beings. As natural language processing (NLP) practi-
tioners, we bring our assumptions about what language is and how language
works into the task of creating modeling features from natural language and
using those features as inputs to statistical models. This is true even when we
don’t think about how language works very deeply or when our understand-
ing is unsophisticated or inaccurate; speaking a language is not the same as
having an explicit knowledge of how that language works. We can improve
our machine learning models for text by heightening that knowledge.

Throughout the course of this book, we will discuss creating predictors or
features from text data, fitting statistical models to those features, and how
these tasks are related to language. Data scientists involved in the everyday
work of text analysis and text modeling typically don’t have formal training
in how language works, but there is an entire field focused on exactly that,
linguistics.

1.1 Linguistics for text analysis

Briscoe (2013) provides helpful introductions to what linguistics is and how
it intersects with the practical computational field of natural language pro-
cessing. The broad field of linguistics includes subfields focusing on different
aspects of language, which are somewhat hierarchical, as shown in Table 1.1.

These fields each study a different level at which language exhibits organiza-
tion. When we build supervised machine learning models for text data, we use
these levels of organization to create natural language features, i.e., predictors
or inputs for our models. These features often depend on the morphological
characteristics of language, such as when text is broken into sequences of char-
acters for a recurrent neural network deep learning model. Sometimes these
features depend on the syntactic characteristics of language, such as when
models use part-of-speech information. These roughly hierarchical levels of

DOI: 10.1201/9781003093459-1 3

https://doi.org/10.1201/9781003093459-1

4 1 Language and modeling

TABLE 1.1: Some subfields of linguistics, moving from smaller structures to
broader structures

Linguistics subfield What does it focus on?
Phonetics Sounds that people use in language
Phonology Systems of sounds in particular languages
Morphology How words are formed
Syntax How sentences are formed from words
Semantics What sentences mean
Pragmatics How language is used in context

organization are key to the process of transforming unstructured language to
a mathematical representation that can be used in modeling.

At the same time, this organization and the rules of language can be ambigu-
ous; our ability to create text features for machine learning is constrained by
the very nature of language. Beatrice Santorini, a linguist at the University of
Pennsylvania, compiles examples of linguistic ambiguity from news headlines1:

• Include Your Children When Baking Cookies

• March Planned For Next August

• Enraged Cow Injures Farmer with Ax

• Wives Kill Most Spouses In Chicago

If you don’t have knowledge about what linguists study and what they know
about language, these news headlines are just hilarious. To linguists, these are
hilarious because they exhibit certain kinds of semantic ambiguity.

Notice also that the first two subfields on this list are about sounds, i.e.,
speech. Most linguists view speech as primary, and writing down language as
text as a technological step.

Remember that some language is signed, not spoken, so the description
laid out here is itself limited.

1https://www.ling.upenn.edu/~beatrice/humor/headlines.html

https://www.ling.upenn.edu/~beatrice/humor/headlines.html
https://www.ling.upenn.edu/~beatrice/humor/headlines.html

1.2 A glimpse into one area: morphology 5

Written text is typically less creative and further from the primary language
than we would wish. This points out how fundamentally limited modeling from
written text is. Imagine that the abstract language data we want exists in some
high-dimensional latent space; we would like to extract that information using
the text somehow, but it just isn’t completely possible. Any features we create
or model we build are inherently limited.

1.2 A glimpse into one area: morphology

How can a deeper knowledge of how language works inform text modeling?
Let’s focus on morphology, the study of words’ internal structures and how
they are formed, to illustrate this. Words are medium to small in length in
English; English has a moderately low ratio of morphemes (the smallest unit
of language with meaning) to words while other languages like Turkish and
Russian have a higher ratio of morphemes to words (Bender 2013). Related to
this, languages can be either more analytic (like Mandarin or modern English,
breaking up concepts into separate words) or synthetic (like Hungarian or
Swahili, combining concepts into one word).

Morphology focuses on how morphemes such as prefixes, suffixes, and root
words come together to form words. Some languages, like Danish, use many
compound words. Danish words such as “brandbil” (fire truck), “politibil” (po-
lice car), and “lastbil” (truck) all contain the morpheme “bil” (car) and start
with prefixes denoting the type of car. Because of these compound words,
some nouns seem more descriptive than their English counterpart; “vaske-
bjørn” (raccoon) splits into the morphemes “vaske” and “bjørn,” literally
meaning “washing bear”2. When working with Danish and other languages
with compound words, such as German, compound splitting to extract more
information can be beneficial (Sugisaki and Tuggener 2018). However, even
the very question of what a word is turns out to be difficult, and not only for
languages other than English. Compound words in English like “real estate”
and “dining room” represent one concept but contain whitespace.

The morphological characteristics of a text data set are deeply connected
to preprocessing steps like tokenization (Chapter 2), removing stop words
(Chapter 3), and even stemming (Chapter 4). These preprocessing steps for
creating natural language features, in turn, can have significant effects on
model predictions or interpretation.

2The English word “raccoon” derives from an Algonquin word meaning, “scratches with
his hands!”

6 1 Language and modeling

1.3 Different languages

We believe that most of the readers of this book are probably native English
speakers, and certainly most of the text used in training machine learning
models is English. However, English is by no means a dominant language
globally, especially as a native or first language. As an example close to home
for us, of the two authors of this book, one is a native English speaker and
one is not. According to the comprehensive and detailed Ethnologue project3,
less than 20% of the world’s population speaks English at all.

Bender (2011) provides guidance to computational linguists building models
for text, for any language. One specific point she makes is to name the language
being studied.

Do state the name of the language that is being studied, even if
it’s English. Acknowledging that we are working on a particular
language foregrounds the possibility that the techniques may in
fact be language-specific. Conversely, neglecting to state that the
particular data used were in, say, English, gives [a] false veneer
of language-independence to the work.

This idea is simple (acknowledge that the models we build are typically
language-specific) but the #BenderRule4 has led to increased awareness of
the limitations of the current state of this field. Our book is not geared to-
ward academic NLP researchers developing new methods, but toward data
scientists and analysts working with everyday data sets; this issue is relevant
even for us. Name the languages used in training models (Bender 2019), and
think through what that means for their generalizability. We will practice
what we preach and tell you that most of the text used for modeling in this
book is English, with some text in Danish and a few other languages.

3https://www.ethnologue.com/language/eng
4https://twitter.com/search?q=%23BenderRule

https://www.ethnologue.com/language/eng
https://www.ethnologue.com/language/eng
https://twitter.com/search?q=%23BenderRule
https://twitter.com/search?q=%23BenderRule

1.4 Other ways text can vary 7

1.4 Other ways text can vary

The concept of differences in language is relevant for modeling beyond only the
broadest language level (for example, English vs. Danish vs. German vs. Farsi).
Language from a specific dialect often cannot be handled well with a model
trained on data from the same language but not inclusive of that dialect.
One dialect used in the United States is African American Vernacular English
(AAVE). Models trained to detect toxic or hate speech are more likely to falsely
identify AAVE as hate speech (Sap et al. 2019); this is deeply troubling not
only because the model is less accurate than it should be, but because it
amplifies harm against an already marginalized group.

Language is also changing over time. This is a known characteristic of lan-
guage; if you notice the evolution of your own language, don’t be depressed
or angry, because it means that people are using it! Teenage girls are espe-
cially effective at language innovation and have been for centuries (McCulloch
2015); innovations spread from groups such as young women to other parts of
society. This is another difference that impacts modeling.

Differences in language relevant for models also include the use of slang,
and even the context or medium of that text.

Consider two bodies of text, both mostly standard written English, but one
made up of tweets and one made up of medical documents. If an NLP practi-
tioner trains a model on the data set of tweets to predict some characteristics
of the text, it is very possible (in fact, likely, in our experience) that the
model will perform poorly if applied to the data set of medical documents5.
Like machine learning in general, text modeling is exquisitely sensitive to the
data used for training. This is why we are somewhat skeptical of AI products
such as sentiment analysis APIs, not because they never work well, but be-
cause they work well only when the text you need to predict from is a good
match to the text such a product was trained on.

5Practitioners have built specialized computational resources for medical text (Johnson
1999).

8 1 Language and modeling

1.5 Summary

Linguistics is the study of how language works, and while we don’t believe
real-world NLP practitioners must be experts in linguistics, learning from such
domain experts can improve both the accuracy of our models and our under-
standing of why they do (or don’t!) perform well. Predictive models for text
reflect the characteristics of their training data, so differences in language over
time, between dialects, and in various cultural contexts can prevent a model
trained on one data set from being appropriate for application in another. A
large amount of the text modeling literature focuses on English, but English
is not a dominant language around the world.

1.5.1 In this chapter, you learned:

• that areas of linguistics focus on topics from sounds to how language is
used

• how a topic like morphology is connected to text modeling steps

• to identify the language you are modeling, even if it is English

• about many ways language can vary and how this can impact model results

2
Tokenization

To build features for supervised machine learning from natural language, we
need some way of representing raw text as numbers so we can perform com-
putation on them. Typically, one of the first steps in this transformation from
natural language to feature, or any of kind of text analysis, is tokenization.
Knowing what tokenization and tokens are, along with the related concept of
an n-gram, is important for almost any natural language processing task.

2.1 What is a token?

In R, text is typically represented with the character data type, similar to
strings in other languages. Let’s explore text from fairy tales written by Hans
Christian Andersen, available in the hcandersenr package (Hvitfeldt 2019a).
This package stores text as lines such as those you would read in a book; this is
just one way that you may find text data in the wild and does allow us to more
easily read the text when doing analysis. If we look at the first paragraph of
one story titled “The Fir-Tree,” we find the text of the story is in a character
vector: a series of letters, spaces, and punctuation stored as a vector.

The tidyverse is a collection of packages for data manipulation, explo-
ration, and visualization.

library(tokenizers)
library(tidyverse)
library(tidytext)
library(hcandersenr)

DOI: 10.1201/9781003093459-2 9

https://doi.org/10.1201/9781003093459-2

10 2 Tokenization

the_fir_tree <- hcandersen_en %>%
filter(book == "The fir tree") %>%
pull(text)

head(the_fir_tree, 9)

#> [1] "Far down in the forest, where the warm sun and the fresh air made a
sweet"
#> [2] "resting-place, grew a pretty little fir-tree; and yet it was not happy,
it"
#> [3] "wished so much to be tall like its companions– the pines and firs which
grew"
#> [4] "around it. The sun shone, and the soft air fluttered its leaves, and
the"
#> [5] "little peasant children passed by, prattling merrily, but the fir-tree
heeded"
#> [6] "them not. Sometimes the children would bring a large basket of
raspberries or"
#> [7] "strawberries, wreathed on a straw, and seat themselves near the
fir-tree, and"
#> [8] "say, \"Is it not a pretty little tree?\" which made it feel more
unhappy than"
#> [9] "before."

The first nine lines stores the first paragraph of the story, each line consisting
of a series of character symbols. These elements don’t contain any metadata or
information to tell us which characters are words and which aren’t. Identifying
these kinds of boundaries between words is where the process of tokenization
comes in.

In tokenization, we take an input (a string) and a token type (a meaningful
unit of text, such as a word) and split the input into pieces (tokens) that
correspond to the type (Manning, Raghavan, and Schütze 2008). Figure 2.1
outlines this process.

Most commonly, the meaningful unit or type of token that we want to split
text into units of is a word. However, it is difficult to clearly define what a
word is, for many or even most languages. Many languages, such as Chinese,
do not use white space between words at all. Even languages that do use white
space, including English, often have particular examples that are ambiguous
(Bender 2013). Romance languages like Italian and French use pronouns and
negation words that may better be considered prefixes with a space, and En-
glish contractions like “didn’t” may more accurately be considered two words
with no space.

2.1 What is a token? 11

"Rejoice with us," said the air and the sunlight. Enjoy

The sun shone, and the soft air fluttered its leaves

grew a pretty little fir-tree; and yet it was not happy

rejoice with air andsaid theus sunlightthe

sun shone flutteredtheand soft itsthe air

a yetfirlittle tree itgrew and

leaves

not happywaspretty

Tokenization

enjoy

FIGURE 2.1: A black box representation of a tokenizer. The text of these
three example text fragments has been converted to lowercase and punctuation
has been removed before the text is split.

To understand the process of tokenization, let’s start with a overly simple
definition for a word: any selection of alphanumeric (letters and numbers)
symbols. Let’s use some regular expressions (or regex for short, see Appendix
A) with strsplit() to split the first two lines of “The Fir-Tree” by any charac-
ters that are not alphanumeric.

strsplit(the_fir_tree[1:2], "[^a-zA-Z0-9]+")

#> [[1]]
#> [1] "Far" "down" "in" "the" "forest" "where" "the" "warm"
#> [9] "sun" "and" "the" "fresh" "air" "made" "a" "sweet"
#>
#> [[2]]
#> [1] "resting" "place" "grew" "a" "pretty" "little" "fir"
#> [8] "tree" "and" "yet" "it" "was" "not" "happy"
#> [15] "it"

12 2 Tokenization

At first sight, this result looks pretty decent. However, we have lost all punc-
tuation, which may or may not be helpful for our modeling goal, and the hero
of this story ("fir-tree") was split in half. Already it is clear that tokeniza-
tion is going to be quite complicated. Luckily for us, a lot of work has been
invested in this process, and typically it is best to use these existing tools. For
example, tokenizers (Mullen et al. 2018) and spaCy (Honnibal et al. 2020)
implement fast, consistent tokenizers we can use. Let’s demonstrate with the
tokenizers package.

library(tokenizers)
tokenize_words(the_fir_tree[1:2])

#> [[1]]
#> [1] "far" "down" "in" "the" "forest" "where" "the" "warm"
#> [9] "sun" "and" "the" "fresh" "air" "made" "a" "sweet"
#>
#> [[2]]
#> [1] "resting" "place" "grew" "a" "pretty" "little" "fir"
#> [8] "tree" "and" "yet" "it" "was" "not" "happy"
#> [15] "it"

We see sensible single-word results here; the tokenize_words() function uses the
stringi package (Gagolewski 2020) and C++ under the hood, making it very
fast. Word-level tokenization is done by finding word boundaries according to
the specification from the International Components for Unicode (ICU). How
does this word boundary algorithm1 work? It can be outlined as follows:

• Break at the start and end of text, unless the text is empty.

• Do not break within CRLF (new line characters).

• Otherwise, break before and after new lines (including CR and LF).

• Do not break within emoji zwj sequences.

• Keep horizontal whitespace together.

• Ignore Format and Extend characters, except after sot, CR, LF, and new
lines.

• Do not break between most letters.
1https://www.unicode.org/reports/tr29/tr29-35.html#Default_Word_Boundaries

https://www.unicode.org/reports/tr29/tr29-35.html#Default_Word_Boundaries
https://www.unicode.org/reports/tr29/tr29-35.html#Default_Word_Boundaries

2.2 Types of tokens 13

• Do not break letters across certain punctuation.

• Do not break within sequences of digits, or digits adjacent to letters (“3a,”
or “A3”).

• Do not break within sequences, such as “3.2” or “3,456.789.”

• Do not break between Katakana.

• Do not break from extenders.

• Do not break within emoji flag sequences.

• Otherwise, break everywhere (including around ideographs).

While we might not understand what each and every step in this algorithm
is doing, we can appreciate that it is many times more sophisticated than
our initial approach of splitting on non-alphanumeric characters. In most of
this book, we will use the tokenizers package as a baseline tokenizer for
reference. Your choice of tokenizer will influence your results, so don’t be
afraid to experiment with different tokenizers or, if necessary, to write your
own to fit your problem.

2.2 Types of tokens

Thinking of a token as a word is a useful way to start understanding tokeniza-
tion, even if it is hard to implement concretely in software. We can generalize
the idea of a token beyond only a single word to other units of text. We can
tokenize text at a variety of units including:

14 2 Tokenization

• characters,

• words,

• sentences,

• lines,

• paragraphs, and

• n-grams

In the following sections, we will explore how to tokenize text using the to-
kenizers package. These functions take a character vector as the input and
return lists of character vectors as output. This same tokenization can also
be done using the tidytext (Silge and Robinson 2016) package, for workflows
using tidy data principles where the input and output are both in a dataframe.

sample_vector <- c("Far down in the forest",
"grew a pretty little fir-tree")

sample_tibble <- tibble(text = sample_vector)

The tokenizers package offers fast, consistent tokenization in R for to-
kens such as words, letters, n-grams, lines, paragraphs, and more.

The tokenization achieved by using tokenize_words() on sample_vector:

tokenize_words(sample_vector)

#> [[1]]
#> [1] "far" "down" "in" "the" "forest"
#>
#> [[2]]
#> [1] "grew" "a" "pretty" "little" "fir" "tree"

will yield the same results as using unnest_tokens() on sample_tibble; the only
difference is the data structure, and thus how we might use the result moving
forward in our analysis.

2.2 Types of tokens 15

sample_tibble %>%
unnest_tokens(word, text, token = "words")

#> # A tibble: 11 x 1
#> word
#> <chr>
#> 1 far
#> 2 down
#> 3 in
#> 4 the
#> 5 forest
#> 6 grew
#> 7 a
#> 8 pretty
#> 9 little
#> 10 fir
#> 11 tree

The tidytext package provides functions to transform text to and from
tidy formats, allowing us to work seamlessly with other tidyverse tools.

Arguments used in tokenize_words() can be passed through unnest_tokens() us-
ing the “the dots”2,

sample_tibble %>%
unnest_tokens(word, text, token = "words", strip_punct = FALSE)

#> # A tibble: 12 x 1
#> word
#> <chr>
#> 1 far
#> 2 down
#> 3 in
#> 4 the
#> 5 forest
#> 6 grew

2https://adv-r.hadley.nz/functions.html#fun-dot-dot-dot

https://adv-r.hadley.nz/functions.html#fun-dot-dot-dot
https://adv-r.hadley.nz/functions.html#fun-dot-dot-dot

16 2 Tokenization

#> 7 a
#> 8 pretty
#> 9 little
#> 10 fir
#> 11 -
#> 12 tree

2.2.1 Character tokens

Perhaps the simplest tokenization is character tokenization, which splits texts
into characters. Let’s use tokenize_characters() with its default parameters;
this function has arguments to convert to lowercase and to strip all non-
alphanumeric characters. These defaults will reduce the number of different
tokens that are returned. The tokenize_*() functions by default return a list
of character vectors, one character vector for each string in the input.

tft_token_characters <- tokenize_characters(x = the_fir_tree,
lowercase = TRUE,
strip_non_alphanum = TRUE,
simplify = FALSE)

What do we see if we take a look?

head(tft_token_characters) %>%
glimpse()

#> List of 6
#> $: chr [1:57] "f" "a" "r" "d" ...
#> $: chr [1:57] "r" "e" "s" "t" ...
#> $: chr [1:61] "w" "i" "s" "h" ...
#> $: chr [1:56] "a" "r" "o" "u" ...
#> $: chr [1:64] "l" "i" "t" "t" ...
#> $: chr [1:64] "t" "h" "e" "m" ...

We don’t have to stick with the defaults. We can keep the punctuation and
spaces by setting strip_non_alphanum = FALSE, and now we see that spaces and
punctuation are included in the results too.

2.2 Types of tokens 17

tokenize_characters(x = the_fir_tree,
strip_non_alphanum = FALSE) %>%

head() %>%
glimpse()

#> List of 6
#> $: chr [1:73] "f" "a" "r" " " ...
#> $: chr [1:74] "r" "e" "s" "t" ...
#> $: chr [1:76] "w" "i" "s" "h" ...
#> $: chr [1:72] "a" "r" "o" "u" ...
#> $: chr [1:77] "l" "i" "t" "t" ...
#> $: chr [1:77] "t" "h" "e" "m" ...

The results have more elements because the spaces and punctuation have not
been removed.

Depending on the format you have your text data in, it might contain ligatures.
Ligatures are when multiple graphemes or letters are combined as a single
character The graphemes “f” and “l” are combined into “fl,” or “f” and “f”
into “ff.” When we apply normal tokenization rules the ligatures will not be
split up.

tokenize_characters("flowers")

#> [[1]]
#> [1] "fl" "o" "w" "e" "r" "s"

We might want to have these ligatures separated back into separate characters,
but first, we need to consider a couple of things. First, we need to consider
if the presence of ligatures is a meaningful feature to the question we are
trying to answer. Second, there are two main types of ligatures: stylistic and
functional. Stylistic ligatures are when two characters are combined because
the spacing between the characters has been deemed unpleasant. Functional
ligatures like the German Eszett (also called the scharfes S, meaning sharp s)
ß, is an official letter of the German alphabet. It is described as a long S and
Z and historically has never gotten an uppercase character. This has led the
typesetters to use SZ or SS as a replacement when writing a word in uppercase.
Additionally, ß is omitted entirely in German writing in Switzerland and is
replaced with ss. Other examples include the “W” in the Latin alphabet (two
“v” or two “u” joined together), and æ, ø, and å in the Nordic languages.
Some place names for historical reasons use the old spelling “aa” instead of
å. In Section 6.7.1 we will discuss text normalization approaches to deal with
ligatures.

18 2 Tokenization

2.2.2 Word tokens

Tokenizing at the word level is perhaps the most common and widely used
tokenization. We started our discussion in this chapter with this kind of tok-
enization, and as we described before, this is the procedure of splitting text
into words. To do this, let’s use the tokenize_words() function.

tft_token_words <- tokenize_words(x = the_fir_tree,
lowercase = TRUE,
stopwords = NULL,
strip_punct = TRUE,
strip_numeric = FALSE)

The results show us the input text split into individual words.

head(tft_token_words) %>%
glimpse()

#> List of 6
#> $: chr [1:16] "far" "down" "in" "the" ...
#> $: chr [1:15] "resting" "place" "grew" "a" ...
#> $: chr [1:15] "wished" "so" "much" "to" ...
#> $: chr [1:14] "around" "it" "the" "sun" ...
#> $: chr [1:12] "little" "peasant" "children" "passed" ...
#> $: chr [1:13] "them" "not" "sometimes" "the" ...

We have already seen lowercase = TRUE, and strip_punct = TRUE and strip_numeric
= FALSE control whether we remove punctuation and numeric characters, re-
spectively. We also have stopwords = NULL, which we will talk about in more
depth in Chapter 3.

Let’s create a tibble with two fairy tales, “The Fir-Tree” and “The Little
Mermaid.” Then we can use unnest_tokens() together with some dplyr verbs
to find the most commonly used words in each.

hcandersen_en %>%
filter(book %in% c("The fir tree", "The little mermaid")) %>%
unnest_tokens(word, text) %>%
count(book, word) %>%
group_by(book) %>%
arrange(desc(n)) %>%
slice(1:5)

2.2 Types of tokens 19

#> # A tibble: 10 x 3
#> # Groups: book [2]
#> book word n
#> <chr> <chr> <int>
#> 1 The fir tree the 278
#> 2 The fir tree and 161
#> 3 The fir tree tree 76
#> 4 The fir tree it 66
#> 5 The fir tree a 56
#> 6 The little mermaid the 817
#> 7 The little mermaid and 398
#> 8 The little mermaid of 252
#> 9 The little mermaid she 240
#> 10 The little mermaid to 199

The five most common words in each fairy tale are fairly uninformative, with
the exception being "tree" in the “The Fir-Tree.”

These uninformative words are called stop words and will be explored
in-depth in Chapter 3.

2.2.3 Tokenizing by n-grams

An n-gram (sometimes written “ngram”) is a term in linguistics for a contigu-
ous sequence of 𝑛 items from a given sequence of text or speech. The item can
be phonemes, syllables, letters, or words depending on the application, but
when most people talk about n-grams, they mean a group of 𝑛 words. In this
book, we will use n-gram to denote word n-grams unless otherwise stated.

We use Latin prefixes so that a 1-gram is called a unigram, a 2-gram is
called a bigram, a 3-gram called a trigram, and so on.

20 2 Tokenization

Some example n-grams are:

• unigram: “Hello,” “day,” “my,” “little”

• bigram: “fir tree,” “fresh air,” “to be,” “Robin Hood”

• trigram: “You and I,” “please let go,” “no time like,” “the little mermaid”

The benefit of using n-grams compared to words is that n-grams capture word
order that would otherwise be lost. Similarly, when we use character n-grams,
we can model the beginning and end of words, because a space will be located
at the end of an n-gram for the end of a word and at the beginning of an
n-gram of the beginning of a word.

To split text into word n-grams, we can use the function tokenize_ngrams(). It
has a few more arguments, so let’s go over them one by one.

tft_token_ngram <- tokenize_ngrams(x = the_fir_tree,
lowercase = TRUE,
n = 3L,
n_min = 3L,
stopwords = character(),
ngram_delim = " ",
simplify = FALSE)

We have seen the arguments lowercase, stopwords, and simplify before; they
work the same as for the other tokenizers. We also have n, the argument to
determine which degree of n-gram to return. Using n = 1 returns unigrams, n =
2 bigrams, n = 3 gives trigrams, and so on. Related to n is the n_min argument,
which specifies the minimum number of n-grams to include. By default both
n and n_min are set to 3 making tokenize_ngrams() return only trigrams. By
setting n = 3 and n_min = 1, we will get all unigrams, bigrams, and trigrams of
a text. Lastly, we have the ngram_delim argument, which specifies the separator
between words in the n-grams; notice that this defaults to a space.

Let’s look at the result of n-gram tokenization for the first line of “The Fir-
Tree.”

tft_token_ngram[[1]]

#> [1] "far down in" "down in the" "in the forest" "the forest where"
#> [5] "forest where the" "where the warm" "the warm sun" "warm sun and"
#> [9] "sun and the" "and the fresh" "the fresh air" "fresh air made"
#> [13] "air made a" "made a sweet"

2.2 Types of tokens 21

Notice how the words in the trigrams overlap so that the word “down” appears
in the middle of the first trigram and beginning of the second trigram. N-gram
tokenization slides along the text to create overlapping sets of tokens.

It is important to choose the right value for n when using n-grams for the
question we want to answer. Using unigrams is faster and more efficient, but
we don’t capture information about word order. Using a higher value for n
keeps more information, but the vector space of tokens increases dramatically,
corresponding to a reduction in token counts. A sensible starting point in most
cases is three. However, if you don’t have a large vocabulary in your data
set, consider starting at two instead of three and experimenting from there.
Figure 2.2 demonstrates how token frequency starts to decrease dramatically
for trigrams and higher-order n-grams.

quadrugram

trigram

bigram

unigram

0 5000 10000 15000
Number of unique n−grams

1

10

100

1000

Count of
most frequent
ngram

Each point represents a H.C. Andersen Fairy tale
Unique n−grams by n−gram order

FIGURE 2.2: Using longer n-grams results in a higher number of unique
tokens with fewer counts. Note that the color maps to counts on a logarithmic
scale.

We are not limited to use only one degree of n-grams. We can, for example,
combine unigrams and bigrams in an analysis or model. Getting multiple
degrees of n-grams is a little different depending on what package you are
using; using tokenize_ngrams() you can specify n and n_min.

22 2 Tokenization

tft_token_ngram <- tokenize_ngrams(x = the_fir_tree,
n = 2L,
n_min = 1L)

tft_token_ngram[[1]]

#> [1] "far" "far down" "down" "down in" "in"
#> [6] "in the" "the" "the forest" "forest" "forest where"
#> [11] "where" "where the" "the" "the warm" "warm"
#> [16] "warm sun" "sun" "sun and" "and" "and the"
#> [21] "the" "the fresh" "fresh" "fresh air" "air"
#> [26] "air made" "made" "made a" "a" "a sweet"
#> [31] "sweet"

Combining different degrees of n-grams can allow you to extract different
levels of detail from text data. Unigrams tell you which individual words have
been used a lot of times; some of these words could be overlooked in bigram
or trigram counts if they don’t co-appear with other words often. Consider a
scenario where every time the word “dog” was used it came after an adjective:
“happy dog,” “sad dog,” “brown dog,” “white dog,” “playful dog,” etc. If this is
fairly consistent and the adjectives varied enough, then bigrams would not be
able to detect that this story is about dogs. Similarly “very happy” and “not
happy” will be recognized as different from bigrams and not with unigrams
alone.

2.2.4 Lines, sentence, and paragraph tokens

Tokenizers to split text into larger units of text like lines, sentences, and para-
graphs are rarely used directly for modeling purposes, as the tokens produced
tend to be fairly unique. It is very uncommon for multiple sentences in a text
to be identical! However, these tokenizers are useful for preprocessing and
labeling.

For example, Jane Austen’s novel Northanger Abbey (as available in the
janeaustenr package) is already preprocessed with each line being at most
80 characters long. However, it might be useful to split the data into chapters
and paragraphs instead.

Let’s create a function that takes a dataframe containing a variable called text
and turns it into a dataframe where the text is transformed into paragraphs.
First, we can collapse the text into one long string using collapse = "\n" to
denote line breaks, and then next we can use tokenize_paragraphs() to identify
the paragraphs and put them back into a dataframe. We can add a paragraph
count with row_number().

2.2 Types of tokens 23

add_paragraphs <- function(data) {
pull(data, text) %>%
paste(collapse = "\n") %>%
tokenize_paragraphs() %>%
unlist() %>%
tibble(text = .) %>%
mutate(paragraph = row_number())

}

Now we take the raw text data and add the chapter count by detecting when
the characters "CHAPTER" appears at the beginning of a line. Then we nest() the
text column, apply our add_paragraphs() function, and then unnest() again.

library(janeaustenr)

northangerabbey_paragraphed <- tibble(text = northangerabbey) %>%
mutate(chapter = cumsum(str_detect(text, "^CHAPTER "))) %>%
filter(chapter > 0,

!str_detect(text, "^CHAPTER ")) %>%
nest(data = text) %>%
mutate(data = map(data, add_paragraphs)) %>%
unnest(cols = c(data))

glimpse(northangerabbey_paragraphed)

#> Rows: 1,020
#> Columns: 3
#> $ chapter <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, ~
#> $ text <chr> "No one who had ever seen Catherine Morland in her infancy w~
#> $ paragraph <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1~

Now we have 1020 separate paragraphs we can analyze. Similarly, we could
go a step further to split these chapters into sentences, lines, or words.

It can be useful to be able to reshape text data to get a different observational
unit. As an example, if you wanted to build a sentiment classifier that would
classify sentences as hostile or not, then you need to work with and train your
model on sentences of text. Turning pages or paragraphs into sentences is a
necessary step in your workflow.

Let us look at how we can turn the_fir_tree from a “one line per element”
vector to a “one sentence per element.” the_fir_tree comes as a vector so we
start by using paste() to combine the lines back together. We use a space as

24 2 Tokenization

the separator, and then we pass it to the tokenize_sentences() function from
the tokenizers package, which will perform sentence splitting.

the_fir_tree_sentences <- the_fir_tree %>%
paste(collapse = " ") %>%
tokenize_sentences()

head(the_fir_tree_sentences[[1]])

#> [1] "Far down in the forest, where the warm sun and the fresh air made a
sweet resting-place, grew a pretty little fir-tree; and yet it was not happy,
it wished so much to be tall like its companions– the pines and firs which grew
around it."
#> [2] "The sun shone, and the soft air fluttered its leaves, and the little
peasant children passed by, prattling merrily, but the fir-tree heeded them
not."
#> [3] "Sometimes the children would bring a large basket of raspberries or
strawberries, wreathed on a straw, and seat themselves near the fir-tree, and
say, \"Is it not a pretty little tree?\""
#> [4] "which made it feel more unhappy than before."
#> [5] "And yet all this while the tree grew a notch or joint taller every
year; for by the number of joints in the stem of a fir-tree we can discover its
age."
#> [6] "Still, as it grew, it complained."

If you have lines from different categories as we have in the hcandersen_en
dataframe, which contains all the lines of the fairy tales in English, then we
would like to be able to turn these lines into sentences while preserving the
book column in the data set. To do this we use nest() and map_chr() to create
a dataframe where each fairy tale is its own element and then we use the
unnest_sentences() function from the tidytext package to split the text into
sentences.

hcandersen_sentences <- hcandersen_en %>%
nest(data = c(text)) %>%
mutate(data = map_chr(data, ~ paste(.x$text, collapse = " "))) %>%
unnest_sentences(sentences, data)

Now that we have turned the text into “one sentence per element,” we can
analyze on the sentence level.

2.3 Where does tokenization break down? 25

2.3 Where does tokenization break down?

Tokenization will generally be one of the first steps when building a model
or any kind of text analysis, so it is important to consider carefully what
happens in this step of data preprocessing. As with most software, there is a
trade-off between speed and customizability, as demonstrated in Section 2.6.
The fastest tokenization methods give us less control over how it is done.

While the defaults work well in many cases, we encounter situations where
we want to impose stricter rules to get better or different tokenized results.
Consider the following sentence.

Don’t forget you owe the bank $1 million for the house.

This sentence has several interesting aspects that we need to decide whether to
keep or to ignore when tokenizing. The first issue is the contraction in "Don't",
which presents us with several possible options. The fastest option is to keep
this as one word, but it could also be split up into "do" and "n't".

The next issue at hand is how to deal with "$1"; the dollar sign is an important
part of this sentence as it denotes a kind of currency. We could either remove
or keep this punctuation symbol, and if we keep the dollar sign, we can choose
between keeping one or two tokens, "$1" or "$" and "1". If we look at the default
for tokenize_words(), we notice that it defaults to removing most punctuation
including $.

tokenize_words("$1")

#> [[1]]
#> [1] "1"

We can keep the dollar sign if we don’t strip punctuation.

26 2 Tokenization

tokenize_words("$1", strip_punct = FALSE)

#> [[1]]
#> [1] "$" "1"

When dealing with this sentence, we also need to decide whether to keep the
final period as a token or not. If we remove it, we will not be able to locate
the last word in a sentence using n-grams.

Information lost to tokenization (especially default tokenization) occurs more
frequently in online and more casual text. Multiple spaces, extreme use of
exclamation characters, and deliberate use of capitalization can be completely
lost depending on our choice of tokenizer and tokenization parameters. At the
same time, it is not always worth keeping that kind of information about how
text is being used. If we are studying trends in disease epidemics using Twitter
data, the style the tweets are written in is likely not nearly as important as
what words are used. However, if we are trying to model social groupings,
language style and how individuals use language toward each other becomes
much more important.

Another thing to consider is the degree of compression each type of tokeniza-
tion provides. The choice of tokenization results in a different pool of possible
tokens and can influence performance. By choosing a method that gives fewer
possible tokens you allow later computational tasks to be performed faster.
However, that comes with the risk of collapsing together categories of a differ-
ent meaning. It is also worth noting that the spread of the number of different
tokens varies with your choice of tokenizer.

Figure 2.3 illustrates these points. Each of the fairy tales from hcandersenr
has been tokenized in five different ways and the number of distinct tokens has
been plotted along the x-axis (note that the x-axis is logarithmic). We see that
the number of distinct tokens decreases if we convert words to lowercase or
extract word stems (see Chapter 4 for more on stemming). Second, notice that
the distributions of distinct tokens for character tokenizers are quite narrow;
these texts use all or most of the letters in the English alphabet.

2.4 Building your own tokenizer

Sometimes the out-of-the-box tokenizers won’t be able to do what you need
them to do. In this case, we will have to wield stringi/stringr and regular
expressions (see Appendix A).

2.4 Building your own tokenizer 27

Characters

Characters Z�o alphanumerics

:ord stems

:ords

:ords no loZercase

�0 100 �00 1000 �000
Number of distinct toNens

'istributions of distinct toNens
for different toNeni]ing strategies

FIGURE 2.3: The number of distinct tokens can vary enormously for differ-
ent tokenizers

There are two main approaches to tokenization.

1. Split the string up according to some rule.
2. Extract tokens based on some rule.

The number and complexity of our rules are determined by our desired out-
come. We can reach complex outcomes by chaining together many smaller
rules. In this section, we will implement a couple of specialty tokenizers to
showcase these techniques.

2.4.1 Tokenize to characters, only keeping letters

Here we want to modify what tokenize_characters() does, such that we only
keep letters. There are two main options. We can use tokenize_characters()
and remove anything that is not a letter, or we can extract the letters one
by one. Let’s try the latter option. This is an extract task, and we will use
str_extract_all() as each string has the possibility of including more than one
token. Since we want to extract letters we can use the letters character class
[:alpha:] to match letters and the quantifier {1} to only extract the first one.

28 2 Tokenization

In this example, leaving out the quantifier yields the same result as in-
cluding it. However, for more complex regular expressions, specifying the
quantifier allows the string handling to run faster.

letter_tokens <- str_extract_all(
string = "This sentence include 2 numbers and 1 period.",
pattern = "[:alpha:]{1}"

)
letter_tokens

#> [[1]]
#> [1] "T" "h" "i" "s" "s" "e" "n" "t" "e" "n" "c" "e" "i" "n" "c" "l" "u" "d" "e"
#> [20] "n" "u" "m" "b" "e" "r" "s" "a" "n" "d" "p" "e" "r" "i" "o" "d"

Wemay be tempted to specify the character class as something like [a-zA-Z]{1}.
This option would run faster, but we would lose non-English letter characters.
This is a design choice we have to make depending on the goals of our specific
problem.

danish_sentence <- "Så mødte han en gammel heks på landevejen"

str_extract_all(danish_sentence, "[:alpha:]")

#> [[1]]
#> [1] "S" "å" "m" "ø" "d" "t" "e" "h" "a" "n" "e" "n" "g" "a" "m" "m" "e" "l" "h"
#> [20] "e" "k" "s" "p" "å" "l" "a" "n" "d" "e" "v" "e" "j" "e" "n"

str_extract_all(danish_sentence, "[a-zA-Z]")

#> [[1]]
#> [1] "S" "m" "d" "t" "e" "h" "a" "n" "e" "n" "g" "a" "m" "m" "e" "l" "h" "e" "k"
#> [20] "s" "p" "l" "a" "n" "d" "e" "v" "e" "j" "e" "n"

2.4 Building your own tokenizer 29

Choosing between [:alpha:] and [a-zA-Z] may seem quite similar, but the
resulting differences can have a big impact on your analysis.

2.4.2 Allow for hyphenated words

In our examples so far, we have noticed that the string “fir-tree” is typically
split into two tokens. Let’s explore two different approaches for how to handle
this hyphenated word as one token. First, let’s split on white space; this is
a decent way to identify words in English and some other languages, and it
does not split hyphenated words as the hyphen character isn’t considered a
white-space. Second, let’s find a regex to match words with a hyphen and
extract those.

Splitting by white space is not too difficult because we can use character
classes, as shown in Table A.2. We will use the white space character class
[:space:] to split our sentence.

str_split("This isn't a sentence with hyphenated-words.", "[:space:]")

#> [[1]]
#> [1] "This" "isn't" "a"
#> [4] "sentence" "with" "hyphenated-words."

This worked pretty well. This version doesn’t drop punctuation, but we can
achieve this by removing punctuation characters at the beginning and end of
words.

str_split("This isn't a sentence with hyphenated-words.", "[:space:]") %>%
map(~ str_remove_all(.x, "^[:punct:]+|[:punct:]+$"))

#> [[1]]
#> [1] "This" "isn't" "a" "sentence"
#> [5] "with" "hyphenated-words"

This regex used to remove the punctuation is a little complicated, so let’s
discuss it piece by piece.

30 2 Tokenization

• The regex ^[:punct:]+ will look at the beginning of the string (^) to match
any punctuation characters ([:punct:]), where it will select one or more
(+).

• The other regex [:punct:]+$ will look for punctuation characters ([:punct:])
that appear one or more times (+) at the end of the string ($).

• These will alternate (|) so that we get matches from both sides of the
words.

• The reason we use the quantifier + is that there are cases where a word
is followed by multiple characters we don’t want, such as "okay..." and
"Really?!!!".

We are using map() since str_split() returns a list, and we want str_remove_all()
to be applied to each element in the list. (The example here only has one
element.)

Now let’s see if we can get the same result using extraction. We will start
by constructing a regular expression that will capture hyphenated words; our
definition here is a word with one hyphen located inside it. Since we want
the hyphen to be inside the word, we will need to have a non-zero number of
characters on either side of the hyphen.

str_extract_all(
string = "This isn't a sentence with hyphenated-words.",
pattern = "[:alpha:]+-[:alpha:]+"

)

#> [[1]]
#> [1] "hyphenated-words"

Wait, this only matched the hyphenated word! This happened because we are
only matching words with hyphens. If we add the quantifier ? then we can
match 0 or 1 occurrences.

str_extract_all(
string = "This isn't a sentence with hyphenated-words.",
pattern = "[:alpha:]+-?[:alpha:]+"

)

2.4 Building your own tokenizer 31

#> [[1]]
#> [1] "This" "isn" "sentence" "with"
#> [5] "hyphenated-words"

Now we are getting more words, but the ending of "isn't" is not there anymore
and we lost the word "a". We can get matches for the whole contraction by
expanding the character class [:alpha:] to include the character '. We do that
by using [[:alpha:]'].

str_extract_all(
string = "This isn't a sentence with hyphenated-words.",
pattern = "[[:alpha:]']+-?[[:alpha:]']+"

)

#> [[1]]
#> [1] "This" "isn't" "sentence" "with"
#> [5] "hyphenated-words"

Next, we need to find out why "a" wasn’t matched. If we look at the regular
expression, we remember that we imposed the restriction that a non-zero
number of characters needed to surround the hyphen to avoid matching words
that start or end with a hyphen. This means that the smallest possible pattern
matched is two characters long. We can fix this by using an alternation with |.
We will keep our previous match on the left-hand side, and include [:alpha:]{1}
on the right-hand side to match the single length words that won’t be picked
up by the left-hand side. Notice how we aren’t using [[:alpha:]'] since we are
not interested in matching single ' characters.

str_extract_all(
string = "This isn't a sentence with hyphenated-words.",
pattern = "[[:alpha:]']+-?[[:alpha:]']+|[:alpha:]{1}"

)

#> [[1]]
#> [1] "This" "isn't" "a" "sentence"
#> [5] "with" "hyphenated-words"

That is getting to be quite a complex regex, but we are now getting the same
answer as before.

32 2 Tokenization

2.4.3 Wrapping it in a function

We have shown how we can use regular expressions to extract the tokens we
want, perhaps to use in modeling. So far, the code has been rather unstruc-
tured. We would ideally wrap these tasks into functions that can be used the
same way tokenize_words() is used.

Let’s start with the example with hyphenated words. To make the function a
little more flexible, let’s add an option to transform all the output to lowercase.

tokenize_hyphenated_words <- function(x, lowercase = TRUE) {
if (lowercase)
x <- str_to_lower(x)

str_split(x, "[:space:]") %>%
map(~ str_remove_all(.x, "^[:punct:]+|[:punct:]+$"))

}

tokenize_hyphenated_words(the_fir_tree[1:3])

#> [[1]]
#> [1] "far" "down" "in" "the" "forest" "where" "the" "warm"
#> [9] "sun" "and" "the" "fresh" "air" "made" "a" "sweet"
#>
#> [[2]]
#> [1] "resting-place" "grew" "a" "pretty"
#> [5] "little" "fir-tree" "and" "yet"
#> [9] "it" "was" "not" "happy"
#> [13] "it"
#>
#> [[3]]
#> [1] "wished" "so" "much" "to" "be"
#> [6] "tall" "like" "its" "companions" "the"
#> [11] "pines" "and" "firs" "which" "grew"

Notice how we transformed to lowercase first because the rest of the operations
are case insensitive.

Next let’s turn our character n-gram tokenizer into a function, with a variable
n argument.

2.5 Tokenization for non-Latin alphabets 33

tokenize_character_ngram <- function(x, n) {
ngram_loc <- str_locate_all(x, paste0("(?=(\\w{", n, "}))"))

map2(ngram_loc, x, ~str_sub(.y, .x[, 1], .x[, 1] + n - 1))
}

tokenize_character_ngram(the_fir_tree[1:3], n = 3)

#> [[1]]
#> [1] "Far" "dow" "own" "the" "for" "ore" "res" "est" "whe" "her" "ere" "the"
#> [13] "war" "arm" "sun" "and" "the" "fre" "res" "esh" "air" "mad" "ade" "swe"
#> [25] "wee" "eet"
#>
#> [[2]]
#> [1] "res" "est" "sti" "tin" "ing" "pla" "lac" "ace" "gre" "rew" "pre" "ret"
#> [13] "ett" "tty" "lit" "itt" "ttl" "tle" "fir" "tre" "ree" "and" "yet" "was"
#> [25] "not" "hap" "app" "ppy"
#>
#> [[3]]
#> [1] "wis" "ish" "she" "hed" "muc" "uch" "tal" "all" "lik" "ike" "its" "com"
#> [13] "omp" "mpa" "pan" "ani" "nio" "ion" "ons" "the" "pin" "ine" "nes" "and"
#> [25] "fir" "irs" "whi" "hic" "ich" "gre" "rew"

We can use paste0() in this function to construct an actual regex.

2.5 Tokenization for non-Latin alphabets

Our discussion of tokenization so far has focused on text where words are
separated by white space and punctuation. For such text, even a quite ba-
sic tokenizer can give decent results. However, many written languages don’t
separate words in this way.

One of these languages is Chinese where each “word” can be represented by
one or more consecutive characters. Splitting Chinese text into words is called
“word segmentation” and is still an active area of research (Ma, Ganchev, and
Weiss 2018; Huang et al. 2020).

We are not going to go into depth in this area, but we want to showcase that
word segmentation is indeed possible with R as well. We use the jiebaR pack-
age (Wenfeng and Yanyi 2019). It is conceptually similar to the tokenizers

34 2 Tokenization

package, but we need to create a worker that is passed into segment() along
with the string we want to segment.

library(jiebaR)
words <- c(" 下面是不分行输出的结果", " 下面是不输出的结果")

engine1 <- worker(bylines = TRUE)

segment(words, engine1)

#> [[1]]
#> [1] "下面" "是" "不" "分行" "输出" "的" "结果"
#>
#> [[2]]
#> [1] "下面" "是" "不" "输出" "的" "结果"

2.6 Tokenization benchmark

Not all tokenization packages are the same. Most open-source tokenizers in R
are well-designed, but they are designed to serve different purposes. Some have
a multitude of arguments to allow you to customize your tokenizer for greater
flexibility, but this flexibility comes at a price; they tend to have relatively
slower performance.

While we can’t easily quantify flexibility, it is straightforward to benchmark
some of the tokenizers available in R so you can pick the one that best suits
your needs.

bench::mark(check = FALSE, iterations = 10,
`corpus` = corpus::text_tokens(hcandersen_en$text),
`tokenizers` = tokenizers::tokenize_words(hcandersen_en$text),
`text2vec` = text2vec::word_tokenizer(hcandersen_en$text),
`quanteda` = quanteda::tokenize_word(hcandersen_en$text),
`base R` = strsplit(hcandersen_en$text, "\\s")

)

2.7 Summary 35

#> # A tibble: 5 x 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 corpus 89.5ms 91.6ms 10.4 12.21MB 2.61
#> 2 tokenizers 121.1ms 124.5ms 7.83 1.08MB 1.96
#> 3 text2vec 101ms 103ms 9.60 21.06MB 2.40
#> 4 quanteda 196.1ms 201.2ms 4.94 8.71MB 1.24
#> 5 base R 361.8ms 371.9ms 2.66 10.51MB 0.664

The corpus package (Perry 2020) offers excellent performance for tokenization,
and other options are not much worse. One exception is using a base R function
as a tokenizer; you will see significant performance gains by instead using a
package built specifically for text tokenization.

2.7 Summary

To build a predictive model, text data needs to be split into meaningful units,
called tokens. These tokens range from individual characters to words to n-
grams and even more complex structures, and the particular procedure used to
identify tokens from text can be important to your results. Fast and consistent
tokenizers are available, but understanding how they behave and in what
circumstances they work best will set you up for success. It’s also possible
to build custom tokenizers when necessary. Once text data is tokenized, a
common next preprocessing step is to consider how to handle very common
words that are not very informative— stop words. Chapter 3 examines this in
detail.

2.7.1 In this chapter, you learned:

• that tokens are meaningful units of text, such as words or n-grams

• to implement different kinds of tokenization, the process of splitting text
into tokens

• how different kinds of tokenization affect the distribution of tokens

• how to build your own tokenizer when the fast, consistent tokenizers that
are available are not flexible enough

http://www.taylorandfrancis.com

3
Stop words

Once we have split text into tokens, it often becomes clear that not all words
carry the same amount of information, if any information at all, for a predictive
modeling task. Common words that carry little (or perhaps no) meaningful
information are called stop words. It is common advice and practice to remove
stop words for various NLP tasks, but the task of stop word removal is more
nuanced than many resources may lead you to believe. In this chapter, we will
investigate what a stop word list is, the differences between them, and the
effects of using them in your preprocessing workflow.

The concept of stop words has a long history with Hans Peter Luhn credited
with coining the term in 1960 (Luhn 1960). Examples of these words in English
are “a,” “the,” “of,” and “didn’t.” These words are very common and typically
don’t add much to the meaning of a text but instead ensure the structure of
a sentence is sound.

Categorizing words as either informative or non-informative is limiting,
and we prefer to consider words as having a more fluid or continuous
amount of information associated with them. This informativeness is
context-specific as well. In fact, stop words themselves are often important
in genre or authorship identification.

Historically, one of the main reasons for removing stop words was to decrease
the computational time for text mining; it can be regarded as a dimensionality
reduction of text data and was commonly-used in search engines to give better
results (Huston and Croft 2010).

Stop words can have different roles in a corpus. We generally categorize stop
words into three groups: global, subject, and document stop words.

Global stop words are words that are almost always low in meaning in a given
language; these are words such as “of” and “and” in English that are needed
to glue text together. These words are likely a safe bet for removal, but they
are low in number. You can find some global stop words in pre-made stop
word lists (Section 3.1).

DOI: 10.1201/9781003093459-3 37

https://doi.org/10.1201/9781003093459-3

38 3 Stop words

Next up are subject-specific stop words. These words are uninformative for
a given subject area. Subjects can be broad like finance and medicine or can
be more specific like obituaries, health code violations, and job listings for
librarians in Kansas. Words like “bath,” “bedroom,” and “entryway” are gen-
erally not considered stop words in English, but they may not provide much
information for differentiating suburban house listings and could be subject
stop words for certain analysis. You will likely need to manually construct
such a stop word list (Section 3.2). These kinds of stop words may improve
your performance if you have the domain expertise to create a good list.

Lastly, we have document-level stop words. These words do not provide any
or much information for a given document. These are difficult to classify and
won’t be worth the trouble to identify. Even if you can find document stop
words, it is not obvious how to incorporate this kind of information in a
regression or classification task.

3.1 Using premade stop word lists

A quick option for using stop words is to get a list that has already been
created. This is appealing because it is not difficult, but be aware that not
all lists are created equal. Nothman, Qin, and Yurchak (2018) found some
alarming results in a study of 52 stop word lists available in open-source
software packages. Among some of the more grave issues were misspellings
(“fify” instead of “fifty”), the inclusion of clearly informative words such as
“computer” and “cry,” and internal inconsistencies, such as including the word
“has” but not the word “does.” This is not to say that you should never use
a stop word list that has been included in an open-source software project.
However, you should always inspect and verify the list you are using, both to
make sure it hasn’t changed since you used it last, and also to check that it
is appropriate for your use case.

There is a broad selection of stop word lists available today. For the purpose of
this chapter, we will focus on three of the lists of English stop words provided
by the stopwords package (Benoit, Muhr, and Watanabe 2021). The first is
from the SMART (System for the Mechanical Analysis and Retrieval of Text)
Information Retrieval System, an information retrieval system developed at
Cornell University in the 1960s (Lewis et al. 2004). The second is the English
Snowball stop word list (Porter 2001), and the last is the English list from the
Stopwords ISO1 collection. These stop word lists are all considered general
purpose and not domain-specific.

1https://github.com/stopwords-iso/stopwords-iso

https://github.com/stopwords-iso/stopwords-iso
https://github.com/stopwords-iso/stopwords-iso

3.1 Using premade stop word lists 39

The stopwords package contains a comprehensive collection of stop word
lists in one place for ease of use in analysis and other packages.

Before we start delving into the content inside the lists, let’s take a look at
how many words are included in each.

library(stopwords)
length(stopwords(source = "smart"))
length(stopwords(source = "snowball"))
length(stopwords(source = "stopwords-iso"))

#> [1] 571
#> [1] 175
#> [1] 1298

The lengths of these lists are quite different, with the longest list being over
seven times longer than the shortest! Let’s examine the overlap of the words
that appear in the three lists in an UpSet plot in Figure 3.1. An UpSet plot
(Lex et al. 2014) visualizes intersections and aggregates of intersections of sets
using a matrix layout, presenting the number of elements as well as summary
statistics.

The UpSet plot in Figure 3.1 shows us that these three lists are almost true
subsets of each other. The only exception is a set of 10 words that appear in
Snowball and ISO but not in the SMART list. What are those words?

setdiff(stopwords(source = "snowball"),
stopwords(source = "smart"))

#> [1] "she's" "he'd" "she'd" "he'll" "she'll" "shan't" "mustn't"
#> [8] "when's" "why's" "how's"

All these words are contractions. This is not because the SMART lexicon
doesn’t include contractions; if we look, there are almost 50 of them.

40 3 Stop words

�1�

0 0

�05

10 0

1�5

0

�00

�00

�00

�00

,n
te

rs
ec

tio
n

6
i]

e

iso

smart

snoZball

05001000
6et 6i]e

FIGURE 3.1: Set intersections for three common stop word lists visualized
as an UpSet plot

str_subset(stopwords(source = "smart"), "'")

#> [1] "a's" "ain't" "aren't" "c'mon" "c's" "can't"
#> [7] "couldn't" "didn't" "doesn't" "don't" "hadn't" "hasn't"
#> [13] "haven't" "he's" "here's" "i'd" "i'll" "i'm"
#> [19] "i've" "isn't" "it'd" "it'll" "it's" "let's"
#> [25] "shouldn't" "t's" "that's" "there's" "they'd" "they'll"
#> [31] "they're" "they've" "wasn't" "we'd" "we'll" "we're"
#> [37] "we've" "weren't" "what's" "where's" "who's" "won't"
#> [43] "wouldn't" "you'd" "you'll" "you're" "you've"

We seem to have stumbled upon an inconsistency: why does SMART include
"he's" but not "she's"? It is hard to say, but this could be worth rectifying
before applying these stop word lists to an analysis or model preprocessing.
This stop word list was likely generated by selecting the most frequent words
across a large corpus of text that had more representation for text about
men than women. This is once again a reminder that we should always look
carefully at any pre-made word list or another artifact we use to make sure it
works well with our needs2.

2This advice applies to any kind of pre-made lexicon or word list, not just stop words.
For instance, the same concerns apply to sentiment lexicons. The NRC sentiment lexicon of

3.1 Using premade stop word lists 41

It is perfectly acceptable to start with a premade word list and remove
or append additional words according to your particular use case.

When you select a stop word list, it is important that you consider its size
and breadth. Having a small and concise list of words can moderately reduce
your token count while not having too great of an influence on your models,
assuming that you picked appropriate words. As the size of your stop word
list grows, each word added will have a diminishing positive effect with the
increasing risk that a meaningful word has been placed on the list by mis-
take. In Section 6.4, we show the effects of different stop word lists on model
training.

3.1.1 Stop word removal in R

Now that we have seen stop word lists, we can move forward with removing
these words. The particular way we remove stop words depends on the shape
of our data. If you have your text in a tidy format with one word per row,
you can use filter() from dplyr with a negated %in% if you have the stop
words as a vector, or you can use anti_join() from dplyr if the stop words
are in a tibble(). Like in our previous chapter, let’s examine the text of “The
Fir-Tree” by Hans Christian Andersen, and use tidytext to tokenize the text
into words.

library(hcandersenr)
library(tidyverse)
library(tidytext)

fir_tree <- hca_fairytales() %>%
filter(book == "The fir tree",

language == "English")

tidy_fir_tree <- fir_tree %>%
unnest_tokens(word, text)

Let’s use the Snowball stop word list as an example. Since the stop words
return from this function as a vector, we will use filter().

Mohammad and Turney (2013) associates the word “white” with trust and the word “black”
with sadness, which could have unintended consequences when analyzing text about racial
groups.

42 3 Stop words

tidy_fir_tree %>%
filter(!(word %in% stopwords(source = "snowball")))

#> # A tibble: 1,547 x 3
#> book language word
#> <chr> <chr> <chr>
#> 1 The fir tree English far
#> 2 The fir tree English forest
#> 3 The fir tree English warm
#> 4 The fir tree English sun
#> 5 The fir tree English fresh
#> 6 The fir tree English air
#> 7 The fir tree English made
#> 8 The fir tree English sweet
#> 9 The fir tree English resting
#> 10 The fir tree English place
#> # ... with 1,537 more rows

If we use the get_stopwords() function from tidytext instead, then we can use
the anti_join() function.

tidy_fir_tree %>%
anti_join(get_stopwords(source = "snowball"))

#> # A tibble: 1,547 x 3
#> book language word
#> <chr> <chr> <chr>
#> 1 The fir tree English far
#> 2 The fir tree English forest
#> 3 The fir tree English warm
#> 4 The fir tree English sun
#> 5 The fir tree English fresh
#> 6 The fir tree English air
#> 7 The fir tree English made
#> 8 The fir tree English sweet
#> 9 The fir tree English resting
#> 10 The fir tree English place
#> # ... with 1,537 more rows

The result of these two stop word removals is the same since we used the same
stop word list in both cases.

3.2 Creating your own stop words list 43

3.2 Creating your own stop words list

Another way to get a stop word list is to create one yourself. Let’s explore a
few different ways to find appropriate words to use. We will use the tokenized
data from “The Fir-Tree” as a first example. Let’s take the words and rank
them by their count or frequency.

1: the
2: and
3: tree
4: it
5: a
6: in
7: of
8: to
9: i
10: was
11: they
12: fir
13: were
14: all
15: with
16: but
17: on
18: then
19: had
20: is
21: at
22: little
23: so
24: not

25: said
26: what
27: as
28: that
29: he
30: you
31: its
32: out
33: be
34: them
35: this
36: branches
37: came
38: for
39: now
40: one
41: story
42: would
43: forest
44: have
45: how
46: know
47: thought
48: mice

49: trees
50: we
51: been
52: down
53: oh
54: very
55: when
56: where
57: who
58: children
59: dumpty
60: humpty
61: or
62: shall
63: there
64: while
65: will
66: after
67: by
68: come
69: happy
70: my
71: old
72: only

73: their
74: which
75: again
76: am
77: are
78: beautiful
79: evening
80: him
81: like
82: me
83: more
84: about
85: christmas
86: do
87: fell
88: fresh
89: from
90: here
91: last
92: much
93: no
94: princess
95: tall
96: young

97: asked
98: can
99: could
100: cried
101: going
102: grew
103: if
104: large
105: looked
106: made
107: many
108: seen
109: stairs
110: think
111: too
112: up
113: yes
114: air
115: also
116: away
117: birds
118: corner
119: cut
120: did

Most frequent tokens in "The Fir−Tree"

FIGURE 3.2: Words from “The Fir Tree” ordered by count or frequency

We recognize many of what we would consider stop words in the first column
here, with three big exceptions. We see "tree" at 3, "fir" at 12, and "little"
at 22. These words appear high on our list, but they do provide valuable
information as they all reference the main character. What went wrong with
this approach? Creating a stop word list using high-frequency words works
best when it is created on a corpus of documents, not an individual document.
This is because the words found in a single document will be document-specific
and the overall pattern of words will not generalize that well.

44 3 Stop words

In NLP, a corpus is a set of texts or documents. The set of Hans Christian
Andersen’s fairy tales can be considered a corpus, with each fairy tale a
document within that corpus. The set of United States Supreme Court
opinions can be considered a different corpus, with each written opinion
being a document within that corpus. Both data sets are described in
more detail in Appendix B.

The word "tree" does seem important as it is about the main character, but it
could also be appearing so often that it stops providing any information. Let’s
try a different approach, extracting high-frequency words from the corpus of
all English fairy tales by H.C. Andersen.

1: the
2: and
3: of
4: a
5: to
6: in
7: was
8: it
9: he
10: that
11: i
12: she
13: had
14: his
15: they
16: but
17: as
18: her
19: with
20: for
21: is
22: on
23: said
24: you

25: not
26: were
27: so
28: all
29: be
30: at
31: one
32: there
33: him
34: from
35: have
36: little
37: then
38: which
39: them
40: this
41: old
42: out
43: could
44: when
45: into
46: now
47: who
48: my

49: their
50: by
51: we
52: will
53: like
54: are
55: what
56: if
57: me
58: up
59: very
60: would
61: no
62: been
63: about
64: over
65: where
66: an
67: how
68: only
69: came
70: or
71: down
72: great

73: good
74: do
75: more
76: here
77: its
78: did
79: man
80: see
81: can
82: through
83: beautiful
84: must
85: has
86: away
87: thought
88: still
89: than
90: well
91: people
92: time
93: before
94: day
95: other
96: stood

97: too
98: went
99: come
100: never
101: much
102: house
103: know
104: every
105: looked
106: many
107: again
108: eyes
109: our
110: quite
111: young
112: even
113: shall
114: tree
115: go
116: your
117: long
118: upon
119: two
120: water

120 most frequent tokens in H.C. Andersen's English fairy tales

FIGURE 3.3: Words in all English fairy tales by Hans Christian Andersen
ordered by count or frequency

This list is more appropriate for our concept of stop words, and now it is time
for us to make some choices. How many do we want to include in our stop word
list? Which words should we add and/or remove based on prior information?
Selecting the number of words to remove is best done by a case-by-case basis
as it can be difficult to determine a priori how many different “meaningless”
words appear in a corpus. Our suggestion is to start with a low number like
20 and increase by 10 words until you get to words that are not appropriate
as stop words for your analytical purpose.

3.2 Creating your own stop words list 45

It is worth keeping in mind that such a list is not perfect. Depending on how
your text was generated or processed, strange tokens can surface as possible
stop words due to encoding or optical character recognition errors. Further,
these results are based on the corpus of documents we have available, which
is potentially biased. In our example here, all the fairy tales were written by
the same European white man from the early 1800s.

This bias can be minimized by removing words we would expect to be
over-represented or to add words we expect to be under-represented.

Easy examples are to include the complements to the words in the list if they
are not already present. Include “big” if “small” is present, “old” if “young”
is present. This example list has words associated with women often listed
lower in rank than words associated with men. With "man" being at rank 79
but "woman" at rank 179, choosing a threshold of 100 would lead to only one
of these words being included. Depending on how important you think such
nouns are going to be in your texts, consider either adding "woman" or deleting
"man".3

Figure 3.4 shows how the words associated with men have a higher rank than
the words associated with women. By using a single threshold to create a stop
word list, you would likely only include one form of such words.

Imagine now we would like to create a stop word list that spans multiple dif-
ferent genres, in such a way that the subject-specific stop words don’t overlap.
For this case, we would like words to be denoted as a stop word only if it is
a stop word in all the genres. You could find the words individually in each
genre and use the right intersections. However, that approach might take a
substantial amount of time.

Below is a bad approach where we try to create a multi-language list of stop
words. To accomplish this we calculate the inverse document frequency4 (IDF)
of each word. The IDF of a word is a quantity that is low for commonly-used
words in a collection of documents and high for words not used often in a
collection of documents. It is typically defined as

𝑖𝑑𝑓(term) = ln(𝑛documents
𝑛documents containing term

)

3On the other hand, the more biased stop word list may be helpful when modeling a
corpus with gender imbalance, depending on your goal; words like “she” and “her” can
identify where women are mentioned.

4https://www.tidytextmining.com/tfidf.html

https://www.tidytextmining.com/tfidf.html
https://www.tidytextmining.com/tfidf.html

46 3 Stop words

he
shehis
her

man

Zoman
men

Zomen

boy

girl

he
s

she
s

he
d

she
d

he
ll

she
ll

himself

herself

10

100

1000

10000

men Zomen

:
or

d
ra

nN
 �l

og
 s

ca
le

�
0asculine gendered Zords appear more often in H.C. Andersen
s fairy tales

FIGURE 3.4: Tokens ranked according to total occurrences, with rank 1
having the most occurrences

If the word “dog” appears in 4 out of 100 documents then it would have an
idf("dog") = log(100/4) = 3.22, and if the word “cat” appears in 99 out of 100
documents then it would have an idf("cat") = log(100/99) = 0.01. Notice how
the idf values goes to zero (as a matter of fact when a term appears in all
the documents then the idf of that word is 0 log(100/100) = log(1) = 0), the
more documents it is contained in. What happens if we create a stop word list
based on words with the lowest IDF? The following function takes a tokenized
dataframe and returns a dataframe with a column for each word and a column
for the IDF.

library(rlang)
calc_idf <- function(df, word, document) {

words <- df %>% pull({{word}}) %>% unique()
n_docs <- length(unique(pull(df, {{document}})))
n_words <- df %>%
nest(data = c({{word}})) %>%
pull(data) %>%
map_dfc(~ words %in% unique(pull(.x, {{word}}))) %>%
rowSums()

tibble(word = words,

3.2 Creating your own stop words list 47

idf = log(n_docs / n_words))
}

Here is the result when we try to create a cross-language list of stop words,
by taking each fairy tale as a document. It is not very good!

The overlap between words that appear in each language is very small,
but these words are what we mostly see in this list.

