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Next- Generation Sequencing 
Data Analysis

Next- generation DNA and RNA sequencing has revolutionized biology and 
medicine. With sequencing costs continuously dropping and our ability to 
generate large datasets rising, data analysis becomes more important than 
ever. Next- Generation Sequencing Data Analysis walks readers through next- 
generation sequencing (NGS) data analysis step by step for a wide range of 
NGS applications.

For each NGS application, this book covers topics from experimental design, 
sample processing, sequencing strategy formulation, to sequencing read quality 
control, data preprocessing, read mapping or assembly, and more advanced 
stages that are specific to each application. Major applications include:

 • RNA- seq: Both bulk and single cell (separate chapters)
 • Genotyping and variant discovery through whole genome/ exome 
sequencing

 • Clinical sequencing and detection of actionable variants
 • De novo genome assembly
 • ChIP- seq to map protein- DNA interactions
 • Epigenomics through DNA methylation sequencing
 • Metagenome sequencing for microbiome analysis

Before detailing the analytic steps for each of these applications, the book 
presents introductory cellular and molecular biology as a refresher mostly 
for data scientists, the ins and outs of widely used NGS platforms, and an 
overview of computing needs for NGS data management and analysis. The 
book concludes with a chapter on the changing landscape of NGS technolo-
gies and data analytics.

The second edition of this book builds on the well- received first edition 
by providing updates to each chapter. Two brand new chapters have been 
added to meet rising data analysis demands on single-cell RNA- seq and clin-
ical sequencing. The increasing use of long-reads sequencing has also been 
reflected in all NGS applications. This book discusses concepts and principles 
that underlie each analytic step, along with software tools for implementa-
tion. It highlights key features of the tools while omitting tedious details to 
provide an easy- to- follow guide for practitioners in life sciences, bioinfor-
matics, biostatistics, and data science. Tools introduced in this book are open 
source and freely available.
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Preface to the Second Edition

When I started working on the second edition of Next- Generation Sequencing 
Data Analysis, my primary goal was to add new chapters and contents on 
clinical sequencing, single-cell sequencing, and third- generation sequencing 
(i.e., long reads) data analyses. These contents were either absent, or only 
briefly discussed, in the first edition. For example, data processing for clinical 
applications, where NGS has a direct impact on public health, was absent, and 
a new chapter that covers clinical sequencing data QA/ QC, standard analysis 
pipeline, and clinical interpretation is beneficial to the community. The dra-
matic growth in single-cell sequencing also warrants a new chapter, because 
extracting rich biological information at the single-cell resolution requires 
a new set of tools different from what is used to analyze “bulk” sequen-
cing data. Although long-read sequencing was covered in the first edition 
of this book, technologies have since then made significant improvements 
and achieved wide usage. Such developments require extensive updates to 
nearly all of the applications, from RNA- seq to metagenomics.

After meeting my primary goal, I set out to update the rest of the book. 
This took much longer than I had initially planned. The challenges were two- 
fold. The first was updating the list of tools for each of the NGS applications. 
Thanks to the productivity of the bioinformatics community, most NGS 
applications have seen an abundance of tool development, and as a result 
many new tools have emerged. Updating this large number of new tools took 
quite some time. The second challenge was selectively introducing new and 
existing tools, instead of overwhelming readers with a long list of tools that 
have ever existed. While the tools presented in this edition are by no means 
the most representative among all tools available, I made every effort to select 
most of the effective open source tools in existence as of late 2022, drawing 
information from benchmarking studies, citations, and recent updates.

In writing this edition, I have developed a renewed appreciation of the 
intensity, excitement, and multiplicity of expertise in the NGS field. For 
instance, there is an increasing convergence of expertise from artificial intel-
ligence, computer science, and high- performance computing. At the same 
time, because of the highly dynamic nature of the field, it becomes increas-
ingly challenging to keep abreast of the latest developments. This new 
edition represents an effort from a practitioner in the field towards the goal of 
informing readers on recent NGS data analysis tools. I would like to express 
my gratitude to the many researchers and clinicians I have interacted with 
in my role as the director of the Northwestern University NGS Facility. It is 
their need for the latest NGS technologies that has kept me up to date with 
the NGS field.
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1  
The Cellular System and the Code of Life

1.1  The Cellular Challenge

A cell, although minuscule with a diameter of less than 50 μm, works wonders if 
you compare it to any human- made system. Moreover, it perpetuates itself using 
the information coded in its DNA. In case you ever had the thought of designing 
an artificial system that shows this type of sophistication, you would know the 
many insurmountable challenges such a system needs to overcome. A cell has 
a complicated internal system, containing many types of molecules and parts. 
To sustain the system, a cell needs to perform a wide variety of tasks, the most 
fundamental of which are to maintain its internal order, prevent its system from 
malfunctioning or breaking down, and reproduce or even improve the system, 
in an environment that is constantly changing.

Energy is needed to maintain the internal order of the cellular system. 
Without constant energy input, the entropy of the system will gradually 
increase, as dictated by the second law of thermodynamics, and ultimately 
lead to the destruction of the system. Besides energy, raw “building” material 
is also constantly needed to renew its internal parts or build new ones if 
needed, as the internal structure of a cell is dynamic and responds to constant 
changes in environmental conditions. Therefore, to maintain the equilibrium 
inside and with the environment, it requires a constant influx of energy and 
raw material, and excretion of its waste. Guiding the capture of the requisite 
energy and raw material for its survival and the perpetuation of the system is 
the information encoded in its DNA sequence.

During the course of evolution a great number of organisms no longer 
function as a single cell. The human body, for example, contains trillions 
of cells. In a multicellular system, each cell becomes specialized to per-
form a specific function, e.g., β- cells in our pancreas synthesize and release 
insulin, and cortical neurons in the brain perform neurobiological functions 
that underlie learning and memory. Despite this “division of labor,” the 
challenges a single- cell organism faces still hold true for each one of these 
cells. Instead of dealing with the external environment directly, they interact 
with and respond to changes in their microenvironment.
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1.2  How Cells Meet the Challenge

Many cells, like algae and plant cells, directly capture energy from the sun or 
other energy sources. Other cells (or organisms) obtain energy from the envir-
onment as heterotrophs. For raw material, cells can either fix carbon dioxide 
in the air using the energy captured into simple organic compounds, which 
are then converted to other requisite molecules, or directly obtain organic 
molecules from the environment and convert them to requisite materials. 
In the meantime, existing cellular components can also be broken down 
when not needed for the re- use of their building material. This process of 
energy capture and utilization, and synthesis, interconversion, and breaking 
down for re- use of molecular material, constitutes the cellular metabolism. 
Metabolism, the most fundamental characteristic of a cell, involves numerous 
biochemical reactions.

Reception and transduction of various signals in the environment are crucial 
for cellular survival. Reception of signals relies on specific receptors situated 
on the cell surface, and for some signals, those inside the cell. Transduction 
of incoming signals usually involves cascades of events in the cell, through 
which the original signals are amplified and modulated. In response, cellular 
metabolic profile is altered. The cellular signal reception and transduction 
network is composed of circuits that are organized into various pathways. 
Malfunctioning of these pathways can have a detrimental effect on cellular 
response to the environment and eventually its survival.

Perpetuation and evolution of the cellular system rely on DNA replication 
and cell division. The replication of DNA (to be detailed in Chapter 2) is a 
high- fidelity, but not error- free, process. While maintaining the stability of 
the system, this process also provides the mechanism for the diversification 
and evolution of the cellular system. The cell division process is also tightly 
regulated, for the most part to ensure equal transfer of the replicated DNA 
into daughter cells. For the majority of multicellular organisms that repro-
duce sexually, in the process of germ cell formation the DNA is replicated 
once but cell division occurs twice, leading to the reduction of DNA material 
by half in the gametes. The recombination of DNA from female and male 
gametes leads to further diversification in the offspring.

1.3  Molecules in Cells

Different types of molecules are needed to carry out the various cellular 
processes. In a typical cell, water is the most abundant representing 70% of 
the total cell weight. Besides water, there are a large variety of small and large 
molecules. The major categories of small molecules include inorganic ions 
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(Na+ , K+ , Ca2+ , Cl- , Mg2+ , etc.), monosaccharides, fatty acids, amino acids, and 
nucleotides. Major varieties of large molecules are polysaccharides, lipids, 
proteins, and nucleic acids (DNA and RNA). Among these components, 
the inorganic ions are important for signaling (e.g., waves of Ca2+  represent 
important intracellular signal), cell energy storage (e.g., in the form of Na+ 

/ K+  cross- membrane gradient), or protein structure/ function (e.g., Mg2+  is 
an essential cofactor for many metalloproteins). Carbohydrates (including 
monosaccharides and polysaccharides), fatty acids, and lipids are major 
energy- providing molecules in the cell. Lipids are also the major component 
of cell membrane. Proteins, which are assembled from 20 types of amino acids 
in different order and length, underlie almost all cellular activities, including 
metabolism, signal transduction, DNA replication, and cell division. They 
are also the building blocks of many subcellular structures, such as cytoskel-
eton (see next section). Nucleic acids carry the code of life in their nearly 
endless nucleotide permutations, which not only provides instructions on the 
assembly of all proteins in cells but also exerts control on how such assembly 
is carried out based on environmental conditions.

1.4  Intracellular Structures or Spaces

Cells maintain a well- organized internal structure (Figure 1.1). Based on the 
complexity of their internal structure, cells are divided into two major cat-
egories: prokaryotic and eukaryotic cells. The fundamental difference between 
them is whether a nucleus is present. Prokaryotic cells, being more primor-
dial of the two, do not have a nucleus, and as a result their DNA is located in 
a nucleus- like but non- enclosed area. Prokaryotic cells also lack organelles, 
which are specialized and compartmentalized intracellular structures that 
carry out different cellular functions (detailed next). Eukaryotic cells, on the 
other hand, contain a distinct nucleus dedicated for DNA storage, mainten-
ance, and expression. Furthermore, they contain various organelles including 
endoplasmic reticulum (ER), Golgi apparatus, cytoskeleton, mitochondrion, 
and chloroplast (plant cells). The following is an introduction to the various 
intracellular structures and spaces, including the nucleus, the organelles, 
and other subcellular structures and spaces such as the cell membrane and 
cytoplasm.

1.4.1  Nucleus

Since DNA stores the code of life, it must be protected and properly maintained  
to avoid possible damage and ensure accuracy and stability. As proper execu-
tion of the genetic information embedded in the DNA is critical to the normal  
functioning of a cell, gene expression must also be tightly regulated under  
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all conditions. The nucleus, located in the center of most cells in eukaryotes,  
offers a well- protected environment for DNA storage, maintenance, and gene  
expression. The nuclear space is enclosed by nuclear envelope consisting of  
two concentric membranes. To allow movement of proteins and RNAs across  
the nuclear envelope, which is essential for gene expression, there are pores  
on the nuclear envelope that span the inner and outer membrane. The mech-
anical support of the nucleus is provided by the nucleoskeleton, a network  
of structural proteins including lamins and actin among others. Inside the  
nucleus, long strings of DNA molecules, through binding to certain proteins  
called histones, are heavily packed to fit into the limited nuclear space. In  
prokaryotic cells, a nucleus- like irregularly shaped region that does not have  
a membrane enclosure called the nucleoid provides a similar but not as well-  
protected space for DNA.

1.4.2  Cell Membrane

The cell membrane serves as a barrier to protect the internal structure of a 
cell from the outside environment. Biochemically, the cell membrane, as well 
as all other intracellular membranes such as the nuclear envelope, assumes 
a lipid bilayer structure. While offering protection to their internal structure, 
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FIGURE 1.1
The general structure of a typical eukaryotic cell. Shown here is an animal cell.
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the cell membrane is also where cells exchange materials, and concurrently 
energy, with the outside environment. Since the membrane is made of lipids, 
most water- soluble substances, including ions, carbohydrates, amino acids, 
and nucleotides, cannot directly cross it. To overcome this barrier, there are 
channels, transporters, and pumps, all of which are specialized proteins, on 
the cell membrane. Channels and transporters facilitate passive movement, 
that is, in the direction from high to low concentration, without consumption 
of cellular energy. Pumps, on the other hand, provide active transportation of 
the molecules, since they transport the molecules against the concentration 
gradient and therefore consume energy.

The cell membrane is also where a cell receives most incoming signals from 
the environment. After signal molecules bind to their specific receptors on the 
cell membrane, the signal is relayed to the inside, usually eliciting a series of 
intracellular reactions. The ultimate cellular response that the signal induces 
is dependent on the nature of the signal, as well as the type and condition 
of the cell. For example, upon detecting insulin in the blood via the insulin 
receptor in their membrane, cells in the liver respond by taking up glucose 
from the blood for storage.

1.4.3  Cytoplasm

Inside the cell membrane, cytoplasm is the thick solution that contains the 
majority of cellular substances, including all organelles in eukaryotic cells 
but excluding the nucleus in eukaryotic cells and the DNA in prokary-
otic cells. The general fluid component of the cytoplasm that excludes the 
organelles is called the cytosol. The cytosol makes up more than half of the 
cellular volume and is where many cellular activities take place, including 
a large number of metabolic steps such as glycolysis and interconversion of 
molecules, and most signal transduction steps. In prokaryotic cells, due to 
the lack of the nucleus and other specialized organelles, the cytosol is almost 
the entire intracellular space and where most cellular activities take place.

Besides water, the cytosol contains large amounts of small and large 
molecules. Small molecules, such as inorganic ions, provide an overall bio-
chemical environment for cellular activities. In addition, ions such as Na+ ,  
K+ , and Ca2+  also have substantial concentration differences between the 
cytosol and the extracellular space. Cells spend a lot of energy maintaining 
these concentration differences, and use them for signaling and metabolic 
purposes. For example, the concentration of Ca2+  in the cytosol is normally 
kept very low at ~10− 7 M whereas in the extracellular space it is ~10− 3 M. The 
rushing in of Ca2+  under certain conditions through ligand-  or voltage- 
gated channels serves as an important messenger, inducing responses in a 
number of signaling pathways, some of which lead to altered gene expres-
sion. Besides small molecules, the cytosol also contains large numbers of 
macromolecules. Far from being simply randomly diffusing in the cytosol, 
these large molecules form molecular machines that collectively function as 
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a “bustling metropolitan city” [1]. These supra- macromolecular machines 
are usually assembled out of multiple proteins, or proteins and RNA. Their 
emergence and disappearance are dynamic and regulated by external and 
internal conditions.

1.4.4  Endosome, Lysosome, and Peroxisome

Endocytosis is the process that cells bring in macromolecules, or other par-
ticulate substances such as bacteria or cell debris, into the cytoplasm from the 
surroundings. Endosome and lysosome are two organelles that are involved 
in this process. To initiate endocytosis, part of the cell membrane forms a 
pit, engulfs the external substances, and then an endocytotic vesicle pinches 
off from the cell membrane into the cytosol. Endosome, normally in the size 
range of 300– 400 nm in diameter, forms from the fusion of these endocytotic 
vesicles. The internalized materials contained in the endosome are sent to 
other organelles such as lysosome for further digestion.

The lysosome is the principal site for intracellular digestion of internalized 
materials as well as obsolete components inside the cell. Like the condition 
in our stomach, the inside of the lysosome is acidic (pH at 4.5– 5.0), providing 
an ideal condition for the many digestive enzymes within. These enzymes 
can break down proteins, DNA, RNA, lipids, and carbohydrates. Normally 
the lysosome membrane keeps these digestive enzymes from leaking into 
the cytosol. Even in the event of these enzymes leaking out of the lysosome, 
they can do little harm to the cell, since their digestive activities are heavily 
dependent on the acidic environment inside the lysosome whereas the pH of 
the cytosol is slightly alkaline (around 7.2).

Peroxisome is morphologically similar to the lysosome, but it contains 
a different set of proteins, mostly oxidative enzymes that use molecular 
oxygen to extract hydrogen from organic compounds to form hydrogen per-
oxide. The hydrogen peroxide can then be used to oxidize other substrates, 
such as phenols or alcohols, via peroxidation reaction. As an example, liver 
and kidney cells use these reactions to detoxify various toxic substances that 
enter the body. Another function of the peroxisome is to break down long- 
chain fatty acids into smaller molecules by oxidation. Despite its important 
functions, the origin of the peroxisome is still not entirely clear. One theory 
proposes that this organelle has an endosymbiotic origin [2]. If this theory 
holds true, all genes in the genome of the original endosymbiotic organism 
must have been transferred to the nuclear genome. A more recent hypothesis, 
however, is that they had an endogenous origin from the endomembrane 
system, similar to the lysosome and the Golgi apparatus (see next section) [3].

1.4.5  Ribosome

Ribosome is the protein assembly factory in cells, translating genetic infor-
mation carried in messenger RNAs (mRNAs) into proteins. There are vast 
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numbers of ribosomes, usually from thousands to millions, in a typical cell. 
While both prokaryotic and eukaryotic ribosomes are composed of two 
components (or subunits), eukaryotic ribosomes are larger than their pro-
karyotic counterparts. In eukaryotic cells, the two ribosomal subunits are 
first assembled inside the nucleus in a region called the nucleolus and then 
shipped out to the cytoplasm. In the cytoplasm, ribosomes can be either 
free, or get attached to another organelle (the ER). Biochemically, ribosomes 
contain more than 50 proteins and several ribosomal RNA (rRNA) species. 
Because ribosomes are highly abundant in cells, rRNAs are the most abun-
dant in total RNA extracts, accounting for 85% to 90% of all RNA species. For 
profiling cellular RNA populations using next- gen sequencing (NGS), rRNAs 
are usually not of interest despite their abundance and therefore need to be 
depleted to avoid generation of overwhelming amounts of sequencing reads 
from them.

1.4.6  Endoplasmic Reticulum

As indicated by the name, ER is a network of membrane- enclosed spaces 
throughout the cytosol. These spaces interconnect and form a single internal 
environment called the ER lumen. There are two types of ERs in cells: rough 
ER and smooth ER. The rough ER is where all cell membrane proteins, such 
as ion channels, transporters, pumps, and signal molecule receptors, as well 
as secretory proteins, such as insulin, are produced and sorted. The charac-
teristic surface roughness of this type of ER comes from the ribosomes that 
bind to them on the outside. Proteins destined for cell membrane or secre-
tion, once emerging from these ribosomes, are threaded into the ER lumen. 
This ER- targeting process is mediated by a signal sequence, or “address 
tag,” located at the beginning part of these proteins. This signal sequence 
is subsequently cleaved off inside ER before the protein synthesis process is 
complete. Functionally different from the rough ER, the smooth ER plays an 
important role in lipid synthesis for the replenishment of cellular membranes. 
Besides membrane and secretory protein preparation and lipid synthesis, 
one other important function of ER is to sequester Ca2+  from the cytosol. In 
Ca2+ - mediated cell signaling, shortly after entry of the calcium wave into the 
cytosol, most of the incoming Ca2+  needs to be pumped out of the cell and/ or 
sequestered into specific organelles such as ER and mitochondria.

1.4.7  Golgi Apparatus

Besides ER, the Golgi apparatus also plays an indispensable role in sorting 
as well as dispatching proteins to the cell membrane, extracellular space, 
or other subcellular destinations. Many proteins synthesized in the ER are 
sent to the Golgi apparatus via small vesicles for further processing before 
being sent to their final destinations. Therefore the Golgi apparatus is 
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sometimes metaphorically described as the “post office” of the cell. The pro-
cessing carried out in this organelle includes chemical modification of some 
of the proteins, such as adding oligosaccharide side chains, which serves as 
“address labels.” Other important functions of the Golgi apparatus include 
synthesizing carbohydrates and extracellular matrix materials, such as the 
polysaccharide for the building of the plant cell wall.

1.4.8  Cytoskeleton

Cellular processes like the trafficking of proteins in vesicles from ER to the 
Golgi apparatus, or the movement of a mitochondrion from one intracellular 
location to another, are not simply based on diffusion. Rather, they follow 
certain protein- made skeletal structure inside the cytosol, that is, the cyto-
skeleton, as tracks. Besides providing tracks for intracellular transport, the 
cytoskeleton, like the skeleton in the human body, plays an equally important 
role in maintaining cell shape, and protecting the cell framework from phys-
ical stresses as the lipid bilayer cell membrane is fragile and vulnerable to 
such stresses. In eukaryotic cells, there are three major types of cytoskeletal 
structures: microfilament, microtubule, and intermediate filament. Each type 
is made of distinct proteins and has their own unique characteristics and 
functions. For example, microfilament and microtubule are assembled from 
actins and tubulins, respectively, and have different thickness (the diameter is 
around 6 nm for microfilament and 23 nm for microtubule). While biochem-
ically and structurally different, both the microfilament and the microtubule 
have been known to provide tracks for mRNA transport in the form of large 
ribonucleoprotein complexes to specific intracellular sites, such as the distal 
end of a neuronal dendrite, for targeted protein translation [4]. Besides its role 
in intracellular transportation, the microtubule also plays a key role in cell 
division through attaching to the duplicated chromosomes and moving them 
equally into two daughter cells. In this process, all microtubules involved are 
organized around a small organelle called a centrosome. Previously thought 
to be only present in eukaryotic cells, cytoskeletal structure has also been 
discovered in prokaryotic cells [5].

1.4.9  Mitochondrion

The mitochondrion is the “powerhouse” in eukaryotic cells. While some 
energy is produced from the glycolytic pathway in the cytosol, most 
energy is generated from the Krebs cycle and the oxidative phosphor-
ylation process that take place in the many mitochondria contained in a 
cell. The number of mitochondria in a cell is ultimately dependent on its 
energy demand. The more energy a cell needs, the more mitochondria 
it has. Structurally, the mitochondrion is an organelle enclosed by two 
membranes. The outer membrane is highly permeable to most cytosolic 
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molecules, and as a result the intermembrane space between the outer and 
inner membranes is similar to the cytosol. Most of the energy releasing 
process occurs in the inner membrane and in the matrix, that is, the space 
enclosed by the inner membrane. For the energy release, high- energy elec-
tron carriers generated from the Krebs cycle in the matrix are fed into an 
electron transport chain embedded in the inner membrane. The energy 
released from the transfer of high- energy electrons through the chain to 
molecular oxygen (O2), the final electron acceptor, creates a proton gra-
dient across the inner membrane. This proton gradient serves as the 
energy source for the synthesis of ATP, the universal energy currency in 
cells. In prokaryotic cells, since they do not have this organelle, ATP syn-
thesis takes place on their cytoplasmic membrane instead.

The origin of the mitochondrion, based on the widely accepted endo-
symbiotic theory, is an ancient α-Proteobacterium. So not surprisingly, the 
mitochondrion carries its own DNA, but the genetic information contained 
in the mitochondrial DNA (mtDNA) is extremely limited compared to the 
nuclear DNA. The human mitochondrial DNA, for example, is 16,569 bp 
in size coding for 37 genes, including 22 for transfer RNAs (tRNAs), 2 
for rRNAs, and 13 for mitochondrial proteins. While it is much smaller 
compared to the nuclear genome, there are multiple copies of mtDNA 
molecules in each mitochondrion. Since cells usually contain hundreds 
to thousands of mitochondria, there are a large number of mtDNA 
molecules in each cell. In comparison, most cells only contain two copies 
of the nuclear DNA. As a result, when sequencing cellular DNA samples, 
sequences derived from mitochondrial DNA usually comprise a notable, 
sometimes substantial, percentage of total generated reads. Although 
small, the mitochondrial genomic system is fully functional and has the 
entire set of protein factors for mtDNA transcription, translation, and 
replication. As a result of its activity, when cellular RNA molecules are 
sequenced, those transcribed from the mitochondrial genome also gen-
erate significant amounts of reads in the sequence output.

The many copies of mtDNA molecules in a cell may not all have the same 
sequence due to mutations in individual molecules. Heteroplasmy occurs 
when cells contain a heterogeneous set of mtDNA molecules. In general, mito-
chondrial DNA has a higher mutation rate than its nuclear counterpart. This 
is because the transfer of high- energy electrons along the electron transport 
chain can produce reactive oxygen species as byproducts, which can oxidize 
and cause mutations in mtDNA. To make this situation even worse, the DNA 
repair capability in mitochondria is rather limited. Increased heteroplasmy 
has been associated with higher risk of developing aging- related diseases, 
including Alzheimer’s disease, heart disease, and Parkinson’s disease [6]. 
Furthermore, mitochondrial DNA mutations have been known to underlie 
aging and cancer development [7]. Certain hereditary mtDNA mutations 
also underlie maternally inherited diseases that mostly affect the nervous 
system and muscle, both of which are characterized by high energy demand.

 

 

 



Next-Generation Sequencing Data Analysis12

1.4.10  Chloroplast

In animal cells, the mitochondrion is the only organelle that contains an 
extranuclear genome. Plant and algae cells have another extranuclear genome 
besides the mitochondrion, the plastid genome. Plastid is an organelle that can 
differentiate into various forms, the most prominent of which is the chloroplast. 
The chloroplast carries out photosynthesis through capturing the energy in sun-
light and fixing it into carbohydrates using carbon dioxide as substrate, and 
releasing oxygen in the same process. For energy capturing, the green pigment 
called chlorophyll first absorbs energy from sunlight, which is then transferred 
through an electron transport chain to build up a proton gradient to drive the 
synthesis of ATP. Despite the energy source, the buildup of proton gradient for 
ATP synthesis in the chloroplast is very similar to that for ATP synthesis in the 
mitochondrion. The chloroplast ATP derived from the captured light energy is 
then spent on CO2 fixation. Similar to the mitochondrion, the chloroplast also 
has two membranes: a highly permeable outer membrane and a much less per-
meable inner membrane. The photosynthetic electron transport chain, however, 
is not located in the inner membrane, but in the membrane of a series of sac- like 
structures called thylakoids located in the chloroplast stroma (analogous to the 
mitochondrial matrix).

Plastid is believed to be evolved from an endosymbiotic cyanobaterium, 
which has gradually lost the majority of its genes in its genome over millions of 
years. The current size of most plastid genomes is 120– 200 kb, coding for rRNAs, 
tRNAs, and proteins. In higher plants there are around 100 genes coding for 
various proteins of the photosynthetic system [8]. The transmission of plastid 
DNA (ptDNA) from parent to offspring is more complicated than the maternal 
transmission of mtDNA usually observed in animals. Based on the transmis-
sion pattern, it can be classified into three types: 1) maternal, inheritance only 
through the female parent; 2) paternal, inheritance only through the male parent; 
or 3) bioparental, inheritance through both parents [9]. Similar to the situation 
in mitochondrion, there exist multiple copies of ptDNA in each plastid, and as 
a result there are large numbers of ptDNA molecules in each cell with potential 
heteroplasmy. Transcription from these ptDNA also generates copious amounts 
of RNAs in the organelle. Therefore, sequence reads from ptDNA or RNA com-
prise part of the data when sequencing plant and algae DNA or RNA samples, 
along with those from mtDNA or RNA.

1.5  The Cell as a System

1.5.1  The Cellular System

From the above description of a typical cell, it is obvious that the cell is a self- 
organizing system, containing many different molecules and structures that 
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work together coherently. Unlike other non- biological systems, including 
natural and artificial systems such as a car or a computer, the cell system is 
unique as it continuously renews and perpetuates itself without violating 
the laws of the physical world. It achieves this by obtaining energy from 
and exchanging materials with its environment. The cellular system is also 
characterized by its autonomy, that is, all of its activities are self- regulated. 
This autonomy is conferred by the genetic instructions coded in the cell’s 
DNA. Besides such characteristics, the cell system is highly robust, as its 
homeostasis is not easily disturbed by changes in its surroundings. This 
robustness is a result of billions of years of evolution, which has led to the 
building of tremendous complexity into the system. To study this complexity, 
biologists have been mostly taking a reductionist approach to studying the 
different cellular molecules and structures piece by piece. This approach has 
been highly successful and much knowledge has been gathered on most parts 
of the system. For a cell to function as a single entity, however, these different 
parts do not work alone. To study how it operates as a whole, the different 
parts need to be studied in the context of the entire system and therefore 
a holistic approach is also needed. It has become more and more clear to 
researchers in the life science community that the interactions between the 
different cellular parts are equally, if not more, important as any part alone.

1.5.2  Systems Biology of the Cell

Systems biology is an emerging field that studies the complicated interactions 
among the different parts of biological systems. It is an application of the 
systems theory to the biological field. Introduced by the biologist Ludwig von 
Bertalanffy in the 1940s, this theory aims to investigate the principles common 
to all complex systems, and to describe these principles using mathematical 
models. This theory is applicable to many disciplines including physics, soci-
ology, and biology, and one goal of this theory is to unify the principles of 
systems as uncovered from the different disciplines. It is expected, therefore, 
that principles uncovered from other systems may be applicable to biological 
systems and provide guidance to better understanding of their working.

In the traditional reductionist approach, a single gene or protein is the 
basic functioning unit. In systems biology, however, the basic unit is a 
genetic circuit. Genetic circuit can be defined as a group of genes (or the 
proteins they code) that work together to perform a certain task. There are 
a multitude of tasks in a cell that need to be carried out by genetic circuits, 
from the transduction of extracellular signal to the inside, the step- by- step 
breakdown of energy molecules (such as glucose) to release energy, to the 
replication of DNA prior to cell division. It is these genetic circuits that 
underlie cellular behavior and physiology. If the information or material 
flux in a genetic circuit is blocked or goes awry, the whole system will be 
influenced, which might lead to the malfunctioning of the system and likely 
a diseased state.
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Based on the hierarchical organization principle of systems, gene circuits 
interact with each other and form a complicated genetic network. Mapping 
out a genetic network is a higher goal of systems biology. Genetic network 
has been shown to share some common characteristics with non- biological 
networks such as the human society or the Internet [10]. One of such 
characteristics is modularity, referring to the fact that genes (or proteins) that 
work together to achieve a common goal often form a module and the module 
is used as a single functional unit when needed. Another common character-
istic is the existence of hub or anchor nodes in the network, as a small number 
of highly connected genes (or proteins) in a genetic network serve as hubs or 
anchors through which other genes (or proteins) are connected to each other.

1.5.3  How to Study the Cellular System

Research into the systems biology of the cell is largely enabled by techno-
logical advancements in genomics, proteomics, and metabolomics. High- 
throughput genomics technologies, for example, allow simultaneous analysis 
of tens of thousands of genes in an organism’s genome. Genome refers to the 
whole set of genetic material in an organism’s DNA, including both protein- 
coding and non- coding sequences. Similarly, proteome and metabolome are 
defined as the complement of proteins and metabolites (small molecules), 
respectively, in a cell or population of cells. Proteomics, through simultaneous 
separation and identification of proteins in a proteome, provides answers to 
the questions of how many proteins are present in the target cell(s) and at 
what abundance levels. Metabolomics, on the other hand, through analyzing 
a large number of metabolites simultaneously, monitors the metabolic status 
of target cells.

The development of modern genomics technologies was mostly initiated 
when the human genome was sequenced by the Human Genome Project. 
The completion of the sequencing of this genome and the genomes of other 
organisms, and the concurrent development of genomics technologies, 
have for the first time offered an opportunity to study the systems prop-
erties of the cell. The first big wave of genomics technologies was mostly 
centered on microarray, which enables analysis of the transcriptome and 
subsequently study of genome- wide sequence polymorphism and the 
epigenome. By studying all RNAs transcribed in a cell or population of 
cells, transcriptomic analysis investigates what genes are active and how 
active. Determination of genome- wide sequence variations among indi-
viduals in a population enables examination of the relationship between 
certain genomic polymorphisms and cellular dysfunctions, phenotypic 
traits, or diseases. Epigenomic studies provide answers to the question 
how the genomic information encoded in the DNA sequence is regulated 
by the code conferred by chemical modifications of DNA bases. More 
recently, the development of NGS technologies provides more power, 
coverage, and resolution to the study of the genome, the transcriptome, 
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and the epigenome (for details on the development of NGS technologies 
see Chapter 4). These NGS technologies, along with recent technological 
developments in proteomics and metabolomics, further empower the 
study of the cellular system.
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2  
DNA Sequence: The Genome Base

2.1  The DNA Double Helix and Base Sequence

Among the different types of molecules in cells, DNA has a structure that 
makes it ideal to code the blueprint of life. The building blocks of DNA are 
nucleotides, which are made up of three chemical groups: a five- carbon sugar 
(deoxyribose), phosphate, and one of four nucleobases. The spatial struc-
ture of DNA is a double helix comprised of two strands. The backbone of 
each strand is made of the sugar moiety and phosphate, which are invari-
ably connected in an alternating fashion and therefore do not carry genetic 
information. The “rungs” that connect the two strands are composed of 
nucleobases, which are where the information is stored. Since the discovery 
of this structure in 1953 by Watson and Crick, the elegance and simplicity of 
this structure has fascinated generations of biologists, chemists, and scientists 
from other fields.

There are four different types of nucleobases (or simply bases) in 
DNA: two purines (adenine, usually abbreviated as A; and guanine, G), 
and two pyrimidines (cytosine, C; and thymine, T). Nucleobases in the two 
DNA strands that form the rung structure interact via hydrogen bonding in 
a fixed manner: A always pairing with T, and C with G. This complementary 
base- pairing pattern enables the DNA molecule to assume the most thermo-
dynamically favorable structure. The fixed pairing pattern between the bases 
makes it easy to provide coding for life and to replicate for perpetuation.

The almost endless arrangements of the base pairs in DNA provide the 
basis for its role as the genetic information carrier. The information embedded 
in the DNA base sequence dictates what, when, and how many proteins are 
made in a cell at a certain point of time. At a deeper level, the information 
codes for the entire operating logic of the cellular system. It contains all 
instructions needed to form a new life and for it to grow, develop, and repro-
duce. From the medical point of view, alterations or polymorphisms in the 
DNA base sequence can predispose us to certain diseases as well as underlie 
our responses to medications.
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2.2  How DNA Molecules Replicate and Maintain Fidelity

The DNA’s double helix structure and complementary base- pairing make it 
robust to copy the bio- information it carries through its replication. To rep-
licate, the two strands of the parent DNA molecule are first unwound by an 
enzyme called helicase. The two unwound strands then serve as templates 
for the synthesis of new complementary strands, giving rise to two offspring 
DNA molecules. The enzyme that carries out the new strand synthesis is called 
DNA polymerase, which assembles nucleotides into a new strand by adding 
one nucleotide at a time to a pre- existing primer sequence based on comple-
mentary base- pairing with the template strand (Figure 2.1). Biochemically, the 
enzyme catalyzes the formation of a covalent phosphodiester bond between 
the 5’- phosphate group of the incoming complementary nucleotide and the 
3’- hydroxyl group on the elongating strand end. Besides elongating the new 
DNA strand, most DNA polymerases also have proofreading capability. If 
a nucleotide that is not complementary to the template is attached to the 
end of the elongating strand (i.e., mis- pairing), the enzyme will turn around 
and cleave the wrong nucleotide off. This proofreading activity is important 
to maintain the high fidelity of the DNA replication process. Mutations, or 
sudden changes of nucleotide sequence in DNA, would occur much more 
frequently without this activity.

Many sequencing technologies are based on the process of DNA replication. 
These technologies, often referred to as sequencing- by- synthesis, use this 
process to read nucleotide sequence off one strand of the sequencing DNA 
target. Corresponding to the components required in the DNA replication 
process, these sequencing systems require the following basic components:    
(1) sequencing DNA target, which provides the template; (2) nucleotides; 
(3) a primer; and (4) a DNA polymerase. Since the DNA polymerase extends 
the new strand by attaching one nucleotide at a time, detecting the attached 
nucleotide after each extension cycle generates a readout of the nucleo-
tide sequence on the template DNA strand. To facilitate the detection, the 
nucleotides used in sequencing reactions are usually chemically modified, 
including labeling with fluorescent tags. Chapter 4 focuses on the evolution 
of sequencing technologies.

Besides the high fidelity of DNA polymerases, an efficient DNA repair 
system is also crucial to maintain genome stability and keep mutation rate low. 
Even under normal conditions, DNA nucleotide sequence can be accidently 
altered by many physical and chemical factors in the environment, including 
intracellularly generated reactive oxygen and nitrogen species, radiation in 
the environment (such as UV, X- ray, or γ- ray), and other chemical mutagens. 
If left uncorrected, these changes will accumulate and cause disturbances to 
normal cell function or even cause cell death, leading to diseases. To maintain 
the fidelity of DNA molecules, cells invest heavily on DNA repair enzymes. 
These enzymes constantly scan genomic DNA and make repairs if damage is 
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FIGURE 2.1
The DNA replication process. To initiate the process, a primer, which is a short DNA sequence 
complementary to the start region of the DNA template strand, is needed for DNA polymerase 
to attach nucleotides and extend the new strand. The attachment of nucleotides is based on 
complementary base- pairing with the template. If an error occurs due to mis- pairing, the DNA 
polymerase removes the mis- paired nucleotide using its proofreading function. Due to the 
biochemical structure of the DNA molecule, the direction of the new strand elongation is from 
its 5’ end to 3’ end (the template strand is in the opposite direction; the naming of the two 
ends of each DNA strand as 5’ and 3’ is from the numbering of carbon atoms in the nucleotide 
sugar ring).

 

 



Next-Generation Sequencing Data Analysis20

detected. The serious consequences of a weakened DNA repair system can be 
exemplified by mutations in BRCA2, a gene coding for a DNA repair enzyme, 
which lead to breast and ovarian cancers.

2.3  How the Genetic Information Stored in 
DNA Is Transferred to Protein

While the logic of the cellular system is written in the nucleotide sequence 
of its genomic DNA, almost all cellular activities are executed by the wide 
array of proteins in the cell’s proteome. The bio- information flow from DNA 
to protein, known as the central dogma (Figure 2.2), provides a fundamental 
framework for modern molecular biology and genetic engineering. Based 
on this framework, a gene’s DNA sequence is first transcribed to make 
mRNA, and then the nucleotide sequence in mRNA is used to guide the 
assembly of amino acids into a protein. The translation of the mRNA nucleo-
tide sequence to the protein amino acid sequence is based on the triplet gen-
etic code. A continuous segment of DNA that contains the full set of triplet 
codon for protein translation, from start to stop, is often called an open 
reading frame (or ORF). The synthesis of one type of bio- polymer molecule 
based on information stored in another bio- polymer is one of the greatest 
“inventions” of nature.

Since its initial introduction, the central dogma has been gradually modi-
fied with increased sophistication. In its original form, one gene is translated  
into one protein via one mRNA. This one gene– one protein paradigm was  
later found to be too simplistic, as one gene can generate multiple forms of  

DNA (Gene)

RNA 
(Primary Transcript)

mRNA 

Protein
Exon

Intron

Promoter 3’-UTR

FIGURE 2.2
The central dogma.
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proteins through alternative splicing (next chapter). In addition, the informa-
tion flow between DNA and RNA is not simply one- way from DNA to RNA,  
but RNA can also be reverse transcribed to DNA in some organisms. On the  
additional role of RNAs in this information flow, some non- protein- coding  
RNAs can silence gene expression through mechanisms such as inhibiting  
gene transcription or translation, or protect genome through mechanisms  
like preventing the movement of transposable elements (or transposons,  
mobile DNA elements that copy themselves to different genomic loci) (also  
see next chapter). Furthermore, chemical modifications of DNA and some  
DNA- interacting proteins constitute the epigenome, which also regulates the  
flow of genetic information.

2.4  The Genomic Landscape

2.4.1  The Minimal Genome

After understanding the flow of bio- information from DNA to protein, 
the next question is what is the minimum amount of genetic information 
needed to make the cellular system tick, that is, what constitutes the min-
imal genome. Attempts to define the minimal genome started in the late 
1950s, shortly after the discovery of the double helix structure of DNA. 
The answer to this important question is not straightforward, however, 
as the amount of genetic information needed for a minimal life form is 
dependent on the specific environment it lives in. Considering the basic 
functions that a cell has to perform, the minimal genome needs to con-
tain genes at least for DNA replication, RNA synthesis and processing, 
protein translation, energy and molecular metabolism. A small bacterium, 
Mycoplasma genitalium, often used as a model of a naturally existing min-
imal genome for a free- living organism, has a genome of 580 kilobase pairs 
(kbp) and 504 genes [1]. An artificially designed and completely synthetic 
minimal genome reported in 2016 to support a viable cell contains 531 kbp 
sequence and 473 genes [2].

2.4.2  Genome Sizes

For the least sophisticated organisms, such as Mycoplasma genitalium, a min-
imal genome is sufficient. For increased organismal complexity, more genetic 
information and, therefore, a larger genome is needed. As a result, there  
is a positive correlation between organismal complexity and genome size,  
especially in prokaryotes. In eukaryotes, however, this correlation becomes  
much weaker, largely due to the existence of non- coding DNA elements in  
varying amounts in different eukaryotic genomes (for details on non- coding  
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DNA elements, see Section 2.4.4) and whole- genome duplication. In terms of  
genome size, the currently documented range is 112 kbp, coding 137 genes,  
of Nasuia deltocephalinicola (an obligate bacterial endosymbiont living in leaf-
hopper cells) [3] on the lower end, to 149 gigabase pairs (gbp) (number of  
genes coded still unknown) of Paris japonica (a slow- growing flowering plant)  
[4] on the higher end. Table 2.1 shows the total number of genes in some of  
the most studied organisms.

2.4.3  Protein- Coding Regions of the Genome

The protein- coding regions are the part of the genome that we foremost 
study and know most about. The content of these regions directly affects pro-
tein synthesis and protein diversity in cells. In prokaryotic cells, function-
ally related protein- coding genes are often arranged next to each other and 
regulated as a single unit known as operon. The gene structure in eukaryotic 
cells is more complicated. The coding sequences (CDS) of almost all eukary-
otic genes are not continuous and interspersed among non- coding sequences. 
The non- coding intervening sequences are called introns (int for intervening), 
while the coding regions are called exons (ex for expressed) (see Figure 2.2). 
During gene transcription, both exons and introns are transcribed. In the sub-
sequent mRNA maturation process, introns are spliced out and exons are 
joined together for protein translation.

In the human genome, the average number of exons per gene is 8.8. The 
titin gene, coding for a large abundant protein in striated muscle, has 363 
exons, the most in any single gene, and also has the longest single exon 

TABLE 2.1

Genome Sizes and Total Gene Numbers in Major Model Organisms* (Ordered by 
Genome Size)

Organism Genome Size (bp) Number of Coding Genes

Mycoplasma genitalium (Bacterium) 580,076 504
Haemophilus influenzae (Bacterium) 1,846,259 1,715
Escherichia coli (Bacterium) 4,641,652 4,288
Saccharomyces cerevisiae (Yeast) 12,157,105 6,016
Caenorhabditis elegans (Nematode) 100,286,401 19,984
Arabidopsis thaliana (Thale cress) 119,668,634 27,562
Drosophila melanogaster (Fruit fly) 143,726,002 13,968
Oryza sativa (Rice) 374,422,835 28,738
Medicago truncatula (Legume) 430,008,013 31,927
Danio rerio (Zebrafish) 1,373,454,788 26,522
Zea mays (Maize) 2,182,786,008 34.337
Rattus norvegicus (Rat) 2,647,915,728 22,228
Mus Musculus (Mouse) 2,728,222,451 22,186
Homo sapiens (Human) 3,099,441,038 20,024

*Data based on NCBI genome database as of Nov. 2022.
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(17,106 bp) among all currently known exons. In aggregate the total number 
of currently known exons in the human genome is around 180,000. With 
a combined size of 30 Mb, they constitute 1% of the human genome. 
This collection of all exons in the human genome, or in other eukaryotic 
genomes, is termed as the exome. Different from the transcriptome, which 
is composed of all actively transcribed mRNAs in a particular sample, the 
exome includes all exons contained in a genome. While it only covers a very 
small percentage of the genome, the exome represents the most important 
and the best annotated part of the genome. Sequencing of the exome has 
been used as a popular alternative to whole genome sequencing. While it 
lacks on coverage, exome sequencing is more cost effective, faster, and easier 
for data interpretation.

2.4.4  Non- Coding Genomic Elements

While protein- coding genes are the most studied genomic element, they 
may not necessarily be the most abundant part of the genome. Prokaryotic 
genomes are usually rich in protein- coding gene sequences, e.g., they account 
for approximately 90% of the E. coli genome. In complex eukaryotic genomes, 
however, their percentage is lower. For example, only about 1.5% of the 
human genome codes for proteins (Figure 2.3). Among the non- protein- 
coding sequences in eukaryotic genomes are introns, regulatory sequences, 
and other unique non- coding DNA elements. The regulatory sequences are 
genomic elements that are known to regulate gene expression, including 
promoters, terminators, enhancers, repressors, and silencers. In comparison, 
our current understanding of the other unique non- coding DNA elements is 
the most rudimentary. We know nearly nothing about these elements, with 
the exception of non- coding RNA genes, which include rRNAs, tRNAs, and 
other functionally important RNA species, which will be detailed in the next 
chapter. As mentioned in Chapter 1, rRNAs are key structural components 
of the ribosome and directly involved in protein translation, while tRNAs 
transport proper amino acids to the ribosome for protein translation based 
on the genetic code.

Repetitive sequences occupy more than half of the human genome, and  
are even more pervasive in some other eukaryotic genomes. For example, in  
some plants and amphibians, 80% of the genome is composed of repetitive  
sequences. The percentage of repetitive sequences in prokaryotic genomes is  
relatively lower but still significant. With respect to their internal structures,  
some repetitive sequences are tandem repeats, with the basic repeating units  
connected head- to- tail. In this type of sequence repeats, the length of the  
repeating units is highly variable, from <10 bp to thousands of base pairs.  
The other major type of sequence repeats are interspersed repeats, present  
as a single copy in many genomic loci. These are either transposons, or  
retrotransposons, that copy themselves via RNA intermediates. Discovered  
by geneticist Barbara McClintock, transposons (also called transposable  
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elements, or “jumping genes”) are DNA sequences that move from one gen-
omic location to another. Repeat sequence units of this type are usually 100  
bp to over 10 kb in length, and may appear in over 1 million loci dispersed  
across the genome.

Many highly repetitive DNA sequences exist in inert parts of chromosomes, 
such as the centromere and telomere. The centromere, the region where two 
sister chromatids are linked together before cell division, contains tandem 
repeat sequences. The telomere, existing at the ends of chromosomes, is 
also composed of highly repetitive DNA sequences. The telomeric structure 
protects chromosomal integrity and thereby maintains genomic stability. 
Besides being essential in maintaining the chromosomal structure, repeat 
sequences have other functions in the genome, e.g., they play an architec-
tonic role in higher order physical genome structuring [5]. Despite their 
abundance and function, because sequences associated with repeat regions 
are not unique, they create a major hurdle for assembling a genome de novo 
from sequencing reads, or mapping reads originated from these regions to a 
pre- assembled genome.
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FIGURE 2.3
The composition of the human genome.
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2.5  DNA Packaging, Sequence Access, and 
DNA- Protein Interactions

2.5.1  DNA Packaging

In the nucleoid of prokaryotic cells, multiple proteins fold and condense gen-
omic DNA into a supercoiled structure to make it fit into the rather limited 
space. While being generally condensed, parts of the DNA need to be exposed 
to allow sequence access for transcription by related proteins factors. While 
these processes have been studied in prokaryotic cells, DNA packaging and 
sequence accessing are better studied and understood in eukaryotic cells. 
In these cells, because of their much larger genome size, genomic DNA is 
condensed in the nucleus to a much higher degree. For instance, the total 
length of human genomic DNA is about 2 meters when fully stretched out, 
but the diameter of the human cell nucleus is only 6 μm. Bound to specific 
proteins called histones, eukaryotic DNA is packaged in the form of chro-
matin, in which the positively charged histones bind to the negatively 
charged DNA molecules through electrostatic interactions. This packaging 
process involves compacting DNA at different levels. At the first level, DNA 
wraps around a protein complex composed of eight histone subunits to form 
the basic structure of nucleosome. Each nucleosome contains around 200 
nucleotide pairs and has a diameter of 11 nm. At the second level the nucleo-
some structure is compacted into a fiber structure. This fiber, with a diameter 
of 30 nm, is the form most chromatin takes in the interphase between two cell 
divisions. Prior to cell division, this chromatin fiber is further condensed by 
two additional levels into chromosome, the extremely condensed form that 
we can observe under a light microscope.

2.5.2  Sequence Access

Since different DNA sequences in the genome are constantly being 
transcribed, instead of being permanently locked into the compacted 
form, DNA sequences at specific loci need to be dynamically exposed to 
allow transcriptional access to protein factors such as transcription factors 
and coactivators. Furthermore, DNA replication and repair also require 
chromatin unpackaging. This unpackaging of the chromatin structure is 
carried out through two principal mechanisms. One is through histone 
modification, such as acetylation of lysine residues on histones by histone 
acetyltransferases, which reduces the positive charge on histones and there-
fore decreases the electrostatic interactions between histones and DNA. 
Deacetylation by histone deacetylases, on the other hand, restricts DNA 
access and represses transcription. The other unpackaging mechanism is 
through the actions of chromatin remodeling complexes. These large pro-
tein complexes consume ATP and use the released energy to expose DNA 
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sequences for transcription through nucleosomal repositioning, nucleo-
somal eviction, or local unwrapping.

2.5.3  DNA- Protein Interactions

While DNA is the carrier of the code of life, the DNA code cannot be executed 
without DNA- interacting proteins. Nearly all of the processes mentioned 
above, including DNA packaging/ unpackaging, transcription, repair, 
and replication, rely on such proteins. Besides histones, examples of these 
proteins include transcription factors, RNA polymerases, DNA polymerases, 
and nucleases (for DNA degradation). Many of these proteins, such as 
histones and DNA/ RNA polymerases, interact with DNA regardless of their 
sequence or structure. Some DNA- interacting proteins bind to DNA of spe-
cial structure/ conformation, e.g., high- mobility group (HMG) proteins that 
have high affinity for bent or distorted DNA. Some other DNA- interacting 
proteins bind only to regions of the genome that have certain characteristics 
such as having damage, the examples of which are DNA repair enzymes such 
as BRCA1, BRCA2, RAD51, RAD52, and TDG.

The most widely studied DNA- interacting proteins are transcription 
factors, which bind to specific DNA sequences. Through binding to their 
specific recognition sequences in the genome, transcription factors regu-
late transcription of gene targets that contain such sequences in their pro-
moter region. Since they bind to more than one gene locations in the genome, 
transcription factors regulate the transcription of a multitude of genes in 
a coordinated fashion, usually as a response to certain internal or external 
environmental change. For instance, NRF2 is a transcription factor that is 
activated in response to oxidative stress. Upon activation, it binds to a short 
segment of specific DNA sequence called the anti- oxidant response element 
(ARE) located in the promoter region of those genes that are responsive to 
oxidative stress. Through binding to this sequence element in many regions 
of the genome, NRF2 regulates the transcription of its target genes and 
thereby elicits coordinated responses to counteract the damaging effects of 
oxidative stress.

Study of DNA- protein interactions provides insights into how the 
genome responds to various conditions. For example, determination of 
transcription factor binding sites, such as those of NRF2, across the genome 
can unravel what genes might be responsive to the conditions that activate 
the transcription factors. While such sites can be predicted computationally, 
only wet- lab experiment can determine where a transcription factor actu-
ally binds in the genome under a certain condition. ChIP- seq, or chromatin 
immunoprecipitation coupled with sequencing, is one application of NGS 
that is developed to study genomic binding of transcription factors and 
other DNA- interacting proteins. Chapter 13 will focus on ChIP- seq data 
analysis.
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2.6  DNA Sequence Mutation and Polymorphism

While DNA replication is a high- fidelity process and the nucleus maintains 
an army of DNA repair enzymes, sequence mutation does happen, although 
at a very low frequency. In general, the rate of mutation in prokaryotic and 
eukaryotic cells is at the scale of 10− 9 per base per cell division. In multi- 
cellular eukaryotic organisms, germline cells have lower mutation rate than 
somatic cells. In these organisms, because most cells, including germline 
cells, undergo multiple divisions in the organisms’ lifetime, the per- 
generation mutation rate is significantly higher. For example, whole genome 
sequencing data collected from human blood cell DNA estimates a mutation 
rate of 1.1 × 10− 8 per base per generation, corresponding to around 70 new 
mutations in each human diploid genome [6]. Depending on the nature of the 
change, mutations may have deleterious, neutral, or rarely, beneficial effects 
on the organism. Mutations lead to sequence variation, and are ultimately 
the basis of genome evolution and diversification for those carried through   
the germline. Although mutations in somatic cells are not passed on to the 
next generation, they can lead to diseases, including cancer, and affect the 
survival of the individual.

There are various forms of DNA mutations, from single nucleotide 
substitutions, small insertions/ deletions (or indels), to structural variations 
(SVs) that involve larger genomic regions. Among these different types of 
mutations, single nucleotide substitutions, also called point mutations, are the 
most common. These substitutions can be either transitions or transversions. 
Transitions involve the substitution of a purine for the other purine (i.e., 
A↔G) or a pyrimidine for the other pyrimidine (i.e., C↔T). Transversions, 
on the other hand, involve the substitution of a purine for a pyrimidine, or 
vice versa. Theoretically there are more combinations of transversions than 
transitions, but due to the nature of the underlying biochemical processes 
transitions actually occur more frequently than transversions. If single 
nucleotide substitution takes place in a protein- coding region, it may or 
may not lead to change in amino acid coding. If it causes the substitution 
of one amino acid for another, it is a missense mutation, which may lead to 
change of protein function. If it introduces a stop codon and as a result leads 
to the generation of a truncated protein, it is a nonsense mutation. Both the 
missense and nonsense mutations are non- synonymous mutations. If it does 
not change the coded amino acid due to the redundancy in the genetic code, 
it is a synonymous mutation and has no effect on protein function. Because 
of its common occurrence, single nucleotide variation (SNV) is the most fre-
quently observed sequence variation. If an SNV is commonly observed in 
a population, it is called a single nucleotide polymorphism (or SNP). More 
than 1,000 million SNPs in the human genome have been cataloged at the 
time of this writing (November 2022). Because of their high density in the 
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genome, SNPs are often used as flagging markers to cover the entire genome 
in high resolution when scanning for genomic region(s) that are associated 
with a phenotype or disease of interest.

Besides single nucleotide substitutions, indels are another common type 
of mutation. Most indels involve small numbers of nucleotides. In protein- 
coding regions, small indels lead to the shift of ORF (unless the number of 
nucleotides involved is a multiple of three), resulting in the formation of a 
vastly different protein product. Indels that involve large regions lead to 
alterations of genomic structure and are usually considered as a form of SV. 
Besides large indels, SVs, defined as changes encompassing at least 50 bp [7], 
also include inversions, translocations, or duplications. Copy number vari-
ation (CNV) is a subcategory of SV, usually caused by large indel or seg-
mental duplication. Although they affect larger genomic region(s) and some 
lead to observable phenotypic changes or diseases, many CNVs, or SVs in 
general, have no detectable effects. The frequency of SVs in the genome was 
underestimated previously due to technological limitations. The emergence 
of NGS has greatly enabled SV detection, which has led to the realization of 
its wide existence [8].

2.7  Genome Evolution

The spontaneous mutations that lead to sequence variation and poly-
morphism in a population are also the fundamental force behind the evo-
lution of genomes and eventually the Darwinian evolution of the host 
organisms. Gradual sequence change and diversification of early genomes, 
over billions of years, have evolved into the extremely large number of 
genomes that had existed or are functioning in varying complexity today. In 
this process, existing DNA sequences are constantly modified, duplicated, 
and reshuffled. Most mutations in protein- coding or regulatory sequences 
disrupt the protein’s normal function or alter its amount in cells, causing cel-
lular dysfunction and affecting organismal survival. Under rare conditions, 
however, a mutation can improve existing protein function or lead to the 
emergence of new functions. If such a mutation offers its host a competitive 
advantage, it is more likely to be selected and passed on to future generations.

Gene duplication provides another major mechanism for genome evolu-
tion. If a genomic region containing one or multiple gene(s) is duplicated 
resulting in the formation of an SV, the duplicated region is not under selec-
tion pressure and therefore becomes substrate for sequence divergence and 
new gene formation. Although there are other ways of adding new genetic 
information to a genome such as inter- species gene transfer, DNA duplica-
tion is believed to be a major source of new genetic information generation. 
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Gene duplication often leads to the formation of gene families. Genes in the 
same family are homologous, but each member has their specific function and 
expression pattern. As an example, in the human genome there are 339 genes 
in the olfactory receptor gene family. Odor perception starts with the binding 
of odorant molecules to olfactory receptors located on olfactory neurons 
inside the nose epithelium. To detect different odorants, combination of 
different olfactory receptors that are coded by genes in this family is required. 
Based on their sequence homology, members of this large family can be even 
further grouped into different subfamilies [9]. The existence of pseudogenes 
in the genome is another result of gene duplication. After duplication, some 
genes may lose their function and become inactive from additional mutation. 
Pseudogenes may also be formed in the absence of duplication by the disab-
ling of a functional gene from mutation. A pseudogene called GULO mapped 
to the human chromosome 8p21 provides such an example. The functional 
GULO gene in other organisms codes for an enzyme that catalyzes the last 
step of ascorbic acid (vitamin C) biosynthesis. This gene is knocked out in 
primates, including human, and becomes a pseudogene. As a result, we have 
to get this essential vitamin from food. The inactivation of this gene is pos-
sibly due to the insertion to the gene’s coding sequence of a retrotransposon- 
type repetitive sequence called Alu element [10].

DNA recombination, or reshuffling of DNA sequences, also plays an 
important role in genome evolution. Although it does not create new genetic 
information, by breaking existing DNA sequences and re- joining them DNA 
recombination changes the linkage relationships between different genes 
and other important regulatory sequences. Without recombination, once a 
harmful mutation is formed in a gene, the mutated gene will be permanently 
linked to other nearby functional genes, and impossible to regroup all the 
functional genes back together into the same DNA molecule. Through this 
regrouping, DNA recombination makes it possible to avoid gradual accumu-
lation of harmful gene mutations. Most DNA recombination events happen 
during meiosis in the formation of gametes (sperm or eggs) as part of sexual 
reproduction.

2.8  Epigenome and DNA Methylation

Besides the regulatory DNA sequences introduced earlier, chemical 
modifications of specific nucleotides in the genome, like the acetylation and 
deacetylation of histones, offer another layer of regulation on genetic activ-
ities. Since they provide additional genetic activity regulation, these chemical 
modifications on DNA and histones constitute the epigenome. Methylation 
of the fifth carbon on cytosine (5- methylcytosine, or 5mC) is currently the 
most studied epigenomic modification in many organisms. Enzymatically, 
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this methylation is carried out and maintained by DNA methyltransferases 
(three identified in mammals: DNMT1, DNMT3A, and DNMT3B). The 
cytosines that undergo methylation can occur in three different sequence 
contexts –  CpG, CHG, and CHH (H can be A, G, or T) –  each involving 
different pathways [11]. Most methylated cytosines exist in the CpG con-
text, where the methylation reduces gene expression through recruiting gene 
silencing proteins, or preventing transcription factors from binding to the 
DNA. The methylation of cytosines in this context also affects nucleosome 
positioning and chromatin remodeling, as methyl- CpG-binding domain 
(MBD) proteins that specifically bind to 5mC at CpG sites can recruit histone 
modifying proteins and those in the chromatin remodeling complex [12]. The 
effects of cytosine methylation in the CHG and CHH contexts are less clear 
but currently available data seems to suggest that they may play a regulatory 
role in repetitive regions [13].

Just like deacetylation counteracts the effects of acetylation in histones, 
demethylation of cytosines should be similarly important to reverse the 
effects of 5mC when the methylation is no longer needed. Until recently, 
the steps involved in the cytosine demethylation process began to be under-
stood. In this process, the 5mC is first oxidized to 5- hydroxymethylcytosine 
(5hmC), and then to 5- formylcytosine (5fC) and 5- carboxylcytosine (5caC) 
in mammals. These oxidative conversions are catalyzed by enzyme systems 
such as the TET family proteins. The subsequent base excision repair of 5fC/ 
5caC by an enzyme called TDG, or 5mC directly by the glycosylase enzyme 
in plants, completes the DNA demethylation process [14]. Compared to 5mC, 
the levels of these demethylation intermediate products are detected to be 
much lower in most cells (except that 5hmC has been found to be relatively 
abundant in embryonic stem cells and in the brain).

Different from the genome, which is static, the epigenome is dynamic 
and changes with environmental conditions. These dynamically chan-
ging epigenomic modifications regulate gene expression and thereby play 
important roles in embryonic development, cell differentiation, stem cell 
pluripotency, genomic imprinting, and genome stability. In accordance with 
their regulatory functions, these modifications are highly site specific. To 
study where cytosine methylations take place in the genome, multiple NGS- 
based approaches, which will be detailed in Chapter 14, have been developed 
and widely applied to epigenomics studies. Methodological development 
for the study of cytosine demethylation is currently still at an early stage.

2.9  Genome Sequencing and Disease Risk

The wide accessibility of DNA sequences, largely fueled by the rapid devel-
opment of new sequencing technologies, has uncovered extensive sequence 
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variation in individual genomes within a population. The extensiveness in 
sequence variation was not envisioned in early days of genetics, not even 
when the Human Genome Project was completed in 2003. This has grad-
ually led to a paradigm shift in disease diagnosis and prevention. As a result, 
the public becomes more aware of the role of individual genomic makeup 
in disease development and predisposition. In addition, the easier accessi-
bility to our DNA sequence has further prompted us to look into our genome 
and use that information for preemptive disease prevention. The declining 
cost of genome sequencing has also enabled the biomedical community to 
dig deeper into the genomic underpinnings of diseases, by unraveling the 
linkage between sequence polymorphism in the genome and disease inci-
dence. Below is a brief overview of the major categories of human diseases 
that have an intimate connection with DNA mutation, polymorphism, 
genome structure, and epigenomic abnormality.

2.9.1  Mendelian (Single- Gene) Diseases

The simplest form of hereditary diseases is caused by mutation(s) in a 
single gene, and therefore also called monogenic or Mendelian diseases. For 
example, sickle- cell anemia is caused by a mutation in the HBB gene located 
on the human chromosome 11. This gene codes for the β subunit of hemo-
globin, an important oxygen- carrying protein in the blood. A mutation of this 
gene leads to the replacement of the sixth amino acid, glutamic acid, with 
another amino acid valine in the coded protein. This change of a single amino 
acid causes conformational change of the protein, leading to the generation 
of sickle- shaped blood cells that die prematurely. This disease is recessive, 
meaning that it only appears when both copies (or alleles) of the gene carry 
the mutation. In dominant diseases, however, one mutant allele is enough to 
cause sickness. Huntington’s disease, a neurodegenerative disease that leads 
to gradual loss of movement control and mental faculties, is such a dominant 
single- gene disease. It is caused by mutation in a gene called HTT on the 
human chromosome 4, coding for a protein called huntingtin. The involved 
mutation is an expansion of tri- nucleotide (CAG, codes for the amino acid 
glutamine) repeats. When the number of CAG repeats is higher than 36, it 
leads to the production of an abnormally long polyglutamine tract in the 
huntingtin protein. This confers a dominant deleterious gain of function on 
the protein, causing neuronal damage and eventually loss in the striatum and 
cortical regions of the brain.

2.9.2  Complex Diseases That Involve Multiple Genes

Most common diseases, including heart disease, diabetes, hypertension, 
obesity, and Alzheimer’s disease (AD), are caused by multiple genes. In the 
case of AD, while its familial or early- onset form can be attributed to one 
of three genes (APP, PSEN1, and PSEN2), the most common form, sporadic 

 

 

 



Next-Generation Sequencing Data Analysis32

AD, involves a large number of genes [15]. In this type of complex disease, 
the contribution of each gene is modest, and it is the combined effects of 
mutations in these genes that predispose an individual to these diseases. 
Besides genetic factors, lifestyle and environmental factors often also play 
a role. For example, history of head trauma, lack of mentally stimulating 
activities, and high cholesterol levels are all risk factors for developing AD. 
Because of the number of genes involved and their interactions with non- 
genetic factors, complex multi- gene diseases are more challenging to study 
than single- gene diseases.

2.9.3  Diseases Caused by Genome Instability

Aside from the gene- centered disease models introduced above, diseases can 
also occur as consequences of large- scale genomic changes such as rearrange-
ment of large genomic regions, alterations of chromosome number, and gen-
eral genome instability. For example, when a genome becomes unstable in an 
organism, it can cause congenital developmental defects, tumorigenesis, pre-
mature aging, etc. Dysfunction in genome maintenance, such as DNA repair 
and chromosome segregation, can lead to genome instability. Fanconi anemia 
is an example of a disease caused by genome instability, characterized by 
growth retardation, congenital malformation, bone marrow failure, high 
cancer risk, and premature aging. The genome instability in this disease is 
caused by mutations in a cluster of DNA repair genes, and manifested by 
increased mutation rates, cell cycle disturbance, chromosomal breakage, and 
extreme sensitivity to reactive oxygen species and other DNA damaging 
agents.

Cancer, to a large degree, is also caused by genome instability. This can 
be hinted by the fact that two well- known high- risk cancer genes, BRCA1 
and BRCA2, are both DNA damage repair genes. Mutations in the two 
genes greatly increase the susceptibility to tumorigenesis, such as breast and 
ovarian cancers. In general, many cancers are characterized by chromosomal 
aberrations and genome structural changes, involving deletion, duplication, 
and rearrangement of large genomic regions. The fact that genome instability 
is intimately related to major aspects of cancer cells such as cell cycle regu-
lation and DNA damage repair also points to the important role of genome 
instability in cancer development.

2.9.4  Epigenomic/ Epigenetic Diseases

Besides gene mutations and genome instability, abnormal epigenomic/ epi-
genetic pattern can also lead to diseases. Examples of diseases in this cat-
egory include fragile X syndrome, ICF (immunodeficiency, centromeric 
instability and facial anomalies) syndrome, Rett syndrome, and Rubinstein- 
Taybi syndrome. In ICF syndrome, for example, the gene DNMT3B is 
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mutated leading to the deficiency of DNA methyltransferase 3B. As a result, 
patients afflicted with this disease invariably have DNA hypomethylation. 
Cancer, as a genome disease that is caused by more than one genetic/ gen-
omic factor, is also characterized by abnormal DNA methylation, including 
both hypermethylation and hypomethylation. The hypermethylation is com-
monly observed in the promoter CpG islands of tumor suppressor genes 
[16], which leads to their suppressed transcription. The hypomethylation 
is mostly located in highly repetitive sequences, including tandem repeats 
in the centromere and interspersed repeats. This lowered DNA methylation 
has been suggested to play a role in promoting chromosomal relaxation and 
genome instability [17].
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3  
RNA: The Transcribed Sequence

3.1  RNA as the Messenger

The blueprint of life is written in DNA, but almost all life processes are 
executed by proteins. To convert the information coded in the DNA into the 
wide array of proteins in each cell, segments of DNA sequence in the genome 
must be copied into mRNAs first. The transcribed nucleotide sequences in the 
mRNAs are then translated into proteins through an information decoding 
process carried out by ribosomes. Because of the intermediary role played 
by mRNAs between DNA and proteins, the composition of mRNAs in a cell 
or population of cells –  the transcriptome –  is often used to study cellular 
processes and functions. Unlike the genome, which is static and the same for 
every cell in an organism, the transcriptome is dynamically regulated and 
therefore can be used as a proxy of cellular functional status.

3.2  The Molecular Structure of RNA

Structurally RNA is closely related to DNA and also made of nucleotides. The 
nucleotides that make up the RNA molecule are slightly different from those 
of DNA. Instead of deoxyribose, its five- carbon sugar moiety is a ribose. 
Among the four nucleobases, uracil (U) is used in place of thymine (T), while 
the rest of three (A, C, and G) are the same. Unlike the double- stranded struc-
ture of DNA, RNA molecules are single- stranded, which gives them great 
flexibility. If intramolecular sequence complementarity exists between two 
regions of a single RNA molecule, this structural flexibility allows the regions 
to bend back on each other and form intramolecular interactions.

As a result of its structural flexibility and internal sequence comple-
mentarity, an RNA molecule can assume secondary structures, such as 
hairpins and stem- loops, and tertiary structures depending on its specific 
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sequence. These structures can sometimes afford them special chemical 
properties in cells. For example, some non- messenger RNAs can catalyze 
chemical reactions like protein enzymes, and are therefore called RNA 
enzymes (or ribozymes, more details later in Section 3.4.1). Some RNA 
molecules may assume tertiary structures that enable them to bind to other 
small molecules such as ligands, or large molecules such as RNA- binding 
proteins. For mRNAs, their structures may also be important for various 
steps of their life cycle (see next section for details). One example of this is 
riboswitch, a region in some mRNAs that binds to small molecule ligands 
such as metabolites or ions, and thereby regulates their transcription, trans-
lation, or splicing via changes in RNA structure upon ligand binding [1]. 
Binding of proteins to mRNA elements like those located in the 3’ untrans-
lated region (UTR) can also induce structural changes of these elements 
and affect mRNA translation [2]. Transport of mRNAs to specific cellular 
locations, such as distal dendritic regions of a neuron, also requires the 
mRNAs to assume specific structures for RNA- binding proteins to bind as 
a prerequisite of the transport process. To study structures of individual 
RNAs, computational prediction and experimental approaches such as RNA 
fingerprinting that uses a variety of chemical and enzymatic probes, have 
been the classic methods. With the advent of NGS- based RNA sequencing, 
transcriptome- wide RNA structural mapping is enabled when integrated 
with these classic approaches [3].

3.3  Generation, Processing, and Turnover 
of RNA as a Messenger

When a protein is needed in a cell, its coding gene is first transcribed to mRNA, 
which is then used as the template to translate into the requisite protein. In 
a prokaryotic cell, mRNA transcription is immediately followed by protein 
translation. In a eukaryotic cell, the information flow from DNA to protein 
through mRNA is more complex, because the two steps of transcription and 
translation are physically separated and eukaryotic genes contain introns 
that need to be first removed before translation. In the eukaryotic system, ini-
tial transcript (also called primary transcript) is first synthesized from DNA 
template and then processed, including intron removal, to produce mature 
mRNA in the nucleus. Then the mRNA is transported from the nucleus to 
the cytoplasm for translation. When they are no longer needed, the mRNAs 
are degraded and recycled by the cell. It should also be noted that the tran-
scription process generates a number of mRNA copies from a gene, and the 
number of copies varies from condition to condition and from gene to gene 
depending on cellular functional status.

 

 

 

 

 



RNA: The Transcribed Sequence 37

3.3.1  DNA Template

To initiate transcription, a gene’s DNA sequence is first exposed through 
altering its packing state. In order to transcribe the DNA sequence, the two 
DNA strands in the region are first unwound and only one strand is used as 
the template strand for transcription. Since it is complementary to the RNA 
transcript in base pairing (A, C, G, and T in the DNA template are transcribed 
to U, G, C, and A, respectively, in the RNA transcript), this DNA template 
strand is also called the antisense or negative (– ) strand (Figure 3.1). The 
other DNA strand has the same sequence as the mRNA (except with T’s in 
DNA being replaced with U’s in RNA) and is called the coding strand, sense, 
or positive (+ ) strand. It should be noted that either strand of the genomic 
DNA can be potentially used as the template, and which strand is used as the 
template for a gene depends on the orientation of the gene along the DNA. It 
should also be noted that the triplet nucleotide genetic code that determines 
how amino acids are assembled in proteins refers to the triplet sequence in 
the mRNA sequence.

3.3.2  Transcription of Prokaryotic Genes

RNA polymerase catalyzes the transcription of RNA from its DNA template. 
In prokaryotic cells, there is only one type of RNA polymerase. The prokary-
otic RNA polymerase holoenzyme contains a core enzyme of five subunits 
that catalyzes RNA transcription from a DNA template, and another sub-
unit called the sigma factor that is required for initiation of transcription. 
The sigma factor initiates the process by enabling binding of the core enzyme 
to the promoter region and guiding it to the transcription start site (TSS). 
Promoter is the region upstream of the protein- coding sequence of a gene or 
an operon. Prokaryotic promoters share some core sequence elements, such 
as the motif centered at 10 nucleotides upstream of TSS with the consensus 
sequence TATAAT. Once reaching TSS, the sigma factor disassociates from 

FIGURE 3.1
How the two strands of DNA template match the transcribed mRNA in sequence, and the 
genetic code in mRNA sequence corresponds to peptide amino acid sequence.
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the core enzyme. The core RNA polymerase, unlike DNA polymerase, does 
not need a primer, but otherwise the enzyme catalyzes the attachment of 
nucleotides to the nascent RNA molecule one at a time in the 5’→3’ direction. 
At a speed of approximately 30 nucleotides/ second, the RNA polymerase 
slides through the DNA template carrying the elongating RNA molecule.

Although the attachment of new nucleotides to the elongating RNA is 
based on base pairing with the DNA template, the new elongating RNA 
does not remain associated with the template DNA via hydrogen bonding. 
On the same template multiple copies of RNA transcripts can be simul-
taneously synthesized by multiple RNA polymerases one after another. 
During transcript elongation, these polymerases hold onto the tem-
plate tightly and do not disassociate from the template until stop signal 
is transcribed. The stop signal is provided by a segment of palindromic 
sequence located at the end of the transcribed sequence. Right after tran-
scription, the inherent self- complementarity in the palindromic sequence 
leads to the spontaneous formation of a hairpin structure. Additional stop 
signal is also provided by a string of four or more uracil residues after the 
hairpin structure, which forms weak associations with the complementary 
A’s on the DNA template. The hairpin structure pauses further elongation 
of the transcript, and the weak associations between the U’s on the RNA 
and the A’s on the DNA dissociate the enzyme and the transcript from the 
template.

Regulation of prokaryotic transcription is conferred by promoters and 
protein factors such as repressors and activators. Promoter strength, that 
is, the number of transcription events initiated per unit time, varies widely 
in different operons. For example, in E. coli, genes in operons with weak 
promoters can be transcribed once in 10 minutes, while those with strong 
promoters can be transcribed 300 times in the same amount of time. The 
strength of an operon’s promoter is based on the host cell’s demand for its 
protein products, and dictated by its sequence. Specific protein factors may 
also regulate gene transcription. Repressors, the best known among these 
factors, prevents RNA polymerase from initiating transcription through 
binding to an intervening sequence between promoter and TSS called oper-
ator. Activators exert an opposite effect and induce higher levels of transcrip-
tion. The sigma factor, being the initiation factor of the prokaryotic RNA 
polymerase, provides another mechanism for regulation. There are different 
forms of this factor in prokaryotic cells, each of which mediates sequence spe-
cific transcription. Differential use of these sigma factors, therefore, provides 
another level of transcriptional regulation in prokaryotic cells.

3.3.3  Pre- mRNA Transcription of Eukaryotic Genes

In eukaryotic cells there are three types of RNA polymerases, among 
which RNA polymerase II transcribes protein- coding genes, while RNA 
polymerases I and III transcribe rRNA, tRNA, and various types of small 
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RNAs. Transcription in eukaryotic cells is in general much more sophisticated, 
because of the highly compressed packaging of chromosomal DNA, the 
complex structure of eukaryotic genes, and intricate regulation by multiple 
factors. Prior to transcription, the highly compressed DNA in the chromatin 
needs to be uncompressed and gene sequence exposed for access by RNA 
polymerase.

To perform the transcription of protein- coding genes, besides RNA poly-
merase II, a variety of other proteins in the nucleus are also required, including 
transcription factors and coactivators. Transcription factors include general 
and specific transcription factors. General transcription factors, such as TFIIA, 
TFIIB, and TFIID, are required in all transcription initiation. Their functions 
are to position the RNA polymerase at the promoter region and unwind the 
template DNA strands for transcription. Specific transcription factors, which 
are detailed next, provide key regulatory function to the transcription initi-
ation process. Coactivators bring together all requisite transcription factors 
to form the transcription initiation complex. Once transcription is initiated, 
most of the protein factors in the complex are released and the RNA elong-
ation process is carried out by RNA polymerase II in a manner similar to 
that occurs in prokaryotic cells. The termination of the elongation process 
in eukaryotic cells is provided by the signal sequence AAUAAA, which also 
serves as the signal for cleavage of the transcribed RNA to generate the 3’ end 
and for polyadenylation (see Section 3.3.4). After completion of the transcrip-
tion process, the transcript contains both exons and introns and is called the 
primary transcript or pre- mRNA.

During RNA transcript elongation in both the eukaryotic and prokaryotic 
systems, like in DNA replication by the DNA polymerase, there is a certain 
probability of introducing mismatched nucleotides and therefore errors. For 
proofreading, the prokaryotic and eukaryotic RNA polymerases have 3’→5’ 
exonuclease activity. If a wrong nucleotide is added to the elongating RNA 
chain, the RNA polymerase will backtrack and correct the error. Because 
of this activity, the overall error rate of the transcriptional process in both 
systems is estimated to be 10− 4- 10− 5 per base [4]. Although this is higher 
than the DNA mutation rate, the transcriptional errors are seldom harmful, 
because there are multiple copies for each transcript, and transcripts carrying 
premature stop codons are quickly removed by a process called nonsense- 
mediated decay.

Besides the step of gene sequence exposure through histone modifications 
and chromatin remodeling, the eukaryotic gene transcription process is 
mostly regulated at the initiation step through the use of specific transcrip-
tion factors. As a large group of DNA- interacting proteins (Chapter 2), these 
transcription factors bind to specific sequence elements in the promoter 
region of genes, through which they help assemble general transcription 
factors and the RNA polymerase into the transcription initiation complex. 
In addition, specific transcription factors may also bind to specific regula-
tory sequences at distant locations that are called enhancers or cis- regulatory 
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modules. Different from transcription factor binding sites in the promoter 
regions, enhancers function independent of sequence orientation and from 
a distance as far as megabases away from the regulated gene, and are 
sometimes embedded in intergenic regions that otherwise have no known 
function. Having a significant effect on gene transcription, enhancers exert 
their regulatory function by DNA looping, which brings enhancer and pro-
moter sequences together affecting formation of the transcription initiation 
complex. The binding of specific transcription factors to enhancers can have 
a stimulatory, or inhibitory (through the recruitment of repressors), effect on 
gene transcription. In general, the transcription of a gene is often regulated 
by multiple specific transcription factors, and the combined signal input from 
these transcription factors determines whether the gene will be transcribed, 
and if yes, at what level. A particular transcription factor can also bind to 
multiple genomic sites, coordinating the transcription of functionally related 
genes. NGS- based approaches, such as ChIP- seq (Chapter 13), are often used 
to locate the binding sites of specific transcription factors across the genome.

3.3.4  Maturation of mRNA

In prokaryotic cells, there is no post- transcription RNA processing, and 
transcripts are immediately ready for protein translation after transcription. 
In fact, while mRNAs are still being transcribed, ribosomes already bind to 
the transcribed portions of the elongating mRNAs synthesizing peptides. In 
eukaryotic cells, however, primary transcripts undergo several steps of pro-
cessing in the nucleus to become mature mRNAs. These steps are (1) capping 
at the 5’ end, (2) splicing of exons and introns, and (3) addition of a poly- A 
tail at the 3’ end.

The first step, adding a methylated guanosine triphosphate cap to the 5’ 
end of nascent pre- mRNAs, takes place shortly after the initiation of tran-
scription when the RNA chains are still less than 30 nucleotides long. This 
step is carried out by adding a guanine group to the 5’ end of the transcripts, 
followed by methylation of the group. This cap structure marks the transcripts 
for subsequent transport to the cytoplasm, protects them from degradation, 
and promotes efficient initiation of protein translation. Once formed, the cap 
is bound by a protein complex called cap- binding complex.

The second step, splicing of exons and introns, is the most complicated 
among the three steps. As introns are non- coding intervening sequences, 
they need to be spliced out while exons are retained to generate mature 
mRNAs. The molecular machinery that carries out the splicing, called the 
spliceosome, is assembled from as many as 300 proteins and 5 small nuclear 
RNAs (snRNAs). The spliceosome identifies and removes introns from pri-
mary transcripts, using three positions within each intron: the 5’ end (starts 
with the consensus sequence 5’- GU, serving as the splice donor), the 3’ end 
(ends with the consensus sequence AG- 3’, as the splice acceptor), and the 
branch point, which starts around 30 nucleotides upstream of the splicing 
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acceptor and contains an AU- rich region. The actual excision of each intron 
and the concomitant joining of the two neighboring exons are a three- step 
process: (1) cleavage at the 5’ end splice donor site; (2) attachment of the 
cleaved splice donor site to the branch point to form a lariat or loop structure; 
and (3) cleavage at the 3’ end splicing acceptor site to release the intron and 
join the two exons.

Beyond simply removing introns from primary transcripts, the splicing  
process also employs differential use of exons, and sometimes even includes  
some introns, to create multiple mature mRNA forms from the same primary 
transcript. This differential splicing, also called alternative splicing  
(Figure 3.2), provides an additional regulatory step in the production of  
mRNA populations. When it was first reported in 1980, alternative splicing 
was considered to be an exception rather than the norm. It is now well  
established that primary transcripts from essentially all multi- exon genes are  
alternatively spliced [5, 6]. The biological significance of alternative splicing  
is obvious: by enabling production of multiple mRNAs and thereby proteins  
from the same gene, it greatly augments protein and consequently functional  
diversity in an organism without significantly increasing the number of genes  
in the genome, and offers explanation to the question why more evolved  
organisms do not contain many more genes in their genomes (Chapter 2,  
Table 2.1).

Exon Skipping

Use of Mutually Exclusive Exons

Intron Retention

Use of Alternative Promoters

Use of Alternative Polyadenylation Signals

FIGURE 3.2
Varying forms of RNA transcript splicing.
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In the third step, once the new primary transcript passes the termination 
signal sequence, it is bound by several termination- related proteins. One of 
the proteins cleaves the RNA at a short distance downstream of the termin-
ation signal to generate the 3’ end. This is followed by a polyadenylation step 
that adds 50– 200 A’s to the 3’ end by an enzyme called poly- A polymerase. 
This poly- A tail, like the 5’ end cap, increases the stability of the resulting 
mRNA. This tail is bound and protected by poly(A)- binding protein, which 
also promotes its transport to the cytoplasm.

Besides these three major constitutive processing steps, some transcripts 
may undergo additional processing steps. RNA editing, although considered 
to be rare, is among the best known of these steps. RNA editing refers to 
the change in RNA nucleotide sequence after it is transcribed. The most 
common types of RNA editing are conversions from A to I (inosine, read as G 
during translation), which are catalyzed by enzymes such as ADARs (adeno-
sine deaminases that act on RNA), or from C to U, catalyzed by cytidine 
deaminases. As a result of these conversions, an edited RNA transcript no 
longer fully matches the sequence on the template DNA. RNA editing has the 
potential to change genetic codons, introduce new or remove existing stop 
codons, or alter splicing sites [7]. Evidence shows that RNA editing and other 
RNA processing events such as splicing can be coordinated [8].

3.3.5  Transport and Localization

After maturation, mRNAs need to be exported out of the nucleus to the cyto-
plasm for protein translation. While allowing mature mRNAs to be transported 
out, the nucleus keeps unprocessed or partially processed transcripts, as well 
as processed side products like removed introns, inside the nucleus. To move 
across the nucleus envelope through the nuclear pore complexes, mature 
mRNAs are packaged into large ribonucleoprotein (RNP) complexes. Once in 
the cytoplasm, many mRNA species can be used to start synthesizing proteins 
right away. As the cytoplasm is a crowded place, they may randomly drift in 
the cytoplasm while translating. Some translations, however, take place at 
highly localized sites. For example, in neurons some mRNAs are required 
to be transported to distal dendritic regions for translation. Local protein 
translation at such target sites has been known to have important biological 
functions, such as synaptic plasticity that underlies learning and memory [9]. 
In order to transfer mRNAs to these special locations, the mRNAs bind to 
special proteins to form mRNA- protein complexes, which are then attached 
to protein motors to move along cytoskeletal tracks.

3.3.6  Stability and Decay

Steady- state mRNA concentrations, which are the detection target of 
transcriptomic analysis such as RNA- seq, are determined by not only rates of 
mRNA production, but also their decay. In general, prokaryotic mRNAs are 
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unstable and quickly degraded by endoribonucleases and exoribonucleases 
after transcription. As a result, most of them are short- lived and the average 
prokaryotic mRNA half- life, that is, the amount of time to have half of the 
mRNAs degraded, is under 10 minutes [10]. This high turnover rate allows 
prokaryotic cells to respond quickly to environmental changes by altering 
transcription. In comparison, eukaryotic mRNAs are in general more stable 
and have a longer average half- life of 7– 10 hours [11, 12]. As a general rule, 
mRNAs for regulatory or inducible proteins, such as transcription factors 
or stress response proteins, tend to have shorter half- lives (e.g., less than 30 
minutes), while those for housekeeping proteins, such as those of metab-
olism and cellular structure, have long half- lives (e.g., days). The stability 
and half- lives of mRNAs are also regulatable based on developmental stage 
or environmental factors. For example, the stability and half- lives of mRNAs 
of muscle- specific transcription factors, such as myogenin and myoD, are the 
highest during muscle differentiation, but quickly decline once the differen-
tiation is completed [13].

The regulation of eukaryotic mRNA degradation is not well understood, 
but has been known to involve interactions between some sequence elem-
ents on mRNAs and protein as well as small RNA factors. One example of the 
mRNA stability regulatory sequences is the AU- rich element, a region on the 3’ 
untranslated portion of many short- lived mRNAs that, as the name suggests, is 
rich in adenines and uridines. Many protein factors interact with this element 
to modulate mRNA turnover, such as the AU- rich binding factor 1 (or AUF1). 
Small RNAs, including miRNA, siRNA, and piRNA, are also important 
regulators of mRNA stability and degradation (see Section 3.4.4 for details). 
P- bodies (for processing bodies), granular structures in eukaryotic cells, are the 
focal point of mRNA turnover mediated by protein and small RNA factors [14].

Most eukaryotic mRNA decay starts with deadenylation at the 3’ end, that 
is, removal of the poly- A tail by deadenylases. The deadenylation then leads 
to mRNA degradation through two alternative mechanisms. One mechanism 
is through decapping of mRNA at the 5’ end, which leaves the mRNA vul-
nerable to degradation by 5’→3’ exoribonuclease. The other mechanism is 
direct 3’→5’ decay from the tail end, which is carried out by a multi- protein 
complex called the exosome complex. Besides these major deadenylation- 
dependent mRNA decay pathways, there are also other pathways that do not 
rely on deadenylation, such as those dependent on 3’- uridylation which adds 
a uridine- rich tail to the 3’ end [15].

3.3.7  Major Steps of mRNA Transcript Level Regulation

As indicated above, the regulation of both prokaryotic and eukaryotic  
transcription is mostly applied at the initiation step, and this regulation is  
heavily dependent on specific protein- DNA interactions. In the prokaryotic  
system, besides promoter strength, the regulation of transcriptional initiation  
is provided by protein factors including repressors and activators, both of  
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which bind to specific promoter sequences. In the eukaryotic system, specific 
transcription factors that bind to specific sequences in promoters and/  
or enhancers offer most of the regulation. In addition, prior to the engagement 
of transcription initiation complex, gene sequence access is regulated  
through histone modification and chromatin remodeling. Since the generation 
of mRNA in the eukaryotic system is a multi- step process, regulatory  
mechanisms are also applied at subsequent steps (Figure 3.3). During mRNA  
maturation, regulation of exon and intron splicing leads to generation of alter-
native splicing variants. Trafficking of mRNAs to localized cellular domains  
provides additional regulatory mechanism for some genes [16]. Equally  
important in determining steady- state mRNA levels, mRNA decay is another  
important but less studied step upon which regulation is also exerted.

3.4  RNA Is More Than a Messenger

Despite its apparent indispensability, mRNAs constitute only about 5% 
of total cellular RNA. Besides rRNAs and tRNAs, there are also a large 
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FIGURE 3.3
The regulation of eukaryotic gene expression at multiple levels.
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number of non- protein- coding RNAs that play important roles in regulating 
protein- coding genes or carry out essential cellular functions. These non- 
coding RNAs include microRNAs (or miRNAs), PIWI- interacting RNAs 
(piRNAs), small interfering RNA (siRNAs), snRNAs, small nucleolar RNAs 
(snoRNAs), long- non-coding RNAs (lncRNAs), and RNAs that function as 
catalysts (ribozymes). Some of these non- coding RNAs have been exten-
sively studied, such as the ribozymes, the discovery of which won the 1989 
Nobel Prize in Chemistry and has led to the “RNA world” hypothesis. Based 
on this hypothesis, early life forms were solely based on RNA, whereas DNA 
and protein evolved later. The rRNAs, tRNAs, and ribozymes are thought 
by this hypothesis to be evolutionary remnants of the original RNA world 
[17]. The functional importance and diversity of other non- coding RNAs, 
such as the many forms of small RNAs and lncRNAs, are still in the pro-
cess of being fully appreciated because they were discovered more recently. 
However, because of their wide presence and importance, the 2006 Nobel 
Prize in Physiology or Medicine was awarded to the discovery of RNA inter-
ference (RNAi) by small RNAs. Due to the diverse and important roles that 
non- coding RNAs play in cells, RNA is not treated as simply a messenger 
anymore.

