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Preface

Approach

This book presents a basic introduction to structural equation modeling 
(SEM). Readers will find that we have kept to our tradition of keeping 
examples rudimentary and easy to follow. The reader is provided with 
a review of correlation and covariance, followed by multiple regression, 
path, and factor analyses in order to better understand the building blocks 
of SEM. The book describes a basic structural equation model followed by 
the presentation of several different types of structural equation models. 
Our approach in the text is both conceptual and application oriented. 

Each chapter covers basic concepts, principles, and practice and then 
utilizes SEM software to provide meaningful examples. Each chapter also 
features an outline, key concepts, a summary, numerous examples from 
a variety of disciplines, tables, and figures, including path diagrams, to 
assist with conceptual understanding. Chapters with examples follow the 
conceptual sequence of SEM steps known as model specification, identifi-
cation, estimation, testing, and modification. 

The book now uses LISREL 8.8 student version to make the software and 
examples readily available to readers. Please be aware that the student 
version, although free, does not contain all of the functional features as a 
full licensed version. Given the advances in SEM software over the past 
decade, you should expect updates and patches of this software package 
and therefore become familiar with any new features as well as explore the 
excellent library of examples and help materials. The LISREL 8.8 student 
version is an easy-to-use Windows PC based program with pull-down 
menus, dialog boxes, and drawing tools. To access the program, and/or 
if you’re a Mac user and are interested in learning about Mac availability, 
please check with Scientific Software (http://www.ssicentral.com). There 
is also a hotlink to the Scientific Software site from the book page for A 
Beginner’s Guide to Structural Equation Modeling, 3rd edition on the Textbook 
Resources tab at www.psypress.com. 

The SEM model examples in the book do not require complicated pro-
gramming skills nor does the reader need an advanced understanding of 
statistics and matrix algebra to understand the model applications. We have 
provided a chapter on the matrix approach to SEM as well as an appendix 
on matrix operations for the interested reader. We encourage the under-
standing of the matrices used in SEM models, especially for some of the 
more advanced SEM models you will encounter in the research literature. 
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xviii	 Preface

Goals and Content Coverage

Our main goal in this third edition is for students and researchers to be 
able to conduct their own SEM model analyses, as well as be able to under-
stand and critique published SEM research. These goals are supported by 
the conceptual and applied examples contained in the book and several 
journal article references for each advanced SEM model type. We have 
also included a SEM checklist to guide your model analysis according to 
the basic steps a researcher takes. 

As for content coverage, the book begins with an introduction to SEM 
(what it is, some history, why conduct it, and what software is available), 
followed by chapters on data entry and editing issues, and correlation. 
These early chapters are critical to understanding how missing data, non-
normality, scale of measurement, non-linearity, outliers, and restriction of 
range in scores affects SEM analysis. Chapter 4 lays out the basic steps of 
model specification, identification, estimation, testing, and modification, 
followed by Chapter 5, which covers issues related to model fit indices, 
power and sample size. Chapters 6 through 10 follow the basic SEM steps 
of modeling, with actual examples from different disciplines, using regres-
sion, path, confirmatory factor and structural equation models. Logically 
the next chapter presents information about reporting SEM research and 
includes a SEM checklist to guide decision-making. Chapter 12 presents 
different approaches to model validation, an important final step after 
obtaining an acceptable theoretical model. Chapters 13 through 16 provide 
SEM examples that introduce many of the different types of SEM model 
applications. The final chapter describes the matrix approach to structural 
equation modeling by using examples from the previous chapters.

Theoretical models are present in every discipline, and therefore can be 
formulated and tested. This third edition expands SEM models and appli-
cations to provide the students and researchers in medicine, political sci-
ence, sociology, education, psychology, business, and the biological sciences 
the basic concepts, principles, and practice necessary to test their theoreti-
cal models. We hope you become more familiar with structural equation 
modeling after reading the book, and use SEM in your own research.

New to the Third Edition

The first edition of this book was one of the first books published on SEM, 
while the second edition greatly expanded knowledge of advanced SEM 
models. Since that time, we have had considerable experience utilizing the 
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Preface	 xix

book in class with our students. As a result of those experiences, the third 
edition represents a more useable book for teaching SEM. As such it is an 
ideal text for introductory graduate level courses in structural equation 
modeling or factor analysis taught in departments of psychology, educa-
tion, business, and other social and healthcare sciences. An understand-
ing of correlation is assumed.

The third edition offers several new surprises, namely:

	 1.	Our instruction and examples are now based on freely available 
software: LISREL 8.8 student version.

	 2.	More examples presented from more disciplines, including input, 
output, and screenshots.

	 3.	Every chapter has been updated and enhanced with additional 
material.

	 4.	A website with raw data sets for the book’s examples and exer-
cises so they can be used with any SEM program, all of the book’s 
exercises, hotlinks to related websites, and answers to all of the 
exercises for instructors only. To access the website visit the book 
page or the Textbook Resource page at www.psypress.com.

	 5.	Expanded coverage of advanced models with more on multiple-
group, multi-level, and mixture modeling (Chs. 13 and 15), second-
order and dynamic factor models (Ch. 14), and Monte Carlo 
methods (Ch. 16).

	 6.	 Increased coverage of sample size and power (Ch. 5), including 
software programs, and reporting research (Ch. 11).

	 7.	New journal article references help readers better understand 
published research (Chs. 13–17).

	 8.	Troubleshooting tips on how to address the most frequently 
encountered problems are found in Chapters 3 and 11.

	 9.	Chapters 13 to 16 now include additional SEM model examples.
	 10.	25% new exercises with answers to half in the back of the book 

for student review (and answers to all for instructors only on the 
book and/or Textbook Resource page at www.psypress.com).

	 11.	Added Matrix examples for several models in Chapter 17.
	 12.	Updated references in all chapters on all key topics.

Overall, we believe this third edition is a more complete book that can 
be used to teach a full course in SEM. The past several years have seen an 
explosion in SEM coursework, books, websites, and training courses. We 
are proud to have been considered a starting point for many beginner’s 
to SEM. We hope you find that this third edition expands on many of the 
programming tools, trends and topics in SEM today.
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1
Introduction

Key Concepts

Latent and observed variables
Independent and dependent variables
Types of models

Regression
Path
Confirmatory factor
Structural equation

History of structural equation modeling
Structural equation modeling software programs

Structural equation modeling can be easily understood if the researcher 
has a grounding in basic statistics, correlation, and regression analysis. 
The first three chapters provide a brief introduction to structural equation 
modeling (SEM), basic data entry, and editing issues in statistics, and con-
cepts related to the use of correlation coefficients in structural equation 
modeling. Chapter 4 covers the essential concepts of SEM: model speci-
fication, identification, estimation, testing, and modification. This basic 
understanding provides the framework for understanding the material 
presented in chapters 5 through 8 on model-fit indices, regression analy-
sis, path analysis, and confirmatory factor analysis models (measurement 
models), which form the basis for understanding the structural equation 
models (latent variable models) presented in chapters 9 and 10. Chapter 11 
provides guidance on reporting structural equation modeling research. 
Chapter 12 addresses techniques used to establish model validity and 
generalization of findings. Chapters 13 to 16 present many of the advanced 
SEM models currently appearing in journal articles: multiple group, mul-
tiple indicators–multiple causes, mixture, multilevel, structured means, 
multitrait–multimethod, second-order factor, dynamic factor, interaction 
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models, latent growth curve models, and Monte Carlo studies. Chapter 17 
presents matrix notation for one of our SEM applications, covers the differ-
ent matrices used in structural equation modeling, and presents multiple 
regression and path analysis solutions using matrix algebra. We include 
an introduction to matrix operations in the Appendix for readers who 
want a more mathematical understanding of matrix operations. To start 
our journey of understanding, we first ask, What is structural equation 
modeling? Then, we give a brief history of SEM, discuss the importance of 
SEM, and note the availability of SEM software programs.

1.1 � What Is Structural Equation Modeling?

Structural equation modeling (SEM) uses various types of models to 
depict relationships among observed variables, with the same basic goal 
of providing a quantitative test of a theoretical model hypothesized by 
the researcher. More specifically, various theoretical models can be tested 
in SEM that hypothesize how sets of variables define constructs and 
how these constructs are related to each other. For example, an educa-
tional researcher might hypothesize that a student’s home environment 
influences her later achievement in school. A marketing researcher may 
hypothesize that consumer trust in a corporation leads to increased prod-
uct sales for that corporation. A health care professional might believe 
that a good diet and regular exercise reduce the risk of a heart attack.

In each example, the researcher believes, based on theory and empirical 
research, sets of variables define the constructs that are hypothesized to be 
related in a certain way. The goal of SEM analysis is to determine the extent to 
which the theoretical model is supported by sample data. If the sample data 
support the theoretical model, then more complex theoretical models can be 
hypothesized. If the sample data do not support the theoretical model, then 
either the original model can be modified and tested, or other theoretical 
models need to be developed and tested. Consequently, SEM tests theoreti-
cal models using the scientific method of hypothesis testing to advance our 
understanding of the complex relationships among constructs.

SEM can test various types of theoretical models. Basic models include 
regression (chapter 6), path (chapter 7), and confirmatory factor (chap-
ter 8) models. Our reason for covering these basic models is that they 
provide a basis for understanding structural equation models (chapters 
9 and 10). To better understand these basic models, we need to define a 
few terms. First, there are two major types of variables: latent variables 
and observed variables. Latent variables (constructs or factors) are vari-
ables that are not directly observable or measured. Latent variables are 
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indirectly observed or measured, and hence are inferred from a set of 
observed variables that we actually measure using tests, surveys, and 
so on. For example, intelligence is a latent variable that represents a psy-
chological construct. The confidence of consumers in American business 
is another latent variable, one representing an economic construct. The 
physical condition of adults is a third latent variable, one representing a 
health-related construct.

The observed, measured, or indicator variables are a set of variables that 
we use to define or infer the latent variable or construct. For example, the 
Wechsler Intelligence Scale for Children—Revised (WISC-R) is an instru-
ment that produces a measured variable (scores), which one uses to infer 
the construct of a child’s intelligence. Additional indicator variables, that 
is, intelligence tests, could be used to indicate or define the construct of 
intelligence (latent variable). The Dow-Jones index is a standard measure 
of the American corporate economy construct. Other measured variables 
might include gross national product, retail sales, or export sales. Blood 
pressure is one of many health-related variables that could indicate a 
latent variable defined as “fitness.” Each of these observed or indicator 
variables represent one definition of the latent variable. Researchers use 
sets of indicator variables to define a latent variable; thus, other measure-
ment instruments are used to obtain indicator variables, for example, the 
Stanford–Binet Intelligence Scale, the NASDAQ index, and an individual’s 
cholesterol level, respectively.

Variables, whether they are observed or latent, can also be defined 
as either independent variables or dependent variables. An independent 
variable is a variable that is not influenced by any other variable in 
the model. A dependent variable is a variable that is influenced by 
another variable in the model. Let us return to the previous examples 
and specify the independent and dependent variables. The educational 
researcher hypothesizes that a student’s home environment (indepen-
dent latent variable) influences school achievement (dependent latent 
variable). The marketing researcher believes that consumer trust in a 
corporation (independent latent variable) leads to increased product 
sales (dependent latent variable). The health care professional wants to 
determine whether a good diet and regular exercise (two independent 
latent variables) influence the frequency of heart attacks (dependent 
latent variable).

The basic SEM models in chapters 6 through 8 illustrate the use of 
observed variables and latent variables when defined as independent 
or dependent. A regression model consists solely of observed variables 
where a single dependent observed variable is predicted or explained by 
one or more independent observed variables; for example, a parent’s edu-
cation level (independent observed variable) is used to predict his or her 
child’s achievement score (dependent observed variable). A path model is 
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also specified entirely with observed variables, but the flexibility allows 
for multiple independent observed variables and multiple dependent 
observed variables—for example, export sales, gross national product, 
and NASDAQ index influence consumer trust and consumer spending 
(dependent observed variables). Path models, therefore, test more com-
plex models than regression models. Confirmatory factor models con-
sist of observed variables that are hypothesized to measure one or more 
latent variables (independent or dependent); for example, diet, exercise, 
and physiology are observed measures of the independent latent variable 
“fitness.” An understanding of these basic models will help in under-
standing structural equation modeling, which combines path and factor 
analytic models. Structural equation models consist of observed variables 
and latent variables, whether independent or dependent; for example, an 
independent latent variable (home environment) influences a dependent 
latent variable (achievement), where both types of latent variables are 
measured, defined, or inferred by multiple observed or measured indica-
tor variables.

1.2 � History of Structural Equation Modeling

To discuss the history of structural equation modeling, we explain the fol-
lowing four types of related models and their chronological order of devel-
opment: regression, path, confirmatory factor, and structural equation 
models.

The first model involves linear regression models that use a correlation 
coefficient and the least squares criterion to compute regression weights. 
Regression models were made possible because Karl Pearson created a 
formula for the correlation coefficient in 1896 that provides an index for 
the relationship between two variables (Pearson, 1938). The regression 
model permits the prediction of dependent observed variable scores 
(Y scores), given a linear weighting of a set of independent observed 
scores (X scores) that minimizes the sum of squared residual error val-
ues. The mathematical basis for the linear regression model is found in 
basic algebra. Regression analysis provides a test of a theoretical model 
that may be useful for prediction (e.g., admission to graduate school or 
budget projections). In an example study, regression analysis was used 
to predict student exam scores in statistics (dependent variable) from a 
series of collaborative learning group assignments (independent vari-
ables; Delucchi, 2006). The results provided some support for collabora-
tive learning groups improving statistics exam performance, although 
not for all tasks.
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Some years later, Charles Spearman (1904, 1927) used the correlation 
coefficient to determine which items correlated or went together to create 
the factor model. His basic idea was that if a set of items correlated or 
went together, individual responses to the set of items could be summed 
to yield a score that would measure, define, or infer a construct. Spearman 
was the first to use the term factor analysis in defining a two-factor con-
struct for a theory of intelligence. D.N. Lawley and L.L. Thurstone in 1940 
further developed applications of factor models, and proposed instru-
ments (sets of items) that yielded observed scores from which constructs 
could be inferred. Most of the aptitude, achievement, and diagnostic 
tests, surveys, and inventories in use today were created using factor ana-
lytic techniques. The term confirmatory factor analysis (CFA) is used today 
based in part on earlier work by Howe (1955), Anderson and Rubin (1956), 
and Lawley (1958). The CFA method was more fully developed by Karl 
Jöreskog in the 1960s to test whether a set of items defined a construct. 
Jöreskog completed his dissertation in 1963, published the first article on 
CFA in 1969, and subsequently helped develop the first CFA software pro-
gram. Factor analysis has been used for over 100 years to create measure-
ment instruments in many academic disciplines, while today CFA is used 
to test the existence of these theoretical constructs. In an example study, 
CFA was used to confirm the “Big Five” model of personality by Goldberg 
(1990). The five-factor model of extraversion, agreeableness, conscientious-
ness, neuroticism, and intellect was confirmed through the use of multiple 
indicator variables for each of the five hypothesized factors.

Sewell Wright (1918, 1921, 1934), a biologist, developed the third type of 
model, a path model. Path models use correlation coefficients and regres-
sion analysis to model more complex relationships among observed 
variables. The first applications of path analysis dealt with models of 
animal behavior. Unfortunately, path analysis was largely overlooked 
until econometricians reconsidered it in the 1950s as a form of simultane-
ous equation modeling (e.g., H. Wold) and sociologists rediscovered it in 
the 1960s (e.g., O. D. Duncan and H. M. Blalock). In many respects, path 
analysis involves solving a set of simultaneous regression equations that 
theoretically establish the relationship among the observed variables in 
the path model. In an example path analysis study, Walberg’s theoretical 
model of educational productivity was tested for fifth- through eighth-
grade students (Parkerson et al., 1984). The relations among the follow-
ing variables were analyzed in a single model: home environment, peer 
group, media, ability, social environment, time on task, motivation, and 
instructional strategies. All of the hypothesized paths among those vari-
ables were shown to be statistically significant, providing support for the 
educational productivity model.

The final model type is structural equation modeling (SEM). SEM mod-
els essentially combine path models and confirmatory factor models; 
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that is, SEM models incorporate both latent and observed variables. The 
early development of SEM models was due to Karl Jöreskog (1969, 1973), 
Ward Keesling (1972), and David Wiley (1973); this approach was initially 
known as the JKW model, but became known as the linear structural rela-
tions model (LISREL) with the development of the first software program, 
LISREL, in 1973. Since then, many SEM articles have been published; for 
example, Shumow and Lomax (2002) tested a theoretical model of paren-
tal efficacy for adolescent students. For the overall sample, neighborhood 
quality predicted parental efficacy, which predicted parental involvement 
and monitoring, both of which predicted academic and social-emotional 
adjustment.

Jöreskog and van Thillo originally developed the LISREL software pro-
gram at the Educational Testing Service (ETS) using a matrix command 
language (i.e., involving Greek and matrix notation), which is described 
in chapter 17. The first publicly available version, LISREL III, was released 
in 1976. Later in 1993, LISREL8 was released; it introduced the SIMPLIS 
(SIMPle LISrel) command language in which equations are written 
using variable names. In 1999, the first interactive version of LISREL was 
released. LISREL8 introduced the dialog box interface using pull-down 
menus and point-and-click features to develop models, and the path dia-
gram mode, a drawing program to develop models. Karl Jöreskog was rec-
ognized by Cudeck, DuToit, and Sörbom (2001) who edited a Festschrift 
in honor of his contributions to the field of structural equation modeling. 
Their volume contains chapters by scholars who address the many top-
ics, concerns, and applications in the field of structural equation model-
ing today, including milestones in factor analysis; measurement models; 
robustness, reliability, and fit assessment; repeated measurement designs; 
ordinal data; and interaction models. We cover many of these topics in 
this book, although not in as great a depth. The field of structural equa-
tion modeling across all disciplines has expanded since 1994. Hershberger 
(2003) found that between 1994 and 2001 the number of journal articles 
concerned with SEM increased, the number of journals publishing SEM 
research increased, SEM became a popular choice amongst multivariate 
methods, and the journal Structural Equation Modeling became the primary 
source for technical developments in structural equation modeling.

1.3 � Why Conduct Structural Equation Modeling?

Why is structural equation modeling popular? There are at least four 
major reasons for the popularity of SEM. The first reason suggests that 
researchers are becoming more aware of the need to use multiple observed 
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variables to better understand their area of scientific inquiry. Basic statis-
tical methods only utilize a limited number of variables, which are not 
capable of dealing with the sophisticated theories being developed. The 
use of a small number of variables to understand complex phenomena is 
limiting. For instance, the use of simple bivariate correlations is not suf-
ficient for examining a sophisticated theoretical model. In contrast, struc-
tural equation modeling permits complex phenomena to be statistically 
modeled and tested. SEM techniques are therefore becoming the preferred 
method for confirming (or disconfirming) theoretical models in a quanti-
tative fashion.

A second reason involves the greater recognition given to the valid-
ity and reliability of observed scores from measurement instruments. 
Specifically, measurement error has become a major issue in many dis-
ciplines, but measurement error and statistical analysis of data have 
been treated separately. Structural equation modeling techniques explic-
itly take measurement error into account when statistically analyzing 
data. As noted in subsequent chapters, SEM analysis includes latent and 
observed variables as well as measurement error terms in certain SEM 
models.

A third reason pertains to how structural equation modeling has matured 
over the past 30 years, especially the ability to analyze more advanced the-
oretical SEM models. For example, group differences in theoretical models 
can be assessed through multiple-group SEM models. In addition, analyz-
ing educational data collected at more than one level—for example, school 
districts, schools, and teachers with student data—is now possible using 
multilevel SEM modeling. As a final example, interaction terms can now 
be included in an SEM model so that main effects and interaction effects 
can be tested. These advanced SEM models and techniques have provided 
many researchers with an increased capability to analyze sophisticated 
theoretical models of complex phenomena, thus requiring less reliance on 
basic statistical methods.

Finally, SEM software programs have become increasingly user-
friendly. For example, until 1993 LISREL users had to input the pro-
gram syntax for their models using Greek and matrix notation. At 
that time, many researchers sought help because of the complex pro-
gramming requirement and knowledge of the SEM syntax that was 
required. Today, most SEM software programs are Windows-based 
and use pull-down menus or drawing programs to generate the pro-
gram syntax internally. Therefore, the SEM software programs are now 
easier to use and contain features similar to other Windows-based 
software packages. However, such ease of use necessitates statisti-
cal training in SEM modeling and software via courses, workshops, 
or textbooks to avoid mistakes and errors in analyzing sophisticated 
theoretical models.
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1.4 � Structural Equation Modeling Software Programs

Although the LISREL program was the first SEM software program, 
other software programs have subsequently been developed since the 
mid-1980s. Some of the other programs include AMOS, EQS, Mx, Mplus, 
Ramona, and Sepath, to name a few. These software programs are each 
unique in their own way, with some offering specialized features for 
conducting different SEM applications. Many of these SEM software 
programs provide statistical analysis of raw data (e.g., means, correla-
tions, missing data conventions), provide routines for handling missing 
data and detecting outliers, generate the program’s syntax, diagram the 
model, and provide for import and export of data and figures of a theo-
retical model. Also, many of the programs come with sets of data and 
program examples that are clearly explained in their user guides. Many 
of these software programs have been reviewed in the journal Structural 
Equation Modeling.

The pricing information for SEM software varies depending on indi-
vidual, group, or site license arrangements; corporate versus educa-
tional settings; and even whether one is a student or faculty member. 
Furthermore, newer versions and updates necessitate changes in pric-
ing. Most programs will run in the Windows environment; some run 
on MacIntosh personal computers. We are often asked to recommend 
a software package to a beginning SEM researcher; however, given the 
different individual needs of researchers and the multitude of different 
features available in these programs, we are not able to make such a rec-
ommendation. Ultimately the decision depends upon the researcher’s 
needs and preferences. Consequently, with so many software packages, 
we felt it important to narrow our examples in the book to LISREL–
SIMPLIS programs.

We will therefore be using the LISREL 8.8 student version in the book 
to demonstrate the many different SEM applications, including regres-
sion models, path models, confirmatory factor models, and the various 
SEM models in chapters 13 through 16. The free student version of the 
LISREL software program (Windows, Mac, and Linux editions) can be 
downloaded from the website: http://www.ssicentral.com/lisrel/student.
html. (Note: The LISREL 8.8 Student Examples folder is placed in the main 
directory C:/ of your computer, not the LISREL folder under C:/Program 
Files when installing the software.)
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Once the LISREL software is downloaded, place an icon on your desk-
top by creating a shortcut to the LISREL icon. The LISREL icon should 
look something like this:

LISREL 8.80 Student.lnk

When you click on the icon, an empty dialog box will appear that should 
look like this:

Note:  Nothing appears until you open a program file or data set using 
the File or open folder icon; more about this in the next chapter.

We do want to mention the very useful HELP menu. Click on the ques-
tion mark (?), a HELP menu will appear, then enter Output Questions in 
the search window to find answers to key questions you may have when 
going over examples in the Third Edition.
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1.5 � Summary

In this chapter we introduced structural equation modeling by describ-
ing basic types of variables—that is, latent, observed, independent, and 
dependent—and basic types of SEM models—that is, regression, path, 
confirmatory factor, and structural equation models. In addition, a brief 
history of structural equation modeling was provided, followed by a dis-
cussion of the importance of SEM. This chapter concluded with a brief 
listing of the different structural equation modeling software programs 
and where to obtain the LISREL 8.8 student version for use with examples 
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in the book, including what the dialog box will first appear like and a very 
useful HELP menu.

In chapter 2 we consider the importance of examining data for issues 
related to measurement level (nominal, ordinal, interval, or ratio), restric-
tion of range (fewer than 15 categories), missing data, outliers (extreme 
values), linearity or nonlinearity, and normality or nonnormality, all of 
which can affect statistical methods, and especially SEM applications.

Exercises

	 1.	 Define the following terms:
	 a.	 Latent variable
	 b.	 Observed variable
	 c.	 Dependent variable
	 d.	 Independent variable
	 2.	 Explain the difference between a dependent latent variable and 

a dependent observed variable.
	 3.	 Explain the difference between an independent latent variable 

and an independent observed variable.
	 4.	 List the reasons why a researcher would conduct structural 

equation modeling.
	 5.	 Download and activate the student version of LISREL: http://

www.ssicentral.com
	 6.	 Open and import SPSS or data file.
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2
Data Entry and Data Editing Issues

Key Concepts

Importing data file
System file
Measurement scale
Restriction of range
Missing data
Outliers
Linearity
Nonnormality

An important first step in using LISREL is to be able to enter raw data and/
or import data, such as files from other programs (SPSS, SAS, EXCEL, etc.). 
Other important steps involve being able to use LISREL–PRELIS to save 
a system file, as well as output and save files that contain the variance–
covariance matrix, the correlation matrix, means, and standard deviations 
of variables so they can be input into command syntax programs. The 
LISREL–PRELIS program will be briefly explained in this chapter to dem-
onstrate how it handles raw data entry, importing of data, and the output 
of saved files.

There are several key issues in the field of statistics that impact our anal-
yses once data have been imported into a software program. These data 
issues are commonly referred to as the measurement scale of variables, 
restriction in the range of data, missing data values, outliers, linearity, and 
nonnormality. Each of these data issues will be discussed because they 
not only affect traditional statistics, but present additional problems and 
concerns in structural equation modeling.

We use LISREL software throughout the book, so you will need to use 
that software and become familiar with their Web site. You should have 
downloaded by now the free student version of the LISREL software. 
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We use some of the data and model examples available in the free stu-
dent version to illustrate SEM applications. (Note: The LISREL 8.8 Student 
Examples folder is placed in the main directory C:/ of your computer.) 
The free student version of the software has a user guide, help functions, 
and tutorials. The Web site also contains important research, documenta-
tion, and information about structural equation modeling. However, be 
aware that the free student version of the software does not contain the 
full capabilities available in their full licensed version (e.g., restricted to 
15 observed variables in SEM analyses). These limitations are spelled out 
on their Web site.

2.1 � Data Entry

The LISREL software program interfaces with PRELIS, a preprocessor of 
data prior to running LISREL (matrix command language) or SIMPLIS 
(easier-to-use variable name syntax) programs. The newer Interactive 
LISREL uses a spreadsheet format for data with pull-down menu options. 
LISREL offers several different options for inputting data and importing 
files from numerous other programs. The New, Open, and Import Data 
functions provide maximum flexibility for inputting data.

The New option permits the creation of a command syntax language 
program (PRELIS, LISREL, or SIMPLIS) to read in a PRELIS data file, or 
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to open SIMPLIS and LISREL saved projects as well as a previously saved 
Path Diagram.

The Open option permits you to browse and locate previously saved 
PRELIS (.pr2), LISREL (.ls8), or SIMPLIS (.spl) programs; each with their 
unique file extension. The student version has distinct folders containing 
several program examples, for example LISREL (LS8EX folder), PRELIS 
(PR2EX folder), and SIMPLIS (SPLEX folder).

The Import Data option permits inputting raw data files or SPSS 
saved files. The raw data file, lsat6.dat, is in the PRELIS folder (PR2EX). 
When selecting this file, you will need to know the number of variables 
in the file.
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An SPSS saved file, data100.sav, is in the SPSS folder (SPSSEX). Once you 
open this file, a PRELIS system file is created.
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Once the PRELIS system file becomes active, then it needs to be saved for 
future use. (Note: # symbol may appear if columns are to narrow; simply use 
your mouse to expand the columns so that the missing values—999999.00 
will appear. Also, if you right-mouse click on the variable names, a menu 
appears to define missing values, etc.). The PRELIS system file (.psf) acti-
vates a pull-down menu that permits data editing features, data transfor-
mations, statistical analysis of data, graphical display of data, multilevel 
modeling, and many other related features.
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The statistical analysis of data includes factor analysis, probit regres-
sion, least squares regression, and two-stage least squares methods. 
Other important data editing features include imputing missing values, 
a homogeneity test, creation of normal scores, bootstrapping, and data 
output options. The data output options permit saving different types of 
variance–covariance matrices and descriptive statistics in files for use in 
LISREL and SIMPLIS command syntax programs. This capability is very 
important, especially when advanced SEM models are analyzed in chap-
ters 13 to 16. We will demonstrate the use of this Output Options dialog 
box in this chapter and in some of our other chapter examples.

2.2 � Data Editing Issues

2.2.1 � Measurement Scale

How variables are measured or scaled influences the type of statistical 
analyses we perform (Anderson, 1961; Stevens, 1946). Properties of scale 
also guide our understanding of permissible mathematical operations. 
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For example, a nominal variable implies mutually exclusive groups; a 
biological gender has two mutually exclusive groups, male and female. 
An individual can only be in one of the groups that define the levels 
of the variable. In addition, it would not be meaningful to calculate a 
mean and a standard deviation on the variable gender. Consequently, 
the number or percentage of individuals at each level of the gender 
variable is the only mathematical property of scale that makes sense. 
An ordinal variable, for example, attitude toward school, that is scaled 
strongly agree, agree, neutral, disagree, and strongly disagree, implies mutu-
ally exclusive categories that are ordered or ranked. When levels of a 
variable have properties of scale that involve mutually exclusive groups 
that are ordered, only certain mathematical operations are meaning-
ful, for example, a comparison of ranks between groups. SEM final 
exam scores, an example of an interval variable, possesses the property 
of scale, implying equal intervals between the data points, but no true 
zero point. This property of scale permits the mathematical operation 
of computing a mean and a standard deviation. Similarly, a ratio vari-
able, for example, weight, has the property of scale that implies equal 
intervals and a true zero point (weightlessness). Therefore, ratio vari-
ables also permit mathematical operations of computing a mean and 
a standard deviation. Our use of different variables requires us to be 
aware of their properties of scale and what mathematical operations 
are possible and meaningful, especially in SEM, where variance–
covariance (correlation) matrices are used with means and standard 
deviations of variables. Different correlations among variables are 
therefore possible depending upon the level of measurement, but they 
create unique problems in SEM (see chapter 3). PRELIS designates con-
tinuous variables (CO), ordinal variables (OR), and categorical vari-
ables (CL) to make these distinctions.

2.2.2 � Restriction of Range

Data values at the interval or ratio level of measurement can be further 
defined as being discrete or continuous. For example, SEM final exam 
scores could be reported in whole numbers (discrete). Similarly, the num-
ber of children in a family would be considered a discrete level of mea-
surement—or example, 5 children. In contrast, a continuous variable is 
reported using decimal values; for example, a student’s grade point aver-
age would be reported as 3.75 on a 5-point scale.

Karl Jöreskog (1996) provided a criterion in the PRELIS program based 
on his research that defines whether a variable is ordinal or interval, 
based on the presence of 15 distinct scale points. If a variable has fewer 
than 15 categories or scale points, it is referenced in PRELIS as ordi-
nal (OR), whereas a variable with 15 or more categories is referenced as 
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continuous (CO). This 15-point criterion allows Pearson correlation coef-
ficient values to vary between +/–1.0. Variables with fewer distinct scale 
points restrict the value of the Pearson correlation coefficient such that it 
may only vary between +/–0.5. Other factors that affect the Pearson cor-
relation coefficient are presented in this chapter and discussed further 
in chapter 3.

2.2.3 � Missing Data

The statistical analysis of data is affected by missing data values in vari-
ables. That is, not every subject has an actual value for every variable in 
the dataset, as some values are missing. It is common practice in statis-
tical packages to have default values for handling missing values. The 
researcher has the options of deleting subjects who have missing values, 
replacing the missing data values, or using robust statistical procedures 
that accommodate for the presence of missing data.

The various SEM software handle missing data differently and have 
different options for replacing missing data values. Table 2.1 lists many 
of the various options for dealing with missing data. These options can 
dramatically affect the number of subjects available for analysis, the 
magnitude and direction of the correlation coefficient, or create problems 
if means, standard deviations, and correlations are computed based on 
different sample sizes. The Listwise deletion of cases and Pairwise dele-
tion of cases are not always recommended options due to the possibil-
ity of losing a large number of subjects, thus dramatically reducing the 
sample size. Mean substitution works best when only a small number 
of missing values is present in the data, whereas regression imputation 
provides a useful approach with a moderate amount of missing data. 
In LISREL–PRELIS the expectation maximization (EM), Monte Carlo 
Markov Chain (MCMC), and matching response pattern approaches 
are recommended when larger amounts of data are missing at random. 

TABLE 2.1

Options for Dealing with Missing Data

Listwise Delete subjects with missing data on any variable
Pairwise Delete subjects with missing data on each pair of variables used
Mean substitution Substitute the mean for missing values of a variable
Regression imputation Substitute a predicted value for the missing value of a variable
Expectation 
maximization (EM)

Find expected value based on expectation maximization 
algorithm

Matching response 
pattern

Match cases with incomplete data to cases with complete data 
to determine a missing value
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More information about missing data is available in resources such as 
Enders (2006), McKnight, McKnight, Sidani and Aurelio (2007), and 
Peng, Harwell, Liou, and Ehman (2007). Davey and Savla (2010) have 
more recently published an excellent book with SAS, SPSS, STATA, and 
Mplus source programs to handle missing data in SEM in the context of 
power analysis.

2.2.4 � LISREL–PRELIS Missing Data Example

Imputation of missing values is possible for a single variable (Impute 
Missing Values) or several variables simultaneously (Multiple Imputation) 
by selecting Statistics from the tool bar menu. The Impute Missing Values 
option uses the matching response pattern approach. The value to be sub-
stituted for the missing value of a single case is obtained from another 
case (or cases) having a similar response pattern over a set of matching 
variables. In data sets where missing values occur on more than one vari-
able, you can use multiple imputation of missing values with mean sub-
stitution, delete cases, or leave the variables with defined missing values 
as options in the dialog box. In addition, the Multiple Imputation option 
uses either the expectation maximization algorithm (EM) or Monte Carlo 
Markov Chain (MCMC, generating random draws from probability dis-
tributions via Markov chains) approaches to replacing missing values 
across multiple variables.

We present an example from LISREL–PRELIS involving the choles-
terol levels for 28 patients treated for heart attacks. We assume the data 
to be missing at random (MAR) with an underlying multivariate normal 
distribution. Cholesterol levels were measured after 2 days (VAR1), after 
4 days (VAR2), and after 14 days (VAR3), but were only complete for 19 
of the 28 patients. The data are shown from the PRELIS System File, 
chollev.psf. The PRELIS system file was created by selecting File, Import 
Data, and selecting the raw data file chollev.raw located in the Tutorial 
folder [C:\LISREL 8.8 Student Examples\Tutorial]. We must know the num-
ber of variables in the raw data file. We must also select Data, then Define 
Variables, and then select −9.00 as the missing value for the VAR3 vari-
able [Optionally, right mouse click on VAR1 in the PRELIS chollev file].
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We now click on Statistics on the tool bar menu and select Impute 
Missing Values from the pull-down menu.

We next select Output Options and save the transformed data in a new 
PRELIS system file cholnew.psf, and output the new correlation matrix, 
mean, and standard deviation files.
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We should examine our data both before (Table 2.2) and after (Table 2.3) 
imputation of missing values. Here, we used the matching response pat-
tern method. This comparison provides us with valuable information 
about the nature of the missing data.

We can also view our new transformed PRELIS System File, cholnew.psf, 
to verify that the missing values were in fact replaced; for example, VAR3 
has values replaced for Case 2 = 204, Case 4 = 142, Case 5 = 182, Case 10 = 
280, and so on.
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TABLE 2.2

Data Before Imputation of Missing Values

Number of Missing Values per Variable

VAR1 
--------------

VAR2 
-------------

VAR3 
------------

0 0 9

Distribution of Missing Values

Total Sample Size =                  28
Number of Missing Values  0      1
Number of Cases 19      9

Effective Sample Sizes
Univariate (in Diagonal) and Pairwise Bivariate (off 
Diagonal)

VAR1 
--------------

VAR2 
-------------

VAR3 
------------

      VAR1 28
      VAR2 28   28
      VAR3 19   19    19

Percentage of Missing Values
Univariate (in Diagonal) and Pairwise Bivariate (off 
Diagonal)

VAR1 
--------------

VAR2 
-------------

VAR3 
------------

VAR1  0.00
VAR2  0.00  0.00
VAR3 32.14 32.14 32.14

Correlation Matrix

VAR1 
--------------

VAR2 
-------------

VAR3 
------------

      VAR1  1.000
      VAR2  0.673 1.000
      VAR3  0.395 0.665 1.000

Means

VAR1 
--------------

VAR2 
-------------

VAR3 
------------

253.929 230.643 221.474

Standard Deviations

VAR1 
--------------

VAR2 
-------------

VAR3 
------------

47.710 46.967 43.184
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We have noticed that selecting matching variables with a higher cor-
relation to the variable with missing values provides better imputed 
values for the missing data. We highly recommend comparing any anal-
yses before and after the replacement of missing data values to fully 
understand the impact missing data values have on the parameter esti-
mates and standard errors. LISREL–PRELIS also permits replacement 

TABLE 2.3

Data After Imputation of Missing Values

Number of Missing Values per Variable

VAR1 
------------------

VAR2 
----------------

VAR3 
----------------

0 0 9

Imputations for        VAR3
Case  2 imputed with value 204 (Variance Ratio = 0.000), NM=   1
Case  4 imputed with value 142 (Variance Ratio = 0.000), NM=   1
Case  5 imputed with value 182 (Variance Ratio = 0.000), NM=   1
Case 10 imputed with value 280 (Variance Ratio = 0.000), NM=   1
Case 13 imputed with value 248 (Variance Ratio = 0.000), NM=   1
Case 16 imputed with value 256 (Variance Ratio = 0.000), NM=   1
Case 18 imputed with value 216 (Variance Ratio = 0.000), NM=   1
Case 23 imputed with value 188 (Variance Ratio = 0.000), NM=   1
Case 25 imputed with value 256 (Variance Ratio = 0.000), NM=   1

Number of Missing Values per Variable After Imputation

VAR1 
------------------

VAR2 
----------------

VAR3 
----------------

0 0 0

Total Sample Size = 28

Correlation Matrix

VAR1 
------------------

VAR2 
----------------

VAR3 
----------------

VAR1 1.000
VAR2 0.673 1.000
VAR3 0.404 0.787 1.000

Means

VAR1 
------------------

VAR2 
----------------

VAR3 
----------------

253.929 230.643 220.714

Standard Deviations

VAR1 
------------------

VAR2 
----------------

VAR3 
----------------

47.710 46.967 42.771
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of missing values using the EM and MCMC approaches, which may be 
practical when matching sets of variables are not possible. A comparison 
of EM and MCMC is also warranted in multiple imputations to deter-
mine the effect of using a different algorithm on the replacement of miss-
ing values.

2.2.5 � Outliers

Outliers or influential data points can be defined as data values that are 
extreme or atypical on either the independent (X variables) or dependent 
(Y variables) variables or both. Outliers can occur as a result of observa-
tion errors, data entry errors, instrument errors based on layout or instruc-
tions, or actual extreme values from self-report data. Because outliers 
affect the mean, the standard deviation, and correlation coefficient values, 
they must be explained, deleted, or accommodated by using robust sta-
tistics. Sometimes, additional data will need to be collected to fill in the 
gap along either the Y or X axes. LISREL–PRELIS has outlier detection 
methods available that include the following: box plot display, scatterplot, 
histogram, and frequency distributions.

2.2.6 � Linearity

Some statistical techniques, such as SEM, assume that the variables are lin-
early related to one another. Thus, a standard practice is to visualize the 
coordinate pairs of data points of two continuous variables by plotting the 
data in a scatterplot. These bivariate plots depict whether the data are lin-
early increasing or decreasing. The presence of curvilinear data reduces the 
magnitude of the Pearson correlation coefficient, even resulting in the pres-
ence of a zero correlation. Recall that the Pearson correlation value indicates 
the magnitude and direction of the linear relationships between two vari-
ables. Figure 2.1 shows the importance of visually displaying the bivariate 
data scatterplot.

Figure 2.1
Left: correlation is linear. Right: correlation is nonlinear.
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2.2.7 � Nonnormality

In basic statistics, several transformations are given to handle issues with 
nonnormal data. Some of these common transformations are in Table 2.4.

Inferential statistics often rely on the assumption that the data are nor-
mally distributed. Data that are skewed (lack of symmetry) or more fre-
quently occurring along one part of the measurement scale will affect the 
variance–covariance among variables. In addition, kurtosis (peakedness) 
in data will impact statistics. Leptokurtic data values are more peaked than 
the normal distribution, whereas platykurtic data values are flatter and 
more dispersed along the X axis, but have a consistent low frequency on 
the Y axis—that is, the frequency distribution of the data appears more 
rectangular in shape.

Nonnormal data can occur because of the scaling of variables (e.g., 
ordinal rather than interval) or the limited sampling of subjects. Possible 
solutions for skewness are to resample more participants or to perform a 
linear transformation as outlined above. Our experience is that a probit 
data transformation works best in correcting skewness. Kurtosis in data 
is more difficult to resolve; some possible solutions in LISREL–PRELIS 
include additional sampling of subjects, or the use of bootstrap meth-
ods, normalizing scores, or alternative methods of estimation (e.g., WLS 
or ADF).

The presence of skewness and kurtosis can be detected in LISREL–
PRELIS using univariate tests, multivariate tests, and measures of skew-
ness and kurtosis that are available in the pull-down menus or output. 
One recommended method of handling nonnormal data is to use an 
asymptotic covariance matrix as input along with the sample covariance 
matrix in the LISREL–PRELIS program, as follows:

Table 2.4

Data Transformation Types

y = ln(x) or y = log10(x) or 
y = ln(x+0.5)

Useful with clustered data or cases where the standard 
deviation increases with the mean

y = sqrt(x) Useful with Poisson counts
y = arcsin((x + 0.375)/(n + 0.75)) Useful with binomial proportions [0.2 < p = x/n < 0.8]
y = 1/x Useful with gamma-distributed x variable
y = logit(x) = ln(x/(1 – x)) Useful with binomial proportions x = p
y = normit(x) Quantile of normal distribution for standardized x
y = probit(x) = 5 + normit(x) Most useful to resolve nonnormality of data

Note: probit(x) is same as normit(x) plus 5 to avoid negative values.
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LISREL
  CM = boy.cov
  AC = boy.acm
SIMPLIS
  Covariance matrix from file boy.cov
  Asymptotic covariance matrix from file boy.acm

We can use the asymptotic covariance matrix in two different ways: (a) as a 
weight matrix when specifying the method of estimation as weighted least 
squares (WLS), and (b) as a weight matrix that adjusts the normal-theory 
weight matrix to correct for bias in standard errors and fit statistics. The 
appropriate moment matrix in PRELIS, using OUTPUT OPTIONS, must 
be selected before requesting the calculation of the asymptotic covariance 
matrix.

PRELIS recognizes data as being continuous (CO), ordinal (OR), or 
classes (CL), that is gender (boy, girl). Different correlations are possible 
depending upon the level of measurement. A variance–covariance matrix 
with continuous variables would use Pearson correlations, while ordinal 
variables would use Tetrachoric correlations. If skewed nonnormal data 
is present, then consider a linear transformation using Probit. In SEM, 
researchers typically output and use an asymptotic variance–covariance 
matrix. When using a PRELIS data set, consider the normal score option 
in the menu to correct for nonnormal variables.

2.3 � Summary

Structural equation modeling is a correlation research method; therefore, 
the measurement scale, restriction of range in the data values, missing 
data, outliers, nonlinearity, and nonnormality of data affect the variance–
covariance among variables and thus can impact the SEM analysis. 
Researchers should use the built-in menu options to examine, graph, and 
test for any of these problems in the data prior to conducting any SEM 
model analysis. Basically, researchers should know their data character-
istics. Data screening is a very important first step in structural equation 
modeling. The next chapter illustrates in more detail issues related to the 
use of correlation and variance–covariance in SEM models. There, we 
provide specific examples to illustrate the importance of topics covered 
in this chapter. A troubleshooting box summarizing these issues is pro-
vided in Box 2.1.
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Box 2.1  Troubleshooting Tips
Issue Suggestions
Measurement 
scale

Need to take the measurement scale of the variables into account 
when computing statistics such as means, standard deviations, and 
correlations.

Restriction of 
range

Need to consider range of values obtained for variables, as 
restricted range of one or more variables can reduce the 
magnitude of correlations.

Missing data Need to consider missing data on one or more subjects for one or 
more variables as this can affect SEM results. Cases are lost with 
listwise deletion, pairwise deletion is often problematic (e.g., 
different sample sizes), and thus modern imputation methods are 
recommended.

Outliers Need to consider outliers as they can affect statistics such as 
means, standard deviations, and correlations. They can either be 
explained, deleted, or accommodated (using either robust 
statistics or obtaining additional data to fill-in). Can be detected 
by methods such as box plots, scatterplots, histograms or 
frequency distributions.

Linearity Need to consider whether variables are linearly related, as 
nonlinearity can reduce the magnitude of correlations. Can be 
detected by scatterplots. Can be dealt with by transformations or 
deleting outliers.

Nonnormality Need to consider whether the variables are normally distributed, 
as nonnormality can affect resulting SEM statistics. Can be 
detected by univariate tests, multivariate tests, and skewness and 
kurtosis statistics. Can be dealt with by transformations, 
additional sampling, bootstrapping, normalizing scores, or 
alternative methods of estimation.

Exercises

	 1.	 LISREL uses which command to import data sets?
	 a.	 File, then Export Data
	 b.	 File, then Open
	 c.	 File, then Import Data
	 d.	 File, then New

	 2.	 Define the following levels of measurement.
	 a.	 Nominal
	 b.	 Ordinal
	 c.	 Interval
	 d.	 Ratio

	 3.	 Mark each of the following statements true (T) or false (F).
	 a.	 LISREL can deal with missing data.
	 b.	 PRELIS can deal with missing data.
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	 c.	 LISREL can compute descriptive statistics.
	 d.	 PRELIS can compute descriptive statistics.

	 4.	 Explain how each of the following affects statistics:
	 a.	 Restriction of range
	 b.	 Missing data
	 c.	 Outliers
	 d.	 Nonlinearity
	 e.	 Nonnormality
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3
Correlation

Key Concepts

Types of correlation coefficients
Factors affecting correlation
Correction for attenuation
Nonpositive definite matrices
Bivariate, part, and partial correlation
Suppressor variable
Covariance and causation

In chapter 2 we considered a number of data preparation issues in struc-
tural equation modeling. In this chapter, we move beyond data prepara-
tion in describing the important role that correlation (covariance) plays 
in SEM. We also include a discussion of a number of factors that affect 
correlation coefficients as well as the assumptions and limitations of cor-
relation methods in structural equation modeling.

3.1 � Types of Correlation Coefficients

Sir Francis Galton conceptualized the correlation and regression proce-
dure for examining covariance in two or more traits, and Karl Pearson 
(1896) developed the statistical formula for the correlation coefficient and 
regression based on his suggestion (Crocker & Algina, 1986; Ferguson & 
Takane, 1989; Tankard, 1984). Shortly thereafter, Charles Spearman (1904) 
used the correlation procedure to develop a factor analysis technique. 
The correlation, regression, and factor analysis techniques have for many 
decades formed the basis for generating tests and defining constructs. 
Today, researchers are expanding their understanding of the roles that 
correlation, regression, and factor analysis play in theory and construct 
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definition to include latent variable, covariance structure, and confirma-
tory factor measurement models.

The relationships and contributions of Galton, Pearson, and Spearman 
to the field of statistics, especially correlation, regression, and factor anal-
ysis, are quite interesting (Tankard, 1984). In fact, the basis of association 
between two variables—that is, correlation or covariance—has played a 
major role in statistics. The Pearson correlation coefficient provides the 
basis for point estimation (test of significance), explanation (variance 
accounted for in a dependent variable by an independent variable), predic-
tion (of a dependent variable from an independent variable through lin-
ear regression), reliability estimates (test–retest, equivalence), and validity 
(factorial, predictive, concurrent).

The Pearson correlation coefficient also provides the basis for estab-
lishing and testing models among measured and/or latent variables. The 
partial and part correlations further permit the identification of specific 
bivariate relationships between variables that allow for the specification 
of unique variance shared between two variables while controlling for the 
influence of other variables. Partial and part correlations can be tested for 
significance, similar to the Pearson correlation coefficient, by simply using 
the degrees of freedom, n – 2, in the standard correlation table of signifi-
cance values (Table A.3) or an F test in multiple regression which tests the 
difference in R2 values between full and restricted models (Table A.5).

Although the Pearson correlation coefficient has had a major impact in 
the field of statistics, other correlation coefficients have emerged depend-
ing upon the level of variable measurement. Stevens (1968) provided the 
properties of scales of measurement that have become known as nominal, 
ordinal, interval, and ratio. The types of correlation coefficients developed 
for these various levels of measurement are categorized in Table 3.1.

Table 3.1

Types of Correlation Coefficients

Correlation Coefficient Level of Measurement

Pearson product‑moment Both variables interval
Spearman rank, Kendall’s tau Both variables ordinal
Phi, contingency Both variables nominal
Point biserial One variable interval, one variable dichotomous
Gamma, rank biserial One variable ordinal, one variable nominal
Biserial One variable interval, one variable artificiala

Polyserial One variable interval, one variable ordinal with 
underlying continuity

Tetrachoric Both variables dichotomous (nominal artificiala)
Polychoric Both variables ordinal with underlying continuities

a	 Artificial refers to recoding variable values into a dichotomy.
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Many popular computer programs, for example, SAS and SPSS, typi-
cally do not compute all of these correlation types. Therefore, you may 
need to check a popular statistics book or look around for a computer pro-
gram that will compute the type of correlation coefficient you need—for 
example, the phi and point-biserial coefficient are not readily available. In 
SEM analyses, the Pearson coefficient, tetrachoric or polychoric (for several 
ordinal variable pairs) coefficient, and biserial or polyserial (for several 
continuous and ordinal variable pairs) coefficient are typically used (see 
PRELIS for the use of Kendall’s tau-c or tau-b, and canonical correlation). 
LISREL permits mixture models, which use variables with both ordinal and 
interval-ratio levels of measurement (chapter 15). Although SEM software 
programs are now demonstrating how mixture models can be analyzed, 
the use of variables with different levels of measurement has traditionally 
been a problem in the field of statistics—for example, multiple regression 
and multivariate statistics.

3.2 � Factors Affecting Correlation Coefficients

Given the important role that correlation plays in structural equation 
modeling, we need to understand the factors that affect establishing rela-
tionships among multivariable data points. The key factors are the level 
of measurement, restriction of range in data values (variability, skewness, 
kurtosis), missing data, nonlinearity, outliers, correction for attenuation, 
and issues related to sampling variation, confidence intervals, effect size, 
significance, sample size, and power.

3.2.1 � Level of Measurement and Range of Values

Four types or levels of measurement typically define whether the charac-
teristic or scale interpretation of a variable is nominal, ordinal, interval, or 
ratio (Stevens, 1968). In structural equation modeling, each of these types 
of scaled variables can be used. However, it is not recommended that they 
be included together or mixed in a correlation (covariance) matrix. Instead, 
the PRELIS data output option should be used to save an asymptotic cova-
riance matrix for input along with the sample variance-covariance matrix 
into a LISREL or SIMPLIS program.

Initially, SEM required variables measured at the interval or ratio level 
of measurement, so the Pearson product-moment correlation coefficient 
was used in regression, path, factor, and structural equation modeling. 
The interval or ratio scaled variable values should also have a sufficient 
range of score values to introduce variance (15 or more scale points). If the 
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range of scores is restricted, the magnitude of the correlation value is 
decreased. Basically, as a group of subjects become more homogeneous, 
score variance decreases, reducing the correlation value between the vari-
ables. So, there must be enough variation in scores to allow a correlation 
relationship to manifest itself between variables. Variables with fewer 
than 15 categories are treated as ordinal variables in LISREL–PRELIS, so 
if you are assuming continuous interval-level data, you will need to check 
whether the variables meet this condition. Also, the use of the same scale 
values for variables can help in the interpretation of results and/or rela-
tive comparison among variables. The meaningfulness of a correlation 
relationship will depend on the variables employed; hence, your theoreti-
cal perspective is very important. You may recall from your basic statistics 
course that a spurious correlation is possible when two sets of scores cor-
relate significantly, but their relationship is not meaningful or substantive 
in nature.

If the distributions of variables are widely divergent, correlation can 
also be affected, and so several data transformations are suggested by 
Ferguson and Takane (1989) to provide a closer approximation to a nor-
mal, homogeneous variance for skewed or kurtotic data. Some possible 
transformations are the square root transformation (sqrt X), the logarith-
mic transformation (log X), the reciprocal transformation (1/X), and the 
arcsine transformation (arcsin X). The probit transformation appears to be 
most effective in handling univariate skewed data.

Consequently, the type of scale used and the range of values for the 
measured variables can have profound effects on your statistical analysis 
(in particular, on the mean, variance, and correlation). The scale and range 
of a variable’s numerical values affects statistical methods, and this is no 
different in structural equation modeling. The PRELIS program is avail-
able to provide tests of normality, skewness, and kurtosis on variables 
and to compute an asymptotic covariance matrix for input into LISREL if 
required. The use of normal scores is also an option in PRELIS.

3.2.2 � Nonlinearity

The Pearson correlation coefficient indicates the degree of linear relation-
ship between two variables. It is possible that two variables can indicate no 
correlation if they have a curvilinear relationship. Thus, the extent to which 
the variables deviate from the assumption of a linear relationship will affect 
the size of the correlation coefficient. It is therefore important to check for 
linearity of the scores; the common method is to graph the coordinate data 
points in a scatterplot. The linearity assumption should not be confused 
with recent advances in testing interaction in structural equation models 
discussed in chapter 16. You should also be familiar with the eta coefficient 
as an index of nonlinear relationship between two variables and with the 
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testing of linear, quadratic, or cubic effects. Consult an intermediate statis-
tics text, for example, Lomax (2007) to review these basic concepts.

The heuristic data sets in Table 3.2 will demonstrate the dramatic effect 
a lack of linearity has on the Pearson correlation coefficient value. In the 
first data set, the Y values increase from 1 to 10, and the X values increase 
from 1 to 5, then decrease from 5 to 1 (nonlinear). The result is a Pearson 
correlation coefficient of r = 0; although a nonlinear relationship does exist 
in the data, it is not indicated by the Pearson correlation coefficient. The 
restriction of range in values can be demonstrated using the fourth heu-
ristic data set in Table 3.2. The Y values only range between 3 and 7, and 
the X values only range from 1 to 4. The Pearson correlation coefficient is 
also r = 0 for these data. The fifth data set indicates how limited sampling 
can affect the Pearson coefficient. In these sample data, only three pairs 
of scores are sampled, and the Pearson correlation is r = –1.0, or perfectly 
negatively correlated.

TABLE 3.2

Heuristic Data Sets

Nonlinear Data Complete Data Missing Data

Y X Y X Y X

  1.00 1.00 8.00 6.00 8.00 —
  2.00 2.00 7.00 5.00 7.00 5.00
  3.00 3.00 8.00 4.00 8.00 —
  4.00 4.00 5.00 2.00 5.00 2.00
  5.00 5.00 4.00 3.00 4.00 3.00
  6.00 5.00 5.00 2.00 5.00 2.00
  7.00 4.00 3.00 3.00 3.00 3.00
  8.00 3.00 5.00 4.00 5.00 —
  9.00 2.00 3.00 1.00 3.00 1.00
10.00 1.00 2.00 2.00 2.00 2.00

Range of Data  Sampling Effect

Y X Y X
3.00 1.00   8.00 3.00
3.00 2.00   9.00 2.00
4.00 3.00 10.00 1.00
4.00 4.00
5.00 1.00
5.00 2.00
6.00 3.00
6.00 4.00
7.00 1.00
7.00 2.00

Y102005.indb   37 3/22/10   3:25:22 PM



38	 A Beginner’s Guide to Structural Equation Modeling

3.2.3 � Missing Data

A complete data set is also given in Table 3.2 where the Pearson correla-
tion coefficient is r = .782, p = .007, for n = 10 pairs of scores. If missing 
data were present, the Pearson correlation coefficient would drop to r = 
.659, p = .108, for n = 7 pairs of scores. The Pearson correlation coefficient 
changes from statistically significant to not statistically significant. More 
importantly, in a correlation matrix with several variables, the various 
correlation coefficients could be computed on different sample sizes. If 
we used listwise deletion of cases, then any variable in the data set with 
a missing value would cause a subject to be deleted, possibly causing a 
substantial reduction in our sample size, whereas pairwise deletion of cases 
would result in different sample sizes for our correlation coefficients in 
the correlation matrix.

Researchers have examined various aspects of how to handle or treat 
missing data beyond our introductory example using a small heuristic 
data set. One basic approach is to eliminate any observations where some 
of the data are missing, listwise deletion. Listwise deletion is not recom-
mended because of the loss of information on other variables, and statisti-
cal estimates are based on reduced sample size. Pairwise deletion excludes 
data only when they are missing on the pairs of variables selected for 
analysis. However, this could lead to different sample sizes for the differ-
ent correlations and related statistical estimates. A third approach, data 
imputation, replaces missing values with an estimate, for example, the 
mean value on a variable for all subjects who did not report any data for 
that variable (Beale & Little, 1975; also see chapter 2).

Missing data can arise in different ways (Little & Rubin, 1987, 1990). 
Missing completely at random (MCAR) implies that data on variable X are 
missing unrelated statistically to the values that have been observed 
for other variables as well as X. Missing at random (MAR) implies that 
data values on variable X are missing conditional on other variables, 
but are unrelated to the values of X. A third situation, nonignorable data, 
implies probabilistic information about the values that would have been 
observed. For MCAR data, mean substitution yields biased variance and 
covariance estimates, whereas listwise and pairwise deletion methods 
yield consistent solutions. For MAR data, mean substitution, listwise, 
and pairwise deletion methods produce biased results. When missing 
data are nonignorable, all approaches yield biased results. It would be 
prudent for the researcher to investigate how parameter estimates are 
affected by the use or nonuse of a data imputation method. A few ref-
erences are provided to give a more detailed understanding of miss-
ing data (Arbuckle, 1996; Enders, 2006; McKnight, McKnight, Sidani & 
Aurelio, 2007; Peng, Harwell, Liou & Ehman, 2007; Wothke, 2000; Davey 
& Savla, 2009).
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3.2.4 � Outliers

The Pearson correlation coefficient can be drastically affected by a sin-
gle outlier on X or Y. For example, the two data sets in Table 3.3 indicate 
a Y = 27 value (Set A) versus a Y = 2 value (Set B) for the last subject. In 
the first set of data, r = .524, p = .37, whereas in the second set of data, 
r = –.994, p = .001. Is the Y = 27 data value an outlier based on limited 
sampling or is it a data entry error? A large body of research has been 
undertaken to examine how different outliers on X, Y, or both X, and 
Y affect correlation relationships, and how to better analyze the data 
using robust statistics (Anderson & Schumacker, 2003; Ho & Naugher, 
2000; Huber, 1981; Rousseeuw & Leroy, 1987; Staudte & Sheather, 1990).

TABLE 3.3

Outlier Data Sets

Set A Set B

X Y X Y

1   9 1 9
2   7 2 7
3   5 3 5
4   3 4 3
5 27 5 2

3.2.5 � Correction for Attenuation

A basic assumption in psychometric theory is that observed data contain mea-
surement error. A test score (observed data) is a function of a true score and 
measurement error. A Pearson correlation coefficient will have different val-
ues, depending on whether it was computed with observed scores or the true 
scores where measurement error has been removed. The Pearson correlation 
coefficient can be corrected for attenuation or unreliable measurement error in 
scores, thus yielding a true score correlation; however, the corrected correla-
tion coefficient can become greater than 1.0! Low reliability in the indepen-
dent and/or dependent variables, coupled with a high correlation between 
the independent and dependent variable, can result in correlations greater 
than 1.0. For example, given a correlation of r = .90 between the observed 
scores on X and Y, the Cronbach alpha reliability coefficient of .60 for X scores, 
and the Cronbach alpha reliability coefficient of .70 for Y scores, the Pearson 
correlation coefficient, corrected for attenuation (r*) , is greater than 1.0:
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When this happens, a nonpositive definite error message occurs stopping 
the SEM program.

3.2.6 � Nonpositive Definite Matrices

Correlation coefficients greater than 1.0 in a correlation matrix cause the 
correlation matrix to be nonpositive definite. In other words, the solution is 
not admissible, indicating that parameter estimates cannot be computed. 
Correction for attenuation is not the only situation that causes nonposi-
tive matrices to occur (Wothke, 1993). Sometimes the ratio of covariance 
to the product of variable variances yields correlations greater than 1.0. 
The following variance–covariance matrix is nonpositive definite because 
it contains a correlation coefficient greater than 1.0 between the Relations 
and Attribute latent variables (denoted by an asterisk):

Variance–Covariance Matrix

Task 1.043
Relations  .994  1.079
Management  .892  .905  .924
Attribute 1.065  1.111 .969 1.12

Correlation Matrix

Task 1.000
Relations  .937 1.000
Management .908 .906  1.000
Attribute  .985 1.010* .951 1.000

Nonpositive definite covariance matrices occur when the determinant of 
the matrix is zero or the inverse of the matrix is not possible. This can 
be caused by correlations greater than 1.0, linear dependency among the 
observed variables, multicollinearity among the observed variables, a 
variable that is a linear combination of other variables, a sample size less 
than the number of variables, the presence of a negative or zero variance 
(Heywood Case), variance–covariance (correlation) values outside the 
permissible range, for example, correlation beyond +/−1.0, and bad start 
values in the user-specified model. A Heywood case also occurs when the 
communality estimate is greater than 1.0. Possible solutions to resolve 
this error are to reduce communality or fix communality to less than 1.0, 
extract a different number of factors (possibly by dropping paths), rescale 
observed variables to create a more linear relationship, or eliminate a bad 
observed variable that indicates linear dependency or multicollinearity.

Regression, path, factor, and structural equation models mathematically 
solve a set of simultaneous equations typically using ordinary least squares 
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(OLS) estimates as initial estimates of coefficients in the model. However, 
these initial estimates or coefficients are sometimes distorted or too differ-
ent from the final admissible solution. When this happens, more reason-
able start values need to be chosen. It is easy to see from the basic regression 
coefficient formula that the correlation coefficient value and the standard 
deviation values of the two variables affect the initial OLS estimates:
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3.2.7 � Sample Size

A common formula used to determine sample size when estimating means 
of variables was given by McCall (1982): n = (Z s/e)2, where n is the sample 
size needed for the desired level of precision, e is the effect size, Z is the 
confidence level, and s is the population standard deviation of scores 
(s can be estimated from prior research studies, test norms, or the range of 
scores divided by 6). For example, given a random sample of ACT scores 
from a defined population with a standard deviation of 100, a desired con-
fidence level of 1.96 (which corresponds to a .05 level of significance), and 
an effect size of 20 (difference between sampled ACT mean and popula-
tion ACT mean), the sample size needed would be [1.96 (100)/20)]2 = 96.

In structural equation modeling, however, the researcher often requires 
a much larger sample size to maintain power and obtain stable parameter 
estimates and standard errors. The need for larger sample sizes is also 
due in part to the program requirements and the multiple observed vari-
ables used to define latent variables. Hoelter (1983) proposed the critical 
N statistic, which indicates the sample size needed to obtain a chi-square 
value that would reject the null hypothesis in a structural equation model. 
The required sample size and power estimates that provide a reasonable 
indication of whether a researcher’s data fits their theoretical model or to 
estimate parameters is discussed in more detail in chapter 5.

SEM software programs estimate coefficients based on the user-specified 
theoretical model, or implied model, but also must work with the satu-
rated and independence models. A saturated model is the model with all 
parameters indicated, while the independence model is the null model or 
model with no parameters estimated. A saturated model with p observed 
variables has p (p + 3)/2 free parameters [Note: Number of independent 
elements in the symmetric covariance matrix = p(p + 1)/2. Number of 
means = p, so total number of independent elements = p (p + 1)/2 + p = p 
(p + 3)/2]. For example, with 10 observed variables, 10(10 + 3)/2 = 65 free 
parameters. If the sample size is small, then there is not enough informa-
tion to estimate parameters in the saturated model for a large number of 
variables. Consequently, the chi-square fit statistic and derived statistics 
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such as Akaike’s Information Criterion (AIC) and the root-mean-square 
error of approximation (RMSEA) cannot be computed. In addition, the fit 
of the independence model is required to calculate other fit indices such 
as the Comparative Fit Index (CFI) and the Normed Fit Index (NFI).

Ding, Velicer, and Harlow (1995) located numerous studies (e.g., 
Anderson & Gerbing, 1988) that were in agreement that 100 to 150 subjects 
is the minimum satisfactory sample size when conducting structural equa-
tion models. Boomsma (1982, 1983) recommended 400, and Hu, Bentler, 
and Kano (1992) indicated that in some cases 5,000 is insufficient! Many 
of us may recall rules of thumb in our statistics texts, for example, 10 sub-
jects per variable or 20 subjects per variable. Costello and Osborne (2005) 
demonstrated in their Monte Carlo study that 20 subjects per variable is 
recommended for best practices in factor analysis. In our examination of 
published SEM research, we have found that many articles used from 250 
to 500 subjects, although the greater the sample size, the more likely it 
is one can validate the model using cross-validation (see chapter 12). For 
example, Bentler and Chou (1987) suggested that a ratio as low as five sub-
jects per variable would be sufficient for normal and elliptical distributions 
when the latent variables have multiple indicators and that a ratio of at 
least 10 subjects per variable would be sufficient for other distributions.

Determination of sample size is now better understood in SEM model-
ing and further discussed in chapter 5.

3.3 � Bivariate, Part, and Partial Correlations

The types of correlations indicated in Table 3.1 are considered bivariate cor-
relations, or associations between two variables. Cohen & Cohen (1983), in 
describing correlation research, further presented the correlation between 
two variables controlling for the influence of a third variable. These correla-
tions are referred to as part and partial correlations, depending upon how 
variables are controlled or partialled out. Some of the various ways in which 
three variables can be depicted are illustrated in Figure 3.1. The diagrams 
illustrate different situations among variables where (a) all the variables are 
uncorrelated (Case 1), (b) only one pair of variables is correlated (Cases 2 
and 3), (c) two pairs of variables are correlated (Cases 4 and 5), and (d) all of 
the variables are correlated (Case 6). It is obvious that with more than three 
variables the possibilities become overwhelming. It is therefore important to 
have a theoretical perspective to suggest why certain variables are correlated 
and/or controlled in a study. A theoretical perspective is essential in specify-
ing a model and forms the basis for testing a structural equation model.

The partial correlation coefficient measures the association between two 
variables while controlling for a third variable, for example, the association 
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between age and reading comprehension, controlling for reading level. 
Controlling for reading level in the correlation between age and compre-
hension partials out the correlation of reading level with age and the cor-
relation of reading level with comprehension. Part correlation, in contrast, 
is the correlation between age and comprehension with reading level con-
trolled for, where only the correlation between comprehension and read-
ing level is removed before age is correlated with comprehension.

Whether a part or partial correlation is used depends on the specific 
model or research question. Convenient notation helps distinguish these 
two types of correlations (1 = age, 2 = comprehension, 3 = reading level): 
partial correlation, r12.3, part correlation, r1(2.3) or r2(1.3). Different correla-
tion values are computed depending on which variables are controlled 
or partialled out. For example, using the correlations in Table 3.4, we 
can compute the partial correlation coefficient r12.3 (correlation between 
age and comprehension, controlling for reading level) as follows:
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Figure 3.1
Possible three-variable relationships.
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Notice that the partial correlation coefficient should be smaller in magni-
tude than the Pearson product‑moment correlation between age and com-
prehension, which is r12 = .45. If the partial correlation coefficient is not 
smaller than the Pearson product-moment correlation, then a suppressor 
variable may be present (Pedhazur, 1997). A suppressor variable correlates 
near zero with a dependent variable but correlates significantly with other 
predictor variables. This correlation situation serves to control for variance 
shared with predictor variables and not the dependent variable. The partial 
correlation coefficient increases in magnitude once this effect is removed 
from the correlation between two predictor variables with a criterion. 
Partial correlations will be greater in magnitude than part correlations, 
except when independent variables are zero correlated with the depen-
dent variable; then, part correlations are equal to partial correlations.

The part correlation coefficient r1(2.3), or correlation between age and 
comprehension where reading level is controlled for in comprehension 
only, is computed as
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or, in the case of correlating comprehension with age where reading level 
is controlled for age only is
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The correlation, whether zero‑order (bivariate), part, or partial can be 
tested for significance, interpreted as variance accounted for by squaring 
each coefficient, and diagrammed using Venn or Ballentine figures to con-
ceptualize their relationships. In our example, the zero‑order relationships 
among the three variables can be diagrammed as in Figure 3.2. However, 
the partial correlation of age with comprehension controlling for reading 
level would be r12.3 = .43, or area a divided by the combined area of a and 
e [a/(a + e)]; see Figure 3.3. A part correlation of age with comprehension 

TABLE 3.4

Correlation Matrix (n = 100)

Variable Age Comprehension Reading Level

1. Age  1.00
2. Comprehension    .45 1.00
3. Reading level   .25    .80 1.00
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while controlling for the correlation between reading level and compre-
hension would be r1(2.3) = .42, or just area a; see Figure 3.4.

These examples consider only controlling for one variable when correlat-
ing two other variables (partial), or controlling for the impact of one variable 
on another before correlating with a third variable (part). Other higher-
order part correlations and partial correlations are possible (e.g., r12.34, r12(3.4)), 
but are beyond the scope of this book. Readers should refer to references for 

Age and Comprehension

Age and Reading

Reading and Comprehension

Figure 3.2
Bivariate correlations.

eAge Comprehension

Reading

a

Figure 3.3
Partial correlation area.
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a more detailed discussion of part and partial correlation (Cohen & Cohen, 
1983; Pedhazur, 1997; Hinkle, Wiersma & Jurs, 2003; Lomax, 2007).

3.4 � Correlation versus Covariance

The type of data matrix used for computations in structural equation mod-
eling programs is a variance–covariance matrix. A variance–covariance matrix 
is made up of variance terms on the diagonal and covariance terms on the 
off-diagonal. If a correlation matrix is used as the input data matrix, most 
of the computer programs by default convert it to a variance–covariance 
matrix using the standard deviations of the variables, unless specified 
otherwise. The researcher has the option to input raw data, a correlation 
matrix, or a variance–covariance matrix. The correlation matrix provides 
the option of using standardized or unstandardized variables for analysis 
purposes. If a correlation matrix is input with a row of variable means 
(although optional) and a row of standard deviations, then a variance–
covariance matrix is used with unstandardized output. If only a correla-
tion matrix is input, the means and standard deviations, by default, are 
set at 0 and 1, respectively, and standardized output is printed. When raw 
data are input, a variance–covariance matrix is computed.

The number of distinct elements in a variance–covariance matrix S is 
p(p + 1)/2, where p is the number of observed variables. For example, the 
variance–covariance matrix for the following three variables, X, Y, and Z, 
is as follows:

X Y Z
X 15.80

S = Y 10.16 11.02
Z 12.43   9.23 15.37

It has 3 (3 + 1)/2 = 6 distinct values: 3 variance and 3 covariance terms.

Age Comprehension

Reading

a

Figure 3.4
Part correlation area.
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Correlation is computed using the variances and covariance among the 
bivariate variables, using the following formula:
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Dividing the covariance between two variables (covariance terms are the 
off-diagonal values in the matrix) by the square root of the product of the 
two variable variances (variances of variables are on the diagonal of the 
matrix) yields the following correlations among the three variables:

	 rxy = 10.16/(15.80 * 11.02)1/2 = .77

	 rxz = 12.43/(15.80 * 15.37)1/2 = .80

	 ryz = 9.23/(11.02 * 15.37)1/2 = .71.

Structural equation software uses the variance–covariance matrix rather 
than the correlation matrix because Boomsma (1983) found that the analy-
sis of correlation matrices led to imprecise parameter estimates and stan-
dard errors of the parameter estimates in a structural equation model. 
In SEM, incorrect estimation of the standard errors for the parameter 
estimates could lead to statistically significant parameter estimates and 
an incorrect interpretation of the model—that is, the parameter divided 
by the standard error indicates a ratio statistic or T-value, which can be 
compared to tabled critical t-values for statistical significance at different 
alpha levels (Table A.2). Browne (1982), Jennrich and Thayer (1973), and 
Lawley and Maxwell (1971) have suggested corrections for the standard 
errors when correlations or standardized coefficients are used in SEM. In 
general, a variance–covariance matrix should be used in structural equa-
tion modeling, although some SEM models require variable means, for 
example, structured means models (see chapter 13).

3.5 � Variable Metrics (Standardized versus Unstandardized)

Researchers have debated the use of unstandardized or standardized 
variables (Lomax, 2007). The standardized coefficients are thought to be 
sample specific and not stable across different samples because of changes 
in the variance of the variables. The unstandardized coefficients permit 
an examination of change across different samples. The standardized 
coefficients are useful, however, in determining the relative importance 
of each variable to other variables for a given sample. Other reasons for 
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using standardized variables are that variables are on the same scale of 
measurement, are more easily interpreted, and can easily be converted 
back to the raw scale metric. In a SIMPLIS program, adding the command 
LISREL OUTPUT SS SC provides a standardized solution (observed vari-
ables) and a completely standardized solution (observed variables and 
latent variables).

3.6 � Causation Assumptions and Limitations

As previously discussed, the Pearson correlation coefficient is limited by 
the range of score values and the assumption of linearity, among other 
things. Even if the assumptions and limitations of using the Pearson cor-
relation coefficient are met, a cause-and-effect relationship still has not 
been established. The following conditions are necessary for cause and 
effect to be inferred between variables X and Y (Tracz, 1992): (a) tempo-
ral order (X precedes Y in time), (b) existence of covariance or correlation 
between X and Y, and (c) control for other causes, for example, partial Z 
out of X and Y.

These three conditions may not be present in the research design set-
ting, and in such a case, only association rather than causation can be 
inferred. However, if manipulative variables are used in the study, then 
a researcher could change or manipulate one variable in the study and 
examine subsequent effects on other variables, thereby determining 
cause-and-effect relationships (Resta & Baker, 1972). In structural equa-
tion modeling, the amount of influence rather than a cause-and-effect 
relationship is assumed and interpreted by direct, indirect, and total 
effects among variables, which are explained in chapter 7 where we dis-
cuss path models.

Philosophical differences exist between assuming causal versus infer-
ence relationships among variables, and the resolution of these issues 
requires a sound theoretical perspective. Bullock, Harlow, and Mulaik 
(1994) provided an in-depth discussion of causation issues related to 
structural equation modeling research. We feel that structural equation 
models will evolve beyond model fit into the domain of model testing 
as witnessed by the many new SEM model applications today. Model 
testing rather than model fit can involve testing significance of param-
eters, parameter change, or other factors that affect the model outcome 
values, and whose effects can be assessed. This approach, we believe, best 
depicts a causal assumption. In addition, structural models in longitudi-
nal research can depict changes in latent variables over time (Collins & 
Horn, 1992). Pearl (2009) more recently has renewed a discussion about 
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causality and firmly believes it is not mystical or metaphysical, but rather 
can be understood in terms of processes (models) that can be expressed in 
mathematical expressions ready for computer analysis.

3.7 � Summary

In this chapter, we have described some of the basic correlation concepts 
underlying structural equation modeling. This discussion included vari-
ous types of bivariate correlation coefficients, part and partial correlation, 
variable metrics, factors affecting correlation, the assumptions required in 
SEM, and causation versus inference debate in SEM modeling.

Most computer programs do not compute all the types of correlation 
coefficients used in statistics, so the reader should refer to a standard sta-
tistics textbook for computational formulas and understanding (Hinkle, 
Weirsma, & Jurs, 2003; Lomax, 2007). Structural equation modeling pro-
grams use a variance–covariance matrix, and include features to output 
the type of matrices they use. In SEM, categorical and/or ordinal vari-
ables with underlying continuous latent-variable attributes have been 
used with tetrachoric or polychoric correlations (Muthén, 1982, 1983, 1984; 
Muthén & Kaplan, 1985). PRELIS has been developed to permit a correla-
tion matrix of various types of correlations to be conditioned or converted 
into an asymptotic covariance matrix for input into structural equation 
modeling programs (Jöreskog & Sörbom, 1993). The use of various corre-
lation coefficients and subsequent conversion into a variance–covariance 
matrix will continue to play a major role in structural equation modeling, 
especially given mixture models (see chapter 15).

The chapter also presented numerous factors that affect the Pearson 
correlation coefficient, for example, restriction of range in the scores, 
outliers, skewness, and nonnormality. SEM software also converts cor-
relation matrices with standard deviations into a variance–covariance 
matrix, but if attenuated correlations are greater than 1.0, a nonpositive 
definite error message will occur because of an inadmissible solution. 
Nonpositive definite error messages are all too common among begin-
ners because they do not screen the data, thinking instead that struc-
tural equation modeling will be unaffected. Another major concern is 
when OLS initial estimates lead to bad start values for the coefficients 
in a model; however, changing the number of default iterations some-
times solves this problem. A troubleshooting box summarizes these 
issues (see Box 3.1). In chapter 4, we begin to deal with the basic steps a 
researcher takes in conducting SEM, which follows throughout the chap-
ters in the book.
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Box-3.1  Troubleshooting Tips

Issue Suggestions

Measurement 
scale

Need to take the measurement scale of the variables into 
account when computing correlations.

Restriction of 
range

Need to consider range of values obtained for variables, as 
restricted range of one or more variables can reduce the 
magnitude of correlations. Can consider data transformations 
for nonnormal data.

Missing data Need to consider missing data on one or more subjects for one or 
more variables as this can affect SEM results. Cases are lost with 
listwise deletion, pairwise deletion is often problematic (e.g., 
different sample sizes), and thus modern methods are 
recommended.

Outliers Need to consider outliers as they can affect correlations. They 
can either be explained, deleted, or accommodated (using 
either robust statistics or obtaining additional data to fill-in). 
Can be detected by methods such as box plots, scatterplots, 
histograms or frequency distributions.

Linearity Need to consider whether variables are linearly related, as 
nonlinearity can reduce the magnitude of correlations. Can be 
detected by scatterplots and dealt with by transformations or 
deleting outliers.

Correction for 
attenuation

Less than perfect reliability on observed measures can reduce 
the magnitude of correlations and lead to nonpositive definite 
error message. Best to use multiple, high quality measures.

Nonpositive 
definite 
matrices 

Can occur in a correlation or covariance matrix due to a 
variable that a linear combination of other variables, 
collinearity, sample size less than the number of variables, 
negative or zero variances, correlations outside of the 
permissible range, or bad start values. Solutions include 
eliminating the bad variables, rescaling variables, and using 
more reasonable starting values.

Sample size Small samples can reduce power and precision of parameter 
estimates. At least 100 to 150 cases is necessary for smaller 
models with well-behaved data.

Exercises

	 1. 	Given the Pearson correlation coefficients r12 = .6, r13 = .7, and 
r23 =  4, compute the part and partial correlations r12.3 and r1(2.3).

	 2.	 Compare the variance explained in the bivariate, partial, and 
part correlations of Exercise 1.

	 3.	 Explain causation and describe when a cause-and-effect rela-
tionship might exist.
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	 4.	 Given the following variance-covariance matrix, compute the 
Pearson correlation coefficients: rXY, rXZ, and rYZ:

X Y Z

X 15.80
Y 10.16 11.02
Z 12.43    9.23 15.37
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4
SEM Basics

Key Concepts

Model specification and specification error
Fixed, free, and constrained parameters
Under-, just‑, and over-identified models
Recursive versus nonrecursive models
Indeterminancy
Different methods of estimation
Specification search

In this chapter we introduce the basic building blocks of SEM analyses, 
which follow a logical sequence of five steps or processes: model specifica-
tion, model identification, model estimation, model testing, and model mod-
ification. In subsequent chapters, we further illustrate these five steps. These 
basic building blocks are absolutely essential to conducting SEM models.

4.1 � Model Specification

Model specification involves using all of the available relevant theory, research, 
and information to develop a theoretical model. Thus, prior to any data col-
lection or analysis, the researcher specifies a particular model that should be 
confirmed using variance–covariance data. In other words, available informa-
tion is used to decide which variables to include in the theoretical model (which 
implicitly also involves which variables not to include in the model) and how 
these variables are related. Model specification involves determining every rela-
tionship and parameter in the model that is of interest to the researcher. Cooley 
(1978) indicated that this was the hardest part of structural equation modeling.

A given model is properly specified when the true population model is 
deemed consistent with the implied theoretical model being tested—that is, 

Y102005.indb   55 3/22/10   3:25:28 PM



56	 A Beginner’s Guide to Structural Equation Modeling

the sample covariance matrix S is sufficiently reproduced by the implied theo-
retical model. The goal of the applied researcher is, therefore, to determine the 
best possible model that generates the sample covariance matrix. The sample 
covariance matrix implies some underlying, yet unknown, theoretical model 
or structure (known as covariance structure), and the researcher’s goal is to 
find the model that most closely fits that covariance structure. Take the simple 
example of a two-variable situation involving observed variables X and Y. We 
know from prior research that X and Y are highly correlated, but why? What 
theoretical relationship is responsible for this correlation? Does X influence Y, 
does Y influence X, or does a third variable Z influence both X and Y? There 
can be many possible reasons why X and Y are related in a particular fashion. 
The researcher needs prior research and theories to choose among plausible 
explanations and therefore provide the rationale for specifying a model—that 
is, testing an implied theoretical model (model specification).

Ultimately, an applied researcher wants to know the extent to which 
the true model that generated the data deviates from the implied theoreti-
cal model. If the true model is not consistent with the implied theoretical 
model, then the implied theoretical model is misspecified. The difference 
between the true model and the implied model may be due to errors of 
omission and/or inclusion of any variable or parameter. For example, 
an important parameter may have been omitted from the model tested 
(model did not indicate that X and Y are related), or an important vari-
able may have been omitted (model did not include an important vari-
able, such as amount of education or training). Likewise, an unimportant 
parameter and/or unimportant variable may have been included in the 
model, that is, there is an error of inclusion.

The exclusion or inclusion of unimportant variables will produce implied 
models that are misspecified. Why should we be concerned about this? The 
problem is that a misspecified model may result in biased parameter esti-
mates, in other words, estimates that are systematically different from what 
they really are in the true model. This bias is known as specification error. In 
the presence of specification error, it is likely that one’s theoretical model 
may not fit the data and be deemed statistically unacceptable (see model test-
ing in section 4.4). There are a number of procedures available for the detec-
tion of specification error so that a more properly specified model may be 
evaluated. The model modification procedures are described in section 4.5.