1: a
2: de
3: man
4: en
5: da
6: se
7: es
8: an
9: in
10: her
11: me
12: so
13: no
14: i
15: for
16: den
17: at
18: der
19: was
20: du
21: er
22: dem
23: over
24: sin

25: he
26: alle
27: ja
28: have
29: to
30: mit
31: all
32: oh
33: will
34: am
35: la
36: sang
37: le
38: des
39: y
40: un
41: que
42: on
43: men
44: stand
45: al
46: si
47: son
48: han

49: ser
50: et
51: lo
52: die
53: just
54: bien
55: vor
56: las
57: del
58: still
59: land
60: under
61: has
62: los
63: by
64: as
65: not
66: end
67: fast
68: hat
69: see
70: but
71: from
72: is

73: and
74: o
75: alt
76: war
77: ni
78: su
79: time
80: von
81: hand
82: the
83: that
84: it
85: of
86: there
87: sit
88: with
89: por
90: el
91: con
92: una
93: be
94: they
95: one
96: como

97: pero
98: them
99: had
100: vi
101: das
102: his
103: les
104: sagte
105: ist
106: ein
107: und
108: zu
109: para
110: sol
111: auf
112: sie
113: nicht
114: aber
115: sich
116: then
117: were
118: said
119: into
120: más

120 tokens in H.C. Andersen's fairy tales with lowest IDF, multi−language

FIGURE 3.5: Words from all of H.C. Andersen’s fairy tales in Danish, En-
glish, French, German, and Spanish, counted and ordered by IDF

This didn’t work very well because there is very little overlap between
common words. Instead, let us limit the calculation to only one language
and calculate the IDF of each word we can find compared to words that
appear in a lot of documents.

48 3 Stop words

1: a
2: the
3: and
4: to
5: in
6: that
7: it
8: but
9: of
10: was
11: as
12: there
13: on
14: at
15: is
16: for
17: with
18: all
19: not
20: they
21: one
22: he
23: his
24: so

25: them
26: be
27: from
28: had
29: then
30: were
31: said
32: into
33: by
34: have
35: which
36: this
37: up
38: out
39: what
40: who
41: no
42: an
43: now
44: i
45: only
46: old
47: like
48: when

49: if
50: little
51: over
52: are
53: very
54: you
55: him
56: we
57: great
58: how
59: their
60: came
61: been
62: down
63: would
64: where
65: or
66: she
67: can
68: could
69: about
70: her
71: will
72: time

73: good
74: must
75: my
76: than
77: away
78: more
79: has
80: thought
81: did
82: other
83: still
84: do
85: even
86: before
87: me
88: know
89: much
90: see
91: here
92: well
93: through
94: day
95: too
96: people

97: own
98: come
99: its
100: whole
101: just
102: many
103: never
104: made
105: stood
106: yet
107: looked
108: again
109: say
110: may
111: yes
112: went
113: every
114: each
115: such
116: world
117: some
118: long
119: eyes
120: go

120 tokens in H.C. Andersen's fairy tales with lowest IDF, English only

FIGURE 3.6: Words from all of H.C. Andersen’s fairy tales in English,
counted and ordered by IDF

This time we get better results. The list starts with “a,” “the,” “and,” and
“to” and continues with many more reasonable choices of stop words. We need
to look at these results manually to turn this into a list. We need to go as far
down in rank as we are comfortable with. You as a data practitioner are in
full control of how you want to create the list. If you don’t want to include
“little” you are still able to add “are” to your list even though it is lower on
the list.

3.3 All stop word lists are context-specific

Context is important in text modeling, so it is important to ensure that the
stop word lexicon you use reflects the word space that you are planning on us-
ing it in. One common concern to consider is how pronouns bring information
to your text. Pronouns are included in many different stop word lists (although
inconsistently), but they will often not be noise in text data. Similarly, Ben-
der et al. (2021) discuss how a list of about 400 “Dirty, Naughty, Obscene or
Otherwise Bad Words” were used to filter and remove text before training a
trillion parameter large language model, to protect it from learning offensive

3.4 What happens when you remove stop words 49

language, but the authors point out that in some community contexts, such
words are reclaimed or used to describe marginalized identities.

On the other hand, sometimes you will have to add in words yourself, depend-
ing on the domain. If you are working with texts for dessert recipes, certain
ingredients (sugar, eggs, water) and actions (whisking, baking, stirring) may
be frequent enough to pass your stop word threshold, but you may want to
keep them as they may be informative. Throwing away “eggs” as a common
word would make it harder or downright impossible to determine if certain
recipes are vegan or not while whisking and stirring may be fine to remove as
distinguishing between recipes that do and don’t require a whisk might not
be that big of a deal.

3.4 What happens when you remove stop words

We have discussed different ways of finding and removing stop words; now let’s
see what happens once you do remove them. First, let’s explore the impact
of the number of words that are included in the list. Figure 3.7 shows what
percentage of words are removed as a function of the number of words in a
text. The different colors represent the three different stop word lists we have
considered in this chapter.

We notice, as we would predict, that larger stop word lists remove more words
than shorter stop word lists. In this example with fairy tales, over half of
the words have been removed, with the largest list removing over 80% of the
words. We observe that shorter texts have a lower percentage of stop words.
Since we are looking at fairy tales, this could be explained by the fact that a
story has to be told regardless of the length of the fairy tale, so shorter texts
are going to be denser with more informative words.

Another problem you may face is dealing with misspellings.

Most premade stop word lists assume that all the words are spelled cor-
rectly.

Handling misspellings when using premade lists can be done by manually
adding common misspellings. You could imagine creating all words that are a
certain string distance away from the stop words, but we do not recommend
this as you would quickly include informative words this way.

50 3 Stop words

�0.0�

�0.0�

�0.0�

0 5000 10000 15000
Number of Zords in fairy tale

3e
rc

en
ta

ge
 o

f Z
or

ds
 re

m
oY

ed

5emoYed

stopZords−iso �1����

smart �5�1�

snoZball �1�5�

Each Yertical trio of points represents an H.C. Andersen fairy tale
6top Zords taNe up a larger part of the te[t in longer fairy tales

FIGURE 3.7: Proportion of words removed for different stop word lists and
different document lengths

One of the downsides of creating your own stop word lists using frequencies is
that you are limited to using words that you have already observed. It could
happen that “she’d” is included in your training corpus but the word “he’d”
did not reach the threshold. This is a case where you need to look at your
words and adjust accordingly. Here the large premade stop word lists can serve
as inspiration for missing words.

In Section 6.4, we investigate the influence of removing stop words in the
context of modeling. Given the right list of words, we see no harm to the
model performance, and sometimes find improvement due to noise reduction
(Feldman, and Sanger 2007).

3.5 Stop words in languages other than English

So far in this chapter, we have focused on English stop words, but English is
not representative of every language. The notion of “short” and “long” lists we
have used so far are specific to English as a language. You should expect dif-
ferent languages to have a different number of “uninformative” words, and for
this number to depend on the morphological richness of a language; lists that

3.5 Stop words in languages other than English 51

contain all possible morphological variants of each stop word could become
quite large.

Different languages have different numbers of words in each class of words.
An example is how the grammatical case influences the articles used in Ger-
man. The following tables show the use of definite and indefinite articles in
German5. Notice how German nouns have three genders (masculine, feminine,
and neuter), which are not uncommon in languages around the world. Articles
are almost always considered to be stop words in English as they carry very
little information. However, German articles give some indication of the case,
which can be used when selecting a list of stop words in German.

German Definite Articles (the)
Masculine Feminine Neuter Plural

Nominative der die das die
Accusative den die das die
Dative dem der dem den
Genitive des der des der

German Indefinite Articles (a/an)
Masculine Feminine Neuter

Nominative ein eine ein
Accusative einen eine ein
Dative einem einer einem
Genitive eines einer eines

Building lists of stop words in Chinese has been done both manually and auto-
matically (Zou, Wang, Deng, Han, and Wang 2006) but so far none has been
accepted as a standard (Zou, Wang, Deng, and Han 2006). A full discussion of
stop word identification in Chinese text would be out of scope for this book, so
we will just highlight some of the challenges that differentiate it from English.

Chinese text is much more complex than portrayed here. With different
systems and billions of users, there is much we won’t be able to touch on
here.

5https://deutsch.lingolia.com/en/grammar/nouns-and-articles/articles-noun-markers

https://deutsch.lingolia.com/en/grammar/nouns-and-articles/articles-noun-markers
https://deutsch.lingolia.com/en/grammar/nouns-and-articles/articles-noun-markers

52 3 Stop words

The main difference from English is the use of logograms instead of letters to
convey information. However, Chinese characters should not be confused with
Chinese words. The majority of words in modern Chinese are composed of
multiple characters. This means that inferring the presence of words is more
complicated, and the notion of stop words will affect how this segmentation
of characters is done.

3.6 Summary

In many standard NLP workflows, the removal of stop words is presented as
a default or the correct choice without comment. Although removing stop
words can improve the accuracy of your machine learning using text data,
choices around such a step are complex. The content of existing stop word
lists varies tremendously, and the available strategies for building your own
can have subtle to not-so-subtle effects on your model results.

3.6.1 In this chapter, you learned:

• what a stop word is and how to remove stop words from text data

• how different stop word lists can vary

• that the impact of stop word removal is different for different kinds of texts

• about the bias built in to stop word lists and strategies for building such
lists

4
Stemming

When we deal with text, often documents contain different versions of one
base word, often called a stem. “The Fir-Tree,” for example, contains more
than one version (i.e., inflected form) of the word "tree".

library(hcandersenr)
library(tidyverse)
library(tidytext)

fir_tree <- hca_fairytales() %>%
filter(book == "The fir tree",

language == "English")

tidy_fir_tree <- fir_tree %>%
unnest_tokens(word, text) %>%
anti_join(get_stopwords())

tidy_fir_tree %>%
count(word, sort = TRUE) %>%
filter(str_detect(word, "^tree"))

#> # A tibble: 3 x 2
#> word n
#> <chr> <int>
#> 1 tree 76
#> 2 trees 12
#> 3 tree's 1

Trees, we see once again, are important in this story; the singular form appears
76 times and the plural form appears 12 times. (We’ll come back to how we
might handle the apostrophe in "tree's" later in this chapter.)

What if we aren’t interested in the difference between "trees" and "tree" and we
want to treat both together? That idea is at the heart of stemming, the process
of identifying the base word (or stem) for a data set of words. Stemming is

DOI: 10.1201/9781003093459-4 53

https://doi.org/10.1201/9781003093459-4

54 4 Stemming

concerned with the linguistics subfield of morphology, how words are formed.
In this example, "trees" would lose its letter "s" while "tree" stays the same. If
we counted word frequencies again after stemming, we would find that there
are 88 occurrences of the stem "tree" (89, if we also find the stem for "tree's").

4.1 How to stem text in R

There have been many algorithms built for stemming words over the past half
century or so; we’ll focus on two approaches. The first is the stemming algo-
rithm of Porter (1980), probably the most widely used stemmer for English.
Porter himself released the algorithm implemented in the framework Snow-
ball1 with an open-source license; you can use it from R via the SnowballC
package (Bouchet-Valat 2020). (It has been extended to languages other than
English as well.)

library(SnowballC)

tidy_fir_tree %>%
mutate(stem = wordStem(word)) %>%
count(stem, sort = TRUE)

#> # A tibble: 570 x 2
#> stem n
#> <chr> <int>
#> 1 tree 88
#> 2 fir 34
#> 3 littl 23
#> 4 said 22
#> 5 stori 16
#> 6 thought 16
#> 7 branch 15
#> 8 on 15
#> 9 came 14
#> 10 know 14
#> # ... with 560 more rows

1https://snowballstem.org/

https://snowballstem.org/
https://snowballstem.org/

4.1 How to stem text in R 55

Take a look at those stems. Notice that we do now have 88 incidences of
"tree". Also notice that some words don’t look like they are spelled as real
words; this is normal and expected with this stemming algorithm. The Porter
algorithm identifies the stem of both "story" and "stories" as "stori", not a
regular English word but instead a special stem object.

If you want to tokenize and stem your text data, you can try out the
function tokenize_word_stems() from the tokenizers package, which im-
plements Porter stemming just as we demonstrated here. For more on
tokenization, see Chapter 2.

Does Porter stemming only work for English? Far from it! We can use the
language argument to implement Porter stemming in multiple languages. First
we can tokenize the text and nest() into list-columns.

stopword_df <- tribble(~language, ~two_letter,
"danish", "da",
"english", "en",
"french", "fr",
"german", "de",
"spanish", "es")

tidy_by_lang <- hca_fairytales() %>%
filter(book == "The fir tree") %>%
select(text, language) %>%
mutate(language = str_to_lower(language)) %>%
unnest_tokens(word, text) %>%
nest(data = word)

Then we can remove stop words (using get_stopwords(language = "da") and sim-
ilar for each language) and stem with the language-specific Porter algorithm.
What are the top-20 stems for “The Fir-Tree” in each of these five languages,
after removing the Snowball stop words for that language?

tidy_by_lang %>%
inner_join(stopword_df) %>%
mutate(data = map2(
data, two_letter, ~ anti_join(.x, get_stopwords(language = .y)))

) %>%

56 4 Stemming

unnest(data) %>%
mutate(stem = wordStem(word, language = language)) %>%
group_by(language) %>%
count(stem) %>%
top_n(20, n) %>%
ungroup %>%
ggplot(aes(n, fct_reorder(stem, n), fill = language)) +
geom_col(show.legend = FALSE) +
facet_wrap(~language, scales = "free_y", ncol = 2) +
labs(x = "Frequency", y = NULL)

Figure 4.1 demonstrates some of the challenges in working with languages
other than English; the stop word lists may not be even from language to
language, and tokenization strategies that work for a language like English
may struggle for a language like French with more stop word contractions.
Given that, we see here words about little fir trees at the top for all languages,
in their stemmed forms.

The Porter stemmer is an algorithm that starts with a word and ends up with a
single stem, but that’s not the only kind of stemmer out there. Another class
of stemmer are dictionary-based stemmers. One such stemmer is the stem-
ming algorithm of the Hunspell2 library. The “Hun” in Hunspell stands for
Hungarian; this set of NLP algorithms was originally written to handle Hun-
garian but has since been extended to handle many languages with compound
words and complicated morphology. The Hunspell library is used mostly as a
spell checker, but as part of identifying correct spellings, this library identifies
word stems as well. You can use the Hunspell library from R via the hunspell
(Ooms 2020b) package.

library(hunspell)

tidy_fir_tree %>%
mutate(stem = hunspell_stem(word)) %>%
unnest(stem) %>%
count(stem, sort = TRUE)

2http://hunspell.github.io/

http://hunspell.github.io/

4.1 How to stem text in R 57

spanish

french german

danish english

0 �0 �0 �0

0 �0 �0 �0

childr
dumpty
humpty

old
shal

oh
tal

com
mic

trees
branch

forest
NnoZ

thought
cam
noZ
one

story
said

littl
fir

tree

alt
dump
Nlump
stand
Zlre

geschicht
oh

Zald
mlus

Ma
gro�
Nam

]Zeig
dacht
gan]
Zurd
sagt

tannenbaum
Nlein

baum

dump
forbi

histori
Nlump

stod
Nan
oh

sNoY
gansN

lil
mus
stor
hen
smn

Ma
gren
t nN

grantr
sagd

Yed
Nom

tr et
sn

c
ptait
ell

rtre
nosl
soir

soleil
enfant

forrt
lj

o�
aussi
bien

quand
oh

com
arbr

branch
souris

si
grand
l
arbr
plus
tout
petit

sapin

axo
entonc

escalera
inYierno

luego
YieMo

ahora
hombr

pues
sol

sylo
aqut

ratoncillo
toda

dump
Nlump
noch

cuento
tan

bosqu
rama
abeto
irbol

Frequency

FIGURE 4.1: Porter stemming results in five languages

58 4 Stemming

#> # A tibble: 595 x 2
#> stem n
#> <chr> <int>
#> 1 tree 89
#> 2 fir 34
#> 3 little 23
#> 4 said 22
#> 5 story 16
#> 6 branch 15
#> 7 one 15
#> 8 came 14
#> 9 know 14
#> 10 now 14
#> # ... with 585 more rows

Notice that the code here is a little different (we had to use unnest()) and that
the results are a little different. We have only real English words, and we have
more total rows in the result. What happened?

hunspell_stem("discontented")

#> [[1]]
#> [1] "contented" "content"

We have two stems! This stemmer works differently; it uses both morphological
analysis of a word and existing dictionaries to find possible stems. It’s possible
to end up with more than one, and it’s possible for a stem to be a word that
is not related by meaning to the original word. For example, one of the stems
of “number” is “numb” with this library. The Hunspell library was built to be
a spell checker, so depending on your analytical purposes, it may not be an
appropriate choice.

4.2 Should you use stemming at all?

You will often see stemming as part of NLP pipelines, sometimes without
much comment about when it is helpful or not. We encourage you to think of
stemming as a preprocessing step in text modeling, one that must be thought
through and chosen (or not) with good judgment.

4.2 Should you use stemming at all? 59

Why does stemming often help, if you are training a machine learning model
for text? Stemming reduces the feature space of text data. Let’s see this in
action, with a data set of United States Supreme Court opinions available in
the scotus package, discussed in more detail in Section B.2. How many words
are there, after removing a standard data set of stopwords?

library(scotus)

tidy_scotus <- scotus_filtered %>%
unnest_tokens(word, text) %>%
anti_join(get_stopwords())

tidy_scotus %>%
count(word, sort = TRUE)

#> # A tibble: 167,879 x 2
#> word n
#> <chr> <int>
#> 1 court 286448
#> 2 v 204176
#> 3 state 148320
#> 4 states 128160
#> 5 case 121439
#> 6 act 111033
#> 7 s.ct 108168
#> 8 u.s 106413
#> 9 upon 105069
#> 10 united 103267
#> # ... with 167,869 more rows

There are 167,879 distinct words in this data set we have created (after re-
moving stopwords) but notice that even in the most common words we see a
pair like "state" and "states". A common data structure for modeling, and a
helpful mental model for thinking about the sparsity of text data, is a matrix.
Let’s cast() this tidy data to a sparse matrix, technically, a document-feature
matrix object from the quanteda (Benoit et al. 2018) package.

tidy_scotus %>%
count(case_name, word) %>%
cast_dfm(case_name, word, n)

#> Document-feature matrix of: 9,642 documents, 167,879
features (99.49% sparse) and 0 docvars.

60 4 Stemming

Look at the sparsity of this matrix. It’s high! Think of this sparsity as the
sparsity of data that we will want to use to build a supervised machine learning
model.

What if instead we use stemming as a preprocessing step here?

tidy_scotus %>%
mutate(stem = wordStem(word)) %>%
count(case_name, stem) %>%
cast_dfm(case_name, stem, n)

#> Document-feature matrix of: 9,642 documents, 135,570
features (99.48% sparse) and 0 docvars.

We reduced the number of word features by many thousands, although the
sparsity did not change much. Why is it possibly helpful to reduce the number
of features? Common sense says that reducing the number of word features
in our data set so dramatically will improve the performance of any machine
learning model we train with it, assuming that we haven’t lost any important
information by stemming.

There is a growing body of academic research demonstrating that stem-
ming can be counterproductive for text modeling. For example, Schofield and
Mimno (2016) and related work explore how choices around stemming and
other preprocessing steps don’t help and can actually hurt performance when
training topic models for text. From Schofield and Mimno (2016) specifically,

Despite their frequent use in topic modeling, we find that stem-
mers produce no meaningful improvement in likelihood and co-
herence and in fact can degrade topic stability.

Topic modeling is an example of unsupervised machine learning for text and
is not the same as the predictive modeling approaches we’ll be focusing on in
this book, but the lesson remains that stemming may or may not be beneficial
for any specific context. As we work through the rest of this chapter and learn
more about stemming, consider what information we lose when we stem text in
exchange for reducing the number of word features. Stemming can be helpful
in some contexts, but typical stemming algorithms are somewhat aggressive
and have been built to favor sensitivity (or recall, or the true positive rate) at
the expense of specificity (or precision, or the true negative rate).

4.3 Understand a stemming algorithm 61

Most common stemming algorithms you are likely to encounter will success-
fully reduce words to stems (i.e., not leave extraneous word endings on the
words) but at the expense of collapsing some words with dramatic differences
in meaning, semantics, use, etc. to the same stems. Examples of the latter are
numerous, but some include:

• meaning and mean

• likely, like, liking

• university and universe

In a supervised machine learning context, this affects a model’s positive pre-
dictive value (precision), or ability to not incorrectly label true negatives as
positive. In Chapter 7, we will train models to predict whether a complaint to
the United States Consumer Financial Protection Bureau was about a mort-
gage or not. Stemming can increase a model’s ability to find the positive ex-
amples, i.e., the complaints about mortgages. However, if the complaint text
is over-stemmed, the resulting model loses its ability to label the negative
examples, the complaints not about mortgages, correctly.

4.3 Understand a stemming algorithm

If stemming is going to be in our NLP toolbox, it’s worth sitting down with
one approach in detail to understand how it works under the hood. The Porter
stemming algorithm is so approachable that we can walk through its outline in
less than a page or so. It involves five steps, and the idea of a word measure.

Think of any word as made up alternating groups of vowels 𝑉 and consonants
𝐶. One or more vowels together are one instance of 𝑉 , and one or more
consonants togther are one instance of 𝐶. We can write any word as

[𝐶](𝑉 𝐶)𝑚[𝑉]
where 𝑚 is called the “measure” of the word. The first 𝐶 and the last 𝑉 in
brackets are optional. In this framework, we could write out the word "tree"
as 𝐶𝑉

with 𝐶 being “tr” and 𝑉 being “ee”; it’s an m = 0 word. We would write out
the word "algorithms" as

62 4 Stemming

𝑉 𝐶𝑉 𝐶𝑉 𝐶
and it is an m = 3 word.

• The first step of the Porter stemmer is (perhaps this seems like cheating)
actually made of three substeps working with plural and past participle
word endings. In the first substep (1a), “sses” is replaced with “ss,” “ies”
is replaced with “i,” and final single “s” letters are removed. The second
substep (1b) depends on the measure of the word m but works with endings
like “eed,” “ed,” “ing,” adding “e” back on to make endings like “ate,”
“ble,” and “ize” when appropriate. The third substep (1c) replaces “y”
with “i” for words of a certain m.

• The second step of the Porter stemmer takes the output of the first step
and regularizes a set of 20 endings. In this step, “ization” goes to “ize,”
“alism” goes to “al,” “aliti” goes to “al” (notice that the ending “i” there
came from the first step), and so on for the other 17 endings.

• The third step again processes the output, using a list of seven endings.
Here, “ical” and “iciti” both go to “ic,” “ful” and “ness” are both removed,
and so forth for the three other endings in this step.

• The fourth step involves a longer list of endings to deal with again (19),
and they are all removed. Endings like “ent,” “ism,” “ment,” and more are
removed in this step.

• The fifth and final step has two substeps, both which depend on the mea-
sure m of the word. In this step, depending on m, final “e” letters are some-
times removed and final double letters are sometimes removed.

How would this work for a few example words? The word “supervised”
loses its “ed” in step 1b and is not touched by the rest of the algorithm,
ending at “supervis”. The word “relational” changes “ational” to “ate”
in step 2 and loses its final “e” in step 5, ending at “relat”. Notice that
neither of these results are regular English words, but instead special stem
objects. This is expected.

This algorithm was first published in Porter (1980) and is still broadly used;
read Willett (2006) for background on how and why it has become a stemming
standard. We can reach even further back and examine what is considered the

4.4 Handling punctuation when stemming 63

first ever published stemming algorithm in Lovins (1968). The domain Lovins
worked in was engineering, so her approach was particularly suited to technical
terms. This algorithm uses much larger lists of word endings, conditions, and
rules than the Porter algorithm and, although considered old-fashioned, is
actually faster!

Check out the steps of a Snowball stemming algorithm for German3.

4.4 Handling punctuation when stemming

Punctuation contains information that can be used in text analysis. Punctua-
tion is typically less information-dense than the words themselves, and thus it
is often removed early in a text mining analysis project, but it’s worth think-
ing through the impact of punctuation specifically on stemming. Think about
words like "they're" and "child's".

We’ve already seen how punctuation and stemming can interact with our small
example of “The Fir-Tree”; none of the stemming strategies we’ve discussed
so far have recognized "tree's" as belonging to the same stem as "trees" and
"tree".

tidy_fir_tree %>%
count(word, sort = TRUE) %>%
filter(str_detect(word, "^tree"))

#> # A tibble: 3 x 2
#> word n
#> <chr> <int>
#> 1 tree 76
#> 2 trees 12
#> 3 tree's 1

It is possible to split tokens not only on white space but also on punctuation,
using a regular expression (see Appendix A).

3https://snowballstem.org/algorithms/german/stemmer.html

https://snowballstem.org/algorithms/german/stemmer.html
https://snowballstem.org/algorithms/german/stemmer.html

64 4 Stemming

fir_tree_counts <- fir_tree %>%
unnest_tokens(word, text, token = "regex", pattern = "\\s+|[[:punct:]]+") %>%
anti_join(get_stopwords()) %>%
mutate(stem = wordStem(word)) %>%
count(stem, sort = TRUE)

fir_tree_counts

#> # A tibble: 572 x 2
#> stem n
#> <chr> <int>
#> 1 tree 89
#> 2 fir 34
#> 3 littl 23
#> 4 said 22
#> 5 stori 16
#> 6 thought 16
#> 7 branch 15
#> 8 on 15
#> 9 came 14
#> 10 know 14
#> # ... with 562 more rows

Now we are able to put all these related words together, having identified
them with the same stem.

fir_tree_counts %>%
filter(str_detect(stem, "^tree"))

#> # A tibble: 1 x 2
#> stem n
#> <chr> <int>
#> 1 tree 89

Handling punctuation in this way further reduces sparsity in word features.
Whether this kind of tokenization and stemming strategy is a good choice in
any particular data analysis situation depends on the particulars of the text
characteristics.

4.5 Compare some stemming options 65

4.5 Compare some stemming options

Let’s compare a few simple stemming algorithms and see what results we
end with. Let’s look at “The Fir-Tree,” specifically the tidied data set from
which we have removed stop words. Let’s compare three very straightforward
stemming approaches.

• Only remove final instances of the letter “s.” This probably strikes
you as not a great idea after our discussion in this chapter, but it is some-
thing that people try in real life, so let’s see what the impact is.

• Handle plural endings with slightly more complex rules in the
“S” stemmer. The S-removal stemmer or “S” stemmer of Harman (1991)
is a simple algorithm with only three rules.4

• Implement actual Porter stemming. We can now compare to the most
commonly-used stemming algorithm in English.

stemming <- tidy_fir_tree %>%
select(-book, -language) %>%
mutate(`Remove S` = str_remove(word, "s$"),

`Plural endings` = case_when(str_detect(word, "[^e|aies$]ies$") ~
str_replace(word, "ies$", "y"),

str_detect(word, "[^e|a|oes$]es$") ~
str_replace(word, "es$", "e"),

str_detect(word, "[^ss$|us$]s$") ~
str_remove(word, "s$"),

TRUE ~ word),
`Porter stemming` = wordStem(word)) %>%

rename(`Original word` = word)

Figure 4.2 shows the results of these stemming strategies. All successfully han-
dled the transition from "trees" to "tree" in the same way, but we have different
results for "stories" to "story" or "stori", different handling of "branches", and
more. There are subtle differences in the output of even these straightforward
stemming approaches that can effect the transformation of text features for
modeling.

4This simple, “weak” stemmer is handy to have in your toolkit for many applications.
Notice how we implement it here using dplyr::case_when().

66 4 Stemming

stemming %>%
gather(Type, Result, `Remove S`:`Porter stemming`) %>%
mutate(Type = fct_inorder(Type)) %>%
count(Type, Result) %>%
group_by(Type) %>%
top_n(20, n) %>%
ungroup %>%
ggplot(aes(fct_reorder(Result, n),

n, fill = Type)) +
geom_col(show.legend = FALSE) +
facet_wrap(~Type, scales = "free_y") +
coord_flip() +
labs(x = NULL, y = "Frequency")

5emoYe 6 3lural endings 3orter stemming

0 �5 50 �5 0 �5 50 �5 0 �5 50 �5
children
dumpti
happi

humpti
place
shall

come
looN

oh
eYen
mice

forest
thought

came
NnoZ
noZ

branch
on

stori
said

littl
fir

tree

happy
old

children
dumpty
humpty

shall
come

oh
mice

forest
thought
branche

came
NnoZ
noZ
one

story
said
little

fir
tree

happy
old

children
dumpty
humpty

shall
come

oh
mice

forest
thought
branche

came
NnoZ
noZ
one

story
said
little

fir
tree

Frequency

FIGURE 4.2: Results for three different stemming strategies

Porter stemming is the most different from the other two approaches. In the
top-20 words here, we don’t see a difference between removing only the letter
“s” and taking the slightly more sophisticated “S” stemmer approach to plural
endings. In what situations do we see a difference?

stemming %>%
filter(`Remove S` != `Plural endings`) %>%
distinct(`Remove S`, `Plural endings`, .keep_all = TRUE)

4.5 Compare some stemming options 67

#> # A tibble: 13 x 4
#> `Original word` `Remove S` `Plural endings` `Porter stemming`
#> <chr> <chr> <chr> <chr>
#> 1 raspberries raspberrie raspberry raspberri
#> 2 strawberries strawberrie strawberry strawberri
#> 3 less les less less
#> 4 us u us u
#> 5 brightness brightnes brightness bright
#> 6 conscious consciou conscious consciou
#> 7 faintness faintnes faintness faint
#> 8 happiness happines happiness happi
#> 9 ladies ladie lady ladi
#> 10 babies babie baby babi
#> 11 anxious anxiou anxious anxiou
#> 12 princess princes princess princess
#> 13 stories storie story stori

We also see situations where the same sets of original words are bucketed dif-
ferently (not just with different stem labels) under different stemming strate-
gies. In the following very small example, two of the strategies bucket these
words into two stems while one strategy buckets them into one stem.

stemming %>%
gather(Type, Result, `Remove S`:`Porter stemming`) %>%
filter(Result %in% c("come", "coming")) %>%
distinct(`Original word`, Type, Result)

#> # A tibble: 9 x 3
#> `Original word` Type Result
#> <chr> <chr> <chr>
#> 1 come Remove S come
#> 2 comes Remove S come
#> 3 coming Remove S coming
#> 4 come Plural endings come
#> 5 comes Plural endings come
#> 6 coming Plural endings coming
#> 7 come Porter stemming come
#> 8 comes Porter stemming come
#> 9 coming Porter stemming come

These different characteristics can either be positive or negative, depending
on the nature of the text being modeled and the analytical question being
pursued.

68 4 Stemming

Language use is connected to culture and identity. How might the results
of stemming strategies be different for text created with the same language
(like English) but in different social or cultural contexts, or by people
with different identities? With what kind of text do you think stemming
algorithms behave most consistently, or most as expected? What impact
might that have on text modeling?

4.6 Lemmatization and stemming

When people use the word “stemming” in natural language processing, they
typically mean a system like the one we’ve been describing in this chapter,
with rules, conditions, heuristics, and lists of word endings. Think of stem-
ming as typically implemented in NLP as rule-based, operating on the word
by itself. There is another option for normalizing words to a root that takes
a different approach. Instead of using rules to cut words down to their stems,
lemmatization uses knowledge about a language’s structure to reduce words
down to their lemmas, the canonical or dictionary forms of words. Think of
lemmatization as typically implemented in NLP as linguistics-based, oper-
ating on the word in its context.

Lemmatization requires more information than the rule-based stemmers we’ve
discussed so far. We need to know what part of speech a word is to correctly
identify its lemma,5 and we also need more information about what words
mean in their contexts. Often lemmatizers use a rich lexical database like
WordNet6 as a way to look up word meanings for a given part-of-speech use
(Miller 1995). Notice that lemmatization involves more linguistic knowledge
of a language than stemming.

How does lemmatization work in languages other than English? Lookup
dictionaries connecting words, lemmas, and parts of speech for languages
other than English have been developed as well.

5Part-of-speech information is also sometimes used directly in machine learning
6https://wordnet.princeton.edu/

https://wordnet.princeton.edu/
https://wordnet.princeton.edu/

4.6 Lemmatization and stemming 69

A modern, efficient implementation for lemmatization is available in the ex-
cellent spaCy7 library (Honnibal et al. 2020), which is written in Python.

NLP practitioners who work with R can use this library via the spacyr
package (Benoit and Matsuo 2020), the cleanNLP8 package (Arnold
2017), or as an “engine” in the textrecipes9 package (Hvitfeldt 2020a).

Section 6.6 demonstrates how to use textrecipes with spaCy as an engine and
include lemmas as features for modeling. You might also consider using spaCy
directly in R Markdown via its Python engine10.

Let’s briefly walk through how to use spacyr.

library(spacyr)
spacy_initialize(entity = FALSE)

fir_tree %>%
mutate(doc_id = paste0("doc", row_number())) %>%
select(doc_id, everything()) %>%
spacy_parse() %>%
anti_join(get_stopwords(), by = c("lemma" = "word")) %>%
count(lemma, sort = TRUE) %>%
top_n(20, n) %>%
ggplot(aes(n, fct_reorder(lemma, n))) +
geom_col() +
labs(x = "Frequency", y = NULL)

Figure 4.3 demonstrates how different lemmatization is from stemming, es-
pecially if we compare to Figure 4.2. Punctuation characters are treated as
tokens (these punctuation tokens can have predictive power for some modeling
questions!), and all pronouns are lemmatized to -PRON-. We see our familiar
friends “tree” and “fir,” but notice that we see the normalized version “say”
instead of “said,” “come” instead of “came,” and similar. This transformation
to the canonical or dictionary form of words is the goal of lemmatization.

7https://spacy.io/
8https://statsmaths.github.io/cleanNLP/
9https://textrecipes.tidymodels.org/

10https://rstudio.github.io/reticulate/articles/r_markdown.html

https://spacy.io/
https://spacy.io/
https://statsmaths.github.io/cleanNLP/
https://statsmaths.github.io/cleanNLP/
https://textrecipes.tidymodels.org/
https://textrecipes.tidymodels.org/
https://rstudio.github.io/reticulate/articles/r_markdown.html
https://rstudio.github.io/reticulate/articles/r_markdown.html

70 4 Stemming

mouse
noZ

branch
one

story
NnoZ
thinN
little

�
come

say
"
fir
�

−
,

tree
.
�
�

0 100 �00 �00
Frequency

FIGURE 4.3: Results for lemmatization, rather than stemming

Why did we need to initialize the spaCy library? You may not need to,
but spaCy is a full-featured NLP pipeline that not only tokenizes and
identifies lemmas but also performs entity recognition. We will not use
entity recognition in modeling or analysis in this book, and it takes a
lot of computational power. Initializing with entity = FALSE will allow
lemmatization to run much faster.

Implementing lemmatization is slower and more complex than stemming. Just
like with stemming, lemmatization often improves the true positive rate (or
recall) but at the expense of the true negative rate (or precision) compared to
not using lemmatization, but typically less so than stemming.

4.7 Stemming and stop words

Our deep dive into stemming came after our chapters on tokenization (Chap-
ter 2) and stop words (Chapter 3) because this is typically when you will
want to implement stemming, if appropriate to your analytical question. Stop

4.8 Summary 71

word lists are usually unstemmed, so you need to remove stop words before
stemming text data. For example, the Porter stemming algorithm transforms
words like "themselves" to "themselv", so stemming first would leave you without
the ability to match up to the commonly-used stop word lexicons.

A handy trick is to use the following function on your stop word list to return
the words that don’t have a stemmed version in the list. If the function returns
a length 0 vector then you can stem and remove stop words in any order.

library(stopwords)
not_stemmed_in <- function(x) {

x[!SnowballC::wordStem(x) %in% x]
}

not_stemmed_in(stopwords(source = "snowball"))

#> [1] "ourselves" "yourselves" "his" "they" "themselves"
#> [6] "this" "are" "was" "has" "does"
#> [11] "you're" "he's" "she's" "it's" "we're"
#> [16] "they're" "i've" "you've" "we've" "they've"
#> [21] "let's" "that's" "who's" "what's" "here's"
#> [26] "there's" "when's" "where's" "why's" "how's"
#> [31] "because" "during" "before" "above" "once"
#> [36] "any" "only" "very"

Here we see that many of the words that are lost are the contractions.

In Section 3.2, we explored whether to include “tree” as a stop word for
“The Fir-Tree.” Now we can understand that this is more complicated
than we first discussed, because there are different versions of the base
word (“trees,” “tree’s”) in our data set. Interactions between preprocessing
steps can have a major impact on your analysis.

4.8 Summary

In this chapter, we explored stemming, the practice of identifying and extract-
ing the base or stem for a word using rules and heuristics. Stemming reduces

72 4 Stemming

the sparsity of text data, which can be helpful when training models, but at
the cost of throwing information away. Lemmatization is another way to nor-
malize words to a root, based on language structure and how words are used
in their context.

4.8.1 In this chapter, you learned:

• about the most broadly-used stemming algorithms

• how to implement stemming

• that stemming changes the sparsity or feature space of text data

• the differences between stemming and lemmatization

5
Word Embeddings

You shall know a word by the company it keeps.
— John Rupert Firth1

So far in our discussion of natural language features, we have discussed pre-
processing steps such as tokenization, removing stop words, and stemming in
detail. We implement these types of preprocessing steps to be able to represent
our text data in some data structure that is a good fit for modeling.

5.1 Motivating embeddings for sparse, high-dimensional
data

What kind of data structure might work well for typical text data? Perhaps, if
we wanted to analyze or build a model for consumer complaints to the United
States Consumer Financial Protection Bureau (CFPB)2, described in Section
B.3, we would start with straightforward word counts. Let’s create a sparse
matrix, where the matrix elements are the counts of words in each document.

library(tidyverse)
library(tidytext)
library(SnowballC)

complaints <- read_csv("data/complaints.csv.gz")

1https://en.wikiquote.org/wiki/John_Rupert_Firth
2https://www.consumerfinance.gov/data-research/consumer-complaints/

DOI: 10.1201/9781003093459-5 73

https://en.wikiquote.org/wiki/John_Rupert_Firth
https://en.wikiquote.org/wiki/John_Rupert_Firth
https://www.consumerfinance.gov/data-research/consumer-complaints/
https://www.consumerfinance.gov/data-research/consumer-complaints/
https://doi.org/10.1201/9781003093459-5

74 5 Word Embeddings

complaints %>%
unnest_tokens(word, consumer_complaint_narrative) %>%
anti_join(get_stopwords(), by = "word") %>%
mutate(stem = wordStem(word)) %>%
count(complaint_id, stem) %>%
cast_dfm(complaint_id, stem, n)

#> Document-feature matrix of: 117,214 documents, 46,099
features (99.88% sparse) and 0 docvars.

A sparse matrix is a matrix where most of the elements are zero. When
working with text data, we say our data is “sparse” because most docu-
ments do not contain most words, resulting in a representation of mostly
zeroes. There are special data structures and algorithms for dealing with
sparse data that can take advantage of their structure. For example, an ar-
ray can more efficiently store the locations and values of only the non-zero
elements instead of all elements.

The data set of consumer complaints used in this book has been filtered to
those submitted to the CFPB since January 1, 2019 that include a consumer
complaint narrative (i.e., some submitted text).

Another way to represent our text data is to create a sparse matrix where
the elements are weighted, rather than straightforward counts only. The term
frequency of a word is how frequently a word occurs in a document, and the
inverse document frequency of a word decreases the weight for commonly-used
words and increases the weight for words that are not used often in a collection
of documents. It is typically defined as:

𝑖𝑑𝑓(term) = ln(𝑛documents
𝑛documents containing term

)

These two quantities can be combined to calculate a term’s tf-idf (the two
quantities multiplied together). This statistic measures the frequency of a
term adjusted for how rarely it is used, and it is an example of a weighting
scheme that can often work better than counts for predictive modeling with
text features.

5.1 Motivating embeddings for sparse, high-dimensional data 75

complaints %>%
unnest_tokens(word, consumer_complaint_narrative) %>%
anti_join(get_stopwords(), by = "word") %>%
mutate(stem = wordStem(word)) %>%
count(complaint_id, stem) %>%
bind_tf_idf(stem, complaint_id, n) %>%
cast_dfm(complaint_id, stem, tf_idf)

#> Document-feature matrix of: 117,214 documents, 46,099
features (99.88% sparse) and 0 docvars.

Notice that, in either case, our final data structure is incredibly sparse and
of high dimensionality with a huge number of features. Some modeling al-
gorithms and the libraries that implement them can take advantage of the
memory characteristics of sparse matrices for better performance; an example
of this is regularized regression implemented in glmnet (Friedman, Hastie,
and Tibshirani 2010). Some modeling algorithms, including tree-based algo-
rithms, do not perform better with sparse input, and then some libraries are
not built to take advantage of sparse data structures, even if it would improve
performance for those algorithms. We have some computational tools to take
advantage of sparsity, but they don’t always solve all the problems that come
along with big text data sets.

As the size of a corpus increases in terms of words or other tokens, both the
sparsity and RAM required to hold the corpus in memory increase. Figure
5.1 shows how this works out; as the corpus grows, there are more words used
just a few times included in the corpus. The sparsity increases and approaches
100%, but even more notably, the memory required to store the corpus in-
creases with the square of the number of tokens.

get_dfm <- function(frac) {
complaints %>%
sample_frac(frac) %>%
unnest_tokens(word, consumer_complaint_narrative) %>%
anti_join(get_stopwords(), by = "word") %>%
mutate(stem = wordStem(word)) %>%
count(complaint_id, stem) %>%
cast_dfm(complaint_id, stem, n)

}

set.seed(123)
tibble(frac = 2 ^ seq(-16, -6, 2)) %>%

76 5 Word Embeddings

mutate(dfm = map(frac, get_dfm),
words = map_dbl(dfm, quanteda::nfeat),
sparsity = map_dbl(dfm, quanteda::sparsity),
`RAM (in bytes)` = map_dbl(dfm, lobstr::obj_size)) %>%

pivot_longer(sparsity:`RAM (in bytes)`, names_to = "measure") %>%
ggplot(aes(words, value, color = measure)) +
geom_line(size = 1.5, alpha = 0.5) +
geom_point(size = 2) +
facet_wrap(~measure, scales = "free_y") +
scale_x_log10(labels = scales::label_comma()) +
scale_y_continuous(labels = scales::label_comma()) +
theme(legend.position = "none") +
labs(x = "Number of unique words in corpus (log scale)",

y = NULL)

5A0 �in bytes� sparsity

100 �00 1�000 ��000 100 �00 1�000 ��000

0.�0

0.�0

0.�0

1.00

0

500�000

1�000�000

1�500�000

Number of unique Zords in corpus �log scale�

FIGURE 5.1: Memory requirements and sparsity increase with corpus size

Linguists have long worked on vector models for language that can reduce
the number of dimensions representing text data based on how people use
language; the quote that opened this chapter dates to 1957. These kinds of
dense word vectors are often called word embeddings.

5.2 Understand word embeddings by finding them yourself 77

5.2 Understand word embeddings by finding them your-
self

Word embeddings are a way to represent text data as vectors of numbers based
on a huge corpus of text, capturing semantic meaning from words’ context.

Modern word embeddings are based on a statistical approach to modeling
language, rather than a linguistics or rules-based approach.

We can determine these vectors for a corpus of text using word counts and
matrix factorization, as outlined by Moody (2017). This approach is valuable
because it allows practitioners to find word vectors for their own collections
of text (with no need to rely on pre-trained vectors) using familiar techniques
that are not difficult to understand. Let’s walk through how to do this using
tidy data principles and sparse matrices, on the data set of CFPB complaints.
First, let’s filter out words that are used only rarely in this data set and create
a nested dataframe, with one row per complaint.

tidy_complaints <- complaints %>%
select(complaint_id, consumer_complaint_narrative) %>%
unnest_tokens(word, consumer_complaint_narrative) %>%
add_count(word) %>%
filter(n >= 50) %>%
select(-n)

nested_words <- tidy_complaints %>%
nest(words = c(word))

nested_words

#> # A tibble: 117,170 x 2
#> complaint_id words
#> <dbl> <list>
#> 1 3384392 <tibble [18 x 1]>
#> 2 3417821 <tibble [71 x 1]>
#> 3 3433198 <tibble [77 x 1]>
#> 4 3366475 <tibble [69 x 1]>

78 5 Word Embeddings

#> 5 3385399 <tibble [213 x 1]>
#> 6 3444592 <tibble [19 x 1]>
#> 7 3379924 <tibble [121 x 1]>
#> 8 3446975 <tibble [22 x 1]>
#> 9 3214857 <tibble [64 x 1]>
#> 10 3417374 <tibble [44 x 1]>
#> # ... with 117,160 more rows

Next, let’s create a slide_windows() function, using the slide() function from
the slider package (Vaughan 2021a) that implements fast sliding window
computations written in C. Our new function identifies skipgram windows in
order to calculate the skipgram probabilities, how often we find each word
near each other word. We do this by defining a fixed-size moving window
that centers around each word. Do we see word1 and word2 together within this
window? We can calculate probabilities based on when we do or do not.

One of the arguments to this function is the window_size, which determines the
size of the sliding window that moves through the text, counting up words that
we find within the window. The best choice for this window size depends on
your analytical question because it determines what kind of semantic meaning
the embeddings capture. A smaller window size, like three or four, focuses on
how the word is used and learns what other words are functionally similar. A
larger window size, like 10, captures more information about the domain or
topic of each word, not constrained by how functionally similar the words are
(Levy and Goldberg 2014). A smaller window size is also faster to compute.

slide_windows <- function(tbl, window_size) {
skipgrams <- slider::slide(
tbl,
~.x,
.after = window_size - 1,
.step = 1,
.complete = TRUE

)

safe_mutate <- safely(mutate)

out <- map2(skipgrams,
1:length(skipgrams),
~ safe_mutate(.x, window_id = .y))

out %>%
transpose() %>%
pluck("result") %>%

5.2 Understand word embeddings by finding them yourself 79

compact() %>%
bind_rows()

}

Now that we can find all the skipgram windows, we can calculate how often
words occur on their own, and how often words occur together with other
words. We do this using the point-wise mutual information (PMI), a mea-
sure of association that measures exactly what we described in the previous
sentence; it’s the logarithm of the probability of finding two words together,
normalized for the probability of finding each of the words alone. We use PMI
to measure which words occur together more often than expected based on
how often they occurred on their own.

For this example, let’s use a window size of four.

This next step is the computationally expensive part of finding word em-
beddings with this method, and can take a while to run. Fortunately, we
can use the furrr package (Vaughan and Dancho 2021) to take advan-
tage of parallel processing because identifying skipgram windows in one
document is independent from all the other documents.

library(widyr)
library(furrr)

plan(multisession) ## for parallel processing

tidy_pmi <- nested_words %>%
mutate(words = future_map(words, slide_windows, 4L)) %>%
unnest(words) %>%
unite(window_id, complaint_id, window_id) %>%
pairwise_pmi(word, window_id)

tidy_pmi

#> # A tibble: 4,818,402 x 3
#> item1 item2 pmi
#> <chr> <chr> <dbl>
#> 1 systems transworld 7.09

80 5 Word Embeddings

#> 2 inc transworld 5.96
#> 3 is transworld -0.135
#> 4 trying transworld -0.107
#> 5 to transworld -0.00206
#> 6 collect transworld 1.07
#> 7 a transworld -0.516
#> 8 debt transworld 0.919
#> 9 that transworld -0.542
#> 10 not transworld -1.17
#> # ... with 4,818,392 more rows

When PMI is high, the two words are associated with each other, i.e., likely
to occur together. When PMI is low, the two words are not associated with
each other, unlikely to occur together.

The step above used unite(), a function from tidyr that pastes multiple
columns into one, to make a new column for window_id from the old win-
dow_id plus the complaint_id. This new column tells us which combination
of window and complaint each word belongs to.

We can next determine the word vectors from the PMI values using singular
value decomposition (SVD). SVD is a method for dimensionality reduction
via matrix factorization (Golub and Reinsch 1970) that works by taking our
data and decomposing it onto special orthogonal axes. The first axis is chosen
to capture as much of the variance as possible. Keeping that first axis fixed,
the remaining orthogonal axes are rotated to maximize the variance in the
second. This is repeated for all the remaining axes.

In our application, we will use SVD to factor the PMI matrix into a set of
smaller matrices containing the word embeddings with a size we get to choose.
The embedding size is typically chosen to be in the low hundreds. Thus we get
a matrix of dimension (n_vocabulary * n_dim) instead of dimension (n_vocabulary
* n_vocabulary), which can be a vast reduction in size for large vocabularies.
Let’s use the widely_svd() function in widyr (Robinson 2020), creating 100-
dimensional word embeddings. This matrix factorization is much faster than
the previous step of identifying the skipgram windows and calculating PMI.

tidy_word_vectors <- tidy_pmi %>%
widely_svd(
item1, item2, pmi,

5.3 Exploring CFPB word embeddings 81

nv = 100, maxit = 1000
)

tidy_word_vectors

#> # A tibble: 747,500 x 3
#> item1 dimension value
#> <chr> <int> <dbl>
#> 1 systems 1 0.0165
#> 2 inc 1 0.0191
#> 3 is 1 0.0202
#> 4 trying 1 0.0423
#> 5 to 1 0.00904
#> 6 collect 1 0.0370
#> 7 a 1 0.0126
#> 8 debt 1 0.0430
#> 9 that 1 0.0136
#> 10 not 1 0.0213
#> # ... with 747,490 more rows

tidy_word_vectors is not drastically smaller than tidy_pmi since the vocabu-
lary is not enormous and tidy_pmi is represented in a sparse format.

We have now successfully found word embeddings, with clear and understand-
able code. This is a real benefit of this approach; this approach is based on
counting, dividing, and matrix decomposition and is thus easier to understand
and implement than options based on deep learning. Training word vectors
or embeddings, even with this straightforward method, still requires a large
data set (ideally, hundreds of thousands of documents or more) and a not
insignificant investment of time and computational power.

5.3 Exploring CFPB word embeddings

Now that we have determined word embeddings for the data set of CFPB
complaints, let’s explore them and talk about how they are used in modeling.
We have projected the sparse, high-dimensional set of word features into a
more dense, 100-dimensional set of features.

82 5 Word Embeddings

Each word can be represented as a numeric vector in this new feature
space. A single word is mapped to only one vector, so be aware that all
senses of a word are conflated in word embeddings. Because of this, word
embeddings are limited for understanding lexical semantics.

Which words are close to each other in this new feature space of word embed-
dings? Let’s create a simple function that will find the nearest words to any
given example in using our newly created word embeddings.

nearest_neighbors <- function(df, token) {
df %>%
widely(

~ {
y <- .[rep(token, nrow(.)),]
res <- rowSums(. * y) /

(sqrt(rowSums(. ^ 2)) * sqrt(sum(.[token,] ^ 2)))

matrix(res, ncol = 1, dimnames = list(x = names(res)))
},

sort = TRUE
)(item1, dimension, value) %>%
select(-item2)

}

This function takes the tidy word embeddings as input, along with a word
(or token, more strictly) as a string. It uses matrix multiplication and sums
to calculate the cosine similarity between the word and all the words in the
embedding to find which words are closer or farther to the input word, and
returns a dataframe sorted by similarity.

What words are closest to "error" in the data set of CFPB complaints, as
determined by our word embeddings?

tidy_word_vectors %>%
nearest_neighbors("error")

#> # A tibble: 7,475 x 2
#> item1 value

5.3 Exploring CFPB word embeddings 83

#> <chr> <dbl>
#> 1 error 1
#> 2 mistake 0.683
#> 3 clerical 0.627
#> 4 problem 0.582
#> 5 glitch 0.580
#> 6 errors 0.571
#> 7 miscommunication 0.512
#> 8 misunderstanding 0.486
#> 9 issue 0.478
#> 10 discrepancy 0.474
#> # ... with 7,465 more rows

Mistakes, problems, glitches – sounds bad!

What is closest to the word "month"?

tidy_word_vectors %>%
nearest_neighbors("month")

#> # A tibble: 7,475 x 2
#> item1 value
#> <chr> <dbl>
#> 1 month 1
#> 2 year 0.607
#> 3 months 0.593
#> 4 monthly 0.454
#> 5 installments 0.446
#> 6 payment 0.429
#> 7 week 0.406
#> 8 weeks 0.400
#> 9 85.00 0.399
#> 10 bill 0.396
#> # ... with 7,465 more rows

We see words about installments and payments, along with other time periods
such as years and weeks. Notice that we did not stem this text data (see
Chapter 4), but the word embeddings learned that “month,” “months,” and
“monthly” belong together.

What words are closest in this embedding space to "fee"?

84 5 Word Embeddings

tidy_word_vectors %>%
nearest_neighbors("fee")

#> # A tibble: 7,475 x 2
#> item1 value
#> <chr> <dbl>
#> 1 fee 1
#> 2 fees 0.746
#> 3 overdraft 0.678
#> 4 12.00 0.675
#> 5 14.00 0.645
#> 6 37.00 0.632
#> 7 charge 0.630
#> 8 11.00 0.630
#> 9 36.00 0.627
#> 10 28.00 0.624
#> # ... with 7,465 more rows

We find a lot of dollar amounts, which makes sense. Let us filter out the
numbers to see what non-dollar words are similar to “fee.”

tidy_word_vectors %>%
nearest_neighbors("fee") %>%
filter(str_detect(item1, "[0-9]*.[0-9]{2}", negate = TRUE))

#> # A tibble: 7,047 x 2
#> item1 value
#> <chr> <dbl>
#> 1 fee 1
#> 2 fees 0.746
#> 3 overdraft 0.678
#> 4 charge 0.630
#> 5 nsf 0.609
#> 6 charged 0.594
#> 7 od 0.552
#> 8 waived 0.547
#> 9 assessed 0.538
#> 10 charges 0.530
#> # ... with 7,037 more rows

5.3 Exploring CFPB word embeddings 85

We now find words about overdrafts and charges. The top two words are “fee”
and “fees”; word embeddings can learn that singular and plural forms of words
are related and belong together. In fact, word embeddings can accomplish
many of the same goals of tasks like stemming (Chapter 4) but more reliably
and less arbitrarily.

Since we have found word embeddings via singular value decomposition, we
can use these vectors to understand what principal components explain the
most variation in the CFPB complaints. The orthogonal axes that SVD used
to represent our data were chosen so that the first axis accounts for the most
variance, the second axis accounts for the next most variance, and so on.
We can now explore which and how much each original dimension (tokens in
this case) contributed to each of the resulting principal components produced
using SVD.

tidy_word_vectors %>%
filter(dimension <= 24) %>%
group_by(dimension) %>%
top_n(12, abs(value)) %>%
ungroup %>%
mutate(item1 = reorder_within(item1, value, dimension)) %>%
ggplot(aes(item1, value, fill = dimension)) +
geom_col(alpha = 0.8, show.legend = FALSE) +
facet_wrap(~dimension, scales = "free_y", ncol = 4) +
scale_x_reordered() +
coord_flip() +
labs(

x = NULL,
y = "Value",
title = "First 24 principal components for text of CFPB complaints",
subtitle = paste("Top words contributing to the components that explain",

"the most variation")
)

It becomes very clear in Figure 5.2 that stop words have not been removed,
but notice that we can learn meaningful relationships in how very common
words are used. Component 12 shows us how common prepositions are often
used with words like "regarding", "contacted", and "called", while component
9 highlights the use of different common words when submitting a complaint
about unethical, predatory, and/or deceptive practices. Stop words do carry
information, and methods like determining word embeddings can make that
information usable.

We created word embeddings and can explore them to understand our text
data set, but how do we use this vector representation in modeling? The

86 5 Word Embeddings

�1 �� �� ��

1� 1� 1� �0

1� 1� 15 1�

� 10 11 1�

5 � � �

1 � � �

−0.1 0.0 0.1 −0.1 0.0 0.1 −0.1 0.0 0.1 −0.1 0.0 0.1

be
my
on

Zas
they
me

[[[[
account

not
haYe

credit
[[

our
their
any

times
10

�
section

hours
years

minutes
15

days

from
Zith

for
of

sent
regarding
contacted

called
told

gaYe
them

it

been
has

there
business

their
Yery

no
at

that
is
a

of

can
did

could
Zill

trying
Zould

able
refused

Zas
pay

haYe
be

collection
company

loan
debt

mortgage
funds

had
stress

by
banN
card

been

amount
balance

total
totaling

plus
appro[imately

interest
[[

payment
paid

month
dollars

these
are

such
any

other
reporting

its
called

i
Zas

[[
[[[[

letters
emails
email

receiYed
documents

sent
calls
letter

home
federal

laZ
state

Zere
Zill

Zould
their

am
neYer

Zithout
could

payments
[[[[

credit
account

Zho
loan

other
haYe

are
Zere

all
loans

an
charge

fee
a

haYe
in

on
is

they
a

this
[[[[

my
Zas

i
not

[[
credit

account
report

information
not
told

haYe
them
[[[[

me
receiYed

s
contacted

my
Zas

haYe
me
be

i
this

they
it

not

my
in

on
been

our
Zith

credit
haYe
had

Zere
Zas
you

credit
account

these
card

accounts
those

of
a
is

letter
Yery
Zas

Zere
are
by
be

they
laZ

your
my

account
financial

score
credit

am
i
m
im

[[[[
are
[[

your
Zater

has
caused

had
damage

[[
spoNe

fair
able

section
told

theft
agency

�01�
identity

reporting
consumer

of
[[

credit
[[[[

consumer
oYer

so
people

Yery
she
he

Must

is
has

by
are

company
been

against
being

unethical
predatory
deceptiYe

llc

address
name

accounts
days

process
rate
offer

period
modification

program
mortgage

loan

it
being

in
a

any
calls
from
Zith

to
for
me

of

charges
late

these
fees

letter
credit

mail
by

me
a

copy
is

9alue

7op Zords contributing to the components that e[plain the most Yariation
First �� principal components for te[t of CF3% complaints

FIGURE 5.2: Word embeddings for Consumer Finance Protection Bureau
complaints

5.3 Exploring CFPB word embeddings 87

classic and simplest approach is to treat each document as a collection of
words and summarize the word embeddings into document embeddings, either
using a mean or sum. This approach loses information about word order but
is straightforward to implement. Let’s count() to find the sum here in our
example.

word_matrix <- tidy_complaints %>%
count(complaint_id, word) %>%
cast_sparse(complaint_id, word, n)

embedding_matrix <- tidy_word_vectors %>%
cast_sparse(item1, dimension, value)

doc_matrix <- word_matrix %*% embedding_matrix

dim(doc_matrix)

#> [1] 117170 100

We have a new matrix here that we can use as the input for modeling. Notice
that we still have over 100,000 documents (we did lose a few complaints,
compared to our example sparse matrices at the beginning of the chapter,
when we filtered out rarely used words) but instead of tens of thousands of
features, we have exactly 100 features.

These hundred features are the word embeddings we learned from the
text data itself.

If our word embeddings are of high quality, this translation of the high-
dimensional space of words to the lower-dimensional space of the word embed-
dings allows our modeling based on such an input matrix to take advantage
of the semantic meaning captured in the embeddings.

This is a straightforward method for finding and using word embeddings,
based on counting and linear algebra. It is valuable both for understanding
what word embeddings are and how they work, but also in many real-world
applications. This is not the method to reach for if you want to publish an
academic NLP paper, but is excellent for many applied purposes. Other meth-
ods for determining word embeddings include GloVe (Pennington, Socher, and
Manning 2014), implemented in R in the text2vec package (Selivanov, Bickel,
and Wang 2020), word2vec (Mikolov et al. 2013), and FastText (Bojanowski
et al. 2017).

88 5 Word Embeddings

5.4 Use pre-trained word embeddings

If your data set is too small, you typically cannot train reliable word embed-
dings.

How small is too small? It is hard to make definitive statements because
being able to determine useful word embeddings depends on the seman-
tic and pragmatic details of how words are used in any given data set.
However, it may be unreasonable to expect good results with data sets
smaller than about a million words or tokens. (Here, we do not mean
about a million unique tokens, i.e., the vocabulary size, but instead about
that many observations in the text data.)

In such situations, we can still use word embeddings for feature creation in
modeling, just not embeddings that we determine ourselves from our own
data set. Instead, we can turn to pre-trained word embeddings, such as the
GloVe word vectors trained on six billion tokens from Wikipedia and news
sources. Several pre-trained GloVe vector representations are available in R
via the textdata package (Hvitfeldt 2020b). Let’s use dimensions = 100, since
we trained 100-dimensional word embeddings in the previous section.

library(textdata)

glove6b <- embedding_glove6b(dimensions = 100)
glove6b

#> # A tibble: 400,000 x 101
#> token d1 d2 d3 d4 d5 d6 d7 d8 d9
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 "the" -0.0382 -0.245 0.728 -0.400 0.0832 0.0440 -0.391 0.334 -0.575
#> 2 "," -0.108 0.111 0.598 -0.544 0.674 0.107 0.0389 0.355 0.0635
#> 3 "." -0.340 0.209 0.463 -0.648 -0.384 0.0380 0.171 0.160 0.466
#> 4 "of" -0.153 -0.243 0.898 0.170 0.535 0.488 -0.588 -0.180 -1.36
#> 5 "to" -0.190 0.0500 0.191 -0.0492 -0.0897 0.210 -0.550 0.0984 -0.201
#> 6 "and" -0.0720 0.231 0.0237 -0.506 0.339 0.196 -0.329 0.184 -0.181
#> 7 "in" 0.0857 -0.222 0.166 0.134 0.382 0.354 0.0129 0.225 -0.438
#> 8 "a" -0.271 0.0440 -0.0203 -0.174 0.644 0.712 0.355 0.471 -0.296

5.4 Use pre-trained word embeddings 89

#> 9 "\"" -0.305 -0.236 0.176 -0.729 -0.283 -0.256 0.266 0.0253 -0.0748
#> 10 "'s" 0.589 -0.202 0.735 -0.683 -0.197 -0.180 -0.392 0.342 -0.606
#> # ... with 399,990 more rows, and 91 more variables: d10 <dbl>, d11 <dbl>,
#> # d12 <dbl>, d13 <dbl>, d14 <dbl>, d15 <dbl>, d16 <dbl>, d17 <dbl>,
#> # d18 <dbl>, ...

We can transform these word embeddings into a more tidy format, using
pivot_longer() from tidyr. Let’s also give this tidied version the same column
names as tidy_word_vectors, for convenience.

tidy_glove <- glove6b %>%
pivot_longer(contains("d"),

names_to = "dimension") %>%
rename(item1 = token)

tidy_glove

#> # A tibble: 40,000,000 x 3
#> item1 dimension value
#> <chr> <chr> <dbl>
#> 1 the d1 -0.0382
#> 2 the d2 -0.245
#> 3 the d3 0.728
#> 4 the d4 -0.400
#> 5 the d5 0.0832
#> 6 the d6 0.0440
#> 7 the d7 -0.391
#> 8 the d8 0.334
#> 9 the d9 -0.575
#> 10 the d10 0.0875
#> # ... with 39,999,990 more rows

We’ve already explored some sets of “synonyms” in the embedding space we
determined ourselves from the CPFB complaints. What about this embedding
space learned via the GloVe algorithm on a much larger data set? We just need
to make one change to our nearest_neighbors() function and add maximum_size
= NULL, because the matrices we are multiplying together are much larger this
time.

90 5 Word Embeddings

nearest_neighbors <- function(df, token) {
df %>%
widely(

~ {
y <- .[rep(token, nrow(.)),]
res <- rowSums(. * y) /

(sqrt(rowSums(. ^ 2)) * sqrt(sum(.[token,] ^ 2)))
matrix(res, ncol = 1, dimnames = list(x = names(res)))
},

sort = TRUE,
maximum_size = NULL

)(item1, dimension, value) %>%
select(-item2)

}

Pre-trained word embeddings are trained on very large, general purpose En-
glish language data sets. Commonly used word2vec embeddings3 are based on
the Google News data set, and GloVe embeddings4 (what we are using here)
and FastText embeddings5 are learned from the text of Wikipedia plus other
sources. Keeping that in mind, what words are closest to "error" in the GloVe
embeddings?

tidy_glove %>%
nearest_neighbors("error")

#> # A tibble: 400,000 x 2
#> item1 value
#> <chr> <dbl>
#> 1 error 1
#> 2 errors 0.792
#> 3 mistake 0.664
#> 4 correct 0.621
#> 5 incorrect 0.613
#> 6 fault 0.607
#> 7 difference 0.594
#> 8 mistakes 0.586
#> 9 calculation 0.584
#> 10 probability 0.583
#> # ... with 399,990 more rows

3https://code.google.com/archive/p/word2vec/
4https://nlp.stanford.edu/projects/glove/
5https://fasttext.cc/docs/en/english-vectors.html

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/docs/en/english-vectors.html
https://fasttext.cc/docs/en/english-vectors.html

5.4 Use pre-trained word embeddings 91

Instead of problems and mistakes like in the CFPB embeddings, we now see
words related to sports, especially baseball, where an error is a certain kind of
act recorded in statistics. This could present a challenge for using the GloVe
embeddings with the CFPB text data. Remember that different senses or
uses of the same word are conflated in word embeddings; the high-dimensional
space of any set of word embeddings cannot distinguish between different uses
of a word, such as the word “error.”