3.4.1  Ribozyme

Similar to proteins, RNAs can form complicated three- dimensional 
structures, and some RNA molecules carry out catalytic functions. These 
catalytic RNAs are called ribozymes. A classic example of ribozyme is one 
type of intron called group I intron, which splices itself out of the pre- mRNA 
that contains it. This self- splicing process, involving two transesterification 
steps, is not catalyzed by any protein. Group I intron is about 400 nucleotides 
in length and mostly found in organelles, bacteria, and the nucleus of lower 
eukaryotes. When a precursor RNA that contains group I intron is incubated 
in a test tube, the intron splices itself out of the precursor RNA autonomously. 
Despite variations in their internal sequences, all group I introns share a char-
acteristic spatial structure, which provides active sites for catalyzing the two 
steps. Another example of ribozyme is the 23S rRNA contained in the large 
subunit of the prokaryotic ribosome. This rRNA catalyzes the peptide bond 
formation between an incoming amino acid and the existing peptide chain. 
Although the large subunit contains over 30 proteins, rRNA is the catalytic 
component while the proteins only provide structural support and stabiliza-
tion [18].

Also similar to protein catalysts, the dynamics of the reactions catalyzed 
by ribozymes follows the same characteristics as those of protein enzyme- 
catalyzed reactions, which are usually described by the Michaelis– Menten 
equation. Further similarities of ribozymes to protein enzymes include that 
ribozyme activity can also be regulated by ligands, usually small molecules, 
the binding of which leads to structural change in the ribozyme. For instance, 
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a ribozyme may contain a riboswitch, which as part of the ribozyme can bind 
to a ligand to turn on or off the ribozyme activity.

3.4.2  snRNA and snoRNA

Although group I intron can self- splice, most pre- mRNA introns are not of 
this type and need the spliceosome for splicing. The spliceosome, even larger 
than the ribosome in size, contains five snRNAs (U1, U2, U4, U5, and U6), 
and a large number of proteins. The splicing process heavily depends on the 
interactions between these snRNAs and pre- mRNAs. For example, to initiate 
splicing, U1 interacts with the 5’ splice donor site, and for catalysis of the 
splicing process U2/ U5/ U6 comprise the active site core. High- resolution 
structural data have even shown that the spliceosome, like the ribosome, is 
also a ribozyme [19].

Similarly, snoRNAs are indispensable for pre- rRNA processing. The 
eukaryotic ribosome contains four rRNAs –  28S, 18S, 5.8S, and 5S –  with 
the first three initially transcribed into a single large rRNA precursor. To 
generate the three rRNAs, the precursor rRNA needs to be first chemically 
modified and then cleaved. The chemical modification includes methy-
lation at over 100 nucleotides, and isomerization of uridine at another 
100 sites. The snoRNAs are required in this process to identify the spe-
cific sites for modification. There are many different types of snoRNAs, 
each of which can form a complementary region with the precursor rRNA 
via base pairing. These duplex regions are then recognized as targets for 
modification.

3.4.3  RNA for Telomere Replication

Located at the tips of a chromosome, telomeres seal the ends of chromo-
somal DNA. Without telomeres, the integrity of chromosomes would be 
compromised since DNA repair enzymes would recognize the DNA termini 
as break points. Inside each telomeric region is a long string of highly repeti-
tive DNA sequences. Normally shortening of telomere length occurs with 
each chromosome replication, since chromosomal DNA duplication enzymes 
cannot reach to the very ends of the DNA (the end replication problem). To 
prevent this problem in germ cells and stem cells, an enzyme called tel-
omerase is responsible for replenishing the telomeric region. The telomerase 
is a large complex comprised of an RNA component, which serves as a tem-
plate for the repeat sequence, and a catalytic protein component (reverse 
transcriptase), which uses the RNA template to synthesize the repetitive 
telomeric DNA sequence. The telomerase activity is usually turned off or at 
very low levels in most somatic cells. Therefore, these cells can only divide 
a certain number of times before reaching senescence due to the gradual 
shortening of the telomere.
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3.4.4  RNAi and Small Non- Coding RNAs

RNAi, as a cellular mechanism that uses small RNAs to silence gene expres-
sion, offers an excellent illustration of the significance of non- coding RNAs 
in the regulation of protein- coding genes. RNAi achieves gene silencing 
by suppressing mRNA translation, degrading mRNAs, or inhibiting gene 
transcription [20]. As a native gene regulation mechanism in a wide- range 
of organisms, RNAi plays an essential role in organismal development and 
various cellular processes. As viral RNA can activate the RNAi pathway in 
host cells leading to degradation of the viral RNA, RNAi is also used by 
plants and some animals to fight viral infections. Furthermore, RNAi can 
also silence mobile elements in the genome, such as transposons, to maintain 
genome stability. Currently large amounts of data have established the per-
vasiveness of small RNA mediated RNAi in many organisms. For example, 
in the human genome, over 60% of genes are regulated by small non- coding 
RNAs [21]. Since its discovery, RNAi has been applied as a powerful research 
tool to silence virtually any gene in the genome in order to decipher their 
functions. Clinically, small RNAs have been tested as a strategy for gene 
therapy through turning off faulty genes that underlie many genetic diseases.

RNAi is mediated by three principal groups of small non- coding 
RNAs: miRNA, siRNA, and piRNA. All these small RNAs induce RNAi 
through the same basic pathway that involves a ribonucleoprotein complex 
called the RNA- induced silencing complex (RISC). Below is a more detailed 
introduction to these three groups of small RNAs and their differences.

3.4.4.1 miRNA

Mature miRNA, at around 22 nucleotides in size, induces gene silencing  
through mRNA translational repression or decay. The precursor of miRNA is  
usually transcribed from non- protein- coding genes in the genome (Figure 3.4).  
The primary transcript, called pri- miRNA, contains internal hairpin structure  
and is much longer than mature miRNA. For initial processing, the pri- miRNA  
is first trimmed in the nucleus by a ribonuclease called Drosha that exists  
as part of a protein complex called the microprocessor, to an intermediate  
molecule called pre- miRNA, about 70- nucleotide in size. Alternatively, some  
miRNA precursors originate from introns spliced out from protein- coding  
transcripts. These precursors, to be processed for the generation of mirtrons  
(miRNAs derived from introns), bypass the microprocessor complex in the  
nucleus. For further processing, the pre- miRNA and the mirtron precursor  
are exported out of the nucleus into the cytoplasm, where they are cleaved  
by the endoribonuclease Dicer to form double- stranded miRNA. The double-  
stranded miRNA is subsequently loaded into RISC. Argonaute, the core  
protein component of RISC, unwinds the two miRNA strands and discard  
one of them [22]. The remaining strand is used by Argonaute as the guide  
sequence to identify related mRNA targets through imperfect base pairing  
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with seed sequence usually located in the 3’- UTR of mRNAs. Through this  
miRNA- mRNA interaction, RISC induces silencing of target genes through  
repressing translation of the mRNAs and/ or their deadenylation and degrad-
ation. Because the base pairing is imperfect, one miRNA can target multiple  
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FIGURE 3.4
The generation and functioning of miRNA and siRNA in suppressing target mRNA activity. 
Genomic regions that code for miRNAs are first transcribed into pri- miRNAs, which are processed 
into smaller pre- miRNAs in the nucleus by Drosha. The pre- miRNAs are then transported by 
exportin 5 into the cytoplasm, where they are further reduced to miRNA:miRNA* duplex by Dicer. 
While both strands of the duplex can be functional, only one strand is assembled into the RNA- 
induced silencing complex (RISC), which induces translational repression or cleavage of target 
mRNAs. Long double- stranded RNA can also be processed by Dicer to generate siRNA duplex, 
which also uses RISC to break down target mRNA molecules. (Adapted by permission from 
Macmillan Publishers Ltd: Nature Reviews Genetics, He L. and Hannon G.J. (2004) MicroRNAs: small 
RNAs with a big role in gene regulation. Nature Reviews Genetics 5, 522– 531, ©2004.)
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target genes’ mRNAs. Conversely, one mRNA may be targeted by multiple  
miRNAs.

3.4.4.2 siRNA

While being similar in size and using basically the same system for gene 
silencing (Figure 3.4), siRNA differs from miRNA in a number of aspects. On 
origin, siRNA is usually exogenously introduced, such as from viral inva-
sion or artificial injection. But they can also be generated endogenously, e.g., 
from repeat- sequence- generated transcripts (such as those from telomeres 
or transposons), or RNAs synthesized from convergent transcription (in 
which both strands of a DNA sequence are transcribed from the two opposite 
orientations with corresponding promoters), or other naturally occurring 
sense- antisense transcript pairs [23]. To generate mature siRNA, exogenously 
introduced double- stranded RNA, or endogenously transcribed precursor 
that is transported from the nucleus to the cytoplasm, is cleaved by Dicer. 
The mature siRNA is then loaded into RISC for silencing target mRNAs by 
Argonaute. On target mRNA identification, siRNA differs from mRNA in that 
it has perfect or nearly perfect sequence complementarity with their target. 
On the mechanism of gene silencing, siRNA usually leads to endonucleolytic 
cleavage, also called slicing, of the mRNAs.

3.4.4.3 piRNA

As a relatively newer class of small non- coding RNA, piRNAs are between 
23 and 31 nucleotides in length, and have functions mostly found in animal 
germline tissues as a defense mechanism against transposons (or transpos-
able elements, “selfish” DNA elements that have the capability to move 
around in the genome). While functioning with a similar basic RNAi mech-
anism, piRNA is different from miRNA and siRNA in two major aspects. 
One is that its biogenesis does not involve Dicer, and the other is that, for 
target gene silencing, it specifically interacts with PIWI proteins, a different 
clade in the Argonaute protein family. The biogenesis of piRNA, independent 
Dicer activity, starts from transcription of long RNAs from specific loci of the 
genome called piRNA clusters. With regard to these clusters, it has been found 
that while their locations in the genome do not show much change in related 
species, their sequences are not conserved even in closely related species, 
indicating that they are derived from invading transposable elements serving 
as an adaptive genome immunity mechanism. After transcription, the long 
piRNA precursor is transported out of the nucleus to the cytoplasm for pro-
cessing into mature piRNA. To induce target gene silencing, mature piRNA 
is loaded into RISC that contains PIWI, which uses the piRNA sequence as 
guide to silence target mRNAs by slicing. Besides this post- transcriptional 
silencing, piRNA- loaded mature RISC can also be transported into the 
nucleus, where it finds and silences target mRNAs that are still in the process 
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of being transcribed. This transcription- level gene silencing is achieved 
through interactions with other protein factors in the nucleus, and histone 
modification that alters chromatin structure and gene access. The currently 
best- known function of piRNAs, through post- transcriptional and transcrip-
tional gene silencing, is to repress transposon activity and thereby maintain 
genome stability in germline cells. Transposon mobilization in the absence 
of this repression can lead to DNA damage disrupting germ line develop-
ment. Non- transposon gene targets of piRNAs have also been reported such 
as those related to development.

3.4.5  Long Non- Coding RNAs

Some non- coding RNAs, unlike the small RNAs, are rather long with an 
average length of over 200 nucleotides in their mature form. These RNAs, 
called long non- coding RNAs, have been discovered more recently and there-
fore less studied. The biogenesis of lncRNAs is somewhat similar to that of 
mRNAs, as many of them are transcribed by RNA polymerase II and subject 
to splicing, capping at the 5’ end, and polyadenylation at the 3’ end. Unlike 
mRNAs, however, they are usually shorter with a median length of ~600 
nucleotides, have fewer exons, and are generally expressed at levels lower 
than those of mRNAs. Furthermore, their expression displays higher tissue 
and developmental stage specificity than mRNAs, and are mostly localized 
in the nucleus rather than transported to the cytoplasm.

Although they are relatively new, evidence on their importance in regu-
lating fundamental cellular functions is rapidly accumulating. They have 
been known to control many steps of gene activity, including chromatin 
remodeling, transcriptional regulation, mRNA processing, stability, local-
ization, and translation [24, 25]. For example, some lncRNAs, such as Xist 
and HOTAIR, repress gene transcription at target genomic sites through 
interacting with chromatin remodeling protein complexes [26, 27]. A class of 
lncRNAs that was discovered by NGS is transcribed from enhancer regions 
of protein- coding genes. These transcripts, called eRNAs (or enhancer 
RNAs), have been shown to affect transcription of protein- coding genes 
that are regulated by the enhancers [28]. In general, lncRNAs regulate gene 
activity via binding to transcription factors, repressing promoter activity, and 
interacting with mRNA- binding proteins and splicing factors. In addition, 
lncRNAs can directly interact with mRNAs and thereby influence their sta-
bility and translation [29, 30]. Because of their functional importance, it is 
not surprising that abnormal lncRNA expression can lead to diseases such as 
cancer and aging- related neurodegenerative disorders [31, 32].

3.4.6  Other Non- Coding RNAs

Deep sequencing of the cellular transcriptome has led to the discovery of 
other non- coding RNAs. For example, circular RNAs, or circRNAs, exist in 
many species and cell types. Unlike linear RNAs, which include all the RNA 
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species introduced so far, circRNAs have their 5’ and 3’ ends joined forming 
a loop structure. This structure makes them less vulnerable to attacks from 
RNases and expectedly more stable. Because their widespread existence was 
only unveiled with the use of RNA- seq, the functions of most circRNAs are 
still being investigated. Among currently established functions are the roles 
they play in sequestering miRNA and RNA-binding proteins from their 
targets, and regulating transcription, splicing, and translation events [33]. 
Besides the major non- coding RNAs introduced in this chapter, there are also 
other classes of non- coding RNA species in cells that perform a remarkable 
array of functions [34]. It is highly possible that new classes of non- coding 
RNAs will continue to be discovered through RNA sequencing.

3.5  The Cellular Transcriptional Landscape

Traditionally protein- coding mRNA transcripts used to be the major targets 
of transcriptional studies and as a result were often mis- regarded as the 
major component of a transcriptome. However, with the evolution of 
transcriptomics technologies and as a result the discovery of the wide var-
iety of non- coding RNAs, it has been gradually realized that protein- coding 
transcripts only constitute a minor fraction of a cell’s transcribed sequences. 
Large- scale studies on the landscape of cellular transcription, as carried out by 
consortia including the FANTOM (Functional Annotation Of the Mammalian 
genome) and ENCODE (Encyclopedia of DNA Elements), have revealed that 
the majority of the genome is transcribed, and a large proportion of the tran-
scriptome is non- coding RNAs [35, 36]. For example, after studying the tran-
scriptional landscape of 15 human cell lines, encompassing RNA populations 
isolated from different cellular sub- compartments including the cytosol and 
the nucleus, the ENCODE consortium found that the transcription of the 
genome is pervasive and 75% of genomic sequences, including those located 
in gene- poor regions, are present in transcripts. Many of the transcripts come 
from intronic and intergenic regions that are not characterized currently and 
therefore novel. The complex cellular RNA landscape adds further evidence 
that RNA is not simply a messenger between DNA and protein.
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4  
Next- Generation Sequencing (NGS) 
Technologies: Ins and Outs

4.1  How to Sequence DNA: From First Generation to   
the Next

The sequence of nucleotides in a DNA molecule can be determined in 
multiple ways. Early in the 1970s, biochemists (Drs. Walter Gilbert and 
Frederick Sanger) devised different methods to sequence DNA. Dr. Gilbert’s 
method is based on chemical procedures that break down DNA specif-
ically at each of the four bases. Dr. Sanger’s method, on the other hand, 
takes advantage of the DNA synthesis process. In this process, a new 
DNA chain is synthesized base by base using sequence information on the 
template (Chapter 2). The use of chemically modified nucleotides, that is 
dideoxynucleotides, as irreversible DNA chain terminators in Dr. Sanger’s 
method randomly stops the synthesis process at each base position, so a 
series of new DNA chains of various lengths that differ by one base are 
produced (Figure 4.1). Determining the lengths in single- base resolution of 
specifically broken DNA molecules in Dr. Gilbert’s method, or new DNA 
chains that are randomly terminated at each of the four nucleotides in 
Dr. Sanger’s method, enabled sequencing of the template DNA. Over the 
years the Sanger method was further developed. The integration of automa-
tion into the process reduced human involvement and improved efficiency. 
The use of fluorescently labeled terminators, instead of the radioactively 
labeled terminators that were used initially, made it safer to operate and 
sequence detection more robust. The improved separation of DNA chains 
with the use of capillary electrophoresis, instead of slab gels, enabled high- 
confidence basecalls. All these developments had made the Sanger method 
widely adopted and become the method of choice for the Human Genome 
Project. Even today, this method is still widely used for single-  or low- 
throughput DNA sequencing. With the coming of NGS, this method has 
become the synonym of first- generation sequencing.

While it is robust in sequencing individual DNA fragments, the Sanger 
method cannot easily achieve high- throughput, which is the key to lowering 
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sequencing cost, largely due to the segregation of its DNA synthesis pro-
cess and the subsequent DNA chain separation/ detection process. Its prin-
ciple of sequencing- by- synthesis, however, becomes the basis of many NGS 
technologies, including Illumina’s reversible terminator sequencing, Pacific 
Biosciences’ single- molecule real- time (SMRT) sequencing, ThermoFisher’s 
Ion Torrent semiconductor sequencing, and the discontinued 454/ Roche’s 
pyrosequencing. Different from the first- generation method, these technolo-
gies use nucleotides with reversible terminator or other cleavable chemical 
modifications, or regular unmodified nucleotides, so the new DNA strand 
synthesis is not permanently terminated and therefore can be monitored as 
or after each base is incorporated.

Not all NGS technologies are based on the principle of sequencing- by- 
synthesis. For example, Oxford Nanopore sequencing and the discontinued 
SOLiD sequencing from Life Technologies use nanopore sensing and 
sequencing- by- ligation, respectively. Despite the differences in how different 
NGS technologies work in principle, there is one common denominator 
among them that separate them from first- generation sequencing, which is 
their massive data throughput by sequencing millions to billions of DNA 
molecules simultaneously. Besides the ingenuity in the development of new 
sequencing chemistries or detection schemes to be detailed next, the success 
of NGS technologies in achieving extremely high throughput is also due to 
modern engineering and computing feats. Advancements in microfluidics 
and microfabrication make signal detection from micro- volume of sequen-
cing reaction possible. Developments in modern optics and imaging tech-
nology enable tracking of sequencing reactions in high resolution, high 

FIGURE 4.1
The Sanger sequencing method as originally proposed. This method involves a step for new DNA 
strand synthesis using the sequencing target DNA as template, followed by sequence deduction 
through resolution of the newly synthesized DNA strands. In the first step (A), the new strand 
synthesis reaction mixture contains denatured DNA template, primer, DNA polymerase, and 
dNTPs. Besides the dNTPs, the Sanger method is characterized by the use of dideoxynucleotides 
(ddG, ddA, ddT, and ddC; the inset illustrates the structural difference between ddATP and 
dATP) that are labeled with different fluorochromes. The DNA polymerase in the reaction 
mixture incorporates dideoxynucleotides into the elongating DNA strand along with regular 
nucleotides, but once a dideoxynucleotide is incorporated, the strand elongation terminates. 
In this sequencing scheme, the ratio of these dideoxynucleotides to their regular counterparts 
is controlled so that the polymerization can randomly terminate at each base position. The 
end product is a population of DNA fragments with different lengths, with the length of each 
fragment dependent on where the dideoxynucleotide is incorporated. These fragments are then 
separated using capillary electrophoresis, in which smaller fragments migrate faster than larger 
ones and as a result pass through the laser detector sooner. The fluorochrome labels they carry 
enable computational deduction of the specific sequence of the original DNA. (Image adapted 
from https:// comm ons.wikime dia.org/ w/ index.php?curid= 23264 166 by Estevezj. Used under 
the Creative Commons Attribution- Share Alike 3.0 Unported (CC BY- SA 3.0) license (https:// 
crea tive comm ons.org/ licen ses/ by- sa/ 3.0/ deed.en).)
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fidelity, and high speed. Some NGS platforms also rely on the decades of 
progress in the semiconductor industry or more recent but rapid devel-
opment in nanopore technology (such as the Ion Torrent and Nanopore 
platforms, respectively). High- performance computing makes it possible 
to process and deconvolve the torrent of signals recorded from millions of 
these processes.

As different NGS technologies employ different mechanisms and imple-
mentation strategies, in the next section the specifics of some of the most 
adopted NGS platforms at the time of writing (early 2022) are detailed. As 
NGS technologies continue to evolve, new platforms will appear while some 
current technologies become obsolete. While an overview of NGS platforms 
usually becomes outdated fairly soon, the guiding principles on the analysis 
of NGS data introduced in this book will remain.

4.2  Ins and Outs of Different NGS Platforms

4.2.1  Illumina Reversible Terminator Short- Read Sequencing

4.2.1.1  Sequencing Principle

The Illumina NGS platform is by far the most popular and has generated the 
largest amounts of NGS data. At the core of the Illumina sequencing tech-
nology is the employment of fluorescently labeled nucleotides with reversible 
terminator [1]. As mentioned previously, this method is based on the same 
basic principle of sequencing- by- synthesis as the Sanger method; but unlike 
the Sanger method, after the incorporation of each of these specially modified 
nucleotides, the terminator moiety they carry only temporarily prevents the 
new DNA strand from extending. After optical detection of the incorporated 
nucleotide based on its specific fluorescent label, the terminator moiety is 
cleaved and thereby the new strand synthesis resumes for the next cycle of 
nucleotide incorporation. For simultaneous detection of nucleotide incorpor-
ation in millions to billions of sequencing reactions, dATP, dCTP, dGTP, and 
dTTP are labeled with different fluorescent labels so each nucleotide can be 
detected by the different fluorescence signal they emit. The fluorescent labels 
and the reversible terminator moiety are attached to the nucleotides via the 
same chemical bond, so both of them can be cleaved off in a single reaction 
after each nucleotide incorporation and detection cycle to prepare for incorp-
oration of the next nucleotide.

4.2.1.2  Implementation

The sequencing reaction in an Illumina NGS system takes place in a flow  
cell (Figure 4.2). The fluidic channels in the flow cell, often called lanes, are  
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where sequencing reactions take place and sequencing signals are collected  
through scanning. The top and bottom surface of each lane is covered with  
a lawn of oligonucleotide sequences that are complementary to the anchor  
sequences in Illumina adapters. When sequencing libraries, prepared from  
DNA through fragmentation and adapter ligation, are loaded into each of the  
lanes, DNA templates in the libraries bind to these oligonucleotide sequences  
and become immobilized onto the lane surface (Figure 4.3). After immobil-
ization, each template molecule is clonally amplified through an isothermal  
process called “bridge amplification,” through which up to 1,000 identical  
copies of the template are generated in close proximity (<1 micron in diam-
eter) forming a cluster. During sequencing, these clusters are basic detection  
units, which generate enough signal intensity for basecalling.

FIGURE 4.2
An Illumina sequencing flow cell. It is a special glass slide that contains fluidic channels inside 
(called lanes). Sequencing libraries are loaded into the lanes for massively parallel sequencing 
after template immobilization and cluster generation. In each step of the sequencing process, 
DNA synthesis mixture, including DNA polymerase and modified dNTPs, is pumped into and 
out of each of the lanes through their inlet and outlet ports located at the two ends.
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Under ideal conditions the simultaneous incorporation of nucleotides  
to the many identical copies of sequencing templates in a single cluster is  
expected to be in synchronization from step to step and therefore remain in  
phase. In reality, a small percentage of templates loses sync with the majority  
of molecules in the same cluster, leading to either falling behind (called  
phasing), due to incomplete removal of the terminator as well as missing a  
cycle, or being one or several bases ahead (pre- phasing), due to incorporation  
of nucleotides with no terminators. The existence of phasing and pre- phasing  
in a cluster leads to increased background noise and decreased basecall  
quality. When more and more sequencing cycles are conducted, this problem  

FIGURE 4.3
Illumina sequencing process overview. (Used under license from Illumina, Inc. All Rights 
Reserved.)

 

 



Next-Generation Sequencing (NGS) Technologies: Ins and Outs 63

becomes worse. This is why platforms that are based on clonal amplification 
(which also include the Ion Torrent platform to be detailed later) have  
declining basecall quality scores toward the end. Eventually the decrease in  
basecall quality reaches a threshold beyond which the quality scores become  
simply unacceptable. The gradual loss of synchronicity is a major deter-
minant of read length for these platforms.

4.2.1.3  Error Rate, Read Length, Data Output, and Cost

The overall error rate of the Illumina sequencing method is below 1%, which 
makes it one of the most accurate NGS platforms currently available. The most 
common type of errors is single nucleotide substitution. On read length, all 
available Illumina sequencers available at the time of writing can produce 
reads of at least 150 bases. Some sequencers can generate reads of up to 250 
bases (NovaSeq 6000) or 300 bases (MiSeq) in length. Besides reading from 
one end of a DNA template (i.e., single- end sequencing), Illumina sequencers 
can also be read from both ends of the DNA fragment (called paired- end 
sequencing). Besides doubling the total number of sequence reads, paired- end 
sequencing also has the advantage of facilitating subsequent alignment to a ref-
erence genome (for details see next chapter) or genome assembly (Chapter 12), 
thereby reducing the limitation caused by the relatively short read length.

With regard to data output, the different sequencers/ flow cells offered by 
Illumina have different output levels (see Table 4.1), with the maximum of 3 
Tb (Terabases) being achieved on the NovaSeq 6000 using the S4 flow cell. 
Sequencing run time depends on read length and is typically in the range 
of less than one day to a couple of days. On sequencing cost, depending 
on sequencer and flow cell type, each Gb data costs US$4.80– 41.67 on 
production- scale sequencers (i.e., NovaSeq 6000 and NextSeq 2000). This cost 
calculation is based on the current list price of sequencing reagents divided 
by corresponding data output, so other costs, including library preparation 
reagents, personnel time, sequencer depreciation, and service contract, are 
not included. It should also be noted that the numbers provided here are as 
of early 2022 and will change with future system updates.

4.2.1.4 Sequence Data Generation

There are three steps in the Illumina sequence data generation process. 
Firstly, raw images captured after each cycle are analyzed to locate clusters 
and report signal intensity, coordinates, and noise level for each cluster. This 
step is conducted by the instrument control software. The output from this 
step is fed into the next step of basecalling by the instrument Real- Time 
Analysis (RTA) software, which uses cluster signal intensity and noise level 
to make basecalls and quality score calculation. This step also filters out low- 
quality reads. In the third step, the basecall files, or bcl files, are converted to 
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FASTQ files, which contain raw reads. Since multiple samples are typically 
sequenced together in a multiplex fashion, demultiplexing of the sequence 
data is also performed in the third step. This is typically performed using 
Illumina’s bcl2fastq tool, but other tools such as IlluminaBasecallsToFastq [2] 
can also be used. The demultiplexed FASTQ files in a compressed format are 
what an end user typically receives from an NGS facility after the completion 
of a run.

4.2.2  Pacific Biosciences Single- Molecule Real- Time (SMRT)  
Long- Read Sequencing

4.2.2.1 Sequencing Principle

The Pacific Biosciences’ SMRT sequencing platform is usually regarded as the 
third- generation sequencing technology, as it is sensitive enough to sequence 
single DNA molecules and therefore can bypass amplification [3]. In add-
ition, this platform generates much longer reads than the Illumina NGS plat-
form, with the current read length reaching 25 kb and beyond. While it is 
also based on the principle of sequencing- by- synthesis, different from the 
Illumina method, SMRT sequencing uses nucleotides that carry distinct fluor-
escent labels linked to their end phosphate group but no terminator group. 
When a nucleotide is incorporated into an elongating DNA strand, with the 
cleavage of the end phosphate group (actually a pyrophosphate group as 
mentioned earlier) the fluorescent label is simultaneously released, which 
enables real- time signal detection. As this process does not involve a sep-
arate step of fluorescent label releasing and detection, the sequence- detecting 
signal is recorded continuously as a movie for up to 30 hours instead of using 
scanner images.

4.2.2.2 Implementation

At the core of PacBio sequencing is the SMRT cell, which carries millions of 
wells, technically called zero- mode waveguides (or ZMWs), for simultaneous 
sequencing of millions of DNA templates (the current version, as of early 
2022, has 8 million of ZMWs). ZMWs are essentially holes tens of nanometers 
in diameter microfabricated in a metal film of 100 nm thickness, which is 
in turn deposited onto a glass substrate. Because the diameter of a ZMW is 
smaller than the wavelength of visible light, and the natural behavior of vis-
ible light passing through such a small opening from the glass bottom, only 
the bottom 30 nm of the ZMW is illuminated. Having a detection volume 
of only 20 zetpoliters (10− 21 L), this detection scheme greatly reduces back-
ground noise and enables detection of the light of different wavelengths 
emitted from nucleotide incorporation into a new DNA strand.

While the SMRT platform performs single- molecule sequencing, the 
standard library prep protocol still requires DNA samples at the µg level 
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to start (for lower DNA input amplification is needed). The library prep 
process includes fragmentation of DNA into desired length, end repair/ A- 
tailing, and ligation of a hairpin loop adapter. This leads to the formation 
of a circular structure called SMRTbell (Figure 4.4). To prepare for sequen-
cing, a SMRTbell template is annealed to a sequencing primer, and a DNA 
polymerase enzyme molecule is subsequently bound to the template/ primer 
structure. The template- primer- polymerase complex is then immobilized to 
the bottom of a SMRT cell prior to sequencing.

The currently available PacBio SMRT sequencers (Sequel II/ IIe) have two 
sequencing modes called continuous long reads (CLR) and circular con-
sensus sequencing (CCS). With CLR, the DNA polymerase continues to 
advance along a template until it stops, thereby producing long reads in one 
pass. With CCS, the DNA polymerase goes through the SMRTbell structure 
multiple times and traverses both strands of the template in order to generate 
a consensus read (Figure 4.4).

4.2.2.3 Error Rate, Read Length, Data Output, and Cost

The CCS mode significantly improves sequencing accuracy. For example, 
with ten passes on a template the accuracy can reach 99.9%, i.e., Q30 [4]. In 
PacBio terms, reads generated from the CCS mode are high- fidelity (or HiFi) 
reads. In comparison, the accuracy of CLR reads is lower at around 90%. In 
general, the most common error type from SMRT sequencing is indels, with 
most of them in homopolymer regions. While more accurate, CCS reads 
are relatively shorter, currently in the range of 15– 25 kb. In comparison, 
the length of CLR reads are typically 30– 60 kb with reported maximum 
at over 200 kb. In terms of data output, CLR generates 150– 250 Gb data 
in one run, while CCS produces 10– 30 Gb. Based on the current list price 
of PacBio sequencing reagents, the per Gb cost of CLR reads approaches 
that of Illumina high- end sequencers, while CCS reads are still more costly 
due to the multiple passes needed to generate consensus sequences (see 
Table 4.1).

4.2.2.4 Sequence Data Generation

Primary data processing to generate raw basecalls is carried out on the 
sequencer. This includes processing of the movie to extract sequencing 
signals, basecalling from the extracted traces and pulses, and quality check of 
the basecalls. To generate CLR reads, adapter sequence needs to be trimmed 
from original polymerase- generated reads. To generate CCS reads, adapter 
sequence similarly needs to be removed first to generate subreads. Each 
subread contains sequence that corresponds to one pass of a DNA template 
from one direction. Subsequent post- processing of the subreads collapses 
multiple consecutive subreads to create a consensus sequence. All these data 
generation steps take place on the sequencer.

 

 

 

 



Next-Generation Sequencing Data Analysis66

Ligate adapters

 Double-stranded DNA 

Anneal primer and
bind DNA polymerase

Sequence

Generate
consensus read

Subreads
(passes)

Reference

CCS Read

Subread
errors

FIGURE 4.4
PacBio sequencing library preparation and sequencing. The library prep process mostly involves 
ligation of hairpin loop adapters to create the SMRTbell structure. A SMRTbell template can be 
sequenced using either circular consensus sequencing (CCS, shown here) or continuous long 
reads (CLR) mode. In the CCS mode, a template undergoes multiple passes to produce error- 
prone subreads in each pass followed by generation of accurate consensus reads. (Adapted by 
permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Nature 
Biotechnology, Accurate circular consensus long- read sequencing improves variant detection and 
assembly of a human genome, Aaron M. Wenger et al., Copyright 2019.)
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4.2.3  Oxford Nanopore Technologies (ONT) Long- Read Sequencing

4.2.3.1 Sequencing Principle

Like the PacBio platform, the Oxford Nanopore platform is also a single-  
molecule sequencing platform, but the reads it produces can be even longer.  
Instead of using sequencing by synthesis, it detects the order of nucleotides  
off a strand of DNA (or RNA) using physical measurement when the mol-
ecule passes through a bio- nanopore (Figure 4.5). To achieve the detection,  
a voltage is first applied across both sides of the pore, which is embedded  
in an electrically insulating membrane immersed in an electrolytic solution. 
Because DNA/ RNA is negative charged, the electric field drives their  
movement through the pore. During this process, the nanopore serves as a  
biosensor to detect the subtle change in ionic current caused by the passing of  
nucleotides. Because different nucleotides result in different change patterns  
in this process, the collected electrical signal is then decoded by base calling  
algorithms to reveal the underlying nucleotide sequence. It should be noted  
that the detected ionic current change is emitted from 5– 9 nucleotides on a  
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FIGURE 4.5
Nanopore sequencing. Illustrated here is sequencing with a MinION flow cell which contains 
512 channels with 4 nanopores in each channel. The electrically insulating membrane that carries 
the nanopores is supported by an array of microscaffolds which is underlain by a senor chip. 
There are electrodes on the sensor chip that correspond to the individual channels, and electrical 
signals from the electrodes are recorded by the application- specific integrated circuit or ASIC. 
The recorded signals are then analyzed to make basecalls. (Adapted by permission from Springer 
Nature Customer Service Centre GmbH: Springer Nature, Nature Biotechnology, Nanopore 
sequencing technology, bioinformatics and applications, Yunhao Wang et al., Copyright 2021.)
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strand of DNA/ RNA (the actual number of nucleotides detected varies with  
the version of the nanopore ONT uses), not individual nucleotides [5]. To  
achieve reliable detection, the speed at which the DNA/ RNA strand passes  
through the pore is important, as it needs to be slowed down to a rate that  
allows the electrical current change to be reliably recorded. This speed con-
trol is achieved by a motor protein situated at the orifice of the pore, and  
the speed at the time of writing is usually in the range of 200– 450 bases per  
second depending on the version.

4.2.3.2 Implementation

ONT currently offers three main devices at different data throughput 
levels: MinION, GridION, and PromethION. MinION, at the lower end, is a 
USB drive- sized device that holds one flow cell. The GridION as a level up can 
hold up to five flow cells. The flow cells used in MinION and GridION is of the 
same type that contains 2,048 nanopores in 512 channels. The PromethION at 
the high end has the capacity to run up to 48 flow cells simultaneously. The 
flow cell used in PromethION has more capacity with 12,000 nanopores in 
3,000 channels. For both the MinION/ GridION and PromethION flow cells, 
in each channel only one pore can perform sequencing at a time. Besides 
these flow cells, for commonly conducted, smaller- scale sequencing, ONT 
also offers a flow cell dongle called Flongle, which provides an adapter for 
MinION/ GridION to allow use of smaller and lower- cost flow cells. The 
Flongle adapter has 126 channels allowing simultaneous sequencing from 
126 nanopores.

ONT provides two modes of sequencing, with one for generation of long 
reads (currently defined as below 100 kb) and the other for ultra- long reads 
(≥100 kb). The length of input DNA determines which mode to use. The 
sample library prep process for long- read sequencing involves fragmenta-
tion and/ or size selection (optional), end repair, A- tailing, and ligation of 
sequencing adapters. Ultra- long sequencing library prep requires extraction 
of ultra- high- molecular- weight DNA. While the steps involved in ultra- 
long sequencing library prep may continue to evolve, the current procedure 
includes a transposition step that cleaves the template and attaches tags to the 
cleaved ends simultaneously, a subsequent step to add sequencing adapters 
to the tagged ends, and lastly an overnight elution of the DNA library prior 
to loading into a flow cell.

4.2.3.3 Error Rate, Read Length, Data Output, and Cost

The ONT platform has the capability to sequence the entire length of DNA/ 
RNA fragments brought to it. The longest read length achieved so far by 
ONT is over 4 Mb. Typically for the long-read sequencing mode, the length 
is 10– 100 kb, and for ultra- long read sequencing it is 100– 300 kb. With 
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the newest nanopore (R10.4) available at the time of writing, the raw read 
error rate is at 1% to achieve 99% (Q20) accuracy. Homopolymer error is the 
most common error type in ONT sequencing. In terms of data output, the 
MinION/ GridION can typically produce 10– 20 Gb data (30 Gb maximum 
at the current moving speed of 250 bases/ second) from each flow cell. The 
PromethION has a throughput of 50– 100 Gb (170 Gb maximum) per flow 
cell. With a top loading capacity of 48 flow cells, the data output from the 
PromethION can exceed that of PacBio Sequel II and Illumina NovaSeq 6000. 
The cost of sequencing on the MinION/ GridION platforms is US$45– 90 per 
Gb, and US$13– 40 per Gb on the PromethION. Again this calculation is based 
on the list price per flow cell at the time of writing divided by the typical data 
output on each platform.

4.2.3.4  Sequence Data Generation

ONT uses its MinKNOW software for device control, raw data collection, 
and data processing to generate basecalls. For onboard real- time base- 
calling, its proprietary algorithm called Guppy is used. Unlike the Illumina 
or PacBio platforms where basecalling is more mature, basecalling from 
nanopore sequencing signal is still under constant improvement by ONT 
and independent groups and significant progress has been made [6]. ONT 
sequencers store the collected raw electrical signal in FAST5 files and can 
provide sequence reads after basecalling in FASTQ files. The raw data in 
FAST5 files can be used for independent basecalling, calling of DNA/ RNA 
base modifications (e.g., methylation), and downstream analyses using other 
software tools. As the accuracy of sequence reads is heavily dependent on the 
basecall algorithm employed, reprocessing of raw data in FAST5 files over 
time can lead to discovery of new information. Storing the raw data files, 
however, does increase demands for storage space significantly.

4.2.4  Ion Torrent Semiconductor Sequencing

4.2.4.1 Sequencing Principle

Developed before the ONT platform, the Ion Torrent semiconductor sequen-
cing system is the first NGS platform that does not rely on chemically 
modified nucleotides, fluorescence labeling, and the time- consuming step 
of image scanning, thereby achieving much faster speed, lower cost, and 
smaller equipment footprint. The Ion Torrent platform sequences DNA 
through detecting the H+  ion released after each nucleotide incorporation 
in the sequencing- by- synthesis process. When a nucleotide is incorporated 
into a new DNA strand, the chemical reaction catalyzed by DNA polymerase 
releases a pyrophosphate group and a H+  (proton). The release of H+  leads 
to pH change in the vicinity of the reaction, which can be detected and used 
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to determine the nucleotide incorporated in the last cycle. As the change in 
pH value is not nucleotide- specific, to determine DNA sequence, each of the 
substrate nucleotides (dATP, dGTP, dCTP, and dTTP) is added to the reaction 
in order at different times. A detected pH change after the introduction of 
a nucleotide suggests that the template strand contains its complementary 
base at the last position.

4.2.4.2 Implementation

The library construction process in this technology is similar to other NGS 
technologies, involving ligation of platform- specific primers to DNA shotgun 
fragments. The library fragments are then clonally amplified by emulsion 
PCR onto the surface of 3- micron diameter beads. The microbeads coated 
with the amplified sequence templates are then deposited into an Ion chip. 
Each Ion chip has a liquid flow chamber that allows influx and efflux of native 
nucleotides (introduced one at a time), along with DNA polymerase and 
buffer that are needed in the sequencing- by- synthesis process. For measuring 
possible pH change associated with each introduction of nucleotide, there are 
millions of pH microsensors that are manufactured on the chip bottom by the 
employment of standard processes used in the semiconductor industry.

4.2.4.3 Error Rate, Read Length, Date Output, and Cost

The overall accuracy of the Ion Torrent platform is over 99%. The major 
type of errors is indels caused by homopolymers. When the DNA template 
contains a homopolymeric region, i.e., a stretch of identical nucleotides (such 
as TTTTT), the signal in pH change is stronger and proportional to the number 
of nucleotides contained in the homopolymer. For example, if the template 
contains two Ts, the influx of dATPs will generate a pH change signal that is 
about twice as strong as that generated for a single T. Accordingly the signal 
for 3 Ts will be 1.5- fold that of 2 Ts, and signal for 6 Ts will be reduced to 1.2 
fold that of 5 Ts. Therefore, with the increase in the total number of the repeat 
base, there is a gradual decrease in signal strength ratio that reduces the reli-
ability of calling the total number of the base correctly. It is estimated that the 
current error rate for calling a 5- base homopolymer is 3.5%.

There are currently (as of early 2022) three sequencing systems in the Ion 
Torrent family: GeneStudio S5, Genexus, and PGM Dx. Of these systems, the 
GeneStudio S5 can produce reads up to 600 bases in length and total output 
of up to 25 Gb per chip. The Ion PGM Dx system on the other end of the spec-
trum generates 200 base reads at a total output of up to 1 Gb. The Genexus 
system is more than just a sequencer, as it provides an integrated workflow 
starting from nucleic acid extraction, library prep, template preparation, to 
sequencing and reporting. Genexus uses its GX5 chip for sequencing, and 
the cost listed on Table 4.1 is for the sequencing step only. GeneStudio S5 

 

 

 



N
ext-G

eneration Sequencing (N
G

S) Technologies: Ins and O
uts

71

TABLE 4.1

Comparison of Current NGS Platforms

Platform Read length Run time
Data Output 
per Flow Cell

Cost per 
Gb (US$)

Common 
Error Type Error Rate

Illumina Reversible Terminator Short- Read Sequencing
NovaSeq 6000 Up to 250 bases from each end ~13– 44 hours Up to 3,000 Gb $5– 30 Single nucleotide 

substitution
<1%

NextSeq 2000 Up to 150 bases from each end ~11– 48 hours Up to 360 Gb $8– 42 See above See above
MiSeq Up to 300 bases from each end ~4– 55 hours Up to 15 Gb $114– 259 See above See above

Pacific Biosciences Single Molecule Real- Time (SMRT) Long- Read Sequencing
PacBio Sequel II/ IIe CLR: typically 30– 60 kb, 

maximum >200 kb;
CCS: 15– 25 kb, maximum 
>25 kb

Up to 30 
hours

CLR: typically 150– 
250 Gb;

CCS: 10– 30 Gb

CLR: US$5– 
8 per Gb;

CCS: US$38– 
113 per Gb

Indels (mostly at 
homopolymers)

CLR: 8– 13%
CCS: <1%

Oxford Nanopore Technologies (ONT) Sequencing
MinION/  GridION 20 bases –  4.2 Mb, typically 

20– 200 bp for short reads,
50– 100 kb for long reads, over 
100 kb for ultra- long reads

Up to 72 
hours

Typically 10– 20 Gb (30 
Gb max)

US$45– 90 
per Gb

Long 
homopolymers

<1%

PromethION See above See above Typically 50– 100 Gb 
(170 Gb max)

US$13– 40 
per Gb

See above See above

Ion Torrent Semiconductor Sequencing
Ion GeneStudio S5 200, 400, 600 bases ~3– 21.5 

hours
Up to 25 Gb per chip US$37– 698 

per Gb
Indels (mostly 
at homo- 
polymers)

<1%

Genexus Up to 400 bases ~14– 31 hours 24 Gb US$56 per 
Gb

See above <1%

Ion PGM Dx 200 bases 4.4 hours 0.6– 1 Gb US$941 per 
Gb

See above <1%
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employs five chip types: Ion 510, 520, 530, 540, and 550, with the 550 chip 
producing the most data (20– 25 Gb) and being the most cost effective and 
the 510 having the least amount of data (0.3– 1 Gb) and being the least cost 
effective. The Ion 318 Dx chip used on the PGM Dx system, similar to the 510 
chip in throughput, generates 600 Mb to 1Gb data and is suitable for running 
molecular diagnostic tests that do not require a lot of data.

4.2.4.4 Sequence Data Generation

Sequencer operation and basecalling on the GeneStudio S5 and Ion PGM 
Dx are provided by the Torrent Suite Software. The Genexus system has 
its own software for managing the workflow and generating basecalls. The 
basecalling process used by the software is similar. Raw voltage measure-
ment signal from pH change is first saved in DAT files for each cycle. After 
a run all DAT files are condensed into a single WELLS file, which is then 
used as input to generate basecalls. The WELLS file can be saved and used 
for reanalysis. Basecalls are reported in an unmapped BAM file. Besides gen-
erating raw sequence reads, the software also provides additional analytic 
functions, including read trimming and filtering, read mapping to a reference 
genome, and other tertiary analyses through the use of plugins.

4.3  A Typical NGS Workflow

Despite the differences in how different NGS technologies work in prin-
ciple, the overall NGS workflow is similar. Sequencing genomic DNA, or 
RNA transcripts, using these NGS technologies all involves multiple steps 
(Figure 4.6). The early steps in this process are to construct sequencing 
libraries from DNA or RNA molecules extracted from biological samples of 
interest. As they are usually too large to be directly handled by most NGS 
technologies, especially those that produce short reads, the extracted DNA 
or RNA molecules often need to be broken into smaller fragments first. This 
fragmentation can be achieved with different techniques, including enzym-
atic treatment, acoustic shearing, sonication, or chemical shear (typically for 
RNA). The fragmentation step is usually followed by a size selection step 
to collect fragments in a certain target range. If ultra- long reads need to be 
obtained from the long- read platforms, a special extraction procedure is 
required to retain high- molecular- weight DNA.

A key step in the sequencing library construction process is the ligation  
of adapters to the two ends of DNA fragments. For RNA fragments, they  
are usually converted to complementary DNA (cDNA) first before adding  
the adapters. The adapters are artificial sequences that contain multiple  
components including universal sequencing primer sequence(s) that initiate  
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sequencing reactions on each fragment, and indexing (or “barcode”) sequences  
to differentiate multiple samples when they are sequenced together. While  
they generally serve similar functions in different NGS platforms, the actual  
standard adapter sequences are specific to each platform. It is also possible  

Sequencing Target
(DNA or RNA)

Fragmentation*

Size Selection*

End Repair/A-Tailing
Adapter Ligation

Library Enrichment*

Sequencing

Data Analysis

FIGURE 4.6
The general workflow of an NGS experiment. For library construction, only core steps shared 
by the different sequencing platforms are shown. The steps marked with asterisks are not used 
in some library construction protocols. Adapters ligated to sequencing targets are specific to 
each platform. There are other library construction strategies or procedures, such as use of non- 
ligation or target sequence capture, that are not shown here.
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to design custom adapters to meet special needs as long as key adapter  
sequence elements essential for a platform are in place. Prior to adapter liga-
tion, the two ends of the DNA (or cDNA) fragments need to be prepared in  
an end repair step. After adapter ligation, the sequencing DNA templates in  
the resultant library may need to be enriched through a PCR amplification  
step using common sequences in the adapters. Alternatively, the constructed  
library may be sequenced PCR- free without enrichment on most of the  
platforms.

4.4  Biases and Other Adverse Factors That May    
Affect NGS Data Accuracy

Just as a certain level of erroneous basecalls is inherent to an NGS platform, 
the multiple steps that lead to the generation of sequence calls are not immune 
to biases. Different from errors, biases affect accurate representation of the 
original DNA or RNA population leading to higher (or lower) representa-
tion of some sequences than expected. The major source of biases in NGS is 
the molecular steps involved in the library construction and the sequencing 
process itself. Besides biases, there are also other potential factors that may 
lead to the generation of inaccurate sequencing signals. Detailed next are the 
various potential biases and other adverse factors during sequencing library 
construction and sequencing that may affect NGS data accuracy. It should 
be noted that while it is impossible to avoid them altogether, being aware 
of their existence is the first step toward minimizing their influence through 
careful experimental design and data analysis, and developing more robust 
analytic algorithms.

4.4.1  Biases in Library Construction

Biases in DNA fragmentation and fragment size selection. The initial step of library 
construction, i.e., DNA fragmentation, is usually assumed to be a random 
process and not dependent on sequence context. This has been shown to be 
not the case [7]. For example, sonication and nebulization cause DNA strand 
breaks after a C residue more often than expected. After DNA fragmentation, 
the size selection process may also introduce bias. For example, if gel extrac-
tion is employed for this process, the use of high gel melting temperature 
favors recovery of fragments with high GC content.

Ligation biases. After fragmentation and size selection, double- stranded DNA 
fragments are usually adenylated, after end repair, at the two 3’- ends gen-
erating 3’- dA tails that facilitate subsequent ligation of adapters that carry 
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5’- dT overhangs and thereby avoid self- ligation of DNA fragments or 
adapters. This AT overhang- based adapter ligation process, however, tend to 
be biased against DNA fragments that start with a T [8]. The sequencing of 
large RNA species, such as mRNAs or long non- coding RNAs, is also affected 
by this bias, as cDNA molecules reverse transcribed from these species are 
also subjected to the same adapter ligation process. Small RNA sequencing is 
not affected by this bias, as the ligation of adapters in small RNA sequencing 
library preparation is carried out prior to the reverse transcription step. The 
small RNA adapter ligation step, however, introduces a different type of bias, 
which affects some small RNAs in a sequence- specific manner. Sequence spe-
cificity underlies small RNA secondary and tertiary structure, which is also 
affected by temperature, concentration of cations, and destabilizing organic 
agents (such as DMSO) in the ligation reaction mixture. The efficiency of 
small RNA adapter ligation is influenced by their secondary and tertiary 
structure [9].

PCR biases. After adapter ligation, the DNA library is usually enriched by 
PCR for sequencing on most of the current NGS platforms. PCR, based on the 
use of DNA polymerases, is known to be biased against DNA fragments that 
are extremely GC-  or AT- rich [10]. This can lead to variation in the coverage 
of different genomic regions and under- representation of those regions that 
are GC-  or AT- rich. While optimization of PCR conditions can ameliorate 
this bias to some degree especially for high- GC regions, this bias can only 
be eliminated via adoption of a PCR- free workflow. To achieve this, Illumina 
provides PCR- free options. For single- molecule sequencing carried out on 
the PacBio SMRT and ONT platforms, PCR amplification is typically not 
required unless the input amount of starting DNA/ RNA is low.

4.4.2  Biases and Other Factors in Sequencing

Like PCR, the sequencing- by- synthesis process carried out by most current 
NGS systems is also based on the use of DNA polymerases, which introduces 
similar coverage bias against genomic regions of extreme GC or AT con-
tent. As the use of DNA polymerases is at the core of these technologies, it is 
difficult to eradicate this bias completely. This bias should be kept in mind 
though when sequencing genomes or genomic regions of extremely high GC 
or AT content (>90%). Besides this enzymatic procedure, other aspects of the 
sequencing process, including equipment operation and adjustment, image 
analysis, and basecalling, may also introduce biases as well as artifacts. For 
example, air bubbles, crystals, dust, and lint in the buffers could obscure 
existing clusters (or beads) and lead to the generation of artificial signals. 
Misalignment of the scanning stage, or even unintended light reflections, can 
cause significant imaging inaccuracies. Unlike some of the inherent biases 
mentioned above, these artifacts can be minimized or avoided by experienced 
personnel.
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The sequencing signal processing and basecalling steps may also intro-
duce bias. For example, on the Illumina platform, basecalling results can 
be affected by color crosstalk, spatial crosstalk, as well as phasing and pre- 
phasing [11, 12]. On MiSeq, for instance, four images are generated from 
four detection channels after each cycle, which need to be overlaid to extract 
signal intensities for basecalling. This procedure is complicated by three 
factors: 1) signals from the four channels are not totally independent, as there 
is crosstalk between A and C, and between G and T channels, due to the over-
lapping in the emission spectra of their fluorescent labels; 2) neighboring 
clusters may partially overlap leading to spatial crosstalk between adja-
cent clusters; and 3) signals from a particular cycle are also dependent on 
signals from the cycles before and after, due to phasing and pre- phasing. 
While the Illumina’s proprietary software is efficient at dealing with these 
factors for basecalling, there are other commercial and open- source tools 
that employ different algorithms for these tasks and generate varying results 
[13]. The algorithms these methods use (including the Illumina method) 
make different assumptions on signal distribution, which may not strictly 
represent the collected data, and therefore introduce method- specific bias to 
basecalling.

4.5  Major Applications of NGS

4.5.1  Transcriptomic Profiling (Bulk and Single- Cell RNA- Seq)

NGS has replaced microarray as the major means of detecting transcriptomic 
profiles and changes. The transcriptomic profile of a biological sample (such 
as a cell, tissue, or organ) is determined by and reflects on its developmental 
stage, internal, and external functional conditions. By sequencing existing 
RNA species in the transcriptome, NGS provides answers to key questions 
such as what genes are active and at what activity levels. RNA- seq at single- 
cell level interrogates cellular heterogeneity and reveals different cell types 
and states in a mixed population of cells or a tissue. Transcriptomic studies 
are almost always comparative studies, contrasting one tissue/ stage/ condi-
tion with another. Besides gene- level analysis, RNA- seq can also be used to 
study different transcripts derived from the same gene through alternative 
splicing. As an integral part of the transcriptome, small RNAs can be simi-
larly studied by NGS. Analysis of bulk RNA- seq data generated from large 
and small RNA species is covered in Chapters 7 and 9, respectively. Due to 
its uniqueness single-cell RNA- seq data analysis is covered in a dedicated 
chapter (Chapter 8).
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4.5.2  Genetic Mutation and Variation Identification

Detecting and cataloging genetic mutation or variation among individuals 
in a population is a major application of NGS. Existing NGS studies have 
already shown that severe diseases such as cancer and autism are associated 
with novel somatic mutations. Projects such as the 1000 Genomes Project have 
revealed the great amount of genetic variation in a population that accounts 
for individual differences in physical traits, disease predisposition, and drug 
response. Chapter 10 focuses on data analysis techniques in a research setting 
on how to identify mutations and various types of variations, and test their 
associations with traits or diseases. Chapter 11 focuses on the clinical applica-
tion of NGS to identify actionable variants to guide bedside decision making.

4.5.3  De Novo Genome Assembly

Sanger sequencing used to be regarded as the golden standard for de novo 
genome assembly, but more and more genomes, including large com-
plex genomes, have been assembled with NGS reads alone. Technological 
advancements in the NGS arena, including the gradual increases of read 
length in short- read technologies and the maturation of long- read technolo-
gies, have contributed to this trend. The development of new algorithms 
for NGS- based genome assembly is another force behind this progress. 
Chapter 12 focuses on how to use these algorithms to assemble a new genome 
from NGS reads.

4.5.4  Protein- DNA Interaction Analysis (ChIP- Seq)

The normal functioning of a genome depends on its interaction with a multi-
tude of proteins. Transcription factors, for example, are among some of the 
best- known DNA- interacting proteins. Many of these proteins interact with 
DNA in a sequence-  or region- specific manner. To determine which regions 
of the genome these proteins bind to, the bound regions can be first captured 
by a process called chromatin immunoprecipitation (or ChIP) and then 
sequenced by NGS. ChIP- seq can be applied to study how certain conditions, 
such as a developmental stage or disease, affect the binding of protein factors 
to their affinity regions. ChIP- seq data analysis is covered in Chapter 13.

4.5.5  Epigenomics and DNA Methylation Study (Methyl- Seq)

Chemical modifications of certain nucleotides and histones provide an 
additional layer of genome modulation beyond the regulatory mech-
anism embedded in the primary nucleotide sequence of the genome. These 
modifications and the modulatory information they provide constitute the 
epigenome. NGS- based epigenomics studies have revealed how monozy-
gotic twins display difference in certain phenotypes, and how changes in 
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epigenomic profile may lead to diseases such as cancer. Cytosine methylation 
is a major form of epigenomic change. Chapter 14 covers analysis of DNA 
methylation sequencing data.

4.5.6  Metagenomics

To study a community of microorganisms like the microbiome in the gut or 
those in a bucket of seawater, where extremely large but unknown numbers 
of species are present, a brutal force approach that involves the study of all 
genomes contained in such a community is metagenomics. Recently the field 
of metagenomics has been greatly fueled by the development of NGS tech-
nologies. By quickly sequencing everything in a metagenome, researchers can 
get a comprehensive profile of the makeup and functional state of a micro-
bial community. Compared to NGS data generated from a single genome, 
the metagenomics data is much more complicated. Chapter 15 focuses on 
metagenomics NGS data analysis.
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5  
Early- Stage Next- Generation Sequencing 
(NGS) Data Analysis: Common Steps

In general, NGS data analysis is divided into three stages. In the primary 
analysis stage, bases are called based on deconvolution of the optical or 
physicochemical signals generated in the sequencing process. Regardless of 
sequencing platforms or applications, the basecall results are usually stored 
in the standard FASTQ format. Each FASTQ file contains a massive number of 
reads, i.e., sequence readouts of DNA fragments sampled from a sequencing 
library. In the secondary analysis stage, reads in the FASTQ files are quality 
checked, preprocessed, and then mapped to a reference genome. The data 
quality check or control (QC) step involves examining a number of sequence 
reads quality metrics. Based on data QC result, the NGS sequencing files are 
preprocessed in order to filter out low- quality reads, trim off portions of reads 
that have low- quality basecalls, and remove adapter sequences or other arti-
ficial sequences (such as PCR primers) if they exist. Subsequent mapping (or 
aligning) of the preprocessed reads to a reference genome aims to determine 
where in the genome the reads come from, the critical information required 
for most tertiary analysis (except de novo genome assembly). The stage of 
tertiary analysis is highly application- specific and detailed in the chapters of 
Part III. This chapter focuses on steps in the primary and secondary stages, 
especially on reads QC, preprocessing, and mapping, which are common and 
shared among most applications (Figure 5.1).

5.1  Basecalling, FASTQ File Format, and Base Quality Score

The process of basecalling in the primary stage from fluorescence images,  
movies, or physicochemical measurements is carried out with platform-  
specific, proprietary algorithms. For example, Illumina uses Bustard, a statis-
tical model- based basecaller. ONT currently employs Guppy, based on the  
use of a deep learning approach called RNNs (or recurrent neural networks).  
Besides these onboard basecallers that come with the sequencers, other  
stand-alone basecalling algorithms have also been developed towards the  
goal of further improving accuracy [1, 2]. Increasing basecalling accuracy is  
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especially important for the long-read sequencing platforms, with the ONT  
platform serving as a good example with active basecalling algorithm devel-
opment. Multiple machine learning- based basecallers have been developed  
by ONT, including Albacore, Scappie, Flappie, and Bonito, besides Guppy. At  
the time of writing, Guppy offers faster speed than the others while maintains  
relatively high accuracy, while Bonito, as the latest iteration of basecallers  
from ONT, uses another deep learning approach called CNN (convolutional  
neural networks) to achieve even better accuracy than Guppy but at a slower  
speed. Other open- source basecalling algorithms developed by the commu-
nity include DeepNano [3], Nanocall [4], Chiron [5], and causalcall [6]. As a  
result of these algorithmic development efforts, significant progress has been  
made and basecalling accuracy has been significantly increased.

Most end users do not usually intervene in the basecalling process but 
rather focus on analysis of the basecalling results. Regardless of the sequen-
cing platform, basecalling results are usually reported in the universally 
accepted FASTQ format. In file size, a typical compressed FASTQ file is usu-
ally in the multi- GB range and may contain millions to billions of reads. In a 
nutshell, the FASTQ format is a text- based format, containing the sequence of 
each read along with the confidence score of each base. Figure 5.2 shows an 
example of one such read sequence reported in the FASTQ format.

The confidence (or quality) score, as a measure of the probability of making  
an erroneous basecall, is an essential component of the FASTQ format. The  

Data QC & 
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Reads Mapping 
to a Reference Genome
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(RNA-Seq)

Protein-DNA Interaction
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Mutation and Variation 
Discovery (Whole 
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Epigenomics & DNA 
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(Methyl-Seq)

Metagenomics Analysis
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FIGURE 5.1
General overview of NGS data analysis. The steps in the dashed box are common steps conducted 
in primary and secondary analysis.
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NGS basecall quality score (Q- score) is similar to the Phred score used in  
Sanger sequencing and is calculated as:

Q = − ×10 10log PErr

where PErr is the probability of making a basecall error. Based on this equation, 
a 1% chance of incorrectly calling a base is equivalent to a Q- score of 20, and 
Q30 means a 1/ 1000 chance of making a wrong call. Usually for a basecall 
to be reliable, it has to have a Q- score of at least 20. High- quality calls have 
Q- scores above 30, usually up to 40. For better visualization of Q- scores 
associated with their corresponding basecalls, they are usually encoded with 
ASCII characters. While there have been different encoding scheme versions 
(e.g., Illumina 1.0, 1.3, and 1.5), currently the NGS field has mostly settled on 
the use of the same encoding scheme used by Sanger sequencing (Figure 5.3). 
In the FASTQ example shown in Figure 5.2, the first base, C, has an encoded 
Q- score of B, i.e., 33.

To come up with the PErr, a control lane or spike control is usually used to  
generate a basecall score calibration table in Illumina sequencing for lookup.  
A precomputed calibration table can also be used in the absence of a control  
lane and spike control. Because each platform calibrates their Q- scores differ-
ently, if they are to be compared with each other or analyzed in an integrated  
fashion, their Q- scores need to be recalibrated. To carry out the recalibration,  
a subset of reads is used that maps to regions of the reference genome that  
contain no SNPs, and any mismatch between the reads and the reference  

@HISEQ:131:C5NWFACXX:1:1101:3848:2428 1:N:0:CGAGGCTGCTCTCTAT
CTTTTATCAGACATATTTCTTAGGTTTGAGGGGGAATGCTGGAGATTGTAATGGGTATGGAGACATATCATATAAGTAATGCTAGG
GTGAGTGGTAGGAAG
+
BB7FFFFB<F<FBFBBFBFBFFFIFFFFIIIFF<FBFFFBFIFFBFFFIFFFBFB07<BFFF7BBFFFBFFFFFF<BFBFBBBBBB
B'77B<770<BBBBB

FIGURE 5.2
The FASTQ sequence read report format. Shown here is one read generated from an NGS 
experiment. A FASTQ file usually contains millions to billions of such reads, with each 
containing several lines as shown here. Line 1, starting with the symbol ‘@,’ contains sequence 
ID and descriptor. Line 2 is the read sequence. Line 3 (optional) starts with the ‘+ ’ symbol, which 
may be followed by the sequence ID and description. Line 4 lists confidence (or quality) scores 
for each corresponding base in the read sequence (Line 2). For Illumina– generated FASTQ files, 
the sequence ID in Line 1 in this example basically identifies where the sequence was generated. 
This information includes the equipment (“HISEQ” in the above example), sequence run ID 
(“131”), flow cell ID (“C5NWFACXX”), flow cell lane (“1”), tile number within the lane (“1101”), 
x/ y- coordinates of the sequence cluster within the tile (“3848” and “2848,” respectively). The 
ensuing descriptor contains information about the read number (“1” is for single read here; for 
paired- end read it can be 1 or 2), whether the read is filtered (“N” here means it is not filtered), 
control number (“0”), and index (or sample barcode) sequence (“CGAGGCTGCTCTCTAT”).
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sequence is considered a sequencing error. Based on the rate of mismatch at  
each base position of the reads, a new calibration table is constructed, which  
is then used for recalibration. Even without cross- platform NGS data com-
parison and integration, NGS data generated on the same platform can still  
be recalibrated post mapping (see next) using the same approach, which  
often leads to improved basecall quality scores.

5.2  NGS Data Quality Control and Preprocessing

After NGS data generation, the first step should be data quality check. While 
this step does not directly generate biological insights, it is nonetheless essen-
tial and should be carried out carefully. Doing so will avoid production of 
non- sensical or even erroneous results in later steps and unnecessary con-
sumption of computational resources and time. In this process, the following 
metrics of data quality need to be examined:

1) Q- Scores: These can be examined in different ways. On a per- base 
basis, this can be conducted by examining quality scores across all base 
positions of all reads, from the first sequenced base to the last. As a 
general trend, for platforms based on sequencing- by- synthesis, base 
positions covered at early phases of a sequencing procedure tend to 
have higher Q- values than those sequenced later in the procedure. The 
Q- scores for even the late- phase base positions, however, should still 
have a median value of at least 20. If there is a significant Q- score drop 
in the late phase, the affected base positions need to be examined closely 
and low- quality bases should be trimmed off from affected reads. In 
addition, increased percentage of N calls also helps determine loss of 
basecall quality (an N is called when the base calling algorithm cannot 
call any of the four bases with confidence). Another way of inspecting 
Q- scores is by plotting the average Q- score of each read and examining 

ASCII Character: ! " # $ % & ' ( ) *  +  ,  -  .  /  0  1  2  3  4  5  6  7  8  9  :
  Quality Score: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

 ;  <  =  >  ?  @  A  B  C  D  E  F  G  H  I  J
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

FIGURE 5.3
Encoding of basecall quality scores with ASCII characters. ASCII stands for American Standard 
Code for Information Interchange, and an ASCII code is the numerical representation of a 
character in computers (e.g., the ASCII code of the letter ‘B’ is 66). In this encoding scheme, 
the ASCII character codes equal to Q- scores plus 33. Current major NGS platforms, including 
Illumina (after ver. 1.8), use this encoding scheme for Q- score representation.
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their distribution pattern. For a successful run, the majority of reads 
should have average Q- score of over 30, and only a very small per-
centage of reads have average Q- score below 20.

2) Percentage of each base at each position: If reads are obtained from a sequen-
cing library constructed from randomly generated DNA fragments, the 
chance of observing each of the four bases at each base position should 
be constant. Therefore, when plotting the percentages of each base across 
all base positions, the plots for A, C, G, and T should be roughly parallel 
to each other, and the overall percentage shown in each plot should 
reflect the overall frequency of each base in the target library. If the plots 
deviate significantly from being parallel, this indicates problem(s) in 
the library construction process, such as existence of over- represented 
sequences in the library (such as rRNA in an RNA- seq library), or non- 
random fragmentation.

3) Read length distribution: For platforms that produce reads of varying 
length (such as the PacBio and ONT platforms), the distribution of 
read length should also be examined. In combination with the distri-
bution of Q- scores, this determines the total amount of useful data a 
run generates. In addition, with data quality and total volume being 
equal, a run that produces longer reads is more advantageous in terms 
of sequence alignment or assembly than one with more relatively 
short reads.

Besides examining reads quality and length distribution, other QC metrics 
should also be examined, such as existence of artificial sequences including 
adapters and PCR primers, or duplicated sequences based on sequence iden-
tity (sequence duplication can also be checked based on reference genome 
mapping result). After inspecting sequence data quality, filtering should be 
performed to remove low- quality reads. Furthermore, low- quality basecalls, 
e.g., bases at the 3’ end that have Q- scores below 20, as well as artificial 
sequence contaminants, should also be trimmed off if they exist. While some 
platforms (e.g., Illumina) perform sequence filtering by default prior to 
FASTQ file generation, if the distribution of sequence Q- scores is found to 
be unsatisfactory after examination, additional filtering/ trimming may need 
to be performed. Execution of these preprocessing tasks is a requirement for 
high- quality downstream analysis.

The most commonly used NGS data QC software includes FastQC [7], 
NGS QC Toolkit [8], and fastp [9]. These toolkits have functional modules 
to examine per- read and per- base Q- scores, base frequency distribution, 
read length distribution, and existence of duplicated sequences and artificial 
sequences. FastQC is written in Java and has a user- friendly interface on most 
operating systems including Windows. Developed in C/ C+ +  and employing 
multi- threading for parallel processing, fastp aims to achieve fast speed for 
QC, as well as other preprocessing steps including adapter trimming, quality 
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filtering, per- read quality pruning, etc. More recent NGS QC tools, such as 
seqQscorer [10], apply machine learning approaches in an attempt to achieve 
better understanding of quality issues and automated quality control. Tools 
such as FQC Dashboard [11] and MultiQC [12] serve as aggregators of QC 
results from other tools (e.g., FastQC) and present them in a single report. 
After data QC, to perform stand-alone preprocessing tasks such as adapter 
trimming and read filtering, tools such as cutadapt [13] and Trimmomatic 
[14] are often used.

Some of the QC tools mentioned above, including FastQC and fastp, can be 
used for both short and long reads. There are also tools such as NanoQC (part 
of NanoPack) [15] specifically designed for long-read QC. Besides NanoQC, 
NanoPack has a set of utilities for trimming, filtering, summarization, visual-
ization, etc. PycoQC [16] is another tool that provides interactive QC metrics 
for ONT data. For PacBio long reads, SequelTools [17] provides QC data, as 
well as other tasks such as reads filtering, summarization, and visualization.

5.3  Read Mapping

After the data is cleaned up, the next step is to map, or align, the reads 
to a reference genome if it is available, or conduct de novo assembly. As 
shown in Figure 5.1, most NGS applications require read mapping to a 
reference genome prior to conducting further analysis. The purpose of this 
mapping process is to locate origins of the reads in the genome. Compared 
to searching for the location(s) of a single or a small number of sequences 
in a genome by tools such as BLAST, simultaneous mapping of millions 
of NGS reads, sometimes very short, to a genome is not trivial. Further 
challenge comes from the fact that any particular genome from which NGS 
reads are derived deviates from the reference genome at many sites because 
of polymorphism and mutation. As a result any algorithm built for this task 
needs to accommodate such sequence deviations. To further complicate the 
situation, sequencing errors are often indistinguishable from true sequence 
deviations.

5.3.1  Mapping Approaches and Algorithms

The mapping of NGS reads to a reference genome is not a new task in itself. As 
indicated above, before the advent of NGS, a number of sequence alignment 
algorithms already existed, the best known of which is BLAST. These aligners 
use hash tables and seed- and- extend methods to perform the computation-
ally intensive process of aligning an individual query sequence against a 
sequence database (such as GenBank). To use these methods to align the 
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millions of NGS reads to a reference genome, however, creates a scalability 
problem, as they simply cannot scale up to the data volume, and scale down 
to the short length of many NGS reads (as short read carries less informa-
tion). As a result, new generations of algorithms have been devised for the 
mapping of NGS reads, either through optimizing the previous methods or 
introducing new approaches.

Mapping of NGS reads can be separated into three steps (Figure 5.4). The 
first step is to index the reference genome sequence in computer memory 
to boost subsequent searching speed. The use of hash table is one way to 
achieve this, while another approach is to use suffix- tree based techniques 
(to be detailed next). The second step is the so- called “global positioning,” 
with the goal of determining possible matching location(s) in the indexed 
reference genome of seed sequences extracted from a read. The third step is 
extensive alignment between the entire read and location(s) matched in Step 
2 to verify the alignment and in the meantime produce alignment informa-
tion such as sequence variation and their type.

Hash table- based reference genome indexing is often used for fast lookup 
of matching locations of exact subsequences (or k- mers) from reads. A hash 
table is a data structure that stores associative data, in this case, k- mers and 
their associated genomic locations. After genomic sequences are indexed 
by hashing, k- mers are then extracted from each read and used as seeds 
to search the hash table to identify their possible locations in the genome 
(Figures 5.4 and 5.5). Aligners based on this approach include minimap2 [18], 
SOAP (Short Oligonucleotide Alignment Program) [19], MAQ (Mapping and 
Assembly with Qualities) [20], Illumina’s Isaac Genome Alignment Software 
[21], and Novoalign (Commercial). Among these aligners, minimap2 uses 
minimizers [22] to reduce the amount of computer memory needed to store 
the hash table in order to further increase speed. It should be noted that while 
most aligners use hash table to index the reference genome, some aligners 
(such as MAQ) create a hash table from NGS reads instead, and in such cases 
k- mers extracted from the reference genome are used to look up matches in 
the reads.

In the seed- and- extend approach used by BLAST, the seed used is con-
secutive sequence designed to locate near- exact matches, which is not ideal 
for aligning sequences that contain variations especially indels. To increase 
alignment robustness, NGS reads aligners have migrated from the use of con-
secutive exact- match seeds to nonconsecutive (or spaced) seeds. By allowing 
space between seeds, the chance of finding a match is increased. In SOAP 
and Novoalign, for example, to perform alignment using spaced seeds, the 
reference genome sequence is first cut into equal- sized small fragments and 
saved in a big hash table in memory. The NGS reads are then cut in a similar 
fashion into subsequences, which are searched against the reference genome 
(Figure 5.5a). Computationally, these aligners are memory and processor 
intensive and therefore not very fast.
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FIGURE 5.4
Major steps in mapping NGS reads. In the first stage, the reference genome is indexed. This is 
achieved through extracting seed sequences from the reference genome (a) and subsequently 
the seed sequences are indexed using suffix tree or hash table (b). In the second stage, seed 
sequences are extracted from reads (c), which are then used to search the indexed reference 
genome for possible matching locations (d). In the example shown, each seed extracted from 
read 1 is searched to locate their potential locations in the indexed genome. Based on their 
adjacency some of the locations are excluded (red X) as such locations are unlikely to span the 
read. In the last stage, the adjacent seeds are chained and the gap sequences between the seeds 
are inspected for mismatches (red X), based on which pre- alignment filters determine whether to 
accept the alignment between the read and the genomic region (e). In the last step, the alignment 
is subject to verification to generate alignment result including sequence differences and their 
locations. (From Alser, M., Rotman, J., Deshpande, D. et al. Technology dictates algorithms: recent 
developments in read alignment. Genome Biol 22, 249 (2021). https:// doi.org/ 10.1186/ s13 
059- 021- 02443- 7. Used under the terms of the Creative Commons Attribution 4.0 International 
License, http:// crea tive comm ons.org/ licen ses/ by/ 4.0/ , © 2021 Alsher et al.)
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To reduce demands on computational resources, another approach is  
through the use of Burrows– Wheeler transform (or BWT). BWT is an algo-
rithm that applies reversible transformation to a block of text (genomic  
nucleotide sequence in the case of NGS data) to enable lossless data compres-
sion [23]. The transformation is achieved through a text reordering process  
that can be efficiently implemented using the suffix array data structure  

Burrows–Wheeler 
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(> 3 gigabases)

Bowtie index
(~2 gigabytes)

Concatenate into
single string
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transform and indexing
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•
•
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spaced seed pair
is found
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•
•
•
•
•
•
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FIGURE 5.5
NGS read mapping approaches. Panel (a) shows the approach based on spaced seed indexing. 
In this illustration, spaced seeds extracted from the reference genome sequence are indexed by 
a hash table. Panel (b) shows the approach based on Burrows– Wheeler transform (BWT). In this 
example, the algorithm Bowtie performs mapping by looking up reads base by base, from right 
to left, against the transformed and indexed genome. (Adapted by permission from Macmillan 
Publishers Ltd: Nature Biotechnology, How to map billions of short reads onto genomes, C 
Trapnell and SL Salzberg, copyright 2009.)
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(Figure 5.6a). After the transformation, efficient indexing of the reference  
genome sequence can be achieved using an algorithm proposed by Ferragnia  
and Manzini [24]. Figure 5.6(b) provides an example of how such a suffix  
array is used for lookup of k- mers in the indexed genome. The combined use  
of BWT, suffix array, and FM- index effectively reduces the amount of com-
puter memory needed to store an indexed reference genome for fast mapping.  
As an example, using this approach the indexed human genome only takes  
2– 3 GB of computer memory instead of over 50 GB used by the spaced- seed  
indexing approach, and the run time is cut from hours to minutes. BWT is  
employed by algorithms such as BWA (Burrows– Wheeler Alignment) [25],  
Bowtie/ Bowtie 2 [26, 27], and SOAP2 [28]. Figure 5.5b shows an example  
how this approach works in the case of Bowtie.

After global position(s) of seed sequences from NGS reads are located in the 
reference genome based on the use of either suffix tree or hash table, adjacent 
seeds are chained and the gaps between them are evaluated for mismatches. 
If this filtering process is passed and the read and the genomic region are 
matched, pairwise alignment is then used to verify the alignment and gen-
erate alignment results in SAM or BAM formats (see next) (Figure 5.4). This 
pairwise alignment procedure can be performed using different techniques, 

(a)

(b)

FIGURE 5.6
How Burrows– Wheeler transform (BWT) works for aligning NGS reads. Panel (a) shows the 
BWT procedure for a short example sequence ‘acaacg.’ Panel (b) shows how to use BWT to 
identify the locations of read sequences prefixed by ‘aac.’ (Adapted by permission from Springer 
Nature Customer Service Centre GmbH: Springer Nature, Genome Biology, Ultrafast and 
memory- efficient alignment of short DNA sequences to the human genome, B Langmead, C 
Trapnell, M Pop, and SL Salzberg, copyright 2009.)
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among which Smith– Waterman, Hamming Distance, and Needleman– 
Wunsch algorithms are often used. The Smith– Waterman algorithm is used 
in commonly used tools such as STAR [29]. Smith– Waterman is a local 
alignment procedure based on dynamic programming (DP) [30]. DP was first 
introduced by Needleman and Wunsch in 1970 to alignment of DNA and pro-
tein sequences towards the goal of producing an alignment for two sequences 
that achieves maximum alignment score. The Needleman– Wunsch algorithm 
itself, however, is used for global alignment [31]. Alignment methods such as 
Novoalign use Needleman– Wunsch. Hamming Distance [32] is a non- DP- 
based measure of dissimilarity between two sequences, i.e., the number of 
locations at which nucleotides are different. The HD- based method is used 
by RMAP [33], Bowtie [34], and mrsFAST [35].

5.3.2  Selection of Mapping Algorithms and Reference    
Genome Sequences

Table 5.1 lists some of the often- used mapping algorithms. When selecting 
aligners, factors including accuracy, speed, and computer memory require-
ment need to be considered. As these factors are usually conflicting, some 
aligners put more emphasis on accuracy while others stress speed and 
memory efficiency. If speed and memory efficiency are more important, 
Bowtie2 is recommended. If higher accuracy is preferred, hash table- based 
tools such as Novoalign, Stampy [36], and SHRiMP2 [37] are often used. BWA 
strikes a balance between speed and sensitivity. Most of these aligners are 
initially developed to map very short reads, such as those of 35 nucleotides 
from early Illumina sequencers. With the gradual increase in read length, 
these aligners have been adapted accordingly. For instance, BWA- MEM is an 
adaptation of the original BWA algorithm for aligning longer Illumina short 
reads [38].

For aligning much longer reads such as those from the PacBio and ONT  
platforms, aligners designed to handle long sequences, such as minimap2,  
GraphMap [39], BLASR [40], LAST [41], NGMLR [42], or Winnowmap/  
Winnowmap2 [43, 44] should be used. In general, mapping of long reads  
follows a similar seed- chain- extend approach as used for short-read  
aligners. For effective mapping, long reads are typically broken into shorter  
subsequences that are then used as seeds for finding exact matches in the  
reference genome. One of the challenges for long read mapping, however,  
is the significant number of short seeds extracted from each long read. To  
counter this problem and achieve fast mapping speed, a new approach based  
on the use of a minimum set of representative seeds is often used. This min-
imizer approach provides a quick method for sampling and summarization 
of k- mers in a long sequence, based on which the similarity of two long  
sequences can be assessed more readily. Based on this approach, if two long  
sequences share identical subsequences of sufficient length, the same k- mer  
(or minimizer) will be selected for the two subsequences [22, 45]. By adopting  
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minimizers, localizing subsequences shared in two long sequences becomes  
more computationally tractable. To use minimap2 as an example, the step of  
indexing a reference genome is achieved through indexing minimizers from  
a reference genome in a hash table. To map long reads, minimizers from the  
query reads are used as seeds to find exact match(es) in the reference genome.  
Co- localized seeds are then linked together as chains for the extension step.

Besides mapping algorithms, selection of reference genome sequences, 
when multiple reference genome sequences are available, also affects mapping 
result. By the design of most current mappers, reads that are more similar 
to the selected reference sequence align better than those that deviate more 
from the reference. If the deviation is sufficiently large, it might be discarded 
as a mismatch. As a result, the use of different reference genome sequences 
can introduce a “reference bias.” The use of any one particular reference 
genome invariably introduces this bias, as a single reference genome simply 
cannot accommodate sequence variations and polymorphisms that are nat-
urally present in a population or species. This bias should be kept in mind, 

TABLE 5.1

Commonly Used Alignment Methods

Name Description Reference

Minimap2 A general-purpose alignment tool for both long and short reads. 
Uses hash table for reference genome indexing. Achieves fast 
speed through use of minimizers. Splice- aware and can be used 
for long RNA- seq reads

[18]

BWA- MEM2 The often- used algorithm in the BWA package designed for 
short reads. Employs suffix array lookup of seed sequences and 
Smith– Waterman- based extended alignment

[48]

Bowtie2 A short-read aligner based on the use of BWT and FM 
for reference genome indexing, and Smith– Waterman or 
Needleman– Wunsch for local or global alignment

[27]

SOAP2 Uses BWT compression to index the reference genome to 
achieve high speed for short-read alignment

[28]

Stampy A short-read aligner that has high sensitivity in mapping 
reads that contain variation(s) or diverge from the reference 
sequence. Uses fast hashing to build reference index and a 
statistical model for alignment

[36]

NGMLR A mapper designed for PacBio and ONT long reads. Splits long 
reads to shorter anchor sequences for lookup using hashing 
and then deploys Smith– Waterman for final alignment

[42]

GraphMap A long-read aligner that uses spaced seeds for hashing- based 
index construction and lookup, and then performs graph- based 
mapping and progressive refinement to achieve alignment of 
long but error- prone reads

[39]

LAST Implements the standard seed- and- extend approach but with 
the use of adaptive seeds instead of fixed- length seeds

[41]
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especially when the genetic background of the source organism is different 
from the reference genome. In this situation, comparison of mapping results 
from the use of different references can help select a reference that is more 
appropriate. More recent mapping strategies to counter the reference bias 
include use of a “major- allele” reference genome, in which the most common 
allele is used for each variant site [46]; multiple reference genomes, which is 
used by the Reference Flow method [47]; or graph- based reference genome 
(see Chapter 16, Section 16.6).

5.3.3  SAM/ BAM as the Standard Mapping File Format

Mapping results generated from the various algorithms are usually stored in 
the SAM or BAM file format. SAM, standing for Sequence Alignment/ Map, 
has a tab- delimited text format. It is human readable and easy to examine 
but relatively slow to parse. BAM, being the compressed binary version of 
SAM, is smaller in size and faster to parse. Due to their wide use, SAM/ 
BAM have become the de facto standard for storing read mapping results. 
The basic structure of a SAM/ BAM file is straightforward, containing a 
header section (optional) and an alignment section. The header section, if it 
exists, provides generic information about the SAM/ BAM file and is placed 
above the alignment section. Each line in the header section starts with the 
symbol “@.” For the alignment section there are 11 mandatory fields (listed 
in Table 5.2). An example of the SAM/ BAM format is presented in Figure 5.7.

In the example shown in Figure 5.7, the header section contains two lines.  
The first line has the two- letter record type code HD, signifying it as the header  
line, which is always the first line if present. This record has two tags: VN,  
for format version, and SO, for sorting order (in this case the alignments are  
sorted by coordinate). The second line is for SQ, i.e., the reference sequence  
dictionary. It also has two tags SN and LN, for reference sequence name and  

TABLE 5.2

Mandatory Fields in the SAM/ BAM Alignment Section

Col Field Type Description

1 QNAME String Query sequence read (or template) NAME
2 FLAG Integer bitwise FLAG
3 RNAME String Reference sequence NAME
4 POS Integer leftmost mapping POSition on the reference sequence
5 MAPQ Integer MAPping Quality
6 CIGAR String CIGAR string
7 RNEXT String Reference name of the NEXT read (For paired- end reads)
8 PNEXT Integer Position of the NEXT read (For paired- end reads)
9 TLEN Integer observed Template LENgth

10 SEQ String segment SEQuence
11 QUAL String ASCII of Phred- scaled base QUALity+ 33
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reference sequence length, respectively. For the alignment section, while most  
of the fields listed in Table 5.1 are self- explanatory, some fields may not be so  
clear at first glance. The FLAG field uses a simple decimal number to track  
the status of 11 flags used in the mapping process, such as whether there are  
multiple segments in the sequencing (like r001 in the example) or if the SEQ  
is reverse complemented. To check on the status and meaning of these flags,  
the decimal number needs to be converted to its binary counterpart. For the  
POS field, SAM uses a 1- based coordinate system, that is, the first base of the  
reference sequence is counted as 1 (instead of 0). The MAPQ is the mapping  
quality score, which is calculated similarly to the Q- score introduced earlier  
(MAPQ =  − 10 × log10(PMapErr)). The CIGAR (or Concise Idiosyncratic Gapped  
Alignment Report) field describes in detail how the SEQ maps to the reference  
sequence, with the marking of additional bases in the SEQ that are not  
present in the reference, or missing reference bases in the SEQ. In the example  
above, the CIGAR field for r001/ 1 shows a value of “8M2I4M1D3M,” which  
means the first eight bases matching the reference, the next two bases being  
insertions, the next four matching the reference, the next one being a deletion,  
and finally the last three again being matches. For more details (such as  
those on the different FLAG status) and full specification of the SAM/ BAM  
format, refer to the documentation from the SAM/ BAM Format Specification  
Working Group. It should be noted that BAM may also be used to store  
unaligned raw reads as an “off- label” use of the format. For example, the  

A
Coor         12345678901234  5678901234567890123456789012345
Ref          TACGATCGAAGGTA**ATGACATGCTGGCATGACCGATACCGCGACA

+r001/1            CGAAGGTACTATGA*ATG
+r002             cggAAGGTA*TATGA
+r003                         TGACAT..............TACCG
-r001/2                                            ACCGCGACA

B
@HD VN:1.6 SO:coordinate
@SQ SN:ref LN:45
r001   99 ref  7 30 8M2I4M1D3M = 37  39 CGAAGGTACTATGAATG *
r002    0 ref  9 30 3S6M1P1I4M *  0   0 CGGAAGGTATATGA    *
r003    0 ref 16 30 6M14N5M    *  0   0 TGACATTACCG       *
r001  147 ref 37 30 9M         =  7 -39 ACCGCGACA         * NM:i:1

FIGURE 5.7
The SAM/ BAM format for storing NGS reads alignment results. The alignment shown in panel 
(a) is captured by the SAM format shown in panel (b). In panel (a), the reference sequence is 
shown on the top with the corresponding coordinates. Among the sequences derived from it, 
r001/ 1 and r001/ 2 are paired reads. The bases in lower cases in r002 do not match the reference 
and as a result are clipped in the alignment process. The read r003 represents a spliced alignment. 
In panel (b), the SAM format contains 11 mandatory fields that are explained in more detail on 
Table 5.2.
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PacBio platform outputs raw sequencing reads in unaligned BAM format.  
Besides the SAM/ BAM format, an alternative format to store aligned reads is  
CRAM [49] designed by the European Bioinformatics Institute. CRAM files  
are smaller than equivalent BAM files, because CRAM uses a reference- based  
compression scheme, i.e., only bases that are different from the reference  
sequence are stored.

5.3.4  Mapping File Examination and Operation

After carrying out the mapping process, the mapping results reported in 
SAM/ BAM files should be closely examined. Firstly, summary statistics, such 
as the percentage of aligned reads, especially uniquely mapped reads, should 
be generated. Currently the mapping rates are still far from 100%. Even under 
ideal conditions, most aligners find unique genomic position match for 70– 
75% of sequence reads. This inability to locate the genomic origin of a sig-
nificant number of reads can be attributed to multiple factors, including the 
existence of repetitive sequences in most genomes, the relatively short length 
and therefore limited positioning information of most short NGS reads, algo-
rithmic limitation, sequencing error, and DNA sequence variation and poly-
morphism in a population. Mapping performance improves with increasing 
read length and better- designed algorithms from active developments in 
this area.

Secondly, reads that map to multiple genomic locations, often called 
multireads, usually do not contribute to subsequent analysis and therefore 
should be filtered out. The ambiguity in the mapping of multireads is due 
to the aforementioned sequence deviation caused by polymorphism and 
mutation, sequencing error, and existence of highly similar sequences in 
the genome such as those from duplicated genes. Inclusion of these reads 
in downstream analysis may lead to biased or erroneous results. For most 
experiments, these reads should be excluded from further analysis. As 
filtering of multireads usually removes a significant number of reads, which 
may lead to potential loss of information, there are some algorithms (such as 
BM- Map [50]) that are designed to reuse multireads by probabilistically allo-
cating them to competing genomic loci.