4.2 � Model Identification

In structural equation modeling, it is crucial that the researcher resolve the 
identification problem prior to the estimation of parameters. In the identifica-
tion problem, we ask the following question: On the basis of the sample 
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data contained in the sample covariance matrix S and the theoretical model 
implied by the population covariance matrix Σ, can a unique set of param-
eter estimates be found? For example, the theoretical model might suggest 
that X + Y = some value, the data might indicate that X + Y = 10, and yet it 
may be that no unique solution for X and Y exists. One solution is that X 
= 5 and Y = 5, another is that X = 2 and Y = 8, and so on, because there are 
an infinite number of possible solutions for this problem, that is, there is 
an indeterminacy or the possibility that the data fits more than one implied 
theoretical model equally well. The problem is that there are not enough 
constraints on the model and the data to obtain unique estimates of X and 
Y. Therefore, if we wish to solve this problem, we need to impose some con-
straints. One such constraint might be to fix the value of X to 1; then Y would 
have to be 9. We have solved the identification problem in this instance by 
imposing one constraint. However, except for simplistic models, the solu-
tion to the identification problem in structural equation modeling is not so 
easy (although algebraically one can typically solve the problem).

Each potential parameter in a model must be specified to be either a free 
parameter, a fixed parameter, or a constrained parameter. A free param-
eter is a parameter that is unknown and therefore needs to be estimated. 
A fixed parameter is a parameter that is not free, but is fixed to a specified 
value, typically either 0 or 1. A constrained parameter is a parameter that is 
unknown, but is constrained to equal one or more other parameters.

Model identification depends on the designation of parameters as fixed, 
free, or constrained. Once the model is specified and the parameter speci-
fications are indicated, the parameters are combined to form one and 
only one Σ (model implied variance–covariance matrix). The problem still 
exists, however, in that there may be several sets of parameter values that 
can form the same Σ. If two or more sets of parameter values generate 
the same Σ, then they are equivalent, that is, yield equivalent models (Lee 
& Hershberger, 1990; MacCallum, Wegener, Uchino, & Fabrigar, 1993; 
Raykov & Penev, 2001). If a parameter has the same value in all equivalent 
sets, then the parameter is identified. If all of the parameters of a model 
are identified, then the entire model is identified. If one or more of the 
parameters are not identified, then the entire model is not identified.

Traditionally, there have been three levels of model identification. They 
depend on the amount of information in the sample variance–covariance 
matrix S necessary for uniquely estimating the parameters of the model. 
The three levels of model identification are as follows:

	 1.	A model is under-identified (or not identified) if one or more 
parameters may not be uniquely determined because there is not 
enough information in the matrix S.

	 2.	A model is just‑identified if all of the parameters are uniquely deter-
mined because there is just enough information in the matrix S.

Y102005.indb   57 3/22/10   3:25:28 PM



58	 A Beginner’s Guide to Structural Equation Modeling

	 3.	A model is over-identified when there is more than one way of esti-
mating a parameter (or parameters) because there is more than 
enough information in the matrix S.

If a model is either just‑ or over-identified, then the model is identified. 
If a model is under-identified, then the parameter estimates are not to be 
trusted, that is, the degrees of freedom for the model is negative. However, 
such a model may become identified if additional constraints are imposed, 
that is, the degrees of freedom equal 0 or greater than 0 (positive value).

There are several conditions for establishing the identification of a model. 
A necessary, but not the only sufficient condition for identification is the 
order condition, under which the number of free parameters to be estimated 
must be less than or equal to the number of distinct values in the matrix S, 
that is, only the diagonal variances and one set of off‑diagonal covariance 
terms are counted. For example, because s12 = s21 in the off-diagonal of the 
matrix, only one of these covariance terms is counted. The number of dis-
tinct values in the matrix S is equal to p(p + 1)/2, where p is the number of 
observed variables. The number of free parameters (saturated model—all 
paths) with the number of means = p is equal to p(p + 1)/2 + p = p(p + 3)/2 
free parameters. For a sample matrix S with 3 observed variables, there are 
six distinct values [3(3 + 1)/2 = 6] and 9 free (independent) parameters 
[3(3 + 3)/2] that can be estimated. Consequently, the number of free param-
eters estimated in any theoretical implied model must be less than or equal 
to the number of distinct values in the S matrix. However, this is only one 
necessary condition for model identification; it does not by itself imply that 
the model is identified. For example, if the sample size is small (n = 10) 
relative to the number of variables (p = 20), then not enough information is 
available to estimate parameters in a saturated model. This explanation of 
the order condition is referred to as the “t rule” by Bollen (1989).

Whereas the order condition is easy to assess, other sufficient condi-
tions are not—for example, the rank condition. The rank condition requires 
an algebraic determination of whether each parameter in the model 
can be estimated from the covariance matrix S. Unfortunately, proof of 
this rank condition is often problematic in practice, particularly for the 
applied researcher. However, there are some procedures that the applied 
researcher can use. For a more detailed discussion on the rank condition, 
we refer to Bollen (1989) or Jöreskog and Sörbom (1988). The basic concepts 
and a set of procedures to handle problems in model identification are 
discussed next and in subsequent chapters.

Three different methods for avoiding identification problems are 
available. The first method is in the measurement model, where we 
decide which observed variables measure each latent variable. Either 
one indicator for each latent variable must have a factor loading fixed to 
1, or the variance of each latent variable must be fixed to 1. The reason 
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for imposing these constraints is to set the measurement scale for each 
latent variable, primarily because of indeterminacy between the variance 
of the latent variable and the loadings of the observed variables on that 
latent variable. Utilizing either of these methods will eliminate the scale 
indeterminacy problem, but not necessarily the identification problem, 
and so additional constraints may be necessary.

The second method comes into play where reciprocal or nonrecursive 
structural models are used; such models are sometimes a source of the 
identification problem. A structural model is recursive when all of the 
structural relationships are unidirectional (two latent variables are not 
reciprocally related), that is, no feedback loops exist whereby a latent vari-
able feeds back upon itself. Nonrecursive structural models include a recip-
rocal or bidirectional relationship, so that there is feedback—for example, 
models that allow product attitude and product interest to influence one 
another. For a nonrecursive model, ordinary least squares (OLS; see model 
estimation in section 4.3) is not an appropriate method of estimation.

The third method is to begin with a parsimonious (simple) model with a 
minimum number of parameters. The model should only include variables 
(parameters) considered to be absolutely crucial. If this model is identified, 
then you can consider including other parameters in subsequent models.

A second set of procedures involves methods for checking on the iden-
tification of a model. One method is Wald’s (1950) rank test. A second, 
related method is described by Wiley (1973), Keesling (1972), and Jöreskog 
and Sörbom (1988). This test has to do with the inverse of the informa-
tion matrix and is computed in LISREL. Unfortunately, these methods are 
not 100% reliable, and there is no general “necessary and sufficient” test 
available for the applied researcher to use. Our advice is to use whatever 
methods are available for identification. If you still suspect that there is 
an identification problem, follow the recommendation of Jöreskog and 
Sörbom (1988). The first step is to analyze the sample covariance matrix 
S and save the estimated population matrix Σ. The second step is to ana-
lyze the estimated population matrix Σ. If the model is identified, then the 
estimates from both analyses should be identical. Another option, often 
recommended, is to use different starting values in separate analyses. If 
the model is identified, then the estimates should be identical.

4.3 � Model Estimation

In this section we examine different methods for estimating parameters 
in a model—that is, estimates of the population parameters in a structural 
equation model. We want to obtain estimates for each of the parameters 
specified in the model that produce the implied matrix Σ, such that the 
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parameter values yield a matrix as close as possible to S, our sample cova-
riance matrix of the observed or indicator variables. When elements in the 
matrix S minus the elements in the matrix Σ equal zero (S – Σ = 0), then 
χ2 = 0,—that is, one has a perfect model fit to the data.

The estimation process involves the use of a particular fitting function to 
minimize the difference between Σ and S. Several fitting functions or esti-
mation procedures are available. Some of the earlier estimation methods 
included unweighted or ordinary least squares (ULS or OLS), generalized 
least squares (GLS), and maximum likelihood (ML).

The ULS estimates are consistent, have no distributional assumptions 
or associated statistical tests, and are scale dependent—that is, changes 
in observed variable scale yield different solutions or sets of estimates. In 
fact, of all the estimators described here, only the ULS estimation method 
is scale dependent. The GLS and ML methods are scale free, which means 
that if we transform the scale of one or more of our observed variables, 
the untransformed and transformed variables will yield estimates that 
are properly related—that is, that differ by the transformation. The GLS 
procedure involves a weight matrix W, such as S−1, the inverse of the 
sample covariance matrix. Both GLS and ML estimation methods have 
desirable asymptotic properties—that is, large sample properties, such as 
minimum variance and unbiasedness. Also, both GLS and ML estimation 
methods assume multivariate normality of the observed variables (the 
sufficient conditions are that the observations are independent and iden-
tically distributed and that kurtosis is zero). The weighted-least squares 
(WLS) estimation method generally requires a large sample size and as 
a result is considered an asymptotically distribution-free (ADF) estima-
tor, which does not depend on the normality assumption. Raykov and 
Widaman (1995) further discussed the use of ADF estimators.

If standardization of the latent variables is desired, one may obtain a 
standardized solution (and thereby standardized estimates), where the 
variances of the latent variables are fixed at 1 by adding the command 
line LISREL OUTPUT SS SC to the SIMPLIS program. A separate but 
related issue is standardization of the observed variables. When the unit 
of measurement for the indicator variables is of no particular interest to 
the researcher—that is, arbitrary or irrelevant—then only an analysis of 
the correlation matrix is typically of interest. The analysis of correlations 
usually gives correct chi-square goodness-of-fit values but estimates the 
standard errors incorrectly. There are ways to specify a model, analyze a 
correlation matrix, and obtain correct standard errors. For example, the 
SEPATH structural equation modeling program by Steiger (1995) does 
permit correlation matrix input and computes the correct standard errors. 
Since the correlation matrix involves a standardized scaling among 
the observed variables, the parameters estimated for the measurement 
model—for example, the factor loadings—will be of the same order of 

Y102005.indb   60 3/22/10   3:25:29 PM



SEM Basics	 61

magnitude, that is, on the same scale. When the same indicator variables 
are measured either over time (longitudinal analysis), for multiple samples, 
or when equality constraints are imposed on two or more parameters, an 
analysis of the covariance matrix is appropriate and recommended so as 
to capitalize on the metric similarities of the variables (Lomax, 1982).

More recently, other estimation procedures have been developed for 
the analysis of covariance structure models. Beginning with LISREL, 
automatic starting values have been provided for all of the parameter 
estimates. These are referred to as initial estimates and involve a fast, nonit-
erative procedure (unlike other methods such as ML, which is iterative). 
The initial estimates involve the instrumental variables and least-squares 
methods (ULS and two‑stage least-squares method TSLS) developed by 
Hagglund (1982). Often, the user may wish to obtain only the initial esti-
mates (for cost efficiency) or to use them as starting values in subsequent 
analyses. The initial estimates are consistent and rather efficient relative 
to the ML estimator, and have been shown, as in the case of the centroid 
method, to be considerably faster, especially in large-scale measurement 
models (Gerbing & Hamilton, 1994).

If one can assume multivariate normality of the observed variables, 
then moments beyond the second—that is, skewness and kurtosis—can 
be ignored. When the normality assumption is violated, parameter esti-
mates and standard errors are suspect. One alternative is to use GLS, 
which assumes multivariate normality and stipulates that kurtosis be 
zero (Browne, 1974). Browne (1982, 1984) later recognized that the weight 
matrix of GLS may be modified to yield ADF or WLS estimates, standard 
errors, and test statistics. Others (Bentler, 1983; Shapiro, 1983) have devel-
oped more general classes of ADF estimators. All of these methods are 
based on the GLS method and specify that the weight matrix be of a cer-
tain form, although none of these methods takes multivariate kurtosis into 
account. Research by Browne (1984) suggests that goodness‑of‑fit indices 
and standard errors of parameter estimates derived under the assump-
tion of multivariate normality should not be employed if the distribution 
of the observed variables has a nonzero value for kurtosis.

An implicit assumption of ML estimators is that information contained 
in the first and second order moments (mean, and variance, respectively) 
of the observed variables is sufficient so that information contained in 
higher-order moments (skewness and kurtosis) can be ignored. If the 
observed variables are interval scaled and multivariate normal, then 
the ML estimates, standard errors, and chi-square test are appropriate. 
However, if the observed variables are ordinal-scaled and/or extremely 
skewed or peaked (nonnormally distributed), then the ML estimates, 
standard errors, and chi-square test may not be robust.

The use of binary and ordinal response variables in structural equa-
tion modeling was pioneered by Muthén (1982, 1984). Muthén proposed 
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a three‑stage limited-information, GLS estimator that provided a large 
sample chi-square test of the model and large sample standard errors. The 
Muthén categorical variable methodology (CVM) is believed to produce 
more suitable coefficients of association than the ordinary Pearson prod-
uct moment correlations and covariance applied to ordered categorical 
variables (Muthén, 1983). This is especially the case with markedly skewed 
categorical variables, where correlations must be adjusted to assume val-
ues throughout the −1 to +1 range, as is done in the PRELIS program.

The PRELIS computer program handles ordinal variables by comput-
ing a polychoric correlation for two ordinal variables (Olsson, 1979), and 
a polyserial correlation for an ordinal and an interval variable (Olsson, 
Drasgow, & Dorans, 1982), where the ordinal variables are assumed to have 
an underlying bivariate normal distribution, which is not necessary with 
the Muthén approach. All correlations (Pearson, polychoric, and polyse-
rial) are then used by PRELIS to create an asymptotic covariance matrix for 
input into LISREL. The reader is cautioned to not directly use mixed types 
of correlation matrices or covariance matrices in a LISREL–SIMPLIS pro-
gram, but instead use an asymptotic variance–covariance matrix produced 
by PRELIS along with the sample variance–covariance matrix as input in 
a LISREL–SIMPLIS or LISREL matrix program. The Satorra–Bentler scaled 
chi-square would then be reported for the robust model-fit measure.

During the past 15 or 20 years, we have seen considerable research on 
the behavior of methods of estimation under various conditions. The most 
crucial conditions are characterized by a lack of multivariate normality 
and interval level variables. When the data are generated from nonnor-
mally distributed populations and/or represent discrete variables, the 
normal theory estimators of standard errors and model-fit indices dis-
cussed in chapter 5 could be suspect. However, recent simulation research 
by Lei and Lomax (2005) indicated that the ML and GLS estimators are 
quite comparable in the case of small to moderate nonnormality for inter-
val data (bias is generally quite small and, in fact, ML tends to slightly 
outperform GLS). Similar results were obtained by Fan & Wang (1998). 
In the case of severe nonnormality for interval data, one of the distribu-
tion free or weighted procedures (ADF, WLS, or GLS) is recommended 
(Lomax, 1989). In dealing with noninterval variables, the research indi-
cates that only when categorical data show small to moderate skewness 
and kurtosis values (range of −1 to +1, or −1.5 to +1.5) should ML be used. 
When these conditions are not met, several options already mentioned are 
recommended. These include the use of tetrachoric, polyserial, and poly-
choric correlations rather than Pearson product‑moment correlations, or 
the use of distribution‑free or weighted procedures available in the SEM 
software. Considerable research remains to be conducted to determine 
what the optimal estimation procedure is for a given set of conditions. In 
summary, we recommend the use of ML estimation for slight to moderate 
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nonnormal interval and ordinal data, and ADF, WLS, or GLS estimation 
for severely nonnormal interval and ordinal data.

4.4 � Model Testing

Once the parameter estimates are obtained for a specified SEM model, 
the researcher should determine how well the data fit the model. In other 
words, to what extent is the theoretical model supported by the obtained 
sample data? There are two ways to think about model fit. The first is to 
consider some global type omnibus test of the fit of the entire model. The 
second is to examine the fit of individual parameters in the model.

We first consider the global tests in SEM known as model-fit criteria. 
Unlike many statistical procedures that have a single, most powerful fit 
index—for example, F test in ANOVA—in SEM there are an increasingly 
large number of model-fit indices. Many of these measures are based on a 
comparison of the model implied covariance matrix Σ to the sample cova-
riance matrix S. If Σ and S are similar in some fashion, then one may say 
that the data fit the theoretical model. If Σ and S are quite different, then 
one may say that the data do not fit the theoretical model. We explain 
model-fit indices in more detail in chapter 5.

Second, we consider the individual parameters of the model. Three 
main features of the individual parameters can be considered. One fea-
ture is whether a free parameter is significantly different from zero. Once 
parameter estimates are obtained, standard errors for each estimate are 
also computed. A ratio of the parameter estimate to the estimated stan-
dard error can be formed as a critical value, which is assumed to be nor-
mally distributed (unit normal distribution)—that is, the critical value 
equals the parameter estimate divided by the standard error of the param-
eter estimate. If the critical value exceeds the expected value at a specified 
a level—for example, a = .05, two tailed test, tabled t = 1.96—then that 
parameter is significantly different from zero. The parameter estimate, 
standard error, and critical value are routinely provided in the computer 
output for a model. A second feature is whether the sign of the parameter 
agrees with what is expected from the theoretical model. For example, if 
the expectation is that more education will yield a higher income level, 
then an estimate with a positive sign would support that expectation. 
A third feature is that parameter estimates should make sense—that is, 
they should be within an expected range of values. For instance, vari-
ances should not have negative values and correlations should not exceed 
1. Thus, all free parameters should be in the expected direction, be statisti-
cally different from zero, and be meaningfully interpreted.
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4.5 � Model Modification

If the fit of the implied theoretical model is not as strong as one would 
like (which is typically the case with an initial model), then the next 
step is to modify the model and subsequently evaluate the new modi-
fied model. In order to determine how to modify the model, there are a 
number of procedures available for the detection of specification errors 
so that more properly specified alternative models may be evaluated dur-
ing respecification process. In general, these procedures are used for per-
forming what is called a specification search (Leamer, 1978). The purpose 
of a specification search is to alter the original model in the search for 
a model that is better fitting in some sense and yields parameters hav-
ing practical significance and substantive meaning. If a parameter has 
no substantive meaning to the applied researcher, then it should never 
be included in a model. Substantive interest must be the guiding force 
in a specification search; otherwise, the resultant model will not have 
practical value or importance. There are procedures designed to detect 
and correct for specification errors. Typically, applications of structural 
equation modeling include some type of specification search, informal or 
formal, although the search process may not always be explicitly stated 
in a research report.

An obvious intuitive method is to consider the statistical significance of 
each parameter estimated in the model. One specification strategy would 
be to fix parameters that are not statistically significant—that is, have small 
critical values, to 0 in a subsequent model. Care should be taken, however, 
because statistical significance is related to power and sample size (see 
chapter 5); parameters may not be significant with small samples but sig-
nificant with larger samples. Also, substantive theoretical interests must 
be considered. If a parameter is not significant, but is of sufficient substan-
tive interest, then the parameter should probably remain in the model. 
The guiding rule should be that the parameter estimates make sense to 
you. If an estimate makes no sense to you, how are you going to explain it, 
how is it going to be of substantive value or meaningful?

Another intuitive method of examining misspecification is to examine 
the residual matrix, that is, the differences between the observed cova-
riance matrix S and the model-implied covariance matrix Σ; these are 
referred to as fitted residuals in the LISREL program output. These values 
should be small in magnitude and should not be larger for one variable 
than another. Large values overall indicate serious general model misspeci-
fication, whereas large values for a single variable indicate misspecifica-
tion for that variable only, probably in the structural model (Bentler, 1989). 
Standardized or normalized residuals can also be examined. Theoretically, 
these can be treated like standardized z scores, and hence problems can 
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be more easily detected from the standardized residual matrix than from 
the unstandardized residual matrix. Large standardized residuals (larger 
than, say, 1.96 or 2.58) indicate that a particular covariance structure is not 
well explained by the model. The model should be examined to determine 
ways in which this particular covariance structure could be explained, for 
example, by freeing some parameters in the model.

Sörbom (1975) considered misspecification of correlated measurement 
error terms in the analysis of longitudinal data. Sörbom proposed consid-
ering the first order partial derivatives, which have values of zero for free 
parameters and nonzero values for fixed parameters. The largest value, 
in absolute terms, indicates the fixed parameter most likely to improve 
model fit. A second model, with this parameter now free, is then esti-
mated and goodness of fit assessed. Sörbom defines an acceptable fit as 
occurring when the difference between the two model chi-square values 
is not significant. The derivatives of the second model are examined, and 
the process continues until an acceptable fit is achieved. This procedure, 
however, is restricted to the derivatives of the observed variables and pro-
vides indications of misspecification only in terms of correlated measure-
ment error.

More recently, other procedures have been developed to examine model 
specification. In the LISREL–SIMPLIS program, modification indices are 
reported for all nonfree parameters. These indices were developed by 
Sörbom (1986) and represent an improvement over the first order partial 
derivatives already described. A modification index for a particular non-
free parameter indicates that if this parameter were allowed to become 
free in a subsequent model, then the chi-square goodness-of-fit value 
would be predicted to decrease by at least the value of the modification 
index. In other words, if the value of the modification index for a nonfree 
parameter is 50, then when this parameter is allowed to be free in a sub-
sequent model, the value of chi-square will decrease by at least 50. Thus, 
modification indices would suggest ways that the model might be altered 
by allowing the corresponding parameters to become free to be estimated 
with the researcher arriving at a better fitting model. As reported in an 
earlier LISREL manual (Jöreskog & Sörbom, 1988), “This procedure seems 
to work well in practice” (p. 44).

The LISREL program also provides squared multiple correlations for the 
observed variables in the measurement equations. These values indicate 
how well the observed variables serve as measures of the latent variables 
(reliability measure) and are scaled from 0 to 1. Squared multiple correla-
tions are also given for the variables in the structural equations. These 
values serve as an indication of the strength of the structural relationships 
(prediction measure) and are also scaled from 0 to 1.

A relatively new index, the expected parameter change, now appears in 
the LISREL program computer output. The expected parameter change 
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(EPC) statistic in the LISREL program computer output indicates the esti-
mated change in the magnitude and direction of each nonfree parameter 
if set free to be estimated (rather than the predicted change in the good-
ness‑of‑fit test as with the modification indices). This could be useful, for 
example, if the sign of the potential free parameter is not in the expected 
direction (positive instead of negative). This would suggest that such a 
parameter should remain fixed.

Empirical research suggests that specification searches are most suc-
cessful when the model tested is very similar to the model that generated 
the data. More specifically, these studies begin with a known true model 
from which sample data are generated. The true model is then intention-
ally misspecified. The goal of the specification search is to begin with the 
misspecified model and determine whether the true model can be located 
as a result of the search. If the misspecified model is more than two or 
three parameters different from the true model, then it is difficult to locate 
the true model. Unfortunately, in these studies the true model was almost 
never located through the specification search, regardless of the search 
procedure or combination of procedures that were used (Gallini, 1983; 
Gallini & Mandeville, 1984; Saris & Stronkhorst, 1984; MacCallum, 1986; 
Baldwin & Lomax, 1990; Tippets, 1992).

What is clear is that there is no single existing procedure sufficient for 
finding a properly specified model. As a result, there has been a flurry 
of research in recent years to determine what combination of procedures 
is most likely to yield a properly specified model (Chou & Bentler, 1990; 
Herbing & Costner, 1985; Kaplan, 1988, 1989, 1990; MacCallum, 1986; 
Saris, Satorra & Sörbom, 1987; Satorra & Saris, 1985; Silvia & MacCallum, 
1988). No optimal strategy has been found. A computer program known as 
TETRAD was developed by Glymour, Scheines, Spirtes, and Kelly (1987), 
and the new version, TETRAD II (Spirtes, Scheines, Meek, & Glymour, 
1994), thoughtfully reviewed by Wood (1995), offers new search proce-
dures. A newer specification search procedure, known as Tabu, recently 
developed by Marcoulides, Drezner, and Schumacker (1998) can today 
readily provide a set of optimum models. If one selected all of the paths in 
the model as optional, then all possible models would be listed; for exam-
ple, a multiple regression equation with 17 independent variables and 1 
dependent variable would yield 217 or 131,072 regression models, not all of 
which would be theoretically meaningful. Selection of the “best” equation 
would require the use of some fit criteria for comparing models. Applying 
Tabu in SEM, for example, χ2 – df, AIC, or BIC would be used for selecting 
best models. Current modeling software permits the formulation of all 
possible models; however, the outcome of any specification search should 
still be guided by theory and practical considerations as well as the time 
and cost of acquiring the data.
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Given our lengthy discussion about specification search procedures, 
some practical advice is warranted for the researcher. The following is 
our suggested eight-step procedure for a specification search:

	 1.	Let substantive theory and prior research guide your model 
specification.

	 2.	When you are satisfied that Rule 1 has been met, test your implied 
theoretical model and move to Rule 3.

	 3.	Conduct a specification search, first on the measurement model, 
and then on the structural model.

	 4.	For each model tested, look to see if the parameters are of the 
expected magnitude and direction, and examine several appro-
priate goodness‑of‑fit indices.
Steps 5 through 7 can be followed in an iterative fashion. For 

example, you might go from Step 5 to Step 6, and successively 
on to Steps 7, 6, 5, and so on.

	 5.	Examine the statistical significance of the nonfixed parameters. 
Look to see if any nonfixed parameters should be fixed in a sub-
sequent model.

	 6.	Examine the modification indices, expected parameter change 
statistics. Look to see if any fixed parameters should be freed in a 
subsequent model.

	 7.	Consider examining the standardized residual matrix to see if 
anything suspicious is occurring (larger values for a particular 
observed variable).

	 8.	Once you determine a final acceptable model, cross‑validate it with 
a new sample, or use half of the sample to find a properly specified 
model and use the other half to check it (cross-validation index, or 
CVI), or report a single sample cross-validation index (ECVI) for 
alternative models (Cudeck & Browne, 1983; Kroonenberg & Lewis, 
1982). Cross-validation procedures are discussed in chapter 12.

4.6 � Summary

In this chapter we considered the basics of structural equation modeling. 
The chapter began with a look at model specification (fixed, free, and con-
strained parameters) and then moved on to model identification (under-, 
just‑, and over-identified models). Next, we discussed the various types of 
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estimation procedures. Here we considered each estimation method, its 
underlying assumptions, and some general guidelines as to when each 
is appropriate. We then moved on to a general discussion of model test-
ing, where the fit of a given model is assessed. Finally, we described the 
specification search process, where information is used to arrive at a more 
properly specified model that is theoretically meaningful. Troubleshooting 
tips summarizing these key issues are provided in Box 4.1.

BOX 4.1  Troubleshooting Tips
Issue Suggestions

Identification 
problem

Solutions include fixing parameters (either latent variable 
variances or one factor loading for each latent variable), 
avoiding nonrecursive models, utilizing parsimonious 
models, or determining if a positive degree of freedom exists 
when subtracting total number of elements in matrix from 
number of free parameters to be estimated in the model.

Estimation 
method

For normal and slight to moderate nonnormal interval and 
ordinal data, use ML; otherwise consider WLS, ADF, GLS, or 
CVM methods.

Specification 
search

Examine the statistical significance of free parameters, 
standardized residuals, modification indices, goodness-of-fit 
indices, squared multiple correlations, as well as expected 
parameter change.

In chapter 5, we discuss the numerous goodness-of-fit indices in the 
LISREL computer output to determine whether a model is parsimoni-
ous, which alternative models are better, and to examine submodels 
(nested models). We classify the model-fit indices according to whether 
a researcher is testing model fit, seeking a more parsimonious model 
(complex to simple), or comparing nested models. In addition, we discuss 
hypothesis testing, parameter significance, power, and sample size, as 
these affect our interpretation of model fit and statistical significance of 
parameter estimates.

Exercises

	 1.	 Define model specification.

	 2.	 Define model identification.

	 3.	 Define model estimation.

	 4.	 Define model testing.
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	 5.	 Define model modification.
	 6.	 Determine the number of distinct values (variances and covari-

ances) in the following variance–covariance matrix S:

	

S =

























1 0

25 1 0

35 45 1 00

.

. .

. . .

	 7.	 How many distinct values are in a variance–covariance matrix 
for the following variables {hint: [p(p + 1)/2]}:

	 a.	 Five variables
	 b.	 Ten variables

	 8.	 A saturated model with p variables has p(p + 3)/2 free param-
eters. Determine the number of free parameters for the follow-
ing number of variables in a model:

	 a.	 Three observed variables
	 b.	 Five observed variables
	 c.	 Ten observed variables
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5
Model Fit

Key Concepts

Confirmatory models, alternative models, model generating
Specification search
Saturated models and independence models
Model fit, model comparison, and model parsimony fit indices
Measurement model versus structural model interpretation
Model and parameter significance
Power and sample size determination

In chapter 4, we considered the basic building blocks of SEM, namely, 
model specification, model identification, model estimation, model testing, 
and model modification. These five steps fall into three main approaches 
for going from theory to a SEM model in which the covariance structure 
among variables is analyzed. In the confirmatory approach, a researcher 
hypothesizes a specific theoretical model, gathers data, and then tests 
whether the data fit the model. In this approach, the theoretical model is 
either confirmed or disconfirmed, based on a chi-square statistical test of 
significance and/or meeting acceptable model-fit criteria. In the second 
approach using alternative models, the researcher creates a limited num-
ber of theoretically different models to determine which model the data 
fit best. When these models use the same data set, they are referred to as 
nested models. The alternative approach conducts a chi-square difference 
test to compare each of the alternative models. The third approach, model 
generating, specifies an initial model (theoretical model), but usually the 
data do not fit this initial model at an acceptable model-fit criterion level, so 
modification indices are used to add or delete paths in the model to arrive 
at a final best model. The goal in model generating is to find a model that 
the data fit well statistically, but that also has practical and substantive 
theoretical meaning. The process of finding the best-fitting model is also 
referred to as a specification search, implying that if an initially specified 
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model does not fit the data, then the model is modified in an effort to 
improve the fit (Marcoulides & Drezner, 2001; 2003). Recent advances in 
Tabu search algorithms have permitted the generation of a set of models that 
the data fit equally well with a final determination by the researcher of 
which model to accept (Marcoulides, Drezner, & Schumacker, 1998).

5.1 � Types of Model-Fit Criteria

Finding a statistically significant theoretical model that also has practical 
and substantive meaning is the primary goal of using structural equation 
modeling to test theories. A researcher typically uses the following three 
criteria in judging the statistical significance and substantive meaning of 
a theoretical model:

	 1.	The first criterion is the nonstatistical significance of the chi-square 
test and the root-mean-square error of approximation (RMSEA) 
values, which are global fit measures. A nonstatistically significant 
chi-square value indicates that the sample covariance matrix and 
the reproduced model implied covariance matrix are similar. A 
RMSEA value less than or equal to .05 is considered acceptable.

	 2.	The second criterion is the statistical significance of individual 
parameter estimates for the paths in the model, which are values 
computed by dividing the parameter estimates by their respective 
standard errors. This is referred to as a t value, and is typically 
compared to a tabled t value of 1.96 at the .05 level of significance 
(two-tailed). [Note: LISREL 8.8 student version now reports the 
standard error, z-value, and p-value for each parameter.]

	 3.	The third criterion is the magnitude and direction of the param-
eter estimates, paying particular attention to whether a positive 
or negative coefficient makes sense for the parameter estimate. 
For example, it would not be theoretically meaningful to have a 
negative parameter (coefficient) relating number of hours spent 
studying and grade point average.

We now describe the numerous criteria for assessing model fit, and offer 
suggestions on how and when these criteria might be used. Determining 
model fit is complicated because several model-fit criteria have been 
developed to assist in interpreting structural equation models under dif-
ferent model-building assumptions. In addition, the determination of 
model fit in structural equation modeling is not as straightforward as 
it is in other statistical approaches in multivariable procedures, such as 
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the analysis of variance, multiple regression, discriminant analysis, mul-
tivariate analysis of variance, and canonical correlation analysis. These 
multivariable methods use observed variables that are assumed to be 
measured without error and have statistical tests with known distribu-
tions. Many SEM model-fit indices have no single statistical test of sig-
nificance that identifies a correct model, given the sample data, especially 
since equivalent models or alternative models can exist that yield exactly the 
same data to model fit.

Chi-square (c2) is the only statistical test of significance for testing the 
theoretical model (see Table 5.1 for fit indices and their interpretation). The 
chi-square value ranges from zero for a saturated model with all paths 
included to a maximum value for the independence model with no paths 
included. The theoretical model chi-square value lies somewhere between 
these two extremes. This can be visualized as follows:

Saturated model 
(all paths in model) 
c2 = 0 

Independence model 
(no paths in model) 
c2 = maximum value

A chi-square value of zero indicates a perfect fit or no difference between 
values in the sample covariance matrix S and the reproduced implied cova-
riance matrix Σ that was created, based on the specified (implied) theoretical 
model. Obviously, a theoretical model in SEM with all paths specified is of 
limited interest (saturated model). The goal in structural equation model-
ing is to achieve a parsimonious model with a few substantive meaningful 
paths and a nonsignificant chi-square value close to the saturated model 
value of zero, thus indicating little difference between the sample covari-
ance matrix and the reproduced implied covariance matrix. The difference 
between these two covariance matrices is output in a residual matrix (add 
command line Print Residual to SIMPLIS program). When the chi-square 
value is nonsignificant (close to zero), residual values in the residual matrix 
are close to zero, indicating that the theoretical implied model fits the sam-
ple data, hence there is little difference between the sample covariance 
matrix and the model implied (reproduced) covariance matrix.

Many of the model-fit criteria are computed-based on knowledge of 
the saturated model, independence model, sample size, degrees of free-
dom, and/or the chi-square values to formulate an index of model fit 
that ranges in value from 0 (no fit) to 1 (perfect fit). These various model-
fit indices, however, are subjectively interpreted when determining an 
acceptable model fit. Some researchers have suggested that a structural 
equation model with a model-fit value of .90 or .95 or higher is acceptable 
(Baldwin, 1989; Bentler & Bonett, 1980), whereas more recently a noncen-
trality parameter close to zero [NCP = max(0, c2 − df )] has been suggested 
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(Browne & Cudeck, 1993; Steiger, 1990). The various structural equation 
modeling programs report a variety of model-fit criteria, and thus only 
those output by LISREL are shown in this chapter. It is recommended that 
various model-fit criteria be used in combination to assess model fit, model 
comparison, and model parsimony as global fit measures (Hair, Anderson, 
Tatham, & Black, 1992).

Some of the fit indices are computed given knowledge of the null model c2 
(independence model, where the covariance terms are assumed to be zero 
in the model), null model df, hypothesized model c2, hypothesized model 
df, number of observed variables in the model, number of free parameters 
in the model, and sample size. The formula for the goodness-of-fit index 
(GFI), normed fit index (NFI), relative fit index (RFI), incremental fit index 
(IFI), Tucker-Lewis index (TLI), comparative fit index (CFI), model AIC, 
null AIC, and RMSEA using these values are as follows:

 GFI = 1 – [c2
model/c2

null]
NFI = (c2

null − c2
model)/c2

null

 RFI = 1 – [(c2
model/dfmodel)/(c2

null/dfnull)]
  IFI = (c2

null − c2
model)/(c2

null − dfmodel)
 TLI = [(c2

null/dfnull) − (c2
model/dfmodel)]/[(c2

null/dfnull) − 1]
 CFI = 1 – [(c2

model − dfmodel)/(c2
null − dfnull)]

Table 5.1

Model-Fit Criteria and Acceptable Fit Interpretation

Model-Fit Criterion Acceptable Level Interpretation

Chi-square Tabled c2 value Compares obtained c2 value 
with tabled value for given df

Goodness-of-fit index 
(GFI)

0 (no fit) to 1 (perfect fit) Value close to .90 or .95 reflect 
a good fit

Adjusted GFI (AGFI) 0 (no fit) to 1 (perfect fit) Value adjusted for df, with .90 
or .95 a good model fit

Root-mean square residual 
(RMR)

Researcher defines level Indicates the closeness of Σ to 
S matrices

Standardized RMR 
(SRMR)

< .05 Value less than .05 indicates a 
good model fit

Root-mean-square error of 
approximation (RMSEA)

 .05 to .08 Value of .05 to .08 indicate 
close fit

Tucker–Lewis Index (TLI) 0 (no fit) to 1 (perfect fit) Value close to .90 or .95 reflects 
a good model fit

Normed fit index (NFI) 0 (no fit) to 1 (perfect fit) Value close to .90 or .95 reflects 
a good model fit

Parsimony fit index (PNFI) 0 (no fit) to 1 (perfect fit) Compares values in alternative 
models

Akaike information 
criterion (AIC)

0 (perfect fit) to positive 
value (poor fit)

Compares values in 
alternative models
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Model AIC = c2
model + 2q (number of free parameters)

   Null AIC = c2 
null + 2q (number of free parameters)

      
RMSEA df N df= − −[ ] [( ) ]χModel Model Model/2 1

These model-fit statistics can also be expressed in terms of the noncen-
trality parameter (NCP), designated by l. The estimate of NCP (l) using 
the maximum likelihood chi-square is c2 − df. A simple substitution reex-
presses these model-fit statistics using NCP. For example, CFI, TLI, and 
RMSEA are as follows:

       CFI = 1 – [ lModel/lNull]
       TLI = 1 − [(lModel/dfModel)/(lNull/dfNull)]

RMSEA N df= −λModel Model/[( ) ]1

Bollen and Long (1993), as well as Hu and Bentler (1995), have thoroughly 
discussed several issues related to model fit, and we recommend reading 
their assessments of how model-fit indices are affected by small sample bias, 
estimation methods, violation of normality and independence, and model 
complexity, and for an overall discussion of the various model-fit indices.

5.1.1 � LISREL–SIMPLIS Example

Our purpose in this chapter is to better understand the model-fit crite-
ria output by LISREL–SIMPLIS. The theoretical model in Figure  5.1a is 
analyzed to aid in the understanding of model-fit criteria, significance 
of parameter estimates, and power and sample size determination. The 
theoretical basis for this model is discussed in more detail in chapter 8. 
The two factor confirmatory model is based on data from Holzinger and 
Swineford (1939) using data collected on 26 psychological tests from 301 
children in a suburban school district of Chicago. Over the years, different 
subsamples of the children and different subsets of the variables in this 
dataset have been analyzed and presented in various multivariate statis-
tics textbooks (Gorsuch, 1983; Harmon, 1976), and SEM software program 
guide (Jöreskog & Sörbom, 1993, example 5, pp. 2–28). For our analysis, we 
used data on the first six psychological variables for all 301 subjects. The 
theoretical model is depicted in Figure 5.1a.

5.1.1.1 � Data

The LISREL program can easily import many different file types. To 
import the SPSS data file holz.sav, simply click on File, then select Import 
Data. Next select SPSS for Windows(*.sav) from the pull-down menu for 
Files of type: and then select HOLZ data file. (Note: The data file may be 
in a different location, so you may have to search to locate it).
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visperc0.39

cubes0.81

lozenges0.68

parcomp0.27

sencomp0.27

wordmean0.30

Spatial

Verbal

0.46

0.84

0.85

0.85

0.57

0.4

0.78

Figure 5.1a
Common factor model. (From Holzinger, K. J., & Swineford, F. A. [1939]. A study in factor 
analysis: The stability of a bi-factor solution. Supplementary Educational Monographs, No. 48. 
Chicago: University of Chicago, Dept. of Education.)
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After clicking on Open, a Save As dialog box appears to save a PRELIS 
System File, so enter holz.psf.

A spreadsheet should appear that contains the variable names and data. 
Also, an expanded tool bar menu appears that begins with File, includes 
Edit, Data, Transformation, Statistics, Graphs, etc., and ends with the Help 
command. The File command also permits the use of an Export LISREL 
Data option. The File, then Import Data option should be used to save a 
PRELIS System File whenever possible to take advantage of data screen-
ing, imputing missing values, computation of normal scores, output data 
options, and many other features in LISREL–PRELIS. For our purposes, 
click on Statistics, then select the Output Options. The Output dialog box 
will be used to save a correlation matrix file (holz.cor), a means file (holz.
me), and standard deviations file (holz.sd) for the variables we will use to 
analyze our theoretical model in Figure 5.1a. The correlation, means, and 
standard deviation files must be saved (or moved) to the same directory 
as the LISREL–SIMPLIS program file. Click OK and descriptive statistics 
appear in the computer output (frequencies, means, standard deviations, 
skewness, kurtosis, etc.).
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5.1.1.2 � Program

The next step is to create the LISREL–SIMPLIS program syntax file that will 
specify the model analysis for Figure 5.1a. This is accomplished by select-
ing File on the tool bar, then clicking on New, select Syntax Only, and 
then enter the program syntax. If you forget the SIMPLIS program syntax, 
refer to the LISREL–SIMPLIS manual or modify an existing program. We 
created a LISREL–SIMPLIS program named holz.spl that contains the fol-
lowing program syntax. (Note: The first three observed variables listed—
gender, ageyear, and birthmon—are contained in the raw data, but are not 
analyzed in the SEM model.)

LISREL Figure 5.1a Program
Observed Variables
 gender ageyear birthmon visperc cubes lozenges parcomp   C 
sencomp wordmean
Correlation matrix from file holz.cor
Means from file holz.me
Standard deviations from file holz.sd
Sample Size 301
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Latent Variables
 Spatial Verbal
Relationships
 visperc - lozenges = Spatial
 parcomp - wordmean = Verbal
Number of decimals = 5
Path Diagram
End of Problem

Select File, then Save As, to save the file as holz.spl (SIMPLIS file type).

You are now ready to run the analysis using the holz.spl file you just cre-
ated. Click on the running L on the tool bar menu and the ASCII text file 
holz.out will appear. The LISREL–SIMPLIS output file will contain several 
model-fit indices; however, a LISREL–SIMPLIS program (holz.spl) and a 
LISREL8 command program (holz.ls8) will report and use different chi-
square fit values in the model-fit indices—that is, the minimum fit func-
tion chi-square (C1), the normal theory weighted least-squares fit function 
(C2), the Satorra–Bentler scaled chi-square (C3), and the Browne adjusted 
chi-square (C4) (see chapter note in Power and Sample Size section for 
more detail).

5.1.1.3 � Output

5.1.1.3.1 � Goodness-of-Fit Statistics—Original Model

Degrees of Freedom = 8
Minimum Fit Function Chi-Square = 24.28099 (P = 0.0020559)
Normal Theory Weighted Least Squares Chi-Square = 24.40679 

(P = 0.0019581)
Estimated Noncentrality Parameter (NCP) = 16.40679
90 Percent Confidence Interval for NCP = (5.18319 ; 35.23399)
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Minimum Fit Function Value = 0.080937
Population Discrepancy Function Value (F0) = 0.054689
90 Percent Confidence Interval for F0 = (0.017277 ; 0.11745)
Root Mean Square Error of Approximation (RMSEA) = 0.082681
90 Percent Confidence Interval for RMSEA = (0.046472 ; 0.12116)
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.066396

Expected Cross-Validation Index (ECVI) = 0.16802
90 Percent Confidence Interval for ECVI = (0.13061 ; 0.23078)
ECVI for Saturated Model = 0.14000
ECVI for Independence Model = 2.49266

Chi-Square for Independence Model with 15 Degrees of Freedom = 
735.79891

Independence AIC = 747.79891
Model AIC = 50.40679
Saturated AIC = 42.00000
Independence CAIC = 776.04157
Model CAIC = 111.59922
Saturated CAIC = 140.84932

Normed Fit Index (NFI) = 0.96700
Nonnormed Fit Index (NNFI) = 0.95765
Parsimony Normed Fit Index (PNFI) = 0.51573
Comparative Fit Index (CFI) = 0.97741
Incremental Fit Index (IFI) = 0.97763
Relative Fit Index (RFI) = 0.93813

Critical N (CN) = 249.24177

Root Mean Square Residual (RMR) = 2.01027
Standardized RMR = 0.047008
Goodness-of-Fit Index (GFI) = 0.97360
Adjusted Goodness-of-Fit Index (AGFI) = 0.93069
Parsimony Goodness-of-Fit Index (PGFI) = 0.37089

The chi-square statistic is significant, indicating a less-than-adequate model 
fit to the sample variance–covariance matrix (Minimum Fit Function Chi-
Square = 24.28099, df = 8, p = 0.0020559). Several of the other model-fit indi-
ces for the theoretical model in Figure  5.1a indicated a reasonable data 
to model fit, for example, GFI = .97360, RMSEA = 0.082681, Standardized 
RMR = .047008, and NFI = 0.96700. Modification indices in the computer 
output, however, offer suggestions on how to further improve the model 
to data-fit:
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The Modification Indices Suggest to Add the

Path to from Decrease in Chi-Square New Estimate

visperc Verbal 10.4  2.62
lozenges Verbal  9.2 -2.32
sencomp Spatial  7.9 -0.79

The Modification Indices Suggest to Add an Error Covariance

Between and Decrease in Chi-Square New Estimate

cubes visperc  9.2 -8.53
lozenges cubes 10.4  8.59
wordmean parcomp  7.9 -5.86

We wanted our theoretical model to keep Verbal and Spatial as separate 
constructs (latent variables) with three separate sets of observed variables. 
Therefore, we were not interested in adding any paths to either latent vari-
able from the other latent variables observed variables. So, we choose to select 
the adding of an error covariance between lozenges and cubes that would 
decrease the model-fit chi-square value by an estimated 10.4. We, therefore, 
added the following command line to our LISREL–SIMPLIS program:

Let the error covariance of lozenges and cubes correlate

Our modified theoretical model is diagrammed in Figure  5.1b. The 
resulting computer output indicated a better model fit to the data with a 
nonsignificant Minimum Fit Function c2 = 13.92604, df = 7, and p =.052513; 
RMSEA = .056209; Standardized RMR = 0.032547, and GFI = .98508 . (Note: 
We used a strict interpretation of p = .05 for model fit, so p = .053 was con-
sidered nonsignificant for model fit).

5.1.1.3.2 � Goodness-of-Fit Statistics—Modified Model

Degrees of Freedom = 7
Minimum Fit Function Chi-Square = 13.92604 (P = 0.052513)
Normal Theory Weighted Least Squares Chi-Square = 13.63496 (P = 

0.058068)
Estimated Noncentrality Parameter (NCP) = 6.63496
90 Percent Confidence Interval for NCP = (0.0 ; 21.19420)

Minimum Fit Function Value = 0.046420
Population Discrepancy Function Value (F0) = 0.022117
90 Percent Confidence Interval for F0 = (0.0 ; 0.070647)
Root Mean Square Error of Approximation (RMSEA) = 0.056209
90 Percent Confidence Interval for RMSEA = (0.0 ; 0.10046)
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.35494
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Expected Cross-Validation Index (ECVI) = 0.13878
90 Percent Confidence Interval for ECVI = (0.11667 ; 0.18731)
ECVI for Saturated Model = 0.14000
ECVI for Independence Model = 2.49266

Chi-Square for Independence Model with 15 Degrees of Freedom = 
735.79891

Independence AIC = 747.79891
Model AIC = 41.63496
Saturated AIC = 42.00000
Independence CAIC = 776.04157
Model CAIC = 107.53450
Saturated CAIC = 140.84932

Normed Fit Index (NFI) = 0.98107
Nonnormed Fit Index (NNFI) = 0.97941
Parsimony Normed Fit Index (PNFI) = 0.45783

visperc0.09

cubes0.90

lozenges0.79

parcomp0.27

sencomp0.27

wordmean0.30

Spatial

Verbal

0.42

0.20

0.84

0.86

0.85

0.46

0.31

0.96

Figure 5.1b
Modified common factor model. (From Holzinger, K. J., & Swineford, F. A. [1939]. A study 
in factor analysis: The stability of a bi-factor solution. Supplementary Educational Monographs, 
No. 48. Chicago: University of Chicago, Dept. of Education.)

Y102005.indb   84 3/22/10   3:25:35 PM



Model Fit	 85

Comparative Fit Index (CFI) = 0.99039
Incremental Fit Index (IFI) = 0.99050
Relative Fit Index (RFI) = 0.95944

Critical N (CN) = 399.01152

Root Mean Square Residual (RMR) = 1.34928
Standardized RMR = 0.032547
Goodness-of-Fit Index (GFI) = 0.98508
Adjusted Goodness-of-Fit Index (AGFI) = 0.95523
Parsimony Goodness-of-Fit Index (PGFI) = 0.32836

Our LISREL–SIMPLIS example will further serve to help our understand-
ing of how the various model-fit indices are computed and illustrate how 
power and sample size can be determined. Overall, the fit indices fall into 
the three main categories of model fit, model comparison, and model parsi-
mony fit indices. Next, we discuss the fit indices in these three categories 
to understand their development and recommended applications. [Note: 
Extensive comparisons and discussions of many of these fit indices can 
be found in issues of the following journals: Structural Equation Modeling: 
A Multidisciplinary Journal, Psychological Bulletin, Psychological Methods, and 
Multivariate Behavioral Research.]

5.2 � Model Fit

Model fit determines the degree to which the sample variance–covariance 
data fit the structural equation model. Model-fit criteria commonly used 
are chi-square (c2), the goodness-of-fit index (GFI), the adjusted good-
ness-of-fit index (AGFI), and the root-mean-square residual index (RMR) 
(Jöreskog & Sörbom, 1989). These criteria are based on differences between 
the observed (original, S) and model-implied (reproduced, Σ) variance–
covariance matrices.

5.2.1 � Chi-Square (c2)

A significant c2 value relative to the degrees of freedom indicates that 
the observed and implied variance–covariance matrices differ. Statistical 
significance indicates the probability that this difference is due to sam-
pling variation. A nonsignificant c2 value indicates that the two matri-
ces are similar, indicating that the implied theoretical model significantly 
reproduces the sample variance–covariance relationships in the matrix. 
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The researcher is interested in obtaining a nonsignificant c2 value with 
associated degrees of freedom. Thus it may be more appropriate to call the 
chi-square test a measure of badness-of-fit.

The chi-square test of model fit can lead to erroneous conclusions regard-
ing analysis outcomes. The c2 model-fit criterion is sensitive to sample 
size because as sample size increases (generally above 200), the c2 statistic 
has a tendency to indicate a significant probability level. In contrast, as 
sample size decreases (generally below 100), the c2 statistic indicates non-
significant probability levels. The chi-square statistic is therefore affected 
by sample size, as noted by its calculation, c2 = (n − 1) FML, where F is the 
maximum likelihood (ML) fit function. The c2 statistic is also sensitive to 
departures from multivariate normality of the observed variables.

Three estimation methods are commonly used to calculate c2 in latent 
variable models (Loehlin, 1987): maximum likelihood (ML), generalized 
least squares (GLS), and unweighted least squares (ULS). Each approach 
estimates a best-fitting solution and evaluates the model fit. The ML esti-
mates are consistent, unbiased, efficient, scale invariant, scale free, and 
normally distributed if the observed variables meet the multivariate nor-
mality assumption. The GLS estimates have the same properties as the 
ML approach under a less stringent multivariate normality assumption 
and provide an approximate chi-square test of model fit to the data. The 
ULS estimates do not depend on a normality distribution assumption; 
however, the estimates are not as efficient, nor are they scale invariant or 
scale free. The ML c2 statistic is c2 = (n − 1) FML, the GLS c2 statistic is c2 = 
(n − 1) FGLS, and the ULS c2 statistic is c2 = (n − 1) FULS. (Note: see Chapter 
Footnote.)

In our model analysis, we chose the maximum likelihood chi-square 
estimation method (default setting). The ML c2 statistic uses the mini-
mum fit function value, which is reported in the computer output. The 
minimum fit function chi-square for our modified model is calculated as: 
c2 = (301 − 1) .046420 = 13.926. (Note: add command line Number of decimals = 5 
to SIMPLIS program so Minimum Fit Function Value = 0.046420 will not 
differ due to rounding error.)

5.2.2 �G oodness-of-Fit Index (GFI) and Adjusted 
Goodness-of-Fit Index (AGFI)

The goodness-of-fit index (GFI) is based on the ratio of the sum of the 
squared differences between the observed and reproduced matrices to 
the observed variances, thus allowing for scale. The GFI measures the 
amount of variance and covariance in S that is predicted by the repro-
duced matrix Σ. In our original model, GFI = .97, so 97% of the S matrix is 
predicted by the reproduced matrix Σ, which improved in the modified 
model to 99% where GFI = 0.98508.
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The GFI index can be computed for ML, GLS, or ULS estimates (Bollen, 
1989). For our modified model the formula expression is:

GFI = 1 – [c2
model/c2

null]

GFI = 1 – [13.92604/735.79891]

GFI = 1 − .0189264

GFI = .98 ~ .99

(Note :  The c2
null is the Chi-Square for Independence Model with 15 

Degrees of Freedom.)

The adjusted goodness-of-fit index (AGFI) is adjusted for the degrees of 
freedom of a model relative to the number of variables. The AGFI index is 
computed as 1 − [(k/df) (1 − GFI)], where k is the number of unique distinct 
values in S, which is p(p + 1)/2, and df is the number of degrees of freedom 
in the model. The GFI index in our modified model analysis was .985, 
therefore the AGFI index is

1 − [(k/df)(1 − GFI)] = 1 – [(15/7)(1 − .985)]

= 1 – [2.14285(.015)]

= 1 − .03

= .97

The GFI and AGFI indices can be used to compare the fit of two different 
models with the same data or compare the fit of a single model using dif-
ferent data, such as separate datasets for males and females, for example, 
or examine measurement invariance in group models.

5.2.3 � Root-Mean-Square Residual Index (RMR)

The RMR index uses the square root of the mean-squared differences 
between matrix elements in S and Σ. Because it has no defined acceptable 
level, it is best used to compare the fit of two different models with the 
same data. The RMR index is computed as

	 RMR = [(1/k) Σij (sij − σij)2]1/2.

For our example, the original model Root Mean Square Residual 
(RMR) = 2.01027 compared to the modified model Root Mean Square 
Residual (RMR) = 1.34928. There is also a standardized RMR, known as 
Standardized RMR, which has an acceptable level when less than .05. 
For our original model, the Standardized RMR = 0.047008, compared 
to the modified model with a Standardized RMR = 0.032547, which is 
deemed a more acceptable fit. (Note: The residual covariance matrix can 
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be requested in a LISREL–SIMPLIS program by adding the command 
line, Print Residuals.)

5.3 � Model Comparison

Given the role chi-square has in the model fit of latent variable models, 
three other indices have emerged as variants for comparing alternative 
models: the Tucker–Lewis index (TLI) or Bentler–Bonett nonnormed 
fit index (NNFI), the Bentler–Bonett normed fit index (NFI) (Bentler & 
Bonett, 1980; Loehlin, 1987), and the comparative fit index (CFI). These 
criteria typically compare a proposed model with a null model (inde-
pendence model). In LISREL the null model is indicated by the indepen-
dence-model chi-square value. The null model could also be any model 
that establishes a baseline from which one could expect other alternative 
models to be different.

5.3.1 � Tucker–Lewis Index (TLI)

Tucker and Lewis (1973) initially developed the TLI for factor analysis 
but later extended it to structural equation modeling. The measure can 
be used to compare alternative models or to compare a proposed model 
against a null model. The TLI is computed using the c2 statistic as

	 [(c2
null /dfnull) − (c2

proposed /dfproposed)]/[(c2
null /dfnull) − 1]

It is scaled from 0 (no fit) to 1 (perfect fit). For our modified model analysis, 
the NNFI, as it is known in LISREL, was computed as

Nonnormed Fit Index (NNFI)

= [(c2
null /dfnull) – (c2

proposed /dfproposed)]/[(c2
null /dfnull) − 1]

= [(735.79891/15) – (13.92604 /7)]/[(735.7989/15) − 1]

= [(49.05326 – 1.98943)/(49.05326 – 1)]

= [47.06383/48.05326]

= 0.97941

5.3.2 � Normed Fit Index (NFI) and Comparative Fit Index (CFI)

The NFI is a measure that rescales chi-square into a 0 (no fit) to 1.0 (perfect 
fit) range (Bentler & Bonett, 1980). It is used to compare a restricted model 
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with a full model using a baseline null model as follows: (c2
null − c2

model)/
c2

null. In our modified model analysis this was computed as

Normed Fit Index (NFI) = (c2
null − c2

model)/c2
null

= (735.7989 – 13.92604)/735.7989

= .98107

Bentler (1990) subsequently developed a coefficient of comparative fit 
within the context of specifying a population parameter and distribution, 
such as a population comparative fit index, to overcome the deficiencies 
in NFI for nested models. The rationale for assessment of comparative fit 
in the nested-model approach involves a series of models that range from 
least restrictive (Mi) to saturated (Ms). Corresponding to this sequence of 
nested models is a sequence of model-fit statistics with associated degrees 
of freedom. The comparative fit index (CFI) measures the improvement in 
noncentrality in going from model Mi to Mk (the theoretical model) and 
uses the noncentral c2 (dk) distribution with noncentrality parameter lk 
to define comparative fit as (li − lk)/li. In our modified model output the 
Comparative Fit Index (CFI) = 0.99039.

McDonald and Marsh (1990) further explored the noncentrality and 
model-fit issue by examining nine fit indices as functions of noncentrality 
and sample size. They concluded that only the Tucker-Lewis Index and 
their relative noncentrality index (RNI) were unbiased in finite samples 
and recommended them for testing null or alternative models. For abso-
lute measures of fit that do not test null or alternative models, they recom-
mended dk (Steiger & Lind, 1980), because it is a linear function of c2, or 
a normed measure of centrality mk (McDonald, 1989), because neither of 
these varies systematically with sample size. These model fit measures 
of centrality are useful when selecting among a few competing models 
based upon theoretical considerations.

5.4 � Model Parsimony

Parsimony refers to the number of estimated parameters required to 
achieve a specific level of model fit. Basically, an over-identified model 
is compared with a restricted model. The AGFI measure discussed pre-
viously also provides an index of model parsimony. Other indices that 
indicate model parsimony are the parsimony normed fit index (PNFI), 
and the Akaike information criterion (AIC). Parsimony-based fit indices 
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for multiple indicator models were reviewed by Williams and Holahan 
(1994). They found that the AIC performed the best (see their article for 
more details on additional indices and related references). The model par-
simony goodness-of-fit indices take into account the number of param-
eters required to achieve a given value for chi-square. Lower values for 
PNFI and AIC indicate a better model fit given a specified number of 
parameters in a model.

5.4.1 � Parsimony Normed Fit Index (PNFI)

The PNFI measure is a modification of the NFI measure (James, Mulaik, & 
Brett, 1982). The PNFI, however, takes into account the number of degrees 
of freedom used to obtain a given level of fit. Parsimony is achieved with 
a high degree of fit for fewer degrees of freedom in specifying the coeffi-
cients to be estimated. The PNFI is used to compare models with different 
degrees of freedom and is calculated as PNFI = (dfproposed /dfnull) NFI. In our 
modified model analysis the PNFI was:

Parsimony Normed Fit Index (PNFI) = (dfproposed/dfnull) NFI

= (7/15) .98107

= 0.45783

5.4.2 � Akaike Information Criterion (AIC)

The AIC measure is used to compare models with differing numbers of 
latent variables, much as the PNFI is used (Akaike, 1987). The AIC can be 
calculated in two different ways: c2 + 2q, where q = number of free param-
eters in the model, or as c2 – 2df. The first AIC is positive (as computed 
in LISREL), and the second AIC is negative, but either AIC value close to 
zero indicates a more parsimonious model. The AIC indicates model fit (S 
and Σ elements similar) and model parsimony (over-identified model). In 
our modified model analysis, the computer output gives several AIC val-
ues for the theoretical model, saturated model, and independence model; 
however, we only report two AIC fit indices. (Note: AIC uses Normal 
theory weighted least squares chi-square not the minimum fit function 
chi-square.)

	 Model AIC = Normal Theory c2 + 2q

= 13.63496 + 2 (14)

= 41.63496
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Independence AIC = Chi-Square for Independence Model + 2(df -1)

= 735.79891 + 2(6)

= 747.79891

5.4.3 � Summary

Mulaik, James, Alstine, Bennett, Lind, and Stilwell (1989) evaluated the 
c2, NFI, GFI, AGFI, and AIC goodness-of-fit indices. They concluded that 
these indices fail to assess parsimony and are insensitive to misspecifica-
tion of structural relationships (see their definitive work for additional 
information). Their findings should not be surprising because it has been 
suggested that a good fit index is one that is independent of sample size, 
accurately reflects differences in fit, imposes a penalty for inclusion of 
additional parameters (Marsh, Balla, & McDonald, 1988), and supports the 
choice of the true model when it is known (McDonald & Marsh, 1990). No 
model-fit criteria can actually meet all of these criteria.

We have presented several model-fit indices that are used to assess 
model fit, model comparison, or model parsimony. In addition, we cal-
culated many of these based on the model analyzed in this chapter. The 
LISREL program outputs many different model-fit criteria because more 
than one should be reported. The LISREL user guides also provide an 
excellent discussion of the model-fit indices in their program. We rec-
ommend that once you feel comfortable using these fit indices for your 
specific model applications, you check the references cited for additional 
information on their usefulness and/or limitations. Following their ini-
tial description, there has been much controversy and discussion on 
their subjective interpretation and appropriateness under specific mod-
eling conditions (see Marsh, Balla, & Hau [1996] for further discussion). 
Further research and discussion will surely follow; for example, Kenny 
& McCoach (2003) indicated that RMSEA improves as more variables are 
added to a model, whereas TLI and CFI both decline in correctly specified 
models as more variables are added.

When deciding on which model-fit indices to report, first consider 
whether the fit indices were created for model fit, model parsimony, or 
model comparison. At the risk of oversimplification, we suggest that c2, 
RMSEA, and Standardized RMR be reported for all types of models with 
additional fit indices reported based on purpose of modeling. For exam-
ple, the CFI should be reported if comparing models. Overall, more than 
one model-fit index should be reported. If a majority of the fit indices on 
your list indicate an acceptable model, then your theoretical model is sup-
ported by the data.
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5.5 � Parameter Fit

Individual parameter estimates in a model can be meaningless even though 
model-fit criteria indicate an acceptable measurement or structural model. 
Therefore, interpretation of parameter estimates in any model analysis is 
essential. The following steps are therefore recommended:

	 1.	Examine the parameter estimates to determine whether they have 
the correct sign (either positive or negative).

	 2.	Examine parameter estimates (standardized coefficients) to deter-
mine whether they are out of bounds or exceed an expected range 
of values.

	 3.	Examine the parameter estimates for statistical significance 
(T or Z-values = parameter estimate divided by standard error of 
parameter estimate).

	 4.	Test for measurement invariance by setting parameter estimates 
equal (constraints) in different groups, for example, girls and 
boys, then make relative comparisons among the parameter 
estimates.

An examination of initial parameter estimates can also help in identi-
fying a faulty or misspecified model. In this instance, initial parame-
ter estimates can serve as start values—for example, initial two-stage 
least-squares (TSLS) estimates in LISREL. The researcher then replaces 
the TSLS estimate with a user-defined start value. Sometimes param-
eter estimates take on impossible values, as in the case of a correlation 
between two variables that exceeds 1.0. Sometimes negative variance is 
encountered (known as a Heywood case). Also, if the error variance for 
a variable is near zero, the indicator variable implies an almost perfect 
measure of the latent variable, which may not be the case. Outliers can 
also influence parameter estimates. Use of sufficient sample size (n > 100 
or 150) and several indicators per latent variable (four is recommended 
based on the TETRAD approach) has also been recommended to pro-
duce reasonable and stable parameter estimates (Anderson & Gerbing, 
1984).

Once these issues have been taken into consideration, the interpreta-
tion of modification indices and expected parameter change can begin 
to modify the model, but there is still a need for guidance provided by 
the rationale for the theoretical model and the researcher’s expertise. 
Researchers should use the model-fit indices as potential indicators of 
misfit when respecifying or modifying a model. Cross-validation or 
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replication using another independent sample, once an acceptable model 
is achieved, is always recommended to ensure stability of parameter 
estimates and validity of the model (Cliff, 1983). Bootstrap procedures 
also afford a resampling method, given a single sample, to determine 
the efficiency and precision of sample estimates (Lunneborg, 1987). 
These model validation topics are discussed further in chapter 12.

5.6 � Power and Sample Size

The determination of power and/or sample size in SEM is complicated 
because theoretical models can have several variables or parameter esti-
mates and parameters are typically not independent in a model and have 
different standard errors. In SEM we also compare models, oftentimes 
nested models with the same data set. Consequently, power and sample 
size determination in the situation where a researcher is hypothesis test-
ing (testing a model fit to data), comparing alternative models, or desiring 
to test a parameter estimate for significance will be covered with SAS, 
SPSS, and G*Power 3 examples using the LISREL–SIMPLIS example in the 
chapter. The power for hypothesis testing, or the probability of rejecting Ho 
when Ha is true, depends on the true population model, significance level, 
degrees of freedom, and sample size, which involves specifying an effect 
size, alpha, and sample size; while sample size determination is achieved 
given power, effect size, and alpha level of significance. Daniel S. Soper 
has a user friendly website that provides effect size, power and sample 
size determination in statistics (http://www.danielsoper.com/statcalc/).

Hypothesis testing involves confirming that a theoretical model fits the 
sample variance–covariance data, comparing fit between alternative mod-
els, or testing parameter coefficients for significance; even whether coeffi-
cients are equal between groups. These hypothesis testing methods should 
involve constrained models with fewer parameters than the initial model. 
The initial (full) model represents the null hypothesis (Ho) and the alterna-
tive (constrained) model with fewer parameters is denoted Ha. Each model 
generates a c2 goodness-of-fit measure, and the difference between the 
models for significance testing is computed as D2 = c2

o − c2
a, with dfd = 

dfo − dfa. The D2 statistic is tested for significance at a specified alpha level 
(probability of Type I error), where Ho is rejected if D2 exceeds the critical 
tabled c2 value with dfd degrees of freedom (Table A.4). The chi-square dif-
ference test or likelihood ratio test is used with GLS, ML, and WLS estima-
tion methods.

Y102005.indb   93 3/22/10   3:25:37 PM

http://www.danielsoper.com/statcalc/


94	 A Beginner’s Guide to Structural Equation Modeling

The significance of parameter estimates that do not require two sepa-
rate models to yield separate c2 values includes: (a) generating a two-
sided t or z value for the parameter estimate (T or Z = parameter estimate 
divided by standard error of the parameter estimate), and (b) interpret-
ing the modification index directly for the parameter estimate as a c2 
test with 1 degree of freedom. The relationship is simply T2 = D2 = MI 
(modification index) for large sample sizes. Gonzalez and Griffin (2001), 
however, indicated that the standard errors of the parameter estimates 
are sensitive to how the model is identified, that is, alternative ways of 
identifying a model may yield different standard errors, and hence dif-
ferent T values for the statistical significance of a parameter estimate. 
This lack of invariance due to model identification could result in dif-
ferent conclusions about a parameter’s significance level from different, 
yet equivalent, models on the same data. The authors recommended 
that parameter estimates be tested for significance using the likelihood 
ratio (LR) test because it is invariant to model identification, rather than 
the T test (or z test).

5.6.1 � Model Fit

A traditional approach in SEM is to hypothesize a theoretical model, col-
lect sample data, and test whether the model fits the data. In this chap-
ter we have discussed various fit indices to determine if the theoretical 
model fits the data. When the theoretical model does not fit the data, we 
look to modification indices for suggestions on how to modify the model 
for an improved fit. The power to reject a null hypothesis and sample 
size impacts our decision of whether sample data fit a theoretical model. 
Power and sample size are therefore discussed next.

5.6.1.1 � Power

Saris and Satorra (1993) provided an easy to use approach for calculating 
power of a theoretical model. Basically, an alternative model is estimated 
with sample data to indicate what percent of the time we would correctly 
reject the null hypothesis under the assumption that the null hypothesis 
(Ho) is false. The minimum fit function chi-square value obtained from 
fitting data to the theoretical model provides an estimate of the noncen-
trality parameter (NCP). NCP is calculated as Normal Theory Weighted 
Least Squares c2 – dfmodel. For our modified model the NCP = 13.63496 – 7 
= 6.63496, which is provided in the Goodness-of-Fit section of the com-
puter output. This makes computing power using SAS 9.1, SPSS 16.0, or 
G*Power 3 straightforward, using their respective command functions. 
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(Note: c2 = 3.841, df = 1, p = .05 is the critical tabled value for testing 
our hypothesis of model fit.) Examples for each using NCP are provided 
next.

SAS syntax—power

data chapter5;
do obs=1;
ncp = 6.63496;
power = 1 – PROBCHI(3.841, 1, ncp);
output;
end;
proc print;
var ncp power;
run;

SPSS syntax—power

DATA LIST FREE / obs.
BEGIN DATA.
1
END DATA.
compute ncp = 6.63496.
compute power = 1 - NCDF.CHISQ(3.841, 1, ncp).
formats ncp power (f8.5).
List.

In our modified model, NCP = 6.63496, so our power = .73; the output from 
the SAS or SPSS syntax was:

obs ncp power
1.00 6.63496 .73105

Power, given your model fit, can also be determined using G*power 3 (Faul, 
Erdfelder, Lang & Buchner, 2007). The free G*Power 3 software download 
is available from the Web site: http://www.psycho.uni-duesseldorf.de/
abteilungen/aap/gpower3/, which is somewhat easier than running the 
SAS and SPSS programs. Power and sample size estimates for a priori and 
post-hoc statistical applications are available using G*power 3. (Note: We 
used G*Power 3, Windows, Release 3.1.0, 2008, but a MAC OS version is 
also available). After download and installation, click on the G*Power 3 
desktop icon and you should see the following dialog box:
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In the Test family window select “c2 tests”; in the Statistical test window 
select “Generic c2 test”; and in the Type of power analysis window, select 
“Post-hoc: Compute power – given a, and noncentrality parameter.” Our modi-
fied model had NCP = 6.63496, so we entered this value in the “noncen-
trality parameter l” window along with df = 1 and a = .05. The dialog box 
should look like:
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Click the Calculate button. The power = .731015 value matches our earlier 
calculations. The dialog box should now look like:
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Our modified model has a 73 percent chance of rejecting the null 
hypothesis at the .05 level of significance, which falls short of the .80 level 
commonly accepted for power. If we replace the critical chi-square value 
in the formula, you can determine power for other alpha levels of signifi-
cance. In Table 5.2, we have replaced the critical chi-square value and ran 
the SPSS syntax program for alpha values ranging from .10 to .001. If we 
test our modified model fit at the p = .10 level, then we achieve an accept-
able level of power; other alpha levels from .05 to .001 fall below a .80 
power value.
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5.6.1.2 � Sample Size

An earlier way to determine an appropriate sample size in SEM was given 
by Hoelter (1983) as the Critical N (CN) statistic, where CN ≥ 200 was con-
sidered adequate. The Critical N is calculated as:

	 CN = (c2
critical/Fmin) + 1

The critical chi-square (c2
critical) is obtained for the model degrees of 

freedom at the .05 level of significance. The CN statistic is output by the 
LISREL–SIMPLIS program. In our final modified model of Figure  5.1b, 
CN = 399, Fmin was determined to be .0353432 and c2

critical = 14.067 for df = 
7 at .05 level of significance (see Table A.4); so CN = (14.067/.0353432) + 1 = 
399. (Note: our modified model computer output indicated Fmin = .04642, 
p = .0525, but CN uses Fmin at p = .05). CN gives the sample size at which 
the Fmin value leads to a rejection of Ho. Our sample size was N = 301 
with a nonsignificant chi-square (minimum fit function c2, p = .052; or nor-
mal theory weighted least squares c2, p = .058) and several good model-fit 
indices, so even if we used Hoelter’s suggestion, we had sufficient sample 
size. For a further discussion about CN refer to Bollen and Liang (1988) or 
Bollen (1989).

Sample size influences the calculation of the minimum fit function c2. 
Recall that the Minimum Fit Function c2 in the modified model was com-
puted as:

Minimum Fit Function c2 = (N – g) × Fmin

= (301 – 1) × (.046420)

= 13.92604

Table 5.2

Power for Alpha Levels Given Modified Model NCP

NCP Critical Chi-Square Alpha Power

6.63496   2.706 .10 .82405
6.63496   3.841 .05 .73105
6.63496   5.412 .02 .59850
6.63496   6.635 .01 .50000
6.63496 10.827   .001 .23743

Note: Critical c2 values for df = 1 from Table A.4.
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Sample size also influences the calculation of the Fmin values as follows:

	 Fmin = Minimum Fit Function c2/(N – g)

= 13.92604/(301 – 1)

= .046420

The Fmin is computed using the minimum fit function c2 in the computer 
output, sample size (N), and number of groups (g); while the noncentral-
ity parameter (NCP) is computed using the Normal Theory c2 minus the 
degrees of freedom in the model. NCP is therefore computed as:

	 NCP = Normal Theory Weighted Least Squares c2 – dfmodel

= 13.63496 – 7

= 6.63496

Estimated sample size (N) using these NCP and Fmin values is less than 
our actual sample size of N = 301:

	 N = (NCP/Fmin) + g

= (6.63496/.046420) + 1

= 143.93 ~ 144

You have probably noticed that Fmin is calculated using the Minimum Fit 
Function c2, but NCP is calculated using the Normal Theory Weighted 
Least Squares c2. LISREL, unlike other SEM software calculates some 
measures of fit (NCP, RMSEA, and Independence model c2 ) using the 
normal theory weighted least squares c2, but uses the minimum fit 
function c2 for others. Differences between these two can be small if 
the multivariate normality assumption holds or very different if not (see 
Chapter Footnote for detailed description of standard errors and four 
different c2 values: C1 = minimum fit function c2; C2 = normal theory 
weighted least squares c2; C3 = Satorra–Bentler scaled c2; C4 = c2 cor-
rected for nonnormality).

To determine sample size for given df, alpha, and power for a theoretical 
model, the Fmin value would be fixed (Fmin value from your final model; our 
modified model had Fmin = .046420), but the NCP value would vary. For 
our modified model, the SAS program can be run for differing NCP val-
ues to obtain corresponding sample size and power estimates. (Note: We 
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are changing values of power in the SAS syntax program, but you can also 
fix power and change alpha values to obtain different sample sizes for dif-
ferent alpha levels at a specified power level, for example, power = .80).

SAS syntax—sample size

data chapter5;
do obs = 1;
g = 1;
* change values of alpha to obtain sample size for given 
power;
alpha = .05;
fmin = .046420;
df = 1;
* change values of power to obtain sample size for given 
alpha;
power = .60;
chicrit = quantile(‘chisquare’,1 – alpha, df);
ncp = CINV(power,df,chicrit);
n = (ncp/fmin) + g;
output;
end;
proc print;
 var power n alpha ncp fmin g;
run;

The output from this first run with power = .60 would look like this:

obs power n alpha ncp fmin g chicrit
 1 .6 106.535 .05 4.89892 .04642 1 3.84146

We created Table  5.3 by changing the value of power for alpha = .05 
for a critical c2 = 3.841, df = 1. (Note: fmin is fixed at the value from our 

Table 5.3

Sample Size for Given Power with Alpha = .05

Power n Alpha ncp fmin g c2 critical

.60 106.535 .05 4.89892 .04642 1 3.84146

.70 133.963 .05 6.17213 .04642 1 3.84146

.73 143.594 .05 6.61923 .04642 1 3.84146

.80 170.084 .05 7.84890 .04642 1 3.84146

.90 227.356 .05 10.5074 .04642 1 3.84146

.95 280.938 .05 12.9947 .04642 1 3.84146

Note: n should be rounded up, for example, 106.535 = 107.
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modified model; alpha is fixed at .05, so chicrit will be fixed at 3.84146). 
A sample size of N = 144 for power = .73 from our modified model was 
also correctly computed and indicated in the table. We see in Table 5.3 
that sample size requirements increase as power increases, which is 
expected.

In our modified model we have N = 301, NCP = 6.63496, and our post-
hoc power = .73 calculated at the .05 level of significance. A sample size of 
N = 170 would have given us power = .80 at the .05 level of significance. 
Are you puzzled? Well, recall that NCP = c2

 – dfmodel, so if our model had 
resulted in a NCP = 7.84890 with N = 170 at the .05 level of significance, 
then we would have achieved an acceptable level of power = .80. We find 
that the noncentrality parameter (NCP) is affected by the model chi-
square but also the degrees of freedom, which indicates a certain level of 
model complexity.

We can also use the SAS syntax—sample size program to examine how 
changing the level of significance affects sample size for a fixed power 
value. Recall that Fmin is fixed at .04642 from our modified model. Table 5.4 
contains the output from the SAS program. We see in Table 5.4 that sample 
size requirements increase as the level of significance (alpha) for testing 
our model decreases, which is expected.

Table 5.4

Sample Size for Given Alpha with Power = .80

Power n Alpha ncp fmin g c2 critical

.8 134.194 .10     6.18288 .04642 1     2.70554

.8 170.084 .05     7.84890 .04642 1     3.84146

.8 217.201 .02 10.0360 .04642 1     5.41189

.8 252.593 .01 11.6790 .04642 1     6.63490

.8 368.830   .001 17.0746 .04642 1 10.8276

Note: c2
critical values correspond to alpha values in Table A.4.

We used G*Power 3 to calculate various NCP values given alpha and 
power because SPSS 16.0 does not have a command function at this 
time to determine the noncentrality parameter (NCP) given power, 
df, and critical c2. (Note: SAS, S-Plus, Stata and other statistical soft-
ware have this capability) In the Test family drop-down menu, select 
“c2 test”; in the Statistical Test drop-down menu select, “Generic c2 test”; 
and in the Type of power analysis, select “Sensitivity: Compute noncentral-
ity parameter – given a, and power.” In the Input Parameters boxes, change 
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the power value to .80 and the df value to 1. Your dialog box should 
now appear as:

Click on the Calculate button; the Output Parameters, “Critical c2” and 
“Noncentrality parameter l“ will appear. The G*Power 3.1.0 dialog box will 
now display the Critical c2 = 3.84146 (associated with alpha = .05, df = 1) 
and corresponding noncentrality parameter for power = .80. Your dialog 
box should now look like:
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Table 5.3 reports these same values using the program SAS syntax—
sample size.

You can click on the X-Y plot for a range of values button to enter a range of 
power values that can be plotted by corresponding noncentrality param-
eter values. (Note: Check the box for “and displaying the values in the plot” 
and change the “in steps of” from .01 to .10 for clarity in the output of the 
graph.) The dialog box should look like this:

Y102005.indb   104 3/22/10   3:25:41 PM



Model Fit	 105

Click on Draw plot. Your graph will now appear and should look like the 
dialog box below:
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(Note : A range of power values entered from .6 to .95 indicates the levels 
of the noncentrality parameter that one needs to exceed for that level of 
power [see Table 5.3].)

In planning a study, we should determine a priori what our sample size 
and power values should be. After gathering our data and running our SEM 
model (and any modifications), we should compute the post-hoc power using 
our noncentrality parameter from the LISREL computer output or sample 
size (N) using NCP and model Fmin values. This should be easy given that 
N = (NCP/Fmin) + g. We can a priori specify values or obtain the Fmin value 
from our model, calculate NCP using SAS or G*power 3 for a given df, criti-
cal chi-square, power, then use these values to calculate sample size (N).

MacCallum, Browne, and Sugawara (1996) provided a different approach to 
testing model-fit using the root mean square error of approximation (RMSEA). 
Their approach also emphasized confidence intervals around RMSEA, rather 
than a single point estimate, so they suggested null and alternative values for 
RMSEA (exact fit: Ho = .00 versus Ha = .05; Close fit: Ho = .05 versus Ha = .08; 
and Not close fit: Ho = .05 versus Ha = .10); researchers can also select their 
own. The MacCallum et al. (1996) method tests power, given exact fit (Ho; 
RMSEA = 0), close fit (Ho, RMSEA ≤ .05), or not close fit (Ho, RMSEA ≥ .05); and 
included SAS programs for calculating power given sample size or sample 
size given power using RMSEA. RMSEA is calculated as:

	
RMSEA NCP N df= −( )/ /1

For our modified model, NCP = 6.63496; N = 301; and df = 7, so RMSEA = 
0.056209:

	 RMSEA = =( . ) .6 63496 300 7 056209/ /

SAS syntax—RMSEA and power

data chapter5;
do obs = 1;
n = 301;
df = 7;
alpha = .05;
* change rmseaHo and rmseaHa values to correspond to exact, 
close, and not close values;
rmseaHo = .05;
rmseaHa = .08;
ncpHo = (n-1)*df*rmseaHo*rmseaHo;
ncpHa = (n-1)*df*rmseaHa*rmseaHa;
chicrit = quantile(‘chisquare’,1-alpha,df);
if rmseaHo < rmseaHa then power = 1 – 
PROBCHI(chicrit,df,ncpHa);
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if rmseaHo > rmseaHa then power = PROBCHI(chicrit,df,ncpHa);
output;
end;
Proc print;
Var n df alpha rmseaHo rmseaHa ncpHo ncpHa chicrit power;
Run;

SPSS syntax—RMSEA and power

DATA LIST FREE / obs.
BEGIN DATA.
1
END DATA.
compute n = 301.
compute df = 7.
compute alpha = .05.
comment change rmseaHo and rmseaHa values to correspond with 
exact, close, not close values.
compute rmseaHo = .05.
compute rmseaHa = .08.
compute ncpHo = (n-1)*df*rmseaHo*rmseaHo.
compute ncpHa = (n-1)*df*rmseaHa*rmseaHa.
compute chicrit = IDF.CHISQ(1-alpha,df).
do if (rmseaHo < rmseaHa).
compute power = 1 - NCDF.CHISQ(chicrit, df, ncpHa).
else if (rmseaHo > rmseaHa).
compute power = NCDF.CHISQ(chicrit, df, ncpHa).
end if.
formats chicrit ncpHo ncpHa power (f8.5).
List.

The resulting SAS or SPSS output for close fit was given as:

  obs n df alpha rmseaHo rmseaHa ncpHo ncpHa chicrit power
1.00 301 7 .05 .05 .08 5.25 13.44 14.0671 .76813

We ran the recommended RMSEA values given by MacCallum et al. (1996) 
and listed them in Table 5.5. For exact fit, power = .33, for close fit, power = 
.76, and for not close fit, power = .06 ~ .057. A RMSEA model-fit value 
between .05 and .08 is considered an acceptable model-fit index, when 
reported with other fit indices. Our modified model RMSEA = .056209 
and for close fit had power = .76813.
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5.6.2 � Model Comparison

A likelihood ratio (LR) test is possible between alternative models to 
examine the difference in c2 values between the initial model and a modi-
fied model. The LR test with degrees of freedom equal to dfInitial − dfModified 
is calculated as:

	 LR = c2
Initial − c2

Modified

For our example, the initial model had c2 = 24.28099, df = 8, and the modi-
fied model had c2 = 13.92604, df = 7; therefore, LR = 10.35495 with df = 1, 
which is a statistically significant chi-square value at the .05 level of sig-
nificance (c2 > 3.84, df = 1, a = .05), indicating the models are different.