What is closest to the word "month" in these pre-trained GloVe embeddings?

tidy_glove %>%
nearest_neighbors("month")

#> # A tibble: 400,000 x 2
#> item1 value
#> <chr> <dbl>
#> 1 month 1
#> 2 week 0.939
#> 3 last 0.924
#> 4 months 0.898
#> 5 year 0.893
#> 6 weeks 0.865
#> 7 earlier 0.859
#> 8 tuesday 0.846
#> 9 ago 0.844
#> 10 thursday 0.841
#> # ... with 399,990 more rows

Instead of words about payments, the GloVe results here focus on different
time periods only.

What words are closest in the GloVe embedding space to "fee"?

tidy_glove %>%
nearest_neighbors("fee")

#> # A tibble: 400,000 x 2
#> item1 value
#> <chr> <dbl>
#> 1 fee 1
#> 2 fees 0.832
#> 3 payment 0.741

92 5 Word Embeddings

#> 4 pay 0.711
#> 5 salary 0.700
#> 6 paid 0.668
#> 7 payments 0.653
#> 8 subscription 0.647
#> 9 paying 0.623
#> 10 expenses 0.619
#> # ... with 399,990 more rows

The most similar words are, like with the CPFB embeddings, generally finan-
cial, but they are largely about salary and pay instead of about charges and
overdrafts.

These examples highlight how pre-trained word embeddings can be useful
because of the incredibly rich semantic relationships they encode, but also
how these vector representations are often less than ideal for specific tasks.

If we do choose to use pre-trained word embeddings, how do we go about
integrating them into a modeling workflow? Again, we can create simple doc-
ument embeddings by treating each document as a collection of words and
summarizing the word embeddings. The GloVe embeddings do not contain all
the tokens in the CPFB complaints, and vice versa, so let’s use inner_join()
to match up our data sets.

word_matrix <- tidy_complaints %>%
inner_join(by = "word",

tidy_glove %>%
distinct(item1) %>%
rename(word = item1)) %>%

count(complaint_id, word) %>%
cast_sparse(complaint_id, word, n)

glove_matrix <- tidy_glove %>%
inner_join(by = "item1",

tidy_complaints %>%
distinct(word) %>%
rename(item1 = word)) %>%

cast_sparse(item1, dimension, value)

doc_matrix <- word_matrix %*% glove_matrix

5.5 Fairness and word embeddings 93

dim(doc_matrix)

#> [1] 117163 100

Since these GloVe embeddings had the same number of dimensions as the
word embeddings we found ourselves (100), we end up with the same number
of columns as before but with slightly fewer documents in the data set. We have
lost documents that contain only words not included in the GloVe embeddings.

The package wordsalad (Hvitfeldt 2020c) provides a unified interface
for finding different kinds of word vectors from text using pre-trained
embeddings. The options include fastText, GloVe, and word2vec.

5.5 Fairness and word embeddings

Perhaps more than any of the other preprocessing steps this book has covered
so far, using word embeddings opens an analysis or model up to the possibility
of being influenced by systemic unfairness and bias.

Embeddings are trained or learned from a large corpus of text data, and
whatever human prejudice or bias exists in the corpus becomes imprinted
into the vector data of the embeddings.

This is true of all machine learning to some extent (models learn, reproduce,
and often amplify whatever biases exist in training data), but this is literally,
concretely true of word embeddings. Caliskan, Bryson, and Narayanan (2017)
show how the GloVe word embeddings (the same embeddings we used in
Section 5.4) replicate human-like semantic biases.

• Typically Black first names are associated with more unpleasant feelings
than typically white first names.

94 5 Word Embeddings

• Women’s first names are more associated with family and men’s first names
are more associated with career.

• Terms associated with women are more associated with the arts and terms
associated with men are more associated with science.

Results like these have been confirmed over and over again, such as when
Bolukbasi et al. (2016) demonstrated gender stereotypes in how word embed-
dings encode professions or when Google Translate exhibited apparently sexist
behavior when translating text from languages with no gendered pronouns6.
Google has since worked to correct this problem7, but in 2021 the problem
still exists for some languages8. Garg et al. (2018) even used the way bias and
stereotypes can be found in word embeddings to quantify how social attitudes
towards women and minorities have changed over time.

Remember that word embeddings are learned or trained from some large data
set of text; this training data is the source of the biases we observe when
applying word embeddings to NLP tasks. Bender et al. (2021) outline how
the very large data sets used in large language models do not mean that such
models reflect representative or diverse viewpoints, or even can respond to
changing social views. As one concrete example, a common data set used to
train large embedding models is the text of Wikipedia, but Wikipedia itself has
problems with, for example, gender bias9. Some of the gender discrepancies
on Wikipedia can be attributed to social and historical factors, but some can
be attributed to the site mechanics of Wikipedia itself (Wagner et al. 2016).

It’s safe to assume that any large corpus of language will contain latent
structure reflecting the biases of the people who generated that language.

When embeddings with these kinds of stereotypes are used as a preprocessing
step in training a predictive model, the final model can exhibit racist, sexist,
or otherwise biased characteristics. Speer (2017) demonstrated how using pre-
trained word embeddings to train a straightforward sentiment analysis model
can result in text such as

6https://twitter.com/seyyedreza/status/935291317252493312
7https://www.blog.google/products/translate/reducing-gender-bias-google-translate/
8https://twitter.com/doravargha/status/1373211762108076034
9https://en.wikipedia.org/wiki/Gender_bias_on_Wikipedia

https://twitter.com/seyyedreza/status/935291317252493312
https://twitter.com/seyyedreza/status/935291317252493312
https://www.blog.google/products/translate/reducing-gender-bias-google-translate/
https://www.blog.google/products/translate/reducing-gender-bias-google-translate/
https://twitter.com/doravargha/status/1373211762108076034
https://twitter.com/doravargha/status/1373211762108076034
https://en.wikipedia.org/wiki/Gender_bias_on_Wikipedia
https://en.wikipedia.org/wiki/Gender_bias_on_Wikipedia

5.6 Using word embeddings in the real world 95

Let’s go get Italian food

being scored much more positively than text such as

Let’s go get Mexican food

because of characteristics of the text the word embeddings were trained on.

5.6 Using word embeddings in the real world

Given these profound and fundamental challenges with word embeddings,
what options are out there? First, consider not using word embeddings when
building a text model. Depending on the particular analytical question you
are trying to answer, another numerical representation of text data (such as
word frequencies or tf-idf of single words or n-grams) may be more appropri-
ate. Consider this option even more seriously if the model you want to train is
already entangled with issues of bias, such as the sentiment analysis example
in Section 5.5.

Consider whether finding your own word embeddings, instead of relying on
pre-trained embeddings created using an algorithm like GloVe or word2vec,
may help you. Building your own vectors is likely to be a good option when
the text domain you are working in is specific rather than general purpose;
some examples of such domains could include customer feedback for a clothing
e-commerce site, comments posted on a coding Q&A site, or legal documents.

Learning good quality word embeddings is only realistic when you have a large
corpus of text data (say, a million tokens), but if you have that much data, it
is possible that embeddings learned from scratch based on your own data may
not exhibit the same kind of semantic biases that exist in pre-trained word
embeddings. Almost certainly there will be some kind of bias latent in any
large text corpus, but when you use your own training data for learning word

96 5 Word Embeddings

embeddings, you avoid the problem of adding historic, systemic prejudice from
general purpose language data sets.

You can use the same approaches discussed in this chapter to check any
new embeddings for dangerous biases such as racism or sexism.

NLP researchers have also proposed methods for debiasing embeddings.
Bolukbasi et al. (2016) aim to remove stereotypes by postprocessing pre-
trained word vectors, choosing specific sets of words that are reprojected in
the vector space so that some specific bias, such as gender bias, is mitigated.
This is the most established method for reducing bias in embeddings to date,
although other methods have been proposed as well, such as augmenting data
with counterfactuals (Lu et al. 2020). Recent work (Ethayarajh, Duvenaud,
and Hirst 2019) has explored whether the association tests used to measure
bias are even useful, and under what conditions debiasing can be effective.

Other researchers, such as Caliskan, Bryson, and Narayanan (2017), suggest
that corrections for fairness should happen at the point of decision or action
rather than earlier in the process of modeling, such as preprocessing steps
like building word embeddings. The concern is that methods for debiasing
word embeddings may allow the stereotypes to seep back in, and more recent
work shows that this is exactly what can happen. Gonen and Goldberg (2019)
highlight how pervasive and consistent gender bias is across different word
embedding models, even after applying current debiasing methods.

5.7 Summary

Mapping words (or other tokens) to an embedding in a special vector space
is a powerful approach in natural language processing. This chapter started
from fundamentals to demonstrate how to determine word embeddings from
a text data set, but a whole host of highly sophisticated techniques have been
built on this foundation. For example, document embeddings can be learned
from text directly (Le and Mikolov 2014) rather than summarized from word
embeddings. More recently, embeddings have acted as one part of language
models with transformers like ULMFiT (Howard and Ruder 2018) and ELMo
(Peters et al. 2018). It’s important to keep in mind that even more advanced
natural language algorithms, such as these language models with transformers,
also exhibit such systemic biases (Sheng et al. 2019).

5.7 Summary 97

5.7.1 In this chapter, you learned:

• what word embeddings are and why we use them

• how to determine word embeddings from a text data set

• how the vector space of word embeddings encodes word similarity

• about a simple strategy to find document similarity

• how to handle pre-trained word embeddings

• why word embeddings carry historic and systemic bias

• about approaches for debiasing word embeddings

http://www.taylorandfrancis.com

Part II

Machine Learning Methods

http://www.taylorandfrancis.com

Overview 101

Overview

It’s time to use what we have discussed and learned in the first five chapters of
this book in a supervised machine learning context, to make predictions from
text data. In the next two chapters, we will focus on putting into practice
such machine learning algorithms as:

• naive Bayes,

• support vector machines (SVM) (Boser, Guyon, and Vapnik 1992), and

• regularized linear models such as implemented in glmnet10 (Friedman,
Hastie, and Tibshirani 2010).

We start in Chapter 6 with exploring regression models and continue in Chap-
ter 7 with classification models. These are different types of prediction prob-
lems, but in both, we can use the tools of supervised machine learning to
connect our input, which may exist entirely or partly as text data, with our
outcome of interest. Most supervised models for text data are built with one
of three purposes in mind:

• The main goal of a predictive model is to generate the most accurate
predictions possible.

• An inferential model is created to test a hypothesis or draw conclusions
about a population.

• The main purpose of a descriptive model is to describe the properties
of the observed data.

Many learning algorithms can be used for more than one of these purposes.
Concerns about a model’s predictive capacity may be as important for an
inferential or descriptive model as for a model designed purely for prediction,
and model interpretability and explainability may be important for a solely
predictive or descriptive model as well as for an inferential model. We will use

10https://glmnet.stanford.edu/

https://glmnet.stanford.edu/
https://glmnet.stanford.edu/

102 Overview

the tidymodels11 framework to address all of these issues, with its consistent
approach to resampling, preprocessing, fitting, and evaluation.

The tidymodels framework (Kuhn and Wickham 2021a) is a collection of
R packages for modeling and machine learning using tidyverse principles
(Wickham et al. 2019). These packages facilitate resampling, preprocess-
ing, modeling, and evaluation. There are core packages that you can load
all together via library(tidymodels) and then extra packages for more spe-
cific tasks.

As you read through these next chapters, notice the modeling process moving
through these stages; we’ll discuss the structure of this process in more detail
in the overview for the deep learning chapters.

Before we starting fitting these models to real data sets, let’s consider how to
think about algorithmic bias for predictive modeling. Rachel Thomas proposed
a checklist at ODSC West 201912 for algorithmic bias in machine learning.

Should we even be doing this?

This is always the first step. Machine learning algorithms involve math and
data, but that does not mean they are neutral. They can be used for purposes
that are helpful, harmful, or even unethical.

What bias is already in the data?

Chapter 6 uses a data set of United States Supreme Court opinions, with an
uneven distribution of years. There are many more opinions from more recent
decades than from earlier ones. Bias like this is extremely common in data
sets and must be considered in modeling. In this case, we show how using
regularized linear models results in better predictions across years than other
approaches (Section 6.3).

11https://www.tidymodels.org/
12https://opendatascience.com/odsc-west-2019-keynote-rachel-thomas-on-algorithmic-bias/

https://www.tidymodels.org/
https://www.tidymodels.org/
https://opendatascience.com/odsc-west-2019-keynote-rachel-thomas-on-algorithmic-bias/
https://opendatascience.com/odsc-west-2019-keynote-rachel-thomas-on-algorithmic-bias/

Overview 103

Can the code and data be audited?

In the case of this book, the code and data are all publicly available. You
as a reader can audit our methods and what kinds of bias exist in the data
sets. When you take what you have learned in this book and apply it your
real-world work, consider how accessible your code and data are to internal
and external stakeholders.

What are the error rates for sub-groups?

In Section 7.6 we demonstrate how to measure model performance for a mul-
ticlass classifier, but you can also compute model metrics for sub-groups that
are not explicitly in your model as class labels or predictors. Using tidy data
principles and the yardstick package makes this task well within the reach
of data practitioners.

In tidymodels, the yardstick package (Kuhn and Vaughan 2021a) has
functions for model evaluation.

What is the accuracy of a simple rule-based alternative?

Chapter 7 shows how to train models to predict the category of a user
complaint using sophisticated preprocessing steps and machine learning al-
gorithms, but such a complaint could be categorized using simple regular ex-
pressions (Appendix A), perhaps combined with other rules. Straightforward
heuristics are easy to implement, maintain, and audit, compared to machine
learning models; consider comparing the accuracy of models to simpler op-
tions.

104 Overview

What processes are in place to handle appeals or mis-
takes?

If models such as those built in Chapter 7 were put into production by an
organization, what would happen if a complaint was classified incorrectly?
We as data practitioners typically (hopefully) have a reasonable estimate of
the true positive rate and true negative rate for models we train, so processes
to handle misclassifications can be built with a good understanding of how
often they will be used.

How diverse is the team that built it?

The two-person team that wrote this book includes perspectives from a man
and woman, and from someone who has always lived inside the United States
and someone who is from a European country. However, we are both white
with similar educational backgrounds. We must be aware of how the limited
life experiences of individuals training and assessing machine learning models
can cause unintentional harm.

6
Regression

In this chapter, we will use machine learning to predict continuous values
that are associated with text data. Like in all predictive modeling tasks, this
chapter demonstrates how to use learning algorithms to find and model re-
lationships between an outcome or target variable and other input features.
What is unique about the focus of this book is that our features are created
from text data following the techniques laid out in Chapters 1 through 5, and
what is unique about the focus of this particular chapter is that our outcome
is numeric and continuous. For example, let’s consider a sample of opinions
from the United States Supreme Court, available in the scotus (Hvitfeldt
2019b) package.

library(tidyverse)
library(scotus)

scotus_filtered %>%
as_tibble()

#> # A tibble: 10,000 x 5
#> year case_name docket_number id text
#> <chr> <chr> <chr> <dbl> <chr>
#> 1 1903 Clara Perry, Plff. In Err~ 16 80304 "No. 16.\n State Repor~
#> 2 1987 West v. Conrail 85-1804 96216 "No. 85-1804.\n\n ~
#> 3 1957 Roth v. United States 582 89930 "Nos. 582, 61.\nNo. 61~
#> 4 1913 McDermott v. Wisconsin Nos. 112 and ~ 82218 "Nos. 112 and 113.\nMr~
#> 5 1826 Wetzell v. Bussard <NA> 52899 "Feb. 7th.\nThis cause~
#> 6 1900 Forsyth v. Vehmeyer 180 79609 "No. 180.\nMr. Edward ~
#> 7 1871 Reed v. United States <NA> 57846 "APPEAL and cross appe~
#> 8 1833 United States v. Mills <NA> 53394 "CERTIFICATE of Divisi~
#> 9 1940 Puerto Rico v. Rubert Her~ 582 87714 "No. 582.\nMr. Wm. Cat~
#> 10 1910 Williams v. First Nat. Ba~ 130 81588 "No. 130.\nThe defenda~
#> # ... with 9,990 more rows

This data set contains the entire text of each opinion in the text column, along
with the case_name and docket_number. Notice that we also have the year that

DOI: 10.1201/9781003093459-6 105

https://doi.org/10.1201/9781003093459-6

106 6 Regression

each case was decided by the Supreme Court; this is basically a continuous
variable (rather than a group membership of discrete label).

If we want to build a model to predict which court opinions were written
in which years, we would build a regression model.

• A classification model predicts a class label or group membership.

• A regression model predicts a numeric or continuous value.

In text modeling, we use text data (such as the text of the court opinions),
sometimes combined with other structured, non-text data, to predict the con-
tinuous value of interest (such as year of the court opinion). The goal of
predictive modeling with text input features and a continuous outcome is to
learn and model the relationship between the input features and the numeric
target (outcome).

6.1 A first regression model

Let’s build our first regression model using this sample of Supreme Court
opinions. Before we start, let’s check out how many opinions we have for each
decade in Figure 6.1.

scotus_filtered %>%
mutate(year = as.numeric(year),

year = 10 * (year %/% 10)) %>%
count(year) %>%
ggplot(aes(year, n)) +
geom_col() +
labs(x = "Year", y = "Number of opinions per decade")

This sample of opinions reflects the distribution over time of available opinions
for analysis; there are many more opinions per year in this data set after
about 1850 than before. This is an example of bias already in our data, as we
discussed in the overview to these chapters, and we will need to account for
that in choosing a model and understanding our results.

6.1 A first regression model 107

0

�50

500

�50

1�50 1�00 1�50 1�00 1�50 �000
<ear

N
um

be
r o

f o
pi

ni
on

s
pe

r d
ec

ad
e

FIGURE 6.1: Supreme Court opinions per decade in sample

6.1.1 Building our first regression model

Our first step in building a model is to split our data into training and testing
sets. We use functions from tidymodels for this; we use initial_split() to
set up how to split the data, and then we use the functions training() and
testing() to create the data sets we need. Let’s also convert the year to a
numeric value since it was originally stored as a character, and remove the '
character because of its effect on one of the models1 we want to try out.

library(tidymodels)
set.seed(1234)
scotus_split <- scotus_filtered %>%

mutate(year = as.numeric(year),
text = str_remove_all(text, "'")) %>%

initial_split()

scotus_train <- training(scotus_split)
scotus_test <- testing(scotus_split)

1The random forest implementation in the ranger package, demonstrated in Section 6.3,
does not handle special characters in columns names well.

108 6 Regression

Next, let’s preprocess our data to get it ready for modeling using a recipe. We’ll
use both general preprocessing functions from tidymodels and specialized
functions just for text from textrecipes in this preprocessing.

The recipes package (Kuhn and Wickham 2021b) is part of tidymodels
and provides functions for data preprocessing and feature engineering.
The textrecipes package (Hvitfeldt 2020a) extends recipes by providing
steps that create features for modeling from text, as we explored in the
first five chapters of this book.

What are the steps in creating this recipe?

• First, we must specify in our initial recipe() statement the form of our
model (with the formula year ~ text, meaning we will predict the year of
each opinion from the text of that opinion) and what our training data is.

• Then, we tokenize (Chapter 2) the text of the court opinions.

• Next, we filter to only keep the top 1000 tokens by term frequency. We
filter out those less frequent words because we expect them to be too rare
to be reliable, at least for our first attempt. (We are not removing stop
words yet; we’ll explore removing them in Section 6.4.)

• The recipe step step_tfidf(), used with defaults here, weights each token
frequency by the inverse document frequency.

• As a last step, we normalize (center and scale) these tf-idf values. This
centering and scaling is needed because we’re going to use a support vector
machine model.

library(textrecipes)

scotus_rec <- recipe(year ~ text, data = scotus_train) %>%
step_tokenize(text) %>%
step_tokenfilter(text, max_tokens = 1e3) %>%
step_tfidf(text) %>%
step_normalize(all_predictors())

scotus_rec

6.1 A first regression model 109

#> Data Recipe
#>
#> Inputs:
#>
#> role #variables
#> outcome 1
#> predictor 1
#>
#> Operations:
#>
#> Tokenization for text
#> Text filtering for text
#> Term frequency-inverse document frequency with text
#> Centering and scaling for all_predictors()

Now that we have a full specification of the preprocessing recipe, we can prep()
this recipe to estimate all the necessary parameters for each step using the
training data and bake() it to apply the steps to data, like the training data
(with new_data = NULL), testing data, or new data at prediction time.

scotus_prep <- prep(scotus_rec)
scotus_bake <- bake(scotus_prep, new_data = NULL)

dim(scotus_bake)

#> [1] 7500 1001

For most modeling tasks, you will not need to prep() or bake() your recipe
directly; instead you can build up a tidymodels workflow() to bundle together
your modeling components.

In tidymodels, the workflows package (Vaughan 2021b) offers infras-
tructure for bundling model components. A model workflow is a conve-
nient way to combine different modeling components (a preprocessor plus
a model specification); when these are bundled explicitly, it can be easier
to keep track of your modeling plan, as well as fit your model and predict
on new data.

Let’s create a workflow() to bundle together our recipe with any model speci-
fications we may want to create later. First, let’s create an empty workflow()
and then only add the data preprocessor scotus_rec to it.

110 6 Regression

scotus_wf <- workflow() %>%
add_recipe(scotus_rec)

scotus_wf

#> == Workflow ==
#> Preprocessor: Recipe
#> Model: None
#>
#> -- Preprocessor --
#> 4 Recipe Steps
#>
#> * step_tokenize()
#> * step_tokenfilter()
#> * step_tfidf()
#> * step_normalize()

Notice that there is no model yet: Model: None. It’s time to specify the model we
will use! Let’s build a support vector machine (SVM) model. While they don’t
see widespread use in cutting-edge machine learning research today, they are
frequently used in practice and have properties that make them well-suited for
text classification (Joachims 1998) and can give good performance (Van-Tu
and Anh-Cuong 2016).

An SVM model can be used for either regression or classification, and
linear SVMs often work well with text data. Even better, linear SVMs
typically do not need to be tuned (see Section 7.4 for tuning model hy-
perparameters).

Before fitting, we set up a model specification. There are three components to
specifying a model using tidymodels: the model algorithm (a linear SVM here),
the mode (typically either classification or regression), and the computational
engine we are choosing to use. For our linear SVM, let’s use the LiblineaR
engine (Helleputte 2021).

svm_spec <- svm_linear() %>%
set_mode("regression") %>%
set_engine("LiblineaR")

6.1 A first regression model 111

Everything is now ready for us to fit our model. Let’s add our model to the
workflow with add_model() and fit to our training data scotus_train.

svm_fit <- scotus_wf %>%
add_model(svm_spec) %>%
fit(data = scotus_train)

We have successfully fit an SVM model to this data set of Supreme Court
opinions. What does the result look like? We can access the fit using
pull_workflow_fit(), and even tidy() the model coefficient results into a con-
venient dataframe format.

svm_fit %>%
pull_workflow_fit() %>%
tidy() %>%
arrange(-estimate)

#> # A tibble: 1,001 x 2
#> term estimate
#> <chr> <dbl>
#> 1 Bias 1920.
#> 2 tfidf_text_later 1.50
#> 3 tfidf_text_appeals 1.48
#> 4 tfidf_text_see 1.39
#> 5 tfidf_text_noted 1.38
#> 6 tfidf_text_example 1.27
#> 7 tfidf_text_petitioner 1.26
#> 8 tfidf_text_even 1.23
#> 9 tfidf_text_rather 1.21
#> 10 tfidf_text_including 1.13
#> # ... with 991 more rows

The term Bias here means the same thing as an intercept. We see here what
terms contribute to a Supreme Court opinion being written more recently, like
“appeals” and “petitioner.”

What terms contribute to a Supreme Court opinion being written further in
the past, for this first attempt at a model?

112 6 Regression

svm_fit %>%
pull_workflow_fit() %>%
tidy() %>%
arrange(estimate)

#> # A tibble: 1,001 x 2
#> term estimate
#> <chr> <dbl>
#> 1 tfidf_text_ought -2.77
#> 2 tfidf_text_1st -1.94
#> 3 tfidf_text_but -1.63
#> 4 tfidf_text_same -1.62
#> 5 tfidf_text_the -1.57
#> 6 tfidf_text_therefore -1.54
#> 7 tfidf_text_it -1.46
#> 8 tfidf_text_which -1.40
#> 9 tfidf_text_this -1.39
#> 10 tfidf_text_be -1.33
#> # ... with 991 more rows

Here we see words like “ought” and “therefore.”

6.1.2 Evaluation

One option for evaluating our model is to predict one time on the testing set
to measure performance.

The testing set is extremely valuable data, however, and in real-world
situations, we advise that you only use this precious resource one time
(or at most, twice).

The purpose of the testing data is to estimate how your final model will per-
form on new data; we set aside a proportion of the data available and pretend
that it is not available to us for training the model so we can use it to estimate
model performance on strictly out-of-sample data. Often during the process
of modeling, we want to compare models or different model parameters. If we
use the test set for these kinds of tasks, we risk fooling ourselves that we are
doing better than we really are.

6.1 A first regression model 113

Another option for evaluating models is to predict one time on the training
set to measure performance. This is the same data that was used to train the
model, however, and evaluating on the training data often results in perfor-
mance estimates that are too optimistic. This is especially true for powerful
machine learning algorithms that can learn subtle patterns from data; we risk
overfitting to the training set.

Yet another option for evaluating or comparing models is to use a separate
validation set. In this situation, we split our data not into two sets (training
and testing) but into three sets (testing, training, and validation). The vali-
dation set is used for computing performance metrics to compare models or
model parameters. This can be a great option if you have enough data for it,
but often we as machine learning practitioners are not so lucky.

What are we to do, then, if we want to train multiple models and find the best
one? Or compute a reliable estimate for how our model has performed without
wasting the valuable testing set? We can use resampling. When we resample,
we create new simulated data sets from the training set for the purpose of, for
example, measuring model performance.

Let’s estimate the performance of the linear SVM regression model we just
fit. We can do this using resampled data sets built from the training set.

In tidymodels, the package for data splitting and resampling is rsample
(Silge et al. 2021).

Let’s create 10-fold cross-validation sets, and use these resampled sets for
performance estimates.

set.seed(123)
scotus_folds <- vfold_cv(scotus_train)

scotus_folds

#> # 10-fold cross-validation
#> # A tibble: 10 x 2
#> splits id
#> <list> <chr>
#> 1 <split [6750/750]> Fold01
#> 2 <split [6750/750]> Fold02
#> 3 <split [6750/750]> Fold03

114 6 Regression

#> 4 <split [6750/750]> Fold04
#> 5 <split [6750/750]> Fold05
#> 6 <split [6750/750]> Fold06
#> 7 <split [6750/750]> Fold07
#> 8 <split [6750/750]> Fold08
#> 9 <split [6750/750]> Fold09
#> 10 <split [6750/750]> Fold10

Each of these “splits” contains information about how to create cross-
validation folds from the original training data. In this example, 90% of the
training data is included in each fold for analysis and the other 10% is held out
for assessment. Since we used cross-validation, each Supreme Court opinion
appears in only one of these held-out assessment sets.

In Section 6.1.1, we fit one time to the training data as a whole. Now, to
estimate how well that model performs, let’s fit many times, once to each of
these resampled folds, and then evaluate on the heldout part of each resampled
fold.

set.seed(123)
svm_rs <- fit_resamples(

scotus_wf %>% add_model(svm_spec),
scotus_folds,
control = control_resamples(save_pred = TRUE)

)

svm_rs

#> # Resampling results
#> # 10-fold cross-validation
#> # A tibble: 10 x 5
#> splits id .metrics .notes .predictions
#> <list> <chr> <list> <list> <list>
#> 1 <split [6750/750]> Fold01 <tibble [2 x 4]> <tibble [0 x 1]> <tibble [750 x 4~
#> 2 <split [6750/750]> Fold02 <tibble [2 x 4]> <tibble [0 x 1]> <tibble [750 x 4~
#> 3 <split [6750/750]> Fold03 <tibble [2 x 4]> <tibble [0 x 1]> <tibble [750 x 4~
#> 4 <split [6750/750]> Fold04 <tibble [2 x 4]> <tibble [0 x 1]> <tibble [750 x 4~
#> 5 <split [6750/750]> Fold05 <tibble [2 x 4]> <tibble [0 x 1]> <tibble [750 x 4~
#> 6 <split [6750/750]> Fold06 <tibble [2 x 4]> <tibble [0 x 1]> <tibble [750 x 4~
#> 7 <split [6750/750]> Fold07 <tibble [2 x 4]> <tibble [0 x 1]> <tibble [750 x 4~
#> 8 <split [6750/750]> Fold08 <tibble [2 x 4]> <tibble [0 x 1]> <tibble [750 x 4~
#> 9 <split [6750/750]> Fold09 <tibble [2 x 4]> <tibble [0 x 1]> <tibble [750 x 4~
#> 10 <split [6750/750]> Fold10 <tibble [2 x 4]> <tibble [0 x 1]> <tibble [750 x 4~

6.1 A first regression model 115

These results look a lot like the resamples, but they have some additional
columns, like the .metrics that we can use to measure how well this model
performed and the .predictions we can use to explore that performance more
deeply. What results do we see, in terms of performance metrics?

collect_metrics(svm_rs)

#> # A tibble: 2 x 6
#> .metric .estimator mean n std_err .config
#> <chr> <chr> <dbl> <int> <dbl> <chr>
#> 1 rmse standard 15.6 10 0.216 Preprocessor1_Model1
#> 2 rsq standard 0.895 10 0.00244 Preprocessor1_Model1

The default performance metrics to be computed for regression models are
RMSE (root mean squared error) and 𝑅2 (coefficient of determination). RMSE
is a metric that is in the same units as the original data, so in units of years,
in our case; the RMSE of this first regression model is 15.6 years.

RSME and 𝑅2 are performance metrics used for regression models.

RSME is a measure of the difference between the predicted and observed
values; if the model fits the data well, RMSE is lower. To compute RMSE,
you take the mean values of the squared difference between the predicted
and observed values, then take the square root.

𝑅2 is the squared correlation between the predicted and observed values.
When the model fits the data well, the predicted and observed values are
closer together with a higher correlation between them. The correlation
between two variables is bounded between −1 and 1, so the closer 𝑅2 is
to one, the better.

These values are quantitative estimates for how well our model performed,
and can be compared across different kinds of models. Figure 6.2 shows the
predicted years for these Supreme Court opinions plotted against the true
years when they were published, for all the resampled data sets.

svm_rs %>%
collect_predictions() %>%
ggplot(aes(year, .pred, color = id)) +

116 6 Regression

geom_abline(lty = 2, color = "gray80", size = 1.5) +
geom_point(alpha = 0.3) +
labs(
x = "Truth",
y = "Predicted year",
color = NULL,
title = "Predicted and true years for Supreme Court opinions",
subtitle = "Each cross-validation fold is shown in a different color"

)

FIGURE 6.2: Most Supreme Court opinions are near the dashed line, indi-
cating good agreement between our SVM regression predictions and the real
years

The average spread of points in this plot above and below the dashed line
corresponds to RMSE, which is 15.6 years for this model. When RMSE is
better (lower), the points will be closer to the dashed line. This first model
we have tried did not do a great job for Supreme Court opinions from before
1850, but for opinions after 1850, this looks pretty good!

6.2 Compare to the null model 117

Hopefully you are convinced that using resampled data sets for measuring
performance is the right choice, but it can be computationally expensive.
Instead of fitting once, we must fit the model one time for each resample.
The resamples are independent of each other, so this is a great fit for
parallel processing. The tidymodels framework is designed to work fluently
with parallel processing in R, using multiple cores or multiple machines.
The implementation details of parallel processing are operating system
specific, so look at tidymodels’ documentation for how to get started2.

6.2 Compare to the null model

One way to assess a model like this one is to compare its performance to a
“null model.”

A null model is a simple, non-informative model that always predicts the
largest class (for classification) or the mean (such as the mean year of
Supreme Court opinions, in our specific regression case)3.

We can use the same function fit_resamples() and the same preprocess-
ing recipe as before, switching out our SVM model specification for the
null_model() specification.

null_regression <- null_model() %>%
set_engine("parsnip") %>%
set_mode("regression")

null_rs <- fit_resamples(
scotus_wf %>% add_model(null_regression),
scotus_folds,

2https://tune.tidymodels.org/articles/extras/optimizations.html
3This is sometimes called a “baseline model.”

https://tune.tidymodels.org/articles/extras/optimizations.html
https://tune.tidymodels.org/articles/extras/optimizations.html

118 6 Regression

metrics = metric_set(rmse)
)

null_rs

#> # Resampling results
#> # 10-fold cross-validation
#> # A tibble: 10 x 4
#> splits id .metrics .notes
#> <list> <chr> <list> <list>
#> 1 <split [6750/750]> Fold01 <tibble [1 x 4]> <tibble [0 x 1]>
#> 2 <split [6750/750]> Fold02 <tibble [1 x 4]> <tibble [0 x 1]>
#> 3 <split [6750/750]> Fold03 <tibble [1 x 4]> <tibble [0 x 1]>
#> 4 <split [6750/750]> Fold04 <tibble [1 x 4]> <tibble [0 x 1]>
#> 5 <split [6750/750]> Fold05 <tibble [1 x 4]> <tibble [0 x 1]>
#> 6 <split [6750/750]> Fold06 <tibble [1 x 4]> <tibble [0 x 1]>
#> 7 <split [6750/750]> Fold07 <tibble [1 x 4]> <tibble [0 x 1]>
#> 8 <split [6750/750]> Fold08 <tibble [1 x 4]> <tibble [0 x 1]>
#> 9 <split [6750/750]> Fold09 <tibble [1 x 4]> <tibble [0 x 1]>
#> 10 <split [6750/750]> Fold10 <tibble [1 x 4]> <tibble [0 x 1]>

What results do we obtain from the null model, in terms of performance
metrics?

collect_metrics(null_rs)

#> # A tibble: 1 x 6
#> .metric .estimator mean n std_err .config
#> <chr> <chr> <dbl> <int> <dbl> <chr>
#> 1 rmse standard 47.9 10 0.294 Preprocessor1_Model1

The RMSE indicates that this null model is dramatically worse than our first
model. Even our first very attempt at a regression model (using only unigrams
and very little specialized preprocessing) did much better than the null model;
the text of the Supreme Court opinions has enough information in it related
to the year the opinions were published that we can build successful models.

6.3 Compare to a random forest model 119

6.3 Compare to a random forest model

Random forest models are broadly used in predictive modeling contexts be-
cause they are low-maintenance and perform well. For example, see Caruana,
Karampatziakis, and Yessenalina (2008) and Olson et al. (2018) for compar-
isons of the performance of common models such as random forest, decision
tree, support vector machines, etc. trained on benchmark data sets; random
forest models were one of the best overall. Let’s see how a random forest model
performs with our data set of Supreme Court opinions.

First, let’s build a random forest model specification, using the ranger im-
plementation. Random forest models are known for performing well without
hyperparameter tuning, so we will just make sure we have enough trees.

rf_spec <- rand_forest(trees = 1000) %>%
set_engine("ranger") %>%
set_mode("regression")

rf_spec

#> Random Forest Model Specification (regression)
#>
#> Main Arguments:
#> trees = 1000
#>
#> Computational engine: ranger

Now we can fit this random forest model. Let’s use fit_resamples() again, so
we can evaluate the model performance. We will use three arguments to this
function:

• Our modeling workflow(), with the same preprocessing recipe we have been
using so far in this chapter plus our new random forest model specification

• Our cross-validation resamples of the Supreme Court opinions

• A control argument to specify that we want to keep the predictions, to
explore after fitting

120 6 Regression

rf_rs <- fit_resamples(
scotus_wf %>% add_model(rf_spec),
scotus_folds,
control = control_resamples(save_pred = TRUE)

)

We can use collect_metrics() to obtain and format the performance metrics
for this random forest model.

collect_metrics(rf_rs)

#> # A tibble: 2 x 6
#> .metric .estimator mean n std_err .config
#> <chr> <chr> <dbl> <int> <dbl> <chr>
#> 1 rmse standard 15.0 10 0.264 Preprocessor1_Model1
#> 2 rsq standard 0.919 10 0.00283 Preprocessor1_Model1

This looks pretty promising, so let’s explore the predictions for this random
forest model.

collect_predictions(rf_rs) %>%
ggplot(aes(year, .pred, color = id)) +
geom_abline(lty = 2, color = "gray80", size = 1.5) +
geom_point(alpha = 0.3) +
labs(
x = "Truth",
y = "Predicted year",
color = NULL,
title = paste("Predicted and true years for Supreme Court opinions using",

"a random forest model", sep = "\n"),
subtitle = "Each cross-validation fold is shown in a different color"

)

Figure 6.3 shows some of the strange behavior from our fitted model. The
overall performance metrics look pretty good, but predictions are too high
and too low around certain threshold years.

It is very common to run into problems when using tree-based models like
random forests with text data. One of the defining characteristics of text
data is that it is sparse, with many features but most features not occurring
in most observations. Tree-based models such as random forests are often

6.3 Compare to a random forest model 121

FIGURE 6.3: The random forest model did not perform very sensibly across
years, compared to our first attempt using a linear SVM model

not well-suited to sparse data because of how decision trees model outcomes
(Tang, Garreau, and Luxburg 2018).

Models that work best with text tend to be models designed for or other-
wise appropriate for sparse data.

Algorithms that work well with sparse data are less important when text has
been transformed to a non-sparse representation, such as with word embed-
dings (Chapter 5).

122 6 Regression

6.4 Case study: removing stop words

We did not remove stop words (Chapter 3) in any of our models so far in this
chapter. What impact will removing stop words have, and how do we know
which stop word list is the best to use? The best way to answer these questions
is with experimentation.

Removing stop words is part of data preprocessing, so we define this step as
part of our preprocessing recipe. Let’s use the best model we’ve found so far
(the linear SVM model from Section 6.1.2) and switch in a different recipe in
our modeling workflow.

Let’s build a small recipe wrapper helper function so we can pass a value
stopword_name to step_stopwords().

stopword_rec <- function(stopword_name) {
recipe(year ~ text, data = scotus_train) %>%
step_tokenize(text) %>%
step_stopwords(text, stopword_source = stopword_name) %>%
step_tokenfilter(text, max_tokens = 1e3) %>%
step_tfidf(text) %>%
step_normalize(all_predictors())

}

For example, now we can create a recipe that removes the Snowball stop words
list by calling this function.

stopword_rec("snowball")

#> Data Recipe
#>
#> Inputs:
#>
#> role #variables
#> outcome 1
#> predictor 1
#>
#> Operations:
#>
#> Tokenization for text

6.4 Case study: removing stop words 123

#> Stop word removal for text
#> Text filtering for text
#> Term frequency-inverse document frequency with text
#> Centering and scaling for all_predictors()

Next, let’s set up a new workflow that has a model only, using add_model().
We start with the empty workflow() and then add our linear SVM regression
model.

svm_wf <- workflow() %>%
add_model(svm_spec)

svm_wf

#> == Workflow ==
#> Preprocessor: None
#> Model: svm_linear()
#>
#> -- Model ---
#> Linear Support Vector Machine Specification (regression)
#>
#> Computational engine: LiblineaR

Notice that for this workflow, there is no preprocessor yet: Preprocessor: None.
This workflow uses the same linear SVM specification that we used in Section
6.1, but we are going to combine several different preprocessing recipes with
it, one for each stop word lexicon we want to try.

Now we can put this all together and fit these models that include stop word
removal. We could create a little helper function for fitting like we did for
the recipe, but we have printed out all three calls to fit_resamples() for extra
clarity. Notice for each one that there are two arguments:

• A workflow, which consists of the linear SVM model specification and a
data preprocessing recipe with stop word removal

• The same cross-validation folds we created earlier

set.seed(123)
snowball_rs <- fit_resamples(

svm_wf %>% add_recipe(stopword_rec("snowball")),

124 6 Regression

scotus_folds
)

set.seed(234)
smart_rs <- fit_resamples(
svm_wf %>% add_recipe(stopword_rec("smart")),
scotus_folds

)

set.seed(345)
stopwords_iso_rs <- fit_resamples(

svm_wf %>% add_recipe(stopword_rec("stopwords-iso")),
scotus_folds

)

After fitting models to each of the cross-validation folds, these sets of results
contain metrics computed for removing that set of stop words.

collect_metrics(smart_rs)

#> # A tibble: 2 x 6
#> .metric .estimator mean n std_err .config
#> <chr> <chr> <dbl> <int> <dbl> <chr>
#> 1 rmse standard 17.2 10 0.199 Preprocessor1_Model1
#> 2 rsq standard 0.876 10 0.00261 Preprocessor1_Model1

We can explore whether one of these sets of stop words performed better than
the others by comparing the performance, for example in terms of RMSE as
shown Figure 6.4. This plot shows the five best models for each set of stop
words, using show_best() applied to each via purrr::map_dfr().

word_counts <- tibble(name = c("snowball", "smart", "stopwords-iso")) %>%
mutate(words = map_int(name, ~length(stopwords::stopwords(source = .))))

list(snowball = snowball_rs,
smart = smart_rs,
`stopwords-iso` = stopwords_iso_rs) %>%

map_dfr(show_best, "rmse", .id = "name") %>%
left_join(word_counts, by = "name") %>%
mutate(name = paste0(name, " (", words, " words)"),

6.4 Case study: removing stop words 125

name = fct_reorder(name, words)) %>%
ggplot(aes(name, mean, color = name)) +
geom_crossbar(aes(ymin = mean - std_err, ymax = mean + std_err), alpha = 0.6) +
geom_point(size = 3, alpha = 0.8) +
theme(legend.position = "none") +
labs(x = NULL, y = "RMSE",

title = "Model performance for three stop word lexicons",
subtitle = "For this data set, the Snowball lexicon performed best")

1�.50

1�.�5

1�.00

1�.�5

1�.50

snoZball �1�5 Zords� smart �5�1 Zords� stopZords−iso �1��� Zords�

5
0

6
E

For this data set� the 6noZball le[icon performed best
0odel performance for three stop Zord le[icons

FIGURE 6.4: Comparing model performance for predicting the year of
Supreme Court opinions with three different stop word lexicons

The Snowball lexicon contains the smallest number of words (see Figure 3.1)
and, in this case, results in the best performance. Removing fewer stop words
results in the best performance.

This result is not generalizable to all data sets and contexts, but the
approach outlined in this section is generalizable.

This approach can be used to compare different lexicons and find the best
one for a specific data set and model. Notice how the results for all stop word
lexicons are worse than removing no stop words at all (remember that the

126 6 Regression

RMSE was 15.6 years in Section 6.1.2). This indicates that, for this particular
data set, removing even a small stop word list is not a great choice.

When removing stop words does appear to help a model, it’s good to know
that removing stop words isn’t computationally slow or difficult so the cost
for this improvement is low.

6.5 Case study: varying n-grams

Each model trained so far in this chapter has involved single words or uni-
grams, but using n-grams (Section 2.2.3) can integrate different kinds of in-
formation into a model. Bigrams and trigrams (or even higher-order n-grams)
capture concepts that span single words, as well as effects from word order,
that can be predictive.

This is another part of data preprocessing, so we again define this step as part
of our preprocessing recipe. Let’s build another small recipe wrapper helper
function so we can pass a list of options ngram_options to step_tokenize(). We’ll
use it with the same model as the previous section.

ngram_rec <- function(ngram_options) {
recipe(year ~ text, data = scotus_train) %>%
step_tokenize(text, token = "ngrams", options = ngram_options) %>%
step_tokenfilter(text, max_tokens = 1e3) %>%
step_tfidf(text) %>%
step_normalize(all_predictors())

}

There are two options we can specify, n and n_min, when we are using engine
= "tokenizers". We can set up a recipe with only n = 1 to tokenize and only
extract the unigrams.

ngram_rec(list(n = 1))

We can use n = 3, n_min = 1 to identify the set of all trigrams, bigrams, and
unigrams.

6.5 Case study: varying n-grams 127

ngram_rec(list(n = 3, n_min = 1))

Including n-grams of different orders in a model (such as trigrams, bi-
grams, plus unigrams) allows the model to learn at different levels of
linguistic organization and context.

We can reuse the same workflow svm_wf from our earlier case study; these types
of modular components are a benefit to adopting this approach to supervised
machine learning. This workflow provides the linear SVM specification. Let’s
put it all together and create a helper function to use fit_resamples() with this
model plus our helper recipe function.

fit_ngram <- function(ngram_options) {
fit_resamples(
svm_wf %>% add_recipe(ngram_rec(ngram_options)),
scotus_folds

)
}

We could have created this type of small function for trying out differ-
ent stop word lexicons in Section 6.4, but there we showed each call to
fit_resamples() for extra clarity.

With this helper function, let’s try out predicting the year of Supreme Court
opinions using:

• only unigrams

• bigrams and unigrams

• trigrams, bigrams, and unigrams

128 6 Regression

set.seed(123)
unigram_rs <- fit_ngram(list(n = 1))

set.seed(234)
bigram_rs <- fit_ngram(list(n = 2, n_min = 1))

set.seed(345)
trigram_rs <- fit_ngram(list(n = 3, n_min = 1))

These sets of results contain metrics computed for the model with that tok-
enization strategy.

collect_metrics(bigram_rs)

#> # A tibble: 2 x 6
#> .metric .estimator mean n std_err .config
#> <chr> <chr> <dbl> <int> <dbl> <chr>
#> 1 rmse standard 15.9 10 0.225 Preprocessor1_Model1
#> 2 rsq standard 0.892 10 0.00240 Preprocessor1_Model1

We can compare the performance of these models in terms of RMSE as shown
Figure 6.5.

list(`1` = unigram_rs,
`1 and 2` = bigram_rs,
`1, 2, and 3` = trigram_rs) %>%

map_dfr(collect_metrics, .id = "name") %>%
filter(.metric == "rmse") %>%
ggplot(aes(name, mean, color = name)) +
geom_crossbar(aes(ymin = mean - std_err, ymax = mean + std_err), alpha = 0.6) +
geom_point(size = 3, alpha = 0.8) +
theme(legend.position = "none") +
labs(
x = "Degree of n-grams",
y = "RMSE",
title = "Model performance for different degrees of n-gram tokenization",
subtitle = "For the same number of tokens, unigrams performed best"

)

6.6 Case study: lemmatization 129

15.50

15.�5

1�.00

1�.�5

1 1 and � 1� �� and �
'egree of n−grams

5
0

6
E

For the same number of toNens� unigrams performed best
0odel performance for different degrees of n−gram toNeni]ation

FIGURE 6.5: Comparing model performance for predicting the year of
Supreme Court opinions with three different degrees of n-grams

Each of these models was trained with max_tokens = 1e3, i.e., including only the
top 1000 tokens for each tokenization strategy. Holding the number of tokens
constant, using unigrams alone performs best for this corpus of Supreme Court
opinions. To be able to incorporate the more complex information in bigrams
or trigrams, we would need to increase the number of tokens in the model
considerably.

Keep in mind that adding n-grams is computationally expensive to start with,
especially compared to the typical improvement in model performance gained.
We can benchmark the whole model workflow, including preprocessing and
modeling. Using bigrams plus unigrams takes more than twice as long to
train than only unigrams (number of tokens held constant), and adding in
trigrams as well takes almost five times as long as training on unigrams alone.

6.6 Case study: lemmatization

As we discussed in Section 4.6, we can normalize words to their roots or
lemmas based on each word’s context and the structure of a language. Table
6.1 shows both the original words and the lemmas for one sentence from a

130 6 Regression

Supreme Court opinion, using lemmatization implemented via the spaCy4

library as made available through the spacyr R package (Benoit and Matsuo
2020).

Notice several things about lemmatization that are different from the kind of
default tokenization (Chapter 2) you may be more familiar with.

• Words are converted to lowercase except for proper nouns.

• The lemma for pronouns is -PRON-.

• Words are converted from their existing form in the text to their canonical
roots, like “disagree” and “conclude.”

• Irregular verbs are converted to their canonical form (“did” to “do”).

Using lemmatization instead of a more straightforward tokenization strategy
is slower because of the increased complexity involved, but it can be worth it.
Let’s explore how to train a model using lemmas instead of words.

Lemmatization is, like choices around n-grams and stop words, part of data
preprocessing so we define how to set up lemmatization as part of our prepro-
cessing recipe. We use engine = "spacyr" for tokenization (instead of the default)
and add step_lemma() to our preprocessing. This step extracts the lemmas from
the parsing done by the tokenization engine.

spacyr::spacy_initialize(entity = FALSE)

#> NULL

lemma_rec <- recipe(year ~ text, data = scotus_train) %>%
step_tokenize(text, engine = "spacyr") %>%
step_lemma(text) %>%
step_tokenfilter(text, max_tokens = 1e3) %>%
step_tfidf(text) %>%
step_normalize(all_predictors())

lemma_rec

4https://spacy.io/

https://spacy.io/
https://spacy.io/

6.6 Case study: lemmatization 131

Lemmatization of one sentence from a Supreme Court opinion
original word lemma
However however
, ,
the the
Court Court
of of
Appeals Appeals
disagreed disagree
with with
the the
District District
Court Court
’s ’s
construction construction
of of
the the
state state
statute statute
, ,
concluding conclude
that that
it it
did do
authorize authorize
issuance issuance
of of
the the
orders order
to to
withhold withhold
to to
the the
Postal Postal
Service Service
. .

132 6 Regression

#> Data Recipe
#>
#> Inputs:
#>
#> role #variables
#> outcome 1
#> predictor 1
#>
#> Operations:
#>
#> Tokenization for text
#> Lemmatization for text
#> Text filtering for text
#> Term frequency-inverse document frequency with text
#> Centering and scaling for all_predictors()

Let’s combine this lemmatized text with our linear SVM workflow. We can
then fit our workflow to our resampled data sets and estimate performance
using lemmatization.

lemma_rs <- fit_resamples(
svm_wf %>% add_recipe(lemma_rec),
scotus_folds

)

How did this model perform?

collect_metrics(lemma_rs)

#> # A tibble: 2 x 6
#> .metric .estimator mean n std_err .config
#> <chr> <chr> <dbl> <int> <dbl> <chr>
#> 1 rmse standard 14.2 10 0.276 Preprocessor1_Model1
#> 2 rsq standard 0.913 10 0.00304 Preprocessor1_Model1

The best value for RMSE at 14.2 shows us that using lemmatization can have
a significant benefit for model performance, compared to 15.6 from fitting a
non-lemmatized linear SVM model in Section 6.1.2. The best model using
lemmatization is better than the best model without. However, this comes at
a cost of much slower training because of the procedure involved in identifying
lemmas; adding step_lemma() to our preprocessing increases the overall time to
train the workflow by over 10-fold.

6.7 Case study: feature hashing 133

We can use engine = "spacyr" to assign part-of-speech tags to the tokens
during tokenization, and this information can be used in various use-
ful ways in text modeling. One approach is to filter tokens to only re-
tain a certain part of speech, like nouns. An example of how to do this
is illustrated in this textrecipes blogpost5 and can be performed with
step_pos_filter().

6.7 Case study: feature hashing

The models we have created so far have used tokenization (Chapter 2) to
split apart text data into tokens that are meaningful to us as human beings
(words, bigrams) and then weighted these tokens by simple counts with word
frequencies or weighted counts with tf-idf. A problem with these methods is
that the output space can be vast and dynamic. We have limited ourselves to
1000 tokens so far in this chapter, but we could easily have more than 10,000
features in our training set. We may run into computational problems with
memory or long processing times; deciding how many tokens to include can
become a trade-off between computational time and information. This style
of approach also doesn’t let us take advantage of new tokens we didn’t see in
our training data.

One method that has gained popularity in the machine learning field is the
hashing trick. This method addresses many of the challenges outlined above
and is very fast with a low memory footprint.

Let’s start with the basics of feature hashing. First proposed by Weinberger
et al. (2009), feature hashing was introduced as a dimensionality reduction
method with a simple premise. We begin with a hashing function that we
then apply to our tokens.

A hashing function takes input of variable size and maps it to output of
a fixed size. Hashing functions are commonly used in cryptography.

5https://www.hvitfeldt.me/blog/tidytuesday-pos-textrecipes-the-office/

https://www.hvitfeldt.me/blog/tidytuesday-pos-textrecipes-the-office/
https://www.hvitfeldt.me/blog/tidytuesday-pos-textrecipes-the-office/

134 6 Regression

We will use the hash() function from the rlang package to illustrate the be-
havior of hashing functions. The rlang::hash() function uses the XXH128 hash
algorithm of the xxHash library, which generates a 128-bit hash. This is a
more complex hashing function than what is normally used for the hashing
trick. The 32-bit version of MurmurHash3 (Appleby 2008) is often used for its
speed and good properties.

Hashing functions are typically very fast and have certain properties. For
example, the output of a hash function is expected to be uniform, with
the whole output space filled evenly. The “avalanche effect” describes how
similar strings are hashed in such a way that their hashes are not similar
in the output space.

Suppose we have many country names in a character vector. We can apply
the hashing function to each of the country names to project them into an
integer space defined by the hashing function.

Since hash() creates hashes that are very long, let’s create small_hash() for
demonstration purposes here that generates slightly smaller hashes. (The spe-
cific details of what hashes are generated are not important here.)

library(rlang)
countries <- c("Palau", "Luxembourg", "Vietnam", "Guam", "Argentina",

"Mayotte", "Bouvet Island", "South Korea", "San Marino",
"American Samoa")

small_hash <- function(x) {
strtoi(substr(hash(x), 26, 32), 16)

}

map_int(countries, small_hash)

#> [1] 4292706 2881716 242176357 240902473 204438359 88787026 230339508
#> [8] 15112074 96146649 192775182

Our small_hash() function uses 7 * 4 = 28 bits, so the number of possible values
is 2^28 = 268435456. This is admittedly not much of an improvement over 10
country names. Let’s take the modulo of these big integer values to project
them down to a more manageable space.

6.7 Case study: feature hashing 135

map_int(countries, small_hash) %% 24

#> [1] 18 12 13 1 23 10 12 18 9 6

Now we can use these values as indices when creating a matrix.

#> 10 x 24 sparse Matrix of class "ngCMatrix"
#>
#> Palau |
#> Luxembourg |
#> Vietnam |
#> Guam | .
#> Argentina . | .
#> Mayotte |
#> Bouvet Island |
#> South Korea |
#> San Marino |
#> American Samoa |

This method is very fast; both the hashing and modulo can be performed
independently for each input since neither need information about the full
corpus. Since we are reducing the space, there is a chance that multiple words
are hashed to the same value. This is called a collision and, at first glance, it
seems like it would be a big problem for a model. However, research finds that
using feature hashing has roughly the same accuracy as a simple bag-of-words
model, and the effect of collisions is quite minor (Forman and Kirshenbaum
2008).

Another step that is taken to avoid the negative effects of hash collisions is
to use a second hashing function that returns 1 and −1. This determines
if we are adding or subtracting the index we get from the first hashin
function. Suppose both the words “outdoor” and “pleasant” hash to the
integer value 583. Without the second hashing they would collide to 2.
Using signed hashing, we have a 50% chance that they will cancel each
other out, which tries to stop one feature from growing too much.

136 6 Regression

There are downsides to using feature hashing. Feature hashing:

• still has one tuning parameter, and

• cannot be reversed.

The number of buckets you have correlates with computation speed and colli-
sion rate, which in turn affects performance. It is your job to find the output
that best suits your needs. Increasing the number of buckets will decrease the
collision rate but will, in turn, return a larger output data set, which increases
model fitting time. The number of buckets is tunable in tidymodels using the
tune package.

Perhaps the more important downside to using feature hashing is that the
operation can’t be reversed. We are not able to detect if a collision occurs and
it is difficult to understand the effect of any word in the model. Remember
that we are left with n columns of hashes (not tokens), so if we find that the
274th column is a highly predictive feature, we cannot know in general which
tokens contribute to that column. We cannot directly connect model values
to words or tokens at all. We could go back to our training set and create a
paired list of the tokens and what hashes they map to. Sometimes we might
find only one token in that list, but it may have two (or three or four or more!)
different tokens contributing. This feature hashing method is used because of
its speed and scalability, not because it is interpretable.

Feature hashing on tokens is available in tidymodels using the step_texthash()
step from textrecipes. Let’s prep() and bake() this recipe for demonstration
purposes.

scotus_hash <- recipe(year ~ text, data = scotus_train) %>%
step_tokenize(text) %>%
step_texthash(text, signed = TRUE, num_terms = 512) %>%
prep() %>%
bake(new_data = NULL)

dim(scotus_hash)

#> [1] 7500 513

There are many columns in the results. Let’s take a glimpse() at the first 10
columns.

6.7 Case study: feature hashing 137

scotus_hash %>%
select(num_range("text_hash00", 1:9)) %>%
glimpse()

#> Rows: 7,500
#> Columns: 9
#> $ text_hash001 <dbl> -16, -5, -12, -10, -10, -2, -7, -13, -16, -18, -1, -2, -1~
#> $ text_hash002 <dbl> -1, 1, 3, -2, 0, 0, 5, -1, 1, 6, 0, 2, 0, 0, 0, -3, 1, 2,~
#> $ text_hash003 <dbl> -2, 0, 4, -1, -1, 1, -5, -2, -2, 0, 0, -1, 1, 6, 0, 0, -3~
#> $ text_hash004 <dbl> -2, 0, -1, 0, 0, 0, -14, -14, -4, -2, 0, -10, -1, -2, 0, ~
#> $ text_hash005 <dbl> 0, 0, 0, 0, 0, 0, -2, -1, 2, 1, 0, -1, 0, -1, 0, 0, -1, 0~
#> $ text_hash006 <dbl> 24, 2, 4, 6, 7, 2, 14, 13, 13, 22, 1, 41, 2, 49, 9, 1, 17~
#> $ text_hash007 <dbl> 13, 1, 1, -3, 0, -6, -2, -4, -8, -1, 0, 0, -4, -11, 0, 0,~
#> $ text_hash008 <dbl> -8, 3, 1, 1, 1, 0, -19, 0, 1, 0, 1, -1, 1, 1, -2, 1, -8, ~
#> $ text_hash009 <dbl> -2, 0, -1, 1, 0, 0, 0, -1, -1, -1, 0, -1, -1, -1, 0, 0, -~

By using step_texthash() we can quickly generate machine-ready data with a
consistent number of variables. This typically results in a slight loss of per-
formance compared to using a traditional bag-of-words representation. An
example of this loss is illustrated in this textrecipes blogpost6.

6.7.1 Text normalization

When working with text, you will inevitably run into problems with encodings
and related irregularities. These kinds of problems have a significant influence
on feature hashing, as well as other preprocessing steps. Consider the German
word “schön.” The o with an umlaut (two dots over it) is a fairly simple
character, but it can be represented in a couple of different ways. We can
either use a single character \U00f67 to represent the letter with an umlaut.
Alternatively, we can use two characters, one for the o and one character to
denote the presence of two dots over the previous character \U03088.

s1 <- "sch\U00f6n"
s2 <- "scho\U0308n"

These two strings will print the same for us as human readers.

6https://www.hvitfeldt.me/blog/textrecipes-series-featurehashing/
7https://www.fileformat.info/info/unicode/char/00f6/index.htm
8https://www.fileformat.info/info/unicode/char/0308/index.htm

https://www.hvitfeldt.me/blog/textrecipes-series-featurehashing/
https://www.hvitfeldt.me/blog/textrecipes-series-featurehashing/
https://www.fileformat.info/info/unicode/char/00f6/index.htm
https://www.fileformat.info/info/unicode/char/00f6/index.htm
https://www.fileformat.info/info/unicode/char/0308/index.htm
https://www.fileformat.info/info/unicode/char/0308/index.htm

138 6 Regression

s1

#> [1] "schön"

s2

#> [1] "schön"

However, they are not equal.

s1 == s2

#> [1] FALSE

This poses a problem for the avalanche effect, which is needed for feature
hashing to perform correctly. The avalanche effect will result in these two
words (which should be identical) hashing to completely different values.

small_hash(s1)

#> [1] 180735918

small_hash(s2)

#> [1] 3013209

We can deal with this problem by performing text normalization on our
text before feeding it into our preprocessing engine. One library to perform
text normalization is the stringi package, which includes many different text
normalization methods. How these methods work is beyond the scope of this
book, but know that the text normalization functions make text like our two
versions of “schön” equivalent. We will use stri_trans_nfc() for this example,
which performs canonical decomposition, followed by canonical composition,
but we could also use textrecipes::step_text_normalize() within a tidymodels
recipe for the same task.

6.8 What evaluation metrics are appropriate? 139

library(stringi)

stri_trans_nfc(s1) == stri_trans_nfc(s2)

#> [1] TRUE

small_hash(stri_trans_nfc(s1))

#> [1] 180735918

small_hash(stri_trans_nfc(s2))

#> [1] 180735918

Now we see that the strings are equal after normalization.

This issue of text normalization can be important even if you don’t use
feature hashing in your machine learning.

Since these words are encoded in different ways, they will be counted sepa-
rately when we are counting token frequencies. Representing what should be
a single token in multiple ways will split the counts. This will introduce noise
in the best case, and in worse cases, some tokens will fall below the cutoff
when we select tokens, leading to a loss of potentially informative words.

Luckily this is easily addressed by using stri_trans_nfc() on our text columns
before starting preprocessing, or perhaps more conveniently, by using tex-
trecipes::step_text_normalize() within a preprocessing recipe.

6.8 What evaluation metrics are appropriate?

We have focused on using RMSE and 𝑅2 as metrics for our models in this
chapter, the defaults in the tidymodels framework. Other metrics can also be

140 6 Regression

appropriate for regression models. Another common set of regression metric
options are the various flavors of mean absolute error.

If you know before you fit your model that you want to compute one or more
of these metrics, you can specify them in a call to metric_set(). Let’s set up
a tuning grid for mean absolute error (mae) and mean absolute percent error
(mape).

lemma_rs <- fit_resamples(
svm_wf %>% add_recipe(lemma_rec),
scotus_folds,
metrics = metric_set(mae, mape)

)

If you have already fit your model, you can still compute and explore non-
default metrics as long as you saved the predictions for your resampled data
sets using control_resamples(save_pred = TRUE).

Let’s go back to the first linear SVM model we tuned in Section 6.1.2, with
results in svm_rs. We can compute the overall mean absolute percent error.

svm_rs %>%
collect_predictions() %>%
mape(year, .pred)

#> # A tibble: 1 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 mape standard 0.616

We can also compute the mean absolute percent error for each resample.

svm_rs %>%
collect_predictions() %>%
group_by(id) %>%
mape(year, .pred)

#> # A tibble: 10 x 4
#> id .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 Fold01 mape standard 0.603

6.8 What evaluation metrics are appropriate? 141

#> 2 Fold02 mape standard 0.660
#> 3 Fold03 mape standard 0.596
#> 4 Fold04 mape standard 0.639
#> 5 Fold05 mape standard 0.618
#> 6 Fold06 mape standard 0.611
#> 7 Fold07 mape standard 0.618
#> 8 Fold08 mape standard 0.602
#> 9 Fold09 mape standard 0.604
#> 10 Fold10 mape standard 0.605

Similarly, we can do the same for the mean absolute error, which gives a result
in units of the original data (years, in this case) instead of relative units.

svm_rs %>%
collect_predictions() %>%
group_by(id) %>%
mae(year, .pred)

#> # A tibble: 10 x 4
#> id .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 Fold01 mae standard 11.5
#> 2 Fold02 mae standard 12.6
#> 3 Fold03 mae standard 11.4
#> 4 Fold04 mae standard 12.2
#> 5 Fold05 mae standard 11.8
#> 6 Fold06 mae standard 11.7
#> 7 Fold07 mae standard 11.9
#> 8 Fold08 mae standard 11.5
#> 9 Fold09 mae standard 11.6
#> 10 Fold10 mae standard 11.6

For the full set of regression metric options, see the yardstick documenta-
tion9.

9https://yardstick.tidymodels.org/reference/

https://yardstick.tidymodels.org/reference/
https://yardstick.tidymodels.org/reference/

142 6 Regression

6.9 The full game: regression

In this chapter, we started from the beginning and then explored both different
types of models and different data preprocessing steps. Let’s take a step back
and build one final model, using everything we’ve learned. For our final model,
let’s again use a linear SVM regression model, since it performed better than
the other options we looked at. We will:

• train on the same set of cross-validation resamples used throughout this
chapter,

• tune the number of tokens used in the model to find a value that fits our
needs,

• include both unigrams and bigrams,

• choose not to use lemmatization, to demonstrate what is possible for sit-
uations when training time makes lemmatization an impractical choice,
and

• finally evaluate on the testing set, which we have not touched at all yet.

We will include a much larger number of tokens than before, which should
give us the latitude to include both unigrams and bigrams, despite the result
we saw in Section 6.5.

6.9.1 Preprocess the data

First, let’s create the data preprocessing recipe. By setting the tokenization
options to list(n = 2, n_min = 1), we will include both unigrams and bigrams
in our model.

When we set max_tokens = tune(), we can train multiple models with different
numbers of maximum tokens and then compare these models’ performance to
choose the best value. Previously, we set max_tokens = 1e3 to choose a specific
value for the number of tokens included in our model, but here we are going
to try multiple different values.