Thirdly, besides multireads, duplicate reads should also be identified and  
filtered out for many experiments. In a diverse non- enriched sequencing  
library, because of the randomness of the fragmentation process the chance of  
getting identical fragments is extremely low. Even with a PCR step to enrich  
DNA fragments, the chance of generating duplicate reads is still very low  
(usually < 5%), as the number of cycles in the PCR process is limited and the  
subsequent sequencing process is a random sampling of the DNA library (to  
varying depth). Existence of excessive numbers of duplicate reads therefore  
suggests PCR over- amplification. Duplicate reads can be detected based on  
sequence identity, but due to sequencing error this tends to underestimate  
the number of duplicate reads. It is more appropriate, therefore, to detect  
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duplicate reads after the mapping step (Figure 5.8). As technical duplicates  
caused by PCR over- amplification and true biological duplicates are indistin-
guishable, researchers should exert caution when making decisions on  
whether to remove duplicate reads from further analysis. While removing  
duplicate reads can lead to increased performance in subsequent analysis in  
many cases (such as variant discovery), in circumstances that involve less  
complex or mostly enriched sequencing targets, including those from an  
extremely small genome, or those used in RNA- seq or ChIP- seq, removing  
them can lead to loss of true biological information.

Furthermore, a variety of other steps can also be conducted to operate 
SAM/ BAM files. These steps are usually provided by SAMtools and Picard, 
two widely used packages for operating SAM/ BAM files. These operations 
include:

 • SAM and BAM interconversion. SAMtools can also convert other 
alignment file formats to SAM/ BAM

 • Merging of multiple BAM files into a single BAM file
 • Indexing of SAM/ BAM files for fast random access
 • Sorting reads alignment using various criteria, e.g., genomic coordinates, 
lanes, libraries, or samples

 • Additional reads alignment filtering, such as removing paired reads 
that only one of the pair maps to the reference genome

FIGURE 5.8
Detection of duplicate reads after the mapping process. Depth of coverage of the reference 
genomic region is shown on the top. Mapped reads, along with a set of duplicate reads that map 
to the same area, are show underneath. The green and red colors denote the two DNA strands. 
(Generated with CLC Genomics Workbench and used with permission from CLC Bio.)
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 • Generation of a pileup format file (Figure 5.9) to show matching (or  
mismatching) bases from different reads at each genomic coordinate  
(SAMtools)

 • Simple visualization using a text- based viewer for close examination of 
read alignment in a small genomic region (SAMtools)

SAMtools and Picard are very versatile in handling and analyzing SAM/ 
BAM files. In fact, the steps mentioned earlier, that is, generation of alignment 
summary statistics and removal of multireads and duplicate reads, can be 
directly conducted with these tools. For example, both SAMtools and Picard 
have utilities to detect and remove duplicate reads called markdup and 
markduplicates, respectively. These utilities mark reads that are mapped to 
the same starting genomic locations as duplicates.

Lastly, in terms of examining mapping results, nothing can replace direct 
visualization of the mapped reads in the context of the reference genome. 
While a text- based alignment viewer, such as that provided by SAMtools, 
offers a simple way to examine a small genomic region, direct graphical 
visualization of mapping results by overlaying mapped read sequences 
against the reference genome provides a more intuitive way of examining 
the data and looking for patterns. This visualization process serves mul-
tiple purposes, including additional data QC, experimental procedure valid-
ation, and mapping pattern recognition. Commonly used visualization tools 
include Integrative Genomics Viewer (IGV) [51], Artemis [52], SeqMonk 
[53], JBrowse [54], and Tablet [55]. The UCSC and Ensembl genome browsers 
also provide visualization options by adding customized BAM tracks. 
Post- mapping data QC tools such as Qualimap 2 [56] also provide visual 
summaries on key metrics including overall coverage across the reference 
genome.

ref 181 A 24  ,.$.....,,.,.,...,,,.,..^+. <<<+;<<<<<<<<<<<=<;<;7<&
ref 182 C 23  ,.....,,.,.,...,,,.,..A <<<;<<<<<<<<<3<=<<<;<<+
ref 183 A 23  ,.$....,,.,.,...,,,.,...    7<7;<;<<<<<<<<<=<;<;<<6
ref 184 G 23  ,$....,,.,.,...,,,.,...^l.  <+;9*<<<<<<<<<=<<:;<<<<
ref 185 G 22  ...T,,.,.,...,,,.,....  33;+<<7=7<<7<&<<1;<<6<
ref 186 C 22  ....,,.,.,.A.,,,.,..G.  +7<;<<<<<<<&<=<<:;<<&<
ref 187 G 23  ....,,.,.,...,,,.,....^k.   %38*<<;<7<<7<=<<<;<<<<<
ref 188 A 23  C..T,,.,.,...,,,.,..... ;75&<<<<<<<<<=<<<9<<:<<

FIGURE 5.9
The pileup file format as generated from SAMtools. A pileup file shows how sequenced bases in 
mapped reads align with the reference sequence at each genomic coordinate. The columns are 
(from left to right): chromosome (or reference name), genomic coordinate (1- based), reference 
base, total number of reads mapped to the base position, read bases, and their call qualities. In 
the read bases column, dot signifies match to the reference base, comma to the complementary 
strand, and ‘AGCT’ are mismatches. Additionally, the ‘$’ symbol marks the end of a read, while 
‘^’ marks the start of a read and the character after the ‘^’ represents mapping quality.
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5.4  Tertiary Analysis

After the sequence read mapping step, subsequent analyses vary greatly 
with application. For example, the workflow for RNA- seq data analysis is 
different from that for mutation and variant discovery. Therefore, it is not 
possible to provide a “typical” workflow for all NGS data analyses in this 
chapter beyond the common steps of data QC, preprocessing, and read 
mapping. Chapters in Part III provide details on application- specific tertiary 
analytic steps and commonly used tools.
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6  
Computing Needs for Next- Generation    
Sequencing (NGS) Data Management   
and Analysis

The gap between our ability to pump out NGS data and our capability to 
extract knowledge from these data is getting broader. To manage and pro-
cess the tsunami of NGS data for deep understanding of biological systems, 
significant investment in computational infrastructure and analytical power 
is needed. How to gauge computing needs and build a system to meet the 
needs, however, poses serious challenges to small research groups and even 
large research organizations. To meet this unprecedented challenge, the NGS 
field can borrow solutions from other “big data” fields such as high- energy 
particle physics, climatology, and social media. For biologists without much 
training in bioinformatics, while getting expert help is needed, having a good 
understanding of the various aspects of NGS data management and analysis 
is beneficial for years to come.

6.1  NGS Data Storage, Transfer, and Sharing

NGS has itself become a major producer of big data in scientific research. 
With the continuous drop in sequencing cost, the speed at which NGS data is 
pumped out will only pick up. This translates into a concomitant increase in 
the demand for more data storage, access, and processing power. Compared 
to files generated from other biological assays, such as gel pictures or even 
microarray data files, NGS files are much larger. For an individual lab, a 
single typical run generates data at the level of tens to thousands of gigabytes 
(GB) in compressed FASTQ format. After aligning to a reference genome, 
the processed files increase in size appreciably. Further analysis leads to 
the generation of more and more files and propagation in data volume. To 
accommodate raw and processed files from multiple runs, tens of terabytes 
(TB) of storage space or more is required. Storing and archiving these files 
are no trivial task. To make the situation even worse, the raw sequencing 
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signal intensity files in formats such as scanned images or movies are in the 
scale of TB from a single run (this amount is not counted in the data volume 
mentioned above). As these raw signal files accumulate, they can easily 
overwhelm most data storage systems. While these raw images files can be 
retained long term, newer sequencing systems process them on- the- fly and 
delete them by default once they have been analyzed to alleviate the burden 
of storing them. Oftentimes it is easier and more economical to rerun the 
samples in case of data loss rather than archiving these huge raw signal files.

Due to the huge size of most NGS files, transferring them from one place 
to another is non- trivial. For a small- sized project to transfer sequencing files 
from a production server to a local storage space, download via FTP or HTTP 
might be adequate if a fast network connection is available. As for network 
speed, a 1 Gbps network is essential while a 10/ 100 Gbps network offers 
improved performance for high traffic conditions. When the network speed 
is slow or the amount of data to be transferred is too large, the use of external 
hard drive might be the only option. When the data reaches the lab, for fast 
local file reading, writing, and processing, they need to be stored in a hard 
drive array inside a dedicated workstation or server.

For a production environment, such as an NGS core facility or a large genome 
center, which generates NGS data for a large number of projects, enterprise- 
level data storage system, such as DAS (Directly Attached Storage), SAN 
(Storage Area Network), or NAS (Network Attached Storage), is required to 
provide centralized data repositories with high reliability, access speed, and 
security. To avoid accidental data loss, these data storage systems are usu-
ally backed up, mirrored, or synced to data servers distributed at separate 
locations. For large- scale collaborative projects that involve multiple sites 
and petabytes to exabytes of data, the processes of data transfer and sharing 
pose more challenges, which prompts the development of high- capacity and 
high- performance platforms such as Globus.

Data sharing among collaborating groups creates additional technical 
issues beyond those dealt with by individual labs. A centralized data reposi-
tory might be preferred over simple data replication at multiple sites to foster 
effective collaboration and timely discussion. Along with data sharing come 
also the issues of data access control and privacy for data generated from 
patient- oriented studies. In a broader sense, NGS data sharing with the 
entire life science community also increases the value of a research project. 
For this reason, many journals enforce a data sharing policy that requires 
deposition before publication of sequence read data and processed data into 
a publicly accessible database (such as the NCBI’s Sequence Read Archive 
[SRA] or the European Nucleotide Archive [ENA]). To facilitate data inter-
pretation and potential meta- analysis, relevant information about such an 
experiment must also be deposited with the data. Some organizations, such 
as the Functional Genomics Data Society, have developed guidelines on what 
information should be deposited with the data. For example, the MINSEQE 
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(Minimum Information about a high- throughput Nucleotide SEQuencing 
Experiment) guidelines specify the following information to be provided 
with the sequence read data and processed data: (1) description of the bio-
logical system, samples, and experimental variables; (2) experimental sum-
mary and sample data relationships; and (3) essential experimental and data 
processing protocols. Archiving NGS data and associated information for 
the community is a huge undertaking and requires sizeable investment in 
maintaining and growing the requisite infrastructure and expert support. 
The NCBI SRA repository was shut down in 2011 due to high costs and gov-
ernment budgetary constraints. However, because its vital importance to the 
community, NIH resumed its support to SRA later that year.

6.2  Computing Power Required for NGS Data Analysis

Processing the large volume of NGS data requires a lot of computing power. 
The question of how much computing power is needed is dependent on 
the type of analysis to be performed. For example, de novo assembly of a 
large genome requires much more computing power than resequencing 
for variant discovery, or transcriptomic analysis for the identification of 
differentially expressed genes. Therefore, to determine the computing 
power needed for a project, a lab, or an organization, the type(s) of NGS 
work to be performed need to be analyzed first. If the work will require 
intensive computation, or involve development and optimization of new 
algorithms and software tools, a high- performance cluster may be needed. 
On the other hand, if the work will use established workflow that does not 
require highly intensive computation, a powerful workstation may suffice. 
It is also advisable that the computer system be scalable to accommodate 
increases in future computing needs due to unforeseeable change of future 
research projects or further development of high- throughput genomics 
technologies.

For a small- sized project, the most basic system needed for NGS data ana-
lysis can be simply a 64- bit computer with 8 GB of RAM and two 2- GHz 
quad- core processors. With such a computer, basic mapping to a reference 
genome can be performed on obtained sequence reads. This basic setup 
allows handling of one dataset at a time. For simultaneous processing of 
multiple datasets or projects, high- performance computing (HPC) systems 
with more memory and CPU cores are needed. The number of cores an HPC 
system needs depends on the number of simultaneous tasks to be run at one 
time. For each task, the number of cores that is needed relies on the nature of 
the task and the algorithm that carries it out.
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Besides the number of CPU cores, the amount of memory a system has also 
heavily affects its performance. Again memory needs depend on the number 
and complexity of jobs to be processed, for example, read mapping to a small 
genome may need only a few GB of memory while de novo assembly of a large 
genome may require hundreds of GB or even TB- level memory. The current 
estimation is that for each CPU core the amount of memory needed should 
not be less than 3 GB. In an earlier implementation of de novo assembly of the 
human genome using the SOAPdenovo pipeline (to be detailed in Chapter 12), 
a standard supercomputer with 32 cores (eight AMD quad- core 2.3 GHz CPUs) 
and 512 GB memory was used [1]. As a more recent example of the computing 
power needed for de novo genome assembly, a server with 64 cores (eight 
Intel Xeon X6550 8- core 2.00 GHz CPUs) and 2 TB RAM is used by a Swedish 
team [2]. For de novo assembly of small genomes such as those of microbes, a 
machine that contains at least 8 CPU cores, 256 GB of RAM, and a fast data 
storage system can get a job completed in a reasonable time frame. By current 
estimation, an 8- core workstation with 32 GB RAM and 10 TB storage can work 
for many projects that do not conduct de novo genome assembly.

The amount of time needed to complete a job varies greatly with the com-
plexity of the job and accessible computing power. As a more concrete example, 
running the deep learning- based WGS variant calling tool DeepVariant (see 
Chapter 10 for details) needs 24– 48 hours when using the minimum setting 
of a 8- core computer with 16 GB RAM, but the processing time is reduced 
by more than half when using a graphics processing unit (GPU) with 4 GB 
dedicated video RAM and CUDA support for parallel computing [3]. To map 
an RNA- seq dataset of 80 million 75- bp reads to the human genome using 
Bowtie on a computer equipped with 32 cores and 128 GB RAM, it took <2 
hours and even less time in subsequent steps including normalization and 
differential expression statistical tests [4]. In a small RNA- seq study, with a 
32- core and 132 GB memory workstation, processing 20 multiplex barcoded 
samples with a total of 160 million reads took a little over 2 hours for sample 
de- multiplexing, and about the same amount of time for read mapping to the 
host genome and small RNA annotation databases [5].

6.3  Cloud Computing

As clearly demonstrated above, NGS data storage, transfer, and sharing are 
no trivial tasks. And one limitation of a locally built computing system is its 
scalability. With the rates at which NGS technologies advance and sequen-
cing costs drop being faster than those of development in the computer 
hardware industry, the gap between NGS data generation and our ability 
to handle and analyze them will only widen. To narrow this gap and speed 
up NGS data processing, the NGS community has embraced a trend from 

 

 

 

 

 

 

 



Computing Needs for NGS Data Management and Analysis 107

the long- existing model of local computing to cloud computing. Companies 
such as Amazon, Microsoft, and Google have been building mega- scale cloud 
computing clusters and data storage systems for end users to use over the 
Internet. Compared to local computing, cloud computing enables access to 
supercomputing and mass data storage capabilities without the need to build 
and maintain a local workstation, server, or HPC cluster.

At the core of cloud computing is virtualization technology, which allows 
an end user to create a virtual computer system on demand with the flexibility 
of specifying the number of CPU cores, memory size, disk space, as well as 
operating system that are required for a job. With this technology, multiple 
virtual computer systems can be run simultaneously on the same physical 
cloud server. The adoption of cloud computing for NGS data processing has 
demonstrated the advantages of this “supercomputing- on- demand” model, 
which include flexibility, scalability, and oftentimes cost savings. The flexibility 
and scalability offered by cloud computing allow a researcher to conduct NGS 
data analysis using supercomputing capabilities that previously only existed 
in large genome centers. Cost savings are achieved as the user only needs to 
pay for the time used by the user- configured computing instance.

Another advantage of using the cloud is on data sharing among researchers 
and projects. By providing a single centralized data storage, the cloud enables 
different groups located in different geographical locations to have access 
to the same dataset and share analytical results. Furthermore, with cloud 
computing the task of bringing software tools to the “big” NGS data can be 
realized more readily. In contrast to the large sizes of NGS data files, the soft-
ware and scripts designed to process them are much smaller. Therefore, it is 
much easier and more efficient to download and install them to wherever the 
data is stored, rather than moving or replicating the high volumes of NGS 
data to where the tools are installed. By directly storing production data in 
the cloud, the burden of data transfer is greatly reduced; by coupling data 
and tools in the same place, optimal performance can be achieved.

While cloud computing enables users to off- load the hassle and cost of  
running and maintaining a local computing system, it does have downsides  
that need to be considered. One of the practical barriers of moving to the cloud  
is the speed of data transfer into and out of the cloud. It may take a week to  
upload 100 GB of data to the cloud using low- speed Internet connections.  
The question of whether to run analysis in the cloud is heavily dependent  
on the amount of data to be transferred and the computational complexity of  
the analytical steps. As a general rule, it is only worthwhile to upload data  
to the cloud for processing when the analytical task requires more than 105  
CPU cycles per byte of data [6]. So for projects that deal with large amounts  
of data but do not involve a lot of highly intensive computational steps, more  
time may be spent on data transfer to the cloud rather than data processing.  
Other potential factors include data security, cost ineffectiveness under some  
circumstances, availability of analytical tools in the cloud environment, and  
network downtime. While users can access their data from anywhere on the  
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Internet, the convenience also means the possibility of data security being  
breached or compromised. Some heavy users may find cloud computing  
not as cost effective as running a local server. While more and more tools  
are becoming available in the cloud, users still need to use due diligence to  
make sure that the tools they need are available. For users at places that suffer  
frequent network outage, cloud computing can be problematic as all cloud-  
based operations are dependent on Internet traffic.

Despite the potential downsides, cloud computing has been proven to be 
a viable approach for NGS data analysis. Table 6.1 is a list of some of the 
current cloud computing providers that can be used for NGS applications. 
To illustrate how cloud computing can be deployed for analyzing NGS data, 
below is an example on the conduct of reads alignment using the Amazon 
Elastic Compute Cloud (or EC2) Cloud. As the first step, input data files 
(FASTQ files and a reference genome file) are uploaded from a local com-
puter to a “bucket” in the Amazon Simple Storage Service (S3). This cloud 
storage bucket, which is also used to hold program scripts and output files, 
can be created with the Amazon Web Services (AWS) Management Console, a 
unified interface to access all Amazon cloud resources. To initiate alignment, 
a workflow must be defined first using the Console’s “create workflow” 
function. To define the workflow, the input sequence read files, the aligner 
script, and the saving location for alignment output files are specified. In the 
meantime, the number of Amazon EC2 instances required for the job, which 
determines memory and processor allocation, is also configured. After the 
configuration the job is submitted through the Management Console. When 
the instances are finished, alignment output files are deposited into the pre- 
specified file location in the S3 cloud storage.

6.4  Software Needs for NGS Data Analysis

To configure a cloud instance or set up a local workstation or server, oper-
ating system and software need to be selected and installed. While some NGS 

TABLE 6.1

Current Providers of Cloud Computing That Can Be Used for NGS Data Analysis

Provider URL

Amazon Elastic Compute Cloud http:// aws.amazon.com/ ec2/ 
Google Cloud https:// cloud.google.com
Microsoft Azure http:// azure.microsoft.com/ 
Rackspace www.rackspace.com
IBM Cloud www.ibm.com/ cloud
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analysis software (such as CLC Genomics Workbench) can operate in the 
Windows environment, most tools only operate in the Unix (or Linux) envir-
onment. Therefore, Unix or Linux is usually the operating system installed 
on such a machine. Installing software in Unix or Linux is not as straight-
forward as in Windows, as uncompiled software source code downloaded 
from a developer site needs to be compiled first before being installed to a 
particular distribution of the operating system. If the reader is not familiar 
with the Unix/ Linux environment and the command line interface it uses, an 
introductory book or web- based tutorial is suggested.

One approach to reducing the barrier of using tools developed for the Unix/ 
Linux environment is to access them through a “bridging” system, such as 
Galaxy [7], that provides a more user- friendly interface to the command line 
tools. Developed by the Nekrutenko lab at Penn State and the Taylor lab at 
Johns Hopkins University, the Galaxy system provides a mechanism to deploy 
these tools via the familiar web browser interface, making them accessible 
to users regardless of the operating system they use. The Galaxy system is 
highly extensible, with latest tools being constantly wrapped for execution 
through the web interface. Besides providing a user- friendly interface, such 
a system also allows creation of data analysis workflow from different tools, 
which enables fast deployment of multiple tools in tandem, achievement of 
consistency and reproducibility, and sharing of analytical procedures with 
other researchers. Galaxy can be accessed through a publicly available server 
(e.g., usegalaxy.org), installed on a local instance, or in the cloud. With a 
public server, the user does not need to maintain a local server, but the usable 
storage space assigned to each account is usually limited and the computing 
resource is shared with many other users. Creating a local Galaxy instance 
in Unix/ Linux or Mac OS takes some effort and the user does need to pro-
vide maintenance, but the user has more control on storage space, computing 
power, and selection and installation of tools from the entire collection of gen-
omics tools that are made available through the Galaxy Tool Shed (currently 
has close to 10,000 tools). The Galaxy team has made it very easy to install a 
local instance by offering detailed and easy- to- follow instructions. Galaxy is 
also available in the cloud via dedicated instances in AnVIL, a cloud- based 
platform for data analysis, storage, and management built on the Google 
Cloud Platform (GCP) and supported by the U.S. National Human Genome 
Research Institute [8]. Besides providing a highly scalable computing envir-
onment, the Galaxy cloud instance in AnVIL also offers protection to private 
datasets while facilitates collaboration.

There are also other community projects that provide alternative platforms 
to facilitate user access to various NGS and other genomics analysis tools. 
Bioconductor, an open- source and open- development software project, is 
among the best known of these projects. This large- scale project is based on R, 
a programming language and software environment designed for statistical 
computing and graphics. With the goal of providing tools for the analysis 
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and comprehension of high- throughput genomics data, the Bioconductor 
software library contains over 2,200 software packages as the time of this 
writing, many of which are designed or can be used to process NGS data. 
The R environment and the Bioconductor library can be installed in all major 
operating systems including Windows. The Bioconductor project web portal 
(www.bioco nduc tor.org) and the R project site (www.r- proj ect.org) pro-
vide detailed information and tutorials for the installation and use of these 
packages. Each tool is well documented with actual use examples provided.

Identifying, installing, and maintaining suitable NGS analysis software 
from an ever- growing number of tools for a local Unix/ Linux workstation, a 
local Galaxy instance, or a local Bioconductor R library are not trivial. New 
software tools are developed and introduced constantly, while many existing 
ones are updated from time to time. To evaluate candidate packages and iden-
tify appropriate tools for installation and use, it is better to employ multiple 
test datasets, not just using those from computer simulation but also those 
from real- world biological samples. In addition, almost all tools have adjust-
able parameters, which should be set equivalently to facilitate performance 
comparison. Also in terms of performance, earlier NGS software usually does 
not take advantage of high- performance parallel computing. To increase per-
formance and take full advantage of the multiple cores or nodes in an HPC 
system, more recent algorithms tend to use threading or message passing 
interface (MPI) to spread the work across multiple processes. Therefore, 
when evaluating NGS tools, it also helps to examine if these types of parallel 
processing are employed to take advantage of the power of multi- core com-
puting architecture.

6.4.1  Parallel Computing

Parallelization, a computation term that describes splitting of a task into a 
number of independent subtasks, can significantly increase the processing 
speed of highly parallelizable tasks, which include many NGS data analysis 
steps. For example, although millions of reads are generated from a sequen-
cing run, mapping of these reads to a reference genome is a process that is 
“embarrassingly parallel,” as each read is mapped independently to the ref-
erence. As parallel computing can be efficiently carried out by GPUs since 
rendering of each pixel on a computer screen is also a highly parallel process, 
the integration of GPUs with CPUs in heterogeneous computing systems 
can increase throughput 10-  to 100- fold, and turn individual computers into 
mini- supercomputers. While these systems can be applied to various aspects 
of NGS data analysis, many NGS analytical tools have yet to take full advan-
tage of the power of parallel computing in such systems.

Parallelization is also an important factor in determining how increase in 
the number of CPU (or GPU) cores might affect actual NGS data processing 
performance. If a step is highly parallelizable, and the algorithm designed for 
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it employs parallelization, then an increase in core number will most likely 
lead to improved performance. On the contrary, if the step is not readily 
parallelizable, or even if the task is parallelizable but the algorithm deployed 
does not use parallelization, simply having more cores may not lead to 
improvement in performance.

6.5  Bioinformatics Skills Required for NGS Data Analysis

For biologists and students in life sciences, acquiring basic bioinformatics 
skills is greatly advantageous, as biology has become more and more data rich 
and data driven. Understanding the basics of bioinformatics also facilitates 
communication with bioinformaticians on the conduct of more advanced 
tasks. In general, these skills include use of common computing environ-
ments, bioinformatic algorithms, and software packages. Below is a short list 
of bioinformatics skills required of biologists for NGS data handling:

 • Familiarity with Unix/ Linux, and the most commonly used commands 
in the Unix/ Linux computing environment. This is essential to run jobs 
on an HPC cluster, a local machine running a Unix/ Linux operating 
system such as Ubuntu or macOS, or a Windows Subsystem for Linux 
(or WSL) that provides a compatibility layer for running Linux tools 
natively on Windows.

 • Basic knowledge of programming languages that are commonly used 
for NGS data analysis. These languages include R, Perl, and Python, 
all of which are open- source, easy to learn, and have a large user base 
for help and support. While programming is not required of biologists, 
understanding how an algorithm is executed step- by- step can be 
helpful, especially when a pre- existing tool does not work ideally for a 
special case and needs modification.

 • Knowledge of key concepts in computational biology and biostat-
istics. Some computational methodologies developed in the field of 
computer science, especially machine learning and data mining, have 
been widely applied to high- throughput biological data processing. 
Artificial neural networks (ANNs), hidden Markov models (HMMs), 
and support vector machines (SVMs) serve as good examples in this 
domain. Statistical approaches such as linear and nonlinear regression 
are integrated into many genomics data analysis tools and should also 
be integrated into a biologist’s knowledge base.

 • Basic understanding of relational database. Most of the information 
currently available for the annotation and interpretation of NGS data 
is captured in various databases. Knowledge of database design and 
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structure is the basis to extract, manipulate, and process the informa-
tion stored in these databases for generation of new biological know-
ledge. Knowing how to interact with the databases via SQL (Standard 
Query Language) or APIs (Application Programmer Interfaces) is also 
beneficial. The knowledge on relational databases and their operation 
also helps biologists to curate, organize, and disseminate the tremen-
dous amount of information generated from NGS projects.

 • Basic understanding and handling of computer hardware such as CPU, 
RAM, and storage. Although strictly speaking computer hardware is 
not in the realm of bioinformatics, it is nevertheless advantageous and 
economical to know how to put together a workstation and put it to 
use. It is also beneficial to understand how an HPC cluster, or a hetero-
geneous computing system, works through parallel processing, as NGS 
tools that are designed to take advantage of these computing systems 
usually function better and this knowledge can help evaluate and select 
those that maximize performance built in a computing system.

For bioinformaticians who deal with NGS data, on the other hand, the 
following is a list of skills that are needed:

 • Proficiency with Unix- based operating systems;
 • Familiarity with a programming language such as Python, Perl, Java, 
or Ruby;

 • Familiarity with statistical software such as R, MATLAB, or Mathematica;
 • Understanding of supercomputing, HPC (including parallel com-
puting), and enterprise data storage systems;

 • Knowledge of database management languages such as MySQL or 
Oracle;

 • Familiarity with web authoring and web- based user interface imple-
mentation technologies;

 • Understanding of molecular biology & genetics, cell biology, and 
biochemistry.
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7  
Transcriptomics by Bulk RNA- Seq

7.1  Principle of RNA- Seq

Transcriptomic analysis deals with the questions of which parts of the genome 
are transcribed, and how active they are transcribed. In the past, these questions 
were mostly answered with microarray, which is based on hybridization of RNA 
samples to DNA probes that are specific to individual gene- coding regions. 
With this hybridization- based approach, the repertoire of hybridization probes, 
which are designed based on the current annotation of the genome, determines 
what genes in the genome or which parts of the genome are analyzed, and 
genomic regions that have no probe coverage are invisible. An NGS- based 
approach, on the other hand, does not depend on the current annotation of the 
genome. Because it relies on sequencing of the entire RNA population, hence 
the term RNA- seq, this approach makes no assumption as to which parts of the 
genome are transcribed. After sequencing, the generated reads are mapped to 
the reference genome in order to search for their origin in the genome. The total 
number of reads mapped to a particular genomic region represents the level of 
transcriptional activity at the region. The more transcriptionally active a gen-
omic region is, the more copies of RNA transcripts it produces, and the more 
reads it will generate. RNA- seq data analysis is essentially based on counting of 
reads generated from different regions of the genome.

By counting the number of reads from transcripts and therefore being digital 
in nature, RNA- seq does not suffer from the problem of signal saturation 
that is observed with microarray at very high values. RNA- seq also offers a 
native capability to differentiate alternative splicing variants, which is basic-
ally achieved by detecting reads that fall on different splice junctions. While 
some specially designed microarrays, like the Affymetrix Exon Arrays, can 
be used to analyze alternative splicing events, standard microarrays cannot 
usually make distinctions between different splicing isoforms. Also different 
from microarray signals, which are continuous, raw RNA- seq signals (i.e., 
read counts) are discrete. Because of this difference, distribution model and 
methods of differential expression analysis designed for microarray data 
cannot be directly applied to RNA- seq data without modification.
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7.2  Experimental Design

7.2.1  Factorial Design

Before carrying out an RNA- seq experiment, the biological question to be 
answered must be clear and well defined. This will guide experimental 
design and subsequent experimental workflow from sample preparation 
to data analysis. For experimental design, factorial design is usually used. 
Many experiments compare transcriptomic profile between two conditions, 
e.g., cancer vs. normal cells. This is a straightforward design, involving 
only one biological factor (i.e., cell type). Experiments involving a single 
factor may also have more than two conditions, e.g., comparison of samples 
collected from multiple tissues in the body in order to detect tissue- specific 
gene expression.

If a second biological factor (e.g., treatment of a drug) is added to the 
example of cancer vs. normal cell comparison, the experiment will have a 
total of four (2×2) groups of samples (Table 7.1). In this two- factor design, 
besides detecting the effects of each individual factor, i.e., cell type and 
drug treatment, respectively, the interacting effects between the two 
factors are also detected, e.g., drug treatment may have a larger effect on 
cancer cells than normal cells. If the factors contain more conditions, there 
will be a total of m×n groups of samples, with m and n representing the 
total number of conditions for each factor. Experiments involving more 
than two factors, such as adding a time factor to the above example to 
detect time- dependent drug effects on the two cell types, are inherently 
more complex and therefore more challenging to interpret, because in this 
circumstance it is not easy to attribute a particular gene expression change 
to a certain factor, or especially, to the interaction of these factors due to 
the existence of multiple interactions (three factors involve four different 
types of interactions).

7.2.2  Replication and Randomization

As with any experiment that requires proper statistical analysis, replication  
and randomization is an essential component of RNA- seq experimental  
design. Randomization refers to the random assignment of experimental  

TABLE 7.1

Experimental Design Involving Two Biological Factors

Cancer Cells Normal Cells

Drug Treated Cancer +  Drug Normal +  Drug
Vehicle Treated Cancer +  Vehicle Normal +  Vehicle
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subjects or targets into each group. This is to avoid introducing unwanted  
biases to the sample collection process. To generalize the gene expression  
differences observed from groups of samples to the respective populations,  
within- group variability in the expression of each gene has to be estimated,  
which requires replication. To meet this requirement at least three replicates  
need to be included within each group. The more replicates each group has,  
the more accuracy there is in within- group biological variability estimation,  
and therefore the more confidence to call a gene differentially expressed.  
While differential gene expression can be detected from unreplicated data, the  
results are limited to the tested samples and not easily generalizable. Due to  
the lack of knowledge on biological variation within each group, it is unreal-
istic to draw conclusions on the population from an unreplicated experiment.

7.2.3  Sample Preparation and Sequencing Library Preparation

Since gene expression is highly plastic and varies greatly with internal 
(such as tissue and cell type, developmental stage, circadian rhythm, etc.) 
and external (such as environmental stress) conditions, samples should 
be collected in a way that minimizes the effects of irrelevant factors. If the 
influence of such factors cannot be totally avoided, they should be balanced 
across groups. As many biological samples contain different cell types, this 
heterogeneity in cell composition is another factor that may confound data 
interpretation (potential heterogeneity in cell composition can be revealed by 
single-cell RNA- seq, to be covered in the next chapter). Use of homogeneous 
target cells is preferred whenever possible as this will greatly improve data 
quality and experimental reproducibility.

To prepare samples for RNA- seq, total RNA is first extracted from samples 
of contrasting conditions. High- quality RNA extraction is essential to obtain 
quality RNA- seq data. The leading cause of low- quality RNA is degrad-
ation. To detect the intactness of RNA molecules in samples, quality metrics 
such as RNA Integrity Number (or RIN) are often used. RIN is generated 
using a neural network- based algorithm from Bioanalyzer fragment size pro-
file of an RNA sample, having values from 1 to 10 with 10 being the best 
possible sample quality. One prerequisite to extracting high- quality RNA 
is to snap- freeze tissue samples whenever possible to avoid potential RNA 
degradation. Under circumstances where this is not possible (e.g., sample 
collection in the field), RNA stabilizing reagent (such as RNAlater) can be 
used. For RNA samples prepared under certain circumstances such as those 
from historical samples or formalin- fixed paraffin- embedded (FFPE) clinical 
tissues, however, RNA degradation can be unavoidable. Even from highly 
degraded RNA samples such as these, useful data may still be generated 
with the use of RNA- seq library construction strategies that are more tol-
erant of RNA degradation [1]. Among other issues that might affect RNA- seq 
data quality is genomic DNA contamination. To remove DNA contaminants, 
a DNase treatment step during RNA extraction is recommended. It should 
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also be noted that many RNA extraction protocols do not retain small RNA 
species including miRNAs. If these species are also of interest (more on small 
RNA sequencing in the Chapter 9), alternative protocols (such as the TRIzol 
method) need to be used.

Besides quality, the quantity of RNA sample available also determines 
RNA- seq library prep strategy. With enzyme engineering and as a result 
improvement in library construction chemistry, preparing sequencing 
libraries from increasingly small quantities of RNA is no longer a barrier. 
This usually involves signal amplification in order to produce enough library 
molecules for sequencing. While the needed amplification can introduce bias 
to the process, its impact on the detection of differential gene expression has 
been found to be limited [2]. The greatly increased sensitivity in RNA- seq 
library making has also made sequencing of transcripts from a single cell a 
reality (see next chapter for single-cell RNA- seq).

There are two general approaches to constructing RNA- seq sequencing 
libraries. One approach is based on direct enrichment of mRNA molecules, 
the major detection targets for the majority of RNA- seq work. Because 
most eukaryotic mRNAs have a poly- A tail (Chapter 3, Section 3.3.4), this 
approach is carried out through the use of poly- T capture probes to enrich for 
mRNA molecules carrying such a tail. The other approach is based on deple-
tion of ribosomal RNAs (rRNAs), since rRNAs are usually the predominant 
but uninformative component in total RNA extractions. Depletion of rRNAs 
is typically based on hybridization using rRNA- specific probes, followed 
by their capture and subsequent removal. Other rRNA depletion strat-
egies include degradation by duplex- specific nuclease (DSN), which relies 
on denaturation- reassociation kinetics to remove extremely abundant RNA 
species including rRNAs [3], and RNase H selective depletion, on the basis of 
binding rRNAs with rRNA- specific DNA probes and then using RNase H to 
digest bound rRNAs. Library prep based on the rRNA depletion approach is 
more tolerant of RNA degradation issues.

After mRNA enrichment or rRNA depletion, subsequent RNA sequencing 
library preparatory process typically involves reverse transcription to cDNA 
using random primers, followed by fragmentation (for short-read platforms) 
and attachment of sequencing adapters. This sequencing library construction 
process may also introduce bias to the subsequent sequencing and data gen-
eration. For example, the use of poly- T based mRNA enrichment introduces 
3’ end bias, as this procedure precludes analysis of those mRNAs and other 
non- coding RNAs that do not have the poly- A tail structure [4]. If these RNA 
species are of interest, a library prep process based on the use of rRNA deple-
tion can be employed.

Compared to short-read sequencing, long-read sequencing offers new 
RNA- seq capabilities and options that are impossible or difficult to per-
form using short-read sequencing. For example, both ONT and PacBio 
platforms provide full- length transcript sequencing, and thereby enable 
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characterization and quantification of gene expression at the splicing isoform 
level. Besides sequencing cDNA, ONT sequencing can also sequence RNA 
molecules directly that removes some of the biases introduced during cDNA- 
based library construction.

7.2.4  Sequencing Strategy

Sequencing depth and read length are two major factors to consider when 
sequencing bulk RNA- seq libraries especially with short-read sequencing. 
The factor of sequencing depth, that is, how many reads to obtain, is based 
on a number of factors, mainly the size of the organism’s genome, the pur-
pose of the study, and ultimately statistical rigor (effect size and statistical 
power). Small genomes, such as those of bacteria, require less reads to ana-
lyze than large genomes, such as those of mammalian species. If the pur-
pose of a study is to identify differentially expressed genes among those 
expressed at intermediate to high abundance levels, it requires fewer reads 
than studies that aim to encompass low- abundance genes, study alterna-
tive splicing events, or discover new transcripts. As a general guideline, 
for a gene expression profiling experiment targeting intermediate-  to high- 
abundance transcripts, a sequencing depth of 5– 25 million reads, depending 
on the size the genome, is suggested. To cover transcripts of lower abundance 
or common alternative splicing variants, 20– 50 million reads are suggested. 
For more thorough coverage of the transcriptome and/ or discovery of new 
transcripts, 100– 300 million reads are often needed. As for sequencing read 
length, for gene expression profiling, single end 50– 75 bp reads are typically 
long enough to map to their originating genes in the genome. For assembly of 
new transcripts and/ or identification of alternative splicing isoforms, longer 
and often paired- end sequencing reads, such as paired- end 150 bp reads, are 
often acquired.

The number of sample replicates also largely affects the detection power of 
an RNA- seq study, as sample replication provides estimation on gene expres-
sion dispersion across biological subjects within a group. While a minimum 
of three biological replicates is commonly used, specially designed RNA- seq 
power analysis tools can be used to calculate sample size to achieve a detec-
tion power. These tools, including Scotty [5], ssizeRNA [6], PROPER [7], and 
RnaSeqSampleSize [8], are designed based on different statistical models. 
For example, while PROPER and RnaSeqSampleSize are based on negative 
binomial model, Scotty and ssizeRNA use Poisson- lognormal and linear 
models, respectively. As to be covered more later in this chapter (Section 
7.3.3 “Identification of Differentially Expressed Genes”), these models pro-
vide different approximations to RNA- seq data distribution. Sample size 
calculations using these tools require as input a number of parameters, 
including the total number of genes expressed, the percentage of genes 
expected to be differentially expressed, the minimal fold change needed to 

 

   

 

 



Next-Generation Sequencing Data Analysis122

call differential expression, false discovery rate, average read count (related 
to sequencing depth), and the desired statistical power. Because most of the 
parameters are not known a priori, recently published data collected from 
similar conditions may be used to provide some guidance. To start on a 
species or cell type that has not yet been studied, it might be useful to try out 
a small number of samples first to get a general idea on the composition of the 
target transcriptome and the variability between biological replicates. Besides 
detection power, experimental and sequencing costs are also key factors in 
deciding sample size and sequencing depth. For projects on a budget, it has 
been reported that increasing the number of biological replicates is more 
effective in boosting detection power than increasing sequencing depth [9].

Besides sequencing depth and read length, other considerations when 
planning for sequencing samples include how to arrange samples on a 
sequencer in terms of flow cell or lane assignment. Here a balanced block 
design [10] should be used to minimize technical variation due to flow 
cell- to- flow cell or lane- to- lane difference. In such a design, samples from 
different conditions are multiplexed on the same flow cell(s) or lanes, 
instead of running different samples or conditions on separate flow cell(s) 
or lanes.

7.3  RNA- Seq Data Analysis

7.3.1  Read Mapping

The first step after an RNA sequencing run is to examine the run summary 
with regard to the total number of reads generated, quality score distribution, 
GC content, and other indices of the sequencing run as detailed in Chapter 5. 
Based on such QC results, reads filtering and base trimming can be conducted 
to remove low- quality reads or basecalls. The distribution of sequencing 
depth across samples should also be checked to ensure all samples receiving 
expected numbers of reads. In addition, there are tools such as subSeq [11] 
that can be used to determine whether the desired detection power is reached 
and whether additional sequencing would lead to significant increase in 
detection sensitivity.

The subsequent mapping of RNA- seq reads to a reference genome is in 
general more complex than the general read mapping procedure described 
in Chapter 5. Because eukaryotic mRNAs are generated from splicing out of 
introns and joining of exons, many RNA- seq reads may not map contigu-
ously to the reference genomic sequence. As prokaryotic mRNA generation 
does not involve splicing, the aligners introduced in Chapter 5 for contiguous 
(ungapped) mapping, such as Bowtie and BWA, can still be used. Mapping of 
eukaryotic RNA- seq reads, however, creates a challenge to these aligners. To 
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address this challenge, two approaches have been developed. One is to use the 
current gene exonic annotation in the reference genome to build a database of 
reference transcript sequences that join currently annotated exons. RNA- seq 
reads are then searched against this reference transcripts database using the 
ungapped read aligners. Examples of annotation- guided mappers are RUM 
[12] and SpliceSeq [13]. These mappers may produce better outcomes when 
high accuracy and reliability are emphasized. This approach, however, does 
not provide the capability to discover novel transcripts. In addition, it leads 
to high rate of multi- mapping, as a read that maps to common exon(s) shared 
by multiple splicing isoforms of a gene is counted multiple times.

The other approach conducts ab initio splice junction detection, and there-
fore does not depend on genome annotation. Depending on their method-
ology, ab initio spliced mappers can be classified into two categories: methods 
using “exon- first” and those using “seed- and- extend.” The exon- first methods 
include TopHat/ TopHat2 [14, 15], MapSplice [16], SpliceMap [17], and GEM 
[18]. They first align reads to a reference genome to identify unspliced con-
tinuous reads (i.e., exonic reads first), and then predict splice junctions 
out of the initially unmapped reads based on the initial mapping results. 
Taking TopHat/ TopHat2 as an example, they first use Bowtie/ Bowtie2 to 
align reads to the reference genome. Reads that map to the reference con-
tinuously without interruption are then clustered based on their mapping 
position. The clusters, supposedly representing exonic regions, are used to 
search for splicing junctions from the remaining reads. The seed- and- extend 
methods, on the other hand, use part of reads as substrings (or k- mers) to 
initiate the mapping process, followed by extension of candidate hits to 
locate splicing sites. Examples of methods in this category include STAR [19], 
HISAT/ HISAT2 [20, 21], and GMAP/ GSNAP [22]. Among these methods, 
STAR employs a two- step process for gapped alignment. The first is a seed 
searching step, aiming to sequentially locate substrings of maximum length 
from a read that each matches exactly to one or more substrings in the refer-
ence genome. If this step does not reach the end of the read due to the presence 
of mismatches, it will use the located seed region(s) as anchors to extend 
the alignment. In the second step, alignment of the entire read sequence is 
built by joining all the seed regions located in the first step. HISAT applies an 
algorithm called hierarchical indexing to achieve splice- aware alignment. It 
starts with a global search using FM indexing of the whole reference genome 
to identify the genomic location(s) of a read using part of its sequence as 
seed. Such a location is then used as an anchor to extend the alignment. Once 
the alignment cannot be extended further, e.g., reaching a splicing junction, 
a local search is then performed using FM indexing of the local region to 
map the rest of the read (Figure 7.1). A hybrid strategy combining the two 
is also used sometimes, with the exon- first approach employed for mapping 
unspliced reads and the seed- and- extend approach for spliced reads. As they 
do not rely on current genomic annotations, these ab initio methods are suit-
able to identify new splicing events and variants.
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FIGURE 7.1
Mapping of RNA- seq reads with HISAT. Three representative reads are shown on the top, i.e., 
one exonic read (1), one read spanning a splice junction with a short anchor in one exon (2), and 
another junction- spanning read with long anchor in each exon (3). Panel (a) shows alignment 
of Read1 with a global FM genome index search using partial read sequence, followed by an 
extension step to align the rest of the read. Panel (b) show that when the global search and 
extension are halted at the junction, a local search using the region’s FM index is performed to 
align the remaining short sequence. Panel (c) shows that to align Read 3, a second extension 
step is conducted after the local FM index search. The shown exemplary reads are error- free 
and 100 bases in length. (Adapted by permission from Springer Nature Customer Service 
Centre GmbH: Springer Nature, Nature Methods, HISAT: a fast spliced aligner with low memory 
requirements, Kim, D., Langmead, B. & Salzberg, S., Copyright 2015.)
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To map long RNA- seq reads generated on the PacBio and ONT platforms, 
some of the short- read mappers introduced above can still be used, such 
as GMAP [23]. More commonly, however, this task is performed using tools 
specially designed for long reads. For example, minimap2 (introduced in 
Chapter 5) has a splice- aware option for mapping long RNA sequencing 
reads. Other currently available tools include deSALT [24], GraphMap2 [25], 
and uLTRA [26].

The percentage of reads that are mapped to the genome is an important 
QC parameter. While it is variable depending on a number of factors such 
as aligning method and species, this number usually falls within the range 
of 70– 90%. The percentage of reads that map to rRNA regions is dependent 
on and a measure of the efficiency of the rRNA depletion step. Due to tech-
nical and biological reasons, it is usually impossible to remove all rRNA 
molecules. The percentage of rRNA reads can vary greatly, from 1– 2% to 
35% or more. For downstream analysis rRNA reads are filtered out so they 
do not usually affect subsequent normalization. Duplicate reads, a common 
occurrence in an RNA- seq experiment, can be caused by biological factors, 
such as over- presentation of a small number of highly expressed genes, and/ 
or technical reasons, such as PCR over- amplification. It is possible to have 
a high percentage of duplicate reads, e.g., 40– 60%, in a run. While it is still 
debatable as to how to treat duplicate reads, because of the biological factors 
involved in their formation they should not be simply removed. Some experi-
mental approaches, such as removing some of the highly expressed genes 
prior to library construction, or using paired- end reads, can help reduce the 
number of duplicate reads. With regard to genomic coverage, RNA- seq QC 
tools, including RNA- SeQC 2 [27], RSeQC [28], and QoRTs [29], report on 
the percentage of reads that are intragenic, that is, those that map within 
genes (including exons or introns), or intergenic, for those that map to gen-
omic space between genes. These tools also report other data quality metrics, 
including percentage of total aligned reads, percentage of rRNA reads, as 
well as rate of duplicate reads.

If the species under study does not have a sequenced reference genome 
against which to map RNA- seq reads, two approaches exist. One is to map the 
reads to a related species that has a reference genome, while the alternative is 
to assemble the target transcriptome de novo. The de novo assembly approach 
is more computationally intensive, but it does not rely on reference genomic 
sequence. Currently available de novo transcriptome assemblers include 
rnaSPAdes [30], Trinity [31], Bridger [32], Trans- ABySS [33], SOAPdenovo- 
Trans [34], Oases [35], and StringTie/ StringTie2 [36, 37]. Among these 
assemblers rnaSPAdes and StringTie2 can be used with long RNA reads, 
or a hybrid of long and short reads [38, 39]. These de novo assemblers are 
suited when no related species or only very distantly related species with 
a reference genome exists, or the target genome, despite with available ref-
erence sequence, is heavily fragmented or altered (such as in tumor cells). 
It should also be noted that if a related reference genome exists with 85% 
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or higher sequence similarity with the species under study, mapping to the 
related genome may work equally well, or even better, compared to the 
de novo assembly approach. This is especially true when studying alterna-
tive splicing variants. These de novo approaches are also applicable to cases 
where aberrant transcripts are expected, or novel transcripts are the detec-
tion targets. For these de novo assembly approaches, paired- end sequencing 
or long-read sequencing are more advantageous compared to single- end 
short reads.

7.3.2  Quantification of Reads

After mapping of reads, the number of reads mapped to each gene/ tran-
script needs to be counted to generate a table with rows representing genes/ 
transcripts and columns different samples. Such an expression matrix is the 
basis for subsequent differential expression determination. This read quan-
tification process can be performed using tools such as featureCounts as part 
of Subread [40], htseq- count as distributed with the HT- Seq Python frame-
work [41], RSEM [42], eXpress [43], or Cufflinks [44]. Among these tools, 
featureCounts and htseq- count are read count- based, requiring as input 
SAM/ BAM alignment files and a genomic feature annotation GFF/ GTF file. 
They generally discard reads that map to multiple regions in the genome 
or overlap multiple genomic features. RSEM, eXpress, and Cufflinks, on the 
other hand, are model- based, requiring as input SAM/ BAM alignments as 
well as a transcriptome reference file containing transcript sequences. They 
assign multi- mapped or ambiguous reads to transcripts based on prob-
ability from the use of the expectation- maximization algorithm. Because 
of the differences in how they quantify genes/ transcripts, the selection 
of counting methods has been shown to have an effect on quantification 
results [45].

Gene/ transcript expression can also be quantified without mapping 
reads to a reference genome or transcriptome. Examples of such mapping- 
independent algorithms include kallisto [46], Salmon [47], and Sailfish [48]. 
These methods rely on pseudo-  or quasi- alignment of k- mers extracted 
from reads, instead of the entire reads, to achieve transcript quantifica-
tion at vastly faster speed. For example, kallisto is a pseudoaligner that 
aligns k- mers in reads to a hash table built from k- mers that represent 
different transcripts in the reference transcriptome. Although not relying 
on mapping of entire reads, this method enables rapid determination of the 
compatibility of reads with target transcripts, as it preserves the key infor-
mation needed for transcript quantification. Since only k- mers need to be 
aligned to the hash table, the speed is greatly increased with similar quan-
tification performance to the mapping- based methods above. They perform 
well on highly expressed protein- coding genes but less so on rare or short 
transcripts [49].
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7.3.3  Normalization

As mentioned previously, the basic principle of determining gene expres-
sion levels through RNA- seq is that the more active a gene is transcribed, 
the more reads we should be able to observe from it. To apply this basic prin-
ciple to gene expression quantification and cross- condition comparison, at 
least two factors must be taken into consideration. The first is sequencing 
depth. If a sample is split into two halves, and one half is sequenced to a 
depth that is twice of that of the other, for the same gene the former will 
generate twice as many reads as the latter although both are from the same 
sample. The other factor is the length of gene transcript. If one gene tran-
script is twice the length of another gene transcript, the longer transcript 
will also produce twice as many reads as the shorter one. Because of these 
confounding factors, prior to comparing abundance of reads from different 
genes across samples in different conditions, the number of reads for each 
gene needs to be normalized against both factors using the following formula 
to ensure different samples and genes can be directly compared,

e
g SF

a li j

i j

i j
,

,=
×

×

where ei,j is the normalized expression level of gene j in sample i, gi,j is the 
number of reads mapped to the gene in the same sample, ai is the total 
number of mapped reads (depth) in sample i, and lj is the length of gene j. SF 
is a scaling factor and equals to 109 when ei,j is presented as RPKM or FPKM 
(Reads, or Fragments [for paired- end reads], per Kilobase of transcript per 
Million mapped reads).

The calculation of RPKM or FPKM is the simplest form of RNA- seq data 
normalization. In a nutshell, normalization deals with non- intended factors 
and/ or technical bias, such as those that lead to unwanted variation in total 
read counts in different samples. By correcting for the unwanted effects of 
these factors or bias, the normalization process puts the focus on the biological 
difference of interest, and makes samples comparable. Since the introduction 
of RKPM or FKPM as an early normalization approach for RNA- seq data, 
other methods of normalization have also been developed. Some of these 
methods employ a similar strategy to adjust for sequencing depth. This group 
of methods normalize RNA- seq data through dividing gene read counts by 
either (1) the total number of mapped reads (i.e., the total count approach); 
(2) the total read count in the upper quartile (the upper quartile approach) 
[50]; and (3) the median read count (the median approach). Another method 
called quantile normalization sorts gene read count levels and adjusts quan-
tile means to be the equal across all samples, so that all samples have the 
same empirical distribution [51]. These sequencing depth- based methods do 
not normalize against gene length, as it is not needed if the goal is to detect 
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relative expression changes of same genes between groups, rather than com-
pare relative abundance levels of different genes in the same samples.

Subsequently, more sophisticated normalization approaches are developed 
based on the assumption that the majority of genes are not differentially 
expressed, and for those that show differential expression, the proportion of 
up-  and down- regulation is about equal. These approaches include those that 
are employed by two commonly used RNA- seq analysis tools, DESeq2 [52] 
and edgeR [53]. DESeq2 employs a method called relative log expression, or 
RLE, which is essentially carried out through dividing the read count of each 
gene in each sample by a scaling factor. To compute the scaling factor for each 
sample, the ratio of each gene’s read count in a sample over its geometric 
mean across all samples is first calculated. After calculating this ratio for all 
genes in the sample, the median of this ratio is used as the scaling factor. The 
edgeR package employs a approach called Trimmed Means of M- values, or 
TMM [54]. In this approach, one sample is used as the reference and others 
as test samples. TMM is computed as the weighted mean of gene count log 
ratios between a test sample and the reference, excluding genes of highest 
expression and those with the highest expression log ratios. Based on the 
assumption of no differential expression in the majority of genes, the TMMs 
should be 1 (or very close to 1). If not, a scaling factor should be applied 
to each sample to adjust their TMMs to the target value of 1. Multiplying 
the scaling factor with the total number of mapped reads generates effective 
library size. The normalization is then carried out through dividing raw 
reads count by the effective library size, i.e., normalized read count =  raw 
read count ⁄ (scaling factor × total number of mapped reads).

Among other approaches are those that use iterative processes to achieve 
normalization, as exemplified by TbT [55], DEGES [56], and PoissonSeq [57]. 
Based on the same assumption that there is no overall differential expres-
sion, these methods use a multi- iteration process. For example, DEGES, 
or Differentially Expression Genes Elimination Strategy, uses a process 
to repeatedly remove potential differential genes until their elimination, 
prior to calculating the final normalization factor. It starts with using any 
of the normalization methods introduced above, e.g., TMM, followed by a 
test for differential expression using a differential detection method (to be 
introduced next). After removal of the DE genes, the same process is repeated 
until convergence.

There are also normalization methods that use a list of housekeeping genes 
or spike- in controls as normalization standard. The use of housekeeping 
genes or spike- in controls is for conditions in which the assumption that 
the majority of genes are not differentially expressed might be violated. In 
this approach, a set of constitutively expressed housekeeping genes that are 
known to stay unchanged in expression under the study conditions, or a 
panel of artificial spike- in controls that mimic natural mRNA and are added 
to biological samples at known concentrations, is used as the basis against 
which other genes are normalized.
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7.3.4  Batch Effect Removal

Normalization cannot fully address signal variation caused by collection of 
samples in batches. While it is ideal to collect all samples at once using a 
balanced experimental design, due to logistical or realistic considerations 
samples are sometimes collected in different batches that may involve 
different personnel, instrument, or protocol. Data collected in batches may 
introduce unwanted, non- biological variation in the RNA- seq signal, which 
will confound downstream analysis if not removed. Principal components 
analysis (PCA) can be used as an intuitive tool to detect batch effects, as it 
provides a convenient way to visualize relative relationships among samples, 
and samples are expected to cluster together based on experimental design 
(Figure 7.2). Tools such as BatchQC [58] can also be used to detect potential 
batch effects. Once batch effects are detected, specially designed tools, such 
as ComBat [59], RUVSeq [60], and svaseq [61], can be used to remove them. 
Among these tools, ComBat uses an empirical Bayes approach to adjust for 
batch effects, making it robust for data collected from batches with small 
sample sizes. ComBat- seq is an adaptation of the original ComBat for RNA- 
seq count data, including the use of a negative binomial regression model 
[62]. Besides removing batch effects from a single experiment, these tools can 
also be employed for integrated analysis of large datasets collected from mul-
tiple experiments or groups to boost detection power.

7.3.5  Identification of Differentially Expressed Genes

To compare gene expression in different groups and identify DE genes, the 
distribution model of the data needs to be established first in order to decide 
on the appropriate statistic tests to be used. While microarray data can be 
treated as normally distributed variables after log transformation, the RNA- 
seq read count values, being discrete in nature, cannot be approximated by 
continuous distributions even after transformation. In general, count data, 
including the RNA- seq data, follows the Poisson distribution, which is 
characterized by the mean of the distribution being equal to the variance. 
While this distribution can be and has been used to model RNA- seq data [50, 
63], it has also been observed that in RNA- seq data genes with larger mean 
counts tend to have greater variance, causing the over- dispersion problem 
[64] (see Figure 7.3). To deal with this problem, an over- dispersed Poisson 
process, or as an approximation the negative binomial distribution, is often 
applied. Other distribution models that have been used in RNA- seq data 
analysis tools, including the Poisson log- linear model used by PoissonSeq 
[57] and the log- normal model used by limma [65] and Ballgown [66], have 
also been found to perform well under many circumstances.

On the identification of DE genes based on these models, there is a list  
of methods (Table 7.2) to choose from, among which the commonly used  
ones are baySeq [67], Cuffdiff 2 [68], DEGseq [69], DESeq2, EBSeq [70], and  
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edgeR [53]. While DEGseq has been developed based on the Poisson distri-
bution, baySeq, Cuffdiff 2, DESeq2, EBSeq, and edgeR have been designed  
on the negative binomial distribution. To detect DE genes, these packages  
use different approaches. For example, baySeq and EBSeq employ empirical  

FIGURE 7.2
Removal of batch effects using ComBat- seq. PCA plots are shown before (A) and after (B) batch 
effects correction. In this example, three batches of breast cancer tissue samples that overexpress 
three genes (HER2, EGFR, and KRAS) separately with their controls expressing GFP are shown. 
The correction effectively removes batch effects on the control samples from the three batches, 
while maintains the effects of the transgenes. (Adapted from Y Zhang, G Parmigiani, ComBat- 
seq: batch effect adjustment for RNA- seq count data, NAR Genomics and Bioinformatics 2020, 
2(3):lqaa078.)
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FIGURE 7.3
The overdispersion problem in RNA- seq data. Poisson distribution is often used to model 
RNA- seq data, but instead of the variance/ dispersion being approximately equal to the mean 
as assumed by the distribution, the variance in RNA- seq data is often dependent on the mean. 
The purple line represents the relationship between variance and mean based on the Poisson 
distribution, while the solid and dashed orange lines represent local regressions used by DESeq 
and edgeR, respectively, based on negative binomial distribution. (Modified from Anders 
S. and Huber W. (2010) Differential expression analysis for sequence count data. Genome 
Biology, 11, R106. Used under the terms of the Creative Commons Attribution License [http://  
creativecommons.org/ licenses/ by/ 2.0] © 2010 Anders et al.)

TABLE 7.2

Tools for Detection of DE Genes

Name Description Reference

DESeq2 Employs negative binomial generalized linear modeling and Wald 
test to detect DE genes. Uses empirical Bayes estimation to shrink 
dispersions and fold changes to increase detection stability

[52]

edgeR Detects DE genes based on negative binomial distribution, using 
techniques including exact test, generalized linear modeling, 
quasi- likelihood F- test, and empirical Bayes

[53]

limma Fits a gene- based linear model for DE analysis. Originally 
developed for microarray gene expression data, it uses the voom 
function for RNA- seq data to apply empirical Bayes to estimate 
gene- wise variability

[65]

NOISeq A nonparametric and data- adaptive method that detects DE genes 
based on simultaneous comparison of fold change and absolute 
expression difference

[72]

(continued)
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Bayesian based methods, in which two alternative models are proposed  
for each gene, with one assuming differential expression and another  
assuming null. Given the observed counts, the posterior likelihood for the  
differential expression model is used to identify DE genes. Cuffdiff 2 uses  
the T statistic, which equals the ratio of mean(log[y] ) over variance(log[y]),  
with y representing the expression ratio of a gene between two groups.  
Since this statistic approximately follows a normal distribution, t- test is  
used for DE analysis. DEGseq employs several methods to identify DE  
genes, including methods based on the MA- plot, Fisher’s exact test, likeli-
hood ratio test, and samrWrapper (a wrapper of functions in SAM,  
which is originally designed for identifying differential gene expression  
from microarray data). DESeq2 applies a generalized linear model (GLM)  
approach to identify DE genes with a Wald test. Another commonly used  
method, edgeR, tests for differential gene expression using an exact test  
that is highly parallel to Fisher’s exact test for experiments with one factor,  
and GLM likelihood ratio test or quasi- likelihood F- test for general multifac-
torial experiments.

Packages that are not based on the Poisson distribution or negative bino-
mial distribution are also used for differential expression analysis. For 
example, limma uses linear modeling after logarithmic transformation 
of read counts, and a moderated t- statistic to find DE genes. PoissonSeq 
conducts DE analysis based on a test of a correlation term between gene and 
experimental conditions, which follows a chi- squared distribution model. 
The adaptation of SAM for RNA- seq data analysis has led to the develop-
ment of SAMseq, which, different from the original SAM, is based on a non- 
parametric approach [71]. NOISeq provides another example of using the 
non- parametric approach for cases where a probability distribution model of 
the data may not hold [72]. Despite the differences in the statistical models 
used, benchmarking studies have shown that many of the tools introduced 

Name Description Reference

Cuffdiff 2 Combines estimates of count uncertainty and overdispersion to 
model fragment count variability, which is then used to test for 
significant DE changes

[68]

EBSeq Applies empirical Bayesian methods to identify DE genes and 
splicing isoforms

[70]

baySeq Builds on negative binomial distribution, and uses an empirical 
Bayesian approach to estimate posterior probabilities for each of a 
set of models to determine DE

[67]

SAMseq Another nonparametric method originally designed for microarray 
data adapted for RNA- seq data. Uses resampling to account for 
differences in sequencing depth when performing DE analysis

[71]

TABLE 7.2 (Continued)

Tools for Detection of DE Genes
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above generate similar results for well- powered studies, and those based on 
the non- parametric approach are often equally effective [73, 74].

Most of the currently available methods are designed to handle samples 
with biological replicates. Under non- ideal circumstances when RNA- seq is 
performed without replication, it becomes impossible to estimate biological 
variability for a satisfactory statistical analysis. For such cases, the only indi-
cator of differential expression is fold change. Some of the above tools can still 
take such data, such as edgeR, which offers an option to manually input a dis-
persion value estimated from similar studies, and NOISeq, which provides 
technical replicates through simulation of the data assuming a multinomial 
distribution, acting as alternative means to estimate biological variability for 
a significance analysis. There are also tools especially designed for RNA- seq 
experiments without replication, including GFOLD [75] and ACDtool [76]. 
ACDtool is an implementation of the method originally proposed by Audic 
and Claverie developed on the basis of Poisson distribution [77]. Although 
originally designed for analyzing relatively small data sets (<10 K reads), 
the A- C statistic and its implementation through ACDtool is equally sensi-
tive and applicable to the much larger NGS data sets that contain millions of 
reads without replicates.

7.3.6  Multiple Testing Correction

A typical RNA- seq experiment involves a small number of samples, but a 
large number of genes, to test for differential expression between conditions. 
If only one gene is compared, a p of 0.05 is usually used as a threshold for 
type I error (false positive), i.e., accepting that there is a 5% chance of calling 
a gene differentially expressed while it is not. When a large number of genes 
are compared simultaneously, however, using the same p of 0.05 for each 
gene will lead to a significant number of false discoveries. For example, if 
10,000 genes are compared, at p =  0.05 there will be 500 genes to be called 
differentially expressed just by random chance. Therefore, an adjustment is 
needed to correct for the high rate of false discoveries caused by multiple 
testing. One adjustment approach is to divide the p by the total number 
of genes/ comparisons being conducted, e.g., using an adjusted p of 5x10- 6 
when comparing 10,000 genes. This approach, called Bonferroni correction, 
controls the family wise error rate (FWER), i.e., the probability of detecting 
one or more false- positive genes. While it is straightforward to implement, it 
is very conservative and often too stringent, leading to false negatives (also 
called type II errors).

A more practical and powerful approach was proposed by Benjamini and 
Hochberg (1995) [78]. Instead of controlling FWER, this approach controls 
the proportion of false positives among identified genes, i.e., the false dis-
covery rate (FDR). To illustrate, when using an FDR of 0.05, we accept the 
probability that 5% of the genes detected to be differentially expressed are 
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false positives. As an example, if 1,000 genes are identified to be differen-
tially expressed, 50 genes are expected to be false positives by chance. FDR- 
adjusted p values are often called q values. If a gene has a q value of 0.05, it 
means that 5% of the genes with q values less than 0.05 are expected to be 
false positives. This approach, through relaxing the expectation and allowing 
a small proportion of false positives among all discoveries, leads to a gain in 
detection power. All DE detection tools introduced above offer options for 
multiple testing correction.

7.3.7  Gene Clustering

Genes showing differential expression pattern between conditions can be 
grouped into different clusters based on their overall expression pattern. 
This unsupervised process helps uncover different patterns of overall gene 
expression changes, and thereby serves as an important exploratory step to 
find key target genes for further investigation and hypothesis generation. 
Among the most widely used clustering algorithms are hierarchical and k- 
means clustering. Hierarchical clustering aims to build a dendrogram based 
on similarity of expression between genes. This clustering method can take 
either a “bottom- up,” also called agglomerative, approach in which each gene 
is in their own cluster initially and then recursively merged until only one 
cluster remains, or a “top- down” (divisive) process that employs a reverse 
process. For RNA- seq data, the agglomerative approach is used more com-
monly. Besides clustering genes, samples are often clustered at the same time 
to uncover relationships among them (Figure 7.4). With k- means clustering, 
the number of clusters, i.e., the k value, needs to be defined a priori. Performing 
hierarchical clustering first can help assess what k value to use. The objective 
of k- means clustering is to assign each gene to the nearest cluster mean. For 
both hierarchical and k- means clustering, an often- used similarity measure is 
Pearson correlation coefficient. Besides these two commonly used clustering 
algorithms, other clustering methods include Self- Organizing Map (SOM) 
and Partitioning Around Medoids (PAM). These clustering processes can be 
performed using functions in R such as “hclust” for hierarchical clustering 
and “kmeans” for k- means clustering.

7.3.8  Functional Analysis of Identified Genes

Besides clustering, functional analysis of identified DE genes is also necessary 
to connect the genes, usually in large numbers, to the biological question  
under study. This analysis can be conducted at multiple levels, including  
Gene Ontology (GO), biological pathway, and gene network. GO provides  
hierarchically structured, standardized terms to describe biological processes,  
molecular functions, and cellular components associated with a gene [79].  
A biological pathway, on the other hand, refers to a series of molecular  
reactions that leads to a cellular event or product. Commonly used pathway  
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databases include KEGG [80], Pathway Commons [81], WikiPathways  
[82], and Reactome [83]. Tools such as Enrichr [84], GOseq [85], GOrilla  
[86], g:Profiler [87], DAVID (or Database for Annotation, Visualization and  
Integrated Discovery) [88], and ToppGene [89] detect enrichment of GO terms  
and biological pathways in identified genes. The statistical significance of  

FIGURE 7.4
Hierarchical clustering of DE genes as well as experimental samples. RNA- seq data shown here 
is collected from cultured fibroblasts that were subjected to two treatment conditions (irradiation 
[IR] and TGF- β1 [TGF- β], in comparison with control [CTR]). (From Mellone M, Hanley CJ, 
Thirdborough S, Mellows T, Garcia E, Woo J, Tod J, Frampton S, Jenei V, Moutasim KA, Kabir TD, 
Brennan PA, Venturi G, et al. (2016) Induction of fibroblast senescence generates a non- fibrogenic 
myofibroblast phenotype that differentially impacts on cancer prognosis. Aging (Albany NY). 
159:114– 132. Used under the terms of the Creative Commons Attribution License (CC BY 3.0) 
[https:// crea tive comm ons.org/ licen ses/ by/ 3.0/ ] © 2016 Mellone et al.)
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this enrichment is usually calculated using the hypergeometric distribution,  
or Fisher’s exact test. An alternative approach is the Gene Set Enrichment  
Analysis (GSEA), which instead of using a filtered list of genes, uses the  
entire gene set for functional analysis [90]. Not relying on a somewhat arbi-
trary cutoff for gene selection, the GSEA approach increases sensitivity of the  
analysis and can pick up weaker signals that might be otherwise missed.

For gene regulatory network analysis, tools like Cytoscape or Ingenuity 
Pathway Analysis (IPA, commercial) are often used. Gene network can be 
reconstructed on the basis of currently available experimental evidence, or 
co- expression patterns. Cytoscape, for example, provides a range of apps 
for gene network analysis and visualization, such as stringApp [91] and 
GeneMANIA [92], which provide gene- gene (or protein- protein) interaction 
information based on experimental evidence catalogued in databases such as 
BioGrid, Integrated Interactions Database, and STRING. In addition, some 
Cytoscape Apps, such as ClueGO [93] and EnrichmentMap [94], offer visual-
ization of gene set enrichment results (e.g., those from GSEA) as a network.

7.3.9  Differential Splicing Analysis

Besides overall expression level changes, eukaryotic genes also undergo alter-
native splicing to produce different isoforms of transcripts (see Chapter 3). As 
differential splicing may exist even in the absence of overall gene expression 
level changes, analysis of differential splicing (DS) adds another dimension 
to transcriptomic profiling. DS analysis methods can be generally classified 
into different categories based on detection target (exon, splicing event, or 
isoform). Some of the DE methods introduced above, such as edgeR and 
limma, can be directly used for exon- level DS analysis to detect differential 
usage of exons. Specially designed exon- level DS tools include DEXSeq [95] 
and JunctionSeq [96]. DEXSeq, as an example, implements a test for differ-
ential exon usage between experimental conditions based on relative exon 
usage, which is defined as the number of reads that map to an exon divided 
by the total number of reads that map to the entire gene.

Event- based methods focus on alternative splicing events, such as 
skipped exons, alternative 3’/ 5’ splicing sites, or retained introns. These 
methods quantify splicing events using “percent- spliced- in,” or Psi (ψ), 
as a measure of the frequency of an alternative splicing event into final 
transcripts. Examples of event- based methods include MISO [97], rMATS 
[98], MAJIQ [99], SpliceSeq, SUPPA2 [100], SplAdder [101], Leafcutter 
[102], and Whippet [103].

Isoform- centric methods attempt to reconstruct different splicing isoforms 
first, and then quantify their abundance levels in samples, prior to applying 
statistical tests to detect those that show differential expression between 
conditions. Previously introduced DE methods Cuffdiff 2 and EBSeq are in 
this category when performing DS analysis. DiffSplice, as another example, 
first maps reads to the reference genome using tools such as MapSplice, and 
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then constructs splice graph to detect alternatively spliced regions in the 
form of alternative splicing modules. After estimation of their abundance, 
DiffSplice uses nonparametric permutation to test for DS between experi-
mental groups.

7.4  Visualization of RNA- Seq Data

RNA- seq data visualization is required to explore trends and patterns 
embedded in a dataset, verify results from an established analytic workflow, 
and furthermore, appreciate the complexity in gene transcription, including 
alternative splicing. There are a variety of data visualization tools that can 
be used for data exploration and verification of findings, including those 
offered in R through packages such as ggplot2, plotly, reshape, and viridis. 
Histogram, boxplot, density, violin, and volcano plots can be created using 
these tools to explore a dataset, while PCA plot, heatmap, and dendrogram 
can be used to provide a summarized view of the data. Verification of findings 
using the same tools helps confirm that a proper workflow including data 
model is used. Among the tools used to map RNA- seq reads to the reference 
genome to develop a better understanding of the complexity of gene tran-
scription, IGV and Integrated Genome Browser (IGB) are often used. In add-
ition, RNA- seq data can be exported as custom tracks for display in a genome 
browser such as the UCSC Genome Browser. For visualization of alternative 
splicing, tools like SpliceSeq and JunctionSeq have their own built- in visual-
ization capabilities. DiffSplice generates GFF- style files that can be visualized 
in the genomic browser GBrowse.

7.5  RNA- Seq as a Discovery Tool

RNA- seq is an important exploratory tool to study the molecular mechanisms 
of biological processes. Based on the DE genes identified, new hypoth-
eses can be formulated for testing. Prior to carrying out functional studies 
to establish causational relationship between change of gene expression 
pattern to the biological process of interest, the first step is typically to val-
idate RNA- seq findings with other experimental techniques, most commonly 
Western blotting and quantitative PCR. Beyond DE gene detection for basic 
research, the rich information in RNA- seq data can also be used clinically to 
develop new ways to classify diseases and improve diagnostic outcomes. For 
example, with combined deployment of informative gene feature selection 
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and machine learning techniques RNA- seq profiles are used to stratify breast 
cancer into different subtypes [104]. As another example, RNA sequencing 
has significantly improved diagnostic outcome for hereditary cancer by 
resolving uncertainties from DNA genetic sequencing alone [105].

Besides interrogating currently catalogued genes, RNA- seq, being an 
unbiased approach, is also a powerful technology for discovering novel 
transcripts, splicing events, and other transcription- related phenomena. 
RNA- seq studies of the transcriptional landscape of the genome have found 
that besides protein- coding regions, the majority of the genome produces 
RNA transcripts. The finding that 75% of the human genome is transcribed 
(see Chapter 3), made with extensive use of RNA- seq, shows the power of 
this technology in discovering currently unknown transcripts. RNA- seq has 
also been used to discover novel alternative splicing isoforms. For example, 
the discovery of circular RNAs (also see Chapter 3), which are formed as a 
result of non- canonical RNA splicing, is also due to the application of RNA- 
seq [106]. RNA- seq has also been applied to uncover other transcription- 
related phenomena, such as gene fusion. Gene fusion is caused by genomic 
rearrangement and is a common occurrence under certain conditions such as 
cancer. Because RNA- seq has the capability to locate transcripts generated 
from a fused gene, detection of gene fusion events has been greatly 
facilitated by this powerful technology [107, 108]. With rapid technological 
developments in advancing RNA sequencing as an even more powerful dis-
covery tool, RNA- seq has now entered into a new era –  single-cell RNA- seq, 
which is covered next.
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8  
Transcriptomics by Single-Cell RNA- Seq

Bulk RNA- seq, as covered in Chapter 7, reveals the transcriptome at the 
level of an organ, a tissue, or a population of primary or cultured cells. Bulk 
RNA- seq is very effective to reveal overall gene expression change under 
contrasting conditions, but the detected change is a result of comparing 
average gene expression of all cells between conditions. It was highly chal-
lenging, if not impossible, to analyze the transcriptome of each cell individu-
ally not long ago. But with the recent rapid technological developments in 
the single-cell sequencing field, interrogating the transcriptome of thousands 
to tens of thousands of single cells simultaneously has become a reality. 
For the first time single-cell RNA- seq, or scRNA- seq, enables researchers to 
study cell- to- cell variation, even among those that appear to be similar mor-
phologically and reside in close proximity. Single- cell RNA- seq has offered 
unprecedented opportunities for the biomedical community to identify dis-
tinct subpopulations of cells in a heterogenous population, characterize their 
functional states, and infer cellular trajectories during differentiation.

While creating unprecedented opportunities, scRNA- seq also presents 
new challenges that do not exist in bulk RNA- seq. Some of the challenges 
come from the tremendous amount of cellular heterogeneity in a typical 
tissue sample, and therefore the richness of bio- information embedded in the 
scRNA- seq dataset from the much- increased resolution and change of scale. 
Other challenges, however, are due to the inherent characteristics of scRNA- 
seq data. Compared to bulk RNA- seq data, scRNA- seq data is sparser, i.e., 
containing a lot of zeros (often called dropouts), and has higher technical 
noise. This signal sparsity is partially biological as a result of normal gene 
transcription oscillation at the single-cell level. In the meantime, this is also 
caused by technical challenges. Based on estimation, a typical mammalian 
cell has on average 360,000 mRNA molecules representing 12,000 different 
transcripts, with wide variation from cell type to cell type [1]. By weight, 
a cell typically contains ~10 pg RNA, of which mRNA molecules are only 
a small fraction (1– 5%) [2]. Generating scRNA- seq signals from such low 
quantities of cellular mRNA is technically challenging. For example, the 
rate of mRNA molecular capture is still quite low in the range of 10– 20% 
[3– 5]. Such technical challenges, along with non- exhaustive sequencing of 
captured molecules, lead to signal stochasticity, false- negative detection, and 
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high measurement noise in the scRNA- seq data. To effectively extract the rich 
information embedded in the scRNA- seq data, these characteristics demand 
development and deployment of algorithms and tools that are different from 
those designed for bulk RNA- seq.

Furthermore, the questions that can be answered from scRNA- seq data are 
beyond those from bulk RNA- seq. Detection of cell- to- cell variation, identifi-
cation and visualization of different cell types/ identities in a population, and 
inference of cellular developmental trajectories are all new realms that have 
emerged from the development of scRNA- seq. Some other data analytical 
topics such as data preprocessing, normalization, batch effect correction, and 
clustering are also significantly different from those covered in Chapter 7, 
and are presented in detail in this chapter. On topics that are similar to and/ 
or have significant overlap with those covered in Chapter 7, such as identifi-
cation and functional analysis of differentially expressed genes, only aspects 
that are specific to or need adjustment for scRNA- seq data are presented to 
avoid redundancy.

8.1  Experimental Design

8.1.1  Single-Cell RNA- Seq General Approaches

The landscape of single- cell sequencing, including RNA- seq, has been rap-
idly evolving. There have been a multitude of strategies or platforms in 
existence today, while new ones are continuously being developed and 
existing ones improved upon. In general, existing scRNA- seq strategies 
can be divided into two broad approaches, i.e., low-  and high- throughput, 
based on the number of cells that can be analyzed simultaneously at a time. 
Low- throughput methods can process up to a few hundred cells at a time, 
while those of the high- throughput approach allow simultaneous analysis 
of thousands to tens of thousands of cells, or even more with the technolo-
gies continuing to evolve. A good example of the low- throughput approach 
is Smart- seq3 [6]. The low- throughput approach suits situations where the 
focus is on a small number of cells that need detailed molecular character-
ization. This approach has higher sensitivity, which leads to the identifica-
tion of more transcripts and genes from each cell. It also provides full- length 
coverage of the transcriptome, thus enabling recognition of different splicing 
isoforms and allelic gene expression.

There are currently a multitude of platforms for the high- throughput 
approach. These platforms include Drop- seq [7], inDrop [8], sci- RNA- seq for 
single-cell combinatorial indexing RNA sequencing [9], and 10× Chromium 
[10]. Among these various platforms, the commercially available 10× 
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Chromium platform has been more widely adopted so far in the biomed-
ical research community. Benchmark studies have shown that 10× generally 
has more consistent performance, better sensitivity and precision, and lower 
technical noise [11, 12]. In general, the high- throughput approach is more 
suitable to study cellular heterogeneity in a large population of cells. The 
transcript detection sensitivity is typically lower with this approach, as a 
result the data is sparser. The detection and counting of transcripts are usu-
ally based on sequencing of either the 3’ or 5’ end and not full length. Because 
of such differences between the two approaches, it is advisable to evaluate 
the particular needs of a project in order to decide which approach is more 
appropriate.

Despite the differences, the two general approaches share basically the 
same workflow in wet lab operational procedures. As detailed in Section 
8.2, for both approaches single cells need to be prepared from dissociation of 
input materials, such as an organ or a tissue biopsy, followed by partitioning 
of the cells. The mechanism of cell partitioning varies with the approach 
and particular platform chosen, e.g., cells can be partitioned into 96-  or 384- 
well plates (such as for the low- throughput approach), microfluidic droplets 
(used by many of the high- throughput platforms), etc. On the 10× Chromium 
platform, single cells are partitioned into nanoliter- scale GEMs (or Gel beads- 
in- EMulsion), with each GEM carrying a unique barcode. After partitioning 
cells are lysed to release cellular RNA, which is then reverse transcribed into 
cDNA. This is followed by cDNA amplification and subsequently library 
construction. Because of the shared commonalities in lab operation as well as 
data analysis, the two general approaches are not covered separately in the 
following sections unless otherwise noted.

8.1.2  Cell Number and Sequencing Depth

As many scRNA- seq projects aim to investigate cellular heterogeneity in a 
large cell population, to adopt the high- throughput approach some of the 
major technical questions to address first include how many cells to sequence, 
how deep to sequence, and how to balance cell number and sequencing depth 
in cases of budgetary constraints to maximize the amount of information to 
be obtained. On the question of how many cells to sequence, this depends on 
(1) the number of cell types present in the target population, (2) the minimum 
fraction of any of the cell types, and (3) the minimum number of cells desired 
to be observed in any of the cell types. Based on this information, negative 
binomial (NB) distribution can be used to estimate the number of cells to 
sample. For example, if 10 cell types are expected in a population, with each 
type being present at a minimum fraction of 3% in the total population, in 
order to observe at least 20 cells in any of the cell types, we will need to sample 
at least 1,104 cells in total at the 95% confidence level [13]. If the needed infor-
mation on the heterogeneity of the population is not available, it is advisable 
to first conduct a pilot study using the maximum number of cells possible. 
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The maximum allowable cell number varies with platform, for example, on 
the current configuration of 10× Chromium 10,000 cells is the upper limit. For 
any droplet- based platforms including the Chromium, the limit on maximum 
cell number is affected by the law of Poisson distribution, as the loading of 
single cells into droplets (or GEMs for Chromium) is a Poisson process. This 
process leads to the formation of doublets (or multiplets), i.e., two (or more) 
cells being loaded into the same droplet/ GEM and treated as one cell, and 
the rate of their formation follows Poisson statistics. To ensure scRNA- seq 
data quality, the rate of doublets/ multiplets needs to be controlled at a man-
ageable level (usually <5%).

On the question of sequencing depth, this depends on how transcription-
ally active cells are in the sample, and the diversity of their transcriptomes. 
Without this knowledge a priori, the generally suggested depth for 3’ (or 
5’) end gene expression profiling on the 10× Chromium platform is a min-
imum of 20,000 reads per cell using the current v3 chemistry. The number of 
detected genes at this depth varies with cell type, e.g., 1,000– 2,000 for periph-
eral blood mononuclear cells and 2,000– 3,000 for neurons. Sequencing depth 
may be fine- tuned based on specific project needs, and increasing sequen-
cing depth from the suggested minimum depth generally leads to identifica-
tion of more genes. But beyond a certain point (varies with cell type), further 
increase in sequencing depth leads to diminished return.

On the question of how to balance cell number and sequencing depth 
to maximize the amount of information obtained, the options are either 
sequencing fewer cells at greater depth, or more cells with fewer reads per 
cell. The former option allows identification of more transcripts and genes, 
and as a result generates a more accurate picture of each cell’s transcription 
status. However, the fewer cells used may not offer a sufficient representa-
tion of the cellular population under study. The latter option, on the other 
hand, allows analysis of more cells to increase cell representation, but at the 
expense of identifying less transcripts and genes per cell. To quantify the 
tradeoff between sequencing depth and cell number, computational simula-
tion using a multivariate generative model showed that increasing sequen-
cing depth is better than increasing cell number before reaching the depth of 
15,000 reads per cell, beyond which point there is a diminished return [14]. 
Another modeling demonstrated that under a fixed budget the strategy is 
to sequence as many cells as possible at the depth of one read per gene per 
cell [15]. Commonly used scRNA- seq pipeline tools like the open source 10× 
Cell Ranger [10] and zUMIs [16] have downsampling function to help deter-
mine whether the library was sequenced to saturation, or whether additional 
sequencing would increase the number of detected genes cost effectively.

To further compare the two options, another factor to consider is that 
many genes are often co- regulated in a cell, forming functional modules. The 
modularity of the cellular gene transcriptional system is manifested in the 
extensive gene- gene covariance embedded in the sequencing data, which 
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suggests that scRNA- seq data is inherently low dimensional [17]. Because 
of this nature, a number of downstream data analysis steps are quite robust 
and can tolerate technical noise caused by shallow sequencing. Because of 
this, for many studies especially those that involve highly heterogeneous 
cell populations, limited resources are better spent on sequencing more cells 
instead of increasing sequencing depth. For studies in which cells are more 
homogeneous with more nuanced differences, sequencing fewer cells at 
greater depth might offer better distinguishing power. In this situation, the 
depth of 1– 2 million reads per cell has been shown to be sufficient, beyond 
which detection sensitivity barely increases [18, 19].

8.1.3  Batch Effects Minimization and Sample Replication

The general principles of factorial design, randomization, and replication 
as covered in the last chapter for bulk RNA- seq equally apply to single-
cell studies. In an ideal design, samples are prepared and sequenced sim-
ultaneously, with different groups or experimental conditions randomly 
distributed across all samples. For sequencing, all libraries should be mixed 
and sequenced together across all lanes. Compared to bulk RNA- seq, how-
ever, scRNA- seq samples are more often divided into batches. This is usually 
due to practical considerations, such as technical (as it is more challenging 
to prepare and process a large number of single- cell samples at once), or 
budgetary (a small- scale pilot run is often run first due to the associated high 
cost of running scRNA- seq). To minimize batch effects, the same principles 
should still be adhered to as much as possible within the same batch. For 
example, to study lung cell compositional change before and after an infec-
tion, when samples are divided into batches, within each batch dissociated 
cells should be prepared from lung tissue dissected from infected and con-
trol animals of the same age, with the procedure performed by a single 
operator following the same procedure. For subsequent cell partitioning, 
the cells should be partitioned using the same microfluidic chip if using 
10× Chromium. If multiple chips are needed, loading of samples to chips 
and wells should be randomized and balanced. For sequencing, libraries 
prepared from all samples need to be barcoded differently, mixed together, 
and loaded onto multiple lanes. An unbalanced design, such as processing 
and sequencing of infected and control samples on two separate chips and 
different sequencer lanes, can make it challenging to distinguish cell compos-
itional change caused by the infection from the variation resulted from the 
technical differences in processing and sequencing.

While it is a common practice to use biological replicates in bulk RNA- seq 
to measure within- group variation, there is still a lack of consensus on the use 
of replicates in scRNA- seq experiments. This is partly because scRNA- seq 
data contains more information than bulk RNA- seq, and therefore there are 
more diverse analyses that can be performed on scRNA- seq data beyond the 
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identification of differentially expressed genes. How biological replicates can 
be incorporated into and help these analyses is still not very clear. As a gen-
eral trend, use of biological replicates has become more common, allowing 
examination of reproducibility on these analyses. The number of biological 
replicates to run can vary based on the specific questions asked, as well as 
the computational power available to the researcher as inclusion of biological 
replicates can significantly increase the demand on computing resources in 
some of the analytic steps. It is not necessary to run technical replicates if 
using a standardized platform such as 10× Chromium.

8.2  Single-Cell Preparation, Library Construction,   
and Sequencing

8.2.1  Single-Cell Preparation

Generating high- quality scRNA- seq data is a multi- step process (see 
Figure 8.1), and preparing high- quality single cells is an important first step. 
To prepare the large number of cells needed for high- throughput scRNA- seq, 
cell preparatory procedure needs to be optimized for each target tissue in order 
to generate cells that are of high viability, with minimal cell death/ debris and 
no cell aggregation. If present, dead and dying cells need to be removed first 
before proceeding. If they are not removed, the RNA they release to the envir-
onment from their breakdown leads to high levels of ambient RNA, which in 
turn results in increased background noise [20] that is difficult, if not impos-
sible, to remove bioinformatically during data analysis. Preparing cells from 
liquid tissues such as blood and bone marrow is relatively straightforward. 
When starting from solid tissues, enzymatic and mechanical dissociation is 
required first to break down extracellular matrix and cleave cell- cell junctions. 
If certain types of cells need to be enriched, approaches such as fluorescence- 
activated cell sorting (FACS), microchip- , or magnetic- activated cell sorting 
are commonly used. If using FACS, gentle settings such as large nozzle sizes 
and/ or slower flow velocities are recommended to minimize cell damage 
and death. If using a low- throughput platform, besides the above methods, 
manual microscope- guided precision cell picking techniques, such as micro- 
pipetting used in micromanipulation or laser capture microdissection, are 
also often used. If using these techniques, target cells can be directly deposited 
in lysis buffer that contains RNase inhibitor.

Cell preparatory procedures may also lead to alteration of cellular gene 
expression profiles. For example, early stress response genes such as Fos and 
Jun have been found to be expressed after cell dissociation and FACS [21]. 
To avoid such unintended changes, once prepared single cells should be 
processed as quickly as possible without delay to subsequent steps, including 
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Single-cell RNA- seq general lab process. Single cells are first partitioned into individual droplets, wells, tubes, etc. Once partitioned, cells are lysed to 
release RNA for reverse transcription into cDNA. During cDNA synthesis and subsequent sequencing library preparation, cell- specific barcodes are 
incorporated to track transcripts from each cell. After sequencing of scRNA- seq libraries, reads are demultiplexed as part of preprocessing to reveal 
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cell partitioning, lysis, and cDNA conversion. If immediate processing is not 
possible due to practical limitations (e.g., distance, time, and processing cap-
acity), alternative strategies including cryopreservation and fixation can be 
used. For cryopreservation, dimethyl sulfoxide (DMSO) is often added to 
prevent the formation of ice crystals that result in cell damage. If fixation is 
preferred, methanol can be used. Among such methods it has been found 
that DMSO cryopreservation offers a better approach than fixation, or other 
specially developed preservatives [22].