	 LRdf = 1 = 24.28099 – 13.92604 = 10.35495

The LR test between models is possible when adding or dropping a single 
parameter (path or variable). In LISREL–SIMPLIS, a researcher will most 
likely be guided by the modification indices with their associated change 
(decrease) in chi-square when respecifying or modifying a model. On the 
basis of our LISREL–SIMPLIS modification indices, we chose to add an 
error covariance between lozenges and cubes by adding the following com-
mand in our subsequent model analysis because it gave us our largest 
decrease in model chi-square (see Figure 5.1b):

Let the error covariance of lozenges and cubes correlate

MacCallum, Browne, and Cai (2006) presented an approach to compare 
nested models when the between model degrees of freedom are ≥ 1. They 
showed that when testing close fit, power results may differ depending 
upon the degrees of freedom in each model. Basically, the power to detect 
differences will be greater when models being compared have more 
degrees of freedom. For any given sample size, power increases as the 
model degrees of freedom increases. They defined an effect size (d) in 
terms of model RMSEA and degrees of freedom for the two models, so in 

Table 5.5

MacCallum et al. (1996) Null and Alternative Values for 
RMSEA Test of Fit

MacCallum Test Ho Ha Power

Exact .00 .05 .33034
Close .05 .08 .76813
Not Close .05 .01 .05756

Figure 5.1, Modified model (a = .05, df = 7, N = 301).
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our example, the effect size (d) would be computed as:

d = (dfInitial * RMSEA2
Initial – dfModified * RMSEA2

Modified)

d = ([8 * (.080937)2] – [7 * (.046420)2])

d = (.0524056 − .0150836)

d = .037322

The noncentrality parameter is computed as:

	 NCP = (N – 1) d

So, for our example:

	 NCP = (301 – 1) * ( .037322)

NCP = 11.1966

Using G*Power 3, we enter this NCP = 11.1966, .05 level of significance, and 
df = 1 (model degree of freedom difference) and obtained power = .917. The 
G*Power 3 dialog box should look like this:
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Power to detect a difference in RMSEA values is therefore possible for 
a given sample size with various degrees of freedom. The SAS program 
below will also provide an ability to make power comparisons for dif-
ferent model degrees of freedom using RMSEA values from two nested 
models.

SAS syntax—effect size, RMSEA, and power

data chapter5;
 do obs = 1;
 n = 301;
 alpha = .05;
 dfa = 8;
 rmseaA = .080937;
 dfb = 7;
 rmseaB = .046420;
 delta = (dfa*rmseaA*rmseaA) – (dfb*rmseaB*rmseaB);
 ncp = (n – 1)*delta;
 dfdiff = dfa – dfb;
 chicrit = quantile(‘chisquare’,1 – alpha, dfdiff);
 power = 1 – PROBCHI(chicrit, dfdiff,ncp);
 output;
 end;
 Proc print;
 var n dfa rmseaA dfb rmseaB delta ncp dfdiff chicrit power;
 run;

The computer output should look like this:

Obs n dfa rmseaA dfb rmseaB
 1 301  8 0.080937 7 0.04642

 delta ncp dfdiff chicrit power
.037323 11.1968 1 3.84146 .91716

The power = .91716 indicates a 91% chance of detecting a difference 
between the model RMSEA values.

Power is affected by the size of the model degrees of freedom (degrees 
of freedom implies a certain degree of model complexity). The G*Power 3 
program or the SAS program can be used for models where the difference 
in degrees of freedom is greater than one. We therefore ran a comparison 
for our model with different levels of degrees of freedom to show how 
power is affected. In Table  5.6, power increases dramatically when the 
level of degrees of freedom increases from 5 to 14 while maintaining a 
model degrees of freedom difference at df = 1. You can also output pro-
gram values for df ≥ 2 to see effect on power.

Y102005.indb   110 3/22/10   3:25:44 PM



Model Fit	 111

5.6.3 � Parameter Significance

A single parameter can be tested for significance using nested models. 
Nested models involve an initial model being compared to a modified model 
in which a single parameter has been fixed to zero (dropped) or estimated 
(added). In structural equation modeling, the intent is to determine the 
significance of the decrease in the c2 value for the modified model from 
the initial model. The LR test was used before to test the difference in the 
models for our single parameter that we added (error covariance between 
lozenges and cubes).

Power can be computed for testing the significance of an individual 
parameter estimate. For GLS, ML, and WLS estimation methods, this 
involves determining the significance of c2 with one degree of freedom 
(c2 > 3.84, df = 1, a = .05) for a single parameter estimate, thus determin-
ing the significance of the reduction in c2 that should equal or exceed the 
modification index value for the parameter estimate fixed to zero. Power 
values for modification index values can be computed using SAS because 
the modification index (MI) is a noncentrality parameter (NCP). The 
power of a MI value (NCP) at the .05 level of significance, df = 1, critical 
chi-square value = 3.841 is computed in the following SAS syntax pro-
gram for our MI = 10.4 when adding the error covariance between lozenges 
and cubes. Power = .89, so in testing the statistical significance of MI for our 
parameter (error covariance), we have an 89% chance of correctly reject-
ing the null hypothesis and accepting the alternative hypothesis that MI 
is different from zero.

SAS syntax—power for parameter MI value

data chapter5;
 do obs = 1;
 mi = 10.4;
 alpha = .05;

Table 5.6

MacCallum et al. (2006) Power 
at Increasing Model Degrees of 
Freedom

dfa dfb Power

  5   4 .76756
  8   7 .91716*
11 10 .97337
14 13 .99206

(RMSEA approach)
Figure 5.1b Model (a = .05, N = 301).
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 df = 1;
 chicrit = quantile(‘chisquare’,1 – alpha, df);
 power = 1 – PROBCHI(chicrit, df, mi);
 output;
 end;
 Proc print;
 var mi power alpha df chicrit;
 run;

The SAS output indicated the following:

Obs mi power alpha df chicrit
 1 10.4 .89075 .05 1 3.84146

Power values for parameter estimates can also be computed using a 
SAS program because a squared T or Z value for a parameter estimate is 
asymptotically distributed as a noncentral chi-square, that is, NCP = T2. 
Our modified model indicated an error covariance = 8.34 (modification 
index indicated a New Estimate at 8.59), with standard error = 2.62, so 
T = 8.34/2.62 = 3.19; LISREL program output provided these values for 
the added parameter:

      Error Covariance for lozenges and cubes = 8.34

(2.62)

3.19

(Note :  LISREL 8.8 student version lists standared error, Z value, and 
p-value in the output)

The power of a squared T value for our parameter estimate is computed in 
a SAS program as follows:

SAS syntax—power for parameter T value

data chapter5;
 do obs = 1;
 T = 3.19;
 ncp = T*T;
 alpha = .05;
 df = 1;
 chicrit = quantile(‘chisquare’,1 – alpha, df);
 power = 1 – PROBCHI(chicrit, df, ncp);
 output;
 end;
 Proc print;
 var ncp power alpha df chicrit;
 run;
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The SAS output looks like this:

Obs ncp power alpha df chicrit
 1 10.1761 .89066 .05 1 3.84146

Power = .89, so in testing the statistical significance of our parameter esti-
mate, we have an 89% chance of correctly rejecting the null hypothesis and 
accepting the alternative hypothesis that T is different from zero. (Note: The 
other model-fit indices [GFI, AGFI, NFI, IFI, CFI, etc.] do not have a test of 
statistical significance and therefore do not involve power calculations).

5.6.4 � Summary

Research suggests that certain model-fit indices are more susceptible to 
sample size than others, hence, power. We have already learned that c2 is 
affected by sample size, that is, c2 = (N − 1) FML , where FML is the maximum 
likelihood fit function for a model, and therefore c2 increases in direct rela-
tion to N − 1 (Bollen, 1989). Kaplan (1995) also pointed out that power in 
SEM is affected by the size of the misspecified parameter, sample size, and 
location of the parameter in the model. Specification errors induce bias 
in the standard errors and parameter estimates, and thus affect power. 
These factors also affect power in other parametric statistical tests (Cohen, 
1988). Saris and Satorra (1993) pointed out that the larger the noncentrality 
parameter, the greater is the power of the test, that is, an evaluation of the 
power of the test is an evaluation of the noncentrality parameter.

Muthén and Muthén (2002) outlined how Monte Carlo methods can be 
used to decide on the power for a given specified model using the Mplus 
program. Power is indicated as the percentage of significant coefficients or 
the proportion of replications for which the null hypothesis that a param-
eter is equal to zero is rejected at the .05 level of significance, two-tailed 
test, with a critical value of 1.96. The authors suggested that power equal 
or exceed the traditional .80 level for determining the probability of reject-
ing the null hypothesis when it is false.

Marsh et al. (1988, 1996) also examined the influence of sample size on 30 
different model-fit indices and found that the Tucker–Lewis index (Tucker 
& Lewis, 1973) and four new indices based on the Tucker–Lewis index 
were the only ones relatively independent of sample size. Bollen (1990) 
argued that the claims regarding which model-fit indices were affected 
by sample size needed further clarification. There are actually two sample 
size effects that are confounded: (a) whether sample size enters into the 
calculation of the model-fit index, and (b) whether the means of the sam-
pling distribution of the model-fit index are related to sample size. Sample 
size was shown not to affect the calculation of NFI, TLI, GFI, AGFI, and 
CN, but the means of the sampling distribution of these model-fit indices 
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were related to sample size. Bollen (1990) concluded that, given a lack of 
consensus on the best measure of fit, it is prudent to report multiple mea-
sures rather than to rely on a single choice; we concur.

Muthén and Muthén (2002) also used Mplus to determine appropriate 
sample sizes in the presence of model complexity, distribution of vari-
ables, missing data, reliability, and variance–covariance of variables. For 
example, given a two-factor CFA model and 10 indicator variables with 
normally distributed nonmissing data, a sample size of 150 is indicated 
with power = .81. In the presence of missing data, sample size increases to 
n = 175. Given nonnormal missing data, sample size increases to n = 315. 
Davey & Savla (2009) provide an excellent treatment of statistical power 
analysis with missing data via a structural equation modeling approach. 
Their examples cover many different types of modeling situations using 
SAS, STATA, SPSS, or LISREL syntax programs. This is a must-read book 
on the subject of power and sample size, especially in the presence of 
missing data.

Finally, one should beware of claims of sample size influence on fit 
measures that do not distinguish the type of sample size effect (Satorra & 
Bentler, 1994). Cudeck and Henly (1991) also argued that a uniformly neg-
ative view of the effects of sample size in model selection is unwarranted. 
They focused instead on the predictive validity of models in the sense of 
cross-validation in future samples while acknowledging that sample size 
issues are a problem in the field of statistics in general and unavoidable in 
structural equation modeling.

5.7 � Two-Step Versus Four-Step Approach to Modeling

Anderson and Gerbing (1988) proposed a two-step model-building 
approach that emphasized the analysis of two conceptually distinct mod-
els: a measurement model followed by the structural model (Lomax, 1982). 
The measurement model, or factor model, specifies the relationships among 
measured (observed) variables underlying the latent variables. The struc-
tural model specifies relationships among the latent variables as posited 
by theory. The measurement model provides an assessment of convergent 
and discriminant validity, and the structural model provides an assess-
ment of nomological validity.

Mulaik et al. (1989) expanded the idea of model fit by assessing the rela-
tive fit of the structural model among latent variables, independently of 
assessing the fit of the indicator variables in the measurement model. The 
relative normed fit index (RNFI) makes the following adjustment to sepa-
rately estimate the effects of the structural model from the measurement 
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model: RNFIj = (Fu − Fj)/[Fu − Fm − (dfj − dfm)], where Fu = c2 of the full model, 
Fj = c2 of the structural model, Fm = c2 of the measurement model, dfj is 
the degrees of freedom for the structural model, and dfm is the degrees 
of freedom for the measurement model. A corresponding relative parsi-
mony ratio (RP) is given by RPj = (dfj − dfm)/(dfu − dfm), where dfj is the 
degrees of freedom for the structural model, dfm is the degrees of freedom 
for the measurement model, and dfu is the degrees of freedom for the null 
model. In comparing different models for fit, Mulaik et al. multiplied RPj 
by RNFIj to obtain a relative parsimony fit index appropriate for assess-
ing how well and to what degree the models explained both relationships 
in the measurement of latent variables and the structural relationships 
among the latent variables by themselves. McDonald and Marsh (1990), 
however, doubted whether model parsimony and goodness of fit could be 
captured by this multiplicative form because it is not a monotonic increas-
ing function of model complexity. Obviously, further research will be 
needed to clarify these issues.

Mulaik and Millsap (2000) also presented a four-step approach to test-
ing a nested sequence of SEM models:

Step 1 pertains to specifying an unrestricted measurement •	
model, namely conducting an exploratory common factor analy-
sis to determine the number of factors (latent variables) that fit the 
variance–covariance matrix of the observed variables.
Step 2 involves a confirmatory factor analysis model that tests •	
hypotheses about certain relations among indicator variables and 
latent variables. Basically, certain factor loadings are fixed to zero 
in an attempt to have only a single nonzero factor loading for each 
indicator variable of a latent variable. Sometimes this leads to a 
lack of measurement model fit because an indicator variable may 
have a relation with another latent variable.
Step 3 involves specifying relations among the latent variables in a •	
structural model. Certain relations among the latent variables are fixed 
to zero so that some latent variables are not related to one another.
Step 4 continues if an acceptable fit of the structural model is •	
achieved, that is, CFI > .95 and RMSEA < .05. In Step 4, a researcher 
tests planned hypotheses about free parameters in the model. 
Several approaches are possible: (a) perform simultaneous tests 
in which free parameters are fixed based on theory or estimates 
obtained from other research studies; (b) impose fixed parameter 
values on freed parameters in a nested sequence of models until 
a misspecified model is achieved (misspecified parameter); or (c) 
perform a sequence of confidence-interval tests around free param-
eters using the standard errors of the estimated parameters.
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We agree with the basic Mulaik and Millsap (2000) approach and recom-
mend that the measurement models for latent variables be established 
first and then structural models establishing relationships among the 
latent independent and dependent variables be formed. It is in the formu-
lation of measurement models that most of the model modifications occur 
to obtain acceptable data to model fit. In fact, a researcher could begin 
model generation by using exploratory factor analysis (EFA) on a sam-
ple of data to find the number and type of latent variables in a plausible 
model (Costello & Osborne, 2005). Once a plausible model is determined, 
another sample of data could be used to confirm or test the factor model, 
that is, confirmatory factor analysis (CFA) (Jöreskog, 1969). Exploratory 
factor analysis is even recommended as a precursor to confirmatory fac-
tor analysis when the researcher does not have a substantive theoretical 
model (Gerbing & Hamilton, 1996).

Measurement invariance is also important to examine, which refers 
to considering similar measurement models across different groups; for 
example, does the factor (latent variable) imply the same thing to boys 
and girls? This usually involves adding between group constraints in the 
measurement model. If measurement invariance cannot be established, 
then the finding of a between group difference is questionable (Cheung 
& Rensvold, 2002). Cheung and Rensvold (2002) also recommend that the 
comparative fit index (CFI), gamma hat, and McDonald’s noncentrality 
index (NCI) be used for testing between group measurement invariance 
of CFA models rather than the goodness-of-fit index (GFI) or the likeli-
hood ratio test (LR), also known as the chi-square difference test. Byrne 
and Watkins (2003) questioned whether measurement invariance could 
be established given that individual items on an instrument could exhibit 
invariance or group differences. Later, Byrne and Sunita (2006) provided a 
step-by-step approach for examining measurement invariance.

5.8 � Summary

In this chapter, we began by discussing three approaches a researcher 
could take in structural equation modeling: confirmatory models, alter-
native models, and model generation. We then considered categories of 
model-fit indices—namely, model-fit, model comparison, and model 
parsimony. In addition, current and new innovative approaches to spec-
ification searches were mentioned for the assessment of model fit in struc-
tural equation modeling. We examined in detail the different categories 
of model-fit criteria because different fit indices have been developed 
depending on the type of specified model tested. Generally, no single 
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model-fit index is sufficient for testing a hypothesized structural model. 
An ideal fit index just does not exist. This is not surprising because it has 
been suggested that an ideal fit index is one that is independent of sample 
size, accurately reflects differences in fit, imposes a penalty for inclusion 
of additional parameters (Marsh et al., 1988), and supports the choice of 
a true model when it is known (McDonald & Marsh, 1990). The current 
model fitting practice in LISREL involves the use of modification indices 
and/or expected parameter change values, but other advances in specifi-
cation search techniques have been investigated (Tabu and optimization 
algorithms), with a specification search approach already in AMOS (SPSS, 
2009).

A two-factor confirmatory model was analyzed using the LISREL com-
puter program with model-fit output to enhance our understanding of 
the many different model-fit criteria. We concluded in this chapter with 
a discussion of a four-step approach to SEM modeling, the significance 
of parameters in a model, power, and sample size. An understanding of 
model-fit criteria, power, and sample size will help your understanding of 
the examples presented in the remaining chapters of the book.

Exercises

	 1.	 Define confirmatory models, alternative models, and model-
generating approaches.

	 2.	 Define model fit, model comparison, and model parsimony.
	 3.	 Calculate the following fit indices for the model output in 

Figure 5.1:

GFI = 1 – (c2
model/c2

null)
NFI = (c2

null − c2
model)/c2

null

RFI = 1 – [(c2
model/dfmodel)/(c2

null/dfnull)]
IFI = (c2

null − c2
model)/(c2

null − dfmodel)
TLI = [(c2

null/dfnull) − (c2
model/dfmodel)]/[(c2

null/dfnull) − 1]
CFI = 1 – [(c2

model − dfmodel)/(c2
null − dfnull)]

Model AIC = c2
model + 2q (q is the number of free parameters)

Null AIC = c2 
null + 2q (q is the number of free parameters)

	 RMSEA df N df= − −[ ] [( ) ]χModel Model Model/2 1
	 or

	 RMSEA NCP N df= −( )/ /1

	 4.	 How are modification indices in LISREL--SIMPLIS used?
	 5.	 What steps should a researcher take in examining parameter 

estimates in a model?
	 6.	 How should a researcher test for the difference between two 

alternative models?
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	 7.	 How are structural equation models affected by sample size 
and power considerations?

	 8.	 Describe the four-step approach for modeling in SEM.
	 9.	 What new approaches are available to help a researcher iden-

tify the best model?
	 10.	 Use G*Power 3 to calculate power for modified model with 

NCP = 6.3496 at p = .05, p = .01, and p = .001 levels of significance. 
What happens to power when alpha increases?

	 11.	 Use G*Power 3 to calculate power for modified model with 
alpha = .05 and NCP = 6.3496 at df = 1, df = 2, and df = 3 levels 
of model complexity. What happens to power when degrees of 
freedom increases?

Chapter Footnote

LISREL computes two different sets of standard errors for parameter esti-
mates and up to four different chi-squares for testing overall fit of the 
model. These new standard errors and chi-squares can be obtained for 
single-group problems as well as multiple-group problems using variance–
covariance matrices with or without means.

Which standard errors and which chi-squares will be reported 
depends on whether an asymptotic covariance matrix is provided and 
which method of estimation is used to fit the model (ULS, GLS, ML, 
WLS, DWLS). The asymptotic covariance matrix is a consistent esti-
mate of N times the asymptotic covariance matrix of the sample matrix 
being analyzed.

Standard Errors

Standard errors are estimated under nonnormality if an asymptotic cova-
riance matrix is used. Standard errors are estimated under multivariate 
normality if no asymptotic covariance matrix is used.

Chi-Squares

Four different chi-squares are reported and denoted below as C1, C2, C3, 
and C4, where the x indicates that it is reported for any of the five estima-
tion methods.
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Asymptotic covariance matrix not provided:

ULS GLS ML WLS DWLS
C1 — × × — —
C2 × × × — —
C3 — — — — —
C4 — — — — —

Asymptotic covariance matrix provided:

ULS GLS ML WLS DWLS
C1 — × × × —
C2 × × × — ×
C3 × × × — ×
C4 × × × — ×

Note : 1. C1 is n − 1 times the minimum value of the fit function; C2 is 
n − 1 times the minimum of the WLS fit function using a weight matrix 
estimated under multivariate normality; C3 is the Satorra–Bentler scaled 
chi-square statistic or its generalization to mean and covariance struc-
tures and multiple groups (Satorra & Bentler, 1994); C4 is computed from 
equations in Browne (1984) or Satorra (1993) using the asymptotic covari-
ance matrix.

The corresponding chi-squares are now given in the output as follows:

C1: Minimum fit function chi-square
C2: Normal theory weighted least squares chi-square
C3: Satorra-Bentler scaled chi-square
C4: Chi-square corrected for nonnormality

Note 2: Under multivariate normality of the observed variables, C1 and 
C2 are asymptotically equivalent and have an asymptotic chi-square 
distribution if the model holds exactly and an asymptotic noncentral 
chi-square distribution if the model holds approximately. Under nor-
mality and nonnormality, C2 and C4 are correct asymptotic chi-squares, 
but may not be the best chi-square in small and moderate samples. Hu, 
Bentler, and Kano (1992) and Yuan and Bentler (1997) found that C3 per-
formed better given different types of models, sample size, and degrees 
of nonnormality.
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6
Regression Models

Key Concepts

Explanation versus prediction
Standardized partial regression coefficients
Coefficient of determination
Squared multiple correlation coefficient
Full versus restricted models
Confidence intervals around R2

Measurement error
Additive versus relational model

In this chapter, we consider multiple regression models as a method for 
modeling multiple observed variables. Multiple regression, a general lin-
ear modeling approach to the analysis of data, has become increasingly 
popular since 1967 (Bashaw & Findley, 1968). In fact, it has become recog-
nized as an approach that bridges the gap between correlation and analysis 
of variance in answering research hypotheses (McNeil, Kelly, & McNeil, 
1975). Many statistical textbooks elaborate the relationship between mul-
tiple regression and analysis of variance (Draper & Smith, 1966; Edwards, 
1979; Hinkle, Wiersma, & Jurs, 2003; Lomax, 2007).

Graduate students who take an advanced statistics course are typically 
provided with the multiple linear regression framework for data analysis. 
Given knowledge of multiple linear regression techniques (one dependent 
variable), understanding can be extended to various multivariable statisti-
cal techniques (Newman, 1988). A basic knowledge of multiple regression 
concepts is therefore important in further understanding path analysis as 
presented in Chapter 7. This chapter shows how beta weights (standard-
ized partial regression coefficients) are computed in multiple regression 
using a structural equation modeling software program. More specifically, 
we illustrate how the structural equation modeling approach can be used 
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to compute parameter estimates in multiple regression and what model-fit 
criteria are reported. We begin with a brief overview of multiple regression 
concepts followed by an example that illustrates model specification, model 
identification, model estimation, model testing, and model modification.

6.1 � Overview

Multiple regression techniques require a basic understanding of sample 
statistics (sample size, mean, and variance), standardized variables, cor-
relation (Pedhazur, 1982), and partial correlation (Cohen & Cohen, 1983; 
Houston & Bolding, 1974). In standard score form (z scores), the simple 
linear regression equation for predicting the dependent variable Y from a 
single independent variable X is

	 y xz = zˆ ,β

where b is the standardized regression coefficient. The basic rationale for 
using the standard-score formula is that variables are converted to the 
same scale of measurement, the z scale. Conversion back to the raw-score 
scale is easily accomplished by using the raw score, the mean and the stan-
dard deviation.

The relationship connecting the Pearson product-moment correlation 
coefficient, the unstandardized regression coefficient b and the standard-
ized regression coefficient b is

	
β =

z z

z
= b s

s
= r ,x y

x
2

x

y
xy

∑
∑

where sx and sy are the sample standard deviations for variables X and Y, 
respectively. For two independent variables, the multiple linear regression 
equation with standard scores is

	 y 1 2 2z = z + zˆ β β1

and the standardized partial regression coefficients b1 and b2 are com-
puted from

	
1

y y 12

12
2 2

y y 12

12
2= r r r

1 r
= r r r

1 r
β β1 2 2 1−

−
−
−

and .

The correlation between the dependent observed variable Y and the pre-
dicted scores Ŷ is given the special name multiple correlation coefficient. It is 
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written as

	 yy y.12R = Rˆ ,

where the latter subscripts indicate that the dependent variable Y is being 
predicted by two independent variables, X1 and X2. The squared multiple 
correlation coefficient is computed as

	 yy
2

y.12
2

1 Y 2 YR = R = r rˆ .β β+ +1 2

The squared multiple correlation coefficient indicates the amount of vari-
ance explained, predicted, or accounted for in the dependent variable by 
the set of independent predictor variables. The R2 value is used as a model-
fit criterion in multiple regression analysis.

Kerlinger and Pedhazur (1973) indicated that multiple regression analy-
sis can play an important role in prediction and explanation. Prediction 
and explanation reflect different research questions, study designs, infer-
ential approaches, analysis strategies, and reported information. In predic-
tion, the main emphasis is on practical application such that independent 
variables are chosen by their effectiveness in enhancing prediction of the 
dependent variable. In explanation, the main emphasis is on the variabil-
ity in the dependent variable explained by a theoretically meaningful set 
of independent variables. Huberty (2003) established a clear distinction 
between prediction and explanation when referring to multiple correla-
tion analysis (MCA) and multiple regression analysis (MRA). In MCA, a 
parameter of interest is the correlation between the dependent variable Y 
and a composite of the independent variables Xp. The adjusted formula 
using sample size n and the number of independent predictors p is

	
R R

p
n p

RAdj
2 2 2

1
1= −

− −
−( ) .

In MRA, regression weights are also estimated to achieve a composite for 
the independent variables Xp, but the index of fit R2 is computed differ-
ently as

	
R R

p
n p

RAdj* ( ).2 2 22
1= −

−
−

When comparing these two formulas, we see that R2
Adj* has a larger adjust-

ment. For example, given R2 = .50, p = 10 predictor variables and n = 100 
subjects, these two different fit indices are

	
R R

p
n p

RAdj
2 2 2

1
1 50 11 50 50 055= −

− −
− = − = −( ) . . (. ) . . == .45
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R R

p
n p

RAdj* ( ) . . (. ) . .2 2 22
1 50 22 50 50 11= −

−
− = − = − = .. .39

Hypothesis testing would involve using the expected value or chance value 
of R2 for testing the null hypothesis, which is p/(n − 1), not 0 as typically 
indicated. In our example, the expected or chance value for R2 = 10/99 = .10, 
so the null hypothesis is H0: r2 = .10. An F test used to test the statistical 
significance of the R2 value is

	

F
R p

R n p
=

− − −

2

21 1
/

/( )
.

In our example,

	

F
R p

R n p
=

− − −
=

−
=

2

21 1
50 10

1 50 89
05

005
/

/
/

/( )
.

( . )
.

. 66
8 9= . ,

which is statistically significant when compared to the tabled F = 1.93, df = 
10,89, p < .05 (Table A.5). In addition to the statistical significance test, a 
researcher should calculate effect sizes and confidence intervals to aid under-
standing and interpretation (Soper, 2010).

The effect size (ES) is computed as ES = R2 – [p/(n − 1)]. In our example, ES 
R2

Adj = .45 − .10 = .35 and ES R2
Adj* = .39 − .10 = .29. This indicates a moderate 

to large effect size according to Cohen (1988), who gave a general reference 
for effect sizes (small = .1, medium = .25, and large = .4).

Confidence intervals (CIs) around the R2 value can also help our interpre-
tation of multiple regression analysis. Steiger and Fouladi (1992) reported 
an R2 CI DOS program that computes confidence intervals, power, and 
sample size. Steiger and Fouladi (1997) and Cumming and Finch (2001) 
both discussed the importance of converting the central F value to an esti-
mate of the noncentral F before computing a confidence interval around 
R2. Smithson (2001) wrote an R2 SPSS program to compute confidence 
intervals.

We use the Steiger and Fouladi (1997) R2 CI DOS program with our hypo-
thetical example. After entering the program, Option is selected from the 
tool bar menu and then Confidence Interval is selected from the drop-
down menu. To obtain R2 CI, the number of subjects (n = 100), the number 
of variables (K = 10), the R2 value (R = .35), and the desired confidence level 
(C = .95) are entered by using the arrow keys (mouse not supported), and 
then GO is selected to compute the values. The 95% confidence interval 
around R2 = .35 is .133 to .449 at the p = .0001 level of significance for a null 
hypothesis that R2 = 0 in the population.
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After assessing our initial regression model fit, we might want to 
determine whether adding or deleting an independent variable would 
improve the index of fit R2, but we avoid using stepwise regression meth-
ods (Huberty, 1989). We run a second multiple regression equation where 
a single independent variable is added or deleted to obtain a second R2 

value. We then compute a different F test to determine the statistical sig-
nificance between the two regression models as follows

	
F

R R p p
R n p

F R

F

=
− −

− − −
( ) ( )
( )

,
2 2

1 2
2

11 1
/

/

where R2
F is from the multiple regression equation with the full original 

set of independent variables p1 and R2
R is from the multiple regression 

equation with the reduced set of independent variables p2. In our heuristic 
example, we drop a single independent variable and obtain R2

R = .49 with 
p2 = 9 predictor variables. The F test is computed as:

	
F

R R p p
R n p

F R

F

=
− −

− − −
= −( ) ( )

( )
(. . )2 2

1 2
2

11 1
50 49/

/
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.
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1 50 100 10 1

01
0056

1 78
−

− − −
= =

The F value is not significant at the .05 level, so the variable we dropped 
does not statistically add to the prediction of Y, which supports our drop-
ping the single predictor variable; that is, a 1% decrease in R2 is not statisti-
cally significant. The nine-variable regression model therefore provides a 
more parsimonious model.

It is important to understand the basic concepts of multiple regres-
sion and correlation because they provide a better understanding of path 
analysis in chapter 7, and structural equation modeling in general. An 
example is presented next to further clarify these basic multiple regression 
computations.
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6.2 � An Example

A multiple linear regression analysis is conducted using data from 
Chatterjee and Yilmaz (1992). The data file contains scores from 24 patients 
on four variables (Var1 = patient’s age in years, Var2 = severity of illness, 
Var3 = level of anxiety, and Var4 = satisfaction level). Given raw data, two 
different approaches are possible in LISREL: (a) a system file in LISREL–
PRELIS using regression statistics from the pull-down menu or (b) a cor-
relation or covariance matrix input in the LISREL–SIMPLIS command 
syntax file. We choose to compute and input a covariance matrix into a 
LISREL–SIMPLIS program.

6.3 � Model Specification

Model specification involves finding relevant theory and prior research 
to formulate a theoretical regression model. The researcher is interested 
in specifying a regression model that should be confirmed with sample 
variance–covariance data, thus yielding a high R2 value and statisti-
cally significant F value. Model specification directly involves deciding 
which variables to include or not to include in the theoretical regression 
model.

If the researcher does not select the right variables, then the regression 
model could be misspecified and lack validity (Tracz, Brown, & Kopriva, 
1991). The problem is that a misspecified model may result in biased 
parameter estimates or estimates that are systematically different from 
what they really are in the true population model. This bias is known as 
specification error.

The researcher’s goal is to determine whether the theoretical regression 
model fits the sample variance–covariance structure in the data, that is, 
whether the sample variance–covariance matrix implies some underlying 
theoretical regression model. The multiple regression model of theoretical 
interest in our example is to predict the satisfaction level of patients based 
on patient’s age, severity of illness, and level of anxiety (independent vari-
ables). This would be characteristic of a MCA model because a particular 
set of variables were selected based on theory. The dependent variable 
Var4 is therefore predicted by the three independent variables (Var1, Var2, 
and Var3). The path diagram of the implied regression model is shown in 
Figure 6.1.
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6.4 � Model Identification

Once a theoretical regression model is specified, the next concern is model 
identification. Model identification refers to deciding whether a set of 
unique parameter estimates can be computed for the regression equation. 
Algebraically, every free parameter in the multiple regression equation can 
be estimated from the sample variance–covariance matrix (a free parameter 
is an unknown parameter that you want to estimate). The number of dis-
tinct values in the sample variance–covariance matrix equals the number 
of parameters to be estimated; thus, multiple regression models are always 
considered just-identified (see chapter 4). SEM computer output will there-
fore indicate that regression analyses are saturated models; thus, c2 = 0 and 
degrees of freedom = 0. There are 3 variances, 3 covariance terms, 3 regression 
weights, and 1 error term so all parameters in the regression equation are 
being estimated.

6.5 � Model Estimation

Model estimation involves estimating the parameters in the regression model—
that is, computing the sample regression weights for the independent predic-
tor variables. The squared multiple correlation with three predictor variables 
(VAR1, VAR2, VAR3) predicting the dependent variable Y (VAR4) is

	 y.123
2

1 y 2 y 3 yR = r + r + rβ β β1 2 3 .

var1

var2

var3

var4 error

Figure 6.1
Satisfaction regression model.
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The correlation coefficients are multiplied by their respective standard-
ized partial regression weights and summed to yield the squared multiple 
regression coefficient R2

y . 123.
In LISREL–SIMPLIS, we select File, New, and then Syntax Only in the 

dialog box to write the following SIMPLIS program:

Regression Analysis Example (no intercept term)
Observed variables: VAR1 VAR2 VAR3 VAR4
Covariance matrix:
 91.384
 30.641 27.288
 0.584	 0.641 0.100
 −122.616 −52.576 −2.399 281.210
Sample size: 24
Equation: VAR4 = VAR1 VAR2 VAR3
Number of decimals = 3
Path Diagram
End of Problem

You will be prompted to save the program with a file name (*.spl) before 
the program runs.

The critical portion of the LISREL–SIMPLIS regression output without 
an intercept term in the regression equation looks like:

VAR4 = − 1.153*VAR1 − 0.267*VAR2 − 15.546*VAR3, Errorvar.= 88.515, R² = 0.685

                    (0.279)           (0.544)                (7.232)                        (27.991)

                   −4.129           −0.491                 −2.150                            3.162

	 Goodness-of-Fit Statistics
	 Degrees of Freedom = 0
	 Minimum Fit Function Chi-Square = 0.0 (P = 1.000)
	� Normal Theory Weighted Least Squares Chi-Square = 

0.00 (P = 1.000)
	 The model is saturated, the fit is perfect!

We notice that the regression weights are identified for each independent 
variable (VAR1 – VAR3). Below each regression weight is the standard 
error in parenthesis, for example, VAR1 regression weight has a standard 
error of .279; with the T or Z value indicated below that, and a p-value 
listed below the T or Z value. (Note: LISREL 8.8 Student version lists the 
parameter estimate, standerd error, z value, and associated p-value.) Recall 
that T = parameter divided by standard error (T = −1.153/.279 = −4.129). If 
testing each regression weight at the critical t = 1.96, a = .05 level of sig-
nificance, then VAR1 and VAR3 are statistically significant, but VAR2 is 
not (T = −.491). We also notice that R2 = .685 or 69% of the variability in 
Y scores (VAR4) is predicted by knowledge of VAR1, VAR2, and VAR3. 
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We will later discuss modifying this regression model—that is, dropping 
VAR2 (see section 6.7). This example is further explained in Jöreskog and 
Sörbom (1993, pp. 1–6).

6.6 � Model Testing

Model testing involves determining the fit of the theoretical model. 
Therefore, we will present how to hand calculate the R2 value from the 
correlation matrix output by LISREL, as follows:

CORRELATION MATRIX
VAR1 VAR2 VAR3 VAR4

VAR1  1.0000
VAR2  0.6136  1.0000
VAR3  0.1935  0.3888  1.0000
VAR4 −0.7649 −0.6002 −0.4530 1.0000

The standardized regression coefficients can be obtained from selecting 
the standardized solution in the pull down menu of the path diagram win-
dow of the LISREL–SIMPLIS program. We can now verify the R2 value 
using the standardized regression formula:

(Note:  This matches the R2 value in the LISREL–SIMPLIS output as shown 
above). The adjusted R2 value for the MCA theoretical regression model 
approach is

	 y.123
2

1 y 2 y 3 yR = r + r + rβ β β1 2 3 = −.657(−.7649) + −.083(−.6002)

                                                                 + −.294(−.4530) = .685.

	
R R

p
n p

RAdj
2 2 2

1
1 685 15 315 685= −

− −
− = − = −( ) . . (. ) . .0047 638= . .

The F test for the significance of the R2 value is

	
F

R p
R n p

=
− − −
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−

=
2

21 1
685 3
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228

0
/

/
/
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.
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. 1157
14 52= . .

The effect size is

	 R2 – [p/(n − 1)] = .685 – [3/23] = .685 − .130 = .554.
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This is a large effect size. The 95% confidence interval around R2 = .685 using 
the R2 CI program is (.33, .83).

The results indicate that a patient’s age, severity of illness, and level of 
anxiety make up a statistically significant set of predictors of a patient’s 
satisfaction level. There is a large effect size and the confidence interval 
reveals the range of R2 values one can expect in conducting a regression 
analysis on another sample of data. The negative standardized regression 
coefficients indicate that as patient age, severity of illness, and anxiety 
increase, patient satisfaction decreases.

6.7 � Model Modification

The theoretical regression model included a set of three independent explan-
atory variables, which resulted in a statistically significant R2 = .685. This 
implies that 69% of the patient satisfaction level score variance is explained 
by knowledge of a patient’s age, severity of illness, and level of anxiety. The 
regression analysis, however, indicated that the regression weight for Var2 
was not statistically different from zero (t = −0.491, p > .10). Thus, one might 
consider model modification where the theoretical regression model is modi-
fied to produce a two-variable regression equation, thus allowing for the 
F test of the difference between the two regression analysis R2 values.

We repeat the steps for the regression analysis, but this time only 
including Var1 and Var3 in the analysis. The results for the regression 
equation with these two variables, Var1 and Var3 in the LISREL–SIMPLIS 
program, are:

VAR4 = − 1.235*VAR1 − 16.780*VAR3, Errorvar. = 89.581, R² = 0.681

                      (0.220)               (6.657)                   (27.645)
                    −5.606                −2.521                       3.240

The F test for a difference between the two models is
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The F test for the difference in the two R2 values was nonsignificant indi-
cating that dropping Var2 does not affect the explanation of a patient’s 
satisfaction level (R2 = .685 vs. R2 = .681). We therefore use the more parsi-
monious two-variable regression model (68% of the variance in a patient’s 
satisfaction level is explained by knowledge of a patient’s age and level of 
anxiety, that is, 68% of 281.210 = 191.22).
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Because the R2 value is not 1.0 (perfect explanation or prediction), addi-
tional variables could be added if more recent research indicated that 
another variable was relevant to a patient’s satisfaction level, for example, 
the number of psychological assessment visits. Obviously, more variables 
can be added in the model modification process, but a theoretical basis 
should be established by the researcher for the additional variables.

6.8 � Summary

This chapter illustrated the important statistics to report when conducting 
a regression analysis. We found that the model-fit statistics in chapter 5 do 
not apply because regression models are saturated just-identified models. 
We also showed that the selection of independent variables in the regres-
sion model (model specification) and the subsequent regression model 
modification are key issues not easily resolved without a good sound 
theoretical justification.

The selection of a set of independent variables and the subsequent 
regression model modification are important issues in multiple regression. 
How does a researcher determine the best set of independent variables 
for explanation or prediction? It is highly recommended that a regression 
model be based on some theoretical framework that can be used to guide 
the decision of what variables to include. Model specification consists of 
determining what variables to include in the model and which variables 
are independent or dependent. A systematic determination of the most 
important set of variables can then be accomplished by setting the par-
tial regression weight of a single variable to zero, thus testing full and 
restricted models for a difference in the R2 values (F test). This approach 
and other alternative methods were presented by Darlington (1968).

In multiple regression, the selection of a wrong set of variables can yield 
erroneous and inflated R2 values. The process of determining which set 
of variables yields the best prediction, given time, cost, and staffing, is 
often problematic because several methods and criteria are available to 
choose from. Recent methodological reviews have indicated that stepwise 
methods are not preferred, and that an all-possible-subset approach is rec-
ommended (Huberty, 1989; Thompson, Smith, Miller, & Thomson, 1991). 
In addition, the Mallows CP statistic is advocated by some rather than R2 
for selecting the best set of predictors (Mallows, 1966; Schumacker, 1994; 
Zuccaro, 1992). Overall, which variables are included in a regression equa-
tion will determine the validity of the model and be determined by the 
rationale for the model by the researcher (see Chapter Note, for inclusion 
of an intercept term).
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Because multiple regression techniques have been shown to be robust 
to violations of assumptions (Bohrnstedt & Carter, 1971) and applicable to 
contrast coding, dichotomous coding, ordinal coding (Lyons, 1971), and 
criterion scaling (Schumacker, 1993), they have been used in a variety of 
research designs. In fact, multiple regression equations can be used to 
address several different types of research questions. The model specifi-
cation issue, however, is paramount in achieving a valid multiple regres-
sion model. Replication, cross-validation, and bootstrapping have all been 
applied in multiple regression to determine the validity of a regression 
model (see chapter 12 for further discussion of these methods in SEM).

There are other issues related to using the regression method, namely, 
variable measurement error and the additive nature of the equation. These 
two issues are described next.

6.8.1 � Measurement Error

The issue of unreliable variable measurements and their effect on mul-
tiple regression has been previously discussed (Cleary, 1969; Cochran, 
1968; Fuller & Hidiroglou, 1978; Subkoviak & Levin, 1977; Sutcliffe, 1958). 
A recommended solution was to multiply the dependent variable reliabil-
ity and/or average of the independent variable reliabilities by the R2 value 
(Cochran, 1968, 1970). The basic equation using only the reliability of the 
dependent variable is

	 y.123
2

y.123
2

yyR = R rˆ * ,

or, including the dependent variable reliability and the average of the 
independent variable reliabilities,

	 y.123
2

y.123
2

yy xxR = R r rˆ * * .

This is not always possible if reliabilities of the dependent and indepen-
dent variables are unknown. This correction to R2 for measurement error 
(unreliability) has intuitive appeal given the definition of classical reli-
ability, namely the proportion of true score variance accounted for given 
the observed scores. In our previous example, R2 = .68. If the dependent 
variable reliability is .80, then only 54% of the variance in patient’s satis-
faction level is true variance, rather than 68%. Similarly, if the average of 
the two independent variable reliabilities was .90, then multiplying .68 by 
.80 by .90 yields only 49% variance as true variance. Obviously, unreliable 
variables (measurement error) can have a dramatic effect on statistics and 
our interpretation of the results. Werts, Rock, Linn, and Jöreskog (1976) 
examined correlations, variances, covariances, and regression weights 
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with and without measurement error and developed a program to correct 
the regression weights for attenuation. Our basic concern is that unreli-
able measured variables coupled with a potential misspecified model do 
not represent theory well.

The impact of measurement error on statistical analyses is not new, 
but is often forgotten by researchers. Fuller (1987) extensively covered 
structural equation modeling, and especially extended regression analy-
sis to the case where the variables were measured with error. Cochran 
(1968) studied four different aspects of how measurement error affected 
statistics: (a) types of mathematical models, (b) standard techniques of 
analysis that take measurement error into account, (c) effect of errors of 
measurement in producing bias and reduced precision and what remedial 
procedures are available, and (d) techniques for studying error of mea-
surement. Cochran (1970) also studied the effects of measurement error 
on the squared multiple correlation coefficient.

The validity and reliability issues in measurement have traditionally 
been handled by first examining the validity and reliability of scores on 
instruments used in a particular research design. Given an acceptable 
level of score validity and reliability, the scores are then used in a sta-
tistical analysis. The traditional statistical analysis of these scores using 
multiple regression, however, did not adjust for measurement error, 
so it is not surprising that an approach such as SEM was developed 
to incorporate measurement error adjustments into statistical analyses 
(Loehlin, 1992).

6.8.2 � Additive Equation

The multiple regression equation is by definition additive (Y = X1 + X2) 
and thus does not permit any other relationships among the variables 
to be specified. This limits the potential for variables to have direct, 
indirect, and total effects on each other as described in chapter 7 (path 
models). In fact, a researcher’s interest should not be with the Pearson 
product-moment correlations, but rather with partial or part correla-
tions that reflect the unique additive contribution of each variable, that 
is, standardized partial regression weights. Even with this emphasis, 
the basic problem is that variables are typically added in a regression 
model, a process that functions ideally only if all independent vari-
ables are highly correlated with the dependent variable and uncorre-
lated among themselves. Path models, in contrast, provide theoretically 
meaningful relationships in a manner not restricted to an additive 
model (Schumacker, 1991).

Multiple regression as a general data-analytic technique is widely 
accepted and used by educational researchers, behavioral scientists, and 
biostatisticians. Multiple regression methods basically determine the overall 
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contribution of a set of observed variables to explanation or prediction, 
test full and restricted models for the significant contribution of a variable 
in a model, and delineate the best subset of multiple independent predic-
tors. Multiple regression equations also permit the use of nominal, ordinal, 
effect, contrast, or polynomial coded variables (Pedhazur, 1982; Pedhazur & 
Schmelkin, 1992). The multiple regression approach, however, is not robust 
to measurement error and model misspecification (Bohrnstedt & Carter, 
1971) and gives an additive model rather than a relational model; hence, 
path models play an important role in defining more meaningful theoretical 
models to test.

Chapter Footnote

Regression Model with Intercept Term

In the LISREL–SIMPLIS GUIDE (Jöreskog & Sörbom, 1993) we see 
our first use of the CONST command which uses a mean value, thus 
includes an intercept term in the model. The SEM modeling type struc-
tured means makes use of this command to test the mean values between 
models (see Chapter 13). The following LISREL–SIMPLIS Program 
includes the command, CONST, to produce an intercept term in the 
regression equation:

LISREL–SIMPLIS Program (Intercept Term)

Regression Analysis
Raw Data from file chatter.psf
Equation: VAR4 = VAR1 VAR2 VAR3 CONST
Path Diagram
End of Problem

The LISREL–SIMPLIS output would look like this:

VAR4 = 156.62 − 1.15*VAR1 − 0.27*VAR2 − 15.59*VAR3,  Errorvar. = 88.46,  R² = 0.69

               (22.61)          (0.28)               (0.54)               (7.24)         (27.97)
                  6.93           −4.13               −0.49               −2.15           3.16
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In the LISREL 8.8 Student Examples folder, SPLEX, the program EX1A.
SPL computes the regression equation without an intercept term, while 
the program EX1B.SPL computes the regression equation with an inter-
cept term. In general, if you include sample means, then an intercept term 
is included in the equation. These examples are further explained in the 
LISREL8: Structural Equation Modeling with the SIMPLIS Command Language 
(Jöreskog & Sörbom, 1993, p. 1–6).

Exercises

	 1.	 Analyze the regression model in LISREL–SIMPLIS using the 
covariance matrix below with a sample size of 23 as described 
in Jöreskog and Sörbom (1993, pp. 3–6). The theoretical regres-
sion model specifies that the dependent variable, gross national 
product (GNP), is predicted by labor, capital, and time (three 
independent variables).

Covariance Matrix

GNP 4256.530
Labor   449.016   52.984
Capital 1535.097 139.449 1114.447
Time   537.482   53.291  170.024 73.747

	 2.	 Is there an alternative regression model that predicts GNP 
better? Report the F, effect size, and confidence interval for the 
revised model. The regression model is shown in Figure 6.2

Labor

Capitol

Time

GNP error

Figure 6.2
GNP regression model.
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7
Path Models

Key Concepts

Path model diagrams
Direct effects, indirect effects, and correlated independent variables
Path (structure) coefficients and standardized partial regression 

coefficients
Decomposition of correlations
Original and reproduced correlation coefficients
Full versus limited information function
Residual and standardized residual matrix

In this chapter we consider path models, the logical extension of multiple 
regression models. Although path analysis still uses models involving 
multiple observed variables, there may be any number of independent 
and dependent variables and any number of equations. Thus, as we shall 
see, path models require the analysis of several multiple regression equa-
tions using observed variables.

Sewall Wright is credited with the development of path analysis as a 
method for studying the direct and indirect effects of variables (Wright, 
1921, 1934, 1960). Path analysis is not actually a method for discovering 
causes; rather, it tests theoretical relationships, which historically has been 
termed causal modeling. A specified path model might actually establish 
causal relationships among two variables when:

	 1.	Temporal ordering of variables exists.
	 2.	Covariation or correlation is present among variables.
	 3.	Other causes are controlled for.
	 4.	A variable X is manipulated, which causes a change in Y.

Obviously, a theoretical model that is tested over time (longitudinal research) 
and manipulates certain variables to assess the change in other variables 
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(experimental research) more closely approaches our idea of causation. In 
the social and behavioral sciences, the issue of causation is not as straight-
forward as in the hard sciences, but it has the potential to be modeled.

Pearl (2009) has renewed a discussion of causation in the behavioral 
sciences with model examples and rationale for causation as a process 
(model) that can be expressed in mathematical expressions ready for com-
puter analysis, which fits into the testing of theoretical path models.

This chapter begins with an example path model, and then proceeds 
with sections on model specification, model identification, model estima-
tion, model testing, and model modification.

7.1 � An Example

We begin with a path model that will be followed throughout the chapter. 
McDonald and Clelland (1984) collected data on the sentiments toward 
unions of Southern nonunion textile laborers (n = 173). This example is 
presented in the LISREL manual (Jöreskog & Sörbom, 1993, pp. 12–15, 
example 3); included in the data files of the LISREL program; and was 
utilized by Bollen (1989, pp. 82–83). The model consists of five observed 
variables; the independent variables are the number of years worked in 
the textile mill (actually log of years, denoted simply as years) and worker 
age (age); the dependent variables are deference to managers (deference), 
support for labor activism (support), and sentiment toward unions (sen-
timent). The original variance–covariance matrix, implied model (repro-
duced) variance–covariance matrix, residual matrix, and standardized 
residual matrix are given in Table 7.1. The path diagram of the theoretical 
proposed model is shown in Figure 7.1.

Path models adhere to certain common drawing conventions that are 
utilized in SEM models (Figure 7.2). The observed variables are enclosed by 
boxes or rectangles. Lines directed from one observed variable to another 
observed variable denote direct effects, in other words, the direct influence 
of one variable on another. For example, it is hypothesized that age has a 
direct influence on support, meaning that the age of the worker may influ-
ence an increase (or decrease) in support. A curved, double-headed line 
between two independent observed variables indicates covariance; that is, 
they are correlated. In this example, age and years are specified to correlate. 
The rationale for such relationships is that there are influences on both of 
these independent variables outside of the path model. Because these influ-
ences are not studied in this path model, it is reasonable to expect that the 
same unmeasured variables may influence both independent variables.
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Finally, each dependent variable has an error term, denoted by a circle 
around the error term pointing toward the proper dependent variable. 
Take deference, for example, some variance in deference scores will be pre-
dicted or explained by age and some variance will not. The unexplained 
variance will become the error term, which indicates other possible influ-
ences on deference that are not contained in the specified path model.

Table 7.1

Original, Reproduced, Residual, and Standardized Residual Covariance 
Matrices for the Initial Union Sentiment Model

Original Matrix

Variable Deference Support Sentiment Years Age

Deference   14.610
Support   −5.250 11.017
Sentiment   −8.057 11.087 31.971
Years   −0.482   0.677   1.559 1.021
Age −18.857 17.861 28.250 7.139 215.662

Reproduced Matrix
Variable Deference Support Sentiment Years Age

Deference 14.610
Support −1.562 11.017
Sentiment −5.045 10.210 30.534
Years −0.624   0.591   1.517 1.021
Age −18.857 17.861 25.427 7.139 215.662

Residual Matrix
Variable Deference Support Sentiment Years Age

Deference    0.000
Support −3.688   0.000
Sentiment −3.012   0.877   1.437
Years   0.142   0.086   0.042 0.000
Age   0.000   0.000   2.823 0.000 0.000

Standardized Residual Matrix
Variable Deference Support Sentiment Years Age

Deference   0.000
Support –4.325 0.000
Sentiment –3.991 3.385 3.196
Years   0.581 0.409 0.225 0.000
Age   0.000 0.000 0.715 0.000 0.000
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or

or

or

or

or

or

Latent variable

Observed variable

Unidirectional path

Disturbance or error in latent variable

Measurement error in observed variable 

Correlation between variables

Recursive (nonreciprocal) relation between variables

Nonrecursive (reciprocal) relation between variables 

Figure 7.2
Common path diagram symbols.

age

years

deference

support

sentiment

error1

error3

error2

Figure 7.1
Union sentiment model.
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7.2 � Model Specification

Model specification is necessary in examining multiple variable relation-
ships in path models, just as in the case of multiple regression. Many dif-
ferent relationships among a set of variables can be hypothesized with 
many different parameters being estimated. In a simple three-variable 
model, for example, many possible path models can be postulated on the 
basis of different hypothesized relationships among the three variables.

For example, in Figure 7.3a–c we see three different path models where 
X1 influences X2. In Model (a), X1 influences X2, which in turn influences 
Y. Here, X2 serves as a mediator between X1 and Y. In Model (b), an addi-
tional path is drawn from X1 to Y, such that X1 has both a direct and an 
indirect effect upon Y. The direct effect is that X1 has a direct influence on 
Y (no variables intervene between X1 and Y), whereas the indirect effect 
is that X1 influences Y through X2, that is, X2 intervenes between X1 and 
Y. In Model (c), X1 influences both X2 and Y; however, X2 and Y are not 
related. If we were to switch X1 and X2 around, this would generate three 
more plausible path models.

Other path models are also possible. For example, in Figure 7.4(a,b), X1 
does not influence X2. In Model (a), X1 and X2 influence Y, but are uncor-
related. In Model (b), X1 and X2 influence Y and are correlated. How can 
one determine which model is correct? This is known as model specifica-
tion and shows the important role that theory and previous research plays 
in justifying a hypothesized model. Path analysis does not provide a way 
to specify the model, but rather estimates the effects among the variables 
once the model has been specified a priori by the researcher on the basis of 
theoretical considerations. For this reason, model specification is a critical 
part of SEM modeling.

Path coefficients in path models are usually derived from the values of a 
Pearson product moment correlation coefficient (r) and/or a standardized 
partial regression coefficient (b)  (Wolfle, 1977). For example, in the path 
model of Figure 7.4b, the path coefficients (p) are depicted by arrows from 
X1 to Y and X2 to Y, respectively, as:

	 b1 = pY1

	 b2 = pY2

and the curved arrow between X1 and X2 is denoted as:

	 rX1,X2 = p12.

The variable relationships, once specified in standard score form, become 
standardized partial regression coefficients. In multiple regression, a 
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dependent variable is regressed in a single analysis on all of the indepen-
dent variables. In path analysis, one or more multiple regression analyses 
are performed depending on the variable relationships specified in the 
path model. Path coefficients are therefore computed only on the basis 
of the particular set of independent variables that lead to the dependent 

X1 X2 Y

X1

X2

Y

error1 error2

error1

(a)

(b)

(c)

error2

X1

X2

Y

error1

error2

Figure 7.3
Possible three-variable models (X1 influences X2).
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variable under consideration. In the path model of Figure 7.4b, two stan-
dardized partial regression coefficients (path coefficients) are computed, 
pY1 and pY2. The curved arrow represents the covariance or correlation 
between the two independent variables p12 in predicting the dependent 
variable.

For the union sentiment model, the model specification is as follows. 
There are three structural equations in the model, one for each of the three 
dependent variables, deference, support, and sentiment. In terms of vari-
able names, the structural equations are as follows.

deference = age + error1

   support = age + deference + error2

	  sentiment = years + support + deference + error3 .

X1

X2

Y

error1

(a)

(b)

X1

X2

Y

error2

Figure 7.4
Possible three-variable models (X1 does not influence X2).
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Substantive information from prior research suggested that those six 
paths be included in the specified model; and that other possible paths, 
for example from age to sentiment, not be included. This model includes 
direct effects, for example from age to support, indirect effects, for exam-
ple from age to support through deference, and correlated independent 
variables, for example age and years. Obviously many possible path mod-
els could be specified for this set of observed variables.

7.3 � Model Identification

Once a particular path model has been specified, the next concern is 
whether the model is identified. In structural equation modeling, it is cru-
cial that the researcher resolve the identification problem prior to the estima-
tion of parameters. The general notion of identification was discussed in 
Chapter 4. Here, we consider model identification in the context of path 
models, and in particular, for our union sentiment example.

As described in Chapter 4, for the identification problem, we ask the fol-
lowing question: On the basis of the sample data contained in the sample 
covariance matrix S and the theoretical model implied by the population 
covariance matrix Σ, can a unique set of parameter estimates be found? 
For the union sentiment model, for example, we would like to know if the 
path between age and deference is identified; an example of one param-
eter to be estimated.

In the union sentiment model, some parameters are fixed and others 
are free. An example of a fixed parameter is that there is no path or direct 
relationship between age and sentiment. An example of a free parameter 
is that there is a path or direct relationship between age and deference.

In determining identification, first consider the order condition. Here, 
the number of free parameters to be estimated must be less than or equal 
to the number of distinct values in the matrix S. In our path model we 
specified the following:

6 path coefficients
3 equation error variances
1 correlation among the independent variables
2 independent variable variances

Thus, there are a total of 12 free parameters that we wish to estimate. The 
number of distinct values in the matrix S is equal to:

	 [p (p + 1)]/2 = [5 (5 + 1)]/2 = 15,
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where p is the number of observed variables in the matrix. Thus, the num-
ber of distinct values in the sample matrix S, 15 is indeed greater than the 
number of free parameters, 12. However, this is only a necessary condi-
tion and does not guarantee that the model is identified. According to the 
order condition, the model is also overidentified because there are more 
values in S than parameters to be estimated.

Although the order condition is easy to assess, other sufficient condi-
tions are not, for example, the rank condition. The sufficient conditions 
require us to algebraically determine whether each parameter in the 
model can be estimated from the covariance matrix S. According to the 
LISREL computer program, which checks on identification, the union sen-
timent model is identified.

7.4 � Model Estimation

Once the identification problem has been addressed, the next step is to esti-
mate the parameters of the specified model. In this section, we consider the 
following topics: decomposition of the correlation matrix, parameter estima-
tion in general, and parameter estimation of the union sentiment model.

In path analysis, the traditional method of intuitively thinking about 
estimation is to decompose the correlation matrix. This harkens back to 
the early days of path analysis in the 1960s when sociologists like Arthur S. 
Goldberger and Otis D. Duncan were rediscovering and further develop-
ing the procedure. The decomposition idea is that the original correlation 
matrix can be completely reproduced if all of the effects are accounted for 
in a specified path model. In other words, if all of the possible unidirec-
tional (or recursive) paths are included in a path model, then the observed 
correlation matrix can be completely reproduced from the obtained stan-
dardized estimates of the model.

For example, take the model in Figure 7.4b. Here there are two direct 
effects, from X1 to Y and from X2 to Y. There are also indirect effects due 
to the correlation between X1 and X2. In other words, X1 indirectly influ-
ences Y through X2, and also X2 indirectly affects Y through X1. The cor-
relations among these three variables can be decomposed as follows:

	 r12 = p12	 (1)
	 (CO)

	 rY1 = pY1 + p12 pY2	 (2)	
                            (DE)    (IE)

	 rY2 = pY2 + p12 pY1,	 (3)
                            (DE)    (IE)
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where the r values are the actual observed correlations and the p values 
are the path coefficients (standardized estimates). Thus, in equation (1), 
the correlation between X1 and X2 is simply a function of the path, or 
correlation relationship (CO), between X1 and X2. In equation (2), the 
correlation between X1 and Y is a function of (a) the direct effect (DE) 
of X1 on Y, and (b) the indirect effect (IE) of X1 on Y through X2 [the 
product of the path or correlation between X1 and X2 (p12) and the path 
or direct effect from X2 to Y (pY2)]. Equation (3) is similar to equation (2) 
except that X1 and X2 are reversed; there is both a direct effect and an 
indirect effect.

Let us illustrate how this works with an actual set of correlations. The 
observed correlations are as follows: r12 = .224, rY1 = .507, and rY2 = .480. The 
specified path model and correlation matrix were run in LISREL. The path 
coefficients and the complete reproduction of the correlations are:

	 r12 = p12 = .224	 (4)
                              (CO)

	 rY1 = pY1 + p12 pY2 = .421 + (.224)(.386) = .507	 (5)
                  (DE)    (IE)

	 rY2 = pY2 + p12 pY1 = .386 + (.224)(.421) = .480.	 (6)
                  (DE)    (IE)

Here, the original correlations are completely reproduced by the model 
because all of the effects are accounted for, direct, indirect, and correlated. 
If a path were left out of the model, for example p12, then the correlations 
would not be completely reproduced. Thus, the correlation decomposition 
approach is a nice conceptual way of thinking about the estimation pro-
cess in path analysis. For further details on the correlation decomposition 
approach, we highly recommend reading Duncan (1975).

In chapter 4, we presented the problem of estimation in general. 
Parameters can be estimated by different estimation procedures, such 
as maximum likelihood (ML), generalized least squares (GLS), and 
unweighted least squares (ULS), which are all unstandardized types of 
estimates, as well as standardized estimates (the path coefficients previ-
ously described in this chapter were standardized estimates). In addition 
to different methods of estimation of the parameter estimates, full versus 
limited information estimation functions are invoked based on the soft-
ware chosen for the analysis. Full information estimation computes all of the 
parameters simultaneously, whereas limited information estimation com-
putes parameters for each equation separately. The parameters estimated 
in structural equation modeling software (LISREL) use full information 
estimation and therefore differ from parameter estimates computed in 
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SPSS or SAS, where each equation in the path model is estimated sepa-
rately (limited information estimation). In limited information estimation, 
the parameter estimates are determined uniquely in each separate equa-
tion to meet the least squares criterion of minimized residuals.

In the union sentiment example we see the estimation process at work. In 
order to utilize the model modification procedures discussed in section 7.6, 
we have slightly changed the model specification in Figure 7.1. We remove 
the path from deference to support and call this the initial model. We evalu-
ate this initial model, and hope, through the model modification process, 
we will obtain the model as originally specified in Figure 7.1. The intention-
ally misspecified model was run using LISREL (Note: The LISREL program 
for the correctly specified model is given at the end of the chapter).

The maximum likelihood estimates for the initial model are shown in the 
first column of Table 7.2. All of the parameter estimates are significantly 

Table 7.2

Maximum Likelihood Estimatesa and Selected Fit Indices for the Initial 
and Final Union Sentiment Models

Paths Initial Model Final Model

Age → deference −.09 −.09

Age → support 0.08 0.06

Deference → support — −.28

Years → sentiment 0.86 0.86

Deference → sentiment −.22 −.22

Support → sentiment 0.85 0.85

Equation error variances
Deference 12.96 12.96
Support 9.54 8.49
Sentiment 19.45 19.45

Independent variables
Variance (age) 215.66 215.66
Variance (years) 1.02 1.02
Covariance (age, years) 7.14 7.14

Selected fit indices
  c2 19.96 1.25
  df 4 3
  p value .00 .74
  RMSEA .15 .00
  SRMR .087 .015
  GFI .96 1.00

a	 All estimates significantly different from zero (p < .05).
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different from zero, p < .05 (the fit of the model is discussed next in sec-
tion 7.5). Age has a direct effect on both deference and support; deference 
has a direct effect on sentiment; years has a direct effect on sentiment; 
and support has a direct effect on sentiment. Numerous indirect effects 
are also part of the path model, such as the indirect effect of age on senti-
ment through support. Age and years also have a significant covariance, 
indicating that one or more common unmeasured variables influence both 
age and years.

7.5 � Model Testing

An important result of any path analysis is the fit of the specified 
model. If the fit of the path model is good, then the specified model has 
been supported by the sample data. If the fit of the path model is not so 
good, then the specified model has not been supported by the sample 
data, and the researcher typically attempts to modify the path model to 
achieve a better fit (as described in section 7.6). As discussed in chap-
ter 5, LISREL provides modification indices and expected parameter 
changes values to guide modifying a model to obtain better model-fit 
criteria.*

For purposes of the union sentiment example, we include a few model-
fit indices at the bottom of Table  7.2. For the initial path model, the c2 
statistic, technically a measure of badness of fit, is equal to 19.96, with four 
degrees of freedom, and p < .01. As the p value is very small and the c2 
value is nowhere near the number of degrees of freedom, then according 
to this measure of fit, the initial path model is poorly specified. The root-
mean-square error of approximation (RMSEA) is equal to .15, somewhat 
below the acceptable level for this measure of fit (RMSEA < .08 or .05). The 
standardized root-mean-square residual (SRMR) is .087, also below the 
usual acceptable level of fit (SRMR < .08 or .05). Finally, the goodness-of-fit 
index (GFI) is .96 for the initial model, which is an acceptable level for this 
measure of fit (GFI > .95). Across this particular set of model-fit indices, 
the conclusion is that the data to model fit is approaching a reasonable 
level, but that some model modifications might allow us to achieve a bet-
ter model fit between the sample variance–covariance matrix S and the 
implied model (reproduced) variance–covariance matrix Σ. Model modi-
fication is considered in the next section.

*	 Another traditional non-SEM path model-fit index is described in the Chapter Footnote.
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7.6 � Model Modification

The final step in structural equation modeling is model modification. In 
other words, if the fit of the model is less than satisfactory, then the researcher 
typically performs a specification search to seek a better fitting model. As 
described in chapters 4 and 5, several different procedures can be used to 
assist in this search. One may eliminate parameters that are not signifi-
cantly different from zero and/or include additional parameters to arrive at 
a modified model. For the elimination of parameters, the most commonly 
used procedure in LISREL is to compare the t statistic for each parameter to 
a tabled t value (e.g., t > 1.96) to determine statistical significance.

For the inclusion of additional parameters, the most commonly used 
techniques in LISREL are (a) the modification index (MI) (the expected 
value that c2 would decrease if such a parameter were to be included; 
large values indicate potentially useful parameters), and (b) the expected 
parameter change statistic (EPC) (the approximate value of the new 
parameter if added to the model).

In addition, an examination of the residual matrix, or the more useful stan-
dardized residual matrix, often gives clues as to which original covariance or 
correlations are not well accounted for by the model. Recall that the residual 
matrix is the difference between the observed variance-covariance S and the 
model implied (reproduced) variance-covariance matrix Σ. Large residuals 
indicate values not well accounted for by the model. Standardized residu-
als are like z scores in that large values (greater than 1.96 or 2.58) indicate 
that a particular relationship is not well accounted for by the path model 
(Table A.1).

For the initial union sentiment example, the original, model implied 
(reproduced), residual, and standardized residual covariance matrices are 
given in Table 7.1. Here we see that the largest standardized residual is 
between deference and support (−4.325). The t statistics do not suggest 
the elimination of any existing parameters from the initial path model 
because every parameter is statistically different from zero. With regard 
to the possible inclusion of new parameters, the largest modification index 
is for the path from deference to support (MI = 18.9). For that potential 
path, the estimated value, or expected parameter change (EPC), is −0.28.

Taken together, these statistics indicate that there is something mis-
specified between deference and support that is not captured by the initial 
model. Specifically, adding a path is recommended from deference to sup-
port. This is precisely the path from the originally specified path model 
that we intentionally eliminated from the initial path model. Thus, the 
specification search was successful in obtaining the original model. The 
ML estimates and selected fit indices for the final model, where this path 
is now included, are shown in the second column of Table 7.2. All of the 
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parameters included are significantly different from zero (p < .05), all of the 
fit indices now indicate an acceptable level of fit, and no additional modifi-
cation indices are indicated for any further recommended changes. Thus, 
we deem this as the final path model for the union sentiment example.

7.7 � Summary

This chapter presented a detailed discussion of path models. We began by 
presenting the union sentiment path model and then followed it through-
out the chapter. We moved on to model specification, first with several 
possible three-variable models, and then with the union sentiment model. 
The next step was to consider model identification of the union sentiment 
model for both the order and rank conditions. Next, we discussed estima-
tion. Here, we introduced the notion of correlation decomposition with 
a three-variable model, and the difference between full versus limited 
estimation functions, and then considered the full information estimation 
results for the union sentiment model. Model testing of the misspecified 
union sentiment model was the next step, where the fit of the model was 
deemed not acceptable. The misspecified model (altered initial model) was 
then modified through the addition of one path, thereby arriving at a final, 
best-fitting theoretical model, which was the same as our initial model.

We learned that path models permit theoretically meaningful relation-
ships among variables that cannot be specified in a single additive regres-
sion model. However, the issue of measurement error in observed variables 
is not treated in either regression or path models (Wolfle, 1979). The next 
chapter helps us to understand how measurement error is addressed in 
structural equation modeling via factor models.

Appendix: LISREL–SIMPLIS Path 
Model Program (Figure 7.1)

Union Sentiment of Textile Workers
Observed Variables: Deference Support Sentiment Years Age
Covariance matrix:
 14.610
 −5.250 11.017
 −8.057 11.087 31.971
 −0.482 0.677 1.559 1.021
 −18.857 17.861 28.250 7.139 215.662
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Sample Size: 173
Relationships
Deference = Age
Support = Age Deference
Sentiment = Years Deference Support
Print Residuals
Options: ND = 3
Path Diagram
End of Problem

Exercise

	 1.	 Analyze the following achievement path model (Figure  7.5) 
using the LISREL software program. The path model indicates 
that income and ability predict aspire, and income, ability, and 
aspire predict achieve.

	 Sample size = 100

Observed variables: quantitative achievement (Ach), family 
income (Inc), quantitative ability (Abl), educational aspira-
tion (Asp)

Variance–covariance matrix:

Ach Inc Abl Asp

Ach 25.500
Inc 20.500 38.100
Abl 22.480 24.200 42.750
Asp 16.275 13.600 13.500 17.000

Equations:

	 Asp = Inc Abl

	         Ach = Inc Abl Asp

Income

Ability

Achieve

error2

Aspire

error1

Figure 7.5
Achievement path model.
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Chapter Footnote

Another Traditional Non-SEM Path Model-Fit Index

The relationship between the original and reproduced correlation matri-
ces is essential for testing the significance of the path model (Specht, 1975). 
The relationship between the two matrices is tested by calculating a chi-
square statistic. A significant c2 value for a specified level of significance 
(a = .05) indicates that the path model does not fit the data. If c2 = 0, then 
the original and reproduced correlations in the matrices are identical; in 
other words, the correlations are perfectly reproduced by the path model. 
Also, if the residuals, for example Pe1 and Pe2, are uncorrelated in a path 
model, then the sum of squared residual path coefficients will equal the 
chi-square value. A non-significant chi-square value therefore indicates a 
good path model to data fit in SEM. Another traditional non-SEM path 
model-fit index, Q, has been reported in the research literature and there-
fore presented here using a LISREL–SIMPLIS program example with heu-
ristic data.

LISREL–SIMPLIS program

Path analysis of Y
Observed variables Y X1 X2 X3
Sample size 100
Correlation Matrix
1.000
.507 1.000
.480 .224 1.000
.275 .062 .577 1.000
Equation:
Y = X1 X2 X3
X3 = X1 X2
End of Problem

The theoretical path model in Figure 7.6 indicates that two variables, 
X1 and X2 predict X3; X1, X2, and X3 predict Y; and X1 and X2 are cor-
related. This original path model is a saturated model because all paths 
are included, thus c2 = 0, df = 0, and p = 0. The original path model, 
however, has two R-squared values for each regression equation: R2

X3.

X1,X2 = .34 and R2
Y.X3,X1,X2 = .40. The path model diagram only shows the 

1 − R2
X3.X1,X2 = .66 and 1 − R2

Y.X3,X1,X2 = .60 values. Computer output indi-
cated that the path from X1 to X3 was non-significant ( p31 = −.071) and 
the path from X3 to Y was non-significant (p3Y = .040). For theoretical 
reason, we only dropped path p31 resulting in the modified path model 
in Figure 7.7.
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The modified path model reported a non-significant c2 = .71, df = 1, and 
p = .40 which indicates that the data fits the path model, although the path 
coefficient from X3 to Y is still non-significant, but kept in the model for 
theoretical reasons.

The other traditional non-SEM path model-fit indices can be accom-
plished by computing the generalized squared multiple correlation 
(Pedhazur, 1982) as follows:

	 R2
m = 1 – (1 – R2

1) (1 − R2
2)…..(1 − R2

p).

The R-squared values are the squared multiple correlation coefficients 
from each of the separate regression analyses in the path model. In the 
original path model, the two regression analyses yielded R-squared values 
of .34 and .40, respectively. The path model-fit R2

m would be computed as:

	 R2
m = 1 – (1 − .34)(1 − .40) = .604

X1

X2

Y

0.60

X3

0.66

0.040

0.423

0.362

–0.071

0.593

0.224

Figure 7.6
Original path model.

X1

X2

Y

0.60

X3

0.67

0.04

0.42

0.36
0.58

0.224

Figure 7.7
Modified path model.
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An analogous statistic to R2
m, M, and a large sample measure of model 

fit, Q, are also presented in Pedhazur (1982). Q is oftentimes recommended 
because chi-square is affected by sample size. Q varies between zero and one 
and is not a function of sample size. The formula for Q is:

	 Q = (1− R2
m)/(1 – M)

M is calculated in the same manner as R2
m, but with a non-significant path 

deleted. In our example, we dropped the path from X1 to X3 because it 
yielded a non-significant path coefficient and therefore M calculated from 
the modified path model would have a different value from R2

m in the orig-
inal path model (M values range between zero and R2

m).
In our example, the path from X1 to X3 in the program was dropped by 

changing the first LISREL–SIMPLIS equation command to read:

	 Equation: X3 = X2

The M value is computed as:

	 M = 1 – (1 − .33)(1 − .40) = .598.

Q is now computed as:

	 Q = [(1 − .604)/( 1 − .598)] = [.396/.402] = .98.

Remember, the closer the value of Q to 1.0, the better the model fit. Q can 
be tested for significance using W, which is computed as:

	 W = − (N – d) loge Q,

where N = sample size, d = number of path coefficients hypothesized to be 
zero, loge = natural logarithm (ln). For our example,

	 W = − (100 − 1) loge (.98) = 2.00.

Since W approximates the c2 distribution with degrees of freedom = d, 
the tabled critical chi-square value for d = 1, a = 05, is 3.841 (Table A.4). 
W is less than the tabled critical value, therefore nonsignificant, suggest-
ing a good path model fit to the data. The W value fell between p = .20 
(c2 = 1.642) and p = .10 (c2 = 2.706) in Table A.4.

Prior to SEM, Q and the W path model-fit index were reported to test 
whether a path model significantly reproduced the correlation matrix. The 
R2

m value was reported to indicate the amount of variation in Y predicted 
by the direct and indirect effects of the independent variables. Individual 

Y102005.indb   160 3/22/10   3:26:00 PM



Path Models	 161

tests of path coefficients were also computed and reported by dividing 
the path coefficient by its standard error. We used the path coefficient, 
standard error, and associated t-value provided in the computer output to 
determine if a path coefficient was nonsignificant, thus dropping it from 
the path model.
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8
Confirmatory Factor Models

Key Concepts

Confirmatory factor analysis versus exploratory factor analysis
Latent variables (factors) and observed variables
Factor loadings and measurement errors
Correlated factors and correlated measurement errors

In chapter 7 we examined path models as the logical extension of multiple 
regression models (chapter 6) to show more meaningful theoretical rela-
tionships among our observed variables. Thus, the two previous chapters 
dealt exclusively with models involving observed variables. In this chap-
ter we begin developing models involving factors or latent variables and 
continue latent variable modeling throughout the remainder of the book. 
As we see in this chapter, a major limitation of models involving only 
observed variables is that measurement error is not taken into account. 
The use of observed variables in statistics assumes that all of the mea-
sured variables are perfectly valid and reliable, which is unlikely in many 
applications. For example, father’s educational level is not a perfect mea-
sure of a socioeconomic status factor and amount of exercise per week is 
not a perfect measure of a fitness factor.

The validity and reliability issues in measurement have traditionally 
been handled by first examining the validity and reliability of scores on 
instruments used in a particular context. Given an acceptable level of score 
validity and reliability, the scores are then used in a statistical analysis. 
However, the traditional statistical analysis of these scores—for example, 
in multiple regression and path analysis—does not adjust for measure-
ment error. The impact of measurement error has been investigated and 
found to have serious consequences—for example, biased parameter esti-
mates (Cochran, 1968; Fuller, 1987). Structural equation modeling soft-
ware that accounts for the measurement error of variables was therefore 
developed—that is, factor analysis—which creates latent variables used in 
structural equation modeling.
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Factor analysis attempts to determine which sets of observed variables 
share common variance–covariance characteristics that define theoreti-
cal constructs or factors (latent variables). Factor analysis presumes that 
some factors that are smaller in number than the number of observed 
variables are responsible for the shared variance–covariance among the 
observed variables. In practice, one collects data on observed variables 
and uses factor-analytic techniques to either confirm that a particular 
subset of observed variables define each construct or factor, or explore 
which observed variables relate to factors. In exploratory factor model 
approaches, we seek to find a model that fits the data, so we specify differ-
ent alternative models, hoping to ultimately find a model that fits the data 
and has theoretical support. This is the primary rationale for exploratory 
factor analysis (EFA). In confirmatory factor model approaches, we seek to 
statistically test the significance of a hypothesized factor model—that is, 
whether the sample data confirm that model. Additional samples of data 
that fit the model further confirm the validity of the hypothesized model. 
This is the primary rationale for confirmatory factor analysis (CFA).

In CFA, the researcher specifies a certain number of factors, which factors 
are correlated, and which observed variables measure each factor. In EFA, 
the researcher explores how many factors there are, whether the factors are 
correlated, and which observed variables appear to best measure each fac-
tor. In CFA, the researcher has an a priori specified theoretical model; in 
EFA, the researcher does not have such a model. In this chapter we only 
concern ourselves with confirmatory factor models because the focus of the 
book is on testing theoretical models; exploratory factor analysis is covered 
in depth elsewhere (Comrey & Lee, 1992; Gorsuch, 1983; and Costello & 
Osborne, 2005). This chapter begins with a classic example of a confirmatory 
factor model and then proceeds with sections on model specification, model 
identification, model estimation, model testing, and model modification.

8.1 � An Example

We use a classic confirmatory factor model that will be followed through-
out the chapter. Holzinger and Swineford (1939) collected data on 26 psy-
chological tests from seventh- and eighth-grade children in a suburban 
school district of Chicago. Over the years, different subsamples of the 
children and different subsets of the variables of this dataset have been 
analyzed and presented in various multivariate statistics textbooks—for 
example, Harmon (1976) and Gorsuch (1983)—and SEM software program 
guides—for example, Jöreskog and Sörbom (1993; example 5, pp. 23–28).

The raw data analyzed here are on the first six psychological variables 
for all 301 subjects (see chapter 5); the resulting sample covariance matrix 
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S is given in the Appendix. The confirmatory factor model consists of 
the following six observed variables: Visual Perception, Cubes, Lozenges, 
Paragraph Comprehension, Sentence Completion, and Word Meaning. The 
first three measures were hypothesized to measure a spatial ability fac-
tor and the second three measures to measure a verbal ability factor.

The path diagram of the theoretical proposed model is shown in 
Figure 8.1. The drawing conventions utilized in Figure 8.1 were described 
in chapter 7. The observed variables are enclosed by boxes or rectangles, 
and the factors (latent variables) are enclosed by circles or ellipses—that is, 
spatial and verbal. Conceptually, a factor represents the common variation 
among a set of observed variables. Thus, for example, the spatial ability 
factor represents the common variation among the Visual Perception, Cubes, 
and Lozenges tasks. Lines directed from a factor to a particular observed 
variable denote the relationship between that factor and that measure. 
These relationships are interpreted as factor loadings with the square of 
the factor loading called the commonality estimate of the variable.

The measurement errors are enclosed by smaller ellipses and indicate 
that some portion of each observed variable is measuring something 
other than the hypothesized factor. Conceptually, a measurement error 
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Figure 8.1
Confirmatory factor model. (From Holzinger, K. J., & Swineford, F. A. [1939]. A study in factor 
analysis: The stability of a bi-factor solution. [Supplementary Educational Monographs, No. 48]. 
Chicago, IL: University of Chicago, Department of Education.)

Y102005.indb   165 3/22/10   3:26:01 PM



166	 A Beginner’s Guide to Structural Equation Modeling

represents the unique variation for a particular observed variable beyond 
the variation due to the relevant factor. For example, the Cubes task is 
largely a measure of spatial ability, but may also be assessing other char-
acteristics such as a different common factor or unreliability. To assess 
measurement error, the variance of each measurement error is estimated 
(known as measurement error variance).

A curved, double-headed line between two factors indicates that they 
have shared variance or are correlated. In this example, spatial and verbal 
ability are specified to covary or correlate. The rationale for this particular 
factor correlation is that spatial ability and verbal ability are related to a 
more general ability factor and thus should be theoretically related.

A curved, double-headed line between two measurement error vari-
ances indicates that they also have shared variance or are correlated. 
Although not shown in this example, two measurement error variances 
could be correlated if they shared something in common such as (a) com-
mon method variance where the method of measurement is the same, such 
as the same scale of measurement, or they are both part of the same global 
instrument, or (b) the same measure is being used at different points in 
time, that is, the Cubes task is measured at Time 1 and again at Time 2.

8.2 � Model Specification

Model specification is a necessary first step in analyzing a confirmatory 
factor model, just as it was for multiple regression and path models. Many 
different relationships among a set of variables can be postulated with 
many different parameters being estimated. Thus, many different factor 
models can be postulated on the basis of different hypothesized relation-
ships between the observed variables and the factors.

In our example, there are six observed variables with two different 
latent variables (factors) being hypothesized. Given this, many dif-
ferent confirmatory factor models are possible. First, each observed 
variable can load on either one or both factors. Thus, there could be 
anywhere from 6 to 12 total factor loadings. Second, the two factors 
may or may not be correlated. Third, there may or may not be corre-
lations or covariance terms among the measurement error variances. 
Thus, there could be anywhere from 0 to 15 total correlated measure-
ment error variances.

From the model in Figure 8.1, each observed variable is hypothesized to 
measure only a single factor—that is, three observed variables per factor 
with six factor loadings; the factors are believed to be correlated (a single fac-
tor correlation); and the measurement error variances are not related (zero 
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correlated measurement errors. Obviously, we could have hypothesized a 
single factor with six observed variables or six factors each with a single 
observed variable. When all of this is taken into account, many different 
confirmatory factor models are possible with these six observed variables.

How does the researcher determine which factor model is correct? We 
already know that model specification is important in this process and indi-
cates the important role that theory and prior research play in justifying 
a specified model. Confirmatory factor analysis does not tell us how to 
specify the model, but rather estimates the parameters of the model once 
the model has been specified a priori by the researcher on the basis of 
theoretical and research based knowledge. Once again, model specifica-
tion is the hardest part of structural equation modeling.