6.9 The full game: regression 143

final_rec <- recipe(year ~ text, data = scotus_train) %>%
step_tokenize(text, token = "ngrams", options = list(n = 2, n_min = 1)) %>%
step_tokenfilter(text, max_tokens = tune()) %>%
step_tfidf(text) %>%
step_normalize(all_predictors())

final_rec

#> Data Recipe
#>
#> Inputs:
#>
#> role #variables
#> outcome 1
#> predictor 1
#>
#> Operations:
#>
#> Tokenization for text
#> Text filtering for text
#> Term frequency-inverse document frequency with text
#> Centering and scaling for all_predictors()

6.9.2 Specify the model

Let’s use the same linear SVM regression model specification we have used
multiple times in this chapter, and set it up here again to remind ourselves.

svm_spec <- svm_linear() %>%
set_mode("regression") %>%
set_engine("LiblineaR")

svm_spec

#> Linear Support Vector Machine Specification (regression)
#>
#> Computational engine: LiblineaR

We can combine the preprocessing recipe and the model specification in a
tunable workflow. We can’t fit this workflow right away to training data,
because the value for max_tokens hasn’t been chosen yet.

144 6 Regression

tune_wf <- workflow() %>%
add_recipe(final_rec) %>%
add_model(svm_spec)

tune_wf

#> == Workflow ==
#> Preprocessor: Recipe
#> Model: svm_linear()
#>
#> -- Preprocessor --
#> 4 Recipe Steps
#>
#> * step_tokenize()
#> * step_tokenfilter()
#> * step_tfidf()
#> * step_normalize()
#>
#> -- Model ---
#> Linear Support Vector Machine Specification (regression)
#>
#> Computational engine: LiblineaR

6.9.3 Tune the model

Before we tune the model, we need to set up a set of possible parameter values
to try.

There is one tunable parameter in this model, the maximum number of
tokens included in the model.

Let’s include different possible values for this parameter starting from the
value we’ve already tried, for a combination of six models.

final_grid <- grid_regular(
max_tokens(range = c(1e3, 6e3)),
levels = 6

)
final_grid

6.9 The full game: regression 145

#> # A tibble: 6 x 1
#> max_tokens
#> <int>
#> 1 1000
#> 2 2000
#> 3 3000
#> 4 4000
#> 5 5000
#> 6 6000

Now it’s time for tuning. Instead of using fit_resamples() as we have through-
out this chapter, we are going to use tune_grid(), a function that has a very
similar set of arguments. We pass this function our workflow (which holds
our preprocessing recipe and SVM model), our resampling folds, and also the
grid of possible parameter values to try. Let’s save the predictions so we can
explore them in more detail, and let’s also set custom metrics instead of using
the defaults. Let’s compute RMSE, mean absolute error, and mean absolute
percent error during tuning.

final_rs <- tune_grid(
tune_wf,
scotus_folds,
grid = final_grid,
metrics = metric_set(rmse, mae, mape),
control = control_resamples(save_pred = TRUE)

)

final_rs

#> # Tuning results
#> # 10-fold cross-validation
#> # A tibble: 10 x 5
#> splits id .metrics .notes .predictions
#> <list> <chr> <list> <list> <list>
#> 1 <split [6750/750]> Fold01 <tibble [18 x 5]> <tibble [0 x 1]> <tibble [4,500 ~
#> 2 <split [6750/750]> Fold02 <tibble [18 x 5]> <tibble [0 x 1]> <tibble [4,500 ~
#> 3 <split [6750/750]> Fold03 <tibble [18 x 5]> <tibble [0 x 1]> <tibble [4,500 ~
#> 4 <split [6750/750]> Fold04 <tibble [18 x 5]> <tibble [0 x 1]> <tibble [4,500 ~
#> 5 <split [6750/750]> Fold05 <tibble [18 x 5]> <tibble [0 x 1]> <tibble [4,500 ~
#> 6 <split [6750/750]> Fold06 <tibble [18 x 5]> <tibble [0 x 1]> <tibble [4,500 ~
#> 7 <split [6750/750]> Fold07 <tibble [18 x 5]> <tibble [0 x 1]> <tibble [4,500 ~
#> 8 <split [6750/750]> Fold08 <tibble [18 x 5]> <tibble [0 x 1]> <tibble [4,500 ~
#> 9 <split [6750/750]> Fold09 <tibble [18 x 5]> <tibble [0 x 1]> <tibble [4,500 ~
#> 10 <split [6750/750]> Fold10 <tibble [18 x 5]> <tibble [0 x 1]> <tibble [4,500 ~

146 6 Regression

We trained all these models!

6.9.4 Evaluate the modeling

Now that all of the models with possible parameter values have been trained,
we can compare their performance. Figure 6.6 shows us the relationship be-
tween performance (as measured by the metrics we chose) and the number of
tokens.

final_rs %>%
collect_metrics() %>%
ggplot(aes(max_tokens, mean, color = .metric)) +
geom_line(size = 1.5, alpha = 0.5) +
geom_point(size = 2, alpha = 0.9) +
facet_wrap(~.metric, scales = "free_y", ncol = 1) +
theme(legend.position = "none") +
labs(
x = "Number of tokens",
title = "Linear SVM performance across number of tokens",
subtitle = "Performance improves as we include more tokens"

)

Since this is our final version of this model, we want to choose final parameters
and update our model object so we can use it with new data. We have several
options for choosing our final parameters, such as selecting the numerically
best model (which would be one of the ones with the most tokens in our
situation here) or the simplest model within some limit around the numerically
best result. In this situation, we likely want to choose a simpler model with
fewer tokens that gives close-to-best performance.

Let’s choose by percent loss compared to the best model, with the default 2%
loss.

chosen_mae <- final_rs %>%
select_by_pct_loss(metric = "mae", max_tokens)

chosen_mae

#> # A tibble: 1 x 9
#> max_tokens .metric .estimator mean n std_err .config .best .loss
#> <int> <chr> <chr> <dbl> <int> <dbl> <chr> <dbl> <dbl>
#> 1 5000 mae standard 10.1 10 0.0680 Preprocessor5_M~ 9.98 0.795

6.9 The full game: regression 147

rmse

mape

mae

�000 �000 �000

10.0

10.5

11.0

11.5

1�.0

0.5�

0.5�

0.�0

0.��

1�

15

Number of toNens

m
ea

n

3erformance improYes as Ze include more toNens
/inear 690 performance across number of toNens

FIGURE 6.6: Performance improves significantly at about 4000 tokens

After we have those parameters, penalty and max_tokens, we can finalize our
earlier tunable workflow, by updating it with this value.

final_wf <- finalize_workflow(tune_wf, chosen_mae)

final_wf

148 6 Regression

#> == Workflow ==
#> Preprocessor: Recipe
#> Model: svm_linear()
#>
#> -- Preprocessor --
#> 4 Recipe Steps
#>
#> * step_tokenize()
#> * step_tokenfilter()
#> * step_tfidf()
#> * step_normalize()
#>
#> -- Model ---
#> Linear Support Vector Machine Specification (regression)
#>
#> Computational engine: LiblineaR

The final_wf workflow now has a finalized value for max_tokens.

We can now fit this finalized workflow on training data and finally return to
our testing data.

Notice that this is the first time we have used our testing data during this
entire chapter; we compared and now tuned models using resampled data
sets instead of touching the testing set.

We can use the function last_fit() to fit our model one last time on our
training data and evaluate it on our testing data. We only have to pass this
function our finalized model/workflow and our data split.

final_fitted <- last_fit(final_wf, scotus_split)

collect_metrics(final_fitted)

#> # A tibble: 2 x 4
#> .metric .estimator .estimate .config
#> <chr> <chr> <dbl> <chr>
#> 1 rmse standard 13.8 Preprocessor1_Model1
#> 2 rsq standard 0.921 Preprocessor1_Model1

6.9 The full game: regression 149

The metrics for the test set look about the same as the resampled training data
and indicate we did not overfit during tuning. The RMSE of our final model
has improved compared to our earlier models, both because we are combining
multiple preprocessing steps and because we have tuned the number of tokens.

The output of last_fit() also contains a fitted model (a workflow, to be more
specific), that has been trained on the training data. We can tidy() this final
result to understand what the most important variables are in the predictions,
shown in Figure 6.7.

scotus_fit <- pull_workflow_fit(final_fitted$.workflow[[1]])

scotus_fit %>%
tidy() %>%
filter(term != "Bias") %>%
mutate(
sign = case_when(estimate > 0 ~ "Later (after mean year)",

TRUE ~ "Earlier (before mean year)"),
estimate = abs(estimate),
term = str_remove_all(term, "tfidf_text_")

) %>%
group_by(sign) %>%
top_n(20, estimate) %>%
ungroup() %>%
ggplot(aes(x = estimate,

y = fct_reorder(term, estimate),
fill = sign)) +

geom_col(show.legend = FALSE) +
scale_x_continuous(expand = c(0, 0)) +
facet_wrap(~sign, scales = "free") +
labs(
y = NULL,
title = paste("Variable importance for predicting year of",

"Supreme Court opinions"),
subtitle = paste("These features are the most importance",

"in predicting the year of an opinion")
)

The tokens (unigrams or bigrams) that contribute in the positive direction,
like “court said” and “constitutionally,” are associated with higher, later years;
those that contribute in the negative direction, like “ought” and “the judges,”
are associated with lower, earlier years for these Supreme Court opinions.

150 6 Regression

Earlier �before mean year� /ater �after mean year�

0.00 0.�5 0.50 0.�5 0.0 0.� 0.� 0.� 0.�
constitutionally

quite
of appeals

alleged
supra at

boundary
including

recogni]e
pp

noted
today

address
see

the congress
te[t

all of
id at
later

court said
f �d

thing
supposed

the defendant
the Mudges

on board
the counsel

considered as
contended

occasion
laid

section of
this cause

the said
ch
yet

afterZards
case of

admit
ought

1st

estimate

7hese features are the most importance in predicting the year of an opinion
9ariable importance for predicting year of 6upreme Court opinions

FIGURE 6.7: Some words or bigrams increase a Supreme Court opinion’s
probability of being written later (more recently) while some increase its prob-
ability of being written earlier

Some of these features are unigrams and some are bigrams, and stop words
are included because we did not remove them from the model.

We can also examine how the true and predicted years compare for the testing
set. Figure 6.8 shows us that, like for our earlier models on the resampled
training data, we can predict the year of Supreme Court opinions for the
testing data starting from about 1850. Predictions are less reliable before that
year. This is an example of finding different error rates across sub-groups
of observations, like we discussed in the overview to these chapters; these
differences can lead to unfairness and algorithmic bias when models are applied
in the real world.

final_fitted %>%
collect_predictions() %>%
ggplot(aes(year, .pred)) +
geom_abline(lty = 2, color = "gray80", size = 1.5) +
geom_point(alpha = 0.3) +
labs(

6.9 The full game: regression 151

x = "Truth",
y = "Predicted year",
title = paste("Predicted and true years for the testing set of",

"Supreme Court opinions"),
subtitle = "For the testing set, predictions are more reliable after 1850"

)

1800

1900

2000

1800 1850 1900 1950 2000
Truth

Pr
ed

ic
te

d
ye

ar

For the testing set, predictions are more reliable after 1850
Predicted and true years for the testing set of Supreme Court opinions

FIGURE 6.8: Predicted and true years from a linear SVM regression model
with bigrams and unigrams

Finally, we can gain more insight into our model and how it is behaving by
looking at observations from the test set that have been mispredicted. Let’s
bind together the predictions on the test set with the original Supreme Court
opinion test data and filter to observations with a prediction that is more than
25 years wrong.

152 6 Regression

scotus_bind <- collect_predictions(final_fitted) %>%
bind_cols(scotus_test %>% select(-year, -id)) %>%
filter(abs(year - .pred) > 25)

There isn’t too much training data to start with for the earliest years, so we are
unlikely to quickly gain insight from looking at the oldest opinions. However,
what do the more recent opinions that were predicted inaccurately look like?

scotus_bind %>%
arrange(-year) %>%
select(year, .pred, case_name, text)

#> # A tibble: 168 x 4
#> year .pred case_name text
#> <dbl> <dbl> <chr> <chr>
#> 1 2009 2055. Nijhawan v. Holder "Supreme Court of Unite~
#> 2 2008 1957. Green v. Johnson " Cite ~
#> 3 2008 1952. Dalehite v. United States "Supreme Court of Unite~
#> 4 2008 1982. Preston v. Ferrer "Supreme Court of Unite~
#> 5 2007 1876. Quebec Bank of Toronto v. Hellman "Supreme Court of Unite~
#> 6 2004 2035. Illinois v. Lidster "No. 02-1060.\nPolice s~
#> 7 2002 1969. Borgner v. Florida Board of Dentistry "No. 02-165.\nCERTIORAR~
#> 8 2000 1974. Ohler v. United States "OHLERv.UNITED STATES\n~
#> 9 2000 1955. Bush v. Palm Beach County Canvassing Bd. "No. 00-836\nON WRIT OF~
#> 10 1999 1964. Dickinson v. Zurko "No. 98 377\nQ. TODD DI~
#> # ... with 158 more rows

There are some interesting examples here where we can understand why the
model would mispredict:

• Dalehite v. United States was a case about a fertilizer explosion that is
mislabeled in our dataset; it was decided in 1953, not 2008 as we see in
our data, and we predict a year of 1952, very close to the true decision
date.

• Bush v. Palm Beach County Canvassing Board in 2000 was part of the
fallout of the 2000 presidential election and dealt with historical issues
like the due process clause of the U.S. Constitution; these “old” textual
elements push its prediction much earlier than its true date.

6.10 Summary 153

Looking at examples that your model does not perform well for is well
worth your time, for similar reasons that exploratory data analysis is
valuable before you begin training your model.

6.10 Summary

You can use regression modeling to predict a continuous variable from a data
set, including a text data set. Linear support vector machine models, along
with regularized linear models (which we will cover in the next chapter), often
work well for text data sets, while tree-based models such as random forest
often behave poorly in practice. There are many possible preprocessing steps
for text data, from removing stop words to n-gram tokenization strategies
to lemmatization, that may improve your model. Resampling data sets and
careful use of metrics allow you to make good choices among these possible
options, given your own concerns and priorities.

6.10.1 In this chapter, you learned:

• what kind of quantities can be modeled using regression

• to evaluate a model using resampled data

• how to compare different model types

• about measuring the impact of n-gram tokenization on models

• how to implement lemmatization and stop word removal with text models

• how feature hashing can be used as a fast alternative to bag-of-words

• about performance metrics for regression models

http://www.taylorandfrancis.com

7
Classification

In Chapter 6, we focused on modeling to predict continuous values for docu-
ments, such as what year a Supreme Court opinion was published. This is an
example of a regression model. We can also use machine learning to predict
labels on documents using a classification model. For both types of prediction
questions, we develop a learner or model to describe the relationship between
a target or outcome variable and our input features; what is different about
a classification model is the nature of that outcome.

• A regression model predicts a numeric or continuous value.

• A classification model predicts a class label or group membership.

For our classification example in this chapter, let’s consider the data set of con-
sumer complaints submitted to the US Consumer Finance Protection Bureau.
Let’s read in the complaint data (Section B.3) with read_csv().

library(tidyverse)
complaints <- read_csv("data/complaints.csv.gz")

We can start by taking a quick glimpse() at the data to see what we have to
work with. This data set contains a text field with the complaint, along with
information regarding what it was for, how and when it was filed, and the
response from the bureau.

glimpse(complaints)

#> Rows: 117,214
#> Columns: 18
#> $ date_received <date> 2019-09-24, 2019-10-25, 2019-11-08, 2019~
#> $ product <chr> "Debt collection", "Credit reporting, cre~
#> $ sub_product <chr> "I do not know", "Credit reporting", "I d~
#> $ issue <chr> "Attempts to collect debt not owed", "Inc~

DOI: 10.1201/9781003093459-7 155

https://doi.org/10.1201/9781003093459-7

156 7 Classification

#> $ sub_issue <chr> "Debt is not yours", "Information belongs~
#> $ consumer_complaint_narrative <chr> "transworld systems inc. \nis trying to c~
#> $ company_public_response <chr> NA, "Company has responded to the consume~
#> $ company <chr> "TRANSWORLD SYSTEMS INC", "TRANSUNION INT~
#> $ state <chr> "FL", "CA", "NC", "RI", "FL", "TX", "SC",~
#> $ zip_code <chr> "335XX", "937XX", "275XX", "029XX", "333X~
#> $ tags <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
#> $ consumer_consent_provided <chr> "Consent provided", "Consent provided", "~
#> $ submitted_via <chr> "Web", "Web", "Web", "Web", "Web", "Web",~
#> $ date_sent_to_company <date> 2019-09-24, 2019-10-25, 2019-11-08, 2019~
#> $ company_response_to_consumer <chr> "Closed with explanation", "Closed with e~
#> $ timely_response <chr> "Yes", "Yes", "Yes", "Yes", "Yes", "Yes",~
#> $ consumer_disputed <chr> "N/A", "N/A", "N/A", "N/A", "N/A", "N/A",~
#> $ complaint_id <dbl> 3384392, 3417821, 3433198, 3366475, 33853~

In this chapter, we will build classification models to predict what type of
financial product the complaints are referring to, i.e., a label or categorical
variable. The goal of predictive modeling with text input features and a cat-
egorical outcome is to learn and model the relationship between those input
features, typically created through steps as outlined in Chapters 1 through
5, and the class label or categorical outcome. Most classification models do
predict the probability of a class (a numeric output), but the particular char-
acteristics of this output make classification models different enough from
regression models that we handle them differently.

7.1 A first classification model

For our first model, let’s build a binary classification model to predict whether
a submitted complaint is about “Credit reporting, credit repair services, or
other personal consumer reports” or not.

This kind of “yes or no” binary classification model is both common and
useful in real-world text machine learning problems.

The outcome variable product contains more categories than this, so we need
to transform this variable to only contain the values “Credit reporting, credit
repair services, or other personal consumer reports” and “Other.”

7.1 A first classification model 157

It is always a good idea to look at your data! Here are the first six complaints:

head(complaints$consumer_complaint_narrative)

#> [1] "transworld systems inc. \nis trying to collect a debt that is not mine,
not owed and is inaccurate."
#> [2] "I would like to request the suppression of the following items from my
credit report, which are the result of my falling victim to identity theft.
This information does not relate to [transactions that I have made/accounts
that I have opened], as the attached supporting documentation can attest. As
such, it should be blocked from appearing on my credit report pursuant to
section 605B of the Fair Credit Reporting Act."
#> [3] "Over the past 2 weeks, I have been receiving excessive amounts of
telephone calls from the company listed in this complaint. The calls occur
between XXXX XXXX and XXXX XXXX to my cell and at my job. The company does not
have the right to harass me at work and I want this to stop. It is extremely
distracting to be told 5 times a day that I have a call from this collection
agency while at work."
#> [4] "I was sold access to an event digitally, of which I have all the
screenshots to detail the transactions, transferred the money and was provided
with only a fake of a ticket. I have reported this to paypal and it was for the
amount of {$21.00} including a {$1.00} fee from paypal. \n\nThis occured on
XX/XX/2019, by paypal user who gave two accounts : 1) XXXX 2) XXXX XXXX"
#> [5] "While checking my credit report I noticed three collections by a
company called ARS that i was unfamiliar with. I disputed these collections
with XXXX, and XXXX and they both replied that they contacted the creditor and
the creditor verified the debt so I asked for proof which both bureaus replied
that they are not required to prove anything. I then mailed a certified letter
to ARS requesting proof of the debts n the form of an original aggrement, or a
proof of a right to the debt, or even so much as the process as to how the bill
was calculated, to which I was simply replied a letter for each collection
claim that listed my name an account number and an amount with no other
information to verify the debts after I sent a clear notice to provide me
evidence. Afterwards I recontacted both XXXX, and XXXX, to redispute on the
premise that it is not my debt if evidence can not be drawn up, I feel as if I
am being personally victimized by ARS on my credit report for debts that are
not owed to them or any party for that matter, and I feel discouraged that the
credit bureaus who control many aspects of my personal finances are so
negligent about my information."
#> [6] "I would like the credit bureau to correct my XXXX XXXX XXXX XXXX
balance. My correct balance is XXXX"

158 7 Classification

The complaint narratives contain many series of capital "X"’s. These strings
(like “XX/XX” or “XXXX XXXX XXXX XXXX”) are used to to protect
personally identifiable information (PII) in this publicly available data set.
This is not a universal censoring mechanism; censoring and PII protection
will vary from source to source. Hopefully you will be able to find information
on PII censoring in a data dictionary, but you should always look at the data
yourself to verify.

We also see that monetary amounts are surrounded by curly brackets (like
"{$21.00}"); this is another text preprocessing step that has been taken care of
for us. We could craft a regular expression to extract all the dollar amounts.

complaints$consumer_complaint_narrative %>%
str_extract_all("\\{\\$[0-9\\.]*\\}") %>%
compact() %>%
head()

#> [[1]]
#> [1] "{$21.00}" "{$1.00}"
#>
#> [[2]]
#> [1] "{$2300.00}"
#>
#> [[3]]
#> [1] "{$200.00}" "{$5000.00}" "{$5000.00}" "{$770.00}" "{$800.00}"
#> [6] "{$5000.00}"
#>
#> [[4]]
#> [1] "{$15000.00}" "{$11000.00}" "{$420.00}" "{$15000.00}"
#>
#> [[5]]
#> [1] "{$0.00}" "{$0.00}" "{$0.00}" "{$0.00}"
#>
#> [[6]]
#> [1] "{$650.00}"

In Section 7.9, we will use an approach like this for custom feature engineering
from the text.

7.1.1 Building our first classification model

This data set includes more possible predictors than the text alone, but for
this first model we will only use the text variable consumer_complaint_narrative.

7.1 A first classification model 159

Let’s create a factor outcome variable product with two levels, “Credit” and
“Other.” Then, we split the data into training and testing data sets. We can
use the initial_split() function from rsample to create this binary split of the
data. The strata argument ensures that the distribution of product is similar
in the training set and testing set. Since the split uses random sampling, we
set a seed so we can reproduce our results.

library(tidymodels)

set.seed(1234)
complaints2class <- complaints %>%
mutate(product = factor(if_else(
product == paste("Credit reporting, credit repair services,",

"or other personal consumer reports"),
"Credit", "Other"

)))

complaints_split <- initial_split(complaints2class, strata = product)

complaints_train <- training(complaints_split)
complaints_test <- testing(complaints_split)

The dimensions of the two splits show that this first step worked as we planned.

dim(complaints_train)

#> [1] 87910 18

dim(complaints_test)

#> [1] 29304 18

Next we need to preprocess this data to prepare it for modeling; we have text
data, and we need to build numeric features for machine learning from that
text.

The recipes package, part of tidymodels, allows us to create a specification of
preprocessing steps we want to perform. These transformations are estimated
(or “trained”) on the training set so that they can be applied in the same way

160 7 Classification

on the testing set or new data at prediction time, without data leakage. We
initialize our set of preprocessing transformations with the recipe() function,
using a formula expression to specify the variables, our outcome plus our
predictor, along with the data set.

complaints_rec <-
recipe(product ~ consumer_complaint_narrative, data = complaints_train)

Now we add steps to process the text of the complaints; we use textrecipes
to handle the consumer_complaint_narrative variable. First we tokenize the text
to words with step_tokenize(). By default this uses tokenizers::tokenize_words().
Before we calculate tf-idf we use step_tokenfilter() to only keep the 1000 most
frequent tokens, to avoid creating too many variables in our first model. To
finish, we use step_tfidf() to compute tf-idf.

library(textrecipes)

complaints_rec <- complaints_rec %>%
step_tokenize(consumer_complaint_narrative) %>%
step_tokenfilter(consumer_complaint_narrative, max_tokens = 1e3) %>%
step_tfidf(consumer_complaint_narrative)

Now that we have a full specification of the preprocessing recipe, we can build
up a tidymodels workflow() to bundle together our modeling components.

complaint_wf <- workflow() %>%
add_recipe(complaints_rec)

Let’s start with a naive Bayes model (S. Kim et al. 2006; Kibriya et al. 2005;
Frank and Bouckaert 2006), which is available in the tidymodels package
discrim. One of the main advantages of a naive Bayes model is its ability to
handle a large number of features, such as those we deal with when using word
count methods. Here we have only kept the 1000 most frequent tokens, but we
could have kept more tokens and a naive Bayes model would still be able to
handle such predictors well. For now, we will limit the model to a moderate
number of tokens.

7.1 A first classification model 161

In tidymodels, the package for creating model specifications is parsnip
(Kuhn and Vaughan 2021b). The parsnip package provides the functions
for creating all the models we have used so far, but other extra packages
provide more. The discrim package is an extension package for parsnip
that contains model definitions for various discriminant analysis models,
including naive Bayes.

library(discrim)
nb_spec <- naive_Bayes() %>%
set_mode("classification") %>%
set_engine("naivebayes")

nb_spec

#> Naive Bayes Model Specification (classification)
#>
#> Computational engine: naivebayes

Now we have everything we need to fit our first classification model. We can
add the naive Bayes model to our workflow, and then we can fit this workflow
to our training data.

nb_fit <- complaint_wf %>%
add_model(nb_spec) %>%
fit(data = complaints_train)

We have trained our first classification model!

7.1.2 Evaluation

Like we discussed in Section 6.1.2, we should not use the test set to compare
models or different model parameters. The test set is a precious resource
that should only be used at the end of the model training process to estimate
performance on new data. Instead, we will use resampling methods to evaluate
our model.

Let’s use resampling to estimate the performance of the naive Bayes classi-
fication model we just fit. We can do this using resampled data sets built

162 7 Classification

from the training set. Let’s create 10-fold cross-validation sets, and use these
resampled sets for performance estimates.

set.seed(234)
complaints_folds <- vfold_cv(complaints_train)

complaints_folds

#> # 10-fold cross-validation
#> # A tibble: 10 x 2
#> splits id
#> <list> <chr>
#> 1 <split [79119/8791]> Fold01
#> 2 <split [79119/8791]> Fold02
#> 3 <split [79119/8791]> Fold03
#> 4 <split [79119/8791]> Fold04
#> 5 <split [79119/8791]> Fold05
#> 6 <split [79119/8791]> Fold06
#> 7 <split [79119/8791]> Fold07
#> 8 <split [79119/8791]> Fold08
#> 9 <split [79119/8791]> Fold09
#> 10 <split [79119/8791]> Fold10

Each of these splits contains information about how to create cross-validation
folds from the original training data. In this example, 90% of the training data
is included in each fold, and the other 10% is held out for evaluation.

For convenience, let’s again use a workflow() for our resampling estimates of
performance.

Using a workflow() isn’t required (you can fit or tune a model plus a
preprocessor), but it can make your code easier to read and organize.

nb_wf <- workflow() %>%
add_recipe(complaints_rec) %>%
add_model(nb_spec)

nb_wf

7.1 A first classification model 163

#> == Workflow ==
#> Preprocessor: Recipe
#> Model: naive_Bayes()
#>
#> -- Preprocessor --
#> 3 Recipe Steps
#>
#> * step_tokenize()
#> * step_tokenfilter()
#> * step_tfidf()
#>
#> -- Model ---
#> Naive Bayes Model Specification (classification)
#>
#> Computational engine: naivebayes

In the last section, we fit one time to the training data as a whole. Now, to
estimate how well that model performs, let’s fit the model many times, once
to each of these resampled folds, and then evaluate on the heldout part of
each resampled fold.

nb_rs <- fit_resamples(
nb_wf,
complaints_folds,
control = control_resamples(save_pred = TRUE)

)

We can extract the relevant information using collect_metrics() and col-
lect_predictions().

nb_rs_metrics <- collect_metrics(nb_rs)
nb_rs_predictions <- collect_predictions(nb_rs)

What results do we see, in terms of performance metrics?

nb_rs_metrics

#> # A tibble: 2 x 6
#> .metric .estimator mean n std_err .config
#> <chr> <chr> <dbl> <int> <dbl> <chr>
#> 1 accuracy binary 0.802 10 0.00434 Preprocessor1_Model1
#> 2 roc_auc binary 0.881 10 0.00150 Preprocessor1_Model1

164 7 Classification

The default performance parameters for binary classification are accuracy and
ROC AUC (area under the receiver operator characteristic curve). For these
resamples, the average accuracy is 80.2%.

Accuracy and ROC AUC are performance metrics used for classification
models. For both, values closer to 1 are better.

Accuracy is the proportion of the data that is predicted correctly. Be
aware that accuracy can be misleading in some situations, such as for
imbalanced data sets.

ROC AUC measures how well a classifier performs at different thresholds.
The ROC curve plots the true positive rate against the false positive rate;
AUC closer to 1 indicates a better-performing model, while AUC closer
to 0.5 indicates a model that does no better than random guessing.

Figure 7.1 shows the ROC curve, a visualization of how well a classification
model can distinguish between classes, for our first classification model on
each of the resampled data sets.

nb_rs_predictions %>%
group_by(id) %>%
roc_curve(truth = product, .pred_Credit) %>%
autoplot() +
labs(
color = NULL,
title = "ROC curve for US Consumer Finance Complaints",
subtitle = "Each resample fold is shown in a different color"

)

The area under each of these curves is the roc_auc metric we have computed.
If the curve was close to the diagonal line, then the model’s predictions would
be no better than random guessing.

Another way to evaluate our model is to evaluate the confusion matrix. A
confusion matrix tabulates a model’s false positives and false negatives for
each class. The function conf_mat_resampled() computes a separate confusion
matrix for each resample and takes the average of the cell counts. This allows
us to visualize an overall confusion matrix rather than needing to examine
each resample individually.

7.1 A first classification model 165

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty

Fold01

Fold02

Fold03

Fold04

Fold05

Fold06

Fold07

Fold08

Fold09

Fold10

Each resample fold is shown in a different color
ROC curve for US Consumer Finance Complaints

FIGURE 7.1: ROC curve for naive Bayes classifier with resamples of US
Consumer Finance Bureau complaints

conf_mat_resampled(nb_rs, tidy = FALSE) %>%
autoplot(type = "heatmap")

In Figure 7.2, the squares for “Credit”/“Credit” and “Other”/“Other” have
a darker shade than the off-diagonal squares. This is a good sign, meaning
that our model is right more often than not! However, this first model is
struggling somewhat since many observations from the “Credit” class are being
mispredicted as “Other.”

166 7 Classification

2865.6

1301.2

440.4

4183.8Other

Credit

Credit Other
Truth

P
re
di
ct
io
n

FIGURE 7.2: Confusion matrix for naive Bayes classifier, showing some bias
toward predicting the credit category

One metric alone cannot give you a complete picture of how well your
classification model is performing. The confusion matrix is a good starting
point to get an overview of your model performance, as it includes rich
information.

This is real data from a government agency, and these kinds of performance
metrics must be interpreted in the context of how such a model would be
used. What happens if the model we trained gets a classification wrong for
a consumer complaint? What impact will it have if more “Other” complaints
are correctly identified than “Credit” complaints, either for consumers or for
policymakers?

7.2 Compare to the null model

Like we did in Section 6.2, we can assess a model like this one by comparing
its performance to a “null model” or baseline model, a simple, non-informative

7.3 Compare to a lasso classification model 167

model that always predicts the largest class for classification. Such a model is
perhaps the simplest heuristic or rule-based alternative that we can consider
as we assess our modeling efforts.

We can build a classification null_model() specification and add it to a workflow()
with the same preprocessing recipe we used in the previous section, to estimate
performance.

null_classification <- null_model() %>%
set_engine("parsnip") %>%
set_mode("classification")

null_rs <- workflow() %>%
add_recipe(complaints_rec) %>%
add_model(null_classification) %>%
fit_resamples(
complaints_folds

)

What results do we obtain from the null model, in terms of performance
metrics?

null_rs %>%
collect_metrics()

#> # A tibble: 2 x 6
#> .metric .estimator mean n std_err .config
#> <chr> <chr> <dbl> <int> <dbl> <chr>
#> 1 accuracy binary 0.526 10 0.00143 Preprocessor1_Model1
#> 2 roc_auc binary 0.5 10 0 Preprocessor1_Model1

The accuracy and ROC AUC indicate that this null model is, like in the
regression case, dramatically worse than even our first model. The text of the
CFPB complaints is predictive relative to the category we are building models
for.

7.3 Compare to a lasso classification model

Regularized linear models are a class of statistical model that can be used in
regression and classification tasks. Linear models are not considered cutting

168 7 Classification

edge in NLP research, but are a workhorse in real-world practice. Here we
will use a lasso regularized model (Tibshirani 1996), where the regularization
method also performs variable selection. In text analysis, we typically have
many tokens, which are the features in our machine learning problem.

Using regularization helps us choose a simpler model that we expect to
generalize better to new observations, and variable selection helps us iden-
tify which features to include in our model.

Lasso regression or classification learns how much of a penalty to put on some
features (sometimes penalizing all the way down to zero) so that we can se-
lect only some features out of the high-dimensional space of original possible
variables (tokens) for the final model.

Let’s create a specification of a lasso regularized model. Remember that in
tidymodels, specifying a model has three components: the algorithm, the
mode, and the computational engine.

lasso_spec <- logistic_reg(penalty = 0.01, mixture = 1) %>%
set_mode("classification") %>%
set_engine("glmnet")

lasso_spec

#> Logistic Regression Model Specification (classification)
#>
#> Main Arguments:
#> penalty = 0.01
#> mixture = 1
#>
#> Computational engine: glmnet

Then we can create another workflow() object with the lasso specification.
Notice that we can reuse our text preprocessing recipe.

lasso_wf <- workflow() %>%
add_recipe(complaints_rec) %>%
add_model(lasso_spec)

lasso_wf

7.3 Compare to a lasso classification model 169

#> == Workflow ==
#> Preprocessor: Recipe
#> Model: logistic_reg()
#>
#> -- Preprocessor --
#> 3 Recipe Steps
#>
#> * step_tokenize()
#> * step_tokenfilter()
#> * step_tfidf()
#>
#> -- Model ---
#> Logistic Regression Model Specification (classification)
#>
#> Main Arguments:
#> penalty = 0.01
#> mixture = 1
#>
#> Computational engine: glmnet

Now we estimate the performance of this first lasso classification model with
fit_resamples().

set.seed(2020)
lasso_rs <- fit_resamples(
lasso_wf,
complaints_folds,
control = control_resamples(save_pred = TRUE)

)

Let’s again extract the relevant information using collect_metrics() and col-
lect_predictions()

lasso_rs_metrics <- collect_metrics(lasso_rs)
lasso_rs_predictions <- collect_predictions(lasso_rs)

Now we can see that lasso_rs_metrics contains the same default performance
metrics we have been using so far in this chapter.

lasso_rs_metrics

170 7 Classification

#> # A tibble: 2 x 6
#> .metric .estimator mean n std_err .config
#> <chr> <chr> <dbl> <int> <dbl> <chr>
#> 1 accuracy binary 0.870 10 0.00124 Preprocessor1_Model1
#> 2 roc_auc binary 0.939 10 0.000646 Preprocessor1_Model1

This looks pretty promising, considering we haven’t yet done any tuning of the
lasso hyperparameters. Figure 7.3 shows the ROC curves for this regularized
model on each of the resampled data sets.

lasso_rs_predictions %>%
group_by(id) %>%
roc_curve(truth = product, .pred_Credit) %>%
autoplot() +
labs(
color = NULL,
title = "ROC curve for US Consumer Finance Complaints",
subtitle = "Each resample fold is shown in a different color"

)

Let’s finish this section by generating a confusion matrix, shown in Figure
7.4. Our lasso model is better at separating the classes than the naive Bayes
model in Section 7.1.1, and our results are more symmetrical than those for
the naive Bayes model in Figure 7.2.

conf_mat_resampled(lasso_rs, tidy = FALSE) %>%
autoplot(type = "heatmap")

7.4 Tuning lasso hyperparameters

The value penalty = 0.01 for regularization in Section 7.3 was picked some-
what arbitrarily. How do we know the right or best regularization parameter
penalty? This is a model hyperparameter, and we cannot learn its best value
during model training, but we can estimate the best value by training many
models on resampled data sets and exploring how well all these models per-
form. Let’s build a new model specification for model tuning.

7.4 Tuning lasso hyperparameters 171

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty

Fold01

Fold02

Fold03

Fold04

Fold05

Fold06

Fold07

Fold08

Fold09

Fold10

Each resample fold is shown in a different color
ROC curve for US Consumer Finance Complaints

FIGURE 7.3: ROC curve for lasso regularized classifier with resamples of
US Consumer Finance Bureau complaints

tune_spec <- logistic_reg(penalty = tune(), mixture = 1) %>%
set_mode("classification") %>%
set_engine("glmnet")

tune_spec

#> Logistic Regression Model Specification (classification)
#>
#> Main Arguments:
#> penalty = tune()
#> mixture = 1
#>
#> Computational engine: glmnet

172 7 Classification

3421.6

745.2

401.8

4222.4Other

Credit

Credit Other
Truth

P
re
di
ct
io
n

FIGURE 7.4: Confusion matrix for a lasso regularized classifier, with more
symmetric results

After the tuning process, we can select a single best numeric value.

Think of tune() here as a placeholder for the regularization penalty.

We can create a regular grid of values to try, using a convenience function for
penalty().

lambda_grid <- grid_regular(penalty(), levels = 30)
lambda_grid

#> # A tibble: 30 x 1
#> penalty
#> <dbl>
#> 1 1 e-10
#> 2 2.21e-10
#> 3 4.89e-10
#> 4 1.08e- 9
#> 5 2.40e- 9

7.4 Tuning lasso hyperparameters 173

#> 6 5.30e- 9
#> 7 1.17e- 8
#> 8 2.59e- 8
#> 9 5.74e- 8
#> 10 1.27e- 7
#> # ... with 20 more rows

The function grid_regular() is from the dials package. It chooses sensible val-
ues to try for a parameter like the regularization penalty; here, we asked for
30 different possible values.

Now it is time to tune! Let’s use tune_grid() to fit a model at each of the values
for the regularization penalty in our regular grid.

In tidymodels, the package for tuning is called tune. Tuning a model
uses a similar syntax compared to fitting a model to a set of resampled
data sets for the purposes of evaluation (fit_resamples()) because the two
tasks are so similar. The difference is that when you tune, each model
that you fit has different parameters and you want to find the best one.

We add our tunable model specification tune_spec to a workflow with the
same preprocessing recipe we’ve been using so far, and then fit it to every
possible parameter in lambda_grid and every resample in complaints_folds with
tune_grid().

tune_wf <- workflow() %>%
add_recipe(complaints_rec) %>%
add_model(tune_spec)

set.seed(2020)
tune_rs <- tune_grid(
tune_wf,
complaints_folds,
grid = lambda_grid,
control = control_resamples(save_pred = TRUE)

)

tune_rs

174 7 Classification

#> # Tuning results
#> # 10-fold cross-validation
#> # A tibble: 10 x 5
#> splits id .metrics .notes .predictions
#> <list> <chr> <list> <list> <list>
#> 1 <split [79119/8791]> Fold01 <tibble [60 x 5]> <tibble [0 x 1]> <tibble [263,~
#> 2 <split [79119/8791]> Fold02 <tibble [60 x 5]> <tibble [0 x 1]> <tibble [263,~
#> 3 <split [79119/8791]> Fold03 <tibble [60 x 5]> <tibble [0 x 1]> <tibble [263,~
#> 4 <split [79119/8791]> Fold04 <tibble [60 x 5]> <tibble [0 x 1]> <tibble [263,~
#> 5 <split [79119/8791]> Fold05 <tibble [60 x 5]> <tibble [0 x 1]> <tibble [263,~
#> 6 <split [79119/8791]> Fold06 <tibble [60 x 5]> <tibble [0 x 1]> <tibble [263,~
#> 7 <split [79119/8791]> Fold07 <tibble [60 x 5]> <tibble [0 x 1]> <tibble [263,~
#> 8 <split [79119/8791]> Fold08 <tibble [60 x 5]> <tibble [0 x 1]> <tibble [263,~
#> 9 <split [79119/8791]> Fold09 <tibble [60 x 5]> <tibble [0 x 1]> <tibble [263,~
#> 10 <split [79119/8791]> Fold10 <tibble [60 x 5]> <tibble [0 x 1]> <tibble [263,~

Like when we used fit_resamples(), tuning in tidymodels can use multiple
cores or multiple machines via parallel processing, because the resampled
data sets and possible parameters are independent of each other. A dis-
cussion of parallel processing for all possible operating systems is beyond
the scope of this book, but it is well worth your time to learn how to
parallelize your machine learning tasks on your system.

Now, instead of one set of metrics, we have a set of metrics for each value of
the regularization penalty.

collect_metrics(tune_rs)

#> # A tibble: 60 x 7
#> penalty .metric .estimator mean n std_err .config
#> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
#> 1 1 e-10 accuracy binary 0.890 10 0.000820 Preprocessor1_Model01
#> 2 1 e-10 roc_auc binary 0.953 10 0.000522 Preprocessor1_Model01
#> 3 2.21e-10 accuracy binary 0.890 10 0.000820 Preprocessor1_Model02
#> 4 2.21e-10 roc_auc binary 0.953 10 0.000522 Preprocessor1_Model02
#> 5 4.89e-10 accuracy binary 0.890 10 0.000820 Preprocessor1_Model03
#> 6 4.89e-10 roc_auc binary 0.953 10 0.000522 Preprocessor1_Model03
#> 7 1.08e- 9 accuracy binary 0.890 10 0.000820 Preprocessor1_Model04
#> 8 1.08e- 9 roc_auc binary 0.953 10 0.000522 Preprocessor1_Model04
#> 9 2.40e- 9 accuracy binary 0.890 10 0.000820 Preprocessor1_Model05

7.4 Tuning lasso hyperparameters 175

#> 10 2.40e- 9 roc_auc binary 0.953 10 0.000522 Preprocessor1_Model05
#> # ... with 50 more rows

Let’s visualize these metrics, accuracy and ROC AUC, in Figure 7.5 to see
what the best model is.

autoplot(tune_rs) +
labs(
title = "Lasso model performance across regularization penalties",
subtitle = "Performance metrics can be used to identity the best penalty"

)

We can view the best results with show_best() and a choice for the metric, such
as ROC AUC.

tune_rs %>%
show_best("roc_auc")

#> # A tibble: 5 x 7
#> penalty .metric .estimator mean n std_err .config
#> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
#> 1 0.000788 roc_auc binary 0.953 10 0.000505 Preprocessor1_Model21
#> 2 0.000356 roc_auc binary 0.953 10 0.000510 Preprocessor1_Model20
#> 3 0.000161 roc_auc binary 0.953 10 0.000517 Preprocessor1_Model19
#> 4 0.0000728 roc_auc binary 0.953 10 0.000520 Preprocessor1_Model18
#> 5 0.0000000001 roc_auc binary 0.953 10 0.000522 Preprocessor1_Model01

The best value for ROC AUC from this tuning run is 0.953. We can extract
the best regularization parameter for this value of ROC AUC from our tuning
results with select_best(), or a simpler model with higher regularization with
select_by_pct_loss() or select_by_one_std_err() Let’s choose the model with the
best ROC AUC within one standard error of the numerically best model
(Breiman et al. 1984).

chosen_auc <- tune_rs %>%
select_by_one_std_err(metric = "roc_auc", -penalty)

chosen_auc

176 7 Classification

rocBauc

accuracy

1e−0� 1e−05 1e−0�

0.�

0.�

0.�

0.�

0.5

0.�

0.�

0.�

0.�

Amount of 5egulari]ation

3erformance metrics can be used to identity the best penalty
/asso model performance across regulari]ation penalties

FIGURE 7.5: We can identify the best regularization penalty from model
performance metrics, for example, at the highest ROC AUC. Note the loga-
rithmic scale for the regularization penalty.

#> # A tibble: 1 x 9
#> penalty .metric .estimator mean n std_err .config .best .bound
#> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr> <dbl> <dbl>
#> 1 0.000788 roc_auc binary 0.953 10 0.000505 Preprocessor1_M~ 0.953 0.953

Next, let’s finalize our tunable workflow with this particular regularization
penalty. This is the regularization penalty that our tuning results indicate
give us the best model.

7.4 Tuning lasso hyperparameters 177

final_lasso <- finalize_workflow(tune_wf, chosen_auc)

final_lasso

#> == Workflow ==
#> Preprocessor: Recipe
#> Model: logistic_reg()
#>
#> -- Preprocessor --
#> 3 Recipe Steps
#>
#> * step_tokenize()
#> * step_tokenfilter()
#> * step_tfidf()
#>
#> -- Model ---
#> Logistic Regression Model Specification (classification)
#>
#> Main Arguments:
#> penalty = 0.000788046281566992
#> mixture = 1
#>
#> Computational engine: glmnet

Instead of penalty = tune() like before, now our workflow has finalized values
for all arguments. The preprocessing recipe has been evaluated on the training
data, and we tuned the regularization penalty so that we have a penalty value
of 0.00079. This workflow is ready to go! It can now be fit to our training
data.

fitted_lasso <- fit(final_lasso, complaints_train)

What does the result look like? We can access the fit using pull_workflow_fit(),
and even tidy() the model coefficient results into a convenient dataframe for-
mat.

fitted_lasso %>%
pull_workflow_fit() %>%
tidy() %>%
arrange(-estimate)

178 7 Classification

#> # A tibble: 1,001 x 3
#> term estimate penalty
#> <chr> <dbl> <dbl>
#> 1 tfidf_consumer_complaint_narrative_funds 27.6 0.000788
#> 2 tfidf_consumer_complaint_narrative_appraisal 22.9 0.000788
#> 3 tfidf_consumer_complaint_narrative_escrow 21.0 0.000788
#> 4 tfidf_consumer_complaint_narrative_bonus 20.7 0.000788
#> 5 tfidf_consumer_complaint_narrative_debt 18.5 0.000788
#> 6 tfidf_consumer_complaint_narrative_emailed 16.4 0.000788
#> 7 tfidf_consumer_complaint_narrative_money 16.1 0.000788
#> 8 tfidf_consumer_complaint_narrative_interest 15.7 0.000788
#> 9 tfidf_consumer_complaint_narrative_afford 15.5 0.000788
#> 10 tfidf_consumer_complaint_narrative_merchant 14.9 0.000788
#> # ... with 991 more rows

We see here, for the penalty we chose, what terms contribute the most to a
complaint not being about credit. The words are largely about mortgages and
other financial products.

What terms contribute to a complaint being about credit reporting, for this
tuned model? Here we see the names of the credit reporting agencies and
words about credit inquiries.

fitted_lasso %>%
pull_workflow_fit() %>%
tidy() %>%
arrange(estimate)

#> # A tibble: 1,001 x 3
#> term estimate penalty
#> <chr> <dbl> <dbl>
#> 1 tfidf_consumer_complaint_narrative_reseller -90.9 0.000788
#> 2 tfidf_consumer_complaint_narrative_experian -56.9 0.000788
#> 3 tfidf_consumer_complaint_narrative_transunion -50.1 0.000788
#> 4 tfidf_consumer_complaint_narrative_equifax -48.1 0.000788
#> 5 tfidf_consumer_complaint_narrative_compliant -23.7 0.000788
#> 6 tfidf_consumer_complaint_narrative_reporting -21.1 0.000788
#> 7 tfidf_consumer_complaint_narrative_freeze -20.9 0.000788
#> 8 tfidf_consumer_complaint_narrative_inquiries -19.0 0.000788
#> 9 tfidf_consumer_complaint_narrative_report -18.6 0.000788
#> 10 tfidf_consumer_complaint_narrative_method -16.3 0.000788
#> # ... with 991 more rows

7.5 Case study: sparse encoding 179

Since we are using a linear model, the model coefficients are directly in-
terpretable and transparently give us variable importance. Many models
useful for machine learning with text do not have such transparent vari-
able importance; in those situations, you can use other model-independent
or model-agnostic approaches like permutation variable importance1.

7.5 Case study: sparse encoding

We can change how our text data is represented to take advantage of
its sparsity, especially for models like lasso regularized models. The regu-
larized regression model we have been training in previous sections used
set_engine("glmnet"); this computational engine can be more efficient when
text data is transformed to a sparse matrix (Section 5.1), rather than a dense
dataframe or tibble representation.

To keep our text data sparse throughout modeling and use the sparse capa-
bilities of set_engine("glmnet"), we need to explicitly set a non-default prepro-
cessing blueprint, using the package hardhat (Vaughan and Kuhn 2020).

The hardhat package is used by other tidymodels packages like recipes
and parsnip under the hood. As a tidymodels user, you typically don’t use
hardhat functions directly. The exception is when you need to customize
something about your model or preprocessing, like in this sparse data
example.

library(hardhat)
sparse_bp <- default_recipe_blueprint(composition = "dgCMatrix")

This “blueprint” lets us specify during modeling how we want our data passed
around from the preprocessing into the model. The composition "dgCMatrix" is

1https://juliasilge.com/blog/last-airbender/

https://juliasilge.com/blog/last-airbender/
https://juliasilge.com/blog/last-airbender/

180 7 Classification

the most common sparse matrix type, from the Matrix package (Bates and
Maechler 2021), used in R for modeling. We can use this blueprint argument
when we add our recipe to our modeling workflow, to define how the data
should be passed into the model.

sparse_wf <- workflow() %>%
add_recipe(complaints_rec, blueprint = sparse_bp) %>%
add_model(tune_spec)

sparse_wf

#> == Workflow ==
#> Preprocessor: Recipe
#> Model: logistic_reg()
#>
#> -- Preprocessor --
#> 3 Recipe Steps
#>
#> * step_tokenize()
#> * step_tokenfilter()
#> * step_tfidf()
#>
#> -- Model ---
#> Logistic Regression Model Specification (classification)
#>
#> Main Arguments:
#> penalty = tune()
#> mixture = 1
#>
#> Computational engine: glmnet

The last time we tuned a lasso model, we used the defaults for the penalty
parameter and 30 levels. Let’s restrict the values this time using the range
argument, so we don’t test out as small values for regularization, and only try
20 levels.

smaller_lambda <- grid_regular(penalty(range = c(-5, 0)), levels = 20)
smaller_lambda

7.5 Case study: sparse encoding 181

#> # A tibble: 20 x 1
#> penalty
#> <dbl>
#> 1 0.00001
#> 2 0.0000183
#> 3 0.0000336
#> 4 0.0000616
#> 5 0.000113
#> 6 0.000207
#> 7 0.000379
#> 8 0.000695
#> 9 0.00127
#> 10 0.00234
#> 11 0.00428
#> 12 0.00785
#> 13 0.0144
#> 14 0.0264
#> 15 0.0483
#> 16 0.0886
#> 17 0.162
#> 18 0.298
#> 19 0.546
#> 20 1

We can tune this lasso regression model, in the same way that we did in
Section 7.4. We will fit and assess each possible regularization parameter on
each resampling fold, to find the best amount of regularization.

set.seed(2020)
sparse_rs <- tune_grid(
sparse_wf,
complaints_folds,
grid = smaller_lambda

)

sparse_rs

#> # Tuning results
#> # 10-fold cross-validation
#> # A tibble: 10 x 4
#> splits id .metrics .notes
#> <list> <chr> <list> <list>
#> 1 <split [79119/8791]> Fold01 <tibble [40 x 5]> <tibble [0 x 1]>

182 7 Classification

#> 2 <split [79119/8791]> Fold02 <tibble [40 x 5]> <tibble [0 x 1]>
#> 3 <split [79119/8791]> Fold03 <tibble [40 x 5]> <tibble [0 x 1]>
#> 4 <split [79119/8791]> Fold04 <tibble [40 x 5]> <tibble [0 x 1]>
#> 5 <split [79119/8791]> Fold05 <tibble [40 x 5]> <tibble [0 x 1]>
#> 6 <split [79119/8791]> Fold06 <tibble [40 x 5]> <tibble [0 x 1]>
#> 7 <split [79119/8791]> Fold07 <tibble [40 x 5]> <tibble [0 x 1]>
#> 8 <split [79119/8791]> Fold08 <tibble [40 x 5]> <tibble [0 x 1]>
#> 9 <split [79119/8791]> Fold09 <tibble [40 x 5]> <tibble [0 x 1]>
#> 10 <split [79119/8791]> Fold10 <tibble [40 x 5]> <tibble [0 x 1]>

How did this model turn out, especially compared to the tuned model that
did not use the sparse capabilities of set_engine("glmnet")?

sparse_rs %>%
show_best("roc_auc")

#> # A tibble: 5 x 7
#> penalty .metric .estimator mean n std_err .config
#> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
#> 1 0.000695 roc_auc binary 0.953 10 0.000506 Preprocessor1_Model08
#> 2 0.000379 roc_auc binary 0.953 10 0.000510 Preprocessor1_Model07
#> 3 0.000207 roc_auc binary 0.953 10 0.000515 Preprocessor1_Model06
#> 4 0.00127 roc_auc binary 0.953 10 0.000504 Preprocessor1_Model09
#> 5 0.000113 roc_auc binary 0.953 10 0.000519 Preprocessor1_Model05

The best ROC AUC is nearly identical; the best ROC AUC for the non-sparse
tuned lasso model in Section 7.4 was 0.953. The best regularization parameter
(penalty) is a little different (the best value in Section 7.4 was 0.00079), but
we used a different grid so didn’t try out exactly the same values. We ended
up with nearly the same performance and best tuned model.

Importantly, this tuning also took a bit less time to complete.

• The preprocessing was not much faster, because tokenization and comput-
ing tf-idf take a long time.

• The model fitting was much faster, because for highly sparse data, this
implementation of regularized regression is much faster for sparse matrix
input than any dense input.

Overall, the whole tuning workflow is about 10% faster using the sparse pre-
processing blueprint. Depending on how computationally expensive your pre-
processing is relative to your model and how sparse your data is, you may

7.6 Two-class or multiclass? 183

expect to see larger (or smaller) gains from moving to a sparse data represen-
tation.

Since our model performance is about the same and we see gains in train-
ing time, let’s use this sparse representation for the rest of this chapter.

7.6 Two-class or multiclass?

Most of this chapter focuses on binary classification, where we have two classes
in our outcome variable (such as “Credit” and “Other”) and each observation
can either be one or the other. This is a simple scenario with straightforward
evaluation strategies because the results only have a two-by-two contingency
matrix. However, it is not always possible to limit a modeling question to two
classes. Let’s explore how to deal with situations where we have more than
two classes. The CFPB complaints data set in this chapter has nine different
product classes. In decreasing frequency, they are:

• Credit reporting, credit repair services, or other personal consumer reports

• Debt collection

• Credit card or prepaid card

• Mortgage

• Checking or savings account

• Student loan

• Vehicle loan or lease

• Money transfer, virtual currency, or money service

• Payday loan, title loan, or personal loan

184 7 Classification

We assume that there is a reason why these product classes have been created
in this fashion by this government agency. Perhaps complaints from different
classes are handled by different people or organizations. Whatever the reason,
in this section we would like to build a multiclass classifier to identify these
nine specific product classes.

We need to create a new split of the data using initial_split() on the unmod-
ified complaints data set.

set.seed(1234)

multicomplaints_split <- initial_split(complaints, strata = product)

multicomplaints_train <- training(multicomplaints_split)
multicomplaints_test <- testing(multicomplaints_split)

Before we continue, let us take a look at the number of cases in each of the
classes.

multicomplaints_train %>%
count(product, sort = TRUE) %>%
select(n, product)

#> # A tibble: 9 x 2
#> n product
#> <int> <chr>
#> 1 41714 Credit reporting, credit repair services, or other personal consumer re~
#> 2 16784 Debt collection
#> 3 8637 Credit card or prepaid card
#> 4 7067 Mortgage
#> 5 5164 Checking or savings account
#> 6 2932 Student loan
#> 7 2014 Vehicle loan or lease
#> 8 1942 Money transfer, virtual currency, or money service
#> 9 1656 Payday loan, title loan, or personal loan

There is significant imbalance between the classes that we must address, with
over 20 times more cases of the majority class than there is of the smallest class.
This kind of imbalance is a common problem with multiclass classification,
with few multiclass data sets in the real world exhibiting balance between
classes.

Compared to binary classification, there are several additional issues to keep
in mind when working with multiclass classification:

7.6 Two-class or multiclass? 185

• Many machine learning algorithms do not handle imbalanced data well
and are likely to have a hard time predicting minority classes.

• Not all machine learning algorithms are built for multiclass classification
at all.

• Many evaluation metrics need to be reformulated to describe multiclass
predictions.

When you have multiple classes in your data, it is possible to formulate the
multiclass problem in two ways. With one approach, any given observation
can belong to multiple classes. With the other approach, an observation can
belong to one and only one class. We will be sticking to the second, “one class
per observation” model formulation in this section.

There are many different ways to deal with imbalanced data. We will demon-
strate one of the simplest methods, downsampling, where observations from
the majority classes are removed during training to achieve a balanced class
distribution. We will be using the themis (Hvitfeldt 2020d) add-on package
for recipes which provides the step_downsample() function to perform downsam-
pling.

The themis package provides many more algorithms to deal with imbal-
anced data during data preprocessing.

We have to create a new recipe specification from scratch, since we are deal-
ing with new training data this time. The specification multicomplaints_rec is
similar to what we created in Section 7.1. The only changes are that differ-
ent data is passed to the data argument in the recipe() function (it is now
multicomplaints_train) and we have added step_downsample(product) to the end
of the recipe specification to downsample after all the text preprocessing. We
want to downsample last so that we still generate features on the full training
data set. The downsampling will then only affect the modeling step, not the
preprocessing steps, with hopefully better results.

library(themis)

multicomplaints_rec <-
recipe(product ~ consumer_complaint_narrative,

data = multicomplaints_train) %>%

186 7 Classification

step_tokenize(consumer_complaint_narrative) %>%
step_tokenfilter(consumer_complaint_narrative, max_tokens = 1e3) %>%
step_tfidf(consumer_complaint_narrative) %>%
step_downsample(product)

We also need a new cross-validation object since we are using a different data
set.

multicomplaints_folds <- vfold_cv(multicomplaints_train)

We cannot reuse the tuneable lasso classification specification from Section
7.4 because it only works for binary classification. Some model algorithms
and computational engines (examples are most random forests and SVMs)
automatically detect when we perform multiclass classification from the num-
ber of classes in the outcome variable and do not require any changes to our
model specification. For lasso regularization, we need to create a new special
model specification just for the multiclass class using multinom_reg().

multi_spec <- multinom_reg(penalty = tune(), mixture = 1) %>%
set_mode("classification") %>%
set_engine("glmnet")

multi_spec

#> Multinomial Regression Model Specification (classification)
#>
#> Main Arguments:
#> penalty = tune()
#> mixture = 1
#>
#> Computational engine: glmnet

We used the same arguments for penalty and mixture as in Section 7.4, as well
as the same mode and engine, but this model specification is set up to handle
more than just two classes. We can combine this model specification with our
preprocessing recipe for multiclass data in a workflow().

7.6 Two-class or multiclass? 187

multi_lasso_wf <- workflow() %>%
add_recipe(multicomplaints_rec, blueprint = sparse_bp) %>%
add_model(multi_spec)

multi_lasso_wf

#> == Workflow ==
#> Preprocessor: Recipe
#> Model: multinom_reg()
#>
#> -- Preprocessor --
#> 4 Recipe Steps
#>
#> * step_tokenize()
#> * step_tokenfilter()
#> * step_tfidf()
#> * step_downsample()
#>
#> -- Model ---
#> Multinomial Regression Model Specification (classification)
#>
#> Main Arguments:
#> penalty = tune()
#> mixture = 1
#>
#> Computational engine: glmnet

Now we have everything we need to tune the regularization penalty and find
an appropriate value. Note that we specify save_pred = TRUE, so we can create
ROC curves and a confusion matrix later. This is especially beneficial for
multiclass classification.

multi_lasso_rs <- tune_grid(
multi_lasso_wf,
multicomplaints_folds,
grid = smaller_lambda,
control = control_resamples(save_pred = TRUE)

)

multi_lasso_rs

188 7 Classification

#> # Tuning results
#> # 10-fold cross-validation
#> # A tibble: 10 x 5
#> splits id .metrics .notes .predictions
#> <list> <chr> <list> <list> <list>
#> 1 <split [79119/8791]> Fold01 <tibble [40 x 5]> <tibble [0 x 1]> <tibble [175,~
#> 2 <split [79119/8791]> Fold02 <tibble [40 x 5]> <tibble [0 x 1]> <tibble [175,~
#> 3 <split [79119/8791]> Fold03 <tibble [40 x 5]> <tibble [0 x 1]> <tibble [175,~
#> 4 <split [79119/8791]> Fold04 <tibble [40 x 5]> <tibble [0 x 1]> <tibble [175,~
#> 5 <split [79119/8791]> Fold05 <tibble [40 x 5]> <tibble [0 x 1]> <tibble [175,~
#> 6 <split [79119/8791]> Fold06 <tibble [40 x 5]> <tibble [0 x 1]> <tibble [175,~
#> 7 <split [79119/8791]> Fold07 <tibble [40 x 5]> <tibble [0 x 1]> <tibble [175,~
#> 8 <split [79119/8791]> Fold08 <tibble [40 x 5]> <tibble [0 x 1]> <tibble [175,~
#> 9 <split [79119/8791]> Fold09 <tibble [40 x 5]> <tibble [1 x 1]> <tibble [175,~
#> 10 <split [79119/8791]> Fold10 <tibble [40 x 5]> <tibble [0 x 1]> <tibble [175,~

What do we see, in terms of performance metrics?

best_acc <- multi_lasso_rs %>%
show_best("accuracy")

best_acc

#> # A tibble: 5 x 7
#> penalty .metric .estimator mean n std_err .config
#> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
#> 1 0.00234 accuracy multiclass 0.754 10 0.00155 Preprocessor1_Model10
#> 2 0.00428 accuracy multiclass 0.751 10 0.00147 Preprocessor1_Model11
#> 3 0.00127 accuracy multiclass 0.749 10 0.00150 Preprocessor1_Model09
#> 4 0.00785 accuracy multiclass 0.741 10 0.00135 Preprocessor1_Model12
#> 5 0.000695 accuracy multiclass 0.736 10 0.00139 Preprocessor1_Model08

The accuracy metric naturally extends to multiclass tasks, but even the very
best value is quite low at 75.4%, significantly lower than for the binary case
in Section 7.4. This is expected since multiclass classification is a harder task
than binary classification.

In binary classification, there is one right answer and one wrong answer;
in this multiclass case, there is one right answer and eight wrong answers.

7.6 Two-class or multiclass? 189

To get a more detailed view of how our classifier is performing, let us look at
one of the confusion matrices in Figure 7.6.

multi_lasso_rs %>%
collect_predictions() %>%
filter(penalty == best_acc$penalty) %>%
filter(id == "Fold01") %>%
conf_mat(product, .pred_class) %>%
autoplot(type = "heatmap") +
scale_y_discrete(labels = function(x) str_wrap(x, 20)) +
scale_x_discrete(labels = function(x) str_wrap(x, 20))

408

38

1

3

47

6

8

1

4

62

651

33

17

29

14

27

3

20

33

216

3002

402

27

85

82

92

171

25

84

149

1224

20

44

87

26

43

26

8

2

2

181

5

7

1

1

11

3

12

7

7

613

35

6

11

8

5

4

9

5

1

100

4

16

5

5

6

10

4

6

24

259

5

3

4

9

9

3

3

19

1

142Vehicle loan or
lease

Student loan

Payday loan, title
loan, or personal

loan

Mortgage

Money transfer,
virtual currency, or

money service

Debt collection

Credit reporting,
credit repair

services, or other
personal consumer

reports

Credit card or
prepaid card

Checking or savings
account

Checking or savings
account

Credit card or
prepaid card

Credit reporting,
credit repair

services, or other
personal consumer

reports

Debt collection Money transfer,
virtual currency, or

money service

Mortgage Payday loan, title
loan, or personal

loan

Student loan Vehicle loan or
lease

Truth

P
re

di
ct

io
n

FIGURE 7.6: Confusion matrix for multiclass lasso regularized classifier,
with most of the classifications along the diagonal

The diagonal is fairly well populated, which is a good sign. This means that
the model generally predicted the right class. The off-diagonal numbers are
all the failures and where we should direct our focus. It is a little hard to see
these cases well since the majority class affects the scale. A trick to deal with
this problem is to remove all the correctly predicted observations.