8.2.2  Single Nuclei Preparation

Variations in cell size and shape may prevent conduct of scRNA- seq on cer-
tain platforms. For example, the width of the microfluidic channel used in 
the 10× Chromium controller is 50– 60 μm. Most cells in the body are below 
this size in the range of 10– 15 μm in diameter. Some cells, however, are larger 
(e.g., human egg cells, 100 μm in diameter), or have highly sophisticated 
shape (e.g., neurons, with dendrites and axons that can reach over one meter 
in length), preventing their passing through the channel. One solution for 
such cells is to use single nucleus RNA- seq (or snRNA- seq). Side- by- side 
comparisons of scRNA- seq and snRNA- seq data have shown that they reveal 
similar transcriptional profiles [23– 25], lending support to the use of snRNA- 
seq as a surrogate for scRNA- seq. These comparative studies have also 
shown that snRNA- seq data contain more reads that map to intronic regions, 
and the number of genes detected from snRNA- seq is in general lower than 
that from scRNA- seq. These observations are consistent with the fact that the 
population of transcripts assayed by snRNA- seq is the nuclear, still being  
processed portion of the cell’s entire transcriptome (nuclear and cytoplasmic) 
assayed by scRNA- seq. As detailed in Chapter 3, to generate mature mRNA, 
the spliceosome needs to remove introns from pre- mRNAs before mature 
mRNAs are exported out of the nucleus to the cytoplasm.

Besides accommodating cells of unusual sizes and shapes, snRNA- seq 
may also offer advantages over scRNA- seq in sample prep and availability 
because of procedural differences between the two approaches. For example, 
cells in certain tissues (such as the retina) are more prone to damage and cell 
death during tissue dissociation, which can lead to their underrepresentation 
in the final scRNA- seq data. In processing such tissues snRNA- seq can offer 
an advantage because single nuclei prep is usually faster, and it is usually 
easier to maintain the intactness of prepared nuclei than entire cells [26]. With 
snRNA- seq, archival frozen tissues may also be used [25], which as indicated 
in the last section is an issue with scRNA- seq if appropriate cryopreservation 
processes were not followed for freezing the tissues. In addition, for cells that 
have a high tendency to aggregate after dissociation, such as monocytes and 
granulocytes, snRNA- seq also offers a good alternative since prepared single 
nuclei have a low propensity to aggregate.
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8.2.3  Library Construction and Sequencing

To construct scRNA/ snRNA- seq libraries, the released RNA from lysed cells 
(or nuclei) is first reverse transcribed into cDNA. This step is most commonly 
carried out using oligo- dT primers that target polyadenylated transcripts. To 
generate full- length cDNA, the so- called SMART technology, or Switching 
Mechanism at 5’ End of RNA Template [27], is often used. Because of the 
low amounts of cDNA generated from each cell, PCR amplification is needed 
to boost cDNA quantity. To make the amplified cDNA into sequenceable 
libraries, different scRNA- seq platforms use different strategies. For the 
10× Chromium, the amplified cDNA is enzymatically fragmented into 
smaller pieces to accommodate Illumina shorts read sequencing. The cDNA 
fragments are then end repaired, followed by A- tailing and ligation of 
Illumina adapters. A subsequent PCR is the last step of library construction 
that incorporates sample barcodes, as well as the rest of Illumina adapter 
sequences required for sequencing. For the low- throughput Smart- seq3, 
a quicker, Nextera- based method is used, in which the amplified cDNA is 
fragmented using tagmentation, followed by a library amplification process 
prior to sequencing.

As a result of cDNA amplification, one original transcript molecule 
generates multiple copies and therefore is represented multiple times in 
the final sequencing library. Without correcting for this amplification effect, 
reads derived from PCR duplicates of the same original transcript cannot be 
differentiated from those from different mRNA molecules transcribed from 
the same gene (the true detection target). To correct for this effect and thereby 
reduce experimental noise, unique molecular identifiers (or UMIs) are used, 
which are essentially a large number of randomly synthesized, unique 
nucleotide combinations. UMIs are introduced into each cDNA before the 
amplification step, and after amplification all PCR products from the same 
original cDNA will carry the same UMI. After sequencing, reads carrying 
the same UMI are bioinformatically collapsed into one, thereby removing 
the amplification effect. The use of UMI has been adopted by both high-  and 
low- throughput scRNA- seq approaches.

The specifics of sequencing scRNA- seq libraries may vary depending on 
the particular platform chosen. To sequence 10× libraries, for example, the 
specific read length required of Illumina sequencing for 3’ v3.1 dual indexed 
libraries (Figure 8.2) is: Read 1– 28 bp, covering cell barcode (16 bp) and UMI 
(12 bp); Index 1 (i7) –  10 bp; Index 2 (i5) –  10 bp; Read 2– 90 bp, covering 
cDNA insert. For Smart- seq3 libraries, regular single end 50 or 75 bp sequen-
cing can be used for general gene expression profiling, and paired end 150 
bp sequencing can be used for splicing isoform and/ or allelic expression 
analyses. With regard to sequencing depth, the reader should refer to above, 
Section 8.1.2.
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8.3  Preprocessing of scRNA- Seq Data

After sequencing, raw scRNA- seq reads need to be preprocessed before fur-
ther analysis can be conducted (Figure 8.3 provides an overview of the basic 
scRNA- seq data analysis workflow). The tasks of the preprocessing step 
include assigning reads to their cells of origin, collapsing reads according to 
their UMIs, quantifying the abundance of transcripts in each cell, and gener-
ating a cell- transcript count matrix, among others to be detailed next. It should 
be noted that these tasks put high demands on computational resources, as 
the substantial increase in resolution to the single-cell level is associated with 
significant increase in raw data volume in comparison to bulk RNA- seq. For 
preprocessing of 10× scRNA- seq data using the Cell Ranger software, for 
example, the recommended requirements are a Linux system with 16 CPU 
cores, 128 GB RAM, and 1 TB free disk space.

8.3.1  Initial Data Preprocessing and Quality Control

As performed for other NGS applications, the original sequencing data in 
the BCL format needs to be first demultiplexed (if two or more samples are 
sequenced together), and converted to FASTQ files. While this is typically 
achieved using tools such as Illumina’s bcl2fastq, if using the 10× Chromium 
platform, the 10× Cell Ranger, which offers a series of pipelines for ana-
lyzing 10× scRNA- seq data, has a built- in bcl2fastq wrapper in its “cellranger 
mkfastq” pipeline. For quality control (QC) of the FASTQ data, while general 
NGS data QC tools such as FastQC can be used, specialized scRNA- seq soft-
ware such as Cell Ranger provides specific scRNA- seq QC metrics, including 
total number of reads from each sample, % of Read 1 and 2 bases ≥Q30, % 
of cell barcode bases ≥Q30, % of GEM barcodes from the 10× GEM barcode 
“whitelist,” etc. If using the low- throughput scRNA- seq approach, tools such 
as zUMIs can take FASTQ files as input to perform data QC. As part of initial 
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FIGURE 8.2
Structure of a 10× scRNA- seq 3’ library. To sequence such a library using Illumina sequencers, 
Read 1 covers 10× barcodes (16 bp) that track individual cells and UMI (12 bp) for removal of 
PCR duplicates, while Read 2 is used to sequence actual cDNA fragments for gene detection. 
The dual sample indices (i5 and i7, 10 bp each) are used to separate reads into different samples, 
each of which may contain thousands of cells. (This illustration is based on 10× scRNA- seq v3.1 
chemistry. Image provided by 10× Genomics.)
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data QC and preprocessing, non- transcript sequences such as polyA and 
template switching oligo (required for the SMART- based cDNA synthesis) 
need to be checked, and trimmed off if they exist, to avoid their interference 
on subsequent alignment and other steps. Additional data cleanup is carried 
out after the alignment step.

8.3.2  Alignment and Transcript Counting

Alignment to the reference genome is a key preprocessing step prior to most 
other preprocessing steps. Aligners used for bulk RNA- seq, such as STAR 
and the later aligner kallisto [28], can be directly applied to scRNA- seq 
data. As covered in Chapter 7, STAR is a widely used RNA- seq aligner that 
employs a “seed- and- extend” strategy for ab initio splice junction detection. 
For aligning scRNA- seq reads, the aforementioned Cell Ranger and zUMIs 
use STAR as their aligner of choice. While STAR is currently one of the top 
performing methods, especially in terms of accuracy and alignment rate, it 
is relatively slow in speed and demanding on computational resources. To 
achieve faster speed with less computer memory, kallisto is developed to 
use a de Bruijn- based process called pseudoalignment. Instead of mapping 
sequencing reads, it is designed to map k- mers extracted from reads to speed 
up the process (Chapter 7, Section 7.3.2). Other bulk RNA- seq alignment 
methods covered in Chapter 7, including BWA, Bowtie2, and TopHat2, may 
also be used for mapping scRNA- seq reads.

After alignment, reads can be classified as exonic, intronic, or intergenic  
for the purpose of counting transcripts. Different pipelines may use slightly  
different definitions for this classification process. For example, Cell Ranger  
considers a read to be exonic if at least 50% of the sequence intersects an  
exon. Traditionally, only exonic reads are counted. When snRNA- seq is used,  
however, intronic reads derived from nascent transcripts, or transcripts that  
were in the middle of being spliced, can also be informative and counted.  
To perform transcript counting, for platforms that incorporate cell- specific  
barcodes, such as 10× Chromium, sequencing reads need to be assigned to  
their cells of origin using the cell barcodes they carry. The 10× platform has  
a “whitelist” of all GEM barcodes to help track cells. All reads associated  
with a particular barcode are grouped together and considered to come from  
one cell. As sequencing errors may exist in actual cell barcode reads, this  
grouping process can be specified to tolerate such errors (e.g., one base devi-
ation from the whitelisted barcodes). For platforms that incorporate UMIs,  
reads carrying the same UMI within the same cell are expected to be PCR  
duplicates, and therefore need to be collapsed. Similarly, sequencing errors  
in the UMIs may also be tolerated during collapsing of reads. Depending on  
the method used, the collapsing of UMIs may be based on the UMI sequence  
alone, or a combination of reads’ alignment location and the UMI sequence.  
After the assignment of reads to cell barcodes and collapsing of reads using  
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the UMIs, the number of UMIs is counted for each gene and each cell barcode,  
thereby generating a gene- cell matrix (Figure 8.4). This matrix becomes the  
basis of nearly all downstream analyses.

The above processes of genome alignment, reads classification, barcode 
assignment, UMI collapsing, and transcript counting can be accomplished 
together in a single workflow using various pipeline tools. For instance, for 
10× data the “cellranger count” pipeline is typically used. However, it requires 
significant computational resources and is not very fast. To increase pro-
cessing efficiency and speed up these preprocessing steps, newer tools such as 
STARsolo [29], kallisto/ bustools [30], and Alevin [31] have been developed. 
Besides 10× data, these later tools can also be used to process scRNA- seq data 
generated from other platforms. As suggested by its name, STARsolo is built 
around the high- performing STAR aligner for read mapping, as well as cell 
barcode assigning, UMI collapsing, and gene- cell matrix creation. Kallisto, 
which aims to achieve a balance between computing efficiency and accuracy, 
can generate pseudoaligned scRNA- seq data in a new format called BUS, 
which provides a binary representation of the data in the form of barcode, 
UMI, and sets of equivalence classes. Once generated, BUS files can be 
manipulated with bustools [30] to produce a data matrix consisting of gene 
count and barcode. To improve the accuracy of gene abundance estimates, 
Alevin includes gene- ambiguous reads in its quantification, i.e., those that 
multimap between genes and are usually discarded by other tools.

8.3.3  Data Cleanup Post Alignment

For a high- throughput platform such as 10× Chromium, additional data 
cleanup is needed post alignment to remove signal associated with doublets 
(or multiplets), dead cells, or ambient RNA. On the 10× platform, not all 
reads associated with GEM barcodes from the “whitelist” are derived from 
bona fide single cells. As mentioned earlier, doublets (or multiplets) form 
through partitioning of two (or more) cells into the same GEM. Dead cells 
and ambient RNA molecules can also be partitioned into GEMs like authentic 
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Gene- cell count matrix.
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cells. Detection and removal of reads associated with such unwanted GEMs 
are based on three indicators: the number of uniquely mapped genes per 
GEM barcode, the total count of UMIs per GEM barcode, and the fraction of 
reads per barcode that map to the mitochondrial genome. If a barcode has 
unusually high gene and UMI counts, it is possibly associated with a doublet 
(or multiplet). Conversely, if a barcode is associated with few mapped genes, 
a low UMI count, and/ or a high fraction of mitochondrial genes, it is an 
indication of ambient RNA or a dead cell in the original sample. A dead cell 
may have most of its cytoplasmic mRNA leaked out due to compromised 
cell membrane, with only mitochondrial RNA preserved because of the 
organelle’s double membrane system (Chapter 1, Section 1.4.9). To detect 
such unwanted reads, these three quality indicators should be used in com-
bination rather than alone. It should also be noted that under some cellular 
conditions these commonly used quality indicators may be violated. For 
example, cells in high metabolic state may have unusually higher mitochon-
drial RNA fraction, or very large cells may appear to be doublets.

Doublets/ multiplets represent hybrid-  or super- transcriptomes and com-
pound downstream data analyses if not removed. Besides the basic detec-
tion method using the total count of genes and UMIs as mentioned above, a 
number of specially developed doublet/ multiplet detection tools are avail-
able, including DoubletFinder [32], Scrublet [33], DoubletDetection [34], 
cxds and/ or bcds [35], and solo [36]. In general, these methods work by first 
building artificial doublets from combination of randomly selected droplets 
(or GEMs), then generating a “doublet score” for each droplet based on their 
similarity to the artificial doublets, and finally calling doublets if the score 
surpasses a threshold. The major difference between these methods is on 
how the doublet score is generated. For example, DoubletFinder, one of the 
top performing tools based on a benchmark study [37], uses the k- nearest 
neighbors (kNN) method to calculate the proportion of nearest artificial 
doublet neighbors as the score for each droplet. It should be noted that none 
of these tools works well for every case. In addition, to avoid removing large 
sized cells that appear to be doublets, the rate of doublets/ multiplets identi-
fied by these tools for removal should not exceed that expected from Poisson 
statistics for the experimental condition.

Besides using software tools alone, experimental techniques can also be 
used to improve their detection, such as cell hashing [38], or mixing of cells 
from different species (e.g., human and mouse cells). With cell hashing, 
antibodies against ubiquitous cell surface proteins are tagged with oligo-
nucleotide barcodes to distinguish cells from different samples for robust 
identification of cross- sample doublets/ multiplets. Along the same line, 
genotypic differences between cells, such as those collected from unrelated 
individuals, can also be used to for detection of doublets/ multiplets. For 
example, tools like demuxlet [39], scSplit [40], souporcell [41], and Vireo [42] 
can separate mixed cells into individual samples based on each sample’s 
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unique SNP profile, and thereby identify doublets/ multiplets if mutually 
exclusive SNP profiles are associated with the same droplet. Among these 
tools, demuxlet requires knowledge of genotypic differences between indi-
vidual samples a priori, while the later tools (scSplit, souporcell, and Vireo) 
infer genotypic differences from the observed scRNA- seq reads.

To keep the rate of doublets/ multiplets low, the majority of droplets are 
empty without any cells. However, ambient RNA molecules in the cell 
sample buffer, if exist, can still be captured by empty droplets as well as those 
containing cells. Reads generated from droplets associated with only ambient 
RNA do not represent real cells and need to be removed. Since only a small 
number of genes and UMIs are expected to be detected in these droplets, they 
can be identified based on their low gene and UMI counts and the associated 
reads filtered out. This filtering approach, however, may also remove small 
cells that have low RNA content. To overcome this problem, tools such as 
EmptyDrops [43], dropkick [44], and CB2 [45] can be used. These tools rely 
on modeling of ambient RNA profile, against which the RNA profile of each 
droplet is compared to determine whether it is associated with a genuine 
cell. For example, EmptyDrops first constructs an ambient RNA profile using 
droplets with low UMI counts that most likely represent empty droplets. For 
droplets that are not associated with high UMI counts (those with high UMI 
counts are automatically considered to represent cell- containing droplets), 
their RNA profiles are tested for deviations from the ambient RNA profile 
using a Dirichlet- multinomial distribution model [43]. Droplets with RNA 
profiles that significantly deviate from the ambient RNA model are identified 
as genuine cells, even if they have low UMI counts (Figure 8.5). This method 
is incorporated into Cell Ranger from version 3.0, which leads to improve-
ment in identifying cells of low RNA content. Besides these tools, others such 
as DecontX [46] and SoupX [47] have been developed to remove ambient 
mRNA contamination in cell- containing droplets to reveal their true gene/ 
UMI counts.

The fraction of UMIs from the mitochondrial transcriptome is another  
indicator of cell preparation and data quality. High- quality cell preparations  
should have minimal cell death and typically generate only low percentages  
of reads of mitochondrial origin (<5% for cells of low energy demands, such  
as adrenal, lung, and white blood cells) [20, 48]. Mitochondria have their  
own small genome and transcriptome, but in a typical cell the amount of  
mitochondrial RNA is relatively low compared to the large amount of RNA  
transcribed from the nuclear genome. If the fraction of mitochondrial UMI  
counts is significantly higher in a droplet, however, it is a strong indication  
that it captured a dead cell. If a significant percentage of droplets is associated  
with high mitochondrial reads, it is an indication of low cell sample quality. It  
should also be noted that some cells, due to biological factors such as stress or  
high metabolic activity (such as cardiomyocytes, hepatocytes, kidney cells),  
may display higher mitochondrial gene/ UMI counts because of the presence  
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of larger numbers of mitochondria and/ or increased mitochondrial gene  
expression [48].

8.3.4  Normalization

While the use of UMIs removes the effects of PCR duplicates, other factors 
during single- cell sample processing can still introduce undesirable variations 
among cells or samples. Such factors include RNA capture rate, reverse tran-
scription efficiency, random sampling of molecules during sequencing, and 
sequencing depth. If uncorrected, such variations may lead to inaccurate 
results in downstream analytic steps. The goal of normalization is to correct 
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FIGURE 8.5
Detection of empty droplets vs. those containing cells. Total UMI count is plotted against the 
rank for each barcode in a scRNA- seq dataset from Lun et al. (2019). Plots are shown for all 
barcodes, and those associated with empty droplets, large and small cells, respectively. Using 
this method (EmptyDrops) barcodes associated with small cells can be distinguished from 
those with empty drops. (Adapted from: ATL Lun, S Riesenfeld, T Andrews, TP Dao, T Gomes, 
et al., EmptyDrops: distinguishing cells from empty droplets in droplet- based single- cell RNA 
sequencing data, Genome Biology 2019, 20(1):63. Used under the terms of the Creative Commons 
Attribution 4.0 International License, https:// crea tive comm ons.org/ licen ses/ by/ 4.0, ©2019 
Lun et al.)
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for such variations in order to make cells and samples directly comparable. 
Normalization approaches developed for bulk RNA- seq (Chapter 7, Section 
7.3.3) may be used for scRNA- seq data, especially those generated on low- 
throughput platforms with full- length transcript coverage. In general, how-
ever, normalization of scRNA- seq data faces unique challenges mostly due to 
the issue of signal sparsity. To address the challenges, a number of methods 
have been developed specifically for normalizing scRNA- seq data. Examples 
of these methods are SCnorm [49], Linnorm [50], BASiCS [51], Census [52], 
ZINB- WaVE [53], and sctransform [54]. Besides these dedicated normal-
ization methods, commonly used scRNA- seq pipeline toolkits such as Cell 
Ranger, Seurat [55], Scanpy [56], scran [57], and scVI [58] also contain their 
own normalization methods.

These normalization methods can be generally classified into two general 
categories: global scaling- based and modeling- based. The former approach, 
represented by BASiCS and those employed by Cell Ranger, Seurat, Scanpy, 
and scran, is based on the use of a global “size factor.” As an example, Cell 
Ranger performs normalization in its aggr pipeline, through subsampling 
of libraries of higher sequencing depth until all libraries have on average 
the same number of confidently mapped reads per cell. Seurat, as another 
example, includes a similarly simple normalization process performed as 
follows: first divide the UMI count of each gene by the total number of UMIs 
in each cell, then multiply the resultant ratios with a scaling factor (typic-
ally in the range of 104 to 106), and lastly perform a log transformation of the 
scaled values (actually log(x+ 1) to accommodate zero count genes) to gen-
erate normalized data. This global scaling approach assumes that RNA con-
tent is constant across all cells, and that one size factor fits all genes/ cells. This 
assumption may not be true at times, especially with highly heterogeneous 
population containing cells of different sizes and RNA content. To address this 
concern, methods in the other category, as represented by SCnorm, Linnorm, 
Census, ZINB- WaVE, sctransform, and scVI, are based on modeling of cel-
lular molecule counts using probabilistic approaches. SCnorm, for example, 
employs quantile regression modeling, which is used to group genes based 
on the relationship between their UMI count and sequencing depth. Genes 
in different groups are normalized using group- specific size factors. With 
sctransform, which is included in Seurat from ver3 as a normalization option, 
a regularized negative binomial (NB) regression model is used. This method 
first constructs a generalized linear model (GLM) for each gene to estimate 
the relationship between its UMI count and sequencing depth. The estimated 
parameters are then regularized based on gene expression level. To generate 
normalized values for each gene, the regularized parameters are applied to 
an NB regression model. Overall, these methods are based on models that 
make different assumptions about the sparsity and underlying distribution 
of gene expression values in cells. Comparative studies on these methods 
have reported that the performances of different methods vary from dataset 
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to dataset, and therefore it is advisable to use more than one method on the 
dataset at hand and then select the one that has the best performance [59, 60].

Variance stabilization is often an inherent goal of normalization. The log 
transformation used in many methods toward the end achieves this goal 
while also makes the normalized gene expression approximate a normal 
distribution to facilitate downstream analyses. Without this stabilization, 
the magnitude of a gene’s average gene expression correlates with the mag-
nitude of its variance, i.e., the so- called mean- variance relationship. Based 
on this relationship, highly expressed genes also tend to have high levels 
of variance, even if they do not contribute to cellular heterogeneity, such as 
housekeeping genes. Conversely, genes that are expressed at low levels have 
relatively low variance, even if they are biologically significant including 
those coding for transcription factors. The goal of variance stabilization is to 
remove the unwanted effects of this relationship, so that genes with greater- 
than- expected variance between cells, regardless of the magnitude of their 
expression, can be revealed.

8.3.5  Batch Effects Correction

If samples must be divided into batches, batch effects correction needs to be 
performed. If left uncorrected, technical variations between batches caused 
by factors such as different reagent lots, operators, protocols, sequencers, or 
flow cells/ lanes will compound data analysis and affect results. Batch effects 
can be detected through exploratory data analysis, such as visual inspection 
of cells in a low- dimensional space (Figure 8.6; more details on data visualiza-
tion can be found in Section 8.4.3). To correct for batch effects between highly 
similar biological replicates in an experiment, where the technical variations 
between batches are mostly due to the use of different flow cells and sequen-
cing depth, a simple approach is to regress them out. Implemented in pipe-
line tools such as Seurat and Scanpy, this approach uses linear regression to 
regress out the unwanted effects of experimental batches and other technical 
covariates, as well as biological covariates (such as cell cycle). Tools that are 
specially designed for batch effects correction, such as ComBat, have also 
been shown to work well [61]. ComBat, originally developed for correcting 
batch effects in bulk gene expression analysis [62], uses a linear regression 
model to model normalized gene expression with experimental batch as a 
covariate. It first generates batch- specific mean and variance for each gene, 
and then an empirical Bayes- based adjustment is applied to all genes to 
remove batch effects, thereby generating a batch corrected expression matrix 
as output.

For data integration that involves datasets generated from different  
experiments or laboratories, where technical variations can be due to more  
diverse factors including different cell preparatory procedures, sequencing  
setups, or even overall approaches and platforms, the above methods for  
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intra- experiment batch effects correction may underperform. Here methods  
that can be used include fastMNN [63], Seurat Integration [64], LIGER [65],  
Scanorama [66], BBKNN [67], Harmony [68], and Conos [69]. The fastMNN  
method is one implementation of the mutual nearest neighbors (MNN)  
approach, which is based on generalized non- linear modeling. MNN detects  
pairs of cells in two datasets that are most similar to each other (mutual  
neighbors) based on their gene expression profiles and therefore assumed to  
be equivalent cell types. Assuming the batch effects are orthogonal to the bio-
logical subspace, the systematic differences between the cells in all the MNN  
pairs are used to estimate the direction and magnitude of the batch effects,  
which is then applied to transform the original data of all cells to remove  
the batch effects. Seurat Integration, as implemented in Seurat 3, also uses  
the MNN approach to detect equivalent cell types, but this is performed in a  
subspace created by another algorithm called Canonical Correlation Analysis  
(CCA) [55], which aims to find shared sources of variation between datasets.  
The CCA process starts with identifying linear combinations of genes that  
have maximum correlation between datasets. This is followed by aligning  
the resultant vectors across the datasets using a nonlinear transformation  
process called dynamic time warping, thereby creating a low- dimensional  
subspace containing all datasets prior to applying the MNN procedure.  
Scanorama is based on a similar approach performing searches for MNNs  

No batch correction Batch correction

FIGURE 8.6
Correction of batch effects. Without batch correction (left) batch effects are evident with 
cells being colored by their original batches. With batch correction (right) batch effects are 
removed. (Adapted from: MD Luecken, FJ Theis, Current best practices in single- cell RNA- 
seq analysis: a tutorial, Molecular Systems Biology 2019, 15(6):e8746. Used under the terms of 
the Creative Commons Attribution 4.0 License, https:// crea tive comm ons.org/ licen ses/ by/ 4.0, 
©2019 Luecken et al.)
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in a low- dimensional subspace created by transformation of the original  
gene expression using a method called singular value decomposition (SVD).  
The Chemistry Batch Correction algorithm used by Cell Ranger since v3  
for correcting batch effects between chemistries is also based on the MNN  
approach.

Besides the MNN- based methods above, BBKNN applies the kNN algo-
rithm to remove batch effects from diverse datasets and create batch balanced 
data. The kNN procedure first constructs a cell neighborhood graph to iden-
tify the k nearest neighbors for each individual cell within each batch of data. 
This is followed by merging of the nearest neighborhood sets across different 
batches to connect equivalent cell types, while still keeping dissimilar cell 
types separated. Through creating connections between equivalent cell types 
from different datasets batch effects are quantified and corrected. LIGER, 
or Linked Inference of Genomic Experimental Relationships, offers another 
approach that has been shown to perform well on integrating different 
scRNA- seq datasets [70]. It employs a method called integrative non- negative 
matrix factorization (iNMF) to identify shared and dataset- specific factors. 
The low dimensional shared factor space is then used to identify similar cell 
types across datasets, and joint cell clusters for batch correction. All of the 
dataset integration methods introduced above aim mostly to correct batch 
effects between technically more variable datasets collected from different 
experiments or labs. If they are used for intra- experiment batch effects 
correction, they might lead to over- correction. To determine how a batch 
effects correction method has performed, visualization of the data before and 
after the correction in a low- dimensional space should offer a quick qualita-
tive assessment (Figure 8.6). For a quantitative assessment, metrics such as 
kBET [61] and average silhouette width (ASW) [71] can be used.

8.3.6  Signal Imputation

As mentioned at the beginning of this chapter, technical factors such as low 
mRNA molecular capture rate and non- exhaustive sequencing cause signal 
dropout, i.e., the inability to detect a transcript that is present in a cell. This 
leads to high signal stochasticity, signal sparsity, and zero inflation, all of 
which can affect downstream data analyses. Signal imputation, also called 
denoising or expression recovery, aims at inferring missing transcript values 
to help alleviate this problem. Some of the commonly used scRNA- seq signal 
imputation methods include MAGIC [72], kNN- smoothing [73], SAVER and 
SAVER- X [74, 75], ALRA [76], CIDR [77], DCA [78], scImpute [79], mcImpute 
[80], and DrImpute [81]. Some of the pipeline tools introduced earlier have 
built- in imputation function (such as scVI), or use wrappers to run exter-
nally developed imputation tools (such as Seurat running imputation using 
ALRA). These methods can be separated into three groups based on the 
general approach they employ [82]: (1) modeling- based: SAVER, CIDR, and 
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scImpute, for example, use probabilistic models to quantify signal uncer-
tainty from sparse count data to differentiate technical zeroes (for which 
imputation will be provided) from biological zeroes (no imputation needed); 
(2) data- smoothing- based: MAGIC, kNN- smoothing, and DrImpute adjust 
all expression values, not just zeros, based on gene counts in similar cells; and 
(3) data- reconstruction- based: ALRA, DCA, mcImpute, and scVI use machine 
learning or low- rank matrix methods to create a latent space representation 
of the original data to reconstruct the cell- gene count matrix.

While signal imputation can lead to increased performance in downstream 
analyses, it should also be noted that these tools have the inherent limitation 
of being “circular,” i.e., inferring missing transcript values using information 
from within the original data. As a result, they run the risk of generating 
false- positive results [83]. Benchmark studies also show that the performance 
of these methods varies with the type of downstream analyses performed 
[81, 84]. There is currently no consensus on whether signal imputation is 
an essential preprocessing step, largely due to the difficulty in assessing 
imputed data. The reader should be cautious on applying signal imputation 
techniques on normalized or raw data. If performed it is prudent to visually 
inspect and, better yet, experimentally validate results produced from the 
imputed data. Like in the case of genotype imputation [85], use of a reference 
database of single-cell transcriptomic profiles, such as the Human Cell Atlas, 
may help improve imputation performance. In this direction there are some 
emerging methods, such as SAVER- X, that use information from reference 
database or external dataset for transfer learning.

8.4  Feature Selection, Dimension Reduction, and Visualization

8.4.1  Feature Selection

Among the many genes contained in a dataset, many of them may not be very 
informative because, for example, their expression remains constant across 
cells (such as housekeeping genes). While it is not mandatory to preclude 
these genes from further analysis, including them leads to high memory 
usage and slow processing speed. To increase computational performance, 
feature selection approaches can be employed to identify the most biologic-
ally informative features (i.e., genes, with their numbers usually in the range 
of 500 to 2,000), and remove uninformative features for downstream ana-
lyses such as dimension reduction and visualization. Uninformative genes 
can be selected based on their expression levels, with those showing zero 
or low expression often being the target. This approach only needs to set 
a threshold on the level of mean gene expression across all cells. The most 
informative genes are often those that display high expression variability 
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between different cell groups or identities, and therefore most likely con-
tribute to cell- to- cell variation. This relies on the premise that genes showing 
high variability across cells are a result of biological effects, not experimental 
noise. Methods for selecting highly variable genes (HVGs) include the 
squared coefficient of variation method proposed by Brennecke et al. (2013) 
[86], the FindVariableGenes method used by Seurat, or those incorporated in 
other pipeline tools scran and scLVM [87]. Because of the heteroscedasticity 
of cellular gene expression, i.e., the aforementioned mean- variance relation-
ship, the selection of HVGs should not be based on variance alone. Instead, 
these methods fit the relationship between variance and the mean into their 
respective models, based on which HVGs are selected using different stat-
istic tests. For example, scran performs LOESS fit on the variance- mean 
relationship, and then uses the fit as the model to infer biological variation 
across cells for HVG selection. Evaluation of commonly used HVG selection 
methods reported large differences among the methods, and that different 
tools perform optimally for different datasets [88]. Besides using the vari-
ability of a gene’s expression across cells, alternative feature selection strat-
egies include using average gene expression level to select genes with the 
highest average expression [89], deviance to identify genes that deviate from 
the null model of constant expression [90], or dropout rate to retain genes 
with higher number of dropouts than expected [91].

8.4.2  Dimension Reduction

Collected from a large number of cells (e.g., tens of thousands) for a large 
number of genes (potentially all genes in the genome), scRNA- seq data 
has high dimensionality. This, in data science terms, causes the curse of 
dimensionality, i.e., the amount of data needed for accurate generalization 
grows exponentially with the increase in dimensions. Computationally, 
high dimensionality leads to mathematical intractability for many modeling 
and statistical calculations. Feature selection is one preliminary step toward 
dimensionality reduction. However, even after this step the dimensionality 
of the data is still very high. For example, there are still 2,000 gene dimensions 
if the top 2,000 HVGs are retained. For many downstream analytical steps, 
such as visualization and clustering to be detailed next, the number of 
dimensions must first be significantly reduced to only a very small number 
of dimensions (e.g., 10). To achieve this, specialized dimensionality reduc-
tion methods are required. The goal of these methods is not to select a small 
number of original features, but to transform the data to create new features 
so that the information contained in the original data can be preserved in the 
low- dimensional space.

Among the most commonly used dimensionality reduction methods are 
those based on linear transformation. Principal components analysis (PCA), 
independent component analysis (ICA) [92], non-negative matrix factorization 
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(NMF) [93], and factor analysis [94] are all examples that have been applied 
to scRNA- seq data. Among these methods, PCA is perhaps the best known. 
It projects the cell- gene count matrix onto a subspace that is defined by a few 
principal components, which are linear combinations of the original genes. 
The first principal component, or PC1, is one axis in the new subspace along 
which the maximal amounts of variation in the original data are captured. 
The second axis, corresponding to PC2, is orthogonal to the first axis catching 
the second most variation in the data. Although straightforward, PCA does 
not take signal dropout into consideration. ZIFA (zero- inflated factor ana-
lysis), often considered to be a variation of PCA, is developed to address this 
issue [94]. Although effective, such PCA- based approaches have one down-
side, i.e., the principal components that catch the majority of variance in the 
original data are sometimes difficult to interpret biologically. Other methods, 
such as f- scLVM (or factorial single- cell latent variable model) and NMF, 
address this difficulty through generation of reduced dimensions that are 
more biologically relevant. For example, reduced dimensions from f- scLVM 
are based on explicit modeling of bio- pathway annotations of gene sets [95].

The linear dimensionality reduction methods introduced above are based 
on the assumption that the underlying data structure is linear in nature. 
Methods that are based on non- linear transformation do not make this 
assumption, instead these methods operate under the premise that in a high- 
dimensional space most relevant information concentrates in a small number 
of low- dimensional manifolds. Currently available non- linear methods 
include t- SNE (t- distributed Stochastic Neighbor Embedding) [96], MDS 
(Multi- Dimensional Scaling) [97], Isomap (Isometric Feature Mapping) [98], 
LLE (Locally Linear Embedding) [99], diffusion maps [100], spectral embed-
ding [101], and UMAP (Uniform Manifold Approximation and Projection) 
[102, 103]. The t- SNE algorithm, for example, works by modeling transcrip-
tionally similar cells around each cell based on probability distribution, 
with Gaussian and t- distributions being used in the original and dimension- 
reduced space, respectively. The process first computes cell- cell similarity 
in the original space using a Gaussian kernel and then maps the cells to a 
dimension- reduced space that best preserves that similarity. The strength of 
t- SNE is to reveal local data structure, but this is often achieved at the expense 
of global data structure. An important parameter in the t- SNE algorithm is 
perplexity, which effectively controls the number of transcriptionally similar 
cells that each cell has. Proper adjustment of this parameter can help regulate 
the balance between local and global data structure [104]. UMAP is a more 
recent algorithm that is designed to provide better preservation of global 
data structure without losing performance on local data structure, better 
scalability, and faster computation speed. While it has a similar procedure to 
t- SNE in that it first constructs a high- dimensional representation of the ori-
ginal dataset and then projects it to a low- dimensional space, UMAP differs 
from t- SNE in how cell- cell similarity and the topology of cellular relations in 
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the original high- dimensional space are computed and represented. UMAP 
achieves these tasks through building the so- called Čech complex, which is 
essentially a mathematically efficient way of representing the topological 
structure of cell- cell similarities embedded in the original data structure. 
UMAP has two key tunable parameters, i.e., the number of nearest neighbors 
a cell can have in the high- dimensional space, and the minimum distance 
between cells in the output low- dimensional space. By adjusting their values, 
UMAP can reach a balance between local and global structure based on pro-
ject needs.

Other classes of dimensionality reduction methods include those based 
on the use of autoencoders and those that use an ensemble approach. An 
autoencoder, a type of unsupervised artificial neural network (ANN), aims 
to compress a dataset to a lower dimensional space and then reconstruct it. It 
achieves this by searching for representation of the dataset in the dimension- 
reduced space by focusing on key distinguishing features and removing 
noise and redundant information. Methods using autoencoders include 
VAE (Variational Autoencoder) [105], DCA (Deep Count Autoencoder) [78], 
scvis [106], scScope [107], and scVI. SIMLR (single- cell interpretation via 
multikernel learning) is a method that uses the ensemble approach. It uses 
t- SNE for dimension reduction, but instead of using the Gaussian- based cell 
similarity measure as input to t- SNE, it uses a cell similarity measure learned 
from the multikernel learning framework to improve scalability and per-
formance of downstream steps [108].

Among the various dimensionality reduction methods introduced above, 
benchmark comparisons [98, 109] show that no method excels for all datasets. 
Non- linear and autoencoder- based methods can have better performance 
on stability and accuracy especially for highly heterogeneous datasets, but 
to achieve the performance users need to adjust parameters as parameter 
settings can have significant impacts on results. Linear methods (such as 
PCA) and UMAP tend to perform better in terms of computing speed, and 
scalability especially when there are a large number of cells and genes in 
the dataset. In practice, because of their efficiency, linear methods especially 
PCA are often used to reduce dimensionality first, followed by visualization 
of the resultant data using some of the non- linear methods such as t- SNE 
and UMAP.

8.4.3  Visualization

One goal of dimensionality reduction is to enable graphical depiction of the 
underlying data so that the researcher can visualize the major cell types (or 
conditions) in the dataset, and thereby intuitively understand the inherent het-
erogeneity of the represented cellular population. In such a visual (Figure 8.7), 
scatter plots are often used, in which each point represents a cell projected 
into a two-  or three- dimensional space, with each dimension corresponding 
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to the top reduced dimensions, or principal components if PCA was used 
for dimension reduction. The actual rendering of the visualization from the 
dimension reduced data is mostly achieved by non- linear methods t- SNE 
and UMAP, which have better performance than other non- linear methods. 
Although PCA as the primary dimensionality reduction method may also be 
used to visualize global data structure, and as a linear approach the distances 
between cells or clusters in a PCA plot provide consistent depiction of their 
relationships, its disadvantage as a visualization tool is its relative lack of 
power to provide sufficient separation between distinct cell types.

As a non- linear approach, t- SNE typically offers a better presentation of the 
same dataset, by placing similar cells close to each other and dissimilar cells 
distant. As indicated earlier, using this method the similarities between cells 
are measured locally based on their transcriptomic profiles. Because of its 
emphasis on local similarity, t- SNE tends to have limited preservation of the 
dataset’s global structure. Although the perplexity parameter can be increased 
to reveal more global structure, this usually leads to dramatically increased 
computational time. It should be noted that even at low perplexity values 
t- SNE is not a fast method. Because t- SNE emphasizes local structure and 
may overestimate the differences between cells or cell clusters, the researcher 
should be cautioned not to over- interpret the distance between cells or 
clusters, the size of clusters, as well as the relative position of cells or clusters 
in a t- SNE visualization. As t- SNE is a stochastic algorithm, the final output 
may not be fully reproducible between runs. While revised implementations 
of the t- SNE approach aim to overcome such shortcomings [104], new visu-
alization methods, with UMAP being a good example and gaining popu-
larity, have been established as robust alternatives [102]. Compared to t- SNE, 
UMAP is faster, more scalable to very large datasets in terms of both data 
size and dimensionality, and able to preserve more global structure while 
retaining local data structure. While it is also stochastic, UMAP’s run- to- run 
performance is generally more reproducible than that of t- SNE. It should be 
noted that as in the case of t- SNE the distance between cells or clusters in a 
UMAP visualization may not have biological bearing.

Besides t- SNE and UMAP, other visualization tools are also available. 
Example of these tools are PAGA (or partition- based graph abstraction) 
[110], PHATE (or potential of heat diffusion for affinity- based transition 
embedding) [111], SPADE (or spanning- tree progression analysis of density- 
normalized events [112], and SPRING [113]. Compared to t- SNE and UMAP, 
which are better for visualizing distinct groups of cells in a mixed population, 
these other tools are more suited to display cells along a continuous trajec-
tory, such as those that are undergoing differentiation. Among these tools 
PAGA provides a manifold learning algorithm that can faithfully preserve 
both continuous and distinct cell identifies/ groups at multiple resolutions. 
It is robust in terms of computational efficiency, scalability, and interpret-
ability of results for continuous cell trajectories (Section 8.7 covers “Trajectory 
Inference”).
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8.5  Cell Clustering, Cell Identity Annotation, 
and Compositional Analysis

8.5.1  Cell Clustering

Based on their gene expression profiles, cells in a dataset can be grouped into 
clusters. By placing transcriptionally similar cells into clusters, the process can 
uncover different cell groups or identities in a sample, achieving a common 
goal of scRNA- seq analysis. This process often starts with dimension- reduced 
data, usually from PCA. To capture most of the gene expression variation 
across cells in the dataset, enough principal components should be used. In 
the dimension- reduced space, different metrics can be used to quantify the 
similarity (or distance) between cells based on their transcriptomic profiles. 
Such similarity metrics can be mostly classified as distance-  or correlation- 
based. Two examples of distance- based metrics are Euclidean distance, which 
represents the shortest or straight- line distance between two points (cells), 
and Manhattan distance (also called city- block distance), measuring the dis-
tance between two points in a grid like path. Correlation- based metrics, such 
as Pearson and Spearman’s correlation coefficients, measure the similarity 
between the general shapes of gene expression in two cells. For comparison, 
distance- based metrics capture gene expression levels and measure how 
far two cells are from each other in the PCA space, while correlation- based 
metrics track relative expression trends between two cells and are insensi-
tive to the scale of gene expression levels. A comparison of their clustering 
performance showed that correlation- based metrics are more robust than 
distance- based metrics [114]. Other similarity metrics have also been used, 
e.g., cosine similarity, a measure of angle instead of magnitude between two 
vectors, that is used for spherical K- means clustering [115].

There are different algorithms to cluster cells, and among the widely used 
are hierarchical, K- means, and graph- based clustering. These algorithms 
identify major cell identities (encompassing different cell types, or different 
states in the same cell type) present in a population as clusters, and assign 
each cell to one of these clusters without relying on any a priori informa-
tion. Hierarchical clustering constructs a dendrogram in which different cell 
clusters merge or split at different branches, creating a hierarchy. One pro-
cess to create such a hierarchy is agglomerative, or “bottom- up,” in which 
at the start each cell is assigned to its own cluster, and at each subsequent 
iteration the most similar nodes are merged. This process recurs hierarch-
ically, until all cells are merged. The opposite process takes a divisive or 
“top- down” approach, which starts with all cells being in a single cluster, 
and then splits it into two branches at each subsequent step, until each cell is 
assigned to its own cluster. From the dendrogram, clusters can be obtained 
through “cutting the tree” to generate the desired number of clusters, or at 
desired height.
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The K- means clustering algorithm first requires the user to specify k, the 
number of clusters. The process starts with all cells randomly assigned to 
one of k clusters. Then the centroid of each cluster is determined, and each 
cell re- clustered based on their distance to each of the k centroids. This pro-
cess is reiterated until each cell’s cluster assignment no longer changes. The 
third commonly used approach, graph- based clustering, is based on graph 
construction that connects cells to their nearest neighbors. In a kNN graph 
(different from K- means), for example, two nodes (cells) are connected by 
an edge, if the distance from cell A to B is within the k- th lowest distances 
from A to other cells. The edge may have a weight assigned based on the 
similarity between the cells. In a Shared Nearest Neighbor (SNN) graph, 
an edge is weighted based on their proximity to each other, or similarity in 
terms of the number of mutual neighbors the two cells share. After such a 
graph is constructed, dense regions that contain a large number of highly 
connected nodes can be detected as the so- called communities, representing 
distinct cell identities. Within each community (or cluster), cells are more 
highly connected with each other indicative of high similarity, than those in 
other communities. To partition cells into distinct communities, community 
detection techniques, such as the Louvain and Leiden methods [116, 117], can 
be used.

To carry out these clustering approaches, either general- purpose clustering 
methods or tools specifically designed for scRNA- seq data can be used. As 
examples of general- purpose methods, the hclust() and kmeans() functions 
in R can be directly used on PCA dimension reduced data to perform hier-
archical and K- means clustering, respectively. Examples of tools specially 
developed for clustering single cells include SC3 [118], pcaReduce [119], 
CIDR, RaceID2 [120], SIMLR [108], and SNN- Cliq [121] (Table 8.1). Many 
pipeline tools, such as Seurat, Cell Ranger, Pagoda2 [122], and Scanpy, scran, 
ascend [97], and SINCERA [123], also provide built- in clustering functional-
ities. Seurat, for example, provides graph- based clustering. This process first 
constructs a kNN graph using Euclidean distance in the PCA space, with the 
edges weighted by Jaccard similarity that measures the number of neighbors 
they share. To find clusters in the graph, the Louvain community detection 
method is then applied. Seurat clustering uses a user adjustable parameter 
called resolution to control the number of clusters generated, with a higher 
resolution (e.g., >1.0) leading to a larger number of clusters. Cell Ranger 
provides a similar nearest neighbor graph- based clustering approach, with an 
additional step to merge clusters that show no differential gene expression. In 
addition, it also offers K- means clustering as another option. Benchmarking 
studies on most of these clustering methods show that there is wide variation 
in actual performance and poor concordance among them [89, 124]. Some 
methods, such as Seurat, SC3, and Cell Ranger, showed better overall per-
formance than others. In terms of running times, Seurat also showed consist-
ently faster speed than most other methods.
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8.5.2  Cell Identity Annotation

After placing cells into different clusters, the next question is usually what cell 
type, or what cellular state, is represented by each cluster. To help answer this 
question, comprehensive pipeline toolkits such as Seurat, Cell Ranger, Scanpy, 
and scran have built- in functions to identify marker genes that are uniquely 
highly expressed in a cluster compared to other clusters. For example, in 
Seurat the FindMarkers() function identifies candidate marker genes for each 
cluster by differential gene expression analysis, which is conducted using the 
default non- parametric Wilcoxon rank sum test among other available tests. 

TABLE 8.1

Single- Cell Clustering Methods

Name Description Reference

SC3 (Single- cell 
consensus clustering)

PCA +  K- means +  hierarchical clustering. Uses 
multiple parallel clustering parameter tests 
to reach a consensus matrix by hierarchical 
clustering

[118]

pcaReduce PCA +  K- means +  hierarchical clustering. An 
agglomerative clustering process that integrates 
PCA and hierarchical clustering

[119]

SIMLR (Single- cell 
interpretation via 
multi- kernel learning)

Dimensionality reduction +  K- means. Learns 
proper weights for multiple kernels, and 
constructs a symmetric similarity matrix for 
dimension reduction and clustering

[108]

SNN- Cliq Graph- based clustering. Constructs an SNN 
graph and then clusters cells using quasi- clique 
finding techniques

[121]

RaceID2 Pearson’s correlation distance matrix for all pairs 
of cells +  K- means clustering

[120]

CIDR (Clustering 
through Imputation 
and Dimensionality 
Reduction)

PCA +  hierarchical clustering. Uses implicit 
imputation to help alleviate the effects of 
dropouts, then performs hierarchical clustering 
on principal coordinates

[77]

Seurat
Pagoda2
Scanpy

PCA +  kNN graph- based clustering Seurat [55], 
Pagoda2 [122], 
Scanpy [56],

Cell Ranger PCA +  graph- based clustering, or K- means 
clustering

[10]

scran PCA +  hierarchical clustering, or SNN graph- 
based clustering

[57]

ascend PCA +  hierarchical clustering [97]

SINCERA Z- score/ trimmed mean normalization +  
hierarchical (default)/ consensus/ tight 
clustering

[123]
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Cell Ranger finds differential genes for each cluster using edgeR (covered in 
Chapter 7), or sSeq, which is a modified NB exact test [125]. From the iden-
tified differentially expressed, candidate marker genes, manual annotation 
can be used to identify cell type or state in each cluster, based on previously 
characterized, canonical cell identity specific marker genes. For example, 
GFAP (glial fibrillary acidic protein) gene expression is a marker of astroglial 
cells in the brain, and CD79a and CD79b are markers for B cells. The identifi-
cation of cell type or state based on such classic gene markers is an extension 
of the traditional method often used in the lab for cell identity recognition. 
This process, however, is typically labor- intensive and time- consuming, 
as it often needs extensive review of currently available literature, or deep 
domain knowledge about the cell system under study, which requires close 
interactions between bench scientists and informaticians. In addition, some 
cell types may not have well characterized gene markers, or the expression of 
marker genes in host cells may be undetectable due to signal dropout.

To address some of the issues and speed up the cell identity recognition 
process, a relatively easy and semi- automatic approach is through Gene 
Ontology (GO) and/ or bio- pathway enrichment analysis of the candidate 
marker genes (detailed in Chapter 7, Section 7.3.8), since the GO terms or 
pathways significantly enriched in the genes can produce insights into cell 
identity. For example, if “hepatocyte homeostasis” is identified as a signifi-
cantly enriched GO term, it is indicative that at least some of cells in the 
cluster are hepatocytes. Further, the cell identity detection process on the 
basis of canonical marker genes can be automated, with the use of specialized 
tools such as Garnett [126], Digital Cell Sorter [127], SCINA [128], CellAssign 
[129], and scANVI [130]. The list of marker genes required by these automated 
tools to classify different cell identities can be provided by databases such as 
PanglaoDB [131], CellMarker [132], the Mouse Brain Atlas [133], the BRAIN 
Initiative Cell Census Network (or BICCN) [134], and DropViz.org [135]. 
Garnett, as an example, first uses as input a list of gene markers to train a 
regression- based classifier, which is then applied to classify cells in a new 
dataset. As another example, scANVI, a semi- supervised variant of scVI, also 
classifies cells based on their expression of canonical marker genes. This tool 
goes even further to use these cells as “seeds” to classify other cells in the 
same dataset with unobserved expression of the marker genes, on the basis 
of how close these other cells are to the “seeds.”

Instead of expression of marker genes, overall gene expression pattern may 
also be used for automated inference of cellular identities. This approach uses 
information embedded in the overall gene expression of annotated cells in a 
reference dataset, to predict cell identities in a query dataset. Without reliance 
on prior knowledge in the form of a pre- defined list of marker genes, this 
approach directly harnesses the power of rapidly accumulating single- cell 
data that can be used as reference, such as those from the Human Cell Atlas 
[136] and the Tabula Muris Atlas for mouse [137]. Table 8.2 lists some of the 
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TABLE 8.2

Cell Identity Annotation Tools

Name Description Reference

Classifiers that do not require marker genes

scmap Mapping cells in a scRNA- seq dataset onto the cell- types or 
individual cells annotated in a reference dataset

[138]

SingleCellNet Uses a random forest classifier trained on annotated scRNA- 
seq data to classify cells in a query dataset

[139]

scPred Employs a combination of feature selection from a reduced- 
dimension space, and a support vector machine model to 
classify single cells

[136]

ACTINN Uses a 4- layer neural network for automated cell type 
identification

[140]

SingleR Assigns cell identify based on comparison of their 
transcriptomes to reference bulk transcriptomic datasets of 
pure cell types

[148]

CHETAH Characterizes cell types by using correlation and confidence 
score in comparison to reference dataset using a hierarchical 
classification tree

[149]

Cell BLAST Cell querying and annotation based on a neural network- based 
generative model, and a posterior- based cell- cell similarity 
metric

[150]

ItClust Iterative transfer learning with neural network to improve cell 
type classification

[151]

CaSTLe Classifies single cells based on feature selection and XGBoost 
classification

[152]

OnClass Uses Cell Ontology to embed different cell types into a low- 
dimensional space, and then maps cells to this partitioned 
space based on gene expression for cell type annotation

[144]

CellO Performs hierarchical cell classification against the directed 
acyclic graph structure of the CO system

[145]

Classifiers that require marker genes

Garnett First trains a regression- based classifier using the gene marker 
definition file, and then applies to classify cells from similar 
tissues or sample types

[126]

SCINA Leverages established gene signatures to perform cell type 
classification

[128]

CellAssign Automates assignment of cells to known cell types using a 
probabilistic model with known marker genes as input

[129]

Digital Cell 
Sorter (DCS)

Assigns cell types automatically using a voting process based 
on known molecular markers

[127]

scANVI A semi- supervised classifier that uses Gaussian mixture model 
to provide posterior probability of assigning a cell to different 
classes

[130]
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methods that use this strategy. Among them, scmap [138] projects cells in 
a query dataset onto a reference dataset (or combined references), to iden-
tify matching individual cells (the scmap- cell mode) or specific cell types 
(the scmap- cluster mode). In this method, the similarity between individual 
cells in the query sample and cells or cell types in the reference is measured 
using three distance metrics (Pearson, Spearman, and cosine). Some of the 
other methods are machine learning based, i.e., they first construct classi-
fier models from a reference dataset and then use the classifiers to annotate 
individual cells or clusters from a query dataset. SingleCellNet (SCN), for 
example, uses a random forest (RF) classifier trained on annotated reference 
scRNA- seq data to transfer to query cell classification [139]. ACTINN (or 
Automated Cell Type Identification using Neural Networks) [140] is based 
on neural network for such transfer learning. Another generalizable method, 
scPred uses support vector machines (SVMs), combined with singular value 
decomposition for unbiased feature selection, to perform probability- based 
cell type prediction [141]. Besides these machine learning- based tools spe-
cially designed for single-cell data, general- purpose classifiers including 
SVM and RF may also be used directly [142]. Among other cell classification 
methods that use overall gene expression pattern instead of marker genes 
are those developed for integrated analysis of multiple scRNA- seq datasets, 
such as Seurat Integration, Scanorama, and Conos as introduced in Section 
8.3.5 (therefore not listed on Table 8.2). These methods achieve automated 
annotation of cells from a query dataset through detection of equivalent cells 
in a reference dataset. As an example, Seurat performs annotation of query 
cells by mapping the query dataset onto a reference, which is accomplished 
through projecting the query cells onto the reference UMAP structure.

Because the diverse array of methods introduced above may not always 
use the same term to label the same cell type, for consistency cell annota-
tion can benefit from the use of standardized cell type terms from the Cell 
Ontology (CO). CO is a community effort to organize cell types anatomic-
ally and hierarchically through a structured and controlled vocabulary [143]. 
To further leverage the inherent hierarchical relationships built into the CO 
terms, specialized CO- based cell annotation tools, such as OnClass [144] and 
CellO [145], have also been developed. Cello, for example, performs hier-
archical classification to annotate cells based on the graph structure of the CO 
system. Compared to methods that do not use CO terms, such tools provide 
more consistent and standardized annotation of individual cells or clusters, 
through the use of CO terms.

To evaluate the performance of these methods, comprehensive bench-
mark studies have been performed [146, 147]. Using 27 scRNA- seq datasets 
of varying cell numbers, platforms, species, and cellular heterogeneity, one 
of the studies [146] compared 22 automated cell identification methods and 
showed that the general- purpose SVM classifier had the best overall per-
formance. Other top performers included SingleCellNet, scmap- cell, scPred, 
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and ACTINN. After evaluating 10 methods on 6 datasets, the other study 
[147] found Seurat to be the top performer (this method was not included in 
the other study by Abdelaal et al.). SingleR and SingleCellNet also performed 
reasonably well. Both studies found that methods that require marker genes 
did not outperform those that use the overall gene expression pattern. 
It should be noted that many of the methods evaluated by both studies 
leave unknown cell types (i.e., those that display low or no expression of 
all marker genes, or do not exist in the reference dataset) as unclassified, 
which is desired. Such cells need to be further characterized using additional 
canonical marker genes or biochemical techniques. In addition, many of the 
evaluated methods, besides labeling distinct cell types/ identities, can also 
be used to identify transitional or intermediate cell types as that they may 
represent part of a developmental trajectory.

8.5.3  Compositional Analysis

The composition of different cell identities in a population varies with internal  
and external conditions. For example, upon bacterial pathogen infection, in  
the small intestinal epithelium there is a change in the proportions of different  
cell types as part of antimicrobial response (Figure 8.8) [153]. Compositional  
analysis involves examination of the proportions of different cell identities in  
different samples. For this analysis, different statistical approaches have been  
used to assess the significance associated with changes of cellular composition.  
For example, to detect the change of cell composition in the intestinal epithe-
lium upon infection, Haber et al. (2017) applied a Poisson process to model  
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FIGURE 8.8
Changes in cellular composition in intestinal epithelium caused by pathogen infection. Shown 
here are changes in the fraction of three different types of tuft cells (having chemosensory 
function in the gut lining) after infection with the parasitic helminth Heligmosomoides polygyrus. 
Significant changes in frequency are marked (* FDR < 0.25, ** FDR < 0.05; Wald test). (Adapted 
by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Nature, 
A single- cell survey of the small intestinal epithelium, Adam L. Haber et al., Copyright 2017.)
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the detected proportions of different cell types as a random count variable,  
which used the grouping of each sample (treatment or control) as a covariate  
and the total number of detected cells in each sample as an offset variable.  
As another example, Hashimoto et al. (2019) used a Wilcoxon rank- sum test  
to compare the fractions of different classes of circulating lymphocytes in  
supercentenarians vs. younger controls to uncover the mechanism of their  
exceptional longevity through sustaining immune system function [154].  
Single-cell differential composition, or scDC, is a specially developed tool to  
assist such composition analysis. It employs a bootstrap resampling process  
to determine the standard errors during estimating cell- type proportions, and  
generalized linear model (GLM) and mixed model (GLMM) analysis for subse-
quent significance testing to achieve statistical comparison [155].

One characteristic of compositional data is that they are subject to the 
constant- sum (i.e., unity) constraint [156]. This can lead to spuriously signifi-
cant correlations among different cellular identities and results in negative 
bias. For instance, if a new cell type emerges due to activation, because of 
the constraint the relative proportions of other existing cell types will cor-
respondingly decrease although their absolute numbers may not change. 
Standard univariate analysis methods that do not take this characteristic into 
consideration would lead to deflated estimation of existing cells. It is impera-
tive, therefore, to develop novel methods that account for such inherent bias 
of single-cell compositional data. As an example, scCODA uses a Bayesian 
approach that takes into consideration the negative correlative bias as well 
as the uncertainty associated with determining cellular composition. It 
achieves this through modeling cell type proportions using a hierarchical 
Dirichlet- Multinomial distribution, and joint modeling of all detected cell 
type proportions instead of individual ones [157].

8.6  Differential Expression Analysis

The FindMarkers or other similar functions in Seurat, Cell Ranger, and 
other tools for marker gene identification, as introduced in Section 8.5.2, are 
in fact differential expression (DE) analysis methods that focus on finding 
genes that are highly expressed in a particular cluster of cells vs. all others. 
In this section, we focus on more general DE analysis to compare cells in 
two (or more) populations, samples, time points, or perturbation conditions. 
Methods developed for DE analysis of bulk RNA- seq data, such as DESeq2, 
edgeR, and limma, are also applicable to scRNA- seq data. As detailed in 
Chapter 7 (Section 7.3.5), DESeq2 and edgeR use the NB model under a GLM 
framework, and Limma employs the normal linear model, to capture the 
distribution of read counts. A core component of these methods is to assess 
gene expression variance from the rather limited number of samples usually 
used in bulk RNA- seq, but in applying to scRNA- seq data this is no longer a 
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challenge because of the much larger number of single cells involved in the 
comparison. The substantial zero inflation, signal overdispersion, transcrip-
tional bursting, and multimodality associated with scRNA- seq data, how-
ever, pose different challenges.

Methods developed for scRNA- seq DE analysis (see Table 8.3) use different  
approaches to address the specific challenges posed by single-cell data.  
Examples of these methods are SCDE [158], MAST [159], D3E [160], scDD  
[161], BPSC [162], NBID [163], DEsingle [164], DECENT [165], and SwarnSeq  

TABLE 8.3

Single- Cell Differential Expression Analysis Tools

Name Description Reference

Tools specifically developed for scRNA- seq data

SCDE Uses a mixture of negative- binomial distribution to model RNA 
signal amplification, and a Poisson distribution for signal dropout

[158]

MAST Models scRNA- seq data using a mixture of Gaussian distribution 
to model gene expression level, and logistic regression to model 
drop- out events

[159]

BPSC Performs DE analysis based on a beta- Poisson mixture model 
integrated into the GLM framework

[162]

DEsingle Adopts ZINB model to describe read counts and excessive zeros, 
and define and detect three types of DE genes

[164]

D3E Uses non- parametric comparison of distributions for DE gene 
identification, and fits the transcriptional bursting model to 
explore gene expression change mechanisms

[160]

scDD Uses a Bayesian framework to identify DE genes that are classified 
into different multimodal distributions

[161]

SwarnSeq Integrates ZINB and a binomial model to model UMI counts to 
account for zero inflation and RNA capture rates, to identify and 
classify DE and differential zero- inflated genes

[166]

Monocle 3 Conducts regression analysis to find genes that change expression 
under different experimental conditions, and/ or graph- 
autocorrelation analysis to identify genes that change with a 
trajectory or differ between clusters

[103]

tradeSeq Performs trajectory based DE analysis using an NB generalized 
additive model

[167]

Tools originally developed for bulk RNA- seq data

DESeq2 Models gene expression mean and variance using an NB 
distribution, and calculates each gene’s p value using the observed 
sum of read counts of the two conditions

[173]

edgeR Uses an NB model to model gene expression, and performs DE 
analysis using the GLM likelihood ratio test

[174]

limma Fits a linear model for each gene, and use empirical Bayes 
procedures for borrowing information across genes for DE analysis

[175]

ROTS A general test originally developed for microarray data that uses an 
adaptive reproducibility- optimized t- like test statistic for DE analysis

[176]
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[166]. To deal with zero inflation, SCDE fits a mixture of two error models,  
with one using Poisson distribution to model the signal dropout process,  
with the other using the NB distribution to model the signal amplification  
process for detection of transcripts in correlation to their abundance in cells  
[158]. MAST uses a two- part generalized linear hurdle model, with one mod-
eling the discrete expression rate of each gene across cells (i.e., how many  
cells express the gene) using logistic regression, and the other modeling the  
continuous positive expression level of each gene by Gaussian distribution  
[159]. To fit zero- inflated and overdispersed scRNA- seq data, SwarnSeq uses  
the zero- inflated negative binomial (ZINB) model to model the observed  
UMI counts of transcripts. In addition, through using a binomial model to  
adjust for cellular RNA capture rates, this method allows detection of DE  
genes, as well as differential zero- inflated genes, i.e., those that show signifi-
cant difference in the number of cells that have zero expression between  
two groups [166]. To address the multimodality nature of scRNA- seq data,  
scDD employs Bayesian modeling to identify genes that display differential  
distributions across conditions, and the genes are then further classified into  
different multimodal expression patterns. SwarnSeq also classifies influential  
genes into various gene types based on their differential expression and zero  
inflation patterns. To address the issue of transcriptional bursting, D3E has  
two modules, with one for DE gene identification, and the other for fitting a  
model for transcriptional bursting to help discover the mechanisms under-
lying the observed expression changes.

The same marker gene finding functions contained in most compre-
hensive pipeline toolkits as introduced earlier can also be generalized 
for DE analysis. For example, Seurat provides DE analysis from the same 
FindMarkers() function through specifying two groups of cells for com-
parison. Currently available differential test methods include Wilcoxon 
rank sum test, likelihood- ratio test, Student’s t- test, negative binomial 
GLM, Poisson GLM, logistic regression, as well as the aforementioned 
MAST and DESeq2. SINCERA, as another example, offers DE analysis using 
one- tailed Welch’s t- test if gene expression can be assumed to come from 
two independent normal distributions, or one- tailed Wilcoxon rank sum 
test in case of small sample sizes. To identify genes that are differentially 
expressed along a developmental lineage or trajectory (Trajectory Inference 
to be introduced next), methods such as Monocle 3 [103] and tradeSeq 
[167] can be used. Monocle 3, for example, employs two approaches: graph 
auto- correlation and regression analysis. The former is suitable to identify 
genes that change along a trajectory, or differ between clusters, while the 
latter is to find genes that change expression under different experimental 
conditions.

To evaluate the plethora of methods that are currently available for scRNA- 
seq DE analysis, several benchmarking studies were performed [168– 171]. 
Based on these studies, methods that were originally developed for bulk 
RNA- seq data have been shown to perform as well as methods developed 
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specifically for single- cell data, especially after applying some strategies such 
as prefiltering to remove lowly expressed genes [169] or weighting to deal 
with zero inflation [172]. As these bulk or scRNA- seq tools have different 
ways of dealing with signal sparsity, multimodality, and heterogeneity, there 
is a general lack of agreement in the DE genes they identify. In addition, these 
benchmarking studies also show a general tradeoff between precision and 
sensitivity, i.e., methods of high precision have low sensitivity, which leads 
to identification of less true positive genes but also introduces fewer false 
positives.

It should be noted that DE analysis is an integral step of an scRNA- seq 
analytical pipeline, and upstream data processing can have an effect on the 
overall performance of this step. Of the various upstream steps, normaliza-
tion has been shown to have a significant impact on DE results by a system-
atic evaluative study conducted by Vieth et al. (2019). Based on this study, a 
good normalization before DE analysis, such as that provided by scran, can 
alleviate the need for complex DE methods [177]. Another note is that, just 
like in bulk RNA- seq analysis as detailed in Chapter 7 (Section 7.3.8), the 
identified DE genes can be subjected to further functional analysis, such as 
gene set enrichment analysis, to reveal what biological processes or pathways 
are enriched in them.

8.7  Trajectory Inference

Many biological processes, such as development, immune response, or tumori-
genesis, are underlined by continuous dynamic cell changes across time. The 
path of changes that a cell undergoes in such a process is often called a tra-
jectory. While it is not yet possible to monitor the continuous transcriptomic 
change of an individual cell over time, trajectory can be inferred from a popu-
lation of cells that represent a continuum of transitional cellular states while 
cells undergo changes in an unsynchronized manner. Because trajectory 
inference (TI) is based off of a snapshot of gene expression of a population 
of cells at a certain point of time, it is also called pseudotemporal analysis. 
Methodologically, it is built on the premise that cells in the continuum share 
many common genes and their gene expression displays gradual change. In 
essence, to infer cellular trajectory is to find a path in the cellular gene expres-
sion space that connects cells of various transitional states by maximizing 
similarity between neighboring cells. The inferred cellular trajectory can then 
be validated with additional experimental evidence.

Trajectory inference is carried out on dimensionality- reduced data, often 
after the clustering step. General methods, such as minimum spanning tree 
(MST) that aims to connect all points (clustered cells) in a graph to a path 
that minimizes distance between points, can be directly used for TI [178]. 
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Some of the methods specifically developed for TI are in fact based on MST. 
For example, the first version of Monocle, a pioneer method for inferring tra-
jectory from single-cell sequencing data, first creates MST on cells projected 
in a dimensionality- reduced space, and then places cells along the longest 
path through the MST [92]. Slingshot [179], TSCAN [180], and Waterfall [181] 
build MST on cell cluster centroids, instead of cells, and then order cells onto 
the path through orthogonal projection. Besides these MST- based methods, 
some other commonly used methods are based on graph theory. For example, 
Diffusion Pseudotime (DPT) builds weighted kNN graph on cells, and then 
orders cells using random- walk- based distance [182]. Also based on the use 
of weighted kNN graph, PAGA performs graph partitioning and abstraction 
using the Louvain method to identify different cellular states or identities, 
and uses an extension of DPT for pseudotime calculation [110] (Figure 8.9 
shows an example). Monocle 3 is built on PAGA and adds one step further 
to construct more fine- grained trajectory through learning a principal graph 
from the PAGA graph [103].

The methods mentioned above and listed on Table 8.4 are among an increas-
ingly long list of TI methods available. Besides the different approaches these  
methods use to infer trajectories, they also differ in what trajectory topology  
they can infer, whether they require prior information, how scalable they  
are with increasing cell numbers, etc. Cellular trajectory topologies can be  
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FIGURE 8.9
Cell trajectories inferred by PAGA to reconstruct a developmental lineage tree encompassing 
all cell types in the planarian body based on single-cell transcriptomic data. (Adapted from FA 
Wolf, FK Hamey, M Plass, J Solana, JS Dahlin, B Göttgens, N Rajewsky et al., PAGA: graph 
abstraction reconciles clustering with trajectory inference through a topology preserving map of 
single cells, Genome Biology 2019, 20(1):59. With permission.)
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classified as linear, bifurcating, multifurcating, cyclic, tree- like, etc. While  
some methods (e.g., TSCAN, Wanderlust, and Waterfall) are designed to infer  
linear trajectories, many methods can infer multiple topologies, from linear,  
bifurcating, multifurcating, to even tree- like trajectories. Methods like PAGA  
can infer even more complicated topologies such as cyclical, connected, or  
disconnected graphs. Some of the methods, such as FateID, require prior  
information from user input in the form of specifying a starting or ending  
cell, or the number of branches, while others such as PAGA, Wanderlust, and  
Wishbone can take advantage of such information, but this is not mandatory.  
Besides using static snapshots of cellular states at a certain time point,  
some methods are developed to infer trajectories from time series data, the  
examples of which are TASIC [183], Waddington- OT [184], CSHMM [185],  
and Tempora [186]. Given the wide diversity of currently available TI tools,  
benchmarking studies may help guide their selection. One comprehensive  
evaluation of 45 currently available TI methods shows that (1) no one method  
applies to all scenarios, (2) there is considerable complementarity between the  

TABLE 8.4

Trajectory Inference Methods

Name Description Reference

PAGA Constructs a weighted kNN graph, followed by graph 
partitioning and abstraction using the Louvain method. 
Applies an extended version of DPT for pseudotime 
calculation

[110]

Slingshot Uses cell cluster- based MST to learn global lineage structure, 
and then orders cells along lineage curves through orthogonal 
projection

[179]

Monocle Initial version (Monocle 1) builds an MST on cells in an ICA 
dimension reduced space and then orders cells along the 
longest path. Monocle 3 learns principal graph from PAGA 
graph to build more fine- grained trajectory

[92, 103]

TSCAN Constructs MST to connect cell cluster centroids and projects 
cells to the MST backbone to build the pseudotime course

[180]

Diffusion   
Pseudotime   
(DPT)

Reduces dimensionality with diffusion maps, uses weighted 
kNN graph and orders cells using a random- walk- based 
distance

[182]

FateID Uses random forests to quantify fate bias, which is then used to 
pseudo- temporally order cells

[191]

Waterfall Builds MST on cell clusters, and use distance to cluster centers 
for orthogonal projection

[181]

Wanderlust Selects the shortest path from an ensemble of kNN graphs, 
and order cells along the path based on their distance to user- 
defined start cell and random waypoint cells

[192]

Wishbone An extension of Wanderlust for bifurcation branching topology [193]
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tested methods, and (3) the user should choose and use a variety of methods  
based on the expected trajectory topology [178]. Based on this comparison,  
the top performing methods include PAGA, Slingshot, different versions of  
Monocle, as well as generic methods such as MST.

After inference of cellular trajectory, the next questions to ask are what 
genes are associated with cell lineage development and what key genes 
underlie transitions between cellular states. As indicated in the last section, 
methods for DE gene analysis for trajectories are still limited. Besides 
Monocle 3 and tradeSeq as mentioned in the last section, other available tra-
jectory DE methods include those employed by TSCAN, GPfates [187], and 
earlier versions of Monocle. Monocle 1 uses generalized additive models 
to test whether genes significantly change their expression as a function of 
pseudotime. TSCAN employs a similar approach. Monocle 2 uses a different 
approach called BEAM (branch expression analysis modeling) to test whether 
gene expression changes are associated with cell lineage branching along a 
trajectory. GPfates models gene expression- dependent cell fates as temporal 
mixtures of Gaussian processes. Similar to BEAM, it can identify gene expres-
sion changes associated with bifurcation points. Besides these tools that per-
form both trajectory inference and DE analysis, there are also tools that take 
as input pseudotemporal ordering of cells inferred by the TI tools detailed 
above, to conduct time- course DE analysis. LineagePulse, representing such 
an example, fits ZINB noise model to gene expression data collected from 
pseudotemporally ordered single cells [188].

Using static snapshots of cellular states, TI does not make predictions 
on the speed or direction of cell progression along the trajectory. To make 
such predictions, additional information is required. Change in cellular 
mRNA abundance inferred from the same static snapshots by a strategy 
called RNA velocity analysis [189] provides such information. The RNA 
velocity strategy is based on the detection and comparison of unspliced 
pre- mature transcripts that still contain introns, and spliced mature 
transcripts. In principle, this strategy is built on the premise that if there is 
a high ratio of unspliced to spliced mRNA molecules (called positive vel-
ocity) from a gene, it indicates that expression of the gene is upregulated 
from its steady state. Conversely, if the ratio of unspliced to spliced mRNA 
abundance is lower than its steady state ratio (i.e., negative velocity), it is 
indicative of downregulation for the gene. Based on aggregation of RNA 
velocities inferred across genes, this analysis then makes predictions on 
the future state of each cell in terms of the speed and direction of their 
movement along the trajectory. Currently available RNA velocity analysis 
tools include VeloCyto [189] and scVelo [190]. These RNA velocity tools are 
compatible and can be deployed with pipeline toolkits such as Seurat and 
Scanpy. Because it adds predictive information onto a trajectory about the 
direction and speed of cellular movement, RNA velocity analysis is often 
carried out in combination with TI.
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8.8  Advanced Analyses

8.8.1  SNV/ CNV Detection and Allele- Specific Expression Analysis

Besides transcriptomic profiles, scRNA- seq data also contains genotypic 
information specific for each cell, including single nucleotide and structural 
variants. Such additional information is especially helpful for studies that 
involve genome instability, such as cancer or other diseases related to aging. 
The genotypic information embedded in scRNA- seq data can help uncover 
functional variants in individual cells, and may also inform their specific 
gene expression pattern. Understandably, detection of these variants from 
scRNA- seq data is limited to expressed regions that have enough sequen-
cing depth. While some single-cell sequencing platforms such as Smart- seq3 
generate reads that cover the full length of transcripts, others such as 10× 
Chromium focus on the 3’ or 5’ end of transcripts. RNA editing may also 
add another layer of complication by revealing variants that may not be 
present at the DNA level, but occurrence of RNA editing is typically very 
rare. To detect SNVs, methods developed for calling variants from bulk 
RNA- seq data, such as MuTect2, Strelka2 [194], VarScan2, SAMtools [195], 
Pysam [196], FreeBayes, and BamBam, can be used on scRNA- seq data. The 
GATK RNA- seq short variant discovery best practices workflow, which 
uses HaplotyperCaller for variant calling followed by variant filtering using 
RNA- seq specific settings, is among the most used [197]. Monovar, a method 
developed for single-cell DNA sequencing data [198], can also be used for 
calling SNVs from scRNA- seq data [199]. There are currently a number of 
tools that have been developed for SNV detection from scRNA- seq data, 
including SSrGE [200], Trinity CTAT [201], and cellsnp- lite [202]. Among 
these methods, cellsnp- lite is a lightweight allelic reads pileup method with 
minimum filtering that can be applied to both 10× Chromium and Smart- seq3 
data. Because of use of parallel processing it has improved running speed. 
Benchmarking comparison has shown that the performance of many current 
tools depends on sequencing depth, genomic context (such as high GC con-
tent), functional region, variant allele frequency, and platform (10x has more 
dropout events) [203]. It has also been shown that the main detection limi-
tation is low sensitivity caused by low capture efficiency, sequencing depth, 
and signal dropout. Among the best performing tools so far are SAMtools, 
FreeBayes, Strelka2, and CTAT.

Deletion or duplication of a genomic region may lead to reduced or increased 
expression of genes located in the affected region. It is possible, therefore, to 
infer CNV information from scRNA- seq data. While it can be challenging 
due to uneven coverage of scRNA- seq signal across the genome, inferred 
CNVs do provide information on cellular heterogeneity at another dimen-
sion (genome instability), for instance, during cancer development [204]. 
To meet the challenges of calling CNVs from scRNA- seq data, a relatively 
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small number of methods, including HoneyBADGER [205], CaSpER [206], 
inferCNV [207], and CONICS [208], are currently available. HoneyBADGER, 
for example, uses a probabilistic hidden Markov model to infer CNV from 
smoothed averaged gene expression profile of a set of cells in comparison to 
control cells. CaSpER identifies and visualizes CNV events from single-cell 
gene expression signals integrated with allelic shift signals, which quantifies 
loss of heterozygosity events across the genome facilitating CNV detection. 
InferCNV, a component of Trinity CTAT, searches for evidence of chromo-
somal segmental gains or losses by averaging expression over neighboring 
genes across the genome, in comparison to reference normal cells. CONICS 
(or CONICSmat when reference normal scRNA- seq data is not available) 
applies a two- component Gaussian mixture model to fit gene expression in a 
chromosomal region to make CNV calls.

To further connect genetic variants with gene expression regulation, allele- 
specific expression (ASE) analysis can be performed to determine potential 
imbalanced expression of transcripts from each allele. Imbalanced or pref-
erential allelic expression leads to phenotypic variation, and is caused by 
epigenetic or genetic regulatory mechanisms. ASE analysis has been widely 
used to reveal allelic imbalance or allele- specific transcriptional bursting from 
bulk RNA- seq. Single-cell ASE analysis is still relatively new, and as a result 
available methods are still quite limited. Prashant et al. (2020) used a custom 
pipeline to estimate ASE from 10× Chromium scRNA- seq. This pipeline first 
uses STAR to align raw reads pooled from all cells, and then GATK to call 
all SNVs present in the data. Filtered high- quality, heterozygous SNVs are 
then used as input for a second round of STAR- based alignment, in which an 
SNV- aware option such as WASP [209] is employed on reads within each cell. 
To detect monoallelic and biallelic expression, VAFRNA, i.e., the percentage 
of reads carrying the variant sequence, is then calculated. Besides directly 
calling from scRNA- seq data, the SNVs needed for the second round of 
alignment and VAFRNA calculation can also be provided from bulk RNA- seq 
or DNA sequencing data [210]. Because of the inherent signal dropout issue 
and potential allele- mapping bias, interpretation of single-cell ASE results 
should use caution.

8.8.2  Alternative Splicing Analysis

As mentioned in Chapter 7 on bulk RNA- seq, alternative splicing plays an 
important role in regulating major biological processes, and abnormal spli-
cing may lead to diseased states. At the single-cell level, alternative splicing 
can be analyzed despite the challenges of signal sparsity and background 
noise. Tools for this analysis include Outrigger [211], BRIE/ BRIE2 [212, 213], 
ODEGR- NMF [214], ASCOT [215], Millefy [216], VALERIE [217], SCATS [218], 
scQuint [219], and DESJ- detection [220]. To illustrate how these tools work, 
Outrigger, a component of the Expedition suite, uses junction- spanning reads 
to create an exon- junction graph first, and then detects alternative splicing 
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events through traversing the graph. Quantification of such events and iden-
tification of differential splicing between groups of cells are based on the 
use of “percent- spliced- in” or Psi (ψ). As another example, DESJ- detection 
first constructs a cell- splicing junction count matrix for each gene. Iterative  
K- means is then used to cluster cells; after removing clusters with low expres-
sion, a list of solid junctions is generated. The identification of DESJs, or dif-
ferentially expressed splicing junctions, is achieved using limma. To help 
visualize differential splicing patterns across cells, Millefy and VALERIE can 
be used to uncover cellular heterogeneity and splicing differences between 
various cell groups. VALERIE, for example, is an R- based tool for using Psi 
values to display alternative splicing events. It can also be used to identify 
significant splicing difference between different cell populations, through 
performing statistical test, such as Kruskal– Wallis test, on the Psi values 
followed by multiple testing correction. Most of alternative splicing ana-
lysis tools use reads obtained from full- length scRNA- seq platforms such as 
Smart- seq3. Reads derived from the 3’ or 5’ end of transcripts, such as those 
generated from the 10× Chromium platform, cover limited number of spli-
cing junctions at either end of genes. Despite this limitation, some tools such 
as SCATS can use 10× scRNA- seq data for alternative splicing analysis.

8.8.3  Gene Regulatory Network Inference

A gene regulatory network (GRN) is a graph representation of how genes 
interact with each other in a cell system. In a GRN, genes are represented as 
nodes, and their interactions constitute edges. Compared to the analytic steps 
above, GRN inference is relatively new and yet to be performed more widely. 
Currently there are a growing number of scRNA- seq based GRN inference 
methods available, including SCENIC [221], SCODE [222], SCOUP [223], 
PIDC [224], LEAP [225], NLNET [226], SCIMITAR [227], and GRISLI [228]. 
In addition, some of the methods originally developed for bulk RNA- seq 
data have also been applied to scRNA- seq data after some adjustment with 
good performance, including GENIE3 [229] and GRNBoost2 [230]. GENIE3 
is a random forest regression- based algorithm that had the best perform-
ance in the DREAM4 In Silico Multifactorial challenge for assessment of GRN 
inference algorithms. GRNBoost2, based on the use of a stochastic gradient 
boosting machine regression model, has been developed as a faster alterna-
tive to GENIE3. These, and the methods specifically developed for scRNA- 
seq, use the general principle of gene co- expression to infer GRN. If two 
genes show co- expression in the context of other genes, they are considered 
to interact.

According to how they infer GRNs, the algorithms that are specific-
ally developed for scRNA- seq data can be grouped into several categories. 
Methods such as SCENIC, PIDC, and NLNET are based on simple correlation 
analysis. SCENIC, for example, identifies sets of genes that are co- expressed 
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with transcription factors with the use of GENIE3. To trim the large number 
of edges that represent potential gene- gene interactions to a shorter list of 
high- confidence edges, SCENIC performs a transcription factor- binding 
motif enrichment analysis to identify putative target genes. The output from 
SCENIC can then be imported into visualization tools such SCope for net-
work visualization. Methods such as LEAP and SCIMITAR take into con-
sideration effects of developmental stages on gene networking through 
incorporating pseudo- temporal information from trajectory inference and 
velocity analysis (Section 8.7). The pseudo- temporal ordering of cells helps 
establish directionality between an upstream gene and a downstream effector. 
For these methods, gene correlation is first calculated for each time window, 
and the multiple correlation matrices are then aggregated into one adjacency 
matrix to represent the overall gene- gene interactions. Other methods such as 
SCODE, SCOUP, and GRISLI use a similar approach with the application of 
pseudo- temporal information, but they use differential equations to estimate 
gene correlation and infer gene relationships. For example, SCODE relies on 
Monocle to provide pseudotime information, and uses ordinary differential 
equations to calculate gene correlation. There are also methods based on other 
approaches, such as SCNS [231] and BTR [232] that use Boolean models. With 
such models 0 or 1 represents deactivated or activated gene expression, and 
Boolean operations AND, OR, and NOT are used to capture relationships 
between two genes. Boolean models provide a simplistic presentation of the 
cell system through converting gene expression data into binary data, but 
this also leads to loss of gene- gene interaction information.

To pick an appropriate GRN inference method, besides having knowledge 
of how they are designed, it also helps to understand whether prior infor-
mation is required and what is the basic characteristic of the cells under 
study. Some of the methods require prior information, in the form of pseudo- 
temporal ordering of cells or cell types, which can be revealed with trajec-
tory inference. Such methods are more suitable for cells that are in different 
developmental stages. If the objective is to compare cellular composition or 
heterogeneity under different conditions (e.g., healthy vs. diseased), methods 
that employ static data are more appropriate. To provide systematic guidance 
to the selection of appropriate GRN inference methods, results from several 
benchmark studies [233– 236] are available on currently available GRN infer-
ence methods. Overall these studies showed underperformance of current 
methods and call for development of better designed tools. For example, cur-
rently inferred networks still show poor agreement with ground truth. In the 
meantime, these studies also revealed the challenges of inferring GRN from 
scRNA- seq data, which can be technical (due mostly to signal heterogeneity 
and sparsity), biological (e.g., complex nature of molecular interactions), or 
computational (e.g., complexity of analysis). Validation of an inferred GRN 
is also a very challenging task. Most of the currently available methods still 
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output one gene network for all cells, or for specific cell types, not individual 
cells. Some newer methods such as CSN [237] and c- CSN [238] allow building 
of cell- specific networks, i.e., one network per cell.

Despite the current challenges, the value of GRN analysis cannot be 
overemphasized. In- depth analysis of a GRN enables detection of network 
modules and key nodes (hub genes). A module refers to a group of genes 
that are highly connected to fulfill a cellular function. The overall topology 
of a module, or key nodes linking different modules, might change with 
development or cell differentiation, or differ under different conditions. 
Differential network analysis may reveal altered gene- gene interactions 
between conditions. These network analyses can be carried out using tools 
such as WGCNA [239].
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9  
Small RNA Sequencing

Small RNAs play an important role in regulating gene expression in both 
the cytoplasm and the nucleus through inducing both post- transcriptional 
and transcriptional gene silencing mechanisms. In addition to RNAi, some 
studies also show that some small RNAs can increase gene expression via a 
mechanism called RNA activation (or RNAa) [1]. Through these regulatory 
activities, small RNAs are involved in many cellular processes, affect growth 
and development, and if their own expression goes awry, lead to diseases 
such as cancer and Alzheimer’s disease.

As introduced in Chapter 3, the major categories of small RNAs in 
cells include miRNAs, siRNAs, and piRNAs. Among these three types 
of small RNAs, miRNAs are so far the most studied. A total of 38,589 
miRNA loci have been catalogued in 271 species at the time of this writing 
in miRBase (release 22.1), the gold- standard database for miRNAs. It 
has been estimated that a typical mammalian cell contains hundreds of 
miRNA species, each of which regulates transcripts from multiple genes. 
The expression of these miRNAs is cell-  and tissue- specific, and dynam-
ically regulated based on cellular state. Mutations or methylations in 
miRNA genes often lead to dysregulation in their expression. Studying 
the expression of miRNAs and other small RNAs is an important aspect 
of studying their roles in biological processes and diseases. Compared to 
other small RNA expression analysis methods, such as microarray and 
qPCR, NGS has a broader dynamic range for measuring small RNAs 
even at extremely high or low levels, single- base resolution to differen-
tiate closely related small RNA molecules, the ability to study organisms 
without a currently available genome assembly, and the capability to dis-
cover novel small RNA species.

On new small RNA discovery, although from human and other model 
organisms the community has catalogued thousands of miRNAs and other 
small RNA species, more remain to be found. For less studied species, the 
number of known small RNAs is still low. Many in silico miRNA prediction 
algorithms have been developed, but their predictions have to be validated 
with experimental evidence. Small- RNA sequencing, through interrogating 
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the entire pool of small RNAs, provides an excellent tool for novel miRNA 
discovery and experimental validation of computational predictions. 
Furthermore, small RNA sequencing offers an assumption- free, comprehen-
sive analysis of the small RNA transcriptome in biological targets, including 
differential expression between conditions. In general, small RNA sequen-
cing data analysis shares much commonality with the analysis of RNA- seq 
data (Chapter 7). In the meantime, some aspects of small RNA sequencing 
data analysis are unique and mostly focused on in this chapter.

9.1  Small RNA NGS Data Generation and Upstream Processing

9.1.1  Data Generation

Since sequencing analysis of small RNAs in the transcriptome is similar to  
mRNA analysis, the experimental aspects detailed in Chapter 7 on factorial  
design, replication and randomization, and sample collection equally apply  
here and are therefore not repeated. Mature miRNA species, generated as a  
result of Dicer and Argonaute processing (Figure 9.1), have an average size  
of 22 nucleotides. Small RNA molecules can be purified from cells or tissues,  
while total RNA extracts that retain small RNA species work equally well and  
are often used. A size selection step in the sequencing library construction  
process removes larger RNA molecules in total RNA extracts. Furthermore,  
the small RNA sequencing library construction process takes advantage of  
the particular end structure on small RNAs, which are absent on mRNAs.  

Pre-miRNA
miRNA-miRNA* 

DuplexLoop

Sequence 
Reads

Dicer
Cleavage

Argonaut
Processing
and Deep

Sequencing

* *

FIGURE 9.1
Deep sequencing of mature miRNAs after Dicer and Argonaute processing. Dicer cleaves a short 
stem- loop structure out of pre- miRNA to form the miRNA:miRNA* duplex. Upon loading into 
RISC, Argonaute unwinds the duplex and uses one strand as guide for gene silencing while 
discards the other strand (the star strand). While the short stem- loop and star strand sequences 
are usually degraded, they may still generate sequencing signals, because of undegraded 
residues or the fact that they may exist to perform other functions (e.g., the star strand is 
sometimes functional).
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Canonical mature small RNAs have a monophosphate group at the 5’ end  
and a hydroxyl group at the 3’ end, which is derived from the action of small  
RNA processing enzymes such as Dicer.