For our confirmatory factor model, the model specification is dia-
grammed in Figure 8.1 and contains six measurement equations in the 
model, one for each of the six observed variables. In terms of the variable 
names from Figure 8.1, the measurement equations are as follows:

      visperc = function of spatial + err_v

         cubes = function of spatial + err_c

    lozenges = function of spatial + err_l

   paragrap = function of verbal + err_p

    sentence = function of verbal + err_s

wordmean = function of verbal + err_w

Substantive theory and prior research suggest that these particular factor 
loadings should be included in the specified model (the functions being the 
factor loadings), and that other possible factor loadings—for example, vis-
perc loading on verbal, should not be included in the factor model. Our fac-
tor model includes six factor loadings and six measurement error variances, 
one for each observed variable, and one correlation between the factors spa-
tial ability and verbal ability with zero correlated measurement errors.

8.3 � Model Identification

Once a confirmatory factor model has been specified, the next step is 
to determine whether the model is identified. As stated in chapter 4, it 
is crucial that the researcher solve the identification problem prior to the 
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estimation of parameters. We first need to revisit model identification in 
the context of confirmatory factor models and then specifically for our 
confirmatory factor model example.

In model identification (see chapter 4), we ask the following question: 
On the basis of the sample data contained in the sample variance–
covariance matrix S, and the theoretical model implied by the population 
variance–covariance matrix Σ, can a unique set of parameter estimates 
be found? For our confirmatory factor model, we would like to know if 
the factor loading of Visual Perception on Spatial Ability, Cubes on Spatial 
Ability, Lozenges on Spatial Ability, Paragraph Comprehension on Verbal Ability, 
Sentence Completion on Verbal Ability, and Word Meaning on Verbal Ability 
are identified (can be estimated). In our confirmatory factor model, some 
parameters are fixed and others are free. An example of a fixed parameter 
is that Cubes is not allowed to load on Verbal Ability. An example of a free 
parameter is that Cubes is allowed to load on Spatial Ability.

In determining identification, we first assess the order condition. The 
number of free parameters to be estimated must be less than or equal to 
the number of distinct values in the matrix S. A count of the free param-
eters is as follows:

	 6 factor loadings
	 6 measurement error variances
	 0 measurement error covariance terms or correlations
	 1 correlation among the latent variables

Thus, there are a total of 13 free parameters that we wish to estimate. The 
number of distinct values in the matrix S is equal to

	 p (p + 1)/2 = 6 (6 + 1)/2 = 21,

where p is the number of observed variables in the sample variance– 
covariance matrix. The number of values in S, 21, is greater than the 
number of free parameters, 13, with the difference being the degrees of 
freedom for the specified model, df = 21 − 13 = 8. However, this is only 
a necessary condition and does not guarantee that the model is identi-
fied. According to the order condition, this model is over-identified because 
there are more values in S than parameters to be estimated—that is, our 
degrees of freedom is positive not zero (just-identified) or negative (under-
identified).

Although the order condition is easy to assess, other sufficient condi-
tions are not, for example, the rank condition. The sufficient conditions 
require us to algebraically determine whether each parameter in the 
model can be estimated from the covariance matrix S. According to 
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the LISREL computer program, which checks on identification through 
the rank test and information matrix, the confirmatory factor model is 
identified.

8.4 � Model Estimation

After the identification problem has been addressed, the next step is to 
estimate the parameters of the specified factor model. In this section we 
consider the following topics: decomposition of the correlation (or variance–
covariance) matrix, parameter estimation in general, and parameter esti-
mation for the confirmatory factor model example.

In factor analysis the traditional method of intuitively thinking about 
estimation is to decompose the correlation (or variance–covariance) 
matrix. The decomposition notion is that the original correlation (or vari-
ance–covariance) matrix can be completely reproduced if all of the rela-
tions among the observed variables are accounted for by the factors in 
a properly specified factor model. If the model is not properly specified, 
then the original correlation (or variance–covariance) matrix will not be 
completely reproduced. This would occur if (a) the number of factors was 
not correct, (b) the wrong factor loadings were specified, (c) the factor cor-
relations were not correctly specified, and/or (d) the measurement error 
variances were not specified correctly.

In chapter 4, under model estimation, we considered the statistical 
aspects of estimation. We learned, for example, that parameters can be 
estimated by different estimation procedures, such as maximum likeli-
hood (ML), generalized least squares (GLS), and unweighted least squares 
(ULS), and reported as unstandardized estimates or standardized esti-
mates. We analyzed our confirmatory factor model using maximum like-
lihood estimation with a standardized solution to report our statistical 
estimates of the free parameters.

To better understand model modification in section 8.6, we have slightly 
changed the confirmatory factor model specified in Figure 8.1. We forced 
the observed variable Lozenges to have a factor loading on the latent vari-
able Verbal Ability instead of on the latent variable Spatial Ability. This inten-
tionally misspecified model is shown in Figure 8.2. We therefore use the 
confirmatory factor model in Figure 8.2 as our initial model and through 
the model modification process in section 8.6 hope to discover the best-
fitting model to be the confirmatory factor model originally specified in 
Figure 8.1.

The misspecified model (Figure 8.2) was run using LISREL (computer 
program in chapter Appendix). The sample variance-covariance matrix S 
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is given at the top of Table 8.1 along with the model implied (reproduced) 
matrix, residual matrix, and standardized residual matrix for the mis-
specified model in Figure 8.2.

The first column in Table 8.2 contains the standardized estimates for 
the misspecified model (Figure 8.2), and the second column contains the 
standardized estimates for the original model (Figure 8.1). The parameter 
estimates are found to be significantly different from zero (p < .05). The fit 
of the model is discussed in section 8.5. Of greatest importance is that all 
of the factor loadings are statistically significantly different from zero and 
have the expected sign, that is, positive factor loadings.

8.5 � Model Testing

An important part of the estimation process in analyzing confirmatory 
factor models is to fit the sample variance–covariance data to the specified 
model. If the fit of the model is good, then the specified model is supported 
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Figure 8.2
Misspecified confirmatory factor model. (From Holzinger, K. J., & Swineford, F. A. [1939]. 
A study in factor analysis: The stability of a bi-factor solution. [Supplementary Educational 
Monographs, No. 48]. Chicago, IL: University of Chicago, Department of Education.)
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by the sample data. If the fit of the model is not so good, then the specified 
model is not supported by the sample data, and the researcher typically 
has to modify the model to achieve a better fit (see section 8.6). As previ-
ously discussed in chapter 5, there is a wide variety of model-fit indices 
available to the SEM researcher.

Table 8.1

Original, Reproduced, Residual, and Standardized Residual Covariance 
Matrices for the Misspecified Holzinger–Swineford Model

Original Matrix:

Variable Visperc Cubes Lozenges Parcomp Sencomp Wordmean

Visperc 49.064
Cubes 9.810 22.182
Lozenges 27.928 14.482 81.863
Parcomp 9.117 2.515 5.013 12.196
Sencomp 10.610 3.389 3.605 13.217 26.645
Wordmean 19.166 6.954 13.716 18.868 28.502 58.817

Reproduced Matrix:
Variable Visperc Cubes Lozenges Parcomp Sencomp Wordmean

Visperc 49.064
Cubes 9.810 22.182
Lozenges 5.098 1.646 81.863
Parcomp 8.595 2.775 5.266 12.196
Sencomp 12.646 4.083 7.747 13.061 26.645
Wordmean 18.570 5.996 11.376 19.180 28.218 58.817

Residual Matrix:
Variable Visperc Cubes Lozenges Parcomp Sencomp Wordmean

Visperc 0.000
Cubes 0.000 0.000
Lozenges 22.830 12.836 0.000
Parcomp 0.522 −0.260 −0.253 0.000
Sencomp −2.036 −0.694 −4.142 0.155 0.000
Wordmean 0.596 0.958 2.339 −0.312 0.283 0.000

Standardized Residual Matrix:
Variable Visperc Cubes Lozenges Parcomp Sencomp Wordmean

Visperc 0.000
Cubes 0.000  0.000
Lozenges  7.093 5.455 0.000
Parcomp 1.002 −0.668 −0.336 0.000
Sencomp −2.587 −1.182 −3.647 2.310 0.000
Wordmean 0.484 1.046 1.321 −2.861 1.696 0.000
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For our confirmatory factor model example, we report a few fit indices at 
the bottom of Table 8.2. For the misspecified model, the c2 statistic (techni-
cally a measure of badness of fit) is equal to 80.926, with eight degrees of 
freedom, and p < .001. The chi-square statistic is significant, so the speci-
fied confirmatory factor model is not supported by the sample variance–
covariance data. Another interpretation is that because the c2 value is not 
close to the number of degrees of freedom, the fit of the initial model is poor. 
Recall that the noncentrality parameter (NCP) is calculated as c2 – df, has 
an expected value of 0 (NCP = 0; perfect fit), and is used in computing sev-
eral of the model-fit indices. A third criterion is that the root-mean-square 
error of approximation (RMSEA) is equal to .174, higher than the acceptable 
level of model fit (RMSEA < .08 or .05). Finally, the goodness-of-fit index 
(GFI) is .918 for the misspecified model, which is below the acceptable 

Table 8.2

Standardized Estimates and Selected Fit Indices for the 
Misspecified and Original Holzinger–Swineford Models

Misspecified Model Original Model

Factor loadings:
Visual Perception .79 .78
Cubes .38 .43
Lozenges .20 .57
Paragraph Comprehension .85 .85
Sentence Completion .85 .85
Word Meaning .84 .84

Measurement error variances:
Visual Perception .38 .39
Cubes .86 .81
Lozenges .96 .68
Paragraph Comprehension .27 .27
Sentence Completion .28 .27
Word Meaning .30 .30

Correlation of independent variables:
(Spatial, Verbal) .52 .46

Selected fit Indices:
  c2 80.926 24.407
  Df 8 8
  p value .001 .002
  RMSEA .174 .083
  GFI .918 .974
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range of model fit (GFI > .95). Across this particular set of model-fit indices, 
the conclusion is that the model fit is reasonable, although still not accept-
able, but that some model modification might allow us to achieve a better 
sample data (variance–covariance matrix) to confirmatory factor model fit. 
Determining what change(s) to make to our confirmatory factor model to 
achieve a better fitting model is considered in the next section.

8.6 � Model Modification

A final step in structural equation modeling is to consider changes to a 
specified model that has poor model-fit indices—that is, model modifica-
tion. This typically occurs when a researcher discovers that the fit of the 
specified model is less than satisfactory. The researcher typically performs 
a specification search to find a better fitting model. As discussed in chap-
ter 4, several different procedures can be used to assist in this specification 
search. One may eliminate parameters that are not significantly different 
from zero and/or include additional parameters to arrive at a modified 
model. For the elimination of parameters, the most commonly used proce-
dure in LISREL is to compare the t statistic for each parameter to a tabled t 
value—for example t = 1.96, at a = .05, two-tailed test; or t = 2.58 at a = .01, 
two-tailed test (see Table A.2), to determine statistical significance.

For the inclusion of additional parameters, the most commonly used 
techniques in LISREL are (a) the modification index (MI—the expected 
value that c2 would decrease if such a parameter were to be included in 
the model; large values indicate potentially useful parameters), and (b) the 
expected parameter change statistic (EPC—the approximate value of the 
new parameter).

In addition, an examination of the residual matrix, or the more useful 
standardized residual matrix, often gives clues as to which original cova-
riance terms or correlations are not well accounted for by the model. The 
residual matrix is the difference between the observed covariance or cor-
relation matrix S and the model implied (reproduced) covariance or corre-
lation matrix Σ. Large residuals indicate values not well accounted for by 
the model. Standardized residuals are like z scores such that large values 
(values greater than 1.96 or 2.58) indicate that a particular relationship is 
not well accounted for by the model.

For the misspecified confirmatory factor model in Figure 8.2, the origi-
nal, model-implied (reproduced), residual, and standardized residual 
covariance matrices are given in Table 8.1. Here, we see that the two larg-
est residuals are for the Lozenges observed variable (22.830 and 12.836) and 
the standardized residuals (7.093 and 5.455) are greater than t = 1.96 or 
2.58. The results also indicate that the Lozenges variable should load on the 
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Spatial Ability factor to reduce error (MI = 60.11) with an expected param-
eter change (EPC) of 6.30.

The large residuals for Lozenges, the statistically significant standard-
ized residuals, the modification index, and the expected change value all 
indicated that there was something wrong with the Lozenges observed 
variable that is not captured by the misspecified model. Specifically, the 
factor loading for Lozenges should be on the Spatial Ability factor rather 
than the Verbal Ability factor. This is precisely the factor loading from the 
original specified model in Figure 8.1 that we intentionally eliminated to 
illustrate the model modification process. Thus, the use of several modifi-
cation criteria in our specification search was successful in obtaining the 
original model in Figure 8.1.

The standardized estimates and selected model-fit indices for the final 
model (Figure 8.1), where the modification in the Lozenges factor loading 
is now included, and are shown in the second column of Table 8.2. All 
of the parameters included are statistically significantly different from 
zero (p < .05), and all of the fit indices now indicate an acceptable level of 
fit with no additional model modifications indicated. Thus, we consider 
this to be the final best fitting confirmatory factor model with our sample 
variance-covariance data. The LISREL–SIMPLIS program is provided at 
the end of the chapter for this model analysis.

8.7 � Summary

This chapter discussed confirmatory factor models using the five basic build-
ing blocks from model specification through model modification. We began 
by analyzing a confirmatory factor model that was misspecified (Figure 8.2) 
and interpreted a few model-fit criteria where the fit of the model was 
deemed not acceptable. We then used model modification criteria to modify 
the model, which yielded the confirmatory factor model in Figure 8.1. This 
confirmatory factor model was deemed to be our final best fitting model. 
This final best fitting model can be further validated by testing the same 
confirmatory factor model with other samples of data (see chapter 12).

Appendix: LISREL–SIMPLIS Confirmatory 
Factor Model Program

Confirmatory Factor Model Figure 8.1
Observed Variables:
VISPERC CUBES LOZENGES PARCOMP SENCOMP WORDMEAN
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Covariance Matrix
	 49.064
	  9.810   22.182
	 27.928   14.482   81.863
	  9.117   2.515   5.013   12.196
	 10.610   3.389   3.605   13.217   26.645
	 19.166   6.954   13.716   18.868  28.502   58.817
Sample Size: 301
Latent Variables: Spatial Verbal
Relationships:
VISPERC - LOZENGES = Spatial
PARCOMP - WORDMEAN = Verbal
Print Residuals
Number of Decimals = 3
Path Diagram
End of problem

Exercise

	 1.	 Test the following hypothesized confirmatory factor model 
(Figure 8.3) using the LISREL computer software program:

Sample Size: 3094

Observed variables:
Academic ability (Academic)
Self-concept (Concept)
Degree aspirations (Aspire)
Degree (Degree)
Occupational prestige (Prestige)
Income (Income)

Correlation matrix:

Academic Concept Aspire Degree Prestige Income
1.000
0.487 1.000
0.236 0.206 1.000
0.242 0.179 0.253 1.000
0.163 0.090 0.125 0.481 1.000
0.064 0.040 0.025 0.106 0.136 1.000

Hypothesized CFA model: The CFA model indicates that the 
first three observed variables measure the latent variable 
Academic Motivation (Motivate) and the last three observed 
variables measure the latent variable Socioeconomic Status 
(SES). Motivate and SES are correlated.

Then modify the model to achieve a better model fit as shown in 
Figure 8.4.
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Figure 8.4
Final CFA model for exercise.
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Figure 8.3
Hypothesized CFA model for exercise.
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9
Developing Structural Equation 
Models: Part I

Key Concepts

Latent independent and dependent variables
Observed independent and dependent variables
Developing structural models with latent variables
Establishing relationships between latent variables
Covariance terms
The four-step approach to SEM modeling

Structural equation models have been developed in a number of academic 
disciplines to substantiate and test theory. Structural equation models 
have further helped to establish the relationships between latent variables 
or constructs, given a theoretical perspective. The structural equation 
modeling approach involves developing measurement models to define 
latent variables and then establishing relationships or structural equation 
models with the latent variables. The focus of this chapter is on provid-
ing researchers with a better understanding of how to develop structural 
equation models. An attempt is made to minimize matrix and statistical 
notation so that the reader can better understand the structural equation 
modeling approach.

This chapter begins with a more extensive discussion of observed vari-
ables and latent variables, and then proceeds with sections on the mea-
surement model, the structural model, variances and covariance terms, 
and finally the two-step/four-step approaches to structural equation 
modeling. Chapter 10 extends the development of SEM models in exam-
ining model specification, model identification, model estimation, model 
testing, and model modification.
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9.1 � Observed Variables and Latent Variables

In structural equation modeling, as in traditional statistics, we use X and 
Y to denote the observed variables. We use X to refer to independent (or 
predictor) variables and Y to refer to dependent (or criterion) variables; this 
is the same in multiple regression, analysis of variance, and all general lin-
ear models. In structural equation modeling, however, we further define 
latent independent variables using observed variables denoted by X and 
latent dependent variables using observed variables denoted by Y. Latent 
independent and dependent variables are created with observed variables 
using confirmatory factor models discussed in the previous chapter.

There are two major types of variables in structural equation modeling: 
observed (indicator) variables and latent (construct) variables. Latent vari-
ables are not directly observable or measured, rather they are observed or 
measured indirectly, and hence they are inferred constructs based on what 
observed variables we select to define the latent variable. For example, 
intelligence is a latent variable and represents a psychological construct. 
Intelligence cannot be directly observed, for example, through visual 
inspection of an individual, and thus there is no single agreed upon defi-
nition for intelligence. However, intelligence can be indirectly measured 
through observed or indicator variables, for example, specific IQ tests.

Observed or indicator variables are variables that are directly observable 
or measured. For example, the Wechsler Intelligence Scale for Children–
Revised (WISC‑R) is an instrument commonly used to measure children’s 
intelligence. The instrument represents one definition or measure of what 
we mean by intelligence. Other researchers rely on other definitions or 
observed measures, and thus on other instruments, for example, the 
Stanford–Binet Intelligence Scale. Latent variables such as intelligence are 
not directly observable or measured, but can be indirectly observed or 
measured by using several observed (indicator) variables, for example, IQ 
tests such as the WISC‑R and the Stanford–Binet Intelligence Scale.

Let us further examine the concept of latent variables as they are used 
in structural equation models. Consider a basic structural equation model 
in which we propose that a latent independent variable predicts a latent 
dependent variable. For instance, Intelligence (latent independent variable) 
is believed to predict subsequent Scholastic Achievement (latent dependent 
variable), which could be depicted as

	 Intelligence → Achievement

Any latent variable that is predicted by other latent variables in a structural 
equation model is known as a latent dependent variable. A latent dependent 
variable, therefore, must have at least one arrow pointing to it from another 
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latent variable, sometimes referred to as an endogenous latent variable. Any 
latent variable that does not have an arrow pointing to it from another latent 
variable is known as a latent independent variable, sometimes referred to as an 
exogenous latent variable. As shown in the foregoing example, the latent inde-
pendent variable Intelligence does not have any arrows pointing to it from 
another latent variable. In our basic structural equation model, Intelligence 
is the latent independent variable with no direct lines or arrows pointing to 
it, and Achievement is the latent dependent variable because it has an arrow 
pointing to it from Intelligence.

Consider adding a third latent variable to our basic structural equa-
tion model, such that Achievement is measured at two points in time. This 
model would be depicted as follows:

	 Intelligence → Achievement1 → Achievement2.

Intelligence is still a latent independent variable. Achievement2 is clearly a 
latent dependent variable because there is an arrow pointing to it from 
Achievement1. However, there is an arrow pointing to Achievement1 from 
Intelligence and another arrow pointing from Achievement1 to Achievement2. 
This basic structural equation model indicates that Achievement1 is 
predicted by Intelligence, but then Achievement1 predicts Achievement2. 
Achievement1 is first a dependent latent variable and then an independent 
latent variable. This type of structural equation model is possible and 
illustrates indirect effects using latent variables. Achievement1 in this basic 
structural equation model is a mediating latent variable. Our designation 
of a latent variable as independent or dependent is therefore determined 
by whether or not an arrow is drawn from one latent variable to another 
latent variable. If no arrows point to a latent variable from another latent 
variable in the structural equation model, then it is a latent independent 
variable. If an arrow points to a latent variable from another latent variable 
in the structural equation model, then it is a latent dependent variable.

Next, we consider the concept behind the observed or indicator vari-
ables. The latent independent variables are measured by observed inde-
pendent variables via a confirmatory factor analysis measurement model 
and traditionally denoted by X. The latent dependent variables are mea-
sured by observed dependent variables via a confirmatory factor analysis 
measurement model and traditionally denoted by Y. Following our exam-
ple, we might choose the WISC‑R and the Stanford–Binet Intelligence 
Scale as observed independent measures of the latent independent vari-
able Intelligence. We can denote these observed variables as X1 and X2. For 
each of the achievement latent variables, we might choose the California 
Achievement Test and the Metropolitan Achievement Test as our observed 
dependent measures. If these measures are observed at two points in time, 
then we can denote the observed variables of Achievement1 as Y1 and Y2, 
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and those of Achievement2 as Y3 and Y4, respectively. In our SEM model, 
each latent variable is measured by two observed variables.

What is the benefit of using more than one observed variable to assess a 
latent variable? In using a single observed variable to assess a latent vari-
able, we assume that no measurement error is associated with the measure-
ment of that latent variable. In other words, it is assumed that the latent 
variable is perfectly measured by the single observed variable, which is 
typically not the case. We define measurement error quite generally here to 
include errors due to reliability and validity issues (see chapter 8).

Reliability is concerned with the ability of a measure (score) to be con-
sistent, commonly referred to as internal consistency, consistency over 
time, and consistency using similar measures, to denote different types 
of measurement error associated with observed variable scores. Would 
Jamie’s score on the WISC‑R be about the same if measured today as com-
pared with next week? Evidence of score reliability (consistency) could be 
shown when a measure is given to the same group of individuals at two 
points in time, and the scores are roughly equivalent. If only a single mea-
sure of a latent variable is used and it is not very reliable, then our latent 
variable is not defined very well. If the reliability of a single observed 
measure of a latent variable is known, then it is prudent to specify or 
fix the measurement error in the SEM model. This is accomplished, for 
example, in LISREL–SIMPLIS by setting the error variance of the single 
variable. The error variance of a single variable is determined by the fol-
lowing formula:

	 Error Variance of X1 = (1 − reliability coefficient) (s2
X1).

If the reliability of scores for X1 is .85 with a standard deviation of 5.00, 
then the error variance would be computed as:

	 X1error variance = (1 − .85) (5.00)2 = .15 (25) = 3.75.

In the LISREL–SIMPLIS program, you would then add the following com-
mand line to set the error variance for X1:

	 Set the error variance of X1 to 3.75

Validity is concerned with the extent to which scores accurately define 
a construct, which is score inference—commonly referred to as content, 
factorial, convergent–divergent, and discriminant validity—to denote dif-
ferent types of score inference associated with observed scores. Our inter-
est in validity is how well we can make an inference from the measured 
scores to the latent variable; that is, how well do test scores indicate what 
they purport to measure. Does Jamie’s score on the WISC‑R really measure 
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her intelligence or something else, such as her height? Evidence of validity 
is shown when two indicators of the same latent variable are substantially 
correlated. For example, if WISC‑R and height were used as indicators 
of the latent variable Intelligence, we would expect them to not be corre-
lated. If only a single measure of a latent variable is used and the score is 
not valid (for example, if height is used to measure intelligence), then our 
latent variable is not well defined. Establishing the reliability of scores for 
our observed variable helps in estimating the validity coefficients (factor 
loadings) in our measurement model because score validity is limited by 
the reliability of the observed variable scores; that is, the maximum valid-
ity coefficient is less than or equal to the product of the square roots of the 
two reliability coefficients, ρ ρ ρXY XX YY≤ ′ ′ .

If we selected WISC‑R and height as observed indicator variables for 
the latent independent variable Intelligence it would certainly not be well 
defined and would include measurement error. The selection of only 
height as an observed indicator of Intelligence would increase the measure-
ment error and poorly define the construct. Consequently, in selecting 
observed variables to define a latent variable, we need to select observed 
variables that show evidence of both score reliability and score validity 
for the intended purpose of our study. Because of the inherent difficulty 
involved in obtaining reliable and valid measures with a single observed 
variable, we strongly encourage you to consider multiple indicator vari-
ables for each latent independent and dependent variable in the structural 
equation model.

There are a few obvious exceptions to this recommendation, especially 
when research indicates that only one observed variable is available. In this 
case, you have no other choice than to define the latent variable using a 
single observed variable or use the observed variable in a Multiple Indicator 
Multiple Indicator Cause (MIMIC) model (see chapter 15). Jöreskog and Sörbom 
(1993, p. 37, EX7A.SPL) provided the rationale and gave an example for setting 
the error variance of a single observed variable (VERBINTM) in defining 
the latent variable Verbint. The verbal intelligence test (VERBINTM) was 
a fallible (unreliable) measure of the latent variable Verbint, and therefore 
it was unreasonable to assume that the error variance was zero (perfectly 
reliable). Consequently, the sample reliability coefficient for VERBINTM 
was assumed to be rXX’ = .85 rather than 1.00 (perfectly reliable, zero error 
variance). The assumed value of the reliability coefficient, hence desig-
nation of the error variance for VERBINTM, will affect parameter esti-
mates as well as standard errors. A reliability coefficient of rXX’ = .85 for 
VERBINTM is equivalent to an error variance of 0.15 times the variance of 
VERBINTM (3.65)2. The assumed error variance of VERBINTM was com-
puted as .15 (3.65)2 = 1.998.

If we can assume a reasonable reliability coefficient for an observed 
variable, then multiplying the observed variable’s variance by 1 minus the 
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reliability coefficient provides a reasonable estimate of error variance. In 
the LISREL–SIMPLIS program EX7B.SPL, the error variance for the single 
observed variable VERBINTM is accomplished by using the SET com-
mand as follows:

SET the error variance of VERBINTM to 1.998

Later in this chapter we show how measurement error is explicitly a part 
of any structural equation model. The basic concept, however, is that 
multiple observed variables used in defining either a latent indepen-
dent variable or a latent dependent variable permit measurement error 
to be estimated through structural equation modeling. This provides the 
researcher with additional information about the measurement charac-
teristics of the observed variables. When there is only a single observed 
indicator of a latent variable, then measurement error cannot be estimated 
through structural equation modeling, but can be fixed to a certain value. 
Most SEM software programs, such as LISREL, permit the specification 
of error variance for single or multiple variables, whether the values are 
known or require our best guess. In the next two sections we discuss the 
two approaches that make up structural equation modeling: the measure-
ment model and the structural model.

9.2 � Measurement Model

As previously mentioned, the researcher specifies the measurement model 
to define the relationships between the latent variables and the observed 
variables. The measurement model in SEM is a confirmatory factor model. 
Using our previous example, the latent independent variable Intelligence is 
measured by two observed variables, the WISC‑R and the Stanford–Binet 
Intelligence Scale. Our other latent variables Achievement1 (dependent latent 
variable) and Achievement2 (dependent latent variable) are each measured 
by the same two observed variables, the California Achievement Test and 
the Metropolitan Achievement Test, but at two different times. Both of these 
observed variables are composite or scale scores from summing numerous 
individual items. In chapter 8, we pointed out that individual items on an 
instrument could be used to create a construct (latent variable); hence, con-
firming the unidimensionality of the construct, while taking into account 
the observed variable score reliability and fit of the measurement model. 
The use of many individual items rather than the composite score or item 
parcels—that is, collections of individual items as the observed measures 
of a latent variable—increases the degrees of freedom in the measurement 
model and can cause problems in model fit. Measurement characteristics 
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at the item level might be more appropriate for exploratory data reduction 
methods than they are for SEM measurement models.

The researcher is typically interested in having the following questions 
answered about the observed variables: To what extent are the observed 
variables actually measuring the hypothesized latent variable; for exam-
ple, how good is the California Achievement Test as a measure of achieve-
ment? Which observed variable is the best measure of a particular latent 
variable; for example, is the California Achievement Test a better measure 
of achievement than the Metropolitan Achievement Test? To what extent 
are the observed variables actually measuring something other than the 
hypothesized latent variable? For example, is the California Achievement 
Test measuring something other than achievement, such as the quality of 
education received? These types of questions need to be addressed when 
creating the measurement models that define the latent variables.

In our measurement model example each latent variable is defined by 
two indicator variables. The relationships between the observed vari-
ables and the latent variables are indicated by factor loadings. The factor 
loadings provide us with information about the extent to which a given 
observed variable is able to measure the latent variable (a squared fac-
tor loading indicates variable communality or amount of variance shared 
with the factor). The factor loadings are referred to as validity coefficients 
because multiplying the factor loading times the observed variable score 
indicates how much of the observed variable score variance is valid (true 
score). The observed variable measurement error is defined as that por-
tion of the observed variable score that is measuring something other 
than what the latent variable is hypothesized to measure. It serves as a 
measure of error variance, and hence assesses the observed variable score 
reliability. Measurement error could be the result of (a) an observed vari-
able that is measuring some other latent variable, (b) unreliability, or (c) a 
higher second order factor. For example, the California Achievement Test 
may be measuring something besides achievement, or it may not yield 
very reliable scores. Thus, we would like to know how much measure-
ment error is associated with each observed variable.

In our measurement model there are six measurement equations, one 
for each observed variable, which can be illustrated as follows:

                California1 = function of Achievement1 + error

            Metropolitan1 = function of Achievement1 + error

                 California2 = function of Achievement2 + error

            Metropolitan2 = function of Achievement2 + error

                WISC‑R = function of Intelligence + error

          Stanford–Binet = function of Intelligence + error
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In the LISREL–SIMPLIS program, an explicit definition of the measure-
ment model can be done by specifying measurement equations. One can 
expand the variable labels in the measurement model equations using up 
to eight characters; the labels are case-sensitive (upper and lower char-
acters are recognized). The measurement model equations are specified, 
using either the Relationships: or Paths: command (both methods are equiv-
alent). For the Relationships: command, both the latent variables and the 
observed variables can be written using eight-character variable names. 
The observed variables are given on the left‑hand side of the equation with 
spaces between the multiple observed variable names (Cal1, Metro1, Cal2, 
Metro2, WISCR, and Stanford) and the latent variables on the right‑hand 
side of the equation (Achieve1, Achieve2, and Intell). The LISREL–SIMPLIS 
measurement equations follow where Achieve1 refers to Achievement1, 
Intell refers to Intelligence, Achieve2 refers to Achievement2, Cal1 refers to 
California1, Metro1 refers to Metropolitan1, Cal2 refers to California2, Metro2 
refers to Metropolitan2, WISCR refers to WISC‑R, and Stanford refers to 
Stanford–Binet). The command line for Relationships would be written as:

Relationships:

Cal1 Metro1 = Achieve1

Cal2 Metro2 = Achieve2

WISCR Stanford = Intell

For the Paths: command, the latent variables are depicted to the left of the 
arrow and the observed variables to the right of the arrow with spaces 
between the multiple observed variable names. The command line for 
Paths in the following measurement equation would be written as:

Paths:

Achieve1 → Cal1 Metro1

Achieve2 → Cal2 Metro2

Intell → WISCR Stanford

9.3 � Structural Model

In chapter 8 we discussed the rationale and process for specifying a 
measurement model to indicate whether the latent variables are mea-
sured well, given a set of observed variables. If the latent variables 
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(independent and dependent) are measured well, we then specify 
a structural model to indicate how these latent variables are related. 
The researcher specifies the structural model to allow for certain rela-
tionships among the latent variables depicted by the direction of the 
arrows. In our example we hypothesized that intelligence and achieve-
ment are related in a specific way. We hypothesized that intelligence 
predicts later achievement. The hypothesized structural model can now 
be specified and tested to determine the extent to which these a priori 
hypothesized relationships are supported by our sample variance–
covariance data; that is, Can intelligence predict achievement? Could 
there be other latent variables that we need to consider to better predict 
achievement? These types of questions are addressed when specifying 
the structural model.

At this point we need to provide a more explicit definition of the struc-
tural model and a specific notational system for the latent variables under 
consideration. Let us return to our previous example where we indicated 
a specific hypothesized relationship for the latent variables:

	 Intelligence → Achievement1 → Achievement2 .

The hypothesized relationships for the latent variables indicate two latent 
dependent variables, so there will be two structural equations. The first 
equation should indicate that Achievement1 is predicted by Intelligence. 
The second equation should indicate that Achievement2 is predicted by 
Achievement1. These two equations can be illustrated as follows:

	 Achievement1 = structure coefficient1 * Intelligence + error

	 Achievement2 = structure coefficient2 *Achievement1 + error

These two equations specify the estimation of two structure coefficients 
to indicate the magnitude (strength as well as statistical significance) 
and direction (positive or negative) of the prediction. Each structural 
equation also contains a prediction error or disturbance term that indi-
cates the portion of the latent dependent variable that is not explained 
or predicted by the other latent variables in that equation. In our exam-
ple there are two structure coefficients, one for Intelligence predicting 
Achievement1 and one for Achievement1 predicting Achievement2. Because 
there are two structural equations, there are two prediction errors or 
disturbances.

The LISREL–SIMPLIS command language permits an easy way to spec-
ify structural equations among the latent variables. The structural model 
can be denoted in terms of either the Relationships: or Paths: commands 
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(both methods are equivalent). For the Relationships: command, the latent 
variables can be written using eight-character variable names with the 
latent dependent variables on the left side of the equation (where Achieve1 
refers to Achievement1, Intell refers to Intelligence, and Achieve2 refers to 
Achievement2):

Relationships:

Achieve1 = Intell

Achieve2 = Achieve1

For the Paths: command, these latent dependent variables are to the right 
of the arrow, as in the following structural equations:

Paths:

Intell → Achieve1

Achieve1 → Achieve2

(Note :  You do not need to indicate the prediction error in LISREL–
SIMPLIS structural equations for either the Relationships: or Paths: com-
mands because these are known to exist and automatically estimated by 
the program.)

The path diagram of the measurement and structural models for our 
example is shown in Figure 9.1.

Intell Achieve1 Achieve2

WISCR Stanford Cal1 Metro1 Cal2 Metro2

error error error error error error

error error

Figure 9.1
Achievement path model.
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9.4 � Variances and Covariance Terms

In structural equation modeling, the term covariance structure analysis or 
covariance structure modeling is often used because the estimation of factor 
loadings and structure coefficients involves the decomposition of a sample 
variance–covariance matrix. In this section we further explore the notion 
of variance–covariance as it relates to observed and latent variables. There 
are three different variance–covariance terms that we need to define and 
understand. In the structural model there are two variance–covariance 
terms to consider. First, there is a variance–covariance matrix of the latent 
independent variables. This consists of the variances for each latent inde-
pendent variable, as well as the covariance terms among them. Although 
we are interested in the variances (the amount of variance associated with 
the latent independent variable intelligence), the covariance terms may or 
may not be part of our theoretical model. In our model there is only one 
latent independent variable, so there is only one variance term and no 
covariance term.

If we specified two latent independent variables in a different struc-
tural equation model, for example, Intelligence and Home Background, we 
could include a covariance term for them. We would then be hypothesiz-
ing that Intelligence and Home Background are correlated or covary because 
we believe that some common unmeasured latent variable is influencing 
both of them. We could hypothesize that a latent variable not included in 
the model, such as Parenting Ability, influences both Intelligence and Home 
Background. In other words, Intelligence and Home Background co-vary, or 
are correlated, because of their mutual influence from Parenting Ability, 
which has not explicitly been included in the model (but which perhaps 
could be included).

In the LISREL–SIMPLIS program, the variance term would automati-
cally be given or implied in the output for the latent independent variable 
Intelligence. A covariance term, if one existed, would also automatically 
be given or implied in the output. If one desired the two latent indepen-
dent variables, Intelligence and Home Background, to be uncorrelated or to 
have a covariance of zero, then one would specify the following in the 
LISREL–SIMPLIS program:

	 Set the Covariance between Intell and HomeBack to 0

The second set of variance–covariance terms that we need to define and 
understand is in the covariance matrix of the structural equation model for 
prediction errors. This consists of the variances for each structural equa-
tion prediction error (the amount of unexplained variance for each struc-
tural equation), as well as covariance terms among them. Although we are 
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interested in the variances, the covariance terms may or may not be part of 
our model. We could specify that two structural equation prediction errors 
are correlated, perhaps because some unmeasured latent variable is lead-
ing to error in both equations. An example of this might be where Parental 
Occupational Status (parent income) is not included as a latent variable in 
a model where Children’s Education (in years) and Children’s Occupational 
Status (income at age 30 years) are latent dependent variables. The struc-
tural equations for Children’s Education and Children’s Occupational Status 
would then both contain structural equation prediction error due to the 
omission of Parental Occupational Status. Because the same latent variable 
was not included in both equations, we expect that the structural equation 
prediction errors would be correlated. (Note: Our hypothesized structural 
model does not contain any such covariance terms.)

In the LISREL–SIMPLIS program, the variance terms are automatically 
included in the output for each structural equation. Because the covari-
ance terms are assumed by the program to be set to zero, one must spec-
ify any covariance terms one wants estimated. A covariance term, if one 
existed between Achievement1 and Achievement2, would be specified using 
the following command:

Set the Error Covariance between Achieve1 and Achieve2 free

The third set of variance–covariance terms is from the measurement 
model. Here, we need to define and understand the variances and cova-
riance terms of the measurement errors. Although we are interested in 
the variances (the amount of measurement error variance associated with 
each observed variable), the covariance terms may or may not be part of 
our model. We could hypothesize that the measurement errors for two 
observed variables are correlated (known as correlated measurement error). 
This might be expected in our example model where the indicators of the 
latent variables Achievement1 and Achievement2 are the same—for example, 
from using the California Achievement Test at two different times. We 
might believe that the measurement error associated with the California 
Achievement Test at Time 1 is related to the measurement error for the 
California Achievement Test at Time 2.

In the LISREL–SIMPLIS program, the variance terms are automatically 
specified in the program for each observed variable. Once again, the cova-
riance terms are assumed by the program to be set to zero; so we must 
specify any covariance term of interest and allow it to be estimated. A 
covariance term, if one existed between the measurement errors for the 
California Achievement Test at Times 1 and 2, would be specified using 
the following command:

      Set the Error Covariance between Cal1 and Cal2 free
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There is one final variance–covariance term that we need to mention, 
and it really represents the ultimate variance–covariance for our com-
bined measurement model and structural model. From the structure 
coefficient parameters we estimate in the structural model, the factor 
loadings in the measurement model(s), and all of the variance–covariance 
terms, we generate an ultimate matrix of variance–covariance terms for 
the overall SEM model. This variance–covariance matrix is implied by 
the overall model and is denoted by Σ (see chapter 17 for a representa-
tion of all of these matrices). Our goal in structural equation modeling 
is to estimate all of the parameters in the overall model and test the 
overall fit of the model to the sample variance–covariance data. In short, 
the parameters in our overall SEM model create an implied variance–
covariance matrix Σ from the sample variance–covariance matrix S, 
which contains the sample variances and covariance terms among our 
observed variables. We interpret our model-fit indices (see chapter 5) to 
determine the level of model fit between Σ and S (closeness of the val-
ues in the variance–covariance matrix Σ implied by our hypothesized 
model, and the sample variance–covariance matrix S given our sample 
data). We also examine the magnitude (strength as well as statistical sig-
nificance of parameter estimates) and the direction (positive or negative 
coefficients) to provide a meaningful interpretation of our SEM model 
results.

9.5 � Two-Step/Four-Step Approach

James, Mulaik, and Brett (1982) proposed a two-step modeling approach 
that emphasized the analysis of the two conceptually distinct latent vari-
able models: measurement models and structural models. Anderson and 
Gerbing (1988) described their approach by stating that the measurement 
model provides an assessment of convergent and discriminant validity, 
and the structural model provides an assessment of predictive validity. 
Mulaik et al. (1989) also expanded the idea of assessing the fit of the struc-
tural equation model among latent variables (structural model) indepen-
dently of assessing the fit of the observed variables to the latent variables 
(measurement model). Their rationale was that even with few latent vari-
ables, most parameter estimates define the relationships of the observed 
variables to the latent variables in the measurement model, rather than 
the structural relationships of the latent variables themselves. Mulaik and 
Millsap (2000) further elaborated a four-step approach discussed in chap-
ter 5. Jöreskog and Sörbom (1993, p. 113) had earlier summarized many of 
their thoughts by stating:
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The testing of the structural model, i.e., the testing of the initially 
specified theory, may be meaningless unless it is first established that 
the measurement model holds. If the chosen indicators for a construct 
do not measure that construct, the specified theory must be modified 
before it can be tested. Therefore, the measurement model should be 
tested before the structural relationships are tested.

We have found it prudent to follow their advice. In the establishment of 
measurement models, it is best to identify a few good indicators of each 
latent variable with three or four indicators being recommended. In our 
example, we intentionally used only a few indicators to define or measure 
the latent variables to keep the model simple. We have also found that 
when selecting only a few indicator variables, it is easier to check how 
well each observed variable defines a latent variable—that is, to examine 
the factor loadings, reliability coefficients, and the amount of latent vari-
able variance explained. For example, rather than use individual items 
as indicator variables, sum the items to form a total test score or a parcel 
score (composite score or scale score). In addition, one can calculate the 
reliability of the composite (scale) score and even consider fixing the value 
of the relevant measurement error variance in the model (as described in 
section 9.1), thus reducing the need to estimate one parameter. It is only 
after latent variables are adequately defined (measured) that it makes 
sense to examine latent variable relationships in a structural model. We 
think a researcher with adequately measured latent variables is in a bet-
ter position to establish a substantive, meaningful structural model, thus 
supporting theory.

9.6 � Summary

This chapter focused on how to develop structural equation models. We 
began with a more detailed look at both observed and latent variables. 
Next, we discussed the measurement and structural models. We extended 
some of the basic concepts found in confirmatory factor models (measure-
ment models) and regression/path models (structural models) to structural 
equation modeling. We then described three types of variance–covariance 
matrices typically utilized in structural equation models. The chapter con-
cluded with a discussion of the popular two-step/four-step approaches 
to structural equation modeling. In chapter 10 we extend our discussion 
of the development of structural equation models by considering model 
specification, model identification, model estimation, model testing, and 
model modification, utilizing a more complex hypothesized theoretical 
model.
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Exercises

	 1.	 Diagram two indicator variables X1 and X2 of a latent vari-
able LV.

	 2.	 Diagram two observed variables X1 and X2 that predict a third 
observed variable Y. X1, and X2 are correlated.

	 3.	 Diagram a latent independent variable LIV predicting a latent 
dependent variable LDV.

	 4.	 Would you use a single indicator of a latent variable? Why or 
why not?
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10
Developing Structural Equation 
Models: Part II

Key Concepts

Factor loadings and measurement errors
Structure coefficients and prediction errors
Variance and covariance terms
Specification search

In chapter 9 we presented the basic framework for the development of 
structural equation models. We focused on the measurement model, the 
structural model, and the different variance–covariance terms. These 
constitute the basic building blocks for analyzing and interpreting a 
structural equation model. In this chapter we extend our discussion of the 
development of structural equation models. We present a hypothesized 
theoretical structural equation model and discuss issues related to model 
specification, model identification, model estimation, model testing, and 
model modification in the context of that example.

10.1 � An Example

We hypothesized a structural equation model based on predicting educa-
tional achievement as a latent dependent variable. The structural model is 
diagrammed in Figure 10.1 with four latent variables drawn as ellipses: two 
latent independent variables, home background (Home) and Ability, and two 
latent dependent variables, aspirations (Aspire) and achievement (Achieve).

Three of the latent variables are defined by using two indicator vari-
ables, and one latent variable, Home, is defined by using three indicator 
variables in the measurement model. The indicator variables are depicted 
using rectangles as follows: (a) for Home, family income (FamInc), father’s 
education (FaEd) and mother’s education (MoEd); (b) for Ability, verbal 
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ability (VerbAb) and quantitative ability (QuantAb); (c) for Aspire, educa-
tional aspiration (EdAsp) and occupational aspiration (OcAsp); and (d) 
for Achieve, verbal achievement (VerbAch) and quantitative achievement 
(QuantAch).

The measurement models for each latent variable identify which observed 
variables define that particular latent variable. An arrow is drawn from the 
latent variable to each of its observed indicator variables. For each arrow, 
we understand that a factor loading will be computed. For example, the 
observed measures of family income, father’s education and mother’s edu-
cation define the latent variable Home, with each observed variable having a 
factor loading estimated. Figure 10.1 has nine arrows going from the latent 
variables drawn as ellipses to observed variables drawn as rectangles, thus 
nine factor loadings will be estimated.

In Figure 10.1 each observed variable has a unique measurement error. 
This is indicated by an arrow pointing to each observed variable and 
shows that some portion of each observed variable is measuring some-
thing other than the hypothesized latent variable. For example, mother’s 
education (MoEd) is hypothesized to define Home (home background), but 
it may also be assessing other latent variables, a function of other variables 
not in the model, random, or systematic error. The unique measurement 
error is estimated for each observed variable, so there will be nine unique 
measurement errors estimated. Each observed variable has a factor load-
ing and a unique measurement error that forms an equation to compute 
the latent variable score; for example,

	 MoEd = factor loading * Home + measurement error

Home

FamInc

Aspire

Ability Achieve

FaEd

MoEd

VerbAb

QuantAb

EdAsp

OcAsp

VerbAch

QuantAch

1

1
1

1

error

error

error

error

error

error

error

error

error

error

error

Figure 10.1
Structural equation model of educational achievement.
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Our model diagram does not include any curved arrows for measurement 
error, but this issue should be discussed. A curved arrow between two mea-
surement error terms is possible and indicates that the measurement error 
terms are correlated. Two measurement error terms could be correlated if 
they share something in common, such as common method variance, or if 
the same measure is being used at different points in time. For example, 
quantitative ability (QuantAb) and quantitative achievement (QuantAch) may 
have correlated measurement error terms, for example, because they rep-
resent two measures of quantitative skills. Correlated measurement error 
terms may also exist for father’s education (FaEd) and mother’s education 
(MoEd), for example, because using the same method of measurement, the 
errors for one parent might be reflected in the other parent.

A straight arrow leading from a latent variable to a latent dependent vari-
able designates that a structure coefficient is to be estimated. For example, 
it was hypothesized that Home (home background) predicts Aspire (aspira-
tions). The structure coefficients we want to estimate in our hypothesized 
structural model come from a review of prior research and theory. In our 
hypothesized structural model there are five structure coefficients we want 
to estimate. Each latent dependent variable has one or more structure coef-
ficients and a unique prediction error that forms an equation; for example,

	 Aspire = structure coefficient * Home + structure coefficient * Ability 
            + prediction error

The prediction error for Aspire indicates that some portion of Aspire (aspi-
ration) is not predicted by the latent independent variables Home and 
Ability. There are two equations in our hypothesized structural model, so 
we estimate two prediction errors, one for Aspire and one for Achieve:

	 Aspire = structure coefficient * Home + structure coefficient * Ability
          + prediction error

	 Achieve = structure coefficient * Home + structure coefficient * Ability
            + structure coefficient * Aspire + prediction error

10.2 � Model Specification

Model specification is the first step in structural equation modeling (also 
for regression models, path models, and confirmatory factor models). We 
need theory because a set of observed variables can define a multitude 
of different latent variables in a measurement model. In addition, many 
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different structural models can be generated on the basis of different 
hypothesized relationships among the latent variables.

In our theoretical structural equation model to predict Achieve (educa-
tional achievement) we used nine observed variables and hypothesized 
four latent variables. Given this, many different measurement models and 
structural models are possible. First, each observed variable can load on one 
or more latent variables, so there could be nine or more possible factor load-
ings (up to 36 in our measurement model). Second, the two latent indepen-
dent variables may or may not be correlated. Third, there may or may not be 
correlations or covariance terms among the measurement errors, suggesting 
there could be anywhere from zero to several possible correlated measure-
ment error terms. Fourth, different structural models could be tested, so we 
could have more than five or less than five structure coefficients in the dif-
ferent models. Finally, each structural equation has a prediction error—one 
for each latent dependent variable—so we could have more or less predic-
tion errors, and the prediction errors could be correlated.

How does a researcher determine which model is correct? We have 
already learned that model specification is complicated, and we must 
meet certain data conditions with the observed variables (see chapter 2). 
Basically, structural equation modeling does not determine which model 
to test; rather, it estimates the parameters in a model once that model has 
been specified a priori by the researcher based on theoretical knowledge. 
Consequently, theory plays a major role in formulating structural equa-
tion models and guides the researcher’s decision on which model(s) to 
specify and test. Once again, we are reminded that model specification is 
indeed the hardest part of structural equation modeling.

We used theory to formulate our measurement model and structural 
model in predicting educational achievement, Achieve (Lomax, 1985). In the 
measurement model there are nine equations, one for each observed variable. 
From Figure 10.1, we formed the following nine measurement equations:

           EdAsp = factor loading * Aspire + measurement error

           OcAsp = factor loading * Aspire + measurement error

        VerbAch = factor loading * Achieve + measurement error

QuantAch = factor loading * Achieve + measurement error

          FamInc = factor loading * Home + measurement error

            FaEd = factor loading * Home + measurement error

           MoEd = factor loading * Home + measurement error
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          VerbAb = factor loading * Ability + measurement error

         QuantAb = factor loading * Ability + measurement error

Our latent variables are unobserved and have no definite scale of mea-
surement (origin and unit of measurement are arbitrary). To define the 
measurement model correctly, the origin and unit of measurement for 
each latent variable must be defined. The origin of a latent variable is usu-
ally assumed to have a mean of 0. The unit of measurement (variance) of 
a latent variable can be set using two different approaches. To compare 
our factor loadings (interpret the parameter estimates), we need to define 
a common unit of measurement for the latent variables. This is accom-
plished by setting a single observed variable factor loading to 1 for the 
latent variable, for example, EdAsp = 1 * Aspire + measurement error. The 
observed variable selected usually represents the best indicator of the 
latent variable and is called a reference variable because all other observed 
variables for that latent variable are interpreted in relation to its unit of 
measurement. Another option is to assume that the latent variables have a 
standardized unit of measurement and fix the latent variable variance to 
1 (see Jöreskog & Sörbom, 1993, p. 173, 174).

In the LISREL–SIMPLIS command language (Jöreskog & Sörbom, 1993), 
the measurement model equations are typically written using variable 
names. In the Relationships: command, the observed variables are speci-
fied on the left‑hand side of the equation with spaces between the multiple 
observed variable names and the latent variables on the right‑hand side. 
The LISREL–SIMPLIS measurement equations are specified using vari-
able names as follows:

Relationships:
EdAsp = 1*Aspire

OcAsp = Aspire

VerbAch = 1*Achieve

QuantAch = Achieve

FamInc = 1*Home

FaEd MoEd = Home

VerbAb = 1*Ability

QuantAb = Ability

(Note :  The 1* notation in LISREL–SIMPLIS indicates parameters that are 
fixed to 1.)
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The equations for the structural model are

	 Aspire = structure coefficient * Home + structure coefficient * Ability
             + prediction error

	 Achieve = structure coefficient * Home + structure coefficient * Ability
            + structure coefficient * Aspire + prediction error

In LISREL–SIMPLIS, the structural model can be specified using a 
Relationships: command. The latent variables can be written as eight-
character variable names with either spaces or plus signs (+) used 
between the latent variables. The prediction error terms for the two equa-
tions are assumed, so they are not included. The two structural equations 
in LISREL–SIMPLIS are:

Relationships:

Aspire = Home Ability

Achieve = Aspire Home Ability

Finally, we must consider the three different types of variance–covariance 
term terms. First, we check for variances and covariance terms among 
the latent independent variables. For our model, there are separate vari-
ance terms for Home and Ability and a correlation term for the covariance 
between Home and Ability. All of these parameter estimates are auto-
matically specified in the LISREL–SIMPLIS program. Second, we check 
for variances and covariance terms among the prediction errors. In our 
model there are separate variance terms for each of the two structural 
equations—that is, Aspire and Achieve—and no covariance term. These 
variance terms are also automatically specified in the LISREL–SIMPLIS 
program. Finally, we need to check for variance and covariance terms 
among the measurement errors of the observed variables. In our mea-
surement model equations there are nine variance terms for the observed 
variables and no covariance terms. These are also automatically specified 
in the LISREL–SIMPLIS program. Our careful attention to these details 
assists in the specification of our structural equation model.

10.3 � Model Identification

Once a structural equation model has been specified, the next step is to 
determine whether the model is identified. In chapter 4 we pointed out that 
the researcher must solve the identification problem prior to the estimation of 
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parameters. For the identification problem, we ask the following question: 
On the basis of the sample data contained in the sample variance–covariance 
matrix S and the theoretical model implied by the population variance–
covariance matrix Σ, can a unique set of parameter estimates be found? For 
the prediction of Achieve (educational achievement) specified in our theo-
retical model, we would like to know whether the factor loadings, measure-
ment errors, structure coefficients, and prediction errors can be estimated 
(identified). In our model we fixed certain parameters to resolve the origin 
and unit of measurement problem (factor loading = 1) while leaving other 
parameters free to be estimated. An example of a fixed parameter was set-
ting the factor loading for FamInc (family income) on the latent independent 
variable Home (home background) to 1. An example of a free parameter was 
the factor loading for FaEd (father’s education) on Home (home background) 
because it was not fixed, but rather free to be estimated.

We determine model identification by first checking the order condi-
tion. The number of free parameters to be estimated must be less than or 
equal to the number of distinct values in the matrix S. A count of the free 
parameters is as follows:

5 factor loadings (with 4 other factor loadings fixed to 1)
9 measurement error variances
0 measurement error covariance terms
2 latent independent variable variances
1 latent independent variable covariance
5 structure coefficients
2 equation prediction error variances
0 equation prediction error covariance terms

There are a total of 24 free parameters in our structural model that we want 
to estimate. The number of distinct values in the matrix S is equal to

	 p (p + 1)/2 = 9 (9 + 1)/2 = 45,

where p is the number of observed variables in the sample variance–
covariance matrix. The number of values in S, 45, is greater than the num-
ber of free parameters, 24, so the model is probably identified, and we 
should be able to estimate the number of free parameters that we speci-
fied. The degrees of freedom for our structural equation model is the dif-
ference between the number of distinct values in the matrix S and the 
number of free parameters we want to estimate, df = 45 – 24 = 21. Thus, 
according to the order condition, the model is overidentified, as there are 
more values in S than parameters to be estimated.
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However, the order condition is only a necessary condition and is no 
guarantee that the model is identified. Although the order condition is 
easy to assess, other sufficient conditions are not, for example, the rank 
condition. These other sufficient conditions require us to algebraically 
determine whether each parameter in the model can be estimated from the 
sample variance–covariance matrix S. According to the LISREL–SIMPLIS 
computer program, which checks on identification through the rank test 
and/or information matrix, the hypothesized structural equation model 
for predicting Achieve (educational achievement) is identified.

10.4 � Model Estimation

Once the identification problem has been resolved, the next step is to 
estimate the parameters in the hypothesized structural equation model. 
Once again, we can consider the traditional method of intuitively think-
ing about estimation by decomposing the variance–covariance (or cor-
relation) matrix. The decomposition notion is that the original sample 
variance–covariance (or correlation) matrix can be completely reproduced 
if the relations among the observed variables are totally accounted for by 
the theoretical model. If the model is not properly specified, the original 
sample variance–covariance matrix will not be completely reproduced.

We now consider the estimation of the parameters for our hypothesized 
structural model in Figure 10.1. The sample variance–covariance matrix 
S is shown in Table 10.1 and the standardized residual matrix is shown 
in Table  10.2. Our initial model was run in LISREL–SIMPLIS (LISREL–
SIMPLIS program in chapter Appendix).

Table 10.1

Sample Variance–Covariance Matrix for Example Data

Variable 1 2 3 4 5 6 7 8 9

1 EdAsp 1.024
2 OcAsp .792 1.077
3 VerbAch 1.027 .919 1.844
4 QuantAch .756 .697 1.244 1.286
5 FamInc .567 .537 .876 .632 .852
6 FaEd .445 .424 .677 .526 .518 .670
7 MoEd .434 .389 .635 .498 .475 .545 .716
8 VerbAb .580 .564 .893 .716 .546 .422 .373 .851
9 QuantAb .491 .499 .888 .646 .508 .389 .339 .629 .871
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The maximum likelihood estimates for the initial model are shown in 
the first column of Table 10.3. All of the parameter estimates are within the 
expected magnitude and direction based on previous research (Lomax, 
1985). All of the parameter estimates are significantly different from 
zero (p < .05), except the structure coefficient of Home predicting Achieve 
(achievement) (standardized estimate = .139, t = 1.896, unstandardized esti-
mate = .242). Because this structure coefficient is of substantive theoretical 
interest, we will not remove it from the model. Aspire was statistically sig-
nificantly predicted, R2 = .612, and Achieve was statistically significantly, 
predicted R2 = .863, for both structural model equations. Home and Ability 
latent variables were highly correlated, r = .728.

10.5 � Model Testing

Model testing is the next crucial step in interpreting our results for the 
hypothesized structural equation model. When the model-fit indices are 
acceptable, the hypothesized model has been supported by the sample vari-
ance–covariance data. When the model-fit indices are not acceptable, we 
usually attempt to modify the model by adding or deleting paths to achieve 
a better model to data fit (see section 10.6).

For our initial model, we include several model-fit indices at the bottom 
of Table 10.3 (see chapter 5). For the initial model, the c2 statistic, a mea-
sure of badness of fit, is equal to 58.85, 21 degrees of freedom, and p < .001. 
Because the c2 value is statistically significant (p < .001) and is not close in 
value to the number of degrees of freedom (recall NCP = 0, based on c2 − 
df = 0), this model-fit index indicates that the initial model is unacceptable. 
The root-mean-square error of approximation (RMSEA) is equal to .095, 

Table 10.2

Standardized Residual Matrix for Model 1

1 2 3 4 5 6 7 8 9

1. EdAsp .000
2. OcAsp .000 .000
3. VerbAch 1.420 −.797 .000
4. QuantAch −.776 −.363 .000 .000
5. FamInc  3.541 3.106 5.354 2.803 .000
6. FaEd −2.247 −.578 −2.631 −.863 −2.809 .000
7. MoEd −1.031 −1.034 −2.151 −.841 −3.240 6.338 .000
8. VerbAb .877 1.956 −2.276 1.314 4.590 −.903 —2.144.000
9. QuantAb −2.558 .185 1.820 −.574 3.473 —1.293 —2.366.000 .000
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Table 10.3

Maximum Likelihood Estimates for Models 1 and 2
Estimates Model 1 Model 2 (modified)

OcAsp factor loading .917 .918
QuantAch factor loading .759 .753
FaEd factor loading 1.007 .782
MoEd factor loading .964 .720
QuantAb factor loading .949 .949
Aspire -> Achieve coefficient .548 .526
Home -> Aspire coefficient .410 .506
Home -> Achieve coefficient .242a .302a

Ability -> Aspire coefficient .590 .447
Ability -> Achieve 
coefficient

.751 .685

Home variance .532 .662
Ability variance .663 .663
Home, Ability covariance .432 .537
Aspire equation error 
variance

.335 .319

Achieve equation error 
variance

.225 .228

EdAsp error variance .160 .161
OcAsp error variance .351 .350
VerbAch error variance .205 .193
QuantAch error variance .342 .349
FamInc error variance .320 .190
FaEd error variance .130 .265
MoEd error variance .222 .373
VerbAb error variance .188 .188
QuantAb error variance .274 .274
FaEd, MoEd error covariance — .173
Goodness-of-fit indices:

  c2 58.85 18.60

  df 21 20
  p value .000 .548
  GFI .938 .980
  AGFI .868 .954
  RMSR .049 .015
  RMSEA .095 .000

a	 Estimates are not statistically significantly different from zero (p < .05). The c2 values for 
Model 1 and Model 2 can be checked for significance using Table A.4 in the Appendix.
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which is below the typical acceptable level of model fit (criterion RMSEA 
< .08 or .05). The goodness-of-fit index (GFI) is .938 for the initial model, 
which is around our acceptable range of model fit (criterion GFI > .95). 
Finally, the adjusted goodness-of-fit index (AGFI) is .868 for this model, 
not an acceptable level of fit (criterion AGFI > .95). From this particular set 
of model-fit indices, we conclude that the hypothesized structural equa-
tion model is reasonable, but that some model modification might allow 
us to achieve a more acceptable model to data fit. Model modification is 
discussed in the next section.

10.6 � Model Modification

The final step in structural equation modeling is to consider model modi-
fication to achieve a better model to data fit. If the hypothesized struc-
tural equation model has model-fit indices that are less than satisfactory, 
a researcher typically performs a specification search to find a better fitting 
model to the sample variance–covariance matrix. In chapter 4 we dis-
cussed the different procedures one can use in the specification search 
process. For example, the researcher might eliminate parameters that are 
not significantly different from zero and/or include additional parameters. 
To eliminate parameters, the most commonly used procedure in LISREL–
SIMPLIS is to compare the t statistic for each parameter to a tabled t value, 
for example, t > 1.96, a = .05, two-tailed test, or t > 2.58, a = .01, two-tailed 
test (Table A.2) for statistical significance. To include additional param-
eters, the most commonly used techniques in LISREL–SIMPLIS are to 
(a) select the highest modification index (MI; the expected value that c2 
would decrease if such a parameter were to be included), and (b) select the 
highest expected parameter change statistic (EPC; the approximate value 
of the new parameter added to the model).

A researcher could also examine the residual matrix (or the more 
useful standardized residual matrix) to obtain clues as to which orig-
inal variances and covariance terms are not well accounted for by the 
model (the residual matrix is the difference between the observed 
variance–covariance terms in S and the corresponding model implied 
(reproduced) variance–covariance terms in Σ). Large standardized resid-
uals—for example, greater than 1.96 or 2.58—indicate that a particular 
variable relationship is not well accounted for in the model.

For our hypothesized structural equation model, the original sample vari-
ance–covariance matrix is shown in Table 10.1 and the standardized residual 
variance–covariance matrix is given in Table 10.2. The largest standardized 
residual is for the relationship between FaEd (father’s education) and MoEd 
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(mother’s education), which is 6.338. (Note: the t statistics do not suggest the 
elimination of existing parameters, except one, from the initial model.) When 
considering the addition of new parameters in the model, the largest modifi-
cation index is for the measurement error covariance between FaEd (father’s 
education) and MoEd (mother’s education), which is MI = 40.176. If we were 
to estimate that parameter (correlation between FaEd and MoEd measure-
ment errors), the expected parameter change would be EPC = 0.205.

In our specification search, the standardized residual and EPC values 
indicated that something was wrong with how we specified the relation-
ship between FaEd (father’s education) and MoEd (mother’s education), 
because it was not specified well in the initial model. Consequently, we 
decided to specify a measurement error covariance (correlation) between 
FaEd (father’s education) and MoEd (mother’s education) because, upon 
further reflection, there should be common method variance on measures 
using the same scale with two different parents.

The ML estimates and selected model-fit indices for the modified model, 
where the measurement error covariance is now included, are shown in 
the second column of Table 10.3 and diagrammed in Figure 10.2. All of the 
parameters are statistically significantly different from zero (p < .05), except 
for the path between Home (home background) and Achieve (achievement), 
but once again, for substantive theoretical reasons, we chose to leave this 
relationship specified in the model. Our selected model-fit indices now all 
indicate an acceptable level of fit, and a second specification search did not 
result in any further recommended changes. Thus, we consider our modi-
fied model to be our final structural equation model for the prediction 
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Figure 10.2
Modified structural equation model of educational achievement.

Y102005.indb   206 3/22/10   3:26:11 PM



Developing Structural Equation Models: Part II	 207

of educational achievement. Applying this structural equation model to 
other samples of data will, we hope, provide further validation that this is 
a theoretically meaningful structural model (see chapter 12).

10.7 � Summary

This chapter completes the basic discussion of structural equation model-
ing we began in chapter 9. We hypothesized a structural equation model 
to predict educational achievement and described it in further detail. We 
followed the recommended steps a researcher should take in the struc-
tural equation modeling process, namely model specification, model 
identification, model estimation, model testing, and finally model modi-
fication. We did not obtain acceptable model-fit indices with our initial 
theoretical model, so we conducted a specification search. The specifi-
cation search suggested adding a parameter estimate for the correlation 
between the measurement error terms of father’s and mother’s education 
level. The modified model resulted in acceptable model-fit indices, so this 
was determined to be our best model to data fit. In chapter 11 we provide 
suggestions and recommendations for how structural equation modeling 
studies should be reported in the literature.

Appendix: LISREL–SIMPLIS Structural 
Equation Model Program

Educational Achievement Example—Model 2 Respecified
Observed variables: EdAsp OcAsp VerbAch QuantAch FamInc FaEd
MoEd VerbAb QuantAb
Covariance matrix:
1.024
 .792  1.077
1.027   .919  1.844
 .756   .697  1.244  1.286
 .567   .537   .876   .632  .852
 .445   .424   .677   .526  .518  .670
 .434   .389   .635   .498  .475  .545  .716
 .580   .564   .893   .716  .546  .422  .373  .851
 .491   .499   .888   .646  .508  .389  .339  .629  .871
Sample size: 200
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Latent variables: ASPIRE ACHIEVE HOME ABILITY
Relationships:
 EdAsp = 1*ASPIRE
 OcAsp = ASPIRE
 VerbAch = 1*ACHIEVE
 QuantAch = ACHIEVE
 FamInc = 1*HOME
 FaEd MoEd = HOME
 VerbAb = 1*ABILITY
 QuantAb = ABILITY
 ASPIRE = HOME ABILITY
 ACHIEVE = ASPIRE HOME ABILITY
Let the error covariances of FaEd and MoEd correlate
Path diagram
End of problem

Exercise

	 1.	 Conduct the following structural equation model analysis 
using the LISREL–SIMPLIS program:
Sample size = 500
Observed X variables:

 ACT score (ACT)
 College Grade Point Average (CGPA)
 Company entry-level skills test score (ENTRY)

Observed Y variables:
Beginning salary (SALARY)
Current salary due to promotions (PROMO)

Latent dependent variable: Job Success (JOB)
Latent independent variable: Academic Success (ACAD)
Structural model:

ACAD -> JOB

Variance-covariance matrix:
ACT 1.024
CGPA   .792 1.077
ENTRY   .567   .537 .852
SALARY   .445   .424 .518 .670
PROMO   .434   .389 .475 .545 .716
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11
Reporting SEM Research: Guidelines 
and Recommendations

Key Concepts

Theoretical models and data preparation
Sample matrix in SPSS or Excel
Model specification and identification
Model estimation and testing
Model modification and specification search

Breckler (1990) reviewed the personality and social psychology research 
literature and found several shortcomings of structural equation mod-
eling, namely that model-fit indices can be identical for a potentially 
large number of models, that assumptions of multivariate normality are 
required, that sample size affects results, and that cross-validation of 
models was infrequently addressed or mentioned. Many of the studies 
only reported a single model-fit index. Breckler concluded that there was 
cause for concern in the reporting of structural equation modeling results. 
Raykov, Tomer, and Nesselroade (1991) proposed guidelines for reporting 
SEM results in the journal Psychology and Aging. Maxwell and Cole (1995) 
offered some general tips for writing methodological articles, and Hoyle 
and Panter (1995) published a chapter on reporting SEM research with an 
emphasis on describing the results and what model-fit criteria to include.

The Publication Manual of the American Psychological Association (American 
Psychological Association, 2001, pp. 161, 164–167, and 185) specifically 
states that researchers should include the means, standard deviations, 
and correlations of the entire set of variables so that others can replicate 
and confirm the analysis, as well as provide example tables and figures 
for reporting structural equation modeling research. Unfortunately, the 
guidelines do not go far enough in outlining the basic information that 
should be included to afford an evaluation of the research study and 
some fundamental points that should be addressed when conducting 
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SEM studies. A few other scholars have previously offered their advice, 
as follows.

Boomsma (2000) discussed how to write a research paper when struc-
tural equation models were used in empirical research and how to decide 
what information to report. His basic premise was that all information 
necessary for someone else to replicate the analysis should be reported. 
He provided recommendations along the lines of our basic steps in struc-
tural equation modeling, namely model specification, model identifica-
tion, model estimation, model testing, and model modification. Boomsma 
found that many studies lacked a theoretical foundation for the theoretical 
model, gave a poor description of the model tested, provided no discussion 
of the psychometric properties of the variables and level of measurement, 
did not include sample data, and had a poor delineation or justification for 
the model modification process. He pointed out how difficult it can be to 
evaluate or judge the quality of published SEM research.

MacCallum and Austin (2000) provided an excellent survey of problems 
in applications of SEM. Thompson (2000) provided guidance for conduct-
ing structural equation modeling by citing key issues and including the 
following list of 10 commandments for good structural equation model-
ing behavior: (a) do not conclude that a model is the only model to fit the 
data, (b) cross-validate any modified model with split-sample data or new 
data, (c) test multiple rival models, (d) evaluate measurement models first, 
then structural models, (e) evaluate models by fit, theory, and practical 
concerns, (f) report multiple model-fit indices, (g) meet multivariate nor-
mality assumptions, (h) seek parsimonious models, (i) consider variable 
scale of measurement and distribution, and (j) do not use small samples.

McDonald and Ringo Ho (2002) examined 41 of 100 articles in 13 psychologi-
cal journals from 1995 to 1997. They stated that SEM researchers should give a 
detailed justification of the SEM model tested along with alternative models, 
account for identification, address nonnormality and missing data concerns, 
and include a complete set of parameter estimates with standard errors, cor-
relation matrix (and perhaps residuals), and goodness-of-fit indices.

We further elaborate several key issues in SEM. First, in structural equa-
tion model analyses several different types of sample data matrices can 
be used (e.g., variance-covariance matrix, asymptotic variance-covariance 
matrix, Pearson correlation matrix, or polyserial, polychoric, or tetrachoric 
matrices). As previously described in chapter 3, the type of matrix used 
depends on several factors such as nonnormality and type of variables.

A second issue concerns model identification, that is, the number of 
distinct values in the sample variance-covariance matrix should equal or 
exceed the number of free parameters estimated in the model (degrees of 
freedom should not be negative for the model; the order condition) and 
the rank of the matrix should yield a non-zero determinant value (the 
rank condition). A researcher must also select from various parameter 
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estimation techniques in model estimation, for example, unweighted least 
squares, maximum likelihood, or generalized least squares estimation 
under the assumption of multivariate normality, or asymptotically distri-
bution-free estimation using ADF or CVM techniques when the multivar-
iate normality assumption is not met. Obviously, many factors discussed 
in chapters 2 and 3 affect multivariate normality.

A researcher should also be aware that equivalent models and alterna-
tive models may exist in an over-identified model (more distinct values in 
the matrix than free parameters estimated), and rarely are we able to per-
fectly reproduce the sample variance-covariance matrix, given the implied 
theoretical model. We use model-fit indices and specification searches to 
obtain an acceptable model to data fit, given alternative models. Model-fit 
statistics should guide our search for a better fitting model. Chapter 5 out-
lined different model-fit criteria depending on the focus of the research. 
Under some situations, for example, use of large sample sizes, the chi-
square values will be inflated leading to statistically significance, thus 
erroneously implying a poor data to model fit. A more appropriate use 
of the chi-square statistic in this situation would be to compare alterna-
tive models with the same sample data (nested models). The specifica-
tion search process involves finding whether a variable should be added 
(parameter estimated) or a variable deleted (parameter not estimated). A 
researcher, when modifying an initial model, should make one modifica-
tion at a time, that is, add or delete one parameter estimate, and give a 
theoretical justification for the model change.

Ironically, structural equation modeling requires larger sample sizes 
as models become more complex or the researcher desires to conduct 
cross-validation with split samples. In traditional multivariate statistics 
the rule of thumb is 20 subjects per variable (20:1). The rules of thumb 
used in structural equation modeling vary from 100, 200, to 500 or more 
subjects per study, depending on model complexity and cross-validation 
requirements. Sample size and power are also important considerations 
in structural equation modeling (see chapter 5). Finally, a two-step/four-
step approach is important because if measurement models do not fit the 
observed variables, then relationships among the latent variables in struc-
tural models are not very meaningful.

We find the following checklist to be valuable when publishing SEM 
research and hopefully journal editors will embrace the importance of 
this information when published. Our checklist is:

	 1.	Provide a review of literature that supports your theoretical model.
	 2.	Provide the software program used along with the version.
	 3.	 Indicate the type of SEM model analysis (multi-level, structured 

means, etc.).
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	 4.	 Include correlation matrix, sample size, means, and standard 
deviations of variables.

	 5.	 Include a diagram of your theoretical model.
	 6.	For interpretation of results, describe fit indices used and why; include 

power and sample size determination; and effect size measure.

Our checklist is important because the SEM software, model, data, and 
program will be archived in the journal. The power, sample size, and 
effect size will permit future use in meta-analysis studies. Providing this 
research information will also permit future cross-cultural research, multi-
sample or multi-group comparisons, replication, or validation by others in 
the research community because the analysis can be further examined.

We have made many of these same suggestions in our previous chap-
ters, so our intentions in this chapter are to succinctly summarize guide-
lines and recommendations for SEM researchers.

11.1 � Data Preparation

A researcher should begin a SEM research study with a rationale and pur-
pose for the study, followed by a sound theoretical foundation of the mea-
surement model and the structural model. This includes a discussion of 
the latent variables and how they are defined in the measurement model. 
The hypothesis should involve the testing of the structural model and/or 
a difference between alternative models.

An applied SEM research study typically involves using sample data, in 
contrast to a methodological simulation study. The sample matrix should 
be described as to the type (augmented, asymptotic, covariance, or cor-
relation), whether multivariate normality assumptions have been met, 
the scale of measurement for the observed variables, and be related to 
an appropriate estimation technique, for example, maximum likelihood. 
Regression analysis, path analysis, factor analysis, and structural equa-
tion modeling all use data as input into a computer program (see SPSS 
and Microsoft Excel examples at the end of the chapter). The SEM pro-
gram should include the sample matrix, and for certain models, means 
and standard deviations of the observed variables.

To show another way to input data, we can create special data file types 
in SPSS by designating special rowtype_ and varname_ fields in the SPSS 
Data Editor and entering variable names, an example of which follows 
from the Holzinger and Swineford (1939) data previously presented in 
chapter 8.
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We then enter the individual sample size, correlation coefficients, standard 
deviations, and means for the girls’ data. We saved this file as girls_cor.sav.

A set of recommendations for data preparation is given in SEM Checklist 
Box 11.1.

11.2 � Model Specification

Model specification involves determining every relationship and param-
eter in the model that is of interest to the researcher. Moreover, the goal 
of the researcher is to determine, as best possible, the theoretical model 
that generates the sample variance–covariance matrix. If the theoretical 
model is misspecified, it could yield biased parameter estimates; param-
eter estimates that are different from what they are in the true popula-
tion model, that is, specification error. We do not typically know the true 
population model, so bias in parameter estimates is generally attributed 
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SEM Checklist Box 11.1—Data Preparation

	 1.	Have you adequately described the population from which 
the random sample data was drawn?

	 2.	Did you report the measurement level and psychometric 
properties (i.e., reliability and validity) of your variables?

	 3.	Did you report the descriptive statistics on your variables?
	 4.	Did you create a table with correlations, means and stan-

dard deviations?
	 5.	Did you consider and treat any missing data (e.g., can result 

in data analysis issues)? What was the sample size both 
before and after treating the missing data?

	 6.	Did you consider and treat any outliers (e.g., can affect sam-
ple statistics)?

	 7.	Did you consider the range of values obtained for variables, 
as restricted range of one or more variables can reduce the 
magnitude of correlations?

	 8.	Did you consider and treat any nonnormality of the data 
(e.g., skewness and kurtosis, data transformations)?

	 9.	Did you consider and treat any multicollinearity among the 
variables?

	 10.	Did you consider whether variables are linearly related, 
which can reduce the magnitude of correlations?

	 11.	Did you resolve any correlation attenuation (e.g., can result 
in reduced magnitude of correlations and error messages)?

	 12.	Did you take the measurement scale of the variables into 
account when computing statistics such as means, standard 
deviations, and correlations?

	 13.	Did you specify the type of matrix used in the analysis (e.g., 
covariance, correlation (Pearson, polychoric, polyserial), 
augmented moment, or asymptotic matrices)?

	 14.	When using the correlation matrix, did you include stan-
dard deviations of the variables in order to obtain correct 
estimates of standard errors for the parameter estimates?

	 15.	How can others access your data and SEM program (e.g., 
appendix, Web site, email)?
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to specification error. The model should be developed from the available 
theory and research in the substantive area. This should be the main pur-
pose of the literature review.

Recommendations for model modification are provided in SEM 
Checklist Box 11.2.

SEM Checklist Box 11.2—Model Specification

	 1.	Did you provide a rationale and purpose for your study, 
including why SEM rather than another statistical analysis 
approach was required?

	 2.	Did you describe your latent variables, thus providing a 
substantive background to how they are measured?

	 3.	Did you establish a sound theoretical basis for your mea-
surement models and structural models?

	 4.	Did you theoretically justify alternative models for compari-
son (e.g., nested models)?

	 5.	Did you use a reasonable sample size, thus sufficient power 
in testing your hypotheses?

	 6.	Did you clearly state the hypotheses for testing the struc-
tural models?

	 7.	Did you discuss the expected magnitude and direction of 
expected parameter estimates?

	 8.	Did you include a figure or diagram of your measurement 
and structural models?

	 9.	Have you described every free parameter in the models that 
you want to estimate? In contrast, have you considered why 
other parameters are not included in the models and/or why 
you included constraints or fixed certain parameters?

11.3 � Model Identification

In structural equation modeling it is crucial that the researcher resolve 
the identification problem prior to the estimation of parameters in measure-
ment models and/or structural models. In the identification problem, we 
ask the following question: On the basis of the sample data contained in 
the sample covariance matrix S, and the theoretical model implied by the 
population covariance matrix Σ, can a unique set of parameter estimates 
be found?

A set of recommendations for model identification includes the follow-
ing shown in SEM Checklist Box 11.3.
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SEM Checklist Box 11.3—Model Identification

	 1.	Did you specify the number of distinct values in your sam-
ple covariance matrix?

	 2.	Did you indicate the number of free parameters to be 
estimated?

	 3.	Did you inform the reader that the order and/or rank condi-
tion was satisfied?

	 4.	Did you report the number of degrees of freedom and 
thereby the level of identification of the model?

	 5.	How did you scale the latent variables (i.e., fix either one 
factor loading per latent variable or the latent variable vari-
ances to 1.0)?

	 6.	Did you avoid non-recursive models until identification 
has been assured?

	 7.	Did you utilize parsimonious models to assist with 
identification?

11.4 � Model Estimation

In model estimation we need to decide which estimation technique to select 
for estimating the parameters in our measurement model and structural 
model, that is, our estimates of the population parameters from sample 
data. For example, we might choose the maximum likelihood estima-
tion technique because we meet the multivariate normality assumption 
(acceptable skewness and kurtosis); there are no missing data; no outli-
ers; and continuous variable data. If the observed variables are interval 
scaled and multivariate normal, then the ML estimates, standard errors 
and chi‑square test are appropriate.

Our experience is that model estimation often does not work because 
of messy data. In chapters 2 and 3 we outlined many of the factors that 
can affect parameter estimation in general, and structural equation model-
ing specifically. Missing data, outliers, multicollinearity, and nonnormal-
ity of data distributions can seriously affect the estimation process and 
often result in fatal error messages pertaining to Heywood variables (vari-
ables with negative variance), non-positive definite matrices (determinant 
of matrix is zero), or failure to reach convergence (unable to compute a 
final set of parameter estimates). SEM is a correlation research method 
and all of the factors that affect correlation coefficients, the general linear 
model (regression, path, and factor models), and statistics in general are 
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compounded in structural equation modeling. Do not overlook the problems 
caused by messy data!

Recommendations for model estimation are given in SEM Checklist 
Box 11.4.

SEM Checklist Box 11.4—Model Estimation

	 1.	What is the ratio of chi-square to the degrees of freedom?
	 2.	What is the ratio of sample size to number of parameters?
	 3.	Did you consider tests of parameter estimates?
	 4.	Did you identify the estimation technique based on the type 

of data matrix?
	 5.	What estimation technique is appropriate for the distribu-

tion of the sample data (ML and GLS for multivariate nor-
mal data with small to moderate sample sizes; ADF or CVM 
for non-normal, asymptotic covariance data, and WLS for 
non-normal with large sample sizes)?

	 6.	Did you encounter Heywood cases (negative variance), mul-
ticollinearity, or non-positive definite matrices?

	 7.	Did you encounter and resolve any convergence problems 
or inadmissible solution problems by using start values, set-
ting the admissibility check off, using a larger sample size, 
or using a different method of estimation?

	 8.	Which SEM program and version did you use?
	 9.	Did you report the R2 values to indicate the fit of each sepa-

rate equation?
	 10.	Do parameter estimates have the expected magnitude and 

direction?

11.5 � Model Testing

Having provided the SEM program and sample data along with our measure-
ment and structural models, anyone can check our results and verify our find-
ings. In interpreting our measurement model and structural model, we 
establish how well the data fit the models. In other words, we examine the 
extent to which the theoretical model is supported by the sample data. In 
model testing we consider model-fit indices for the fit of the entire model 
and examine the specific tests for the statistical significance of individual 
parameters in the model.

A set of recommendations for model testing includes the following as 
shown in SEM Checklist Box 11.5.
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SEM Checklist Box 11.5—Model Testing

	 1.	Did you report several model-fit indices (e.g., for a single 
model: chi-square, df, GFI, NFI, RMSEA; for a nested model: 
LR test, CFI, AIC; for cross-validation indices: CVI, ECVI; 
and for parameter estimates, t values and standard errors)?

	 2.	Did you specify separate measurement models and struc-
tural models?

	 3.	Did you check for measurement invariance in the factor 
loadings prior to testing between-group parameter esti-
mates in the structural model?

	 4.	Did you provide a table of estimates, standard errors, statisti-
cal significance (possibly including effect sizes and confidence 
intervals)?

11.6 � Model Modification

If the fit of an implied theoretical model is not acceptable, which is typi-
cally the case with an initial model, the next step is model modification and 
subsequent evaluation of the new, modified model. Most of model modifi-
cations occur in the measurement model rather than the structural model. 
Model modification occurs more in the measurement model because that 
is where the main source of misspecification occurs and measurement 
models are the foundation for the structural model.

After we are satisfied with our final best-fitting model, future research 
should undertake model validation by replicating the study (using multiple 
sample analysis, chapter 13), performing cross-validation (randomly split-
ting the sample and running the analysis on both sets of data), or boot-
strapping the parameter estimates to determine the amount of bias. These 
model validation topics are covered in chapter 12.