190 7 Classification

multi_lasso_rs %>%
collect_predictions() %>%
filter(penalty == best_acc$penalty) %>%
filter(id == "Fold01") %>%
filter(.pred_class != product) %>%
conf_mat(product, .pred_class) %>%
autoplot(type = "heatmap") +
scale_y_discrete(labels = function(x) str_wrap(x, 20)) +
scale_x_discrete(labels = function(x) str_wrap(x, 20))

0

38

1

3

47

6

8

1

4

62

0

33

17

29

14

27

3

20

33

216

0

402

27

85

82

92

171

25

84

149

0

20

44

87

26

43

26

8

2

2

0

5

7

1

1

11

3

12

7

7

0

35

6

11

8

5

4

9

5

1

0

4

16

5

5

6

10

4

6

24

0

5

3

4

9

9

3

3

19

1

0Vehicle loan or
lease

Student loan

Payday loan, title
loan, or personal

loan

Mortgage

Money transfer,
virtual currency, or

money service

Debt collection

Credit reporting,
credit repair

services, or other
personal consumer

reports

Credit card or
prepaid card

Checking or savings
account

Checking or savings
account

Credit card or
prepaid card

Credit reporting,
credit repair

services, or other
personal consumer

reports

Debt collection Money transfer,
virtual currency, or

money service

Mortgage Payday loan, title
loan, or personal

loan

Student loan Vehicle loan or
lease

Truth

P
re

di
ct

io
n

FIGURE 7.7: Confusion matrix for multiclass lasso regularized classifier
without diagonal

Now we can more clearly see where our model breaks down in Figure 7.7. Some
of the most common errors are “Credit reporting, credit repair services, or
other personal consumer reports” complaints being wrongly being predicted as
“Debt collection” or “Credit card of prepaid card” complaints. Those mistakes
by the model are not hard to understand since all deal with credit and debt
and do have overlap in vocabulary. Knowing what the problem is helps us
figure out how to improve our model. The next step for improving our model

7.7 Case study: including non-text data 191

is to revisit the data preprocessing steps and model selection. We can look at
different models or model engines that might be able to more easily separate
the classes.

Now that we have an idea of where the model isn’t working, we can look
more closely at the data and attempt to create features that could distinguish
between these classes. In Section 7.9 we will demonstrate how you can create
your own custom features.

7.7 Case study: including non-text data

We are building a model from a data set that includes more than text data
alone. Annotations and labels have been added by the CFPB that we can
use during modeling, but we need to ensure that only information that would
be available at the time of prediction is included in the model. Otherwise we
will be very disappointed once our model is used to predict on new data! The
variables we identify as available for use as predictors are:

• date_received

• issue

• sub_issue

• consumer_complaint_narrative

• company

• state

• zip_code

• tags

• submitted_via

Let’s try including date_received in our modeling, along with the text variable
we have already used, consumer_complaint_narrative, and a new variable tags.
The submitted_via variable could have been a viable candidate, but all the
entries are “web.” The other variables like ZIP code could be of use too, but

192 7 Classification

they are categorical variables with many values so we will exclude them for
now.

more_vars_rec <-
recipe(product ~ date_received + tags + consumer_complaint_narrative,

data = complaints_train)

How should we preprocess the date_received variable? We can use the
step_date() function to extract the month and day of the week ("dow"). Then
we remove the original date variable and convert the new month and day-of-
the-week columns to indicator variables with step_dummy().

Categorical variables like the month can be stored as strings or factors,
but for some kinds of models, they must be converted to indicator or
dummy variables. These are numeric binary variables for the levels of the
original categorical variable. For example, a variable called December would
be created that is all zeroes and ones specifying which complaints were
submitted in December, plus a variable called November, a variable called
October, and so on.

more_vars_rec <- more_vars_rec %>%
step_date(date_received, features = c("month", "dow"), role = "dates") %>%
step_rm(date_received) %>%
step_dummy(has_role("dates"))

The tags variable has some missing data. We can deal with this by using
step_unknown(), which adds a new level to this factor variable for cases of missing
data. Then we “dummify” (create dummy/indicator variables) the variable
with step_dummy().

more_vars_rec <- more_vars_rec %>%
step_unknown(tags) %>%
step_dummy(tags)

Now we add steps to process the text of the complaints, as before.

7.7 Case study: including non-text data 193

more_vars_rec <- more_vars_rec %>%
step_tokenize(consumer_complaint_narrative) %>%
step_tokenfilter(consumer_complaint_narrative, max_tokens = 1e3) %>%
step_tfidf(consumer_complaint_narrative)

Let’s combine this more extensive preprocessing recipe that handles more vari-
ables together with the tuneable lasso regularized classification model specifi-
cation.

more_vars_wf <- workflow() %>%
add_recipe(more_vars_rec, blueprint = sparse_bp) %>%
add_model(tune_spec)

more_vars_wf

#> == Workflow ==
#> Preprocessor: Recipe
#> Model: logistic_reg()
#>
#> -- Preprocessor --
#> 8 Recipe Steps
#>
#> * step_date()
#> * step_rm()
#> * step_dummy()
#> * step_unknown()
#> * step_dummy()
#> * step_tokenize()
#> * step_tokenfilter()
#> * step_tfidf()
#>
#> -- Model ---
#> Logistic Regression Model Specification (classification)
#>
#> Main Arguments:
#> penalty = tune()
#> mixture = 1
#>
#> Computational engine: glmnet

Let’s tune this workflow() with our resampled data sets, find a good value for
the regularization penalty, and estimate the model’s performance.

194 7 Classification

set.seed(123)
more_vars_rs <- tune_grid(
more_vars_wf,
complaints_folds,
grid = smaller_lambda,

)

We can extract the metrics for the best-performing regularization penalties
from these results with show_best() with an option like "roc_auc" or "accuracy"
if we prefer. How did our chosen performance metric turn out for our model
that included more than just the text data?

more_vars_rs %>%
show_best("roc_auc")

#> # A tibble: 5 x 7
#> penalty .metric .estimator mean n std_err .config
#> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
#> 1 0.000695 roc_auc binary 0.953 10 0.000514 Preprocessor1_Model08
#> 2 0.000379 roc_auc binary 0.953 10 0.000515 Preprocessor1_Model07
#> 3 0.000207 roc_auc binary 0.953 10 0.000520 Preprocessor1_Model06
#> 4 0.00127 roc_auc binary 0.953 10 0.000511 Preprocessor1_Model09
#> 5 0.000113 roc_auc binary 0.953 10 0.000525 Preprocessor1_Model05

We see here that including more predictors did not measurably improve our
model performance or even change the regularization. With only text features
in Section 7.5 and the same grid and sparse encoding, we achieved an accu-
racy of 0.953, the same as what we see now by including the features dealing
with dates and tags as well. The best regularization penalty in Section 7.5 was
0.0007 and is about the same here. We can use tidy() and some dplyr manip-
ulation to find at what rank (term_rank) any of the date or tag variables were
included in the regularized results, by absolute value of the model coefficient.

finalize_workflow(more_vars_wf,
select_best(more_vars_rs, "roc_auc")) %>%

fit(complaints_train) %>%
pull_workflow_fit() %>%
tidy() %>%
arrange(-abs(estimate)) %>%
mutate(term_rank = row_number()) %>%
filter(!str_detect(term, "tfidf"))

7.8 Case study: data censoring 195

#> # A tibble: 21 x 4
#> term estimate penalty term_rank
#> <chr> <dbl> <dbl> <int>
#> 1 (Intercept) 0.326 0.000695 701
#> 2 date_received_month_Dec -0.271 0.000695 716
#> 3 date_received_month_Aug -0.105 0.000695 746
#> 4 date_received_dow_Mon 0.102 0.000695 748
#> 5 date_received_month_Apr 0.0763 0.000695 756
#> 6 date_received_month_Feb -0.0547 0.000695 761
#> 7 tags_Servicemember -0.0426 0.000695 765
#> 8 date_received_dow_Tue 0.0329 0.000695 766
#> 9 date_received_dow_Fri 0.0147 0.000695 770
#> 10 date_received_month_May 0.00337 0.000695 774
#> # ... with 11 more rows

In our example here, some of the non-text predictors are included in the model
with non-zero coefficients but ranked down in the 700s of all model terms, with
smaller coefficients than many text terms. They are not that important.

This whole book focuses on supervised machine learning for text data, but
models can combine both text predictors and other kinds of predictors.

7.8 Case study: data censoring

The complaints data set already has sensitive information (PII) censored or
protected using strings such as “XXXX” and “XX.” This data censoring can
be viewed as data annotation; specific account numbers and birthdays are
protected, but we know they were there. These values would be mostly unique
anyway, and likely filtered out in their original form.

Figure 7.8 shows the most frequent trigrams (Section 2.2.3) in our training
data set.

library(tidytext)

complaints_train %>%
slice(1:1000) %>%

196 7 Classification

unnest_tokens(trigrams,
consumer_complaint_narrative, token = "ngrams",
collapse = NULL) %>%

count(trigrams, sort = TRUE) %>%
mutate(censored = str_detect(trigrams, "xx")) %>%
slice(1:20) %>%
ggplot(aes(n, reorder(trigrams, n), fill = censored)) +
geom_col() +
scale_fill_manual(values = c("grey40", "firebrick")) +
labs(y = "Trigrams", x = "Count")

from [[[[[[[[
[[[[oh [[[[

by the consumer
a copy of

[[[[[[[[[[
my credit score

[[[[[[i
consumer reporting agency

in [[[[
from my credit
[[[[[[[[and
[[[[and [[[[

[[[[�01�
[[[[[[[[

[[[[[[[[[[
on [[[[

on my credit
my credit report

[[[[[[[[
[[[[[[[[[[[[

0 1000 �000 �000
Count

7r
ig

ra
m

s censored

FA/6E

75UE

FIGURE 7.8: Many of the most frequent trigrams feature censored informa-
tion

The vast majority of trigrams in Figure 7.8 include one or more censored
words. Not only do the most used trigrams include some kind of censoring,
but the censoring itself is informative as it is not used uniformly across the
product classes. In Figure 7.9, we take the top-25 most frequent trigrams that
include censoring, and plot the proportions for “Credit” and “Other.”

top_censored_trigrams <- complaints_train %>%
slice(1:1000) %>%
unnest_tokens(trigrams,

consumer_complaint_narrative, token = "ngrams",

7.8 Case study: data censoring 197

collapse = NULL) %>%
count(trigrams, sort = TRUE) %>%
filter(str_detect(trigrams, "xx")) %>%
slice(1:25)

plot_data <- complaints_train %>%
unnest_tokens(trigrams,

consumer_complaint_narrative, token = "ngrams",
collapse = NULL) %>%

right_join(top_censored_trigrams, by = "trigrams") %>%
count(trigrams, product, .drop = FALSE)

plot_data %>%
ggplot(aes(n, trigrams, fill = product)) +
geom_col(position = "fill")

and [[[[[[[[
date [[[[

from [[[[[[[[
in [[[[

oh [[[[[[[[
on [[[[

the [[[[[[[[
to [[[[[[[[

Zith [[[[[[[[
[[[[�01�
[[[[�01�
[[[[[[[[

[[[[[[and
[[[[[[i

[[[[[[[[
[[[[[[[[[[

[[[[and [[[[
[[[[oh [[[[

[[[[[[[[
[[[[[[[[account

[[[[[[[[and
[[[[[[[[i

[[[[[[[[oh
[[[[[[[[[[

[[[[[[[[[[[[

0.00 0.�5 0.50 0.�5 1.00
n

tri
gr

am
s product

Credit

2ther

FIGURE 7.9: Many of the most frequent trigrams feature censored words,
but there is a difference in how often they are used within each class

There is a difference in these proportions across classes. Tokens like “on xx
xx” are used when referencing a date, e.g., “we had a problem on 06/25/2018.”
Remember that the current tokenization engine strips punctuation before to-
kenizing. This means that the above example will be turned into “we had a
problem on 06 25 2018” before creating n-grams2.

2The censored trigrams that include “oh” seem mysterious but upon closer examination,

198 7 Classification

To crudely simulate what the data might look like before it was censored, we
can replace all cases of “XX” and “XXXX” with random integers. This isn’t
quite right since dates will be given values between 00 and 99, and we don’t
know for sure that only numerals have been censored, but it gives us a place
to start. Below is a simple function uncensor_vec() that locates all instances of
"XX" and replaces them with a number between 11 and 99. We don’t need to
handle the special case of XXXX as it automatically being handled.

uncensor <- function(n) {
as.character(sample(seq(10 ^ (n - 1), 10 ^ n - 1), 1))

}

uncensor_vec <- function(x) {
locs <- str_locate_all(x, "XX")
map2_chr(x, locs, ~ {
for (i in seq_len(nrow(.y))) {
str_sub(.x, .y[i, 1], .y[i, 2]) <- uncensor(2)

}
.x

})
}

We can run a quick test to see how it works.

uncensor_vec("In XX/XX/XXXX I leased a XXXX vehicle")

#> [1] "In 33/64/4458 I leased a 7595 vehicle"

Now we can produce the same visualization as Figure 7.8 but can also apply
our uncensoring function to the text before tokenizing.

complaints_train %>%
slice(1:1000) %>%
mutate(text = uncensor_vec(consumer_complaint_narrative)) %>%
unnest_tokens(trigrams, text, token = "ngrams",

collapse = NULL) %>%
count(trigrams, sort = TRUE) %>%

they come from censored addresses, with “oh” representing the US state of Ohio. Most
two-letter state abbreviations are censored, but this one is not since it is ambiguous. This
highlights the real challenge of anonymizing text.

7.8 Case study: data censoring 199

mutate(censored = str_detect(trigrams, "xx")) %>%
slice(1:20) %>%
ggplot(aes(n, reorder(trigrams, n), fill = censored)) +
geom_col() +
scale_fill_manual(values = c("grey40", "firebrick")) +
labs(y = "Trigrams", x = "Count")

a Yictim of
credit report and

the fair credit
i do not

that i haYe
credit reporting act
fair credit reporting

i haYe no
my credit file

i did not
of identity theft

credit report i
the credit bureaus

by the consumer
a copy of

my credit score
consumer reporting agency

from my credit
on my credit

my credit report

0 �00 �00
Count

7r
ig

ra
m

s

censored

FA/6E

FIGURE 7.10: Trigrams without numbers float to the top as the uncensored
tokens are too spread out

Here in Figure 7.10, we see the same trigrams that appeared in Figure 7.8.
However, none of the uncensored words appear, because of our uncensoring
function. This is expected, because while "xx xx 2019" appears in the first
plot indicating a date in the year 2019, after we uncensor it, it is split into
365 buckets (actually more, since we used numerical values between 00 and
99). Censoring the dates in these complaints gives more power to a date as a
general construct.

What happens when we use these censored dates as a feature in super-
vised machine learning? We have a higher chance of understanding if
dates in the complaint text are important to predicting the class, but
we are blinded to the possibility that certain dates and months are more
important.

200 7 Classification

Data censoring can be a form of preprocessing in your data pipeline. For
example, it is highly unlikely to be useful (or ethical/legal) to have any spe-
cific person’s social security number, credit card number, or any other kind
of PII embedded into your model. Such values appear rarely and are most
likely highly correlated with other known variables in your data set. More
importantly, that information can become embedded in your model and be-
gin to leak as demonstrated by Carlini et al. (2019), Matthew Fredrikson et
al. (2014), and Matt Fredrikson, Jha, and Ristenpart (2015). Both of these
issues are important, and one of them could land you in a lot of legal trouble.
Exposing such PII to modeling is an example of where we should all stop to
ask, “Should we even be doing this?” as we discussed in the overview to these
chapters.

If you have social security numbers in text data, you should definitely not pass
them on to your machine learning model, but you may consider the option
of annotating the presence of a social security number. Since a social security
number has a very specific form, we can easily construct a regular expression
(Appendix A) to locate them.

A social security number comes in the form AAA-BB-CCCC where AAA is a
number between 001 and 899 excluding 666, BB is a number between 01 and
99 and CCCC is a number between 0001 and 9999. This gives us the following
regex:

(?!000|666)[0-8][0-9]{2}-(?!00)[0-9]{2}-(?!0000)[0-9]{4}

We can use a function to replace each social security number with an indicator
that can be detected later by preprocessing steps. It’s a good idea to use a
“word” that won’t be accidentally broken up by a tokenizer.

ssn_text <- c("My social security number is 498-08-6333",
"No way, mine is 362-60-9159",
"My parents numbers are 575-32-6985 and 576-36-5202")

ssn_pattern <- "(?!000|666)[0-8][0-9]{2}-(?!00)[0-9]{2}-(?!0000)[0-9]{4}"

str_replace_all(string = ssn_text,
pattern = ssn_pattern,
replacement = "ssnindicator")

#> [1] "My social security number is ssnindicator"

7.9 Case study: custom features 201

#> [2] "No way, mine is ssnindicator"
#> [3] "My parents numbers are ssnindicator and ssnindicator"

This technique isn’t useful only for personally identifiable information but
can be used anytime you want to gather similar words in the same bucket;
hashtags, email addresses, and usernames can sometimes benefit from being
annotated in this way.

The practice of data re-identification or de-anonymization, where seem-
ingly or partially “anonymized” data sets are mined to identify individu-
als, is out of scope for this section and our book. However, this is a sig-
nificant and important issue for any data practitioner dealing with PII,
and we encourage readers to familiarize themselves with results such as
Sweeney (2000) and current best practices to protect against such mining.

7.9 Case study: custom features

Most of what we have looked at so far has boiled down to counting tokens
and weighting them in one way or another. This approach is quite broad and
domain agnostic, but you as a data practitioner often have specific knowledge
about your data set that you should use in feature engineering. Your domain
knowledge allows you to build more predictive features than the naive search
of simple tokens. As long as you can reasonably formulate what you are trying
to count, chances are you can write a function that can detect it. This is where
having a little bit of knowledge about regular expressions pays off.

The textfeatures (Kearney 2019) package includes functions to extract
useful features from text, from the number of digits to the number of
second-person pronouns and more. These features can be used in tex-
trecipes data preprocessing with the step_textfeature() function.

Your specific domain knowledge may provide specific guidance about feature
engineering for text. Such custom features can be simple such as the number of
URLs or the number of punctuation marks. They can also be more engineered,

202 7 Classification

such as the percentage of capitalization, whether the text ends with a hashtag,
or whether two people’s names are both mentioned in a document.

For our CFPB complaints data, certain patterns may not have adequately
been picked up by our model so far, such as the data censoring and the curly
bracket annotation for monetary amounts that we saw in Section 7.1. Let’s
walk through how to create data preprocessing functions to build the features
to:

• detect credit cards,

• calculate percentage censoring, and

• detect monetary amounts.

7.9.1 Detect credit cards

A credit card number is represented as four groups of four capital Xs in this
data set. Since the data is fairly well processed we are fairly sure that spacing
will not be an issue and all credit cards will be represented as “XXXX XXXX
XXXX XXXX.” A first naive attempt may be to use str_detect() with “XXXX
XXXX XXXX XXXX” to find all the credit cards.

It is a good idea to create a small example regular expression where you
know the answer, and then prototype your function before moving to the
main data set.

We start by creating a vector with two positives, one negative, and one poten-
tial false positive. The last string is more tricky since it has the same shape
as a credit card but has one too many groups.

credit_cards <- c("my XXXX XXXX XXXX XXXX balance, and XXXX XXXX XXXX XXXX.",
"card with number XXXX XXXX XXXX XXXX.",
"at XX/XX 2019 my first",
"live at XXXX XXXX XXXX XXXX XXXX SC")

str_detect(credit_cards, "XXXX XXXX XXXX XXXX")

#> [1] TRUE TRUE FALSE TRUE

7.9 Case study: custom features 203

As we feared, the last vector was falsely detected to be a credit card. Some-
times you will have to accept a certain number of false positives and/or false
negatives, depending on the data and what you are trying to detect. In this
case, we can make the regex a little more complicated to avoid that spe-
cific false positive. We need to make sure that the word coming before the
X’s doesn’t end in a capital X and the word following the last X doesn’t start
with a capital X. We place spaces around the credit card and use some negated
character classes (Appendix A.3) to detect anything BUT a capital X.

str_detect(credit_cards, "[^X] XXXX XXXX XXXX XXXX [^X]")

#> [1] TRUE FALSE FALSE FALSE

Hurray! This fixed the false positive. But it gave us a false negative in return.
Turns out that this regex doesn’t allow the credit card to be followed by a
period since it requires a space. We can fix this with an alteration to match
for a period or a space and a non-X.

str_detect(credit_cards, "[^X] +XXXX XXXX XXXX XXXX(\\.| [^X])")

#> [1] TRUE TRUE FALSE FALSE

Now that we have a regular expression we are happy with we can wrap it up
in a function we can use. We can extract the presence of a credit card with
str_detect() and the number of credit cards with str_count().

creditcard_indicator <- function(x) {
str_detect(x, "[^X] +XXXX XXXX XXXX XXXX(\\.| [^X])")

}

creditcard_count <- function(x) {
str_count(x, "[^X] +XXXX XXXX XXXX XXXX(\\.| [^X])")

}

creditcard_indicator(credit_cards)

#> [1] TRUE TRUE FALSE FALSE

204 7 Classification

creditcard_count(credit_cards)

#> [1] 2 1 0 0

7.9.2 Calculate percentage censoring

Some of the complaints contain a high proportion of censoring, and we can
build a feature to measure the percentage of the text that is censored.

There are often many ways to get to the same solution when working with
regular expressions.

Let’s attack this problem by counting the number of X’s in each string, then
count the number of alphanumeric characters and divide the two to get a
percentage.

str_count(credit_cards, "X")

#> [1] 32 16 4 20

str_count(credit_cards, "[:alnum:]")

#> [1] 44 30 17 28

str_count(credit_cards, "X") / str_count(credit_cards, "[:alnum:]")

#> [1] 0.7272727 0.5333333 0.2352941 0.7142857

We can finish up by creating a function.

7.9 Case study: custom features 205

percent_censoring <- function(x) {
str_count(x, "X") / str_count(x, "[:alnum:]")

}

percent_censoring(credit_cards)

#> [1] 0.7272727 0.5333333 0.2352941 0.7142857

7.9.3 Detect monetary amounts

We have already constructed a regular expression that detects the monetary
amount from the text in Section 7.1, so now we can look at how to use this
information. Let’s start by creating a little example and see what we can
extract.

dollar_texts <- c("That will be {$20.00}",
"{$3.00}, {$2.00} and {$7.00}",
"I have no money")

str_extract_all(dollar_texts, "\\{\\$[0-9\\.]*\\}")

#> [[1]]
#> [1] "{$20.00}"
#>
#> [[2]]
#> [1] "{$3.00}" "{$2.00}" "{$7.00}"
#>
#> [[3]]
#> character(0)

We can create a function that simply detects the dollar amount, and we can
count the number of times each amount appears. Each occurrence also has
a value, so it would be nice to include that information as well, such as the
mean, minimum, or maximum.

First, let’s extract the number from the strings. We could write a regular
expression for this, but the parse_number() function from the readr package
does a really good job of pulling out numbers.

206 7 Classification

str_extract_all(dollar_texts, "\\{\\$[0-9\\.]*\\}") %>%
map(readr::parse_number)

#> [[1]]
#> [1] 20
#>
#> [[2]]
#> [1] 3 2 7
#>
#> [[3]]
#> numeric(0)

Now that we have the numbers we can iterate over them with the function of
our choice. Since we are going to have texts with no monetary amounts, we
need to handle the case with zero numbers. Defaults for some functions with
vectors of length zero can be undesirable; we don’t want -Inf to be a value.
Let’s extract the maximum value and give cases with no monetary amounts
a maximum of zero.

max_money <- function(x) {
str_extract_all(x, "\\{\\$[0-9\\.]*\\}") %>%
map(readr::parse_number) %>%
map_dbl(~ ifelse(length(.x) == 0, 0, max(.x)))

}

max_money(dollar_texts)

#> [1] 20 7 0

Now that we have created some feature engineering functions, we can use them
to (hopefully) make our classification model better.

7.10 What evaluation metrics are appropriate?

We have focused on using accuracy and ROC AUC as metrics for our classi-
fication models so far. These are not the only classification metrics available,
and your choice will often depend on how much you care about false positives
compared to false negatives.

7.10 What evaluation metrics are appropriate? 207

If you know before you fit your model that you want to compute one or more
metrics, you can specify them in a call to metric_set(). Let’s set up a tuning
grid for two new classification metrics, recall and precision, that focuses not on
the overall proportion of observations that are predicted correctly but instead
on false positives and false negatives.

nb_rs <- fit_resamples(
nb_wf,
complaints_folds,
metrics = metric_set(recall, precision)

)

If you have already fit your model, you can still compute and explore non-
default metrics as long as you saved the predictions for your resampled data
sets using control_resamples(save_pred = TRUE).

Let’s go back to the naive Bayes model we tuned in Section 7.1.1, with pre-
dictions stored in nb_rs_predictions. We can compute the overall recall.

nb_rs_predictions %>%
recall(product, .pred_class)

#> # A tibble: 1 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 recall binary 0.688

We can also compute the recall for each resample using group_by().

nb_rs_predictions %>%
group_by(id) %>%
recall(product, .pred_class)

#> # A tibble: 10 x 4
#> id .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 Fold01 recall binary 0.694
#> 2 Fold02 recall binary 0.725
#> 3 Fold03 recall binary 0.673
#> 4 Fold04 recall binary 0.660

208 7 Classification

#> 5 Fold05 recall binary 0.705
#> 6 Fold06 recall binary 0.602
#> 7 Fold07 recall binary 0.741
#> 8 Fold08 recall binary 0.702
#> 9 Fold09 recall binary 0.775
#> 10 Fold10 recall binary 0.601

Many of the metrics used for classification are functions of the true positive,
true negative, false positive, and false negative rates. The confusion matrix, a
contingency table of observed classes and predicted classes, gives us informa-
tion on these rates directly.

conf_mat_resampled(nb_rs, tidy = FALSE)

#> Credit Other
#> Credit 2865.6 440.4
#> Other 1301.2 4183.8

It is possible with many data sets to achieve high accuracy just by predicting
the majority class all the time, but such a model is not useful in the real
world. Accuracy alone is often not a good way to assess the performance of
classification models.

For the full set of classification metric options, see the yardstick documen-
tation3.

7.11 The full game: classification

We have come a long way from our first classification model in Section 7.1.1,
and it is time to see how we can use what we have learned to improve it.
We started this chapter with a simple naive Bayes model and token counts.
Since then have we looked at different models, preprocessing techniques, and
domain-specific feature engineering. For our final model, let’s use some of

3https://yardstick.tidymodels.org/reference/

https://yardstick.tidymodels.org/reference/
https://yardstick.tidymodels.org/reference/

7.11 The full game: classification 209

the domain-specific features we developed in Section 7.9 along with our lasso
regularized classification model and tune both the regularization penalty, as
well as the number of tokens to include. For this final model we will:

• train on the same set of cross-validation resamples used throughout this
chapter,

• include text (but not tags or date features, since those did not result in
better performance),

• tune the number of tokens used in the model,

• include unigrams only,

• include custom-engineered features,

• finally evaluate on the testing set, which we have not touched at all yet.

7.11.1 Feature selection

We start by creating a new preprocessing recipe, using only the text of the
complaints for feature engineering.

complaints_rec_v2 <-
recipe(product ~ consumer_complaint_narrative, data = complaints_train)

After exploring this text data more in Section 7.9, we want to add these custom
features to our final model. To do this, we use step_textfeature() to compute
custom text features. We create a list of the custom text features and pass
this list to step_textfeature() via the extract_functions argument. Note how
we have to take a copy of consumer_complaint_narrative using step_mutate() as
step_textfeature() consumes the column.

extract_funs <- list(creditcard_count = creditcard_count,
percent_censoring = percent_censoring,
max_money = max_money)

complaints_rec_v2 <- complaints_rec_v2 %>%
step_mutate(narrative_copy = consumer_complaint_narrative) %>%
step_textfeature(narrative_copy, extract_functions = extract_funs)

210 7 Classification

The tokenization will be similar to the other models in this chapter. In our
original model, we only included 1000 tokens; for our final model, let’s treat the
number of tokens as a hyperparameter that we vary when we tune the final
model. Let’s also set the min_times argument to 100, to throw away tokens
that appear less than 100 times in the entire corpus. We want our model to
be robust and a token needs to appear enough times before we include it.

This data set has many more than 100 of even the most common 5000
or more tokens, but it can still be good practice to specify min_times to
be safe. Your choice for min_times should depend on your data and how
robust you need your model to be.

complaints_rec_v2 <- complaints_rec_v2 %>%
step_tokenize(consumer_complaint_narrative) %>%
step_tokenfilter(consumer_complaint_narrative,

max_tokens = tune(), min_times = 100) %>%
step_tfidf(consumer_complaint_narrative)

7.11.2 Specify the model

We use a lasso regularized classifier since it performed well throughout this
chapter. We can reuse parts of the old workflow sparse_wf from Section 7.5 and
update the recipe specification.

sparse_wf_v2 <- sparse_wf %>%
update_recipe(complaints_rec_v2, blueprint = sparse_bp)

sparse_wf_v2

#> == Workflow ==
#> Preprocessor: Recipe
#> Model: logistic_reg()
#>
#> -- Preprocessor --
#> 5 Recipe Steps
#>
#> * step_mutate()

7.11 The full game: classification 211

#> * step_textfeature()
#> * step_tokenize()
#> * step_tokenfilter()
#> * step_tfidf()
#>
#> -- Model ---
#> Logistic Regression Model Specification (classification)
#>
#> Main Arguments:
#> penalty = tune()
#> mixture = 1
#>
#> Computational engine: glmnet

Before we tune the model, we need to set up a set of possible parameter values
to try.

There are two tunable parameters in this model, the regularization pa-
rameter and the maximum number of tokens included in the model.

Let’s include different possible values for each parameter, for a combination
of 60 models.

final_grid <- grid_regular(
penalty(range = c(-4, 0)),
max_tokens(range = c(1e3, 3e3)),
levels = c(penalty = 20, max_tokens = 3)

)

final_grid

212 7 Classification

#> # A tibble: 60 x 2
#> penalty max_tokens
#> <dbl> <int>
#> 1 0.0001 1000
#> 2 0.000162 1000
#> 3 0.000264 1000
#> 4 0.000428 1000
#> 5 0.000695 1000
#> 6 0.00113 1000
#> 7 0.00183 1000
#> 8 0.00298 1000
#> 9 0.00483 1000
#> 10 0.00785 1000
#> # ... with 50 more rows

We used grid_regular() here where we fit a model at every combination
of parameters, but if you have a model with many tuning parameters,
you may wish to try a space-filling grid instead, such as grid_max_entropy()
or grid_latin_hypercube(). The tidymodels package for creating and han-
dling tuning parameters and parameter grids is dials (Kuhn 2020).

Now it’s time to set up our tuning grid. Let’s save the predictions so we can
explore them in more detail, and let’s also set custom metrics instead of using
the defaults. Let’s compute accuracy, sensitivity, and specificity during tuning.
Sensitivity and specificity are closely related to recall and precision.

set.seed(2020)
tune_rs <- tune_grid(
sparse_wf_v2,
complaints_folds,
grid = final_grid,
metrics = metric_set(accuracy, sensitivity, specificity)

)

We have fitted these classification models!

7.11.3 Evaluate the modeling

Now that all of the models with possible parameter values have been trained,
we can compare their performance. Figure 7.11 shows us the relationship be-

7.11 The full game: classification 213

tween performance (as measured by the metrics we chose), the number of
tokens, and regularization.

autoplot(tune_rs) +
labs(
color = "Number of tokens",
title = "Model performance across regularization penalties and tokens",
subtitle = paste("We can choose a simpler model with higher regularization")

)

accuracy
sens

spec

1e−0� 1e−0� 1e−0� 1e−01 1e�00

0.�

0.�

0.�

0.�

0.00

0.�5

0.50

0.�5

0.�00

0.��5

0.�50

0.��5

1.000

Amount of 5egulari]ation

Number of toNens

1000

�000

�000

:e can choose a simpler model Zith higher regulari]ation
0odel performance across regulari]ation penalties and toNens

FIGURE 7.11: Model performance is similar for the higher token options so
we can choose a simpler model. Note the logarithmic scale on the x-axis for
the regularization penalty.

214 7 Classification

Since this is our final version of this model, we want to choose final parameters
and update our model object so we can use it with new data. We have several
options for choosing our final parameters, such as selecting the numerically
best model. Instead, let’s choose a simpler model within some limit around
that numerically best result, with more regularization that gives close-to-best
performance. Let’s choose by percent loss compared to the best model (the
default choice is 2% loss), and let’s say we care most about overall accuracy
(rather than sensitivity or specificity).

choose_acc <- tune_rs %>%
select_by_pct_loss(metric = "accuracy", -penalty)

choose_acc

#> # A tibble: 1 x 10
#> penalty max_tokens .metric .estimator mean n std_err .config .best .loss
#> <dbl> <int> <chr> <chr> <dbl> <int> <dbl> <chr> <dbl> <dbl>
#> 1 0.00483 1000 accuracy binary 0.882 10 0.00101 Prepro~ 0.898 1.75

After we have those parameters, penalty and max_tokens, we can finalize our
earlier tunable workflow, by updating it with this value.

final_wf <- finalize_workflow(sparse_wf_v2, choose_acc)
final_wf

#> == Workflow ==
#> Preprocessor: Recipe
#> Model: logistic_reg()
#>
#> -- Preprocessor --
#> 5 Recipe Steps
#>
#> * step_mutate()
#> * step_textfeature()
#> * step_tokenize()
#> * step_tokenfilter()
#> * step_tfidf()
#>
#> -- Model ---
#> Logistic Regression Model Specification (classification)
#>
#> Main Arguments:

7.11 The full game: classification 215

#> penalty = 0.00483293023857175
#> mixture = 1
#>
#> Computational engine: glmnet

The final_wf workflow now has finalized values for max_tokens and penalty.

We can now fit this finalized workflow on training data and finally return to
our testing data.

Notice that this is the first time we have used our testing data during this
entire chapter; we tuned and compared models using resampled data sets
instead of touching the testing set.

We can use the function last_fit() to fit our model one last time on our
training data and evaluate it on our testing data. We only have to pass this
function our finalized model/workflow and our data split.

final_fitted <- last_fit(final_wf, complaints_split)

collect_metrics(final_fitted)

#> # A tibble: 2 x 4
#> .metric .estimator .estimate .config
#> <chr> <chr> <dbl> <chr>
#> 1 accuracy binary 0.882 Preprocessor1_Model1
#> 2 roc_auc binary 0.949 Preprocessor1_Model1

The metrics for the test set look about the same as the resampled training data
and indicate we did not overfit during tuning. The accuracy of our final model
has improved compared to our earlier models, both because we are combining
multiple preprocessing steps and because we have tuned the number of tokens.

The confusion matrix on the testing data in Figure 7.12 also yields pleasing
results. It appears symmetric with a strong presence on the diagonal, showing
that there isn’t any strong bias towards either of the classes.

collect_predictions(final_fitted) %>%
conf_mat(truth = product, estimate = .pred_class) %>%
autoplot(type = "heatmap")

216 7 Classification

11713

2177

1287

14127Other

Credit

Credit Other
Truth

P
re
di
ct
io
n

FIGURE 7.12: Confusion matrix on the test set for final lasso regularized
classifier

Figure 7.13 shows the ROC curve for the testing set, to demonstrate how well
this final classification model can distinguish between the two classes.

collect_predictions(final_fitted) %>%
roc_curve(truth = product, .pred_Credit) %>%
autoplot() +
labs(
color = NULL,
title = "ROC curve for US Consumer Finance Complaints",
subtitle = "With final tuned lasso regularized classifier on the test set"

)

The output of last_fit() also contains a fitted model (a workflow, to be more
specific) that has been trained on the training data. We can use the vip pack-
age to understand what the most important variables are in the predictions,
shown in Figure 7.14.

library(vip)

complaints_imp <- pull_workflow_fit(final_fitted$.workflow[[1]]) %>%
vi(lambda = choose_acc$penalty)

7.11 The full game: classification 217

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty

With final tuned lasso regularized classifier on the test set
ROC curve for US Consumer Finance Complaints

FIGURE 7.13: ROC curve with the test set for final lasso regularized clas-
sifier

complaints_imp %>%
mutate(
Sign = case_when(Sign == "POS" ~ "Less about credit reporting",

Sign == "NEG" ~ "More about credit reporting"),
Importance = abs(Importance),
Variable = str_remove_all(Variable, "tfidf_consumer_complaint_narrative_"),
Variable = str_remove_all(Variable, "textfeature_narrative_copy_")

) %>%
group_by(Sign) %>%

218 7 Classification

top_n(20, Importance) %>%
ungroup %>%
ggplot(aes(x = Importance,

y = fct_reorder(Variable, Importance),
fill = Sign)) +

geom_col(show.legend = FALSE) +
scale_x_continuous(expand = c(0, 0)) +
facet_wrap(~Sign, scales = "free") +
labs(
y = NULL,
title = "Variable importance for predicting the topic of a CFPB complaint",
subtitle = paste0("These features are the most important in predicting\n",

"whether a complaint is about credit or not")
)

/ess about credit reporting 0ore about credit reporting

0 5 10 15 0 10 �0 �0 �0
method

remoYed
inquiry

inYestigation
accuracy

information
late

score
physically

free]e
inquiries
accounts
compliant

credit
report

reporting
reseller

transunion
equifa[

e[perian

called
card
cash

branch
at

call
present
refund

pay
transfer
collect

fee
escroZ

receiYed
banN
fees

interest
money

debt
funds

,mportance

7hese features are the most important in predicting
Zhether a complaint is about credit or not

9ariable importance for predicting the topic of a CF3% complaint

FIGURE 7.14: Some words increase a CFPB complaint’s probability of
being about credit reporting while some decrease that probability

Tokens like “interest,” “bank,” and “escrow” contribute in this model away
from a classification as about credit reporting, while tokens like the names
of the credit reporting agencies, “reporting,” and “report” contribute in this
model toward classification as about credit reporting.

7.11 The full game: classification 219

The top features we see here are all tokens learned directly from the
text. None of our hand-crafted custom features, like percent_censoring or
max_money are top features in terms of variable importance. In many cases,
it can be difficult to create features from text that perform better than
the tokens themselves.

We can gain some final insight into our model by looking at observations from
the test set that it misclassified. Let’s bind together the predictions on the
test set with the original complaints_test data. Then let’s look at complaints
that were labeled as about credit reporting in the original data but that our
final model thought had a low probability of being about credit reporting.

complaints_bind <- collect_predictions(final_fitted) %>%
bind_cols(complaints_test %>% select(-product))

complaints_bind %>%
filter(product == "Credit", .pred_Credit < 0.2) %>%
select(consumer_complaint_narrative) %>%
slice_sample(n = 10)

#> # A tibble: 10 x 1
#> consumer_complaint_narrative
#> <chr>
#> 1 "Bank of America took more than 30 days to send me documents to validate a d~
#> 2 "My account was on auto pay. Mohela says they stopped taking payments from m~
#> 3 "Received a cancellation of debt form from Cavalry SPV I LLC. The address li~
#> 4 "A certified letter was sent to AAS Debt recovery Inc for debt validation. I~
#> 5 "I have indicated to the credit bureau as well as the creditor the medical b~
#> 6 "ftc violations was sent to XXXX XXXX and all the credit company please have~
#> 7 "This was open without my knowledge, I have been trying to get this remove f~
#> 8 ". They keep on putting this account on my credit report they called many ti~
#> 9 "I sent a debt validation request letter to XXXX in early XX/XX/2019 about t~
#> 10 "I had a divorce and my husband kept the home because it was in his name.. h~

We can see why some of these would be difficult for our model to classify as
about credit reporting, since some are about other topics as well. The original
label may also be incorrect in some cases.

What about misclassifications in the other direction, observations in the test

220 7 Classification

set that were not labeled as about credit reporting but that our final model
gave a high probability of being about credit reporting?

complaints_bind %>%
filter(product == "Other", .pred_Credit > 0.8) %>%
select(consumer_complaint_narrative) %>%
slice_sample(n = 10)

#> # A tibble: 10 x 1
#> consumer_complaint_narrative
#> <chr>
#> 1 "Please review the attachment. Remove the inquiries and place an extended fr~
#> 2 "USAA continue using old accounts that are including and discharged in Chapt~
#> 3 "To Whom It May Concern, This letter is a formal complaint that Experian is ~
#> 4 "I submitted a dispute through Transunion for a supposed medical debt that I~
#> 5 "I paid XXXX XXXX XXXX directly and by law, they must recall the account fro~
#> 6 "Suntrust Bank # XXXX XXXX XXXX # XXXX, and XXXX # XXXX, XXXX XXXX XXXX # XX~
#> 7 "Billing amount is not accurate - Correct amount XXXX Billing date is not ac~
#> 8 "In response to a denial of an extension of credit this consumer checked wit~
#> 9 "Navient Is reporting delinquent history. They are purging which is the same~
#> 10 "This account is coming from XXXX and it is showing up more then once on my ~

Again, these are “mistakes” on the part of the model that we can understand
based on the content of these complaints. The original labeling on the com-
plaints looks to be not entirely correct or consistent, typical of real data from
the real world.

7.12 Summary

You can use classification modeling to predict labels or categorical variables
from a data set, including data sets that include text. Naive Bayes models can
perform well with text data since each feature is handled independently and
thus large numbers of features are computational feasible. This is important
as bag-of-word text models can involve thousands of tokens. We also saw that
regularized linear models, such as lasso, often work well for text data sets.
Your own domain knowledge about your text data is valuable, and using that
knowledge in careful engineering of custom features can improve your model
in some cases.

7.12 Summary 221

7.12.1 In this chapter, you learned:

• how text data can be used in a classification model

• to tune hyperparameters of a model

• how to compare different model types

• that models can combine both text and non-text predictors

• about engineering custom features for machine learning

• about performance metrics for classification models

http://www.taylorandfrancis.com

Part III

Deep Learning Methods

http://www.taylorandfrancis.com

Overview 225

Overview

In Chapters 6 and 7, we use algorithms such as regularized linear models,
support vector machines, and naive Bayes models to predict outcomes from
predictors including text data. Deep learning models approach the same tasks
and have the same goals, but the algorithms involved are different. Deep learn-
ing models are “deep” in the sense that they use multiple layers to learn how
to map from input features to output outcomes; this is in contrast to the kinds
of models we used in the previous two chapters, which use a shallow (single)
mapping.

Deep learning models can be effective for text prediction problems be-
cause they use these multiple layers to capture complex relationships in
language.

The layers in a deep learning model are connected in a network, and these
models are called neural networks, although they do not work much like a
human brain. The layers can be connected in different configurations called
network architectures, which sometimes incorporate word embeddings, as de-
scribed in Chapter 5. We will cover three network architectures in the following
chapters:

• Chapter 8 starts our exploration of deep learning for text with a densely
connected neural network. Think of this more straightforward architecture
as a bridge between the “shallow” learning approaches of Chapters 6 and
7 that treated text as a bag of words and the more complex architectures
to come.

• Chapter 9 continues by walking through how to train and evaluate a
more advanced architecture, a long short-term memory (LSTM) network.
LSTMs are among the most common architectures used for text data be-
cause they model text as a long sequence of words or characters.

226 Overview

• Chapter 10 wraps up our treatment of deep learning for text with the
convolutional neural network (CNN) architecture. CNNs are another ad-
vanced architecture appropriate for text data because they can capture
specific local patterns.

Our discussion of network architectures is fairly specific to text data; in other
situations you may do best using a different architecture, for example, when
working with dense, tabular data.

For the following chapters, we will use tidymodels packages along with Tensor-
flow4 and the R interface to Keras (Allaire and Chollet 2021) for preprocessing,
modeling, and evaluation.

The keras R package provides an interface for R users to Keras, a high-
level API for building neural networks.

The following table presents some key differences between deep learning and
what, in this book, we call machine learning methods.

Machine learning Deep learning
Faster to train Takes more time to train
Software is typically easier to
install

Software can be more challenging
to install

Can achieve good performance with
less data

Requires more data for good
performance

Depends on preprocessing to model
more than very simple relationships

Can model highly complex
relationships

Deep learning and more traditional machine learning algorithms are different,
but the structure of the modeling process is largely the same, no matter what
the specific details of prediction or algorithm are.

Spending your data budget

A limited amount of data is available for any given modeling project, and this
data must be allocated to different tasks to balance competing priorities. We

4https://www.tensorflow.org/

https://www.tensorflow.org/
https://www.tensorflow.org/

Overview 227

espouse an approach of first splitting data in testing and training sets, holding
the testing set back until all modeling tasks are completed, including feature
engineering and tuning. This testing set is then used as a final check on model
performance, to estimate how the final model will perform on new data.

The training data is available for tasks from model parameter estimation to de-
termining which features are important and more. To compare or tune model
options or parameters, this training set can be further split so that models
can be evaluated on a validation set, or it can be resampled as described in
Section 6.1.2 to create new simulated data sets for the purpose of evaluation.

Feature engineering

Text data requires extensive processing to be appropriate for modeling,
whether via an algorithm like regularized regression or a neural network.
Chapters 1 through 5 covered several of the most important techniques that
are used to transform language into a representation appropriate for compu-
tation. This feature engineering part of the modeling process can be intensive
for text, sometimes more computationally expensive than fitting a model al-
gorithm.

We espouse an approach of implementing feature engineering on training data
only, typically using resampled data sets, to avoid obtaining an overly opti-
mistic estimate of model performance. Feature engineering can sometimes be
a part of the machine learning process where subtle data leakage occurs, when
practitioners use information (say, to preprocess data or engineer features)
that will not be available at prediction time. One example of this is tf-idf,
which we introduced in Chapter 5 and used in both Chapters 6 and 7. As a
reminder, the term frequency of a word is how frequently a word occurs in a
document, and the inverse document frequency of a word is a weight, typically
defined as:

𝑖𝑑𝑓(term) = ln(𝑛documents
𝑛documents containing term

)

These two quantities are multiplied together to compute a term’s tf-idf, a
statistic that measures the frequency of a term adjusted for how rarely it
is used. Computing inverse document frequency involves the whole corpus or
collection of documents. When you are fitting a model, how should that corpus
be defined? We strongly advise that you should use your training data only
in such a situation. Using all the data available to you (training plus testing)
involves leakage of information from the testing set to the model, and any

228 Overview

estimates you may make of how your model may perform on new data may
be overly optimistic.

This specific example focused on tf-idf, but data leakage is a serious chal-
lenge in general for building machine learning models and systems. The
tidymodels framework is designed to encourage good statistical practice,
such as learning feature engineering transformations from training data
and then applying those transformation to othe data sets.

Fitting and tuning

Many different kinds of models are appropriate for text data, from more
straightforward models like the linear models explored deeply in Chapter 6
to the neural network models we cover in Chapters 10 and 9. Some of these
models have hyperparameters that cannot be learned from data during fitting,
like the regularization parameter of the models in Chapter 6; these hyperpa-
rameters can be tuned using resampled data sets.

Model evaluation

Once models are trained and perhaps tuned, we can evaluate their performance
quantitatively using metrics appropriate for the kind of practical problem
being dealt with. Model explanation analysis, such as feature importance,
also helps us understand how well and why models are behaving the way they
do.

Putting the model process in context

This outline of the model process depends on us as data practitioners coming
prepared for modeling with a healthy understanding of our data sets from

Overview 229

exploratory data analysis. Silge and Robinson (2017) provide a guide for ex-
ploratory data analysis for text.

Also, in practice, the structure of a real modeling project is iterative. After
fitting and tuning a first model or set of a models, a practitioner will often
return to build more or better features, then refit models, and evaluate in a
more detailed way. Notice that we take this approach in each chapter, both
for more straightforward machine learning and deep learning; we start with
a simpler model and then go back again and again to improve it in several
ways. This iterative approach is healthy and appropriate, as long as good
practices in data “spending” are observed. The testing set cannot be used
during this iterative back-and-forth, and using resampled data sets can set us
up as practitioners for more accurate estimates of performance.

http://www.taylorandfrancis.com

8
Dense neural networks

Like we discussed in the previous overview, these three chapters on deep learn-
ing for text are organized by network architecture, rather than by outcome
type as we did in Chapters 6 and 7. We’ll use Keras with its Tensorflow back-
end for these deep learning models; Keras is a well-established framework for
deep learning with bindings in Python and, via reticulate (Ushey, Allaire, and
Tang 2021), R. Keras provides an extensive, high-level API for creating and
training many kinds of neural networks, but less support for resampling and
preprocessing. Throughout this and the next chapters, we will demonstrate
how to use tidymodels packages together with Keras to address these tasks.

The tidymodels framework of R packages is modular, so we can use it for
certain parts of our modeling analysis without committing to it entirely,
when appropriate.

This chapter explores one of the most straightforward configurations for a deep
learning model, a densely connected neural network. This is typically not
a model that will achieve the highest performance on text data, but it is a
good place to start to understand the process of building and evaluating deep
learning models for text. We can also use this type of network architecture as a
bridge between the bag-of-words approaches we explored in detail in Chapters
6 and 7 to the approaches beyond bag-of-words we will use in Chapters 9 and
10. Deep learning allows us to incorporate not just word counts but also word
sequences and positions.

Figure 8.1 depicts a densely-connected neural network architecture feed-
forward. The input comes in to the network all at once and is densely (in
this case, fully) connected to the first hidden layer. A layer is “hidden” in the
sense that it doesn’t connect to the outside world; the input and output layers
take care of this. The neurons in any given layer are only connected to the
next layer. The numbers of layers and nodes within each layer are variable
and are hyperparameters of the model selected by the practitioner.

Figure 8.1 shows the input units with words, but this is not an entirely accurate

DOI: 10.1201/9781003093459-8 231

https://doi.org/10.1201/9781003093459-8

232 8 Dense neural networks

far

down

in

the

forest

FIGURE 8.1: A high-level diagram of a feed-forward neural network. The
lines connecting the nodes are shaded differently to illustrate the different
weights connecting units.

representation of a neural network. These words will in practice be represented
by embedding vectors because these networks can only work with numeric
variables.

8.1 Kickstarter data

For all our chapters on deep learning, we will build binary classification mod-
els, much like we did in Chapter 7, but we will use neural networks instead
of shallow learning models. As we discussed in the overview to these deep
learning chapters, much of the overall model process will look the same, but
we will use a different kind of algorithm. We will use a data set of descriptions
or “blurbs” for campaigns from the crowdfunding platform Kickstarter1.

library(tidyverse)

kickstarter <- read_csv("data/kickstarter.csv.gz")
kickstarter

1https://www.kickstarter.com/

https://www.kickstarter.com/
https://www.kickstarter.com/

8.1 Kickstarter data 233

#> # A tibble: 269,790 x 3
#> blurb state created_at
#> <chr> <dbl> <date>
#> 1 Exploring paint and its place in a digital world. 0 2015-03-17
#> 2 Mike Fassio wants a side-by-side photo of me and Hazel eati~ 0 2014-07-11
#> 3 I need your help to get a nice graphics tablet and Photosho~ 0 2014-07-30
#> 4 I want to create a Nature Photograph Series of photos of wi~ 0 2015-05-08
#> 5 I want to bring colour to the world in my own artistic skil~ 0 2015-02-01
#> 6 We start from some lovely pictures made by us and we decide~ 0 2015-11-18
#> 7 Help me raise money to get a drawing tablet 0 2015-04-03
#> 8 I would like to share my art with the world and to do that ~ 0 2014-10-15
#> 9 Post Card don’t set out to simply decorate stories. Our goa~ 0 2015-06-25
#> 10 My name is Siu Lon Liu and I am an illustrator seeking fund~ 0 2014-07-19
#> # ... with 269,780 more rows

The state of each observation records whether the campaign was successful
in its crowdfunding goal; a value of 1 means it was successful and a value
of 0 means it was not successful. The texts for the campaign descriptions,
contained in blurb, are short, less than a few hundred characters. What is the
distribution of characters?

kickstarter %>%
ggplot(aes(nchar(blurb))) +
geom_histogram(binwidth = 1, alpha = 0.8) +
labs(x = "Number of characters per campaign blurb",

y = "Number of campaign blurbs")

Figure 8.2 shows that the distribution of characters per blurb is right-skewed,
with two thresholds. Individuals creating campaigns don’t have much space
to make an impression, so most people choose to use most of it! There is
an oddity in this chart, a steep drop somewhere between 130 and 140 with
another threshold around 150 characters. Let’s investigate to see if we can
find the reason.

We can use count() to find the most common blurb length.

kickstarter %>%
count(nchar(blurb), sort = TRUE)

234 8 Dense neural networks

0

10000

�0000

0 50 100 150
Number of characters per campaign blurb

N
um

be
r o

f c
am

pa
ig

n
bl

ur
bs

FIGURE 8.2: Distribution of character count for Kickstarter campaign
blurbs

#> # A tibble: 151 x 2
#> `nchar(blurb)` n
#> <int> <int>
#> 1 135 26827
#> 2 134 18726
#> 3 133 14913
#> 4 132 13559
#> 5 131 11320
#> 6 130 10085
#> 7 129 8786
#> 8 128 7874
#> 9 127 7239
#> 10 126 6590
#> # ... with 141 more rows

Let’s use our own eyes to see what happens around this cutoff point. We can
use slice_sample() to draw a few random blurbs.

Were the blurbs truncated at 135 characters? Let’s look at some blurbs with
exactly 135 characters.

set.seed(1)
kickstarter %>%

8.1 Kickstarter data 235

filter(nchar(blurb) == 135) %>%
slice_sample(n = 5) %>%
pull(blurb)

#> [1] "A science fiction/drama about a young man and woman encountering beings
not of this earth. Armed with only their minds to confront this"
#> [2] "No, not my virginity. That was taken by a girl named Ramona the night
of my senior prom. I'm talking about my novel, THE USE OF REGRET."
#> [3] "In a city where the sun has stopped rising, the music never stops. Now
only a man and his guitar can free the people from the Red King."
#> [4] "First Interfaith & Community FM Radio Station needs transmitter in
Menifee, CA Programs online, too CLICK PHOTO ABOVE FOR OUR CAT VIDEO"
#> [5] "This documentary asks if the twenty-four hour news cycle has altered
people's opinions of one another. We explore unity in one another."

All of these blurbs appear coherent and some of them even end with a period
to end the sentence. Let’s now look at blurbs with more than 135 characters
to see if they are different.

set.seed(1)
kickstarter %>%

filter(nchar(blurb) > 135) %>%
slice_sample(n = 5) %>%
pull(blurb)

#> [1] "This is a puzzle game for the Atari 2600. The unique thing about this
is that (some) of the cartridge cases will be made out of real wood, hand
carved"
#> [2] "Art supplies for 10 girls on the east side of Detroit to make drawings
of their neighborhood, which is also home to LOVELAND's Plymouth microhood"
#> [3] "Help us make a video for 'Never', one of the most popular songs on
Songs To Wear Pants To and the lead single from Your Heart's upcoming album
Autumn."
#> [4] "Pyramid Cocoon is an interactive sculpture to be installed during the
Burning Man Festival 2010. Users can rest, commune or cocoon in the piece"
#> [5] "Back us to own, wear, or see a show of great student art we've
collected from Artloop partner schools in NYC. The $ goes right back to art
programs!"

All of these blurbs also look fine so the strange distribution doesn’t seem like
a data collection issue.

8.2 A first deep learning model 237

We can’t say for sure if the change happened on 2010-10-20, but that is the
last day a campaign was launched with more than 135 characters.

8.2 A first deep learning model

Like all our previous modeling, our first step is to split our data into training
and testing sets. We will still use our training set to build models and save the
testing set for a final estimate of how our model will perform on new data.

It is very easy to overfit deep learning models, so an unbiased estimate of
future performance from a test set is more important than ever.

We use initial_split() to define the training and testing splits. We will focus on
modeling the blurb alone in these deep learning chapters. Also, we will restrict
our modeling analysis to only include blurbs with more than 15 characters,
because the shortest blurbs tend to consist of uninformative single words.

library(tidymodels)
set.seed(1234)
kickstarter_split <- kickstarter %>%

filter(nchar(blurb) >= 15) %>%
initial_split()

kickstarter_train <- training(kickstarter_split)
kickstarter_test <- testing(kickstarter_split)

There are 202,092 blurbs in the training set and 67,365 in the testing set.

8.2.1 Preprocessing for deep learning

Preprocessing for deep learning models is different from preprocessing for most
other text models. These neural networks model sequences, so we have to
choose the length of sequences we would like to include. Documents that
are longer than this length are truncated (information is thrown away), and
documents that are shorter than this length are padded with zeroes (an empty,

238 8 Dense neural networks

non-informative value) to get to the chosen sequence length. This sequence
length is a hyperparameter of the model, and we need to select this value such
that we don’t:

• overshoot and introduce a lot of padded zeroes, which would make the
model hard to train, or

• undershoot and cut off too much informative text from our documents.

We can use the count_words() function from the tokenizers package to calculate
the number of words and generate a histogram in Figure 8.4. Notice how we
are only using the training data set to avoid data leakage when selecting this
value.

kickstarter_train %>%
mutate(n_words = tokenizers::count_words(blurb)) %>%
ggplot(aes(n_words)) +
geom_bar() +
labs(x = "Number of words per campaign blurb",

y = "Number of campaign blurbs")

0

5000

10000

15000

�0000

0 �0 �0 �0
Number of Zords per campaign blurb

N
um

be
r o

f c
am

pa
ig

n
bl

ur
bs

FIGURE 8.4: Distribution of word count for Kickstarter campaign blurbs

Given that we don’t have many words for this particular data set to begin
with, let’s err on the side of longer sequences so we don’t lose valuable data.

8.2 A first deep learning model 239

Let’s try 30 words for our threshold max_length, and let’s include 20,000 words
in our vocabulary.

We will use the recipes and textrecipes packages for data preprocessing
and feature engineering for our deep learning models, just like we did for
our models in Chapters 6 and 7. To use a recipe, we first specify it with
the variables we want to include and the steps we want to use in feature
engineering.

library(textrecipes)

max_words <- 2e4
max_length <- 30

kick_rec <- recipe(~ blurb, data = kickstarter_train) %>%
step_tokenize(blurb) %>%
step_tokenfilter(blurb, max_tokens = max_words) %>%
step_sequence_onehot(blurb, sequence_length = max_length)

kick_rec

#> Data Recipe
#>
#> Inputs:
#>
#> role #variables
#> predictor 1
#>
#> Operations:
#>
#> Tokenization for blurb
#> Text filtering for blurb
#> Sequence 1 hot encoding for blurb

The formula used to specify this recipe ~ blurb does not have an outcome,
because we are using recipes and textrecipes functions on their own, outside
of the rest of the tidymodels framework; we don’t need to know about the
outcome here. This preprocessing recipe tokenizes our text (Chapter 2) and
filters to keep only the top 20,000 words, but then it transforms the tokenized
text in a new way to prepare for deep learning that we have not used in this
book before, using step_sequence_onehot().

240 8 Dense neural networks

8.2.2 One-hot sequence embedding of text

The function step_sequence_onehot() transforms tokens into a numeric format
appropriate for modeling, like step_tf() and step_tfidf(). However, it is differ-
ent in that it takes into account the order of the tokens, unlike step_tf() and
step_tfidf(), which do not take order into account.

Steps like step_tf() and step_tfidf() are used for approaches called “bag
of words”, meaning the words are treated like they are just thrown in a
bag without attention paid to their order.

Let’s take a closer look at how step_sequence_onehot() works and how its pa-
rameters will change the output.

When we use step_sequence_onehot(), two things happen. First, each word is
assigned an integer index. You can think of this as a key-value pair of the
vocabulary. Next, the sequence of tokens is replaced with the corresponding
indices; this sequence of integers makes up the final numeric representation.
Let’s illustrate with a small example:

small_data <- tibble(
text = c("Adventure Dice Game",

"Spooky Dice Game",
"Illustrated Book of Monsters",
"Monsters, Ghosts, Goblins, Me, Myself and I")

)

small_spec <- recipe(~ text, data = small_data) %>%
step_tokenize(text) %>%
step_sequence_onehot(text, sequence_length = 6, prefix = "")

prep(small_spec)

#> Data Recipe
#>
#> Inputs:
#>
#> role #variables
#> predictor 1
#>

8.2 A first deep learning model 241

#> Training data contained 4 data points and no missing data.
#>
#> Operations:
#>
#> Tokenization for text [trained]
#> Sequence 1 hot encoding for text [trained]

What does the function prep() do? Before when we have used recipes,
we put them in a workflow() that handles low-level processing. The prep()
function will compute or estimate statistics from the training set; the
output of prep() is a prepped recipe.

Once we have the prepped recipe, we can tidy() it to extract the vocabulary,
represented in the vocabulary and token columns2.

prep(small_spec) %>%
tidy(2)

#> # A tibble: 14 x 4
#> terms vocabulary token id
#> <chr> <int> <chr> <chr>
#> 1 text 1 adventure sequence_onehot_9p9uj
#> 2 text 2 and sequence_onehot_9p9uj
#> 3 text 3 book sequence_onehot_9p9uj
#> 4 text 4 dice sequence_onehot_9p9uj
#> 5 text 5 game sequence_onehot_9p9uj
#> 6 text 6 ghosts sequence_onehot_9p9uj
#> 7 text 7 goblins sequence_onehot_9p9uj
#> 8 text 8 i sequence_onehot_9p9uj
#> 9 text 9 illustrated sequence_onehot_9p9uj
#> 10 text 10 me sequence_onehot_9p9uj
#> 11 text 11 monsters sequence_onehot_9p9uj
#> 12 text 12 myself sequence_onehot_9p9uj
#> 13 text 13 of sequence_onehot_9p9uj
#> 14 text 14 spooky sequence_onehot_9p9uj

2The terms column refers to the column we have applied step_sequence_onehot() to and id
is its unique identifier. Note that textrecipes allows step_sequence_onehot() to be applied to
multiple text variables independently, and they will have their own vocabularies.

242 8 Dense neural networks

If we take a look at the resulting matrix, we have one row per observation. The
first row starts with some padded zeroes but then contains 1, 4, and 5, which
we can use together with the vocabulary to construct the original sentence.

prep(small_spec) %>%
bake(new_data = NULL, composition = "matrix")

#> _text_1 _text_2 _text_3 _text_4 _text_5 _text_6
#> [1,] 0 0 0 1 4 5
#> [2,] 0 0 0 14 4 5
#> [3,] 0 0 9 3 13 11
#> [4,] 6 7 10 12 2 8

When we bake() a prepped recipe, we apply the preprocessing to a data
set. We can get out the training set that we started with by specifying
new_data = NULL or apply it to another set via new_data = my_other_data_set.
The output of bake() is a data set like a tibble or a matrix, depending on
the composition argument.

But wait, the 4th line should have started with an 11 since the sentence starts
with “monsters!” The entry in _text_1 is 6 instead. This is happening because
the sentence is too long to fit inside the specified sequence length. We must
answer three questions before using step_sequence_onehot():

1. How long should the output sequence be?
2. What happens to sequences that are too long?
3. What happens to sequences that are too short?

Choosing the right sequence length is a balancing act. You want the length to
be long enough such that you don’t truncate too much of your text data, but
still short enough to keep the size of the data manageable and to avoid exces-
sive padding. Truncating, having large training data, and excessive padding
all lead to worse model performance. This parameter is controlled by the
sequence_length argument in step_sequence_onehot().

If the sequence is too long, then it must be truncated. This can be done by
removing values from the beginning ("pre") or the end ("post") of the sequence.
This choice is mostly influenced by the data, and you need to evaluate where
most of the useful information of the text is located. News articles typically
start with the main points and then go into detail. If your goal is to detect the

8.2 A first deep learning model 243

broad category, then you may want to keep the beginning of the texts, whereas
if you are working with speeches or conversational text, then you might find
that the last thing to be said carries more information.

Lastly, we need to decide how to pad a document that is too short. Pre-padding
tends to be more popular, especially when working with RNN and LSTM
models (Chapter 9) since having post-padding could result in the hidden states
getting flushed out by the zeroes before getting to the text itself (Section 9.5).

The defaults for step_sequence_onehot() are sequence_length = 100, padding = "pre",
and truncating = "pre". If we change the truncation to happen at the end with:

recipe(~ text, data = small_data) %>%
step_tokenize(text) %>%
step_sequence_onehot(text, sequence_length = 6, prefix = "",

padding = "pre", truncating = "post") %>%
prep() %>%
bake(new_data = NULL, composition = "matrix")

#> _text_1 _text_2 _text_3 _text_4 _text_5 _text_6
#> [1,] 0 0 0 1 4 5
#> [2,] 0 0 0 14 4 5
#> [3,] 0 0 9 3 13 11
#> [4,] 11 6 7 10 12 2

then we see the 11 at the beginning of the last row representing the “monsters.”
The starting points are not aligned since we are still padding on the left side.
We can left-align all the sequences by setting padding = "post".

recipe(~ text, data = small_data) %>%
step_tokenize(text) %>%
step_sequence_onehot(text, sequence_length = 6, prefix = "",

padding = "post", truncating = "post") %>%
prep() %>%
bake(new_data = NULL, composition = "matrix")

#> _text_1 _text_2 _text_3 _text_4 _text_5 _text_6
#> [1,] 1 4 5 0 0 0
#> [2,] 14 4 5 0 0 0
#> [3,] 9 3 13 11 0 0
#> [4,] 11 6 7 10 12 2

244 8 Dense neural networks

Now we have all digits representing the first characters neatly aligned in the
first column.

Let’s now prepare and apply our feature engineering recipe kick_rec so we can
use it in for our deep learning model.

kick_prep <- prep(kick_rec)
kick_train <- bake(kick_prep, new_data = NULL, composition = "matrix")
dim(kick_train)

#> [1] 202092 30

The matrix kick_train has 202,092 rows, corresponding to the rows of the
training data, and 30 columns, corresponding to our chosen sequence length.