Many small RNA sequencing library construction processes start 
with ligation of adapter sequences to their 3’ and 5’ ends. The universal 
adapter sequences provide anchoring for subsequent reverse transcription, 
and then PCR amplification. Among these steps, the initial ligation step 
has been found to introduce most bias to the process [2]. To counter the 
biases introduced during ligation as well as subsequent PCR amplifica-
tion, alternative strategies have been devised and employed. The strategies 
for mitigation of the ligation bias include use of modified adapters that 
carry randomized nucleotides at the ligation boundary [3], and ligation- 
free procedures such as the SMART polyadenylation and template switch 
technology followed by PCR amplification, or probe capture- based target 
miRNA sequencing. To mitigate PCR bias, unique molecular identifiers 
(UMIs) can be used. To select an appropriate library construction procedure, 
the specific needs of the project need to be considered, as all currently avail-
able protocols have strengths and weaknesses based on currently available 
benchmark studies [2, 4].

Because of their short length, constructed small RNA sequencing libraries 
do not need to be sequenced very long. The actual read length depends on 
the configuration of library constructs and whether the index sequences are 
read in the same pass or as a separate reading step. In the current version of 
the Illumina small RNA sequencing protocol that reads index sequences in 
a second pass, 50 cycles of sequencing can be enough. Sequencing depth is 
another key factor in the data generation process that determines the power 
of differential expression analysis and novel small RNA discovery. While 
this depends on sample source as small RNA amount and composition 
vary greatly with cell type and species, in general 2– 3 million aligned reads 
(or 4– 5 million raw unmapped reads) should offer enough confidence for 
most studies. A study has shown that coverage higher than 5 million reads 
contributes little to the detection of new small RNA species [5].

9.1.2  Preprocessing

After obtaining sequencing reads and demultiplexing, the reads generated 
from each sample need to be first checked for quality using the QC tools 
introduced in Chapter 5 such as FastQC, NGS QC Toolkit, and fastp, or spe-
cifically developed miRNA- seq data QC tools including miRTrace [6] and 
mirnaQC [7]. Besides the typical NGS data QC metrics, specific miRNA- seq 
QC tools often provide additional features. For example, mirnaQC provides 
quality measures on miRNA yield and the fraction of putative degradation 
products (e.g., rRNA fragments) in both absolute values and relative ranks 
in comparison to a reference collection of 36,000 published datasets. Because 
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small RNA libraries are usually sequenced longer than the actual lengths of 
the small RNA inserts, the 3’ adapter sequence is often part of the generated 
sequence reads and therefore should also be trimmed off. The trimming can 
be carried out with stand-alone tools such as Cutadapt and Trimmomatic, 
or utilities in the NGS QC Toolkit or fastp. Adapter trimming can also be 
conducted coincidentally with mapping, as some mappers provide such an 
option, or using data preprocessing modules within some small RNA data 
analysis tools (to be covered next).

9.1.3  Mapping

For mapping small RNA sequencing reads to a reference genome, short read 
aligners introduced in Chapter 5, such as Bowtie/ Bowtie2, BWA, Novoalign, 
or SOAP/ SOAP2, or RNA- seq aligner in Chapter 7, such as STAR, can be 
used. Among these aligners, Novoalign offers the option of stripping off 
adapter sequences in the mapping command. As for the reference genome, 
the most recent assembly should always be used. Because of the short target 
read length, the number of allowed mismatches should be set as 1. To speed 
up the mapping process, a multi- threading parameter, which enables the use 
of multiple CPU cores, can be used if the aligner supports it. After mapping, 
reads that are aligned to unique regions are then searched against small RNA 
databases to establish their identities (see next section), while those that 
are mapped to a large number (e.g., >5,000) of genomic locations should be 
removed from further analysis.

Besides the aforementioned general tools for small RNA reads 
preprocessing and mapping, tools have also been developed specially for 
small RNA- seq analysis, such as miRDeep/ miRDeep2 [8], sRNAtoolbox [9], 
ShortStack [10], sRNAnalyzer [11], miRge [12], and miRMaster [13]. Among 
these tools, sRNAtoolbox is a collection of small RNA- seq data tools for dif-
ferential expression analysis and other downstream analyses. Its center piece 
is sRNAbench, which replaces the previously widely used miRanalyzer. It 
provides functions such as data preprocessing, genome mapping using 
Bowtie, visualization of genome mapped reads, expression profiling, etc.

While the mapping of small RNA reads to a reference genome is similar 
to the mapping in RNA- seq as covered in Chapter 7, some characteristics of 
small RNAs, mostly their short length and post- transcriptional editing (see 
next), present different challenges to the small RNA read mapping process. 
Because of their short length, sizeable numbers of small RNA reads are usu-
ally mapped to more than one genomic region. In comparison, this issue is 
minimal for RNA- seq data, as longer and sometimes paired- end reads greatly 
increase specificity. The easiest way to deal with multi- mapped small RNA 
reads is to simply ignore them, but this leads to the loss of great amounts of 
data. A more commonly used approach is to assign them to one of the mapped 
positions randomly, while an alternative approach is to report them to all 
possible positions. More sophisticated algorithms have also been developed 
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in an effort to avoid the precision or sensitivity pitfalls of these approaches. 
For example, ShortStack employs local weighting, which uses local genomic 
context to guide placement of multi- mapped miRNA- seq reads.

Post- transcriptional editing, on the other hand, leads to the generation of 
isomiRs [14], i.e., isoforms of canonical miRNAs that resemble but never-
theless vary from the reference miRNA annotated in miRBase. The isomiRs 
have various forms of variations from the canonical sequence, including 
alternative 3’ (more often) and 5’ termini, and nucleotide substitutions in 
the body sequence. Since their discovery, which itself is attributed to small 
RNA sequencing, isomiRs have been shown to have functional importance 
[15]. While the discovery of isomiRs is more recent, many newer tools cover 
isomiRs, including miRge, sRNAnalyzer, and sRNAbench.

9.1.4  Identification of Known and Putative Small RNA Species

To identify currently known small RNA species, the mapped reads need to 
be searched against the most recent version of miRBase or other small RNA 
databases (such as piRNABank, piRBase, and piRNAclusterDB for piRNAs). 
Reads with no matches in these databases can then be searched against 
other databases (Rfam, repeat, and mRNA) to determine if they are degrad-
ation products of ncRNAs, genomic repeats, and mRNAs. The previously 
mentioned small RNA- seq data analysis tools all provide these database 
search capabilities.

To discover potentially novel miRNA species, mapped reads that do not 
match known miRNAs and sequences in the other databases are submitted 
to algorithms such as sRNAbench and miRDeep2, which are designed to 
search for putative miRNAs. The approach used by miRDeep2 takes into 
consideration the biogenic process of miRNAs. It first identifies poten-
tial miRNA precursor coding regions out of the genomic regions that are 
clustered with the mapped reads. RNA secondary structures are then 
predicted on these identified regions using RNA folding software, and 
examined to see if they resemble a typical miRNA hairpin structure seen in 
pri- miRNA molecules and if they are thermodynamically stable. Putative 
miRNA species are called if the reads fall into stable hairpins in an expected 
manner, along with other evidences such as reads from the star strand. 
Similarly, sRNAbench also uses both structural and biogenic features to 
predict novel miRNAs [16].

9.1.5  Normalization

Before identifying differentially expressed small RNAs, read counts for each 
small RNA species in the samples need to be normalized. The goal of normal-
ization is to make the samples directly comparable by removing unwanted 
sample- specific variations, which are usually due to differences in library size 
and therefore sequencing depth. The normalization approaches used in bulk 
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RNA- seq as detailed in Chapter 7 can be similarly applied here. The general 
assumption for most of the normalization approaches, that the majority of 
small RNAs stay constant between conditions, seems to hold. For the total 
read- count- based normalization, since all small RNAs are similarly short in 
size, the RPKM normalization can be simplified as RPM (reads per million). 
This method, however, has been found to be inadequate in some bench-
mark studies [17– 19]. Other more sophisticated normalization approaches 
introduced in Chapter 7, including RLE used by DESeq/ DESeq2 and TMM 
used by edgeR, have been found to work well for identification of differen-
tially expressed small RNAs.

9.2  Identification of Differentially Expressed Small RNAs

The packages and tests introduced for RNA- seq differential expression 
analysis in Chapter 7 can also be directly used for small RNA analysis. For 
example, DESeq2, edgeR, limma, DEGseq, and NOISeq have been widely 
employed on the identification of differentially expressed small RNAs. 
In terms of implementation, these methods can be either paired with or 
integrated into the tools specifically designed for small RNA- seq data ana-
lysis as detailed in Section 9.1.3. For example, miRDeep2 can be used first 
to identify and quantify known and novel miRNAs, and the raw counts 
of identified miRNAs can then be input into edgeR or limma for DE ana-
lysis. To compute differential expression, miRge integrates with DESeq2. 
The sRNAtoolbox has a module called sRNAde specially developed for DE 
analysis. Using sRNAbench- generated or user- provided expression matrix 
as input, this module detects differentially expressed small RNAs with the 
use of five methods: edgeR, DESeq, DESeq2, NOISeq, and Student’s t- test. 
Besides DE results generated from the individual methods, sRNAde also 
provides consensus DE results from the five methods. FDR is provided by all 
of these methods for multiple testing correction.

9.3  Functional Analysis of Identified Known Small RNAs

To perform functional analysis of differentially expressed small RNAs, their 
gene targets need to be predicted first. A number of tools are available for 
this task, including TargetScan [20], miRanda [21], mirSVR [22], miRDB 
[23], miRWalk [24], PicTar [25], PITA [26], RNA22 [27], RNAhybrid [28], 
DeepMirTar [29], and the DNA intelligent analysis (DIANA) applications 
microT- CDS and microT [30]. These tools predict target genes based on two 
general approaches, with one based on characteristics of miRNA- mRNA 
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interaction, and the other on inference from machine learning models. 
The first approach makes predictions on the basis of seed pairing, thermo-
dynamic stability, sequence conservation, and 3’- UTR structural accessibility. 
Many of the methods above use this approach. For example, miRanda, one of 
the earliest developed and widely used methods, makes predictions based on 
miRNA- mRNA complementarity pattern, location of the binding site in the 
mRNA, binding energy, and miRNA evolutionary conservation. The second 
machine- learning- based approach applies artificial intelligence to learn from 
known miRNA- mRNA duplexes to make new predictions. This approach 
uses features extracted from validated miRNA- mRNA interactions, plus 
negative dataset, to train a classifier model that can make distinctions and 
predict new miRNA targets. This approach has the ability to automatically 
improve based on new results. Examples of methods using this approach 
include DIANA- microT- CDS, mirSVR, and DeepMirTar.

Despite the progress made on miRNA target gene prediction, miRNA 
target gene prediction is still no easy task because of the small size of the 
miRNA- mRNA binding area, often imperfect complementarity of the 
binding, and sometimes lack of conservation [31]. Once a list of potential 
target genes is generated, functional analysis, such as Gene Ontology (GO) 
and pathway analysis, can be conducted using the approaches detailed in 
Chapter 7. In addition, for pathway analysis, a list of miRNAs can also be 
directly uploaded to the DIANA miRPath web server to a generate a list of 
biological pathways that are significantly enriched with the miRNAs’ target 
genes, which are predicted with DIANA- microT- CDS or documented with 
existing experimental evidence [32].
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10  
Genotyping and Variation Discovery 
by Whole Genome/ Exome Sequencing

Detection of genomic variation among individuals of a population is among 
the most frequent applications of NGS. Genome sequence heterogeneity is 
prevalent in a naturally occurring population, which cannot be captured by 
the current use of a single reference genome for a species. Genomic variant 
cataloging projects in many countries, such as the All of Us Program in the 
United States that aims to sequence one million genomes, underscore the 
importance of genomic variation discovery. Locating genomic sequence 
variations that correlate with disease predisposition or drug response, and 
establishing genotypic basis of various phenotypes, have become common 
focuses of many NGS studies in biomedical and life science research. Besides 
variations carried through the germline for generations, NGS has also been 
applied to identify de novo germline and somatic mutations, which occur 
more frequently than previously expected and underlie numerous human 
diseases including cancer and neurodegenerative diseases [1– 3].

Detecting from NGS data the various forms of genomic variations/ 
mutations detailed in Chapter 2, including SNVs, indels, and SVs, is not an 
easy task. The primary challenge is to differentiate true sequence variations/ 
mutations from false positives caused by sequencing errors and artifacts 
generated in basecalling and sequence alignment. It is, therefore, important 
to generate high- quality sequencing data before performing data analysis. 
Equally importantly, sensitive and yet specific variant/ mutant calling 
algorithms are required to achieve high accuracy in genomic variation and 
mutation discovery. This chapter first provides details on data preprocessing, 
alignment, realignment, and recalibration, then focuses on methods for the 
detection of germline and somatic SNVs/ indels and SVs, followed by anno-
tation of identified variants. Figure 10.1 shows an overview of the data ana-
lysis pipeline.
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10.1  Data Preprocessing, Mapping, Realignment,    
and Recalibration

Besides the general data preprocessing and QC steps introduced in Chapter 5, 
such as examining sequencing data quality, removing low- quality and dupli-
cate reads, additional steps are needed for variant calling. The read mapping 
step requires the use of highly sensitive alignment algorithm such as BWA- 
MEM, Bowtie2, and minimap2. After examining mapping quality, reads with 
low- quality mapping scores need to be filtered out. For paired- end reads, 
they should map to the reference genome as pairs at the expected interval and 
those that do not show the expected pattern should be filtered out as well.

After the initial alignment, realignment around indels usually leads to 
improvement in mapping results. This is usually due to the fact that short 
indels, especially those at the ends of reads, often cause problems in the ini-
tial alignment process. To realign around the indel regions, the original BAM 

Data Preprocessing & QC

Read Mapping

Local Realignment

Base Quality Recalibration

Variant Calling

Variant Annotation

Somatic 
Mutation

Structural
Variant
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FIGURE 10.1
General workflow for genotyping and variation discovery from resequencing data.
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file is first processed to identify where realignment is needed using tools 
such as the GATK RealignerTargetCreator. In this process, using a known 
set of indels (such as those in dbSNP) can speed up the process and improve 
accuracy. After the target regions for realignment are identified, programs 
such as the GATK IndelRealigner can be employed to conduct the realign-
ment. At the end of this process, a new BAM file is generated containing 
realigned reads.

Prior to variant calling, the original base call quality scores should also 
be recalibrated to further improve data quality. This base quality score 
recalibration can be conducted with tools such as the GATK BaseRecalibrator 
and ApplyBQSR. These tools recalibrate raw quality values using covariate- 
aware base quality score recalibration algorithms, which adjust for covariates, 
such as machine sequencing cycle and local sequence context, that are known 
to affect sequencing signal and basecall quality. To carry out the recalibration, 
a model of covariation is first analyzed and built by BaseRecalibrator when 
using GATK, which is then used by ApplyBQSR to recalibrate the data. 
Variant calling based on the recalibrated data has higher accuracy and cuts 
down on the number of false positives.

10.2  Single Nucleotide Variant (SNV) and Short Indel Calling

10.2.1  Germline SNV and Indel Calling

In general, variant calls are affected by a number of factors (Figure 10.2).  
These factors include: 1) basecall quality, 2) mapping quality, 3) single vs.  
paired- end sequencing, 4) read length, 5) depth of coverage, and 6) sequence  
context. Because of errors or uncertainties that occur in the steps of sequen-
cing/ basecalling/ mapping, there are almost always certain levels of uncer-
tainty associated with each variant call. To minimize this uncertainty,  
basecalling algorithms use statistical models, heuristics, or more recently,  
deep learning. By modeling the errors and biases, and sometimes incorpor-
ating other related prior information, variant callers that use statistical  
models significantly reduces the probability of miscalling variants. Methods  
that are based on the heuristic approach, on the other hand, call variants  
based on a number of heuristic factors, such as minimum read depth, base  
quality, and allele frequency. Deep learning is a subfield of machine learning  
that uses artificial neural networks (ANNs) to learn from training data with  
known truth, to make predictions or classifications from new unknown data.  
To call variants from NGS data using deep learning, pre- labeled variants are  
first used as training data to build a model for subsequent variant calling.  
Among the algorithms that use these three different approaches, those based  
on statistical models are currently more widely used than those based on  
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heuristics and deep learning. It should be noted, however, that statistical  
models are usually based on certain assumptions. Under circumstances  
when the assumptions are violated, the heuristic and deep learning- based  
methods can be more robust.

Among the variant callers that are based on statistical models, GATK [4] is 
currently among the most widely used. GATK mostly uses HaplotypeCaller 
to call germline SNVs and short indels. HaplotypeCaller, as the name 
suggests, considers the linkage between nearby variants and calls SNPs and 
indels simultaneously through local de novo haplotype assembly. More spe-
cifically, the variant calling process used by HaplotypeCaller is composed 
of four main steps: (1) identification of active genomic regions that most 
likely harbor variants based on evidence from reads; (2) determination of 
haplotypes for each active region via reassembly of the region using a De 
Bruijn- like graph, followed by realignment of the haplotypes against the ref-
erence to identify potential variant sites; (3) calculation of the likelihoods of 
the haplotypes through aligning each read against each haplotype using a 
Pair- Hidden Markov Model (PairHMM); and (4) application of Bayes’ rule to 
find the most likely genotypes in the sample. This variant calling process is 
highly accurate, but it is also computationally intensive and relatively slow. 
BCFtools [5] uses a similar genotype likelihood model for variant calling, 
which is achieved in two steps, namely “bcftools mpileup” and “bcftools 
call.” In the mpileup step, it collects summary information from input BAM 
files and computes the likelihoods of possible genotypes, which are stored in 
BCF files (to be detailed next). The subsequent call step uses the likelihood 
information in the BCF files to conduct variant calling.

C
T
T
C
T
C
C

C
FIGURE 10.2
The variant calling process is usually affected by various factors. In this illustration, a number 
of reads are aligned against a reference sequence (bottom). At the illustrated site, the reference 
sequence has a C while the reads have C and T. Depending on the factors mentioned in the text 
and prior information, this site can be called as heterozygous (C/T), or no variation (C/C) if 
the T’s are treated as errors. It is also possible to be called as a homozygous T/T, if the C’s are 
regarded as errors.
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Besides GATK and BCFtools, other model- based variant callers include 
Strelka2 [6], freebayes [7], and 16GT [8]. A commonly used heuristics- based 
variant caller is VarScan2 [9], which works more robustly on data confounded 
by factors such as extreme read depth, pooled samples, and contaminated or 
impure samples. Many of these tools, such as GATK, BCFtools, Strelka2, and 
VarScan2, work for both single-  and multiple- sample data. Multiple- sample 
analysis usually has increased detection power than single- sample analysis 
[10], because with multiple samples it is more likely to call a variant when 
more than one sample shows the same variation.

Google’s open- source DeepVariant tool was the first attempt to use deep 
learning for variant calling. It is based on the use of convolutional neural 
network (CNN), a class of ANN that is often applied to image classification 
problems [11]. With the use of CNN, the variant calling process is converted 
into an image classification process [12]. With the increased use of long reads 
from the ONT and PacBio platforms, many of the variant callers specific-
ally developed for long reads are based on the use of deep learning. These 
tools include Clair3 [13], Longshot [14], NanoCaller [15], and Medaka [16]. 
NanoCaller, for example, combines long- range haplotype information and 
deep CNN in an effort to improve variant calling accuracy. DeepVariant 
can also be used on long reads besides short reads, when coupled with 
algorithms such as PEPPER that uses a recurrent neural network to find 
variant candidates for subsequent variant calling by DeepVariant [17]. Based 
on currently available benchmarking studies [18– 20], DeepVariant has been 
shown to have similar or even better performance than the often used GATK 
pipeline.

10.2.2  Somatic Mutation Detection

Most of the currently available variant calling methods are designed to  
identify germline variations that can be passed from generation to gener-
ation. While these variants are major detection targets, somatic mutations  
(Figure 10.3) also play important roles in many diseases such as cancer. To  
identify such acquired somatic mutations, some of the germline variant  
callers mentioned above also provide utilities or options designed for calling  
somatic mutations, such as GATK Mutect2 [21], Strelka2, and VarScan2. Tools  
specifically designed for somatic mutation detection include SomaticSniper  
[22], VarDict [23], NeuSomatic [24], JointSNVmix [25], and Lancet [26].  
Mechanistically, while some of these algorithms (such as Mutect2 and  
VarScan2) carry out mutation calling on each of the contrasting samples (e.g.,  
normal vs. cancer tissues carrying somatic mutations from the same patient)  
separately against a reference genome, others (such as Strelka2, JointSNVmix,  
and SomaticSniper) directly compare the contrasting samples. In the former  
approach, sequence reads generated from contrasting samples are independ-
ently aligned to and variants called against a reference genome. The called  
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variants in the contrasting samples are then compared to each other to locate  
somatic mutations in the cancer tissue. In the latter approach, the samples  
are directly compared to each other using statistical tests on the basis of joint  
probability. NeuSomatic represents the first attempt to use deep learning  
(CNN) for somatic variant detection. The currently developed Mutect3 also  
uses machine learning in an effort to improve somatic mutation detection  
accuracy. To help evaluate the performance of these various somatic variant  
callers, several benchmarking studies [27– 30] are available showing that  
Mutect2 and Strelka2 are among the top performers so far.

FIGURE 10.3
Detection of somatic mutations vs. germline variations. In this example, sequence reads from 
normal and tumor tissues are aligned to the reference genome (shown at the top in green). The 
allelic counts, i.e., the number of matches (aN and aT) and depth of reads (dN and dT), at each base 
position are shown. The blue sites show germline positions, while the red shows a position where 
a somatic mutation occurred in some tumor cells. Also shown at the bottom are the predicted 
genotypes for the normal and tumor tissues. (Modified from Roth A. et al. JointSNVMix: a 
probabilistic model for accurate detection of somatic mutations in normal/ tumour paired 
next- generation sequencing data. Bioinformatics, 2012, 28 (7): 907– 13, by permission of Oxford 
University Press.)
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10.2.3  Variant Calling from RNA Sequencing Data

While variant calling is mostly carried out from DNA sequencing data, 
RNA- seq can also be used to call variants from transcriptionally active 
regions of the genome. RNA- seq- based variant calling is more challenging 
due to the inherent heterogeneity in the abundance of reads transcribed 
from different regions, differential splicing of exons, allele- specific expres-
sion, RNA editing, etc. Variant calling from RNA- seq data offers certain 
advantages, however, as it does not incur additional cost beyond collecting 
the original transcriptomic data, and it directly interrogates transcription-
ally active regions of the genome. In addition, RNA- seq- based variant dis-
covery can be used to validate variants called from whole- genome or – exome 
sequencing. Methods for RNA- seq- based variant calling are still limited. 
Currently available tools/ pipelines include the GATK best practices work-
flow for RNA- seq short variant calling [31], SNPiR [32], eSNV- Detect [33], 
SNVMix [34], and Opossum- Platypus [35]. Most of these tools are based on 
the use of variant callers developed for germline DNA sequencing, such as 
the GATK HaplotypeCaller or BCFtools. The often used GATK best practices 
workflow for RNA- seq data, for example, centers around HaplotypeCaller 
and comprises multiple steps including: 1) alignment of raw RNA- seq reads 
to the reference genome using STAR; 2) cleanup of data through identifica-
tion and removal of duplicate reads; 3) reformatting of alignments that span 
intronic regions as a preparatory step for variant calling; 4) recalibration of 
base quality scores to improve variant calling accuracy; 5) variant calling 
using HaplotypeCaller; and 6) variant filtering to produce the final list of 
variants. SNVMix, on the other hand, employs a probabilistic binomial mix-
ture model to call variants from pre- mapped RNA- seq reads.

10.2.4  Variant Call Format (VCF)

VCF is a text- based standard file format for storing sequence variations, 
including SNVs, short indels, and SVs (to be detailed next) [36]. This format 
is designed to be scalable to encompass millions of sites from thousands of 
samples. Originally developed for the 1000 Genomes Project, it is designed for 
fast data retrieval. Besides reporting variants and their genomic positions, it 
offers fields to store additional information such as variant call quality score, 
and allows users to add their own custom tags to describe new sequence 
variations. BCF is the binary version of VCF, providing speed and efficiency 
through compression of the variant data.

Figure 10.4 provides an example of the VCF format. It contains meta-  
information lines at the front, a header line, and data lines each of which  
describes a variant position. The metainfo lines start with “##” and describe  
related analysis information, such as species, file date, and assembly version.  
In addition, abbreviations used in the user definable data columns are also  
defined in the metainfo lines. The subsequent header line lists the names of  

 

 

   

  

 

 



N
ext-G

eneration Sequencing D
ata A

nalysis
222

##fileformat=VCFv4.3
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">
##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">
##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA00001 NA00002 NA00003
20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
20 17330 . T A 3 q10 NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3
20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4
20 1230237 . T . 47 PASS NS=3;DP=13;AA=T GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
20 1234567 microsat1 GTC G,GTCT 50 PASS NS=3;DP=9;AA=G GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3

FIGURE 10.4
The VCF format (version 4.3). The format is currently managed by the Large Scale Genomics Work Stream, part of the Global Alliance for Genomics 
& Health (GA4GH). BCF is the binary counterpart of VCF. (From http:// samto ols.git hub.io/ hts- specs/. )
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the 8 mandatory columns (Table 10.1). In the QUAL column, a Phred- like  
quality score for the alternative allele (ALT) call is given (e.g., a QUAL value  
of 30 means the probability of the ALT call being wrong is 0.001). In the  
FILTER column, “PASS” means this position has passed all filters, while a  
value of “q10” as shown in Figure 10.4 indicates that the variant call quality  
at this site is below 10. The data lines, containing variant calls for a list of gen-
omic positions, make the body of a VCF file.

VCF/ BCF files can be parsed, manipulated, and visualized using tools 
such BCFtools and vcfR [37]. BCFtools, beyond its capability to call variants, 
offers a set of utilities for VCF/ BCF files on a long range of operations, such 
as file format conversion, summarizing variant statistics, variant filtering, 
sorting, concatenation or merging of multiple files, finding how variants in 
multiple files intersect, detection of sample swaps and contamination, etc. 
Besides built- in commands for such operations, it also supports the use of 
plugins for specific single- purpose tasks. Examples of such plugins and tasks 
are frameshifts to annotate frameshift indels, guess- ploidy to determine sample 
sex, split- vep to query and extract from variants’ VEP annotations (see Section 
10.4 for VEP variant annotation), trio- dnm2 to determine de novo mutations in 
parents- offspring trios, and gvcfz to compress gVCF (or genomic VCF) files. 
The gVCF format is an extended version of VCF with the same format speci-
fication, but it also contains information for the rest of non- variant genomic 
regions with confidence estimates that they match the reference genome. The 
goal to include all sites of the genome in a gVCF is to facilitate joint geno-
typing of a cohort of samples when needed.

10.2.5  Evaluating VCF Results

SNVs and indels reported in VCF files need to be evaluated to identify false  
positives. Visualization of called variants and supporting reads in a genome  
browser, such as IGV or Savant, provides an initial examination of the variant  
call result. Further evaluation should be based on criteria such as deviation 
from Hardy– Weinberg equilibrium, systematic call quality difference  

TABLE 10.1

Mandatory Fields in a VCF File

Col Field Type Description

1 #CHROM String Chromosome number
2 POS Integer Start position of the variation
3 ID String Database identifier
4 REF String Reference allele
5 ALT String Alternate allele(s)
6 QUAL Numeric Quality score (Phred- style)
7 FILTER String Filter status
8 INFO String User extensible information
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between major and minor alleles, extreme depth of coverage, or strand bias.  
The ratio of transitions and transversions (Ti/ Tv) is an additional indicator  
of variant call specificity and quality. The theoretical ratio of Ti/ Tv is 0.5,  
because purely from the point of statistical probability the chance of produ-
cing transitions is half that of transversions. However, due to biochemical 
mechanisms involved in these nucleotide substitution processes, the  
frequency of having transitions is higher than that of transversions. Based  
on existing NGS data from multiple species, the expected values of Ti/ Tv  
for whole genome and exome datasets are usually in the ranges of 2.0– 2.1,  
3.0– 3.5, respectively [38]. Variants that do not pass these QC criteria are then  
filtered out. Besides such filtering using preset criteria, low quality variants  
may also be identified for removal using machine learning approaches such  
as ForestQC [39] and VQSR (part of GATK).

As different variant callers employ different approaches, the variants they 
identify usually only partially overlap. It is advisable, therefore, to examine 
closely on the specifics of an experiment to decide on more appropriate 
variant caller(s). If more than one method is used, it is advisable to compare 
their outputs and analyze how they intersect. Use of convergent variants 
is an effective way to reduce rates of miscalled variants. Alternatively, 
ensemble methods such as VariantMetaCaller [40] and BAYSIC [41] can also 
be used.

To further compare results from multiple variant callers side- by- side, pre-
cision and recall are key metrics often used to measure the performance of 
variant callers. Precision refers to the ability to not detect false positives, 
while recall to not detect false negatives (Figure 10.5). Mathematically, preci-
sion and recall are calculated as

Precision
TP

TP FP i e all predicted positives
=

+ ( ). .,
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FIGURE 10.5
Contingency table for variant calling.
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Recall
TP

TP FN i e all actual positives
=

+ ( ). .,

To combine precision and recall into a single metric to simplify evaluation 
of variant callers, F1 score is often used. Mathematically, F1 is the harmonic 
mean of the two, calculated as

F
Precision Recall
Precision Recall

1 2= ×
×
+

By using the harmonic mean instead of the arithmetic mean, F1 provides a 
more balanced way to measure variant calling performance. For example, if 
either precision or recall is low, the F1 score is low. To have a high F1 score, 
both precision and recall need to be high. Utilities such as RTG Tools [42] can 
help compare results from multiple callers.

10.3  Structural Variant (SV) Calling

10.3.1  Short-Read- Based SV Calling

As covered in Chapter 2, structural variants in the genome involve insertions, 
deletions, duplications, inversions, and translocations of sequences at least 
50 bp in size. SVs are largely the basis of genome evolution and diversifi-
cation, and produce more genomic differences than SNVs between individ-
uals [43]. Earlier experimental methods on the detection of SVs were mostly 
based on comparative genome hybridization and SNP whole genome arrays. 
The advent of NGS, especially the use of paired- end short reads and more 
recently long reads, has greatly pushed SV detection forward. As illustrated 
in Figure 10.6, the basic approaches to detect SVs using short reads are based 
on: (1) the change in read depth (RD) as compared to the rest of the genome; 
(2) the use of paired- reads (PR) to detect unexpected change in orientation, 
distance between them, or their localization to different chromosomes; (3) the 
existence of split- reads (SR) that span disjoint regions of the genome; and 
(4) the deviation of de novo assembled (AS) sequence from the reference 
sequence.

Among these approaches, the RD approach is to be detailed in Section  
10.3.3. Figure 10.7 illustrates the main steps in the PR approach. The first  
step is to separate read pairs into concordant or discordant groups, defined  
by the distance between a read pair matching or deviating from the expected  
distance based on the reference genome. The discordant read pairs are then  
assembled into different clusters based on the genomic region they cover  
to generate candidate SV calling regions. In the last step, the candidate SV  
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clusters are filtered based on statistical assessment so that only clusters that  
are covered by multiple read pairs are reported as SVs. The boundaries of  
possible break points in the region are also identified in this step (indicated  
by the shaded area in Figure 10.7, panel d). Among currently available SV  
detection algorithms, PEMer (or Paired- End Mapper) [44], BreakDancer [45],  

FIGURE 10.7
General steps of calling SVs using paired- end reads. (Used with permission from Whelan, 
Christopher, “Detecting and Analyzing Genomic Structural Variation Using Distributed 
Computing” (2014). Scholar Archive. Paper 3482.)

FIGURE 10.6
Four approaches for SV detection. (From Escaramís, G. & Docampo, E. A decade of structural 
variants: description, history and methods to detect structural variation. Briefings in Functional 
Genomics, 2015, 14 (5): 305– 14, by permission of Oxford University Press.)
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SVDetect [46], and 1- 2- 3- SV [47] apply this paired- reads based approach.  
Pindel [48] provides an example for the SR approach. It first searches for  
read pairs in which one read aligns to the reference genome but the other  
does not. Based on the assumption that the second read contains a break-
point, it uses the aligned read as anchor to scan the surrounding regions for  
split mapping of the second read. While it can locate breakpoints at single  
base resolution, this approach is computationally expensive because of the  
challenge associated with aligning read sub- sequences to different genomic  
regions with gaps in between. Cortex [49] and AsmVar [50] are examples of  
the DS approach. In this approach, the genome is first assembled from reads,  
and subsequently SVs are called through alignment and statistical analysis of  
the de novo genome assembly against the reference.

To improve detection accuracy, many currently available SV detection 
algorithms use a combination of these approaches. For example, DELLY [51], 
Meerkat [52], SoftSV [53], and Wham [54] combine PR and SR, while GASV/ 
GASVPro [55, 56], Genome STRiP [57], and inGAP- sv [58] combine RD and 
PR. HYDRA [59] is an example of combining RD and AS. As examples of 
combining three approaches, MANTA [60], GRIDSS [61], SvABA [62], and 
CREST [63] combine PR, SR, and AS. LUMPY [64] and TIDDIT [65], on the 
other hand, combine RD, PR, and SR.

10.3.2  Long-Read- Based SV Calling

SV detection from the use of short reads has high miscalling rates because 
of the limitations of short-read sequencing. Long-read technologies such as 
PacBio and Oxford Nanopore sequencing overcome such inherent limitations 
caused by short read length. Mechanistically, long-read- based SV callers 
are mostly built on the use of the SR and/ or AS approaches. These callers 
include pbsv [66], Sniffles [67], Phased Assembly Variant (PAV) [68], MELT 
[69], NanoVar [70], NanoSV [71], PALMER [72], SVIM [73], and Picky [74]. 
Some callers, such as Dysgu [75], are developed to use both long and short 
reads. Besides long reads generated from long-read sequencers, synthetic 
long reads obtained using technologies such as linked- read sequencing [76– 
79] can also be used for SV detection by deploying tools such as Long Ranger, 
an open- source pipeline developed by 10× Genomics [80].

10.3.3  CNV Detection

CNVs, caused by duplications, insertions, or deletions, are an important 
subtype of structural variation. Among the four basic approaches outlined 
in Section 10.3.1, CNV detection algorithms are often based on RD. These 
algorithms are based on the assumption that the number of reads obtained 
from a region is proportional to its copy number in the genome. If a gen-
omic segment is repeated multiple times, for example, a significantly higher 
number of reads will be observed from the segment compared to other 
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non- repeated regions. If a segment is deleted, on the other hand, there will be 
no read coverage for it (see Figure 10.6, panel A). These RD- based algorithms 
include CNVnator [81], CNV- seq [82], CNVkit [83], cn.MOPS (Copy 
Number estimation by a Mixture of PoissonS) [84], CNAseg [85], ERDS [86], 
RDXplorer (Read Depth eXplorer) [87], Control- FREEC [88], mrFAST [89], 
SegSeq [90], readDepth [91], Canvas [92], and iCopyDAV [93]. Among these 
algorithms, CNVnator, built on the use of a mean- shift approach originally 
designed for image processing, is one of the most commonly used. As factors 
such as GC content may also affect local read density, a normalization step 
is often conducted when deploying these algorithms to account for these 
compounding factors. In studies that involve comparison of samples from 
the same genetic background, e.g., a diseased tissue vs. a healthy tissue from 
the same patient, these compounding factors are often cancelled out.

10.3.4  Integrated SV Analysis

The different software tools introduced above are based on different algo-
rithmic design, and as a result show varying performance for detecting par-
ticular types (or aspects) of SVs [94, 95]. In order to improve call performance 
for the full range of SVs, there have been efforts to take an integrated approach 
towards comprehensive SV calling using the different but often complemen-
tary tools. SVMerge, being one of these efforts, integrates SV calling results 
from different callers [96]. It first feeds BAM files into a number of SV callers 
including those introduced above to generate BED files, and then the SV calls 
in the BED files are merged. After computational validation and breakpoint 
refinement by local de novo alignment, a final list of SVs is generated. Other 
efforts that take a similarly integrated approach include Parliament2 [97], 
FusorSV [98], SURVIVOR [99], MetaSV [100], and CNVer [101].

10.4  Annotation of Called Variants

To gain biological insights from identified SNVs, indels, or SVs, annota-
tion of the variants is needed. For example, if an SNV is annotated to be 
nonsynonymous in a gene, it may impair protein function if the affected 
amino acid is located within the active site of the protein. Through exam-
ination of their annotations, called variants can be filtered and prioritized 
for more in- depth analysis. Because of the large number of variants usually 
called from an experiment, an automatic pipeline is usually preferred. To 
meet this demand a number of variant annotation tools have been developed. 
ANNOVAR [102] is one such tool among the most widely used. It takes SNVs, 
indels, and CNVs as input, and as output, it reports their functional impacts 
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and provides significance scores to help with filtering and prioritization. 
Its TABLE_ ANNOVAR script can quickly turn a variant list into an Excel- 
compatible file containing many annotation fields that can help researcher 
evaluate the function importance of the variants. ANNOVAR offers flexi-
bility and extensibility, e.g., it can identify variants located in conserved gen-
omic regions, or find variants that overlap with those from the 1000 genomes 
project or dbSNP. Other widely used variant annotation tools include SnpEff 
[103], VEP (Variant Effect Predictor) [104], UCSC Genome Browser’s Variant 
Annotation Integrator [105], and SeattleSeq [106].

On the back end of these annotation tools are various types of annotation 
databases. These databases provide reference information on what genes 
or regions of the genome they are at (e.g., transcriptional factor binding 
sites, DNase I hypersensitivity sites, or highly conserved regions), what 
functional consequence(s) they might cause based on known phenotype or 
computational inference, whether an identified variant has been observed 
before, how frequently they are observed in different populations if previ-
ously known, whether there is evidence for their connection with a human 
disease (especially relevant for human patient samples), etc. Annotational 
information from these databases is essential for filtering out non- target 
variants, and ranking/ prioritizing the remaining variants for reporting pur-
pose and further analyses. Many of these databases, as well as the detailed 
steps of variant filtering, ranking, and prioritizing, are covered in detail in 
the next chapter.
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11  
Clinical Sequencing and Detection 
of Actionable Variants

Next- generation sequencing has not only altered the landscape of life 
science research, its impact on clinical diagnosis, prognosis, and interven-
tion selection has also become increasingly evident. The launch of precision 
or personalized health initiatives worldwide is a testament to the power of 
NGS in improving human health, and also a key driver for integrating NGS 
into medical practice. From the rapid development of clinical sequencing, it 
is apparent that personal genome information guided medicine is the future 
of medical practice. Compared to research- oriented NGS, clinical sequencing 
is subjected to more regulations as required for other clinical tests of patient 
samples to ensure accurate and reliable results. In the United States, clin-
ical sequencing is mostly regulated by the Food and Drug Administration 
(FDA) and Centers for Medicare & Medicaid Services through the Clinical 
Laboratory Improvement Amendments (CLIA). Many countries around the 
world and international organizations such as ISO have similar regulations.

Diagnosis, prognosis, and treatment of oncologic and pediatric diseases are 
two exemplary areas that have seen great benefits from clinical sequencing. 
As cancer is a disease of the genome, NGS is well suited to unravel tumor 
heterogeneity and classify tumors into different types or subtypes based on 
what genomic variants they possess [1]. Sequencing of various oncological 
gene panels, whole exome, and increasingly whole genome has become 
more and more commonplace, and provided much needed guidance for clin-
ical actions. Tumor mutation burden, an overall index of the total amount 
of nonsynonymous mutations in a genome measured by NGS, serves as a 
good indicator of immunotherapy efficacy [2]. For pediatric patients, espe-
cially those in the neonatal intensive care unit (NICU), speedy diagnosis and 
treatment are essential, which require rapid sequencing and data processing. 
The use of NGS in the NICU setting is a test to its speed, accuracy, and overall 
utility in meeting clinical needs. The development of rapid genome sequen-
cing pipelines, including bioinformatics, has been proven to decrease infant 
morbidity and at the same time lead to cost savings [3].

Often different from a research setting, the immediate goal of clinical sequen-
cing is to identify disease- causing variant(s) based on which a treatment plan 
can be decided. The major challenge to achieve this goal is how to identify the 
causal variant(s) for the primary indication from thousands or even millions 
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of called variants. As focused on in this chapter, this requires a multi- faceted 
approach and corresponding tools to filter, rank, and prioritize the variants. 
This chapter starts with patient sample collection and sequencing approaches. 
After the steps on how to find actionable variants are detailed, the current 
variant classification system based on their pathogenicity is presented. This 
is followed by conduct of clinical review and generation of clinical reports. 
Validation of a bioinformatics pipeline for clinical sequencing is presented at 
the end.

11.1  Clinical Sequencing Data Generation

11.1.1  Patient Sample Collection

For the diagnosis of Mendelian disorders, i.e., those caused by inherited 
mutation(s) in a single gene, various types of patient samples may be used. 
Among the most widely used are peripheral blood (including dried blood 
spots), saliva, buccal swab, etc. For diseases that require identification of som-
atic mutations, such as solid tumors, tissue biopsies collected for pathological 
examinations, such as hematoxylin & eosin staining, immunohistochemistry, 
or fluorescent in situ hybridization, can be used. To detect somatic mutations, 
besides DNA extracted from such pathogenic tissues (or cells), matched 
normal control DNA is also needed. Such control DNA is often prepared 
from peripheral blood for most diseases, including solid tumors. For hema-
tologic malignancies, however, control DNA may come from buccal swab, 
saliva, nail, hair follicle, skin biopsy, etc. In cases where normal control DNA 
is not available, the use of DNA from pathogenic tissues/ cells alone can 
lead to overestimation of somatic mutations [4], and/ or missing of germline 
mutations that may underlie genetic predisposition to other conditions.

Among the most abundant and readily available tissue biopsies are those 
that are chemically fixed with traditional fixatives such as formaldehyde. 
Such fixatives, while preserving tissue morphology for pathological exam-
ination, cause DNA damage ranging from chemical modifications (such as 
formation of adducts, intra-  and inter- strand cross- links, as well as crosslinks 
with proteins), fragmentation, and strand separation [5]. This damage may 
introduce up to 30% artifactual mutation profiles that were not found in the 
original tissue [6]. Therefore, caution must be used when starting with such 
previously fixed archival tissues in order to minimize sequence artifacts [7]. 
Newer, alternative fixatives that have been shown to preserve DNA quality, 
protein antigenicity, and at the same time morphology [5] should be used 
for new collections. If archival formalin- fixed paraffin- embedded (FFPE) 
tissues need to be used, strategies developed to obtain the best NGS sample 
quality possible, including deparaffinization and FFPE- compatible nucleic 
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acid extraction [8], can help decrease the frequency of such false- positive 
discoveries.

Other surgical biopsy materials, including fine needle aspiration and core 
needle biopsy, are also regularly used to sample discrete site(s) of diseased 
tissue. A potential pitfall here is that they may not be representative of the 
remaining, unsampled parts of the tissue. Some diseases, with cancer being 
the best known, are characterized by clonality and cellular heterogeneity. 
For these diseases, the sampling with tissue biopsies may not fully reveal 
the entire set of mutations. Also because of its invasiveness, obtaining tissue 
biopsies is not suitable for sample collection at regular intervals for the pur-
pose of tracking disease progression and monitoring treatment outcome. 
Liquid biopsy represents a more recently developed sample type that is 
less invasive and therefore better suited for real- time, longitudinal clinical 
tracking and monitoring. Instead of sampling diseased tissue directly, liquid 
biopsy collects cells or DNA that are shed from diseased tissue into the 
blood or other bodily fluid (such as urine). For example, circulating tumor 
cells (CTCs), or circulating cell- free DNA (cfDNA), are increasingly used as 
input. Because the amount of cfDNA in the plasma or other bodily fluid 
is rather low, of which circulating tumor DNA (ctDNA) only constitutes a 
minor fraction (<0.1– 10%), it is crucial to use a cfDNA extraction method 
that provides high efficiency and recovery [9, 10]. While cancer patients usu-
ally have more cfDNA than healthy individuals [11], the extraction yield 
is generally within the range from below 10 ng to 100 ng cfDNA per mL 
plasma (usually below 20 ng). The fragment size of cfDNA is mostly within 
the range of 160– 200 bp [12]. Side- by- side comparisons have demonstrated 
high levels of concordance on the detection of mutations between cfDNA 
and matched tissue biopsies [11, 13]. Because of its low invasiveness and 
high accuracy, liquid biopsy has been used for multiple clinical applications, 
including detection of minimal residual disease for patients that are in remis-
sion, or early screening of healthy individuals before a disease manifests 
itself [14].

Prior to sample collection, patients need to counseled and informed con-
sent must be obtained. Besides the affected individual (proband), often 
the proband’s parents and/ or other family members may also need to be 
sequenced. This is especially required to determine whether a mutation is 
passed on from parents or formed de novo, for which samples are collected 
from the proband and their biological parents for trio sequencing. During 
counseling, the purpose of performing genetic testing and the types of results 
anticipated are conveyed to the patient and their family members. In addition, 
the patient and family members are also informed of the test’s limitations and 
potential risks. For example, the test may not reveal a genetic link, the inter-
pretation may involve uncertainty, or the findings may be distressing instead 
of reassuring. Further, interpretation of the results may change over time, 
and the test results may have implications to other untested family members 
and their lives.
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Post sample collection, to avoid potential sample mix- up, patient sample 
transfer, storage, and sequencing library preparation (detailed below) should 
be systematically tracked. This tracking can be achieved through performing 
routine sample genotyping using microarray or STR (Short Tandem Repeats) 
marker profiling, and subsequently comparing the genotyping result to that 
directly generated from the sequencing data. When proband- parent trios as 
well as other family members are sequenced, parentage and relatedness need 
to be checked using standard kinship determination methods [15].

11.1.2  Library Preparation and Sequencing Approaches

What type of NGS library to make from the DNA extracted from collected 
patient samples, and how to make them to best inform clinical decision 
making, require consideration of multiple factors. These factors include 
patient sample type, quality and quantity of the extracted DNA, genomic 
coverage needed, type(s) of variant to be detected, and limit of detection 
(LOD) to be achieved. For example, if liquid biopsy is used as input, only 
limited quantity of target DNA is available, which requires a sequencing 
library preparation procedure with high sensitivity. If archival FFPE tissue 
is used, the quality of the extracted DNA might be low and needs to be 
evaluated first using fragment analysis and/ or quantitative PCR. If low- 
quality FFPE- derived DNA sample has to be used, more input DNA and/ or 
increased PCR cycle number are usually needed for library prep. To mitigate 
the effects of fixative- caused DNA damage, DNA repair may be conducted 
prior to library making with the use of uracil- DNA glycosylase, or a mixture 
of multiple DNA repair enzymes.

Depending on the quantity of starting DNA, the library preparatory pro-
cedure may involve PCR amplification or be PCR- free. A PCR- free procedure 
can avoid amplification- caused artifacts, including PCR stochasticity, poly-
merase errors, and amplification biases (such as different amplification effi-
ciencies due to variation in fragment length and GC content), but does require 
larger amounts of DNA to start, e.g., 1– 2 µg. For lower input quantity, e.g., at 
the ng or even pg level, PCR amplification is needed to boost library yield. 
With continuous advancements in NGS library construction technology, gen-
erating enough library molecules from ultra- low amounts of DNA, such as 
those extracted from very limited patient biopsy materials or liquid biopsy, 
is no longer a major challenge. With commercial library prep kits currently 
available (as of 2022), libraries can be prepared from as little as 10 pg of DNA. 
With whole genome amplification using approaches such as multiple dis-
placement amplification, libraries can even be prepared from a single cell that 
has only two copies of genomic DNA (~6– 7 pg) [16].

Depending on genomic coverage needed, sequencing libraries for whole 
genome, exome, or selected target genes (gene panel) may be prepared. 
Whole genome sequencing enables generation of the most comprehensive 
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set of patient genetic variant information, encompassing coding and non- 
coding single nucleotide variants, indels, copy number variants, and struc-
tural variants. Exome sequencing, in comparison, focuses on detecting SNVs 
and small indels in coding regions, while it also allows detection of CNVs 
and SVs although at reduced power. With the continuous drop in sequen-
cing cost, there is an ongoing debate on the use of whole genome vs. exome 
sequencing for patient sample sequencing. While WGS generates the most 
comprehensive variant information for a patient, it requires significantly 
more data storage and processing capabilities, and a significant number of 
identified variants (especially those located in non-coding regions) is cur-
rently uninterpretable. Exome sequencing needs significantly less sequen-
cing power and informatics resources, generates more interpretable SNV 
and indel information, but this comes at the cost of much reduced power 
for CNV and SV detection. Targeted gene panel sequencing uses a different 
approach interrogating only genes that are known to be associated with a 
disease of interest. By focusing on selected genes, the amount of sequen-
cing required is further reduced and, as a result, high sequencing depth can 
be readily accomplished thereby leading to increased detection sensitivity 
and specificity. This is particularly helpful for making heterozygous calls, 
detecting somatic mutations at low frequency, and analyzing heteroplasmic 
mitochondrial DNA variants for diseases linked to dysfunctional mitochon-
drial metabolism. Because only disease- associated genes are analyzed, the 
demand on bioinformatics power is further reduced, and the result is more 
likely to be interpretable. Among the widely available disease- specific gene 
panels are those built for precision oncology, including the Memorial Sloan 
Kettering– Integrated Mutation Profiling of Actionable Cancer Targets (MSK- 
IMPACT) and the FoundationOne CDx (F1CDx) panels, both of which are 
approved by the FDA. These panels use hybridization probes to capture their 
gene targets and are designed to measure SNVs, indels, CNVs, and SVs in 
the genes they target, as well as microsatellite instability (MSI) and tumor 
mutation burden (TMB).

Targeted gene panel sequencing is particularly suitable for detecting 
low- frequency variant alleles for demanding applications such as cancer 
screening, minimal residual disease assessment, prenatal diagnostics, and 
infectious agent detection. To reach the low levels of LOD needed in these 
applications (e.g., variant allele frequency or VAF <5%), sequencing needs to 
be performed at greater depth than that needed to detect germline mutations, 
or somatic mutations from tissues enriched with pathogenic cells. For 
example, based on calculation using the binomial distribution, a sequencing 
depth of 1,650× is needed to detect mutations at ≥3% frequency with at least 
30 mutation- supporting reads [17]. In comparison, for detection of germline 
mutations using WGS, the typical sequencing depth is 30×. To detect som-
atic mutations from tissues that contain at least 20% tumor cells using WGS, 
a depth of 100× is needed along with at least 10 variant- supporting reads, 
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with the matched control DNA sequenced to ≥30× [18]. Sequencing depth is 
largely determined by the accuracy of sequencing (e.g., 0.1– 1% of error rate on 
Illumina sequencers, refer to Chapter 4 for more details), and other molecular 
steps such as PCR amplification during library preparation. To reach even 
lower LOD (e.g., VAF <1%), strategies to improve NGS accuracy and reduce 
PCR errors have been deployed, which include employment of signal- to- 
noise correction methodologies and single- molecule consensus sequencing 
schemes [19]. One of such strategies is called Duplex Sequencing built on 
the use of molecular barcoding. Molecular barcoding utilizes the so- called 
unique molecular identifiers (or UMIs) to label single molecules prior to PCR 
amplification. From sequences generated from PCR duplicates that carry the 
same UMI, i.e., those derived from the same molecule, consensus sequence 
is reached that corrects errors introduced during amplification (except the 
first cycle) as well as random sequencing errors. In Duplex Sequencing, the 
two strands of the original DNA duplex generate two separate consensus 
sequences, and comparing them leads to generation of duplex consensus 
sequence, further removing errors introduced during the first PCR cycle. 
With Duplex Sequencing, somatic mutations that occur at a frequency of 10- 5 
or lower can be detected with high confidence [20]. Because it relies on single 
molecule consensus sequence generation through sequencing multiple amp-
lified copies of the same original molecule in a strand- specific fashion and 
then later collapsing them, this technique requires a lot more reads than con-
ventional NGS to achieve lower LOD levels.

For QC/ QA during library preparation and sequencing, sample and 
data quality needs to be checked at multiple steps. Prior to proceeding to 
library preparation, input DNA quality and quantity need to be assessed 
against pre- defined criteria, which may vary depending on the intended 
detection targets of the sequencing assay. For example, for detection of 
structural variants, which needs long- range genomic information, FFPE 
samples are not recommended even with the use of remedial measures 
mentioned above. Once an appropriate library preparatory workflow is 
chosen, it needs to be standardized to ensure consistent performance, 
and multiple QC/ QA steps should be specified to monitor results of the 
workflow at key junctures, eventually library yield and fragment size 
range. To help assess workflow performance, reference DNA samples with 
known variants can be used as positive control. Such reference samples 
include well- characterized reference DNA from the Genome in a Bottle 
(GIAB) consortium supported by the U.S. National Institute of Standards 
and Technology [21], engineered DNA that contains clinically relevant 
synthetic variants at pre- defined allele frequencies (available from com-
mercial sources), and clinical samples that have been analyzed by another 
CLIA- accredited NGS lab. Sequencing run quality metrics, such as the per-
centage of reads over Q30 and overall error rate, need to be monitored and 
must pass a pre- defined quality threshold.
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11.2  Read Mapping and Variant Calling

Identification of disease- causing variants from sequencing data is a multi- step 
process. Chapters 5 and 10 cover many of the upstream steps in this process, 
including read mapping and variant calling. As these steps also apply to clin-
ical samples, they are not to be repeated here. In the clinical setting, how-
ever, speed and turnaround time are often of essence for clinicians to make 
diagnosis, prognosis, and treatment decisions. Various hardware or algo-
rithmic implementation strategies have been devised to speed up the read 
mapping and variant calling process. These strategies include: (1) deployment 
of specialized hardware, such as field programmable gate arrays (FPGAs), as 
used by the DRAGEN (Dynamic Read Analysis for GENomics) platform for 
significantly accelerated mapping and variant calling [22]; (2) optimization 
for speed of highly efficient workflows such as Genalice [23] and Sentieon 
[24]; (3) real- time [25] or pulsed [26] read mapping and variant calling 
while sequencing is still underway; or (4) employment of a sequencing tech-
nology that has concurrent analysis capabilities while sequencing, like Oxford 
Nanopore Technology. With these strategies, it has become a reality to receive 
provisional diagnosis and prognosis from clinical sample collection within 
20 hours [27]. After mapping of reads to the reference genome, median (or 
mean) depth of coverage, uniformity of coverage, and on- target capture rate 
(for exome and gene panel sequencing) need to be examined and compared to 
pre- defined QC threshold. Next the called variants are subjected to an exten-
sive process of filtering and annotation to produce a short list of actionable 
variants, which as detailed next is the major focus of this chapter.

11.3  Variant Filtering

The procedure from a long list of called variants to a clinical testing report  
(Figure 11.1) is the major focus of this chapter. Among the large number  
of called variants, most are benign and do not have an impact on human  
health. For example, a typical WGS of an individual’s germline DNA usually 
identifies 5 million or more variants, of which only 30,000 or more are in  
protein- coding regions. Of these variants, ~10,000 represent missense amino  
acid substitutions, aberrant splicing sites, or small indels [28]. These variants  
are further narrowed down to produce a short list of clinically relevant and  
actionable variants, to assist clinicians in disease diagnosis, prognosis, and  
treatment. This multi- step process requires a multitude of tools and databases  
to screen the called variants based on their frequency, functional consequence,  
known linkage to human disease(s), and match of clinical phenotype, as well  
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as mode of inheritance. Besides these in silico variant filtering steps, wet lab  
strategies such as pedigree sequencing can also help to reliably and signifi-
cantly reduce the number of potential candidate variants.

Presented below are major steps of the variant filtering workflow. Prior to 
performing these steps, preliminary variant screening is needed to filter out 
variants that do not pass a predefined variant call quality threshold. While 
the following filtering steps are usually performed on all variants that pass 
the threshold, these steps can also be applied to a pre- selected list of genes 
that are known to be associated with the phenotype/ disease of the patient, 
for the purpose of minimizing incidental findings and reducing analytic 
burden. Each of the filtering steps detailed below focuses on one relevant 
aspect of a variant to its potential role in underlying the disease or phenotype 

Called Variants

Variant Filtering
- Frequency

- Functional Impact
- Known Evidence
- Phenotype Match
- Inheritance Mode

Variant Pathogenicity
Classification

Expert Review

Variant Validation

Periodic Report Updates
and Patient Reconact

Testing Report Generation

Variant Ranking
&  Prioritization

FIGURE 11.1
Clinical sequencing general data analytic workflow starting from variant calls.
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observed in the patient. In combination, the multi- faceted filtering provided 
by these steps will become the basis for generating a list of top candidates for 
additional vetting toward clinical action.

11.3.1  Frequency of Occurrence

Many called variants are too common to be consistent with the low incidence 
of a genetic disease. To identify disease- causing variant(s), such common 
variants need to be filtered out. While the threshold for occurrence frequency 
can be set at different levels, an MAF (minor allele frequency) of less than 1% 
is often used. To determine the occurrence frequency of a called variant in 
the general population, large databases of human genetic variations, such as 
gnomAD [29], the 1000 Genomes Project (1KGP) database [30], TOPMed [31], 
UK10K [32], and NHLBI Exome Sequencing Project (ESP) [33], are often used 
(Table 11.1, Page 249). These databases contain mostly SNVs and short indels. 
Some of these databases, such as gnomAD and 1KGP, also contain common 
structural variants, but most SVs are catalogued by specific databases including 
the Database of Genomic Variants (DGV) [34], Database of Chromosomal 
Imbalance and Phenotype in Humans using Ensembl Resources (DECIPHER) 
[35], and dbVar [36]. It should be noted that variant allele frequency is often 
population specific. For example, the minor allele of an SNV in the EML6 gene, 
rs17046386 (A>G), is not rare in African populations, but rare in non- African 
populations. Therefore, the ancestral background of the affected individual 
should be taken into consideration in this step.

11.3.2  Functional Consequence

Variants that change amino acid residues in the active site of a protein may 
significantly affect its function. Variants located at other conservative base 
positions, such as those that affect gene transcript splicing or gene transcrip-
tion initiation, may also exert significant effects on gene product. On the other 
hand, functional significance of variants that fall into intergenic regions are 
often hard to assess. To sort variants based on their genomic locations, e.g., 
those in protein- coding, regulatory (e.g., intron, splicing site, 5’ or 3’ UTR, 
promoter, etc.), or intergenic non- coding regions, variant annotation tools 
such as ANNOVAR, VEP, or VariantAnnotation [37] can be used. Intergenic 
or non- coding variants are usually filtered out, unless they are predicted to 
have regulatory functions such as affecting gene splicing. To predict potential 
variant pathogenicity caused by altered splicing, SpliceAI [38], MaxEntScan 
[39], and NNSplice [40] are among the best performing methods, based on 
currently available benchmarking studies [41– 44]. For amino acid- altering 
variants, a variety of tools are available to predict their potential impacts to 
help determine whether they should be filtered out. Such tools, based on their 
underlying algorithm, can be divided into three groups: function prediction, 
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evolutionary conservation, and ensemble. Function prediction methods, typ-
ically based on biochemical properties of amino acids, include PolyPhen [45], 
PROVEAN [46], SIFT [47], MutationTaster [48], MutationAssessor [49], VEST 
[50], FATHMM [51], MutPred [52], and LRT [53]. Methods that are based 
on evolutionary sequence conservation include phyloP [54], phastCons 
[54], GERP [55], and SiPhy [56]. Those that employ the ensemble approach 
aggregate and integrate information about a variant from different sources 
for variant prioritization to help identify disease- causing genes. Examples 
of these methods are CADD [57], M- CAP [58], MetaRNN [59], REVEL [60], 
Eigen [61], and VAAST [62].

11.3.3  Existing Evidence of Relationship to Human Disease

There are multiple community efforts to catalog the relationship of human 
diseases to individual genes and the variants they harbor. For example, 
ClinVar [63], Human Gene Mutation Database (HGMD) [64], and Online 
Mendelian Inheritance in Man (OMIM) [65] are databases that aggregate 
genes/ variants and their relationship to human health. Besides these com-
prehensive databases, there are also efforts to collect variants as they relate to 
particular classes of diseases. For example, COSMIC (Catalogue Of Somatic 
Mutations In Cancer) [66], National Cancer Institute’s GDC (Genomic Data 
Commons) [67], and American Association for Cancer Research (AACR)’s 
GENIE (Genomics Evidence Neoplasia Information Exchange) [68], catalog 
variants that appear in various cancers. Among variants identified in a 
patient, if certain variant(s) have already been cataloged by a relevant data-
base, the chance of the variant(s) bearing a relationship to the patient’s dis-
ease becomes higher. Most of these databases can be queried through web 
interface providing user- friendliness and most up- to- date information. For 
efficiency and consistency, the variant- disease relationship contained in these 
databases can also be accessed through the use of Application Programming 
Interface (API), or downloaded for local deployment.

11.3.4  Clinical Phenotype Match

Identification of actionable variants starts even before sequencing, as a 
patient’s clinical phenotype can greatly aid variant filtering. To standardize 
clinical phenotyping, the Human Phenotype Ontology (HPO) project provides 
structured vocabulary to describe phenotypic abnormalities manifested in 
human diseases, thereby enabling integrated analysis of semantic pheno-
typic information with NGS genotypic data. Once appropriate HPO terms are 
identified to capture the clinical phenotype of a patient, a number of tools can 
then be used to filter variants based on such HPO terms. These tools include 
Exomiser [69], eXtasy [70], Genomiser [71], Phenolyzer [53], Phenomizer [72], 
PhenIX [28], Phevor [73], Phen- Gen [74], VarElect [75], and DeepPVP [76]. 
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These tools draw on current knowledge of the relationships between dis-
ease phenotypes and genetic variants to rank variants from a patient. Besides 
using highly specific phenotypic terms, sometimes it also helps to expand 
the search to include synonyms or more general terms at higher levels up 
the Disease Ontology (DO) hierarchy. While the phenotype –  genetic variant 
relationship is typically extracted from human disease databases such as 
OMIM, Orphanet, DECIPHER, and ClinVar, they can also be extracted from 
databases of model organisms, such as MGI (Mouse Genome Informatics) and 
ZFIN (Zebrafish Information Network). Phenotypic information extracted 
from these databases can be translated to human diseases using tools such as 
PhenomeNET [77] and PHIVE (for mouse) or hiPHIVE (human/ interaction 
PHIVE, for both mouse and zebrafish), both as parts of Exomiser [69].

11.3.5  Mode of Inheritance

Family medical history, if available, can also greatly aid the variant filtering 
process. For a Mendelian disorder, the five basic modes of inheritance are 
autosomal dominant, autosomal recessive, sex- linked dominant, sex- linked 
recessive, and mitochondrial. Traditional pedigree analysis can lead to 
revealing of the mode of inheritance of such a disorder. From variants called 
from a proband and their pedigree (most commonly trio sequencing), those 
that do not conform to the inheritance pattern are filtered out.

11.4  Variant Ranking and Prioritization

Using the multiple filters above, to eventually get down to a short list of clin-
ically actionable variants for reporting, filtered variants need to be ranked 
and prioritized. To speed up this process, systems are needed to integrate the 
large number of tools and databases above. Publicly available open- source 
systems, as well as commercially developed proprietary systems, are avail-
able to meet this need. Examples of publicly available tools include VarFish 
[83], KGGSeq [84], MutationTaster2021 [48], VAAST Variant Prioritizer (VVP) 
[85], VaRank [86], Variant Ranker [87], and Variant Prioritization Ordering 
Tool (VPOT) [88]. Using as input VCF files and often patient’s clinical pheno-
type, these tools offer the capabilities to annotate, filter, rank, and prioritize 
the imported variants. Many of the tools offer highly interactive filtering 
affording users the flexibility to use different permutations of the various 
filters on allele frequency, functional consequence, phenotypic association, 
existing disease connection, and inheritance pattern. Some of these tools, 
such as KGGSeq, MutationTaster2021, and Variant Ranker, also allow users 
to identify variants in genes associated with a particular biological pathway, 
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Gene Ontology term, gene network, or displaying a particular expression pro-
file such as tissue specificity. To facilitate variants ranking, some of the tools, 
exemplified by VaRank, Variant Ranker, and VPOT, generate an aggregated 
score from the various scores computed by many of the tools summarized 
on Table 11.1. Each of these scores provides information on one aspect of a 
variant’s potential contribution to disease development, such as functional 
consequence (e.g., from PolyPhen), sequence conservation (e.g., phyloP), 
splicing site alteration (e.g., MaxEntScan), etc. Since the contribution of each 
of these aspects to disease outcome may not be equal, different weights can 
be applied to the different scores in order to produce a single aggregated 
score to serve as an index of the variant’s overall pathogenicity. VPOT, as an 
example, allows application of user defined weighting factors to each score 
to calculate a final, aggregated score for variant ranking and prioritization.

11.5  Classification of Variants Based on Pathogenicity

11.5.1  Classification of Germline Variants

In terms of the potential role they play in disease development, ranked 
variants can be anywhere in a continuous range from benign to patho-
genic. To proceed to clinical reporting, they need to be classified based on 
existing evidence of their pathogenicity. In the United States, using the 
current joint guidelines from the American College of Medical Genetics 
and Genomics (ACMG) and the Association for Molecular Pathology 
(AMP), germline variants for Mendelian diseases are classified using 
a five- tier system. This system places variants into one of the following 
tiers: (1) Pathogenic: directly contributing to the development of the dis-
ease; (2) Likely Pathogenic: highly possible (with over 90% certainty) to 
cause the disease; (3) Uncertain Significance: currently available data and 
literature being inconclusive to declare the pathogenicity of the variant; 
(4) Likely Benign: high possible (with over 90% certainty) that the variant 
is not the cause of the disease; and (5) Benign: not disease causing.

To standardize classification of variants into these five tiers, specific 
evidence- based criteria have been established. For pathogenic variants, the 
evidence of pathogenicity is divided into four levels: (1) Very Strong (coded 
as PVS1) –  these are null variants (nonsense, frameshift, canonical + / – 1 or 2 
splicing sites, initiation codon, mono-  or multi- exon deletion, etc.) in a gene 
of which loss of function is established as a known mechanism of disease; 
(2) Strong (PS) –  ranges from missense variants causing the same amino 
acid alteration as a pathogenic variant established earlier, to variants whose 
prevalence level is significantly higher in affected individuals than controls; 
(3) Moderate (PM) –  encompasses variants from those located in a gene’s hot 
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TABLE 11.1

Major Tools and Databases for Filtering Variants Using Various Criteria

Name Full Name Description Reference

Variant Allele Frequency Databases

1KGP 1000 Genomes Project Contains genomes of thousands of individuals from dozens of 
populations, reconstructed with low- coverage WGS, deep WES, and 
dense array genotyping

[30]

gnomAD Genome Aggregation Database Aggregation of harmonized exome and genome sequencing data from a 
variety of large- scale sequencing projects

[29]

UK10K UK10,000 Genomes/ Exomes Project Includes WGS data from ~4,000 healthy phenotyped individuals, and 
WES data from ~6,000 individuals with rare disease, severe obesity, and 
neurodevelopmental disorders

[32]

TOPMed Trans- Omics for Precision Medicine 
(Supported by NIH/ NHLBI)

WGS and other - omics data collected for heart, lung, blood, and sleep 
disorders from large and diverse cohorts, data available via dbGaP

[31]

ESP Exome Sequencing Project 
(Supported by NIH/ NHLBI)

WES data collected to discover variants associated with heart, lung, and 
blood diseases or traits, available via dbGaP

[33]

Predicted Functional Consequence (Missense Variants)

PolyPhen Polymorphism Phenotyping Predicts possible effect of amino acid substitutions on protein function 
based on structural attributes and conservation profiles. Scores of 0.0– 
0.15 are thought as benign while 0.15– 1.0 as damaging

[45]

SIFT Sorting Intolerant From Tolerant Classifies an amino acid coding change as tolerated or deleterious 
based on protein sequence conservation captured into a SIFT score (0– 
0.05: deleterious; 0.05– 1.0: tolerated)

[47]

PROVEAN Protein Variation Effect Analyzer Computes a pairwise sequence alignment score to quantify the impact of 
a variant on protein function, with low score representing deleterious 
and high score neutral effect

[46]

(continued)
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Name Full Name Description Reference

MutationTaster NA Deploys machine learning to predict whether a coding or non- coding 
variant is deleterious, in part based on evolutionary conservation, 
variant frequency, and patient phenotype

[48]

MutationAssessor NA Derives functional impact score for amino acid residue changes, based on 
sequence conservation at the residue positions determined by aligning 
families and subfamilies of sequence homologs within and between 
species

[49]

VEST Variant Effect Scoring Tool Applies a Random Forest classifier to 86 variant features to generate 
a pathogenicity score and an associated p- value to determine the 
confidence of calling a variant pathogenic

[50]

FATHMM Functional Analysis Through 
Hidden Markov Models

Predicts functional effects of missense variants by integrating protein 
sequence conservation with pathogenicity weights, which represent the 
general tolerance to mutations of proteins and their domains

[51]

LRT Likelihood Ratio Test Identifies deleterious mutations using the likelihood ratio test, based on 
the null model that each codon evolves neutrally with no difference in 
the rate of missense to synonymous substitution

[53]

MutPred NA Quantifies pathogenicity of amino acid substitutions, and models their 
impacts on protein structure and function

[52]

Evolutionary Conservation

phyloP Phylogenetic P- value Measures evolutionary conservation at an aligned position against a 
model of neutral drift. Positive p- values indicate conservation while 
negative p- values fast evolution

[54]

phastCons NA Identifies conserved sequences through fitting a phylogenetic hidden 
Markov model to multiple sequence alignment data

[54]

GERP Genomic Evolutionary Rate 
Profiling

Uses maximum likelihood evolutionary rate estimation to identify 
evolutionarily constrained sequence elements through multiple 
alignments

[78]

SiPhy SIte- specific
PHYlogenetic analysis

Predicts constrained sequence elements using a hidden Markov model 
based on the pattern of base substitutions from sequence alignments

[56]

Ensemble Methods

CADD Combined Annotation Dependent 
Depletion

Integrates diverse annotations about a variant, including evolutionary 
constraint, functional prediction, epigenetic marking, etc., into a single 
score to measure deleteriousness

[57]

M- CAP Mendelian Clinically Applicable 
Pathogenicity

Uses a gradient boosting tree classifier to separate pathogenic and benign 
variants using both existing pathogenicity scores (e.g., CADD, SIFT, and 
PolyPhen) and direct measures of sequence conservation

[58]

MetaRNN NA Employs a recurrent neural network model to integrate major existing 
variant annotation scores, sequence conservation, and allele frequency 
to generate a meta- score for variant pathogenicity

[59]

REVEL Rare Exome Variant Ensemble 
Learner

Uses Random Forest to predict pathogenicity of missense variants based 
on features from an ensemble of existing methods

[60]

Eigen NA Estimates predictive accuracy of various existing functional annotations 
of a variant, and uses such estimates to derive an aggregate functional 
score

[61]

VAAST Variant Annotation, Analysis and 
Search Tool

Incorporates information on amino acid substitution severity, variant 
frequency, and phylogenetic conservation for variant prioritization

[62]

Predicted Splicing Alterations

SpliceAI NA Employs deep neural network to predict variants that cause cryptic 
splicing, through modeling of long- range genomic sequence information 
around the variant site

[38]

MaxEntScan Maximum Entropy Scan Generates splice prediction scores through modeling of short sequence 
motifs that accounts for dependencies between non- adjacent as well as 
adjacent positions, based on maximum entropy distribution

[39]

NNSplice Splice Site Prediction by Neural 
Network

Uses neural network to predict splice site through exploiting pairwise 
correlations between adjacent nucleotides

[40]

TABLE 11.1 (Continued)
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MutationTaster NA Deploys machine learning to predict whether a coding or non- coding 
variant is deleterious, in part based on evolutionary conservation, 
variant frequency, and patient phenotype

[48]

MutationAssessor NA Derives functional impact score for amino acid residue changes, based on 
sequence conservation at the residue positions determined by aligning 
families and subfamilies of sequence homologs within and between 
species

[49]

VEST Variant Effect Scoring Tool Applies a Random Forest classifier to 86 variant features to generate 
a pathogenicity score and an associated p- value to determine the 
confidence of calling a variant pathogenic

[50]

FATHMM Functional Analysis Through 
Hidden Markov Models

Predicts functional effects of missense variants by integrating protein 
sequence conservation with pathogenicity weights, which represent the 
general tolerance to mutations of proteins and their domains

[51]

LRT Likelihood Ratio Test Identifies deleterious mutations using the likelihood ratio test, based on 
the null model that each codon evolves neutrally with no difference in 
the rate of missense to synonymous substitution

[53]

MutPred NA Quantifies pathogenicity of amino acid substitutions, and models their 
impacts on protein structure and function

[52]

Evolutionary Conservation

phyloP Phylogenetic P- value Measures evolutionary conservation at an aligned position against a 
model of neutral drift. Positive p- values indicate conservation while 
negative p- values fast evolution

[54]

phastCons NA Identifies conserved sequences through fitting a phylogenetic hidden 
Markov model to multiple sequence alignment data

[54]

GERP Genomic Evolutionary Rate 
Profiling

Uses maximum likelihood evolutionary rate estimation to identify 
evolutionarily constrained sequence elements through multiple 
alignments

[78]

SiPhy SIte- specific
PHYlogenetic analysis

Predicts constrained sequence elements using a hidden Markov model 
based on the pattern of base substitutions from sequence alignments

[56]

Ensemble Methods

CADD Combined Annotation Dependent 
Depletion

Integrates diverse annotations about a variant, including evolutionary 
constraint, functional prediction, epigenetic marking, etc., into a single 
score to measure deleteriousness

[57]

M- CAP Mendelian Clinically Applicable 
Pathogenicity

Uses a gradient boosting tree classifier to separate pathogenic and benign 
variants using both existing pathogenicity scores (e.g., CADD, SIFT, and 
PolyPhen) and direct measures of sequence conservation

[58]

MetaRNN NA Employs a recurrent neural network model to integrate major existing 
variant annotation scores, sequence conservation, and allele frequency 
to generate a meta- score for variant pathogenicity

[59]

REVEL Rare Exome Variant Ensemble 
Learner

Uses Random Forest to predict pathogenicity of missense variants based 
on features from an ensemble of existing methods

[60]

Eigen NA Estimates predictive accuracy of various existing functional annotations 
of a variant, and uses such estimates to derive an aggregate functional 
score

[61]

VAAST Variant Annotation, Analysis and 
Search Tool

Incorporates information on amino acid substitution severity, variant 
frequency, and phylogenetic conservation for variant prioritization

[62]

Predicted Splicing Alterations

SpliceAI NA Employs deep neural network to predict variants that cause cryptic 
splicing, through modeling of long- range genomic sequence information 
around the variant site

[38]

MaxEntScan Maximum Entropy Scan Generates splice prediction scores through modeling of short sequence 
motifs that accounts for dependencies between non- adjacent as well as 
adjacent positions, based on maximum entropy distribution

[39]

NNSplice Splice Site Prediction by Neural 
Network

Uses neural network to predict splice site through exploiting pairwise 
correlations between adjacent nucleotides

[40]
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Databases of Variants with Known Disease Associations

ClinVar NA Public database maintained by NCBI that contains both germline and 
somatic variants in the nuclear and mitochondrial genomes, and their 
relationships to human diseases and phenotypes

[79]

COSMIC Catalogue Of Somatic Mutations In 
Cancer

Expert curated database on the effects of somatic mutations across human 
cancers

[66]

OMIM Online Mendelian Inheritance in 
Man

Compendium of human genes and genetic disorders, with curated 
descriptions of genes, phenotypes, and their relationships in a 
structured free- text format

[65]

HGMD Human Gene Mutation Database Collates published germline mutations in nuclear genes and their 
relationships to inherited human diseases

[64]

DGV Database of Genomic Variants Provides a curated catalog of genomic structural variants in health 
controls

[34]

DECIPHER Database of Chromosomal 
Imbalance and Phenotype in 
Humans Using Ensembl Resources

Repository of CNVs and other genomic variants associated with disease 
phenotypes, to aid in finding pathogenic variants in patients of rare 
genetic disorders

[80]

Phenotype Match

Exomiser NA Starts with phenotypes presented in HPO terms and a VCF file from 
WES/ WGS data, uses a Random Forest model to find likely causative 
variants

[81]

PHIVE PHenotypic Interpretation of 
Variants in Exomes

Conducts cross- species phenotype matching and calculates phenotypic 
similarity between human diseases and animal models. Part of Exomiser

[69]

Phenolyzer Phenotype Based Gene Analyzer Prioritizes disease genes based on disease/ phenotype information 
entered as free text

[82]

Phenomizer NA Provides a semantic similarity search algorithm to statistically match a 
patient’s phenotypes to diseases. Also used by other tools such as Phen- 
Gen and PhenIX

[72]

Phevor NA Uses as input a list of variants generated from a variant ranking tool, 
reprioritizes the variants based on existing knowledge in multiple 
biomedical ontologies of the affected genes, patient phenotype, and 
human diseases

[73]

PhenIX Phenotypic Interpretation of 
eXomes

Ranks variants in known disease genes based on similarity of patient 
phenotypes to phenotypes associated with the disease genes

[28]

eXtasy NA Uses a Random Forest classifier to rank missense variants based 
on patient phenotypes, predicted variant deleteriousness and 
haploinsufficiency

[70]

Phen- Gen NA Combines patient phenotypic and variant prediction data within a 
Bayesian framework to locate causative variants

[74]

DeepPVP Deep PhenomeNET Variant 
Predictor

Identifies likely causative variants based on phenotype match using a 
deep neural network model

[76]
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Databases of Variants with Known Disease Associations

ClinVar NA Public database maintained by NCBI that contains both germline and 
somatic variants in the nuclear and mitochondrial genomes, and their 
relationships to human diseases and phenotypes

[79]

COSMIC Catalogue Of Somatic Mutations In 
Cancer

Expert curated database on the effects of somatic mutations across human 
cancers

[66]

OMIM Online Mendelian Inheritance in 
Man

Compendium of human genes and genetic disorders, with curated 
descriptions of genes, phenotypes, and their relationships in a 
structured free- text format

[65]

HGMD Human Gene Mutation Database Collates published germline mutations in nuclear genes and their 
relationships to inherited human diseases

[64]

DGV Database of Genomic Variants Provides a curated catalog of genomic structural variants in health 
controls

[34]

DECIPHER Database of Chromosomal 
Imbalance and Phenotype in 
Humans Using Ensembl Resources

Repository of CNVs and other genomic variants associated with disease 
phenotypes, to aid in finding pathogenic variants in patients of rare 
genetic disorders

[80]

Phenotype Match

Exomiser NA Starts with phenotypes presented in HPO terms and a VCF file from 
WES/ WGS data, uses a Random Forest model to find likely causative 
variants

[81]

PHIVE PHenotypic Interpretation of 
Variants in Exomes

Conducts cross- species phenotype matching and calculates phenotypic 
similarity between human diseases and animal models. Part of Exomiser

[69]

Phenolyzer Phenotype Based Gene Analyzer Prioritizes disease genes based on disease/ phenotype information 
entered as free text

[82]

Phenomizer NA Provides a semantic similarity search algorithm to statistically match a 
patient’s phenotypes to diseases. Also used by other tools such as Phen- 
Gen and PhenIX

[72]

Phevor NA Uses as input a list of variants generated from a variant ranking tool, 
reprioritizes the variants based on existing knowledge in multiple 
biomedical ontologies of the affected genes, patient phenotype, and 
human diseases

[73]

PhenIX Phenotypic Interpretation of 
eXomes

Ranks variants in known disease genes based on similarity of patient 
phenotypes to phenotypes associated with the disease genes

[28]

eXtasy NA Uses a Random Forest classifier to rank missense variants based 
on patient phenotypes, predicted variant deleteriousness and 
haploinsufficiency

[70]

Phen- Gen NA Combines patient phenotypic and variant prediction data within a 
Bayesian framework to locate causative variants

[74]

DeepPVP Deep PhenomeNET Variant 
Predictor

Identifies likely causative variants based on phenotype match using a 
deep neural network model

[76]
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mutation spot affecting key functional domain of the coded protein, to those 
presumed to be de novo; and (4) Supporting (PP) –  covers from those that 
show co- segregation with disease in multiple members of the affected family 
in a gene known to cause the disease, to those that are called pathogenic by a 
reputable source but with no available evidence.

For benign variants, the evidence of benign impact is divided into three 
levels: (1) Stand- Alone (coded as BA1) –  this level contains variants with 
allele frequency above 5% in ESP, 1KGP, or gnomAD; (2) Strong (BS) –  covers 
from those with allele frequency higher than expected for the disease to those 
lacking segregation in the affected family; and (3) Supporting (BP) –  includes 
missense variants in a gene where truncation variants are the primary mech-
anism of disease to synonymous variants with no evolutionary conservation 
and no predicted effect on splicing.

For detailed definition and interpretation of the various levels of evidence, 
and the rules for classifying variants into one of the five tiers based on different 
combinations of these various evidence (summarized in Figure 11.2), readers 
can refer to the original ACMG/ AMP publication ([89], particularly Tables 3, 
4, and 5) and subsequent revisions. To follow the ACMG/ AMP guidelines, 
all available evidence on the pathogenicity or benignity of a variant needs 
to be considered. Such evidence includes those gathered from the current 
case, data in public databases (such as those listed on Table 11.1) and sci-
entific literature, and/ or the clinal sequencing lab’s internal data. Through 
reviewing the aggregated evidence and then applying the ACMG/ AMP 
guidelines, the classification of variants can then be attained. Open- source 
or commercial tools, such as InterVar (Clinical Interpretation of Genetic 
Variants, open source) or its web version wInterVar [90], QIAGEN Clinical 
Insight (QCI) Interpret (commercial), may help classify variants by pro-
viding automated application of many of the criteria from the ACMG/ AMP 
guidelines. CardioClassifier [91] and CardioVAI [92] are other examples of 
decision support tools specifically developed for particular diseases, as both 
aim to classify genes related to cardiac diseases. Prior to reporting, output 
from decision support tools needs to be examined, and modified if necessary, 
by testing lab personnel.

11.5.2  Classification of Somatic Variants

As the above ACMG/ AMP five- tier system has been developed for germline  
mutations in Mendelian disorders to classify somatic variants in tumor  
samples, a different system has been proposed and recommended by AMP,  
American Society of Clinical Oncology (ASCO), and College of American  
Pathologists (CAP) [93]. This is a four- tier system with emphasis on variants’  
impact on clinical care including diagnosis, prognosis, therapy selection,  
and inclusion in clinical trials. The four tiers are: Tier I –  variants of strong  
clinical significance, Tier II –  variants of potential clinical significance, Tier  
III –  those of unknown clinical significance, and Tier IV –  benign or likely  
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benign variants. To categorize into one of these four tiers, four levels of evi-
dence are evaluated: (1) Level A –  variants that can serve as biomarkers to  
predict response or resistance to approved therapies, or are included in pro-
fessional guidelines for a specific cancer type; (2) Level B –  those that can  

FIGURE 11.2
ACMG/ AMP rules on how to classify variants based on combination of pathogenicity/ 
benignity evidence at different levels. (From SE Brnich, EA Rivera- Munoz, JS Berg, Quantifying 
the potential of functional evidence to reclassify variants of uncertain significance in the 
categorical and Bayesian interpretation frameworks, Human Mutation 2018, 39(11):1531– 1541. 
With permission.)
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predict response or resistance to therapies based on well- powered studies  
with expert consensus; (3) Level C –  those that can predict response or resist-
ance to approved therapies for a different tumor type, or qualify patients to  
participate in clinical trials; (4) Level D –  those that can predict response or  
resistance in multiple small trials with some consensus. To be classified into  
Tier I, a variant needs to have Levels A and B evidence. For Tier II, a variant  
needs to have Level C or D evidence. A Tier III variant is one that occurs in  
a gene known to be cancer related, but how it is specifically associated with  
cancer of any type has not been established. Variants that are observed in the  
general population (or a specific subpopulation) at a frequency that is high  
enough to preclude their connection with any cancer belong to Tier IV.

To help facilitate classification of oncogenic somatic variants, open- source 
or commercial tools can be used, such as VIC (Variant Interpretation for 
Cancer, open source) [94], CancerVar (Cancer Variants interpretation, open 
source) [95], Roche’s NAVIFY Mutation Profiler (commercial), and Qiagen’s 
QCI Interpret (commercial). As an example, VIC, a Java- based tool, applies 
the AMP/ ASCO/ CAP classification rules to place somatic variants into one 
of the tiers, based on assessment of their clinical impacts using information 
from a number of databases including CGI (Cancer Genome Interpreter) 
[96], CIViC (Clinical Interpretations of Variants in Cancer) [97], and PMKB 
(Precision Medicine Knowledge Base) [98]. Following this automated process, 
expert knowledge and patient- specific case information can be incorporated 
to adjust the final classification for reporting and utilization by clinical 
oncologists and molecular tumor board for decision making.

11.6  Clinical Review and Reporting

11.6.1  Use of Artificial Intelligence in Variant Reporting

The use of AI in variant reporting can be exemplified by an effort from 
Massachusetts General Hospital in which an AI system was built and validated 
using variants that had been prioritized and reported by expert pathologists 
from established patient cases [99]. To build machine learning models, this 
system uses a large number of features, including the many mentioned above 
such as variant frequency and prediction scores from CADD, SIFT, PolyPhen, 
LRT, MutationTaster, MutationAssessor, FATHMM, PROVEAN, VEST, 
phyloP, phastCons, GERP, SiPhy, etc. Machine learning algorithms used to 
build these models included logistic regression and random forests among 
others. This decision support tool generates a contiguous prediction score 
between 0 (not reportable) to 1 (reportable) to help decide whether a variant 
should be considered for reporting with human interpretable rationale. Other 
commercially available AI- based decision support tools, such as MOON [27], 
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are also available to assist with the variant reporting process. While they 
cannot entirely replace clinical geneticists and pathologists, these AI- based 
decision support tools can help filter out most non- reportable variants to 
allow experts to focus on a more manageable number of potentially report-
able variants, making this key analytic process more efficient.

11.6.2  Expert Review

While the variant reporting process can be automated with promising results 
using the tools introduced above, review of reportable pathogenic or likely 
pathogenic germline variants, or Tier I or II somatic variants, by molecular 
pathologists and oncologists is still needed to examine the entire evidence 
matrix for their pathogenic/ oncogenic role prior to reporting. Current med-
ical literature and database entries should be checked for their links with 
known diseases or implicated biological pathways. This step should also be 
contextualized in consideration of the patient’s phenotype and family his-
tory. Such expert manual review is needed to avoid non- pathogenic/ non- 
oncogenic variants from being reported as false positives.

11.6.3  Generation of Testing Report

After expert review, a final clinical report needs to be prepared by the testing 
lab to convey the results to clinicians for decision making. While there is 
no standard format for such a report, as a general rule the report should be 
designed toward helping with bedside decision making, and therefore needs to 
be concise, informative, actionable, and easy to understand to non- geneticists 
(Figure 11.3 shows an example). At the beginning of the report, an executive 
summary of major findings should be provided succinctly, followed by more 
detailed interpretations of the variants. Variants in the major findings may 
be limited only to those that are classified as pathogenic or likely pathogenic, 
but some labs may opt to also include variants of unknown significance. 
Typically variants that are benign or likely benign are not reported. It is pos-
sible to report a negative finding, i.e., no genetic cause of the patient’s pheno-
type is identified. On the report the variants and the genes harboring them 
should be described using the nomenclature from Human Genome Variation 
Society (HGVS) and Human Genome Organization Gene Nomenclature 
Committee (HGNC) [100, 101]. Each variant should be presented with a 
reference sequence, a letter prefix (such as “c” for a DNA coding reference 
sequence, “p” for a protein reference, or “r” for an RNA transcript sequence), 
description of the sequence change at a DNA/ RNA/ protein sequence loca-
tion, zygosity, medical condition, inheritance pattern, and classification (e.g., 
ABCA4, NM_ 000350.2, c.5882G>A, p.Gly1961Glu, heterozygous, age- related 
macular degeneration, autosomal dominant, likely pathogenic). A detailed 
description for each of the identified variants may include evidence level(s) 
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FIGURE 11.3
Clinical sequencing testing report example. (Adapted from: GD Farmer, H Gray, G Chandratillake, FL Raymond, ALJ Freeman, Recommendations for 
designing genetic test reports to be understood by patients and non- specialists, European Journal of Human Genetics 2020, 28(7):885. Used under the terms 
of the Creative Commons Attribution 4.0 International License, https:// crea tive comm ons.org/ licen ses/ by/ 4.0, ©2020 Farmer et al.)
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for the classification of the variant, literature summary of disease/ phenotype 
connection, and other key information supporting the variant’s pathogen-
icity. This can be followed by recommendations for further actions, such as 
strategies for intervention and/ or patient management including prognosis 
and diagnosis. Such recommendations need to be based on evidence, and 
considered in the context of the patient’s specific condition. If a clinical trial 
is available, e.g., for a cancer patient carrying a Tier I somatic variant, this 
information should also be included in the report.