A set of recommendations for model modification is given in SEM 
Checklist Box 11.6. Although not fully discussed until chapter 12, a set 

SEM Checklist Box 11.6 —Model Modification

	 1.	Did you compare alternative models or equivalent models?
	 2.	Did you clearly indicate how you modified the initial 

model?
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of recommendations for model validation is provided in SEM Checklist 
Box 11.7.

11.7 � Summary

In this chapter we showed that model fit is a subjective approach that 
requires substantive theory because there is no single best model (other 
models may be equally plausible given the sample data and/or equiva-
lent models). In structural equation modeling the researcher follows the 
steps of model specification, identification, estimation, testing, and modi-
fication, so we advise the researcher to base measurement and structural 
models on sound theory, utilize the two-step/four-step approach, and establish 
measurement model fit and measurement invariance before model testing 
the latent variables in the structural model. We also recommend that theo-
retical models need to be replicated, cross-validated, and/or bootstrapped to 
determine the stability of the parameter estimates (see chapter 12). Finally, 
we stated that researchers should include their SEM program, data, and 
path diagram in any article. This permits a replication of the analysis and 

	 3.	Did you provide a theoretical justification for the modified 
model?

	 4.	Did you add or delete one parameter at a time? What param-
eters were trimmed?

	 5.	Did you provide parameter estimates and model-fit indices 
for both the initial model and the modified model?

	 6.	Did you report statistical significance of free parameters, 
modification indices and expected change statistics of fixed 
parameters, and residual information for all models?

	 7.	How did you evaluate and select the best model?

SEM Checklist Box 11.7—Model Validation

	 1.	Did you replicate your SEM model analysis using another 
sample of data (e.g., conduct a multiple sample analysis)?

	 2.	Did you cross-validate your SEM model by splitting your 
original sample of data?

	 3.	Did you use bootstrapping to determine the bias in your 
parameter estimates?
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verification of the results. We do not advocate using specification searches 
to find the best fitting model without having a theoretically justified rea-
son for modifying the initial model. We further advocate using another 
sample of data to validate that the modified model is a meaningful and 
substantive theoretical structural model. Most importantly, we provide 
the researcher with checklists to follow when doing structural equation 
modeling. These checklists follow a logical progression from data prepa-
ration through model specification, identification, estimation, testing, 
modification, and validation.

Exercise

	 1.	 Enter the following data in special matrix format in SPSS and 
save as Fels_fem.sav. Use special variable names rowtype_ and 
varname_ along with n, corr, stddev, and mean in these special 
data sets.
N = 209

Correlation Matrix
Academic 1.00
Athletic .43 1.00
Attract .50 .48 1.00
GPA .49 .22  .32 1.00
Height .10 − .04  −.03 .18 1.00
Weight .04 .02  −.16  −.10 .34 1.00
Rating .09 .14  .43  .15  −.16  −.27 1.00
s.d. .16 .07  .49 3.49 2.91 19.32 1.01
means .12 .05  .42 10.34 .00 94.13  2.65
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12
Model Validation

Key Concepts

Replication: multiple samples
Cross validation: randomly split subsamples
Cross validation indexes: ECVI, CVI, and MECVI
Bootstrap via LISREL and PRELIS
Bootstrap via program menu

In previous chapters we learned about the basics of structural equation mod-
eling using the following steps: model specification, identification, estima-
tion, testing, and modification. In this chapter we consider a selection of 
topics related to model validation. However, our discussion only scratches 
the surface of these approaches in structural equation modeling, so you 
should check out the references in this chapter for more information.

We begin by presenting the topic of replication, which uses multiple 
samples. In our first example, the validation of a theoretical confirma-
tory factor model using two samples of data is presented. Cross valida-
tion is presented next, where a larger sample is randomly split into two 
subsamples. Then, we present the basics of how to determine the stability 
of parameter estimates using the bootstrap method. Ideally, a researcher 
should seek model validation with additional samples of data (replication). 
The other methods are not as rigorous, but in the absence of replication, 
provide evidence of model validity—that is, the viability of the theoretical 
framework suggested by the measurement and/or structural models.

12.1 � Multiple Samples

A nice feature of structural equation modeling, although not frequently 
used, is the possibility of studying a theoretical model and then validating 
it using one or more additional samples of data. Theoretical models can 
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therefore be examined across samples to determine the degree of invari-
ance in fit indices, parameter estimates, and standard errors.

SEM also permits the use of multiple samples in the analysis of quasi-
experimental, experimental, cross‑sectional, and/or longitudinal data. 
With multiple samples it is possible to estimate separately the parame-
ters for each independent sample, to test whether specified parameters or 
parameter matrices are equivalent across the samples (that is, for any of 
the parameters in the measurement and/or structural equation models), 
or to test whether there are sample mean differences for the indicator vari-
ables and/or for any of the structural equations.

We can obviously estimate parameters in each sample of data sepa-
rately. We would fit a theoretical model to the first sample of data and 
then apply the model to the other samples of data. It is possible that a 
confirmatory factor model will fit all samples of data (multiple samples), 
indicating measurement invariance, and yet have different values for 
error covariance, factor loadings, or factor correlations. We can also sta-
tistically determine whether certain specified parameters or parameter 
matrices are equivalent across samples of data. For instance, one may 
be interested in whether factor loadings and factor correlations are sta-
ble across random samples of data applied to a theoretical model. We 
could also randomly split a large national sample of data into several 
subsamples.

SEM also permits the testing of the equivalence of matrices or param-
eter estimates across several samples taken randomly from a population. 
A researcher indicates the specific hypothesis to be tested, for example, 
equal factor loadings and factor correlation. For a measurement model, 
we could test whether the factor loadings are equal across the samples, 
or whether the factor variances and covariance terms are equal across the 
samples, or even whether the unique error variances and covariance terms 
are equal across samples. For a structural model, we could test whether 
the structure coefficients are equal across the samples. For a combined 
structural equation model, all parameters in the entire model are tested 
for equivalence across the samples. Obviously, in this instance both the 
covariance matrix and the coefficients are tested for equality across the 
samples, lending itself to a more complex model requiring adequate sam-
ple size and power.

In this chapter, we present four models: Model A with all parameters 
invariant; Model B with only error variance and factor correlation invari-
ant; Model C with only factor correlation invariant; and finally Model 
D with factor loadings and factor correlation invariant. These examples 
should give you a better understanding of how different model attributes 
can be tested using multiple samples.

We now demonstrate how to conduct these multiple sample analyses 
in LISREL–SIMPLIS using the example in Jöreskog and Sörbom (1996c, 
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example 10, p. 52) that indicated two samples of data on candidates who 
took the Scholastic Aptitude Test (SAT) in 1971 (Figure 12.1).

In LISREL–SIMPLIS, measurement and/or structural models can 
be specified and tested across samples of data for model validation. 
The LISREL–SIMPLIS program stacks separate programs, but does not 
require that the observed variables, latent variables, and equations be 
repeated in each program when the parameters in the theoretical model 
are assumed identical in subsequent individual programs. The second 
and subsequent individual programs only need to include their sample 
size and variance–covariance matrix. Each individual program, how-
ever, must be designated by use of the special command, Group 1: and 
Group 2: etc. (Note: Do not use Sample 1: and Sample 2: etc. to designate 
the individual programs).

The computer output indicates results for each individual program 
with chi-square contributions to the overall global chi-square value. Each 
individual program outputs a chi-square value that sums to the global 
chi-square value. A percent contribution to the global chi-square value is 
also indicated for each individual program. In a multiple sample analysis, 
the global chi-square is a measure of fit in all samples to the theoreti-
cal model. (Note: Individual sample parameter values can be obtained by 
including the latent variable and equation statements in each subsequent 
stacked program.)

LISREL–SIMPLIS generally requires running different multiple sam-
ple program models to determine which parameters are different or 

Verbal

Math

VERBAL40

VERBAL50

MATH35

MATH25

err_v40

err_v50

err_m35

err_m25

Figure 12.1
Path Diagram for SAT Verbal and Math. (From Jöreskog, K. G., & Sörbom, D., 1993. 
Bootstrapping and Monte Carlo experimenting with PRELIS2 and LISREL8. Chicago: Scientific 
Software International; example 10, p. 52.)
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similar among factor loadings, error variances, and factor correlations. In 
LISREL–SIMPLIS, Model A (EX10A.SPL) tests the equality of all param-
eters across both samples (factor loadings, error variances, and factor 
correlation). Model B (EX10B.SPL) allows the factor loadings to be dif-
ferent, but maintains equal error variances and factor correlation. Model 
C (EX10C.SPL) allows the factor loadings and error variances to be dif-
ferent, but maintains equal factor correlation across the two samples. 
Finally, Model D (EX10D.SPL) specifies that the factor loadings and the 
factor correlation are the same for both samples with the error variances 
different.

The LISREL–SIMPLIS Model A program (EX10A.SPL), which tests 
equality of all parameters (invariant) across both samples, is:

Group 1: Testing Equality of all model parameters
Model A: Factor Loadings, Correlation, Error Variances Invariant
Observed Variables: VERBAL40 VERBAL50 MATH35 MATH25
Covariance Matrix from File EX10.COV
Sample Size = 865
Latent Variables: Verbal Math
Relationships:
	  VERBAL40 VERBAL50 = Verbal
	  MATH35 MATH25 = Math
Group 2: Testing Equality of all model parameters
Covariance Matrix from File EX10.COV
Sample Size = 900
Path diagram
End of problem

12.1.1 � Model A Computer Output

Group 1:
	 Contribution to Chi-Square = 19.16
	 Percentage Contribution to Chi-Square = 54.92
Group 2:
	 Contribution to Chi-Square = 15.73
	 Percentage Contribution to Chi-Square = 45.08
Global Goodness-of-Fit Statistics
Degrees of Freedom = 11
Minimum Fit Function Chi-Square = 34.89 (P = 0.00026)

The global chi-square is significant, so having all parameters equal (invari-
ant) is not a tenable solution. Some parameters are therefore different in 
the two samples.

The LISREL–SIMPLIS Model B program (EX10B.SPL), which tests differ-
ences in factor loadings with equal error variance and factor correlation, is:
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Group 1: Testing Equality Of Factor Structures
Model B : Factor Correlation and Error Variances Invariant
Observed Variables: VERBAL40 VERBAL50 MATH35 MATH25
Covariance Matrix from File EX10.COV
Sample Size = 865
Latent Variables: Verbal Math
Relationships:
	  VERBAL40 VERBAL50 = Verbal
	  MATH35 MATH25 = Math
Group 2: Testing Equality Of Factor Correlations
Covariance Matrix from File EX10.COV
Sample Size = 900
Relationships:
	  VERBAL40 VERBAL50 = Verbal
	  MATH35 MATH25 = Math
Path diagram
End of problem

12.1.2 � Model B Computer Output

Group 1:
	 Contribution to Chi-Square = 15.62
	 Percentage Contribution to Chi-Square = 52.65
Group 2:
	 Contribution to Chi-Square = 14.05
	 Percentage Contribution to Chi-Square = 47.35
Global Goodness-of-Fit Statistics
Degrees of Freedom = 7
Minimum Fit Function Chi-Square = 29.67 (P = 0.00011)

The global chi-square was significant, which indicates that equal error 
variance and equal factor correlation are not tenable results with factor 
loadings being different.

The LISREL–SIMPLIS Model C program (EX10C.SPL), which tests differ-
ences in factor loadings and error variance, but equal in factor correlation, is:

Group 1: Testing Equality of Factor Structures
Model C: Factor Correlation Invariant
Observed Variables: VERBAL40 VERBAL50 MATH35 MATH25
Covariance Matrix from File EX10.COV
Sample Size = 865
Latent Variables: Verbal Math
Relationships:
	  VERBAL40 VERBAL50 = Verbal
	  MATH35 MATH25 = Math
Group 2: Testing Equality of Factor Correlations
Covariance Matrix from File EX10.COV
Sample Size = 900
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Relationships:
	  VERBAL40 VERBAL50 = Verbal
	  MATH35 MATH25 = Math
Set the Error Variances of VERBAL40 - MATH25 free
Path diagram
End of problem

12.1.3 � Model C Computer Output

Group 1:
	 Contribution to Chi-Square = 2.21
	 Percentage Contribution to Chi-Square = 55.02
Group 2:
	 Contribution to Chi-Square = 1.81
	 Percentage Contribution to Chi-Square = 44.98
Global Goodness-of-Fit Statistics
Degrees of Freedom = 3
Minimum Fit Function Chi-Square = 4.03 (P = 0.26)

The factor correlation was r = .76 for both samples. This is tenable, given 
the nonsignificant global chi-square statistic (c2 = 4.03, df = 3, p = .26).

The LISREL–SIMPLIS Model D program (EX10D.SPL), which tests factor 
loadings and factor correlation the same (invariant), but allows for differ-
ences in error variance is:

Group 1: Testing Equality of Factor Structures
Model D: Factor Loadings and Factor Correlation Invariant
Observed Variables: VERBAL40 VERBAL50 MATH35 MATH25
Covariance Matrix
	 63.382
	 70.984 110.237
	 41.710 52.747 60.584
	 30.218 37.489 36.392 32.295
Sample Size = 865
Latent Variables: Verbal Math
Relationships:
	  VERBAL40 VERBAL50 = Verbal
	  MATH35 MATH25 = Math
Group 2: Testing Equality of Factor Correlations
Covariance Matrix
	 67.898
	 72.301 107.330
	 40.549 55.347 63.203
	 28.976 38.896 39.261 35.403
Sample Size = 900
Set the Error Variances of VERBAL40 - MATH25 free
Path diagram
End of problem
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12.1.4 � Model D Computer Output

Group 1:
	 Contribution to Chi-Square = 5.48
	 Percentage Contribution to Chi-Square = 50.40
Group 2:
	 Contribution to Chi-Square = 5.39
	 Percentage Contribution to Chi-Square = 49.60
Global Goodness-of-Fit Statistics
Degrees of Freedom = 7
Minimum Fit Function Chi-Square = 10.87 (P = 0.14)

The global chi-square indicated a good fit of the measurement model 
across both samples of data. Therefore, equal factor loadings and factor 
correlation with unequal error variances is tenable. Error variances would 
typically be different in a measurement model, so assuming equal factor 
loadings and factor correlation was theoretically reasonable to test.

12.1.5 � Summary

Although the multiple sample programs provide the individual and 
global chi-square values, the researcher should consider creating a table 
with the parameter values and standard errors. This would provide an 
easier comparison of the intended parameter estimates that were modeled 
in the different programs.

More complex model comparisons are possible. For example, we could 
test the equality of both factor loadings and factor correlations across 
three samples of data. Many different measurement and structural models 
using the multiple sample approach are possible and have been illustrated 
in journal articles, software manuals, and books. The interested reader is 
referred to Jöreskog and Sörbom (1993), Muthén (1987) and Bentler and 
Wu (2002), as well as books by Hayduk (1987) and Bollen (1989), for more 
details on running these various multiple sample models. Other empirical 
examples using multiple-sample models are given by Lomax (1983, 1985), 
Cole and Maxwell (1985), Faulbaum (1987), and McArdle and Epstein 
(1987). A suggested strategy for testing models in the multiple sample case 
is also given by Lomax (1983).

12.2 � Cross Validation

The replication of a study with a second set of data is often prohibitive 
given the time, money, or resources available. An alternative is to ran-
domly split an original sample, given that the sample size is sufficient, 
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and run the SEM analysis on one set of data while using the other in a 
multiple-sample analysis to compare the results. Cudeck and Browne 
(1983) created a split sample cross-validation index (CVI), while Browne 
and Cudeck (1989, 1993) developed a single sample cross-validation 
(ECVI) and further explained CVI and ECVI in structural equation mod-
eling. Except for a constant scale factor, ECVI is similar to the AIC index 
[(1/n)* (AIC)]. Arbuckle and Wothke (1999, p. 406) also report MECVI, 
which, except for a scale factor, is similar to BCC [(1/n) * (BCC)]. The 
Browne–Cudeck criterion (BCC) imposes a slightly greater penalty for 
model complexity than AIC, and is a fit index developed specifically 
for the analysis of moment structures. These fit indices are intended for 
model comparisons, and thus indicate badness of fit; with simple models 
that fit well receiving low values and poorly fitting models receiving 
high values.

12.2.1 � ECVI

Browne and Cudeck (1989) proposed a single-sample expected cross-
validation index (ECVI) for comparing alternative models using only 
one sample of data. The alternative model that results in the smallest 
ECVI value should be the most stable in the population. The ECVI is 
a function of chi-square and degrees of freedom. It is computed in 
LISREL as ECVI = (c/n) + 2(p/n), where c is the chi-square value for 
the overall fitted model, p is the number of independent parameters 
estimated, and n  = N − 1 (sample size). Alternatively, ECVI can be 
reported as similar to the Akaike Information Criterion, except for a 
scale factor—that is, (1/n) * AIC, where n = N – r (N = sample size; r = 
number of groups). Browne and Cudeck (1989, 1993) also provided a 
confidence interval for ECVI. The 90% lower and upper limits(cL ; cU) = 
[(dL + d + 2q)/n; (dU + d + 2q)/n], where cL = lower limit, cU = upper limit, dL 
= parameter estimate for lower limit, dU = parameter estimate for upper 
limit, d = degrees of freedom, and q = the number of parameters. When 
sample size is small, it is important to compare the confidence intervals 
of the ECVI for the alternative competing models. The ECVI is also 
not very useful for choosing a parsimonious model when the sample 
size is large. In this instance, we recommend one of the parsimonious 
model-fit indices and/or the comparative fit index if comparing alter-
native models (see chapter 5).

Bandalos (1993), in a simulation study, further examined the use of the 
one-sample expected cross-validation index and found it to be quite accu-
rate in confirmatory factor models. Other research also indicated that the 
one-sample expected cross validation index yielded highly similar results 
to those of the two-sample approach (Benson & Bandalos, 1992; Benson & 
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El-Zahhar, 1994; Benson, Moulin-Julian, Schwarzer, Seipp, & El-Zahhar, 
1992).

The ECVI is routinely printed among the fit indices reported by LISREL–
SIMPLIS. We used our previous multiple-sample programs in LISREL–
SIMPLIS, but this time ran them separately to obtain the ECVI values. The 
ECVI for sample one was close to zero, indicating a measurement model 
that would be expected to cross-validate; likewise similar findings were 
reported for the second sample of data. The confidence intervals around 
ECVI in both programs further supported that ECVI would probably 
range between .02 and .03 for this model. (Note: We would not interpret 
the ECVI in the multiple-sample model.)

LISREL–SIMPLIS ECVI Output

Sample 1

  Expected Cross-Validation Index (ECVI) = 0.021
  90 Percent Confidence Interval for ECVI = (0.019 ; 0.028)
  ECVI for Saturated Model = 0.011
  ECVI for Independence Model = 3.05

Sample 2

  Expected Cross-Validation Index (ECVI) = 0.021
  90 Percent Confidence Interval for ECVI = (0.021 ; 0.029)
  ECVI for Saturated Model = 0.022
  ECVI for Independence Model = 3.00

The AIC and BCC values can be computed to show the scale factor rela-
tionship to ECVI. AIC = c2 + 2q = 1.3 + 2(9) = 19.3, that is, reported as 19.255 
for the first sample, where q = number of parameters in the model. AIC = 
c2 + 2q = .9 + 2(9) = 18.922 for the second sample. ECVI = [1/(N – r)](AIC) = 
[1/(865 – 2)](19.255) = .022 for sample 1 and ECVI = [1/(N – r)] (AIC) = [1/
(900 – 2)](18.922) = .021 for sample 2. N is the sample size in each group and 
r is the number of groups. MECVI doesn’t apply in this model analysis, 
but is computed as: [1/(N – r)] (BCC) or [1/(865 – 2)] (19.36) and [1/(900 − 2)]
(19.023), respectively.

12.2.2 � CVI

Cudeck and Browne (1983) also proposed a cross-validation index (CVI) 
for covariance structure analysis that incorporated splitting a sample into 
two subsamples. Subsample A is used as a calibration sample, and sub-
sample B is used as the validation sample. The model implied (reproduced) 
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covariance matrix, Σa, from the calibration sample is then compared with 
the covariance matrix derived from Subsample B, Sb. A CVI value near 
zero indicates that the model cross-validates or is the same in the two 
subsamples. The cross validation index is denoted as CVI = F(Sb, Σa). The 
choice among alternative models can also be based on the model that 
yields the smallest CVI value. One could further double-cross-validate by 
using Subsample B as the calibration sample and Subsample A as the 
validation sample. In this instance, the cross validation index is denoted 
as CVI = F(Sa, Σb). If the same model holds regardless of which subsample 
is used as the calibration sample, greater confidence in the model valid-
ity is achieved. An obvious drawback to splitting a sample into two sub-
samples is that sufficient subsample sizes may not exist to provide stable 
parameter estimates. Obviously, this approach requires an initial large 
sample that can be randomly split into two subsamples of equal and suf-
ficient size.

The CVI can be computed using LISREL–SIMPLIS command language, 
but requires two programs with randomly split data and the cross-validate 
command. In the following example, two LISREL–SIMPLIS programs are 
run to compute the CVI. The first program reads in the covariance matrix 
of the calibration sample (Sa), then generates and saves the model implied 
covariance matrix, Σa. The second program uses the covariance matrix of 
Subsample B and then outputs the CVI value. The CVI cross validation 
example involved randomly splitting an original sample of size 400 and 
calculating two separate covariance matrices.

Program One Calibration Sample
Observed Variables: X1 X2 X3
Covariance Matrix
5.86
3.12 3.32
35.28 23.85 622.09
Latent Variables: Factor1
Relationships:
 X1-X3 = Factor1
Sample Size: 200
Save Sigma in File MODEL1C
End of problem
Program Two Validation Sample and Compute CVI
Observed Variables: X1 X2 X3
Covariance Matrix
5.74
3.47 4.36
45.65 22.58 611.63
Sample Size: 200
Crossvalidate File MODEL1C
End of problem
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A single factor measurement model with three indicator variables is being 
tested to see if it cross-validates using a randomly split sample of data 
(Figure 12.2).

The low CVI value indicated that the measurement model holds for both 
subsamples. The reduced computer output from the CVI cross validation 
program is:

PROGRAM ONE CALIBRATION SAMPLE
COVARIANCE MATRIX TO BE ANALYZED
	 X1	 X2	 X3
X1	 5.86
X2	 3.12	 3.32
X3	 35.28	 23.85	 622.09
SI was written to file MODEL1C
PROGRAM TWO VALIDATION SAMPLE AND COMPUTE CVI
COVARIANCE MATRIX TO BE ANALYZED
	 X1	 X2	 X3
X1	 5.74
X2	 3.47	 4.36
X3	 45.65	 22.58	 611.63
 MATRIX SIGMA
	 X1	 X2	 X3
X1	 5.86
X2	 3.12	 3.32
X3	 35.28	 23.85	 622.09
CROSS‑VALIDATION INDEX (CVI) = 0.38

The ECVI and CVI are most useful after a theoretically implied model has 
an acceptable model fit, that is, when a specified model yields model-fit 

Factor

X1

X2

X3

e1

e2

e3

Figure 12.2
Single Factor Model (cross validation).
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indices and parameter estimates that are meaningful with sufficient sample 
size and power. The number of parameters, model complexity, and sample 
size affect these cross validation indices; therefore, you should not routinely 
discard other modeling considerations when you select the smaller ECVI of 
two competing models, report the CVI from two subsamples, or report the 
CVI across samples taken from a population. Currently, LISREL–SIMPLIS 
computes ECVI for single sample expected cross validation, however, only 
LISREL–SIMPLIS computes CVI for split sample cross validation.

12.3 � Bootstrap

The bootstrap method treats a random sample of data as a substitute 
for the population (pseudo population) and re-samples from it a speci-
fied number of times, to generate sample bootstrap estimates and stan-
dard errors. These sample bootstrap estimates and standard errors are 
averaged and used to obtain a confidence interval around the average 
of the bootstrap estimates. This average is termed a bootstrap estimator. 
The bootstrap estimator and associated confidence interval are used to 
determine how stable or good the sample statistic is as an estimate of the 
population parameter. Obviously, if the random sample initially drawn 
from the population is not representative, then the sample statistic and 
corresponding bootstrap estimator obtained from re-sampling will yield 
misleading results. The bootstrap approach is used in research when rep-
lication with additional sample data and/or cross validation with a split 
sample is not possible. Fan (2003) demonstrates how the bootstrap method 
is implemented in various software packages and its utility in correla-
tion, regression, analysis of variance, and reliability. We present examples 
using PRELIS.

12.3.1 � PRELIS Graphical User Interface

Bootstrapping can be accomplished in two different ways using PRELIS 
(Jöreskog & Sörbom, 1993; 1996b); LISREL–SIMPLIS program does not 
provide bootstrap capabilities. Our first example will demonstrate the 
use of the PRELIS graphical user interface. The second example will use 
the PRELIS command language syntax (Jöreskog & Sörbom, 1996b, pp. 
185–190). In our first bootstrap example, we select File, then Import Data 
to import the SPSS saved file, dataex7.sav, located in the SPSSEX subfolder 
in LISREL 8 Student Examples directory and save the PRELIS SYSTEM 
FILE, dataex7.psf.
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We now see the PRELIS SPREADSHEET with the raw data and the 
PRELIS tool bar menu with several options from which to choose. We 
select Statistics from the toolbar menu, and then Bootstrapping.

Once we select Bootstrapping, a dialog appears that permits us to spec-
ify the number of bootstrap samples, bootstrap fraction, and names for 
saving the bootstrap matrix, means and standard deviations. The Syntax 
button will create a PRELIS program that you can edit and save. The 
Output Options button provides other formats for saving the data.
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The output provides us with the PRELIS command language syntax 
program and descriptive statistics, as follows.

!PRELIS SYNTAX: Can be edited
 SY=’C:\lisrel854\spssex\dataex7.PSF’
 OU MA=KM SM=data7.cor ME=data7.me SD=data7.sd XM BS=100 SF=50
 BM=data7.cor ME=data7.me SD=data7.sd

Bootstrap Correlation Matrix

NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST
NOSAY 1.000
VOTING 0.292 1.000
COMPLEX 0.259 0.276 1.000
NOCARE 0.462 0.263 0.442 1.000
TOUCH 0.386 0.180 0.294 0.669 1.000
INTEREST 0.408 0.239 0.368 0.710 0.640 1.000

Descriptive Statistics

Variable Mean St. Dev.
NOSAY 0.000 1.000
VOTING 0.000 1.000
COMPLEX 0.000 1.000
NOCARE 0.000 1.000
TOUCH 0.000 1.000
INTEREST 0.000 1.000

12.3.2 � LISREL and PRELIS Program Syntax

In our second example, we use LISREL and PRELIS command language 
syntax in various programs to further elaborate the bootstrap method. We 
first run a LISREL program using the original sample data. The raw-data 
file, efficacy.raw, is provided with LISREL and used in other examples in 
the PRELIS2 User’s Reference Guide (Jöreskog & Sörbom, 1996b). A two-
factor model is specified with six factor loadings estimated; three for each 
of the factors (see the MO and FR command lines). The LISREL program 
is written as:

Estimate factor loadings for model from file efficacy.raw
DA NI=6 NO=297 ME=GLS
RA=efficacy.raw FO;(6F1.0)
CO ALL
MO NX=6 NK=2
FR LX(1,1) LX(2,1) LX(3,1) LX(4,2) LX(5,2) LX(6,2)
OU MA=CM
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The variance-covariance matrix to be analyzed is indicated as:

VAR    1    0.60
VAR    2    0.16    0.59
VAR    3    0.11    0.14    0.59
VAR    4    0.23    0.14    0.21    0.57
VAR    5    0.16    0.08    0.14    0.30    0.49
VAR    6    0.19    0.11    0.17    0.34    0.27    0.53

The six factor loadings for the two factor model specified are estimated as:

Estimate Standard Error

LX(1,1) 0.43 0.05
LX(2,1) 0.30 0.05
LX(3,1) 0.37 0.05
LX(4,2) 0.63 0.04
LX(5,2) 0.48 0.04
LX(6,2) 0.55 0.04

Then, to compute bootstrap estimates of the factor loadings for the two-
factor model with three indicators per factor, the raw data file is read into a 
PRELIS program with the number of variables, number of cases, and esti-
mation method specified (DA NI=6 NO=297, ME=GLS). In this example, 
the PRELIS program reads in a raw data file containing 6 variables and 
297 cases with the generalized least-squares estimation method selected 
[RA = efficacy.raw FO;(6F1.0)]. The PRELIS program then generates 10 cova-
riance matrices using the generalized least-squares estimation method. 
The number of bootstrap samples to be taken is specified (BS=10), and 
these samples are randomly drawn from the raw data file with replace-
ment. A 100% resampling (SF=100) of the raw data file is specified. The 
10 covariance matrices are output into a bootstrap save file (BM = efficacy.
cm) for further analysis by another LISREL program. This output file is in 
ASCII format and can be examined. The PRELIS program is:

Generate 10 covariance matrices from file efficacy.raw
DA NI=6 NO=297 ME=GLS
RA=efficacy.raw FO;(6F2.0)
OU MA=CM BS=10 SF=100 BM=efficacy.cm

The first two variance-covariance matrices output into the file efficacy.cm are:

VAR    1    1.00
VAR    2    0.27    1.00
VAR    3    0.26    0.26    1.00
VAR    4    0.46    0.25    0.42    1.00
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VAR    5    0.38    0.16    0.27    0.64    1.00
VAR    6    0.43    0.26    0.36    0.72    0.63    1.00

VAR    1    1.00
VAR    2    0.32    1.00
VAR    3    0.11    0.22    1.00
VAR    4    0.40    0.26    0.45    1.00
VAR    5    0.35    0.18    0.36    0.68    1.00
VAR    6    0.34    0.22    0.32    0.72    0.68    1.00

Notice that the diagonal values indicate variances equal to 1.0, whereas 
the off-diagonal values indicate the covariance terms. The manipulation 
of raw data (recoding variables, selecting cases, transformations) and the 
treatment of missing data (imputation method and/or deleting cases list-
wise) should be specified and handled in this program prior to bootstrap 
estimation. The researcher can also specify the type of matrix and estima-
tion method desired in the PRELIS program.

The saved file, efficacy.cm, is next read by a LISREL program (CM = effi-
cacy.cm) to estimate 10 sets of six factor loadings for the two-factor model. 
The output from this program indicates the 10 different bootstrap sampled 
covariance matrices read from the file, as well as parameter estimates, fit 
indices, and so forth. (Note: The output is no different from running 10 
separate stacked programs.)

The LISREL program is written as:

Estimate 10 sets of 6 factor loadings for two factor model
DA NI=6 NO=297 RP=10
CM=efficacy.cm
MO NX=6 NK=2
FR LX(1,1) LX(2,1) LX(3,1) LX(4,2) LX(5,2) LX(6,2)
OU LX=efficacy.lx

The LISREL program indicates that 6 variables and 297 cases were used 
to compute the 10 covariance matrices that are read in from the saved file 
(CM = efficacy.cm). The program is run 10 times (RP = 10), once for each cova-
riance matrix saved in the file. The model specifies six variables and two 
factors (MO NX=6 NK=2). The parameters (factor loadings) to be estimated 
indicate that the first three variables define one factor and the last three 
variables define a second factor (see the FR command line, which indicates 
elements in the matrix to be free or estimated). The 10 sets of six factor load-
ings are computed and output in a saved file (OU LX=efficacy.lx).

The saved file is then read by the following PRELIS program to generate 
the bootstrap estimates and standard errors for the six factor loadings in 
the model:

Analyze 10 sets of 6 factor loadings from file efficacy.lx
DA NI=12

Y102005.indb   239 3/22/10   3:26:18 PM



240	 A Beginner’s Guide to Structural Equation Modeling

LA
 ‘LX(1,1)’ ‘LX(1,2)’ ‘LX(2,1)’ ‘LX(2,2)’ ‘LX(3,1)’ ‘LX(3,2)’
 ‘LX(4,1)’ ‘LX(4,2)’ ‘LX(5,1)’ ‘LX(5,2)’ ‘LX(6,1)’ ‘LX(6,2)’
RA=efficacy.lx
SD ‘LX(1,2)’ ‘LX(2,2)’ ‘LX(3,2)’ ‘LX(4,1)’ ‘LX(5,1)’ ‘LX(6,1)’
CO ALL
OU MA=CM

The PRELIS program analyzes the 10 sets of six factor-loading bootstrap esti-
mates and outputs summary statistics. Notice that we used the SD command 
to delete the other six factor loadings that were set to zero in the two-factor 
model. For our example, the bootstrap estimator and standard deviation for 
the six factor loadings (three-factor loadings for each factor) were:

UNIVARIATE SUMMARY STATISTICS FOR CONTINUOUS VARIABLES
VARIABLE 	 MEAN	   S. D.
 LX(1,1)	 0.298	   0.322
 LX(2,1)	 0.447	   0.459
 LX(3,1)	 0.207	   0.230
 LX(4,2)	 0.373	   0.384
 LX(5,2)	 0.251	   0.260
 LX(6,2)	 0.403	   0.415

These values can be used to form confidence intervals around the origi-
nal sample factor-loading estimates to indicate how stable or good the 
estimates are as estimates of population values. Rather than further dis-
cuss the PRELIS and LISREL command language syntax program set-
ups for bootstrapping, we refer you to the manual and excellent help 
examples in the software for various straightforward data set examples 
and output explanations. These two examples were intended only to 
provide a basic presentation of the bootstrap method in structural equa-
tion modeling. Lunneborg (1987) provided additional software to com-
pute bootstrap estimates for means, correlations (bivariate, multivariate, 
part, and partial), regression weights, and analysis-of-variance designs, 
to name a few. Stine (1990) provided a basic introduction to bootstrap-
ping methods, and Bollen and Stine (1993) gave a more in-depth discus-
sion of bootstrap in structural equation modeling. Mooney and Duval 
(1993) also provided an overview of bootstrapping methods, gave a basic 
algorithm and program for bootstrapping, and indicated other statis-
tical packages that have bootstrap routines. We therefore refer you to 
these references, as well as others presented in this section, for a bet-
ter coverage of the background, rationale, and appropriateness of using 
bootstrap techniques.
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12.4 � Summary

In this chapter, our concern was model validation. A theoretical model 
requires validation on additional random samples of data. We refer to 
this as replication and demonstrated how multiple samples could be tested 
against the specified theoretical model. In the absence of replication, cross 
validation and bootstrap techniques were discussed as a means of vali-
dating a theoretical model.

The chapter began with a look at replication involving the testing of 
the multiple samples of data against the theoretical model, followed by 
single sample (ECVI) and split-sample (CVI) cross-validation techniques. 
We also introduced the bootstrap method to assess the stability of our 
parameter estimates and standard errors, especially given different dis-
tributional assumptions.

We hope that our discussion of these model validation topics in struc-
tural equation modeling has provided you with a basic overview and 
introduction to these methods. We encourage you to read the references 
provided at the end of the chapter and run some of the program setups 
provided in the chapter. We further hope that the basic introduction in 
this chapter will permit you to read the research literature and better 
understand the topics presented in the chapter. We now turn our atten-
tion to chapters 13 to 16 where we present various advanced SEM appli-
cations to demonstrate the variety of research designs and research 
questions that can be addressed using structural equation modeling.

Exercises

	 1.	 Test whether the following three variance-covariance matrices 
fit the theoretical confirmatory factor model in Figure 12.3 using 
LISREL–SIMPLIS. The sample size is 80 for each sample. The 
variables are entered in order as: SOFED (father’s education), 
SOMED (mothers’ education), SOFOC (father’s occupation), 
FAFED (father’s education), MOMED (mother’s education), and 
FAFOC (father’s occupation).
Sample 1

5.86
3.12  3.32
35.28  23.85  622.09
4.02  2.14   29.42  5.33
2.99  2.55  19.20  3.17  4.64
35.30  26.91  465.62  31.22  23.38  546.01

Sample 2
8.20
3.47  4.36
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45.65  22.58  611.63
6.39  3.16  44.62  7.32
3.22  3.77  23.47  3.33  4.02
45.58  22.01  548.00  40.99  21.43  585.14

Sample 3
5.74
1.35  2.49
39.24  12.73  535.30
4.94  1.65  37.36  5.39
1.67  2.32  15.71  1.85  3.06
40.11  12.94  496.86  38.09  14.91  538.76

	 a.	 Run individual program for sample 1 to determine CFA model 
and report CFA parameters.

	 b.	 Run individual programs with CFA model on sample 2 and 
sample 3 and report CFA parameters.

	 c.	 Run multiple-sample program to test factor loadings and factor 
correlations invariant (equal) with unequal error variances and 
report individual and global chi-square values.

	 d.	 Interpret your results.

	 2.	 For Exercise #1, Report the single sample expected cross valida-
tion index (ECVI). Given a sample size of 80, would you split the 
sample and cross validate the model using CVI?

FED

MED

FOC

SOFED

FAFED

SOMED

MOMED

SOFOC

FAFOC

err_sf

err_ff

 err_sm

err_mf

err_sc

err_fc

Figure 12.3
Multiple Sample Confirmatory Factor Model.
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13
Multiple Sample, Multiple Group, 
and Structured Means Models

Key Concepts

Testing for parameter differences between samples of data
Testing parameter differences between groups
Testing hierarchical intercept and slope differences in nested groups

In previous chapters, we have learned about the basics of structural equa-
tion modeling. In this chapter and subsequent chapters, we will consider 
other SEM models that demonstrate the variety of applications suitable 
for structural equation modeling. You should be aware, however, that 
our discussion will only introduce these SEM models. You are encour-
aged to explore other examples and applications reported in books 
(Marcoulides & Schumacker, 1996; Marcoulides & Schumacker, 2001), 
LISREL software examples, and the references at the end of this chapter. 
Our intention is to provide a basic understanding of the applications in 
this chapter to further your interest in the structural equation modeling 
approach. We have used LISREL–SIMPLIS program examples to better 
illustrate each application.

13.1 � Multiple Sample Models

The multiple samples approach was explained in a previous chapter, but 
related to testing measurement invariance in a measurement model. We 
expand on the multiple sample approach here to include testing a model 
for differences in parameter estimates across samples of data. The theo-
retical model is in Figure 13.1a.

The data set we used for our multiple sample approach can be found 
in SPSS 16 Sample folder: C:\Program Files\SPSSInc\SPSS16\Samples\
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Cars.sav. The Cars.sav data set estimates miles per gallon (mpg) based on 
various vehicle characteristics (weight, horsepower, engine displacement, 
year of vehicle, etc.). For our purposes we selected mile per gallon as the 
dependent variable with vehicle weight and horsepower as independent 
predictor variables. The original data set contains N = 406; however, only 
N = 392 are useable because of 14 missing cases (8 due to dependent vari-
able missingness and 6 due to independent variable missingness).

The descriptive statistics for the dependent and independent variables 
are shown in Table 13.1. The average was 23.45 miles per gallon with an 
approximate +/−7.8 miles per gallon standard deviation.

Table 13.2 reports the multiple regression prediction results that yielded 
an R2 = .675 (F = 404.583; df = 2, 389; p = .0001). Our interpretation would sug-
gest that two-thirds of the miles per gallon variation can be explained by a 
vehicles weight and horsepower. The negative beta coefficients are expected 
because as weight and horsepower increase, miles per gallon decrease.

Our interest in multiple samples is to compare the parameter estimates 
of each sample to determine whether they differ significantly. We there-
fore took two random samples without replacement from the Cars.sav 

weight

power

mpg

Figure 13.1a
Multiple Samples Model.

Table 13.1

Complete Sample Descriptive Statistics (N = 392)

Variable Miles Per Gallon Vehicle Weight Horsepower

Miles per gallon 1.0
Vehicle weight –.807 1.0
Horse power –.771 .857 1.0

Mean 23.45 2967.38 104.21
SD 7.805 852.294 38.233
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data.* The descriptive statistics for both samples are indicated below in 
Table 13.3 and Table 13.4, respectively.

Sample 1

Table 13.3

Sample 1 Descriptive Statistics (N = 206)

Variable Miles Per Gallon Vehicle Weight Horsepower

Miles per gallon 1.0
Vehicle weight −.821 1.0
Horse power −.778 .865 1.0

Mean 23.94 2921.67 104.23
SD 8.140 835.421 41.129

Sample 2

Table 13.4

Sample 2 Descriptive Statistics (N = 188)

Variable Miles Per Gallon Vehicle Weight Horsepower

Miles per gallon 1.0
Vehicle weight −.823 1.0
Horse power −.760 .855 1.0

Mean 23.59 2952.02 102.72
SD 7.395 805.372 36.234

The SPSS multiple regression analyses are in Table  13.5 and Table 13.6, 
respectively, for the two samples of data. We see from the SPSS multiple 

*	 See Chapter Footnote for SPSS details on selecting random samples from Cars.sav.

Table 13.2

Multiple Regression Complete Sample

Unstandardized 
Coefficients

Standardized 
Coefficients

95% Confidence 
Interval for B

b
Std 

Error B t P
Lower 

CI
Upper 

CI

Constant 44.777 .825 54.307 .0001 43.156 46.398
Vehicle Weight −.005 .001 −.551 −9.818 .0001 −.006 −.004
Horsepower −.061 .011 −.299 −5.335 .0001 −.084 −.039
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regression analysis of the complete data (N = 292) what our sample results 
provide in terms of R2 values, F value, and regression coefficients. We also 
can visually compare our two individual sample SPSS regression analy-
ses. The results appear to be very similar. Structural equation modeling 
software, however, provides the capability of testing whether our results 
(parameter estimates) are statistically different.

LISREL provides the ability to compare both samples rather than hav-
ing to run separate multiple regression programs on each sample and 
hand calculate a t-test or z-test for differences in the regression weights. 
The LISREL multiple sample approach is therefore presented to show how 
to stack or include each program with different samples of data.

Table 13.6

Sample 2 Multiple Regression Results (N = 188)

Unstandardized 
Coefficients

Standardized 
Coefficients

95% Confidence 
Interval for B

b
Std 

Error B t p
Lower 

CI
Upper 

CI

Constant 45.412 1.166 38.957 .0001 43.112 47.712
Vehicle weight −.006 .001 −.642 −8.114 .0001 −.007 −.004
Horsepower −.043 .016 −.212 −2.675 .0001 −.075 −.011

R2 = .689 (F = 204.502; df = 2, 185; p = .001).

Regression model comparing two samples
Group 1: Sample 1
Observed variables: mpg weight power

Table 13.5

Sample 1 Multiple Regression Results (N = 206)

Unstandardized 
Coefficients

Standardized 
Coefficients

95% Confidence 
Interval for B

b
Std 

Error B t p
Lower 

CI
Upper 

CI

Constant 46.214 1.193 38.723 .0001 43.861 48.568
Vehicle Weight −.006 .001 −.585 −7.550 .0001 −.007 −.004
Horsepower −.054 .015 −.272 −3.509 .0001 −.084 −.024

R2 = .692 (F = 228.206; df = 2, 203; p = .001)
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Sample Size: 206
Correlation Matrix

1.0
−.821 1.0
−.778 .865 1.0

Means 23.94 2921.67 104.23
Standard Deviations 8.140 835.421 41.129
Equations:

mpg = weight power
Group 2: Sample 2
Observed variables: mpg weight power
Sample Size: 188
Correlation Matrix

1.0
−.823 1.0
−.760 .855 1.0

Means: 23.59 2952.02 102.72
Standard Deviations: 7.395 805.372 36.234
Path Diagram
End of Problem

The LISREL multisample output in Figure  13.1b reveals that the chi-
square test is nonsignificant (c2 = 2.01, df = 3, p = .57), which indicates that 
the two samples do not have statistically different parameter estimates 
in the regression model. Another way of thinking about these results is 

Chi-Square = 2.01, df =3, p = .57

weight1.03

power1.12

mpg 0.31

–0.61

–0.25

0.93

Figure 13.1b
Multiple Samples Output.
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that both samples fit the theoretical model equally. The regression coef-
ficient in common for weight predicting mpg was −.61; the individual 
regression weights in SPSS were estimated as −.585 and −.642, respec-
tively. So, it seems reasonable to have a common regression beta weight 
of –.61. Looking at the regression weight for power predicting mpg, we 
find a common regression coefficient of −.25. The individual regression 
weights in SPSS were estimated as −.272 and −.212, respectively. So, it 
seems reasonable to have a common regression beta weight of –.25. Also, 
notice that the error of prediction for mpg is .31 (1 – R2), which means that 
the common model R2 = .69. We find that for each individual sample, the 
R2 values were .692 and .689, respectively. So, once again, the common R2 

value of .69 is reasonable.
The SEM modeling approach is useful for testing whether samples of 

data yield similar or different parameter estimates, whether comparing 
multiple regression equations, path models, confirmatory factor models, 
or structural equation models.

13.2 � Multiple Group Models

Multiple group models are set up the same way as multiple sample mod-
els. You are basically applying a single specified model to either one or 
more samples of data or in the case of multiple groups, one or more 
groups. This type of SEM modeling permits testing for group differences 
in the specified model or testing for differences in specific parameter esti-
mates by imposing constraints. For example, Lomax (1985) examined a 
model for schooling using the High School and Beyond (HSB) database. 
The model included home background, academic orientation, extracur-
ricular activity, achievement, and educational and occupational aspira-
tions as latent variables. The research determined the extent to which 
the measurement and structural equation models fit both a sample of 
public school students and a sample of private school students and also 
examined whether model differences existed between the two groups. 
The multiple group model analysis should first establish the acceptance 
of the measurement models and measurement invariance for the groups 
before hypothesizing any statistically significant difference in coeffi-
cients between groups. A LISREL–SIMPLIS multiple group example is 
presented based on an example in Arbuckle and Wothke (2003). The mul-
tiple group model is specified to examine the perceived attractiveness 
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and perceived academic ability differences between a sample of 209 girls 
and 207 boys.

The LISREL–SIMPLIS program is constructed to include the GROUP 
command to distinguish between the two groups of data. The observed 
variables, sample size, means, standard deviations, and correlation 
matrix are given for each group. The LISREL–SIMPLIS program pro-
vides a test of a common model when you only include the EQUATIONS 
or RELATIONSHIP command in the first group. The computer output 
yields a common model with the parameter estimates. If you wish to 
have separate models, hence separate parameter estimates for each group, 
you would run each program separately with the same EQUATIONS or 
RELATIONSHIP command in both programs.

13.2.1 � Separate Group Models

We will begin by first running a LISREL–SIMPLIS program that provides 
separate path analysis estimates for girls and boys. The LISREL–SIMPLIS 
program would be run as follows:

Multiple Group Path Model Analysis
Group 1: Girls
Observed Variables academic attract gpa height weight rating
Sample Size = 209
Means .12 .42 10.34 .00 94.13 2.65
Standard Deviation .16 .49 3.49 2.91 19.32 1.01
Correlation Matrix
1.00
.50 1.00
.49 .32 1.00
.10 −.03 .18 1.00
.04 −.16 -.10 .34 1.00
.09 .43 .15 −.16 −.27 1.00
Equation:
academic = gpa attract
attract = academic height weight rating
Let the errors of academic and attract correlate
Group 2: Boys
Observed Variables academic attract gpa height weight rating
Sample Size = 207
Means: .10 .44 8.63 .00 101.91 2.59
Standard Deviations: .16 .49 4.04 3.41 24.32 .97
Correlation Matrix
1.00
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.49 1.00

.58 .30 1.00
−.02 .04 −.11 1.00
−.11 -.19 -.16 .51 1.00
.11 .28 .13 .06 −.18 1.00
Equation:
academic = gpa attract
attract = academic height weight rating
Let the errors of academic and attract correlate
Number of Decimals = 3
Path diagram
End of problem

Computer Output

The annotated computer output for girls and boys multiple-group model 
(Figure 13.2a and Figure 13.2b) results are listed below:

GIRLS

Structural Equations

academic = 0.0257*  attract + 0.0212*gpa,   Errorvar.= 0.0175,   R² = 0.296
                     (0.0427)           (0.00329)                      (0.00213)
                       0.603                6.440                            8.196

attract = 1.688*academic − 0.000248*height – 0.00169*weight + 0.175*rating,
            (0.362)                   (0.0102)                  (0.00154)               (0.0287)
             4.666                   −0.0244                  −1.097                     6.085

 Errorvar.= 0.155 , R² = 0.386
                   (0.0110)
                    14.044

 Error Covariance for attract and academic = −0.010
                                         (0.00979)
                                         −0.982

Group Goodness-of-Fit Statistics
 Contribution to Chi-Square = 3.773
 Percentage Contribution to Chi-Square = 66.580
 Root Mean Square Residual (RMR) = 0.105
 Standardized RMR = 0.0276
 Goodness-of-Fit Index (GFI) = 0.994
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BOYS

Structural Equations

academic = 0.00657*attract + 0.0227*gpa, Errorvar.= 0.0175, R² = 0.338
                     (0.0481)                 (0.00288)                           0.00213)
                      0.137                      7.882                                 8.196

attract = 1.381*academic + 0.0179*height – 0.00341*weight + 0.0975*rating,
               (0.303)                    (0.00955)              (0.00136)                (0.0295)
               4.560                        1.875                  −2.504                      3.301

Errorvar.= 0.155 , R² = 0.323
                  (0.0110)
                   14.044

Error Covariance for attract and academic = −0.001
                                                                                    (0.00989)
                                                                                   −0.095

gpa

height

weight

rating

0.86

0.84

0.77

–0.24

–0.27

–0.15

–0.15

–0.14

1.04

–0.08

0.50

0.55 0.08 –0.12

0.68

0.64

academic

attract

–0.00

–0.08

0.35

Figure 13.2a
Multiple Group Model: girls.
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Group Goodness-of-Fit Statistics
Contribution to Chi-Square = 1.894
Percentage Contribution to Chi-Square = 33.420
Root Mean Square Residual (RMR) = 0.0223
Standardized RMR = 0.0183
Goodness-of-Fit Index (GFI) = 0.997

gpa

height

weight

rating

1.15

1.16

1.23

–0.20

0.61

–0.13

0.06

0.14

0.96

–0.19

0.54

0.45 0.02 –0.01

0.68

0.64

academic

attract

0.12

–0.15

0.20

Figure 13.2b
Multiple Group Model: boys.

The results indicate different parameter estimates for the girl’s data and 
the boy’s data when applied to the model. For example, the reciprocal path 
coefficients between academic and attract for the girl’s data were p12 = .55 
and p21 = .08, whereas for the boy’s data these same path coefficients were 
.45 and .02, respectively. The girl’s data fit the path model as indicated by 
the nonsignificant chi-square value (c2 = 3.773), and the boy’s data also fit 
the path model as indicated by their nonsignificant chi-square value (c2 = 
1.894). The Global Fit Statistics indicated a chi-square for the hypothesis of 
unequal (separate) parameter estimates in the path model (c2 = 5.667, df = 
6, p = .461). You will notice that the separate chi-square values for the girls’ 
and boys’ path model results will add up to this global chi-square value: 
c2 = 3.773 (girls) + 1.894 (boys) = 5.667. Our primary interest, however, is in 
testing a hypothesis about whether the groups have equal (same) param-
eter estimates in the path model.
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13.2.2 � Similar Group Model

LISREL–SIMPLIS uses the GROUP command (GROUP must be followed 
by a number) and does not use the EQUATION commands in the second 
group, when testing whether the two groups share a common path model. 
The LISREL–SIMPLIS program would now be as follows:

Multiple Group Path Model Analysis
Group 1: Girls
Observed Variables academic attract gpa height weight rating
Sample Size = 209
Means .12 .42 10.34 .00 94.13 2.65
Standard Deviation .16 .49 3.49 2.91 19.32 1.01
Correlation Matrix
1.00
.50 1.00
.49 .32 1.00
.10 −.03 .18 1.00
.04 −.16 −.10 .34 1.00
.09 .43 .15 −.16 −.27 1.00
Equation:
academic = gpa attract
attract = academic height weight rating
Let the errors of academic and attract correlate
Group 2: Boys
Observed Variables academic attract gpa height weight rating
Sample Size = 207
Means: .10 .44 8.63 .00 101.91 2.59
Standard Deviations: .16 .49 4.04 3.41 24.32 .97
Correlation Matrix
1.00
.49 1.00
.58 .30 1.00
−.02 .04 −.11 1.00
−.11 -.19 −.16 .51 1.00
.11 .28 .13 .06 −.18 1.00
Number of Decimals = 3
Path diagram
End of problem

Computer Output

Structural Equations

academic = 0.0167*attract + 0.0221*gpa, Errorvar. = 0.0174, R² = 0.290
                    (0.0404)              (0.00237)                          (0.00217)
                     0.414                   9.330                                 8.039
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attract = 1.439*academic + 0.00863*height – 0.00256*weight + 0.142*rating,
              (0.233)                    (0.00687)            (0.00102)               (0.0204)
               6.189                      1.255                 −2.499                     6.985
Errorvar. = 0.156 , R² = 0.346
 (0.0109)
 14.309
 Error Covariance for attract and academic = −0.003
 (0.00796)
 −0.429

GIRLS

Group Goodness-of-Fit Statistics
Contribution to Chi-Square = 6.739
Percentage Contribution to Chi-Square = 57.949
Root Mean Square Residual (RMR) = 0.0920
Standardized RMR = 0.0320

Goodness-of-Fit Index (GFI) = 0.989

BOYS

Group Goodness-of-Fit Statistics
Contribution to Chi-Square = 4.890
Percentage Contribution to Chi-Square = 42.051
Root Mean Square Residual (RMR) = 0.0276
Standardized RMR = 0.0249
Goodness-of-Fit Index (GFI) = 0.992

Global Goodness-of-Fit Statistics

Degrees of Freedom = 13
Minimum Fit Function Chi-Square = 11.629 (P = 0.558)
Normal Theory Weighted Least Squares Chi-Square = 11.699 

(P = 0.552)
Root Mean Square Error of Approximation (RMSEA) = 0.0
90 Percent Confidence Interval for RMSEA = (0.0 ; 0.0633)
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.876

        Normed Fit Index (NFI) = 0.975

When the path diagram window is open you will see a window labeled, 
Groups: Multiple Group Path Model. The first path model is for GIRLS. All 
of the parameters specified in the EQUATIONS command are set equal 
between the two groups. Only the covariance among the observed vari-
ables is free to vary.
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When you scroll down to select Group 2: Boys in the Groups window, you 
will then see the path diagram for the boys. You will see that the param-
eter estimates are equal for all the paths specified in the EQUATIONS 
command. The only parameters free to vary (be different) are the covari-
ance among the observed variables.

You will notice that the parameter estimates are the same in both groups. 
For example, p12 = .47 and p21 = .05. The individual chi-square values for each 
group also add up to the global chi-square statistic for this common model. 
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The chi-square for the girls was c2 = 6.739 and the chi-square for the boys 
was c2 = 4.890, which yield the global chi-square value of c2 = 11.629, df = 
13, p = .558. These results indicated that both sets of data fit the path model 
based on the hypothesis of similar path coefficients in the path model.

13.2.3 � Chi-Square Difference Test

It is possible to compute a chi-square difference test between the two path 
model analyses. Recall that the first LISREL–SIMPLIS program analysis 
tested a hypothesis of unequal parameter estimates, while the second 
LISREL–SIMPLIS program analysis tested a hypothesis of equal parame-
ter estimates. You can compute a chi-square difference test between these 
two models by using an EXCEL spreadsheet program, CV.XLS. You will 
find this EXCEL program by going to the LISREL 8.8 Student Examples 
folder on the C:/directory, and then finding the WORKSHOP folder.

Open the CV.XLS program outside the LISREL–SIMPLIS program, oth-
erwise it will crash and cause an error message. All you have to do is enter 
the Global Chi-Square value from the analysis of equal parameter estimates 
(c2 = 11.629, df = 13) and the Global Chi-Square value from the analysis of 
unequal parameter estimates (c2 = 5.667, df = 6). The program calculates 
the difference in the chi-square values and associated p-values.

The chi-square difference was c2 = 5.962, df = 7, p = .544, which indicated 
no difference between the two model analyses. This implies that the girls’ 
and boys’ data separately fit the path model, as well as both data sets fit 
a common path model. A different path model analysis might examine 
other variables besides gender that produce different results, for example, 
Caucasian versus African-American path models.

The dialog box for the chi-square difference test should look like the 
one below.
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13.3 � Structured Means Models

The structured means model is yet another special type of SEM applica-
tion that is used to test group mean differences in observed and/or latent 
variables. Mean differences between observed variables in SEM is similar 
to analysis of variance and covariance techniques. However, mean differ-
ence in latent variables is unique to SEM.

13.3.1 � Model Specification and Identification

The structured means model example (Figure 13.3) is from LISREL–
SIMPLIS and uses the program EX13B.SPL (Jöreskog & Sörbom, 1993, 
EX13B.SPL). The structured means model examines the mean difference 
between academic and nonacademic boys in 5th and 7th grades on a latent 
variable, verbal ability. The structured means model is diagrammed below 
where writing and reading scores measure each latent variable at the 5th 
grade (Writing5 and Reading5) and 7th grade (Writing7 and Reading7).

Two LISREL–SIMPLIS programs will need to be run to test the mean 
difference between the latent variables, Verbal5 and Verbal7. The first pro-
gram indicates the observed variables and equations that relate to the 
structured means model diagram. The coefficient CONST is used to des-
ignate the means in the equations for the observed variables and the latent 
variables, respectively. The first program also includes the sample size, 
covariance matrix, and means for the first group (academic boys). The sec-
ond program includes the sample size, covariance matrix, and means for 
the second group (nonacademic boys). In addition, the second program 

Verbal7

Verbal5

Writing7

Reading7

Writing5

Reading5

err_w7

err_r7

err_w5

err_r5

Figure 13.3
Structured Means Model.
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establishes a test of the mean differences between the latent variables in 
the Relationship command:

Relationships:
Verbal5 = CONST
Verbal7 = CONST

The first and second LISREL–SIMPLIS programs are both stacked into 
one complete program, but identified separately using the GROUP com-
mand, as follows:

Group ACADEMIC: Reading and Writing, Grades 5 and 7
Observed Variables: READING5 WRITING5 READING7 WRITING7
Covariance Matrix
281.349
184.219 182.821
216.739 171.699 283.289
198.376 153.201 208.837 246.069
Means 262.236 258.788 275.630 269.075
Sample Size: 373
Latent Variables: Verbal5 Verbal7
Relationships:
 READING5 = CONST + 1*Verbal5
 WRITING5 = CONST + Verbal5
 READING7 = CONST + 1*Verbal7
 WRITING7 = CONST + Verbal7
Group NONACADEMIC: Reading and Writing, Grades 5 and 7
Covariance Matrix
174.485
134.468 161.869
129.840 118.836 228.449
102.194 97.767 136.058 180.460
Means 248.675 246.896 258.546 253.349
Sample Size: 249
Relationships:
 Verbal5 = CONST
 Verbal7 = CONST
Set the Error Variances of READING5 - WRITING7 free
Set the Variances of Verbal5 - Verbal7 free
Set the Covariance between Verbal5 and Verbal7 free
Path diagram
End of problem

(Note: You should first establish that the data fit a theoretical model before test-
ing for mean differences in the latent variable. Acceptable model-fit indices 
for each group, as well as for both groups combined, should be obtained.)
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13.3.2 � Model Fit

The current example had individual group and combined group model-fit 
indices that were acceptable.

Academic Boys

Group Goodness-of-Fit Statistics
Contribution to Chi-Square = 4.15
Standardized RMR = 0.025

Goodness-of-Fit Index (GFI) = 0.99

Nonacademic Boys

Group Goodness-of-Fit Statistics
Contribution to Chi-Square = 5.97
Standardized RMR = 0.042

Goodness-of-Fit Index (GFI) = 0.99

Global Goodness-of-Fit Statistics

Degrees of Freedom = 6
Minimum Fit Function Chi-Square = 10.11 (P = 0.12)
Root Mean Square Error of Approximation (RMSEA) = 0.046
90 Percent Confidence Interval for RMSEA = (0.0 ; 0.095)
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.27
Comparative Fit Index (CFI) = 1.00

13.3.3 � Model Estimation and Testing

The LISREL–SIMPLIS computer output reflects the structured mean equa-
tions by replacing the CONST term with the mean value for each group in 
the measurement equations.

Measurement Equations: Academic Group

READING5 = 262.37 + 1.00*Verbal5, Errorvar .= 50.15, R² = 0.81
            (0.84)                                 (6.02)
            312.58                                  8.34
WRITING5 = 258.67 + 0.84*Verbal5, Errorvar. = 36.48, R² = 0.81
            (0.70)    (0.024)                     (4.28)
            366.96    34.35                          8.52
READING7 = 275.71 + 1.00*Verbal7, Errorvar. = 51.72, R² = 0.82
            (0.87)                                  (6.62)
            317.77                                   7.82
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WRITING7 = 268.98 + 0.89*Verbal7, Errorvar. = 57.78, R² = 0.76
            (0.80)    (0.028)                     (6.05)
             338.00    31.95                        9.55

Measurement Equations: Nonacademic Group

READING5 = 262.37 + 1.00*Verbal5, Errorvar.= 23.25, R² = 0.87
            (0.84)                                (6.23)
            312.58                                 3.73
WRITING5 = 258.67 + 0.84*Verbal5, Errorvar. = 42.80, R² = 0.72
            (0.70)    (0.024)                     (5.64)
            366.96    34.35                        7.59
READING7 = 275.71 + 1.00*Verbal7, Errorvar. = 65.67, R² = 0.70
            (0.87)                                 (9.87)
            317.77                                  6.65
WRITING7 = 268.98 + 0.89*Verbal7, Errorvar. = 67.36, R² = 0.65
            (0.80)    (0.028)                     (8.74)
            338.00    31.95                        7.71

The structured means model is testing the mean latent variable differ-
ence, which is indicated by the Mean Vector of Independent Variables. Results 
are interpreted based on the knowledge that the mean latent value on 
Verbal5 and Verbal7 are set to zero (0) in the first group (academic boys), so 
the values reported here are going to indicate that the second group was 
either greater than (positive) or less than (negative) the first group on the 
latent variables.

The latent variable mean difference value of −13.80 is indicated for the 
first latent variable, which indicates the mean difference was less than 
the first group, that is, nonacademic boys scored below academic boys on 
verbal ability in the 5th grade.

The latent variable mean difference value of –17.31 is indicated for the 
second latent variable, which indicates the mean difference was less than 
the first group; that is, nonacademic boys scored below academic boys on 
verbal ability in the 7th grade.

Overall, nonacademic boys are scoring below academic boys in the 5th 
and 7th grades. The latent variable mean differences are divided by their 
standard error to yield a one-sample T value, that is, T = −13.80/1.18 = 
−11.71 (within rounding error).

Mean Vector of Independent Variables

Verbal5 Verbal7

−13.80 −17.31
   (1.18)     (1.24)
−11.71 −13.99
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13.4 � Summary

In this chapter we have described multiple samples, multiple group, and 
structured means modeling to demonstrate the versatility of structural 
equation modeling. The first application involved comparing structure 
coefficients across samples of data. We referred to this as a Multiple Sample 
Model. The second application involved testing the difference between 
parameter estimates given multiple groups, for example, different grade 
levels, different countries, or different schools. We referred to this as a 
Multiple Group Model. Our third application demonstrated how to test 
for mean differences between groups on latent variables. We referred to 
this as a Structured Means Model. This extends the basic analysis of vari-
ance approach where mean differences on observed variables are tested 
but, more importantly, mean differences in latent variables can be tested 
(Cole, Maxwell, Arvey, & Salas, 1993).

The chapter presented only one example for each of the applications 
because a more in depth coverage is beyond the scope of this book. 
However, the LISREL software HELP library provides other examples and 
can be searched by using keywords to find other software examples and 
explanations. The LISREL User Guide is another excellent reference for 
other examples of these applications. We now turn our attention to the 
next chapter where other SEM applications are presented and discussed.

Exercises

1.	 Multiple Sample Model

Nursing programs are interested in knowing if their outcomes are 
similar from one semester to the next. Two semesters of data were 
obtained on how student effort and learning environment predicted 
clinical competence in nursing. The regression model is:

effort

learn

comp

Figure 13.4
Nursing Multiple Sample Model.
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Create a LISREL–SIMPLIS program to test whether the regression 
coefficients in the model are the same or statistically significantly dif-
ferent for the two semester samples of data. Semester 1 had 250 nurses 
and Semester 2 had 205 nurses. (Note: The means and standard devia-
tions were not available, so assume the data is in standardized form 
and only use the correlation matrix in your analysis.)

Semester 1 (N = 250)

Clinical Effort Learn

Clinical 1.0
Effort   .28 1.0
Learn   .23   .25 1.0

Semester 2 (N = 205)

Clinical Effort Learn

Clinical 1.0
Effort   .21 1.0
Learn   .16   .15 1.0

2.	 Multiple Group Model

Create a LISREL–SIMPLIS program that produces output to deter-
mine if path coefficients are statistically significantly different. You 
will need the LISREL–SIMPLIS software and separate data set infor-
mation provided below to perform this task. Also, provide the path 
diagrams with interpretation of results using the Excel program.

The path model tests that job satisfaction (satis) is indicated by boss 
attitude (boss) and the number of hours worked (hrs). The boss atti-
tude (boss) is in turn indicated by the employee satisfaction (satis). 
The boss attitude (boss) is also indicated by the type of work per-
formed (type), level of assistance provided (assist), and evaluation of 
the work (eval). The Equation command would therefore be specified 
as follows:

Equation:
satis = boss hrs
boss = type assist eval satis

(Note :  Since a reciprocal relation exists between boss and satis, 
the errors would need to be correlated to obtain the correct path 
coefficients.)
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The data set information to be used to test hypotheses of equal or 
unequal parameter estimates in a path model between Germany and 
the United States are listed below.

Germany

Path Model Analysis for Germany
Observed Variables satis boss hrs type assist eval
Sample Size = 400
Means 1.12 2.42 10.34 4.00 54.13 12.65
Standard Deviation 1.25 2.50 3.94 2.91 9.32 2.01
Correlation Matrix

1.00
.55 1.00
.49 .42 1.00
.10 .35 .08 1.00
.04 .46 .18 .14 1.00
.01 .43 .05 .19 .17 1.00

United States

Path Model Analysis for United States
Observed Variables satis boss hrs type assist eval
Sample Size = 400
Means: 1.10 2.44 8.65 5.00 61.91 12.59
Standard Deviations: 1.16 2.49 4.04 4.41 4.32 1.97
Correlation Matrix

1.00
.69 1.00
.48 .35 1.00
 .02 .24 .11 1.00
.11 .19 .16 .31 1.00
.10 .28 .13 .26 .18 1.00

3.	 Structured Means Model

A researcher is interested in testing whether a low-motivation 
group and a high-motivation group in two different cities (Los 
Angeles and Chicago) have a production rate mean difference 
on the production line. Create and run the two stacked LISREL–
SIMPLIS programs for a test of latent variable mean differences. 
Explain results.

The structured means model is diagrammed in Figure 13.5.
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The Low-Motivation data information is:

Group Low Motivation:
Observed Variables: Prod1 Prod2 Prod3 Prod4 Prod5 Prod6
Correlation Matrix

1.00
 .64 1.00
 .78 .73 1.00
 .68 .63 .69 1.00
 .43 .55 .50 .59 1.00
 .65 .63 .67 .81 .60 1.00

Means 4.27 5.02 4.48 4.69 4.53 4.66
Sample Size: 300

The High-Motivation data information is:

Group High Motivation:
Correlation Matrix

1.00
 .72 1.00
 .76 .74 1.00
 .51 .46 .57 1.00
 .32 .33 .39 .40 1.00
 .54 .45 .60 .73 .45 1.00

Means 14.35 14.93 14.59 14.86 14.71 14.74
Sample Size: 300

Prod1

Prod2

Prod3

City 1

Prod4

Prod5

Prod6

City 2

Figure 13.5
Motivation Structured Means Model.
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Chapter Footnote

SPSS

Select Cases: Random Sample
This dialog box allows you to select a random sample based on an 

approximate percentage or an exact number of cases. Sampling is per-
formed without replacement; so, the same case cannot be selected more 
than once.

Approximately: Generates a random sample of approximately the 
specified percentage of cases. Since this routine makes an inde-
pendent pseudo-random decision for each case, the percentage of 
cases selected can only approximate the specified percentage. The 
more cases there are in the data file, the closer the percentage of 
cases selected is to the specified percentage.

Exactly: A user-specified number of cases. You must also specify the 
number of cases from which to generate the sample. This second 
number should be less than or equal to the total number of cases 
in the data file. If the number exceeds the total number of cases in 
the data file, the sample will contain proportionally fewer cases 
than the requested number.

From the menu choose:
 Data

Select Cases
Select Random sample of cases.
Click Sample.

Select the sampling method and enter the percentage or number 
of cases.
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14
Second-Order, Dynamic, and 
Multitrait Multimethod Models

Key Concepts

Second-order factors
Dynamic models: measuring factors over time
Establishing reliability and validity when measuring multiple traits 

and methods

In the previous chapter we learned about comparing samples or groups 
using structural equation modeling applications. In this chapter we 
present additional applications that expand our understanding of SEM 
models, but now related to measurement models. Please be aware that 
our discussion will only scratch the surface of the many exciting new 
developments in structural equation modeling related to measurement 
models. Some of these new applications have been included in chapters 
of books (Marcoulides & Schumacker, 1996; Marcoulides & Schumacker, 
2001; and Schumacker & Marcoulides, 1998) and journal articles. In 
addition, the newest version of LISREL has included these capabilities 
with software examples and further explanations. Our intention is to 
provide a basic understanding of these topics to further your interest in 
the structural equation modeling approach. We have included computer 
program examples to better illustrate each type of SEM model.

14.1 � Second-Order Factor Model

14.1.1 � Model Specification and Identification

A second-order factor model is indicated when first-order factors are explained 
by some higher-order factor structure. Theory plays an important role in justify-
ing a higher-order factor. Visual, verbal, and speed are three psychological factors 
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that most likely indicate a second-order factor, namely Ability. A second-order 
factor model is therefore hypothesized and diagrammed in Figure 14.1.

14.1.2 � Model Estimation and Testing

The data used for testing the second-order factor model is based on an 
example in the LISREL 8 Student Examples, SPLEX folder (EX5.spl). The 
data are nine psychological variables that identified three common factors 
(Visual, Verbal, and Speed). The second-order factor model hypothesizes that 
these three common factors indicate a higher-order second factor, Ability.

The LISREL–SIMPLIS program includes the Ability latent variable and 
sets the variance of this higher-order second factor to 1.0. (Note: S-C CAPS 
loads on both latent variables Visual and Speed, and a single quote is used 
when variable names have a space between them.) The LISREL–SIMPLIS 
program is therefore written as:

Second-Order Factor Analysis (EX5.SPL)
Observed Variables
 ‘VIS PERC’ CUBES LOZENGES ‘PAR COMP’ ‘SEN COMP’ WORDMEAN

visperc err_v

cubes err_c

lozenges err_l

paragrap err_p

sentence err_s

wordmean err_w

addition err_p

countdot err_s

s-c caps

speed

verbalability

visual

D1

D3

D2

err_w

Figure 14.1
Second-Order Factor Model.
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 ADDITION COUNTDOT ‘S-C CAPS’
Correlation Matrix
1.000
 .318 1.000
 .436 .419 1.000
 .335 .234 .323 1.000
 .304 .157 .283 .722 1.000
 .326 .195 .350 .714 .685 1.000
 .116 .057 .056 .203 .246 .170 1.000
 .314 .145 .229 .095 .181 .113 .585 1.000
 .489 .239 .361 .309 .345 .280 .408 .512 1.000
Sample Size 145
Latent Variables: Visual Verbal Speed Ability
Relationships:
 ‘VIS PERC’ - LOZENGES ‘S-C CAPS’ = Visual
 ‘PAR COMP’ - WORDMEAN = Verbal
 ADDITION - ‘S-C CAPS’ = Speed
Visual = Ability
Verbal = Ability
Speed = Ability
Set variance of Ability = 1.0
Number of Decimals = 3
Wide Print
Print Residuals
Path diagram
End of problem

The selected LISREL–SIMPLIS model-fit indices listed below indicated that 
the hypothesized second-order factor model has an acceptable fit (c2 = 
28.744, p = .189, df = 23; RMSEA = .04; GFI = .958).

Goodness-of-Fit Statistics
Degrees of Freedom = 23
Minimum Fit Function Chi-Square = 29.008 (P = 0.180)
Normal Theory Weighted Least Squares Chi-Square = 28.744 
(P = 0.189)
Estimated Noncentrality Parameter (NCP) = 5.744
90 Percent Confidence Interval for NCP = (0.0; 23.597)
Root Mean Square Error of Approximation (RMSEA) = 0.0416
90 Percent Confidence Interval for RMSEA = (0.0; 0.0844)
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.580
Root Mean Square Residual (RMR) = 0.0451
Standardized RMR = 0.0451
Expected Cross-Validation Index (ECVI) = 0.505
90 Percent Confidence Interval for ECVI = (0.465; 0.629)
ECVI for Saturated Model = 0.625
ECVI for Independence Model = 4.695
Normed Fit Index (NFI) = 0.956
Goodness-of-Fit Index (GFI) = 0.958
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The structural equations in the computer output indicate the strength of 
relationship between the first-order factors and the second-order factor, 
Ability. Visual (.987) is indicated as a stronger measure of Ability, followed 
by Verbal (.565) and Speed (.395), with all three being statistically significant 
(t > 1.96). Therefore, student Ability is predominantly a function of visual 
perception of geometric configurations with complementary verbal skills 
and speed in completing numerical tasks, which enhance a students’ 
overall ability.

Structural Equations
 Visual = 0.987*Ability, Errorvar.= 0.0257, R² = 0.974
        (0.229)              (0.401)
        4.309                0.0640
 Verbal = 0.565*Ability, Errorvar.= 0.681 , R² = 0.319
        (0.141)             (0.170)
         4.015                 3.997
 Speed = 0.395*Ability, Errorvar.= 0.844 , R² = 0.156
      (0.132)                (0.227)
       2.999                  3.717

14.2 � Dynamic Factor Model

A class of SEM applications that involve stationary and nonstationary latent 
variables across time with lagged (correlated) measurement error has been 
called dynamic factor analysis (Hershberger, Molenaar, & Corneal, 1996). 
A characteristic of the SEM dynamic factor model is that the same mea-
surement instruments are administered to the same subject on two or more 
occasions. The purpose of the analysis is to assess change in the latent vari-
able between the ordered occasions due to some event or treatment. When 
the same measurement instruments are used over two or more occasions, 
there is a tendency for the measurement errors to correlate (autocorrelation); 
for example, a specific sequence of correlated error, where error at Time 1 
correlates with error at Time 2, and error at Time 2 correlates with error at 
Time 3, is called an ARIMA model in econometrics.

Educational research has indicated that anxiety increases the level of 
student achievement and performance. Psychological research in contrast 
indicates that anxiety has a negative effect upon individuals, thus should 
interfere or have a decreasing impact on the level of achievement and per-
formance. Is it possible that both areas of research are correct?

A dynamic factor model was hypothesized to indicate student achieve-
ment and performance measures at three equal time points two weeks 
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apart (time 1, time 2, and time 3). The student data indicates achievement 
(A1) and performance (P1) at time 1, achievement (A2) and performance 
(P2) at time 2, and achievement (A3) and performance (P3) at time 3. The 
errors at time 1 were hypothesized to correlate with errors at time 2 and 
errors at time 2 were hypothesized to correlate with errors at time 3, indi-
cating an ARIMA model. Time 1 predicts time 2 and time 2 predicts time 
3. The dynamic factor model is diagrammed in Figure 14.2a:

error

Time 1

A1

error

P1

error

error

Time 2

A2

error

P2

error

error

Time 3

A3

error

P3

Figure 14.2a
Dynamic Factor Model (Wheaton et al., 1977).

The data set contains 600 students who were measured on the same 
achievement and performance measures at three different points in time. 
The two variables, achievement and performance, defined the factor time. 
Thus, the latent variable, time, was represented as time1, time2, and time3, 
with two indicator variables at each time point. How well students did 
at time 2 was predicted by the time 1 latent variable. Likewise, how well 
students did at time 3 was predicted by time 2. Students were given a high 
level of anxiety by having to meet deadlines, take frequent quizzes, and 
turn in extra assignments. A LISREL–SIMPLIS program was created to 
test this dynamic factor model.

Dynamic Factor Model
Observed Variables: A1 P1 A2 P2 A3 P3
Covariance Matrix
 11.834
 6.947 9.364
 6.819 5.091 12.532
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 4.783 5.028 7.495 9.986
 −3.839 −3.889 −3.841 −3.625 9.610
 −2.190 −1.883 −2.175 −1.878 3.552 4.503
Sample Size: 600
Latent Variables: Time1 Time2 Time3
Relationships:
 A1 P1 = Time1
 A2 P2 = Time2
 A3 P3 = Time3
 Time2 = Time1
 Time3 = Time2	
Let the Errors of A1 and A2 correlate
Let the Errors of P1 and P2 correlate
Let the Errors of A2 and A3 correlate
Let the Errors of P2 and P3 correlate
Let the Errors of Time2 and Time3 correlate
Path Diagram
End of Problem

The dynamic factor model results indicated an acceptable model fit (c2 = 
2.76, df = 2, and p = .25). The structural equations indicate the prediction 
across the three time intervals for the latent variable, time. Time 1 was 
a statistically significant predictor of time 2; coefficient was statistically 
significant (T = 12.36) and R2 = .47. Time 2 was a statistically significant 
predictor of time 3; however, the result indicated a negative coefficient 
(−.82).

Structural Equations
 Time2 = 0.68*Time1, Errorvar. = 0.53 , R² = 0.47
          (0.055)                    (0.071)
          12.36                       7.50
 Time3 = − 0.82*Time2, Errorvar. = 0.80 , R² = 0.20
              (0.085)                    (0.12)
              −9.66                          6.52

The dynamic factor model would therefore be interpreted as follows: anxi-
ety increased the level of student achievement and performance from time 
1 to time 2, but then decreased the level of student achievement and perfor-
mance from time 2 to time 3. Anxiety increased levels of achievement and 
performance, but only for a certain amount of time, then it had a negative 
effect. So, it appears educational researchers and psychologists are both 
correct to some extent. The dynamic factor model clarifies how anxiety 
affects the level of student achievement and performance, given a time 
continuum.

The dynamic factor model output with standardized coefficients is 
listed in Figure 14.2b with standardized coefficients:
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14.3 � Multitrait Multimethod Model (MTMM)

The Multitrait Multimethod model (MTMM) is used to indicate multiple 
traits assessed by multiple measures—for example, student achievement 
and student motivation (traits) assessed by teacher ratings and student self 
ratings (methods). MTMM models, however, are problematic to analyze 
as noted by Lomax and Algina (1979) who compared two procedures for 
analyzing MTMM matrices. The MTMM matrix does provide a convenient 
way to report reliability and construct validity coefficients (Campbell & 
Fiske, 1959). Construct validity involves providing psychometric evidence 
of convergent validity, discriminant validity, trait, and method effects, even 
across populations (Cole & Maxwell, 1985). The Multitrait Multimethod 
matrix conveniently displays the convergent validity coefficients, discrimi-
nant validity coefficients, and the reliability coefficients along the diago-
nal. A two-trait/two-method matrix is displayed in Table 14.1.

Reliability coefficients (1) indicate the internal consistency of scores on 
the instrument, and therefore should be in the range .85 to .95 or higher. 
Convergent validity coefficients (2) are correlations between measures 
of the same trait (construct) using different methods (instruments), and 
therefore should also be in the range .85 to .95 or higher. Discriminant 
validity coefficients (3) are correlations between measures of different 

error

Time 1 0.68

1.54 0.41 0.16 0.004

0.29

–0.82

A1

error

P1

error

error

Time 2

A2

error

P2

error

error

Time 3

A3

error

P3

Figure 14.2b
Dynamic Factor Model Output.
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traits (constructs) using the same method (instrument), and should be 
much lower than the convergent validity coefficients and/or the instru-
ment reliability coefficients. The basic MTMM model for two traits/two 
methods is diagrammed in Figure 14.3a:

Achieve
F1

Motivate
F2

Self
Rating

F3

Teacher
Rating

F4

Rating 1

Rating 2

Rating 3

Rating 4

Figure 14.3a
Basic MTMM Model (two traits/two methods).

The correlation of ratings from different methods of the same trait 
should be statistically significant—that is, having convergent validity 
(2). The convergent validity coefficients should also be greater than the 
correlations of ratings from different traits using the same method—that 
is, discriminant validity (3), and the correlations between ratings that 
share neither trait nor method (−).

Table 14.1

Two-Trait/Two-Method Multitrait Multimethod 
Matrix

Method 1 Method 2

Trait A B A B

Method 1. Self Ratings
  A. Achievement (1)
  B. Motivation (3) (1)
Method 2. Teacher Ratings
  A. Achievement (2) — (1)
  B. Motivation — (2) (3) (1)

Note:	 (1) = reliability coefficients; (2) = convergent valid-
ity coefficients; (3) = discriminant validity coeffi-
cients; and (—) = correlations between ratings that 
share neither trait nor method.
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14.3.1 � Model Specification and Identification

The Multitrait Multimethod (MTMM) model example indicates three 
methods (self-ratings, peer ratings, and observer ratings) used to assess 
four traits of leadership (prominence, achievement, affiliation, and leader). 
The sample size is N = 240 subjects.

MTMM models are problematic to analyze and typically will require 
specifying start values (initial parameter values) and setting AD = OFF 
(admissibility check) to obtain convergence—that is, obtain parameter 
estimates. (Note: Start values are typically chosen between .1 and .9 so that 
the estimation process does not have to start with a zero value for param-
eters in the model; the 2SLS estimates also provide reasonable start val-
ues). The Multitrait Multimethod models are difficult to analyze because 
they lack model identification (initially have negative degrees of free-
dom) and can have convergence problems (nonpositive definite matrix). 
Consequently, latent variable variances should be set to 1.0, and factor 
correlations between traits and methods set to zero, otherwise, the PHI 
matrix will be nonpositive definite. Additionally, certain error variances 
need to be set equal to prevent negative error variance (Heywood case).

In MTMM models, the different methods are uncorrelated with the differ-
ent traits, so a model diagram helps to visually display the specified model 
(Figure 14.3b).