8.2.3 Simple flattened dense network

Our first deep learning model embeds these Kickstarter blurbs in sequences
of vectors, flattens them, and then trains a dense network layer to predict
whether the campaign was successful or not.

library(keras)

dense_model <- keras_model_sequential() %>%
layer_embedding(input_dim = max_words + 1,

output_dim = 12,
input_length = max_length) %>%

layer_flatten() %>%
layer_dense(units = 32, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")

dense_model

#> Model
#> Model: "sequential"
#> __
#> Layer (type) Output Shape Param #
#> ==
#> embedding (Embedding) (None, 30, 12) 240012
#> __
#> flatten (Flatten) (None, 360) 0

8.2 A first deep learning model 245

#> __
#> dense_1 (Dense) (None, 32) 11552
#> __
#> dense (Dense) (None, 1) 33
#> ==
#> Total params: 251,597
#> Trainable params: 251,597
#> Non-trainable params: 0
#> __

Let us step through this model specification one layer at a time.

• We initiate the Keras model by using keras_model_sequential() to indicate
that we want to compose a linear stack of layers.

• Our first layer_embedding() is equipped to handle the preprocessed data we
have in kick_train. It will take each observation/row in kick_train and make
dense vectors from our word sequences. This turns each observation into an
embedding_dim × sequence_length matrix, 12 × 30 matrix in our case. In total,
we will create a number_of_observations × embedding_dim × sequence_length
data cube.

• The next layer_flatten() layer takes the matrix for each observation and
flattens them into one dimension. This will create a 30 * 12 = 360 long
vector for each observation.

• Lastly, we have 2 densely connected layers. The last layer has a sigmoid
activation function to give us an output between 0 and 1, since we want
to model a probability for a binary classification problem.

We still have a few things left to add to this model before we can fit it to the
data. A Keras model requires an optimizer and a loss function to be able to
compile.

When the neural network finishes passing a batch of data through the network,
it needs a way to use the difference between the predicted values and true
values to update the network’s weights. The algorithm that determines those
weights is known as the optimization algorithm. Many optimizers are available
within Keras itself3; you can even create custom optimizers if what you need
isn’t on the list. We will start by using the Adam optimizer, a good default
optimizer for many problems.

3https://keras.io/api/optimizers/

https://keras.io/api/optimizers/
https://keras.io/api/optimizers/

246 8 Dense neural networks

An optimizer can either be set with the name of the optimizer as a char-
acter or by supplying the function optimizer_foo() where foo is the name
of the optimizer. If you use the function then you can specify parameters
for the optimizer.

During training of a neural network, there must be some quantity that we want
to have minimized; this is called the loss function. Again, many loss functions
are available within Keras4. These loss functions typically have two arguments,
the true value and the predicted value, and return a measure of how close they
are. Since we are working on a binary classification task and the final layer of
the network returns a probability, binary cross-entropy is an appropriate loss
function. Binary cross-entropy does well at dealing with probabilities because
it measures the “distance” between probability distributions. In our case, this
would be the ground-truth distribution and the predictions.

We can also add any number of metrics5 to be calculated and reported during
training. These metrics will not affect the training loop, which is controlled
by the optimizer and loss function. The metrics’ only job is to report back a
single number that will inform you how well the model is performing. We will
select accuracy as a reported metric for now.

Let’s set these three options (optimizer, loss, and metrics) using the compile()
function:

dense_model %>% compile(
optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")

)

Notice how the compile() function modifies the model in place. This is
different from how objects are conventionally handled in R so be vigilant
about model definition and modification in your code. This is a conscious
decision6 that was made when creating the keras R package to match
the data structures and behavior of the underlying Keras library.

4https://keras.io/api/losses/
5https://keras.io/api/metrics/

https://keras.io/api/losses/
https://keras.io/api/losses/
https://keras.io/api/metrics/
https://keras.io/api/metrics/

8.2 A first deep learning model 247

Finally, we can fit this model! We need to supply the data for training as
a matrix of predictors x and a numeric vector of labels y. This is sufficient
information to get started training the model, but we are going to specify a
few more arguments to get better control of the training loop. First, we set
the number of observations to pass through at a time with batch_size, and
we set epochs = 20 to tell the model to pass all the training data through the
training loop 20 times. Lastly, we set validation_split = 0.25 to specify an
internal validation split; this will keep 25% of the data for validation.

dense_history <- dense_model %>%
fit(
x = kick_train,
y = kickstarter_train$state,
batch_size = 512,
epochs = 20,
validation_split = 0.25,
verbose = FALSE

)

We can visualize the results of the training loop by plotting the dense_history
in Figure 8.5.

plot(dense_history)

We have dealt with accuracy in other chapters; remember that a higher
value (a value near one) is better. Loss is new in these deep learning
chapters, and a lower value is better.

The loss and accuracy both improve with more training epochs on the training
data; this dense network more and more closely learns the characteristics of
the training data as its trains longer. The same is not true of the validation
data, the held-out 25% specified by validation_split = 0.25. The performance
is worse on the validation data than the testing data, and degrades somewhat
as training continues. If we wanted to use this model, we would want to only
train it about 7 or 8 epochs.

6https://keras.rstudio.com/articles/faq.html#why-are-keras-objects-modified-in-place-

https://keras.rstudio.com/articles/faq.html#why-are-keras-objects-modified-in-place
https://keras.rstudio.com/articles/faq.html#why-are-keras-objects-modified-in-place

248 8 Dense neural networks
lo
ss

ac
cu
ra
cy

5 10 15 20

0.0

0.5

1.0

1.5

0.7

0.8

0.9

1.0

epoch

data

training

validation

FIGURE 8.5: Training and validation metrics for dense network

8.2.4 Evaluation

For our first deep learning model, we used the Keras defaults for creating a
validation split and tracking metrics, but we can use tidymodels functions to
be more specific about these model characteristics. Instead of using the val-
idation_split argument to fit(), we can create our own validation set using
tidymodels and use validation_data argument for fit(). We create our valida-
tion split from the training set.

set.seed(234)
kick_val <- validation_split(kickstarter_train, strata = state)
kick_val

#> # Validation Set Split (0.75/0.25) using stratification
#> # A tibble: 1 x 2
#> splits id
#> <list> <chr>
#> 1 <split [151568/50524]> validation

The split object contains the information necessary to extract the data we will
use for training/analysis and the data we will use for validation/assessment.
We can extract these data sets in their raw, unprocessed form from the split

8.2 A first deep learning model 249

using the helper functions analysis() and assessment(). Then, we can apply our
prepped preprocessing recipe kick_prep to both to transform this data to the
appropriate format for our neural network architecture.

kick_analysis <- bake(kick_prep, new_data = analysis(kick_val$splits[[1]]),
composition = "matrix")

dim(kick_analysis)

#> [1] 151568 30

kick_assess <- bake(kick_prep, new_data = assessment(kick_val$splits[[1]]),
composition = "matrix")

dim(kick_assess)

#> [1] 50524 30

These are each matrices now appropriate for a deep learning model like the
one we trained in the previous section. We will also need the outcome variables
for both sets.

state_analysis <- analysis(kick_val$splits[[1]]) %>% pull(state)
state_assess <- assessment(kick_val$splits[[1]]) %>% pull(state)

Let’s set up our same dense neural network architecture.

dense_model <- keras_model_sequential() %>%
layer_embedding(input_dim = max_words + 1,

output_dim = 12,
input_length = max_length) %>%

layer_flatten() %>%
layer_dense(units = 32, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")

dense_model %>% compile(
optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")

)

250 8 Dense neural networks

Now we can fit this model to kick_analysis and validate on kick_assess. Let’s
only fit for 10 epochs this time.

val_history <- dense_model %>%
fit(
x = kick_analysis,
y = state_analysis,
batch_size = 512,
epochs = 10,
validation_data = list(kick_assess, state_assess),
verbose = FALSE

)

val_history

#>
#> Final epoch (plot to see history):
#> loss: 0.03639
#> accuracy: 0.9914
#> val_loss: 1.062
#> val_accuracy: 0.8056

Figure 8.6 still shows significant overfitting at 10 epochs.

plot(val_history)

Using our own validation set also allows us to flexibly measure performance
using tidymodels functions from the yardstick package. We do need to set
up a few transformations between Keras and tidymodels to make this work.
The following function keras_predict() creates a little bridge between the two
frameworks, combining a Keras model with baked (i.e., preprocessed) data
and returning the predictions in a tibble format.

library(dplyr)

keras_predict <- function(model, baked_data, response) {
predictions <- predict(model, baked_data)[, 1]
tibble(
.pred_1 = predictions,
.pred_class = if_else(.pred_1 < 0.5, 0, 1),

8.2 A first deep learning model 251
lo
ss

ac
cu
ra
cy

2 4 6 8 10

0.00

0.25

0.50

0.75

1.00

0.7

0.8

0.9

1.0

epoch

data

training

validation

FIGURE 8.6: Training and validation metrics for dense network with vali-
dation set

state = response
) %>%
mutate(across(c(state, .pred_class), ## create factors

~ factor(.x, levels = c(1, 0)))) ## with matching levels
}

This function only works with binary classification models that take a
preprocessed matrix as input and return a single probability for each ob-
servation. It returns both the predicted probability as well as the predicted
class, using a 50% probability threshold.

This function creates prediction results that seamlessly connect with tidymod-
els and yardstick functions.

val_res <- keras_predict(dense_model, kick_assess, state_assess)
val_res

252 8 Dense neural networks

#> # A tibble: 50,524 x 3
#> .pred_1 .pred_class state
#> <dbl> <fct> <fct>
#> 1 0.00119 0 0
#> 2 0.00592 0 0
#> 3 0.000280 0 0
#> 4 0.000224 0 0
#> 5 1.00 1 1
#> 6 0.997 1 1
#> 7 0.00000507 0 0
#> 8 0.00153 0 0
#> 9 0.000177 0 1
#> 10 1.00 1 1
#> # ... with 50,514 more rows

We can calculate the standard metrics with metrics().

metrics(val_res, state, .pred_class)

#> # A tibble: 2 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 accuracy binary 0.806
#> 2 kap binary 0.610

This matches what we saw when we looked at the output of val_history.

Since we have access to tidymodels’ full capacity for model evaluation, we can
also compute confusion matrices and ROC curves. The heatmap in Figure 8.7
shows that there isn’t any dramatic bias in how the model performs for the
two classes, success and failure for the crowdfunding campaigns. The model
certainly isn’t perfect; its accuracy is a little over 80%, but at least it is more
or less evenly good at predicting both classes.

val_res %>%
conf_mat(state, .pred_class) %>%
autoplot(type = "heatmap")

The ROC curve in Figure 8.8 shows how the model performs at different
thresholds.

8.3 Using bag-of-words features 253

19152

4983

4840

215490

1

1 0
Truth

P
re
di
ct
io
n

FIGURE 8.7: Confusion matrix for first DNN model predictions of Kick-
starter campaign success

val_res %>%
roc_curve(truth = state, .pred_1) %>%
autoplot() +
labs(
title = "Receiver operator curve for Kickstarter blurbs"

)

8.3 Using bag-of-words features

Before we move on with neural networks and this new way to represent the
text sequences, let’s explore what happens if we use the same preprocessing
as in Chapters 6 and 7. We will employ a bag-of-words preprocessing and
input word counts only to the neural network. This model will not use any
location-based information about the tokens, just the counts.

For this, we need to create a new recipe to transform the data into counts.

254 8 Dense neural networks

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty
Receiver operator curve for Kickstarter blurbs

FIGURE 8.8: ROC curve for first DNN model predictions of Kickstarter
campaign success

The objects in this chapter are named using bow to indicate that they are
using bag of word data.

kick_bow_rec <- recipe(~ blurb, data = kickstarter_train) %>%
step_tokenize(blurb) %>%
step_stopwords(blurb) %>%

8.3 Using bag-of-words features 255

step_tokenfilter(blurb, max_tokens = 1e3) %>%
step_tf(blurb)

We will prep() and bake() this recipe to get out our processed data. The result
will be quite sparse, since the blurbs are short, and we are counting only the
most frequent 1000 tokens after removing the Snowball stop word list.

kick_bow_prep <- prep(kick_bow_rec)

kick_bow_analysis <- bake(kick_bow_prep,
new_data = analysis(kick_val$splits[[1]]),
composition = "matrix")

kick_bow_assess <- bake(kick_bow_prep,
new_data = assessment(kick_val$splits[[1]]),
composition = "matrix")

Now that we have the analysis and assessment data sets calculated, we can
define the neural network architecture. We won’t be using an embedding layer
this time; we will input the word count data directly into the first dense layer.
This dense layer is followed by another hidden layer and then a final layer
with a sigmoid activation to leave us with a value between 0 and 1 that we
treat as the probability.

bow_model <- keras_model_sequential() %>%
layer_dense(units = 64, activation = "relu", input_shape = c(1e3)) %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")

bow_model %>% compile(
optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")

)

In many ways, this model architecture is not that different from the model we
used in Section 8.2. The main difference here is the preprocessing; the shape
and information of the data from kick_bow_prep are different from what we saw
before since the matrix elements represent counts (something that Keras can
handle directly) and not indicators for words in the vocabulary. Keras handles

256 8 Dense neural networks

the indicators with layer_embedding(), by mapping them through an embedding
layer.

The fitting procedure remains unchanged.

bow_history <- bow_model %>%
fit(
x = kick_bow_analysis,
y = state_analysis,
batch_size = 512,
epochs = 10,
validation_data = list(kick_bow_assess, state_assess),
verbose = FALSE

)

bow_history

#>
#> Final epoch (plot to see history):
#> loss: 0.3197
#> accuracy: 0.864
#> val_loss: 0.6766
#> val_accuracy: 0.7246

We use keras_predict() again to get predictions, and calculate the standard
metrics with metrics().

bow_res <- keras_predict(bow_model, kick_bow_assess, state_assess)

metrics(bow_res, state, .pred_class)

#> # A tibble: 2 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 accuracy binary 0.725
#> 2 kap binary 0.449

This model does not perform as well as the model we used in Section 8.2.
This suggests that a model incorporating more than word counts alone is
useful here. This model did outperform a baseline linear model (shown in
Appendix C), which achieved an accuracy of 0.686; that linear baseline is a

8.4 Using pre-trained word embeddings 257

regularized linear model trained on the same data set, using tf-idf weights and
5000 tokens.

This simpler model does not outperform our initial model in this chapter, but
it is typically worthwhile to investigate if a simpler model can rival or beat a
model we are working with.

8.4 Using pre-trained word embeddings

The models in Section 8.2 included an embedding layer to make dense vectors
from our word sequences that the model learned, along with the rest of the
model as a whole. This is not the only way to handle this task. In Chapter 5,
we examined how word embeddings are created and how they are used. Instead
of having the embedding layer start randomly and be trained alongside the
other parameters, let’s try to provide the embeddings.

This section serves to show how to use pre-trained word embeddings, but
in most realistic situations, your data and pre-trained embeddings may
not match well. The main takeaways from this section should be that this
approach is possible and how you can get started with it. Keep in mind
that it may not be appropriate for your data and problem.

We start by obtaining pre-trained embeddings. The GloVe embeddings that
we used in Section 5.4 are a good place to start. Setting dimensions = 50 and
only selecting the first 12 dimensions will make it easier for us to compare to
our previous models directly.

library(textdata)

glove6b <- embedding_glove6b(dimensions = 50) %>% select(1:13)
glove6b

#> # A tibble: 400,000 x 13
#> token d1 d2 d3 d4 d5 d6 d7 d8 d9
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 "the" 0.418 0.250 -0.412 0.122 0.345 -0.0445 -0.497 -0.179 -0.000660

258 8 Dense neural networks

#> 2 "," 0.0134 0.237 -0.169 0.410 0.638 0.477 -0.429 -0.556 -0.364
#> 3 "." 0.152 0.302 -0.168 0.177 0.317 0.340 -0.435 -0.311 -0.450
#> 4 "of" 0.709 0.571 -0.472 0.180 0.544 0.726 0.182 -0.524 0.104
#> 5 "to" 0.680 -0.0393 0.302 -0.178 0.430 0.0322 -0.414 0.132 -0.298
#> 6 "and" 0.268 0.143 -0.279 0.0163 0.114 0.699 -0.513 -0.474 -0.331
#> 7 "in" 0.330 0.250 -0.609 0.109 0.0364 0.151 -0.551 -0.0742 -0.0923
#> 8 "a" 0.217 0.465 -0.468 0.101 1.01 0.748 -0.531 -0.263 0.168
#> 9 "\"" 0.258 0.456 -0.770 -0.377 0.593 -0.0635 0.205 -0.574 -0.290
#> 10 "'s" 0.237 0.405 -0.205 0.588 0.655 0.329 -0.820 -0.232 0.274
#> # ... with 399,990 more rows, and 3 more variables: d10 <dbl>, d11 <dbl>,
#> # d12 <dbl>

The embedding_glove6b() function returns a tibble; this isn’t the right format for
Keras. Also, notice how many rows are present in this embedding, far more
than what the trained recipe is expecting. The vocabulary can be extracted
from the trained recipe using tidy(). Let’s apply tidy() to kick_prep to get the
list of steps that the recipe contains.

tidy(kick_prep)

#> # A tibble: 3 x 6
#> number operation type trained skip id
#> <int> <chr> <chr> <lgl> <lgl> <chr>
#> 1 1 step tokenize TRUE FALSE tokenize_nHrhX
#> 2 2 step tokenfilter TRUE FALSE tokenfilter_2TrDo
#> 3 3 step sequence_onehot TRUE FALSE sequence_onehot_H16cB

We see that the third step is the sequence_onehot step, so by setting number = 3
we can extract the embedding vocabulary.

tidy(kick_prep, number = 3)

#> # A tibble: 20,000 x 4
#> terms vocabulary token id
#> <chr> <int> <chr> <chr>
#> 1 blurb 1 0 sequence_onehot_H16cB
#> 2 blurb 2 00 sequence_onehot_H16cB
#> 3 blurb 3 000 sequence_onehot_H16cB
#> 4 blurb 4 00pm sequence_onehot_H16cB
#> 5 blurb 5 01 sequence_onehot_H16cB
#> 6 blurb 6 02 sequence_onehot_H16cB

8.4 Using pre-trained word embeddings 259

#> 7 blurb 7 03 sequence_onehot_H16cB
#> 8 blurb 8 05 sequence_onehot_H16cB
#> 9 blurb 9 07 sequence_onehot_H16cB
#> 10 blurb 10 09 sequence_onehot_H16cB
#> # ... with 19,990 more rows

We can then use left_join() to combine these tokens to the glove6b embedding
tibble and only keep the tokens of interest. We replace any tokens from the
vocabulary not found in glove6b with 0 using mutate_all() and replace_na(). We
can transform the results into a matrix, and add a row of zeroes at the top of
the matrix to account for the out-of-vocabulary words.

glove6b_matrix <- tidy(kick_prep, 3) %>%
select(token) %>%
left_join(glove6b, by = "token") %>%
mutate_all(replace_na, 0) %>%
select(-token) %>%
as.matrix() %>%
rbind(0, .)

We’ll keep the model architecture itself as unchanged as possible. The out-
put_dim argument is set equal to ncol(glove6b_matrix) to make sure that all the
dimensions line up correctly, but everything else stays the same.

dense_model_pte <- keras_model_sequential() %>%
layer_embedding(input_dim = max_words + 1,

output_dim = ncol(glove6b_matrix),
input_length = max_length) %>%

layer_flatten() %>%
layer_dense(units = 32, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")

Now we use get_layer() to access the first layer (which is the embedding
layer), set the weights with set_weights(), and then freeze the weights with
freeze_weights().

Freezing the weights stops them from being updated during the training
loop.

260 8 Dense neural networks

dense_model_pte %>%
get_layer(index = 1) %>%
set_weights(list(glove6b_matrix)) %>%
freeze_weights()

Now we compile and fit the model just like the last one we looked at.

dense_model_pte %>% compile(
optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")

)

dense_pte_history <- dense_model_pte %>%
fit(
x = kick_analysis,
y = state_analysis,
batch_size = 512,
epochs = 20,
validation_data = list(kick_assess, state_assess),
verbose = FALSE

)

dense_pte_history

#>
#> Final epoch (plot to see history):
#> loss: 0.5967
#> accuracy: 0.6771
#> val_loss: 0.6698
#> val_accuracy: 0.6111

This model is not performing well at all! We can confirm by computing metrics
on our validation set.

8.4 Using pre-trained word embeddings 261

pte_res <- keras_predict(dense_model_pte, kick_assess, state_assess)
metrics(pte_res, state, .pred_class)

#> # A tibble: 2 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 accuracy binary 0.611
#> 2 kap binary 0.221

Why did this happen? Part of the training loop for a model like this one
typically adjusts the weights in the network. When we froze the weights in
this network, we froze them at values that did not perform very well. These
pre-trained GloVe embeddings (Pennington, Socher, and Manning 2014) are
trained on a Wikipedia dump and Gigaword 57, a comprehensive archive of
newswire text. The text contained on Wikipedia and in news articles both
follow certain styles and semantics. Both will tend to be written formally and
in the past tense, with longer and complete sentences. There are many more
distinct features of both Wikipedia text and news articles, but the relevant
aspect here is how similar they are to the data we are trying to model. These
Kickstarter blurbs are very short, lack punctuation, stop words, narrative, and
tense. Many of the blurbs simply try to pack as many buzz words as possible
into the allowed character count while keeping the sentence readable. Perhaps
it should not surprise us that these word embeddings don’t perform well in
this model, since the text used to train the embeddings is so different from
the text is it being applied to (Section 5.4).

Although this approach didn’t work well with our data set, that doesn’t
mean that using pre-trained word embeddings is always a bad idea.

The key point is how well the embeddings match the data you are modeling.
Also, there is another way we can use these particular embeddings in our
network architecture; we can load them in as a starting point as before but
not freeze the weights. This allows the model to adjust the weights to better
fit the data. The intention here is that we as the modeling practitioners think
these pre-trained embeddings offer a better starting point than the randomly
generated embedding we get if we don’t set the weights at all.

We specify a new model to get started on this approach.

7https://catalog.ldc.upenn.edu/LDC2011T07

https://catalog.ldc.upenn.edu/LDC2011T07
https://catalog.ldc.upenn.edu/LDC2011T07

262 8 Dense neural networks

dense_model_pte2 <- keras_model_sequential() %>%
layer_embedding(input_dim = max_words + 1,

output_dim = ncol(glove6b_matrix),
input_length = max_length) %>%

layer_flatten() %>%
layer_dense(units = 32, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")

Now, we set the weights with set_weights(), but we don’t freeze them.

dense_model_pte2 %>%
get_layer(index = 1) %>%
set_weights(list(glove6b_matrix))

We compile and fit the model as before.

dense_model_pte2 %>% compile(
optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")

)

dense_pte2_history <- dense_model_pte2 %>% fit(
x = kick_analysis,
y = state_analysis,
batch_size = 512,
epochs = 20,
validation_data = list(kick_assess, state_assess),
verbose = FALSE

)

How did this version of using pre-trained embeddings do?

pte2_res <- keras_predict(dense_model_pte2, kick_assess, state_assess)
metrics(pte2_res, state, .pred_class)

#> # A tibble: 2 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 accuracy binary 0.764
#> 2 kap binary 0.527

8.5 Cross-validation for deep learning models 263

This performs quite a bit better than when we froze the weights, although not
as well as when we did not use pre-trained embeddings at all.

If you have enough text data in the field you are working in, then it is
worth considering training a word embedding yourself that better captures
the structure of the domain you are trying to work with, both for the
reasons laid out here and for the issues highlighted in Section 5.5.

8.5 Cross-validation for deep learning models

The Kickstarter data set we are using is big enough that we have adequate
data to use a single training set, validation set, and testing set that all contain
enough observations in them to give reliable performance metrics. In some sit-
uations, you may not have that much data or you may want to compute more
precise performance metrics. In those cases, it is time to turn to resampling.
For example, we can create cross-validation folds.

set.seed(345)
kick_folds <- vfold_cv(kickstarter_train, v = 5)
kick_folds

#> # 5-fold cross-validation
#> # A tibble: 5 x 2
#> splits id
#> <list> <chr>
#> 1 <split [161673/40419]> Fold1
#> 2 <split [161673/40419]> Fold2
#> 3 <split [161674/40418]> Fold3
#> 4 <split [161674/40418]> Fold4
#> 5 <split [161674/40418]> Fold5

Each of these folds has an analysis/training set and an assessment/validation
set. Instead of training our model one time and getting one measure of perfor-
mance, we can train our model v times and get v measures, for more reliability.

264 8 Dense neural networks

In our previous chapters, we used models with full tidymodels support and
functions like add_recipe() and workflow(). Deep learning models are more mod-
ular and unique, so we will need to create our own function to handle prepro-
cessing, fitting, and evaluation.

fit_split <- function(split, prepped_rec) {
preprocessing
x_train <- bake(prepped_rec, new_data = analysis(split),

composition = "matrix")
x_val <- bake(prepped_rec, new_data = assessment(split),

composition = "matrix")

create model
y_train <- analysis(split) %>% pull(state)
y_val <- assessment(split) %>% pull(state)

mod <- keras_model_sequential() %>%
layer_embedding(input_dim = max_words + 1,

output_dim = 12,
input_length = max_length) %>%

layer_flatten() %>%
layer_dense(units = 32, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid") %>% compile(

optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")

)

fit model
mod %>%
fit(

x_train,
y_train,
epochs = 10,
validation_data = list(x_val, y_val),
batch_size = 512,
verbose = FALSE

)

evaluate model
keras_predict(mod, x_val, y_val) %>%
metrics(state, .pred_class, .pred_1)

}

8.5 Cross-validation for deep learning models 265

We can map() this function across all our cross-validation folds. This takes
longer than our previous models to train, since we are training for 10 epochs
each on 5 folds.

cv_fitted <- kick_folds %>%
mutate(validation = map(splits, fit_split, kick_prep))

cv_fitted

#> # 5-fold cross-validation
#> # A tibble: 5 x 3
#> splits id validation
#> <list> <chr> <list>
#> 1 <split [161673/40419]> Fold1 <tibble [4 x 3]>
#> 2 <split [161673/40419]> Fold2 <tibble [4 x 3]>
#> 3 <split [161674/40418]> Fold3 <tibble [4 x 3]>
#> 4 <split [161674/40418]> Fold4 <tibble [4 x 3]>
#> 5 <split [161674/40418]> Fold5 <tibble [4 x 3]>

Now we can use unnest() to find the metrics we computed.

cv_fitted %>%
unnest(validation)

#> # A tibble: 20 x 5
#> splits id .metric .estimator .estimate
#> <list> <chr> <chr> <chr> <dbl>
#> 1 <split [161673/40419]> Fold1 accuracy binary 0.819
#> 2 <split [161673/40419]> Fold1 kap binary 0.638
#> 3 <split [161673/40419]> Fold1 mn_log_loss binary 1.00
#> 4 <split [161673/40419]> Fold1 roc_auc binary 0.857
#> 5 <split [161673/40419]> Fold2 accuracy binary 0.817
#> 6 <split [161673/40419]> Fold2 kap binary 0.633
#> 7 <split [161673/40419]> Fold2 mn_log_loss binary 1.06
#> 8 <split [161673/40419]> Fold2 roc_auc binary 0.854
#> 9 <split [161674/40418]> Fold3 accuracy binary 0.820
#> 10 <split [161674/40418]> Fold3 kap binary 0.639
#> 11 <split [161674/40418]> Fold3 mn_log_loss binary 1.04
#> 12 <split [161674/40418]> Fold3 roc_auc binary 0.857
#> 13 <split [161674/40418]> Fold4 accuracy binary 0.815
#> 14 <split [161674/40418]> Fold4 kap binary 0.629
#> 15 <split [161674/40418]> Fold4 mn_log_loss binary 1.02

266 8 Dense neural networks

#> 16 <split [161674/40418]> Fold4 roc_auc binary 0.853
#> 17 <split [161674/40418]> Fold5 accuracy binary 0.821
#> 18 <split [161674/40418]> Fold5 kap binary 0.641
#> 19 <split [161674/40418]> Fold5 mn_log_loss binary 1.00
#> 20 <split [161674/40418]> Fold5 roc_auc binary 0.860

We can summarize the unnested results to match what we normally would get
from collect_metrics()

cv_fitted %>%
unnest(validation) %>%
group_by(.metric) %>%
summarize(
mean = mean(.estimate),
n = n(),
std_err = sd(.estimate) / sqrt(n)

)

#> # A tibble: 4 x 4
#> .metric mean n std_err
#> <chr> <dbl> <int> <dbl>
#> 1 accuracy 0.818 5 0.00103
#> 2 kap 0.636 5 0.00204
#> 3 mn_log_loss 1.02 5 0.0108
#> 4 roc_auc 0.856 5 0.00115

This data set is large enough that we probably wouldn’t need to take this ap-
proach, and the fold-to-fold metrics have little variance. However, resampling
can, at times, be an important piece of the modeling toolkit even for deep
learning models.

Training deep learning models typically takes more time than other kinds
of machine learning, so resampling may be an unfeasible choice. There
is special hardware available that speeds up deep learning because it is
particularly well-suited to fitting such models. GPUs (graphics processing
units) are used for displaying graphics (as indicated in their name) and
gaming, but also for deep learning because of their highly parallel compu-
tational ability. GPUs can make solving deep learning problems faster, or
even tractable to start with. Be aware, though, that you might not need
a GPU for even real-world deep learning modeling. All the models in this
book were trained on a CPU only.

8.6 Compare and evaluate DNN models 267

8.6 Compare and evaluate DNN models

Let’s return to the results we evaluated on a single validation set. We can
combine all the predictions on these last three models to more easily compare
the results between them.

all_dense_model_res <- bind_rows(
val_res %>% mutate(model = "dense"),
pte_res %>% mutate(model = "pte (locked weights)"),
pte2_res %>% mutate(model = "pte (not locked weights)")

)

Now that the results are combined in all_dense_model_res, we can calculate
group-wise evaluation statistics by grouping by the model variable.

all_dense_model_res %>%
group_by(model) %>%
metrics(state, .pred_class)

#> # A tibble: 6 x 4
#> model .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 dense accuracy binary 0.806
#> 2 pte (locked weights) accuracy binary 0.611
#> 3 pte (not locked weights) accuracy binary 0.764
#> 4 dense kap binary 0.610
#> 5 pte (locked weights) kap binary 0.221
#> 6 pte (not locked weights) kap binary 0.527

We can also do this for ROC curves. Figure 8.9 shows the three different ROC
curves together in one chart. As we know, the model using pre-trained word
embeddings with locked weights didn’t perform very well at all and its ROC
curve is the lowest of the three. The other two models perform more similarly
but the model using an embedding learned from scratch ends up being the
best.

268 8 Dense neural networks

all_dense_model_res %>%
group_by(model) %>%
roc_curve(truth = state, .pred_1) %>%
autoplot() +
labs(
title = "Receiver operator curve for Kickstarter blurbs"

)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty

model

dense

pte (locked weights)

pte (not locked weights)

Receiver operator curve for Kickstarter blurbs

FIGURE 8.9: ROC curve for all DNN models’ predictions of Kickstarter
campaign success

Using pre-trained embeddings is not the only way to take advantage
of ready-to-use, state-of-the-art deep learning models. You can also use
whole pre-trained models in your analyses, such as the transformers mod-
els available from Hugging Face. Check out this blog post for a tutorial8
on how to use Hugging Face transfomers in R with Keras. Large language
models like these are subject to many of the same concerns as embeddings
discussed in Section 5.5.

8.6 Compare and evaluate DNN models 269

We compared these three model options using the validation set we created.
Let’s return to the testing set now that we know which model we expect to
perform best and obtain a final estimate for how we expect it to perform on
new data. For this final evaluation, we will:

• preprocess the test data using the feature engineering recipe kick_prep so
it is in the correct format for our deep learning model,

• find the predictions for the processed testing data, and

• compute metrics for these results.

kick_test <- bake(kick_prep, new_data = kickstarter_test,
composition = "matrix")

final_res <- keras_predict(dense_model, kick_test, kickstarter_test$state)
final_res %>% metrics(state, .pred_class, .pred_1)

#> # A tibble: 4 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 accuracy binary 0.808
#> 2 kap binary 0.616
#> 3 mn_log_loss binary 1.06
#> 4 roc_auc binary 0.849

The metrics we see here are about the same as what we achieved in Section
8.2.4 on the validation data, so we can be confident that we have not overfit
during our training or model choosing process.

Just like we did toward the end of both Sections 6.9.4 and 7.11.3, we can
look at some examples of test set observations that our model did a bad job
at predicting. Let’s bind together the predictions on the test set with the
original kickstarter_test data. Then let’s look at blurbs that were successful
but that our final model thought had a low probability of being successful.

kickstarter_bind <- final_res %>%
bind_cols(kickstarter_test %>% select(-state))

kickstarter_bind %>%

8https://blogs.rstudio.com/ai/posts/2020-07-30-state-of-the-art-nlp-models-from-r/

https://blogs.rstudio.com/ai/posts/2020-07-30-state-of-the-art-nlp-models-from-r/
https://blogs.rstudio.com/ai/posts/2020-07-30-state-of-the-art-nlp-models-from-r/

270 8 Dense neural networks

filter(state == 1, .pred_1 < 0.2) %>%
select(blurb) %>%
slice_sample(n = 10)

#> # A tibble: 10 x 1
#> blurb
#> <chr>
#> 1 Living and working with Peruvian farmers in remote regions, bringing the hig~
#> 2 Arduino-compatible board that includes a prototyping area and rechargeable b~
#> 3 Wyoming based Americana singer/songwriter Doug Balmain is ready to record hi~
#> 4 The purpose of this EP, titled FURY, is to spark a flame in the hearts of to~
#> 5 A new generation of creators tell stories set in the universe of the cult cl~
#> 6 I am learning to create Mobile games but I need some mental support not to g~
#> 7 Boss Betties Photo Company by Amanda is a mobile photography company that sp~
#> 8 LED dog collars w/ eight full color RGB LEDs. Use our free iOS/Android app t~
#> 9 This new font feels like writing quickly with an inked brush, fast and full ~
#> 10 Help me on an ambitious project to write & publish 5 ebooks about the journe~

What about misclassifications in the other direction, observations in the test
set that were not successful but that our final model gave a high probability
of being successful?

kickstarter_bind %>%
filter(state == 0, .pred_1 > 0.8) %>%
select(blurb) %>%
slice_sample(n = 10)

#> # A tibble: 10 x 1
#> blurb
#> <chr>
#> 1 Purchase the new CD in advance, get great deals on other merch, and help Moo~
#> 2 Coolest cocktails poster ever! Meticulously researched and designed. Beautif~
#> 3 I will hike through the entire western United States and Canada and document~
#> 4 The life of Black Panther Party co-founder and Minister of Self Defense Huey~
#> 5 Antroid is an Android strategy game similar to Command and Conquer. The only~
#> 6 inkman is a new superhero that has the ability to use his art powers to draw~
#> 7 After having success with our first album in April 2013, Vagablondes aim to~
#> 8 Distracted driving caused 3,328 deaths and 421,000 injuries in 2012. The w8 ~
#> 9 I've been in a female music group since the 8th grade and have finally decid~
#> 10 Epic Abraham tells the tale of one mans journey into supernatural madness an~

8.7 Limitations of deep learning 271

Notice that although some steps for model fitting are different now that we are
using deep learning, model evaluation is much the same as it was in Chapters
6 and 7.

8.7 Limitations of deep learning

Deep learning models achieve excellent performance on many tasks; the flexi-
bility and potential complexity of their architecture is part of the reason why.
One of the main downsides of deep learning models is that the interpretability
of the models themselves is poor.

Notice that we have not talked about which words are more associated
with success or failure for the Kickstarter campaigns in this whole chapter!

This means that practitioners who work in fields where interpretability is vital,
such as some parts of health care, shy away from deep learning models since
they are hard to understand and interpret.

Another limitation of deep learning models is that they do not facilitate a
comprehensive theoretical understanding or learning of their inner organiza-
tion (Shwartz-Ziv and Tishby 2017). These two points together lead to deep
learning models often being called “black box” models (Shrikumar, Greenside,
and Kundaje 2017), models where is it hard to peek into the inner workings
to understand what they are doing. Not being able to reason about the inner
workings of a model means that we will have a hard time explaining why
a model is working well. It also means it will be hard to remedy a biased
model that performs well in some settings but badly in other settings. This
is a problem since it can hide biases from the training set that may lead to
unfair, wrong, or even illegal decisions based on protected classes (Guidotti et
al. 2018).

Practitioners have built approaches to understand local feature importance
for deep learning models, which we demonstrate in Section 10.5, but these
are limited tools compared to the interpretability of other kinds of models.
Lastly, deep learning models tend to require more training data than tradi-
tional statistical machine learning methods. This means that it can be hard
to train a deep learning model if you have a very small data set (Lampinen
and McClelland 2018).

272 8 Dense neural networks

8.8 Summary

You can use deep learning to build classification models to predict labels or cat-
egorical variables from a data set, including data sets that include text. Dense
neural networks are the most straightforward network architecture that can
be used to fit classification models for text features and are a good bridge for
understanding the more complex model architectures that are used more often
in practice for text modeling. These models have many parameters compared
to the models we trained in earlier chapters, and require different preprocess-
ing than those models. We can tokenize and create features for modeling that
capture the order of the tokens in the original text. Doing this can allow a
model to learn from patterns in sequences and order, something not possible
in the models we saw in Chapters 6 and 7. We gave up some of the fine control
over feature engineering, such as hand-crafting features using domain knowl-
edge, in the hope that the network could learn important features on its own.
However, feature engineering is not completely out of our hands as practition-
ers, since we still make decisions about tokenization and normalization before
the tokens are passed into the network.

8.8.1 In this chapter, you learned:

• that you can tokenize and preprocess text to retain the order of the tokens

• how to build and train a dense neural network with Keras

• that you can evaluate deep learning models with the same approaches used
for other types of models

• how to train word embeddings alongside your model

• how to use pre-trained word embeddings in a neural network

• about resampling strategies for deep learning models

• about the low interpretability of deep learning models

9
Long short-term memory (LSTM) networks

In Chapter 8, we trained our first deep learning models with straightforward
dense network architectures that provide a bridge for our understanding as we
move from shallow learning algorithms to more complex network architectures.
Those first neural network architectures are not simple compared to the kinds
of models we used in Chapters 6 and 7, but it is possible to build many more
different and more complex kinds of networks for prediction with text data.
This chapter will focus on the family of long short-term memory networks
(LSTMs) (Hochreiter and Schmidhuber 1997).

9.1 A first LSTM model

We will be using the same data from the previous chapter, described in Sec-
tions 8.1 and B.4. This data contains short text blurbs for prospective crowd-
funding campaigns and whether those campaigns were successful. Our mod-
eling goal is to predict whether a Kickstarter crowdfunding campaign was
successful or not, based on the text blurb describing the campaign. Let’s start
by splitting our data into training and testing sets.

library(tidyverse)

kickstarter <- read_csv("data/kickstarter.csv.gz")
kickstarter

#> # A tibble: 269,790 x 3
#> blurb state created_at
#> <chr> <dbl> <date>
#> 1 Exploring paint and its place in a digital world. 0 2015-03-17
#> 2 Mike Fassio wants a side-by-side photo of me and Hazel eati~ 0 2014-07-11
#> 3 I need your help to get a nice graphics tablet and Photosho~ 0 2014-07-30
#> 4 I want to create a Nature Photograph Series of photos of wi~ 0 2015-05-08

DOI: 10.1201/9781003093459-9 273

https://doi.org/10.1201/9781003093459-9

274 9 Long short-term memory (LSTM) networks

#> 5 I want to bring colour to the world in my own artistic skil~ 0 2015-02-01
#> 6 We start from some lovely pictures made by us and we decide~ 0 2015-11-18
#> 7 Help me raise money to get a drawing tablet 0 2015-04-03
#> 8 I would like to share my art with the world and to do that ~ 0 2014-10-15
#> 9 Post Card don’t set out to simply decorate stories. Our goa~ 0 2015-06-25
#> 10 My name is Siu Lon Liu and I am an illustrator seeking fund~ 0 2014-07-19
#> # ... with 269,780 more rows

library(tidymodels)
set.seed(1234)
kickstarter_split <- kickstarter %>%

filter(nchar(blurb) >= 15) %>%
mutate(state = as.integer(state)) %>%
initial_split()

kickstarter_train <- training(kickstarter_split)
kickstarter_test <- testing(kickstarter_split)

Just as described in Chapter 8, the preprocessing needed for deep learning
network architectures is somewhat different than for the models we used in
Chapters 6 and 7. The first step is still to tokenize the text, as described in
Chapter 2. After we tokenize, we filter to keep only how many words we’ll
include in the analysis; step_tokenfilter() keeps the top tokens based on fre-
quency in this data set.

library(textrecipes)

max_words <- 2e4
max_length <- 30

kick_rec <- recipe(~ blurb, data = kickstarter_train) %>%
step_tokenize(blurb) %>%
step_tokenfilter(blurb, max_tokens = max_words) %>%
step_sequence_onehot(blurb, sequence_length = max_length)

After tokenizing, the preprocessing is different. We use step_sequence_onehot()
to encode the sequences of words as integers representing each token in the
vocabulary of 20,000 words, as described in detail in Section 8.2.2. This is
different than the representations we used in Chapters 6 and 7, mainly because
information about word sequence is encoded in this representation.

9.1 A first LSTM model 275

Using step_sequence_onehot() to preprocess text data records and encodes
sequence information, unlike the document-term matrix and/or bag-of-
tokens approaches we used in Chapters 7 and 6.

There are 202,092 blurbs in the training set and 67,365 in the testing set.

Like we discussed in the last chapter, we are using recipes and text-
recipes for preprocessing before modeling. When we prep() a recipe, we
compute or estimate statistics from the training set; the output of prep()
is a recipe. When we bake() a recipe, we apply the preprocessing to a data
set, either the training set that we started with or another set like the
testing data or new data. The output of bake() is a data set like a tibble
or a matrix.

We could have applied these prep() and bake() functions to any preprocessing
recipes throughout this book, but we typically didn’t need to because our
modeling workflows automated these steps.

kick_prep <- prep(kick_rec)
kick_train <- bake(kick_prep, new_data = NULL, composition = "matrix")

dim(kick_train)

#> [1] 202092 30

Here we use composition = "matrix" because the Keras modeling functions op-
erate on matrices, rather than a dataframe or tibble.

9.1.1 Building an LSTM

An LSTM is a specific kind of network architecture with feedback loops that
allow information to persist through steps1 and memory cells that can learn

1Vanilla neural networks do not have this ability for information to persist at all; they
start learning from scratch at every step.

276 9 Long short-term memory (LSTM) networks

to “remember” and “forget” information through sequences. LSTMs are well-
suited for text because of this ability to process text as a long sequence of words
or characters, and can model structures within text like word dependencies.
LSTMs are useful in text modeling because of this memory through long
sequences; they are also used for time series, machine translation, and similar
problems.

Figure 9.1 depicts a high-level diagram of how the LSTM unit of a network
works. In the diagram, part of the neural network, 𝐴, operates on some of
the input and outputs a value. During this process, some information is held
inside 𝐴 to make the network “remember” this updated network. Network 𝐴
is then applied to the next input where it predicts new output and its memory
is updated.

A A A A

far down in treeInputs

Outputs

Networks

FIGURE 9.1: High-level diagram of an unrolled recurrent neural network.
The recurrent neural network is the backbone of LSTM networks.

The exact shape and function of network 𝐴 are beyond the reach of this
book. For further study, Christopher Olah’s blog post “Understanding LSTM
Networks”2 gives a more technical overview of how LSTM networks work.

The Keras library has convenient functions for broadly-used architectures like
LSTMs so we don’t have to build it from scratch using layers; we can instead
use layer_lstm(). This comes after an embedding layer that makes dense vectors
from our word sequences and before a densely-connected layer for output.

library(keras)

lstm_mod <- keras_model_sequential() %>%
layer_embedding(input_dim = max_words + 1, output_dim = 32) %>%

2https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

9.1 A first LSTM model 277

layer_lstm(units = 32) %>%
layer_dense(units = 1, activation = "sigmoid")

lstm_mod

#> Model
#> Model: "sequential"
#> __
#> Layer (type) Output Shape Param #
#> ==
#> embedding (Embedding) (None, None, 32) 640032
#> __
#> lstm (LSTM) (None, 32) 8320
#> __
#> dense (Dense) (None, 1) 33
#> ==
#> Total params: 648,385
#> Trainable params: 648,385
#> Non-trainable params: 0
#> __

Notice the number of parameters in this LSTM model, about twice as
many as the dense neural networks in Chapter 8. It is easier to overfit an
LSTM model, and it takes more time and memory to train, because of
the large number of parameters.

Because we are training a binary classification model, we use activation =
"sigmoid" for the last layer; we want to fit and predict to class probabilities.

Next we compile() the model, which configures the model for training with a
specific optimizer and set of metrics.

A good default optimizer for many problems is "adam" (Kingma and
Ba 2017), and a good loss function for binary classification is "bi-
nary_crossentropy".

278 9 Long short-term memory (LSTM) networks

lstm_mod %>%
compile(
optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")

)

As we noted in Chapter 8, the neural network model is modified in place;
the object lstm_mod is different after we compile it, even though we didn’t
assign the object to anything. This is different from how most objects in
R work, so pay special attention to the state of your model objects.

After the model is compiled, we can fit it. The fit() method for Keras models
has an argument validation_split that will set apart a fraction of the training
data for evaluation and assessment. The performance metrics are evaluated
on the validation set at the end of each epoch.

lstm_history <- lstm_mod %>%
fit(
kick_train,
kickstarter_train$state,
epochs = 10,
validation_split = 0.25,
batch_size = 512,
verbose = FALSE

)

lstm_history

#>
#> Final epoch (plot to see history):
#> loss: 0.257
#> accuracy: 0.8786
#> val_loss: 0.7729
#> val_accuracy: 0.7555

The loss on the training data (called loss here) is much better than the loss
on the validation data (val_loss), indicating that we are overfitting pretty
dramatically. We can see this by plotting the history as well in Figure 9.2.

9.1 A first LSTM model 279

plot(lstm_history)

lo
ss

ac
cu
ra
cy

2 4 6 8 10

0.3

0.4

0.5

0.6

0.7

0.65

0.70

0.75

0.80

0.85

epoch

data

training

validation

FIGURE 9.2: Training and validation metrics for LSTM

Remember that lower loss indicates a better fitting model, and higher
accuracy (closer to 1) indicates a better model.

This model continues to improve epoch after epoch on the training data,
but performs worse on the validation set than the training set after the first
few epochs and eventually starts to exhibit worsening performance on the
validation set as epochs pass, demonstrating how extremely it is overfitting
to the training data. This is very common for powerful deep learning models,
including LSTMs.

9.1.2 Evaluation

We used some Keras defaults for model evaluation in the previous section,
but just like we demonstrated in Section 8.2.4, we can take more control if we
want or need to. Instead of using the validation_split argument, we can use

280 9 Long short-term memory (LSTM) networks

the validation_data argument and send in our own validation set creating with
rsample.

set.seed(234)
kick_val <- validation_split(kickstarter_train, strata = state)
kick_val

#> # Validation Set Split (0.75/0.25) using stratification
#> # A tibble: 1 x 2
#> splits id
#> <list> <chr>
#> 1 <split [151568/50524]> validation

We can access the two data sets specified by this split via the functions
analysis() (the analog to training) and assessment() (the analog to testing).
We need to apply our prepped preprocessing recipe kick_prep to both to trans-
form this data to the appropriate format for our neural network architecture.

kick_analysis <- bake(kick_prep, new_data = analysis(kick_val$splits[[1]]),
composition = "matrix")

dim(kick_analysis)

#> [1] 151568 30

kick_assess <- bake(kick_prep, new_data = assessment(kick_val$splits[[1]]),
composition = "matrix")

dim(kick_assess)

#> [1] 50524 30

These are each matrices appropriate for a Keras model. We will also need the
outcome variables for both sets.

state_analysis <- analysis(kick_val$splits[[1]]) %>% pull(state)
state_assess <- assessment(kick_val$splits[[1]]) %>% pull(state)

9.1 A first LSTM model 281

Let’s also think about our LSTM model architecture. We saw evidence for
significant overfitting with our first LSTM, and we can counteract that by
including dropout, both in the regular sense (dropout) and in the feedback
loops (recurrent_dropout).

When we include some dropout, we temporarily remove some units to-
gether with their connections from the network. The purpose of this is
typically to reduce overfitting (Srivastava et al. 2014). Dropout is not ex-
clusive to LSTM models, and can also be used in many other kinds of
network architectures. Another way to add dropout to a network is with
layer_dropout().

lstm_mod <- keras_model_sequential() %>%
layer_embedding(input_dim = max_words + 1, output_dim = 32) %>%
layer_lstm(units = 32, dropout = 0.4, recurrent_dropout = 0.4) %>%
layer_dense(units = 1, activation = "sigmoid")

lstm_mod %>%
compile(
optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")

)

val_history <- lstm_mod %>%
fit(
kick_analysis,
state_analysis,
epochs = 10,
validation_data = list(kick_assess, state_assess),
batch_size = 512,
verbose = FALSE

)

val_history

#>
#> Final epoch (plot to see history):
#> loss: 0.3756

282 9 Long short-term memory (LSTM) networks

#> accuracy: 0.8245
#> val_loss: 0.6247
#> val_accuracy: 0.7325

The overfitting has been reduced, and Figure 9.3 shows that the difference be-
tween our model’s performance on training and validation data is now smaller.

plot(val_history)

lo
ss

ac
cu
ra
cy

2 4 6 8 10

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

epoch

data

training

validation

FIGURE 9.3: Training and validation metrics for LSTM with dropout

Remember that this is specific validation data that we have chosen ahead of
time, so we can evaluate metrics flexibly in any way we need to, for example,
using yardstick functions. We can create a tibble with the true and predicted
values for the validation set.

val_res <- keras_predict(lstm_mod, kick_assess, state_assess)
val_res %>% metrics(state, .pred_class, .pred_1)

#> # A tibble: 4 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 accuracy binary 0.733

9.2 Compare to a recurrent neural network 283

#> 2 kap binary 0.461
#> 3 mn_log_loss binary 0.625
#> 4 roc_auc binary 0.803

A regularized linear model trained on this data set achieved results of accuracy
of 0.686 and an AUC for the ROC curve of 0.752 (Appendix C). This first
LSTM with dropout is already performing better than such a linear model.
We can plot the ROC curve in Figure 9.4 to evaluate the performance across
the range of thresholds.

val_res %>%
roc_curve(state, .pred_1) %>%
autoplot()

9.2 Compare to a recurrent neural network

An LSTM is actually a specific kind of recurrent neural network (RNN) (El-
man 1990). Simple RNNs have feedback loops and hidden state that allow in-
formation to persist through steps but do not have memory cells like LSTMs.
This difference between RNNs and LSTMs amounts to what happens in net-
work 𝐴 in Figure 9.1. RNNs tend to have a very simple structure, typically
just a single tanh() layer, much simpler than what happens in LSTMs.

Simple RNNs can only connect very recent information and structure in
sequences, but LSTMS can learn long-range dependencies and broader
context.

Let’s train an RNN to see how it compares to the LSTM.

rnn_mod <- keras_model_sequential() %>%
layer_embedding(input_dim = max_words + 1, output_dim = 32) %>%
layer_simple_rnn(units = 32, dropout = 0.4, recurrent_dropout = 0.4) %>%
layer_dense(units = 1, activation = "sigmoid")

284 9 Long short-term memory (LSTM) networks

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty

FIGURE 9.4: ROC curve for LSTM with dropout predictions of Kickstarter
campaign success

rnn_mod %>%
compile(
optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")

)

rnn_history <- rnn_mod %>%
fit(
kick_analysis,
state_analysis,
epochs = 10,

9.2 Compare to a recurrent neural network 285

validation_data = list(kick_assess, state_assess),
batch_size = 512,
verbose = FALSE

)

rnn_history

#>
#> Final epoch (plot to see history):
#> loss: 0.4955
#> accuracy: 0.7684
#> val_loss: 0.5963
#> val_accuracy: 0.7116

Looks like more overfitting! We can see this by plotting the history as well in
Figure 9.5.

plot(rnn_history)

lo
ss

ac
cu
ra
cy

2 4 6 8 10

0.50

0.55

0.60

0.65

0.70

0.5

0.6

0.7

epoch

data

training

validation

FIGURE 9.5: Training and validation metrics for RNN

These results are pretty disappointing overall, with worse performance than
our first LSTM. Simple RNNs like the ones in this section can be challenging

286 9 Long short-term memory (LSTM) networks

to train well, and just cranking up the number of embedding dimensions,
units, or other network characteristics usually does not fix the problem. Often,
RNNs just don’t work well compared to simpler deep learning architectures
like the dense network introduced in Section 8.2 (Minaee et al. 2021), or even
other machine learning approaches like regularized linear models with good
preprocessing.

Fortunately, we can build on the ideas of a simple RNN with more complex
architectures like LSTMs to build better-performing models.

9.3 Case study: bidirectional LSTM

The RNNs and LSTMs that we have fit so far have modeled text as sequences,
specifically sequences where information and memory persists moving forward.
These kinds of models can learn structures and dependencies moving forward
only. In language, the structures move both directions, though; the words that
come after a given structure or word can be just as important for understand-
ing it as the ones that come before it.

We can build this into our neural network architecture with a bidirectional
wrapper for RNNs or LSTMs.

A bidirectional LSTM allows the network to have both the forward and
backward information about the sequences at each step.

The input sequences are passed through the network in two directions, both
forward and backward, allowing the network to learn more context, structures,
and dependencies.

bilstm_mod <- keras_model_sequential() %>%
layer_embedding(input_dim = max_words + 1, output_dim = 32) %>%
bidirectional(layer_lstm(units = 32, dropout = 0.4,

recurrent_dropout = 0.4)) %>%
layer_dense(units = 1, activation = "sigmoid")

bilstm_mod %>%
compile(

9.3 Case study: bidirectional LSTM 287

optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")

)

bilstm_history <- bilstm_mod %>%
fit(
kick_analysis,
state_analysis,
epochs = 10,
validation_data = list(kick_assess, state_assess),
batch_size = 512,
verbose = FALSE

)

bilstm_history

#>
#> Final epoch (plot to see history):
#> loss: 0.3629
#> accuracy: 0.832
#> val_loss: 0.6208
#> val_accuracy: 0.7384

The bidirectional LSTM is more able to represent the data well, but with the
same amount of dropout, we do see more dramatic overfitting. Still, there is
some improvement on the validation set as well.

bilstm_res <- keras_predict(bilstm_mod, kick_assess, state_assess)
bilstm_res %>% metrics(state, .pred_class, .pred_1)

#> # A tibble: 4 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 accuracy binary 0.738
#> 2 kap binary 0.476
#> 3 mn_log_loss binary 0.621
#> 4 roc_auc binary 0.805

This bidirectional LSTM, able to learn both forward and backward text struc-
tures, provides some improvement over the regular LSTM on the validation
set (which had an accuracy of 0.733).

288 9 Long short-term memory (LSTM) networks

9.4 Case study: stacking LSTM layers

Deep learning architectures can be built up to create extremely complex net-
works. For example, RNN and/or LSTM layers can be stacked on top of each
other, or together with other kinds of layers. The idea of this stacking is to
increase the ability of a network to represent the data well.

Intermediate layers must be set up to return sequences (with re-
turn_sequences = TRUE) instead of the last output for each sequence.

Let’s start by adding one single additional layer.

stacked_mod <- keras_model_sequential() %>%
layer_embedding(input_dim = max_words + 1, output_dim = 32) %>%
layer_lstm(units = 32, dropout = 0.4, recurrent_dropout = 0.4,

return_sequences = TRUE) %>%
layer_lstm(units = 32, dropout = 0.4, recurrent_dropout = 0.4) %>%
layer_dense(units = 1, activation = "sigmoid")

stacked_mod %>%
compile(
optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")

)

stacked_history <- stacked_mod %>%
fit(
kick_analysis,
state_analysis,
epochs = 10,
validation_data = list(kick_assess, state_assess),
batch_size = 512,
verbose = FALSE

)

stacked_history

9.5 Case study: padding 289

#>
#> Final epoch (plot to see history):
#> loss: 0.3771
#> accuracy: 0.826
#> val_loss: 0.6079
#> val_accuracy: 0.7357

Adding another separate layer in the forward direction appears to have im-
proved the network, about as much as extending the LSTM layer to handle
information in the backward direction via the bidirectional LSTM.

stacked_res <- keras_predict(stacked_mod, kick_assess, state_assess)
stacked_res %>% metrics(state, .pred_class, .pred_1)

#> # A tibble: 4 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 accuracy binary 0.736
#> 2 kap binary 0.470
#> 3 mn_log_loss binary 0.608
#> 4 roc_auc binary 0.804

We can gradually improve a model by changing and adding to its architecture.

9.5 Case study: padding

One of the most important themes of this book is that text must be heavily
preprocessed in order to be useful for machine learning algorithms, and these
preprocessing decisions have big effects on model results. One decision that
seems like it may not be all that important is how sequences are padded for
a deep learning model. The matrix that is used as input for a neural network
must be rectangular, but the training data documents are typically all different
lengths. Sometimes, like in the case of the Supreme Court opinions, the lengths
vary a lot; sometimes, like with the Kickstarter data, the lengths vary a little
bit.

Either way, the sequences that are too long must be truncated and the se-
quences that are too short must be padded, typically with zeroes. This does
literally mean that words or tokens are thrown away for the long documents

290 9 Long short-term memory (LSTM) networks

and zeroes are added to the shorter documents, with the goal of creating a
rectangular matrix that can be used for computation.

It is possible to set up an LSTM network that works with sequences of
varied length; this can sometimes improve performance but takes more
work to set up and is outside the scope of this book.

The default in textrecipes, as well as most deep learning for text, is padding =
"pre", where zeroes are added at the beginning, and truncating = "pre", where
values at the beginning are removed. What happens if we change one of these
defaults?

padding_rec <- recipe(~ blurb, data = kickstarter_train) %>%
step_tokenize(blurb) %>%
step_tokenfilter(blurb, max_tokens = max_words) %>%
step_sequence_onehot(blurb, sequence_length = max_length, padding = "post")

padding_prep <- prep(padding_rec)
padding_matrix <- bake(padding_prep, new_data = NULL, composition = "matrix")
dim(padding_matrix)

#> [1] 202092 30

This matrix has the same dimensions as kick_train but instead of padding with
zeroes at the beginning of these Kickstarter blurbs, this matrix is padded with
zeroes at the end. (This preprocessing strategy still truncates longer sequences
in the same way.)

pad_analysis <- bake(padding_prep, new_data = analysis(kick_val$splits[[1]]),
composition = "matrix")

pad_assess <- bake(padding_prep, new_data = assessment(kick_val$splits[[1]]),
composition = "matrix")

Now, let’s create and fit an LSTM to this preprocessed data.

9.5 Case study: padding 291

padding_mod <- keras_model_sequential() %>%
layer_embedding(input_dim = max_words + 1, output_dim = 32) %>%
layer_lstm(units = 32, dropout = 0.4, recurrent_dropout = 0.4) %>%
layer_dense(units = 1, activation = "sigmoid")

padding_mod %>%
compile(
optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")

)

padding_history <- padding_mod %>%
fit(
pad_analysis,
state_analysis,
epochs = 10,
validation_data = list(pad_assess, state_assess),
batch_size = 512,
verbose = FALSE

)

padding_history

#>
#> Final epoch (plot to see history):
#> loss: 0.4303
#> accuracy: 0.7905
#> val_loss: 0.5949
#> val_accuracy: 0.7155

This padding strategy results in noticeably worse performance than the default
option!

padding_res <- keras_predict(padding_mod, pad_assess, state_assess)
padding_res %>% metrics(state, .pred_class, .pred_1)

#> # A tibble: 4 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 accuracy binary 0.715
#> 2 kap binary 0.430

292 9 Long short-term memory (LSTM) networks

#> 3 mn_log_loss binary 0.595
#> 4 roc_auc binary 0.789

The same model architecture with default padding preprocessing resulted in
an accuracy of 0.733 and an AUC of 0.803; changing to padding = "post" has
resulted in a remarkable degrading of predictive capacity. This result is typi-
cally attributed to the RNN/LSTM’s hidden states being flushed out by the
added zeroes, before getting to the text itself.

Different preprocessing strategies have a huge impact on deep learning
results.

9.6 Case study: training a regression model

All our deep learning models for text so far have used the Kickstarter crowd-
funding blurbs to predict whether the campaigns were successful or not, a
classification problem. In our experience, classification is more common than
regression tasks with text data, but these techniques can be used for either
kind of supervised machine learning question. Let’s return to the regression
problem of Chapter 6 and predict the year of United States Supreme Court
decisions, starting out by splitting into training and testing sets.

library(scotus)
set.seed(1234)
scotus_split <- scotus_filtered %>%

mutate(
year = (as.numeric(year) - 1920) / 50,
text = str_remove_all(text, "'")

) %>%
initial_split(strata = year)

scotus_train <- training(scotus_split)
scotus_test <- testing(scotus_split)

9.6 Case study: training a regression model 293

Notice that we also shifted (subtracted) and scaled (divided) the year
outcome by constant factors so all the values are centered around zero and
not too large. Neural networks for regression problems typically behave
better when dealing with outcomes that are roughly between −1 and 1.

Next, let’s build a preprocessing recipe for these Supreme Court decisions.
These documents are much longer than the Kickstarter blurbs, many thou-
sands of words long instead of just a handful. Let’s try keeping the size of
our vocabulary the same (max_words) but we will need to increase the sequence
length information we store (max_length) by a great deal.

max_words <- 2e4
max_length <- 1e3

scotus_rec <- recipe(~ text, data = scotus_train) %>%
step_tokenize(text) %>%
step_tokenfilter(text, max_tokens = max_words) %>%
step_sequence_onehot(text, sequence_length = max_length)

scotus_prep <- prep(scotus_rec)
scotus_train_baked <- bake(scotus_prep,

new_data = scotus_train,
composition = "matrix")

scotus_test_baked <- bake(scotus_prep,
new_data = scotus_test,
composition = "matrix")

What does our training data look like now?

dim(scotus_train_baked)

#> [1] 7498 1000

We only have 7498 rows of training data, and because these documents are so
long and we want to keep more of each sequence, the training data has 1000
columns. You are probably starting to guess that we are going to run into
problems.

294 9 Long short-term memory (LSTM) networks

Let’s create an LSTM and see what we can do. We will need to use higher-
dimensional embeddings, since our sequences are much longer (we may want
to increase the number of units as well, but will leave that out for the time
being). Because we are training a regression model, there is no activation
function for the last layer; we want to fit and predict to arbitrary values for
the year.

A good default loss function for regression is mean squared error, "mse".

scotus_mod <- keras_model_sequential() %>%
layer_embedding(input_dim = max_words + 1, output_dim = 64) %>%
layer_lstm(units = 32, dropout = 0.4, recurrent_dropout = 0.4) %>%
layer_dense(units = 1)

scotus_mod %>%
compile(
optimizer = "adam",
loss = "mse",
metrics = c("mean_squared_error")

)

scotus_history <- scotus_mod %>%
fit(
scotus_train_baked,
scotus_train$year,
epochs = 10,
validation_split = 0.25,
verbose = FALSE

)

How does this model perform on the test data? Let’s transform back to real
values for year so our metrics will be on the same scale as in Chapter 6.

scotus_res <- tibble(year = scotus_test$year,
.pred = predict(scotus_mod, scotus_test_baked)[, 1]) %>%

mutate(across(everything(), ~ . * 50 + 1920))

scotus_res %>% metrics(year, .pred)

9.7 Case study: vocabulary size 295

#> # A tibble: 3 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 rmse standard 27.1
#> 2 rsq standard 0.758
#> 3 mae standard 19.6

This is much worse than the final regularized linear model trained in Section
6.9, with an RMSE almost a decade worth of years worse. It’s possible we may
be able to do a little better than this simple LSTM, but as this chapter has
demonstrated, our improvements will likely not be enormous compared to the
first LSTM baseline.

The main problem with this regression model is that there isn’t that
much data to start with; this is an example where a deep learning model
is not a good choice and we should stick with a different machine learning
algorithm like regularized regression.

9.7 Case study: vocabulary size

In this chapter so far, we’ve worked with a vocabulary of 20,000 words or
tokens. This is a hyperparameter of the model, and could be tuned, as we
show in detail in Section 10.6. Instead of tuning in this chapter, let’s try a
smaller value, corresponding to faster preprocessing and model fitting but
a less powerful model, and explore whether and how much it affects model
performance.

max_words <- 1e4
max_length <- 30

smaller_rec <- recipe(~ blurb, data = kickstarter_train) %>%
step_tokenize(blurb) %>%
step_tokenfilter(blurb, max_tokens = max_words) %>%
step_sequence_onehot(blurb, sequence_length = max_length)

kick_prep <- prep(smaller_rec)

296 9 Long short-term memory (LSTM) networks

kick_analysis <- bake(kick_prep, new_data = analysis(kick_val$splits[[1]]),
composition = "matrix")

kick_assess <- bake(kick_prep, new_data = assessment(kick_val$splits[[1]]),
composition = "matrix")

Once our preprocessing is done and applied to our validation split kick_val,
we can set up our model, another straightforward LSTM neural network.

smaller_mod <- keras_model_sequential() %>%
layer_embedding(input_dim = max_words + 1, output_dim = 32) %>%
layer_lstm(units = 32, dropout = 0.4, recurrent_dropout = 0.4) %>%
layer_dense(units = 1, activation = "sigmoid")

smaller_mod %>%
compile(
optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")

)

smaller_history <- smaller_mod %>%
fit(
kick_analysis,
state_analysis,
epochs = 10,
validation_data = list(kick_assess, state_assess),
batch_size = 512,
verbose = FALSE

)

smaller_history

#>
#> Final epoch (plot to see history):
#> loss: 0.468
#> accuracy: 0.7712
#> val_loss: 0.5879
#> val_accuracy: 0.7084

How did this smaller model, based on a smaller vocabulary in the model,
perform?