Other sections of the clinical report should also contain technical informa-
tion about the test, including what gene or genome content was assayed, how 
the test was performed, as well as other technological factors such as the 
genome build used for analysis that may have an impact on test result gen-
eration and interpretation. Such factors include limit of detection, minimum 
sequencing coverage, actual test performance metrics, etc. Limitations of the 
test, such as low- coverage and non- targeted genomic regions, should also 
be made clear. To provide further reference, literature citations or links to 
database sites should be provided toward the end. Additional clinically rele-
vant and actionable information may also be provided from resources such 
as GeneReviews, which provides a quick reference to clinicians on hereditary 
disorders. For patients and their family members, a section that cites easy- 
to- understand genetic health information from additional resources, such as 
MedlinePlus Genetics, may also be helpful.

11.6.4  Variant Validation

While traditionally germline SNVs or small indels on a clinical report need to 
be validated using an orthogonal technology, with Sanger sequencing being 
the golden standard, a number of studies have shown that this is not always 
necessary and NGS is often more accurate than Sanger sequencing [102, 103]. 
CNVs are typically validated using orthogonal techniques such as multiplex 
ligation- dependent probe amplification (MLPA) or comparative genomic 
hybridization arrays (aCGH), but validation using an NGS CNV pipeline 
has been reported [104]. Somatic variants detected in cancerous samples, on 
the other hand, should be validated using an orthogonal method, including 
Sanger sequencing, digital PCR, or pyrosequencing, with the latter two 
especially suited for those detected at low frequencies. It should be noted 
again that for both germline and somatic variants, the preliminary variant 
screening step mentioned earlier to filter out low- quality variants is an 
important step to minimize the rate of false- positive variants. In addition, to 
ensure call accuracy of the variants on the final report, their raw reads should 
be manually examined by visually checking pileup of reads that align to their 
genomic locations using a visualization tool such as Integrative Genomics 
Viewer (IGV). This simple step can help further reduce false positives caused 
by factors such as insufficient sequencing coverage. The use of these QC 
measures, as well as sound medical judgment and good clinical practice, are 
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fundamental to generating a report that captures representative variants in 
the patient. How the reported variants are validated or confirmed should 
also be included in the report.

11.6.5  Incorporation into a Patient’s Electronic Health Record

A patient clinical sequencing report is increasingly incorporated into the 
patient’s EHR. While the report can be entered into EHR as an unstructured 
PDF, for better integration with the rest of EHR, new data standards and 
interfaces need to be developed. Currently, Health Level Seven International 
(HL7) and Global Alliance for Genomics and Health (GA4GH) are developing 
new data models and data exchange standards to facilitate collection, 
coding, and retrieval of clinical genomics data. HL7, for example, establishes 
standards for EHR data exchange, integration, and retrieval that are widely 
accepted and used by clinical computer systems in hospitals and other health 
care- related organizations. Fast Healthcare Interoperability Resources (FHIR) 
Genomics develops and provides implementation of the HL7 data standards 
for clinical genomics data. Incorporation of patient sequencing variant 
report into EHR using such standards provides future- proof clinical decision 
support and analytics.

11.6.6  Reporting of Secondary Findings

When performing WGS/ WES, besides reporting variants related to the indi-
cation that leads to the ordering of clinical sequencing, ACMG recommends 
to also report Pathogenic or Likely Pathogenic variants in a short list of med-
ically significant but actionable genes. The genes on this list are known to 
lead to disease phenotypes, such as cancer and cardiovascular phenotypes, 
that have severe medical implications and high lifetime penetrance. The goal 
of reporting such variants, termed secondary finding (previously called inci-
dental finding, or unsolicited finding), is to help improve health by reducing 
morbidity and mortality through taking appropriate actions. The current list 
(ACMG SF v3.0) [105] contains 73 genes, but the number is bound to change 
with the addition of new genes or removal of existing genes. Based on the 
current ACMG recommendations [106], patients and family members should 
be consented on receiving secondary findings with the option to opt out.

11.6.7  Patient Counseling and Periodic Report Updates

To provide interpretation to the patient (and their family members) on primary 
as well as secondary findings, and help them understand the implications of 
such findings, genetic counseling is needed. On primary findings, the role 
of genetic counselors is to help patients and families better understand the 
testing results and treatment options, as well as limitations of the test. On 
secondary findings, the counseling includes providing interpretation on the 
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probability of developing the indicated disorder(s), strategies to prevent or 
manage the indicated risk(s), as well as support on emotional concerns and 
referral to other health providers and support groups. In addition to post- test 
counseling, genetic counselors also provide pre- testing counseling for indi-
viduals who have symptoms of a particular genetic disorder, are likely to 
be affected by a genetic disorder because of family history, or are concerned 
about transmitting a condition to the next generation for the purpose of 
family planning.

Variant classification is a dynamic process. With accumulation of new evi-
dence for gene and variant pathogenicity over time, it frequently becomes 
necessary to reclassify variants on the original report, for example, from 
Unknown Significance to Likely Pathogenic or Likely Benign, or less fre-
quently from Likely Pathogenic to Benign, etc. In addition, new patient 
phenotypic data (e.g., new symptoms) and/ or new family history informa-
tion, or reports of other new cases that share similar symptoms or variants, 
may also prompt reanalysis of the original sequencing data. Furthermore, 
advancement in bioinformatics tool development provides another impetus 
for reanalysis. Besides improving variant classification, newer tools may also 
lead to identification of variants that were not found initially. Because of such 
advances in knowledge generation, patient phenotyping, and tool devel-
opment, it is beneficial to periodically update the original report in order 
to provide new guidance that would impact patient clinical management. 
Performance of reclassification of variants on the original report and/ or 
reanalysis of the original data to provide periodic updates, however, requires 
time and resources from testing labs, clinicians, and genetic counselors. Such 
longevity report updates may also have long- term implications, including 
elicitation of psychological distress to patients and their families, as a 
result some may prefer not to be recontacted. While the ethical and legal 
implications of reinterpretation/ reanalysis/ recontact are still being debated 
[107, 108], current guidelines from professional organizations such as ACMG 
focus on maximizing clinical impact of providing such updates while minim-
izing the burden on the test lab and health care system [109].

11.7  Bioinformatics Pipeline Validation

Besides wet lab workflow, a dry lab bioinformatics pipeline must also be 
rigorously tested and validated before deployment. This is to meet accredit-
ation requirements by professional organizations such as CAP, and more 
importantly, to ensure that all variables that might affect specificity, sensi-
tivity, and precision/ reproducibility of a test are well defined and valid. On 
bioinformatics pipeline validation, AMP and CAP have published detailed 
standards and guidelines [110], which are summarized below. Validation is 
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needed not only for labs that develop their own custom steps, but also for 
those that opt to use a commercially available platform. In the latter case, 
although the service provider may offer a pre- validated platform, the testing 
lab still needs to go through familiarization and optimization, and validate 
that the platform meets the designed analytical goals of the test. To help val-
idate a new or existing pipeline and evaluate its performance, the reference 
standard samples used for validating the lab workflow (see Section 11.1.2), 
including the GIAB reference DNA and bio- engineered DNA that contains 
synthetic variants at predefined frequencies, are equally valuable here since 
they provide the ground truth. In addition, bioinformatically generated ref-
erence dataset using programs such as BAMSurgeon [111] may also be used.

For the validation, all analytic steps in the pipeline need to be clearly 
defined with required hardware and software specified for each step. Such 
specifics include hardware configuration, operating system, name and 
version number of software and their dependencies, data storage and trans-
mission system, and network connection protocol. In addition, other analytic 
details such as parameters used in each software, reference genome used for 
alignment, and databases accessed for annotation and filtering, should also 
be specified. Any sequencing reads altering operations, such as trimming, 
should be fully evaluated to determine whether they are appropriate, or need 
to be revised or dropped. Quality metrics for each of the analytic steps, such 
as mean reads on- target coverage and percentage of target genomic regions 
with coverage over a threshold (for reads alignment), and depth of coverage 
for each called variant (variant calling), should be compared to pre- defined 
performance criteria. Applied variant filters should be evaluated carefully to 
make sure that true positives are not filtered out.

If the pipeline uses internally developed software tools and scripts, the com-
puter code should be deposited in a source code repository, such as GitHub, 
BitBucket, or SourceForge. If using externally developed software, the source 
code should also be documented if accessible. Also as part of the validation 
process, the strategies established to back up data and maintain the integ-
rity of raw and analyzed files during transfer should be evaluated. On the 
issue of legal compliance, the pipeline should follow all applicable laws at 
the national and local levels. In the United States, the applicable laws include 
the Health Insurance Portability and Accountability Act (HIPAA) and other 
national/ state/ local laws that pertain to clinical genetic testing. According 
to these laws, patient genetic information needs to be protected like other 
patient information including patient identity and other health records, and 
should be secured throughout the analytic process. When using a commer-
cial system, it is the responsibility of the testing lab to verify such compliance 
issues. To avoid accidental mixing of patient data, based on the AMP/ CAP 
guidelines the identity of a patient sample must be preserved throughout the 
analytic process using at least four unique identifiers to encompass sample, 
patient, run, and test location [110]. As all analytic pipelines have limitations, 
such limitations for a validated pipeline should be clearly documented 
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and reported. After a pipeline is validated, if there is any update or change 
applied to any part of the pipeline, supplemental or new validation is needed 
depending on the scope of the update/ change.
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12  
De Novo Genome Assembly with   
Long and/ or Short Reads

De novo genome assembly is a fundamental endeavor for genomics research, 
as it creates the reference genome against which most other NGS applications 
rely on for alignment. Accurate representation of the reference genome is of 
utmost importance, as the assembly quality directly impacts the results of 
other NGS applications that depend on it. Not very long ago Sanger sequen-
cing was considered the golden standard for de novo genome assembly. 
However, it is prohibitively expensive and time- consuming to assemble 
a genome using this first- generation technology, as it took $3 billion and 
13 years to generate the human genome draft assembly. The demand for 
low- cost and fast genome sequencing provides the very impetus for the 
development of NGS technologies. The dramatically reduced cost of NGS 
makes whole- genome sequencing much more affordable, much faster, and 
readily accessible to individual labs for deciphering any species. While 
increasingly more and more organisms’ reference genomes are assembled, 
de novo assembly continues to be an important application of NGS for not 
only novel unsequenced genomes, but also completed genomes in terms of 
resolving challenging regions (such as highly repetitive regions), removing 
biases, and searching for novel components or structural variations. De novo 
genome assembly from the relatively short and enormous number of reads 
generated from most NGS platforms, however, poses serious challenges to 
assembling algorithms that were designed for Sanger sequences. The usu-
ally shorter length of NGS reads means that they carry less information and 
as a result lead to more uncertainties in the assembling process. To remedy 
this situation, higher coverage is required, which significantly increases 
the number of reads required and therefore computational complexity. For 
example, using Sanger sequences with length up to 800 bp, assembling the 
human genome used approximately 8× coverage; for NGS reads of 35– 100 bp, 
the same task needs 50– 100× coverage [1].

Since Sanger sequence assemblers cannot effectively deal with these 
challenges, new de novo genome assemblers have been developed for NGS 
data. The development of Velvet [2] and ABySS [3] in 2008– 2009 showed 
that de novo high- quality genome assembly can be achieved, even for large 
genomes, using massive numbers of ultra- short (as short as 30 bp) reads. 
The first de novo assembly of a human genome with the use of only short 
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NGS reads was accomplished in 2010 with the development SOAPdenovo 
[4]. Subsequently, to increase assembly contiguity, a hybrid strategy is often 
used to integrate long but error- prone sequencing reads from PacBio (or 
Nanopore) with short reads [5]. Now with significantly improved accuracy 
of long-read sequencing, assembling a genome from long-read sequencing 
data alone has become a reality [6].

12.1  Genomic Factors and Sequencing Strategies for    
De Novo Assembly

12.1.1  Genomic Factors That Affect De Novo Assembly

The size of a target genome to a large degree determines the difficulty of 
assembling it. All NGS de novo assemblers (to be detailed next) can handle 
small genomes (<10 Mb), such as those of bacteria, without difficulty. For 
genomes of medium size (10 Mb –  1 Gb), such as those of lower plants and 
insects, most of the assemblers should still work without much problem. 
For large genomes (>1 Gb), while some assemblers, such as the aforemen-
tioned SOAPdenovo, have been shown to have the capability to assemble the 
human or other mammalian genomes, in general it is not an easy task to put 
them together with only short reads. In addition, assembling a large genome 
de novo is the most computationally demanding among all NGS applications.

The amount of repetitive sequences in a genome is another major factor 
that affects de novo genome assembly. Some genomes are inherently more dif-
ficult to assemble than others because they contain more repetitive sequences. 
Because they produce reads that are not unique due to their repetitive nature, 
repetitive regions create serious challenges in the genome assembly pro-
cess. The challenges come from the inability to assemble reads from these 
regions into contiguous segments (contigs) or scaffolds, and determine the 
locations of these reads in relation to contigs or scaffolds assembled from 
reads from non- repetitive regions. As a result, these regions become gaps 
in a draft assembly. Besides repetitive elements, genomic heterozygosity is 
another factor that may affect de novo assembly. Genomic heterozygosity is a 
measure of allelic differences in a genome, and allelic differences in a diploid 
or polyploid genome lead to uncertainty in assembling their reads together. 
In addition, other genome features, such as local GC content, may also affect 
de novo genome assembly.

12.1.2  Sequencing Strategies for De Novo Assembly

Filling the gaps caused by repetitive regions is important for most de 
novo genome assembly projects, and how to fill them should be a major 
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consideration when devising an appropriate sequencing strategy. The basic 
approach to connect contigs or scaffolds across the gaps is to use read pairs, 
or long reads, that span a distance longer than the gaps. For paired reads they 
have to be generated from paired- end and/ or mate- pair sequencing, and 
the known distances between the read pairs provide guidance to align the 
contigs or scaffolds over the gaps. Mate- pair sequencing differs from paired- 
end sequencing (see Chapter 4) in that the mate- pair approach is designed to 
“jump” sequence two ends of a larger DNA fragment. To conduct mate- pair 
sequencing, a DNA fragment is first circularized to have the two ends joined. 
This circular DNA is then fragmented, and the segment that contains the 
junction of the two ends is selected and sequenced with paired- end sequen-
cing. To span repetitive regions in different sizes, sequencing reads generated 
from mate- pair libraries of varying insert sizes, e.g., from 2 to 40 Kb, as well 
as regular paired- end reads, are often used [7, 8].

The combined use of paired- end and mate- pair libraries of different insert 
sizes is a key strategy in assembling a genome from NGS reads. The paired- 
end sequencing generates reads at the shorter size range (e.g., 300– 350 bp) 
for assembling of non- repeat sequences as well as resolving short repeat 
sequences, while the mate- pair “jump” sequencing produces reads at the 
larger size range for resolving intermediate and long range repeat regions 
and fill the corresponding gaps. Gaps of substantial sizes that are beyond the 
covering range of mate pair libraries cannot be filled.

Besides the use of paired- end and mate- pair sequencing, read length is also 
a key parameter for de novo genome assembly. While mammalian genomes 
have been assembled from reads shorter than 75 bp (e.g., [4, 8]), longer reads 
are always better. With long-read sequencing platforms such as PacBio 
and ONT, obtaining long reads is becoming more routine. As detailed in 
Chapter 4, CCS long reads from PacBio can reach 25 Kb, and 200 Kb can be 
reached with CLR sequencing. On ONT flow cells, maximum read length 
can reach over 4 Mb. In addition to native long reads, synthetic long reads 
produced from approaches such as single- tube Long Fragment Read (or 
stLFR) from MGI [9] and Transposase Enzyme Linked Long- read Sequencing 
(TELL- seq) from Universal Sequencing Technology [10] can reach 20– 300 Kb 
and over 100 Kb, respectively. While synthetic long reads are based on short-
read sequencing, they differ from regular short reads in that instead of dir-
ectly breaking down genomic DNA into fragments of hundreds of base pairs 
for sequencing, these approaches first shear DNA into rather large fragments 
(up to hundreds of Kb). These large fragments are then used to produce short 
fragments in such a way that short fragments derived from the same large 
fragment all carry the same barcode, based on which short read sequences 
are then linked together for synthesis of the original large fragment sequence. 
10× Genomics introduced one of the first synthetic long-read strategies called 
linked- reads sequencing [11], but it was discontinued in 2020. Synthetic long 
read approaches have greatly aided de novo genome assembly.
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Sequencing depth is another important factor to consider for a de novo 
assembly project. While it varies by project and is dependent on the other 
factors (including the number of repeats and level of heterozygosity in the 
genome as well as read length and error rate), a coverage that is too low 
will undoubtedly result in a highly fragmented assembly. As a rough guide, 
in the combined use of paired- end and mate- pair libraries of various insert 
sizes, 45– 50x coverage is needed for the short- insert- size paired- end and 
intermediate- size (3– 10 Kb) mate- pair libraries, and 1– 5x coverage for the 
long- insert (10– 40 Kb) mate- pair libraries [12, 13]. For de novo assembly of 
a human genome using long reads alone, 30x or 35x coverage can be suffi-
cient for PacBio CCS or ONT reads respectively with appropriately chosen 
tools [14, 15]. It should also be noted that while higher coverage may lead to 
improvement in the final assembly quality, additional increase in coverage 
also means increased data volume, computational complexity, and processing 
time. There are also studies showing that beyond certain level of coverage 
further increase in sequencing depth does not necessarily lead to increase in 
assembly quality in terms of the size of assembled contigs [4].

12.2  Assembly of Contigs

12.2.1  Sequence Data Preprocessing, Error Correction, 
and Assessment of Genome Characteristics

The de novo assembly of a genome from NGS reads is a multi- step process 
(Figure 12.1). As the first step, sequence data quality needs to be inspected. 
Data QC steps described in Chapter 5 can be performed here to examine per- 
base error rate, quality score distribution, read size distribution, contamin-
ation of adaptor sequences, etc. Low- quality reads need to be filtered out, 
and portions of reads that contain low- quality basecalls (usually the 3’ end), 
ambiguities (reported as Ns), or adaptor sequences should be trimmed off. 
As part of data preprocessing, paired- end reads with part of their sequences 
overlapped need to be merged to generate longer reads. The read merging 
can also correct errors if discrepancy at some base positions are observed, in 
which case the higher quality basecall is used. The merging process can be 
handled by tools such as FLASH2 [16], PEAR [17], fastq- join [18], PANDAseq 
[19], and VSEARCH [20].

Sequencing error correction is an important step for de novo read assembly,  
more so than for most other NGS applications due to the fact that the assembly  
process is much more sensitive to these errors. The data QC measures  
mentioned above cannot totally remove sequencing errors, as high basecall  
quality scores alone cannot guarantee a read is free of sequencing errors.  
If left uncorrected, the errors will lead to prolonged computational time,  
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erroneous contigs, and low- quality genome assembly. While it can be time  
consuming, an additional error correction step can improve final assembly  
quality. There are multiple options to carry out this step. For example, BFC  
[21], BLESS [22], Lighter [23], Musket [24], Fiona [25], and Coral [26] can  
be used as stand-alone tools, while some assemblers (see next) have their  
own error correction modules, such as ALLPATHS- LG [27] and SGA [28].  
Most error correction methods, including BFC, BLESS, Lighter, Musket, the  
ALLPATHS- LG error correction module (can be used stand-alone), and the  
SGA default correction method, are based on k- mer filtering [29]. K- mer  
refers to all the possible subsequences of length k in a read, and breaking  
reads to k- mers makes the complicated task of genome assembly more tract-
able. When all reads are converted to k- mers, most k- mers in the pool are  
represented multiple times. Having a k- mer that appears only once or twice  
is an indication of sequencing error (Figure 12.2). The general error correction  
approach is to find the smallest number of base changes to make all k- mers  
contained in a read “strong,” i.e., with the frequency of these k- mers from all  
reads above a threshold level. To determine the appropriate threshold level  
for error correction, the distribution of the frequency of k- mers can be plotted  
using data from a k- mer counting software such as Jellyfish [30] or Meryl [31].  
Besides error correction, the k- mer frequency information from Jellyfish or  
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FIGURE 12.1
General workflow for de novo genome assembly.
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Meryl can also be input into GenomeScope [32] to estimate genome size, level  
of duplication, and heterozygosity. Besides using k- mer filtering, suffix tree/  
array and multiple sequence alignment (MSA) are also often used to correct  
sequencing errors. For example, Fiona is an example of the suffix tree/ array-  
based approach. Coral, on the other hand, is based on the MSA approach. The  
approach aligns reads that share common k- mers, and error corrections are  
made based on alignment results and consensus sequences.

For long reads from PacBio or ONT that have higher error rates, sequencing 
error correction is even more needed and can be performed with tools such 
as FMLRC [33], PBcR [34], LoRDEC [35], LSC [36], Nanocorr [37], proovread 
[38], and DeepConsensus [39]. Many long-read assemblers (to be detailed 
next) contain their own error correction modules, such as Canu [40], Hifiasm 
[41], FALCON [42], MARVEL [43], MECAT [44], and NECAT [14]. In general, 
long-read error correction methods can be divided into two groups, with one 
using redundant information in long reads alone for error correction, while the 
other using a hybrid approach to leverage more accurate short reads to help 
correct errors in long reads. Long-read-only correction methods belonging 
to the first group include LoRMA [45] and FLAS [46]. The error correction 
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FIGURE 12.2
The coverage profile of true k- mers and those with sequencing errors. (Adapted from Kelley 
D.R. et al. (2010) Quake: quality- aware detection and correction of sequencing errors, Genome 
Biology, 11:R116. Used under the terms of the Creative Commons Attribution License (http:// 
crea tive comm ons.org/ licen ses/ by/ 2.0). © 2010 Kelley et al.)
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methods used by Canu, MARVEL, and MECAT, are also in this group since 
they are based on consensus correction using sampling redundancy (or 
overlaps) within long reads. As an example, to make corrections Canu builds 
overlaps between long reads using a probabilistic sequence overlapping 
algorithm called the MinHash alignment process (or MHAP) [47]. The over-
lapping results are then used to identify regions that need correction based 
on sequence consensus, followed by estimation of corrected read length and 
generation of corrected reads. Besides error correction, MARVEL also has a 
“patching” module, which aims to repair apparent large-scale errors (e.g., 
regions that contain a lot of errors) based on comparisons between reads. 
Examples of the hybrid approach to use more accurate short reads to correct 
error- prone long reads include FMLRC, PBcR, LoRDEC, LSC, Nanocorr, and 
proovread. Based on how they work, these methods can be further divided 
into those based on assembly and those on alignment. Assembly- based 
correction methods, such as FMLRC and LoRDEC, first use short reads to 
perform assembly, and then align long reads to the assemblies for making 
corrections. Alignment- based methods, including PBcR, LSC, Nanocorr, and 
proovread, align short reads to long reads and sequencing errors in the long 
reads are corrected based on the alignment results.

12.2.2  Contig Assembly Algorithms

Fundamentally different from the reference- based alignment process, which 
is used by most of the other NGS applications in this book, de novo genome 
assembly attempts to construct a superstring (or superstrings) of DNA letters 
based on the overlapping of sequence reads. This assembly process was pre-
viously modeled by Lander and Waterman with the use of ideal (error-  and 
repeat- free) sequence data [48]. In this model, if two reads overlap and the 
overlap is above a cutoff level, the two reads are merged into a contig and 
this process reiterates until the contig cannot be extended further. Although 
this guiding model is straightforward, finding all possible overlaps between 
millions of short reads and assembling them into contigs are computation-
ally intensive and challenging. Added to this challenge are other compli-
cating factors such as sequencing errors, sequencing bias, heterozygosity, and 
repetitive sequences. To deal with these challenges, a number of assemblers 
that employ different methodologies have been developed.

The currently available de novo genome assemblers can be classified into  
three major categories –  those using (1) the Greedy approach; (2) the Overlap-  
Layout- Consensus (OLC) approach; and (3) the de Bruijn graph. Although  
all of them are based on graphs, the Greedy approach is the one that is based  
on the maximization of local sequence similarity. It was used by Sanger  
sequence assemblers, such as phrap and the TIGR assembler, and early NGS  
reads assemblers, such as SSAKE [49], SHARCGS [50], and VCAKE [51].  
Since it is a local approach, the Greedy approach does not consider the global  
relationship between reads. Therefore, more recent NGS- based assemblers  
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no longer use this approach, as it cannot take advantage of the global rela-
tionship offered by paired- end and mate- pair reads.

The OLC and the de Bruijn graph approaches are global by design and both 
assemble reads into contigs using reads overlapping information based on 
the Lander- Waterman model. They approach the task, however, in different 
ways (Figure 12.3). The OLC approach, as the name suggests, involves 
three steps: (1) detecting potential overlaps between all reads; (2) laying 
out all reads with their overlaps in a graph; and (3) constructing consensus 
sequence superstring. The first step is computationally intensive and the 
run time increases quadratically with the increase in the total number of 
reads. The graph created in the second step consists of vertices (or nodes) 
representing reads, and edges between them representing their overlaps. 
The construction of a consensus sequence superstring equals to finding a 
path in the graph that visits each node exactly once, which is known as a 
Hamiltonian path in graph theory. While there are a small number of OLC- 
based short-read assemblers available such as Edena [52] and Fermi [53], 
the OLC approach is more suitable and mostly used to assemble long reads 
generated from PacBio and ONT sequencers. In fact, most long read de novo 
assembly methods are based on OLC, including Canu, FALCON, Hifiasm, 

BA

R1 R2 R5R3 R4 R6 K1 K2 K15K3 K14 K16

FIGURE 12.3
Comparison of the OLC (A) and the de Bruijn graph (B) approaches for global de novo genome 
assembly. In the OLC example, six sequence reads (R1– R6) are shown for the illustrated genomic 
region, with each read being 10 bp in length and the overlap between them set at ≥ 5 bp. The 
reads are laid out in order based on how they overlap. The OLC graph is shown at the bottom, 
with many nodes having more than one incoming or outgoing connections. In the de Bruijn 
graph example, the reads are cut into a series of k- mers (k= 5). In total there are 16 such k- mers, 
many of which occur in more than one read. The k- mers are arranged sequentially based on how 
they overlap, and the de Bruijn graph built from this approach is shown at the bottom. Different 
from those in the OLC graph, the majority of the nodes in this graph have only one incoming 
and one outgoing connection. (From Li Z. et al. Comparison of the two major classes of assembly 
algorithms: overlap– layout– consensus and de- bruijn- graph. Briefings in Functional Genomics, 
2012, 11(1): 25– 37, by permission of Oxford University Press.)
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MECAT, NECAT, miniasm [54], HINGE [55], Peregrine [56], Shasta [57], 
Raven [58], NextDenovo [59], and SMARTdenovo [60]. In the case of Canu, 
after the aforementioned error correction process, unsupported sequences 
are trimmed off to prepare corrected reads for assembly. In the assembly 
stage, reads are scanned one last time for errors, and then used to construct 
overlap graph, before output of consensus contig sequences and an assembly 
graph. HiCanu is a modified version of Canu developed for using the PacBio 
HiFi (CCS) reads [61].

Solving the Hamiltonian path problem in the OLC approach is NP- hard. To 
reduce the high computing demand imposed by the OLC approach, a simpli-
fied version called the String graph has been employed to merge and reduce 
redundant vertices and edges, along with identification and removal of false 
vertices and edges [62]. The implementation of a string indexing data struc-
ture (FM- index) has improved the performance of assemblers such as SGA 
and ReadJoiner [63]. FALCON also first builds a string graph that contains 
bubbles representing structural variation between haplotypes through the 
use of a process called HGAP (or hierarchical genome assembly process). The 
subsequent “Unzip” process creates haplotype- resolved assembly graph, 
making FALCON a diploid- aware assembler. Other long-read assemblers, 
such as Miniasm, Hifiasm, NECAT, and NextDenovo, also use string graph 
in their assembly processes. Hifiasm, for example, produces fully phased 
assembly for each haplotype from phased string graph created from PacBio 
HiFi reads.

Compared to the OLC approach, the de Bruijn graph- based approach takes 
an alternative, computationally more tractable route. This approach does not 
involve a step to find all possible overlaps between reads. Instead, the reads 
are first cut into k- mers. For instance, the sequence read ATTACGTCGA can 
be cut into a series of k- mers, e.g., ATT, TTA, TAC, ACG, CGT, GTC, TCG, 
and CGA, when k =  3. These k- mers are then used as vertices in the de Bruijn 
graph. An edge that connects two nodes represents a convergence of the 
two nodes, e.g., the edge that connects ATT and TTA is ATTA. Using the de 
Bruijn graph, the assembly process is equivalent to finding a shortest path 
that visits each node at least once, which is known as the Chinese Postman 
Problem in graph theory. An Eulerian path, if it exists, represents the solu-
tion to this problem. Computationally, finding an Eulerian path is much 
easier than finding a Hamiltonian path for the OLC approach. The major 
drawback of this approach, however, is that it is highly sensitive to sequen-
cing errors. Therefore, to use assemblers in this category, error correction 
is mandatory. Assemblers that use this approach include AbySS [3], 
ALLPATHS- LG, Euler- SR [29], SOAPdenovo/ SOAPdenovo2 [4, 64], SPAdes 
[65], and Velvet [2]. Because of higher sequencing error rates, long reads 
are not usually assembled with this approach. There are, however, a small 
number of long read assemblers that employ variants of de Bruijn Graph. 
For example, Flye [66] uses the A- Bruijn variant, which tolerates the higher 

    

   

 

 

 

 

 

 

 



Next-Generation Sequencing Data Analysis280

level of sequencing errors in long reads as it uses approximate sequence 
matches instead of exact k- mer matches. Using PacBio or ONT long reads as 
input, it first creates a repeat graph, and then through resolving repetitions 
by identifying variations in repeat copies in the graph a final assembly is 
reconstructed. Wtdbg2 [67] is another example based on another de Bruijn 
variant called fuzzy Bruijn graph (or FBG), which permits mismatches and 
gaps. This method assembles a genome through first cutting long reads into 
smaller segments, and then merging the segments based on their adjacency 
to create contigs.

Hybrid assemblers integrate both short and long reads toward achieving 
improved accuracy and contiguity. Some of the assemblers, such as MaSuRCA 
[68] and DBG2OLC [69], use a combination of the de Bruijn graph and OLC 
approaches for short and long reads, respectively. Others take alternative 
approaches. For example, WENGAN uses de Bruijn graph to assemble short 
reads, but avoids the all- versus- all read comparison used in the OLC process 
commonly used for long reads to increase efficiency [70].

12.2.3  Polishing

Besides error correction prior to genome assembly, assembly quality can be 
further improved after draft assembly is created through a process called 
polishing. In general terms, the polishing process uses information from 
alignment of reads to the draft assembly as input, examines how reads map 
to the draft assembly at each location, and then decides whether assembly 
sequences at certain locations need to be modified. To perform this process, 
there are a selection of tools available, including Pilon [71], Medaka [72], 
Racon [73], Nanopolish [74], MarginPolish & HELEN [57], NextPolish [75], 
POLCA [76], and NeuralPolish [77]. These polishers typically use either 
short or long reads to polish a draft assembly. For example, Pilon takes as 
input an assembled genome in FASTA format, and alignment of short reads 
to the assembly in BAM format. After searching the alignment for incon-
sistencies, assembly sequences are modified to provide improvements to 
the input assembly through reduction of mismatches and indels, as well 
as gap filling and misassembly identification. Medaka, the first neural 
network- based polisher, on the other hand, uses ONT long reads for 
polishing through creation of consensus sequences. As input it requires a 
draft assembly in FASTA format and basecalls in either FASTA or FASTQ 
format. Prior to creating consensus sequences, the alignment of the reads 
to the input assembly is carried out by minimap2. Nanopolish uses a third 
approach. Instead of using called bases, it takes raw sequencing signals 
recorded from an ONT sequencer as input, and applies an HMM- based 
signal- to- assembly analysis to generate improved consensus sequences for 
the draft assembly.
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12.3  Scaffolding and Gap Closure

After assembly of contigs, the next step is to organize the contigs into a 
“scaffold” structure to improve continuity rather than leave them disjointed. 
This scaffolding process orders and orients the contigs, and estimates the 
lengths of the gaps between them (Figure 12.4). To establish positional rela-
tionship between contigs, scaffolding algorithms use long reads or mate- pair 
reads that span different contigs.

For input, scaffolding algorithms typically take pre- assembled contigs, and 
long reads or sometimes mate- pair reads. The first and also an important 
step in the scaffolding process is to map the input long reads or read pairs 
to the contigs. To improve mapping results, sequencing errors in the reads 
should be corrected prior to mapping as covered above. To assemble the 
contigs into scaffolds using the guiding information in the long or mate- pair 
reads, scaffolders usually take a graph- based approach similar to the contig 
assembly process, but here with contigs as nodes and connecting long reads 
(or read pairs) as edges. The quality of the assembled scaffolds is dependent 
on the quality of input contigs, the complexity of the genome, and the quality 
of long or mate- pair read libraries. The sizes of the scaffolds are limited 
by the length of long reads or the insert size of mate- pair libraries, as the 
scaffolds cannot span repetitive regions larger than the insert size or read 
length. Besides long reads or mate- pair reads, scaffolding information may 
also come from experimental data generated from other techniques including 
Hi- C, synthetic long-read sequencing, and optical mapping.

Currently available stand-alone scaffolders include SSPACE- LongRead [78],  
LINKS [79], OPERA- LG [80], LRScaf [81], SMIS [82], and npGraph [83]. To  

Contig 1 Contig 2

Scaffold

DNA Fragments

Paired-end read
Approximate length, but no known sequence

FIGURE 12.4
Assembling contigs into a scaffold.
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provide an example of how scaffolding can be performed, LRScaf first maps  
long reads using minimap2 to identify those that overlap the ends of contigs,  
and then connects contigs based on reads that map to multiple contigs. From  
the connections, a scaffold graph similar to a string graph is constructed, and  
scaffolding of contigs is achieved through traversal of the graph to expose  
all linear paths. Besides these stand-alone methods, many contig assemblers,  
including ABySS, SGA, SOAPdenovo2, SPAdes, and MaSuRCA, DBG2OLC,  
also have built- in scaffolding modules. The performance of different  
scaffolders varies with data sets and analysis parameters. Therefore, before  
deciding on an appropriate scaffolder for a project, it is helpful to first try out  
different scaffolders using different parameters and then evaluate the results  
(see Section 12.4).

Among the other techniques that generate data for scaffolding, Hi- C is an 
NGS- based approach that uses proximity ligation to interrogate chromo-
somal interactions within the nucleus. The principle behind the use of Hi- 
C for scaffolding is that the probability of intrachromosomal interactions is 
much higher than that of interchromosomal contacts. Therefore, Hi- C reads 
provide long- range information on linear arrangement of contig sequences 
along individual chromosomes. Scaffolders that utilize Hi- C data include 
HiRise [84], 3D- DNA [85], and SALSA [86]. Similar to native long reads 
generated from ONT and PacBio sequencers, synthetic long reads also pro-
vide long- range sequence information required for scaffolding of contigs. 
Currently available scaffolding methods that use synthetic long reads include 
ARCS [87], Architect [88], ARKS [87], and SLR- superscaffolder [89].

The final stage of finishing a de novo genome assembly is to close the 
gaps between scaffolded contigs. Gap closure has greatly benefited from 
the constant advancements in long reads sequencing. There are currently a 
number of gap filling algorithms available, including PBjelly [5], GMcloser 
[90], Sealer [91], LR_ Gapcloser [92], TGS- GapCloser [93], SAMBA [94], and 
gapless [95]. Among these algorithms SAMBA and gapless can perform both 
scaffolding and gap filling. Some assemblers, such as ABySS, ALLPATHS- 
LG, and SOAPdenovo2, also contain gap filling modules. Figure 12.5 shows 
an example of how long reads are used to finish gaps by TGS- GapCloser.

12.4  Assembly Quality Evaluation

Contiguity, completeness, and accuracy are key indices of the quality of 
an assembly. Contiguity is reflected by the total number of assembled 
contigs or scaffolds and their size distribution, i.e., whether the assembly 
is composed of a small number of large fragments or a large number of 
small fragments. It can be measured by statistics such as mean or median 
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FIGURE 12.5
Gap closing with the TGS- GapCloser workflow. Panel (A) displays the overall pipeline. Panel 
(B) shows the steps of identification of gap regions and long- read candidates that map to the 
gap regions, and error correction of long- read candidates using short reads. Panel (C) details 
how the gaps are filled with error- corrected long reads. As input, TGS- GapCloser can accept 
long reads generated from any platform or other preassembled contigs to fill gaps in a draft 
assembly. The unknown nucleotides marked as N’s between two neighboring contigs in the 
scaffolds are identified as gap regions. Long reads are then mapped to the gap regions using 
minimap2 to acquire candidate fragments. The subsequent error correction on the long- read 
candidates is carried out with Pilon or Racon. The corrected new long read candidates are then 
realigned to the gaps, and the read with the best match for a gap is used to fill the gap. To increase 
computational efficiency, overlapped candidates are clipped and merged. (Adapted from Xu 
M. et al. (2020) TGS- GapCloser: A fast and accurate gap closer for large genomes with low 
coverage of error- prone long reads. GigaScience, 9, 1– 11. Used under the terms of the Creative 
Commons Attribution License (http:// crea tive comm ons.org/ licen ses/ by/ 4.0). © 2020 Xu et al.)
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length, but the most commonly used statistics are N50 and L50. To calcu-
late the N50, all contigs (or scaffolds) are first ranked based on length from 
the largest to the smallest. Their lengths are then summed up from the 
largest contig (or scaffold) downward. N50 refers to the size of the contig 
(or scaffold) at which the summed length becomes greater or equal to 50% 
of the total assembly size. L50, on the other hand, refers to the smallest 
number of contigs (or scaffolds) that add up to at least 50% of the genome 
assembly.

The total assembly size, however, does not measure the completeness of 
the assembly. To determine completeness, the original DNA reads are aligned 
to the assembly and the percentage of reads aligned is calculated. Other 
sequence data from the same species, such as RNA- seq data, may also be used 
for the alignment and rough estimation of completeness. On the measure-
ment of accuracy, the assembly can be compared to a high- quality reference 
genome of the species, if such a reference is available. This comparison can 
be carried out on two aspects of the assembly: base accuracy and alignment 
accuracy. Base accuracy determines if the right base is called in the assembly 
at a given position, while alignment accuracy examines the probability of 
placing a sequence at the right position and orientation. In many cases, 
however, a reference map is not available and instead is the very goal of the 
assembling process. For these cases, a measurement on internal consistency, 
through aligning original reads to the assembly and checking for evenness 
and congruence in coverage across the assembly, provides an indicator of the 
assembly quality. Comparison of the assembly with independently acquired 
sequences from the same species, such as gene or cDNA sequences, can also 
be used to estimate assembly accuracy. With regard to software implementa-
tion on evaluating assembly quality, the often used tools include BUSCO [96] 
and QUAST [97], which help perform the above measurements and compare 
different contig and scaffold assembly algorithms and settings.

12.5  Limitations and Future Development

Among all NGS applications covered in this book, de novo genome assembly 
remains one of the most challenging due to limitations of current sequen-
cing technologies and the complexity of genomic landscape. Due to their 
cost effectiveness, short read sequencing remains to be the most accessible; 
however, the short read length poses a limit on de novo genome assembly. 
This, combined with other factors including sequencing errors, repetitive 
elements, and uneven regional coverage, leads to ambiguities, false- positive 
and branched paths in the assembly graph, and early terminations in contig 
extension, limiting the completeness of assembled sequences. As a result, 
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the assembled sequences are usually fragmented and exist in the suboptimal 
form of large numbers of contigs. Among the contigs, there are also cer-
tain (sometimes high) levels of falsely assembled contigs, due to chimeric 
joining. In addition, the gapped regions between the assembled contigs may 
not be filled completely. To overcome some of these limitations and increase 
assembly quality, the use of a reference genome, even from a remotely related 
species, can be very helpful. This reference- assisted assembly approach 
works especially well when scaffolding information from paired reads is not 
available or exhausted. With the quickly increasing number of sequenced 
genomes, improving assembly quality with this reference- assisted approach 
becomes more feasible. Some tools have recently been developed to pro-
vide this functionality, either as dedicated packages such as RaGOO [98], 
Chromosomer [99], and RACA [100], or components of existing assemblers 
including ALLPATHS- LG, IDBA- Hybrid, and Velvet.

With the constant advancements achieved in long read sequencing, 
the landscape of de novo genome assembly has been shifting. The publica-
tion of a gapless human genome assembly by the Telomere- to- Telomere 
(T2T) Consortium has demonstrated the utility of long reads in de novo 
genome assembly [101]. Built on this success, more and better designed 
assemblers are bound to be continuously developed to take full advantage 
of what new sequencing technologies have to offer. Undoubtedly such future 
developments will further overcome the limitations and challenges facing 
the community today.
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13  
Mapping Protein- DNA Interactions    
with ChIP- Seq

13.1  Principle of ChIP- Seq

Without the involvement of DNA- interacting proteins, the information 
coded in DNA cannot be accessed, transcribed, and maintained. Besides a 
large number of transcription factors and coactivators, key DNA- interacting 
proteins include histones, DNA and RNA polymerases, and enzymes for DNA 
repair and modification (e.g., methylation). Through their DNA- interacting 
domains, such as helix- turn- helix, zinc finger, and leucine zipper domains, 
these proteins interact with their DNA targets by hydrogen bonding, hydro-
phobic interactions, or base stacking. Because the intimate relationship 
between DNA and these proteins plays an important role in the functioning 
of the genome, studying how proteins and DNA interact and where DNA- 
interacting proteins bind across the genome provides key insights into the 
many roles these proteins play in various aspects of genomic function, 
including information exposure, transcription, and maintenance.

ChIP- seq is an NGS- based technology to locate binding sites of a DNA- 
interacting protein in the genome. An exemplary scenario in using ChIP- 
seq is to study transcription factor binding profiles in the genome under 
different conditions, such as development stages or pathological conditions. 
To achieve this, the protein of interest is first cross- linked covalently to DNA 
in cells with a chemical agent, usually formaldehyde (Figure 13.1). Then the 
cells are disrupted, and subsequently sonicated or enzymatically digested to 
shear chromatin into fragments that contain 100– 300 bp DNA, followed by 
enrichment of the target protein with its bound DNA by immunoprecipitation 
using an antibody specific for the protein. Subsequently, the enriched 
protein- DNA complex is dissociated by reversing the cross- links previously 
formed between them, and the released DNA fragments are subjected to 
NGS. One key experimental factor in the ChIP- seq process is the quality of 
the antibody used in the enrichment step, as the use of a poor- quality anti-
body can lead to high experimental noise due to non- specific precipitation 
of DNA fragments.

Based on the size the region that they bind, DNA- interacting proteins can 
be divided into three groups: (1) punctate- binding: these proteins, usually 
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FIGURE 13.1
The basic steps of ChIP- seq. (From AM Szalkowski, CD Schmid, Rapid innovation in ChIP- seq 
peak- calling algorithms is outdistancing benchmarking efforts, Briefings in Bioinformatics 2011, 
12(6):626– 33. With permission.)
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transcription factors, bind to a genomic region that is a few hundred bp or 
less in size; (2) broad- binding: chemically modified histones (such as histone 
H3 lysine 27 trimethylation or H3K27me3, and H3 lysine 79 dimethylation 
or H3K79me2), or other proteins associated with chromatin domains, bind to 
a much larger area of the genome up to several hundred thousand bp; and 
(3) mixed or intermediate- binding: these include some histone modifications 
(such as H3 lysine 27 acetylation or H3K27ac, and H3 lysine 4 trimethylation 
or H3K4me3), and proteins such as RNA polymerase II, which bind to regions 
of the genome that are a few thousand bp in size.

13.2  Experimental Design

13.2.1  Experimental Control

Appropriate control for a ChIP- seq experiment is key to accounting for 
artifacts or biases that might be introduced into the experimental process. 
These artifacts and biases may include potential antibody cross- reactivity 
with non- specific protein factors, higher signal from open chromatin regions 
(since they are easier to be fragmented than closed regions [1]), and uneven 
sequencing of captured genomic regions due to variations in base compos-
ition. Two major types of controls are usually set up for ChIP- seq signal adjust-
ment. One is input control, i.e., chromatins extracted from cells or tissues, 
which are subjected to the same cross- linking and fragmentation procedure 
but without the immunoprecipitation process. The other is “mock” control, 
which is processed by the same procedure including immunoprecipitation; 
the immunoprecipitation, however, is carried out using an irrelevant anti-
body (e.g., IgG). While it may seem to serve as the better control between 
the two, the “mock” control often produces much less DNA for sequencing 
than real experimental ChIP samples. Although sequencing can be carried 
out on amplified DNA in this circumstance, the amplification process adds 
additional artifact and bias to the sequencing data, which justifies the use of 
input DNA as experimental control in many cases.

13.2.2  Library Preparation

To prepare ChIP DNA for library prep, 1– 10 million cells are typically needed 
[2]. Within this range, studies of broad- binding protein factors require 
less cells than those of punctate- binding proteins. In terms of the amount 
of immunoprecipitated DNA required for library prep, while it is often 
suggested to start with 5– 10 ng ChIP DNA, it is common to obtain less DNA, 
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which often still generates high- quality libraries for sequencing. For library 
prep, the steps involved include end repair, A- tailing, incorporation of 3’ and 
5’ adapter sequences, size selection, and PCR amplification for final library 
generation. The number of cycles used in the PCR amplification step is 
important, and overamplification should be avoided as it can affect fragment 
representation and library complexity. If obtaining large numbers of cells 
is challenging or not feasible, alternative methods such as CUT&RUN (or 
Cleavage Under Targets and Release Using Nuclease), which can generate 
high- quality data from as low as 100 cells due to its low background [3], can 
be employed.

13.2.3  Sequencing Length and Depth

Single- end 50– 75 base reads are typically used for ChIP- seq libraries [4]. 
Paired- end sequencing can also be used to help increase mapping, especially 
for proteins that may bind to repetitive regions of the genome, but is not 
required in most cases. How many reads to obtain for a ChIP- seq experiment 
depends on the size of the genome and how many binding sites the pro-
tein of interest has in the genome. A good indication of having reached suf-
ficient sequence depth is when the number of protein binding sites reaches 
plateau with increasing numbers of reads. As a practical guide, for analyzing 
a transcription factor that has thousands of binding sites in the mammalian 
genome, 20 million reads may be sufficient. Fewer reads may suffice for a 
smaller genome, while more reads are required for proteins that bind to the 
genome at a higher frequency or with larger “footprint.” To locate binding 
regions of these proteins, including histone marks, 30– 50 million reads might 
be needed for a genome at the scale of the human genome [5]. Higher sequen-
cing depth is required for control samples in order to obtain background 
signals from most regions of the genome. If using CUT&RUN when starting 
from low numbers of cells, paired- end sequencing is suggested, but short 
read length (e.g., 25 x 25 bases) at a depth of 5 million read pairs per sample 
is usually sufficient [3].

13.2.4  Replication

To examine the reproducibility of a ChIP- seq experiment, and also reduce 
FDR, replicate samples should be used. If a protein of interest binds to 
regions of the genome with high affinity, the bound regions should be iden-
tified in replicate samples. Regions that are not identified in replicates are 
most possibly due to experimental noise. Pearson correlation coefficient 
(PCC) between biological replicates serves as a measurement of experi-
mental reproducibility, while irreproducible discovery rate (IDR) is another 
such metric. The calculation and usage of PCC and IDR are detailed later in 
this chapter.
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13.3  Read Mapping, Normalization, and Peak Calling

13.3.1  Data Quality Control and Read Mapping

The first step in ChIP- seq data analysis (Figure 13.2) is to evaluate reads  
quality. The quality control (QC) metrics detailed in Chapter 5 need to be  
examined. If necessary, low- quality reads should be filtered out and low-  
quality bases trimmed off. Other aspects of determining ChIP- seq data  
quality include assessing library complexity and experimental reproducibility  
between replicates. Assessment of library complexity is important, as low-  
complexity libraries, caused by limited starting material, over- crosslinking,  
low antibody quality, or PCR over- amplification, can lead to skewed reads  
distribution. Library complexity, defined as the proportion of non- redundant  
reads, can be examined with tools such as Preseq [6], or using PCR bottleneck  
coefficient (PBC), which is the ratio of N1/ Nd, with N1 being the number  

Experimental Design
(Controls, sequencing depth, replication)

Data QC

Read Mapping

Peak Calling

Peak Visualization

Differential Binding Analysis

DNA-Binding Motif Analysis

Functional Analysis
(Peaks assigned to nearby genes)

FIGURE 13.2
Basic ChIP- seq data analysis workflow.
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of non- redundant, uniquely mapped reads, and Nd the number of uniquely  
mapped reads. PBC is calculated by a component of ENCODE Software Tools  
[7] called phantompeakqualtools, which, besides PBC, also calculates other  
quality metrics, i.e., normalized strand cross- correlation (NSC) and relative  
strand cross- correlation coefficients (RSC), as measures of sequence enrich-
ment (NSC and RSC will be discussed more in the subsequent section on  
“Peak Calling”). The assessment of experimental reproducibility is usually  
performed by analyzing IDR, which can be calculated using another compo-
nent of ENCODE Software Tools called “Irreproducible Discovery Rate  
(IDR)” [8].

The assessment of library complexity and experimental reproducibility 
by the ENCODE Software Tools, or the use of other ChIP- seq QC tools 
such as CHANCE [9], deepTools2 [10], and SSP [11], requires mapping 
the filtered/ trimmed reads to a reference genome. For this mapping, the 
mappers introduced in Chapter 5, including Bowtie2 or BWA, can be used. 
One mapping parameter that directly affects subsequent binding site detec-
tion sensitivity and specificity is whether to use multireads, i.e., reads that 
map to multiple genomic regions. Multireads may represent background 
noise and, if this is the case, should be excluded from further analysis, but 
they may also represent true signals located in repeats or duplicated regions. 
Including them increases sensitivity but at the expense of higher FDR, while 
excluding them improves specificity but at the risk of losing true signals. The 
choice for their inclusion or not, therefore, is dependent on whether sensi-
tivity or specificity is given priority. Independent of whether multireads are 
used or not, the fraction of uniquely mapped reads among all reads, also 
called the non-redundant fraction (NRF), is indicative of data quality. Per 
ENCODE guidelines, the NRF should be at least 0.8 [12]. If it drops below 
0.5, it indicates concerning problem(s) with the experimental procedure and 
caution should be used in the interpretation of the data.

For ChIP- seq read mapping, it is also worth mentioning that ChIP is an 
enrichment, not purification, of protein- bound DNA sequences. As a result, 
more reads are usually generated from background noise than from bound 
regions. The background noise can be determined empirically with the use 
of input control samples. The distribution of observed background noise is 
not random as many would expect (Figure 13.3). Instead, it is affected by 
the density of mappable reads in different genomic regions, and the local 
chromatin structure (e.g., as mentioned previously, open chromatin struc-
ture generates more background reads). True binding signals in ChIP- seq 
samples are usually superimposed on the background noise. At the absence 
of input control samples, although the background noise could be estimated 
from modeling of the ChIP- seq data itself, the estimation cannot fully capture 
the inherent complexity of the background noise and therefore experimental 
controls should always be run. To further complicate the situation, the degree 
of protein- binding sequence enrichment may also vary from location to 
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FIGURE 13.3
Background noise and signal profiles in a ChIP- seq experiment. Shown here is the density of mapped reads in one region of the human chromosome 22 
for RNA polymerase II and the transcription factor STAT1 (tracks 1 and 3, count from the top), respectively. Genes coded by the two DNA strands in this 
region are displayed at the bottom. Tracks 2 and 4 show the distribution of mapped reads for the respective input DNA controls for the two proteins. It 
should be noted that some of the peaks in the protein tracks are also present in their input controls. Track 5 displays the fraction of uniquely mappable 
bases. (Adapted by permission from Macmillan Publishers Ltd: Nature Biotechnology, PeakSeq enables systematic scoring of ChIP- seq experiments 
relative to controls, J Rozowsky, G Euskirchen, RK Auerbach, ZD Zhang, T Gibson, R Bjornson, N Carriero, et al., copyright 2009.)
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location, with some having strong signals while others more modest signals. 
The degree of enrichment at each location is not necessarily a reflection of 
their biological importance, as those with more modest enrichment may be 
equally important as those at the top of the enrichment list.

After mapping, reproducibility between replicate samples and overall simi-
larity between different samples can be examined using established tools. For 
example, the multiBamSummary tool in deepTools2 can be used to check 
reads coverage across the entire genome in “bins” mode from two or more 
input BAM files, and another tool called plotCorrelation can take the output 
to compute and visualize sample correlations. The plotFingerprint tool in 
the same toolset can be used to visualize cumulative reads enrichment as an 
indication of target DNA enrichment efficiency. This tool is most informative 
for punctate- binding proteins such as transcription factors. Besides sample 
correlations and the other aforementioned QC measures such as PBC, add-
itional QC analyses can also be performed. For example, visualization of the 
distribution of mapped reads in the genome, using the visualization tools 
introduced in Chapter 5, can offer further clues on data quality. This is espe-
cially true when some specific binding regions have already been known for 
the protein of interest. In comparison to those from input control samples, 
sequence reads from ChIP samples should show strong clustering in these 
regions.

13.3.2  Peak Calling

Peak calling, the process of finding regions of the genome to which the pro-
tein of interest binds, is a key step in ChIP- seq data analysis. It is basically 
achieved through locating regions where reads are mapped at levels signifi-
cantly above the background. As this process is also applicable to ATAC- seq 
(assay for transposase- accessible chromatin using sequencing) and DNase- 
seq (DNase I hypersensitive sites sequencing), both of which aim to locate 
transcriptionally accessible regions of the genome, many of the methods 
introduced below can also be used for analysis of ATAC- seq and DNase- 
seq data. Among currently available peak calling methods, the simplest is 
to count the total number of reads mapped along the genome, and call each 
location with the number of mapped reads over a threshold as a peak. Due to 
the inherent complexity in signal generation, including uneven background 
noise and other confounding experimental factors, this approach is overly 
simplistic. Among the experimental factors, the way the immunoprecipitated 
DNA fragments are sequenced on most platforms has a direct influence on 
how peaks are called. Since the reads are usually short, only one end or both 
ends of a fragment, depending on whether single- end or paired- end reads 
are produced, are sequenced. To locate a target protein’s binding regions, 
which are represented by the immunoprecipitated DNA fragments and 
not just the generated reads, peak calling algorithms need to either shift or 
extend the reads to cover the actual binding areas. For example, MACS2 
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shifts reads mapped to the two opposite strands toward the 3’ ends, based on 
the average DNA fragment length, to cover the most likely protein binding 
location [13]. SPP uses a similar strategy to shift each read mapped to either 
strand relative to each other until strand cross- correlation coefficient reaches 
the highest level at the shift that equals to the average length of the DNA 
fragments (Figure 13.4) [14]. PeakSeq uses an alternative approach to extend 
the reads in the 3’ direction to reach the average length of DNA fragments in 
the library [15].

The reads shift approach and the strand cross- correlation profile shown in 
Figure 13.4 can also be used to evaluate ChIP- seq data quality. When using 
short reads (usually less than 100 bases) to analyze large target genomes, 
which usually results in a significant number of reads being mapped to mul-
tiple genomic locations, a “phantom” peak also exists at a shift that equals to 
the read length (Figure 13.5). If a run is successful, the fragment- length ChIP 
peak should be significantly higher than the read- length “phantom” peak, 
as well as the background signal. The aforementioned ENCODE software 
phantompeakqualtools provides two indices for the examination of strand 
cross- correlation, i.e., NSC, being the ratio of the cross- correlation coefficient 
at the fragment- length peak over that of the background, and RSC, as the 
ratio of background- adjusted cross- correlation coefficient at the fragment- 
length peak over that at the “phantom” peak.

Shifting reads mapped to the positive and negative strands toward the 
center, or extending reads to reach the average fragment length, in order to 
count the number of aggregated reads at each base pair position is the first 
sub- step to peak calling. As illustrated in Figure 13.6, peak calling involves 
multiple substeps. First, a signal profile is created through smoothing of 
aggregated read count across each chromosome. Subsequently, background 
noise needs to be defined and the signals along the genome need be adjusted 
for the background. One simple approach is to subtract read counts in con-
trol sample, if available, from the signal across the genome, or use the signal/ 
noise ratio. Subsequently, to call peaks from the background- adjusted ChIP- 
seq signal, often- used approaches include using absolute signal strength, 
signal enrichment in relation to background noise, or a combination of 
both. To facilitate determination of signal enrichment, statistical signifi-
cance is often computed using Poisson or negative binomial distributions. 
Empirical estimation of false discovery rate (FDR) can be carried out by first 
calling peaks using control data (i.e., false positives), and subsequently cal-
culating the ratio of peaks called from the control to those called from the 
ChIP sample. Alternatively, the Benjamini–Hochberg approach introduced in 
Chapter 7 can also be applied to correct for multiple comparisons. After peak 
calling, artifactual peaks need to be filtered out, including those that contain 
only one or a few reads that are most possibly due to PCR artifacts, or those 
that involve significantly imbalanced numbers of reads on the two strands 
(see Figure 13.6).
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FIGURE 13.4
The distribution of ChIP- seq reads around the actual binding region and their positional shift on the two DNA strands. (a) How ChIP- seq reads 
are produced from cross- linked and fragmented DNA. The cross- linking between the protein and the bound DNA can occur at different sites, 
as is the fragmentation of the DNA. Each fragment is read at its 5’ end (indicated by the squares). These reads, serving as sequence tags of each 
fragment, are clustered around the actual binding region from the two sides depending on which strand they come from. The dashed red line 
depicts a fragment from a long cross- link. (b) The distribution of sequence tag signal around the binding region. Vertical lines represent counts 
of sequence tags whose 5’ end maps to each nucleotide position on the positive (red) and negative (blue) strands. The solid curves represent 
smoothed tag density along each strand. Since the two curves approach the binding site from the two sides, there is a gap between their peaks. 
(c) Strand cross- correlation associated with shifting the strands across the gap. Before shifting the strands, Pearson correlation coefficient is 
calculated between tag density of the two strands. When sequence tags mapped to the two strands are shifted relative to each other (shown 
on the x- axis), the Pearson correlation coefficient gradually changes (y- axis). The dashed gray line at x= 0 corresponds to the strand cross- 
correlation before the shift, while the dashed red line at the peak to the highest cross- correlation coefficient at the strand shift that equals to the 
average length of the DNA fragments. (Adapted by permission from Macmillan Publishers Ltd: Nature Biotechnology, Design and analysis of 
ChIP- seq experiments for DNA- binding proteins, PV Kharchenko, MY Tolstorukov, PJ Park, copyright 2008.)
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The “phantom” peak and its use in determining ChIP- seq data quality. The “phantom” peak corresponds to the cross- 
correlation at the strand shift that equals to the read length, while the ChIP peak corresponds to the cross- correlation 
at the shift of the average DNA fragment length. A successful run is characterized by the existence of a predominant 
ChIP peak and a much weaker “phantom” peak. In marginally passed or failed runs, the former diminishes while the 
latter relatively becomes much stronger. (Adapted from SG Landt, GK Marinov, A Kundaje, P Kheradpour, F Pauli, S 
Batzoglou, BE Bernstein et al., ChIP- seq guidelines and practices of the ENCODE and modENCODE consortia, Genome 
Research 2012, 22(9):1813– 1831. Used under the terms of the Creative Commons License (Attribution- NonCommercial 
3.0 Unported License) as described at http:// crea tive comm ons.org/ licen ses/ by- nc/ 3.0/ . ©2012 Cold Spring Harbor 
Laboratory Press.)
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FIGURE 13.6
Basic substeps of calling peaks from ChIP- seq data. The P(s) at bottom left signifies the probability 
of observing a location covered by S mapped reads, and the sthresh marks the threshold for calling 
a peak significant. Bottom right shows two types of possible artifactual peaks: single strand 
peaks and those based on mostly duplicate reads. (Adapted by permission from Macmillan 
Publishers Ltd: Nature Methods, Computation for ChIP- seq and RNA- seq studies, S Pepke, B 
Wold, A Mortazavi, copyright 2009.)
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For implementation of this peak calling process, different peak callers use  
different methods, which can lead to differences in final outcomes. Among  
currently available peak callers, MACS2, HOMER (findPeaks module) [16],  
SICER2 [17], JAMM [18], SPP, and PeakSeq are among some of the popular  
ones (see Table 13.1). Among these methods, MACS2 uses Poisson distribu-
tion to model reads distribution across the genome. To achieve robust peak  
prediction, this modeling process considers the dynamic nature and effects  
of local background noise as caused by biological factors such as local chro-
matin structure and genome copy number variations, and technical biases  
introduced during library prep, sequencing, and mapping processes. Peaks  
are called from enrichment of reads in a genomic region with statistical sig-
nificance calculated based on Poisson distribution. On FDR estimation, while  
the original MACS uses an empirical approach through exchanging ChIP  
and control samples, MACS2 applies the Benjamini–Hochberg method to  
adjust p- values. The findPeaks module in HOMER also uses Poisson distri-
bution to identify putative peaks. To arrive at a list of high- quality peaks,  
different filters are then applied to these putative peaks. These filters are  
either based on the use of (1) control samples, i.e., peaks need to pass fold-  
change and cumulative Poisson p- value thresholds in comparison to control  
samples; (2) local read counts, i.e., the density of reads at a peak need to be  

TABLE 13.1

A Short List of ChIP- Seq Peak Calling Algorithms

Name Description Reference

MACS/ MACS2 Empirically models ChIP- seq read length to improve peak 
prediction, uses a dynamic Poisson distribution

[13]

HOMER 
(findPeaks 
module)

Identifies peaks based on the principle that more 
sequencing reads are found in these regions than 
expected by chance

[16]

PeakSeq Based on a two- pass strategy to compensate for open 
chromatin signal

[15]

SPP Includes binding profile normalization, peak detection, 
and estimation of read depth to achieve peak saturation

[14]

CisGenome Features multifaceted interactive analysis and customized 
batch- mode computation

[21]

SICER2 Uses a clustering approach to identify enriched domains 
from histone modification ChIP- seq data

[17]

SiSSRs Uses the direction and density of reads and the average 
DNA fragment length to identify binding sites

[22]

PeakRanger Applies a staged algorithm to discover enriched regions 
and the summits within them

[23]

ZINBA Models and accounts for factors co- varying with 
background or true signals

[24]
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significantly higher than that in the surrounding region; or (3) clonal signal,  
to remove peaks with high number of reads that map to only a small number  
of unique positions. SPP, an R package, calculates smoothed read enrichment  
profile along the genome and identifies significantly enriched sites compared  
to input control using methods such as WTD (Window Tag Density). The  
WTD method considers sequence tag patterns immediately upstream and  
downstream of the center of the binding location, thereby increasing predic-
tion accuracy. The peak calling employed in PeakSeq is a two- pass process. In  
its first pass, PeakSeq uses background modeling to identify initial potential  
binding regions. To adjust for background using control data, the fraction of  
reads located in the initially identified potential binding regions are excluded  
and the reads in the remainder of the genome in the ChIP- seq sample are  
normalized to the control data by linear regression. In the second pass, target  
peaks are called by scoring reads- enriched target regions based on calcula-
tion of fold enrichment in ChIP- seq sample vs. control, and statistical signifi-
cance associated with each enriched target region is calculated from binomial  
distribution. More recently, newer algorithms based on the application of  
deep learning approaches have begun to emerge, such as CNN- Peaks [19]  
and LanceOtron [20].

To ensure the robustness of analysis results, it is recommended to use more 
than one method for peak calling. While IDR is usually used to measure the 
rate of irreproducible discoveries, i.e., peaks that are called in one replicate 
sample but not in another, it can also be used to compare peak calling results 
generated from different methods. The original use of IDR in assessing rep-
licate reproducibility is based on the rationale that peaks of high significance 
are more consistently ranked across replicates and therefore have better 
reproducibility than those of low significance. As shown in Figure 13.7, to 
compare a pair of ranked lists of peaks identified in two replicates, IDR are 
plotted against the total numbers of ranked peaks. Since IDR computation 
relies on both high significance (more reproducible) and low significance 
(less reproducible) peaks, peak calling stringency needs to be relaxed to 
allow generation of both high and low confidence calls. The transition in 
this plot from reliable signal to noise is an index of overall experimental 
reproducibility. Because IDR is independent of any particular peak- calling 
method, it can be applied to compare the performance of different peak 
calling methods on a particular dataset and therefore help pick the most 
appropriate method(s) (Figure 13.8). IDR can also be used to evaluate repro-
ducibility across experiments and labs.

13.3.3  Post- Peak Calling Quality Control

After peaks are called, prior to conducting further downstream analyses, it  
is a good practice to perform another QC step to determine the quality of  
peaks called. Tools such as deepTools2 and ChIPQC [25] can be used for this  
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step. For example, to check for consistency of called peaks between replicate  
samples, the aforementioned multiBamSummary tool in deepTools2 can  
be used in “BED- file” mode using BED files from peak callers as input, and  
the output passed on to plotCorrelation to generate visualization of samples  
based on their correlation coefficients.

ChIPQC reports a number of quality metrics related to called peaks, 
including peak signal strength, enrichment of reads in peaks, and relative 
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FIGURE 13.8
Evaluation of the performance of six peak callers using IDR. (Adapted by permission from 
Macmillan Publishers Ltd: Nature Methods, Systematic evaluation of factors influencing ChIP- seq 
fidelity, Y Chen, N Negre, Q Li, JO Mieczkowska, M Slattery, T Liu, Y Zhang et al., copyright 2012.)

FIGURE 13.7
Use of irreproducible discovery rate (IDR) in assessing replicate reproducibility. Panel (A) shows 
the distribution of the significance scores of the peaks identified two replicate experiments. The 
IDR method computes the probability of being irreproducible for each peak, and classifies them 
as being reproducible (black) or irreproducible (red). Panel (B) displays the IDR at different 
rank thresholds when the peaks are sorted by the original significance score. (From T Bailey, P 
Krajewski, I Ladunga, C Lefebvre, Q Li, T Liu, P Madrigal, C Taslim, J Zhang, Practical guidelines 
for the comprehensive analysis of ChIP- seq data, PLoS Computational Biology 2013, 9:e1003326. 
Used under the terms of the Creative Commons Attribution License (http:// crea tive comm ons.
org/ licen ses/ by/ 3.0/ ). © 2013 Bailey et al.)
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enrichment of peaks in various genomic features. The metrics related to 
peak signal strength are relative strand cross- correlation coefficient, i.e., 
RSC, and estimated fragment length, which should be very close to the 
DNA fragment length produced during library prep. Enrichment of reads in 
peaks is represented by metrics including the percentage of reads in peaks, 
standardized standard deviation (SSD) of genomic coverage, and the per-
centage of reads in ENCODE blacklisted regions. Among these metrics, the 
percentage of reads in peaks, also often termed FRiP (or fraction of reads 
in peaks), is an overall indicator of immunoenrichment and ChIP- seq data 
quality. Usually only a small percentage of reads map to peak regions, and 
the majority of reads only represent background. As a general guideline, the 
ENCODE Consortium sets 1% as the minimum for an acceptable FRiP with 
MACS as the peak caller using default parameters. As they can vary with the 
use of different peak callers and parameters, FRiP values must be derived 
from the same algorithm using same parameters in order for them to be 
comparable across samples or experiments. The SSD metric is a measure 
of variability of reads genomic coverage. If reads are highly enriched in 
peak regions, as expected from a well- executed ChIP- seq experiment, the 
SSD values associated with ChIP samples should be much higher than 
those with control samples. The percentage of reads in blacklisted regions is 
another metric that affects peak calling outcome. Since some regions of the 
genome, especially highly repetitive regions, can produce artifactually high 
enrichment signals independent of experiment, the ENCODE Consortium 
has compiled a blacklist for such regions [26]. Since reads mapped to the 
blacklisted regions often confound peak calling and fragment length estima-
tion, they should be monitored and filtered out. Lastly, on relative enrich-
ment of peaks in various genomic features, the distribution of reads across 
major features including promoters, 5’ UTRs, coding regions, introns, and 
3’ UTRs, provides another evaluation of ChIP- seq signal distribution. For 
instance, transcription factors are expected to have the highest enrichment 
levels in promoters and 5’ UTRs.

13.3.4  Peak Visualization

Visualizing peaks in their genomic context allows identification of overlap-
ping or nearby functional elements, and thereby facilitates peak annotation 
and data interpretation. Many peak callers generate BED files containing 
peak chromosomal locations, along with WIG and bedGraph track files, 
all of which can be uploaded to a genome browser for peak visualization. 
Examination of peak regions in a genome browser and comparison with 
other data/ annotation tracks allow identification of associated genomic 
features, such as promoters, enhancers, and other regulatory regions. 
BEDTools can also be applied to explore relationships between peaks 
and other genomic landmarks such as nearby protein- coding or non- 
coding genes.
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13.4  Differential Binding Analysis

Binding of DNA- interacting proteins to their target genomic regions is a 
quantitative process, that is, they occupy these regions at different rates 
under different conditions. This is due to regional accessibility, presence/ 
absence of other protein partners, and/ or other factors that regulate their 
binding. Differential binding analysis answers the question of how a target 
protein changes its DNA- binding pattern under different conditions. There 
are two different approaches for this analysis, with one qualitative and 
the other quantitative. The qualitative approach compares peaks called in 
different conditions, and divides them into “shared” and “unique” [27]. 
This approach is simple, but it does not use the quantitative information 
generated in the peak calling process, so it is best used to produce a rough 
initial estimation of differential binding. The quantitative approach, through 
analysis of read counts or read densities in peak regions or on a sliding 
window basis across the genome, generates statistical assessment of the 
degree of differential binding between conditions. As this is similar to the 
RNA- seq- based differential expression analysis despite the higher level of 
background noise, data normalization is required to adjust for systematic 
biases that are unrelated to biological factors. For the comparison of two or 
more ChIP- seq samples, such biases include immunoprecipitation efficiency 
and sequencing depth.

Similar to normalizing RNA- seq data, adjusting for sequencing depth is the 
simplest approach. In this approach, the total numbers of reads in different 
samples are adjusted, by multiplying a scaling factor to each sample, to a 
same target level, e.g., the median or lowest total read count among the 
samples. The basic assumption for this approach is that the overall number 
of binding sites for a target protein does not change across different experi-
mental conditions. Although this approach is simple and straightforward, it 
does not take into consideration the difference in signal- to- noise ratio that 
is often observed in different samples. If one sample library is noisier and 
contains more background reads, these reads, while not representing true 
signals, are still counted into the total read number. This situation will there-
fore lead to bias in the normalized data.

There are several currently available normalization approaches that con-
sider this issue of signal- to- noise ratio variation among samples. For example, 
the normalization procedure used in diffReps first identifies and removes 
regions with low read count (mostly background noise) [28]. The subsequent 
normalization is then based on the remaining regions, using a linear pro-
cedure similar to that used by DESeq2. Another similar approach uses only 
reads mapped to peaks. In this modified sequencing depth- based normal-
ization approach, the total number of reads mapped to the peak regions are 
used as the basis for calculating scaling factor for each sample [29]. Using 
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this approach, the normalized peak signal is computed as the original peak 
sequence read count being scaled by the sum of read counts of all peaks, i.e.,

Z
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where Zi j,  and Xi,j are the normalized and original peak signal for sample i 
and peak j, and N is the total number of called peaks.

Normalization methods that were previously developed for microarray 
data have also been adapted for ChIP- seq data. MAnorm2, as an example, 
uses a hierarchical normalization process that is similar to the MA plot 
approach used for microarray data. Based on the assumption that signals 
from common peaks shared among all samples remain unchanged globally, 
MAnorm2 applies a linear transformation process to the raw read counts 
in order to make both the arithmetic mean of M values (or differences in 
signals between samples), and the covariance between M and A (average 
signals between two samples) values, to be zero [30]. ChIPnorm uses a 
modified version of quantile normalization [31]. A locally weighted regres-
sion (LOESS) normalization approach for ChIP- seq data [32] is similar to the 
LOESS procedure applied to cDNA microarray data normalization. All these 
approaches assume that the overall binding profile of the target protein does 
not vary across different conditions. This assumption does not hold, however, 
under conditions when the overall level or activity of the protein under study 
changes due to experimental perturbation. Under such conditions, normal-
ization approaches based on spike- in of an exogenous reference epigenome 
at a constant amount [33], similar to the use of spike- in RNA controls in bulk 
RNA- seq, can be used.

Besides all the normalization approaches introduced above, good experi-
mental design and consistent experimental procedure can minimize data 
variability in different samples and groups, thereby alleviating the burden 
on posterior normalization. For example, processing all samples side by side 
using the same experimental procedure and parameters, such as the same 
antibody, by the sample operator, will minimize sample- to- sample vari-
ability. When conducting an experiment in this way, the simpler normaliza-
tion approach based on total library read count can be sufficient.

Since the ChIP- seq- based quantitative analysis of differential binding is  
similar to the RNA- seq- based differential expression analysis, packages  
such as edgeR and DESeq2 can be applied here. Table 13.2 lists some of the  
packages that are designed for ChIP- seq differential binding analysis. As  
listed these packages can be divided into two categories, with one composed  
of methods that are dependent on peak calling from an external application,  
while the other of those that handle peak calling internally or do away with  
peak calling altogether. For methods that require internally or externally  
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called peaks, robust peak calling is essential to produce quality results. For  
those that do not rely on peak calling, differential binding analysis aims to  
find significant ChIP- seq signal changes between conditions throughout the  
entire genome. These latter methods can be further divided into two subcat-
egories. One subcategory, exemplified by diffReps [28], csaw [34], and PePr  
[35], uses sliding windows, the size of which is typically selected based on the  

TABLE 13.2

Packages Developed for ChIP- Seq Differential Binding Analysis

Name Description Reference

Methods that require externally called peaks

DiffBind Uses statistical tests used in RNA- seq packages edgeR and 
DESeq to process peak sets and identify differentially 
bound regions

[38]

ChIPComp Differential binding analysis taking into considerations of 
controls, signal- to- noise ratios, replicates, and multi- factor 
experimental design

[42]

MAnorm2 Conducts a hierarchical MA- plot- based normalization prior 
to differential analysis

[30]

DBChIP Identifies differentially bound punctate binding sites in 
multiple conditions using RNA- seq DE approaches and 
accommodates controls

[39]

DIME Differential binding analysis using a finite exponential- 
normal mixture model

[43]

MMDiff2 Takes a multivariate non- parametric approach to test 
differential binding

[44]

Methods that do not rely on pre- called peaks

bdgdiff/ 
MACS2

A module of MACS2 that detects differential binding based 
on paired four bedGraph files

[13]

diffReps Detects and annotates differential chromatin modification 
hotspots using a sliding window approach

[28]

ChIPDiff Differential histone mark analysis based on HMM [36]

RSEG Uses HMM to locate differentially bound broad genomic 
domains associated with diffusive histone modification 
marks

[45]

csaw Uses the sliding window approach for detection of 
differential binding regions, with different window sizes set 
for transcription factors and histone marks

[34]

PePr Another method that uses sliding windows, and a negative 
binomial distribution model to detect differential peaks

[35]

THOR Differential peak calling based on an HMM with a three- state 
topology

[37]

ChIPnorm Carries out quantile normalization for differential binding 
sites identification

[31]
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footprint of the target protein. The other subcategory uses complex segmenta-
tion techniques, such as hidden Markov model (HMM), to first segment  
genome into bins and then infer the hidden state of each bin in order to detect  
differential protein- binding sites. ChIPDiff [36] and THOR [37] are examples  
of this approach.

To test for differential binding, statistical models based on Poisson or nega-
tive binomial distribution are often used, again similar to RNA- seq DE ana-
lysis. In fact, methods such as DiffBind [38] and DBChip [39] directly inherit 
statistical models from edgeR and DESeq2. In terms of detection targets, 
while some methods are specifically designed for punctate- binding protein 
factors (such as DBChip) and some others for more broad marks (such as 
SICER2 and RSEG), most of the methods can be used for binding regions 
of different sizes. In addition, in terms of handling replicate samples, some 
can work with experiments that do not use replicate samples, while others 
require replicates. As mentioned earlier, use of replication is suggested, 
which usually leads to increased detection precision with a much reduced 
number of differential binding regions, but in the meantime at the expense of 
reduced sensitivity. To help select appropriate methods for a particular appli-
cation, existing benchmarking studies provide decision trees based on their 
comparative testing results [40, 41]. It should also be noted that like those 
devised for RNA- seq- based differential expression analysis, these packages 
are designed based on certain assumptions and therefore the user needs to be 
aware of these assumptions and ensure they are fulfilled prior to using them. 
For example, MAnorm2 is based on the assumption that there is no global 
change in binding at peak regions between conditions.

13.5  Functional Analysis

Often the data gathered from a ChIP- seq study is used to understand gene 
expression regulation and associated biological functions. To conduct func-
tional analysis, peaks are first assigned to nearby genes using tools such 
as ChIPseeker [46], GREAT (Genomic Regions Enrichment of Annotations 
Tool) [47], and ChIPpeakAnno [48]. While it is debatable on what genes a 
peak should be assigned to, a straightforward approach is to assign it to the 
closest gene transcription start site. Once peaks are assigned to target genes, 
an integrated analysis of ChIP- seq and gene expression data (more on this 
in Section 13.7) can be carried out. Furthermore, Gene Ontology, biological 
pathway, gene network, or gene set enrichment analyses can be conducted 
using similar approaches as described in Chapter 7. Prior to carrying out 
these gene functional analyses, one should also bear in mind that the peak- to- 
gene assignment process is biased by gene size, as the presence of peak(s) has 
a positive correlation with the length of a gene. In addition, the distribution 
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of gene size in different functional annotations such as GO categories is not 
uniform, with some categories having excess number of long genes while 
others having more short genes. To solve the problems caused by different 
gene sizes, methods that adjust for the effects of gene size should be used, 
such as ChIP- Enrich [49].

13.6  Motif Analysis

One of the goals of ChIP- seq data analysis is to identify DNA- binding motifs  
for the protein of interest. A DNA- binding motif is usually represented by a  
consensus sequence, or more accurately, a position specific frequency matrix.  
Figure 13.9 A shows an example of such a DNA- binding motif, the one bound  
by a previously introduced transcription factor NRF2 (see Chapter 2). To iden-
tify motifs from ChIP- seq data, all peak sequences need to be assembled and  
fed into multiple motif discovery tools. Some of the commonly used motif  
discovery tools are Cistrome [50], Gibbs motif sampler (part of CisGenome),  
HOMER (findMotifs module), MEME- ChIP [51] as part of the MEME suite  
[52], rGADEM [53], and RSAT peak- motifs [54]. The motif discovery phase  
usually ends up with one or more motifs, with one being the binding site of  

FIGURE 13.9
The consensus DNA-binding motif of the transcription factor NRF2. Panel (A) shows the currently 
known NRF2- binding motif, while panel (B) displays the result of a de novo motif analysis using 
NRF2 ChIP- seq data. (From BN Chorley, MR Campbell, X Wang, M Karaca, D Sambandan, F 
Bangura, P Xue, J Pi, SR Kleeberger, DA Bell, Identification of novel NRF2- regulated genes by 
ChIP- seq: influence on retinoid X receptor alpha, Nucleic Acids Research 2012, 40(15):7416– 7429, 
With permission.)
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the target protein and others being that of its partners. The discovered motif(s)  
can be compared with currently known motifs catalogued in databases such  
as JASPAR [55] to detect similarities, find relationships with other motifs,  
or locate other proteins that might bind at or near the peak region as part  
of a protein complex. Tools for motif comparison include STAMP [56] and  
Tomtom [57]. Motif enrichment analysis can also be carried out to find out  
if known motifs are enriched in the peak regions using tools such as AME  
[58], CentriMo [59], and SEA [60]. Finally motif scanning and mapping by  
tools like FIMO [61] allows visualization of the discovered motif(s) in the  
ChIP- seq peak areas. Some of these tools have been integrated into motif ana-
lysis pipelines, such as the MEME Suite [62], which includes MEME- ChIP,  
Tomtom, CentriMo, SEA, AME, and FIMO.

13.7  Integrated ChIP- Seq Data Analysis

As genomic functions are to a large degree controlled by concerted binding 
of a wide array of DNA- interacting proteins, integrated analysis of ChIP- 
seq data sets generated for a multitude of these proteins affords new 
opportunities to gain a comprehensive overview of the functional states 
of a genome and the host cell. As a good example, such an integrated ana-
lysis has led to the discovery of a large number of chromatin states, each 
of which display distinct sequence motifs and functional characteristics 
[63]. The discovery of these chromatin states was achieved with the use 
of a multivariate hidden Markov model on a large collection of ChIP- seq 
data, generated for 38 different histone methylation and acetylation marks, 
H2AZ (a variant of histone H2A), RNA polymerase II, and CTCF (a tran-
scriptional repressor).

Besides meta- analysis of multiple ChIP- seq data sets, integrated analysis 
of ChIP- seq with other genomics data, such as RNA- seq data, offers fur-
ther information on genome function and regulation. The majority of pro-
tein factors used in various ChIP- seq studies are transcription factors and 
histones that carry a large array of modified marks, all of which are key 
regulators of genome transcription. Coupled analysis of matched ChIP- seq 
and RNA- seq data augments the utility of both data types, and provides new 
insights that cannot be obtained from analyzing either data type alone. To 
carry out integrative analysis of ChIP- seq and RNA- seq data, Bayesian mixed 
and hierarchical models [64, 65] have been used. In addition, tools such as 
BETA [66], CEAS [67], and ChIPpeakAnno can also be used to help inves-
tigate the correlation between the DNA-binding profile and regulation of 
nearby gene transcription.
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14  
Epigenomics by DNA Methylation   
Sequencing

The genomic information embedded in the primary nucleotide sequence of 
DNA is modulated by epigenomic code generated from chemical modifications 
of DNA bases and key DNA- interacting proteins such as the histones. The 
methylation of cytosines leading to the formation of 5- methylcytosines 
(5mCs), for example, provides a major means for the modification of the 
primary DNA code. As detailed in Chapter 2, DNA methylation plays an 
important role in many biological functions such as embryonic development, 
cell differentiation, and stem cell pluripotency, through regulating gene 
expression and chromatin remodeling. Abnormal patterns of DNA methyla-
tion, on the other hand, lead to diseases such as cancer. DNA methylome ana-
lysis, as a key component of epigenomics, has for many years been conducted 
with the use of microarrays (such as the Illumina Infinium MethylationEPIC 
BeadChips). While microarrays are low- cost and easy to use, their inherent 
constraints, such as limited genomic coverage from the use of pre- selected 
probes, and being available for only a few model organisms, have limited 
their use. In comparison, NGS offers a more unbiased, comprehensive, and 
quantitative approach for the study of DNA methylation status in a wide 
array of species. This chapter focuses on DNA methylation sequencing data 
generation and analysis. For epigenomic studies that involve interrogation of 
histone modifications, ChIP- seq (covered in Chapter 13) can be used.

14.1  DNA Methylation Sequencing Strategies

Because the DNA polymerases used in the regular NGS sequencing library 
construction process cannot distinguish methylated from unmethylated 
cytosines, DNA methylation pattern is usually not retained in the process. In 
order to study DNA methylation status with NGS, different strategies need 
to be used, including bisulfite conversion, methylated DNA enrichment, 
and more recently enzymatic conversion- based methyl- seq. Bisulfite con-
version employs a chemical conversion process, which uses sodium bisulfite 
to deaminate unmethylated cytosines. After the conversion, unmethylated 
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cytosines in a DNA molecule are converted to uracils, while 5mCs in the 
same molecule are retained since they are non- reactive. The subsequent 
sequencing of the converted DNA, therefore, reads unmethylated cytosines 
as thymines, and methylated cytosines as cytosines. The efficiency and spe-
cificity of this process can be monitored and optimized through the use of 
certain methylated and unmethylated DNAs as controls. Based on genomic 
coverage, this bisulfite sequencing approach can be further divided into 
two subcategories as covered next. The more recently developed enzymatic 
methyl- seq is based on a similar approach, but the conversion of unmethylated 
cytosines to uracils is based on enzymatic reactions, which is not DNA dam-
aging compared to the chemical method. The methylated DNA enrichment 
approach relies on capturing of methylated DNA for targeted sequencing, 
with the use of 5mC antibodies or proteins that bind to methylated cytosines. 
This section details these major DNA methyl- seq approaches.

14.1.1  Bisulfite Conversion Methyl- Seq

14.1.1.1  Whole- Genome Bisulfite Sequencing (WGBS)

As the name suggests, WGBS analyzes cytosine methylation in the entire 
genome, i.e., the methylome. In preparing WGBS libraries from total gen-
omic DNA, regular DNA library construction protocols need to be modi-
fied. For example, if adaptors are added prior to the bisulfite conversion 
step, they must not contain unmethylated cytosines, i.e., all cytosines in the 
adaptor sequence must be methylated. In the PCR step, a polymerase that 
can tolerate uracil residues needs to be used. As a result of the conversion 
and subsequent PCR amplification, the two DNA strands that were originally 
complementary are no longer complementary. Instead, four strands that are 
distinct from the original complementary strands are generated (Figure 14.1). 
Furthermore, the conversion leads to reduced sequence complexity due to 
underrepresentation of cytosines in the generated reads. Without the use of 
an external sequencing library to create a calibration table for basecaller, the 
reduced sequence complexity will lead to high basecall error rate. Therefore, 
use of a calibration library, such as the phiX174 control library for Illumina 
sequencing, is needed for bisulfite sequencing data generation.

The power to detect DNA methylation levels, and differentially methylated  
sites or regions between different experimental groups (e.g., disease vs.  
normal), is dependent on sequencing depth and the number of biological  
replicates in each group. In addition, key statistical factors, including mean  
DNA methylation level at a given site, within- group biological variation, and  
between- condition difference, also heavily affect detection power [1]. For  
WGBS studies, a general guideline from the U.S. NIH Roadmap Epigenomics  
Project recommends at least two replicates per condition with a combined  
depth of at least 30× [2]. Consistent with this recommendation, Ziller and  
colleagues suggested to use a sequencing depth of 5– 15× per WGBS sample,  
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and that sequencing at higher depth may not be as cost effective as adding  
more biological replicates in reaching higher detection power [3].

14.1.1.2  Reduced Representation Bisulfite Sequencing (RRBS)

While WGBS enables detection of methylation in the entire genome, the cost 
associated with such analyses is relatively high. To reduce the cost, strat-
egies such as RRBS [4] were devised. To perform RRBS, genomic DNA is first 
digested with a methylation- insensitive restriction enzyme (such as MspI) 
that recognizes CpG- containing restriction site. The digested DNA products 
are then separated and size selected to pick fragments in a certain size range 
for bisulfite conversion and then sequencing. While it has limited coverage 
of CpG- poor regions of the genome, RRBS provides a rough survey of DNA 
methylation by examining 4– 17% of the 28 million CpG dinucleotides in 
the human genome [5]. If particular region(s) of the genome are found to 
be of special interest, they can be captured for subsequent sequencing using 

>>ACmGTTCGCTTGAG>> <<TGCmAAGCGAACTC<<
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kcirCnostaW

>>ACmGTTUGUTTGAG>> <<TGCmAAGUGAAUTU<<

<<TGCmAAGTGAATTT<<
>>ACG TTCACTTAAA>><<TG CAAACAAACTC<<

>>ACmGTTTGTTTGAG>>BSW
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Cm   methylated
C   Un-methylated

1)  Denaturation

2)  Bisulfite Treatment
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>>ACmGTTCGCTTGAG>>
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FIGURE 14.1
Major steps of bisulfite sequencing. Prior to bisulfite treatment, the two strands of DNA are 
first separated by denaturation. The bisulfite treatment then converts unmethylated, but not 
methylated, cytosines to uracils. The two strands from the treatment, BSW and BSC, are then 
subjected to PCR amplification. This leads to the generation of four strands (BSW, BSWR, BSC, 
and BSCR), all of which are distinct from the original Watson and Crick strands. (From Xi Y. and 
Li W. (2009) BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics, 
10, 232. Used under the terms of the Creative Commons Attribution License (http:// crea tive 
comm ons.org/ licen ses/ by/ 2.0). © 2009 Xi and Li.)
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approaches such as ligation capture [6, 7], bisulfite padlock probes [8], or 
liquid hybridization capture [9, 10].