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

self

peer

obs

prom

ach

affl

lead

Figure 14.3b
Multitrait Multimethod Model. (From Bollen, K. A. [1989]. Structural equations with latent 
variables. New York: John Wiley & Sons.)
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14.3.2 � Model Estimation and Testing

The LISREL–SIMPLIS program to analyze the three sets of ratings on the 
four traits as a MTMM model is:

Multitrait-Multimethod Bollen (1989)
!Start Values Added (.5) and Admissibility Check Off (AD=OFF)
Observed Variables: X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
Correlation Matrix
1.0
 .50 1.0
 .41 .48 1.0
 .67 .59 .40 1.0
 .45 .33 .26 .55 1.0
 .36 .32 .31 .43 .72 1.0
 .25 .21 .25 .30 .59 .72 1.0
 .46 .36 .28 .51 .85 .80 .69 1.0
 .53 .41 .34 .56 .71 .58 .43 .72 1.0
 .50 .45 .29 .52 .59 .55 .42 .63 .84 1.0
 .36 .30 .28 .37 .53 .51 .43 .57 .62 .57 1.0
 .52 .43 .31 .59 .68 .60 .46 .73 .92 .89 .63 1.0
Sample Size: 240
Latent Variables: prom ach affl lead self peer obs
Relationships:
X1 = (.3)*self + (.5)*prom
X2 = (.3)*self + (.5)*ach
X3 = (.3)*self + (.5)*affl
X4 = (.3)*self + (.5)*lead
X5 = (.3)*peer + (.5)*prom
X6 = (.2)*peer + (.5)*ach
X7 = (.2)*peer + (.5)*affl
X8 = (.2)*peer + (.5)*lead
X9 = (.2)*obs + (.5)*prom
X10 = (.3)*obs + (.5)*ach
X11 = (.3)*obs + (.5)*affl
X12 = (.3)*obs + (.5)*lead
Set Variance of prom - obs to 1.0
Set correlation of prom and self to 0
Set correlation of ach and self to 0
Set correlation of affl and self to 0
Set correlation of lead and self to 0
Set correlation of prom and peer to 0
Set correlation of ach and peer to 0
Set correlation of affl and peer to 0
Set correlation of lead and peer to 0
Set correlation of prom and obs to 0
Set correlation of ach and obs to 0
Set correlation of affl and obs to 0
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Set correlation of lead and obs to 0
Let the error variance of X10 and X12 be equal
OPTIONS: AD = OFF
LISREL OUTPUT
End of Problem

Results from the computer output are summarized in Table 14.2 to dem-
onstrate the interpretation of trait and method effects. The assessment 
of Affiliation (Affl) had the highest error variance when using Self ratings 
(error = .67) and Observer ratings (error = .39), thus Affiliation was the most 
difficult trait to assess using either of these two methods. The self rating 
worked best for leadership assessment (factor loading = .61; error variance = 
.30). The peer rating method worked best with assessing affiliation (factor 
loading = .79; error variance = .14). The observer rating method worked best 
with assessing achievement (factor loading = .68; error variance = .07).

(Note :  Most attempts at running MTMM models will result in unidenti-
fied models or lack convergence (unable to estimate parameters). Other 
types of MTMM models—for example, correlated uniqueness model or 
a composite direct product model—generally work better. A correlated 
uniqueness model will therefore be presented next.

14.3.3 � Correlated Uniqueness Model

We present an example of a correlated uniqueness model, since it seems 
to have less convergence problems with meaningful results, and is 

Table 14.2

MTMM Estimates of Four Traits Using Three Methods (N = 240)

Traits Methods

Prom Ach Affl Lead Self Peer Obs Error

Prom .52 .58 .41
Ach .42 .61 .46
Affl .35 .47 .67
Lead .58 .61 .30

Prom .84 .32 .19
Ach .69 .53 .23
Affl .48 .79 .14
Lead .84 .43 .09

Prom .80 .53 .09
Ach .69 .68 .07
Affl .75 .23 .39
Lead .78 .59 .07
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recommended by Marsh and Grayson (1995) and Wothke (1996) as an 
alternative to traditional MTMM models. In correlated uniqueness mod-
els, each variable is affected by one trait factor and one error term, and 
there are no method factors. The method effects are accounted for by the 
correlated error terms of each variable. The correlated error terms only 
occur between variables measured by the same method.

Different types of correlated uniqueness models can be analyzed 
(Huelsman, Furr, & Nemanick, 2003). For example, one general factor with 
correlated uniqueness, two correlated factors with correlated uniqueness, 
two correlated factors with uncorrelated uniqueness, or two uncorrelated 
factors with correlated uniqueness. Marsh and Grayson (1995) indicated 
that a significant decrease in fit between a model with correlated traits, 
but no correlated error terms and a model with correlated traits and cor-
related error terms, indicated the presence of method effects. Following 
this approach, you can test method effects by analyzing a correlated trait 
correlated uniqueness model (CTCU) and a correlated trait (CT) only 
model.

Figure 14.3c displays the correlated trait–correlated uniqueness (CTCU) 
model with three traits and three methods. The CTCU model represents 
the method effects through the correlated error terms of the observed 
variables. Figure 14.3d displays the correlated trait (CT) only model with 
no correlated error terms. In the CT model, the variables measured by the 
same method are grouped under each trait factor.

Trait 1 Trait 2

Var 1 Var 2

e1 e2

Trait 3

Var 3

e3

Var 4 Var 5

e4 e5

Var 6

e6

Var 7 Var 8

e7 e8

Var 9

e9

Figure 14.3c
Correlated Trait–Correlated Uniqueness Model.
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The data from Bollen (1989) was used again, but this time only three 
traits (prom, ach, and affl) with three methods (self, peer, and obs) were ana-
lyzed. The LISREL–SIMPLIS program for the CTCU model with corre-
lated traits and correlated error terms is:

Correlated Traits—Correlated Uniqueness Model - Bollen (1989)
Observed Variables: Var1 Var2 Var3 Var4 Var5 Var6 Var7 
Var8 Var9
Correlation Matrix
1.0
 .50 1.0
 .41 .48 1.0
 .45 .33 .26 1.0
 .36 .32 .31 .72 1.0
 .25 .21 .25 .59 .72 1.0
 .53 .41 .34 .71 .58 .43 1.0
 .50 .45 .29 .59 .55 .42 .84 1.0
 .36 .30 .28 .53 .51 .43 .62 .57 1.0
Sample Size: 240
Latent Variables: prom ach affl
Relationships:
Var1 = prom
Var2 = ach
Var3 = affl
Var4 = prom
Var5 = ach
Var6 = affl

Trait 1 Trait 2

Var 1 Var 2

e1 e2

Trait 3

Var 3

e3

Var 4 Var 5

e4 e5

Var 6

e6

Var 7 Var 8

e7 e8

Var 9

e9

Figure 14.3d
Correlated Trait Model.
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Var7 = prom
Var8 = ach
Var9 = affl
Set Variance of prom-affl to 1.0
Let Error Covariance of Var1 – Var3 Correlate
Let Error Covariance of Var4 – Var6 Correlate
Let Error Covariance of Var7 – Var9 Correlate
Path Diagram
End of Problem

The results from the computer output are presented in Table 14.3. Findings 
indicated that all three traits were statistically significantly correlated. 
More importantly, the observation method was the best for assessing any of 
the three traits, as indicated by the higher trait factor loadings and lower 
correlated uniqueness error terms. The data also had an acceptable fit to 
the CTCU model (c2 = 17.38, p = .30, df = 15; RMSEA = .026).

The LISREL program was run again to estimate a correlated trait (CT)-
only model with no correlated error terms. To accomplish this, you simply 
delete the following command lines:

Let Error Covariance of Var1 – Var3 Correlate
Let Error Covariance of Var4 – Var6 Correlate
Let Error Covariance of Var7 – Var9 Correlate

Table 14.3

Correlated Uniqueness Model with Correlated Traits and Errors

Method Trait
Factor 

Loading Uniqueness R2

Correlated Uniqueness 
of Error Terms

Self Prom .58 .67 .33 1.0
Ach .48 .77 .23 .24 1.0
Affl .40 .85 .16 .20 .30 1.0

Peer Prom .78 .40 .61 1.0
Ach .68 .54 .46 .23 1.0
Affl .55 .70 .30 .23 .37 1.0

Observe Prom .92 .16 .84 1.0
Ach .84 .30 .70 .12 1.0
Affl .76 .42 .58 .007 −.03 1.0

Trait correlations
Prom 1.0
Ach     .93 1.0
Affl     .88     .93 1.0

Note:	 c2 = 17.38, p = .30, df = 15; RMSEA = .026; n = 240.
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The results from the computer output are presented in Table 14.4. The 
trait factor loadings, uniqueness, and R2 values are not substantially dif-
ferent from the previous CTCU model; however, the data is not an accept-
able fit to the CT model (c2 = 270.63, p = .00001, df = 24; RMSEA = .21). 
Comparing the previous CTCU model (c2 = 17.38, p = .30) to this CT model 
(c2 = 270.63, p = .00001) indicates a method effect. The method that was 
suggested as more effective was the observation method. Some trait cor-
relations in the CT model were greater than 1.0 indicating a nonpositive 
definite matrix (1.05 and 1.06—boldfaced). The CT model modification 
indices also suggested adding the specific unique error covariance terms 
which, if added, would result in the CTCU model.

The Modification Indices Suggest to Add an Error Covariance
Between and Decrease in Chi-Square New Estimate
Var2    Var1    21.4             0.22
 Var3    Var1    15.4             0.19
 Var3    Var2    27.8             0.28
 Var5    Var4    30.4             0.19
 Var6    Var4    23.0             0.17
 Var6    Var5    76.3             0.35
 Var7    Var5    41.0            −0.21
 Var7    Var6    27.5            −0.16

Table 14.4

Correlated Uniqueness Model with Correlated Traits Only

Method Trait Factor Loading Uniqueness R2

Self Prom .58 .66 .34
Ach .45 .79 .21
Affl .41 .83 .17

Peer Prom .79 .37 .63
Ach .72 .48 .52
Affl .62 .61 .39

Observe Prom .90 .20 .80
Ach .80 .35 .65
Affl .68 .53 .47

Trait Correlationsa

Prom   1.0
Ach 1.05 1.0
Affl   .95 1.06 1.0

Note:	 c2 = 270.63, p = .0000, df = 24; RMSEA = .21; n = 240.
a	 Trait correlation matrix is a nonpositive definite matrix because correlations 

are greater than 1.0.
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Var8    Var4    33.7            −0.18
Var8    Var6    10.3            −0.12
Var8    Var7    70.3             0.26

The MTMM model is problematic to analyze, but can be done given 
the addition of start values, setting AD = OFF, setting latent variances 
to 1.0, setting factor correlations to zero, and setting error variances 
equal. The alternative correlated uniqueness model approach in SEM 
is easier to obtain convergence (compute parameter estimates), but is 
not without controversy over how to interpret the results because more 
than one possible explanation may exist for the observed correlated 
error terms.

Although Bollen (1989, p. 190–206) and Byrne (1998, p. 228–229) have 
demonstrated how to conduct a multitrait multmethod model with a 
taxonomy of nested models suggested by Widaman (1985), Marsh and 
Grayson (1995) and Wothke (1996) have demonstrated that most attempts 
at running MTMM models result in unidentified models or lack con-
vergence, and offer suggestions for other types of MTMM models that 
included the correlated uniqueness model or a composite direct product 
model. We strongly suggest that you read Marsh and Grayson (1995) or 
Wothke (1996) for a discussion of these alternative MTMM models and 
problems with analyzing data using a MTMM model.

Saris and Aalberts (2003) questioned the interpretation of the cor-
related uniqueness model approach in SEM. They agreed that one 
possible explanation for the observed correlated terms is the similar-
ity of methods for the different traits; however, they provided other 
explanations for the correlated error terms. Their alternative models 
explained the correlated error terms based on method effects, relative 
answers to questions, acquiescence bias, and/or variation in response 
patterns when examining characteristics of survey research questions 
on a questionnaire. We are, therefore, reminded that error terms do 
not necessarily reflect a single unknown measure, rather contain sam-
pling error, systematic error, and other potentially unknown measures 
(observed variables).

14.4 � Summary

In this chapter, we have considered second-order factor models, dynamic 
factor models, and multitrait multimethod models, including an alterna-
tive correlated uniqueness model. We have learned that the traditional 
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multitrait multimethod model has identification and convergence prob-
lems such that Marsh and Grayson (1995) and Wothke (1996) have recom-
mended alternative approaches, namely correlated uniqueness and direct 
product models.

We hope that our discussion of these SEM applications has provided 
you with a basic overview and introduction to these methods. We encour-
age you to read the references provided at the end of the chapter and run 
some of the program setups provided in the chapter. We further hope 
that the basic introduction in this chapter will permit you to read the 
research literature and better understand the resulting models presented, 
which should support various theoretical perspectives. Attempting a few 
basic models will help you better understand the approach; afterwards, 
you may wish to attempt one of these SEM applications in your own 
research.

Exercises

1.	 Second-Order Factor Analysis

The psychological research literature tends to suggest that drug use 
and depression are leading indicators of suicide among teenagers. 
(Note: Set variance of Suicide = 1 for model identification purposes). 
Given the following data set information, create and run a LISREL–
SIMPLIS program to conduct a second-order factor analysis.

Observed Variables: drug1 drug2 drug3 drug4 depress1
  depress2 depress3 depress4
Sample Size 200
Correlation Matrix
 1.000
 0.628 1.000
 0.623 0.646 1.000
 0.542 0.656 0.626 1.000
 0.496 0.557 0.579 0.640 1.000
 0.374 0.392 0.425 0.451 0.590 1.000
 0.406 0.439 0.446 0.444 0.668 .488 1.000
 0.489 0.510 0.522 0.467 0.643 .591 .612 1.000
Means 1.879 1.696 1.797 2.198 2.043 1.029 1.947 2.024
Standard Deviations 1.379 1.314 1.288 1.388 1.405 1.269
  1.435 1.423
Latent Variables: drugs depress Suicide

The second-order factor model is diagrammed in Figure 14.4:
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2.	 Dynamic Factor Model

A sports physician was interested in studying heart rate and muscle 
fatigue of female soccer players. She collected data after three soccer 
games over a 3-week period. A dynamic factor model was used to 
determine if heart rate and muscle fatigue were stable across time for 
the 150 female soccer players.

Create a LISREL–SIMPLIS program to analyze and interpret the 
dynamic factor model. Include a diagram of the dynamic factor 
model. The data set information including observed variables, cova-
riance matrix, sample size, and latent variables are provided below:

Observed Variables: HR1 MF1 HR2 MF2 HR3 MF3
Covariance Matrix
 10.75
 7.00 9.34
 7.00 5.00 11.50
 5.03 5.00 7.49 9.96
 3.89 4.00 3.84 3.65 9.51
 2.90 2.00 2.15 2.88 3.55 5.50
Sample Size: 150
Latent Variables: Time1 Time2 Time3

drug1

drug2

drug3

drug4

depress1

depress2

depress3

depress4

drugs

depress

Suicide

d1

d2

Figure 14.4
Siucide Second-Order Factor Model.
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3. Multitrait Multimethod (MTMM) Models

Students provided ratings of their classroom behavior, motivation 
to achieve, and attitude toward learning. Teachers, likewise, pro-
vided ratings of student classroom behavior, perception of students’ 
motivation to achieve, and attitude toward learning. Finally, other 
students or peers provided ratings on these three traits. The three 
ratings (student, teacher, and peer) on three traits (behavior, motivate, 
attitude) were analyzed in a SEM Multitrait Multimethod model. The 
Multitrait Multimethod Model is diagrammed in Figure 14.5:

	 a.	 Create and run a LISREL–SIMPLIS program to analyze the 
three sets of ratings on the three traits as a MTMM model. The 
observed variables, correlation matrix, sample size, and latent 
variables are:

Observed Variables: X1 X2 X3 X4 X5 X6 X7 X8 X9
Correlation Matrix
1.0
 .40 1.0
 .31 .38 1.0
 .35 .23 .16 1.0
 .26 .22 .21 .62 1.0
 .15 .11 .15 .49 .62 1.0

X1

Student X2

X3

Behavior

X4

Teacher X5

X6

Motivate

X7

Peer X8

X9

Attitude

Figure 14.5
Classroom MTMM Model.
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 .43 .31 .24 .61 .48 .33 1.0
 .40 .35 .19 .49 .45 .32 .74 1.0
 .26 .20 .18 .43 .41 .33 .52 .47 1.0
Sample Size: 300
Latent Variables: behavior motivate attitude student 
teacher peer

	 b.	 Create and run a LISREL–SIMPLIS program to compute a 
CTCU and CU model using the data information from above. 
Compare the CTCU and CU model results to determine if a 
method effect exists. Also, compare the CTCU model with the 
MTMM model above, which provides clearer results?
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15
Multiple Indicator–Multiple Indicator 
Cause, Mixture, and Multilevel Models

Key Concepts

Multiple indicator–multiple cause (MIMIC) models
SEM models with continuous and categorical variables (mixture 

models)
Testing multilevel intercept and slope differences in nested groups 

(multilevel models).

In this chapter we continue with our presentation and discussion of 
SEM model applications. Specifically, we present an example where 
latent variables are predicted by observed variables (MIMIC model); 
an example where continuous and categorical variables are included in 
the model (mixture model); and finally an example where nested design 
data occur (multilevel model). All three of these SEM applications are 
unique and are not possible using traditional statistics (analysis of vari-
ance, etc.).

15.1 � Multiple Indicator–Multiple Cause (MIMIC) Models

The term MIMIC refers to multiple indicators and multiple causes and 
defines a particular type of SEM model. The MIMIC model involves using 
latent variables that are predicted by observed variables. An example by 
Jöreskog and Sörbom (1996a, example 5.4, p. 185–187) is illustrated where a 
latent variable (social participation) is defined by church attendance, mem-
berships, and friends. The social participation latent variable is predicted by 
the observed variables, income, occupation, and education. The MIMIC 
model is diagrammed in Figure 15.1a.
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The MIMIC model indicates a latent variable, social, which has arrows 
pointing out to the three observed indicator variables (church, member, 
friends) with separate measurement error terms for each. This is the mea-
surement part of the MIMIC model that defines the latent variable. In the 
MIMIC model, the latent variable, social, also has arrows pointed toward it 
from the three observed predictor variables, which have implied correlations 
among them (curved arrows). This is the structural part of the MIMIC model 
that uses observed variables to predict a latent variable. The MIMIC model 
diagram also shows the prediction error for the latent variable, social.

15.1.1 � Model Specification and Identification

Model identification pertains to whether the estimates in the MIMIC 
model can be calculated, which is quickly gauged by the degrees of free-
dom. Do you recall how the degrees of freedom are determined? There 
are a total of 15 free parameters to be estimated in the MIMIC model. The 
number of distinct values in the variance-covariance matrix S based on 
6 observed variables is: p (p + 1)/2 = 6 (6 + 1)/2 = 21. The degrees of free-
dom are computed by subtracting the number of free parameters from the 
number of distinct parameters in the matrix S, which is 21 − 15 = 6.

15.1.2 � Model Estimation and Model Testing

The MIMIC model diagram provides the basis for specifying the LISREL–
SIMPLIS program, specifically the Latent Variable and Relationships command 
lines in the LISREL–SIMPLIS program. The LISREL–SIMPLIS program that 
specifies the observed variables, sample size, correlation matrix (standard-
ized variables), and the equations that reflect the MIMIC model is:

MIMIC Model
Observed Variables income occup educ church member friends

income

occup

educ

church

member

friends

err_c

err_m

err_f

error

social

Figure 15.1a
MIMIC Model.
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Sample Size 530
Correlation Matrix
1.000
 .304 1.000
 .305 .344 1.000
 .100 .156 .158 1.000
 .284 .192 .324 .360 1.000
 .176 .136 .226 .210 .265 1.000
Latent Variable social
Relationships
church = social
member = social
friends= social
social = income occup educ
Path Diagram
End of Problem

SEM MIMIC models use goodness-of-fit criteria to determine whether a 
reasonably good fit of the data to the MIMIC model exists. Some basic fit 
criteria are printed below from the computer output.

Goodness-of-Fit Statistics

 Degrees of Freedom = 6
 Minimum Fit Function Chi-Square = 12.50 (P = 0.052)
 Normal Theory Weighted Least Squares Chi-Square = 12.02 
(P = 0.061)
 Estimated Noncentrality Parameter (NCP) = 6.02
 90 Percent Confidence Interval for NCP = (0.0 ; 20.00)
 Root Mean Square Error of Approximation (RMSEA) = 0.044
 90 Percent Confidence Interval for RMSEA = (0.0 ; 0.079)
 P-Value for Test of Close Fit (RMSEA < 0.05) = 0.56
 Expected Cross-Validation Index (ECVI) = 0.079
 90 Percent Confidence Interval for ECVI = (0.068 ; 0.11)
 Normed Fit Index (NFI) = 0.97
 Goodness-of-Fit Index (GFI) = 0.99

The Normal Theory Weighted Least Squares c2 = 12.02, df = 6, and p = 
.061 suggests a reasonably good fit of the data to the MIMIC model. The 
Goodness-of-Fit (GFI) Index suggests that 99% of the variance-covariance 
in matrix S is reproduced by the MIMIC model. The LISREL software stan-
dardized solution indicates factor loadings of .47 * church, .74 * member, 
and .40 * friends. However, the T-value in the computer output dropped 
church as an important indicator variable in defining the latent variable, 
social.
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The observed variables, member (T = 6.71) and friends (T = 6.03), were 
therefore selected to define the latent variable social. The measurement 
equations from the computer output are listed below.

Measurement Equations

 church = 0.47*social, Errorvar. = 0.78 , R² = 0.22
                                         (0.058)
                                         13.61
 member = 0.74*social, Errorvar. = 0.46 , R² = 0.54
           (0.11)                       (0.075)
            6.71                          6.10
 friends = 0.40*social, Errorvar. = 0.84 , R² = 0.16
           (0.067)                     (0.058)
            6.03                        14.51

(Note :  Because a matrix was used rather than raw data, standard error 
and T-value are not output for the reference indicator variable, church. The 
HELP menu offers this explanation: LISREL for Windows uses a reference 
indicator (indicator with a unit factor loading) to set the scale of each of 
the endogenous latent (ETA) variables of the model. If you do not specify 
reference indicators for the endogenous latent variables of your model, 
LISREL for Windows will select a reference indicator for each endogenous 
latent variable of your model. Although LISREL for Windows scales the 
factor loadings to obtain the appropriate estimates for the factor loadings 
of the reference indicators, it does not use the Delta method to compute 
the corresponding standard error estimates).

The observed independent variables (income, occup, and educ) in the 
MIMIC model were correlated amongst themselves as identified in the 
correlation matrix of the SEM program output:

1.000
 .304 1.000
 .305 .344 1.000

The structural equation indicated that the latent variable social had 26% 
of its variance predicted (R2 = .26), with 74% unexplained error variance 
due random or systematic error, and variables not in the MIMIC model. 
The T-values for the structural equation coefficients indicated that occup 
(occupation) didn’t statistically significantly predict social (T = parameter 
estimate divided by standard error = .097/.056 = 1.73 is less than t = 1.96 at 
the .05 level of significance, two-tailed test), whereas income (T = 3.82) and 
educ (T = 4.93) were statistically significant at the .05 level of significance. 
The structural equation with coefficients, standard errors in parentheses 
and associated T values are listed below.
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Structural Equation

Social = 0.23*income + 0.097*occup + 0.33*educ, Errorvar.= 0.74 , R² = 0.26
              (0.061)               (0.056)              (0.068)                           (0.17)
               3.82                   1.73                   4.93                                4.35

15.1.3 � Model Modification

The original MIMIC model was therefore modified by dropping church 
and occup. The MIMIC model diagram with these modifications now 
appears in Figure 15.1b.

social

income

educ

member

friends

err_m

err_f

error

Figure 15.1b
Modified MIMIC Model.

The model modification fit criteria are more acceptable, indicating an 
almost perfect fit of the data to the MIMIC model, since the Minimum Fit 
Function c2 value was close to zero.

Goodness-of-Fit Statistics

Degrees of Freedom = 1
Minimum Fit Function Chi-Square = 0.19 (P = 0.66)
Root Mean Square Error of Approximation (RMSEA) = 0.0
90 Percent Confidence Interval for RMSEA = (0.0 ; 0.088)
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.82
Normed Fit Index (NFI) = 1.00
Goodness-of-Fit Index (GFI) = 1.00

Measurement Equations

 member = 0.63*social, Errorvar.= 0.60 , R² = 0.39
                                        (0.08)
                                         7.32
 friends = 0.42*social, Errorvar. = 0.82 , R² = 0.17
            (0.07)                      (0.06)
             5.54                       13.66
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(Note :  Because a matrix was used rather than raw data, standard errors 
are not output for one of the reference indicator variables, member = 
0.63*social. The HELP menu offers further explanation as noted above.)

Structural Equations

The structural equation now indicated two statistically significant predic-
tor variables with R2 = .36. This also implies that 64 percent of the latent 
variable variance is left unexplained, mostly due to random or systematic 
error or other variables not included in the MIMIC model.

social = 0.31*income + 0.42*educ, Errorvar. = 0.64 , R² = 0.36
         (0.063)        (0.064)                 (0.19)
          5.01           6.65                     3.39

MIMIC models permit the specification of one or more latent variables with 
one or more observed variables as predictors of the latent variables. This 
type of SEM model demonstrates how observed variables can be incorpo-
rated into theoretical models and tested. We followed the five basic steps in 
SEM: model specification, model identification, model estimation, model 
testing, and model modification to obtain our best model to data fit.

15.2 � Mixture Models

Mixture models in SEM involve the analysis of observed variables that 
are categorical and continuous. SEM was originally created using con-
tinuous variables in a sample variance–covariance matrix (Pearson cor-
relation matrix with means and standard deviations); however, today 
SEM models with nominal, ordinal, interval, and ratio-level observed 
variables can be used in SEM. The use of a mixture of variables, how-
ever, requires using other types of matrices than the Pearson cor-
relation matrix and associated variance–covariance matrix in SEM 
programs. In the LISREL software program, PRELIS (Pre-LISREL) is 
used to input, edit and handle raw data and produce the type of matrix 
needed for the LISREL program (JÖreskog & Sorbom, 1996b). In PRELIS, 
a variable is defined as continuous by the CO command (by default 
the variable must have a minimum of 15 categories), the OR command 
for ordinal variables, or the CL command for class or group variables. 
PRELIS can output normal theory variance–covariance matrices (cor-
relation between continuous variables), polychoric matrices (correlation 
between ordered categorical variables), polyserial matrices (correlation 
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between continuous and ordered categorical variable), and asymptotic 
variance–covariance matrices (continuous and/or ordinal variables 
with nonnormality), and augmented moment matrices (matrices with 
variable means). Consequently, in LISREL, one would use PRELIS to cre-
ate and save the appropriate variance–covariance matrix, conduct the 
analysis as usual, and interpret the fit statistic using a robust model-fit 
measure (Note: The sample variance–covariance matrix and asymptotic 
covariance matrix with maximum likelihood estimation is required to 
obtain the Satorra–Bentler robust c2 statistic).

15.2.1 � Model Specification and Identification

The mixture model example uses variables from the SPSS data set bank-
loan.sav. This is a hypothetical data set that concerns a bank’s efforts to 
reduce the rate of loan defaults. The file contains financial and demo-
graphic information on 850 past and prospective customers. The data set 
is located in the SPSS Samples folder, our path location was:

C:\Program Files\SPSSInc\SPSS16\Samples\bankloan.sav

A theoretical model was hypothesized that financial Ability was a pre-
dictor of Debt. The observed variables age, level of education, years with 
current employer, years at current address, and household income in thou-
sands were used as indicators of the latent independent variable, Ability. 
The observed variables credit card debt in thousands and other debt in 
thousands were used as indicators of the latent dependent variable, Debt.

The SPSS save file (bankloan.sav) was imported and saved as a PRELIS 
System File (bankloan.psf). The File, and then Import Data commands, 
were used along with the Save As command noted in the following two 
dialog boxes.
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We now opened the PRELIS System File, bankloan.psf, and deleted the 
variable DEBTINC by clicking on the variable name using the right mouse 
button. Next, we deleted the last four variables, Default, preddef1, pred-
def2, and preddef3, leaving seven variables for the theoretical model. We 
decided that these five variables (DEBTINC, Default, preddef1, preddef2, 
and preddef3) were not good indicators in our theoretical model. (Note: 
The following dialog boxes will appear if you right mouse click on the 
variable name).
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The level of education variable was ordinal (OR), while all other vari-
ables were considered continuous (CO). The mixture model for Ability pre-
dicting Debt is therefore represented in Figure 15.2a.

AGE

ED

EMPLOY

ADDRESS

INCOME

Ability Debt

CREDDEBT

OTHDEBT

Figure 15.2a
Mixture Model.

15.2.2 � Model Estimation and Testing

In LISREL, we can now write a PRELIS program that will read in the 
data and output a polyserial correlation matrix, bankloan.mat. (Note: The 
PRELIS program only requires a few lines of code to read in the data 
and output 8 different types of matrices [Jöreskog & Sörbom, 1996b, 
p. 92–93]). The title of the program is Polyserial correlation matrix. The DA 
command specifies seven input variables (NI = 7) with 850 observations 
(NO = 850); missing data is identified by a zero (MI = 0) and treat missing 
data listwise (TR = LI). The SY command identifies the PRELIS system 
file (bankloan.psf). The OU command identifies the type of matrix to be 
computed—that is, polyserial matrix (MA = PM)—and the name of the 
polyserial matrix (PM = bankloan.mat). The PRELIS program was entered 
and saved as bankloan.pr2. (Note: We click on the run-P icon to execute 
PRELIS programs.)

Y102005.indb   301 3/22/10   3:26:37 PM



302	 A Beginner’s Guide to Structural Equation Modeling

Polyserial correlation matrix
DA NI = 7 NO=850 MI = 0 TR = LI
SY FI = bankloan.psf
CO AGE
OR ED
CO EMPLOY
CO ADDRESS
CO INCOME
CO CREDDEBT
CO OTHDEBT
OU MA = PM PM = bankloan.mat

Two variables, EMPLOY and ADDRESS, had missing data leaving an 
effective sample size of N = 723. The resulting saved polyserial correlation 
matrix, bankloan.mat, is now used in our mixture model program analysis. 
The LISREL–SIMPLIS program for the mixture model would be:

Mixture Model using Polyserial Correlation Matrix
Observed Variables: AGE ED EMPLOY ADDRESS INCOME CREDDEBT
    OTHDEBT
Sample Size 723
Correlation Matrix
1.000
 0.041 1.000
 0.524 −0.163 1.000
 0.589 0.099 0.335 1.000
 0.454 0.251 0.610 0.299 1.000
 0.261 0.138 0.380 0.150 0.559 1.000
 0.320 0.162 0.411 0.166 0.598 0.647 1.000
Means: 35.903 0.000 9.593 9.216 49.732 1.665 3.271
Standard Deviations: 7.766 1.000 6.588 6.729 40.243 2.227 
3.541
Latent Variables Ability Debt
Relationships
AGE ED EMPLOY ADDRESS INCOME = Ability
CREDDEBT OTHDEBT = Debt
Debt = Ability
Number of Decimals = 3
Path Diagram
End of Problem

The theoretical model analysis indicated that the normal theory model fit 
results were not adequate (c2 = 428.22, df = 13, p = 0.0001, RMSEA = 0.210). 
We therefore examined the modification indices to determine any sub-
stantive model modifications.

Y102005.indb   302 3/22/10   3:26:38 PM



Multiple Indicator–Multiple Indicator Cause, Mixture	 303

15.2.3 � Model Modification

The modification indices for Figure 15.2b suggested the following:

The Modification Indices Suggest to Add an Error Covariance
 Between   and Decrease in Chi-Square New Estimate

 AGE CREDDEBT   10.0  −1.30
 EMPLOY AGE   34.0   8.11
 EMPLOY ED 144.9  −2.28
 ADDRESS OTHDEBT   8.9  −1.76
 ADDRESS AGE 182.0  20.71
 INCOME CREDDEBT   16.3   8.41
 INCOME OTHDEBT   14.8  12.86
 INCOME AGE   60.3 −72.01
 INCOME ED   74.6   9.49
 INCOME ADDRESS   38.0 −45.95

We felt that EMPLOY (years with current employer), ED (education level), 
ADDRESS (years at current address), and AGE were very much related to 
each other. We therefore added the following commands in the LISREL–
SIMPLIS program to correlate their respective error covariance:

Let error covariance of EMPLOY and ED correlate
Let error covariance of ADDRESS and AGE correlate
Let error covariance of EMPLOY and AGE correlate

AGE

ED

EMPLOY

ADDRESS

INCOME

Ability

Chi-Square = 428.22, df = 13, P = 0.0001, RMSEA = 0.210

0.60

0.64

0.97

0.49

0.82

0.27

0.16

0.71 0.76

0.77

0.84

0.41

0.30
0.43

0.85

Debt

CREDDEBT

OTHDEBT

Figure 15.2b
Mixture Model output.
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Our results continued to indicate a poor model fit (Normal theory c2 = 
47.73, df = 10, p = 0.0001, RMSEA = 0.072). We therefore examined addi-
tional modification indices from our second analysis:

The Modification Indices Suggest to Add an Error Covariance
 Between   and Decrease in Chi-Square New Estimate
 ED AGE 12.5 −0.75
 ADDRESS ED 14.8  0.73
 ADDRESS EMPLOY 30.8  6.53

These modifications also seemed reasonable given how years with current 
employer; years at current address, age, and education were related. We 
therefore added the following additional command lines to the LISREL–
SIMPLIS program:

Let error covariance of EMPLOY and ADDRESS correlate
Let error covariance of ADDRESS and ED correlate
Let error covariance of AGE and ED correlate

The final theoretical model was therefore modified to include all of these 
error covariance correlations with corresponding command lines added 
to the LISREL–SIMPLIS program (JÖreskog & Sorbom, 1996c). The final 
LISREL–SIMPLIS program, bankloan.psf, was therefore modified as follows:

Mixture Model Using Polyserial Correlation Matrix
Observed Variables: AGE ED EMPLOY ADDRESS INCOME CREDDEBT
    OTHDEBT
Sample Size 723
Correlation Matrix
1.000
 0.041 1.000
 0.524 −0.163 1.000
 0.589 0.099 0.335 1.000
 0.454 0.251 0.610 0.299 1.000
 0.261 0.138 0.380 0.150 0.559 1.000
 0.320 0.162 0.411 0.166 0.598 0.647 1.000
Means: 35.903 0.000 9.593 9.216 49.732 1.665 3.271
Standard Deviations: 7.766 1.000 6.588 6.729 40.243 2.227 
3.541
Latent Variables Ability Debt
Relationships
AGE ED EMPLOY ADDRESS INCOME = Ability
CREDDEBT OTHDEBT = Debt
Debt = Ability
Let error covariance of EMPLOY and ED correlate
Let error covariance of ADDRESS and AGE correlate
Let error covariance of EMPLOY and AGE correlate

Y102005.indb   304 3/22/10   3:26:38 PM



Multiple Indicator–Multiple Indicator Cause, Mixture	 305

Let error covariance of EMPLOY and ADDRESS correlate
Let error covariance of ADDRESS and ED correlate
Let error covariance of AGE and ED correlate
Number of Decimals = 3
Path Diagram
End of Problem

The theoretical model now had an adequate fit to the bank loan data 
(Normal Theory c2 = 5.69, df = 7, p = 0.57607, RMSEA = 0.00). However, 
we recalled that mixture models should report robust statistics which 
will require using an asymptotic covariance matrix in addition to 
the sample covariance matrix and maximum likelihood estimation 
method. So we next describe how to obtain the Satorra–Bentler scaled 
robust statistic.

15.2.4 � Robust Statistic

Our SEM analysis required a polyserial correlation matrix because we 
had a mixture of variables (ordinal and continuous). We should therefore 
be reporting a robust chi-square statistic not a normal theory chi-square 
statistic. How do I obtain the Satorra–Bentler Chi-square robust statistic 
value? We first open the PRELIS system file, bankloan.psf, and then save 
a covariance matrix (bankloan.cov) and an asymptotic covariance matrix 
(bankloan.acm) using the Statistics pull down menu and Output Option as 
seen in the dialog box below:

Y102005.indb   305 3/22/10   3:26:39 PM



306	 A Beginner’s Guide to Structural Equation Modeling

Our LISREL–SIMPLIS program is now modified to include the Covariance 
matrix from file, Asymptotic Covariance Matrix from File, and Method of 
Estimation: Maximum Likelihood commands. The computer output under 
Goodness-of-Fit statistics will now include the robust Satorra–Bentler 
scaled chi-square statistic. The updated LISREL–SIMPLIS program with 
these commands would be:

Mixture Model using Polyserial Correlation Matrix
Observed Variables: AGE ED EMPLOY ADDRESS INCOME CREDDEBT
    OTHDEBT
Sample Size 723
Covariance matrix from file bankloan.cov
Asymptotic Covariance Matrix from File bankloan.acm
Method of Estimation: Maximum Likelihood
Latent Variables Ability Debt
Relationships
AGE ED EMPLOY ADDRESS INCOME = Ability
CREDDEBT OTHDEBT = Debt
Debt = Ability
Let error covariance of EMPLOY and ED correlate
Let error covariance of ADDRESS and AGE correlate
Let error covariance of EMPLOY and AGE correlate
Let error covariance of EMPLOY and ADDRESS correlate
Let error covariance of ADDRESS and ED correlate
Let error covariance of AGE and ED correlate
Number of Decimals = 3
Path Diagram
End of Problem

The final theoretical model with the Satorra–Bentler scaled chi-square sta-
tistic reported is shown in Figure 15.2c. The Satorra–Bentler Scaled c2 = 
3.419, df = 7, p = 0.844 for the theoretical model compared to the Normal 
Theory c2 = 5.69, df = 7, p = 0.57607. We should expect the robust statistic to 
indicate a better model fit.

The SEM mixture model permits continuous and categorical variables 
to be used in a theoretical model. The mixture model however uses a dif-
ferent correlation matrix than the traditional Pearson correlation matrix 
with means and standard deviations. Consequently, you will need to use 
PRELIS to read in a data set and output a polyserial correlation matrix. 
Additionally, you will need to save a covariance matrix and an asymp-
totic covariance matrix in PRELIS and include it in the SIMPLIS pro-
gram along with maximum likelihood estimation method to obtain the 
Satorra–Bentler scaled chi-square statistic for appropriate interpretation 
of the mixture model.
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15.3 � Multilevel Models

Multilevel models in SEM are so named because of the hierarchical nature 
of data in a nested research design. For example, in education a student’s 
academic achievement is based in classrooms, so students are nested in 
classrooms, teachers are nested within schools, and schools are nested 
within districts. The nested research design is in contrast to a crossed 
research design where every level is represented. In multilevel models our 
interest is in the effects at different levels given the clustered nature of the 
data. A simple schematic will illustrate multilevel versus crossed designs.

Multilevel Design: Four teachers are indicated at two schools; however, 
teachers 1 and 2 are in School A, while teachers 3 and 4 are in School B.

School A B
Teacher 1 2 3 4

Crossed Design: Four teachers are indicated at two schools with all four 
teachers in both schools.

School A B
Teacher 1 2 3 4 1 2 3 4

Several textbooks introduce and present excellent multilevel examples, so 
we refer you to those for more information on the analysis of multilevel 
models in SEM (Heck & Thomas, 2000; Hox, 2002). We have also provided 
a few journal article references that have used the multilevel approach. 

AGE

ED

EMPLOY

ADDRESS

INCOME

Ability

Satorra-Bentler Scaled Chi-Square = 3.42, df = 7, P = 0.84377

0.50

0.75

–0.11

0.23

–0.02

0.44 –0.33

0.14

0.94

0.57

0.90

0.08

0.24

0.65 0.75

0.77

0.84

0.41

0.29
0.32

0.96

Debt

CREDDEBT

OTHDEBT

Figure 15.2c
Modified Mixture Model (Satorra–Bentler scaled Chi-square).
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LISREL provides an extensive HELP library on multilevel modeling that 
includes an overview of multilevel modeling; differences between OLS 
and multilevel random coefficient models (MRCM); latent growth curve 
models; testing of contrasts; analysis of two-level repeated measures data; 
multivariate analysis of educational data; multilevel models for categorical 
response variables; and examples using air traffic control data, school, and 
survey data. Consequently, you are encouraged to use the HELP library in 
LISREL for more information and examples using PRELIS and SIMPLIS 
or read about the new statistical features in LISREL by Karl Jöreskog, Dag 
Sörbom, Stephen du Toit and Mathilda du Toit (2001).

In LISREL, you will be using the multilevel tool bar menu to demon-
strate variance decomposition, which is a basic multilevel model (equivalent 
to a one-way ANOVA with random effects). The multilevel null model is a 
preliminary first step in a multilevel analysis because it provides impor-
tant information about the variability of the dependent variable. You 
should always create a null model (intercept only) to serve as a baseline 
for comparing additional multilevel models when you add variables to 
test whether they significantly reduce the unexplained variability in the 
dependent variable (response or outcome variable).

In LISREL 8.8, student version, find the directory that is labeled, LISREL 
8.8 Student Examples, then select the mlevelex folder, next select the files of type 
which indicates PRELIS DATA (*.psf). You will now see PRELIS SYSTEM 
FILES (*.psf). Select MOUSE. The dialog box should look like the following:

MOUSE.PSF is a nested data set with nine weight measurements taken 
at nine time periods on 82 mice. The data set should contain n = 738 rows 
of data (9 × 82), however, the data set only contains n = 698 rows of data 
because some weights are missing for the mice, for example, iden2 = 43, 
44, 45, etc. The variables in the MOUSE.PSF system file are iden2, iden1, 
weight, constant, time, timesq, and gender. The dialog box below displays 
the spreadsheet with these variables.
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The multilevel command now appears on the tool bar menu with linear 
and nonlinear model options. Now select Linear Model, and then Title and 
Options. You will be specifying variables for each of the options shown 
here, but this is accomplished by selecting NEXT after you enter the infor-
mation for Title and Options. You can enter the title Mouse Data: Variance 
Decomposition in the dialog box as indicated below, and then click NEXT.
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This takes us to the Identification Variables dialog box where you will 
add ident2 to level 3 and ident1 to level 2. The variable ident2 ranges from 
1 to 82 and identifies the unique mouse, while ident1 indicates the 9 time 
measurements and ranges from 1 to 9. The dialog box should look like the 
one below:

You again click NEXT. This takes us to the Select Response and 
Fixed Variables dialog box where you add weight as the select response 
(dependent variable and constant as a fixed effect to create an intercept only 
(null) model). Be sure to unselect the Intercept box in this dialog box as 
indicated below:
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You again click NEXT. This takes you to the Random Variables dialog 
box where you will add constant to both random Level 3 and random Level 
2. Constant is the intercept term for the response variable (weight) and 
associates an error term for the Level 3 and Level 2 equations. Be sure to 
unselect the Intercept boxes in this dialog box for ALL RANDOM LEVELS 
as indicated below:
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Now click FINISH and a PRELIS program, mouse.pr2 is written.
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The PRELIS program is executed by clicking the run P (Run PRELIS) 
on the tool bar menu. The PRELIS computer output will now indicate the 
fixed and random results for the baseline model (intercept only). (Note: 
Do not use the term constant in your model and also select intercept in the 
dialog boxes.)

15.3.1 � Constant Effects

The PRELIS computer output for the baseline model (constant) is as follows:

        +-------------------------------------+
           | FIXED PART OF MODEL |
           +-------------------------------------+

------------------------------------------------------------
 COEFFICIENTS    BETA-HAT    STD.ERR.    Z-VALUE    PR > |Z|
------------------------------------------------------------
 constant        28.63410    0.57021     50.21634    0.00000

         +--------------------------------+
         | -2 LOG-LIKELIHOOD |
         +--------------------------------+

 DEVIANCE= -2*LOG(LIKELIHOOD) = 5425.490015929897
 NUMBER OF FREE PARAMETERS = 3

         +---------------------------------------+
         | RANDOM PART OF MODEL |
         +---------------------------------------+

------------------------------------------------------------
 LEVEL 3            TAU-HAT   STD.ERR.  Z-VALUE   PR > |Z|
------------------------------------------------------------
 constant/constant  11.32910  4.25185   2.66451    0.00771
------------------------------------------------------------
 LEVEL 2            TAU-HAT    STD.ERR.  Z-VALUE   PR > |Z|
------------------------------------------------------------
 constant/constant  130.32083  7.42514   17.55130   0.00000

15.3.2 � Time Effects

The second multilevel analysis includes adding time to the fixed variable 
list. To do so, click on Multilevel, Linear Models, and then Select Response 
and Fixed Variables in the drop-down menu. Now add time to the fixed 
variable list as indicated in the dialog box below. You will click NEXT. 
Do not change the Random Variables dialog box that appears; simply click 
FINISH.
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The following PRELIS program will appear in a dialog box with time 
added to the FIXED command. To run the updated PRELIS file, mouse.pr2, 
click on run P (Run PRELIS).
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The PRELIS computer output for both constant (baseline) plus time is 
as follows:

         +-------------------------------------+
         | FIXED PART OF MODEL |
         +-----------------------------------+

------------------------------------------------------------
 COEFFICIENTS BETA-HAT STD.ERR. Z-VALUE PR > |Z|
------------------------------------------------------------
 constant 9.09586 0.60387 15.06258 0.00000
 time 4.09218 0.06258 65.39108 0.00000

         +--------------------------------+
         | -2 LOG-LIKELIHOOD |
         +--------------------------------+

 DEVIANCE= -2*LOG(LIKELIHOOD) = 4137.578760208256
 NUMBER OF FREE PARAMETERS = 4

         +--------------------------------------+
         | RANDOM PART OF MODEL |
         +---------------------------------------+

------------------------------------------------------------
 LEVEL 3             TAU-HAT   STD.ERR.   Z-VALUE   PR > |Z|
------------------------------------------------------------
 constant/constant   20.69397  3.53655    5.85146   0.00000
------------------------------------------------------------
 LEVEL 2             TAU-HAT   STD.ERR.   Z-VALUE   PR > |Z|
------------------------------------------------------------
 constant/constant   16.46288   0.93806    17.54996  0.00000

15.3.3 �G ender Effects

We repeat this process a third time to add gender to the fixed variables for a 
final multilevel analysis. To do so, click on Multilevel, Linear Models, and 
then Select Response and Fixed Variables in the drop-down menu. Now 
add gender to the fixed variable list as indicated in the dialog box below. 
You will click NEXT. Do not change the Random Variables dialog box that 
appears; simply click FINISH. The Select Response and Fixed Variables dia-
log box should look like the following:
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The following PRELIS program will appear in a dialog box with gender 
added to the FIXED command. To run the updated PRELIS file, mouse.pr2, 
click on run P (Run PRELIS). The following PRELIS program should appear:
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The PRELIS computer output with constant, time, and gender is as 
follows:

           +-----------------------------------+
           | FIXED PART OF MODEL |
           +-----------------------------------+

------------------------------------------------------------
COEFFICIENTS	 BETA-HAT	 STD.ERR.	 Z-VALUE	 PR > 
|Z|
------------------------------------------------------------
constant 	 9.07800	 0.58325	 15.56442	
0.00000
time	 4.08714	 0.06261	 65.28249	 0.00000
gender	1.42015	 0.50199	 2.82904	 0.00467

           +--------------------------------+
           | -2 LOG-LIKELIHOOD |
           +--------------------------------+

DEVIANCE = -2*LOG(LIKELIHOOD) = 4129.941071012016
NUMBER OF FREE PARAMETERS = 5

           +---------------------------------------+
           | RANDOM PART OF MODEL |
           +---------------------------------------+

------------------------------------------------------------
LEVEL 3            TAU-HAT    STD.ERR.    Z-VALUE   PR > |Z|
------------------------------------------------------------
constant/constant  18.68475   3.22290      5.79750  0.00000
------------------------------------------------------------
LEVEL 2            TAU-HAT     STD.ERR.    Z-VALUE  PR > |Z|
------------------------------------------------------------
constant/constant  16.46249    0.93804     17.54996  0.00000

You have now created and run three different PRELIS programs to obtain 
the multilevel analysis results for an intercept model (model 1), inter-
cept and time model (model 2), and an intercept, time, and gender model 
(model 3). The PRELIS program, mouse.pr2, was updated each time you 
changed the number of fixed variables. The three PRELIS programs are 
listed below where it is easily seen that the FIXED command changed as 
you added additional hypothesized variables to obtain a better prediction 
of the unexplained variability of the response variable (weight).
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Model 1—Intercept Only
OPTIONS OLS=YES CONVERGE=0.001000 MAXITER=10 OUTPUT=STANDARD ;
 TITLE=Mouse Data: Variance Decomposition;
 SY=’C:\LISREL 8.8 Student Examples\MLEVELEX\MOUSE.PSF’;
 ID3=iden2;
 ID2=iden1;
 RESPONSE=weight;
 FIXED=constant;
 RANDOM2=constant;
 RANDOM3=constant;
Model 2 – Intercept + Time
OPTIONS OLS=YES CONVERGE=0.001000 MAXITER=10 OUTPUT=STANDARD ;
 TITLE=Mouse Data: Variance Decomposition;
 SY=’C:\LISREL 8.8 Student Examples\MLEVELEX\MOUSE.PSF’;
 ID3=iden2;
 ID2=iden1;
 RESPONSE=weight;
 FIXED=constant time;
 RANDOM2=constant;
 RANDOM3=constant;
Model 3 – Intercept + Time + Gender
OPTIONS OLS=YES CONVERGE=0.001000 MAXITER=10 OUTPUT=STANDARD ;
 TITLE=Mouse Data: Variance Decomposition;
 SY=’C:\LISREL 8.8 Student Examples\MLEVELEX\MOUSE.PSF’;
 ID3=iden2;
 ID2=iden1;
 RESPONSE=weight;
 FIXED=constant time gender;
 RANDOM2=constant;
 RANDOM3=constant;

The final multilevel equation is specified as:

	 Yij = b1 + b2 Timeij + b2 Genderij + uij + eij.

The PRELIS computer results are summarized in Table  15.1 for com-
parative purposes. (Note: Other multilevel models could include random 
effects rather than only fixed effects.)

15.3.4 � Multilevel Model Interpretation

The computer output for the three PRELIS multilevel programs are sum-
marized in Table 15.1 for the variance decomposition of the response vari-
able, weight. Model 1 provides a baseline model to determine if additional 
variables help in reducing the amount of variability in weight. Model 2 
with time added, substantially reduced the unexplained variability in 
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weight (c2 = 1287.92, df = 1). Model 3 with gender added also significantly 
reduced the amount of unexplained variability in weight (c2 = 7.63, df = 1). 
Therefore, mouse weight variability is statistically significantly explained 
by time and gender fixed variables.

15.3.5 � Intraclass Correlation

The intraclass correlation coefficient measures the relative homogeneity 
within groups in ratio to the total variation. In ANOVA it is computed 
as (Between-groups MS − Within-groups MS)/(Between-groups MS + 
(n − 1)* Within-Groups MS), where n is the average number of cases in 
each category of the independent variable. SPSS has a drop-down menu 
option for computing the intraclass correlation coefficient in your data.

If the intraclass correlation coefficient is large and positive, then there 
is no variation within the groups, but group means differ. It will be at 
its largest negative value when group means are the same but there is 
great variation within groups. Its maximum value is 1.0, but its maximum 
negative value is (−1/(n − 1)). A negative intraclass correlation coefficient 
occurs when between-group variation is less than within-group variation, 
indicating a third variable is present with nonrandom effects on the dif-
ferent groups.

The presence of a significant intraclass correlation coefficient indicates the 
need to employ multilevel modeling rather than OLS regression. The main 
difference is in the standard errors of the parameters, which have smaller 

Table 15.1

Summary Results for Multilevel Analysis of Mouse Weight

Multilevel Model 
Fixed Factors

Model 1 
Constant Only

Model 2 
Constant + Time

Model 3 Constant + 
Time + Gender

Intercept Only(B0) 28.63 (.57) 9.09 (.60) 9.07 (.58)
Time (B1) 4.09 (.06) 4.08 (.06)
Gender (B2) 1.42 (.50)

Level 2 error variance (eij) 130.32 16.46 16.46
Level 3 error variance (uij) 11.33 20.69 18.68
ICC .079 (8%) .556 (56%) .532 (53%)
Deviance (-2LL) 5425.49 4137.57 4129.94
Df 3 4 5
Chi-square
Difference
(df = 1) 1287.92 7.63

Note:	 c2 = 3.84, df = 1, p = .05.
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estimates in regression analysis if the intraclass correlation coefficient is 
statistically significant, which can inflate (bias) the regression weights. The 
intraclass correlation coefficient, using our results, is computed in SEM as:
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Therefore, 8% of the variance in weight is explained in the baseline model. 
It jumps dramatically when adding time as an explanatory variable to 56% 
variance in weight, explained as a function of time. It drops modestly to 
53% when adding gender to the equation. The 3% difference is not enough 
to infer a nonsignificant effect; therefore time and gender significantly 
explain 53% of the variance in mice weight.

15.3.6 � Deviance Statistic

The deviance statistic is computed as −2lnL (likelihood function), which 
is used to test for statistical difference in models between Model 1 (con-
stant), Model 2 (constant + time), and Model 3 (constant + time + gender). I 
chose the chi-square value of 3.84, df = 1, at the p = .05 level of significance 
to test whether additional variables in the equation explained variance in 
mice weight. The baseline deviance value was 5425.49. The chi-square dif-
ference test between this baseline deviance statistic and the second equa-
tion deviance value with time (–2lnL = 4137.57) indicated a difference of 
1287.92, which is statistically significantly different than the tabled critical 
chi-square value of 3.84. Consequently, time was a significant predictor 
variable of mice weight. The model with time and gender indicated a devi-
ance statistic of 4129.94 and had a difference from the previous deviance 
statistic of 7.63, which was also statistically significantly different from 
the critical tabled chi-square of 3.84. Consequently, time and gender were 
statistically significant predictor variables of mice weight.

15.4 � Summary

In this chapter, we have described MIMIC, mixture, and multilevel mod-
eling, to further demonstrate the versatility of structural equation mod-
eling. The first application presented a SEM model that had multiple 
indicators of a latent variable where the latent variable was predicted 
by multiple observed variables. We refer to this type of SEM model as a 
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Multiple Indicator and Multiple Cause (MIMIC) model. The next appli-
cation involved models that used ordinal and continuous variables. 
We refer to this type of SEM model as a Mixture Model. In this appli-
cation, we learned that normal theory fit indices apply to continuous 
variables that use a Pearson Correlation Matrix with means and stan-
dard deviations of the variables, but that other matrices should be used 
when ordinal and continuous variables are present in the SEM model 
(for example, polychoric or polyserial matrices). Our final application 
involved analyzing nested data, which has become increasingly popular 
in repeated measures, survey, and education data analysis because of 
the hierarchical research design. In SEM, we refer to this type of model 
as a Multilevel model, but in the research literature this type of model 
is referred to by many different names—for example, hierarchical linear, 
random-coefficient, variance-component modeling, or HLM.

The chapter presented only one example for each of the applications 
because a more in depth coverage is beyond the scope of this book. 
However, the LISREL software HELP library and examples can be searched 
by using keywords to find other software examples and explanations. The 
LISREL User Guide is also an excellent reference for other examples of 
these applications. We now turn our attention to the next chapter where 
other SEM applications are presented and discussed.

Exercises

1. Multiple Indicator–Multiple Cause 
(MIMIC) Model

Create and run a LISREL–SIMPLIS program given the MIMIC model 
below. Please interpret the results including any model modification, 
significance of coefficients, and R2 value. The data set information is:

Observed Variables peer self income shift age
Sample Size 530
Correlation Matrix
1.00
 .42 1.00
 .24 .35 1.00
 .13 .37 .25 1.00
 .33 .51 .66 .20 1.00

The following MIMIC Model (next page) includes the latent variable job 
satisfaction (satisfac), which is defined in Figure 15.3 by two observed vari-
ables: peer ratings and self ratings. A person’s income level, which shift 
they work, and age are observed predictor variables of job satisfaction.

2. Mixture model

Given the following Miture Model in Figure 15.4 and data set informa-
tion, write a LISREL program to test the Mixture Model. (Note: Robust 
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statistics require the raw data file, so no Satorra–Bentler scaled chi-
square possible). The Mixture Model has six observed variables (Age, 
Gender, Degree, Region, Hours, and Income) that define two latent vari-
ables (Person and Earning). A polyserial correlation matrix was created 
where CO indicates continuous variable and OR indicates a categori-
cal variable. Age (CO), Gender (OR), and Degree (OR) define Personal 
characteristics, an independent latent variable (Person). Region (OR), 
Hours (CO), and Income (CO) define dependent latent variable Earning 
Power (Earning). Personal Characteristics (Person) is hypothesized to 
predict Earning Power (Earning).

The data for the Mixture Model is:

Observed Variables: Age Gender Degree Region Hours Income
Correlation Matrix
 1.000
 0.487 1.000
 0.236 0.206 1.000
 0.242 0.179 0.253 1.000
 0.163 0.090 0.125 0.481 1.000
 0.064 0.040 0.025 0.106 0.136 1.000
Means 15.00 10.000 10.000 10.000 7.000 10.000
Standard Deviations 10.615 10.000 8.000 10.000 15.701 
10.000
Sample Size 600

The Mixture Model diagram is:

Income

Shift

Age

Peer Rating

Self Rating

Job
Satisfaction

Figure 15.3
Job Satisfaction MIMIC model.

Age

Gender

Degree

Region

Hours

Income

Person Earning

Figure 15.4
Earning Power Mixture Model.
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3.	 Multilevel Model

You will need to access the directory, LISREL 8.8 Student Examples. Click 
on the mlevelex folder and select the PRELIS system file, income.psf, which 
contains the variables region, state, age, gender, marital, etc. There are nine 
regions with 51 states nested within the regions. The sample size is n = 
6062. It is hypothesized that income varies by state within region.

Open the PRELIS system file, income.psf, and run three PRELIS multi-
level model programs. The first model will be an intercept only model 
with income as the response variable, Level 3 or ID3 = region, and Level 
2 or ID2 = state. The second PRELIS program will add gender as a fixed 
variable. The third PRELIS program will add an additional variable, 
marital, as a fixed variable. Use the multilevel pull-down menu on the 
tool bar to create the programs. (Note: Unselect the Intercept box in 
each dialog box).

List Model 1, Model 2, and Model 3 PRELIS programs and sum-
marize the output from the three PRELIS programs in a table. You 
will need to hand calculate the intraclass correlation coefficient and 
be sure to interpret the comparative results in the table. The MODEL 
1 dialog box should look like the following:
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Suggested Readings

Multiple Indicator–Multiple Cause Models

Anderson, K. G., Smith, G. T., & McCarthy, D. M. (2005). Elementary school drink-
ing: The role of temperament and learning. Psychology of Addictive Behaviors, 
19(1), 21–27.

Sanchez-Perez, M., & Iniesta-Bonillo, M. A. (2004, Winter). Consumers felt com-
mitment towards retailers: Index development and validation. Journal of 
Business and Psychology, 19(2), 141–159.

Shenzad, S. (2006). The determinants of child health in Pakistan: An economic 
analysis. Social Indicators Research, 78, 531–556.

Y102005.indb   324 3/22/10   3:26:46 PM



Multiple Indicator–Multiple Indicator Cause, Mixture	 325

Mixture Models

Bagley, M. N., & Mokhtarian, P. L. (2002). The impact of residential neighborhood 
type on travel behavior: A structural equations modeling approach. The 
Annals of Regional Science, 36, 279-297.

Loken, E. (2004). Using latent class analysis to model temperament types. 
Multivariate Behavioral Research, 39(4), 625-652.

Lubke, G. H., & Muthen, B. (2005). Investigating population heterogeneity with 
factor mixture models. Psychological Methods, 10, 21–39.

Multilevel Models

Bryan, A., Schmiege, S. J., & Broaddus, M. R. (2007). Mediational analysis in HIV/
AIDS research: Estimating multivariate path analytic models in a structural 
equation modeling framework. AIDS Behavior, 11, 365–383.

Everson, H. T., & Millsap, R. E. (2004). Beyond individual differences: Exploring 
school effects on SAT scores. Educational Psychologist, 39(3), 157–172.

Trautwein, U., Ludtke, O., Schnyder, I., & Niggli, A. (2006). Predicting homework 
effect: Support for a domain-specific, multilevel homework model. Journal of 
Educational Psychology, 98, 438–456.

References

Heck, R. H., & Thomas, S. L. (2000). An introduction to multilevel modeling techniques. 
Mahwah, NJ: Lawrence Erlbaum.

Hox, J. (2002). Multilevel analysis: Techniques and applications. Mahwah, NJ: 
Lawrence Erlbaum.

Jöreskog, K., & Sörbom, D. (1996a). LISREL 8: User’s reference guide. Chicago, IL: 
Scientific Software International.

Jöreskog, K., & Sörbom, D. (1996b). PRELIS2: User’s reference guide. Chicago, IL: 
Scientific Software International.

Jöreskog, K., & Sörbom, D. (1996c). LISREL 8: Structural equation modeling with the 
SIMPLIS command language. Chicago, IL: Scientific Software International.

Jöreskog, K., Sörbom, D., du Toit, S., & du Toit, M. (2001). LISREL8: New statistical 
features. Chicago, IL: Scientific Software International.

Y102005.indb   325 3/22/10   3:26:46 PM



Y102005.indb   326 3/22/10   3:26:46 PM



327

16
Interaction, Latent Growth, 
and Monte Carlo Methods

Key Concepts

Main effects and Interaction Effects
Types of Interaction Effects: continuous nonlinear, categorical, 

latent variable
Longitudinal data analysis using growth curve models
Monte Carlo methods

16.1 � Interaction Models

Most SEM models have assumed that the relations in the models were 
linear (i.e., the relations among all variables, observed and latent, are rep-
resented by linear equations). Several studies have been published where 
nonlinear and interaction effects are used in multiple regression models; 
however, these effects have seldom been tested in path models, and you 
will infrequently find nonlinear factor models. It should not be surprising 
to find that for several decades structural equation modeling has been 
based on Linear Structural Relations (LISREL).

SEM models with nonlinear and interaction effects are now possi-
ble and can easily be modeled with recent versions of SEM software. 
However, there are several types of nonlinear and interaction effects: 
categorical, product indicant, nonlinear, two-stage least squares, and 
latent variable using normal scores. For continuous observed variables, a 
nonlinear relationship could exist between two observed variables (i.e., 
X1 and X2 are curvilinear); a quadratic (nonlinear) term in the model 
(i.e., X2 = X 2

1) ; or a product of two observed variables (e.g., X3 = X1X2). 
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These three different types of interaction effects all involve continuous 
observed variables. For categorical observed variables, interaction effects 
are similar to analysis-of-variance and use the multiple-group SEM 
model (Schumacker & Rigdon, 1995). These continuous variable and cat-
egorical variable approaches also apply to latent variables (e.g., latent 
variable and latent class).

Given that so many different approaches exist, the categorical, latent vari-
able and two-stage least squares examples will be illustrated. Categorical 
interaction uses a multigroup (multisample) SEM model. The latent vari-
able interaction uses the product of individual latent variable scores that 
are computed and added to the PRELIS system file.

16.1.1 � Categorical Variable Approach

In the categorical variable interaction approach, different groups (sam-
ples) are defined by the different levels of the interaction variable. The 
basic logic is that if interaction effects are present, then certain parame-
ters should have different values in different groups (samples). Both main 
effects and interaction effects can be determined by using different groups 
(samples) to test for differences between intercepts and slopes. You accom-
plish this by running two different SEM categorical variable interaction 
models: (1) main effects for group differences holding slopes constant, and 
(2) interaction effects for group differences with both intercepts and slopes 
estimated. These models are sometimes referred to as intercept only and 
intercept-slope models.

The following two LISREL–SIMPLIS programs analyze data for two 
groups: boys versus girls, where group represents the categorical variable. 
Separate covariance matrices and means on the dependent and indepen-
dent variable are input to estimate the prediction of a math score, given a 
pretest score. The means are required; otherwise, the intercept values will 
be zero. The first LISREL–SIMPLIS program includes Equation: Math = 
CONST Pretest for the girls, but only Equation: Math = CONST for the 
boys, which permits different intercept values to be estimated while keep-
ing the slopes equal in the two groups:

Group Girls: Math and Pretest Scores
Observed Variables: Math Pretest
Covariance Matrix:
181.349
 84.219 182.821
Means: 82.15 78.35
Sample Size: 373
Equation: Math = CONST Pretest
Group Boys: Math and Pretest Scores
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Covariance Matrix:
174.485
 34.468 161.869
Means: 48.75 46.98
Sample Size: 249
Equation: Math = CONST
End of Problem

The results indicated that the slopes were equal (slope = .37), and the 
intercepts were different (53.26 versus 31.43). The main effect model for 
differences in intercepts with equal slopes, however, was not an accept-
able fit (c2 = 12.24, p = .002, df = 2).

Girls Group:

Math = 53.26 + 0.37*Pretest, Errorvar. = 155.07, R² = 0.14
    (3.04)  (0.038)          (8.81)
     17.53    9.73            17.59

Boys Group:

Math = 31.43 + 0.37*Pretest, Errorvar. = 155.07, R² = 0.12
    (1.95)   (0.038)          (8.81)
     16.13     9.73             17.59

The second LISREL–SIMPLIS program uses the Equation: Math = 
CONST Pretest in both groups, thus specifying that both intercepts 
and slopes are being tested for group differences. Conceptually, this 
implies a difference in the means (intercept) and a difference in the rate 
of change (slope).

Group Girls: Math and Pretest Scores
Observed Variables: Math Pretest
Covariance Matrix:
181.349
 84.219 182.821
Means: 82.15 78.35
Sample Size: 373
Equation: Math = CONST Pretest
Group Boys: Math and Pretest Scores
Covariance Matrix:
174.485
 34.468 161.869
Means: 48.75 46.98
Sample Size: 249
Equation: Math = CONST Pretest
End of Problem
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The results indicated that the intercepts (46.06 versus 38.75) and slopes 
(.46 versus .21) were different in the two groups. This model with main 
and interaction effects present had an acceptable model fit (c2 = 1.98, p =.16, 
df = 1). The main effect for group differences in math exam scores is given 
by the difference in the CONST values: 46.06 − 38.75 = 7.31. The interaction 
effect is given by the difference in the slope estimates of pretest values for 
the two groups: .46 − .21 = .25.

Girls group:

 Math = 46.06 + 0.46*Pretest, Errorvar. = 154.85, R2 = 0.20
    (3.80)  (0.048)            (8.80)
    12.13    9.65               17.59

Boys group:

 Math = 38.75 + 0.21*Pretest, Errorvar.= 154.85, R2 = 0.045
    (3.03)   (0.062)           (8.80)
    12.81      3.43              17.59

A categorical variable interaction model can represent a wide variety of 
interaction effects, including higher-order interactions, without requiring 
any substantial new methodological developments. This approach can 
also be used regardless of whether the interaction intensifies or mutes the 
effects of the individual variables. Because the interaction effect is repre-
sented in the difference between groups (samples), the researcher is able to 
test linear relations of variables within each group (sample), thus avoiding 
any potential complications in fitting the model. Finally, multiple group 
(sample) programs permit parameter constraints across groups thereby 
permitting many different hypotheses of group differences.

The categorical interaction approach, however, does have certain weak-
nesses (e.g., smaller subsamples of the total sample size are used). This 
could be a serious problem if some groups have low sample sizes that 
affect group parameter estimates. This reduction in sample size could 
also affect the results of the c2 difference tests. Thus, it is possible that the 
categorical-variable approach may yield group samples that are too small, 
resulting in a c2 test statistic that misleads the researcher into believing 
that an interaction effect exists, whether it does or not. A possible solu-
tion is to minimize the number of distinct parameters being compared in 
the model by fixing certain parameters to be invariant across the samples 
being compared.

The categorical-variable interaction approach is not recommended when 
hypothesizing interaction using continuous variables. The basic logic is 
that there is a loss of information when reducing a continuous variable 
to a categorical variable, for purposes of defining a group (i.e., recode age 
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into young and old categories). Group misspecification can also occur 
when forming groups. Where does one choose the point for dividing a 
continuous variable into a categorical variable to form the groups? How 
do you justify the arbitrary cut value (i.e., mean, median, or quartile)? 
Random-sampling error also ensures that some cases would be misclas-
sified, violating some basic assumptions about subject membership in a 
particular group.

16.1.2 � Latent Variable Interaction Model

A latent variable interaction model would hypothesize that the indepen-
dent latent variables (ksi1 and ksi2), as well as the product of ksi1 and ksi2 
(ksi12), predict a dependent latent variable (eta). The latent variable interac-
tion model is diagrammed in Figure 16.1a.

ETA V2

KSI1

V4

KSI2

V5

V3

V7 V8

V1

V9

V6

KSI12

gamma1

gamma2

gamma3

Figure 16.1a
Latent Variable Interaction Model (Schumacker, 2002).

16.1.2.1 � Computing Latent Variable Scores

The latent interaction variable approach uses a PRELIS system file and 
intermediate steps to create and put latent variable scores into the PRELIS 
system file (eta, ksi1, ksi2, and ksi12).

In LISREL, click on File, Open, and then locate the PRELIS SYSTEM 
FILE, raw.psf.
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You should see the following PRELIS system file spreadsheet with 
the 9 variables (V1 –V9). Also, a tool bar menu will appear across the 
top.

You can create a dependent latent variable score and two indepen-
dent latent variable scores, which will automatically be added to the 
PRELIS SYSTEM FILE, raw.psf, by using the following LISREL–SIMPLIS 
program:

Computing Latent Variable Scores
Observed Variables V1-V9
Raw Data from File raw.psf
Latent Variables : eta ksi1 ksi2
Relationships:
V1 = 1*eta
V2-V3 = eta
V4 = 1*ksi1
V5-V6 = ksi1
V7 = 1*ksi2
V8-V9 = ksi2
PSFfile raw.psf
End of Problem

(Note :  You will need to close then open the PRELIS system file, raw.psf, 
before you will see values for the three latent variables: eta, ksi1, and ksi2.)
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The PRELIS system file, raw.psf, is displayed below, and it does contain the 
three latent variables computed using the LISREL–SIMPLIS program above.

16.1.2.2 � Computing Latent Interaction Variable

You create the latent interaction variable by multiplying the latent variable 
scores ksi1 and ksi2. These latent variable scores are unbiased and produce 
the same mean and covariance matrix as the latent variables. A PRELIS 
program can be used to multiply the two independent latent variables 
to create the interaction latent variable, ksi12. The PRELIS NE command 
computes the latent interaction variable, which is automatically added to 
the PRELIS system file, raw.psf. The CO command will treat the new latent 
interaction variable as continuous rather than ordinal level of measure-
ment. The PRELIS program is:

Create Latent Interaction Variable
SY = raw.psf
NE ksi12 = ksi1*ksi2
CO ksi12
OU RA = raw.psf

Note :  You will need to close then open the PRELIS system file, raw.psf, 
before you will see the values for the interaction latent variable: ksi12. The 
PRELIS raw.psf file should now contain the latent interaction variable, 
ksi12, as shown below:
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You could alternatively create the latent interaction variable without run-
ning a PRELIS program. Simply, open the PRELIS system file, raw.psf, select 
Transformation on the tool bar menu, then click on Compute, and under-
neath Add Variables, click on Add. You should see the Add Variables dialog 
box. Now, simply enter the name for the latent interaction variable: ksi12.

Click OK and then the COMPUTE dialog box should appear. Now enter 
the equation to create the new latent interaction variable. Follow the 
instructions to drag the variable names into an equation in the Compute 
dialog box. You can also obtain an equal sign (=) and a product sign (*) by 
using the symbols on the calculator. Click on OK, and the latent interac-
tion variable will instantly appear in the PRELIS system file, raw.psf.
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(Note : If you do not find the PRELIS System File, raw.psf, you can follow 
these same steps with your own continuous variables.)

16.1.2.3 � Interaction Model Output

The PRELIS SYSTEM FILE, raw.psf, should now contain the latent inter-
action variable, ksi12. You can run a LISREL–SIMPLIS program to com-
pute the coefficients (gammas) with or without an intercept term in the 
structural equation. A LISREL–SIMPLIS program to compute the coef-
ficients without an intercept term is:

Latent Interaction Variable Model - No Intercept Term
Observed Variables: V1-V9 eta ksi1 ksi2 ksi12
Raw Data from File raw.psf
Sample Size = 500
Relationships:
eta = ksi1 ksi2 ksi12
Path Diagram
End of Problem

The resultant latent variable interaction model with standardized coef-
ficient is diagrammed in Figure 16.1b.

Chi-Square = 0.00, df = 0, P-value = 1.00000, RMSEA = 0.000

ksi1

ksi2

ksi12

eta 0.89

0.11

0.29

–0.04

0.34

0.08

0.04

Figure 16.1b
Interaction Model Output.

The structural equation from the LISREL–SIMPLIS computer output 
without the intercept term is:

eta = 0.078*ksi1 + 0.16*ksi2 – 0.029*ksi12, Errorvar. = 0.21 , R² = 0.11
          0.033)           (0.025)        (0.033)                              (0.013)
           2.36              6.36          –0.89                                  15.75
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16.1.2.4 � Model Modification

The coefficient for the interaction latent variable, ksi12, is not statistically 
significant (T = - 0.89). Therefore, you would drop this latent variable from 
the model and use only ksi1 and ksi2.

The modified model output with standardized estimates would appear 
as diagrammed in Figure 16.1c.

Chi-Square = 0.00, df = 0, P-value = 1.00000, RMSEA = 0.000

ksi1

ksi2

eta 0.89

0.10

0.29

0.34

Figure 16.1c
Interaction Model Modified Output.

The program produces the following output, which yields the same 
R-squared value, hence the latent interaction variable did not contribute 
to the prediction of eta.

16.1.2.5 � Structural Equations—No Latent Interaction Variable

 eta = 0.076*ksi1 + 0.16*ksi2, Errorvar.= 0.21 , R² = 0.11
      (0.033)      (0.025)               (0.013)
       2.31         6.35                 15.76

(NOT E 1 :  While the PRELIS system file is open, you can use the pull-
down menu to run these models. A latent interaction variable is typically 
nonnormal, even when the latent variables are normally distributed. A 
solution to this problem is to use the Normal Score option in the pull down 
menu for the ksi1, ksi2, and ksi12 latent variables prior to analysis.

(NOT E 2 :  If eta, ksi1, ksi2, and ksi12 are variables in the PRELIS data 
set, another analysis method is available. Select, STATISTICS then use 
Regressions to enter the variables into the model equation, that is, RG eta 
on ksi1 ksi2 ksi12. Alternatively, the RG command in a PRELIS program 
can be used to conduct univariate or multivariate regression, including 
ANOVA, ANCOVA, MANOVA, and MANCOVA, as well as other varia-
tions of the general multivariate linear model using a list of Y and X vari-
ables [i.e., RG Y-Varlist ON X-Varlist]).
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16.1.3 � Two-Stage Least Squares (TSLS) Approach

Recent developments in nonlinear structural equation modeling have 
focused on full information methods (e.g., maximum likelihood [ML] or 
asymptotically distribution free methods [ADF or WLS]) with a concern 
about estimating parameters and standard errors. We recommend boot-
strap estimates of the parameters and standard errors in nonlinear mod-
els, given these estimation methods, because the observed and/or latent 
interaction variables don’t meet the multivariate normality assumption. 
Other problems or sources of error could exist, which is why start values 
are recommended to aid convergence (i.e., the initial TSLS estimates could 
be replaced with user defined start values). The two-stage least-squares 
(TSLS) estimates and their standard errors are obtained without itera-
tions and therefore provide the researcher with clues to which parameters 
exceed their expected values (e.g., correlations with values greater than 1.0 
in a nonpositive definite matrix). TSLS estimates therefore provide helpful 
information to determine whether the specified model is reasonable.

Bollen (1995, 1996) has indicated that nonlinear SEM models can be esti-
mated using instrumental variables in two stage least squares (TSLS). A 
two-stage least squares analysis using instrumental variables is easily run 
in LISREL–PRELIS (Jöreskog, Sörbom, du Toit, & du Toit, 2000, pp. 172–174) 
using the following RG command (see files KJTSLS1.PR2 and KJTSLS2.PR2):

Estimating Kenny-Judd Model by Bollen’s TSLS
DA NI = 5
LA
Y X1 X2 X3 X4
RA = KJUDD.RAW
CO ALL
NE X1X3 = X1*X3
NE X1X4 = X1*X4
NE X2X3 = X2*X3
NE X2X4 = X2*X4
RG Y ON X1 X3 X1X3 WITH X2 X4 X2X4 RES=U
OU RA = KJRES.RAW

The TSLS results are as follows.

Estimated Equations

Y = 0.936 + 0.340*X1 + 0.399*X3 + 0.965*X1X3 + Error, R² = 0.594
      (1.011)  (0.115)   (0.0883)    (0.164)
       0.926    2.948     4.516        5.899

The latent variable score approach is also easily run using PRELIS and 
SIMPLIS programs (Jöreskog, Sörbom, du Toit, & du Toit, 2000, pp. 173; 
see files KJUDD.PR2, KENJUDD.SPL, and KENJUDD.PR2). The following 
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PRELIS program KJUDD.PR2, creates the PRELIS SYSTEM FILE, KJUDD.
PSF, the SIMPLIS program KENJUDD.SPL computes the latent variable 
scores, and the PRELIS program KENJUDD.PR2 computes the parameter 
estimates in the SEM interaction model. The PRELIS program for comput-
ing the PRELIS SYSTEM FILE is:

Computing PSF file from KJUDD.RAW
DA NI = 5
LA; Y X1 X2 X3 X4
RA = KJUDD.RAW
CO ALL
OU MA = CM RA=KJUDD.PSF

The SIMPLIS program for computing the latent variable scores is:

Estimating the Measurement Model in the Kenny–Judd Model
 and Latent Variable Scores
System File from File KJUDD.DSF
Latent Variables Ksi1 Ksi2
Relationships
X1 = 1*Ksi1
X2 = Ksi1
X3 = 1*Ksi2
X4 = Ksi2
PSFfile KJUDD.PSF
Path Diagram
End of Problem

The PRELIS program for computing the parameter estimates in the SEM 
interaction model is:

Estimating Kenny–Judd Model from Latent Variable Scores
SY = KJUDD.PSF
CO ALL
NE Ksi1Ksi2 = Ksi1*Ksi2
RG Y ON Ksi1 Ksi2 Ksi1Ksi2
OU

Estimated Equations

Y = 1.082 + 0.232*Ksi1 + 0.290*Ksi2 + 0.431*Ksi1Ksi2 + Error, R² = 0.381
     (0.0207)  (0.0297)    (0.0218)      (0.0261)         Error Variance = 0.393
      52.196     7.814         13.281       16.540

Interaction models comprise many different types of models. The use of 
continuous variables, categorical variables, nonlinear effects, and latent 
variables has intrigued scholars over the years. The current approaches 
that appear easy to model are the multigroup categorical approach and 
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the latent variables score approach, because they are not affected by many 
of the problems discussed next.

The testing of interaction effects can present problems in structural equa-
tion modeling. First, you may have the problem of model specification. Linear 
models simplify the task of determining relations to investigate and distribu-
tional assumptions to consider, but this may not be the case in latent variable 
interaction models. Second, discarding the linearity assumption opens up 
the possibility of several product indicant variable and latent variable interac-
tion combinations, but this also serves to magnify the critical role of theory in 
focusing the research effort. Third, a researcher who seeks to model categori-
cal interaction effects must also collect data that spans the range of values in 
which interaction effects are likely to be evident in the raw data, and must 
collect a sample size large enough to permit subsamples. Fourth, we have 
noted that the statistical fit index and parameter standard errors are based on 
linearity and normality assumptions, and we may not have robust results to 
recognize the presence of an interaction effect unless it is substantial.

The continuous variable approach does have its good points. It is pos-
sible to check for normality of variables, and to standardize them (Normal 
Score option), and the approach does not require creating subsamples 
or forming groups where observations could be misclassified, nor does 
it require the researcher to categorize a variable and thereby lose infor-
mation. Moreover, the continuous variable approach is parsimonious. 
Basically, all but one of the additional parameters involved in the interac-
tion model are exact functions of the main-effects parameters, so the only 
new parameters to be estimated are the structure coefficient for the latent 
interaction independent variable and the prediction equation error.

The continuous variable approach also has several drawbacks. First, 
only a few software programs can perform the necessary nonlinear 
constraints, and the programming for testing interaction effects in the 
traditional sense is not easy. Second, if you include too many indicator 
variables of your latent independent variables, this approach can become 
very cumbersome. For example, if one latent independent variable, Factor 
1, has n1 measures and the other latent independent variable, Factor 2, 
has n2 measures, then the interaction term, Factor 1 x Factor 2, could have 
n1 x n2 measures. If each independent latent variable has five indicator 
variables, then the multiplicative latent independent variable interac-
tion would involve 25 indicators. Including the five measures for each of 
the two main-effect latent independent variables and two indicators of a 
latent dependent variable, the model would have 37 indicator variables 
before any other latent-variable relationships were considered. Third, the 
functional form of the interaction needs to be specified. The simple mul-
tiplicative interaction presented here hardly covers other types of interac-
tions, and for these other types of interactions there is little prior research 
or available examples to guide the researcher.
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A fourth problem to consider is multicollinearity. It is very likely that 
the interaction factor will be highly correlated with the observed variables 
used to construct it. This multicollinearity in the measurement model 
causes the interaction latent independent variable to be more highly cor-
related with the observed variables of other main effect latent independent 
variables than each set of observed variables are with their own respec-
tive main effect latent independent variables. For multiplicative interac-
tions between normally distributed variables, multicollinearity could be 
eliminated by centering the observed variables (using scores expressed 
as deviations from their means) before computing the product variable. 
However, centering the variables alters the form of the interaction relation-
ship. Researchers who want to model other types of interactions may find 
no easy answer to the problem of multicollinearity (Smith & Sasaki, 1979).

A fifth concern relates to distributional problems, which are more 
serious than those associated with linear modeling techniques using 
observed variables only. If the observed variables are nonnormal, then 
the variance of the product variable can be very different from the val-
ues implied by the basic measurement model, and the interaction effect 
will perform poorly. Of course, permissible transformations may result 
in a suitable, normal distribution for the observed variables. The resul-
tant nonnormality, however, in the observed variables violates the distri-
butional assumptions associated with the estimation methods used, for 
example, maximum-likelihood. Furthermore, estimation methods that do 
not make distributional assumptions may not work for interaction mod-
els. Basically, the asymptotic weight matrix associated with the covariance 
matrix for an interaction model may be nonpositive definite because of 
dependencies between moments of different observed variables that are 
implied by the interaction model. In any case, we would recommend that 
you bootstrap the parameter estimates and standard errors to achieve a 
more reasonable estimate of these values.