9.8 The full game: LSTM 297

smaller_res <- keras_predict(smaller_mod, kick_assess, state_assess)
smaller_res %>% metrics(state, .pred_class, .pred_1)

#> # A tibble: 4 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 accuracy binary 0.708
#> 2 kap binary 0.414
#> 3 mn_log_loss binary 0.588
#> 4 roc_auc binary 0.780

The original LSTM model with the larger vocabulary had an accuracy of 0.733
and an AUC of 0.803. Reducing the model’s capacity to capture and learn text
meaning by restricting its access to vocabulary does result in a corresponding
reduction in model performance, but a small one.

The relationship between this hyperparameter and model performance is
weak over this range. Notice that we cut the vocabulary in half, and saw
only modest reductions in accuracy.

9.8 The full game: LSTM

We’ve come a long way in this chapter, even though we’ve focused on a very
specific kind of recurrent neural network, the LSTM. Let’s step back and build
one final model, incorporating what we have been able to learn.

9.8.1 Preprocess the data

We know that we want to stick with the defaults for padding, and to use a
larger vocabulary for our final model. For this final model, we are not going
to use our validation split again, so we only need to preprocess the training
data.

298 9 Long short-term memory (LSTM) networks

max_words <- 2e4
max_length <- 30

kick_rec <- recipe(~ blurb, data = kickstarter_train) %>%
step_tokenize(blurb) %>%
step_tokenfilter(blurb, max_tokens = max_words) %>%
step_sequence_onehot(blurb, sequence_length = max_length)

kick_prep <- prep(kick_rec)
kick_train <- bake(kick_prep, new_data = NULL, composition = "matrix")

dim(kick_train)

#> [1] 202092 30

9.8.2 Specify the model

We’ve learned a lot about how to model this data set over the course of this
chapter.

• We can use dropout to reduce overfitting.

• Let’s stack several layers together, and in fact increase the number of
LSTM layers to three.

• The bidirectional LSTM performed better than the regular LSTM, so let’s
set up each LSTM layer to be able to learn sequences in both directions.

Instead of using specific validation data that we can then compute perfor-
mance metrics for, let’s go back to specifying validation_split = 0.1 and let
the Keras model choose the validation set.

final_mod <- keras_model_sequential() %>%
layer_embedding(input_dim = max_words + 1, output_dim = 32) %>%
bidirectional(layer_lstm(
units = 32, dropout = 0.4, recurrent_dropout = 0.4,
return_sequences = TRUE

)) %>%
bidirectional(layer_lstm(
units = 32, dropout = 0.4, recurrent_dropout = 0.4,

9.8 The full game: LSTM 299

return_sequences = TRUE
)) %>%
bidirectional(layer_lstm(
units = 32, dropout = 0.4, recurrent_dropout = 0.4

)) %>%
layer_dense(units = 1, activation = "sigmoid")

final_mod %>%
compile(
optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")

)

final_history <- final_mod %>%
fit(
kick_train,
kickstarter_train$state,
epochs = 10,
validation_split = 0.1,
batch_size = 512,
verbose = FALSE

)

final_history

#>
#> Final epoch (plot to see history):
#> loss: 0.3341
#> accuracy: 0.8492
#> val_loss: 0.5484
#> val_accuracy: 0.774

This looks promising! Let’s finally turn to the testing set, for the first time
during this chapter, to evaluate this last model on data that has never been
touched as part of the fitting process.

kick_test <- bake(kick_prep, new_data = kickstarter_test,
composition = "matrix")

final_res <- keras_predict(final_mod, kick_test, kickstarter_test$state)
final_res %>% metrics(state, .pred_class, .pred_1)

300 9 Long short-term memory (LSTM) networks

#> # A tibble: 4 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 accuracy binary 0.764
#> 2 kap binary 0.527
#> 3 mn_log_loss binary 0.561
#> 4 roc_auc binary 0.834

This is our best-performing model in this chapter on LSTM models, although
not by much. We can again create an ROC curve, this time using the test
data in Figure 9.6.

final_res %>%
roc_curve(state, .pred_1) %>%
autoplot()

We have been able to incrementally improve our model by adding to the
structure and making good choices about preprocessing. We can visualize this
final LSTM model’s performance using a confusion matrix as well, in Figure
9.7.

final_res %>%
conf_mat(state, .pred_class) %>%
autoplot(type = "heatmap")

Notice that this final model still does not perform as well as any of the best
models of Chapter 8.

For this data set of Kickstarter campaign blurbs, an LSTM architecture is
not turning out to give a great result compared to other options. However,
LSTMs typically perform very well for text data and are an important
piece of the text modeling toolkit.

For the Kickstarter data, these less-than-spectacular results are likely due to
the documents’ short lengths. LSTMs often work well for text data, but this
is not universally true for all kinds of text. Also, keep in mind that LSTMs
take both more time and memory to train, compared to the simpler models
discussed in Chapter 8.

9.9 Summary 301

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty

FIGURE 9.6: ROC curve for final LSTM model predictions on testing set
of Kickstarter campaign success

9.9 Summary

LSTMs are a specific kind of recurrent neural network that are capable of
learning long-range dependencies and broader context. They are often an ex-
cellent choice for building supervised models for text because of this ability
to model sequences and structures within text like word dependencies. Text
must be heavily preprocessed for LSTMs in much the same way it needs to be
preprocessed for dense neural networks, with tokenization and one-hot encod-
ing of sequences. A major characteristic of LSTMs, like other deep learning
architectures, is their tendency to memorize the features of training data; we

302 9 Long short-term memory (LSTM) networks

23769

8258

7633

277050

1

1 0
Truth

P
re
di
ct
io
n

FIGURE 9.7: Confusion matrix for final LSTM model predictions on testing
set of Kickstarter campaign success

can use strategies like dropout and ensuring that the batch size is large enough
to reduce overfitting.

9.9.1 In this chapter, you learned:

• how to preprocess text data for LSTM models

• about RNN, LSTM, and bidirectional LSTM network architectures

• how to use dropout to reduce overfitting for deep learning models

• that network layers (including RNNs and LSTMs) can be stacked for
greater model capacity

• about the importance of centering and scaling regression outcomes for
neural networks

• how to evaluate LSTM models for text

10
Convolutional neural networks

The first neural networks we built in Chapter 8 did not have the capacity
to learn much about structure, sequences, or long-range dependencies in our
text data. The LSTM networks we trained in Chapter 9 were especially suited
to learning long-range dependencies. In this final chapter, we will focus on
convolutional neural network (CNN) architecture (Yoon Kim 2014), which
can learn local, spatial structure within data.

CNNs can be well-suited for modeling text data because text often contains
quite a lot of local structure. A CNN does not learn long-range structure
within a sequence like an LSTM, but instead detects local patterns. A CNN
network layer takes data (like text) as input and then hopefully produces
output that represents specific structures in the data.

Let’s take more time with CNNs in this chapter to explore their construc-
tion, different features, and the hyperparameters we can tune.

10.1 What are CNNs?

CNNs can work with data of different dimensions (like two-dimensional images
or three-dimensional video), but for text modeling, we typically work in one
dimension. The illustrations and explanations in this chapter use only one
dimension to match the text use case. Figure 10.1 illustrates a typical CNN
architecture. A convolutional filter slides along the sequence to produce a
new, smaller sequence. This is repeated multiple times, typically with different
parameters for each layer, until we are left with a small data cube that we
can transform into our required output shape, a value between 0 and 1 in the
case of binary classification.

This figure isn’t entirely accurate because we technically don’t feed characters

DOI: 10.1201/9781003093459-10 303

https://doi.org/10.1201/9781003093459-10

304 10 Convolutional neural networks

OutputFully
connected

I

S
I

S

Convolution

I

S

T

H

E

I

S

T

H

E

Convolution

O

S

T

I

S

T

H

E

M

O

S

T

I

S

T

H

E

M

Convolution

sun

and

the

fresh

air

made

a

far

down

in

the

forrest

where

the

warm

sun

and

the

fresh

air

made

a

far

down

in

the

forrest

where

the

warm

sun

and

the

fresh

air

made

a

far

down

in

the

forrest

where

the

warm

Input

FIGURE 10.1: A template CNN architecture for one-dimensional input
data. A sequence of consecutive CNN layers incremently reduces the size,
ending with single output value.

into a CNN, but instead use one-hot sequence encoding (Section 8.2.2) with
a possible word embedding. Let’s talk about two of the most important CNN
concepts, kernels and kernel size.

10.1.1 Kernel

The kernel is a small vector that slides along the input. When it is sliding, it
performs element-wise multiplication of the values in the input and its own
weights, and then sums up the values to get a single value. Sometimes an
activation function is applied as well. It is these weights that are trained via
gradient descent to find the best fit. In Keras, the filters represent how many
different kernels are trained in each layer. You typically start with fewer filters
at the beginning of your network and then increase them as you go along.

10.1.2 Kernel size

The most prominent hyperparameter is the kernel size. The kernel size is the
length of the vector that contains the weights. A kernel of size 5 will have 5
weights. These kernels can capture local information similarly to how n-grams
capture location patterns. Increasing the size of the kernel decreases the size
of the output, as shown in Figure 10.2.

Larger kernels learn larger and less frequent patterns, while smaller kernels
will find fine-grained features. Notice how the choice of token affects how we
think about kernel size. For character tokenization, a kernel size of 5 will (in
early layers) find patterns in subwords more often than patterns across words,
since 5 characters will typically not span multiple words. By contrast, a kernel
size of 5 with word tokenization will learn patterns within sentences instead.

10.2 A first CNN model 305

Kernel size = 7Kernel size = 5Kernel size = 3

FIGURE 10.2: The kernel size affects the size of the output. A kernel size
of 3 uses the information from 3 values to compute 1 value.

10.2 A first CNN model

We will be using the same data, which we examine in Sections 8.1 and B.4 and
use throughout Chapters 8 and 9. This data set contains short text blurbs for
prospective crowdfunding campaigns on Kickstarter, along with if they were
successful. Our goal of this modeling is to predict successful campaigns from
the text contained in the blurb. We will also use the same preprocessing and
feature engineering recipe that we created and described in Sections 8.2.1 and
9.1.

Our first CNN will look a lot like what is shown in Figure 10.1. We start with
an embedding layer, followed by a single one-dimensional convolution layer
layer_conv_1d(), then a global max pooling layer layer_global_max_pooling_1d(),
a densely connected layer, and end with a dense layer with a sigmoid activation
function to give us one value between 0 and 1 to use in our binary classification
task.

library(keras)

simple_cnn_model <- keras_model_sequential() %>%
layer_embedding(input_dim = max_words + 1, output_dim = 16,

input_length = max_length) %>%
layer_conv_1d(filter = 32, kernel_size = 5, activation = "relu") %>%
layer_global_max_pooling_1d() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")

simple_cnn_model

306 10 Convolutional neural networks

#> Model
#> Model: "sequential"
#> __
#> Layer (type) Output Shape Param #
#> ==
#> embedding (Embedding) (None, 30, 16) 320016
#> __
#> conv1d (Conv1D) (None, 26, 32) 2592
#> __
#> global_max_pooling1d (GlobalMaxPool (None, 32) 0
#> __
#> dense_1 (Dense) (None, 64) 2112
#> __
#> dense (Dense) (None, 1) 65
#> ==
#> Total params: 324,785
#> Trainable params: 324,785
#> Non-trainable params: 0
#> __

We are using the same embedding layer with the same max_length as in the pre-
vious networks so there is nothing new there. The layer_global_max_pooling_1d()
layer collapses the remaining CNN output into one dimension so we can finish
it off with a densely connected layer and the sigmoid activation function.

This might not end up being the best CNN configuration, but it is a good
starting point. One of the challenges when working with CNNs is to ensure that
we manage the dimensionality correctly. The length of the sequence decreases
by (kernel_size - 1) for each layer. For this input, we have a sequence of length
max_length = 30, which is decreased by (5 - 1) = 4 resulting in a sequence of
26, as shown in the printed output of simple_cnn_model. We could create seven
layers with kernel_size = 5, since we would end with 30 - 4 - 4 - 4 - 4 - 4 - 4 -
4 = 2 elements in the resulting sequence. However, we would not be able to do
a network with 3 layers of kernel_size = 7 followed by 3 layers of kernel_size =
5 since the resulting sequence would be 30 - 6 - 6 - 6 - 4 - 4 - 4 = 0 and we
must have a positive length for our sequence. Remember that kernel_size is
not the only argument that will change the length of the resulting sequence.

Constructing a sequence layer by layer and using the print method from
keras to check the configuration is a great way to make sure your archi-
tecture is valid.

10.2 A first CNN model 307

The compilation and fitting are the same as we have seen before, using a
validation split created with tidymodels as shown in Sections 8.2.4 and 9.1.2.

simple_cnn_model %>% compile(
optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")

)

cnn_history <- simple_cnn_model %>% fit(
x = kick_analysis,
y = state_analysis,
batch_size = 512,
epochs = 10,
validation_data = list(kick_assess, state_assess)

)

We are using the "adam" optimizer since it performs well for many kinds
of models. You may have to experiment to find the optimizer that works
best for your model and data.

Now that the model is done fitting, we can evaluate it on the validation data
set using the same keras_predict() function we created in Section 8.2.4 and
used throughout Chapters 8 and 9.

val_res <- keras_predict(simple_cnn_model, kick_assess, state_assess)
val_res

#> # A tibble: 50,524 x 3
#> .pred_1 .pred_class state
#> <dbl> <fct> <fct>
#> 1 0.00000331 0 0
#> 2 0.0000570 0 0
#> 3 0.000785 0 0
#> 4 0.000134 0 0
#> 5 0.967 1 1
#> 6 0.999 1 1
#> 7 0.00000238 0 0

308 10 Convolutional neural networks

#> 8 0.000199 0 0
#> 9 0.0841 0 1
#> 10 0.998 1 1
#> # ... with 50,514 more rows

We can calculate some standard metrics with metrics().

metrics(val_res, state, .pred_class, .pred_1)

#> # A tibble: 4 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 accuracy binary 0.812
#> 2 kap binary 0.624
#> 3 mn_log_loss binary 0.956
#> 4 roc_auc binary 0.862

We already see improvement over the densely connected network from Chapter
8, our best performing model on the Kickstarter data so far.

The heatmap in Figure 10.3 shows that the model performs about the same
for the two classes, success and failure for the crowdfunding campaigns; we
are getting fairly good results from a baseline CNN model!

val_res %>%
conf_mat(state, .pred_class) %>%
autoplot(type = "heatmap")

The ROC curve in Figure 10.4 shows how the model performs at different
thresholds.

val_res %>%
roc_curve(truth = state, .pred_1) %>%
autoplot() +
labs(
title = "Receiver operator curve for Kickstarter blurbs"

)

10.3 Case study: adding more layers 309

19436

4699

4966

214230

1

1 0
Truth

P
re
di
ct
io
n

FIGURE 10.3: Confusion matrix for first CNN model predictions of Kick-
starter campaign success

10.3 Case study: adding more layers

Now that we know how our basic CNN performs, we can see what happens
when we apply some common modifications to it. This case study will examine:

• how we can add additional convolutional layers to our base model and

• how additional dense layers can be added.

Let’s start by adding another fully connected layer. We take the architec-
ture we used in simple_cnn_model and add another layer_dense() after the first
layer_dense() in the model. Increasing the depth of the model via the fully
connected layers allows the model to find more complex patterns. There is,
however, a trade-off. Adding more layers adds more weights to the model,
making it more complex and harder to train. If you don’t have enough data
or the patterns you are trying to classify aren’t that complex, then model
performance will suffer since the model will start overfitting as it starts mem-
orizing patterns in the training data that don’t generalize to new data.

310 10 Convolutional neural networks

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty
Receiver operator curve for Kickstarter blurbs

FIGURE 10.4: ROC curve for first CNN model predictions of Kickstarter
campaign success

When working with CNNs, the different layers perform different tasks. A
convolutional layer extracts local patterns as it slides along the sequences,
while a fully connected layer finds global patterns.

We can think of the convolutional layers as doing preprocessing on the text,
which is then fed into the dense neural network that tries to fit the best
curve. Adding more fully connected layers allows the network to create more
intricate curves, and adding more convolutional layers creates richer features

10.3 Case study: adding more layers 311

that are used when fitting the curves. Your job when constructing a CNN
is to make the architecture just complex enough to match the data without
overfitting. One ad-hoc rule to follow when refining your network architecture
is to start small and keep adding layers until the validation error does not
improve anymore.

cnn_double_dense <- keras_model_sequential() %>%
layer_embedding(input_dim = max_words + 1, output_dim = 16,

input_length = max_length) %>%
layer_conv_1d(filter = 32, kernel_size = 5, activation = "relu") %>%
layer_global_max_pooling_1d() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")

cnn_double_dense

#> Model
#> Model: "sequential_1"
#> __
#> Layer (type) Output Shape Param #
#> ==
#> embedding_1 (Embedding) (None, 30, 16) 320016
#> __
#> conv1d_1 (Conv1D) (None, 26, 32) 2592
#> __
#> global_max_pooling1d_1 (GlobalMaxPo (None, 32) 0
#> __
#> dense_4 (Dense) (None, 64) 2112
#> __
#> dense_3 (Dense) (None, 64) 4160
#> __
#> dense_2 (Dense) (None, 1) 65
#> ==
#> Total params: 328,945
#> Trainable params: 328,945
#> Non-trainable params: 0
#> __

We can compile and fit this new model. We will try to keep as much as we
can constant as we compare the different models.

312 10 Convolutional neural networks

cnn_double_dense %>% compile(
optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")

)

history <- cnn_double_dense %>% fit(
x = kick_analysis,
y = state_analysis,
batch_size = 512,
epochs = 10,
validation_data = list(kick_assess, state_assess)

)

val_res_double_dense <- keras_predict(
cnn_double_dense,
kick_assess,
state_assess

)

metrics(val_res_double_dense, state, .pred_class, .pred_1)

#> # A tibble: 4 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 accuracy binary 0.801
#> 2 kap binary 0.602
#> 3 mn_log_loss binary 1.01
#> 4 roc_auc binary 0.858

This model performs well, but it is not entirely clear that it is working much
better than the first CNN model we tried. This could be an indication that the
original model had enough fully connected layers for the amount of training
data we have available.

If we have two models with nearly identical performance, we should choose
the less complex of the two, since it will have faster performance.

10.3 Case study: adding more layers 313

We can also change the number of convolutional layers, by adding more such
layers.

cnn_double_conv <- keras_model_sequential() %>%
layer_embedding(input_dim = max_words + 1, output_dim = 16,

input_length = max_length) %>%
layer_conv_1d(filter = 32, kernel_size = 5, activation = "relu") %>%
layer_max_pooling_1d(pool_size = 2) %>%
layer_conv_1d(filter = 64, kernel_size = 3, activation = "relu") %>%
layer_global_max_pooling_1d() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")

cnn_double_conv

#> Model
#> Model: "sequential_2"
#> __
#> Layer (type) Output Shape Param #
#> ==
#> embedding_2 (Embedding) (None, 30, 16) 320016
#> ___
#> conv1d_3 (Conv1D) (None, 26, 32) 2592
#> __
#> max_pooling1d (MaxPooling1D) (None, 13, 32) 0
#> __
#> conv1d_2 (Conv1D) (None, 11, 64) 6208
#> __
#> global_max_pooling1d_2 (GlobalMaxPo (None, 64) 0
#> __
#> dense_6 (Dense) (None, 64) 4160
#> __
#> dense_5 (Dense) (None, 1) 65
#> ==
#> Total params: 333,041
#> Trainable params: 333,041
#> Non-trainable params: 0
#> __

There are a lot of different ways we can extend the network by adding con-
volutional layers with layer_conv_1d(). We must consider the individual char-
acteristics of each layer, with respect to kernel size, as well as other CNN
parameters we have not discussed in detail yet like stride, padding, and dila-
tion rate. We also have to consider the progression of these layers within the

314 10 Convolutional neural networks

network itself. The model is using an increasing number of filters in each layer,
doubling the number of filters for each layer. This is to ensure that there are
more filters later on to capture enough of the global information.

This model is using a kernel size of 5 twice. There aren’t any hard rules about
how you structure kernel sizes, but the sizes you choose will change what
features the model can detect.

The early layers extract general or low-level features while the later layers
learn finer detail or high-level features in the data. The choice of kernel
size determines the size of these features.

Having a small kernel size in the first layer will let the model detect low-level
features locally.

We are also including a max-pooling layer with layer_max_pooling_1d() between
the convolutional layers. This layer performs a pooling operation that calcu-
lates the maximum values in its pooling window; in this model, that is set to
2. This is done in the hope that the pooled features will be able to perform
better by weeding out the small weights. This is another parameter you can
tinker with when you are designing the network.

We compile this model like the others, again trying to keep as much as we can
constant. The only thing that changed in this model compared to the first is
the addition of a layer_max_pooling_1d() and a layer_conv_1d().

cnn_double_conv %>% compile(
optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")

)

history <- cnn_double_conv %>% fit(
x = kick_analysis,
y = state_analysis,
batch_size = 512,
epochs = 10,
validation_data = list(kick_assess, state_assess)

)

10.3 Case study: adding more layers 315

val_res_double_conv <- keras_predict(
cnn_double_conv,
kick_assess,
state_assess

)

metrics(val_res_double_conv, state, .pred_class, .pred_1)

#> # A tibble: 4 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 accuracy binary 0.805
#> 2 kap binary 0.610
#> 3 mn_log_loss binary 1.04
#> 4 roc_auc binary 0.854

This model also performs well compared to earlier results. Let us extract the
the prediction using keras_predict() we defined in Section 8.2.4.

all_cnn_model_predictions <- bind_rows(
mutate(val_res, model = "Basic CNN"),
mutate(val_res_double_dense, model = "Double Dense"),
mutate(val_res_double_conv, model = "Double Conv")

)

all_cnn_model_predictions

#> # A tibble: 151,572 x 4
#> .pred_1 .pred_class state model
#> <dbl> <fct> <fct> <chr>
#> 1 0.00000331 0 0 Basic CNN
#> 2 0.0000570 0 0 Basic CNN
#> 3 0.000785 0 0 Basic CNN
#> 4 0.000134 0 0 Basic CNN
#> 5 0.967 1 1 Basic CNN
#> 6 0.999 1 1 Basic CNN
#> 7 0.00000238 0 0 Basic CNN
#> 8 0.000199 0 0 Basic CNN
#> 9 0.0841 0 1 Basic CNN
#> 10 0.998 1 1 Basic CNN
#> # ... with 151,562 more rows

316 10 Convolutional neural networks

Now that the results are combined in all_cnn_model_predictions we can calculate
group-wise evaluation statistics by grouping them by the model variable.

all_cnn_model_predictions %>%
group_by(model) %>%
metrics(state, .pred_class, .pred_1)

#> # A tibble: 12 x 4
#> model .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 Basic CNN accuracy binary 0.812
#> 2 Double Conv accuracy binary 0.805
#> 3 Double Dense accuracy binary 0.801
#> 4 Basic CNN kap binary 0.624
#> 5 Double Conv kap binary 0.610
#> 6 Double Dense kap binary 0.602
#> 7 Basic CNN mn_log_loss binary 0.956
#> 8 Double Conv mn_log_loss binary 1.04
#> 9 Double Dense mn_log_loss binary 1.01
#> 10 Basic CNN roc_auc binary 0.862
#> 11 Double Conv roc_auc binary 0.854
#> 12 Double Dense roc_auc binary 0.858

We can also compute ROC curves for all our models so far. Figure 10.5 shows
the three different ROC curves together in one chart.

all_cnn_model_predictions %>%
group_by(model) %>%
roc_curve(truth = state, .pred_1) %>%
autoplot() +
labs(
title = "Receiver operator curve for Kickstarter blurbs"

)

The curves are very close in this chart, indicating that we don’t have much
to gain by adding more layers and that they don’t improve performance sub-
stantively. This doesn’t mean that we are done with CNNs! There are still
many things we can explore, like different tokenization approaches and hyper-
parameters that can be trained.

10.4 Case study: byte pair encoding 317

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty

model

Basic CNN

Double Conv

Double Dense

Receiver operator curve for Kickstarter blurbs

FIGURE 10.5: ROC curve for three CNN variants’ predictions of Kickstarter
campaign success

10.4 Case study: byte pair encoding

In our models in this chapter so far we have used words as the token of interest.
We saw in Section 6.5 how n-grams can be used in modeling as well. One of
the reasons why the Kickstarter data set is hard to work with is because the
text is quite short so we don’t have that many individual tokens to work
with in a given blurb. Another choice of token is subwords, where we split the
text into smaller units than words; longer words especially will be broken into
multiple subword units. One way to tokenize text into subword units is byte
pair encoding (Gage 1994). This algorithm has been repurposed to work on
text by iteratively merging frequently occurring subword pairs. Methods such
as BERT1 and GPT-22 use subword units for text with great success. The
byte pair encoding algorithm has a hyperparameter controlling the size of the

1https://github.com/google-research/bert
2https://openai.com/blog/better-language-models/

https://github.com/google-research/bert
https://github.com/google-research/bert
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/

318 10 Convolutional neural networks

vocabulary. Setting it to higher values allows the models to find more rarely
used character sequences in the text.

Byte pair encoding offers a good trade-off between character-level and word-
level information, and can also encode unknown words. For example, suppose
that the model is aware of the word “woman.” A simple tokenizer would have
to put a word such as “womanhood” into an unknown bucket or ignore it com-
pletely, whereas byte pair encoding should be able to pick up on the subwords
“woman” and “hood” (or “woman,” “h,” and “ood,” depending on whether
the model found “hood” as a common enough subword). Using a subword
tokenizer such as byte pair encoding should let us see the text with more
granularity since we will have more and smaller tokens for each observation.

Character-level CNNs have also proven successful in some contexts. They
have been explored by Zhang, Zhao, and LeCun (2015) and work quite
well on some shorter texts such as headlines and tweets (Vosoughi, Vija-
yaraghavan, and Roy 2016).

We need to remind ourselves that these models don’t contain any linguistic
knowledge at all; they only “learn” the morphological patterns of sequences
of characters (Section 1.2) in the training set. This does not make the models
useless, but it should set our expectations about what any given model is
capable of.

Since we are using a completely different preprocessing approach, we need to
specify a new feature engineering recipe.

The textrecipes package has a tokenization engine to perform byte pair
encoding, but we need to determine the vocabulary size and the appro-
priate sequence length.

Let’s write a function that takes a character vector and a vocabulary size and
returns a dataframe with the number of tokens in each observation.

library(textrecipes)

get_bpe_token_dist <- function(vocab_size, x) {

10.4 Case study: byte pair encoding 319

recipe(~text, data = tibble(text = x)) %>%
step_mutate(text = tolower(text)) %>%
step_tokenize(text,

engine = "tokenizers.bpe",
training_options = list(vocab_size = vocab_size)) %>%

prep() %>%
bake(new_data = NULL) %>%
transmute(n_tokens = lengths(textrecipes:::get_tokens(text)),

vocab_size = vocab_size)
}

We can use map() to try a handful of different vocabulary sizes.

bpe_token_dist <- map_dfr(
c(2500, 5000, 10000, 20000),
get_bpe_token_dist,
kickstarter_train$blurb

)
bpe_token_dist

#> # A tibble: 808,368 x 2
#> n_tokens vocab_size
#> <int> <dbl>
#> 1 16 2500
#> 2 34 2500
#> 3 22 2500
#> 4 26 2500
#> 5 13 2500
#> 6 19 2500
#> 7 33 2500
#> 8 24 2500
#> 9 35 2500
#> 10 37 2500
#> # ... with 808,358 more rows

If we compare with the word count distribution we saw in Figure 8.4, then we
see in Figure 10.6 that any of these choices for vocabulary size will result in
more tokens overall.

320 10 Convolutional neural networks

bpe_token_dist %>%
ggplot(aes(n_tokens)) +
geom_bar() +
facet_wrap(~vocab_size) +
labs(x = "Number of subwords per campaign blurb",

y = "Number of campaign blurbs")

10000 �0000

�500 5000

0 �5 50 �5 100 0 �5 50 �5 100

0

5000

10000

15000

0

5000

10000

15000

Number of subZords per campaign blurb

N
um

be
r o

f c
am

pa
ig

n
bl

ur
bs

FIGURE 10.6: Distribution of subword count for Kickstarter campaign
blurbs for different vocabulary sizes

Let’s pick a vocabulary size of 10,000 and a corresponding sequence length
of 40. To use byte pair encoding as a tokenizer in textrecipes set engine =
"tokenizers.bpe"; the vocabulary size can be denoted using the training_options
argument. Everything else in the recipe stays the same.

max_subwords <- 10000
bpe_max_length <- 40

bpe_rec <- recipe(~blurb, data = kickstarter_train) %>%
step_mutate(blurb = tolower(blurb)) %>%
step_tokenize(blurb,

engine = "tokenizers.bpe",
training_options = list(vocab_size = max_subwords)) %>%

step_sequence_onehot(blurb, sequence_length = bpe_max_length)

10.4 Case study: byte pair encoding 321

bpe_prep <- prep(bpe_rec)

bpe_analysis <- bake(bpe_prep, new_data = analysis(kick_val$splits[[1]]),
composition = "matrix")

bpe_assess <- bake(bpe_prep, new_data = assessment(kick_val$splits[[1]]),
composition = "matrix")

Our model will be very similar to the baseline CNN model from Section 10.2;
we’ll use a larger kernel size of 7 to account for the finer detail in the tokens.

cnn_bpe <- keras_model_sequential() %>%
layer_embedding(input_dim = max_words + 1, output_dim = 16,

input_length = bpe_max_length) %>%
layer_conv_1d(filter = 32, kernel_size = 7, activation = "relu") %>%
layer_global_max_pooling_1d() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")

cnn_bpe

#> Model
#> Model: "sequential_3"
#> __
#> Layer (type) Output Shape Param #
#> ==
#> embedding_3 (Embedding) (None, 40, 16) 320016
#> __
#> conv1d_4 (Conv1D) (None, 34, 32) 3616
#> __
#> global_max_pooling1d_3 (GlobalMaxPo (None, 32) 0
#> __
#> dense_8 (Dense) (None, 64) 2112
#> __
#> dense_7 (Dense) (None, 1) 65
#> ==
#> Total params: 325,809
#> Trainable params: 325,809
#> Non-trainable params: 0
#> __

We can compile and train like we have done so many times now.

322 10 Convolutional neural networks

cnn_bpe %>% compile(
optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")

)

bpe_history <- cnn_bpe %>% fit(
bpe_analysis,
state_analysis,
epochs = 10,
validation_data = list(bpe_assess, state_assess),
batch_size = 512

)

bpe_history

#>
#> Final epoch (plot to see history):
#> loss: 0.03372
#> accuracy: 0.9941
#> val_loss: 0.9678
#> val_accuracy: 0.8117

The performance is doing quite well, which is a pleasant surprise! This is what
we hoped would happen if we switched to a higher-detail tokenizer.

The confusion matrix in Figure 10.7 also clearly shows that there isn’t much
bias between the two classes with this new tokenizer.

val_res_bpe <- keras_predict(cnn_bpe, bpe_assess, state_assess)

val_res_bpe %>%
conf_mat(state, .pred_class) %>%
autoplot(type = "heatmap")

What are the subwords being used in this model? We can extract them from
step_sequence_onehot() using tidy() on the prepped recipe. All the tokens that
start with an "h" are seen here.

10.4 Case study: byte pair encoding 323

19266

4869

4669

217200

1

1 0
Truth

P
re
di
ct
io
n

FIGURE 10.7: Confusion matrix for CNN model using byte pair encoding
tokenization

bpe_rec %>%
prep() %>%
tidy(3) %>%
filter(str_detect(token, "^h")) %>%
pull(token)

#> [1] "h" "ha" "hab" "hal" "ham" "hand" "he"
#> [8] "head" "heart" "hearted" "heast" "hed" "hedul" "heim"
#> [15] "hel" "help" "hem" "hen" "hent" "her" "here"
#> [22] "hern" "hero" "hes" "hes," "hes." "hest" "het"
#> [29] "hetic" "hett" "hib" "hic" "hing" "hing." "hip"
#> [36] "hist" "hn" "hol" "hold" "hood" "hop" "hor"
#> [43] "hous" "house" "how" "hr" "hs" "hu"

Notice how some of these subword tokens are full words, and some are parts
of words. This is what allows the model to be able to “read” long unknown
words by combining many smaller subwords. We can also look at common
long words.

bpe_rec %>%
prep() %>%

324 10 Convolutional neural networks

tidy(3) %>%
arrange(desc(nchar(token))) %>%
slice_head(n = 25) %>%
pull(token)

#> [1] "▁singer-songwriter" "▁singer/songwriter" "▁post-apocalyptic"
#> [4] "▁interchangeable" "▁singer/songwrit" "▁entertainment."
#> [7] "▁feature-length" "▁groundbreaking" "▁illustrations."
#> [10] "▁professionally" "▁relationships." "▁self-published"
#> [13] "▁sustainability" "▁transformation" "▁unconventional"
#> [16] "▁architectural" "▁automatically" "▁award-winning"
#> [19] "▁collaborating" "▁collaboration" "▁collaborative"
#> [22] "▁coming-of-age" "▁communication" "▁comprehensive"
#> [25] "▁consciousness"

These 25 words were common enough to get their own subword token, and
helps us understand the nature of these Kickstarter crowdfunding campaigns.

Examining the longest subword tokens gives you a good sense of the data
you are working with!

10.5 Case study: explainability with LIME

We noted in Section 8.7 that one of the significant limitations of deep learning
models is that they are hard to reason about. One of the ways to understand a
predictive model, even a “black box” one, is using an algorithm for observation-
level variable importance like the Local Interpretable Model-Agnostic Expla-
nations (Ribeiro, Singh, and Guestrin 2016) algorithm, or LIME for short.

As indicated by its name, LIME is an approach to compute local feature
importance, or explainability at the individual observation level. It does
not offer global feature importance, or explainability for the model as a
whole.

10.5 Case study: explainability with LIME 325

The lime package in R (Pedersen and Benesty 2021) implements the
LIME algorithm; it can take a prediction from a model and determine a
small set of features in the original data that drives the outcome of the
prediction.

To use this package we need to write a helper function to get the data in
the format we want. The lime() function takes two mandatory arguments, x
and model. The model argument is the trained model we are trying to explain.
The lime() function works out of the box with Keras models so we should be
good to go there. The x argument is the training data used for training the
model. This is where we need to to create a helper function; the lime package
is expecting x to be a character vector so we’ll need a function that takes a
character vector as input and returns the matrix the Keras model is expecting.

kick_prepped_rec <- prep(kick_rec)

text_to_matrix <- function(x) {
bake(
kick_prepped_rec,
new_data = tibble(blurb = x),
composition = "matrix"

)
}

Since the function needs to be able to work with just the x parameter
alone, we need to put prepped_recipe inside the function rather than passing
it in as an argument. This will work with R’s scoping rules but does require
you to create a new function for each recipe.

Let’s select a couple of training observations to explain.

sentence_to_explain <- kickstarter_train %>%
slice(c(1, 5)) %>%
pull(blurb)

sentence_to_explain

326 10 Convolutional neural networks

#> [1] "The new way of learning English made simple, interesting and practical!"
#> [2] "Happiness in a jar has finally been reached."

We now load the lime package and pass observations into lime() along with
the model we are trying to explain and the preprocess function.

Be sure that the preprocessing function matches the preprocessing that
was used to train the model.

library(lime)

explainer <- lime(
x = sentence_to_explain,
model = simple_cnn_model,
preprocess = text_to_matrix

)

This explainer object can now be used with explain() to generate explanations
for the sentences. We set n_labels = 1 to only get explanations for the first label,
since we are working with a binary classification model3. We set n_features =
12 to return the 12 most important features. If we were dealing with longer
text, we might want to change n_features to return more features (tokens).

explanation <- explain(
x = sentence_to_explain,
explainer = explainer,
n_labels = 1,
n_features = 12

)

explanation

#> # A tibble: 19 x 13
#> model_type case label label_prob model_r2 model_intercept model_prediction
#> * <chr> <int> <chr> <dbl> <dbl> <dbl> <dbl>

3The explanations of the second label would just be the inverse of the first label. If you
have more than two labels, it makes sense to explore some or all of them.

10.5 Case study: explainability with LIME 327

#> 1 classification 1 1 0.999 0.319 0.701 1.02
#> 2 classification 1 1 0.999 0.319 0.701 1.02
#> 3 classification 1 1 0.999 0.319 0.701 1.02
#> 4 classification 1 1 0.999 0.319 0.701 1.02
#> 5 classification 1 1 0.999 0.319 0.701 1.02
#> 6 classification 1 1 0.999 0.319 0.701 1.02
#> 7 classification 1 1 0.999 0.319 0.701 1.02
#> 8 classification 1 1 0.999 0.319 0.701 1.02
#> 9 classification 1 1 0.999 0.319 0.701 1.02
#> 10 classification 1 1 0.999 0.319 0.701 1.02
#> 11 classification 1 1 0.999 0.319 0.701 1.02
#> 12 classification 2 1 0.999 0.391 0.124 0.683
#> 13 classification 2 1 0.999 0.391 0.124 0.683
#> 14 classification 2 1 0.999 0.391 0.124 0.683
#> 15 classification 2 1 0.999 0.391 0.124 0.683
#> 16 classification 2 1 0.999 0.391 0.124 0.683
#> 17 classification 2 1 0.999 0.391 0.124 0.683
#> 18 classification 2 1 0.999 0.391 0.124 0.683
#> 19 classification 2 1 0.999 0.391 0.124 0.683
#> # ... with 6 more variables: feature <chr>, feature_value <chr>,
#> # feature_weight <dbl>, feature_desc <chr>, data <chr>, prediction <list>

The output comes in a tibble format where feature and feature_weight are in-
cluded, but fortunately lime contains some functions to visualize these weights.
Figure 10.8 shows the result of using plot_features(), with each facet contain-
ing an observation-label pair and the bars showing the weight of the differ-
ent tokens. Bars in the positive direction (darker) indicate that the weights
support the prediction and bars in the negative direction (lighter) indicate
contradictions. This chart is great for finding the most prominent features in
an observation.

plot_features(explanation)

Figure 10.9 shows the weights by highlighting the words directly in the text.
This gives us a way to see if any local patterns contain a lot of weight.

plot_text_explanations(explanation)

The interactive_text_explanations() function can be used to launch an in-
teractive Shiny app where you can explore the model weights.

328 10 Convolutional neural networks
Case: 1
Label: 1
Probability: 1.00
Explanation Fit: 0.33

Case: 2
Label: 1
Probability: 0.97
Explanation Fit: 0.33

−0.� −0.1 0.0 0.1 0.� −0.� −0.1 0.0 0.1 0.�
prepared

of
�01�

to
publish
author
:orst

for
Crime
0arch
7rilogy
Aiming

7he
interesting

neZ
English

made
Zay

simple
and

practical
of

learning

:eight

Fe
at

ur
e

6upports Contradicts

FIGURE 10.8: Plot of most important features for a CNN model predicting
two observations.

FIGURE 10.9: Feature highlighting of words for two examples explained by
a CNN model.

One of the ways a deep learning model is hard to explain is that changes to a
part of the input can affect how the input is being used as a whole. Remember
that in bag-of-words models adding another token when predicting would just
add another unit in the weight; this is not always the case when using deep
learning models. The following example shows this effect. We have created
two very similar sentences in fake_sentences.

fake_sentences <- c(
"Fun and exciting dice game for the whole family",
"Fun and exciting dice game for the family"

)

10.5 Case study: explainability with LIME 329

explainer <- lime(
x = fake_sentences,
model = simple_cnn_model,
preprocess = text_to_matrix

)

explanation <- explain(
x = fake_sentences,
explainer = explainer,
n_labels = 1,
n_features = 12

)

Explanations based on these two sentences are fairly similar as we can see in
Figure 10.10. However, notice how the removal of the word “whole” affects
the weights of the other words in the examples, in some cases switching the
sign from supporting to contradicting.

plot_text_explanations(explanation)

FIGURE 10.10: Feature highlighting of words in two examples explained
by a CNN model.

It is these kinds of correlated patterns that can make deep learning models
hard to reason about and can deliver surprising results.

The LIME algorithm and lime R package are not limited to explaining
CNNs. This approach can be used with any of the models we have used
in this book, even the ones trained with parsnip.

330 10 Convolutional neural networks

10.6 Case study: hyperparameter search

So far in all our deep learning models, we have only used one configuration
of hyperparameters. Sometimes we want to try different hyperparameters out
and find what works best for our model like we did in Sections 6.9 and 7.11
using the tune package. We can use the tfruns4 package to run multiple
Keras models and compare the results.

This workflow will be a little different than what we have seen in the book so
far since we will have to create a .R file that contains the necessary modeling
steps and then use that file to fit multiple models. Such an example file named
cnn-spec.R used for the following models is available on GitHub5. The first thing
we need to do is specify what hyperparameters we want to vary. By convention,
this object is named FLAGS and it is created using the flags() function. For each
parameter we want to tune, we add a corresponding flag_*() function, which
can be flag_integer(), flag_boolean(), flag_numeric(), or flag_string() depending
on what we need to tune.

Be sure you are using the right type for each of these flags; Keras is quite
picky! If Keras is expecting an integer and gets a numeric then you will
get an error.

FLAGS <- flags(
flag_integer("kernel_size1", 5),
flag_integer("strides1", 1)

)

Notice how we are giving each flag a name and a possible value. The value
itself isn’t important, as it is not used once we start running multiple models,
but it needs to be the right type for the model we are using.

Next, we specify the Keras model we want to run.

4https://tensorflow.rstudio.com/tools/tfruns/overview/
5https://raw.githubusercontent.com/EmilHvitfeldt/smltar/master/cnn-spec.R

https://tensorflow.rstudio.com/tools/tfruns/overview/
https://tensorflow.rstudio.com/tools/tfruns/overview/

10.6 Case study: hyperparameter search 331

model <- keras_model_sequential() %>%
layer_embedding(input_dim = max_words + 1, output_dim = 16,

input_length = max_length) %>%
layer_conv_1d(filter = 32,

kernel_size = FLAGS$kernel_size1,
strides = FLAGS$strides1,
activation = "relu") %>%

layer_global_max_pooling_1d() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")

model %>% compile(
optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")

)

We target the hyperparameters we want to change by marking them as
FLAGS$name. So in this model, we are tuning different values of kernel_size and
strides, which are denoted by the kernel_size1 and strides1 flag, respectively.

Lastly, we must specify how the model is trained and evaluated.

history <- model %>%
fit(
x = kick_analysis,
y = state_analysis,
batch_size = 512,
epochs = 10,
validation_data = list(kick_assess, state_assess)

)

plot(history)

score <- model %>% evaluate(
kick_assess, state_assess

)

cat("Test accuracy:", score["accuracy"], "\n")

This is mostly the same as what we have seen before. When we are running
these different models, the scripts will be run in the environment they are

332 10 Convolutional neural networks

initialized from, so the models will have access to objects like prepped_training
and kickstarter_train, and we don’t have to create them inside the file.

Now that we have the file set up we need to specify the different hyperpa-
rameters we want to try. Three different values for the kernel size and two
different values for the stride length give us 3 * 2 = 6 different runs.

hyperparams <- list(
kernel_size1 = c(3, 5, 7),
strides1 = c(1, 2)

)

This is a small selection of hyperparameters and ranges. There is much
more room for experimentation.

Now we have everything we need for hyperparameter searching. Load up
tfruns and pass the name of the file we just created along with hyperparams to
the tuning_run() function.

library(tfruns)
runs <- tuning_run(

file = "cnn-spec.R",
runs_dir = "_tuning",
flags = hyperparams

)

runs_results <- as_tibble(ls_runs())

You don’t have to, but we have manually specified the runs_dir argument,
which is where the results of the tuning will be saved.

A summary of all the runs in the folder can be retrieved with ls_runs(); here
we use as_tibble() to get the results as a tibble.

runs_results

#> # A tibble: 6 x 24
#> run_dir eval_ metric_loss metric_accuracy metric_val_loss metric_val_accu~

10.6 Case study: hyperparameter search 333

#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 _tuning/20~ 1.00 0.0334 0.993 1.00 0.805
#> 2 _tuning/20~ 0.980 0.0361 0.992 0.980 0.806
#> 3 _tuning/20~ 0.983 0.051 0.987 0.983 0.804
#> 4 _tuning/20~ 0.962 0.0359 0.992 0.962 0.811
#> 5 _tuning/20~ 0.974 0.0315 0.994 0.974 0.811
#> 6 _tuning/20~ 0.965 0.0434 0.989 0.965 0.808
#> # ... with 18 more variables: flag_kernel_size1 <int>, flag_strides1 <int>,
#> # epochs <int>, epochs_completed <int>, metrics <chr>, model <chr>,
#> # loss_function <chr>, optimizer <chr>, learning_rate <dbl>, script <chr>,
#> # start <dttm>, end <dttm>, completed <lgl>, output <chr>, source_code <chr>,
#> # context <chr>, type <chr>, NA. <dbl>

We can condense the results down a little bit by only pulling out the flags we
are looking at and arranging them according to their performance.

best_runs <- runs_results %>%
select(metric_val_accuracy, flag_kernel_size1, flag_strides1) %>%
arrange(desc(metric_val_accuracy))

best_runs

#> # A tibble: 6 x 3
#> metric_val_accuracy flag_kernel_size1 flag_strides1
#> <dbl> <int> <int>
#> 1 0.811 5 1
#> 2 0.811 7 1
#> 3 0.808 3 1
#> 4 0.806 5 2
#> 5 0.805 7 2
#> 6 0.804 3 2

There isn’t much performance difference between the different choices but
using kernel size of 5 and stride length of 1 narrowly came out on top.

334 10 Convolutional neural networks

10.7 Cross-validation for evaluation

In Section 8.5, we saw how we can use resampling to create cross-validation
folds for evaluation. The Kickstarter data set we are using is big enough that
we have ample data for a single training set, validation set, and testing set that
all contain enough observations in them to give reliable performance metrics.
However, it is important to understand how to implement other resampling
strategies for situations when your data budget may not be as plentiful or
when you need to compute performance metrics that are more precise.

set.seed(345)
kick_folds <- vfold_cv(kickstarter_train, v = 5)
kick_folds

#> # 5-fold cross-validation
#> # A tibble: 5 x 2
#> splits id
#> <list> <chr>
#> 1 <split [161673/40419]> Fold1
#> 2 <split [161673/40419]> Fold2
#> 3 <split [161674/40418]> Fold3
#> 4 <split [161674/40418]> Fold4
#> 5 <split [161674/40418]> Fold5

Each of these folds has an analysis or training set and an assessment or val-
idation set. Instead of training our model one time and getting one measure
of performance, we can train our model v times and get v measures (five, in
this case), for more reliability.

Last time we saw how to create a custom function to handle preprocessing,
fitting, and evaluation. We will use the same approach of creating the function,
but this time use the model specification from Section 10.2.

fit_split <- function(split, prepped_rec) {
preprocessing
x_train <- bake(prepped_rec, new_data = analysis(split),

composition = "matrix")
x_val <- bake(prepped_rec, new_data = assessment(split),

composition = "matrix")

10.7 Cross-validation for evaluation 335

create model
y_train <- analysis(split) %>% pull(state)
y_val <- assessment(split) %>% pull(state)

mod <- keras_model_sequential() %>%
layer_embedding(input_dim = max_words + 1, output_dim = 16,

input_length = max_length) %>%
layer_conv_1d(filter = 32, kernel_size = 5, activation = "relu") %>%
layer_global_max_pooling_1d() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid") %>%
compile(

optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")

)

fit model
mod %>%
fit(

x_train,
y_train,
epochs = 10,
validation_data = list(x_val, y_val),
batch_size = 512,
verbose = FALSE

)

evaluate model
keras_predict(mod, x_val, y_val) %>%
metrics(state, .pred_class, .pred_1)

}

We can map() this function across all our cross-validation folds. This takes
longer than our previous models to train, since we are training for 10 epochs
each on 5 folds.

cv_fitted <- kick_folds %>%
mutate(validation = map(splits, fit_split, kick_prep))

cv_fitted

336 10 Convolutional neural networks

#> # 5-fold cross-validation
#> # A tibble: 5 x 3
#> splits id validation
#> <list> <chr> <list>
#> 1 <split [161673/40419]> Fold1 <tibble [4 x 3]>
#> 2 <split [161673/40419]> Fold2 <tibble [4 x 3]>
#> 3 <split [161674/40418]> Fold3 <tibble [4 x 3]>
#> 4 <split [161674/40418]> Fold4 <tibble [4 x 3]>
#> 5 <split [161674/40418]> Fold5 <tibble [4 x 3]>

Now we can use unnest() to find the metrics we computed.

cv_fitted %>%
unnest(validation)

#> # A tibble: 20 x 5
#> splits id .metric .estimator .estimate
#> <list> <chr> <chr> <chr> <dbl>
#> 1 <split [161673/40419]> Fold1 accuracy binary 0.824
#> 2 <split [161673/40419]> Fold1 kap binary 0.648
#> 3 <split [161673/40419]> Fold1 mn_log_loss binary 0.894
#> 4 <split [161673/40419]> Fold1 roc_auc binary 0.872
#> 5 <split [161673/40419]> Fold2 accuracy binary 0.826
#> 6 <split [161673/40419]> Fold2 kap binary 0.652
#> 7 <split [161673/40419]> Fold2 mn_log_loss binary 0.867
#> 8 <split [161673/40419]> Fold2 roc_auc binary 0.874
#> 9 <split [161674/40418]> Fold3 accuracy binary 0.827
#> 10 <split [161674/40418]> Fold3 kap binary 0.653
#> 11 <split [161674/40418]> Fold3 mn_log_loss binary 0.886
#> 12 <split [161674/40418]> Fold3 roc_auc binary 0.873
#> 13 <split [161674/40418]> Fold4 accuracy binary 0.825
#> 14 <split [161674/40418]> Fold4 kap binary 0.649
#> 15 <split [161674/40418]> Fold4 mn_log_loss binary 0.903
#> 16 <split [161674/40418]> Fold4 roc_auc binary 0.873
#> 17 <split [161674/40418]> Fold5 accuracy binary 0.828
#> 18 <split [161674/40418]> Fold5 kap binary 0.654
#> 19 <split [161674/40418]> Fold5 mn_log_loss binary 0.886
#> 20 <split [161674/40418]> Fold5 roc_auc binary 0.875

We can summarize the unnested results to match what we normally would get
from collect_metrics()

10.8 The full game: CNN 337

cv_fitted %>%
unnest(validation) %>%
group_by(.metric) %>%
summarize(
mean = mean(.estimate),
n = n(),
std_err = sd(.estimate) / sqrt(n)

)

#> # A tibble: 4 x 4
#> .metric mean n std_err
#> <chr> <dbl> <int> <dbl>
#> 1 accuracy 0.826 5 0.000621
#> 2 kap 0.651 5 0.00118
#> 3 mn_log_loss 0.887 5 0.00589
#> 4 roc_auc 0.873 5 0.000528

The metrics have little variance just like they did last time, which is reassuring;
our model is robust with respect to the evaluation metrics.

10.8 The full game: CNN

We’ve come a long way in this chapter, and looked at the many different mod-
ifications to the simple CNN model we started with. Most of the alterations
didn’t add much so this final model is not going to be much different than
what we have seen so far.

There are an incredible number of ways to change a deep learning net-
work architecture, but in most realistic situations, the benefit in model
performance from such changes is modest.

10.8.1 Preprocess the data

For this final model, we are not going to use our separate validation data
again, so we only need to preprocess the training data.

338 10 Convolutional neural networks

max_words <- 2e4
max_length <- 30

kick_rec <- recipe(~ blurb, data = kickstarter_train) %>%
step_tokenize(blurb) %>%
step_tokenfilter(blurb, max_tokens = max_words) %>%
step_sequence_onehot(blurb, sequence_length = max_length)

kick_prep <- prep(kick_rec)
kick_matrix <- bake(kick_prep, new_data = NULL, composition = "matrix")

dim(kick_matrix)

#> [1] 202092 30

10.8.2 Specify the model

Instead of using specific validation data that we can then compute perfor-
mance metrics for, let’s go back to specifying validation_split = 0.1 and let
the Keras model choose the validation set.

final_mod <- keras_model_sequential() %>%
layer_embedding(input_dim = max_words + 1, output_dim = 16,

input_length = max_length) %>%
layer_conv_1d(filter = 32, kernel_size = 7,

strides = 1, activation = "relu") %>%
layer_global_max_pooling_1d() %>%
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")

final_mod %>%
compile(
optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")

)

final_history <- final_mod %>%
fit(
kick_matrix,
kickstarter_train$state,

10.8 The full game: CNN 339

epochs = 10,
validation_split = 0.1,
batch_size = 512,
verbose = FALSE

)

final_history

#>
#> Final epoch (plot to see history):
#> loss: 0.03273
#> accuracy: 0.9929
#> val_loss: 0.7665
#> val_accuracy: 0.8521

This looks promising! Let’s finally turn to the testing set, for the first time
during this chapter, to evaluate this last model on data that has never been
touched as part of the fitting process.

kick_matrix_test <- bake(kick_prep, new_data = kickstarter_test,
composition = "matrix")

final_res <- keras_predict(final_mod, kick_matrix_test, kickstarter_test$state)
final_res %>% metrics(state, .pred_class, .pred_1)

#> # A tibble: 4 x 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 accuracy binary 0.849
#> 2 kap binary 0.697
#> 3 mn_log_loss binary 0.794
#> 4 roc_auc binary 0.893

This is our best-performing model in this chapter on CNN models, although
not by much. We can again create an ROC curve, this time using the test
data in Figure 10.11.

final_res %>%
roc_curve(state, .pred_1) %>%
autoplot()

340 10 Convolutional neural networks

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty

FIGURE 10.11: ROC curve for final CNN model predictions on testing set
of Kickstarter campaign success

We have been able to incrementally improve our model by adding to the
structure and making good choices about preprocessing. We can visualize this
final CNN model’s performance using a confusion matrix as well, in Figure
10.12.

10.9 Summary 341

final_res %>%
conf_mat(state, .pred_class) %>%
autoplot(type = "heatmap")

27396

4631

5362

299760

1

1 0
Truth

P
re
di
ct
io
n

FIGURE 10.12: Confusion matrix for final CNN model predictions on test-
ing set of Kickstarter campaign success

Notice that this final model performs better then any of the models we have
tried so far in this chapter, Chapter 8, and Chapter 9.

For this particular data set of short text blurbs, a CNN model able to learn
local features performed the best, better than either a densely connected
neural network or an LSTM.

10.9 Summary

CNNs are a type of neural network that can learn local spatial patterns. They
essentially perform feature extraction, which can then be used efficiently in

342 10 Convolutional neural networks

later layers of a network. Their simplicity and fast running time, compared to
models like LSTMs, makes them excellent candidates for supervised models
for text.

10.9.1 In this chapter, you learned:

• how to preprocess text data for CNN models

• about CNN network architectures

• how CNN layers can be stacked to extract patterns of varying detail

• how byte pair encoding can be used to tokenize for finer detail

• how to do hyperparameter search in Keras with tfruns

• how to evaluate CNN models for text

Part IV

Conclusion

http://www.taylorandfrancis.com

Text models in the real world

Models affect real people in real ways. As the school year of 2020 began with
many schools in the United States operating online only because of the novel
coronavirus pandemic, a parent of a junior high student reported6 that her
son was deeply upset and filled with doubt because of the way the algorithm
of an ed tech company automatically scored his text answers. The parent and
child discovered (Chin 2020) how to “game” the ed tech system’s scoring.

Algorithm update. He cracked it: Two full sentences, followed by
a word salad of all possibly applicable keywords. 100% on every
assignment. Students on @EdgenuityInc, there’s your ticket. He
went from an F to an A+ without learning a thing.

We can’t know the details of the proprietary modeling and/or heuristics that
make up the ed tech system’s scoring algorithm, but there is enough detail in
this student’s experience to draw some conclusions. We surmise that this is a
count-based method or model, perhaps a linear one but not necessarily so. The
success of “word salad” submissions indicates that the model or heuristic being
applied has not learned that complex, or even correct, language is important
for the score.

What could a team building this kind of score do to avoid these problems?
It seems like “word salad” type submissions were not included in the training
data as negative examples (i.e., with low scores), indicating that the training
data was biased; it did not reflect the full spectrum of submissions that the
system sees in real life. The system (code and data) is not auditable for teach-
ers or students, and the ed tech company does not directly have a process in
place to handle appeals or mistakes in the score itself.

The particular ed tech company in this example does claim that these scores
are used only to provide scoring guidance to teachers and that teachers can
either accept or overrule such scores, but it is not clear how often teachers

6https://twitter.com/DanaJSimmons/status/1300639757165191170

345

https://twitter.com/DanaJSimmons/status/1300639757165191170
https://twitter.com/DanaJSimmons/status/1300639757165191170

346 10 Text models in the real world

overrule scores. This highlights the foundational question about whether such
a model or system should even be built to start with; with its current perfor-
mance, this system is failing at what educators and students understand its
goals to be, and is doing harm to its users.

This situation is more urgent and important than only a single example from
the pandemic-stressed United States educational system, because:

• these types of harms exacerbate existing inequalities, and

• these systems are becoming more and more widely used.

Ramineni andWilliamson (2018) report how GRE essays by African-American
students receive lower scores from automatic grading algorithms than from
expert human graders, and explore statistical differences in the two grading
approaches. This is a stark reminder that machine learning systems learn pat-
terns from training data and amplify those patterns. Feathers (2019) reports
that the kind of automatic essay grading described here is used in at least 21
states, and essay grading is not the only kind of predictive text model that
has real impact on real individuals’ lives7.

As you finish this book and take away ideas on how to transform language to
features for modeling and how to build reliable text models, we want to end
by reflecting on how our work as data practitioners plays out when applied.
Language data is richly human, and what you and we do with it matters.

7For more, see this discussion from Rachel Thomas: https://youtu.be/bqCEUQq0z4o

https://youtu.be/

A
Regular expressions

Some people, when confronted with a problem, think: “I know,
I’ll use regular expressions.” Now they have two problems.
— Jamie Zawinski1

This section will give a brief overview on how to write and use a regular
expression), often abbreviated regex. Regular expressions are a way to specify
or search for patterns of strings using a sequence of characters. By combining
a selection of simple patterns, we can capture quite complicated strings.

Many functions in R take advantage of regular expressions. Some examples
from base R include grep, grepl, regexpr, gregexpr, sub, gsub, and strsplit, as
well as ls and list.files. The stringr package (Wickham 2019) uses regular
expressions extensively; the regular expressions are passed as the pattern =
argument. Regular expressions can be used to detect, locate, or extract parts
of a string.

A.1 Literal characters

The most basic regular expression consists of only a single character. Here let’s
detect if each of the following strings in the character vector animals contains
the letter “j.”

1https://en.wikiquote.org/wiki/Jamie_Zawinski

DOI: 10.1201/9781003093459-A 347

https://en.wikiquote.org/wiki/Jamie_Zawinski
https://en.wikiquote.org/wiki/Jamie_Zawinski
https://doi.org/10.1201/9781003093459-A

348 A Regular expressions

library(stringr)

animals <- c("jaguar", "jay", "bat")
str_detect(animals, "j")

#> [1] TRUE TRUE FALSE

We are also able to extract the match with str_extract. This may not seem
too useful right now, but it becomes very helpful once we use more advanced
regular expressions.

str_extract(animals, "j")

#> [1] "j" "j" NA

Lastly we are able to locate the position of a match using str_locate.

str_locate(animals, "j")

#> start end
#> [1,] 1 1
#> [2,] 1 1
#> [3,] NA NA

The functions str_detect, str_extract, and str_locate are some of the most
simple and powerful main functions in stringr, but the stringr pack-
age includes many more functions. To see the remaining functions, run
help(package = "stringr") to open the documentation.

We can also match multiple characters in a row.

A.2 Full stop, the wildcard 349

animals <- c("jaguar", "jay", "bat")
str_detect(animals, "jag")

#> [1] TRUE FALSE FALSE

Notice how these characters are case sensitive.

wows <- c("wow", "WoW", "WOW")
str_detect(wows, "wow")

#> [1] TRUE FALSE FALSE

A.1.1 Meta characters

There are 14 meta characters that carry special meaning inside regular ex-
pressions. We need to “escape” them with a backslash if we want to match
the literal character (and backslashes need to be doubled in R). Think of
“escaping” as stripping the character of its special meaning.

The plus symbol + is one of the special meta characters for regular expressions.

math <- c("1 + 2", "14 + 5", "3 - 5")
str_detect(math, "\\+")

#> [1] TRUE TRUE FALSE

If we tried to use the plus sign without escaping it, like "+", we would get an
error and this line of code would not run.

The complete list of meta characters is displayed in Table A.1 (Levithan 2012).

A.2 Full stop, the wildcard

Let’s start with the full stop/period/dot, which acts as a “wildcard.” This
means that this character will match anything in place other then a newline
character.

350 A Regular expressions

TABLE A.1: All meta characters
Description Character
opening square bracket [
closing square bracket]
backslash \\
caret ^
dollar sign $
period/dot .
vertical bar |
question mark ?
asterisk *
plus sign +
opening curly brackets {
closing curly brackets }
opening parentheses (
closing parentheses)

strings <- c("cat", "cut", "cue")
str_extract(strings, "c.")

#> [1] "ca" "cu" "cu"

str_extract(strings, "c.t")

#> [1] "cat" "cut" NA

A.3 Character classes

So far we have only been able to match either exact characters or wildcards.
Character classes (also called character sets) let us do more than that. A
character class allows us to match a character specified inside the class. A
character class is constructed with square brackets. The character class [ac]
will match either an “a” or a “c.”

A.3 Character classes 351

strings <- c("a", "b", "c")
str_detect(strings, "[ac]")

#> [1] TRUE FALSE TRUE

Spaces inside character classes are meaningful as they are interpreted as
literal characters. Thus the character class "[ac]" will match the letter “a”
and “c”, while the character class "[a c]" will match the letters “a” and
“c” but also a space.

We can use a hyphen character to define a range of characters. Thus [1-5] is
the same as [12345].

numbers <- c("1", "2", "3", "4", "5", "6", "7", "8", "9")
str_detect(numbers, "[2-7]")

#> [1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE

sentence <- "This is a long sentence with 2 numbers with 1 digits."
str_locate_all(sentence, "[1-2a-b]")

#> [[1]]
#> start end
#> [1,] 9 9
#> [2,] 30 30
#> [3,] 35 35
#> [4,] 45 45

We can also negate characters in a class with a caret ^. Placing a caret im-
mediately inside the opening square bracket will make the regular expression
match anything not inside the class. Thus the regular expression [^ac] will
match anything that isn’t the letter “a” or “c.”

352 A Regular expressions

TABLE A.2: All character classes
Description Class
Digits; [0-9] [:digit:] or \\\\d
Alphabetic characters, uppercase and lowercase [A-z] [:alpha:]
Alphanumeric characters, letters, and digits [A-z0-9] [:alnum:]
Graphical characters [[:alnum:][:punct:]] [:graph:]
Printable characters [[:alnum:][:punct:][:space:]] [:print:]
Lowercase letters [a-z] [:lower:]
Uppercase letters [A-Z] [:upper:]
Control characters such as newline, carriage return, etc. [:cntrl:]
Punctuation characters: !”#$%&’()*+,-./:;<=>? [:punct:]
@[]^_‘{|}~
Space and tab [:blank:]
Space, tab, vertical tab, newline, form feed, carriage return [:space:] or \\\\s
Hexadecimal digits [0-9A-Fa-f] [:xdigit:]
Not space [^[:space:]] \\\\S
Word characters: letters, digits, and underscores [A-z0-9_] \\\\w
Non-word characters [^A-z0-9_] \\\\W
Non-digits [^0-9] \\\\D

strings <- c("a", "b", "c")
str_detect(strings, "[^ac]")

#> [1] FALSE TRUE FALSE

A.3.1 Shorthand character classes

Certain character classes are so commonly used that they have been predefined
with names. A couple of these character classes have even shorter shorthands.
The class [:digit:] denotes all the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 but it can
also be described by \\d. Table A.2 presents these useful predefined character
classes.

Notice that these shorthands are locale specific. This means that the Danish
character ø will be picked up in class [:lower:] but not in the class [a-z] as
the character isn’t located between a and z.

A.4 Quantifiers 353

TABLE A.3: Regular expression quantifiers
Regex Matches
? zero or one times
* zero or more times
+ one or more times
{n} exactly n times
{n,} at least n times
{n,m} between n and m times

A.4 Quantifiers

We can specify how many times we expect something to occur using quanti-
fiers. If we want to find a digit with four numerals, we don’t have to write
[:digit:][:digit:][:digit:][:digit:]. Table A.3 shows how to specify repeti-
tions. Notice that ? is shorthand for {0,1}, * is shorthand for {0,}, and + is
shorthand for {1,} (Levithan 2012).