14.1.2  Enzymatic Conversion Methyl- Seq

Besides the bisulfite- based chemical method, the conversion of cytosine to 
uracil through deamination can also be achieved using enzymes such as 
APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide- 
like). Besides unmethylated cytosine, however, APOBEC can also deaminate 
5mC and 5hmC (Chapter 2). To protect them from deamination in order 
to quantify their presence, two other enzymes TET2 (Tet methylcytosine 
dioxygenase 2) and BGT (β- glucosyltransferase) need to be used first to con-
vert 5mC to 5caC, and 5hmC to 5- ghmC (5- glucosylhydroxymethylcytosine), 
respectively. After such enzymatic modifications, 5caC and 5- ghmC are no 
longer substrates of APOBEC. In the subsequent APOBEC- based deamin-
ation step, only unmethylated cytosines are converted to uracils, allowing 
determination of 5mCs and 5hmCs in the original sample. Compared to 
bisulfite treatment, enzyme- based conversion does not cause DNA damage 
and sample loss. This leads to increased detection accuracy, sensitivity, and 
coverage of CpGs and high GC content regions [11– 13]. The increased sen-
sitivity makes it possible to study single cells, cell- free DNA, or FFPE DNA. 
With enzymatic conversion, long- range methylation information can also be 
retained and studied using long-read NGS technologies [14].

14.1.3  Enrichment- Based Methyl- Seq

Different from the above bisulfite conversion- based methods, the methylated 
DNA enrichment strategy captures methylated DNA for targeted sequencing. 
One of the methods based on this strategy is MeDIP- seq, or methylated DNA 
immunoprecipitation coupled with NGS. In this method, antibodies against 
5mC are used to precipitate methylated single- stranded DNA fragments for 
sequencing. Another commonly used method is MBD- seq, or methyl- CpG- 
binding domain capture (MBDCap) followed by NGS. MBD- seq utilizes 
proteins such as MBD2 or MECP2 that contain the methyl- CpG-binding 
domain to enrich for methylated double- stranded DNA fragments. In one 
type of MBDCap method called MIRA (Methylated- CpG Island Recovery 
Assay), a protein complex of MBD2 and MBD3L1 (methyl- CpG- binding 
domain protein 3- like- 1) is used to achieve enhanced affinity to methylated 
CpG regions. While MeDIP- seq and MBD- aeq usually generate highly con-
cordant results, there are some differences between these two approaches. 
MeDIP- seq can detect both CpG and non- CpG methylation, while MBD- seq 
is focused on methylated CpG sites because of the binding affinity of MBD. 
At methylated CpG sites, MeDIP tends to enrich at regions that have low 
CpG density, while MBD- seq favors regions of relatively higher CpG content 
[15, 16].
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In principle, these enrichment- based methods are very similar to ChIP- 
seq (Chapter 13), based on the same process of specific protein- based DNA 
capture, protein- DNA complex affinity binding, and target DNA elution. 
Likewise, their sequencing data generation and subsequent analysis are also 
similar to those in ChIP- seq. Therefore, the data analysis methods covered 
in Chapter 13 equally apply to the analysis of sequencing data generated 
by MeDIP- seq, MBD- seq, or other methylated DNA enrichment- based NGS 
methods. This chapter is, therefore, mostly focused on the analysis of chem-
ical or enzymatic conversion- based methyl- seq data.

14.1.4  Differentiation of Cytosine Methylation from    
Demethylation Products

Besides 5mC, cytosine demethylation products, such as 5hmC (Figure 14.2), 
have also received growing interest because of their potential role as a new 
epigenetic marker [17]. Although the regular enzymatic conversion- based 
methyl- seq procedure detects both 5mC and 5hmC indiscriminately, a modi-
fied version can be used to detect 5hmC alone, in which the step of TET2 pro-
tection is skipped leaving 5mC unprotected while the glucosylation of 5hmC 
by BGT still protects 5- hmC from deamination by APOBEC. By combining 
results from the regular and the modified versions of the enzymatic methyl- 
seq, separate detection of both 5mC and 5hmC is achieved.

Other bisulfite conversion- based approaches to distinguish 5hmC from  
5mC include TAB- seq (or TET- assisted bisulfite sequencing) [18] and  
oxBS- seq (or oxidative bisulfite sequencing) [19]. Among the three 5mC  
demethylation intermediate products (5hmC, 5fC, and 5caC, see Chapter 2),  
5fC and 5caC are converted to uracils by sodium bisulfite but 5hmC (like  
5mC) is not. During subsequent sequencing, as a consequence, 5hmC cannot  
be differentiated from 5mC, while 5fC/ 5caC cannot be differentiated from  
unmethylated cytosine. In the instance of oxBS- seq, 5hmC is first oxidized to  
5fC before the bisulfite conversion step. Since the 5fC is then converted into  
uracil, subsequent sequencing and analysis provides information on 5mC  

Cytosine (C) 5-Methylcytosine
(5mC)

5-Hydroxymethylcytosine
(5hmC)

N
H

N

O

NH2

HO

FIGURE 14.2
The chemical structures of cytosine, 5- methylcytosine (5mC), and 5- hydroxymethylcytosine 
(5hmC).
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alone. After subtracting oxBS- seq result from regular bisulfite sequencing  
result, information on 5hmC is revealed.

Differentiation of 5fC and 5caC has also been made possible with recent 
method development [20, 21], but their levels are found to be typically low. 
Some third- generation single- molecule sequencing technologies, such as the 
Pacific Biosciences’ SMRT sequencing and nanopore sequencing, have been 
shown to be capable of differentially detecting these different modifications 
without relying on bisulfite or enzymatic conversion [22– 26]. The SMRT plat-
form detects various base modifications based on polymerase dynamics as 
reflected in the pulses of light emitted from incorporation of nucleotides, 
while the nanopore platform is based on recognition of specific patterns in 
the ionic current signal.

14.2  DNA Methylation Sequencing Data Analysis

14.2.1  Quality Control and Preprocessing

After raw data generation, the quality control (QC) step (Figure 14.3) 
removes low- quality reads or basecalls as they directly affect subsequent 
alignment to the reference genome and DNA methylation site identification. 
The general data QC steps detailed in Chapter 5 should be performed for 
their removal. Other QC steps include adapter trimming as some sequen-
cing reactions may run through DNA inserts into adapters. In addition, for 
MspI- digested RRBS libraries, the DNA fragment end repair step during 
the library construction artificially introduces two bases (an unmethylated 
cytosine and a guanine) to both ends, both of which should be trimmed 
off as well. Tools such as Trim Galore (a wrapper tool using Cutadapt and 
FastQC) [27] can be used for these trimming steps, especially removing the 
two artificially introduced bases in RRBS reads derived from MspI diges-
tion. Besides these general- purpose QC tools, some packages designed for 
bisulfite sequencing reads processing, including BSmooth [28] and WBSA 
[29], also contain QC modules.

14.2.2  Read Mapping

In order to identify methylated DNA sites, sequencing reads derived from  
bisulfite or enzymatic conversion, or methylated DNA enrichment, need to  
be first mapped to the reference genome. Mapping of reads generated from  
the enrichment- based methods is rather straightforward, and like mapping  
ChIP- seq reads, is usually conducted with general aligners, such as Bowtie,  
BWA, or SOAP. Mapping of bisulfite or enzymatic conversion- based methyl-  
seq reads, however, is less straightforward. This is because through the  
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bisulfite or enzymatic conversion and the subsequent sequencing process,  
a converted unmethylated cytosine is read as a thymine (T), or an adenine  
(A) on the complementary strand, while a methylated cytosine remains as a  
cytosine (C) or a guanine (G) on the complementary strand (see Figure 14.1).  
Such base changes have several implications for the read mapping process:

 • Fuzziness in mapping: A T in the reads could be mapped to a C or T in the 
reference sequence, thus complicating the searching process.

 • Increase in search space: This is partly caused by the non one- to- one 
mapping, and more seriously, by the generation of the four bisulfite- 
converted strands that are distinct from the reference strands (also 
illustrated in Figure 14.1), leading to significant increase in search space.

 • Reduction in sequence complexity: The amount of Cs in the bisulfite reads 
is significantly reduced, and this reduction in sequence complexity 
leads to higher levels of mapping ambiguity. Consequently, aligning 
bisulfite sequencing reads to the reference genome is not as straightfor-
ward as that for ChIP- seq or other DNA deep sequencing data.

DNA Methyl-Seq Data
QC &Preprocessing

Post Mapping QC

Read Mapping

Methylation/Demethylation
Level Quantification

Visualization 

Validation and Interpretation

Differential Methylation
Analysis

FIGURE 14.3
Major steps of chemical or enzymatic conversion- based DNA methyl- seq data analysis.
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Without making modifications to the typical DNA alignment process, the  
methylation status of a cytosine in the genome will affect alignment of  
reads covering the region. There are two general strategies for mapping  
conversion- based methylation sequencing reads: (1) replacing all Cs in the  
reference genome with the wild- card letter Y to match both Cs and Ts in the  
reads; (2) converting all Cs in the reference sequence and reads to Ts, and  
then aligning with a seed- and- extend approach (see Table 14.1). Aligners that  
use the wild- card approach include BSMAP [30], Last [31], GSNAP [32], and  
RRBSMAP (a version of BSMAP specifically tailored for RRBS reads, merged  
into BSMAP- 2.0) [33]. In the example of BSMAP, it uses SOAP for carrying  
out read alignment, and deploys genome hashing and bitwise masking for  
speed and accuracy. BSMAP indexes the reference genome using hash table  
containing original reference seed sequences and all their possible bisulfite  
conversion variants through the replacement of Cs with Ts. After determining 
the potential genomic position of each read by looking up the hash  
table, for the T(s) in each bisulfite read that are mapped to reference genome  
position(s) where the original reference base(s) are C(s), BSMAP masks as  

TABLE 14.1

Read Mapping Tools for Chemical or Enzymatic Conversion- Based DNA Methylation 
Sequencing

Name Description Reference

Three- Letter Aligners

Bismark Deploys Bowtie 2 (or HISAT2) for alignment, and performs 
cytosine methylation calling

[34]

bwa- meth Wraps BWA- MEM, provides local alignment for speed and 
accurary even without trimming

[35]

BS- Seeker2/ 
BS- Seeker3

Incorporates major aligners, such as Bowtie 2, to achieve 
gapped local alignment. BS- Seeker3 further improves speed 
and accuracy, and offers post- alignment analysis including 
QC and visualization

[36, 37]

BSmooth Uses Bowtie 2 (or Merman) for alignment. Also provides QC, 
smoothing- based methylation quantification, and differential 
methylation detection

[28]

Wild- Card Aligners

BSMAP/ 
RRBSMAP

Combines hash table seeding incorporated in SOAP, and 
bitwise masking to achieve speed and accuracy

[30]

GSNAP Employs hash tables built for plus and minus strands using C- 
T/ G- A substitutions

[32]

Last Builds on the traditional alignment strategy of seed- and- 
extend (like Blast), but with use of adaptive seeds

[31]

BatMeth2 Performs indel- sensitive mapping, DNA methylation 
quantification, differential methylation detection, annotation, 
and visualization

[41]
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C(s). The masked bisulfite reads are then mapped again to the reference  
genome.

Aligners such as Bismark [34], bwa- meth [35], and BS- Seeker2/ BS- Seeker3  
[36, 37] use the other (three- letter) approach. One advantage of this approach  
is that fast mapping algorithms such as BWA- MEM or bowtie2 can be used.  
For example, Bismark carries out alignment by first converting Cs in the  
reads into Ts, and Gs into As (equivalent of the C- to- T conversion on the com-
plementary strand) (Figure 14.4). This conversion process is also performed  
on the reference genome. The converted reads are then aligned, using Bowtie  
or Bowtie2, to the converted reference genome in four parallel processes (also  
refer to Figure 14.1), out of which a unique best alignment is determined  
[alignment (1) in Figure 14.4]. Among the above wild- card and three- letter  
methods, benchmark studies [38– 40] found that bwa- meth, Bismark, and  
BSMAP offer a good combination of accuracy, speed, and genomic region  
coverage.

Genomic fragment
sequence after bisulfite

treatment

Read conversion

Align to bisulfite
converted genomes

Read all four alignment
outputs simultaneously

to determine if the 
sequence can be
mapped uniquely

Determine unqiue best alignment

Forward strand C-to-T converted genome Forward strand G-toA converted genome

FIGURE 14.4
The “three- letter” bisulfite sequencing read alignment approach used by Bismark. (Adapted 
from Krueger F. and Andrews S.R. (2011) Bismark: a flexible aligner and methylation caller 
for Bisulfite- Seq applications. Bioinformatics, 27, 1571– 2. Used under the terms of the Creative 
Commons Attribution Non- Commercial License (http:// crea tive comm ons.org/ licen ses/ by- 
nc/ 2.5). © 2011 Krueger and Andrews.)
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After mapping, additional QC is needed prior to extraction of methylation 
information. For example, reads that have low MAPQ (e.g., < 10) should be 
removed. Duplicate reads that map exactly to the same position are most 
likely PCR artifacts and should be removed from further analysis (except in 
the case of RRBS). Methylation bias (or mbias) should also be checked and 
corrected. This bias is caused by the step of end repair during library prep 
post fragmentation, which incorporates unmethylated Cs at both ends of 
repaired DNA fragments leading to artificially low methylation levels at the 
affected sites [42]. Mbias plot, showing mean methylation levels at all base 
positions across the entire length of sequence reads, can be used to reveal 
the magnitude of the bias, based on which affected base positions should be 
excluded from further analysis. In addition, polymorphic sites which involve 
C→T variation (G→A on the complementary strand) will also affect analysis 
and should also be excluded. As part of post- mapping QC, distribution of the 
mapped reads in the genome should be visually examined. This provides an 
initial survey of the results, and at the same time may reveal other abnormal-
ities such as significantly unbalanced numbers of reads mapped to the two 
DNA strands in a genomic region (this should be inspected with caution and 
the reads may need to be filtered out). Methyl- seq QC tools such as BSeQC 
[43], and post- mapping analysis tools such as MethylDackel [44], can be used 
to carry out these post- mapping QC steps.

14.2.3  Quantification of DNA Methylation/ Demethylation Products

After read mapping, uniquely mapped reads need to be aggregated to quan-
tify the methylation level (also called β- value) at individual cytosine sites 
in the reference genome, based on the frequency of Cs (i.e. methylated 
cytosines) and Ts (unmethylated cytosines) in reads mapped to each of these 
sites. This quantitative step can be performed by dividing the total number of 
Cs by the total combined number of Cs and Ts that are mapped to each site. 
All of the sequence mappers introduced in the previous section generate this 
information. MethylDackel and other post- mapping tools such as methylKit 
[45] can also be used for methylation quantification. If separate quantification 
of 5mC and other demethylation products (such as 5hmC) is needed after 
applying approaches such as oxBS- seq, TAB- seq, or enzymatic methyl- seq, 
simultaneous estimation of methylation/ demethylation product levels can 
be achieved using methods such as MLML [46], which is part of the MethPipe 
package [47]. For this quantification step, it should be noted that the involved 
calculations usually require a minimum depth, e.g., at least three reads, at 
the individual sites to avoid deriving unreliable methylation levels from too 
few reads.

Besides quantifying methylation levels at individual cytosine sites, DNA 
methylation quantification is also calculated on a region- by- region basis, 
usually performed to facilitate comparisons between multiple samples. 
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Different approaches can be used for regional DNA methylation quantifi-
cation. These include approaches to segment the genome into bins, sliding 
windows of user- defined size (e.g. 100 bp) [48], or predefined regions (such 
as promoters, CpG islands, gene bodies, introns, etc.). The mean of methyla-
tion levels of individual cytosine sites, or alternatively the overall proportion 
of methylated cytosines among all cytosines, within each of such regions can 
be used to represent each region.

These calculations, however, do not take into consideration the possible 
existence of SNPs that involve the change from C to T. Some algorithms, 
such as Bis- SNP [49], remove this potential confounding factor through 
distinguishing conversion- caused base changes from genetic variants. The 
use of sequence reads from the complementary strand makes this possible, 
because a T produced from bisulfite conversion will have a G on the opposite 
strand while a C→T SNP will have an A on the other strand.

Different from the conversion- based sequencing methods, the methylated 
DNA enrichment sequencing approaches such as MeDIP- seq and MBD- seq 
cannot quantify methylation at the single- nucleotide resolution. In add-
ition, the absolute levels of DNA methylation cannot be obtained from the 
enrichment- based methods, as the sequence read counts from these methods 
are a function of both absolute DNA methylation levels and regional CpG 
content. Since these approaches are based on affinity immunoprecipitation 
and more similar to ChIP- seq, analytical methods developed for ChIP- seq 
data analysis, including background determination, normalization, and peak 
detection, can be applied for quantification of DNA methylation by these 
approaches. As an output, the degree of DNA methylation can be summarized 
as coverage over a predefined region, such as per gene, promoter, or certain 
sized bin.

14.2.4  Visualization

Visualizing DNA methylation data serves at least two purposes. Firstly, distri-
bution pattern of DNA methylation may be discerned through visualization. 
Secondly, visual examination of known DNA methylation regions and other 
randomly selected regions also offers data validation and a quick estimate of 
data quality. One method to visualize DNA methyl- seq data and associated 
information, such as depth of coverage, is through the use of bedGraph files. 
This standard format (Figure 14.5), compatible with most genome browsers 
and tools including the Washington University EpiGenome Browser [50], 
can be directly generated from many of the methylation quantification tools 
such as Bismark and methylKit. Figure 14.6 shows an example of displaying 
methylation level along with read depth in the genome.

Alternatively, DNA methylation quantification results can be saved in tab-  
delimited files and then converted to bigBed or bigWig formats [51]. Both  
formats are compatible with and enable visualization of the methylation  
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results in web- based genome browsers such as the UCSC Genome Browser,  
or desktop- based ones such as IGV or IGB. An additional option is to export  
DNA methylation data to the VCF format using tools such as GobyWeb [52],  
and then visualize with genome browsers such as IGV or Savant.

14.3  Detection of Differentially Methylated 
Cytosines and Regions

One frequent goal of DNA methylation analysis is to compare and identify 
specific cytosines and genomic regions that show differential methylation 
between conditions. To identify differentially methylated cytosines  
and regions (DMCs/ DMRs), different tools employing different statistical  
methods have been developed (see Table 14.2). The statistical methods  
employed by these tools include parametric tests such as t- test or ANOVA,  
and nonparametric tests such as Fisher’s exact test, Wilcoxon test, Chi- square  
test, or Kruskal– Wallis test. The parametric tests assume normal distribution,  
which is likely to be violated for DNA methylation data as it tends to follow  
bimodal distribution. As a result, most currently available tools use non-
parametric tests. For example, methylKit and RnBeads [53, 54] use Fisher’s  
exact test for comparison of groups without replicates. This test can also be  
applied directly often with good performance. For comparisons involving  
multiple samples per group, methylKit and RnBeads use logistic and  
linear regression, respectively. WBSA employs Wilcoxon test, and BSmooth  
applies a modified t- test with local data smoothing to increase detection  
power. Another package called Methy- Pipe [55] detects DMRs using the  
Mann- Whitney U test with a sliding window approach. More sophisticated  
approaches include the use of a beta- binomial hierarchical model in MOABS  
[56], and Shannon entropy in QDMR [57]. Besides these different statistical  
tests or models, another notable difference among these tools is on how bio-
logical replicates are handled. Earlier methods tend to pool replicate data  
for DMC/ DMR detection, leading to the loss of information on sample- to-  
sample variation. Newer methods, such as BSmooth and MOABS, are more  

track type=bedGraph
chr19 45408804 45408805 1.0
chr19 45408806 45408807 0.75
chr19 45408854 45408855 0.3
chr19 45408855 45408856 0.5

FIGURE 14.5
An example of the bedGraph file format. It includes a track definition line (the first line), 
followed by track data lines in four column format, i.e. chromosome, chromosome start position, 
chromosome end position, and data value.
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FIGURE 14.6
Visualization of DNA methylation data in a genome browser. Shown here is the methylC track in the Washington University EpiGenome 
Browser, for a region of the human chromosome 7 where the HOXA gene cluster is located. The original WGBS data was collected from H1 
human embryonic stem cells. Both DNA methylation levels (represented by vertical bars) and read depth (the smoothed black curve) are 
displayed in a strand- specific fashion. The different foreground/ background colors of the vertical bars represent different cytosine contexts, 
with CG represented by blue/ grey, CHG by orange/ light orange, and CHH by magenta/ light magenta. A zoomed- in view of the red boxed 
region is shown on the top. The left axis marks DNA methylation level, while the right marks read depth. (From Zhou X. et al. (2014) methylC 
Track: visual integration of single- base resolution DNA methylation data on the WashU EpiGenome Browser. Bioinformatics, 30, 2206– 7. 
Modified and used with permission from Oxford University Press. © 2014 Zhou et al.)
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replicate- aware and provide estimation on biological variation, thereby  
increasing detection power. On multiple testing correction, FDR is mostly  
used, while other methods are also reported, such as a sliding linear model  
(SLIM) method used by methylKit. Among the currently available DMC/  
DMR detection tools, benchmarking studies show that methylKit, Fisher’s  
exact test, methylSig, and DMRFinder are among the top performers [58, 59].

Data obtained from methylated DNA enrichment- based approaches 
follows the negative binomial distribution, like the ChIP- seq and RNA- seq 
data. Therefore, they can be analyzed to identify DMRs using algorithms 
developed for RNA- seq- based differential expression. For example, tools 
such as EdgeR and DESeq can be directly used. In some DNA methylation 
analysis tools, such as Repitools [60], EdgeR is directly called.

14.4  Data Verification, Validation, and Interpretation

The DMCs/ DMRs identified in the previous step need to be verified and fur-
ther validated. Verification is usually conducted on the same set of samples 
as those used for DNA methylation sequencing data generation. Further 
validation, on the other hand, is carried out on a new set of samples. For 
DNA methylation sequencing data verification and validation, the following 

TABLE 14.2

Tools for Detection of Differentially Methylated Cytosines/ Regions

Name Description Reference

Fisher’s Applies directly the classical Fisher’s exact test for DMC/ DMR 
recognition

N/ A

methylKit Uses logistic regression for groups with replicates, and Fisher’s 
exact test if without replicates

[45]

methylSig Identifies DMCs/ DMRs using likelihood ratio estimation based 
on a beta- binomial distribution model

[61]

RnBeads Combines statistical testing p-values, and priority ranking based 
on absolute and relative effect size

[53, 54]

RADMeth Uses log- likelihood ratio test based on a beta- binomial regression 
model for differential methylation testing

[62]

DMRFinder Applies Wald and empirical Bayes tests for differential 
methylation detection based on beta- binomial modelling

[63]

Metilene A nonparametric method based on segmentation of the genome 
using a circular binary segmentation algorithm

[64]

DSS Uses a Bayesian hierarchical model to allow information sharing 
across different CpG sites, and Wald test for DMC detection

[65]
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techniques are often used: methylation- specific PCR (such as MethyLight), 
or methylation- independent PCR coupled with pyrosequencing, mass spec-
trometry, or combined bisulfite restriction analysis (COBRA).

Data interpretation is a key step to translate a list of DMCs/ DMRs into 
mechanistic understanding of the biological process under study. Most 
potential effects of the DMCs/ DMRs can only be revealed through examining 
them in their genomic context. Tools such as EpiExplorer [66], methylKit, or 
WBSA can be very helpful in this regard via placing them in the context of 
other genomic features such as CpG islands, transcription start sites, histone 
modification marks, or repetitive regions. DMCs/ DMRs can also be mapped 
to nearby genes, which can then be subjected to gene set enrichment, bio-
logical pathway, and gene networking analyses. In this regard, the web- based 
Genomic Regions Enrichment of Annotations Tool (or GREAT) [67] can be 
used to map DMCs/ DMRs to nearby genes, while controlling for gene size 
difference and distance, for functional annotation and interpretation.
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15  
Whole Metagenome Sequencing for    
Microbial Community Analysis

A small amount of environmental sample, such as a handful of soil, is rich 
in microbial life, but the number of microbial species in such a sample is 
unknown. The microbiome on or within our body contains tens of thousands, 
if not more, species of bacteria, fungi, and archaea. Besides their tremendous 
species diversity, the composition, as well as function, of such microbial 
communities is not static but constantly changing according to the status of 
their environment. Our current understanding of these diverse and dynamic 
microbial communities is still significantly lacking, as most of our know-
ledge comes from culturable species. For those that still cannot be cultured in 
the lab, which comprise the majority of microorganisms on earth, we know 
very little. Metagenomics offers an important approach to study microbial 
diversity in these environmental communities without relying on artifi-
cial culturing. Also referred to as environmental or community genomics, 
metagenomics examines all genomes existing in a microbial community as a 
whole without the need to capture or amplify individual genomes. Through 
simultaneous analysis of all DNA molecules present in a microbial commu-
nity, metagenomics provides a profile of taxonomic composition and func-
tional status of the community and its environment.

Before the advent of NGS, metagenomics studies were usually conducted 
with DNA cloning combined with Sanger sequencing. In this approach, 
DNA extracted from a microbial community is first fragmented, and then the 
DNA fragments are cloned into plasmid vectors for amplification in order 
to produce enough materials for Sanger sequencing. With the continuous 
development and significant cost drop in NGS technologies, massively par-
allel metagenomic sequencing has quickly replaced this traditional low- 
throughput approach and become a major approach for studying various 
microbial communities. The high sensitivity offered by the NGS approach 
provides direct access to the unculturable microbial majority that were pre-
viously “invisible” to analysis [1]. The Human Microbiome Project exempli-
fies the use of NGS in interrogating complex metagenomes, such as those at 
different sites of the human body including the gastrointestinal tract. The 
application of NGS in metagenomic analysis of a large variety of other micro-
bial communities, such as those in soil, the phyllosphere, the ocean, and those 
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associated with bioremediation and biofuel generation, has led to exponen-
tial increase in the number of metagenomes studied.

Compared to the NGS data generated from a single species (most chapters 
in this book deal with individual species), the metagenomics data from micro-
bial community sequencing is much more complicated. Each metagenome 
contains DNA sequences from a large but unknown number of species, 
including viruses, bacteria, archaea, fungi, and microscopic eukaryotes. To 
further complicate the situation, the relative abundance of these species 
varies widely. In comparison to sequencing reads collected from a single 
species, metagenomic sequencing reads contain much higher heterogeneity 
because of the tremendous genome diversity in each microbial community. 
Also because of the tremendous DNA sequence complexity contained in the 
metagenome, most metagenomic sequencing effort can only sample part of 
the DNA pool. As a result of this limited sampling in a highly diverse DNA 
space, metagenomic NGS data is highly fragmented and has low redundancy. 
Due to the lack of redundant (i.e., partially overlapping, not duplicate) reads, 
metagenomic NGS data has an inherently higher error rate when compared 
to single- genome sequencing. All these differences between metagenomic 
and monogenomic NGS data require an entirely different set of tools for 
NGS- based metagenome data analysis for microbial community compos-
itional and functional profiling.

15.1  Experimental Design and Sample Preparation

Metagenomics studies aim to determine identities and relative abundance 
of different members, or taxa, in a microbial community, and how environ-
mental factors affect the composition and function of these communities. To 
achieve this by sequencing, there are two general approaches: whole genome 
shotgun metagenomic sequencing and targeted metagenomic sequencing. 
The shotgun approach provides random sampling of all genomes contained 
in an environmental or host- associated microbial sample. To carry out 
shotgun sequencing, total DNA extracted from such a sample is first broken 
into small fragments for short- read sequencing, or high- molecular- weight 
(HMW) DNA directly sequenced using long- read sequencing.

In the targeted approach, genomic component(s) that are shared among 
different species are PCR amplified and the amplicons are sequenced. The 
most commonly used target in this approach is the 16S rRNA gene, while 
other genes that code for specific protein functions (such as resistance to spe-
cific antibiotics) or non- coding genes are also used. The 16S rRNA gene, being 
considered as the universal clock of life [2], is usually used as a surrogate 
marker for measuring the relative abundance of different operational taxo-
nomic units (OTUs, a metagenomics term to describe a species or a group of 
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species when only DNA sequence information is available). By focusing on 
the 16S rRNA gene or other specific genomic target(s), this approach greatly 
reduces complexity in the generated data, thereby achieving deeper coverage 
and accommodating more samples. It should be noted that the 16S rRNA- 
based approach only produces approximate estimation of relative taxonomic 
abundance, due to 16S rRNA copy number variation in some species and the 
fact that the standard 16S rRNA PCR primers may not bind to their supposed 
target sites in all cases because of random mutation. In comparison, the 
shotgun approach, while requiring significantly more sequencing, takes an 
unbiased path to offer a comprehensive assessment of genome content in the 
community, and thereby provides in- depth information on community com-
position and function. This chapter focuses on shotgun metagenome sequen-
cing data analysis.

15.1.1  Metagenome Sample Collection

The success of a metagenomics project is to a degree dependent on factors 
that are not related to genomics. One such factor is how much is known 
about the habitat where study samples will be collected. The more physically, 
chemically, and ecologically characterized the habitat is, the more knowledge 
will be gathered from the metagenomic NGS data. In- depth characteriza-
tion and detailed description of the sampling environment is one founda-
tion of a successful metagenomics experiment. Keeping detailed metadata 
on the habitat and the sampling process, such as characteristics of the gen-
eral environment, geographical location and specific features of the sampling 
locales, and the sampling method, is of great importance to downstream data 
interpretation.

As the composition and complexity of a metagenome sample are 
determined by the habitat and the sampling site, the unique characteristics of 
a sampling environment, along with the question to be answered or specific 
hypothesis to be tested, eventually determine how many reads are required. 
It should also be emphasized that since where the samples are collected dir-
ectly shapes the outcome, the sampling sites must be representative of the 
habitat under study. In order to collect representative samples, informa-
tion on spatial and temporal variation in the habitat must be known prior 
to sample collection. If this information is not available, a small- scale trial 
shotgun sequencing run might prove helpful with a small number of samples 
sequenced. Alternatively, a targeted 16S rRNA amplicon sequencing can also 
be used to survey the diversity of the microbial community.

15.1.2  Metagenome Sample Processing

DNA extraction is the first and also a key step in metagenome sequencing 
sample preparation. The DNA extracted from this step should represent 
all, or at least most, members of the sampling community and their relative 
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abundance, be of high purity and free of contaminants that might interfere 
with the subsequent sequencing library construction. While this step might be 
routine in conventional genome sequencing for a single organism, extracting 
high- quality DNA from microbial community samples collected from various 
habitats poses challenges. For example, humic acids, polysaccharides, 
tannins, and other compounds are major contaminants in environmental 
samples such as those from the soil, which if not removed can lead to inhib-
ition of enzymes used in library construction. In host- associated habitats 
such as the human gut, host DNA is the major potential contaminant.

Besides purity, extracting DNA in equal efficiency from different commu-
nity members is another challenge, as optimal condition of cell lysis for DNA 
release from one group of microbes may not be ideal for another. For example, 
mechanical disruption is often used for breaking up cells in metagenomics 
studies, but by using this method DNA released from easily lysed cells may 
be sheared to fragments when tougher cells are eventually disrupted. While 
these challenging issues should be acknowledged and addressed, they are 
not insurmountable and robust extraction protocols are available for various 
habitats (e.g., [3]).

Advancements in sequencing library preparation protocols have reduced 
the amounts of DNA required considerably to lower nanograms level (e.g., 
the Nextera XT protocol needs only 1 ng DNA to start). This should accom-
modate DNA extracted from most habitats. In situations where only very 
limited amount of DNA is available, amplification of the DNA might be 
needed to generate enough material for creating sequencing libraries. To 
maintain the relative abundance level between community members, strat-
egies such as multiple displacement amplification can be used. Such ampli-
fication can generate more than enough DNA for library construction from 
femtograms of starting DNA.

15.2  Sequencing Approaches

There are several key factors that need to be considered before the sequencing 
process starts. These include sequencing depth, read length, and sequencing 
platforms. The depth of sequencing is dependent on the species richness and 
abundances in the samples, and the goal to be pursued. For example, a study 
that attempts to locate rare members in a highly diverse microbial community 
requires deeper sequencing than one that is only focused on more abundant 
members in a less diverse environment. With regard to read length, longer 
reads are always better than shorter reads in metagenomics for sorting out 
the inherent sequence complexity. The read length from most current short 
read sequencers can reach 150 bp from each end for paired- end sequencing. 
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As overviewed in Chapter 4, long- read sequencing technologies, such as 
PacBio’s SMRT and ONT’s nanopore sequencing, generate much longer 
(but fewer and less accurate) reads. With read throughput and sequencing 
accuracy steadily increasing, there are increasing numbers of samples being 
sequenced on these systems. A hybrid approach is also often used to take 
advantage of the different strength of these technologies, with the use of short 
reads to generate an in- depth survey of the community and long reads to 
provide scaffolding for assembling contigs (see next). Future advancements 
in sequencing technologies will undoubtedly lead to continuous increase 
in read length and drop in cost making the goals of metagenomics more 
achievable.

15.3  Overview of Shotgun Metagenome 
Sequencing Data Analysis

For microbial community profiling, whole- metagenome shotgun sequen-
cing provides rich information on a community’s taxonomic composition 
and functional status, without requiring pre- existing knowledge of all 
genomes contained in the community. Figure 15.1 shows an overview of 
a general shotgun metagenomic sequencing data analysis workflow. Most 
of this workflow involves assembly of reads to reconstruct the so- called 
metagenome- assembled genomes (or MAGs), while an assembly- free 
approach uses sequencing reads directly. For both approaches, to perform 
taxonomic profiling and functional analysis, sequence homology and other 
feature search against genes of microbes in the currently known taxonomy, 
as catalogued in various public databases, are key steps. While results from 
these key steps are limited to the currently known genomes and catalogued 
sequences, the rapid increase in the number of sequenced microbial genomes 
will gradually alleviate this limitation. The rapid increase in the employ-
ment of long- read sequencing to the metagenomics field also helps with 
reconstruction of more MAGs for subsequent analyses. Besides taxonomic 
profiling and functional analysis in one condition or habitat, comparative 
metagenomics analysis between conditions or habitats is usually performed 
to achieve the final goal of studying the effects of environmental factors on 
a microbial community.

The following sections cover the various steps of metagenomics data ana-
lysis. Because of the great diversity in sampling habitats/ conditions and  
the specific questions asked in each study, there is no fixed workflow for  
metagenomics data analysis. The steps outlined in Figure 15.1 and covered  
next are not necessarily arranged in the most appropriate order for a par-
ticular project, and they can be used in different combinations and/ or with  
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some step(s) omitted. Since the publication of the first edition of this book,  
there has been rapid increase in the number of tools available for metagenome  
analysis. Some of the currently available tools, such as those required for  
taxonomic profiling based on search against multiple databases, require con-
siderable computing resources and power.

Metagenome Sample Collection 
& Metadata Recording

Data QC & Preprocessing

Reads Mapping to Currently
Known Gene Sequences

Metagenome Assembly 

Taxonomic Profiling

Calling of Genes/
Genomic Elements

Comparative Metagenomic
Analysis

Sample Processing 
& Sequencing

Gene Function Annotation

Functional Profiling/Metabolic
Pathway Reconstruction

Reads Binning

Contig Binning

Assembly-Free Assembly-Dependent

FIGURE 15.1
Major steps of metagenome analysis.
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15.4  Sequencing Data Quality Control and Preprocessing

To ensure data quality and avoid erroneous results, metagenomic shotgun 
sequencing reads should first be examined and preprocessed prior to 
conducting downstream analysis. Using the tools introduced in Chapter 5, 
reads of low quality should be filtered out, and low- quality bases and adapter 
sequences trimmed off. In addition, for samples from host- associated habitats, 
contaminating host sequences need to be marked and excluded from further 
analysis. This can be realized by simply using mappers such as bowtie2 (the - - 
un- conc output option), or using bowtie2 to output all reads and then samtools 
to extract reads unmapped to the host genome. Specially developed tools for 
marking and removing DNA contamination sequences include KneadData 
[4], BMTagger [5], and DeconSeq [6]. Additional data preprocessing also 
includes removal of duplicated reads. This can be conducted with tools such 
as the Dedupe tool in the BBTools suite [7], FastUniq [8], and the Picard 
module called EstimateLibraryComplexity, all of which identify and remove 
duplicate reads without the need to align reads to a reference genome.

15.5  Taxonomic Characterization of a Microbial Community

15.5.1  Metagenome Assembly

While the ultimate goal of metagenomics is to assemble each genome in a 
microbial community, this is currently still far from achievable because of 
several reasons. The number of organisms in a metagenome is unknown, and 
there are wide variations in their relative abundance and therefore sequen-
cing depth among the organisms. This is especially the case for samples 
collected from highly complex microbial communities. The large number of 
species in these samples, and the concomitant low sequencing depth for most 
species, make metagenome assembly extremely challenging. Sequence simi-
larity between closely related species poses further challenges to assemblers, 
often leading to chimeric assemblies that contain reads from different OTUs. 
Despite the challenges, metagenome reads assembly is an important step in 
metagenomic sequencing data analysis. It has led to rapid increase in the 
total number of MAGs recovered from a wide range of environments, such 
as the human gut [9, 10], and a diversity of habitats on Earth encompassing 
all continents and oceans [11].

For de novo metagenome assembly, the assemblers introduced in Chapter 12 
for single- genome de novo assembly, such as SOAPdenovo and Velvet, were 
initially applied but with limited success. As a result, assemblers tailored for 
metagenome reads have been developed. For assembling long reads such 
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as those generated from the PacBio and ONT platforms, assemblers such as 
metaFlye [12], Raven [13], Canu [14], and Hifiasm- meta [15] can be used. For 
short reads, more assemblers are available, including SPAdes/ metaSPAdes 
[16, 17], MEGAHIT [18], IDBA- UD [19], MetaVelvet/ MetaVelvet- SL [20, 21], 
and Ray Meta [22]. Similar to single- genome assemblers, many of these short 
read metagenome assemblers, such as metaSPAdes, MEGAHIT, IDBA- UD, 
and Ray Meta, are based on the de Bruijn graph approach (see Chapter 12). 
In addition, these methods use multi- k- mer sizes, instead of a fixed k- mer 
size, in order to improve assemblies. The difference from the single- genome 
assemblers, though, is that they attempt to identify subgraphs within a 
mixed de Bruijn graph, each of which is expected to represent an individual 
genome. For example, metaSPAdes first builds a large de Bruijn graph from 
all metagenomic reads using SPAdes and then transforms it into an assembly 
graph. Within the assembly graph, subgraphs that contain alternative paths 
are identified, corresponding to large fragments from individual genomes. 
Besides these assemblers that are designed for either long or short reads, other 
assemblers combine long and short reads in an effort to increased assembly 
quality. These hybrid assemblers include MaSuRCA [23], hybridSPAdes [24], 
and OPERA- MS [25].

After the assembly process, a metagenome usually comprises mostly of 
contigs of various sizes. To evaluate the assembly quality, traditional evalu-
ation metrics, such as N50, are not as informative and representative as in 
evaluating single- genome assemblies. Instead, aggregate statistics such as 
the total number of contigs, the percentage of reads mapped to them, and 
the maximum, median, and average lengths of the contigs are often used. 
Further inspection of the assembly quality includes looking for chimeric or 
mis- assemblies. There are currently a number of tools available to assess MAG 
quality, including CheckM [26], MetaQUAST [27], and BUSCO [28], all of 
which rely on reference genomes. Reference- free tools include DeepMAsED 
[29] and ALE (Assembly Likelihood Evaluation) [30].

After contig assembly, if paired reads are available, metagenome scaffolds 
can be built from the contigs. Many of the metagenome assemblers have 
a module to carry out scaffolding. Besides these modules, dedicated 
metagenome scaffolding tools like Bambus 2 [31] may be used to determine if 
additional scaffolding is needed. Bambus 2 accepts contigs constructed with 
most assemblers using reads from all sequencing platforms. In the process 
of building scaffolds from contigs, ambiguous and inconsistent contigs may 
also be identified. Besides scaffolding, another approach for the assembly of 
MAGs is contig binning, which places contigs derived from the same genome 
into the same bin. Contigs in the same bin are then reassembled into a MAG.

15.5.2  Sequence Binning

As indicated above, metagenomic sequence binning refers to the pro-
cess of clustering sequence fragments in a mixture into different “bins” 
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corresponding to their genomic or taxonomic origins. This process can be 
conducted on contigs (most often), reads, or genes. With longer reads or 
contigs, high- resolution binning can be achieved at the levels of family, 
genus, species, or even strains. Short sequences may be binned only to the 
level of phylum due to the limited information carried in the sequences. Since 
sequence binning reduces the complexity inherent in the metagenomics data, 
each set of binned sequences can then be subjected to independent analysis 
in other steps, such as MAG reconstruction for identification of new archae-
bacterial and eubacterial specie or viruses.

Two binning approaches are usually used. One approach, called genome 
binning, bins contigs or reads on the basis of sequence composition and 
abundance. Sequence composition encompasses characteristics such as oligo-
nucleotide (often tetramer) frequency, G/ C content, and codon usage. The 
genome binning approach is built on the assumption that sequences from the 
same species or closely related species/ organisms are more similar to each 
other in these characteristics and abundance than to distantly or non- related 
species/ organisms. Methods that use this strategy include MetaBAT 2 [32], 
MaxBin 2.0 [33], GroopM [34] (now replaced by Rosella) [35], CONCOCT 
[36], MetaWatt [37], and VAMB [38] (Table 15.1). CONCOCT, as an example 
for genome binning, places contigs into bins based on sequence composition 
and coverage across samples. After combining k- mer frequency and coverage 
information, CONCOCT applies PCA to reduce the dimensionality of the 
matrix and reveal clusters. This is followed by the utilization of a Gaussian 
mixture model (GMM) for binning the contigs. VAMB is another example 
of genome binning method that is based on machine learning. It uses deep 
variational autoencoders to encode sequence co- abundance and k- mer distri-
bution before clustering of sequences. Besides the individual methods, there 
are also ensemble methods that integrate binning results from the different 
individual genome binning methods. Examples of such ensemble binning 
methods are MetaBinner [39], MetaWRAP [40], and DAS tool [41]. The 
Critical Assessment of Metagenome Interpretation (CAMI) challenge round 
II shows that some of these ensemble methods can achieve better results than 
individual methods [42]. In general, the genome binning approach is more 
reliable for contigs and long reads, as short reads carry less information due 
to their limited length. While it has the advantage of being fast as it does 
not rely on aligning metagenomic sequences to reference databases, vari-
ation in the distribution of sequence composition and coverage can lead to 
inaccuracies.

The other approach, called taxonomy binning, assigns metagenomic  
sequences to their taxonomic sources of origin by comparing against micro-
bial sequence database(s) that are taxonomically annotated. Methods that use  
this approach first place sequences into different bins, followed by labeling of  
the bins with taxonomic identifiers. Examples of taxonomy binning methods  
include MEGAN/ MEGAN- LR (for long reads) [43, 44], Kraken 2 [45], and  
PhyloPythiaS+  [46] (Table 15.1). MEGAN (for Metagenome Analyzer), as  
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an example, first aligns reads against a reference database such as BLAST-  
nr using an alignment tool called DIAMOND [47] that achieves fast  
alignment speed. The alignment result is then processed by a program called  
MEGANIZER for taxonomic binning that aims to assign a taxon ID to each  
sequence. This binning process uses an algorithm called naïve LCA, which  
assigns each read to a node representing the lowest common ancestor. Based  
on this algorithm, a read that aligns to a widely conserved gene is assigned  

TABLE 15.1

Commonly Used Binning Algorithms

Name Description Reference

Genome Binning

MaxBin 2.0 Classifies contigs into different bins using an Expectation- 
Maximization algorithm on the basis of their tetranucleotide 
frequencies and coverages

[33]

CONCOCT Combines coverage and tetramer frequency for contig binning 
using GMM

[36]

MetaBAT 2 Uses adaptive binning to group the most reliable contigs 
first (such as those of high length), and then gradually add 
remaining contigs

[32]

MetaWatt Uses multivariate statistics of tetramer frequencies and 
differential coverage information for binning. Also assesses 
binning quality using taxonomic annotation of contigs in 
each bin

[37]

VAMB A machine- learning based binner that encodes k- mer 
distribution and sequence co- abundance information using 
variational autoencoders for subsequent binning

[38]

GroopM Bins sequences by primarily leveraging differential coverage 
information

[34]

MetaBinner An ensemble binner that integrates component binning results 
generated with multiple features and initiations

[39]

MetaWRAP An ensemble binner to generate hybrid bin sets from other 
binners and select final bins based on CheckM results

[40]

Taxonomy Binning

MEGAN Aligns sequences against the NCBI- nr reference database 
and then performs taxonomic binning using the naïve LCA 
algorithm

[43]

Kraken 2 Assigns taxonomic labels to sequences based on search of 
k- mers within the sequences against a database of indexed 
and sorted k- mers (or their minimizers) extracted from all 
genomes

[45, 48]

PhyloPythiaS+ Achieves taxonomic binning through building sample- 
specific support vector machine taxonomic classifier using 
most relevant taxa and training sequences determined 
automatically

[46]
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to a taxon at a higher level (e.g., phylum or class), while another read that  
aligns to a less conserved gene that is limited to a select group of organisms  
is assigned to a lower- level taxon (such as genus or species). As it is based on  
the current annotation of catalogued sequences, this approach is not suitable  
to find currently unknown species or taxa.

15.5.3  Calling of Genes and Other Genomic Elements 
from Metagenomic Sequences

To answer the questions of what taxonomic groups are in a microbial commu-
nity and what they are doing, identification of genes from assembled contigs 
or MAGs is an essential step. For gene coding region identification, since 
ORF- containing metagenomic sequences may not carry full- length ORFs, 
metagenome ORF- calling algorithms do not penalize for their incomplete-
ness. Many metagenome ORF callers employ machine learning strategies. For 
example, Prodigal [49] and MetaGeneAnnotator [50] employ dynamic pro-
gramming. GeneMarkS- 2 [51], FragGeneScan (FGS) [52], and Glimmer- MG 
[53] are based on Markov models. CNN- MGP [54] and Balrog [55] use con-
volutional neural networks. Among these methods, Prodigal is an unsuper-
vised algorithm that does not require training data. It predicts protein- coding 
genes using inherent properties in the sequences themselves, such as start 
codon usage, ribosomal-binding site motif usage, genetic code usage, G/ C 
content, and hexamer coding statistics, among other information. Calling of 
other genomic elements, such as ncRNAs and CRISPRs, may require long 
reads or contigs as well as more computational resources. Currently a limited 
number of tools are available to identify these elements, such as tRNAscan- 
SE [56], ARAGORN [57], MinCED (a modified version of the CRISPR 
Recognition Tool or CRT) [58], CRISPRFinder [59], and CRISPRDetect [60]. 
Besides providing answers to the composition and function of a microbial 
community, calling of genes and other genomic elements also helps identify 
mis- assembled reads or locate adjoining contigs that are not yet placed into 
the same scaffold.

15.5.4  Taxonomic Profiling

One goal of metagenome analysis is profile taxonomic composition and rela-
tive abundance of each taxon in a microbial community. This is related to 
but different from taxonomic binning, which aims to group metagenomic 
sequences into different bins. The CAMI II challenge finds that taxonomic 
profilers MetaPhlAn [61] and mOTUs [62] had the best overall perform-
ance, both of which are based on the use of phylogenetic gene markers not 
taxonomic binning of reads. Phylogenetic gene markers are composed of 
ubiquitous but phylogenetically diverse genes, with good examples being 
the rRNA genes (e.g., 16S), recA (DNA recombinase A), rpoB (RNA poly-
merase beta subunit), fusA (protein chain elongation factor), and gyrB (DNA 
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gyrase subunit B). MetaPhlAn, as an example, conducts homology search of 
metagenomic reads against an extensive list of clade- specific gene markers. 
From the mapping of query reads to the marker genes, the number of 
mapped reads is normalized prior to calculation of relative abundance levels 
of different taxa identified in the sample [61]. Other commonly used taxo-
nomic profilers include Kaiju [63], Centrifuge [64], Bracken [65], GTDB- tk 
[66], and IGGsearch [9]. Among these tools, GTDB- tk is a toolkit that assigns 
taxonomic classification of MAGs using the Genome Taxonomy Database 
(GTDB). It first calls genes from MAGs using Prodigal, then identifies marker 
genes, followed by subsequent marker- gene- based phylogenetic inference 
[67]. Bracken, which is built upon taxonomic binning results from Kraken, 
uses a Bayesian approach to estimate the abundance levels of different taxa. 
Taxonomic profilers developed specifically for long reads include MetaMaps 
[68] and BugSeq [69]. Currently available comparisons on the use of such 
long- read taxonomic profilers vs. the aforementioned short- read methods 
suggest that the long- range sequence information provided by long reads 
and the methods designed to take advantage of such information lead to 
improved taxonomic profiling [70].

15.6  Functional Characterization of a Microbial Community

15.6.1  Gene Function Annotation

Gene calling from metagenomic sequences provides substrate for functional 
analysis of the underlying community, i.e., answering the question of “what 
they are doing.” Functional annotation of called genes can reveal the full rep-
ertoire of protein functions in a habitat, including metabolism, signal trans-
duction, stress tolerance, virulence, etc. Uncommon functions may suggest 
unusual lifestyle and activity in a community. The relative abundance of 
different types of genes also reveals specificity about a community and how 
organisms in the community deal with environmental factors in the habitat.

To conduct functional annotation, predicted protein sequences from called 
ORFs are searched against a database of reference protein sequences, or 
HMMs that describe protein families. Protein sequence databases such as 
UniProt [71], InterPro [72], COG [73], and eggNOG [74], are among the most 
commonly used databases. This task of database searching to identify all pos-
sible peptides coded by the metagenome is a computationally intensive pro-
cess. If local computing resources permit, locally installed stand-alone tools 
such as Prokka [75], DRAM [76], DFAST [77], or NCBI’s Prokaryotic Genome 
Annotation Pipeline (PGAP) [78] can be used. Alternatively, the task can 
also be submitted to a web- based system such as the metagenomics RAST 
server (MG- RAST) [79], the Integrated Microbial Genomes & Microbiomes 
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system (IMG/ M) [80], GhostKOALA [81], or MGnify [82]. Some tools, such 
as eggNOG- mapper [83] provide both online and stand-alone versions.

15.6.2  Gene Function Profiling and Metabolic Pathway Reconstruction

To further answer the question of “what they are doing,” functional profiling 
of a microbial community can be performed at the levels of annotated genes 
(or gene families) and metabolic pathways. Analysis at the gene/ gene family 
level relies on function annotations with the use of the databases detailed 
above, while at the metabolic pathway level this requires databases that cap-
ture currently known metabolic pathways, including KEGG [84] and MetaCyc 
[85]. Based on reference information from these databases, functional pro-
filing tools such as HUMAnN [61] and Carnelian [86] provide the abundance 
of each gene/ gene family, or metabolic pathway detected in a community. 
This abundance profile can be further stratified to reveal the contribution of 
each identified OTU in the community. As an example, HUMAnN employs 
MBLASTX to search metagenomic reads against the KEGG Orthology data-
base to determine the abundances of individual orthologous protein families. 
At the pathway level, HUMAnN reconstructs pathways using MinPath [87], 
which is a maximum parsimony approach to explain the observed families 
and their abundances with a minimal set of pathways. After further noise 
reduction and smoothing, the output from HUMAnN displays pathway 
coverage (i.e., whether each pathway is present or absent), and the relative 
abundance of each pathway in the metagenomic samples.

Besides quantifying present metabolic pathways, continuous methods 
development also makes it possible to semi- automatically reconstruct 
genome- scale metabolic models, or GSMMs, to reveal the metabolic poten-
tial of a genome. This reconstruction process requires integration of gene 
coding information in an assembled individual microbial genome and meta-
bolic pathway information catalogued in reference databases. Examples of 
such methods are ModelSEED [88], CarveMe [89], Pathway Tools [90], Merlin 
[91], and RAVEN [92]. From the reconstructed single- species GSMMs and the 
relative species abundance measured from a metagenomic sample, the many 
GSMMs can be integrated to predict the metabolic status of the underlying 
community. MAMBO, for Metabolomic Analysis of Metagenomes using fBa 
and Optimization, is a good exemplary tool for this task [93].

In addition, the increasing availability of metabolomics data also makes 
it possible to correlate metagenomic sequence and metabolite data. For 
example, MIMOSA is a reference- based tool to correlate metagenomic and 
metabolomic data [94]. With this tool, community metabolic potential scores 
can be calculated from metagenomic sequencing data to describe the potential 
ability of a microbial community to metabolize small molecules. Abundances 
of metabolites, as measured by metabolomics, can then be correlated with 
the community’s metabolic potential scores. Furthermore, the specific taxa, 
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genes, or reactions that may contribute to the formation of the metabolites 
can be identified. MelonnPan is another tool designed to predict metabolomic 
profiles from microbial sequencing features. This method does not rely on 
reference database search, instead it uses a machine learning approach [95].

15.7  Comparative Metagenomic Analysis

Comparative metagenomic analysis between habitats or conditions can lead 
to insights about the underlying microbial communities and their dynamics. 
However, statistical comparison between metagenomes is not as straightfor-
ward as other NGS- based comparative analyses (such as RNA- seq). This is 
mostly due to the tremendous amount of variability involved in comparative 
metagenomic analysis. One source of this variability is biological, as microbial 
composition can vary greatly between different samples. Another source is 
technical, due to insufficient sequencing depth and therefore undersampling 
of low- abundance species. These species generate fewer reads and are more 
affected by stochastic factors in the sequence sampling process, as in general the 
number of reads from a species is dependent on a number of factors, including 
relative abundance of the species, genome size, genome copy number, within- 
species heterogeneity, and DNA extraction efficiency. Due to these biological 
and technical factors, many species or OTUs detected in one sample or con-
dition are often absent in another sample or condition. If rare species need 
to be studied in a metagenome study, it is more cost effective to artificially 
increase their abundance using cell enrichment technologies such as flow cell 
sorting rather than increasing sequencing depth. In a typical metagenomics 
project that does not artificially increase the abundance of rare species, their 
undersampling can lead to significant biases in subsequent data normaliza-
tion and detection of significant differences between samples. Compared to 
other steps in the metagenomic data analysis pipeline, there has been rela-
tively less method development in comparative metagenomic analysis.

15.7.1  Metagenome Sequencing Data Normalization

Similar to RNA- seq data, metagenomic abundance data needs to be 
normalized prior to comparative analysis. Currently there is still no consensus 
as to how metagenomics data should be normalized. Among the normaliza-
tion approaches that have been reported, total- sum scaling (TSS), equivalent 
to the Total Count approach in RNA- seq (Chapter 7), is performed by div-
iding the raw count of reads assigned to a certain species or OTU by the total 
number of reads in the same sample. Another approach is cumulative- sum 
scaling (CSS), which, similar to the Upper Quartile approach in RNA- seq, is 
calculated by dividing the raw count of reads assigned to a species or OTU by 
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the cumulative sum of counts up to a certain percentile. Other normalization 
methods introduced in Chapter 7, such as TMM and RLE, can also be used on 
metagenomic abundance data.

15.7.2  Identification of Differentially Abundant Species or OTUs

To identify species or OTUs that are differentially abundant between habitats 
or conditions, currently available tools include metagenomeSeq [96], phyloseq 
[97], LEfSe [98], STAMP [99], ANCOM and ANCOM- BC [100, 101], corncob 
[102], and MaAsLin 2 [103]. These tools use different methods and statistics 
to detect differential abundance between metagenomes. For example, 
metagenomeSeq implements the CSS normalization, and a distribution mix-
ture statistical model to deal with the biases caused by the undersampling 
issue that confound comparative metagenomic analyses. LEfSe uses the 
Kruskal– Wallis rank- sum test to detect features that display significant differ-
ential abundance between conditions. Among the newer methods, MaAsLin 
2 uses general linear models to detect associations between abundances 
of microbial features, such as taxa (or genes), and environmental or other 
phenotypic metadata. It offers a number of normalization methods including 
TSS, CSS, TMM, etc.

15.8  Integrated Metagenomics Data Analysis Pipelines

Besides the tools developed for each of the individual steps above, pipelines 
designed for integrated comprehensive analysis of metagenomics data are 
also available. These pipelines, including Quantitative Insight Into Microbial 
Ecology (QIIME2) [104], IMG/ M, MEGAN, MG- RAST, metaWRAP, and 
bioBakery [61], contain large collections of tools that encompass the many 
aspects of metagenomics data mining from preprocessing, binning, feature 
identification, functional annotation, to cross- condition comparison. For 
example, MG- RAST directly takes sequencing and metadata files as input, 
conducts reads QC and preprocessing, gene calling, protein identification, 
annotation mapping, abundance profiling, comparative analysis, and meta-
bolic reconstruction.

15.9  Metagenomics Data Repositories

In the United States, like for other NGS data, the NCBI SRA database provides 
the official repository for all metagenomic data collected by NGS technologies. 
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In Europe, MGnify (previously EBI Metagenomics) offers archiving and ana-
lysis of metagenomics data. The data archived by MGnify is also accessible 
through ENA (or SRA). In China, a database called gcMeta, or Global Catalogue 
of Metagenomics [105], has been established more recently. Besides these offi-
cial metagenomics data repositories, MG- RAST and IMG/ M are two de facto 
metagenomic data repositories that also enable data sharing in a collabora-
tive environment and with the entire research community. The value of these 
repositories will become more apparent when more and more metagenomics 
data becomes available. For example, they can accelerate the discovery of 
new genes and species through providing opportunities to compare currently 
unknown sequences that exist in multiple metagenomes. In a typical shotgun 
metagenomics study, many sequences are previously unknown and may 
represent novel genes or sequences from currently uncatalogued species. To 
discover novel genes and new species, meta- analysis of data (including meta-
data) is needed, which is only enabled by these repositories.
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16  
What’s Next for Next- Generation 
Sequencing (NGS)?

16.1  The Changing Landscape of Next- Generation    
Sequencing (NGS)

Since its invention, massively parallel sequencing has been the major driving 
force in moving life science and medicine forward. After more than a decade, 
NGS continues to be the most exciting and dynamic area of genomics, and the 
technology as a whole continues to evolve. As NGS is used ever more widely 
in research, clinical, agricultural, and industrial applications, the drive for 
technological advancements will only become greater and the competition 
among existing platforms more intense. Furthermore, new sequencing tech-
nologies continue to emerge and join the fray. As a result, the landscape of 
NGS is constantly changing.

Since the publication of the first edition of this book in early 2016, the gen-
eral trends in the NGS arena can be briefly summarized as follows:

1) Continued drop in sequencing cost: As of this writing (late 2022) the 
sequencing cost per human genome has dropped to $300 compared to 
$300,000 in 2007 when NGS started to emerge. Emerging new systems 
will sequence the human genome at $100 or less.

2) Continued improvement on accuracy: Short reads technologies, such 
as Illumina’s SBS, continue to reduce sequencing errors with the 
use of new detection dyes, polymerases, and reaction blockers. The 
advancements achieved by long-read technologies are even more sub-
stantial (see Chapter 4 for details on the PacBio and ONT platforms), 
which has led to their increased adoption by the community.

3) Increased use of single DNA (or RNA) molecule sequencing: Single 
molecule sequencing offers the capability to directly read individual 
target DNA molecules without relying on template amplification, or 
conversion to cDNA in the case of RNA.

4) Increased representation of different read lengths on different 
platforms: As short and long read lengths have their strengths and also 
limitations, short reads platforms such as the Illumina SBS continue to 
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make inroads into building long reads from short reads, while long-
read platforms have also started to provide short reads.

5) Reduction in sequencing and sample preparation time: Different 
platforms use different strategies from chemistry updates, hardware 
upgrades, to algorithmic improvements, to achieve quicker sequen-
cing turnaround time. To cut library prep time, constant improvements 
are made to chemistries and protocols with increased amenability to 
automation.

6) Decreased requirement on the amount of starting material: Historically 
NGS requires large amounts of DNA or RNA to start. With the drive 
to accommodate more sample types, such as those that do not gen-
erate much DNA or RNA (e.g., liquid biopsy and single cells), the 
sensitivity of library making reagents and procedures has been sig-
nificantly improved.

16.2  Newer Sequencing Technologies

In Chapter 4, major NGS technologies that are widely used as the time of  
writing this book are detailed. This chapter presents some of the newer tech-
nologies that are in increasing usage or in active development. Among those  
in the short-read category, MGI, the instruments manufacturing arm of BGI,  
has been providing a technology called DNBSEQ. Originally developed by  
Complete Genomics [1], this technology is based on the use of DNA nanoball  
or DNB, which is a large mass of amplified template DNA formed through  
rolling circle amplification (Figure 16.1). The sequencing process is based  
on the use of a procedure originally called combinatorial probe- anchor  
ligation (or cPAL), and later refined by BGI/ MGI to become combinatorial  
probe- anchor synthesis (or cPAS) [2]. This process consists of iterative cycles  
of hybridization of an anchor sequence to the template, then ligation of  
fluorescence- labeled probes, imaging for on- board basecalling, and removal  
of the anchor- probe complex to prepare for the next cycle with a new set of  
anchors and probes to interrogate the next base position. The current lineup  
of MGI sequencers include DNBSEQ- T7, DNBSEQ- G400, and DNBSEQ- G50,  
which can produce up to 6,000 Gb, 1,440 Gb, and 150 Gb data, respectively.  
The error profile of DNB sequencing is similar to that of the Illumina platform, 
with the error rate slightly higher but still less than 1% [3]. Its cost per  
Gb is among the lowest among currently available platforms [4]. In 2020, MGI  
released a new sequencing chemistry called CoolMPS, which is based on the  
use of nucleotide- specific antibodies to detect nucleotide incorporation. This  
chemistry uses unlabeled reversibly terminated nucleotides for incorporation 
during synthesis, and four natural nucleotide- specific antibodies with  
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each labeled with a specific type of fluorescent dye for the detection step in  
each cycle (Figure 16.1). To increase sequencing signal to background noise  
ratio, multiple fluorescence dyes are attached to each antibody molecule. It  
has been shown to have the potential to produce longer and more accurate  
reads at lower cost [5].

Among emerging technologies, Element Biosciences offers a system based 
on Avidity chemistry. Although still based on the same basic SBS process, on 
the Element system the signal detection and incorporation of nucleotides are 
separate, as the system does not collect sequencing signal from the nucleo-
tide incorporation process. Instead the signal is collected from binding of 
nucleotides to the sequencing template. With Avidity chemistry [6], each 
nucleotide attaches to a fluorescence- emitting core, and each type of nucleo-
tide (A, C, G, or T) attaches to their own cores that emit specific fluorescence 
signal for detection. The most innovative aspect of this chemistry is that 
each core contains multiple fluorophores and connects to multiple copies 

FIGURE 16.1
MGI/ BGI nanoball sequencing and CoolMPS chemistry. A. Nanoball sequencing starts from 
circularization of DNA target molecules. After rolling circle amplification, nanoballs are formed 
from circularized targets, and subsequently deposited onto a silicon- based sequencing chip for 
sequencing using the cPAS process. B. In the CoolMPS chemistry (initially called CoolNGS), 
nucleotide- specific antibodies are used for detection of incorporated nucleotides. This detection 
mechanism avoids DNA “scars” derived from labeling of nucleotides with fluorescent tags, 
potentially leading to increased read length. (From Gao, G., Smith, D.I. Clinical Massively 
Parallel Sequencing. Clinical Chemistry, 2020, 66(1): 77– 88, by permission from Oxford 
University Press.)
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of a certain type of nucleotide, which enables signal amplification to boost 
signal- to- noise ratio. After multivalent binding of the nucleotide complexes 
(also called avidites, after which the sequencing chemistry is named) to the 
template DNA and signal detection, the bound avidites are removed, which 
is followed by a “dark” (i.e., no imaging) nucleotide incorporation step to 
produce scarless DNA for a new round of avidite binding, detection, and 
nucleotide incorporation. Besides the sequencing chemistry, the flow cell sur-
face where sequencing reactions take place also has ultra- low non- specific 
binding to reduce background fluorescence and thereby further increases 
signal- to- noise ratio. Besides reducing sequencing errors, the increased 
detection sensitivity also leads to lower reagent consumption and thereby 
decreased sequencing cost. Based on currently available data (as of November 
2022) [6], the Element system is capable of producing 300 Gb sequencing data 
with 90% of reads having quality over Q30.

Other emerging short- read technologies include those from Ultima, 
Singular Genomics, and Omniome (part of PacBio). The Ultima system is 
based on the use of (1) a new chemistry called mostly natural sequencing- 
by- synthesis (or mnSBS); (2) an open circular wafer with a large surface for 
accelerated fluidics and imaging as well as reduced reagent usage; and (3) an 
AI- based base calling process. With the mnSBS chemistry, in each sequencing 
cycle only one nucleobase is used from a reagent mix that contains mostly nat-
ural (i.e., unlabeled and non- terminated) nucleotides and a minority (<20%) 
of fluorescently labeled, non- terminated nucleotides. This allows produc-
tion of mostly scarless DNA and at the same time a minority of fluorescently 
labeled DNA molecules for imaging and base calling. This platform has the 
capability to generate billions of 300 bp reads, at an accuracy of Q30 > 85%, in 
20 hours [7]. Singular Genomics provides an SBS platform based on the use 
of fluorescently labeled nucleotides and 4- color optical imaging to improve 
speed and flexibility. Its first release is a G4 benchtop sequencer that produces 
up to 100 Gb data with read length of up to 150 bases from each end and error 
rate of <1% (mostly substitutions), in 6– 19 hours. Technical details for some 
of the emerging platforms are still not available at the time of writing. Among 
the currently accessible platforms, some benchmark data has become avail-
able to provide side- by- side comparisons on genome coverage, error rate, 
alignment, and detection of various variants including SNVs, indels, and 
SVs [8].

Among those in the long- read category, there are technologies that gen-
erate native long reads similar to those from PacBio and ONT, and also 
those that produce synthetic long reads. The sequencing platforms currently 
being developed by Base4 and Quantapore are two examples of native long- 
reads technologies. Base4 sequencing is based on the use of a fundamentally 
different process called pyrophosphorolysis. In the SBS scheme, a poly-
merase incorporates a nucleotide into an elongating DNA (or RNA) strand 
and releases a pyrophosphate as a side product. With pyrophosphorolysis 
sequencing, the reaction direction is reversed, i.e., the dNMP at the 3’ end 

 

 

 



What’s Next for Next-Generation Sequencing (NGS)? 369

of a DNA strand reacts with pyrophosphate to be released from the strand 
as dNTP. This sequencing- by- desynthesis process used by Base4 works 
through detection of the released nucleotide [9]. The Quantapore platform 
uses a nanopore- based approach. On this platform, DNA templates need to 
be labeled first with fluorophores, as instead of detecting changes in elec-
trical current as in the case of ONT, this technology detects optical signals 
emitted from the fluorophores when they are activated upon passing through 
the pore [10]. Other emerging native long- read technologies are also based 
on the use of nanopores, including those developed by Genia and Stratos 
Genomics (now parts of Roche).

Synthetic long-read technologies are based on innovative utilization of 
short- read sequencing that links short reads together to create artificial long 
reads. Technologies in this category include 10× Genomics’ linked reads [11], 
MGI’s single tube Long Fragment Read (stLFR) [12], Transposase Enzyme 
Linked Long- read Sequencing (TELL- seq) from Universal Sequencing 
Technology [13], LoopSeq from Loop Genomics (now part of Element 
Biosciences) [14], and Illumina’s Complete Long Reads. Many of these 
technologies use a clonal barcoding approach, through which a large DNA 
molecule is first barcoded, then shorter fragments are generated from the 
large molecule to be sequenced using short-read sequencing. In this pro-
cess each short fragment generated from the same large molecule carries the 
original molecule’s unique barcode. This barcode is subsequently used to 
group and order short reads to reconstruct the original large DNA molecule. 
Among the aforementioned synthetic long-read technologies, 10× Genomics 
discontinued its linked reads offering in 2020, while Illumina has announced 
Complete Long Reads in late 2022 with no technical specifics available at the 
time of writing.

16.3  Continued Evolution and Growth of Bioinformatics    
Tools for NGS Data Analysis

Bioinformatics tool development will continue to evolve with new sequencing 
technologies as well as applications becoming available and getting adopted. 
The emergence of new technologies, in turn, will lead to adaptation and evo-
lution of existing technologies. The increased change in read length and other 
aspects of sequencing output, such as diversity of sequencing error models 
form different platforms, will lead to development of new tools and revi-
sion of existing tools. As higher read length increases sequence information 
content and uniqueness, which in turn leads to increased “assemblability” 
or “mappability,” new alignment algorithms or updated versions of existing 
ones will continue to be developed to harness the power afforded by this 
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increase in read length. For example, SPAdes, originally developed for de 
novo assembly of Illumina short reads [15], has been revised to enable use 
of both short and long but less accurate PacBio and ONT reads to achieve 
hybrid assembly [16]. New long- read de novo genome assemblers, such as 
miniasm [17], Flye [18], NECAT [19], and Raven [20], have been developed 
more recently. To accommodate mapping of long reads to a reference genome, 
BWA- MEM was a first attempt to align long reads with the widely used BWA 
algorithm. With ultra- long but noisier reads becoming more common, add-
itional aligners, such as minimap [17] and subsequently minimap2 [21], are 
developed and updated constantly [22] with rapid advancements in sequen-
cing technologies.

Significantly longer reads associated with third-  or future- generation 
sequencing technologies, as well as synthetic long reads, will not only 
improve de novo genome assembly and mapping to reference sequences but 
also all other NGS applications. For example, increased read length in RNA- 
seq can lead to recognition of different transcripts that are produced from the 
same gene, and therefore facilitate studies of alternative splicing. Algorithms 
and tools for other applications or steps, from basecalling, variant calling, 
ChIP- seq peaking calling, to DNA methylation sequencing, and metagenome 
characterization, are under constant development. While new ones are 
continuously being introduced, many existing algorithms and tools are 
also under constant revision. As basecalling is highly platform- dependent, 
basecallers are usually developed as part of the sequencing platform devel-
opment process. While there are also third- party basecallers being developed 
in an attempt to further improve performance, efforts on algorithmic and 
software tool development are mostly focused on downstream analyses.

To help illustrate how data analytic tool development closely follows the 
development of new technologies and applications, Figure 16.2 shows the 
total number of publications on scRNA- seq data analysis algorithms every 
year from 2013 to 2021. As a new application, single-cell RNA- seq has seen 
continuous growth in algorithmic development and utilization since 2013. 
While the numbers do not directly measure the total number of new or 
updated scRNA- seq algorithms, they do to a large degree reflect the amount 
of algorithmic development efforts as well as the demand in this direction. 
Algorithmic development and utilization in other new applications and tech-
nologies show a similar trend.

16.4  Efficient Management of NGS Analytic Workflows

With the active development of algorithms and the wide array of bioinfor-
matic tools becoming available, efficient workflow management  
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has become increasingly important. The clinical use of NGS on diagnosis, 
genetic risk assessment, and patient management places further  
demands on NGS data workflow management. The quest for increased  
reproducibility is another impetus for effective workflow management,  
as the tool(s) used, their version, and their configuration all have effects  
on final results. Commercial software systems, such as CLC Genomics  
Workbench, DNAnexus, DNAstar, PierianDx, QIAGEN Clinical Insight  
Interpret, Seven Bridges, and SciDAP, tend to streamline their analytical 
workflows in one package. Because bioinformatic tools developed  
out of academic settings tend to be more specialized and as a result a bit  
fragmented, effective workflow management strategies and systems are  
becoming increasingly needed. As a result, usage of workflow manage-
ment systems has been on the rise to overcome the limitations of using  
the traditional way of downloading and deploying tools one by one for  
a workflow. Such limitations involve the difficulty to deploy associated  
system libraries (including dependencies), compilers or interpreters of  
different versions, for different computing environments. Several key tech-
nologies in computer science, including the use of containers, workflow  
description languages, and workflow engines, have been adopted for man-
aging NGS analytic workflows.

FIGURE 16.2
The increase in the number of single-cell RNA- seq algorithm- related publications from 2013 till 
2021. (Data source: Google Scholar, using “single cell RNA- seq” AND (algorithm OR method OR 
tool) as query term.)
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In computer science terms, a container is an executable unit of software 
package that contains everything an application needs to run, including 
all code and requisite libraries and dependencies. This technology allows 
the software in a container to run identically in different computing envir-
onments, overcoming the issues associated with running the same tool on 
different platforms. Two widely used container engines in the bioinformatics 
arena are Docker and Singularity. Community efforts such as Biocontainers 
[23] provide pre- built bioinformatics software containers.

A workflow description language enables a user to describe a work-
flow that can be executed on different platforms, but without the need for 
platform- specific execution details. Commonly used workflow descrip-
tion languages include the Common Workflow Language or CWL, and the 
Workflow Description Language or WDL. With the use of such workflow 
description languages, the description of a workflow becomes separate from 
the physical computing platform that runs it. A workflow engine, also called 
workflow management system, determines how a workflow is executed and 
controlled under different computing environments. Workflow engines in 
the NGS field include Galaxy [24], Cromwell as used in Terra [25], Nextflow 
[26], and CWL- Airflow [27]. These workflow management systems enable 
seamless execution of tools assembled into an integrated pipeline (e.g., RNA- 
seq quantification followed by differential expression analysis), as well as 
provide infrastructure and guidelines for management and distribution of 
NGS and other bioinformatics packages. With increased use of containers 
and workflow management systems, NGS data analysis will become more 
streamlined and standardized, thereby improving reproducibility, as well as 
portability (for porting workflows across different computing environments) 
and scalability (for efficient use of large- scale computational resources).

16.5  Deepening Applications of NGS to Single-Cell    
and Spatial Sequencing

Among the various new directions that NGS has empowered and grown into 
is single-cell sequencing. In this revision, a new chapter is dedicated to single-
cell transcriptomics. Beyond transcriptomic information, information on 
other - omic aspects of single cells is also required to reveal their inner working 
mechanisms and the tremendous heterogeneity among them. NGS has been 
making inroads into these aspects, with examples from single-cell ATAC- seq, 
single-cell whole genome/ exome sequencing, and single-cell epigenomics. 
Single-cell ATAC- seq, or Assay for Transposase- Accessible Chromatin using 
sequencing, is a technique to reveal chromatin accessibility landscape for 
transcription control. Available exemplary studies have demonstrated the 
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rich information it can provide for analysis of gene regulatory programs [28]. 
Compared to tools developed for scRNA- seq, scATAC- seq data analysis tools 
are still low in numbers and not as well developed. Currently available tools 
include SnapATAC [29], cisTopic [30], SCALE [31], and Signac [32].

Single-cell genome/ exome sequencing, with the goal of tracking som-
atic evolution and revealing genetic heterogeneity at the single-cell level, 
has been made possible with whole genome amplification methods. These 
methods include multiple displacement amplification (MDA) [33], multiple 
annealing and loop- based amplification cycles (MALBAC) [34], degenerate 
oligonucleotide- primed PCR (DOP- PCR) [35], or commercially available kits 
such as PicoPLEX and RepliG [36]. As each diploid cell only has two sets of 
chromosomes and therefore a very low amount of DNA (~6.5 pg in a typical 
human cell), the coverage of whole genome amplification is typically uneven 
across the genome due to stochastic effects, amplification errors, and locus- 
specific amplification bias. Such issues have prevented scaling- up of single- 
cell genomics to a level that can be comparable to single-cell transcriptomics. 
Progress has been made to overcome these issues with the development of 
emulsion MDA (or eMDA) [37], single droplet MDA (or sd- MDA) [38], and 
direct library preparation (DLP) [39]. To call SNVs from single-cell genomics 
data, currently a relatively short list of tools is available, including SCcaller 
[40], SCAN- SNV [41], and Single Cell Genotyper [42]. SNV Calling can also 
be made from scRNA- seq data, or coupled scDNA- seq and scRNA- seq data, 
using tools such as SSrGE [43]. Tools for calling CNVs or structural variants 
include AneuFinder [44] and Ginkgo [45].

Single-cell epigenomics offers another dimension for single-cell sequencing. 
Strategies such as single-cell whole genome bisulfite sequencing (scWGBS) 
[46], single-cell reduced representation bisulfite sequencing (scRRBS) [47], 
and single- nucleus methylome sequencing ver2 (snmC- seq2) [48] have been 
used to detect DNA methylation as a epigenetic marker for cell typing. Tools 
such as scBS- map [49] can be used for reads alignment, and Methylpy [50] 
for calling of unmethylated and methylated cytosines. Simultaneous inter-
rogation of both the epigenome and genome of single cells has also been 
made possible with methods such as epi- gSCAR [51]. Compared to scRNA- 
seq and scATAC- seq conducted on high- throughput platforms such as 10× 
Chromium, the throughput of single-cell genome and epigenome sequencing 
is still lower, although this may well change over time.

While single-cell sequencing offers unprecedented resolution, isolation of 
single cells (see Chapter 8) typically leads to the loss of contextual informa-
tion about their original location in their native tissue microenvironment. 
Investigation into such spatial information provides insights on regional 
specificity and cross- region heterogeneity, e.g., when comparing a patho-
genic region with the surrounding normal region on the same slide. Spatial 
transcriptomics, enabled by rapid technology development from both aca-
demia and industry [52], is increasingly used to provide this additional layer 
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of information. While this new field is still rapidly evolving, a number of 
platforms have been gradually adopted by the community, included among 
which are academically developed platforms such as Slide- seqV2 [53], and 
commercial ones such as Visium from 10× Genomics, GeoMx Digital Spatial 
Profiler from Nanostring, and MERFISH from Vizgen. These systems, based 
on a diversity of detection mechanisms, have different technical capabilities 
in terms of spatial resolution, physical dimensions of the area to be assayed, 
and transcriptomic coverage (whole transcriptome vs. targeted genes). To 
analyze data from these systems, there are currently some tools available, 
such as Space Ranger from 10× Genomics, Giotto [54], and BayesSpace 
[55], to help identify cell types, characterize gene expression profiles and 
infer cell- cell interactions in a spatial context. To meet the challenges in spa-
tial transcriptomics towards the goal of integrating gene expression pro-
file, spatial context, and cell morphology for deeper cell typing, more tools 
are needed. More comprehensive tools are also needed to integrate spatial 
transcriptomics data, with other omics data including spatial proteomics and 
metabolomics.

16.6  Increasing Use of Machine Learning 
in NGS Data Analytics

As a branch of artificial intelligence, machine learning (ML) trains algorithms 
to uncover patterns in large data sets and thereby makes classifications or 
predictions without being explicitly programmed. Within ML, deep learning 
(DL) with the use of neural networks is well suited for tasks that involve 
large volumes of highly complex and information- rich data. As NGS has 
become a major producer of big data, besides astronomy, YouTube, and social 
media, application of what ML and DL can offer is warranted [56, 57]. In 
earlier chapters, such as Chapters 8 and 11, the applications of ML and DL to 
single-cell sequencing data analysis and detection of clinically relevant gen-
etic variants have been covered. Besides these areas, nearly all aspects of NGS 
data analysis have seen increased use of ML and DL. Read mapping and 
variant calling, the two most basic steps, have been greatly improved by the 
application of ML and DL approaches. In the precisionFDA Truth Challenge 
V2, the majority of read mapping and variant calling pipelines employ ML 
and DL approaches [58]. The Illumina DRAGEN reads mapper +  variant 
caller system, for example, applies graph- based mapping and supervised ML- 
based variant calling to improve accuracy as well as speed. For the mapping 
step, DRAGEN uses phased graph reference genome built through stitching 
alternate haplotypes into the standard reference genome, and thereby cre-
ating alternative graph paths for seed mapping and alignment of reads. Such 
a reference genome based on the use of graph representation, a subfield 
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of ML, represents more accurately the polymorphic nature of a species’ or 
population’s genome. In practice, this alt- aware approach leads to improved 
mapping performance by reducing ambiguity when reads containing alter-
nate haplotypes are mapped more accurately than using the standard refer-
ence genome alone. For the variant calling step, DRAGEN uses a supervised 
ML model trained to incorporate read- based and contextual features that 
is then employed to recalibrate the QUAL and GQ fields from a standard 
VCF output to increase variant calling accuracy. Among other examples, 
the Seven Bridges GRAF pipeline also uses a pan- genome graph reference, 
created by incorporating known alternate haplotypes and integrating gen-
omic polymorphic information from multiple variant databases, to improve 
reads alignment. To improve variant calling, the pipeline uses an adaptive 
ML model to remove false- positive variants. Similarly Sentieon’s DNAscope 
and TNscope pipelines also use ML- enhanced variant filtering to improve 
the accuracy of calling germline and somatic variants, respectively.

DeepVariant, an open- source variant caller, is the first variant caller among 
all variant callers that uses a DL- based framework. Originally developed for 
classifying images [59], this Tensorflow- based framework uses a convolu-
tional neural network (CNN) for calling small germline variants from short 
reads. Since its introduction, DL- based methods have grown significantly 
overtaking statistical model- based methods. Open- source tools for calling 
variants from long reads, such as those generated from ONT and PacBio, 
have been dominated by ML/ DL- based methods since the beginning, 
largely out of the need to deal with the higher sequencing error rates on these 
platforms. The PEPPER- Margin- DeepVariant pipeline, for example, uses a 
recurrent neural network (RNN) for variant filtering and HMM for phasing 
and haplotyping, prior to variant calling by DeepVariant [60]. Examples of 
other such tools include Clair/ Clair3 based on RNNs [61, 62], NanoCaller 
on deep CNN [63], and Longshot on pair- HMM [64]. For structural variant 
calling, the use of DL has not been as wide at the time of writing, but existing 
tools such as DeepSV [65] and dudeML [66] have shown great promise.

Besides read mapping and variant calling, many of the NGS applications 
covered in this book have also seen increasing use of ML and DL. For 
example, in performing bulk RNA- seq, statistical models are usually used to 
identify differentially expressed genes. Emerging ML- based methods have 
been shown to be able to identify DEGs, some of which may be missed by 
statistical methods. For example, an ML model based on the use of InfoGain 
feature selection and Logistic Regression classification was found to be 
robust and have improved sensitivity [67]. One benefit of ML- based gene 
feature selections is that they do not make assumptions on the distribution of 
gene transcript counts. In ChIP- seq, peak detection is a major step to reveal 
regions of the genome where mapped reads are enriched that indicate epi-
genetic interactions. As covered in Chapter 13, peaks are typically called 
using statistical methods. To overcome the challenges these methods face, 
such as uneven background noise and high false- positive rates, DL- based 
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approaches have been employed. For example, a CNN- based pipeline 
called CNN- Peaks uses partially labeled peaks inspected by researchers and 
genome annotations as input to first train a model for subsequent peak detec-
tion. This supervised learning process takes into consideration variations in 
local context and background noise and sets specific peak detection cut- off 
values accordingly for each genomic region to reduce false- positive rates. In 
methyl- seq, currently available ML/ DL- based methods are mostly designed 
to detect epigenetic base modifications from data generated on long- read 
platforms, such as DeepMP [68] and DeepSignal- plant [69] for ONT data, 
and a holistic kinetic (HK) model for PacBio data [70].

Beyond the various NGS steps and applications, ML and DL can also 
greatly facilitate integration of data collected from multiple - omics technolo-
gies, including genomics, transcriptomics, epigenomics, proteomics, and 
metabolomics. Data collected using these - omics technologies informs on the 
different layers of a biological system, and integration of such complementary 
information leads to a more holistic view of the system. Towards this direc-
tion, beyond basic research ML, especially DL, has been accelerating clinical 
application of multi- omics data to disease subtyping, biomarker discovery, 
disease prognosis, treatment outcome prediction, and drug repurposing. For 
example, to predict severity of pediatric irritable bowel syndrome (IBS), a 
Random Forest- based classifier is developed from integration of shotgun 
metagenomics and metabolomics data [71]. This classifier is optimized based 
on the selection and use of key features derived from the metagenomics and 
metabolomics data, including microbial diversity, functional pathways, and 
fecal metabolites. Through the use of such gut microbiome and metabolites 
features as integrated diagnostic biomarkers, the classifier can reliably pre-
dict IBS status and thereby help to stratify patients for improved disease man-
agement. As another example, an oncology molecular classifier integrates 
genome and transcriptome sequencing data to identify tissue- of- origin (TOO) 
for cancers of unknown primary (or CUP), a syndrome of metastatic cancers 
with no clinically detectable primary sites of origin. Without knowing their 
TOO, CUP has very poor prognosis. By combining DNA- level mutation and 
RNA- level gene expression information, the DL model makes predictions on 
tumor TOO across a broad spectrum of tumor types at high accuracy, thereby 
providing diagnostic utility and guiding therapeutic intervention [72].
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Appendix I
Common File Types Used in NGS  
Data Analysis

BAM: A file format for storing reads alignment data. It is the binary version 
of the SAM format (see below). Compared to its equivalent SAM file, a 
BAM file is considerably smaller in size and much faster to load. Unlike 
SAM files, however, the BAM format is not human- readable. BAM files 
have a file extension of .bam. Some tools require BAM files to be indexed. 
Besides the .bam file, an indexed BAM file also has a companion index 
file of the same name but with a different file extension (.bai).

BCF: Binary VCF (see VCF). While it is equivalent to VCF, BCF is much 
smaller in file size due to compression, and therefore achieves high effi-
ciency in file transfer and parsing.

BCL: Binary basecall files generated from Illumina’s proprietary basecalling 
process.

BED: Browser Extensible Display format used to describe genes or other 
genomic features in a genome browser. It is a tab- delimited text format 
that defines how genes or genomic features are displayed as an anno-
tation track in a genome browser such as the UCSC Genome Browser. 
Each entry line contains three mandatory fields (chrom, chromStart, and 
chromEnd, specifying for each genomic feature the particular chromo-
some it is located on and the start and end coordinates) and nine optional 
fields. Binary PED files (see below) are also referred to as BED files, but 
this is a totally different file format.

bedGraph: Similar to the BED format, bedGraph provides descriptions of 
genomic features for their display in a genome browser. Distinctively 
the bedGraph format allows display of continuous values, such as prob-
ability scores and coverage depth, in a genome.

bigBed: A format similar to BED, but bigBed files are binary, compressed, 
and indexed. Display of bigBed files in a genome browser is significantly 
faster due to the compression and indexing, which allow transmittal of 
only the part of the file that is needed for the current view instead of the 
entire file.

bigWig: A format for visualization of dense, continuous data, such as GC 
content, in a genome browser. A newer format from the WIG format (see 
below), bigWig is a compressed and indexed binary file format and loads 
significantly faster.
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CRAM: Standing for Compressed Reference- oriented Alignment Map, CRAM 
is an alternative reads alignment file format to SAM/ BAM. Designed by 
the European Bioinformatics Institute, CRAM uses a reference- based 
compression scheme, that is, only bases that are different from the ref-
erence sequence are stored. As a result, CRAM files are smaller than 
equivalent BAM files.

FAST5: Stores raw electrical signals recorded from an Oxford Nanopore 
sequencer (such as MinION) for sequencing information extraction. Based 
on the HDF5 file format (see HDF5) with an ONT- specific schema. Besides 
raw detection signals, FAST5 files can also contain basecalls in FASTQ 
format after analysis and other information such as signal correction. 
Unlike FASTA (see FASTA) or FASTQ (see FASTQ) files, FAST5 files are 
binary and cannot be directly opened with a text editor. FAST5 is expected 
to be replaced by a new file format, POD5, for improved write perform-
ance, decreased file size, and more streamlined downstream data analysis.

FASTA: A text- based format for storing sequences. A sequence stored in the 
FASTA format contains only two elements: a single- line description (or 
defline) and the sequence text. The defline starts with the “>” symbol, 
followed by a sequence identifier and then a short description. The 
sequence text is usually divided into multiple lines with each less than 
80 characters in length. This format has its origin in the FASTA program 
package developed in the late 1980s. Multiple sequences can be stored in 
a FASTA file. FASTA files often have file extensions of .fa, .fasta, or .fsa.

FASTQ: The current de facto standard for storing sequencing data generated 
from various NGS systems. It is a compact text- based format containing 
nucleotide base sequences and their call quality scores. Each read sequence 
in a FASTQ file is represented by four lines of information. The first line 
starts with the symbol “@,” followed by sequence ID and descriptor. The 
second line is the read sequence. Line 3 starts with the “+ ” symbol, which 
may be followed by the sequence ID and description (optional). Line 4 
lists basecall quality scores for each base in the read sequence. This format 
was originally developed by the Sanger Institute. FASTQ files have file 
extensions of .fq or .fastq. Compressed FASTQ files also have the suffix .gz 
or .gzip from the compression utility used to create them.