When using the latent variable score approach you should consider 
bootstrapping the standard errors because the estimation method used 
may give inaccurate estimates of standard errors given violation of 
the distributional assumption for the interaction model. Basically, the 
asymptotic weight matrix associated with the covariance matrix for an 
interaction model may be nonpositive definite because of dependencies 
between moments of different observed variables that are implied by the 
interaction model. In any case, we would recommend that you bootstrap 
the parameter estimates and standard errors to achieve a more reason-
able estimate of these values (Bollen & Stine, 1993; Mooney & Duval, 
1993; Lunneborg, 1987; Stine, 1990; Jöreskog & Sörbom, 1993a; and Yang-
Wallentin & Jöreskog, 2001).

In our examples, we have assumed that the relationships in our mod-
els have been linear (i.e., the relationships among all variables, observed 
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and latent, could be represented by linear equations). Although the use of 
nonlinear and interaction effects is popular in regression models (Aiken & 
West, 1991), the inclusion of interaction hypotheses in path models have been 
minimal (Newman, Marchant, & Ridenour, 1993), and few examples of non-
linear factor models have been provided (McDonald, 1967; Etezadi‑Amoli 
& McDonald, 1983). SEM models with interaction effects are now possible 
and better understood due to several scholars including Kenny and Judd 
(1984), Hayduk (1987), Wong and Long (1987), Bollen (1989), Higgins and 
Judd (1990), Cole, Maxwell, Arvey, and Salas (1993), Mackenzie and Spreng 
(1992), Ping (1993, 1994, 1995), Jöreskog and Yang (1996), Schumacker and 
Marcoulides (1998), Algina and Moulder (2001), du Toit and du Toit (2001), 
Moulder and Algina (2002), and Schumacker (2002), to name only a few. 

Jöreskog and Yang (1996) do provide additional insights into model-
ing interaction effects, given the problems and concerns discussed here. 
Jöreskog (2000) discussed many issues related to interaction modeling and 
included latent variable scores in LISREL that are easy to compute and 
include in interaction modeling. Schumacker (2002) compared the latent 
variable score approach to the continuous variable approach using LISREL 
matrix command language and found the parameter estimates to be similar 
with standard errors reasonably close. Our recommendation would be to 
use the latent variable score approach and bootstrap the standard errors. If 
unfamiliar with the bootstrap approach, then use the Normal Score option 
with interaction variables to avoid nonnormal issues when testing interac-
tion effects.

Structural equation models that include interaction effects are not prev-
alent in the research literature, in part, because of all the concerns men-
tioned here. The categorical variable approach using multiple samples and 
constraints has been used most often. The latent variable score approach 
using normal scores is a useful way to model interaction with latent vari-
ables. Hopefully, more SEM research will consider interaction hypotheses 
given the use of latent variable scores and the use of Normal Score data 
conversion for main effect and interaction variables in LISREL–PRELIS.

16.2 � Latent Growth Curve Models

Repeated measures analysis of variance has been widely used with 
observed variables to statistically test for changes over time. SEM advances 
the longitudinal analysis of data to include latent variable growth over 
time while modeling both individual and group changes using slopes and 
intercepts (McArdle & Epstein, 1987; Stoolmiller, 1995; Byrne & Crombie, 
2003). Latent growth curve analysis conceptually involves two different 
analyses. The first analysis is the repeated measures of each individual 
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across time that is hypothesized to be linear or nonlinear. The second 
analysis involves using the individual’s parameters (slope and intercept 
values) to determine the difference in growth from a baseline. The latent 
growth curve model (LGM) represents differences over time that takes 
into account means (intercepts) and rate of change (slopes), at the indi-
vidual or group level.

LGM permits an analysis of individual parameter differences, which 
is critical to any analysis of change. It describes not only an individual’s 
growth over time (linear or nonlinear), but also detects differences in 
individual parameters over time. LGM using structural equation model-
ing can test the type of individual growth curve, use time varying cova-
riates, establish the type of group curve, and include interaction effects 
in latent growth curves (Li, Duncan, T.E., Duncan, S.C., Acock, Yang-
Wallentin, & Hops, 2001). The LGM approach, however, requires large 
samples, multivariate normal data, equal time intervals for all subjects, 
and change that occurs as a result of the time continuum (Duncan. & 
Duncan, 1995).

The latent growth curve model illustrates the use of slope and intercept 
as latent variables to model differences over time. The data set contains 
168 adolescent responses over a 5-year period (age 11 to age 15) regard-
ing the tolerance toward deviant behaviors, with higher scores indicating 
more tolerance of such behavior. The data was transformed (i.e., log X) to 
create equal interval linear measures from ordinal data. The latent growth 
curve model is diagrammed in Figure 16.2a.

Slope

Intercept

Age11

Age12

Age13

Age14

Age15

E11

E12

0

1

2

3
4

1 1
1

1

1

E13

E14

E15

Figure 16.2a
Latent Growth Curve Model (Linear).
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The slope parameters are coded 0, 1, 2, 3, and 4 to establish a linear 
trend with zero used as a common starting point. Other polynomial coef-
ficients could be used for quadratic or cubic trend. The intercept param-
eters are coded 1, 1, 1, 1, and 1 to indicate means for the different age 
groups. A LISREL–SIMPLIS program was created that shows how these 
parameters are stipulated for the two latent variables, slope and intercept. 
It also includes a command to correlate slope and intercept (curved arrow 
in diagram) and a special term, CONST, to designate means. The LISREL–
SIMPLIS latent growth curve model program is:

16.2.1 � Latent Growth Curve Program

Latent Growth Model
Observed Variables: age11 age12 age13 age14 age15
Sample size 168
Correlation matrix
1.000
 .161 1.000
 .408 .348 1.000
 .373 .269 .411 1.000
 .254 .143 .276 .705 1.000
Means .201 .226 .326 .417 .446
Standard deviations .178 .199 .269 .293 .296
Latent Variables: slope intercept
Relationships:
age11 = CONST + 0 * slope + 1 * intercept
age12 = CONST + 1 * slope + 1 * intercept
age13 = CONST + 2 * slope + 1 * intercept
age14 = CONST + 3 * slope + 1 * intercept
age15 = CONST + 4 * slope + 1 * intercept
Let slope and intercept correlate
Path Diagram
End of Problem

The initial LISREL–SIMPLIS model results indicated a poor model fit 
(chi-square = 49.74, df = 7, p = 0.00). The correlation between the intercept 
values (group means) and the slope (linear growth) was zero indicating 
that level of tolerance at age 11 did not predict growth in tolerance across 
the other age groups. However, the group means indicated otherwise, so 
model modification was conducted; the means for each age are:

 age11     age12    age13    age14     age15
 -------- -------- -------- -------- --------
 0.20      0.23     0.33     0.42      0.45

Modification indices were indicated that recommended correlating the 
error covariance between age 11 and age 12, as well as between age 14 

Y102005.indb   343 3/22/10   3:26:52 PM



344	 A Beginner’s Guide to Structural Equation Modeling

and age 15. These are apparently the two transition periods in the latent 
growth curve model were more measurement disturbance was present.

16.2.2 � Model Modification

The LISREL–SIMPLIS program was rerun with the following added 
commands:

Let error covariance between age11 and age12 correlate
Let error covariance between age14 and age15 correlate

After modification, the latent growth curve model had a more acceptable 
model fit (chi-square = 11.35, df = 5, and p = .045).

The final latent growth curve model output with standardized coeffi-
cients is diagrammed in Figure 16.2b.

Age11

Age12

Age13

Age14

Age15

Slope0.23

0.35

0.49

0.52

0.51

0.57

0.54
Intercept

–0.53

0.00

Figure 16.2b
Latent Growth Model Output.

The individual slopes increased over time:

Group Slope

Age 11 .00
Age 12 .23
Age 13 .35
Age 14 .49
Age 15 .62
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The intercepts decreased over time:

Group Intercept

Age 11 .92
Age 12 .80
Age 13 .61
Age 14 .57
Age 15 .54

The negative correlation between the slope and intercept correctly indi-
cates the increase in slope values over time with a corresponding decrease 
in intercept values over time (r = –.53).

(Note :  The LISREL–SIMPLIS computer output does not list the slope and 
intercept values, but does display them in the model diagram. They were 
copied and listed above for convenience.)

A test of linear rate of growth in the latent growth curve model seemed 
appropriate because the means increased from .20 at age 11 to .45 at age 
15. The latent growth curve model is appropriately called a Latent Growth 
Curve Structured Means Model because group means as well as covari-
ance were specified. There were individual differences in the slopes over 
time. The negative correlation between the intercept values (group means), 
and the slope values (linear growth) indicated that as age increased the 
level of tolerance decreased.

This LGM model indicated a linear rate of growth in adolescent toler-
ance for deviant behavior using the age 11 as the baseline for assessing 
linear change over time. You should graph these mean values across the 
age levels to graphically display the trend. You should also interpret the 
correlation between the intercept and slope because a positive value would 
indicate that high initial status at age 11 has a greater rate of change, while 
a negative correlation would indicate that high initial status at age 11 has 
a lower rate of change. If the average slope value is zero, then no linear 
change has occurred. Finally, you can assess how measurement errors 
across adjacent years are correlated (e.g., lagged correlation in ARIMA 
models). This ability to model measurement error is a unique advantage 
of LGM over traditional ANOVA repeated measure designs.

16.3 � Monte Carlo Methods

Researchers typically collect a random sample of data and determine if the 
sample data fit a theoretical model. Model validation (chapter 12) is then 
conducted to examine stability of parameter estimates and standard errors. 
Generalizations are then usually made to the population parameters.
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We obviously seldom know the population model, data, or parameters, 
so if we wish to investigate how statistics are affected under violations of 
assumptions, etc., we need to specify the population model, generate pop-
ulation data (covariance matrix), and now compute model parameters to 
examine how parameter estimates, standard errors, and fit indices change, 
when the model is misspecified. Monte Carlo results are made easier by 
writing parameter estimates, standard error estimates, and measures of 
fit to a file by using PV (PV = <filename>; stores parameter estimates), SV 
(SV = <filename>; stores standard errors); and GF (GF = <filename>, stores 
goodness-of-fit indices) keywords on the LISREL OUTPUT command in 
the LISREL–SIMPLIS program. The RP command permits replications, 
which is also useful in Monte Carlo studies to examine how these values 
change.

The Monte Carlo approach could involve simulating population data, 
generating variables from a specified population covariance matrix, or 
generating data from a specified model. Monte Carlo methods involve 
using a pseudo-random number generator or specifying known popula-
tion values to produce raw data for a population covariance matrix. (Note: 
Bang, Schumacker, and Schlieve [1998] found that pseudo-random num-
ber generators do not perform the same way with many yielding non-
random [nonnormal] distributions with sample sizes of less than 10,000). 
Our interest in Monte Carlo methods is to determine the robustness of 
our sample statistics, which we can only know when our population 
model and/or parameters are known. The PRELIS approach to simula-
tion of population data (covariance matrix) is described next for the path 
model in Figure 16.3.

16.3.1 � PRELIS Simulation of Population Data

PRELIS is considered a preprocessor for LISREL and as such screens data, 
creates different types of matrices, and has other useful features for data 
creation and data manipulation. PRELIS can easily produce several dif-
ferent types of data distributions—for example, normal and nonnormal. 
We will create multivariate normally distributed population data. Simply 
click on File, New, and then select PRELIS Data.
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An empty PRELIS Data window should appear as indicated below.

We now need to insert the number of variables and the number of cases 
that you want to create. We first create the number of variables, which are 
four in Figure 16.3 (V1–V4). We select Data from the tool bar menu, then 
Define Variables. A Define Variables dialog box appears next and then we 
click on Insert.

V2

V3

V1 V4

Figure 16.3
Path Model (Monte Carlo).
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An Add Variables dialog box now appears and we enter the names of our 
variables, that is, V1-V4., and click OK. These variables will now appear in 
the Define Variables dialog box. Click OK in the Define Variables dialog box 
and they will now appear in the PRELIS Data window.

Next, we select Data from the Tool Bar menu, then Insert Cases. We enter 
10000 and click OK.
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The PRELIS Data window now appears with four variables and 10,000 
cases, but with zeroes in the cells.

We are now ready to replace the zeroes with numerical values by select-
ing Transformation from the tool bar menu, then Compute; however, we 
are first prompted to save our work as a PRELIS SYSTEM FILE (population.
psf ). (Note: Choose a directory to save the file in that will also contain your 
LISREL–SIMPLIS program.)
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We can now carefully follow the directions and use the mouse to 
drag and drop variables and click on n(0,1) to enter NRAND into the 
equations. The equations were arbitrarily chosen to have a mean and 
some correlation with other variables. (Note: Navigating this win-
dow will involve a learning curve; for example, click on Next line 
to add the next variable via drag and drop. You also need to use the 
mouse to enter numbers and mathematical symbols). When finished, 
click OK.

After a few minutes, you will see the computed data values in the 
PRELIS system file (population.psf ). Click on the save file icon to save the 
data file. You can now use many of the PRELIS tool bar menu features to 
calculate statistics or produces graphs of the variables.
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Click on Statistics in the tool bar menu, and select Output Options to 
save the raw data from the PRELIS system file (population.psf ) into a cova-
riance matrix (population.cov). (Note: A PRELIS program will appear in a 
dialog box to show that a program was written to output the covariance 
matrix. It will also indicate that variables are treated as continuous [CO], 
provide a frequency distribution for each variable, skewness and kurtosis, 
and the means and standard deviations of the V1 to V4 variables you cre-
ated as population parameters).
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The covariance matrix (population.cov) can now be input into a LISREL–
SIMPLIS program (population.spl) for the model in Figure 16.3. (Note: We 
wanted to treat this covariance matrix as a population matrix to obtain 
population parameters, so we generated 10,000 cases.) The LISREL–
SIMPLIS program (population.spl) would be:

PRELIS Data as Population Data for Covariance Matrix
Observed variables V1 V2 V3 V4
Sample size 10000
Covariance matrix from file population.cov
Equations:
V1 = V2 V3
V4 = V1 V2 V3
Path Diagram
LISREL OUTPUT SS SC PV=parameter SV=error GF=fit
End of problem

We can now use the data set or the covariance matrix in a Monte Carlo 
study to investigate what parameter estimates and standard errors might 
be, given a random sample from the 10,000 cases that constitute the popu-
lation. We can also save the parameter estimates (PV), standard errors 
(SV), and model goodness-of-fit indices (GF) to separate files using the 
LISREL OUTPUT command (Note: SS = standardized solution; SC = com-
pletely standardized solution).

(Note :  Adding the LISREL OUPUT command RP = 10 would repeat the 
analysis 10 times in a Monte Carlo study).

16.3.2 � Population Data from Specified Covariance Matrix

There are many different software packages that can be used to generate data 
given specification of a population covariance matrix for use in Monte Carlo 
studies. We chose SPSS, SAS, and LISREL matrix syntax to illustrate how to 
generate population data from specification of a covariance matrix.

16.3.2.1 � SPSS Approach

The SPSS MATRIX routine using the Cholesky decomposition can be used to 
generate raw data and output an SPSS save file. The SPSS save file can then 
be imported into a LISREL program. The following SPSS MATRIX program 
only requires the population covariance or correlation matrix (r), sample 
size (n), and output file name, Save <filename>. (Note: Save corr/outfile = *. ; 
it will output data into an SPSS Untitled dialog box which you can then save 
as an SPSS save file.) The SPSS MATRIX program requires a symmetrical 
matrix as input. To execute the SPSS MATRIX program, open SPSS, select 
File, New, and then Syntax. Enter the SPSS Matrix program into the syntax 
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window, save it, and then click on the run command on the tool bar menu to 
execute the program and save the data into an SPSS save file, sample.sav.

MATRIX.
compute popr =
 {1, .4, .3, .2;
 .4, 1, .6, .7;
 .3, .6, 1, .8;
 .2, .7, .8, 1}.
Print popr.
compute pi = 3.14159.
compute rown = nrow(popr).
compute n = 10000.
compute corr = sqrt(-2*ln(uniform(n,rown)))&*cos((2*pi)*
  uniform(n,rown)).
compute corr=corr*chol(popr).
save corr /outfile = pop.sav.
END MATRIX.

We had the SPSS Matrix program print the popr matrix to verify it was 
read correctly. The SPSS output should look like the following:

Run MATRIX procedure:
POPR
 1.000000000 .400000000 .300000000 .200000000 
 .400000000 1.000000000 .600000000 .700000000 
 .300000000 .600000000 1.000000000 .800000000 
 .200000000 .700000000 .800000000 1.000000000 
------ END MATRIX -----

We can now open the SPSS save file, pop.sav, and compute the bivariate 
correlation between the variables, COL1 – COL4, which can be renamed, 
if desired.
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The correlation values obtained from SPSS bivariate correlation routine 
will approximate the ones specified in the popr matrix. (Note: The correla-
tions should be within .01 of the population correlation/covariance val-
ues. Also, every time you run the SPSS MATRIX program you will get 
slightly different values for the correlations, unless using a random seed 
number.) The SPSS Correlation Output is in Table 16.1.

Table 16.1

SPSS Correlation Output

Correlations

COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4

COL1 Pearson Correlation 1.000 .404a .304a .201a

Sig. (two-tailed) .000 .000 .000
N 10000.000    10000     10000  10000

COL2 Pearson Correlation .404a 1.000 .593a .694a

Sig. (two-tailed) .000 .000 .000
N    10000 10000.000    10000  10000

COL3 Pearson Correlation .304a .593a 1.000 .800a

Sig. (two-tailed) .000 .000 .000
N    10000    10000 10000.000   10000

COL4 Pearson Correlation .201a .694a .800a 1.000
Sig. (two-tailed) .000 .000 .000
N    10000    10000     10000 10000.000

a	 Correlation is significant at the 0.01 level (two-tailed).

16.3.2.2 � SAS Approach

A SAS program can also be written to produce data from a population 
covariance matrix using a normal distribution function. The SAS program 
is written as:

proc iml; /* Generate multivariate normal data in SAS/IML */
cov = {1 .4 .3 .2,
       .4 1 .6 .7,
       .3 .6 1 .8,
       .2 .7 .8 1};
 print cov; /* population correlation matrix */
   v = nrow(cov); /* calculate number of variables */
   n = 10000; /* input number of cases */
   seed = 12345; /* random seed number */
   l = t(root(cov)); /* calculate cholesky root of cov matrix */
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   z = normal(j(v,n, seed)); /* generate nvars*samplesize normal distribution */
   x = l*z; /* premultiply by cholesky root */
   tx = t(x); /* transpose of X */
   create cor from tx; /* write out sample data to sas dataset */
   append from tx;
quit;
Proc corr data = cor; /* sample covariance matrix */
 var col1 col2 col3 col4;
run;

The SAS population matrix and the sample matrix from Proc corr should 
be similar, as desired. Changing the seed number, however, will produce 
slightly different results each time you run the SAS program. Our SAS 9.1 
computer output looked like:

 COV
   1    0.4    0.3    0.2
 0.4      1    0.6    0.7
 0.3    0.6      1    0.8
 0.2    0.7    0.8      1

 The CORR Procedure

 4 Variables:    COL1    COL2    COL3    COL4

 Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum
COL1 10000 0.00591 1.00676  59.12856 −4.06923 4.13280
COL2 10000 −0.00628 1.00321 −62.81136 −4.47883 3.55955
COL3 10000 0.01407 1.00337 140.74048 −3.50194 3.81102
COL4 10000 0.00662 0.99853 66.17666 −3.45835 3.63828

 Pearson Correlation Coefficients, N = 10000
 Prob > |r| under H0: Rho=0

COL1 COL2 COL3 COL4
COL1 1.00000 0.41708 0.32340 0.22719
COL2 0.41708 1.00000 0.60942 0.70242
COL3 0.32340 0.60942 1.00000 0.80413
COL4 0.22719 0.70242 0.80413 1.00000

16.3.2.3 � LISREL Approach

It is also possible to generate multivariate normal variables with a desired 
population covariance matrix using either the Cholesky decomposition or 
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factor pattern matrix approach in LISREL. We will first input four variables 
and use the Cholesky decomposed matrix of coefficients to compute four 
new variables with the desired covariance structure. Secondly, we will 
use a pattern matrix approach to generate the same Cholesky decom-
posed matrix of coefficients that one would use to compute the same new 
multivariate normal variables.

16.3.2.3.1 � Cholesky Decomposition Approach

Cholesky decomposition of our symmetric population covariance matrix, 
S, yields a Lambda Y matrix. The coefficients in the Lambda Y matrix are 
then used to compute the new variables. You can save either a covari-
ance matrix (RS option) or raw data (RA option); we saved a covariance 
matrix (POP.CM). You will need to run a series of programs to accom-
plish the generation of the multivariate normally distributed data for 
your variables.

Program 1 is a LISREL matrix program which inserts a specified popu-
lation covariance matrix (CM) with the number of variables, Y1–Y4 (LE), 
indicated for a model (MO) that has the Lambda Y values to be freely esti-
mated (FR). The model must be saturated (c2 = 0) and the residual errors 
set to zero (TE = ZE). The resulting Lambda Y matrix provides the coeffi-
cients to be used to compute the new multivariate normal variables, V1–V4 
(LA). (Note: You must specify, all Y variables and associated matrices in 
the MO command line; or correspondingly, all X variables and associated 
matrices; but not a mix of X and Y variables and associated matrices or the 
program will not work.)

Program 1
! Cholesky decomposition matrix approach
DA NI = 4 NO = 10000
LA
V1 V2 V3 V4
CM
 1.000
 0.41708 1.000
 0.32340 0.60942 1.000
 0.22719 0.70242 0.80413 1.000
MO NY = 4 NE = 4 LY = FU,FI BE = FU,FI PS = SY,FI TE =ZE
LE
 Y1 Y2 Y3 Y4
VA 1.0 PS (1, 1) PS (2, 2) PS (3, 3) PS (4, 4)
FR LY (1, 1) LY (2, 2) LY (3, 3) LY (4, 4)
FR LY (2, 1) LY (3, 1) LY (4, 1)
FR LY (3, 2) LY (4, 2)
FR LY (4, 3)
OU ND = 5 RS
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LAMBDA-Y

Y1 Y2 Y3 Y4
-------- -------- -------- --------

 V1 1.00000 - - - - - -
 V2 0.41708 0.90887 - - - -
 V3 0.32340 0.52212 0.78918 - -
 V4 0.22719 0.66859 0.48351 0.51729

Program 2 uses the Lambda Y values in a PRELIS program to compute 
the new variables, V1-V4. The Y1–Y4 variables are first generated from nor-
mally distributed random data (NRAND function) using a seed value (IX = 
12345). Next, new variables are created for V1-V4 using the coefficients from 
the Lambda Y matrix and saved in a covariance matrix (CM = POP.CM). 
The Y1-Y4 variables are deleted (SD). The RA = <filename> option would 
save raw data for the variables instead of a matrix if so desired.

Program 2
! Compute new multivariate normal variables from Lambda Y 
matrix
DA NO = 10000
NE Y1 = NRAND
NE Y2 = NRAND
NE Y3 = NRAND
NE Y4 = NRAND
NE V1 = 1 * Y1
NE V2 = .41708 * Y1 + .90887 * Y2
NE V3 = .32340 * Y1 + .52212 * Y2 + .78918 * Y3
NE V4 = .22719 * Y1 + .66859 * Y2 + .48351 * Y3 + .51729* Y4
CO ALL
SD Y1-Y4
OU CM = POP.CM ND = 5 XM IX = 12345

Finally, Program 3 would run a LISREL–SIMPLIS program with the gen-
erated population covariance matrix to produce the specified model in 
Figure 16.3.

Program 3
Path model Figure 16.3 with Cholesky decomposed matrix 
variables
Observed variables V1 V2 V3 V4
Sample size 10000
!Covariance Matrix from file POP.CM
Covariance Matrix
0.99641
0.42637 1.0185
0.32652 0.62854 1.0379
0.23881 0.72385 0.83883 1.0322
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 Equation:
V1 = V2 V3
V4 = V1 V2 V3
Number of Decimals = 5
Path Diagram
End of Problem

(Note :  We used sample size of 10,000 and 5 decimal places to avoid 
rounding error and non-convergence problems.)

16.3.2.3.2 � Pattern Matrix Approach

The pattern matrix approach is possible by inputting the pattern matrix 
(PA) and corresponding lambda X matrix (MA) with the specified covari-
ance matrix (CM). The results would be the same as before. The Lambda 
X coefficients would be the same as before and used in Program 2 above 
to compute multivariate normal variables. The LISREL program would be 
written as:

! Pattern Matrix approach
DA NI = 4 NO = 10000
LA
V1 V2 V3 V4
CM
 1.000
 0.41708 1.000
 0.32340 0.60942 1.000
 0.22719 0.70242 0.80413 1.000
MO NX = 4 NK = 4 PH = ID TD =ZE
PA LX
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1
MA LX
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1
OU ND = 5 RS

 LAMBDA-X

KSI 1 KSI 2 KSI 3 KSI 4
-------- -------- -------- --------

V1 1.00000 - - - - - -
V2 0.41708 0.90887 - - - -
V3 0.32340 0.52212 0.78918 - -
V4 0.22719 0.66859 0.48351 0.51729
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( Note :  It is also straightforward to compute the Cholesky decomposed 
matrix using SPSS to check your programming. The SPSS MATRIX pro-
cedure with the original population covariance matrix used (S) and the 
resulting Cholesky decomposed matrix [SCHOL] is output as follows.)

MATRIX.
Compute S = {1.00000, .41708, .32340, .22719;
              .41708, 1.00000, .60942, .70242;
              .32340, .60942, 1.00000, .80413;
              .22719, .70242, .80413, 1.00000}.
Print S.
Compute SCHOL = T(CHOL(S)).
Print SCHOL.
END MATRIX.

Run MATRIX procedure:

S
 1.000000000 .417080000 .323400000 .227190000
 .417080000 1.000000000 .609420000 .702420000
 .323400000 .609420000 1.000000000 .804130000
 .227190000 .702420000 .804130000 1.000000000
SCHOL
 1.000000000 .000000000 .000000000 .000000000
 .417080000 .908869778 .000000000 .000000000
 .323400000 .522116963 .789180789 .000000000
 .227190000 .668592585 .483505465 .517292107

16.3.3 � Covariance Matrix from Specified Model

A more appropriate way to generate a population covariance matrix is 
from a specified population model. This permits a better way to exam-
ine how model misspecification affects overall model fit as well as pre-
defined population parameter values. Unfortunately, the population 
model specification and subsequent generation of population model 
parameters is not directly possible using LISREL or PRELIS programs. 
The reason is that not all matrices, especially covariance and certain error 
terms, can be specified in the programs. The solution is to (1) specify a 
population model, (2) define what matrices are indicated in the popula-
tion model, (3) pick values for the population parameters in the matrices, 
and then (4) use matrix operations to compute the population covariance 
matrix. In a final step (5), you can verify that the population model with 
the population parameters was correctly specified by using the popula-
tion covariance matrix in a LISREL–SIMPLIS program. We will now take 
you through these steps to illustrate a better way to conduct Monte Carlo 

Y102005.indb   359 3/22/10   3:26:57 PM



360	 A Beginner’s Guide to Structural Equation Modeling

studies (rather than simulation of data or generation of data from a speci-
fied correlation/covariance matrix).

Step 1: We begin by specifying a population model in Figure 16.4. The 
population model is a confirmatory factor model with two latent inde-
pendent factors, x1 and x2. Each of the latent independent variables is 
measured by three indicator (observed) variables. The indicator vari-
ables X1 to X3 define the first latent independent variable and indicator 
variables X4 to X6 define the second latent independent variable. Each of 
the indicator variables have measurement error, designated as: d1 to d6. 
We also have lambda X values or factor loadings for each of the paths 
from the latent independent variables to the indicator variables. Finally, 
we have to specify the covariance between the two latent independent 
variables.

Step 2: We define what matrices are indicated in this population model. 
We described a lambda X matrix (factor loadings), a theta–delta matrix 
(measurement error of indicator variables), and a phi matrix (correlation 
between the two factors).

Step 3: We specify what we want our population parameters to be in 
these matrices. We chose to set factor loadings for X1 to X3 at .6 and factor 
loadings for X4 to X6 at .7. We then calculated our measurement errors as 
1 − (.6)2 for X1 to X3 and 1 – (.7)2 for X4 to X6; .64 and .51, respectively, in 

X1

X2

X3

X4

X5

X6

1

2

Figure 16.4
Population Model (Monte Carlo).
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the theta–delta matrix. (Note: Failure to have factor loadings and measure-
ment error synchronized—that is, X = T + E—will lead to a nonpositive 
definite matrix and error warning.) Finally, we set the factor correlation at 
.70. The matrices with our selected population parameters for the confir-
matory factor model would be as follows:

  

Λ Θx =



























.

.

.
.
.
.

6 0
6 0
6 0
0 7
0 7
0 7

δ ==

.
.

.
.

.

64 0 0 0 0 0
0 64 0 0 0 0
0 0 64 0 0 0
0 0 0 51 0 0
0 0 0 0 51 0
0 00 0 0 0 51

1 0 7
7 1 0

.

. .
. .



























=



Φ






Please be aware that these matrices in a LISREL program with a pattern 
matrix or MO commands will not create a population covariance matrix 
because we cannot specify the measurement errors of the indicator variables 
exactly (typically created with random number generator) nor the correlation 
between the factors. Also, there are two other implied matrices that would 
have zero values: tau matrix of zero mean values for indicator variables (tx ) 
and alpha matrix for means of our latent independent variables (a), although 
these are not used in our calculations of the population covariance matrix 
that are implicitly set to zero. These two matrices are indicated as:

	

τ αx =



























=










0
0
0
0
0
0

0
0

Step 4: We now use matrix operations with these matrices to produce the 
population covariance matrix (Σ). The covariance matrix equation would 
multiply the coefficients in the lambda X matrix (LX) times the phi matrix 
(phi) and post multiply times the transpose of the lambda X matrix (LXT), 
plus add the measurement error of each indicator variable, which is rep-
resented as:

	 Σ Λ ΦΛ Θ= ′ +X X δ
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We used the SPSS MATRIX procedure to compute the population cova-
riance matrix, which uses full symmetric matrices. The SPSS MATRIX 
program is:

Matrix.
compute LX= {.6,.0;
             .6,.0;
             .6,.0;
             .0,.7;
             .0,.7;
             .0,.7}.
print LX.
compute phi = {1,.7;
              .7 ,1}.
print phi.
compute thetad={.64,0,0,0,0,0;
                0,.64,0,0,0,0;
                0,0,.64,0,0,0;
                0,0,0,.51,0,0;
                0,0,0,0,.51,0;
                0,0,0,0,0,.51}.
print thetad.
compute LXT = T(LX).
print LXT.
compute sigma = LX * phi * LXT + thetad.
print sigma.
end matrix.

The resulting output with a lambda matrix of factor loadings (LX), phi 
matrix with factor correlation (PHI), theta–delta matrix with measure-
ment errors for the indicator variables (THETAD), transpose of LX matrix 
(LXT) are indicated below, along with the population covariance matrix 
(SIGMA):

Run MATRIX procedure:
LX
  .6000000000    .0000000000
  .6000000000    .0000000000
  .6000000000    .0000000000
  .0000000000    .7000000000
  .0000000000    .7000000000
  .0000000000    .7000000000

PHI
  1.000000000    .700000000
  .700000000    1.000000000
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THETAD
.6400000000 .0000000000 .0000000000 .0000000000 .0000000000 0000000000
.0000000000 .6400000000 .0000000000 .0000000000 .0000000000 .0000000000
.0000000000 .0000000000 .6400000000 .0000000000 .0000000000 .0000000000
.0000000000 .0000000000 .0000000000 .5100000000 .0000000000 .0000000000
.0000000000 .0000000000 .0000000000 .0000000000 .5100000000 .0000000000
.0000000000 .0000000000 .0000000000 .0000000000 .0000000000 .5100000000

LXT
.6000000000 .6000000000 .6000000000 .0000000000 .0000000000 .0000000000
.0000000000 .0000000000 .0000000000 .7000000000 .7000000000 .7000000000

SIGMA
1.000000000 .360000000 .360000000 .294000000 .294000000 .294000000
.360000000 1.000000000 .360000000 .294000000 .294000000 .294000000
.360000000 .360000000 1.000000000 .294000000 .294000000 .294000000
.294000000 .294000000 .294000000 1.000000000 .490000000 .490000000
.294000000 .294000000 .294000000 .490000000 1.000000000 .490000000
.294000000 .294000000 .294000000 .490000000 .490000000 1.000000000

------ END MATRIX -----

Step 5: We now include the population covariance matrix (SIGMA) in a 
LISREL–SIMPLIS program to produce the population confirmatory factor 
model (Figure 16.5) that should indicate the values we picked for the pop-
ulation parameters. We only need to include the lower triangular matrix 
in the program. The LISREL–SIMPLIS program with our SIGMA (Σ) cova-
riance matrix is:

Confirmatory Factor Model in Figure 16.5
Observed variables X1 X2 X3 X4 X5 X6
Sample size 1000
Covariance Matrix
1.00000
 .360000 1.00000
 .360000 .360000 1.00000
 .294000 .294000 .294000 1.00000
 .294000 .294000 .294000 .490000 1.000000
 .294000 .294000 .294000 .490000 .490000 1.00000
Latent variables KSI1 KSI2
Relationships:
X1 - X3 = KSI1
X4 - X6 = KSI2
Number of Decimals = 5
Path Diagram
End of Problem

Figure  16.5 does indeed show the factor loadings, factor correlation, 
and measurement error for the indicator variables we specified for our 
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population confirmatory factor model. Please note that the model fits per-
fectly (c2 = 0, p = 1). We could now generate data using this population 
covariance matrix in a SAS or SPSS program and introduce various mis-
specified models to determine how our population model is affected—for 
example, model-fit indices, parameters, and standard errors change.

In SEM, the use of a known population covariance matrix permits a 
comparison with alternative models that produce differing implied cova-
riance matrices that can be compared with the population covariance 
matrix, as well as an examination of the parameter estimates from the 
implied model. The variation in the covariance matrices, parameter esti-
mates, and fit indices can be inspected given the new LISREL OUTPUT 
optional commands; PV, SV, and GF.

Monte Carlo studies are typically conducted to examine model fit, 
parameter estimates, and standard errors to determine how much 
they fluctuate or change under certain conditions, for example, differ-
ent sample sizes, missing data, and/or nonnormal distributions. More 
complex programs are possible that use data generated from differ-
ent types of distributions using optional commands other than normal 

Chi-Square = 0.00, df = 8, P-value = 1.00000, RMSEA = 0.000

X10.64

X20.64

X30.64

X40.51

X50.51

X60.51

KSI1

KSI2

0.60

0.60

0.60

0.70

0.70

0.70

0.70

Figure 16.5
Confirmatory Factor Model (Monte Carlo).
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when generating data. For example, Enders and Bandalos (2001) studied 
a three-factor model to compare four methods of missing data estima-
tion. Their experimental condition included different factor loadings, 
sample size, percent missingness of data, and type of data missingness 
(MCAR or MAR).

Conducting Monte Carlo studies however can be cumbersome. Paxton, 
Curran, Bollen, Kirby, and Chen (2001) provided useful steps to fol-
low when conducting a Monte Carlo study. Their basic steps are out-
lined below, but the reader is encouraged to read their complete journal 
article.

Step 1: Develop a research question.
Step 2: Create a valid model.
Step 3: Select experimental conditions.
Step 4: Select values of population parameters.
Step 5: Select software package.
Step 6: Conduct simulations.
Step 7: File storage requirements.
Step 8: Troubleshoot and verify results.
Step 9: Summarizing results.

Mooney (1997) provides a basic introduction to Monte Carlo simulation. 
Skrondal (2000) and Paxton et al. (2001) also offer advice on Monte Carlo 
methods. Fan, Felsovalyi, Sivo, and Keenan (2002) have written an excel-
lent guide for quantitative researchers who wish to conduct Monte Carlo 
studies using SAS; a Web site is provided to download a zip file with SAS 
Monte Carlo programs. Fan (2005) has also published a “Teachers Corner” 
article on using SAS in structural equation modeling. Bandalos (2006) pro-
vides SEM examples generating data from specified models. Long (2008) 
additionally provided helpful suggestions associated with managing 
data, although using STATA software, the data management suggestions 
are helpful. We recommend following their suggestions when conducting 
a Monte Carlo study.

16.4 � Summary

In this chapter we have presented many different types of interaction 
models. The use of continuous variables, categorical variables, nonlinear 
effects, and latent variables has provided the basis for discussing different 
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interaction models. The two current variable interaction approaches that 
are easy to model would be the latent variables score approach using 
normal scores or two-stage least squares approach. We highly recom-
mend either of these two options. Our discussion of latent growth curve 
models introduced SEM applications for longitudinal data analysis of 
latent variables. Today, more and more emphasis is being placed on lon-
gitudinal data analysis and models. It is a logical extension to expand 
our thinking into the use of latent variables when applying longitudi-
nal models that heretofore had only used observed variables. Finally, 
we presented Monte Carlo methods because of the usefulness in creat-
ing population models that then permit examination of how parameter 
estimates, standard errors, and fit indices are affected by missing data 
sample size, nonnormality, distribution assumptions, and other factors 
that affect statistical estimation. Specifically, we examined four ways to 
obtain population data and/or correlation/covariance matrix: (1) simula-
tion of population data, (2) Cholesky decomposition of a specified pop-
ulation matrix to obtain parameter coefficients, (3) pattern matrix of a 
specified population matrix, which can also be used to obtain param-
eter coefficients, and finally, (4) obtaining population covariance matrix 
from a specified population model. We hope these SEM methods have 
enhanced further your understanding of the usefulness of structural 
equation modeling.

Exercises

1.	 Interaction Model

An organizational psychologist was investigating whether work 
tension and collegiality were predictors of job satisfaction. However, 
research indicated that work tension and collegiality interact, so a SEM 
Interaction Model was hypothesized and tested. The Interaction 
Model is diagrammed in Figure 16.6.

Use LISREL to OPEN the PRELIS system file, jobs.psf, then proceed 
to follow the necessary steps to create the latent variables (work ten-
sion, collegiality, and job satisfaction, interaction) and add them to 
the PRELIS system file. Next, create and run a LISREL–SIMPLIS pro-
gram to test the interaction model. What conclusions can you make 
regarding the interaction of the latent variables work tension and 
collegiality?

2.	 Latent Growth Curve Model

News and radio stations in Dallas, Texas, have apparently convinced 
the public that a massive crime wave has occurred during the past 
4 years, from 2002 to 2005. A criminologist gathered the crime rate 
data, but needs your help to run a latent growth curve model to test 
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whether a linear trend in crime rates exist for the city. The data set 
information is:

Observed variables: time1 time2 time3 time4
Sample Size 400
Correlation Matrix
1.000
 .799 1.000
 .690 .715 1.000
 .605 .713 .800 1.000
Means 5.417 5.519 5.715 5.83
Standard Deviations .782 .755 .700 .780

Create a LISREL–SIMPLIS program, diagram the model with stan-
dardized coefficients and interpret your findings. Have crime rates 
increased in Dallas from 2002 to 2005?

V7

V8

V9

V1

V2

V3

Work Tension
×

Collegiality

Collegiality

Work Tension

V4

V5

V6

Job Satisfaction

gamma2

gamma1

gamma3

Figure 16.6
Job Satisfaction Exercise.
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3.	 Monte Carlo Method

Write a program using either SPSS or SAS for the following popula-
tion matrix and generate data (N = 10,000 cases):

1.00
 .50 1.00
 .30 .70 1.00
 .90 .50 .50 1.00

Given the generated data, compute the population correlation matrix. 
Does the generated data recover the population correlation values in 
the matrix?
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17
Matrix Approach to Structural 
Equation Modeling

Key Concepts

Eight matrices in SEM models
Matrix notation: measurement and structural models
Free, fixed, and constrained parameters
Structured means
Mean matrices: tau and kappa

17.1 � General Overview of Matrix Notation

We have deliberately delayed presenting the matrix notation used in cal-
culating structural equation models because we wanted to first present the 
basic concepts, principles, and applications of SEM. SEM models are typi-
cally analyzed using the eight different matrices illustrated in Figure 17.1 
(Hayduk, 1987); although a few new ones have emerged, for example, tau 
and kappa. SEM models may use some combination of these matrices, but 
not use all of the matrices in a given analysis, for example, path analysis 
or confirmatory factor analysis.

In this chapter we consider the technical matrix notation associated 
with the LISREL matrix command language. As described in Jöreskog 
and Sörbom (1996), the structural model is written in terms of the follow-
ing matrix equation:

	 h = Bh + Γx + z	 (17.1)
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The latent dependent variables are denoted by h (eta) as a vector (m × 1) 
of m such variables. The latent independent variables are denoted by x 
(ksi) as a vector (n × 1) of n such variables. A matrix Φ (capital phi) con-
tains the variances and covariance terms among these latent independent 
variables. The relationships among the latent variables are denoted by B 
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Figure 17.1
Summary of the general structural equation model. (From Hayduk, L. A. (1987). Structural 
equation modeling with LISREL: Essentials and advances. Baltimore, MD: Johns Hopkins 
University Press.)
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(capital beta) and Γ (capital gamma), the elements of which are denoted by 
[b] (lowercase beta) and [g] (lowercase gamma), respectively. The matrix B 
is a m × m matrix of structure coefficients that relate the latent dependent 
variables to one another. G is a m × n matrix of structure coefficients that 
relate the latent independent variables to the latent dependent variables. 
The error term z (zeta) in the structural model equation is a vector that 
contains the equation prediction errors or disturbance terms. The matrix 
Ψ (capital psi) contains the variances and covariance terms among these 
latent dependent prediction equation errors.

As described in Jöreskog and Sörbom (1996), the measurement models 
are written in the following set of matrix equations:

	 Y = Λy h + e,	 (17.2)

for the latent dependent variables, and

	 X = Λx x + d,	 (17.3)

for the latent independent variables. The observed variables are denoted 
by the vector Y (p × 1) for the measures of the latent dependent variables 
h (m × 1), and by the vector X (q × 1) for the measures of the latent inde-
pendent variables x (n × 1). The relationships between the observed vari-
ables and the latent variables (typically referred to as factor loadings) are 
denoted by the (p × m) matrix Λy (capital lambda sub y) for the Y’s, the 
elements of which are denoted by [λy] (lowercase lambda sub y), and by 
the q × n matrix Λx (capital lambda sub x) for the X’s, the elements of which 
are denoted by [λx] (lowercase lambda sub x). Finally, the measurement 
errors for the Y’s are denoted by the p × 1 vector e (lowercase epsilon) 
and for the X’s by the q × 1 vector d (lowercase delta). The theta–epsilon 
matrix Θe contains the variances and covariance terms among the errors 
for the observed dependent variables. The theta–delta matrix Θd contains 
the variances and covariance terms among the errors for the observed 
independent variables.

The summary of the general structural equation model in matrix format 
depicted by Hayduk (1987) should be studied in great detail. The three 
equations diagrammed in matrix format correspond to the structural 
model in Equation 17.1, the measurement model for the Y dependent vari-
ables in Equation 17.2, and the measurement model for the X independent 
variables in Equation 17.3.

Obviously, not all of the matrices are used in every SEM model. We use our 
examples from chapters 9 and 10 to illustrate the matrix notation for a struc-
tural equation model. In our first example in chapter 9 (see Figure 9.1), there 
were two structure coefficients of interest. The first involved the influence of 
Intelligence on Achievement1. The structure coefficient for this influence resides 
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in the matrix Γ because it represents the relationship between the latent inde-
pendent variable Intelligence and the latent dependent variable Achievement1. 
The second structure coefficient involved the influence of Achievement1 on 
Achievement2. This coefficient resides in the matrix B because it represents 
the relationship between the latent dependent variable Achievement1 and 
the latent dependent variable Achievement2. The final term in the structural 
model of Equation 17.1 is z (zeta), an m × 1 vector of m equation errors or dis-
turbances, which represents that portion of each latent dependent variable 
that is not explained or predicted by the model.

In LISREL notation our structural equations are written as

	 η γ ξ ζ1 11 1 1= + ,

and

	 η β η ζ2 21 1 2= + ,

respectively, or in the complete matrix equation as

	

η

η β

η

η

γ1

2 21

1

2

110 0
0 0













=






















+












  +












ξ
ζ

ζ
1

1

2

,

	

where the subscripts on b represent the rows for a latent dependent vari-
able being predicted and columns for a latent dependent variable as the 
predictor, respectively. The subscripts for g represent the rows for a latent 
dependent variable being predicted and columns for a latent independent 
variable as the predictor, respectively.

The values of 0 shown in the matrix equations for B and Γ represent 
structure coefficients that we hypothesize to be equal to 0. For example, 
because we did not specify that Intelligence influenced Achievement2, rather 
than estimate g21, we set that value to 0. Likewise, we did not specify that 
Achievement2 influenced Achievement1, so we set b12 to 0. Finally, notice that 
the diagonal values of B are also 0, that is, b11 and b22. The diagonal val-
ues of B are always set to 0 because they indicate the extent to which a 
latent dependent variable influences itself. These influences are never of 
interest to the SEM researcher. In summary, our matrix equation suggests 
that there are potentially four structure coefficients of interest, b12, b21, g11, 

and g21; however, our model includes only two of these coefficients. Other 
structural models of these same latent variables can be developed that 
contain different configurations of structure coefficients.

We now need to provide a more explicit definition of the measurement 
models in our example. We have two different measurement models in 
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our example, one for the latent dependent variables and one for the latent 
independent variables. In LISREL matrix notation these equations are 
written for the Ys as

	
y y1 1 111

= +λ η ε

	
y y2 1 221

= +λ η ε

	
y y3 2 332

= +λ η ε

	
y y4 2 442

= +λ η ε

and for the Xs as

	
x x1 1 111

= +λ ξ δ

	
x x2 1 221

= +λ ξ δ

The factor loadings and error terms also appear in their respective error 
variance–covariance matrices. The complete matrix equation for the Ys is 
written as

	

y

y

y

y

y

y

y

y

1

2

3

4

11

21

32

0

0

0

0























=

λ

λ

λ

λ
442

1

2

1

2

3

4



































+





η

η

ε
ε
ε
ε
















and for the Xs as

	

x

x
x

x

1

2
1

1

2

11

21









 =













  +









λ

λ
ξ

δ
δ 

where the subscripts in λy represent the rows for an observed Y variable 
and the columns for a latent dependent variable, and those in λx represent 
the rows for an observed X variable and the columns for a latent indepen-
dent variable, respectively.
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The values of 0 shown in the matrix equations for Λy (and theoretically 
for Λx, although not for this particular model) represent factor loadings 
that we hypothesize to be equal to 0. For example, because we did not 
specify that California1 was an indicator of Achievement2, rather than esti-
mate λy12, we set that value to 0. Likewise, we specified that λy22, λy31, and 
λy41 were set to 0.

There are several covariance terms that we need to define. From the 
structural model, there are two covariance terms to consider. First, we 
define Φ (capital phi) as an n × n covariance matrix of the n latent indepen-
dent variables, the elements of which are denoted by [f] (lowercase phi). 
The diagonal elements of Φ contain the variances of the latent indepen-
dent variables. In our example, model Φ contains only one element, the 
variance of Intelligence (denoted by f11).

Second, let us define Ψ (psi) as an m × m covariance matrix of the m 
equation errors z, the elements of which are denoted by [ψ] (lowercase 
psi). The diagonal elements of Ψ contain the variances of the equation 
errors—that is, the amount of unexplained variance for each equation. In 
our example model Ψ contains two diagonal elements, one for each equa-
tion (denoted by ψ11 and ψ22).

From the measurement model there are two additional covariance 
terms to be concerned with. First, we define Θe (capital theta sub epsilon) 
as a p × p covariance matrix of the measurement errors for the Ys—that is, 
e, the elements of which are denoted by (θe), lowercase theta sub epsilon. 
The diagonal elements of Θe contain the variances of the measurement 
errors for the Ys. In our example model Θe contains four diagonal ele-
ments, one for each Y. Second, let us define Θd (capital theta sub delta) as 
a q × q covariance matrix of the measurement errors for the Xs—that is, d, 
the elements of which are denoted by (θd), lowercase theta sub delta. The 
diagonal elements of Θd contain the variances of the measurement errors 
for the Xs. In our example model, Θd contains two diagonal elements, one 
for each X.

There is one more covariance term that we need to define, and it rep-
resents the ultimate covariance term. To this point we have defined the 
following eight different matrices: B, Γ, Λy, Λx, Φ, Ψ, Θd and Θe. From these 
matrices we can generate an ultimate matrix of covariance terms that the 
overall model implies, and this matrix is denoted by Σ (sigma). Officially, 
Σ is a supermatrix composed of four submatrices, as follows:

	

Σ Σ

Σ Σ
yy yx

xy xx













	 (17.4)

This supermatrix certainly looks imposing, but it can be easily under-
stood. First consider the submatrix in the upper left portion of Σ. It deals 
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with the covariance terms among the Ys, and in terms of our model can 
be written as

	
Σ Λ Ι Β ΓΦΓ Ψ Ι Β Λ Θyy y y= − ′ + − ′ ′ +− −[ [( ) ( )( ) ] ],1 1

ε 	 (17.5)

where I is an m × m identity matrix (i.e., a matrix having 1s on the diago-
nal and 0s on the off-diagonal). You can see in Equation 17.5 that all of the 
matrices are involved except for those of the measurement model in the 
X’s. That is, Equation 17.5 contains the matrices for the structural model 
and for the measurement model in the Ys.

Consider next the submatrix in the lower right portion of Σ. It deals 
with the covariance terms among the Xs and in terms of our model can 
be written as

	 Σ Λ ΦΛ Θxx x x= ′ +[ ]δ 	 (17.6)

As shown in Equation 17.6, the only matrices included are those that 
involve the X side of the model. This particular portion of the model is the 
same as the common factor analysis model, which you may recognize.

Finally, consider the submatrix in the lower left portion of Σ. It deals 
with the covariance terms between the X’s and the Y’s and in terms of our 
model can be written as

	
Σ Λ ΦΓ Ι Λxy x yB= ′ − ′ ′−[ ( ) ].1

	 (17.7)

As shown in Equation 17.7, this portion of the model includes all of our 
matrices except for the error terms, that is, Ψ, Θd  and Θe. The submatrix in 
the upper right portion of Σ is the transposed version of Equation 17.7 (i.e., 
the matrix of Equation 17.7 with rows and columns switched), so we need 
not concern ourselves with it.

17.2 � Free, Fixed, and Constrained Parameters

Let us return for a moment to our eight structural equation matrices B, Γ, 
Λy, Λx, Φ, Ψ, Θd and Θe. In the structural model there are structure coeffi-
cients in matrices B and Γ. The covariance terms among structural equation 
errors are in the matrix Ψ. In the measurement models for latent indepen-
dent and dependent variables, there are factor loadings in the matrices Λx 
and Λy, respectively, for their indicator variables. The covariance terms of 
measurement errors for the latent independent and dependent variables 
are in the matrices Θd and Θe, respectively. The covariance terms among 
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the latent independent variables are in the matrix Φ. Each and every ele-
ment in these eight matrices, if used in a particular model, must be speci-
fied to be a free parameter, a fixed parameter, or a constrained parameter. 
A free parameter is a parameter that is unknown and one that you wish 
to estimate. A fixed parameter is a parameter that is not free but rather is 
fixed to a specified value, typically either 0 or 1. A constrained parameter 
is a parameter that is unknown, but is constrained to be equal to one or 
more other parameters.

For example, consider the following matrix B:

	
B =











0
0
12

21

β
β

	

The bs represent values in B that might be parameters of interest and thus 
constitute free parameters. The 0s represent values in B that are fixed or 
constrained to be equal to 0. These diagonal values of B represent the 
influence of a latent dependent variable on itself, and by definition are 
always fixed to 0. If our hypothesized model included only b21, then b12 
would also be fixed to 0. For the model specified in Figure 10.2 in chapter 
10, B takes the following form:

	
B =











0 0
021β

.

For another example, consider the following matrix Λy with the factor 
loadings for the latent dependent variable measurement model:

	

Λy

y y

y y

y y

y y

=












λ λ

λ λ

λ λ

λ λ

11 12

21 22

31 32

41 42












Here the λy represent the values in Λy that might be parameters of interest 
and would constitute free parameters. This specifies that we are allow-
ing all of the parameters in Λy to be free so that each of our four indicator 
variables (the Y’s) loads on each of our two latent dependent variables (the 
h’s). However, in order to solve the identification problem for Λy, some 
constraints are usually placed on this matrix whereby some of the param-
eters are fixed. We might specify that the first two indicator variables are 
allowed only to load on the first latent dependent variable (h1) and the 
latter two indicators on the second latent dependent variable (h2). Then, 
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Λy appears as

	

Λy

y

y

y

y

=























λ

λ

λ

λ

11

21

32

42

0

0

0

0

Additional constraints in Λy may also be necessary for identification 
purposes.

For the structural equation model in chapter 10 (Figure 10.2), the follow-
ing structural equations are specified:

	 Aspirations = home background + ability + error

	 Achievement = aspirations + home background + ability + error

The matrix equation would be h = Bh + Γx + z and the elements of the 
matrices are

	

η
η β

η
η

γ γ
γ

1

2 21

1

2

11 12

21

0 0
0









 =



















 +

γγ
ξ
ξ

ζ
ζ22

1

2

1

2



















 +









 .

	

The matrix equation for the latent dependent variable measurement model 
is Y = Λy h + e, and the elements of the matrices are

	

y

y

y

y

y

y

1

2

3

4

1 0
0

0 1
0

21

42























=






λ

λ



























+
















η

η

ε
ε
ε
ε

1

2

1

2

3

4





.

	

The matrix equation for the latent independent variable measurement 
model is X = Λx x + d and the elements of the matrices are

	

x

x

x

x

x

x

x

1

2

3

4

5

1 0
0

21

3





























=

λ

λ
11

52

0

0

0

1

1

2

1

λ

ξ

ξ

δ

x





































+

δδ
δ
δ

δ

2

3

4

5

























.
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Recall that for each dependent and independent latent variable we fixed 
one factor loading of an observed variable to 1. This was necessary to 
identify the model and to fix the scale for the latent variables.

The covariance terms are written next. The covariance matrix for the 
latent independent variables is

	
Φ =











φ
φ φ

11

21 22

.
	

The covariance matrix for the structural equation errors is

	
Ψ =











ψ
ψ ψ

11

21 22

.

The covariance matrices for the measurement errors are written as fol-
lows, first for the indicators of the latent independent variables by

	

Θδ

δ

δ

δ δ

δ

δ

θ

θ

θ θ

θ

θ

=











11

22

32 33

44

55

0

0

0 0 0

0 0 0 0















and second, for the indicators of the latent dependent variables by

	

Θε

ε

ε

ε

ε

θ

θ

θ

θ

=























11

22

33

44

0

0 0

0 0 0

Note :  This matrix output is possible by including the LISREL OUTPUT 
command in the LISREL–SIMPLIS program for the model in chapter 10.

17.3 � LISREL Model Example in Matrix Notation

The LISREL matrix command language program works directly from 
the matrix notation previously discussed and is presented here for the 
example in chapter 10. The basic LISREL matrix command language pro-
gram includes TITLE, DATA (DA), INPUT, MODEL (MO), and OUTPUT 
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(OU) program statements. The TITLE lines are optional. The user’s guide 
provides an excellent overview of the various commands and their pur-
pose (Jöreskog & Sörbom, 1996). The DA statement identifies the number 
of input variables in the variance–covariance matrix, the NO statement 
indicates the number of observations, and MA identifies the kind of 
matrix to be analyzed, not the kind of matrix to be inputted: MA = CM, 
covariance matrix; MA = KM, correlation matrix based on raw scores or 
normal scores; MA = MM, matrix of moments (means) about zero; MA = 
AM, augmented moment matrix; MA = OM, special correlation matrix of 
optimal scores from PRELIS2; and MA = PM, correlation matrix of poly-
choric (ordinal variables) or polyserial (ordinal and continuous variables) 
correlations. The SE statement must be used to select and/or reorder vari-
ables used in the analysis of a model (the Y variables must be listed first). 
An external raw score data file can be read using the RA statement with 
the FI and FO subcommands, for example, RA FI = raw.dat FO. The FO 
subcommand permits the specification of how observations are to be read 
(Note: for fixed, a FORMAT statement must be enclosed in parentheses; 
for free-field, an asterisk is placed in the first column, which appears on 
the line following the RA command). If FI or UN (logical unit number of 
a FORTRAN file) subcommands are not used, then the data must directly 
follow the RA command and be included in the program.

In the following LISREL matrix command language program, a lower 
diagonal variance–covariance matrix is input, hence, the use of the CM 
statement. The SY subcommand, which reads only the lower diagonal ele-
ments of a matrix, has been omitted because it is the default option for 
matrix input. The LA statement provides for up to eight characters for 
variable labels, with similar subcommand options for input and specifica-
tions as with the RA command for data input. (Note: A lower case c per-
mits line continuation for various commands). The LE command permits 
variable labels for the latent dependent variables, and the LK command 
permits variable labels for the latent independent variables.

The MO command specifies the model for LISREL analysis. The sub-
commands specify the number of Y variables (ny), number of X variables 
(nx), number of latent dependent variables (ne), and number of latent inde-
pendent variables (nk). The form and mode of the eight LISREL param-
eter matrices must be specified and are further explained in the user’s 
guide (Jöreskog & Sörbom, 1996). The FU parameter indicates a full 
non-symmetric matrix form, and FI indicates a fixed matrix mode, 
in contrast to a free mode (FR). The DI statement indicates a diagonal 
matrix form, and the SY statement indicates a symmetric matrix form. It is 
strongly recommended that any designation of a LISREL model for analy-
sis include the presentation of the eight matrices in matrix form. This will 
greatly ease the writing of the MO command and the identification of fixed 
or free parameters in the matrices on the FR and VA commands. The VA 
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command assigns numerical values to the fixed parameters. The OU com-
mand permits the selection of various output procedures. One feature of 
interest on the OU command is the AM option, which provides for auto-
matic model specification by freeing at each step the fixed or constrained 
parameters with the largest modification indices, although, as previously 
noted, this should not be the sole criterion for model modification.

The LISREL matrix command language program used to analyze the 
model in Figure 10.2 of chapter 10, using the default maximum likelihood 
estimation method, is as follows:

Modified Model in Figure 10.2, Chapter 10
da ni=9 no=200 ma=cm
cm sy
1.024
  .792    1.077
1.027      .919    1.844
  .756      .697    1.244    1.286
  .567      .537      .876      .632    .852
  .445      .424      .677      .526    .518    .670
  .434      .389      .635      .498    .475    .545    .716
  .580      .564      .893      .716    .546    .422    .373    .851
  .491      .499      .888      .646    .508    .389    .339    .629    .871
la
 EDASP OCASP VERBACH QUANTACH FAMINC FAED MOED VERBAB    
c  QUANTAB mo ny=4 nx=5 ne=2 nk=2 be=fu,fi ga=fu,fi ph=sy,fi ps=di,fi

c  ly=fu,fi lx=fu,fi td=fu,fi te=fu,fi
le
 aspire achieve
lk
 home ability
fr be(2,1) ga(1,1) ga(1,2) ga(2,1) ga(2,2)                    
  c  ly(2,1) ly(4,2) lx(2,1) lx(3,1) lx(5,2)                     
  c  te(1,1) te(2,2) te(3,3) te(4,4) td(1,1) td(2,2) td(3,3)        
  c  td(4,4) td(5,5)                                      
  c  ps(1,1) ps(2,2) ph(1,1) ph(2,2) ph(2,1) td(3,2)
va 1.0 ly(1,1) ly(3,2) lx(1,1) lx(4,2)
ou me=ml all

(Note :  The c values in the LISREL program denote line continuations in 
program statements.)

The LISREL matrix command language requires the user to specifically 
understand the nature, form, and mode of the eight matrices, and thereby 
fully comprehend the model being specified for analysis, even though all 
eight matrices may not be used in a particular SEM model. We present the 
LISREL output from this program, but do so in an edited and condensed 
format. We challenge you to find the various matrices we have described 
in this chapter in the computer output.
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LISREL8 Matrix Program Output (Edited and Condensed)

Modified Model in Figure 10.2, chapter 10

                Number of Input Variables  9
                Number of Y - Variables    4
                Number of X - Variables    5
                Number of ETA - Variables  2
                Number of KSI - Variables  2
                Number of Observations    200

        Covariance Matrix

EDASP OCASP VERBACH QUANTACH FAMINC FAED
-------- -------- -------- -------- -------- --------

EDASP 1.02
OCASP 0.79 1.08

VERBACH 1.03 0.92 1.84
QUANTACH 0.76 0.70 1.24 1.29

FAMINC 0.57 0.54 0.88 0.63 0.85
FAED 0.45 0.42 0.68 0.53 0.52 0.67
MOED 0.43 0.39 0.64 0.50 0.47 0.55

VERBAB 0.58 0.56 0.89 0.72 0.55 0.42
QUANTAB 0.49 0.50 0.89 0.65 0.51 0.39

        Covariance Matrix

MOED VERBAB QUANTAB
-------- -------- --------

MOED 0.72
VERBAB 0.37 0.85

QUANTAB 0.34 0.63 0.87

LISREL Estimates (Maximum Likelihood)

        LAMBDA-Y

aspire achieve
-------- --------

EDASP 1.00 - -
OCASP 0.92 - -

(0.06)
14.34

VERBACH - - 1.00
QUANTACH - - 0.75

(0.04)
18.13

        LAMBDA-X

home ability
-------- --------

FAMINC 1.00 - -
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FAED 0.78 - -
(0.06)
12.18

MOED 0.72 - -
(0.07)
10.37

VERBAB - - 1.00
QUANTAB - - 0.95

(0.07)
14.10

        BETA

aspire achieve
-------- --------

aspire - - - -
achieve 0.53 - -

(0.12)
4.56

        GAMMA

home ability
-------- --------

aspire 0.51 0.45
(0.15) (0.15)
3.29 2.96

achieve 0.30 0.69
(0.16) (0.16)
1.87 4.27

        Covariance Matrix of ETA and KSI

aspire achieve home ability
-------- -------- -------- --------

aspire 0.86
achieve 1.02 1.65

home 0.57 0.87 0.66
ability 0.57 0.91 0.54 0.66

        PHI

home ability
-------- --------

home 0.66
(0.09)
7.32

ability 0.54 0.66
(0.07) (0.09)
7.64 7.51
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      PSI
      Note: This matrix is diagonal.

aspire achieve
-------- --------

0.32 0.23
(0.06) (0.06)
5.61 3.97

      Squared Multiple Correlations for Structural Equations

aspire achieve
-------- --------
0.63 0.86

      Squared Multiple Correlations for Reduced Form

aspire achieve
-------- --------

0.63 0.81

      THETA-EPS
EDASP OCASP VERBACH QUANTACH

-------- -------- -------- --------
0.16 0.35 0.19 0.35
(0.04) (0.05) (0.05) (0.04)
3.88 7.36 3.81 7.95

      Squared Multiple Correlations for Y - Variables

EDASP OCASP VERBACH QUANTACH
-------- -------- -------- --------

0.84 0.67 0.90 0.73

      THETA-DELTA

FAMINC FAED MOED VERBAB QUANTAB
-------- -------- -------- -------- --------

FAMINC 0.19
(0.04)
4.74

FAED - - 0.27
(0.03)
7.66

MOED - - 0.17 0.37
(0.03) (0.04)
5.28 8.50

VERBAB - - - - - - 0.19
(0.03)
5.41

QUANTAB - - - - - - - - 0.27
(0.04)
7.20
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      Squared Multiple Correlations for X - Variables

FAMINC FAED MOED VERBAB QUANTAB
-------- -------- -------- -------- --------
 0.78 0.60 0.48 0.78 0.69

 Goodness-of-Fit Statistics
 Degrees of Freedom = 20

 Minimum Fit Function Chi-Square = 19.17 (P = 0.51)
 Normal Theory Weighted Least Squares Chi-Square = 18.60 

(P = 0.55)
 Estimated Non-centrality Parameter (NCP) = 0.0

 90 Percent Confidence Interval for NCP = (0.0 ; 12.67)

 Minimum Fit Function Value = 0.096
 Population Discrepancy Function Value (F0) = 0.0

 90 Percent Confidence Interval for F0 = (0.0 ; 0.064)
 Root Mean Square Error of Approximation (RMSEA) = 0.0

 90 Percent Confidence Interval for RMSEA = (0.0 ; 0.056)
 P-Value for Test of Close Fit (RMSEA < 0.05) = 0.91

 Expected Cross-Validation Index (ECVI) = 0.35
 90 Percent Confidence Interval for ECVI = (0.35 ; 0.42)

 ECVI for Saturated Model = 0.45
 ECVI for Independence Model = 13.72

 Chi-Square for Independence Model with 36 Degrees of 
Freedom = 2712.06

 Independence AIC = 2730.06
 Model AIC = 68.60

 Saturated AIC = 90.00
 Independence CAIC = 2768.74

 Model CAIC = 176.05
 Saturated CAIC = 283.42

 Normed Fit Index (NFI) = 0.99
 Non-Normed Fit Index (NNFI) = 1.00

 Parsimony Normed Fit Index (PNFI) = 0.55
 Comparative Fit Index (CFI) = 1.00
 Incremental Fit Index (IFI) = 1.00
 Relative Fit Index (RFI) = 0.99

 Critical N (CN) = 391.00

 Root Mean Square Residual (RMR) = 0.015
 Standardized RMR = 0.015

 Goodness-of-Fit Index (GFI) = 0.98
 Adjusted Goodness-of-Fit Index (AGFI) = 0.95
 Parsimony Goodness-of-Fit Index (PGFI) = 0.44
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      Fitted Covariance Matrix

EDASP OCASP VERBACH QUANTACH FAMINC FAED
-------- -------- -------- -------- -------- --------

 EDASP 1.02
 OCASP 0.79 1.08

 VERBACH 1.02 0.93 1.84
QUANTACH 0.77 0.70 1.24 1.29
 FAMINC 0.57 0.53 0.87 0.66 0.85

 FAED 0.45 0.41 0.68 0.51 0.52 0.67
 MOED 0.41 0.38 0.63 0.47 0.48 0.54

 VERBAB 0.57 0.52 0.91 0.69 0.54 0.42
 QUANTAB 0.54 0.49 0.87 0.65 0.51 0.40

      Fitted Covariance Matrix

MOED VERBAB QUANTAB
-------- -------- --------

MOED 0.72
VERBAB 0.39 0.85

QUANTAB 0.37 0.63 0.87

      Fitted Residuals

EDASP OCASP VERBACH QUANTACH FAMINC FAED
-------- -------- -------- -------- -------- --------

EDASP  0.00
OCASP  0.00  0.00

VERBACH  0.01 -0.01  0.00
QUANTACH -0.01 -0.01  0.00  0.00

FAMINC -0.01  0.01  0.01 -0.02 0.00
FAED  0.00  0.01  0.00  0.01 0.00  0.00
MOED  0.02  0.01  0.01  0.03 0.00  0.00

VERBAB  0.01  0.04 -0.02  0.03 0.01  0.00
QUANTAB -0.05  0.00  0.02 -0.01 0.00 -0.01

      Fitted Residuals

MOED VERBAB QUANTAB
-------- -------- --------

MOED  0.00
VERBAB -0.01 0.00

QUANTAB -0.03 0.00 0.00

 Summary Statistics for Fitted Residuals

 Smallest Fitted Residual = -0.05
   Median Fitted Residual =  0.00
  Largest Fitted Residual =  0.04
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 Stemleaf Plot
 - 4|8
 - 3|
 - 2|842
 - 1|4400
 - 0|886542100000000000000
   0|2469999
   1|1123
   2|0067
   3|
   4|3

      Standardized Residuals

EDASP OCASP VERBACH QUANTACH FAMINC FAED
-------- -------- -------- -------- -------- --------

EDASP - -
OCASP - - - -

VERBACH  1.26 -1.01 - -
QUANTACH -0.52 -0.23 - - - -

FAMINC -0.64  0.45 0.55 -1.17 - -
FAED -0.25  0.45 -0.23  0.58  0.15 - -
MOED  0.82  0.30  0.36  0.91 -0.15 - -

VERBAB  0.88  1.93 -2.34  1.50  0.72  0.10
QUANTAB -2.53  0.16  1.59 -0.38 -0.13 -0.50

      Standardized Residuals

MOED VERBAB QUANTAB
-------- -------- --------

MOED - -
VERBAB -0.63 - -
QUANTAB -1.10 - - - -

Summary Statistics for Standardized Residuals

 Smallest Standardized Residual = -2.53
   Median Standardized Residual =  0.00
  Largest Standardized Residual =  1.93

Stemleaf Plot

 - 2|5
 - 2|3
 - 1|
 - 1|210
 - 0|6655
 - 0|4322210000000000000
   0|122344
   0|5567899
   1|3
   1|569
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Modification Indices and Expected Change

      Modification Indices for LAMBDA-Y

aspire achieve
-------- --------

EDASP - - 0.30
OCASP - - 0.30

VERBACH 0.32 - -
QUANTACH 0.32 - -

      Expected Change for LAMBDA-Y

aspire achieve
-------- --------

EDASP - -  0.28
OCASP - - -0.26

VERBACH  0.12 - -
QUANTACH -0.09 - -

      Standardized Expected Change for LAMBDA-Y

aspire achieve
-------- --------

EDASP - -  0.36
OCASP - - -0.33

VERBACH  0.11 - -
QUANTACH -0.09 - -

      Modification Indices for LAMBDA-X

home ability
-------- --------

FAMINC - - 0.40
FAED - - 0.11
MOED - - 0.49

VERBAB 0.63 - -
QUANTAB 0.63 - -

      Expected Change for LAMBDA-X

home ability
-------- --------

FAMINC - -  0.18
FAED - -  0.04
MOED - - -0.08

VERBAB  0.16 - -
QUANTAB -0.16 - -
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      Standardized Expected Change for LAMBDA-X

home ability
-------- --------

FAMINC - -  0.15
FAED - -  0.03
MOED - - -0.06

VERBAB  0.13 - -
QUANTAB -0.13 - -

No Non-Zero Modification Indices for BETA
No Non-Zero Modification Indices for GAMMA
No Non-Zero Modification Indices for PHI
No Non-Zero Modification Indices for PSI

      Modification Indices for THETA-EPS

EDASP OCASP VERBACH QUANTACH
-------- -------- -------- --------

EDASP - -
OCASP - - - -

VERBACH 2.32 1.91 - -
QUANTACH 0.17 0.01 - - - -

      Expected Change for THETA-EPS

EDASP OCASP VERBACH QUANTACH
-------- -------- -------- --------

EDASP - -
OCASP - - - -

VERBACH  0.05 -0.05 - -
QUANTACH -0.01  0.00 - - - -

      Modification Indices for THETA-DELTA-EPS

EDASP OCASP VERBACH QUANTACH
-------- -------- -------- --------

FAMINC 0.12 0.06 0.86 2.09
FAED 0.62 0.32 0.30 0.15
MOED 1.13 0.40 0.02 0.37

VERBAB 0.51 1.13 8.44 3.03
QUANTAB 4.92 0.30 5.47 0.94

      Expected Change for THETA-DELTA-EPS

EDASP OCASP VERBACH QUANTACH
-------- -------- -------- --------

FAMINC -0.01 0.01  0.03 -0.04
FAED -0.01 0.01 -0.01  0.01
MOED  0.02 -0.02  0.00  0.01
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VERBAB  0.02  0.03 -0.09  0.05
QUANTAB -0.06  0.02  0.07 -0.03

      Modification Indices for THETA-DELTA

FAMINC FAED MOED VERBAB QUANTAB
-------- -------- -------- -------- --------

FAMINC - -
FAED 0.02 - -
MOED 0.02 - - - -

VERBAB 0.15 0.14 0.36 - -
QUANTAB 0.02 0.05 0.59 - - - -

      Expected Change for THETA-DELTA

FAMINC FAED MOED VERBAB QUANTAB
-------- -------- -------- -------- --------

FAMINC - -
FAED 0.00 - -
MOED 0.00 - - - -

VERBAB 0.01 0.01 -0.01 - -
QUANTAB 0.00 0.00 -0.02 - - - -

      Maximum Modification Index is 8.44 for Element (4, 3) 
of THETA DELTA-EPSILON

Covariances

      Y - ETA

EDASP OCASP VERBACH QUANTACH
-------- -------- -------- --------

aspire 0.86 0.79 1.02 0.77
achieve 1.02 0.93 1.65 1.24

      Y - KSI

EDASP OCASP VERBACH QUANTACH
-------- -------- -------- --------

home 0.57 0.53 0.87 0.66
ability 0.57 0.52 0.91 0.69

      X - ETA

FAMINC FAED MOED VERBAB QUANTAB
-------- -------- -------- -------- --------

aspire 0.57 0.45 0.41 0.57 0.54
achieve 0.87 0.68 0.63 0.91 0.87
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      X - KSI

FAMINC FAED MOED VERBAB QUANTAB
-------- -------- -------- -------- --------

home 0.66 0.52 0.48 0.54 0.51
ability 0.54 0.42 0.39 0.66 0.63

First Order Derivatives

      LAMBDA-Y

aspire achieve
-------- --------

EDASP  0.00 -0.01
OCASP  0.00  0.01

VERBACH -0.01  0.00
QUANTACH  0.02  0.00

      LAMBDA-X

home ability
-------- --------

FAMINC  0.00 -0.01
FAED  0.00 -0.01
MOED  0.00  0.03

VERBAB -0.02  0.00
QUANTAB  0.02  0.00

      BETA

aspire achieve
-------- --------

aspire 0.00 0.00
achieve 0.00 0.00

      GAMMA

home ability
-------- --------

aspire 0.00 0.00
achieve 0.00 0.00

      PHI

home ability
-------- --------

home 0.00
 ability 0.00 0.00
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      PSI

aspire achieve
-------- --------

aspire 0.00
achieve 0.00 0.00

      THETA-EPS

EDASP OCASP VERBACH QUANTACH
-------- -------- -------- --------

EDASP  0.00
OCASP  0.00  0.00

VERBACH -0.24  0.21 0.00
QUANTACH  0.07 -0.01 0.00 0.00

      THETA-DELTA-EPS

EDASP OCASP VERBACH QUANTACH
-------- -------- -------- --------

FAMINC  0.07 -0.04 -0.15  0.26
FAED  0.21 -0.13  0.13 -0.09
MOED -0.26  0.13 -0.03 -0.13

VERBAB -0.15 -0.20  0.48 -0.32
QUANTAB  0.44 -0.10 -0.38  0.17

      THETA-DELTA

FAMINC FAED MOED VERBAB QUANTAB
-------- -------- -------- -------- --------

FAMINC  0.00
FAED -0.03  0.00
MOED  0.03  0.00 0.00

VERBAB -0.08 -0.10 0.15 0.00
QUANTAB -0.03 -0.06 0.18 0.00 0.00

Factor Scores Regressions

      ETA

EDASP OCASP VERBACH QUANTACH FAMINC FAED
-------- -------- -------- -------- -------- --------

aspire 0.50 0.21 0.10 0.04 0.04 0.02
achieve 0.12 0.05 0.52 0.22 0.07 0.03

      ETA

MOED VERBAB QUANTAB
-------- -------- --------

aspire 0.01 0.02 0.01
achieve 0.01 0.11 0.07
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      KSI

EDASP OCASP VERBACH QUANTACH FAMINC FAED
-------- -------- -------- -------- -------- --------

home 0.05 0.02 0.07 0.03 0.41 0.19
ability 0.02 0.01 0.11 0.04 0.07 0.03

      KSI

MOED VERBAB QUANTAB
-------- -------- --------

home 0.06 0.07 0.04
ability 0.01 0.37 0.24

Standardized Solution

      LAMBDA-Y

aspire achieve
-------- --------

EDASP 0.93 - -
OCASP 0.85 - -

VERBACH - - 1.29
QUANTACH - - 0.97

      LAMBDA-X

home ability
-------- --------

FAMINC 0.81 - -
FAED 0.64 - -
MOED 0.59 - -

VERBAB - - 0.81
QUANTAB - - 0.77

      BETA

aspire achieve
-------- --------

aspire - - - -
achieve 0.38 - -

      GAMMA

home ability
-------- --------

aspire 0.44 0.39
achieve 0.19 0.43
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      Correlation Matrix of ETA and KSI

aspire achieve home ability
-------- -------- -------- --------

aspire 1.00
achieve 0.85 1.00
home 0.76 0.83 1.00
ability 0.75 0.87 0.81 1.00

      PSI

        Note: This matrix is diagonal.

aspire achieve
-------- --------
0.37 0.14

        Regression Matrix ETA on KSI (Standardized)

home ability
-------- --------

aspire 0.44 0.39
achieve 0.36 0.58

Total and Indirect Effects

      Total Effects of KSI on ETA

home ability
-------- --------

aspire 0.51 0.45
(0.15) (0.15)
3.29 2.96

achieve 0.57 0.92
(0.17) (0.18)
3.26 5.20

      Indirect Effects of KSI on ETA

home ability
-------- --------

aspire - - - -
achieve 0.27 0.23

(0.10) (0.09)
2.63 2.62
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      Total Effects of ETA on ETA

aspire achieve
-------- --------

aspire - - - -
achieve 0.53 - -

(0.12)
4.56

  Largest Eigenvalue of B*B’ (Stability Index) is 0.276

      Total Effects of ETA on Y

aspire achieve
-------- --------

EDASP 1.00 - -
OCASP 0.92 - -

(0.06)
14.34

VERBACH 0.53 1.00
(0.12)
4.56

QUANTACH 0.40 0.75
(0.09) (0.04)
4.48 18.13

      Indirect Effects of ETA on Y

aspire achieve
-------- --------

EDASP - - - -
OCASP - - - -

VERBACH 0.53 - -
(0.12)
4.56

QUANTACH 0.40 - -
(0.09)
4.48

      Total Effects of KSI on Y

home ability
-------- --------

EDASP 0.51 0.45
(0.15) (0.15)
3.29 2.96

OCASP 0.46 0.41
(0.14) (0.14)
3.25 2.93
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VERBACH 0.57 0.92
(0.17) (0.18)
3.26 5.20

QUANTACH 0.43 0.69
(0.13) (0.14)
3.23 5.09

  Standardized Total and Indirect Effects

      Standardized Total Effects of KSI on ETA

home ability
-------- --------

aspire 0.44 0.39
achieve 0.36 0.58

      Standardized Indirect Effects of KSI on ETA

home ability
-------- --------

aspire - - - -
achieve 0.17 0.15

      Standardized Total Effects of ETA on ETA

aspire achieve
-------- --------

aspire - - - -
achieve 0.38 - -

      Standardized Total Effects of ETA on Y

aspire achieve
-------- --------

EDASP 0.93 - -
OCASP 0.85 - -

VERBACH 0.49 1.29
QUANTACH 0.37 0.97

      Standardized Indirect Effects of ETA on Y

aspire achieve
-------- --------

EDASP - - - -
OCASP - - - -

VERBACH 0.49 - -
QUANTACH 0.37 - -
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      Standardized Total Effects of KSI on Y

home ability
-------- --------

EDASP 0.41 0.36
OCASP 0.38 0.33

VERBACH 0.46 0.75
QUANTACH 0.35 0.56

At this point, we leave it up to the reader to extract the factor loadings, 
error variances, structure coefficients, and disturbance terms from the 
various matrices indicated in the standardized solution. It is also help-
ful to determine the direct and indirect effects indicated in the model. 
The model-fit indices indicated that the data fit the modified theoretical 
model.

17.4 � Other Models in Matrix Notation

This section presents the matrix approach to the path model, the multiple-
sample model, the structured means model and two types of interaction 
models in structural equation modeling. The reader is referred to the pre-
vious chapters and references in the book for further detail and explana-
tion of these types of models.

17.4.1 � Path Model

The path model in LISREL matrix notation is written as

	 Y = BY + ΓX + z,

and thus there is no measurement model. Of the eight LISREL matrices, 
for the path model we only have the following: B, Γ, Φ, and Ψ.

As an example path model, we again consider the union sentiment 
model as previously shown in Figure 7.1 of Chapter 7. The structural equa-
tions in terms of variable names are

	 Deference (Y1) = Age (X1) + error1

	 Support (Y2) = Age (X1) + Deference (Y1) + error2

	 Sentiment (Y3) = Years (X2) + Deference (Y1) + Support (Y2) + error3.
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In terms of matrix equations, this translates into the structural equa-
tion matrices:
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Finally, the relevant LISREL matrices for this model are as follows:
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The LISREL path model program would therefore define these matrices 
as follows:

Union Sentiment of Textile Workers
DA NI=5 NO=173 MA=CM
CM SY
 14.610
 -5.250     11.017
 -8.057     11.087    31.971
 -0.482      0.677     1.559    1.021
 -18.857    17.861    28.250    7.139    215.662
LA
Defer Support Sentim Years Age
SE
1 2 3 5 4
MO NY=3 NX=2 BE=FU,FI GA=FU,FI PH=FU,FR PS=DI
FR BE(2,1) BE(3,1) BE(3,2) GA(1,1) GA(2,1) GA(3,2)
OU ND=2
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Selected computer output from the LISREL path model program would be:

Union Sentiment of Textile Workers

  Number of Iterations = 8

  LISREL Estimates (Maximum Likelihood)

        BETA

Defer Support Sentim
-------- -------- --------

Defer - - - - - -
Support -0.28 - - - -

(0.06)
-4.58

Sentim -0.22 0.85 - -
(0.10) (0.11)
-2.23 7.53

        GAMMA

Age Years
-------- --------

Defer -0.09 - -
(0.02)
-4.65

Support 0.06 - -
(0.02)
3.59

Sentim - - 0.86
(0.34)
2.52

        PHI

Age Years
-------- --------

Age 215.66
(23.39)
9.22

Years 7.14 1.02
(1.26) (0.11)
5.65 9.22

        PSI
        Note: This matrix is diagonal.