We can detect both color and colour by placing a quantifier after the “u” that
detects 0 or 1 times used.

col <- c("colour", "color", "farver")
str_detect(col, "colou?r")

#> [1] TRUE TRUE FALSE

And we can extract four-digit numbers using {4}.

sentences <- c("The year was 1776.", "Alexander Hamilton died at 47.")
str_extract(sentences, "\\d{4}")

#> [1] "1776" NA

Sometimes we want the repetition to happen over multiple characters. This
can be achieved by wrapping what we want repeated in parentheses. In the
following example, we want to match all the instances of “NA” in the string.
We put "NA " inside a set of parentheses and + after to make sure we match at
least once.

354 A Regular expressions

TABLE A.4: Lazy quantifiers
regex matches
?? zero or one times, prefers 0
*? zero or more times, match as few times as possible
+? one or more times, match as few times as possible
{n}? exactly n times, match as few times as possible
{n,}? at least n times, match as few times as possible
{n,m}? between n and m times, match as few times as possible but at

least n

batman <- "NA NA NA NA NA NA NA NA NA NA NA NA NA NA BATMAN!!!"
str_extract(batman, "(NA)+")

#> [1] "NA NA NA NA NA NA NA NA NA NA NA NA NA NA "

However, notice that this also matches the last space, which we don’t want.
We can fix this by matching zero or more “NA” followed by exactly 1 “NA.”

batman <- "NA NA NA NA NA NA NA NA NA NA NA NA NA NA BATMAN!!!"
str_extract(batman, "(NA)*(NA){1}")

#> [1] "NA NA NA NA NA NA NA NA NA NA NA NA NA NA"

By default these matches are “greedy,” meaning that they will try to match
the longest string possible. We can instead make them “lazy” by placing a ?
after, as shown in Table A.4. This will make the regular expressions try to
match the shortest string possible instead of the longest.

Comparing greedy and lazy matches gives us 3 and 7 “NA”’s, respectively.

batman <- "NA NA NA NA NA NA NA NA NA NA NA NA NA NA BATMAN!!!"
str_extract(batman, "(NA){3,7}")

#> [1] "NA NA NA NA NA NA NA "

str_extract(batman, "(NA){3,7}?")

#> [1] "NA NA NA "

A.6 Anchors 355

A.5 Anchors

The meta characters ^ and $ have special meaning in regular expressions. They
force the engine to check the beginning and end of the string, respectively,
hence the name anchor. A mnemonic device to remember this is “First you
get the power(^) and then you get the money(\$).”

seasons <- c("The summer is hot this year",
"The spring is a lovely time",
"Winter is my favorite time of the year",
"Fall is a time of peace")

str_detect(seasons, "^The")

#> [1] TRUE TRUE FALSE FALSE

str_detect(seasons, "year$")

#> [1] TRUE FALSE TRUE FALSE

We can also combine the two to match a string completely.

folder_names <- c("analysis", "data-raw", "data", "R")
str_detect(folder_names, "^data$")

#> [1] FALSE FALSE TRUE FALSE

A.6 Additional resources

This appendix covered some of the basics of getting started with (or refreshed
about) regular expressions. If you want to learn more:

356 A Regular expressions

• RStudio maintains an excellent collection of cheat sheets2, some of which
are related to regular expressions.

• www.rexegg.com has many pages of valuable information, including this
“quick start” page with helpful tables3.

• https://www.regular-expressions.info/ is another great general regular
expression site.

• The strings chapter4 in R for Data Science (Wickham and Grolemund
2017) delves into examples written in R.

• Lastly if you want to go down to the metal, check out Mastering Regular
Expressions5.

2https://www.rstudio.com/resources/cheatsheets/
3https://www.rexegg.com/regex-quickstart.html
4https://r4ds.had.co.nz/strings.html
5http://shop.oreilly.com/product/9780596528126.do

http://www.rexegg.com
https://www.regular-expressions.info
https://www.rstudio.com/resources/cheatsheets/
https://www.rstudio.com/resources/cheatsheets/
https://www.rexegg.com/regex-quickstart.html
https://www.rexegg.com/regex-quickstart.html
https://r4ds.had.co.nz/strings.html
https://r4ds.had.co.nz/strings.html
http://shop.oreilly.com/product/9780596528126.do
http://shop.oreilly.com/product/9780596528126.do

B
Data

There are four main text data sets we use throughout this book to demonstrate
building features for machine learning and training models. These data sets
include texts of different languages, different lengths (short to long), and from
very recent time periods to a few hundred years ago.

These text data sets are not overly difficult to read into memory and prepare
for analysis; by contrast, in many text modeling projects, the data itself may
be in any of a number of formats from an API to literal paper. Practitioners
may need to use skills such as web scraping or connecting to databases to even
begin their work.

B.1 Hans Christian Andersen fairy tales

The hcandersenr (Hvitfeldt 2019a) package includes the text of the 157
known fairy tales by the Danish author Hans Christian Andersen (1805–1875).
There are five different languages available, with:

• 156 fairy tales in English,

• 154 in Spanish,

• 150 in German,

• 138 in Danish, and

• 58 in French.

The package contains a data set for each language with the naming convention
hcandersen_**, where ** is a country code. Each data set comes as a dataframe
with two columns, text and book, where the book variable has the text divided
into strings of up to 80 characters.

DOI: 10.1201/9781003093459-B 357

https://doi.org/10.1201/9781003093459-B

358 B Data

The package also makes available a data set called EK, which includes informa-
tion about the publication date, language of origin, and names in the different
languages.

This data set is used in Chapters 2, 3, and 4.

B.2 Opinions of the Supreme Court of the United States

The scotus (Hvitfeldt 2019b) package contains a sample of the Supreme Court
of the United States’ opinions. The scotus_sample dataframe includes one opin-
ion per row along with the year, case name, docket number, and a unique ID
number.

The text has had minimal preprocessing and includes header information in
the text field, such as shown here:

#> No. 97-1992
#> VAUGHN L. MURPHY, Petitioner v. UNITED PARCEL SERVICE, INC.
#> ON WRIT OF CERTIORARI TO THE UNITED STATES COURT OF APPEALS FOR THE TENTH
#> CIRCUIT
#> [June 22, 1999]
#> Justice O'Connor delivered the opinion of the Court.
#> Respondent United Parcel Service, Inc. (UPS), dismissed petitioner Vaughn
#> L. Murphy from his job as a UPS mechanic because of his high blood pressure.
#> Petitioner filed suit under Title I of the Americans with Disabilities Act of
#> 1990 (ADA or Act), 104 Stat. 328, 42 U.S.C. § 12101 et seq., in Federal District
#> Court. The District Court granted summary judgment to respondent, and the Court
#> of Appeals for the Tenth Circuit affirmed. We must decide whether the Court
#> of Appeals correctly considered petitioner in his medicated state when it held
#> that petitioner's impairment does not "substantially limi[t]" one or more of
#> his major life activities and whether it correctly determined that petitioner
#> is not "regarded as disabled." See §12102(2). In light of our decision in Sutton
#> v. United Air Lines, Inc., ante, p. ____, we conclude that the Court of Appeals'
#> resolution of both issues was correct.

This data set is used in Chapters 4, 6, and 9.

B.4 Consumer Financial Protection Bureau (CFPB) complaints 359

B.3 Consumer Financial Protection Bureau (CFPB)
complaints

Consumers can submit complaints to the United States Consumer Financial
Protection Bureau (CFPB)1 about financial products and services; the CFPB
sends the complaints to companies for response.

The data set of consumer complaints used in this book has been filtered to
117,214 complaints submitted to the CFPB after January 1, 2019 that in-
clude a consumer complaint narrative (i.e., some submitted text). Each ob-
servation has a complaint_id, various categorical variables, and a text column
consumer_complaint_narrative containing the written complaints, for a total of
18 columns.

This data set is used in Chapters 5 and 7.

B.4 Kickstarter campaign blurbs

The crowdfunding site Kickstarter2 provides people a platform to gather
pledges to “back” their projects, such as films, music, comics, journalism,
and more. When setting up a campaign, project owners submit a description
or “blurb” for their campaign to tell potential backers what it is about. The
data set of campaign blurbs used in this book was scraped from Kickstarter3;
the blurbs used here for modeling are from 2009-04-21 to 2016-03-14, with a
total of 269,790 campaigns in the sample. For each campaign, we know its
state, whether it was successful in meeting its crowdfunding goal or not.

This data set is used in Chapters 8, 9, and 10.

1https://www.consumerfinance.gov/data-research/consumer-complaints/
2https://www.kickstarter.com/
3https://webrobots.io/kickstarter-datasets/

https://www.consumerfinance.gov/data-research/consumer-complaints/
https://www.consumerfinance.gov/data-research/consumer-complaints/
https://www.kickstarter.com/
https://www.kickstarter.com/
https://webrobots.io/kickstarter-datasets/
https://webrobots.io/kickstarter-datasets/

http://www.taylorandfrancis.com

C
Baseline linear classifier

In Chapters 8, 9, and 10 we demonstrate in detail how to train and eval-
uate different kinds of deep learning classifiers for the Kickstarter data set
of campaign blurbs and whether each campaign was successful or not. This
appendix shows a baseline linear classification model for this data set using
machine learning techniques like those used in Chapters 6 and 7. It serves
the purpose of comparison with the deep learning techniques, and also as a
succinct summary of a basic supervised machine learning analysis for text.

This machine learning analysis is presented with only minimal narrative; see
Chapters 6 and 7 for more explanation and details.

C.1 Read in the data

library(tidyverse)
kickstarter <- read_csv("data/kickstarter.csv.gz") %>%

mutate(state = as.factor(state))

kickstarter

#> # A tibble: 269,790 x 3
#> blurb state created_at
#> <chr> <fct> <date>
#> 1 Exploring paint and its place in a digital world. 0 2015-03-17
#> 2 Mike Fassio wants a side-by-side photo of me and Hazel eati~ 0 2014-07-11
#> 3 I need your help to get a nice graphics tablet and Photosho~ 0 2014-07-30
#> 4 I want to create a Nature Photograph Series of photos of wi~ 0 2015-05-08
#> 5 I want to bring colour to the world in my own artistic skil~ 0 2015-02-01
#> 6 We start from some lovely pictures made by us and we decide~ 0 2015-11-18
#> 7 Help me raise money to get a drawing tablet 0 2015-04-03
#> 8 I would like to share my art with the world and to do that ~ 0 2014-10-15

DOI: 10.1201/9781003093459-C 361

https://doi.org/10.1201/9781003093459-C

362 C Baseline linear classifier

#> 9 Post Card don’t set out to simply decorate stories. Our goa~ 0 2015-06-25
#> 10 My name is Siu Lon Liu and I am an illustrator seeking fund~ 0 2014-07-19
#> # ... with 269,780 more rows

C.2 Split into test/train and create resampling folds

library(tidymodels)
set.seed(1234)
kickstarter_split <- kickstarter %>%

filter(nchar(blurb) >= 15) %>%
initial_split()

kickstarter_train <- training(kickstarter_split)
kickstarter_test <- testing(kickstarter_split)

set.seed(123)
kickstarter_folds <- vfold_cv(kickstarter_train)
kickstarter_folds

#> # 10-fold cross-validation
#> # A tibble: 10 x 2
#> splits id
#> <list> <chr>
#> 1 <split [181882/20210]> Fold01
#> 2 <split [181882/20210]> Fold02
#> 3 <split [181883/20209]> Fold03
#> 4 <split [181883/20209]> Fold04
#> 5 <split [181883/20209]> Fold05
#> 6 <split [181883/20209]> Fold06
#> 7 <split [181883/20209]> Fold07
#> 8 <split [181883/20209]> Fold08
#> 9 <split [181883/20209]> Fold09
#> 10 <split [181883/20209]> Fold10

C.4 Recipe for data preprocessing 363

C.3 Recipe for data preprocessing

library(textrecipes)

kickstarter_rec <- recipe(state ~ blurb, data = kickstarter_train) %>%
step_tokenize(blurb) %>%
step_tokenfilter(blurb, max_tokens = 5e3) %>%
step_tfidf(blurb)

kickstarter_rec

#> Data Recipe
#>
#> Inputs:
#>
#> role #variables
#> outcome 1
#> predictor 1
#>
#> Operations:
#>
#> Tokenization for blurb
#> Text filtering for blurb
#> Term frequency-inverse document frequency with blurb

C.4 Lasso regularized classification model

lasso_spec <- logistic_reg(penalty = tune(), mixture = 1) %>%
set_mode("classification") %>%
set_engine("glmnet")

lasso_spec

364 C Baseline linear classifier

#> Logistic Regression Model Specification (classification)
#>
#> Main Arguments:
#> penalty = tune()
#> mixture = 1
#>
#> Computational engine: glmnet

C.5 A model workflow

We need a few more components before we can tune our workflow. Let’s use
a sparse data encoding (Section 7.5).

library(hardhat)
sparse_bp <- default_recipe_blueprint(composition = "dgCMatrix")

Let’s create a grid of possible regularization penalties to try.

lambda_grid <- grid_regular(penalty(range = c(-5, 0)), levels = 20)
lambda_grid

#> # A tibble: 20 x 1
#> penalty
#> <dbl>
#> 1 0.00001
#> 2 0.0000183
#> 3 0.0000336
#> 4 0.0000616
#> 5 0.000113
#> 6 0.000207
#> 7 0.000379
#> 8 0.000695
#> 9 0.00127
#> 10 0.00234
#> 11 0.00428
#> 12 0.00785
#> 13 0.0144
#> 14 0.0264

C.5 A model workflow 365

#> 15 0.0483
#> 16 0.0886
#> 17 0.162
#> 18 0.298
#> 19 0.546
#> 20 1

Now these can be combined in a tuneable workflow().

kickstarter_wf <- workflow() %>%
add_recipe(kickstarter_rec, blueprint = sparse_bp) %>%
add_model(lasso_spec)

kickstarter_wf

#> == Workflow ==
#> Preprocessor: Recipe
#> Model: logistic_reg()
#>
#> -- Preprocessor --
#> 3 Recipe Steps
#>
#> * step_tokenize()
#> * step_tokenfilter()
#> * step_tfidf()
#>
#> -- Model ---
#> Logistic Regression Model Specification (classification)
#>
#> Main Arguments:
#> penalty = tune()
#> mixture = 1
#>
#> Computational engine: glmnet

366 C Baseline linear classifier

C.6 Tune the workflow

set.seed(2020)
lasso_rs <- tune_grid(
kickstarter_wf,
kickstarter_folds,
grid = lambda_grid

)

lasso_rs

#> # Tuning results
#> # 10-fold cross-validation
#> # A tibble: 10 x 4
#> splits id .metrics .notes
#> <list> <chr> <list> <list>
#> 1 <split [181882/20210]> Fold01 <tibble [40 x 5]> <tibble [0 x 1]>
#> 2 <split [181882/20210]> Fold02 <tibble [40 x 5]> <tibble [0 x 1]>
#> 3 <split [181883/20209]> Fold03 <tibble [40 x 5]> <tibble [0 x 1]>
#> 4 <split [181883/20209]> Fold04 <tibble [40 x 5]> <tibble [0 x 1]>
#> 5 <split [181883/20209]> Fold05 <tibble [40 x 5]> <tibble [0 x 1]>
#> 6 <split [181883/20209]> Fold06 <tibble [40 x 5]> <tibble [0 x 1]>
#> 7 <split [181883/20209]> Fold07 <tibble [40 x 5]> <tibble [0 x 1]>
#> 8 <split [181883/20209]> Fold08 <tibble [40 x 5]> <tibble [0 x 1]>
#> 9 <split [181883/20209]> Fold09 <tibble [40 x 5]> <tibble [0 x 1]>
#> 10 <split [181883/20209]> Fold10 <tibble [40 x 5]> <tibble [0 x 1]>

What are the best models?

show_best(lasso_rs, "roc_auc")

#> # A tibble: 5 x 7
#> penalty .metric .estimator mean n std_err .config
#> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
#> 1 0.000695 roc_auc binary 0.753 10 0.000824 Preprocessor1_Model08
#> 2 0.000379 roc_auc binary 0.753 10 0.000842 Preprocessor1_Model07
#> 3 0.000207 roc_auc binary 0.752 10 0.000849 Preprocessor1_Model06
#> 4 0.000113 roc_auc binary 0.752 10 0.000858 Preprocessor1_Model05
#> 5 0.0000616 roc_auc binary 0.752 10 0.000865 Preprocessor1_Model04

C.6 Tune the workflow 367

show_best(lasso_rs, "accuracy")

#> # A tibble: 5 x 7
#> penalty .metric .estimator mean n std_err .config
#> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
#> 1 0.000379 accuracy binary 0.686 10 0.00111 Preprocessor1_Model07
#> 2 0.000695 accuracy binary 0.686 10 0.00112 Preprocessor1_Model08
#> 3 0.000207 accuracy binary 0.685 10 0.00102 Preprocessor1_Model06
#> 4 0.000113 accuracy binary 0.685 10 0.000926 Preprocessor1_Model05
#> 5 0.0000616 accuracy binary 0.685 10 0.000947 Preprocessor1_Model04

autoplot(lasso_rs)

roc_auc

accuracy

1e-04 1e-02 1e+00

0.55

0.60

0.65

0.50

0.55

0.60

0.65

0.70

0.75

Amount of Regularization

http://www.taylorandfrancis.com

References

Allaire, J., and Chollet, F. 2021. keras: R Interface to ‘Keras’. R package
version 2.4.0. https://CRAN.R-project.org/package=keras.

Appleby, A. 2008. “MurmurHash.” https://sites.google.com/site/murmurhash.
Arnold, T. 2017. “A Tidy Data Model for Natural Language Processing using

cleanNLP.” The R Journal 9 (2): 248–267. https://doi.org/10.32614/RJ-
2017-035.

Bates, D., and Maechler, M. 2021. Matrix: Sparse and Dense Matrix Classes
and Methods. R package version 1.3-2. https://CRAN.R-project.org/package=
Matrix.

Bender, E. M. 2011. “On Achieving and Evaluating Language-Independence
in NLP.” Linguistic Issues in Language Technology 6 (3): 1–26.

Bender, E. M. 2013. “Linguistic Fundamentals for Natural Language Process-
ing: 100 Essentials from Morphology and Syntax.” Synthesis Lectures on
Human Language Technologies 6 (3). Morgan & Claypool Publishers: 1–
184.

Bender, E. M. 2019. “The #BenderRule: On Naming the Languages We Study
andWhy It Matters.” The Gradient. https://thegradient.pub/the-benderrule-
on-naming-the-languages-we-study-and-why-it-matters/.

Bender, E. M., Gebru, T., McMillan-Major, A., and Shmitchell, S. 2021. “On
the Dangers of Stochastic Parrots: Can Language Models Be Too Big?”
In Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency, 610–623. FAccT ’21. New York, NY: Association for
Computing Machinery. https://doi.org/10.1145/3442188.3445922.

Benoit, K., and Matsuo, A. 2020. spacyr: Wrapper to the ‘spaCy’ ‘NLP’ Li-
brary. R package version 1.2.1. https://CRAN.R-project.org/package=spacyr.

Benoit, K., Muhr, D., and Watanabe, K. 2021. stopwords: Multilingual Stop-
word Lists. R package version 2.2. https://CRAN.R-project.org/package=stop
words.

Benoit, K., Watanabe, K., Wang, H., Nulty, P., Obeng, A., Müller, S., and
Matsuo, A. 2018. “quanteda: An R Package for the Quantitative Analysis
of Textual Data.” Journal of Open Source Software 3 (30): 774. https:
//doi.org/10.21105/joss.00774.

Boehmke, B., and Greenwell, B. M. 2019. Hands-on Machine Learning with
R. Boca Raton: CRC Press.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. 2017. “Enriching Word
Vectors with Subword Information.” Transactions of the Association for

369

https://CRAN.R-project.org
https://CRAN.R-project.org
https://sites.google.com
https://sites.google.com
https://doi.org/10.32614/RJ-2017-035
https://CRAN.R-project.org
https://thegradient.pub
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://CRAN.R-project.org
https://CRAN.R-project.or
https://CRAN.R-project.org
https://doi.org/10.21105/joss.00774
https://doi.org/10.21105/joss.00774
https://CRAN.R-project.org
https://thegradient.pub
https://CRAN.R-project.org
https://doi.org/10.32614/RJ-2017-035

370 References

Computational Linguistics 5: 135–146. https://www.aclweb.org/anthology/Q17-
1010.

Bolukbasi, T., Chang, K.-W., Zou, J. Y., Saligrama, V., and Kalai, A. T. 2016.
“Quantifying and Reducing Stereotypes in Word Embeddings.” CoRR
abs/1606.06121. http://arxiv.org/abs/1606.06121.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. 1992. “A Training Algorithm for
Optimal Margin Classifiers.” In Proceedings of the Fifth Annual Workshop
on Computational Learning Theory, 144–152. COLT ’92. New York, NY:
Association for Computing Machinery. https://doi.org/10.1145/130385.130
401.

Bouchet-Valat, M. 2020. SnowballC: Snowball Stemmers Based on the C
‘libstemmer’ UTF-8 Library. R package version 0.7.0. https://CRAN.R-
project.org/package=SnowballC.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. 1984. Classification
and Regression Trees. Boca Raton: CRC Press.

Briscoe, T. 2013. “Introduction to Linguistics for Natural Language Process-
ing.” https://www.cl.cam.ac.uk/teaching/1314/L100/introling.pdf.

Caliskan, A., Bryson, J. J., and Narayanan, A. 2017. “Semantics Derived Au-
tomatically from Language Corpora Contain Human-Like Biases.” Science
356 (6334). American Association for the Advancement of Science: 183–
186. https://science.sciencemag.org/content/356/6334/183.

Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., and Song, D. 2019. “The Se-
cret Sharer: Evaluating and Testing Unintended Memorization in Neural
Networks.” In Proceedings of the 28th USENIX Conference on Security
Symposium, 267–284. SEC’19. USA: USENIX Association.

Caruana, R., Karampatziakis, N., and Yessenalina, A. 2008. “An Empirical
Evaluation of Supervised Learning in High Dimensions.” In Proceedings of
the 25th International Conference on Machine Learning, 96–103. ICML
’08. New York, NY: Association for Computing Machinery. https://doi.or
g/10.1145/1390156.1390169.

Chin, M. 2020. “These Students Figured Out Their Tests Were Graded by AI.”
The Verge. https://www.theverge.com/2020/9/2/21419012/edgenuity-online-
class-ai-grading-keyword-mashing-students-school-cheating-algorithm-glitch.

Chollet, F., and Allaire, J. J. 2018. Deep Learning with R. Shelter Island, NY:
Manning Publications. https://www.manning.com/books/deep-learning-with-r.

Edmondson, M. 2020. googleLanguageR: Call Google’s ‘Natural Language’
API, ‘Cloud Translation’ API, ‘Cloud Speech’ API and ‘Cloud Text-to-
Speech’ API. R package version 0.3.0. https://CRAN.R-project.org/package=
googleLanguageR.

Elman, J. L. 1990. “Finding Structure in Time.” Cognitive Science 14 (2):
179–211. https://doi.org/10.1207/s15516709cog1402_1.

Ethayarajh, K., Duvenaud, D., and Hirst, G. 2019. “Understanding Unde-
sirable Word Embedding Associations.” In Proceedings of the 57th An-
nual Meeting of the Association for Computational Linguistics, 1696–

https://www.aclweb.org
http://arxiv.org
http://arxiv.org
https://doi.org/10.1145/130385.130401
https://CRAN.R-project.org
https://www.cl.cam.ac.uk/teaching/1314/L100/introling.pdf
https://www.cl.cam.ac.uk/teaching/1314/L100/introling.pdf
https://science.sciencemag.org
https://science.sciencemag.org
https://doi.org/10.1145/1390156.1390169
https://www.theverge.com
https://www.manning.com/books/deep-learning-with-r
https://www.manning.com/books/deep-learning-with-r
https://CRAN.R-project.org
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1207/s15516709cog1402_1
https://CRAN.R-project.org
https://www.theverge.com
https://doi.org/10.1145/1390156.1390169
https://CRAN.R-project.org
https://doi.org/10.1145/130385.130401
https://www.aclweb.org

References 371

1705. Florence, Italy: Association for Computational Linguistics. https:
//www.aclweb.org/anthology/P19-1166.

Feathers, T. 2019. “Flawed Algorithms Are Grading Millions of Students’
Essays.” Motherboard. VICE. https://www.vice.com/en/article/pa7dj9/flawed-
algorithms-are-grading-millions-of-students-essays.

Feldman, R., and Sanger, J. 2007. The Text Mining Handbook. Cambridge:
Cambridge University Press.

Forman, G., and Kirshenbaum, E. 2008. “Extremely Fast Text Feature
Extraction for Classification and Indexing.” In Proceedings of the 17th
ACM Conference on Information and Knowledge Management, 1221–
1230. CIKM ’08. New York, NY: Association for Computing Machinery.
https://doi.org/10.1145/1458082.1458243.

Frank, E., and Bouckaert, R. R. 2006. “Naive Bayes for Text Classifica-
tion with Unbalanced Classes.” In Knowledge Discovery in Databases:
PKDD 2006, edited by Johannes Fürnkranz, Tobias Scheffer, and Myra
Spiliopoulou, 503–510. Berlin, Heidelberg: Springer Berlin Heidelberg.
https://doi.org/10.1007/11871637_49.

Fredrikson, Matt, Jha, S., and Ristenpart, T. 2015. “Model Inversion At-
tacks That Exploit Confidence Information and Basic Countermeasures.”
In, 1322–1333. CCS ’15. New York, NY: Association for Computing Ma-
chinery. https://doi.org/10.1145/2810103.2813677.

Fredrikson, Matthew, Lantz, E., Jha, S., Lin, S., Page, D., and Ristenpart, T.
2014. “Privacy in Pharmacogenetics: An End-to-End Case Study of Person-
alized Warfarin Dosing.” In Proceedings of the 23rd USENIX Conference
on Security Symposium, 17–32. SEC’14. USA: USENIX Association.

Friedman, J. H., Hastie, T., and Tibshirani, R. 2010. “Regularization Paths for
Generalized Linear Models via Coordinate Descent.” Journal of Statistical
Software, Articles 33 (1): 1–22. https://www.jstatsoft.org/v033/i01.

Gage, P. 1994. “A New Algorithm for Data Compression.” The C Users Journal
Archive 12: 23–38.

Gagolewski, M. 2020. stringi: Character String Processing Facilities. R pack-
age version 1.6.2. http://www.gagolewski.com/software/stringi/.

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. 2018. “Word Embeddings
Quantify 100 Years of Gender and Ethnic Stereotypes.” Proceedings of the
National Academy of Sciences 115 (16). National Academy of Sciences:
E3635–E3644. https://www.pnas.org/content/115/16/E3635.

Golub, G. H., and Reinsch, C. 1970. “Singular Value Decomposition and Least
Squares Solutions.” Numerische Mathematik 14 (5). Berlin, Heidelberg:
Springer-Verlag: 403–420. https://doi.org/10.1007/BF02163027.

Gonen, H., and Goldberg, Y. 2019. “Lipstick on a Pig: Debiasing Meth-
ods Cover up Systematic Gender Biases in Word Embeddings but Do
Not Remove Them.” In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), 609–

http://www.aclweb.org
https://www.vice.com
https://www.vice.com
https://doi.org/10.1145/1458082.1458243
https://doi.org/10.1145/1458082.1458243
https://doi.org/10.1007/11871637_49
https://doi.org/10.1007/11871637_49
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://www.jstatsoft.org
https://www.jstatsoft.org
http://www.gagolewski.com
http://www.gagolewski.com
https://www.pnas.org
https://www.pnas.org
https://doi.org/10.1007/BF02163027
https://doi.org/10.1007/BF02163027
http://www.aclweb.org

372 References

614. Minneapolis, Minnesota: Association for Computational Linguistics.
https://www.aclweb.org/anthology/N19-1061.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pe-
dreschi, D. 2018. “A Survey of Methods for Explaining Black Box Models.”
ACM Computing Surveys 51 (5). New York, NY: Association for Comput-
ing Machinery. https://doi.org/10.1145/3236009.

Harman, D. 1991. “How Effective Is Suffixing?” Journal of the American Soci-
ety for Information Science 42 (1): 7–15. https://doi.org/10.1002/(SICI)1097-
4571(199101)42:1%3C7::AID-ASI2%3E3.0.CO;2-P.

Helleputte, T. 2021. LiblineaR: Linear Predictive Models Based on the LI-
BLINEAR C/C++ Library. R package version 2.10-12. https://CRAN.R-
project.org/package=LiblineaR.

Hochreiter, S., and Schmidhuber, J. 1997. “Long Short-Term Memory.” Neural
Comput. 9 (8). Cambridge, MA: MIT Press: 1735–1780. https://doi.org/10
.1162/neco.1997.9.8.1735.

Honnibal, M., Montani, I., Van Landeghem, S., and Boyd, A. 2020. spaCy:
Industrial-strength Natural Language Processing in Python. Zenodo. https:
//doi.org/10.5281/zenodo.1212303.

Howard, J., and Ruder, S. 2018. “Universal Language Model Fine-Tuning
for Text Classification.” In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), 328–
339. Melbourne, Australia: Association for Computational Linguistics. ht
tps://www.aclweb.org/anthology/P18-1031.

Huang, W., Cheng, X., Chen, K., Wang, T., and Chu, W. 2020. “Towards
Fast and Accurate Neural Chinese Word Segmentation with Multi-Criteria
Learning.” In Proceedings of the 28th International Conference on Compu-
tational Linguistics, 2062–2072. Barcelona, Spain (Online): International
Committee on Computational Linguistics. https://www.aclweb.org/anthology
/2020.coling-main.186.

Huston, S., and Croft, W. B. 2010. “Evaluating Verbose Query Processing
Techniques.” In Proceedings of the 33rd International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, 291–298. SI-
GIR ’10. New York, NY: ACM. http://doi.acm.org/10.1145/1835449.1835499.

Hvitfeldt, E. 2019b. scotus: Collection of Supreme Court of the United States’
Opinions. R package version 1.0.0. https://github.com/EmilHvitfeldt/scotus.

Hvitfeldt, E. 2019a. hcandersenr: H.C. Andersen’s Fairy Tales. R package
version 0.2.0. https://CRAN.R-project.org/package=hcandersenr.

Hvitfeldt, E. 2020b. textdata: Download and Load Various Text Datasets. R
package version 0.4.1. https://CRAN.R-project.org/package=textdata.

Hvitfeldt, E. 2020a. textrecipes: Extra ‘Recipes’ for Text Processing. R package
version 0.4.1. https://CRAN.R-project.org/package=textrecipes.

Hvitfeldt, E. 2020c. wordsalad: Provide Tools to Extract and Analyze Word
Vectors. R package version 0.2.0. https://CRAN.R-project.org/package=wordsa
lad.

https://www.aclweb.org
https://www.aclweb.org
https://doi.org/10.1145/3236009
https://doi.org/10.1145/3236009
https://doi.org/10.1002/(SICI)1097-4571(199101)42:1%3C7::AID-ASI2%3E3.0.CO;2-P
https://CRAN.R-project.org
https://doi.org/10.1162/neco.1997.9.8.1735
http://www.aclweb.org
https://www.aclweb.org
http://doi.acm.org/10.1145/1835449.1835499
http://doi.acm.org/10.1145/1835449.1835499
https://github.com
https://github.com
https://CRAN.R-project.org
https://CRAN.R-project.org
https://CRAN.R-project.org
https://CRAN.R-project.org
https://CRAN.R-project.org
https://CRAN.R-project.org
http://www.aclweb.org
https://doi.org/10.1002/(SICI)1097-4571(199101)42:1%3C7::AID-ASI2%3E3.0.CO;2-P
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://CRAN.R-project.org
https://www.aclweb.org
https://CRAN.R-project.org

References 373

Hvitfeldt, E. 2020d. themis: Extra Recipe Steps for Dealing with Unbalanced
Data. R package version 0.1.4. https://CRAN.R-project.org/package=themis.

James, G., Witten, D., Hastie, T., and Tibshirani, R. 2013. An Introduction
to Statistical Learning. New York: Springer.

Joachims, T. 1998. “Text Categorization with Support Vector Machines:
Learning with Many Relevant Features.” In Proceedings of the 10th Eu-
ropean Conference on Machine Learning, 137–142. ECML’98. Berlin, Hei-
delberg: Springer-Verlag. https://doi.org/10.1007/BFb0026683.

Johnson, S. B. 1999. “A Semantic Lexicon for Medical Language Process-
ing.” Journal of the American Medical Informatics Association 6 (3). BMJ
Group BMA House, Tavistock Square, London, WC1H 9JR: 205–218.
https://doi.org/10.1136/jamia.1999.0060205.

Kearney, M. W. 2019. textfeatures: Extracts Features from Text. R package
version 0.3.3. https://CRAN.R-project.org/package=textfeatures.

Kibriya, A. M., Frank, E., Pfahringer, B., and Holmes, G. 2005. “Multinomial
Naive Bayes for Text Categorization Revisited.” In AI 2004: Advances in
Artificial Intelligence, edited by Geoffrey I. Webb and Xinghuo Yu, 488–
499. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.100
7/978-3-540-30549-1_43.

Kim, S., Han, K., Rim, H., and Myaeng, S. H. 2006. “Some Effective Tech-
niques for Naive Bayes Text Classification.” IEEE Transactions on Knowl-
edge and Data Engineering 18 (11): 1457–1466. https://doi.org/10.1109/TK
DE.2006.180.

Kim, Y. 2014. “Convolutional Neural Networks for Sentence Classification.”
In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 1746–1751. Doha, Qatar: Association for
Computational Linguistics. https://www.aclweb.org/anthology/D14-1181.

Kingma, D. P., and Ba, J. 2017. “Adam: A Method for Stochastic Optimiza-
tion.” https://arxiv.org/abs/1412.6980.

Kuhn, M. 2020. dials: Tools for Creating Tuning Parameter Values. R package
version 0.0.9. https://CRAN.R-project.org/package=dials.

Kuhn, M., and Vaughan, D. 2021b. parsnip: A Common API to Modeling and
Analysis Functions. R package version 0.1.6. https://CRAN.R-project.org/pa
ckage=parsnip.

Kuhn, M., and Vaughan, D. 2021a. yardstick: Tidy Characterizations of Model
Performance. R package version 0.0.8. https://CRAN.R-project.org/package=
yardstick.

Kuhn, M., and Wickham, H. 2021a. “Tidymodels: A Collection of Packages
for Modeling and Machine Learning Using Tidyverse Principles.” RStudio
PBC. https://www.tidymodels.org.

Kuhn, M., and Wickham, H. 2021b. recipes: Preprocessing Tools to Create
Design Matrices. R package version 0.1.16. https://CRAN.R-project.org/pack
age=recipes.

Lampinen, A. K., and McClelland, J. L. 2018. “One-Shot and Few-Shot Learn-
ing of Word Embeddings.” https://arxiv.org/abs/1710.10280.

https://CRAN.R-project.org/package=themis
https://CRAN.R-project.org/package=themis
https://doi.org/10.1007/BFb0026683
https://doi.org/10.1007/BFb0026683
https://doi.org/10.1136/jamia.1999.0060205
https://doi.org/10.1136/jamia.1999.0060205
https://CRAN.R-project.org/package=textfeatures
https://CRAN.R-project.org/package=textfeatures
https://doi.org/10.1007/978-3-540-30549-1_43
https://www.aclweb.org
https://www.aclweb.org
https://arxiv.org/abs/
https://arxiv.org/abs/
https://CRAN.R-project.org
https://CRAN.R-project.org
https://CRAN.R-project.org
https://CRAN.R-project.org
https://www.tidymodels.org
https://www.tidymodels.org
https://CRAN.R-project.org
https://arxiv.org
https://arxiv.org
https://doi.org/10.1007/978-3-540-30549-1_43
https://doi.org/10.1109/TKDE.2006.180
https://doi.org/10.1109/TKDE.2006.180
https://CRAN.R-project.org
https://CRAN.R-project.org
https://CRAN.R-project.org

374 References

Le, Q., and Mikolov, T. 2014. “Distributed Representations of Sentences
and Documents.” In Proceedings of the 31st International Conference on
Machine Learning, edited by Eric P. Xing and Tony Jebara, 32:1188–
1196. Proceedings of Machine Learning Research 2. Bejing, China: PMLR.
http://proceedings.mlr.press/v32/le14.html.

Levithan, J. G. S. 2012. Regular Expressions Cookbook. Sebastopol: O’Reilly
Media, Inc.

Levy, O., and Goldberg, Y. 2014. “Dependency-Based Word Embeddings.” In
Proceedings of the 52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), 302–308. Baltimore, Mary-
land: Association for Computational Linguistics. https://www.aclweb.org/a
nthology/P14-2050.

Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. 2004. “Rcv1: A New Benchmark
Collection for Text Categorization Research.” Journal of Machine Learning
Research 5: 361–397. https://www.jmlr.org/papers/volume5/lewis04a/lewis04a.
pdf.

Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R., and Pfister, H. 2014.
“UpSet: Visualization of Intersecting Sets.” IEEE Transactions on Visual-
ization and Computer Graphics 20 (12): 1983–1992. https://doi.org/10.110
9/TVCG.2014.2346248.

Lovins, J. B. 1968. “Development of a Stemming Algorithm.” Mechanical
Translation and Computational Linguistics 11: 22–31.

Lu, K., Mardziel, P., Wu, F., Amancharla, P., and Datta, A. 2020. “Gen-
der Bias in Neural Natural Language Processing.” In Logic, Language,
and Security: Essays Dedicated to Andre Scedrov on the Occasion of
His 65th Birthday, edited by Vivek Nigam, Tajana Ban Kirigin, Carolyn
Talcott, Joshua Guttman, Stepan Kuznetsov, Boon Thau Loo, and Mit-
suhiro Okada, 189–202. Cham: Springer International Publishing. https:
//doi.org/10.1007/978-3-030-62077-6_14.

Luhn, H. P. 1960. “Key Word-in-Context Index for Technical Literature (kwic
Index).” American Documentation 11 (4): 288–295. https://onlinelibrary.
wiley.com/doi/abs/10.1002/asi.5090110403.

Ma, J., Ganchev, K., and Weiss, D. 2018. “State-of-the-Art Chinese Word
Segmentation with Bi-LSTMs.” In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, 4902–4908. Brussels,
Belgium: Association for Computational Linguistics. https://www.aclweb.o
rg/anthology/D18-1529.

Manning, C. D., Raghavan, P., and Schütze, H. 2008. Introduction to Infor-
mation Retrieval. New York, NY: Cambridge University Press.

McCulloch, G. 2015. “Move over Shakespeare, Teen Girls Are the Real Lan-
guage Disruptors.” Quartz. Quartz. https://qz.com/474671/move-over-
shakespeare-teen-girls-are-the-real-language-disruptors/.

Mikolov, T., Chen, K., Corrado, G. S., and Dean, J. 2013. “Efficient Estima-
tion of Word Representations in Vector Space.” http://arxiv.org/abs/1301.3
781.

http://proceedings.mlr.press/v32/le14.html
http://proceedings.mlr.press/v32/le14.html
https://www.aclweb.org
https://www.jmlr.org
https://doi.org/10.1109/TVCG.2014.2346248
https://onlinelibrary.wiley.com
https://www.aclweb.org
https://qz.com
http://arxiv.org
https://doi.org/10.1109/TVCG.2014.2346248
https://doi.org/10.1007/978-3-030-62077-6_14
https://doi.org/10.1007/978-3-030-62077-6_14
https://onlinelibrary.wiley.com
http://arxiv.org
https://qz.com
https://www.aclweb.org
https://www.jmlr.org
https://www.aclweb.org

References 375

Miller, G. A. 1995. “WordNet: A Lexical Database for English.” Communica-
tions of the ACM 38 (11). New York, NY: ACM: 39–41. http://doi.acm.or
g/10.1145/219717.219748.

Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., and
Gao, J. 2021. “Deep Learning–Based Text Classification: A Comprehen-
sive Review.” ACM Comput. Surv. 54 (3). New York, NY: Association for
Computing Machinery. https://doi.org/10.1145/3439726.

Mohammad, S. M., and Turney, P. D. 2013. “Crowdsourcing a Word–Emotion
Association Lexicon.” Computational Intelligence 29 (3): 436–465. https:
//onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8640.2012.00460.x.

Moody, C. 2017. “Stop Using word2vec.” Multithreaded. StitchFix. https://mu
ltithreaded.stitchfix.com/blog/2017/10/18/stop-using-word2vec/.

Mullen, L. A., Benoit, K., Keyes, O., Selivanov, D., and Arnold, J. 2018.
“Fast, Consistent Tokenization of Natural Language Text.” Journal of Open
Source Software 3: 655. https://doi.org/10.21105/joss.00655.

Nothman, J., Qin, H., and Yurchak, R. 2018. “Stop Word Lists in Free Open-
Source Software Packages.” In Proceedings of Workshop for NLP Open
Source Software (NLP-OSS), 7–12. Melbourne, Australia: Association for
Computational Linguistics. https://www.aclweb.org/anthology/W18-2502.

Olson, R. S., Cava, W. L., Mustahsan, Z., Varik, A., and Moore, J. H.
2018. “Data-Driven Advice for Applying Machine Learning to Bioinfor-
matics Problems.” In Pacific Symposium on Biocomputing 2018: Pro-
ceedings of the Pacific Symposium, 192–203. World Scientific. https:
//doi.org/10.1142/9789813235533_0018.

Ooms, J. 2020a. pdftools: Text Extraction, Rendering and Converting of PDF
Documents. R package version 2.3.1. https://CRAN.R-project.org/package=pd
ftools.

Ooms, J. 2020b. hunspell: High-Performance Stemmer, Tokenizer, and Spell
Checker. R package version 3.0.1. https://CRAN.R-project.org/package=hunspe
ll.

Pedersen, T. L., and Benesty, M. 2021. lime: Local Interpretable Model-
Agnostic Explanations. R package version 0.5.2. https://CRAN.R-project.
org/package=lime.

Pennington, J., Socher, R., and Manning, C. 2014. “GloVe: Global Vec-
tors for Word Representation.” In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), 1532–
1543. Doha, Qatar: Association for Computational Linguistics. https:
//www.aclweb.org/anthology/D14-1162.

Perry, P. O. 2020. corpus: Text Corpus Analysis. R package version 0.10.2.
https://CRAN.R-project.org/package=corpus.

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and
Zettlemoyer, L. 2018. “Deep Contextualized Word Representations.” In
Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,

http://doi.acm.org/10.1145/219717.219748
https://doi.org/10.1145/3439726
https://doi.org/10.1145/3439726
https://multithreaded.stitchfix.com
https://doi.org/10.21105/joss.00655
https://doi.org/10.21105/joss.00655
https://www.aclweb.org/anthology/W18-2502
https://www.aclweb.org/anthology/W18-2502
https://CRAN.R-project.org/package=pd
https://CRAN.R-project.org/package=hunspe
https://CRAN.R-project.org
http://www.aclweb.org
https://CRAN.R-project.org/package=corpus
https://CRAN.R-project.org/package=corpus
https://onlinelibrary.wiley.com
https://onlinelibrary.wiley.com
https://multithreaded.stitchfix.com
http://doi.acm.org/10.1145/219717.219748
https://doi.org/10.1142/9789813235533_0018
https://doi.org/10.1142/9789813235533_0018
https://CRAN.R-project.org/package=pd
https://CRAN.R-project.org
http://www.aclweb.org

376 References

Volume 1 (Long Papers), 2227–2237. New Orleans, Louisiana: Association
for Computational Linguistics. https://www.aclweb.org/anthology/N18-1202.

Porter, M. F. 1980. “An Algorithm for Suffix Stripping.” Program 14 (3): 130–
137. https://doi.org/10.1108/eb046814.

Porter, M. F. 2001. “Snowball: A Language for Stemming Algorithms.” https:
//snowballstem.org.

Ramineni, C., and Williamson, D. 2018. “Understanding Mean Score Differ-
ences Between the e-Rater® Automated Scoring Engine and Humans for
Demographically Based Groups in the GRE® General Test.” ETS Research
Report Series 2018 (1): 1–31. https://onlinelibrary.wiley.com/doi/abs/10.100
2/ets2.12192.

Ribeiro, M. T., Singh, S., and Guestrin, C. 2016. “‘Why Should I Trust
You?’: Explaining the Predictions of Any Classifier.” In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 1135–1144. KDD ’16. New York, NY: Association for
Computing Machinery. https://doi.org/10.1145/2939672.2939778.

Robinson, D. 2020. widyr: Widen, Process, Then Re-Tidy Data. R package
version 0.1.3. https://CRAN.R-project.org/package=widyr.

Sap, M., Card, D., Gabriel, S., Choi, Y., and Smith, N. A. 2019. “The
Risk of Racial Bias in Hate Speech Detection.” In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics,
1668–1678. Florence, Italy: Association for Computational Linguistics.
https://www.aclweb.org/anthology/P19-1163.

Schofield, A., and Mimno, D. 2016. “Comparing Apples to Apple: The Ef-
fects of Stemmers on Topic Models.” Transactions of the Association for
Computational Linguistics 4: 287–300. https://doi.org/10.1162/tacl_a_00099.

Selivanov, D., Bickel, M., and Wang, Q. 2020. text2vec: Modern Text Mining
Framework for R. R package version 0.6. https://CRAN.R-project.org/packag
e=text2vec.

Sheng, E., Chang, K.-W., Natarajan, P., and Peng, N. 2019. “The Woman
Worked as a Babysitter: On Biases in Language Generation.” In Proceed-
ings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), 3407–3412. Hong Kong: Association
for Computational Linguistics. https://www.aclweb.org/anthology/D19-1339.

Shrikumar, A., Greenside, P., and Kundaje, A. 2017. “Learning Important
Features Through Propagating Activation Differences.” In Proceedings of
the 34th International Conference on Machine Learning - Volume 70, 3145–
3153. ICML’17. Sydney, NSW, Australia: JMLR.org.

Shwartz-Ziv, R., and Tishby, N. 2017. “Opening the Black Box of Deep Neural
Networks via Information.” https://arxiv.org/abs/1703.00810.

Silge, J., Chow, F., Kuhn, M., and Wickham, H. 2021. rsample: General Re-
sampling Infrastructure. R package version 0.1.0. https://CRAN.R-project.or
g/package=rsample.

Silge, J., and Robinson, D. 2016. “Tidytext: Text Mining and Analysis Using

https://www.aclweb.org/anthology/N18-1202
https://www.aclweb.org/anthology/N18-1202
https://doi.org/10.1108/eb046814
https://doi.org/10.1108/eb046814
https://onlinelibrary.wiley.com/doi/abs/10.100
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://CRAN.R-project.org/package=widyr
https://CRAN.R-project.org/package=widyr
https://www.aclweb.org/anthology/P19-1163
https://www.aclweb.org/anthology/P19-1163
https://doi.org/10.1162/tacl_a_00099
https://doi.org/10.1162/tacl_a_00099
https://CRAN.R-project.org/packag
https://www.aclweb.org/anthology/D19-1339
https://www.aclweb.org/anthology/D19-1339
https://arxiv.org/abs/1703.00810
https://arxiv.org/abs/1703.00810
https://CRAN.R-project.or
https://snowballstem.org
https://snowballstem.org
https://onlinelibrary.wiley.com/doi/abs/10.100
https://onlinelibrary.wiley.com/doi/abs/10.100
https://CRAN.R-project.or

References 377

Tidy Data Principles in R.” JOSS 1 (3). The Open Journal. http://dx.doi
.org/10.21105/joss.00037.

Silge, J., and Robinson, D. 2017. Text Mining with R: A Tidy Approach.
Sebastopol: O’Reilly Media, Inc.

Speer, R. 2017. “How to Make a Racist AI Without Really Trying.” Concept-
Net Blog. http://blog.conceptnet.io/posts/2017/how-to-make-a-racist-ai-
without-really-trying/.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdi-
nov, R. 2014. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting.” Journal of Machine Learning Research 15 (56): 1929–1958.
http://jmlr.org/papers/v15/srivastava14a.html.

Sugisaki, K., and Tuggener, D. 2018. “German Compound Splitting Using
the Compound Productivity of Morphemes.” Verlag der Österreichischen
Akademie der Wissenschaften.

Sweeney, L. 2000. Simple Demographics Often Identify People Uniquely. Data
Privacy Working Paper 3. Carnegie Mellon University. https://dataprivac
ylab.org/projects/identifiability/.

Tang, C., Garreau, D., and Luxburg, U. von. 2018. “When Do Random Forests
Fail?” In, 2987–2997. NIPS’18. Red Hook, NY: Curran Associates Inc.

Tibshirani, R. 1996. “Regression Shrinkage and Selection via the Lasso.” Jour-
nal of the Royal Statistical Society. Series B (Methodological) 58 (1). [Royal
Statistical Society, Wiley]: 267–288. http://www.jstor.org/stable/2346178.

Ushey, K., Allaire, J., and Tang, Y. 2021. reticulate: Interface to ‘Python’. R
package version 1.20. https://CRAN.R-project.org/package=reticulate.

Van-Tu, N., and Anh-Cuong, L. 2016. “Improving Question Classification by
Feature Extraction and Selection.” Indian Journal of Science and Technol-
ogy 9 (17): 1–8. https://doi.org/10.17485/ijst/2016/v9i17/93160.

Vaughan, D. 2021a. slider: Sliding Window Functions. R package version 0.2.1.
https://CRAN.R-project.org/package=slider.

Vaughan, D. 2021b. workflows: Modeling Workflows. R package version 0.2.2.
https://CRAN.R-project.org/package=workflows.

Vaughan, D., and Dancho, M. 2021. furrr: Apply Mapping Functions in Par-
allel Using Futures. R package version 0.2.2. https://CRAN.R-project.org/pa
ckage=furrr.

Vaughan, D., and Kuhn, M. 2020. hardhat: Construct Modeling Packages. R
package version 0.1.5. https://CRAN.R-project.org/package=hardhat.

Vosoughi, S., Vijayaraghavan, P., and Roy, D. 2016. “Tweet2Vec: Learning
Tweet Embeddings Using Character-Level CNN-LSTM Encoder-Decoder.”
In Proceedings of the 39th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, 1041–1044. SIGIR ’16.
New York, NY: Association for Computing Machinery. https://doi.org/10
.1145/2911451.2914762.

Wagner, C., Graells-Garrido, E., Garcia, D., and Menczer, F. 2016. “Women
Through the Glass Ceiling: Gender Asymmetries in Wikipedia.” EPJ Data

http://dx.doi.org/10.21105/joss.00037
http://blog.conceptnet.io/posts/2017/how-to-make-a-racist-aiwithout-
http://blog.conceptnet.io/posts/2017/how-to-make-a-racist-aiwithout-
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://dataprivacylab.org
http://www.jstor.org/stable/2346178
http://www.jstor.org/stable/2346178
https://CRAN.R-project.org/package=reticulate
https://CRAN.R-project.org/package=reticulate
https://doi.org/10.17485/ijst/2016/v9i17/93160
https://doi.org/10.17485/ijst/2016/v9i17/93160
https://CRAN.R-project.org/package=slider
https://CRAN.R-project.org/package=slider
https://CRAN.R-project.org/package=workflows
https://CRAN.R-project.org/package=workflows
https://CRAN.R-project.org
https://CRAN.R-project.org/package=hardhat
https://CRAN.R-project.org/package=hardhat
https://doi.org/10.1145/2911451.2914762
http://dx.doi.org/10.21105/joss.00037
https://dataprivacylab.org
https://doi.org/10.1145/2911451.2914762
https://CRAN.R-project.org

378 References

Science 5 (1). SpringerOpen: 5. https://doi.org/10.1140/epjds/s13688-016-
0066-4.

Weinberger, K., Dasgupta, A., Langford, J., Smola, A., and Attenberg, J.
2009. “Feature Hashing for Large Scale Multitask Learning.” In Proceedings
of the 26th Annual International Conference on Machine Learning, 1113–
1120. ICML ’09. New York, NY: Association for Computing Machinery.
https://doi.org/10.1145/1553374.1553516.

Wenfeng, Q., and Yanyi, W. 2019. jiebaR: Chinese Text Segmentation. R pack-
age version 0.11. https://CRAN.R-project.org/package=jiebaR.

Wickham, H. 2019. stringr: Simple, Consistent Wrappers for Common String
Operations. R package version 1.4.0. https://CRAN.R-project.org/package=st
ringr.

Wickham, H. 2020. httr: Tools for Working with URLs and HTTP. R package
version 1.4.2. https://CRAN.R-project.org/package=httr.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François,
R., Grolemund, G., et al. 2019. “Welcome to the Tidyverse.” Journal of
Open Source Software 4 (43). The Open Journal: 1686. https://doi.org/10
.21105/joss.01686.

Wickham, H., and Grolemund, G. 2017. R for Data Science: Import, Tidy,
Transform, Visualize, and Model Data. Sebastopol: O’Reilly Media, Inc.

Wickham, H., and Hester, J. 2020. readr: Read Rectangular Text Data. R
package version 1.4.0. https://CRAN.R-project.org/package=readr.

Willett, P. 2006. “The Porter Stemming Algorithm: Then and Now.” Program:
Electronic Library and Information Systems 40 (3). Emerald: 219–223.
http://eprints.whiterose.ac.uk/1434/.

Zhang, X., Zhao, J., and LeCun, Y. 2015. “Character-Level Convolutional
Networks for Text Classification.” In Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 1, 649–
657. NIPS’15. Cambridge, MA: MIT Press.

Zou, F., Wang, F. L., Deng, X., and Han, S. 2006. “Evaluation of Stop
Word Lists in Chinese Language.” In Proceedings of the Fifth International
Conference on Language Resources and Evaluation (LREC’06). Genoa,
Italy: European Language Resources Association (ELRA). http://www.lrec-
conf.org/proceedings/lrec2006/pdf/273_pdf.pdf.

Zou, F., Wang, F. L., Deng, X., Han, S., and Wang, L. S. 2006. “Auto-
matic Construction of Chinese Stop Word List.” In Proceedings of the
5th WSEAS International Conference on Applied Computer Science, 1009–
1014. ACOS’06. Stevens Point, Wisconsin: World Scientific; Engineering
Academy; Society (WSEAS). http://dl.acm.org/citation.cfm?id=1973598.19
73793.

https://doi.org/10.1140/epjds/s13688-016-0066-4
https://doi.org/10.1145/1553374.1553516
https://doi.org/10.1145/1553374.1553516
https://CRAN.R-project.org/package=st
https://CRAN.R-project.org/package=httr
https://CRAN.R-project.org/package=httr
https://doi.org/10.21105/joss.01686
https://CRAN.R-project.org/package=readr
https://CRAN.R-project.org/package=readr
http://eprints.whiterose.ac.uk
http://www.lrecconf.org
http://www.lrecconf.org
http://dl.acm.org
https://doi.org/10.1140/epjds/s13688-016-0066-4
https://CRAN.R-project.org
https://CRAN.R-project.org/package=st
https://doi.org/10.21105/joss.01686
http://dl.acm.org

Index

accuracy, 164, 246
area under the receiver operator

characteristic curve, see
ROC AUC

automated grading, 345, 346

bias, 45, 93–96, 102–104, 150, 237,
271, 345

binary cross-entropy, 246
black box, 271, 324

censoring, 158, 195, 197, 200, 204
classification, xiii

challenges, 184
coefficient of determination, 115
computational speed, 126, 129, 132,

135, 174, 182, 266, 300
context

importance of, 49
corpus, 43, 75, 77, 93, 94, 227

definition, 44
CRAN, xv

data leakage, 227, 238
data type

character, 9
deep learning, 81

comparing, 226
dialects

African American Vernacular
English, 7

downsampling, 185

embeddings, 85, 225
FastText, 87, 90, 93
GloVe, 87–93, 95, 257, 261
pre-trained, 88, 90, 91, 95, 257,

261, 268

word2vec, 87, 90, 93, 95
embeddings, pre-trained, 94

feature engineering, 108, 201, 206,
209, 227, 228, 239, 272, 341

functions, 32

hashing function, 133, 134, 136, 137,
139

challenges, 136

integer index, 240
inverse document frequency, 45, 47,

74, 227

language
naming, 6
Non-English, 6, 10, 28, 50, 52,

55, 56, 68, 137, 138
Non-Latin, 33
obscene, 48
signed, 4
structure, 303
structures, 286

lemma, 129, 130, 132
lemmas, 68–70, 142, 153
lemmatization, see lemmas
linguistics, 3, 4

machine learning
comparing, 226
unsupervised, xvi, 60

matrix
confusion, 164–166, 170, 189,

190, 208, 215, 252, 300, 308,
322, 340

sparse, 59, 73–75, 77, 87, 135,
179, 182

379

380 Index

matrix factorization, 80
misspellings, 38, 49
models

analysis, 228
challenges, 120, 220, 266, 271,

337
comparing, 113
explainability, 324, 327–329
in production, 168
interpretability, see models,

explainability
pre-trained, 268
sensitivity, 7
training, 6
tuning, 144, 170, 330

morphology, 3, 5, 50, 54, 318

network architecture, 225, 226, 231,
255, 273, 303, 306, 309

neural network
convolutional, 303, 305
densely connected, 231
feed forward, 231
long short-term memory, 273,

275
recurrent, 3, 276, 283

optimization algorithm, 245, 246, 307
overfitting, 237, 278, 281, 282, 285

part of speech, 68, 133
personally identifiable information,

see PII
phonetics, 3
phonology, 3
PII, 158, 195, 200, 201
PMI, 79
point-wise mutual information, see

PMI
postprocessing, 96
pragmatics, 3
precision, 70
preprocess, 337
preprocessing, 22, 25, 41, 58, 73, 108,

118, 122, 126, 129, 130, 138,
153, 158, 159, 179, 182, 185,

191, 200, 227, 237, 239, 253,
255, 272, 274, 295, 297, 300,
301, 305, 310, 340

challenges, 10, 26, 40, 43, 45, 48,
49, 56, 60, 63, 67, 92,
94–96, 137, 242

impact, 289, 290
Python, 69, 231

regex, 11, 29–31, 33, 103, 158, 200,
202–205

regression, xiii
regular expressions, see regex
RMSE, 115
ROC AUC, 164
root mean squared error, see RMSE

semantics, 3, 87, 92, 261
sentiment classifier, 23
singular value decomposition, see

SVD
singular versus plural, 53, 65, 85
skipgram windows, 78–80
speech, xvi, 4
stemming algorithm

Hunspell, 56, 58
Lovins, 63
Porter, 54–56, 61, 65, 66, 71
Snowball, 63

stop word lists
SMART, 38–40
Snowball, 38, 39, 41, 55, 122,

125, 255
Stopwords ISO, 38, 39

stop words
document, 38
global, 37
subject, 37

SVD, 80, 85
syntax, 3

term frequency, 74, 227
term frequency-inverse document

frequency, see tf-idf
text generation, xvi
tf-idf, 74, 95, 108, 133, 160, 182, 227

Index 381

tokenization
character, 16
definition, 10
ligatures, 17
n-gram, 19, 126, 128, 129, 142,

153
package, 34
punctuation, 25
specialty, 26
subword, 317, 323

translation, xvi, 276

Unicode, 12

variables
dummy, 192

vector, 77
character, 9

word segmentation, 33

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	Preface
	I. Natural Language Features
	1. Language and modeling
	1.1. Linguistics for text analysis
	1.2. A glimpse into one area: morphology
	1.3. Different languages
	1.4. Other ways text can vary
	1.5. Summary
	1.5.1. In this chapter, you learned:

	2. Tokenization
	2.1. What is a token?
	2.2. Types of tokens
	2.2.1. Character tokens
	2.2.2. Word tokens
	2.2.3. Tokenizing by n-grams
	2.2.4. Lines, sentence, and paragraph tokens

	2.3. Where does tokenization break down?
	2.4. Building your own tokenizer
	2.4.1. Tokenize to characters, only keeping letters
	2.4.2. Allow for hyphenated words
	2.4.3. Wrapping it in a function

	2.5. Tokenization for non-Latin alphabets
	2.6. Tokenization benchmark
	2.7. Summary
	2.7.1. In this chapter, you learned:

	3. Stop words
	3.1. Using premade stop word lists
	3.1.1. Stop word removal in R

	3.2. Creating your own stop words list
	3.3. All stop word lists are context-specific
	3.4. What happens when you remove stop words
	3.5. Stop words in languages other than English
	3.6. Summary
	3.6.1. In this chapter, you learned:

	4. Stemming
	4.1. How to stem text in R
	4.2. Should you use stemming at all?
	4.3. Understand a stemming algorithm
	4.4. Handling punctuation when stemming
	4.5. Compare some stemming options
	4.6. Lemmatization and stemming
	4.7. Stemming and stop words
	4.8. Summary
	4.8.1. In this chapter, you learned:

	5. Word Embeddings
	5.1. Motivating embeddings for sparse, high-dimensional
	5.2. Understand word embeddings by finding them yourself
	5.3. Exploring CFPB word embeddings
	5.4. Use pre-trained word embeddings
	5.5. Fairness and word embeddings
	5.6. Using word embeddings in the real world
	5.7. Summary
	5.7.1. In this chapter, you learned:

	II. Machine Learning Methods
	Overview
	6. Regression
	6.1. A first regression model
	6.1.1. Building our first regression model
	6.1.2. Evaluation

	6.2. Compare to the null model
	6.3. Compare to a random forest model
	6.4. Case study: removing stop words
	6.5. Case study: varying n-grams
	6.6. Case study: lemmatization
	6.7. Case study: feature hashing
	6.7.1. Text normalization

	6.8. What evaluation metrics are appropriate?
	6.9. The full game: regression
	6.9.1. Preprocess the data
	6.9.2. Specify the model
	6.9.3. Tune the model
	6.9.4. Evaluate the modeling

	6.10. Summary
	6.10.1. In this chapter, you learned:

	7. Classification
	7.1. A first classification model
	7.1.1. Building our first classification model
	7.1.2. Evaluation

	7.2. Compare to the null model
	7.3. Compare to a lasso classification model
	7.4. Tuning lasso hyperparameters
	7.5. Case study: sparse encoding
	7.6. Two-class or multiclass?
	7.7. Case study: including non-text data
	7.8. Case study: data censoring
	7.9. Case study: custom features
	7.9.1. Detect credit cards
	7.9.2. Calculate percentage censoring
	7.9.3. Detect monetary amounts

	7.10. What evaluation metrics are appropriate?
	7.11. The full game: classification
	7.11.1. Feature selection
	7.11.2. Specify the model
	7.11.3. Evaluate the modeling

	7.12. Summary
	7.12.1. In this chapter, you learned:

	III. Deep Learning Methods
	Overview
	8. Dense neural networks
	8.1. Kickstarter data
	8.2. A first deep learning model
	8.2.1. Preprocessing for deep learning
	8.2.2. One-hot sequence embedding of text
	8.2.3. Simple flattened dense network
	8.2.4. Evaluation

	8.3. Using bag-of-words features
	8.4. Using pre-trained word embeddings
	8.5. Cross-validation for deep learning models
	8.6. Compare and evaluate DNN models
	8.7. Limitations of deep learning
	8.8. Summary
	8.8.1. In this chapter, you learned:

	9. Long short-term memory (LSTM) networks
	9.1. A first LSTM model
	9.1.1. Building an LSTM
	9.1.2. Evaluation

	9.2. Compare to a recurrent neural network
	9.3. Case study: bidirectional LSTM
	9.4. Case study: stacking LSTM layers
	9.5. Case study: padding
	9.6. Case study: training a regression model
	9.7. Case study: vocabulary size
	9.8. The full game: LSTM
	9.8.1. Preprocess the data
	9.8.2. Specify the model

	9.9. Summary
	9.9.1. In this chapter, you learned:

	10. Convolutional neural networks
	10.1. What are CNNs?
	10.1.1. Kernel
	10.1.2. Kernel size

	10.2. A first CNN model
	10.3. Case study: adding more layers
	10.4. Case study: byte pair encoding
	10.5. Case study: explainability with LIME
	10.6. Case study: hyperparameter search
	10.7. Cross-validation for evaluation
	10.8. The full game: CNN
	10.8.1. Preprocess the data
	10.8.2. Specify the model

	10.9. Summary
	10.9.1. In this chapter, you learned:

	IV. Conclusion
	Text models in the real world
	Appendix
	A. Regular expressions
	A.1. Literal characters
	A.1.1. Meta characters

	A.2. Full stop, the wildcard
	A.3. Character classes
	A.3.1. Shorthand character classes

	A.4. Quantifiers
	A.5. Anchors
	A.6. Additional resources

	B. Data
	B.1. Hans Christian Andersen fairy tales
	B.2. Opinions of the Supreme Court of the United States
	B.3. Consumer Financial Protection Bureau (CFPB) complaints
	B.4. Kickstarter campaign blurbs

	C. Baseline linear classifier
	C.1. Read in the data
	C.2. Split into test/train and create resampling folds
	C.3. Recipe for data preprocessing
	C.4. Lasso regularized classification model
	C.5. A model workflow
	C.6. Tune the workflow

	References
	Index