GFF: General (or Generic) Feature Format. GFF is a tab- delimited text file 
format that describes how genes or other genomic features are displayed 
in a genome browser. There are different versions of this format, with 
GFF3 being the current version and GFF2 now deprecated. The GFF 
format can be converted to the BED format (see BED).

GTF: Gene Transfer Format. A refined GFF format. Identical to GFF2.
GVF: Stands for Genome Variation Format. Used to describe sequence vari-

ation information. An alternative to VCF (see VCF). GVF is based on the 
GFF3 format (see GFF) with additional pragmas and attributes.
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HDF5 (or H5): Standing for Hierarchical Data Format version 5. HDF5 is an 
open- source file format designed to store and organize large and com-
plex data. The hierarchical structure it uses is similar to a file system, in 
that its two major objects, groups and datasets, are similar to directories 
and files, respectively. The FAST5 file format (see FAST5) used by Oxford 
Nanopore sequencers and the single-cell RNA- seq gene- cell matrix data 
used by the 10× Genomics Cell Ranger software are based on the HDF5 
format.

MEX: Market Exchange format. In 10× Genomics single-cell RNA- seq, the 
MEX file format is used by the Cell Ranger software to output gene- cell 
data matrix (besides HDF5). This is a sparse matrix format because of the 
large number of 0’s contained in the file. This file format comprises three 
files, i.e., matrix.mtx that contains the gene- cell barcode matrix, barcodes.
tsv for storing cell barcodes, and genes.tsv for genes.

PED: A file format used by PLINK (a toolset for genome- wide association 
analysis) that contains pedigree/ phenotype data.

SAM: Standing for Sequence Alignment/ Map, SAM is a standard NGS 
reads alignment file format, describing how reads are mapped to a ref-
erence genome. It is a tab- delimited text format and human- readable. 
SAM files can be converted into its compressed binary version (BAM) 
for faster parsing and file size reduction. SAM files have a file extension 
of .sam. An indexed SAM file also has an accompanying index file that 
has an file extension of .sai.

SFF (Standard Flowgram Format): A type of binary sequencing file generated 
by 454 sequencers. Can be converted to the FASTQ format using utilities 
such as sff2fastq.

VCF: Stands for Variant Call Format. A commonly used file format for 
storing variant calls. It is a tab- delimited, human- readable text format 
that contains meta- information lines, a header line, and data lines that 
describes each variant.

WIG: Wiggle Track Format. It is used for displaying continuous data track, 
such as GC content, in a genome viewer such as the UCSC Genome 
Browser. The WIG format is similar to the bedGraph format (see above), 
but a major difference between the two is that data exported from a WIG 
track is not as well preserved as that from a bedGraph track. The WIG 
format can be converted to bigWig (see above) for improved performance.
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Appendix II
Glossary

5- Methylcytosine (5- mC): The most frequently observed form of epigenetic 
DNA modification. Produced by the addition of a methyl group to the 
fifth carbon of cytosine. Cytosine methylation reduces gene transcription 
and regulates chromatin remodeling.

Algorithm: A well- defined procedure that comprises a set of instructions for 
solving a recurrent problem.

Alignment: Similarity- based arrangement of sequences. In NGS data 
analysis, sequence reads are usually aligned against a reference genome 
to locate their genomic origins.

Allele: One particular variant form of a gene that has a number of alternative 
sequence variants.

Annotation: The process of providing biologically relevant information to a 
piece of DNA or RNA sequence. Also refers to the biological information 
itself that is attached to a sequence.

ASCII: Standing for American Standard Code for Informational Interchange, 
ASCII provides a standard for encoding characters. Since a computer only 
deals with numbers, each human- readable character has to be encoded 
with a unique number in a computer. An ASCII code is the numerical 
representation of a character in a computer. For example, in the ASCII 
table, the character “A” is represented by the number 65.

Assembly: A computational process to reconstruct a longer sequence from 
short sequences.

Barcode: Unique short artificial sequence(s) attached to DNA molecules in a 
sequencing sample. The use of barcode sequence(s) enable identification 
of different samples when they are sequenced together in a mixture (i.e., 
multiplex sequencing). Also see Multiplex Sequencing and Demultiplexing.

Basecall Quality Score: A score assigned to each basecall in a sequence read 
to quantify the confidence level of making the call. In NGS it is defined in 
the same way as the Phred quality score originally developed for Sanger 
sequencing. Also see Phred Quality Score.

Bisulfite Conversion: A chemical process that leads to the differentiation 
of methylated cytosines from unmethylated cytosines. The treatment 
by bisulfite converts unmethylated cytosines in DNA to uracil, while 
methylated cytosines are not affected by this process. Bisulfite conversion 
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coupled with NGS is a major means to study genome- wide DNA 
methylation. Also see Whole- Genome Bisulfite Sequencing.

Burrows– Wheeler Transform (BWT): A method of permuting the characters 
of one string into another string. In NGS data analysis, BWT enables fast 
reference genome searching through providing efficient compression 
and indexing.

cDNA: Complementary DNA. Refers to DNA that is reversely transcribed 
from and therefore complementary to an mRNA species.

CDS (Coding DNA Sequence): The region of DNA that is translated into 
protein.

Cell Ranger: A set of single-cell RNA- seq data analysis pipeline tools 
developed by 10× Genomics, to carry out steps such as sequence 
mapping, generation of gene- cell matrix, and downstream analyses such 
as cell clustering.

ChIP- Seq: Chromatin immunoprecipitation coupled with sequencing. 
A major application of NGS for studying genome binding of DNA- 
interacting proteins such as transcription factors.

Codon: A tri- nucleotide sequence of DNA or RNA that codes for a specific 
amino acid or the signal for protein synthesis termination. There are a 
total of 64 codons, with 61 specifying amino acids and 3 as termination 
signals.

Contig: A contiguous segment of RNA or DNA sequence resulted from 
assembly of a set of overlapping sequence reads.

Copy Number Variation (CNV): One type of genomic variation caused 
by changes in copy number of a DNA segment, usually as a result of 
deletion or duplication. CNV is a subcategory of structural variation 
and involves DNA segments that are usually larger than 50 bp. Also see 
Structural Variation.

Coverage: The average number of times that nucleotides in different genomic 
positions appear in a sequencing dataset. Also known as Sequencing 
Depth or simply Depth.

Demultiplexing: The identification and separation of sequencing reads 
that are generated from different samples, based on the unique barcode 
sequence(s) they carry, after a multiplex sequencing run. Also see Barcode 
and Multiplex Sequencing.

Depth: Same as Coverage.
DNA Polymerase: A class of enzyme that catalyzes the synthesis of new 

DNA strand from free nucleotides, using an existing DNA strand as 
template. Many molecular techniques, including PCR and sequencing- 
by- synthesis, are based on the use of DNA polymerases.

DNase: An enzyme that catalyzes the hydrolysis of DNA into oligonucleotides 
or nucleotides.

Epigenome: Refers to chemical modifications to DNA and histones, which 
provides additional regulation to genomic activity.
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Exon: A stretch of nucleotide sequence that is part of a gene providing coding 
information for protein synthesis. Exons are transcribed to and usually 
retained in mRNA.

Exome: The complete set of exons in an organism’s genome.
False Discovery Rate (FDR): A measure of statistical significance after 

correcting for multiple testing. It estimates the proportion of false 
discoveries in the final list of findings. Among the various approaches 
for multiple testing correction, FDR estimation offers a balance between 
statistical stringency and rate of type II errors and therefore is widely 
used for high- throughput genomics data analysis. Also see Multiple 
Testing Correction.

GC Content: The percentage of guanines plus cytosines in a DNA/ RNA 
sequence or genome.

Gene Expression: The process by which the information encoded in a gene’s 
nucleotide sequence is used to direct the synthesis of a functional gene 
product. The level of gene expression in a cell or population of cells is 
represented by the abundance of its product. The composition of the 
large number of gene products and their expression levels in a cell or 
population of cells constitute gene expression profile of the host cell(s).

Genome: The complete set of DNA sequence in a cell or an organism. Contains 
the complement of information needed to form and maintain the cell or 
organism. Including both protein- coding and non- coding sequences.

Genotype Posterior Probability: The probability of a genotype given an 
observed dataset, calculated from NGS reads and often with the use of 
prior genotype information.

Gene Ontology (GO): An initiative to provide consistent description of gene 
products using standardized vocabulary. Each gene product is described 
by three structured ontologies that encompass their associated biological 
processes, cellular components, and molecular functions.

Hidden Markov Model (HMM): Named after the Russian mathematician 
Andrei Markov (1856– 1922), HMM is a commonly used machine learning 
and data mining approach for signal processing and pattern recognition. 
A Markov model is a statistical model that deals with observed 
sequences and state transitions. In bioinformatics, HMM is often used 
for basecalling, sequence alignment, and gene prediction.

High- Performance Computing (HPC): A computer system that has the 
capability to perform over one teraflop (1012) floating- point operations 
per second by the use of parallel processing.

Indel: A generic term for either insertion or deletion of nucleotide(s) in a 
DNA sequence. Such insertion/ deletion events lead to DNA mutation 
and sequence length change.

Indexing: The process of creating a data structure for fast search. Techniques 
of indexing for sequence alignment include hashing (storing information 
on where a particular subsequence can be found in a reference genome or 
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a large collection of reads), suffix array (that consists of lexicographically 
sorted genomic DNA sequence suffixes), and BWT (permutation of a 
genome based on suffix array).

Irreproducible Discovery Rate (IDR): A measure of experimental 
reproducibility. Developed to evaluate the reproducibility between 
replicates of a ChIP- seq experiment, it calculates the rate of irreproducible 
discoveries, i.e., peaks that are called in one replicate but not in another.

K- mer: In genome assembly or sequence alignment, k- mer refers to all the 
possible subsequences of length k in a sequence read.

Library: Collection of many different DNA (or RNA) fragments that are 
systematically modified for target DNA screening or high- throughput 
analysis (including NGS). Specifically, a sequencing library is a pool of 
DNA (or RNA) fragments with universal adapters attached to their ends. 
To construct a sequencing library, DNA (or RNA) molecules extracted 
from a population of cells are usually randomly fragmented, followed 
by addition of universal adapters to the two ends of the fragments. 
Sequences in the adapters enable subsequent enrichment and high- 
throughput sequencing of the fragments.

Long Non- Coding RNA (lncRNA): Non- protein coding RNA species that 
are over 200 nucleotides in length. In comparison to small RNAs.

Machine Learning: A branch of Computer Science that focuses on developing 
software algorithms that provide computers the capability to learn and 
make predictions on new data. Machine learning is built on computational 
model construction from existing input data, which is then applied to 
new data for generating predictions or decisions.

Mapping: The process of searching the sequence of a read against the 
reference genome sequence to locate its origin in the genome. Also see 
Alignment.

Mapping Quality: An estimation of the probability of mis- aligning a read to 
a reference genome. It is reported as a Phred- scale quality score. Also see 
Phred Quality Score.

Mate- Pair Reads: Reads generated from two ends of a long DNA fragment. 
To achieve sequencing of the two ends, the long DNA fragment is first 
circularized and then fragmented. Paired- end sequencing of the fragment 
that contains the junction of the two ends generates mate- pair reads.

MeDIP: Methylated DNA immunoprecipitation with anti- 5- methylcytosine 
antibody.

Metagenome: The collection of all the genomes contained in a microbial 
community that consists of many individual organisms.

Metagenomics: Studies of all the genomes existing in a microbial community 
as a whole without the need to capture or amplify individual genomes. 
Also referred to as environmental or community genomics.

Microarray: A high- throughput genomics technology based on the use of 
predesigned detection probes that are printed or synthesized on a solid 
surface, such as glass or a silicon chip, in a high- density array format.
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Minor Allele Frequency (MAF): Frequency of the least abundant allelic 
variant in a population.

miRNA: MicroRNA. See Small RNA.
mRNA: Messenger RNA, which carries protein- coding information in DNA 

for protein translation. It acts as the intermediate between DNA and 
protein. An important component of a transcriptome.

Multiple Testing Correction: Adjustment of statistical confidence based 
on the number of tests performed. Multiple testing without such an 
adjustment leads to high levels of false positives. For example, at a p- 
value of 0.05, performing 100 comparisons simultaneously will generate 
5 positive outcomes simply by chance if a correction is not applied. 
Commonly applied multiple testing correction approaches including 
the Bonferroni adjustment (conservative) and False Discovery Rate 
estimation. Also see False Discovery Rate.

Multiplex Sequencing: Simultaneous sequencing of multiple samples 
together. The use of artificial barcode sequence(s) enables sample 
identification. Also see Barcode and Demultiplexing.

Multireads: Reads that map to multiple genomic locations.
N50: The weighted mean contig size of a genome assembly. To calculate N50, 

all contigs are first ranked based on their lengths, which is then followed 
by adding the ranked lengths from the top downward. N50 refers to the 
length of the contig that makes the total added length equal to or greater 
than 50% of the assembly size. An often- used metric of de novo genome 
assembly quality.

NAS: Network Attached Storage. Specialized computer data storage server 
providing data access to a variety of clients through network.

Non-Coding RNA: RNA species that carry out functions other than coding 
for proteins. Examples include small RNAs and lncRNAs. Also see Small 
RNA and Long Non- Coding RNA.

Normalization: A mathematical procedure to correct for unwanted effects 
of non- intended factors and/ or technical bias (such as differences in 
sequencing depth between samples in RNA- seq). This procedure puts 
focus on the biological difference of interest, and makes samples in 
different conditions comparable.

Normalized Strand Correlation (NSC): A measure of signal- to- noise 
ratio in ChIP- seq. It is calculated as the normalized ratio between the 
maximum strand cross- correlation (at the fragment- length peak) and the 
background cross- correlation. Also see Relative Strand Correlation (RSC).

Open Reading Frame (ORF): A continuous segment of DNA containing 
nucleotide triplet codons that starts with the start codon (ATG) and ends 
with one of the stop codons (TAA, TAG, or TGA).

Operational Taxonomic Unit (OTU): A common microbial diversity unit 
used in metagenomics that may represent a species or a group of species. 
OTUs are clustered together based on DNA sequence information alone.
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Paired- End Reads: Reads obtained from the two ends of a DNA fragment. 
Since the length of the DNA fragment, i.e., the distance between the 
reads, is known, use of paired- end reads provides additional positional 
information in mapping or assembly of the reads. In comparison to 
Single- End Reads.

Pathway: A succession of molecular events that leads to a cellular response 
or product. Each of such events is usually carried out by a gene 
product. Many biological pathways are involved in metabolism, signal 
transduction, and gene expression regulation.

PCA: Principal Component Analysis. A dimensionality reduction technique 
to help summarize and visualize large and complex datasets. PCA is 
widely used in next- gen sequencing applications such as bulk and single-
cell RNA- seq.

PCR Bottleneck Coefficient (PBC): An index of sequencing library 
complexity. It is calculated after the read mapping step as the ratio 
between the number of genome locations to which only one unique 
sequence read maps and the total number of genome locations to which 
one or more unique reads maps. PBC measures the distribution of read 
counts towards one read per location.

Phred Quality Score (Q Score): An integer value that is used to estimate 
the probability of making an error, i.e., calling a base incorrectly. It is 
calculated as Q =  − 10xlog(10)P(Err). For example, a Q score of 20 (Q20) 
means a 1/ 100 chance of making a wrong call. Q30 represents a 1/ 
1000 chance of making a wrong call, which is considered to be a high- 
confidence score. Q scores are often represented as ASCII characters for 
brevity.

Picard: A set of tools written in Java for handling NGS data and file formats.
Pileup: A file format created with SAMtools showing how each genomic 

coordinate is covered by reference sequence- matching or - unmatching 
bases from all aligned reads.

piRNA: Piwi- interacting RNA. See Small RNA.
Polymerase Chain Reaction (PCR): A molecular biology technique that 

amplifies the amount of a DNA or RNA fragment, with the use of specific 
oligonucleotide primers that flank the two ends of the target fragment.

Promoter: DNA sequence upstream of the open reading frame of a gene. The 
promoter region is recognized by RNA polymerase during initiation of 
transcription. Contains highly conserved sequence motifs.

Proteome: The complete set of proteins in a cell, tissue, or organ at a certain 
point of time. Proteomics analyzes a proteome via identifying individual 
component proteins in the repertoire and their abundance.

Quality Score: See Basecall Quality Score.
Read: Sequence readout of a DNA (or RNA) fragment.
RNA- Seq: Stands for RNA sequencing. Also referred to as whole 

transcriptome shotgun sequencing. RNA- seq is a major technology for 
transcriptome analysis and a major application of NGS.
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RNAi: RNA interference, i.e., inhibition of gene expression. RNAi is usually 
mediated by small RNAs, which lead to degradation of specific mRNA 
targets.

RNase: An enzyme that catalyzes the degradation of RNA molecules.
Reduced Representation of Bisulphite Sequencing (RRBS): An NGS- 

based experimental approach that determines DNA methylation 
pattern in a reduced genome (usually to save costs). The reduced 
representation of the genome is usually achieved by the use of 
restriction enzymes.

rRNA: Ribosomal RNA, i.e., RNA species that are essential components of 
the ribosome. They play key roles in protein synthesis. By quantity, they 
are the most abundant RNA species in a cell.

Relative Strand Correlation (RSC): A metric of signal- to- noise ratio in ChIP- 
seq. RSC is the ratio between background- adjusted cross- correlation 
coefficient at the fragment- length peak and that at the read- length peak. 
Also see Normalized Strand Correlation (NSC).

RNA Velocity: A single-cell RNA- seq analysis approach for making 
predictions on future cellular states in terms of the speed and direction 
of their movement along a trajectory. This approach is based on detection 
and comparison of unspliced pre- mature transcripts that still contain 
introns and spliced mature transcripts.

SAN: Storage Area Network. A type of Local Area Network (LAN) designed 
to handle large data transfers.

Sanger Sequencing: The first widely adopted DNA sequencing technology. 
Devised by Dr. Fred Sanger, it is based on the principle of sequencing- by- 
synthesis with the use of dideoxynucleotides that irreversibly terminate 
new DNA strand synthesis once incorporated. With the advent of NGS 
technologies, this sequencing method has become the synonym of first- 
generation sequencing.

Scaffold: Ordered arrangement of de novo assembled contigs. The 
relative positional relationships between contigs are inferred by 
mate-pair, paired-end, or long reads. In a scaffold, while the order of 
contigs is known, sequence gaps still exist between contigs.

Sequencing Depth: See Coverage.
Sequencing Library: See Library.
Seurat: An R toolkit for comprehensive single-cell RNA- seq data analysis.
Single- End Read: Sequence read generated from one end of a DNA fragment. 

This is in comparison with paired reads generated from both ends of a 
DNA fragment. Also see Paired- End Reads.

Single Nucleotide Polymorphism (SNP): DNA sequence polymorphism due 
to variation at a single nucleotide position. Different from the term Single 
Nucleotide Variation (SNV), SNP only refers to SNV that is relatively 
common in a population with frequency reaching a certain threshold 
(usually 1%). Also see Single Nucleotide Variation.
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Single Nucleotide Variation (SNV): DNA sequence variation that involves 
change at a single nucleotide position, e.g., the sequence change from 
ATTGCA to ATCGCA.

siRNA: Small interfering RNA. See Small RNA.
Small RNA: Also called small non- coding RNA. The major categories of 

small RNA are miRNA, siRNA, and piRNA. In comparison to mRNA 
molecules, these RNA molecules are much smaller in size. Small RNA 
plays important regulatory roles in cells through mediating RNAi. Also 
see RNAi.

Splicing: The process of removing introns from primary RNA transcripts and 
joining of exons to form mature mRNAs. Splicing can be conducted in 
more than one way for many genes, and alternative splicing can lead to 
the production of different mRNA species from the same gene through 
retaining different combinations of exons (or even introns sometimes).

SRA: Sequence Read Archive (also called Short Read Archive) maintained by 
the National Center for Biotechnology Information (NCBI). SRA is one 
of the major archives of NGS data generated worldwide. Other publicly 
available NGS data archives include the European Nucleotide Archive 
(ENA) maintained by the European Bioinformatics Institute (EBI).

Strand Cross- Correlation: In ChIP- seq, there is a shift in base position 
between reads generated from the forward and reverse strands of DNA. 
Strand cross- correlation is a measure of this shift, and calculated as the 
Pearson correlation coefficient between the forward and reverse read 
counts at each base position when the reads on the two strands are 
shifted toward and away from each other at different base shift. Also see 
Normalized Strand Correlation and Relative Strand Correlation.

Structural Variation (SV): Large- scale genomic change that include large 
indel, inversion, translocation, or copy number variation. Different from 
SNPs or small indels, SVs involve DNA segments that are usually larger 
than 50 bp. Also see Copy Number Variation.

Trajectory Inference (TI): Inferring transcriptomic change of an individual 
cell over time based off of a snapshot of gene expression of a population 
of cells at a certain point of time that represent a continuum of transitional 
cellular states. TI is built on the premise that cells in the continuum share 
many common genes and their gene expression displays gradual change.

Transcript: An RNA molecule transcribed from a segment of DNA.
Transcription Start Site (TSS): The nucleotide site in a segment of DNA from 

which RNA transcription is initiated.
Transcriptome: The complete set of RNA transcripts in a cell, tissue, or organ 

at a certain point of time.
Transcriptomics: Studies of the composition of a transcriptome. Encompasses 

identification of the large number of RNA species in a transcriptome 
and determination of their abundance levels. Major transcriptomics 
technologies include microarray and RNA- seq.
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Translation: The process of protein synthesis from mRNA. Carried out by 
ribosomes.

tRNA: Transfer RNA. The function of tRNAs is to transfer amino acids to 
ribosomes for protein synthesis according to the triplet genetic code.

t- SNE: t- distributed Stochastic Neighbor Embedding. A non- linear 
dimensionality reduction method. The t- SNE process maps the cells to 
a dimension- reduced space that best preserves cell- cell similarity in the 
original data.

UMAP: Uniform Manifold Approximation and Projection. Another non- 
linear dimensionality reduction method. It has a similar procedure to 
t- SNE, but it differs in how cell- cell similarity is computed to provide 
better preservation of global cell- cell relationships.

UMI: Unique Molecular Identifier. UMIs are essentially a large number 
of randomly synthesized, unique nucleotide combinations that are 
attached to DNA fragments before any PCR amplification steps during 
sequencing library preparation. The purpose of using UMIs is to identify 
PCR duplicated molecules for removal.

UTR: Untranslated region of an mRNA molecule. Can be located on either 
the 5’ end, or the 3’ end, of the mRNA molecule.

Variant Calling: Identification of sequence difference at specific positions 
of an individual genome (or transcriptome) in comparison with a 
reference genome. Each variant usually has a corresponding Phred- scale 
quality score.

Whole- Genome Bisulphite Sequencing (WGBS): An application of NGS 
that determines DNA methylation pattern across the entire genome 
using bisulfite conversion. Also see Bisulfite Conversion.
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A

Ab initio splice junction detection, 123
A- Bruijn variant, 279
ABySS, 271, 279, 282
ACDtool, 132
Adapter ligation, 61, 73, 74, 75
AI- based decision support tools, 256
Alignment methods, 92
Allele- specific expression (ASE) analysis, 

186
ALLPATHS- LG, 275, 282, 285

error correction module, 275
reference- assisted assembly approach, 

285
Alu element, 29
Alzheimer’s disease (AD), 11, 31
Amazon, 107
Amazon Web Services (AWS) 

Management Console, 108
American Association for Cancer 

Research (AACR), 246
American College of Medical Genetics 

and Genomics (ACMG), 248
AMP rules, 255
pathogenicity/ benignity evidence, 

combination of, 255
American Society of Clinical Oncology 

(ASCO), 254
ANNOVAR tool, 245
Anti- oxidant response element (ARE), 26
AnVIL, 109
APP gene, 31
Application Programmer Interfaces 

(APIs), 112, 246
Application- specific integrated circuit 

(ASIC), 67
ApplyBQSR, 217
ARAGORN, 351
Argonaute processing, 206
Artificial intelligence, in variant 

reporting, 256– 257
Artificial neural networks (ANNs), 111, 

168, 217

Ascorbic acid, 29
AsmVar, 227
Assay for Transposase- Accessible 

Chromatin, 372
Assembling contigs, into scaffold, 281
Assembly Likelihood Evaluation (ALE), 

348
Association for Molecular Pathology 

(AMP), 248
ATAC- seq data, 300
AT- overhang- based adapter ligation 

process, 75
ATP synthesis 

cytoplasmic membrane, 11
proton gradient, 12

AU- rich element, 43
Automated Cell Type Identification 

using Neural Networks (ACTINN), 
176

Average silhouette width (ASW), 164
Avidity chemistry, 367

B

Balrog, 351
Barcode, 73
BaseRecalibrator, 217
Batch effects, correction, 163
BatchQC, 129
Bayesian approach, 178, 352
Bayesian mixed, 315
Bayesian modeling, scDD employs, 180
BaySeq, 130
BBTools suite, 347
BCFtools, 218
Bcftools mpileup, 218
“BED- file” mode, 308
BedGraph 

file format, 332
track files, 309

BEDTools, 309
Benjamini– Hochberg approach, 301, 306
Binning algorithms, 350
Biocontainers, 372
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Biofuel generation, 342
Bioinformatic algorithms, 111
Bioinformatics tool development, 369
Bio- polymer molecule, type of, 20
Bioremediation generation, 342
Bismark, 329
Bis- SNP, 331
Bisulfite mapping, 326
Bisulfite sequencing, 329

applications, 329
steps of, 323

BitBucket, 262
BLAST, seed- and- extend approach, 87
BMTagger, 347
Bonferroni correction, 132
Boolean models, 188
Bowtie algorithm, 122, 326

Bowtie2/ BWA, 298
genome mapping, 208
performs mapping, 89

Bracken, 352
BRAIN Initiative Cell Census Network 

(BICCN), 174
Branch expression analysis modeling 

(BEAM), 184
BRCA1 gene, 32
BRCA2 gene, 20, 32
BreakDancer, 226
Bridge amplification, 61
Bridger, de novo transcriptome 

assemblers, 125
Bruijn graph, 277, 278, 280
BSMAP masks, 328
BSmooth, 332
BS- Seeker2/ BS- Seeker3, 329
BugSeq, 352
Burrows– Wheeler transform (BWT), 89, 

90
BUSCO, 284, 348
BWA algorithm, 91, 370

C

Ca2+ - mediated cell signaling, 9
CAMI II challenge, 351
Cancer 

Cancer Variants interpretation, open 
source (CancerVar), 256

by genome instability, 32
vs. normal cell comparison, 118

Canonical Correlation Analysis (CCA), 
163

Canu, 277
Carbohydrates, 5, 7– 8, 10, 12
5- Carboxylcytosine (5caC), 30
CardioClassifier, 254
CardioVAI, 254
Carnelian, 353
CarveMe, 353
Catalogue Of Somatic Mutations In 

Cancer (COSMIC), 246
CD79a gene, 174
CD79b gene, 174
cDNA sequences, 284
Cech complex, 168
Cell cycle disturbance, 32
Cell identity annotation tools, 175
Cell membrane, 5, 7

component, 5
general structure, 6
proteins, 9

Cell Ontology (CO), 176
Cell Ranger, 156, 173
Cellranger count, 157
Cell Ranger software, 154
Cell- splicing junction, 187
Cellular heterogeneity, 76, 145, 147, 162, 

176, 185, 187, 239
Cellular system 

cells molecules, 4– 5
challenges, 3– 4
code of life, 3
intracellular structure, see Intracellular 

structures/ spaces
perpetuation/ evolution of, 4
protein- coding/ non- coding 

sequences, 14
research & development, 14– 15
systems biology, 13– 14

Cellular trajectory 
inference of, 184
topologies, 182

Cellular transcription, landscape  
of, 51

Cellular transcriptome, deep 
sequencing, 50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Index 399

Centers for Medicare & Medicaid 
Services, 237

Central dogma, 20
Centrifuge, 352
CentriMo, 315
CHANCE, 298
CheckM, 348
Chemical/ enzymatic conversion- based 

DNA methylation sequencing, 328
Chemistry Batch Correction algorithm, 

164
ChIPDiff, 312
ChIP DNA, for library prep, 295
ChIPpeakAnno, 313, 315
ChIPQC reports, 307, 308
ChIP- seq data, 298, 308, 315, 321

analysis, 26, 297, 300, 314
appropriate control, 295
background noise/ signal profiles, 299
basic steps of, 294
data quality, 301, 309
differential binding analysis, 312
experiment, 296
gene expression data, 313
library complexity, 297
locally weighted regression (LOESS) 

normalization approach, 311
NGS- based approaches, 40
NGS- based technology, 293
normalization methods, 311
NRF2- regulated genes, 314
peak calling algorithms, 306
peaking calling, 370
“phantom” peak, 303– 304
process, 293
QC tools, 298
quantitative analysis, 311
substeps of calling peaks, 305
workflow, 297

ChIP- seq reads 
distribution of, 302
mapping, 298

ChIP- seq signal, 301
adjustment, 295
changes, 312
distribution, 309

Chlorophyll, 12
Chloroplast, 5

Chromatin immunoprecipitation  
(ChIP), 77

Chromatin remodeling, 25, 50
Chromosomal breakage, 32
Circular consensus sequencing (CCS), 65
Circular RNAs (circRNAs), 50
Circulating cell- free DNA (cfDNA), 239
Circulating tumor cells (CTCs), 239
Circulating tumor DNA (ctDNA), 239
cis- Regulatory modules, 39– 40
cisTopic, 373
Cistrome, 314
CLC Genomics, 96

Workbench, 96, 109, 371
Cleavage Under Targets and Release 

Using Nuclease (CUT&RUN), 296
Clinical Interpretations of Variants in 

Cancer (CIViC), 256
Clinical Laboratory Improvement 

Amendments (CLIA), 237
Clinical sequencing testing, 258
ClinVar, 246, 247
Cloud computing 

for NGS data analysis, 108
virtualization technology, 107

CNN- Peaks, 307, 376
CNVnator, 228
Coded protein, 254
Coding sequences (CDS), 22
College of American Pathologists (CAP), 

254
bioinformatics pipeline validation, 261
precision/ reproducibility of, 261

ComBat, 129, 162
ComBat- seq, 130
Combinatorial probe- anchor ligation 

(cPAL), 366
Combinatorial probe- anchor synthesis 

(cPAS), 366
Common Workflow Language (CWL), 

372
Comparative genomic hybridization 

arrays (aCGH), 259
Complementary DNA (cDNA), 72
Complete Genomics, 366
Computing, for NGS data analysis 

big data, 103
bioinformatics skills, 111– 112
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cloud computing, 106– 108
computing power, 105– 106
data sharing, 103– 105
data storage, 103– 105
data transfer, 103– 105
parallel computing, 110– 111
software, 108– 110

Continuous long- read (CLR) mode, 65, 
66

Convolutional neural network (CNN), 
82, 219, 375

CoolMPS chemistry, 366, 367
Copy number variation (CNV), 28
Cortex, 227
Cost savings, 107
CRAM files, 95
CRISPRDetect, 351
CRISPRFinder, 351
Critical Assessment of Metagenome 

Interpretation (CAMI), 349
Cromwell, 372
CSS normalization, 355
Cuffdiff 2, 130
Cufflinks, 126
Cumulative- sum scaling (CSS), 354
CWL- Airflow, 372
Cytoplasm, 5, 7, 9, 42
Cytoplasmic mRNA, 158
Cytoscape, 136
Cytosine 

chemical structures of, 325
demethylation products, 325
methylation, 78

Cytoskeleton, 5
Cytosol, 7, 9

D

Darwinian evolution, 28
DAS tool, 349
Data accuracy, biases 

factors, in sequencing, 75– 76
in library construction, 74– 75

Data analysis 
computing, see Computing, for NGS 

data analysis
DNA methylation sequencing, 326
machine learning, 374– 376

NGS technologies, see Early- stage 
NGS technologies

RNA- Seq, see RNA- Seq
Data generation, clinical sequencing 

artificial intelligence, in variant 
reporting, 256– 257

bioinformatics pipeline validation, 
261– 263

clinical phenotype match, 246– 247
expert review, 257
functional consequence, 245– 246
germline variants, classification of, 

248– 254
human disease, relationship evidence, 

246
library preparation/ sequencing 

approaches, 240– 242
mode of inheritance, 247
patient counseling/ periodic report 

updates, 260– 261
patient sample collection, 238– 240
patient’s electronic health record, 260
prioritization, 247– 248
occurrence, frequency of, 245
read mapping, 243
secondary findings, 260
somatic variants, classification of, 

254– 256
testing report, generation of, 257– 259
variant calling, 243
variant filtering, 243
variant ranking, 247– 248
variant validation, 259– 260

DBChip, 313
DBG2OLC, 282
dbSNP, 217
De Bruijn graph approach, 348
DECIPHER, 247
DeconSeq, 347
DecontX, 159
Dedupe tool, 347
Deep learning (DL), 81, 374
DeepMAsED, 348
DeepMP, 376
DeepPVP, 246
DeepTools2, 298, 307
DeepVariant, 219
DE gene identification, 180
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Degenerate oligonucleotide- primed PCR 
(DOP- PCR), 373

DE genes 
detection tools, 131– 132
hierarchical clustering of, 135
identification of, 129

De novo genome assembly, 77, 271, 277, 
284

assemblers, 370
assembly quality evaluation, 282– 284
contig assembly algorithms, 277– 280
error correction, 274– 277
future development, 284– 285
gap closure, 281– 282
genome characteristics, 274– 277
genomic factors, 272
limitations, 284– 285
long/ short reads, 271
NGS applications, 271, 272
polishing, 280
scaffolding, 281– 282
sequence data preprocessing, 274– 277
sequencing strategies, 272– 274
workflow, 275

De novo metagenome assembly, 347
Deparaffinization, 238– 239
DESeq, 334
DESeq2, 130, 178, 310
DESJ- detection, 186, 187
DEXSeq, 136
DIAMOND, 350
Dicer processing, 206
DiffBind, 313
Differential expression (DE) analysis 

methods, 178
RNA- seq, 310
single- cell tools, 179

Differentially Expression Genes 
Elimination Strategy (DEGES), 128

Differentially methylated cytosines and 
regions (DMCs/ DMRs), 332

Differential network analysis, 189
Differential splicing (DS), 136
DiffReps, 310, 312
DiffSplice, 136, 137
Diffusion maps, 167
Diffusion Pseudotime (DPT), 182
Digital Cell Sorter, 174

Direct library preparation (DLP), 373
Directly Attached Storage (DAS), 104
Dirichlet- multinomial distribution, 159, 

178
Disease- causing variant, 245
Disease Ontology (DO) hierarchy, 247
t- Distributed Stochastic Neighbor 

Embedding (t- SNE), 167
Division of labor, 3
DMRFinder, 334
DNA- binding motif, 314

pattern, 310
transcription factor NRF2, 314

DNA coding, 26, 257
DNA contamination sequences, 347
DNA duplication enzymes, 46
DNA extraction, 343
DNA fragmentation, 74

double- stranded, 74
ligation biases, 74
PCR biases, 75

DNA hypomethylation, 33
DNA intelligent analysis (DIANA), 210
DNA- interacting proteins, 26, 39, 293, 

315, 321
binding of, 310
ChIP- seq data analysis, 315

DNA methylation data, 29– 30, 321, 331, 
332

analysis, 332
data interpretation, 335
quantification, 331
visualization, 331, 333

DNA methylation sequencing, 370
bisulfite conversion, 322– 324
ChIP- seq peaking calling, 370
cytosine methylation, from 

demethylation products, 325– 326
data analysis; see also DNA 

methylation data
data generation, 334
data verification/ validation/ 

interpretation, 334– 335
demethylation products, 

quantification of, 330– 331
differentially methylated cytosines 

and regions (DMCs/ DMRs), 
332– 334
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enrichment- based methyl- seq, 324– 325
enzymatic conversion methyl- seq, 324
epigenomics, 321
preprocessing, 326
quality control (QC), 326
read mapping, 326– 330
reduced representation bisulfite 

sequencing (RRBS), 323– 324
strategies, 321– 322
visualization, 331– 332
whole- genome bisulfite sequencing 

(WGBS), 322– 323
DNA methylation study (Methyl- Seq), 

77– 78
DNA methyl- seq approaches, 322
DNA methyltransferases, 30
DNA mutations, 27
DNAnexus, 371
DNA nucleotide sequence, 18
DNA packaging/ unpackaging, 25, 26
DNA polymerases, 18, 39, 58– 59, 70, 321
DNA probes, 117
DNA- protein interactions, 26
DNA recombinase A, 351
DNA recombination, 29
DNA repair enzymes, 26, 46
DNA repair genes, 32
DNA replication process, 19, 21, 27

cellular system, perpetuation/ 
evolution of, 4

fidelity of, 18– 20
DNA/ RNA fragments, 68
DNA/ RNA polymerases, 26
DNA’s double helix structure, 18
DNase I hypersensitivity sites, 229
DNA sequence, 57– 60

access, 25– 26
base sequence, 17
complexity, 342
data, 221
double helix structure, 17, 18
mutation, 27– 28
replication process, 18– 20

DNase- seq data, 300
DNAstar, 371
DNA storage, well- protected 

environment, 6
DNA strands, 17

DNA target, 18
DNA template, strands of, 19, 37
DNBSEQ, 366

DNBSEQ- G50, 366
DNBSEQ- G400, 366
DNBSEQ- T7, 366

DNB sequencing, error profile, 366
DoubletFinder, 158
DrImpute, 165
Drop- seq, 146
Drosha, 47
Duplex Sequencing, 242
Duplex- specific nuclease (DSN), 120
Dynamic Read Analysis for GENomics 

(DRAGEN) platform, 243
Dysfunction, 32

E

Early- stage NGS technologies, 81– 98
algorithms/ reference genome 

sequences, 91– 93
approaches, 86– 91
basecalling, 81– 84
base quality score, 81– 84
data quality check, 81
data quality control/ preprocessing, 

84– 86
FASTQ file format, 81– 84
file examination/ operation, 95– 97
Q- scores, 84– 85
read length distribution:, 85
read mapping, 86
SAM/ BAM, as standard mapping file 

format, 93– 95
sequencing library, 85
tertiary analysis, 98
user- friendly interface, 85

EBSeq, 130
E. coli, 23, 38
EdgeR, 130, 334
EggNOG- mapper, 352, 353
Elastic Compute Cloud (EC2), 108
Element Biosciences technologies, 367
Empty droplets vs. those containing 

cells, detection of, 160
EmptyDrops, 159
Emulsion MDA (eMDA), 373
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ENCODE Consortium, 309
ENCODE Software Tools, 298, 301
Encyclopedia of DNA Elements 

(ENCODE), 51
Endoplasmic reticulum (ER) 

lumen, 9
organelles, 5

Endosome, intracellular structures/ 
spaces, 8

Endosymbiotic cyanobaterium, 12
Enhancer RNAs (eRNAs), 50
Enzymatic conversion, 326

bisulfite- based chemical method, 324
DNA methyl- seq data analysis, 324, 

327
Enzymes, DNA repair, 18, 27
EpiExplorer, 335
Epigenome, 29– 30
Epigenomic studies, 14, 77– 78
Error correction modules, 275
Error- prone sequencing, 272
Eukaryotic cells, 5, 10

structure of, 6
transcription, 39

Eukaryotic genomes 
gene expression, regulation of, 44
non- coding DNA elements, 21

Eukaryotic mRNA decay, 43
Eukaryotic mRNA degradation, 

regulation of, 43
Eukaryotic ribosomes, 9
Eukaryotic RNA polymerases, 39
Exome sequencing, 241
Exomiser, 246
Exons, 22, 23, 40

exon- first methods, 123
sequencing of, 23

Expectation- maximization algorithm., 126
eXpress, 126
Expression recovery, 164
eXtasy, 246
Extracellular signal, transduction of, 13

F

Factorial single- cell latent variable 
model (f- scLVM), 167

False discovery rate (FDR), 132, 301
Family wise error rate (FWER), 132

FASTA format, 280
Fast Healthcare Interoperability 

Resources (FHIR), 260
FastQC tool, 86
FASTQ data, quality control (QC) of, 154
FASTQ files, 64, 69, 154
FASTQ format, 81– 83, 280

gigabytes (GB), 103
terabytes (TB), 103

Fastq- join, 274
FateID, 183
Fatty acids, 5
FFPE- compatible nucleic acid extraction, 

238– 239
Filtering variants, 249– 253
FindMarkers() function, 173, 180
FindMotifs module (HOMER), 314
FindVariableGenes method, 166
Fisher’s exact test, 334
FLASH2, 274
Fluorescence- activated cell sorting 

(FACS), 148
Fluorescence- emitting core, 367
Fluorescent dye, type of, 367
Fluorescent in situ hybridization, 238
Food and Drug Administration (FDA), 

237
Formalin- fixed paraffin- embedded 

(FFPE), 119, 238
5- Formylcytosine (5fC), 30
Fos genes, 150
FoundationOne CDx (F1CDx) panels, 

241
FQC Dashboard tool, 86
Fraction of reads in peaks (FRiP), 309
FragGeneScan, 351
FreeBayes, 185
FRiP values, 309
Functional Annotation Of the 

Mammalian (FANTOM) genome, 51
Functional Genomics Data Society, 104
fusA (protein chain elongation factor), 

351
Fuzzy Bruijn graph (or FBG), 280

G

Galaxy system, 109, 372
GATK BaseRecalibrator, 217
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GATK HaplotypeCaller/ BCFtools, 221
GATK IndelRealigner, 217
GATK Mutect2, 219
GATK RealignerTargetCreator, 217
Gaussian distribution, 180
Gaussian kernel, 167
Gaussian mixture model (GMM), 349
G4 benchtop sequencer, 368
Gel beads- in- EMulsion (GEMs), 147
Genalice, 243
GenBank, 86
Gene calling, from metagenomic 

sequences, 352
Gene- cell count matrix, 157
Gene- centered disease models, 32
Gene coding, 22
Gene duplication, 28, 29
Gene fusion, 138
GeneMANIA, 136
GeneMarkS- 2, 351
Gene Ontology (GO), 132, 174, 211, 248
Generalized linear model (GLM), 132, 

161
Gene regulatory network (GRN), 187

inference methods, 188
scRNA- seq data, 187, 188

GeneReviews, 259
Gene Set Enrichment Analysis (GSEA), 

136
GeneStudio S5, 70, 72
Genetic circuit, 13
Genetic mutation/ variation 

identification, 77
Genetic risk assessment, 371
Gene transcription, 21, 22, 126
Gene translation, 21
Genexus, 70
Genome assembly, error correction, 280
Genome evolution, 28– 29
Genome in a Bottle (GIAB), 242
Genome instability, 185
Genome modulation 

nucleotides/ histones, chemical 
modifications, 77

regulatory mechanism, 77
GenomeScope, 276
Genome sequencing 

Alzheimer’s disease (AD), 31– 32

disease risk, 30– 33
epigenomic/ epigenetic diseases, 

32– 33
genome instability, 32
Mendelian (single- gene) diseases, 31

Genome STRiP, 227
Genomic DNA, to protein, 20– 21
Genomic heterozygosity, 272
Genomic imprinting, 30
Genomic landscape 

genome sizes, 21– 22
human genome, composition of, 24
minimal genome, 21
non- coding genomic elements, 23– 24
protein- coding regions, 22– 23

Genomic polymorphisms, 14
Genomic Regions Enrichment of 

Annotations Tool (GREAT), 313, 335
Genomics Evidence Neoplasia 

Information Exchange (GENIE), 246
Genomic variant cataloging projects, 215
Genomiser, 246
GeoMx Digital Spatial Profiler from 

Nanostring, 374
Germline cells, 27
Germline SNVs, 259
GFAP (glial fibrillary acidic protein) 

gene, 174
GhostKOALA, 353
Gibbs motif sampler, 314
Gigabytes (GB) 

de novo assembly, 106
FASTQ format, 103

Gilbert’s method, 57
GitHub, 262
Glimmer- MG, 351
Global Alliance for Genomics and 

Health (GA4GH), 260
Global positioning, 87
Glycolytic pathway, 10
Golgi apparatus, 5, 8– 10
Google, 107
Google Cloud Platform (GCP), 109
Graphics processing unit (GPU), 106
Greedy approach, 277
Green pigment, 12
GridION data, 68
GroopM, 349

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Index 405

GSMMs, 353
GTDB- tk, 352
GULO gene, 29
Guppy, 69
gVCF format, 223
gyrB (DNA gyrase subunit B), 351– 352

H

HaplotypeCaller, 185, 218, 221
Hardy– Weinberg equilibrium, 223
Health Level Seven International (HL7), 

260
Heart disease, 11
Helicase, 18
Heligmosomoides polygyrus, 177
Hematoxylin & eosin staining, 238
Heteroplasmy, 11
HiCanu, 279
Hi- C data, 282
Hidden Markov models (HMMs), 111, 

313
Highly variable genes (HVGs), 166
High- mobility group (HMG) proteins, 

26
High- molecular- weight (HMW), 342
High- performance computing (HPC) 

systems, 105
HISAT, 123– 4
HISAT2, 123, 328
Histone H3 lysine 27 trimethylation,  

295
H3K27me3, 295
HOMER, findPeaks module, 306
Homopolymer error, 69
HoneyBADGER, 186
HPC cluster, 112
HT- Seq Python framework, 126
HTT gene, 31
Human Cell Atlas, 165, 174
Human Gene Mutation Database 

(HGMD), 246
Human genome, de novo assembly, 274
Human Genome Organization Gene 

Nomenclature Committee (HGNC), 
257

Human Genome Project, 14, 31
Human Genome Variation Society 

(HGVS), 257

Human genomic DNA, 25
Human/ interaction PHIVE (hiPHIVE), 

247
HUMAnN, 353
Human Phenotype Ontology (HPO) 

project, 246
Huntington’s disease, 31
Hybrid assemblers, 280
HybridSPAdes, 348
Hybrid- super- transcriptomes, 158
Hydrogen peroxide, 8

I

ICF (immunodeficiency, centromeric 
instability, and facial anomalies) 
syndrome, 32

IDBA- Hybrid, 285
Illumina 

DRAGEN reads mapper +  variant 
caller system, 374

Infinium MethylationEPIC 
BeadChips, 321

Isaac Genome Alignment Software, 87
platforms, 69, 76
sequence data generation process, 63
sequencing flow cell, 61
sequencing technology, 60– 63
small RNA sequencing protocol, 207

Illumina– generated FASTQ files, 83
Illumina reversible terminator  

short- read sequencing 
cost, 63
data output, 63
error rate, 63
Illumina sequencing technology, 60
implementation, 60– 63
read length, 63
sequence data generation, 63– 64

Immunohistochemistry, 238
Immunoprecipitated DNA fragments, 

300
Immunoprecipitation, 295
Independent component analysis (ICA), 

166
Ingenuity Pathway Analysis (IPA), 136
Integrated Microbial Genomes & 

Microbiomes system (IMG/ M), 
352– 353
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Integrative Genomics Viewer (IGV), 97, 
259

Integrative non- negative matrix 
factorization (iNMF), 164

InterPro, 352
Intestinal epithelium, cellular 

composition, 177
Intracellular structures/ spaces 

cell membrane, 6– 7
chloroplast, 12
cytoplasm, 7– 8
cytoskeleton, 10
endoplasmic reticulum, 9
endosome, 8
Golgi apparatus, 9– 10
lysosome, 8
mitochondrion, 10– 11
nucleus, 5– 6
peroxisome, 8

Intra- experiment batch effects, 164
Introns, 40
Ion 318 Dx chip, 72
Ion Torrent family, 70
Ion Torrent platform sequences, 63, 69
Ion Torrent semiconductor sequencing 

system, 69
cost, 70– 72
date output, 70– 72
error rate, 70– 72
implementation, 70
read length, 70– 72
sequence data generation, 72
sequencing principle, 69– 70

Irreproducible Discovery Rate (IDR), 
296, 298, 308

experimental reproducibility, 296
six peak callers, performance of, 308

Irritable bowel syndrome (IBS), 376
Isoform- centric methods, 136
isomiRs, 209

J

JASPAR, 315
Java- based tool, 256
Jellyfish, 275
JointSNVmix, 219
Jumping genes, 24
Jun gene, 150

K

Kaiju, 352
KGGSeq, 247
K- means clustering algorithm, 172
K- mers, 87, 275

coverage profile of, 276
hash table- based reference genome 

indexing, 87
seed- and- extend methods, 123

KneadData, 347
K- nearest neighbor (kNN) method, 158
Kraken, 352
Krebs cycle, 10, 11
Kruskal– Wallis rank- sum test, 355
Kruskal– Wallis test, 332

L

LanceOtron, 307
Lancet, 219
LEfSe, 355
Leiden methods, 172
Limit of detection (LOD), 240
Linear dimensionality reduction 

methods, 167
Linked Inference of Genomic 

Experimental Relationships 
(LIGER), 164

Lipid bilayer structure, 6
Lipids, 5
lncRNAs, biogenesis of, 50
Locally Linear Embedding (LLE), 167
Logistic Regression classification, 375
Long Fragment Read (LFR), 273, 369
Long- non- coding RNAs (lncRNAs), 45
LoopSeq, from Loop Genomics, 369
Louvain community detection method, 

172
Louvain methods, 172, 182
Lysosome, 8

intracellular structures/ spaces, 8
lysosome membrane, 8

M

Machine learning (ML), 374– 376
algorithms, 256

Mac OS, 109
MACS2 shifts, 300– 301, 306
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“Major- allele” reference genome, 93
MAMBO, 353
Mann– Whitney U test, 332
MAnorm2, 311, 313
Mapping and Assembly with Qualities 

(MAQ), 87
Mapping process, 96
MAPping program, 323
Mapping protein- DNA interactions 

ChIP- Seq, principle of, 293– 295
data quality control, 297– 300
differential binding analysis, 310– 313
experimental control, 295
functional analysis, 313– 314
integrated ChIP- Seq data analysis, 315
library preparation, 295– 296
motif analysis, 314– 315
peak calling, 300– 307
peak visualization, 309
post- peak calling quality control, 

307– 309
read mapping, 297– 300
replication, 296
sequencing length/ depth, 296

Mapping quality score, 94
MarginPolish & HELEN, 280
Marker genes, expression of, 174
Marker profiling, 240
Markov model, 315
MARVEL, 277
MaSuRCA, 282, 348
Mate- pair sequencing, 273
MATLAB, 112
Mature miRNA species, 206
MaxBin 2.0, 349
MaxEntScan, 245, 248
MBLASTX, 353
Mean- variance relationship, 162
MECAT, 277
Medaka, 280
MeDIP- seq, 324, 331
MedlinePlus Genetics, 259
MEGANIZER, 350
MelonnPan, 354
MEME- ChIP, 315
Memorial Sloan Kettering– Integrated 

Mutation Profiling of Actionable 
Cancer Targets (MSK- IMPACT), 241

Mendelian disorders, 238, 248
MERFISH, from Vizgen, 374
Messenger RNAs (mRNAs), 8

binding proteins, 50
double- stranded miRNA, 47
miRNA- mRNA interaction, 48
precursor of, 47
primary transcript (pri- miRNA), 47
stability regulatory sequences, 43
suppressing target mRNA activity,  

48
trafficking of, 44

MetaBAT 2, 349
MetaBinner, 349
MetaGeneAnnotator, 351
Metagenome- assembled genomes 

(MAGs), 345
Metagenomes 

analyzer, 349
characterization, 370
metabolomic analysis of, 353
steps of, 346

MetagenomeSeq, 355
Metagenomics, 78, 341

metagenomics RAST server  
(MG- RAST), 352

MetaMaps, 352
MetaPhlAn, 351, 352
MetaQUAST, 348
MetaSPAdes, 348
MetaWatt, 349
MetaWRAP, 349
Methylated- CpG Island Recovery Assay 

(MIRA), 324
Methylated cytosines/ regions, tools for 

detection, 334
Methylation bias, 330
methyl- CpG- binding domain capture 

(MBDCap), 324
5- Methylcytosines (5mCs), 29, 321
MethylKit, 334
MethylSig, 334
Methy- Pipe, 332
MGI/ BGI nanoball sequencing, 367
MGnify, 353, 356
Microbial community profiling, 345
Microsatellite instability (MSI), 241
Microsoft, 107
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MinHash alignment process (MHAP), 
277

Minimap2, 92
Minimum spanning tree (MST), 181
MinION data, 68
MinKNOW software, 69
Minor allele frequency (MAF), 245
MinPath, 353
MINSEQE (Minimum Information about 

a high- throughput Nucleotide 
SEQuencing Experiment), 105

miRanda, 210
miRDeep2, 210
MiSeq, 76
Mitochondrial DNA (mtDNA), 11
Mitochondrion, 5
mnSBS chemistry, 368
ModelSEED, 353
Molecular barcoding, 242
Monocle 3, 182
Monogenic/ Mendelian diseases, 31
Mouse Brain Atlas, 174
Mouse Genome Informatics (MGI), 247
Multi- Dimensional Scaling (MDS), 167
Multiple annealing and loop- based 

amplification cycles (MALBAC), 373
Multiple displacement amplification 

(MDA), 373
Multiplex ligation- dependent probe 

amplification (MLPA), 259
MultiQC tool, 86
Multireads, 95
MutationAssessor, 246
MutationTaster, 246, 247, 256
Mutect2, 220
MutPred, 246
Mutual nearest neighbors (MNN), 163
Mycoplasma genitalium, 21

N

NanoCaller, 219
on deep CNN, 375

Nanopolish, 280
Nanopore sequencing, 67
Nanopore Technology, 243
NanoQC, 86
Nasuia deltocephalinicola, 22

NCBI 
Prokaryotic Genome Annotation 

Pipeline (PGAP), 352
SRA database, 355
SRA repository, 105

Needleman– Wunsch algorithm, 91
Negative binomial (NB), 161

distribution, 147
Poisson, 301

Neonatal intensive care unit (NICU), 237
Network Attached Storage (NAS), 104
Network speed, 104
NeuralPolish, 280
NeuSomatic, 219, 220
NextDenovo, 279
Nextera- based method, 153
Nextera XT protocol, 344
Nextflow, 372
Next- generation sequencing (NGS) 

technologies 
analytic workflow management, 

370– 372
applications of de novo genome 

assembly, 77
biases/ factors, in sequencing, 75– 76
biases, in library construction, 74– 75
bioinformatics tools, evolution/ 

growth of, 369– 370
changing landscape, 365– 366
comparative analyses, 354
cost, 63, 65, 68– 72
data analysis, see Computing, for NGS 

data analysis
date output, 68– 72
de novo assemblers, 272
de novo genome assembly, 77
data output, 63, 65
DNA sequence, 57– 60
early- stage, 81– 98; see also Early- stage 

NGS technologies
epigenomics/ DNA methylation study 

(Methyl- Seq), 77– 78
error rate, 63, 65, 68– 72
experiment, workflow of, 73
files transferring, 104
general overview of, 82
genetic mutation/ variation 

identification, 77
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Illumina sequencing technology, 60
implementation, 60– 65, 68, 70
machine learning, 374– 376
mapping of, 87
metagenomics, 78
platforms, comparison of, 71
protein- DNA interaction analysis 

(ChIP- Seq), 77
read length, 63, 65, 68– 72
read mapping, 88, 89
RNA sequencing, 36
seed sequences, 90
sequence data generation, 63– 66, 69, 

72
sequencing principle, 64, 67– 70
sequencing technologies, 366– 369
single- cell/ spatial sequencing, 

372– 374
transcriptomic profiling, 76
trends, 365– 366
whole- genome sequencing, 271
workflow, 72– 74

NextPolish, 280
NHLBI Exome Sequencing Project (ESP), 

245
NNSplice, 245
NOISeq, 132, 210
Non- coding RNAs, 47, 50

genes, 23
species, 51

Non- negative matrix factorization 
(NMF), 167

Non- redundant fraction (NRF), 298
Normalized strand cross- correlation 

(NSC), 298
NovaSeq, 63
Novoalign, 87
Nucleic acids, 5
Nucleobases 

Rungs, 17
types of, 17

Nucleotide- specific antibodies, 366

O

Oases, de novo transcriptome assemblers, 
125

Oligo- dT primers, 153
Omniome, 368

OnClass, 176
Oncogenic somatic variants, 256
Online Mendelian Inheritance in Man 

(OMIM), 246, 247
Open reading frame (ORF), 20

metagenomic sequences, 351
protein translation, 20

Operational taxonomic units (OTUs), 
342

Orphanet, 247
Overlap- Layout- Consensus (OLC) 

approach, 277, 278
Oxford Nanopore sequencing, 227
Oxford Nanopore technologies (ONT) 

cost, 68– 69
data output, 68– 69
error rate, 68– 69
implementation, 68
nanopore sequencing, 345
platforms, 91, 348
read length, 68– 69
sequence data generation, 69
sequencer, 280
sequencing principle, 67– 68

P

PacBio, 91, 227, 272, 348, 370
PacBio data 

CCS/ ONT, 274
holistic kinetic (HK) model, 376

PacBio HiFi, 279
PacBio platforms, 69, 95, 120, 219
PacBio sequencing library preparation/ 

sequencing, 66
PacBio SMRT sequencers, 326

continuous long reads, 65
nanopore sequencing, 345

Paired- End Mapper (PEMer), 226
Paired- end sequencing, 63
Pair- Hidden Markov Model (PairHMM), 

218
PANDAseq, 274
Paris japonica, 22
Parkinson’s disease, 11
Partition- based graph abstraction 

(PAGA), 170
cellular trajectory topologies, 182
performing methods, 184
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trajectory inference methods, 183
Partitioning Around Medoids (PAM), 

132
“Patching” module, 277
Pathogenic/ Likely Pathogenic variants, 

260
PCR bottleneck coefficient (PBC), 297
PCR, sequencing- by- synthesis process, 

75
PeakSeq, 306, 307
PEAR, 274
Pearson correlation coefficient (PCC), 

296
PEPPER- Margin- DeepVariant pipeline, 

375
Perl, 111
Peroxisome, intracellular structures/ 

spaces, 8
PGM Dx system, 70
PhastCons, 256
Phen- Gen, 246
PhenIX, 246
Phenolyzer, 246
Phenomizer, 246
Phevor, 246
PhyloP, 248, 256
Picard, 97
PierianDx, 371
Pileup format file, generation of, 97
Pilon, 280
piRNA clusters, 49
piRNA precursor, 49
PIWI- interacting RNAs (piRNAs), 45
PIWI proteins, 49
Plastid, 12
Plastid DNA (ptDNA), 12
PlotCorrelation, 300
Point mutations, 27
Poisson distribution, 130– 132, 148
Poisson/ negative binomial 

distributions, 301
Poisson p- value thresholds, 306
POLCA, 280
Poly- A polymerase, 42
Polymorphisms, 27– 28

DNA base sequence, 17, 95
genome- wide sequence, 14

PolyPhen, 246, 248, 256

Portability and Accountability Act 
(HIPAA), 262

Potential of heat diffusion for  
affinity- based transition embedding 
(PHATE), 170

PrecisionFDA Truth Challenge V2, 374
Precision Medicine Knowledge Base 

(PMKB), 256
Principal components analysis (PCA), 

129, 166
Prodigal, 351
Prokaryotic cells, 5, 6

DNA packaging, 25
nucleoid of, 25

Prokaryotic genes, transcription, 37
Prokaryotic ribosomes, 9, 45
Prokaryotic transcription, regulation of, 

38
Prokka, 352
PromethION data, 68
PROPER, 121
Protein coding sequences, 28

genes, 23, 39, 50, 126
gene sequences, 23
mRNA transcripts, 51
regions, 22, 243

Protein- DNA complex, 293
affinity binding, 325

Protein- DNA interaction analysis (ChIP- 
Seq), 43, 77

Protein- made skeletal structure, 10
α- Proteobacteria, 11
Proteomics, 14
PSEN1 gene, 31
PSEN2 gene, 31
Pseudoalignment, 156
Punctate- binding protein factors, 313
PycoQC, 86
Pyrosequencing, 259
Python, 111

Q

QIAGEN Clinical Insight (QCI), 254
interpret, 371
Qiagen’s QCI interpret, 256

Qualimap 2, 97
Quality- aware detection, 276
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Quality control (QC), 326
metrics, 297
tools 
library preparation, 242
post- mapping data, 97

Quality score (Q- score), 83– 85
data quality, metrics of, 84– 85
encoding of, 84
low- quality basecalls, 85
read length distribution, 85
sequencing library, 85

QUAL value, 223
Quantapore, Base4 sequencing, 368
Quantitative Insight Into Microbial 

Ecology (QIIME2), 355

R

Racon, 280
RaGOO, 285
Random forest (RF), 176
Random Forest- based classifier, 376
RAVEN, 353
Ray Meta, 348
RD- based algorithms, 228
Read mapping tools, 328
reads per million (RPM), 210
Real- Time Analysis (RTA) software, 63
Recurrent neural networks (RNNs), 81
Relative strand cross- correlation 

coefficients (RSC), 298
Resequencing data, workflow for 

genotyping/ variation discovery, 
216

Ribonuclease, 47
Ribonucleoprotein (RNP) complexes, 42
Ribosomal RNAs (rRNAs), 9, 120
Ribosomes, 9
Ribozymes 

to protein enzymes, 45
spliceosome, 46

RNA activation (RNAa), 205
RNA- binding proteins, 36
RNA enzymes, 36
RNA expression analysis methods, 205
RNA- induced silencing complex (RISC), 

47, 48
RNA Integrity Number (RIN), 119

RNA interference (RNAi), 45
RNA molecules 

generation/ processing/ turnover, 36
DNA template, strands of, 37
eukaryotic genes, pre- mRNA 

transcription of, 38– 40
localization, 42
mRNA, maturation of, 40– 42
mRNA transcript level regulation, 

43– 44
prokaryotic genes, transcription of, 

37– 38
stability/ decay, 42– 43
transport, 42
as messenger, 35, 44
long non- coding RNAs, 50
miRNA, 47– 49
non- coding RNAs, 50– 51
piRNAs, 49– 50
ribozyme, 45– 46
RNAi/ small non- coding RNAs, 47
siRNA, 49
snRNA/ snoRNA, 46
telomere replication, 46
molecular structure of, 35– 36

RNA polymerase, 37– 39
RNA polymerase II, 295
types of, 38

RNA- seq, 117, 119, 127
algorithm- related publications, single 

cell, 371
analysis tools, 128
capabilities, 120
differential expression, 310, 313, 334
experimental design, 118
factorial design, 118
gene- level analysis, 76
principle of, 117
quantification of reads, 126
randomization, 118– 119
read mapping, 122– 126
replication, 118– 119
sample preparation, 119– 121
sequencing library preparation, 119– 121
sequencing strategy, 121– 122
total count approach, 354
upper quartile approach, 354
variant calling, 221
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RNA- seq data, 129, 178, 284, 315
batch effect removal, 129
data analysis, 98, 132
data distribution, 121
DE analysis, 313
differentially expressed genes, 

identification of, 129– 133
differential splicing analysis, 136– 137
discovery tool, 137– 138
experimental design, 118
gene clustering, 134
identified genes, functional analysis 

of, 134– 136
multiple testing correction, 133– 134
normalization, 127– 128
overdispersion problem, 131
reads, subsequent mapping of, 122
visualization of, 137

RnaSeqSampleSize, 121
RNA- seq sequencing libraries, 120
RNA- seq study, 106
rnaSPAdes, de novo transcriptome 

assemblers, 125
RNA splicing, non- canonical, 138
RNA transcripts, 41, 117
“RNA world” hypothesis, 45
Roche’s NAVIFY Mutation Profiler, 256
R package, 109– 111, 137, 307
rpoB (RNA polymerase beta subunit), 351
rRNA depletion, 120, 125
rRNA genes, 351
RSAT peak- motifs, 314
RSEM, 126
RTG Tools, 225
Rungs, 17
RUVSeq, 129

S

SAM/ BAM alignment section, 93
SAM/ BAM files, 95, 97

file format, 93
FLAG status, 94
for storing NGS read alignment, 94

SAMtools, 97, 185
packages, 96
pileup file format, 97

Sanger sequence assemblers, 271

Sanger sequencing method, 57– 59, 77, 
259, 271

Savant, 223
Scaffolding algorithms, 281
SCALE, 373
Scanorama, 163
Scanpy, 173
SCAN- SNV, 373
scATAC- seq data analysis tools, 373
SCcaller, 373
SciDAP, 371
Scmap- cell, 176
Scmap- cluster mode, 176
scPred, 176
scRNA- seq analysis, goal of, 171
scRNA- seq data analysis, 152, 176

algorithms, 370
DE analysis, 179
normalization approaches, 161
single nucleotide variation (SNV), 185
structure of, 154
workflow, 155

scRNA- seq tools, 181
SeattleSeq, 229
Seed- and- extend methods, 86
Self- Organizing Map (SOM), 132
Sentieon, 243
SeqMonk, 97
Sequence Read Archive (SRA), 104
Sequencing- by- desynthesis process, 368
Sequencing error correction, 274, 276
Sequencing library preparation 

protocols, 344
Seurat, 172, 173
Seurat Integration, 163
Seven Bridges, 371
Seven Bridges GRAF pipeline, 375
SGA, 282
Shannon entropy, in QDMR, 332
Shared Nearest Neighbor (SNN) graph, 

172
Short Oligonucleotide Alignment 

Program (SOAP), 87
Short Tandem Repeats (STR), 240
Signac, 373
Signal imputation, 164
Signal sparsity, challenges of, 186
Signal- to- noise ratio, 368
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Signal transduction, 7
Silico variant filtering, 244
Single- cell ATAC- seq, 372
Single- cell clustering methods, 173
Single Cell Genotyper, 373
SingleCellNet, 176, 177
Single- cell reduced representation 

bisulfite sequencing (scRRBS), 373
Single- cell RNA- seq (scRNA- seq), 145

alignment/ transcript counting, 156– 157
alternative splicing analysis, 186– 187
batch effects correction, 162– 166
batch effects minimization, 149– 150
cell clustering, 171– 173
cell identity annotation, 173– 177
cell number, 147– 149
compositional analysis, 177– 178
data clean- up post alignment, 157– 160
differential expression (DE) analysis, 

178– 181
dimension reduction, 166– 168
2- D space, visualization of, 169
experimental design, 146– 147
false- negative detection, 145
feature selection, 165– 166
general lab process, 151
gene regulatory network (GRN), 

187– 189
high- throughput approach, 146
initial data preprocessing, 154– 156
lab process, 151
library construction/ sequencing, 

153– 154
low- throughput methods, 146
normalization, 160– 162
overview of, 145– 146
preparation of, 150– 152
preprocessing of, 154
quality control, 154– 156
sample replication, 149– 150
sequencing depth, 147– 149
signal imputation, 164– 165
single nuclei preparation, 152
SNV/ CNV detection/ allele- specific 

expression analysis, 185– 186
trajectory inference, 181– 184
visualization, 168– 170
workflow, 155

Single- cell whole genome bisulfite 
sequencing (scWGBS), 373

Single- molecule real- time (SMRT) 
sequencing, 59, 64

cDNA synthesis, 156
cost, 65
data output, 65
DNA samples, 64
error rate, 65
implementation, 64– 65
PacBio sequencing, 64
polyadenylation, 207
read length, 65
sequence data generation, 65– 66
sequencing principle, 64
SMRTbell, 65

Single nucleotide polymorphism (SNP), 27
Single nucleotide variation (SNV), 27

CaSpER, 186
scRNA- seq data, 185

Single- nucleus methylome sequencing 
ver2 (snmC- seq2), 373

SingleR, 177
Singular Genomics, 368
SiPhy, 246, 256
Sliding linear model (SLIM) method, 334
Small interfering RNA (siRNAs), 45

non- protein- coding RNAs, 45
suppressing target mRNA activity, 48

Small nuclear RNAs (snRNAs), 40
Small nucleolar RNAs (snoRNAs), 45
Small RNA sequencing, 205

functional analysis, 210– 211
identification of, 210
mapping, 208– 209
normalization, 209– 210
overview of, 205– 206
post- transcriptional editing, 209
preprocessing, 207– 208
putative identification, 209
sequencing analysis, 206– 207

Smith– Waterman algorithm, 91
SnapATAC, 373
snoRNAs, 46
SNP profile, 159
SNVMix, 221
SOAPdenovo, 272, 347
SOAPdenovo2, 282
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SOAPdenovo- trans, de novo 
transcriptome assemblers, 125

Somatic mutations 
deep learning, 220
vs. germline variations, 220

SomaticSniper, 219
Somatic variants, 259
SoupX, 159
SourceForge, 262
SPAdes, 282, 369
Spanning- tree progression analysis 

of density- normalized events 
(SPADE), 170

Spectral embedding, 167
Spike- in controls, artificial, 128
SpliceAI, 245
16S rRNA amplicon sequencing, 343
16S rRNA gene, 342
16S rRNA PCR primers, 343
ssizeRNA, 121
SSPACE- LongRead, 281
SSrGE, 373
Standardized standard deviation (SSD), 

of genomic coverage, 309
Standard Query Language (SQL), 112
Standard univariate analysis methods, 178
Stochastic effects, 373
Storage Area Network (SAN), 104
Strelka2, 185, 219, 220
StringApp, 136
StringTie/ StringTie2, de novo 

transcriptome assemblers, 125
Structural variant (SV) calling, 27

calling, steps of, 226
CNV detection algorithms, 227– 228
detection algorithms, 226, 227
integrated analysis, 228
long reads, 227
short reads, 225– 227
SR/ AS approaches, 227

Support vector machine (SVM), 111, 176
Supra- macromolecular machines, 8
SVDetect, 227

T

TABLE_  ANNOVAR script, 229
Tabula Muris Atlas, 174

TargetScan, 210
Taxon ID, 350
Taxonomic profilers, 352
Taxonomy binning, 349
Telomere, 24
Telomere- to- Telomere (T2T) Consortium, 

285
Tensorflow- based framework, 375
Terra, 372
TET- assisted bisulfite sequencing  

(TAB- seq), 325
Tet methylcytosine dioxygenase 2 

(TET2), 324
TGS- GapCloser, 282

de novo genome assembly, 282
workflow, gap closing, 283

ThermoFisher’s Ion Torrent 
semiconductor sequencing, 59

Thylakoids, 12
Tissue- of- origin (TOO), 376
Titin gene, 22
TNscope pipelines, 375
Tomtom, 315
TopHat/ TopHat2, exon- first methods,  

123
Total- sum scaling (TSS), 354
Trans- ABySS, de novo transcriptome 

assemblers, 125
Transcriptional regulation, 50
Transcription start site (TSS), 37
Transcriptome, 23, 152
Transcriptomics 

gene/ transcript expression, 126
profile, of biological sample, 76
by RNA- Seq, see RNA- Seq
single- cell RNA- Seq, see Single- cell 

RNA- Seq
Transfer RNAs (tRNAs), 11
Transitions and transversions (Ti/ Tv) 

ratio, 224
Transposable elements, 24
Transposase Enzyme- Linked Long- read 

Sequencing (TELL- seq), 273, 369
Trim Galore, 326
Trinity CTAT, 185– 186
tRNAscan- SE, 351
t- SNE, non- linear approach, 170
t- test, 332
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Tumor mutation burden (TMB), 241
Tumor suppressor genes, 33

U

UCSC Genome Browser’s Variant 
Annotation Integrator, 229

Uniform Manifold Approximation and 
Projection (UMAP), 167, 170

UniProt, 352
Unique molecular identifiers (UMIs), 

153, 159, 207, 242
Universal Sequencing Technology, 273
Unix/ Linux, 109
3’ Untranslated region (UTR), 36
“Unzip” process, 279
Uracil- DNA glycosylase, 240
User- configured computing, 107
User- friendly interface, 109
U.S. NIH Roadmap Epigenomics Project, 

322

V

VAAST Variant Prioritizer (VVP), 247
VaRank, 248
VarDict, 219
VarElect, 246
VarFish, 247
VariantAnnotation tool, 245
Variant call format (VCF), 218, 221– 225

BCF files, 223
clinical sequencing general data 

analytic workflow, 244
Large Scale Genomics Work Stream, 

222
mandatory fields, 223
paired- reads (PR), 225
read depth (RD), 225
visualization, 223

Variant Effect Predictor (VEP), 229
Variant filtering process, 247
Variant Interpretation for Cancer (VIC), 

256
VariantMetaCaller, 224
Variant Prioritization Ordering Tool 

(VPOT), 247– 248
Variant Ranker, 247, 248
Variants, standardize classification, 248

Variational Autoencoder (VAE), 168
VarScan2, 219
VeloCyto, 184
Velvet, 271, 285, 347
VEP tool, 245
Viral invasion, 49

W

Wald test, 132
Washington University EpiGenome 

Browser, 331
Water- soluble substances, 7
WELLS file, 72
Whole genome/ exome sequencing 

called variants, annotation of, 228– 229
data preprocessing, 216– 217
genotyping/ variation discovery, 215
germline/ indel calling, 217– 219
mapping, 216– 217
realignment, 216– 217
recalibration, 216– 217
short indel calling, 217– 225
single nucleotide variant (SNV), 

217– 225
somatic mutation detection, 219– 220
structural variant, see structural 

variant (SV) calling
variant call format (VCF), 221– 225
variant calling, 221

Whole metagenome sequencing 
data normalization, 354– 355
experimental design/ sample 

preparation, 342
gene function annotation, 352– 353
gene function profiling, 353– 354
genomic elements calling, from 

metagenomic sequences, 351
integrated metagenomics data 

analysis, 355
metabolic pathway reconstruction, 

353– 354
metagenome assembly, 347– 348
metagenome sample collection, 343
metagenome sample processing, 

343– 344
metagenomics data repositories, 

355– 356
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microbial community analysis, 
341– 342

OTUs, identify species, 355
sequence binning, 348– 351
sequencing approaches, 344– 345
sequencing data quality control, 347
shotgun metagenome sequencing data 

analysis, 345– 346
taxonomic profiling, 351– 352

WIG track files, 309
Wilcoxon rank sum test, 173
Window Tag Density (WTD), 307

Winnowmap/ Winnowmap2, 91
Workflow Description Language (WDL), 

372

Z

Zebrafish Information Network (ZFIN), 
247

Zero- inflated factor analysis (ZIFA), 167
Zero- inflated negative binomial (ZINB) 

model, 180, 184
zUMIs, 148, 154, 156

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	Preface to the Second Edition
	Author
	Part I Introduction to Cellular and Molecular Biology
	1 The Cellular System and the Code of Life
	1.1 The Cellular Challenge
	1.2 How Cells Meet the Challenge
	1.3 Molecules in Cells
	1.4 Intracellular Structures Or Spaces
	1.4.1 Nucleus
	1.4.2 Cell Membrane
	1.4.3 Cytoplasm
	1.4.4 Endosome, Lysosome, and Peroxisome
	1.4.5 Ribosome
	1.4.6 Endoplasmic Reticulum
	1.4.7 Golgi Apparatus
	1.4.8 Cytoskeleton
	1.4.9 Mitochondrion
	1.4.10 Chloroplast

	1.5 The Cell as a System
	1.5.1 The Cellular System
	1.5.2 Systems Biology of the Cell
	1.5.3 How to Study the Cellular System

	References

	2 DNA Sequence: The Genome Base
	2.1 The DNA Double Helix and Base Sequence
	2.2 How DNA Molecules Replicate and Maintain Fidelity
	2.3 How the Genetic Information Stored in DNA Is Transferred to Protein
	2.4 The Genomic Landscape
	2.4.1 The Minimal Genome
	2.4.2 Genome Sizes
	2.4.3 Protein-Coding Regions of the Genome
	2.4.4 Non-Coding Genomic Elements

	2.5 DNA Packaging, Sequence Access, and DNA-Protein Interactions
	2.5.1 DNA Packaging
	2.5.2 Sequence Access
	2.5.3 DNA-Protein Interactions

	2.6 DNA Sequence Mutation and Polymorphism
	2.7 Genome Evolution
	2.8 Epigenome and DNA Methylation
	2.9 Genome Sequencing and Disease Risk
	2.9.1 Mendelian (Single-Gene) Diseases
	2.9.2 Complex Diseases That Involve Multiple Genes
	2.9.3 Diseases Caused By Genome Instability
	2.9.4 Epigenomic/Epigenetic Diseases

	References

	3 RNA: The Transcribed Sequence
	3.1 RNA as the Messenger
	3.2 The Molecular Structure of RNA
	3.3 Generation, Processing, and Turnover of RNA as a Messenger
	3.3.1 DNA Template
	3.3.2 Transcription of Prokaryotic Genes
	3.3.3 Pre-MRNA Transcription of Eukaryotic Genes
	3.3.4 Maturation of MRNA
	3.3.5 Transport and Localization
	3.3.6 Stability and Decay
	3.3.7 Major Steps of MRNA Transcript Level Regulation

	3.4 RNA Is More Than a Messenger
	3.4.1 Ribozyme
	3.4.2 SnRNA and SnoRNA
	3.4.3 RNA for Telomere Replication
	3.4.4 RNAi and Small Non-Coding RNAs
	3.4.4.1 MiRNA
	3.4.4.2 SiRNA
	3.4.4.3 PiRNA

	3.4.5 Long Non-Coding RNAs
	3.4.6 Other Non-Coding RNAs

	3.5 The Cellular Transcriptional Landscape
	References


	Part II Introduction to Next-Generation Sequencing (NGS) and NGS Data Analysis
	4 Next-Generation Sequencing (NGS) Technologies: Ins and Outs
	4.1 How to Sequence DNA: From First Generation to the Next
	4.2 Ins and Outs of Different NGS Platforms
	4.2.1 Illumina Reversible Terminator Short-Read Sequencing
	4.2.1.1 Sequencing Principle
	4.2.1.2 Implementation
	4.2.1.3 Error Rate, Read Length, Data Output, and Cost
	4.2.1.4 Sequence Data Generation

	4.2.2 Pacific Biosciences Single-Molecule Real-Time (SMRT) Long-Read Sequencing
	4.2.2.1 Sequencing Principle
	4.2.2.2 Implementation
	4.2.2.3 Error Rate, Read Length, Data Output, and Cost
	4.2.2.4 Sequence Data Generation

	4.2.3 Oxford Nanopore Technologies (ONT) Long-Read Sequencing
	4.2.3.1 Sequencing Principle
	4.2.3.2 Implementation
	4.2.3.3 Error Rate, Read Length, Data Output, and Cost
	4.2.3.4 Sequence Data Generation

	4.2.4 Ion Torrent Semiconductor Sequencing
	4.2.4.1 Sequencing Principle
	4.2.4.2 Implementation
	4.2.4.3 Error Rate, Read Length, Date Output, and Cost
	4.2.4.4 Sequence Data Generation


	4.3 A Typical NGS Workflow
	4.4 Biases and Other Adverse Factors That May Affect NGS Data Accuracy
	4.4.1 Biases in Library Construction
	4.4.2 Biases and Other Factors in Sequencing

	4.5 Major Applications of NGS
	4.5.1 Transcriptomic Profiling (Bulk and Single-Cell RNA-Seq)
	4.5.2 Genetic Mutation and Variation Identification
	4.5.3 De Novo Genome Assembly
	4.5.4 Protein-DNA Interaction Analysis (ChIP-Seq)
	4.5.5 Epigenomics and DNA Methylation Study (Methyl-Seq)
	4.5.6 Metagenomics

	References

	5 Early-Stage Next-Generation Sequencing (NGS) Data Analysis: Common Steps
	5.1 Basecalling, FASTQ File Format, and Base Quality Score
	5.2 NGS Data Quality Control and Preprocessing
	5.3 Read Mapping
	5.3.1 Mapping Approaches and Algorithms
	5.3.2 Selection of Mapping Algorithms and Reference Genome Sequences
	5.3.3 SAM/BAM as the Standard Mapping File Format
	5.3.4 Mapping File Examination and Operation

	5.4 Tertiary Analysis
	References

	6 Computing Needs for Next-Generation Sequencing (NGS) Data Management and Analysis
	6.1 NGS Data Storage, Transfer, and Sharing
	6.2 Computing Power Required for NGS Data Analysis
	6.3 Cloud Computing
	6.4 Software Needs for NGS Data Analysis
	6.4.1 Parallel Computing

	6.5 Bioinformatics Skills Required for NGS Data Analysis
	References


	Part III Application-Specific NGS Data Analysis
	7 Transcriptomics By Bulk RNA-Seq
	7.1 Principle of RNA-Seq
	7.2 Experimental Design
	7.2.1 Factorial Design
	7.2.2 Replication and Randomization
	7.2.3 Sample Preparation and Sequencing Library Preparation
	7.2.4 Sequencing Strategy

	7.3 RNA-Seq Data Analysis
	7.3.1 Read Mapping
	7.3.2 Quantification of Reads
	7.3.3 Normalization
	7.3.4 Batch Effect Removal
	7.3.5 Identification of Differentially Expressed Genes
	7.3.6 Multiple Testing Correction
	7.3.7 Gene Clustering
	7.3.8 Functional Analysis of Identified Genes
	7.3.9 Differential Splicing Analysis

	7.4 Visualization of RNA-Seq Data
	7.5 RNA-Seq as a Discovery Tool
	References

	8 Transcriptomics By Single-Cell RNA-Seq
	8.1 Experimental Design
	8.1.1 Single-Cell RNA-Seq General Approaches
	8.1.2 Cell Number and Sequencing Depth
	8.1.3 Batch Effects Minimization and Sample Replication

	8.2 Single-Cell Preparation, Library Construction, and Sequencing
	8.2.1 Single-Cell Preparation
	8.2.2 Single Nuclei Preparation
	8.2.3 Library Construction and Sequencing

	8.3 Preprocessing of ScRNA-Seq Data
	8.3.1 Initial Data Preprocessing and Quality Control
	8.3.2 Alignment and Transcript Counting
	8.3.3 Data Cleanup Post Alignment
	8.3.4 Normalization
	8.3.5 Batch Effects Correction
	8.3.6 Signal Imputation

	8.4 Feature Selection, Dimension Reduction, and Visualization
	8.4.1 Feature Selection
	8.4.2 Dimension Reduction
	8.4.3 Visualization

	8.5 Cell Clustering, Cell Identity Annotation, and Compositional Analysis
	8.5.1 Cell Clustering
	8.5.2 Cell Identity Annotation
	8.5.3 Compositional Analysis

	8.6 Differential Expression Analysis
	8.7 Trajectory Inference
	8.8 Advanced Analyses
	8.8.1 SNV/CNV Detection and Allele-Specific Expression Analysis
	8.8.2 Alternative Splicing Analysis
	8.8.3 Gene Regulatory Network Inference

	References

	9 Small RNA Sequencing
	9.1 Small RNA NGS Data Generation and Upstream Processing
	9.1.1 Data Generation
	9.1.2 Preprocessing
	9.1.3 Mapping
	9.1.4 Identification of Known and Putative Small RNA Species
	9.1.5 Normalization

	9.2 Identification of Differentially Expressed Small RNAs
	9.3 Functional Analysis of Identified Known Small RNAs
	References

	10 Genotyping and Variation Discovery By Whole Genome/Exome Sequencing
	10.1 Data Preprocessing, Mapping, Realignment, and Recalibration
	10.2 Single Nucleotide Variant (SNV) and Short Indel Calling
	10.2.1 Germline SNV and Indel Calling
	10.2.2 Somatic Mutation Detection
	10.2.3 Variant Calling From RNA Sequencing Data
	10.2.4 Variant Call Format (VCF)
	10.2.5 Evaluating VCF Results

	10.3 Structural Variant (SV) Calling
	10.3.1 Short-Read-Based SV Calling
	10.3.2 Long-Read-Based SV Calling
	10.3.3 CNV Detection
	10.3.4 Integrated SV Analysis

	10.4 Annotation of Called Variants
	References

	11 Clinical Sequencing and Detection of Actionable Variants
	11.1 Clinical Sequencing Data Generation
	11.1.1 Patient Sample Collection
	11.1.2 Library Preparation and Sequencing Approaches

	11.2 Read Mapping and Variant Calling
	11.3 Variant Filtering
	11.3.1 Frequency of Occurrence
	11.3.2 Functional Consequence
	11.3.3 Existing Evidence of Relationship to Human Disease
	11.3.4 Clinical Phenotype Match
	11.3.5 Mode of Inheritance

	11.4 Variant Ranking and Prioritization
	11.5 Classification of Variants Based On Pathogenicity
	11.5.1 Classification of Germline Variants
	11.5.2 Classification of Somatic Variants

	11.6 Clinical Review and Reporting
	11.6.1 Use of Artificial Intelligence in Variant Reporting
	11.6.2 Expert Review
	11.6.3 Generation of Testing Report
	11.6.4 Variant Validation
	11.6.5 Incorporation Into a Patient’s Electronic Health Record
	11.6.6 Reporting of Secondary Findings
	11.6.7 Patient Counseling and Periodic Report Updates

	11.7 Bioinformatics Pipeline Validation
	References

	12 De Novo Genome Assembly With Long And/or Short Reads
	12.1 Genomic Factors and Sequencing Strategies for De Novo Assembly
	12.1.1 Genomic Factors That Affect De Novo Assembly
	12.1.2 Sequencing Strategies for De Novo Assembly

	12.2 Assembly of Contigs
	12.2.1 Sequence Data Preprocessing, Error Correction, and Assessment of Genome Characteristics
	12.2.2 Contig Assembly Algorithms
	12.2.3 Polishing

	12.3 Scaffolding and Gap Closure
	12.4 Assembly Quality Evaluation
	12.5 Limitations and Future Development
	References

	13 Mapping Protein-DNA Interactions With ChIP-Seq
	13.1 Principle of ChIP-Seq
	13.2 Experimental Design
	13.2.1 Experimental Control
	13.2.2 Library Preparation
	13.2.3 Sequencing Length and Depth
	13.2.4 Replication

	13.3 Read Mapping, Normalization, and Peak Calling
	13.3.1 Data Quality Control and Read Mapping
	13.3.2 Peak Calling
	13.3.3 Post-Peak Calling Quality Control
	13.3.4 Peak Visualization

	13.4 Differential Binding Analysis
	13.5 Functional Analysis
	13.6 Motif Analysis
	13.7 Integrated ChIP-Seq Data Analysis
	References

	14 Epigenomics By DNA Methylation Sequencing
	14.1 DNA Methylation Sequencing Strategies
	14.1.1 Bisulfite Conversion Methyl-Seq
	14.1.1.1 Whole-Genome Bisulfite Sequencing (WGBS)
	14.1.1.2 Reduced Representation Bisulfite Sequencing (RRBS)

	14.1.2 Enzymatic Conversion Methyl-Seq
	14.1.3 Enrichment-Based Methyl-Seq
	14.1.4 Differentiation of Cytosine Methylation From Demethylation Products

	14.2 DNA Methylation Sequencing Data Analysis
	14.2.1 Quality Control and Preprocessing
	14.2.2 Read Mapping
	14.2.3 Quantification of DNA Methylation/Demethylation Products
	14.2.4 Visualization

	14.3 Detection of Differentially Methylated Cytosines and Regions
	14.4 Data Verification, Validation, and Interpretation
	References

	15 Whole Metagenome Sequencing for Microbial Community Analysis
	15.1 Experimental Design and Sample Preparation
	15.1.1 Metagenome Sample Collection
	15.1.2 Metagenome Sample Processing

	15.2 Sequencing Approaches
	15.3 Overview of Shotgun Metagenome Sequencing Data Analysis
	15.4 Sequencing Data Quality Control and Preprocessing
	15.5 Taxonomic Characterization of a Microbial Community
	15.5.1 Metagenome Assembly
	15.5.2 Sequence Binning
	15.5.3 Calling of Genes and Other Genomic Elements From Metagenomic Sequences
	15.5.4 Taxonomic Profiling

	15.6 Functional Characterization of a Microbial Community
	15.6.1 Gene Function Annotation
	15.6.2 Gene Function Profiling and Metabolic Pathway Reconstruction

	15.7 Comparative Metagenomic Analysis
	15.7.1 Metagenome Sequencing Data Normalization
	15.7.2 Identification of Differentially Abundant Species Or OTUs

	15.8 Integrated Metagenomics Data Analysis Pipelines
	15.9 Metagenomics Data Repositories
	References


	Part IV The Changing Landscape of NGS Technologies and Data Analysis
	16 What’s Next for Next-Generation Sequencing (NGS)?
	16.1 The Changing Landscape of Next-Generation Sequencing (NGS)
	16.2 Newer Sequencing Technologies
	16.3 Continued Evolution and Growth of Bioinformatics Tools for NGS Data Analysis
	16.4 Efficient Management of NGS Analytic Workflows
	16.5 Deepening Applications of NGS to Single-Cell and Spatial Sequencing
	16.6 Increasing Use of Machine Learning in NGS Data Analytics
	References


	Appendix I Common File Types Used in NGS Data Analysis
	Appendix II Glossary
	Index