Defer Support Sentim
-------- -------- --------
12.96 8.49 19.45
(1.41) (0.92) (2.11)
9.22 9.22 9.22
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    Squared Multiple Correlations for Structural Equations

Defer Support Sentim
-------- -------- --------

0.11 0.23 0.39

Goodness-of-Fit Statistics

Degrees of Freedom = 3
Minimum Fit Function Chi-Square = 1.25 (P = 0.74)

Normal Theory Weighted Least Squares Chi-Square = 1.25 
(P = 0.74)

Estimated Non-centrality Parameter (NCP) = 0.0
90 Percent Confidence Interval for NCP = (0.0 ; 4.20)

Minimum Fit Function Value = 0.0073
Population Discrepancy Function Value (F0) = 0.0

90 Percent Confidence Interval for F0 = (0.0 ; 0.025)
Root Mean Square Error of Approximation (RMSEA) = 0.0

90 Percent Confidence Interval for RMSEA = (0.0 ; 0.091)
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.84

Expected Cross-Validation Index (ECVI) = 0.16
90 Percent Confidence Interval for ECVI = (0.16 ; 0.18)

ECVI for Saturated Model = 0.18
ECVI for Independence Model = 1.46

Chi-Square for Independence Model with 10 Degrees of Freedom 
= 238.10

Independence AIC = 248.10
Model AIC = 25.25

Saturated AIC = 30.00
Independence CAIC = 268.87

Model CAIC = 75.09
Saturated CAIC = 92.30

Normed Fit Index (NFI) = 0.99
Non-Normed Fit Index (NNFI) = 1.03

Parsimony Normed Fit Index (PNFI) = 0.30
Comparative Fit Index (CFI) = 1.00
Incremental Fit Index (IFI) = 1.01
Relative Fit Index (RFI) = 0.98

Critical N (CN) = 1560.66

Root Mean Square Residual (RMR) = 0.73
Standardized RMR = 0.015

Goodness-of-Fit Index (GFI) = 1.00
Adjusted Goodness-of-Fit Index (AGFI) = 0.99
Parsimony Goodness-of-Fit Index (PGFI) = 0.20
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17.4.2 � Multiple-Sample Model

The multiple-sample model in LISREL matrix notation for the measure-
ment model is written as

	 Y = Λy
(g) h + e

for the latent dependent indicator variables, and

	 X = Λx
(g) x + d

for the latent independent indicator variables, where g = 1 to G groups 
and the other terms are as previously defined. The structural model can be 
written as follows:

	 h = B(g) h + Γ(g) x + z

The four covariance matrices that you are already familiar with are writ-
ten as: Φ(g), Ψ(g), Θd

(g), and Θe
(g). The measurement and structural equations 

yield parameter estimates for each of the eight matrices for each group, 
B(g), Γ(g), Λy

(g), Λx
(g), Φ(g), Ψ(g), Θd

(g) and Θe
(g).

For instance, with two groups we may be interested in testing whether 
the factor loadings are equivalent. These hypotheses for the latent depen-
dent variables are written as

	 Λy
(1) = Λy

(2)

and for the latent independent variables as

	 Λx
(1) = Λx

(2)

One might also hypothesize that any of the other matrices are equivalent 
so that

	 Lomax d corr. → Θd
(1) = Θd

(2)

	 Schumacker d corr. → Θe
(1) = Θe

 (2)

	 B(1) = B(2)

	 Γ(1) = Γ(2)

	 Φ(1) = Φ(2)

	 Ψ(1) = Ψ(2)

Thus, the groups can be evaluated to determine which matrices are equiv-
alent, and which are different.
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17.4.3 � Structured Means Model

The structured means model in LISREL matrix notation for the measure-
ment model of the latent dependent indicator variables is written as

	 Y = t y
(g)  + Λy

(g) 
 h + e,

and for the latent independent indicator variables written as

	 X = t x
(g) 

 + Λx
(g) 

 x + d.

We denote ty and tx as vectors of constant intercept terms (means) for 
the indicator variables, and the other terms are as previously defined 
(Jöreskog & Sörbom, 1996) denoted these intercept terms as t; other publi-
cations have used u instead]. The structural model is now written as

	 h = a(g) + B(g) h + Γ(g) x + z,

where a is a vector of constant intercept terms (means) for the structural 
equations and the other terms are as previously defined. In most SEM mod-
els the intercept terms are assumed to be zero, so the structured means 
model is a special application of SEM used in the analysis of variance as 
well as slope and intercept models. In the structured means model, the 
intercept term is not zero and therefore estimated (see chapter 6 for inter-
cept terms in regression using CONST term).

In addition to the means of indicator variables being estimated, other 
latent variable means can be estimated. The mean of each latent indepen-
dent variable x is given by k; for example, k 1 denotes the mean for x 1. The 
mean of each latent dependent variable is given by (I – B)-1 (a + Γk).

In addition to the hypotheses given previously for the simple multiple-
sample model, the structured means model can also examine a, the group 
effects for each structural equation, and k, the group effects for each latent 
independent variable. We constrain (set equal) the value for one group to 
be zero, so we can estimate the difference between that group and a sec-
ond group, which we refer to as a group effect.

In the following LISREL matrix program we hypothesize that academic 
and nonacademic boys are different in their reading and writing ability in 
fifth and seventh grades. The first structured means program specifies the 
number of groups (NG = 2), the first group’s (academic boys) sample size 
(NO = 373), the number of observed variables (NI = 4), the type of matrix, 
that is, a covariance matrix (MA = CM), and the first group’s covariance 
matrix (CM) and means (ME). The second program only has to define the 
second group’s (nonacademic boys) sample size (NO = 249), and the sec-
ond group’s covariance matrix (CM) and means (ME). The means are what 
defines a structured means program. Special features of this program are 
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setting TX = FR (t matrix of observed variable means) and KA = FI (k 
matrix of latent variable means). This LISREL matrix program parallels the 
LISREL–SIMPLIS program in chapter 13 for the structured means model, 
that is, adding the LISREL OUTPUT command in the LISREL–SIMPLIS 
program yields these same matrices and results (Figure 17.2).

The LISREL matrix structured means program is as follows:

Group: ACADEMIC
DA NI=4 NO=373 MA=CM NG=2
CM SY
281.349
184.219 182.821
216.739 171.699 283.289
198.376 153.201 208.837 246.069
ME
262.236 258.788 275.630 269.075
LA
 R5 W5 R7 W7
MO NX=4 NK=2 TX=FR KA=FI
LK
 V5 V7
FR LX(2,1) LX(4,2)
VA 1 LX(1,1) LX(3,2)
OU ND=2 AD=OFF
Group: NONACADEMIC
DA NI=4 NO=249 MA=CM
CM SY
174.485
134.468 161.869
129.840 118.836 228.449

Verbal7

Verbal5

Writing7

Reading7

Writing5

Reading5

err_w7

err_r7

err_w5

err_r5

Figure 17.2
Structured means model.
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102.194 97.767 136.058 180.460
ME
248.675 246.896 258.546 253.349
MO LX=IN TX=IN KA=FR TD=FR
LA
 R5 W5 R7 W7
OU

The model parameters in the first group for t are set free (FR) and for k are 
fixed (FI), so that the latent variable intercepts for the first group are fixed to 
0. The estimate of the latent variable intercept in the second group (nonaca-
demic boys) is therefore evaluated relative to 0 (academic boys intercept). 
The structural model is represented as h2 = a2

 + B2
 h1 + z2 for both groups 

separately for the null hypothesis H0: aacademic boys = anonacademic boys. The edited 
and condensed structured means program output is as follows.

Group: ACADEMIC
LISREL Estimates (Maximum Likelihood)
LAMBDA-X EQUALS LAMBDA-X IN THE FOLLOWING GROUP

      PHI

V5 V7
-------- --------

V5 220.06
(19.17)
11.48

V7 212.11 233.59
(17.66) (20.50)
12.01 11.40

      THETA-DELTA

R5 W5 R7 W7
-------- -------- -------- --------
50.15 36.48 51.72 57.78
(6.02) (4.28) (6.62) (6.05)
8.34 8.52 7.82 9.55

      Squared Multiple Correlations for X - Variables

R5 W5 R7 W7
-------- -------- -------- --------

0.81 0.81 0.82 0.76

TAU-X EQUALS TAU-X IN THE FOLLOWING GROUP

Group Goodness-of-Fit Statistics
 Contribution to Chi-Square = 4.15

 Percentage Contribution to Chi-Square = 41.00
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 Root Mean Square Residual (RMR) = 6.07
 Standardized RMR = 0.025

 Goodness-of-Fit Index (GFI) = 0.99

Group: NONACADEMIC

 LISREL Estimates (Maximum Likelihood)

      LAMBDA-X

KSI 1 KSI 2
-------- --------

R5 1.00 - -
W5 0.84 - -

(0.02)
34.35

R7 - - 1.00
W7 - - 0.89

(0.03)
31.95

      PHI

KSI 1 KSI 2
-------- --------

KSI 1 156.34
(16.19)
9.66

KSI 2 126.96 153.73
(14.22) (18.03)
8.93 8.53

      THETA-DELTA

R5 W5 R7 W7
-------- -------- -------- --------
23.25 42.80 65.67 67.36
(6.23) (5.64) (9.87) (8.74)
3.73 7.59 6.65 7.71

      Squared Multiple Correlations for X-Variables

R5 W5 R7 W7
-------- -------- -------- --------
0.87 0.72 0.70 0.65

      TAU-X

R5 W5 R7 W7
-------- -------- -------- --------
262.37 258.67 275.71 268.98
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(0.84) (0.70) (0.87) (0.80)
312.58 366.96 317.77 338.00

      KAPPA

KSI 1 KSI 2
-------- --------
-13.80 -17.31
(1.18) (1.24)
-11.71 -13.99

We obtain the latent variable mean differences from the kappa matrix, 
where the nonacademic boys were below the academic boys in reading 
and writing at both the fifth grade (KSI 1) and seventh grade (KSI 2). Our 
model-fit indices indicate an acceptable theoretical model:

 Global Goodness-of-Fit Statistics
 Degrees of Freedom = 6

 Minimum Fit Function Chi-Square = 10.11 (P = 0.12)
Normal Theory Weighted Least Squares Chi-Square = 9.96 

(P = 0.13)
 Estimated Noncentrality Parameter (NCP) = 3.96

 90 Percent Confidence Interval for NCP = (0.0 ; 16.79)
 Minimum Fit Function Value = 0.016

 Population Discrepancy Function Value (F0) = 0.0064
 90 Percent Confidence Interval for F0 = (0.0 ; 0.027)

 Root Mean Square Error of Approximation (RMSEA) = 0.046
 90 Percent Confidence Interval for RMSEA = (0.0 ; 0.095)

 P-Value for Test of Close Fit (RMSEA < 0.05) = 0.27
 Expected Cross-Validation Index (ECVI) = 0.087

 90 Percent Confidence Interval for ECVI = (0.068 ; 0.095)
 ECVI for Saturated Model = 0.032
 ECVI for Independence Model = 3.15

 Chi-Square for Independence Model with 12 Degrees of 
Freedom = 1947.85

 Independence AIC = 1963.85
 Model AIC = 53.96

 Saturated AIC = 40.00
 Independence CAIC = 2007.31

 Model CAIC = 173.48
 Saturated CAIC = 148.66

 Normed Fit Index (NFI) = 0.99
 Nonnormed Fit Index (NNFI) = 1.00

 Parsimony Normed Fit Index (PNFI) = 0.50
 Comparative Fit Index (CFI) = 1.00
 Incremental Fit Index (IFI) = 1.00
 Relative Fit Index (RFI) = 0.99

 Critical N (CN) = 1031.60
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 Group Goodness-of-Fit Statistics
 Contribution to Chi-Square = 5.97

 Percentage Contribution to Chi-Square = 59.00
 Root Mean Square Residual (RMR) = 7.69

 Standardized RMR = 0.042
 Goodness-of-Fit Index (GFI) = 0.99

17.4.4 � Interaction Models

In chapter 16 we discussed four different types of interaction models: categori-
cal, nonlinear, continuous observed variable, and latent variable (Schumacker 
& Marcoulides, 1998). In this chapter we present the LISREL matrix program 
using latent variables that parallels the interaction latent variable approach 
in Chapter 16 using LISREL–SIMPLIS, except for slight differences in the 
standard errors. The matrix approach to latent variable interactions requires 
the understanding and use of nonlinear constraints, which has made it dif-
ficult for most SEM researchers (Jöreskog & Yang, 1996).

The latent variable interaction approach in LISREL matrix notation for 
Figure 17.3 is h1 = g1 x1 + g2 x2 + g3 x3 + z1, where h1 is the latent dependent 
variable, x1 and x2 are the main-effect latent independent variables, x3 is 
the interaction-effect formed by multiplying x1 and x2, g1 and g2 are the 
structure coefficients for the main-effect latent independent variables, g3 is 

KS1

KSI1*KSI2

KSI2

ETgamma3

gamma1

gamma2

V4

V5

V6

V47

V58

V69

V7

V8

V9

V1

V2

V3

Figure 17.3
Latent variable interaction (continuous variable approach).
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the structure coefficient for the interaction-effect latent independent vari-
able, and z1 is the error term in the structural equation. Notice that the 
relationship between h1 and x3 is itself linear. The structure of the interac-
tion model emerges as a logical extension of the measurement model for 
x1 and x2. The basic measurement model is X = Λx + d, where X is a vector 
of observed variables, Λ is a matrix of factor loadings, and d is a vector of 
measurement error terms. The covariance matrices of these common and 
unique factors are Φ and Θd, respectively.

Kenny and Judd (1984) used simple algebraic substitution to develop 
their model of multiplicative interaction effects (Hayduk, 1987). Basically, 
given two latent independent variables, the models are X1 = λ1 x1 + d1 and 
X2 = λ2 x2 + d2. The interaction effect or product is X3 = X1 X2, indicated in 
the model as X3 = λ1 λ2 x1 x2 + λ1 x1 d2 + λ2 x2 d1 + d1 d2, or X3 = λ3 x3 + λ1 x4 + 
λ2 x5 + d3, where x3 = x1 x2, x4 = x1 d2, x5 = x2 d1, d3 = d1 d2, and λ3 = λ1 λ2. All 
of these new latent variables are mutually uncorrelated and uncorrelated 
with all other latent variables in the model.

In order to incorporate this interaction effect into the structural equa-
tion model, we need to specify X3 as a function of latent variables whose 
variances and covariance terms reflect these relationships. This involves 
specifying some model parameters as nonlinear functions of other 
parameters. In the LISREL program, these types of nonlinear constraints 
are indicated by using the VA (value), EQ (equality), and CO (constraint) 
commands. For example, the Kenny–Judd interaction model implies that 
s2(x3) = s2(x1) s2(x2) + s( x1 x2)2. This relationship using the CO command 
line is specified as CO PH(3,3) = PH(1,1) * PH(2,2) + PH(2,1) * * 2. Similarly, 
their model implies that s2(x4) = s2(x1) s2(d2), and this relationship is speci-
fied as CO PH(4,4) = PH(1,1) * TD(2,2).

We demonstrate the Kenny and Judd (1984) approach by creating a 
simulated data set of nine multivariate normal variables and three 
product indicant variables for 500 participants using a PRELIS program 
(mvdata1.pr2):

Generate multivariate normal variables – LISREL
DA NO=500
NE X1=NRAND; NE X2=NRAND; NE X3=NRAND
NE X4=NRAND; NE X5=NRAND; NE X6=NRAND
NE X7=NRAND; NE X8=NRAND; NE X9=NRAND
NE V1=X1
NE V2=.378*X1+.925*X2
NE V3=.320*X1+.603*X2+.890*X3
NE V4=.204*X1+.034*X2+.105*X3+.904*X4
NE V5=.076*X1+.113*X2+.203*X3+.890*X4+.925*X5
NE V6=.111*X1+.312*X2+.125*X3+.706*X4+.865*X5+.905*X6
NE V7=.310*X1+.124*X2+.310*X3+.222*X4+.126*X5+.555*X6+.897*X7
NE V8=.222*X1+.111*X2+.412*X3+.312*X4+.212*X5+.312*X6+.789*X7+.899*X8
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NE V9=.321*X1+.214*X2+.124*X3+.122*X4+.234*X5+.212*X6+.690*X7+.789*X8+.907*X9
NE V47=V4*V7
NE V58=V5*V8
NE V69=V6*V9
CO ALL
SD X1-X9
OU MA=CM CM=INTERACT.CM ME=INTERACT.ME RA=INTERACT.PSF XM 
IX=784123

Although the nine observed variables were created as multivariate nor-
mal data, the product indicant variables are typically not multivariate nor-
mal. The summary statistics do indicate that the nine observed variables 
are univariate normal, but that the three product indicant variables have 
skewness and kurtosis, that is, are nonnormal (boldfaced). In LISREL, 
maximum likelihood estimation (ML) is the default, and it appears to 
work well under mild violations of multivariate normality in the interac-
tion latent variable model. We used the same random number seed as 
before so the data could be reproduced (IX = 784123).

PRELIS Computer Output

Univariate Summary Statistics for Continuous Variables

Variable Mean St. Dev. T-Value Skewness Kurtosis
V1 -0.061 0.976 -1.394  0.191   0.048
V2  0.007 1.071  0.142 -0.047   0.280
V3 -0.018 1.105 -0.368  0.175   0.441
V4 -0.015 0.956 -0.359 -0.200  -0.158
V5 -0.013 1.351 -0.209 -0.003   0.168
V6  0.011 1.543  0.163  0.171   0.528
V7 -0.065 1.192 -1.222 -0.081  -0.350
V8 -0.041 1.491 -0.615  0.127   0.092
V9  0.005 1.595  0.075  0.058   0.514

V47  0.325 1.143  6.356  0.958   3.861
V58  0.670 2.179  6.877  1.916   8.938
V69  0.584 2.754  4.745  2.304  15.266

Test of Univariate Normality for Continuous Variables

Skewness Kurtosis
Skewness and 
Kurtosis

Variable Z-Score P-Value Z-Score P-Value
Chi-
Square P-Value

V1  1.749 0.080 0.321 0.748  3.163 0.206
V2 -0.432 0.666 1.256 0.209  1.764 0.414
V3  1.608 0.108 1.811 0.070  5.866 0.053
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V4 -1.833 0.067 -0.695 0.487   3.844 0.146
V5 -0.031 0.975  0.829 0.407   0.688 0.709
V6  1.571 0.116  2.082 0.037   6.802 0.033
V7 -0.746 0.456 -1.865 0.062   4.034 0.133
V8  1.165 0.244  0.513 0.608   1.620 0.445
V9  0.531 0.595  2.039 0.041   4.438 0.109

V47  7.573 0.000  7.085 0.000 107.539 0.000
V58 12.103 0.000  9.622 0.000 239.070 0.000
V69 13.428 0.000 11.101 0.000 303.539 0.000

The PRELIS program saves three files, a covariance matrix (interact.cm), 
means (interact.me), and a PRELIS system file (interact.psf). The LISREL 
program inputs the files with the covariance matrix and means.

The LISREL program to run the data for the model in Figure 17.3 is:

Fitting Model to Mean Vector and Covariance Matrix
DA NI=12 NO=500
!The three interaction variables are added prior to 
program analysis
LA
V1 V2 V3 V4 V5 V6 V7 V8 V9 V47 V58 V69
CM=interact.CM
ME=interact.ME
MO NY=3 NX=9 NE=1 NK=3 TD=SY TY=FR TX=FR KA=FR
FR LY(2) LY(3) GA(1) GA(2) GA(3) LX(2,1) LX(3,1) LX(5,2) 
LX(6,2) PH(1,1)-PH(2,2)
FI PH(3,1) PH(3,2)
VA 1 LY(1) LX(1,1) LX(4,2) LX(7,3) !Should be same as       
C  SIMPLIS program for comparison
FI KA(1) KA(2)
CO LX(7,1)=TX(4)
CO LX(7,2)=TX(1)
CO LX(8,1)=TX(5)*LX(2,1)
CO LX(8,2)=TX(2)*LX(5,2)
CO LX(8,3)=LX(2,1)*LX(5,2)
CO LX(9,1)=TX(6)*LX(3,1)
CO LX(9,2)=TX(3)*LX(6,2)
CO LX(9,3)=LX(3,1)*LX(6,2)
CO PH(3,3)=PH(1,1)*PH(2,2)+PH(2,1)**2
CO TD(7,1)=TX(4)*TD(1,1)
CO TD(7,4)=TX(1)*TD(4,4)
CO TD(7,7)=TX(1)**2*TD(4,4)+TX(4)**2*TD(1,1)+PH(1,1)*TD(4,4)+  
C  PH(2,2)*TD(1,1)+TD(1,1)*TD(4,4)
CO TD(8,2)=TX(5)*TD(2,2)
CO TD(8,5)=TX(2)*TD(5,5)
CO TD(8,8)=TX(2)**2*TD(5,5)+TX(5)**2*TD(2,2)+LX(2,1)**2*PH(1,
1)*TD(5,5)+
C  LX(5,2)**2*PH(2,2)*TD(2,2)+TD(2,2)*TD(5,5)
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CO TD(9,3)=TX(6)*TD(3,3)
CO TD(9,6)=TX(3)*TD(6,6)
CO TD(9,9)=TX(3)**2*TD(4,4)+TX(6)**2*TD(3,3)+LX(3,1)**2*PH(1,
1)*TD(6,6)+
C  LX(6,2)**2*PH(2,2)*TD(3,3)+TD(3,3)*TD(6,6)
CO KA(3)=PH(2,1)
CO TX(7)=TX(1)*TX(4)
CO TX(8)=TX(2)*TX(5)
CO TX(9)=TX(3)*TX(6)
OU AD=OFF IT=500 EP=0.001 IM=3 ND=3

The CO command (placing proper constraints in the model) is what 
becomes difficult to navigate in creating the matrix programs for latent 
variable interaction models. Discussions of different latent variable 
interaction models and related issues can be found in Marcoulides and 
Schumacker (1996, 2001) and Schumacker and Marcoulides (1998).

Given the LISREL matrix program with a latent variable interaction 
term, several matrices need to be specified. The structural equation with 
the two main-effect latent variables and the interaction-effect latent vari-
able is as follows:

	 η α γ ξ γ ξ γ ξ ξ ζ= + + + +1 1 2 2 3 1 2

The measurement model with Y observed variables is defined as follows:

	 Y Ty y= + +Λ η ε

The matrices for the Y observed variable measurement model are speci-
fied as:
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where the theta–epsilon error matrix specified as follows:

 	 Θε
ε ε εθ θ θ= diag( , , )1 2 3

The measurement model for the X observed variables, which includes 
both main-effects and the interaction-effect, is defined as follows:

	 X Tx x= + +Λ ξ δ
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The matrices for the X observed variable measurement model are speci-
fied as follows:

	

x

x

x

x

x

x

x x

x x

x x

1

2

3

4

5

6

1 4

2 5

3 6













































=

τ

τ

τ

τ

τ

τ

τ τ

τ τ

τ

1

2

3

4

5

6

1 4

2 5

3ττ6

1













































+

00 0
0 0
0 0

0 1 0
0 0
0 0

1

2

3

5

6

4 1

5 2 2 5 2 5

3 3

λ
λ

λ
λ

τ τ
τ λ τ λ λ λ
τ λ ττ λ λ λ

ξ

ξ

ξ

3 6 3 6

1

2

1



































ξξ

δ

δ

δ

δ

δ

δ

δ

δ

δ

2

1

2

3

4

5

6

7

8

9



















+













































with errors in the theta delta matrix Θd denoted as follows:

	

θ
θ

θ
θ

θ
θ

τ θ τ θ θ
τ

1

2

3

4

5

6

4 1 1 4 7

0
0 0
0 0 0
0 0 0 0
0 0 0 0 0

0 0 0 0
0 55 2 2 5 8

6 3 3 6 9

0 0 0 0
0 0 0 0 0 0

θ τ θ θ
τ θ τ θ θ



































.

The theta delta values for the observed interaction variables are calculated 
as follows:

θ τ θ τ θ φ θ φ θ θ θ

θ τ θ τ

7 4
2

1 1
2

4 11 4 22 1 1 4

8 5
2

2 2
2

= + + + +

= + θθ λ φ θ λ φ θ θ θ

θ τ θ τ θ λ

5 2
2

11 5 5
2

22 2 2 5

9 6
2

3 3
2

6 3

+ + +

= + + 22
11 6 6

2
22 3 3 6φ θ λ φ θ θ θ+ +
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The mean vector implied by the interaction of the exogenous latent vari-
ables is defined in the following kappa mean vector matrix:

	

κ

φ

=



















0

0

21

with the variance–covariance of the latent independent variables (ksi1 
and ksi2) defined as follows:

	

Φ =
+

















φ
φ φ

φ φ φ

11

21 22

11 22 21
20 0

We can now look for these matrices and their associated values in the 
LISREL computer output.

LISREL Interaction Computer Output

The gamma matrix contains the three structure coefficients of interest for 
the two main-effect latent variables [g1 = .077 (.030), t = 2.60 and g2 = .155 
(.029), t = 5.378] and the interaction latent variable [g3 = −.029 (.029), t = 
–1.004]. The gamma coefficient for the latent variable interaction effect is 
nonsignificant (t = −1.004). We should modify our theoretical model and 
test main effects only. The edited and condensed LISREL computer output 
is as follows:

LISREL Estimates (Maximum Likelihood)

      LAMBDA-Y

ETA 1
--------

V1 1.000
V2 2.080

(0.257)
8.097

V3 2.532
(0.325)
7.788
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      LAMBDA-X

KSI 1 KSI 2 KSI 3
-------- -------- --------

V4 1.000 - - - -
V5 1.981 - - - -

(0.091)
21.732

V6 1.925 - - - -
(0.090)
21.368

V7 - - 1.000 - -
V8 - - 1.658 - -

(0.072)
22.874

V9 - - 1.493 - -
(0.069)
21.741

V47 -0.070 0.013 1.000
(0.035) (0.028)
-2.027 0.471

V58 -0.094 -0.010 3.285
(0.083) (0.062) (0.173)
-1.142 -0.153 18.960

V69 0.020 -0.049 2.875
(0.090) (0.067) (0.152)
0.226 -0.729 18.940

      GAMMA

KSI 1 KSI 2 KSI 3
-------- -------- --------

ETA 1 0.077 0.155 -0.029
(0.030) (0.029) (0.029)
2.602 5.378 -1.004

      Covariance Matrix of ETA and KSI

ETA 1 KSI 1 KSI 2 KSI 3
-------- -------- -------- --------

ETA 1  0.150
KSI 1  0.068 0.463
KSI 2  0.137 0.211 0.784
KSI 3 -0.012 - - - - 0.408

      Mean Vector of Eta-Variables

 ETA 1
 --------
 -0.006
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      PHI

KSI 1 KSI 2 KSI 3
-------- -------- --------

KSI 1 0.463
(0.043)
10.729

KSI 2 0.211 0.784
(0.021) (0.069)
10.236 11.283

KSI 3 - - - - 0.408
(0.041)
9.953

      PSI

ETA 1
--------
0.123

(0.029)
4.193

      Squared Multiple Correlations for Structural Equations

ETA 1
--------
0.179

      THETA-EPS

V1 V2 V3
-------- -------- --------
0.804 0.502 0.267

(0.053) (0.058) (0.074)
15.166 8.618 3.617

      Squared Multiple Correlations for Y - Variables

V1 V2 V3
-------- -------- --------
0.157 0.563 0.782

      THETA-DELTA

V4 V5 V6 V7 V8 V9
-------- -------- -------- -------- -------- --------

V4 0.458
(0.029)
16.044

V5 - - 0.045
(0.049)
0.931

V6 - - - - 0.796
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(0.065)
12.238

V7 - - - - - - 0.647
(0.043)
15.186

V8 - - - - - - - - 0.105
(0.057)
1.840

V9 - - - - - - - - - - 0.936
(0.070)
13.342

V47 -0.032 - - - - 0.009 - - - -
(0.016) (0.018)
-2.011 0.471

V58 - - -0.002 - - - - -0.001 - -
(0.003) (0.004)
-0.722 -0.152

V69 - - - - 0.008 - - - - -0.031
(0.037) (0.042)
0.226 -0.728

      THETA–DELTA

V47 V58 V69
-------- -------- --------

V47 0.957
(0.047)
20.519

V58 - - 0.293
(0.138)
2.129

V69 - - - - 3.745
(0.200)
18.698

      Squared Multiple Correlations for X - Variables

V4 V5 V6 V7 V8 V9
-------- -------- -------- -------- -------- --------
0.503 0.976 0.683 0.548 0.954 0.651

      Squared Multiple Correlations for X - Variables

V47 V58 V69
-------- -------- --------
0.300 0.938 0.474
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      TAU-Y

V1 V2 V3
-------- -------- --------
-0.055 0.019 -0.004
(0.044) (0.048) (0.050)
-1.263 0.386 -0.079

      TAU-X

V4 V5 V6 V7 V8 V9
-------- -------- -------- -------- -------- --------
0.013 -0.006 -0.033 -0.070 -0.048 0.011

(0.028) (0.038) (0.045) (0.035) (0.042) (0.047)
0.471 -0.153 -0.729 -2.027 -1.144 0.226

      TAU-X

V47 V58 V69
-------- -------- --------
-0.001 0.000 0.000
(0.002) (0.002) (0.002)
-0.456 0.151 -0.215

      KAPPA

KSI1 KSI2 KSI3
-------- -------- --------

- - - - 0.211
(0.021)
10.236

 Goodness-of-Fit Statistics

 Degrees of Freedom = 59
 Minimum Fit Function Chi-Square = 403.462 (P = 0.0)

 Normal Theory Weighted Least Squares Chi-Square = 365.186 
(P = 0.0)

 Estimated Non-centrality Parameter (NCP) = 306.186
 90 Percent Confidence Interval for NCP = (249.618 ; 370.256)

 Minimum Fit Function Value = 0.809
 Population Discrepancy Function Value (F0) = 0.614

 90 Percent Confidence Interval for F0 = (0.500 ; 0.742)
 Root Mean Square Error of Approximation (RMSEA) = 0.102

 90 Percent Confidence Interval for RMSEA = (0.0921 ; 0.112)
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 P-Value for Test of Close Fit (RMSEA < 0.05) = 0.000

 Expected Cross-Validation Index (ECVI) = 0.944
 90 Percent Confidence Interval for ECVI = (0.763 ; 1.005)

 ECVI for Saturated Model = 0.313
 ECVI for Independence Model = 6.300

 Chi-Square for Independence Model with 66 Degrees of 
Freedom = 3119.580

 Independence AIC = 3143.580
 Model AIC = 471.186

 Saturated AIC = 156.000
 Independence CAIC = 3206.156

 Model CAIC = 747.560
 Saturated CAIC = 562.739

 Normed Fit Index (NFI) = 0.871
 Nonnormed Fit Index (NNFI) = 0.874

 Parsimony Normed Fit Index (PNFI) = 0.778
 Comparative Fit Index (CFI) = 0.887
 Incremental Fit Index (IFI) = 0.887
 Relative Fit Index (RFI) = 0.855

 Critical N (CN) = 108.807

 Root Mean Square Residual (RMR) = 0.142
 Standardized RMR = 0.0636

 Goodness-of-Fit Index (GFI) = 0.893
 Adjusted Goodness-of-Fit Index (AGFI) = 0.859
 Parsimony Goodness-of-Fit Index (PGFI) = 0.676

17.5 � Summary

This chapter presented the eight basic matrices used in structural equa-
tion modeling, plus two new matrices, tau and kappa. We also discussed 
that for any structural equation model, parameters in these matrices must 
be free, fixed, or constrained for model identification, model estimation, 
and model testing. We presented the matrix notation by providing five 
different SEM models: our theoretical model in chapter 10, a path model, 
a multiple-sample model, a structured means model, and an interaction 
model. We presented these same models in earlier chapters using LISREL–
SIMPLIS, and displayed them in matrix form in this chapter for compara-
tive purposes. If you wish, simply add the LISREL OUTPUT command 
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to these programs to output the matrices presented in this chapter. We 
firmly believe that once you master the matrix notation, you will better 
understand structural equation modeling.

Exercise

	 1.	 The National Science Foundation (NSF) is encouraging students 
to seek academic degrees and careers in science, mathematics, 
and engineering in the United States. Research has shown a gen-
der difference in science, mathematics, and engineering partici-
pation. A key area of study is to investigate what factors influence 
these gender differences. A latent variable model is hypothesized 
to investigate factors that influence gender differences because 
previous research indicated variables such as characteristics of 
students in science, mathematics, and engineering.

		    A structural equation model with two exogenous latent vari-
ables measured by six observed variables is hypothesized to 
predict two endogeneous latent variables measured by five 
observed variables. The first independent latent variable, x1 = 
Family Background, is measured by three variables: X1 = fam-
ily income, X2 = father’s education, and X3 = mother’s education. 
The other independent latent variable, x2 = Encouragement, is 
measured by three variables: X4 = personal encouragement, 
X5 = institutional characteristics, and X6 = admission status. 
Students’ characteristics, h1 = Students’ Characteristics, is 
measured by three variables: Y1 = cognitive abilities, Y2 = inter-
personal skills, and Y3 = motivation. The other endogenous 
variable, h2 = Aspirations, is measured by two variables: Y4 = 
occupational aspiration and Y5 = educational aspiration.

		    The hypothesized structural equation model represents a 
two-step approach: measurement (confirmatory factor analysis) 
and structural model. The structural model depicts the relation-
ships between four latent variables: x1 = Family Background, 
x2 = Encouragement, h1 = Students’ Characteristics, and h2 = 
Aspirations. The structural model is

	 Students’ Characteristics = Family Background + Encouragement 
	                  + Aspirations + error

	 Aspirations =  Family Background + Encouragement + error.

With this information, you should be able to do the following:

	 1.	 Diagram the structural equation model.
	 2.	 Write the measurement equations using the variable 

names.
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	 3.	 Write the measurement equations using LISREL matrix 
notation.

	 4.	 Write the structural equations using the variable names.
	 5.	 Write the structural equations using LISREL matrix 

notation.
	 6.	 Create the matrices for the measurement model.
	 7.	 Create the matrices for the structural model.
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Appendix A: Introduction 
to Matrix Operations

Structural Equation Modeling performs calculations using several differ-
ent matrices. The matrix operations to perform the calculations involve 
addition, subtraction, multiplication, and division of elements in the dif-
ferent matrices.* We present these basic matrix operations, followed by a 
simple multiple regression example.

Matrix Definition

A matrix is indicated by capital letters (e.g., A, B, or R) and takes the form:

	
A22

3 5
5 6

=










The matrix can be rectangular or square-shaped, and contains an array of 
numbers. A correlation matrix would be a square matrix with the value 
of 1.0 in the diagonal and variable correlations in the off-diagonal. A cor-
relation matrix is symmetrical because the correlation coefficients in the 
lower half of the matrix are the same as the correlation coefficients in the 
upper half of the matrix. [Note: we usually only report the diagonal values 
and the correlations in the lower half of the matrix.] For example:

	

R33

1 0 30 50
30 1 0 60
50 60 1 0

=
















. . .
. . .
. . .

,

but we report the following as a correlation matrix:

	 1.0
	             .30  1.0
	                        .50    .60  1.0

*	 Walter L. Sullins (1973). Matrix algebra for statistical applications, Danville, IL: The Interstate 
Printers & Publishers, Inc.
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Matrices have a certain number of rows and columns. The A matrix 
above has two rows and two columns. The order of a matrix is the size of 
the matrix, or number of rows times the number of columns. The order 
of the A matrix is 22, and shown as subscripts, where the first subscript 
is the number of rows, and second subscript is the number of columns.

When we refer to elements in the matrix, we use row and column desig-
nations to identify the location of the element in the matrix. The location 
of an element has a subscript using the row number first, followed by the 
column number. For example, the correlation r = .30 is in the R21 matrix 
location or row 2, column 1.

Matrix Addition and Substraction

Matrix addition adds corresponding elements in two matrices, while 
matrix subtraction subtracts corresponding elements in two matrices. 
Consequently, the two matrices must have the same order (number of 
rows and columns), so we can add A32 + B32 or subtract A32 – B32. In the fol-
lowing example, Matrix A elements are added to Matrix B elements:

	

3 5 2
1 6 0
9 1 2

1 3 5
2 1 3
0 7 3

4















+
−

−

















=
22 7

3 7 3
9 8 1−

















Matrix Multiplication

Matrix multiplication is not as straight forward as matrix addition and 
subtraction. For a product of matrices we indicate A • B or AB. If A is an 
m × n matrix and B is an n × p matrix, then AB is a m × p matrix of rows 
and columns. The number of columns in the first matrix must match the 
number of rows in the second matrix to be compatible and permit multi-
plication of the elements of the matrices. The following example will illus-
trate how the row elements in the first matrix (A) are multiplied times 
the column elements in the second matrix (B) to yield the elements in the 
third matrix C.

c11 = 1•2 + 2•1 = 2 + 2 = 4
c12 = 1•4 + 2•8 = 4 + 16 = 20
c13 = 1•6 + 2•7 = 6 + 14 = 20
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c21 = 3•2 + 5•1 = 6 + 5 = 11

c22 = 3•4 + 5•8 = 12 + 40 = 52

c23 = 3•6 + 5•7 = 18 + 35 = 53

	
A B• =









 •









 =






1 2
3 5

2 4 6
1 8 7

4 20 20
11 52 53



Matrix C is:

	
C =











4 20 20
11 52 53

It is important to note that matrix multiplication is noncommutative (i.e., 
AB ≠ BA.) The order of operation in multiplying elements of the matri-
ces is therefore very important. Matrix multiplication, however, is asso-
ciate [i.e., A (BC) = (AB) C] because the order of matrix multiplication is 
maintained.

A special matrix multiplication is possible when a single number is mul-
tiplied times the elements in a matrix. The single number is called a scalar. 
The scalar is simply multiplied times each of the elements in the matrix. 
For example,

	
D =









 =









2

3 4
4 6

6 8
8 12

Matrix Division

Matrix division is similar to matrix multiplication with a little twist. In 
regular division, we divide the numerator by the denominator. However, 
we can also multiply the numerator by the inverse of the denominator. For 
example, in regular division, 4 is divided by 2; however, we get the same 
results if we multiply 4 by ½. Therefore, matrix division is simply A/B or 
A•1/B = AB−1. The special designation of the B−1 matrix is called the inverse 
of the B matrix.

Matrix division requires finding the inverse of a matrix, which involves 
computing the determinant of a matrix, the matrix of minors, and the matrix 
of cofactors. We then create a transposed matrix and an inverse matrix, which 
when multiplied yield an identity matrix. We now turn our attention to 
finding these values and matrices involved in matrix division.
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Determinant of a Matrix

The determinant of a matrix is a unique number (not a matrix) that uses 
all the elements in the matrix for its calculation, and is a generalized vari-
ance for that matrix. For our illustration we will compute the determinant 
of a 2 by 2 matrix; leaving higher order matrix determinant computations 
for high-speed computers. The determinant is computed by cross multi-
plying the elements of the matrix:

	
A

a b

c d
=











so, the determinant of A = ad − cb.
For example,

	
A =











2 5
3 6

so, the determinant of A = 2•6 – 3•5 = −3.

Matrix of Minors

Each element in a matrix has a minor. To find the minor of each element, simply 
draw a vertical and a horizontal line through that element to form a matrix 
with one less row and column. We next calculate the determinants of these 
minor matrices, and then place them in a matrix of minors. The matrix of minors 
would have the same number of rows and columns as the original matrix.

The matrix of minors for the following 3 by 3 matrix would be computed 
as follows:

A =
−

−
−

















1 6 3
2 7 1

3 1 4

M
7 1

1 4
(7)(4) (1)( l)11

−













= − − 29=
	

M
2 1

3 4
( 2)(4) (1)12

−











= − − ((3) 11= −

M
2 7

3 1
( 2)( l) (13

−

−













= − − − 77)(3) 19= −
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M
6 3

1 4
(6) (4) ( 1)21

−

−













= − − (( 3) 21− =

M
1 3

3 4
(1)(4) ( 3)(22

−











= − − 33) 13=

M
1 6

3 1
(1)( l) (6)(23

−













= − − 33) 19= −

M
6 3

7 1
(6)(1) (31

−











= − − 33)(7) 27=

M
1 3

2 1
(1)(1) (32

−

−













= − − 33)( 2) 5− = −

M
1 6

2 7
(1)(7) (33

−













= − 66)( 2) 19− =

AMinors =
− −

−
−

















29 11 19
21 13 19
27 5 19

Matrix of Cofactors

A matrix of cofactors is created by multiplying the elements of the matrix of 
minors by (−l) for i + j elements, where i = row number of the element and 
j = column number of the element. Place these values in a new matrix, 
called a matrix of cofactors.

An easy way to remember this multiplication rule is to observe the 
matrix below. Start with the first row and multiply the first entry by (+), 
second entry by (−), third by (+), and so on to the end of the row. For the 
second row start multiplying by (−), then (+), then (−), and so on. All odd 
rows begin with + sign and all even rows begin with − sign.

	 +    –    +
	 –    +    –
	 +    –    +
	 –    +    –

Y102005.indb   429 3/22/10   3:27:25 PM



430	 Appendix A: Introduction to Matrix Operations

We now proceed by multiplying elements in the matrix of minors by −1 for 
the i + j elements.

	

AMinors =
+ − +
− + −
+ − +

















− −1 1 1
1 1 1
1 1 1

29 11 199
21 13 19
27 5 19

−
−

















to obtain the matrix of cofactors:

	

CCofactors =
−

−
















29 11 19
21 13 19

27 5 19

Determinant of Matrix Revisited

The matrix of cofactors makes finding the determinant of any size matrix 
easy. We multiply elements in any row or column of our original A matrix, 
by any one corresponding row or column in the matrix of cofactors to com-
pute the determinant of the matrix. We can compute the determinant 
using any row or column, so rows with zeroes makes the calculation of 
the determinant easier. The determinant of our original 3 by 3 matrix (A) 
using the 3 by 3 matrix of cofactors would be:

	 det A a c a c a c= + +11 11 12 12 13 13

Recall that matrix A was:

	

A =
−

−
−

















1 6 3
2 7 1

3 1 4

The matrix of cofactors was:

	

CCofactors =
−

−
















29 11 19
21 13 19

27 5 19

So, the determinant of matrix A, using the first row of both matrices is.

	 det ( )( ) ( )( ) ( )( )A = + + − − =1 29 6 11 3 19 152
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We also could have used the second columns of both matrices and obtained 
the same determinant value:

	 det ( )( ) ( )( ) ( )( )A = + + − =6 11 7 13 1 5 152

Two special matrices, we have already mentioned, also have deter-
minants: diagonal matrix and triangular matrix. A diagonal matrix is a 
matrix which contains zero or nonzero elements on its main diagonal, 
but zeroes everywhere else. A triangular matrix has zeros only either 
above or below the main diagonal. To calculate the determinants of 
these matrices, we only need to multiply the elements on the main 
diagonal. For example, the following triangular matrix K has a deter-
minant of 96.

	

K =
−

−





















2 0 0 0
4 1 0 0
1 5 6 0

3 9 2 8

This is computed by multiplying the diagonal values in the matrix:

	 det ( )( )( )( ) .K = =2 1 6 8 96 	

Transpose of a Matrix

The transpose of a matrix is created by taking the rows of an original 
matrix C and placing them into corresponding columns of a transpose 
matrix, C’. For example:

	

C =
−

−
















29 11 19
21 13 19

27 5 19

	

′ =
−

−

















C

29 21 27
11 13 5
19 19 19

	

The transposed matrix of the matrix of cofactors is now given the special 
term adjoint matrix, designated as Adj(A). The adjoint matrix is important 
because we use it to create the inverse of a matrix, our final step in matrix 
division operations.
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Inverse of a Matrix

The general formula for finding an inverse of a matrix is one over the 
determinant of the matrix times the adjoint of the matrix:

	 A A ADJ A− =1 1[ /det ] ( )

Since we have already found the determinant and adjoint of A, we find the 
inverse of A as follows:

	

A− =






−

−

















1 1
152

29 21 27
11 13 5
19 19 19

==
−

−






. . .
. . .
. . .

191 138 178
072 086 033
125 125 125












An important property of the inverse of a matrix is that if we multiply 
its elements by the elements in our original matrix, we should obtain an 
identity matrix. An identity matrix will have 1.0 in the diagonal and zeroes 
in the off-diagonal. The identity matrix is computed as:

	 A A I− =1

Because we have the original matrix of A and the inverse of matrix A, we 
multiply elements of the matrices to obtain the identity matrix, I:

	

AA− =
−

−
−

















∗
−

1

1 6 3
2 7 1

3 1 4

191 138 178
0
. . .
. 772 086 033

125 125 125

1 0 0
0 1 0
0 0

. .
. . .−

















=
11

















Matrix Operations in Statistics

We now turn our attention to how the matrix operations are used to com-
pute statistics. We will only cover the calculation of the Pearson correla-
tion and provide the matrix approach in multiple regression, leaving more 
complicated analyses to computer software programs.

Pearson Correlation (Variance–Covariance Matrix)

In the book, we illustrated how to compute the Pearson correlation coeffi-
cient from a variance–covariance matrix. Here, we demonstrate the matrix 
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approach. An important matrix in computing correlations is the sums of 
squares and cross-products matrix (SSCP). We will use the following pairs 
of scores to create the SSCP matrix.

X1 X2

5 1
4 3
6 5

The mean of X1 is 5 and the mean of X2 is 3. We use these mean values 
to compute deviation scores from each mean. We first create a matrix of 
deviation scores, D:

	

D =
















−
















=
−

−
5 1
4 3
6 5

5 3
5 3
5 3

0 2
1 0

1 22

















Next, we create the transpose of matrix D, D’:

	
′ =

−
−









D

0 1 1
2 0 2

Finally, we multiply the transpose of matrix D times the matrix of devia-
tion scores to compute the sums of squares and cross-products matrix:

	 SSCP = D’ * D

	

SSCP =
−

−








 ∗

−
−

















=
0 1 1
2 0 2

0 2
1 0

1 2

2 2
2 8











The sums of squares are along the diagonal of the matrix, and the sum 
of squares cross-products are on the off-diagonal. The matrix multiplica-
tions are provided below for the interested reader.

(0)(0) + (−1)(−1) + (1)(1) = 2 [sums of squares = (0² + −1² + 1²)]

(−2)(0) + (0)(−1) + (2)(1) = 2 [sum of squares cross product]

(0)(−2) + (−1)(0) + (1)(2) = 2 [sum of squares cross product]

(−2)(−2) + (0)(0) + (2)(2) = 8	[sums of squares = (−2² + 0² + 2²)]
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Sum of squares in diagonal of matrix

SSCP =










2 2
2 8

Variance–Covariance Matrix

Structural equation modeling uses a sample variance–covariance matrix 
in its calculations. The SSCP matrix is used to create the variance–covari-
ance matrix, S:

	
S

SSCP
n

=
− 1

In matrix notation this becomes ½ times the matrix elements:

Covariance terms in the off-diagonal
of matrixS = ∗









 =











1
2

2 2
2 8

1 1
1 4

	           
Variance of variables in diagonal

	       of matrix

We can now calculate the Pearson correlation coefficient using the 
basic formula of covariance divided by the square root of the product 
of the variances.

	
r

X X

VarianceX VarianceX
=

∗
=

∗
=Covariance 1 2

1 2

1

1 4

11
2

50= .

Multiple Regression

The multiple linear regression equation with two predictor variables is:

	 y = + + +0β β β1 2x x e1 2 i

where y is the dependent variable, x1 and x2 the two predictor variables, 
and

	

β0 is the regression constant or y-interceppt,

and are the regression weightsβ β1 2 to be estimated,

and e is the error of preediction.
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Given the data below, we can use matrix algebra to estimate the regres-
sion weights:

y x1 x2

3 2 1
2 3 5
4 5 3
5 7 6
8 8 7

We model each subject’s y score as a linear function of the betas:

	

y e

y e

y

1 0 1 2

2 0 1 2

3

3 1

2 1

4

= = + + +

= = + + +

= =

β β β

β β β

2 1

3 5

1

2

11

5 1

8 1

0 1 2

4 0 1 2

5 0

β β β

β β β

β

+ + +

= = + + +

= = +

5 3

7 6

3

4

e

y e

y 88 7 5β β1 2+ + e

This series of equations can be expressed as a single matrix equation:

	

y X e

y

= +

=

                                     β

3

22

4

5

8

1

























=

2 1

1 3 5

1 5 3

1 7 6

1 8 7













































+

β

β

β

0

1

2

1

2

e

e

e33

4

5

e

e





























The first column of matrix X are 1s, which compute the regression constant. 
In matrix form, the multiple linear regression equation is y X e= +β .

Using calculus, we translate this matrix to solve for the regression weights:

	
ˆ ( ' ) 'β = −X X X y1
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The matrix equation is:

	

                                          ′X                                           X X ′                      

ˆ

y

β =

1 1 1 1 1

2 3 5 7 8

1 5 3 6 7

1 2 1

1 3

















5

1 5 3

1 7 6

1 8 7


























































−1

*

1 1 1 1 1

2 3 5 7 8

1 5 3 6 7

3

2

4

5

8













































We first compute X’ X and then compute X’y

	

′ =X X

5 25 22

25 151 130

22 130 120

and

22

131

111



















′ =





X y














Next, we create the inverse of X’X, where 1016 is the determinant of X’X.

	

( ' )X X − =

− −

−1 1
1016

1220 140 72

140 116 100

72 100 130

−

− −



















Finally, we solve for the X1 and X2 regression weights:

	

β̂ 1
1016

1220 140 72

140=

− −

− 1116 100

72 100 130

−

− −





































=

−






22

131

111

.50

1

.25














The multiple regression equation is:

	 ŷi = + −.50 1X .25 X1 2

We use the multiple regression equation to compute predicted scores and 
then compare the predicted values to the original y values to compute the 
error of prediction values, e. For example, the first y score was 3 with X1 = 2 
and X2 = 1. We substitute the X1 and X2 values in the regression equation 
and compute a predicted y score of 2.25. The error of prediction is com-
puted as y – this predicted y score or 3 – 2.25 = .75. These computations are 
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listed below and are repeated for the remaining y values.

	

ˆ

ˆ

ˆ

y

y

e

1

1

1

= + −

=

= − =

.50 1( 2) .25 (1)

2.25

3 2.25 .75

	

ˆ

ˆ

ˆ

y

y

e

2

2

2

= + −

=

= − = −

.50 1( 3) .25 (5)

2.25

2 2.25 .25

	

ˆ

ˆ

ˆ

y

y

e

3

3

3

= + −

=

= − = −

.50 1( 5) .25 (3)

4.75

4 4.75 .75

	

ˆ

ˆ

ˆ

y

y

e

4

4

4

= + −

=

= − = −

.50 1( 7) .25 (6)

6.00

5 6 1.00

	

ˆ

ˆ

ˆ

y

y

e

5

5

5

= + −

=

= − =

.50 1( 8) .25 (7)

6.75

8 6.75 1.25

The regression equation is: ŷi = + −.50 1.0X .25 X1 2

We can now place the Y values, X values, regression weights, and error 
terms back into the matrices to yield a complete solution for the Y values. 
Notice that the error term vector should sum to zero (0.0). Also notice that 
each y value is uniquely composed of an intercept term (.50), a regression 
weight (1.0) times an X1 value, a regression weight (−.25) times an X2 value, 
and a residual error, e.g., the first y value of 3 = .5 + 1.0(2) −.25 (1) + .75.

	

3

2

4

5

8

5 1 0



























= +. .

2

3

55

7

8

.25

1

5



























− 3

6

7



























+

−

−

.

.

.

75

25

75

−−



























1 00

1 25

.

.
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Table A.1

Areas under the Normal Curve (z-scores)

Second Decimal Place in z

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359

.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753

.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141

.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517

.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879

.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224

.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549

.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852

.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133

.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389

1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621
1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015
1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177
1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319

1.5 .4332 .4345 .4357 .4793 .4382 .4394 .4406 .4418 .4429 .4441
1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545
1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767
2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817
2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857
2.2 .4861 .4826 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936

2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952
2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964
2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981
2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986

3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990
3.1 .4990 .4991 .4991 .4991 .4992 .4922 .4992 .4992 .4993 .4993
3.2 .4993 .4993 .4994 .4994 .4994 .4994 .4994 .4995 .4995 .4995
3.3 .4995 .4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 .4997
3.4 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4998

3.5 .4998
4.0 .49997
4.5 .499997
5.0 .4999997
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Table A.2

Distribution of t for Given Probability Levels

df

Level of Significance for One-Tailed Test

.10 .05 .025 .01 .005 .0005

Level of Significance for Two-Tailed Test

.20 .10 .05 .02 .01 .001

    1 3.078 6.314    12.706 31.821 63.657 636.619
    2 1.886 2.920 4.303 6.965 9.925 31.598
    3 1.638 2.353 3.182 4.541 5.841 12.941
    4 1.533 2.132 2.776 3.747 4.604 8.610
    5 1.476 2.015 2.571 3.365 4.032 6.859

    6 1.440 1.943 2.447 3.143 3.707 5.959
    7 1.415 1.895 2.365 2.998 3.499 5.405
    8 1.397 1.860 2.306 2.896 3.355 5.041
    9 1.383 1.833 2.262 2.821 3.250 4.781
  10 1.372 1.812 2.228 2.764 3.169 4.587
   
  11 1.363 1.796 2.201 2.718 3.106 4.437
  12 1.356 1.782 2.179 2.681 3.055 4.318
  13 1.350 1.771 2.160 2.650 3.012 4.221
  14 1.345 1.761 2.145 2.624 2.977 4.140
  15 1.341 1.753 2.131 2.602 2.947 4.073

  16 1.337 1.746 2.120 2.583 2.921 4.015
  17 1.333 1.740 2.110 2.567 2.898 3.965
  18 1.330 1.734 2.101 2.552 2.878 3.992
  19 1.328 1.729 2.093 2.539 2.861 3.883
  20 1.325 1.725 2.086 2.528 2.845 3.850
 
  21 1.323 1.721 2.080 2.518 2.831 3.819
  22 1.321 1.717 2.074 2.508 2.819 3.792
  23 1.319 1.714 2.069 2.500 2.807 3.767
  24 1.318 1.711 2.064 2.492 2.797 3.745
  25 1.316 1.708 2.060 2.485 2.787 3.725

  26 1.315 1.706 2.056 2.479 2.779 3.707
  27 1.314 1.703 2.052 2.473 2.771 3.690
  28 1.313 1.701 2.048 2.467 2.763 3.674
  29 1.311 1.699 2.045 2.462 2.756 3.659
  30 1.310 1.697 2.042 2.457 2.750 3.646

  40 1.303 1.684 2.021 2.423 2.704 3.551
  60 1.296 1.671 2.000 2.390 2.660 3.460
120 1.289 1.658 1.980 2.358 2.617 3.373
∞ 1.282 1.645 1.960 2.326 2.576 3.291
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Table A.3

Distribution of r for Given Probability Levels

Level of Significance for One-Tailed Test

.05 .025 .01 .005

Level of Significance for Two-Tailed Test

df .10 .05 .02 .01

    1 .988 .997 .9995 .9999
    2 .900 .950 .980 .990
    3 .805 .878 .934 .959
    4 .729 .811 .882 .917
    5 .669 .754 .833 .874

    6 .622 .707 .789 .834
    7 .582 .666 .750 .798
    8 .540 .632 .716 .765
    9 .521 .602 .685 .735
  10 .497 .576 .658 .708

  11 .576 .553 .634 .684
  12 .458 .532 .612 .661
  13 .441 .514 .592 .641
  14 .426 .497 .574 .623
  15 .412 .482 .558 .606

  16 .400 .468 .542 .590
  17 .389 .456 .528 .575
  18 .378 .444 .516 .561
  19 .369 .433 .503 .549
  20 .360 .423 .492 .537

  21 .352 .413 .482 .526
  22 .344 .404 .472 .515
  23 .337 .396 .462 .505
  24 .330 .388 .453 .496
  25 .323 .381 .445 .487

  26 .317 .374 .437 .479
  27 .311 .367 .430 .471
  28 .306 .361 .423 .463
  29 .301 .355 .416 .486
  30 .296 .349 .409 .449
  35 .275 .325 .381 .418
  40 .257 .304 .358 .393
  45 .243 .288 .338 .372
  50 .231 .273 .322 .354
  60 .211 .250 .295 .325

  70 .195 .232 .274 .303
  80 .183 .217 .256 .283
  90 .173 .205 .242 .267
100 .164 .195 .230 .254
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Answers to Selected Exercises

Chapter 1

	 1.	Define the following terms:
	 a.	 Latent variable: an unobserved variable that is not directly mea-

sured, but is computed using multiple observed variables.
	 b.	 Observed variable: a raw score obtained from a test or mea-

surement instrument on a trait of interest.
	 c.	 Dependent variable: a variable that is measured and related to 

outcomes, performance, or criterion.
	 d.	 Independent variable: a variable that defines mutually exclu-

sive categories (e.g., gender, region, or grade level), or as a con-
tinuous variable, and influences a dependent variable.

	 3.	List the reasons why a researcher would conduct structural equa-
tion modeling:

	 a.	 Researchers are becoming more aware of the need to use mul-
tiple observed variables to better understand their area of sci-
entific inquiry.

	 b.	 More recognition is given to the validity and reliability of 
observed scores from measurement instruments.

	 c.	 Structural equation modeling has improved recently, espe-
cially the ability to analyze more advanced statistical models.

	 d.	 SEM software programs have become increasingly user friendly.

Chapter 2

	 1.	LISREL uses which command to import data sets?
	 c.	 File, then Import Data
	 3.	Mark each of the following statements true (T) or false (F).
	 a.	 LISREL can deal with missing data.	 F
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	 b.	 PRELIS can deal with missing data.	 T
	 c.	 LISREL can compute descriptive statistics.	 T
	 d.	 PRELIS can compute descriptive statistics. 	 T

Chapter 3

	 1.	Partial and part correlations:

	
12 3

6 7 4

1 7 1 42 2.

. (. )(. )

[ (. ) ][ (. ) ]
r = −

− −
= .49

	
1 2 3

6 7 4

1 4
35

2( . )

. (. ) (. )

[ (. ) ]
. .r = −

−
=

	 3.	A meaningful theoretical relationship should be plausible 
given that:

	 a.	 Variables logically precede each other in time.
	 b.	 Variables covary or correlate together as expected.
	 c.	 Other influences or “causes” are controlled.
	 d.	 Variables should be measured on at least an interval level.
	 e.	 Changes in a preceding variable should affect variables that 

follow, either directly or indirectly.

Chapter 4

	 1.	Model specification: developing a theoretical model to test, based 
on all of the relevant theory, research, and information available.

	 3.	Model estimation: obtaining estimates for each of the parameters 
specified in the model that produced the implied population cova-
riance matrix Σ. The intent is to obtain parameter estimates that 
yield a matrix Σ as close as possible to S, our sample covariance 
matrix of the observed or indicator variables. When elements in 
the matrix S minus the elements in the matrix Σ equal zero (S – Σ 
= 0), then c2 = 0 indicating a perfect model fit to the data, and all 
values in S are equal to values in Σ.
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	 5.	Model modification: changing the initial implied model and 
retesting the global fit and individual parameters in the new 
respecified model. To determine how to modify the model, 
there are a number of procedures available to guide the adding 
or dropping of paths in the model so that alternative models can 
be tested.

	 7.	How many distinct values are in a variance–covariance matrix 
for the following variables {hint: [p(p+1)/2}?

	 a.	 Five variables = 15 distinct values
	 b.	 Ten variables = 55 distinct values

Chapter 5

	 1.	Define confirmatory models, alternative models, and model-
generating approaches.
In confirmatory models, a researcher can hypothesize a specific the-

oretical model, gather data, and then test whether the data fit 
the model.

In alternative models, a researcher specifies different models to see 
which model fits the sample data the best. A researcher usu-
ally conducts a chi-square difference test.

In model generating, a researcher specifies an initial model, then 
uses modification indices to modify and retest the model to 
obtain a better fit to the sample data.

	 3.	Calculate the following fit indices for the model analysis in 
Figure 5.1:
GFI = 1 – [c2

model/c2
null] = .97

NFI = (c2
null − c2

model)/c2
null = .97

RFI = 1 – [(c2
model/dfmodel)/(c2

null /dfnull)] = .94
IFI = (c2

null − c2
model)/(c2

null − dfmodel) = .98
TLI = [(c2

null/dfnull) − (c2
model/dfmodel)]/[(c2

null/dfnull) − 1] = .96
CFI = 1 – [(c2

model − dfmodel)/(c2
null − dfnull)] = .98

Model AIC = c2
model + 2q = 50.41

Null AIC = c2 
null + 2q = 747.80

RMSEA df N dfModel Model Model= − − =[ ] [( ) ] .χ 2 1 0 08/ 33
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	 5.	What steps should a researcher take in examining parameter esti-
mates in a model?

		  A researcher should examine the sign of the parameter estimate, 
whether the value of the parameter estimate is within a reason-
able range of values, and test the parameter for significance.

	 7.	How are structural equation models affected by sample size and 
power considerations?

		  Several factors affect determining the appropriate sample size 
and power, including model complexity, distribution of variables, 
missing data, reliability, and variance–covariance of variables. If 
variables are normally distributed with no missing data, samples 
sizes less than 500 should yield power = .80 and satisfy Hoelter’s 
CN criterion. SAS, SPSS, G*Power 3, and other software programs 
can be used to determine power and sample size.

	 9.	What new approaches are available to help researchers identify 
the best model?

		  The expected parameter change value has been added to LISREL 
output. Tabu and optimization algorithms have been proposed to 
identify the best model fit with the sample variance–covariance 
matrix.

	 11.	Use G*Power 3 to calculate power for modified model with 
alpha = .05 and NCP = 6.3496 at df = 1, df = 2, and df = 3 levels 
of model complexity. What happens to power when degrees of 
freedom increases?

		  Power decreases as the degrees of freedom increases (power = .73, 
df = 1; power = .63, df = 2, and power = .56, df = 3).
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Chapter 6

	 1.	The following LISREL–SIMPLIS program is run to analyze the 
theoretical regression model for predicting gross national prod-
uct (GNP) from knowledge of labor, capital, and time:

Regression of GNP
Observed variables: GNP LABOR CAPITAL TIME
Covariance matrix:
 4256.530
 449.016 52.984
 1535.097 139.449 1114.447
 537.482 53.291 170.024 73.747
Sample size: 23
Equation: GNP = LABOR CAPITAL TIME
Number of decimals = 3
Path diagram
End of problem

Chapter 7

	 1.	LISREL PROGRAM

Achievement path model
Observed variables: Ach Inc Abl Asp
Covariance matrix:
 25.500
 20.500 38.100
 22.480 24.200 42.750
 16.275 13.600 13.500 17.000
Sample size: 100
Relationships
Asp = Inc Abl
Ach = Inc Abl Asp
Print residuals
Options: ND = 3
Path diagram
End of problem

Partial LISREL Output

LISREL Estimates (Maximum Likelihood)

      Structural Equations
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 Ach = 0.645*Asp + 0.161*Inc + 0.231*Abl, Errorvar. = 6.507, 
  R² = 0.745
       (0.0771)      (0.0557)      (0.0514)        (0.934)
        8.366         2.892          4.497            6.964

 Asp = 0.244*Inc + 0.178*Abl, Errorvar. = 11.282, R² = 0.336
        (0.0690)    (0.0652)                  (1.620)
        3.537        2.724                      6.964

 Covariance Matrix of Independent Variables

Inc Abl
-------- --------

Inc 38.100
(5.471)

6.964

Abl 24.200 42.750
(4.778) (6.139)

5.065 6.964

 Goodness-of-Fit Statistics

 Degrees of Freedom = 0
 Minimum Fit Function Chi-Square = 0.00 (P = 1.000)

 Normal Theory Weighted Least Squares Chi-Square = 0.00 (P = 
1.000)

 The model is saturated, the fit is perfect!

Chapter 8

	 1.	The following LISREL–SIMPLIS program was written:

Confirmatory Factor Model Exercise Chapter 8
Observed Variables:
Academic Concept Aspire Degree Prestige Income
Correlation Matrix
1.000
0.487   1.000
0.236   0.206   1.000
0.242   0.179   0.253   1.000
0.163   0.090   0.125   0.481   1.000
0.064   0.040   0.025   0.106   0.136   1.000
Sample Size: 3094
Latent Variables: Motivate SES
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Relationships:
  Academic - Aspire = Motivate
  Degree - Income = SES
Print Residuals
Number of Decimals = 3
Path diagram
End of problem

Results overall suggest a less than acceptable fit:

Normal Theory Weighted Least Squares Chi-Square = 114.115 (P = 0.0)
Degrees of Freedom = 8
Root Mean Square Error of Approximation (RMSEA) = 0.0655
Standardized RMR = 0.0377
Goodness-of-Fit Index (GFI) = 0.988

Consequently, the model modification indices were examined. The largest 
decrease in chi-square results from adding an error covariance between 
Concept and Academic (boldfaced), thus allowing us to maintain a 
hypothesized two-factor model.

The Modification Indices Suggest to Add the

Path to from Decrease in Chi-Square New Estimate
Concept SES 21.9 −0.14
Aspire SES 78.0  0.21
Degree Motivate 16.1  0.31
Prestige Motivate 18.1 −0.22

The Modification Indices Suggest to Add an Error Covariance

Between and Decrease in Chi-Square New Estimate
Concept Academic 78.0  0.63
Aspire Academic 21.9 −0.12
Degree Aspire 75.3  0.13
Prestige Concept  8.9 −0.04
Income Degree 18.1 −0.10
Income Prestige 16.1  0.07

The following error covariance command line was added.

Let the errors Concept and Academic correlate

The results indicated further model modifications. The largest decrease 
in chi-square was determined to occur by adding an error covariance 
between Income and Prestige (boldfaced in following text), thus main-
taining our hypothesized two-factor confirmatory model.
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The Modification Indices Suggest to Add the

Path to from Decrease in Chi-Square New Estimate
Degree Motivate 20.3 0.71
Prestige Motivate 18.4 −0.39

The Modification Indices Suggest to Add an Error Covariance
Between and Decrease in Chi-Square New Estimate
Degree Aspire 10.0  0.09
Prestige Aspire  8.3 –0.05
Income Degree 18.4 –0.10
Income Prestige 20.3  0.08

The following error covariance command line was added.

Let the errors Income and Prestige correlate

The final results indicated a more acceptable level of fit:

Normal Theory Weighted Least Squares Chi-Square = 14.519 
(P = 0.0243)

Degrees of Freedom = 6
Root Mean Square Error of Approximation (RMSEA) = 0.0214
Standardized RMR = 0.0123
Goodness-of-Fit Index (GFI) = 0.998

The final LISREL–SIMPLIS program was:

Modified Confirmatory Factor Model - Exercise Chapter 8
Observed Variables:
Academic Concept Aspire Degree Prestige Income
Correlation Matrix
1.000
0.487     1.000
0.236     0.206     1.000
0.242     0.179     0.253     1.000
0.163     0.090     0.125     0.481     1.000
0.064     0.040     0.025     0.106     0.136     1.000
Sample Size: 3094
Latent Variables: Motivate SES
Relationships:
  Academic: Aspire = Motivate
  Degree: Income = SES
Let the errors concept and Academic correlate
Let the errors Income and Prestige correlate
Print residuals
Number of decimals = 3
Path diagram
End of problem
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Chapter 9

	 1.	Diagram two indicator variables X1 and X2 of a latent variable LV.

e_1

e_2

X1

X2

LV

	 3.	Diagram a latent independent variable LIV predicting a latent 
dependent variable LDV.

LDVLIV

e

Chapter 10

	 1.	The following LISREL–SIMPLIS program was written:

Chapter 10 Exercise
Observed variables: ACT CGPA ENTRY SALARY PROMO
Covariance matrix:
1.024
 .792     1.077
 .567     .537     .852
 .445     .424     .518     .670
 .434     .389     .475     .545     .716
Sample size: 500
Latent variables: ACAD JOB
Relationships:
 ACT = 1*ACAD
 CGPA = ACAD
 ENTRY = ACAD
 SALARY = 1*JOB
 PROMO = JOB
 JOB = ACAD
Path diagram
End of problem
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The chi-square is statistically significant (c2 = 116.29, df = 4, p = .000), so the 
modification indices are checked and it is suggested to add an error cova-
riance between the measurement error variances of CGPA and ACT.

The Modification Indices Suggest Adding an Error Covariance

Between and Decrease in Chi-Square New Estimate
ACT SALARY  14.0 –0.06
CGPA ACT 113.5  0.43
ENTRY SALARY  40.8  0.10
ENTRY ACT  24.9 –0.15
ENTRY CGPA  23.9 –0.14

The following command line was added:

Let the error covariances between CGPA and ACT correlate

The modified model is acceptable (c2 = 3.04, df = 3, p = .39; RMSEA = .005; 
GFI = 1.0). JOB is statistically significantly predicted, R2 = .70, by the fol-
lowing structural equation:

Structural Equations
 JOB = 0.91*ACAD, Errorvar.= 0.18 , R² = 0.70
       (0.061)                 (0.027)
       15.01                    6.59

Chapter 11

	 1.	SPSS and EXCEL matrix input.

SPSS Matrix Input Example
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Microsoft Excel Matrix Input Example

Chapter 12

	 1.	Multiple Samples

LISREL–SIMPLIS Program (EX11B.SPL)
Sample 1: Parental Socioeconomic Characteristics
Observed Variables: SOFED SOMED SOFOC FAFED MOMED FAFOC
Covariance Matrix
5.86
3.12 3.32
35.28 23.85 622.09
4.02 2.14 29.42 5.33
2.99 2.55 19.20 3.17 4.64
35.30 26.91 465.62 31.22 23.38 546.01
Sample Size: 80
Latent Variables: Fed Med Foc
SOFED = Fed
SOMED = Med
SOFOC = Foc
FAFED = 1*Fed
MOMED = 1*Med
FAFOC = 1*Foc
Set the Error Covariance between SOMED and SOFED free
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Sample 2: Parental Socioeconomic Characteristics
Covariance Matrix
8.20
3.47 4.36
45.65 22.58 611.63
6.39 3.16 44.62 7.32
3.22 3.77 23.47 3.33 4.02
45.58 22.01 548.00 40.99 21.43 585.14
SOFED = Fed
SOMED = Med
SOFOC = Foc
Let the Error Variances of SOFED - SOFOC be free
Set the Error Covariance between SOMED and SOFED free

Sample 3: Parental Socioeconomic Characteristics
Covariance Matrix
5.74
1.35 2.49
39.24 12.73 535.30
4.94 1.65 37.36 5.39
1.67 2.32 15.71 1.85 3.06
40.11 12.94 496.86 38.09 14.91 538.76
SOFED = Fed
SOMED = Med
SOFOC = Foc
Let the Error Variances of SOFED - SOFOC be free
Set the Error Covariance between SOMED and SOFED equal to 0
Path diagram
End of problem
Global Goodness-of-Fit Statistics

Degrees of Freedom = 34
Minimum Fit Function Chi-Square = 52.73 (P = 0.021)

Root Mean Square Error of Approximation (RMSEA) = 0.077
90 Percent Confidence Interval for RMSEA = (0.019; 0.12)
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.00038

Normed Fit Index (NFI) = 0.96
Comparative Fit Index (CFI) = 0.99
Critical N (CN) = 252.98
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Chapter 13

1. � Multiple Sample Model

The two semesters of data did not have means and standard deviations 
on the measures for the regression model, so no means and standard 
deviations would be included in the multiple sample LISREL–SIMPLIS 
program. (Note: Although two samples are used, we still use the GROUP 
command.) The LISREL–SIMPLIS program is:

Predicting Clinical Competence in Nursing
Group 1: Semester 1
Observed variables comp effort learn
Sample size: 250
Correlation matrix
1.0
.25 1.0
.28 .23 1.0
Equation
comp = effort learn

Group 2: Semester 2
Observed variables comp effort learn
Sample size: 205
Correlation matrix
1.0
.21 1.0
.16 .15 1.0
Path diagram
End of problem

Computer Output—Multiple Sample Model

The regression model output indicated a nonsignificant chi-square (chi-
square = 1.55, df = 3, p = .67), which implies that the two semesters of sam-
ple data had similar regression coefficients. We find that the regression 
coefficient of effort predicting comp is .20 compared to .25 and .21, respec-
tively, in the two samples. We also find that the regression coefficient of 
learn predicting comp is .19 compared to .28 and .16, respectively, in the 
two samples. The correlation between effort and learn is .23 in the com-
mon regression model, compared to .23 and .15, respectively, in the two 
samples of data. Finally, we see that the R-squared for the common regres-
sion model is .19 (1-R-squared = .91). The computer output (not shown) 
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indicated R-squared = .09 and .085, respectively, for the two regression 
equations from the two samples of data.

effort

learn

comp 0.91

Chi-Square = 1.55, df = 3, P-value = 0.67

0.20

0.19
0.23

3. Structured Means Model

The two stacked LISREL–PRELIS programs are:

Group Low Motivation
Observed Variables: Prod1 Prod2 Prod3 Prod4 Prod5 Prod6
Correlation Matrix
1.00
 .64 1.00
 .78  .73  1.00
 .68  .63   .69  1.00
 .43  .55   .50   .59  1.00
 .65  .63   .67   .81   .60  1.00
Means 4.27 5.02   4.48 4.69  4.53  4.66
Sample Size: 300
Latent Variables: City1 City2
Relationships:
Prod1 = CONST + 1*City1
Prod2 = CONST + City1
Prod3 = CONST + City1
Prod4 = CONST + 1*City2
Prod5 = CONST + City2
Prod6 = CONST + City2
Group High Motivation:
Correlation Matrix
1.00
 .72  1.00
 .76 .74  1.00
 .51 .46   .57  1.00
 .32 .33   .39   .40  1.00
 .54 .45   .60   .73   .45  1.00
Means 14.35 14.93 14.59 14.86 14.71 14.74
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Sample size: 300
Relationships:
 City1 = CONST
 City2 = CONST
Path diagram
End of problem

The first thing you should check is the individual group and combined 
group model-fit statistics. They were:

Group Goodness-of-Fit Statistics: Low Motivation

Contribution to Chi-Square = 52.92
Root Mean Square Residual (RMR) = 0.11
Goodness-of-Fit Index (GFI) = 0.94

Group Goodness-of-Fit Statistics: High Motivation

Contribution to Chi-Square = 52.06
Root Mean Square Residual (RMR) = 0.13
Goodness-of-Fit Index (GFI) = 0.94

Global Goodness-of-Fit Statistics

Degrees of Freedom = 24
Minimum Fit Function Chi-Square = 104.98 (P = 0.00)
Root Mean Square Error of Approximation (RMSEA) = 0.11
90% Confidence Interval for RMSEA = (0.089; 0.13)
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.00
Comparative Fit Index (CFI) = 0.97

These values are adequate, but modification indices were indicated and 
are suggested to yield a better model fit before proceeding with a test of 
latent variable mean differences.

The following command lines should be added to the LISREL–
SIMPLIS program to allow observed variable error variance to be 
estimated, estimate latent variable variance, and allow the two latent 
variables to correlate:

Set the Error Variances of Prod1 - Prod6 free
Set the Variances of City1 - City2 free
Set the Covariance between City1 and City2 free
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The final Structured Means Model with parameter estimates is:

Prod10.28

Prod20.34

Prod30.20

0.83 City1

0.86

0.89

Prod40.21

Prod50.43

Prod60.23

0.71 City2

0.85

0.90

0.85

The Structured Means Model is testing the mean latent variable dif-
ference, which is indicated by the Mean Vector of Independent Variables. 
Results are interpreted based on the knowledge that the mean latent 
value on City1 (Los Angeles) and City2 (Chicago) are set to zero (0) in 
the first group (low motivation), so the values reported here are going to 
indicate that the second group (high motivation) was either greater than 
(positive) or less than (negative) the first group (low motivation) on the 
latent variables.

A latent variable mean difference value of 10.08 is indicated for the first 
latent variable (City1), which indicates a statistically significant mean dif-
ference (i.e., high motivation group) had mean production rates greater 
than the low motivation group in Los Angeles (City1).

A latent variable mean difference value of 10.18 is indicated for the sec-
ond latent variable (City2), which indicates a statistically significant mean 
difference (i.e., high motivation group) had mean production rates greater 
than the low motivation group in Chicago (City2).

Overall, the high motivation groups outperformed the low motivation 
groups in both cities. City1 and City2 correlated .90, indicating similar 
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mean difference production rates. The latent variable mean differences 
are divided by their standard error to yield a one-sample T value (i.e., 
10.08/.08 = 122.17, within rounding error).

Mean Vector of Independent Variables

 City1 City2
-------- --------
10.08 10.18
(0.08) (0.08)
122.17 128.16

Chapter 14

1. Second-Order Factor Analysis

The psychological research literature suggests that drug use and depres-
sion are leading indicators of suicide among teenagers. The following 
LISREL–SIMPLIS program was run to test a second-order factor model.

Second Order Factor Analysis Exercise
Observed Variables: drug1 drug2 drug3 drug4 depress1 
depress2 depress3 depress4
Sample Size 200
Correlation Matrix
1.000
0.628  1.000
0.623  0.646  1.000
0.542  0.656  0.626  1.000
0.496  0.557  0.579  0.640  1.000
0.374  0.392  0.425  0.451  0.590  1.000
0.406  0.439  0.446  0.444  0.668   .488  1.000
0.489  0.510  0.522  0.467  0.643   .591   .612  1.000
Means  1.879  1.696  1.797  2.198  2.043  1.029  1.947 2.024
Standard Deviations  1.379  1.314  1.288  1.388  1.405 1.269 
1.435 1.423
Latent Variables: drugs depress suicide
Relationships
drug1 - drug4 = drugs
depress1 - depress4 = depress
drugs = Suicide
depress = Suicide
Set variance of drugs - Suicide to 1.0
Path diagram
End of problem
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The second-order factor model with standardized coefficients had an 
acceptable fit (Chi-square = 30.85, df = 19, p = .042) and is diagrammed as:

drug1

drug2

drug3

drug4

0.34

0.45

0.35

0.38

drugs

Suicide

depress

0.74

0.82

0.81

0.79
0.98

0.82

1.00

depress1

depress2

depress3

depress4

0.53

0.25

0.44

0.39

0.87

0.69

0.75

0.78

The structure coefficients indicate that the first factors are strong indi-
cators of the second factor (suicide). Drug use (R-squared = .96) was the 
stronger indicator of suicide among teenagers.

Structural Equations
 drugs = 0.98*Suicide, Errorvar. = 0.044, R² = 0.96
                                  (0.17)
                                   0.26
 depress = 0.82*Suicide, Errorvar. = 0.33, R² = 0.67
          (0.12)                    (0.13)
           6.96                      2.51

NOT E :  Missing t-values and standard errors in SIMPLIS output.

Second-Order Factor Analysis—Suicide example.

Since the ETA variables (drugs and depress) are indicators of the corre-
sponding KSI variable (suicide), LISREL by default fixes the loading of the 
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first indicator to one. Then, after convergence the value of 1 is rescaled 
using the estimated ETA1 variance. Although the corresponding standard 
error estimate can be computed using the Delta method, LISREL does not 
compute it. As a result, no standard error estimate and t value is written to 
the output file. The LISREL 8 syntax program with a raw data file should 
produce the standard errors and t-value.

3. MULTITRAIT–MULTIMETHOD MODELS

	 a.	The LISREL–SIMPLIS program to analyze the three methods 
(student, teacher, and peer) and three traits (behavior, moti-
vate, and attitude) as a MTMM model using start values and 
admissibility check off (increase iterations to achieve conver-
gence) is:

MTMM Model Exercise
Observed Variables: X1 X2 X3 X4 X5 X6 X7 X8 X9
Correlation Matrix
1.0
 .40  1.0
 .31   .38  1.0
 .35   .23   .16  1.0
 .26   .22   .21   .62  1.0
 .15   .11   .15   .49   .62  1.0
 .43   .31   .24   .61   .48   .33  1.0
 .40   .35   .19   .49   .45   .32   .74  1.0
 .26   .20   .18   .43   .41   .33   .52   .47  1.0
Sample Size: 300
Latent Variables: behavior motivate attitude student 
teacher peer
Relationships:
X1 = (.3)*behavior + (.5)*student
X2 = (.3)*motivate + (.5)*student
X3 = (.3)*attitude + (.5)*student
X4 = (.3)*behavior + (.5)*teacher
X5 = (.3)*motivate + (.5)*teacher
X6 = (.3)*attitude + (.5)*teacher
X7 = (.3)*behavior + (.5)*peer
X8 = (.3)*motivate + (.5)*peer
X9 = (.3)*attitude + (.5)*peer
Set variance of behavior - peer to 1.0
Set correlation of student and behavior to 0
Set correlation of student and motivate to 0
Set correlation of student and attitude to 0
Set correlation of teacher and behavior to 0
Set correlation of teacher and motivate to 0
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Set correlation of teacher and attitude to 0
Set correlation of peer and behavior to 0
Set correlation of peer and motivate to 0
Set correlation of peer and attitude to 0
Options: AD = FF
Path diagram
End of problem

The MTMM model is displayed after dragging the three methods to the 
left side of the diagram in the LISREL graph. The MTMM model had 
acceptable fit indices (Chi-square = 10.85, df = 12, and p = .54).

X1

X2

X3

X4

X5

X6

X7

X8

X9

behavior

motivate

attitude

student

teacher

peer

Chi-Square = 10.85, df = 12, P-value = 0.54203, RMSEA = 0.000

0.51
–0.28

0.60
0.59

0.69

–0.12

0.85

0.74

0.65

0.62

0.60

0.79

1.18

0.800.39

0.48

0.74

–0.65
–0.18

–0.42
0.04

–0.65

–0.06

–0.41

The MTMM model results are displayed in Table C.1 to help the inter-
pretation of trait and method effects. The assessment of Attitude regard-
less of which method was used had the higher error variance; Student 
ratings (error = .64), Teacher ratings (error = .46), or Peer ratings (error = 
.61), thus Attitude was the most difficult trait to assess, based on the three 
methods used. The student and teacher rating methods were higher for 
motivate (factor loading = .60 and factor loading = .85, respectively). The 
peer rating method worked best with behavior, but was fairly similar 
across all traits.
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	 b.	The LISREL–SIMPLIS program to run a Correlated Traits–
Correlated Uniqueness Model (CTCU) is:

Correlated Traits–Correlated Uniqueness Model Exercise
Observed Variables: X1 X2 X3 X4 X5 X6 X7 X8 X9
Correlation Matrix
1.0
 .40  1.0
 .31   .38  1.0
 .35   .23   .16  1.0
 .26   .22   .21   .62  1.0
 .15   .11   .15   .49   .62  1.0
 .43   .31   .24   .61   .48   .33  1.0
 .40   .35   .19   .49   .45   .32   .74  1.0
 .26   .20   .18   .43   .41   .33   .52   .47  1.0
Sample Size: 240
Latent Variables: behavior motivate attitude
Relationships:
X1 = behavior
X2 = motivate
X3 = attitude
X4 = behavior
X5 = motivate
X6 = attitude
X7 = behavior
X8 = motivate
X9 = attitude
Set variance of behavior - attitude to 1.0
Let error covariance of X1–X3 correlate

Table C.1

MTMM Estimates of Three Methods on Three Traits (N = 300)

Traits Methods

Behavior Motivate Attitude Student Teacher Peer Error

Behavior −.41 .51 .57
Motivate –.28 .60 .56
Attitude –.06 .59 .64

Behavior –.41 .68 .35
Motivate –.12 .85 .27
Attitude  .04 .74 .46

Behavior –.65 .65 .15
Motivate –.65 .62 .19
Attitude –.18 .60 .61
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Let error covariance of X4–X6 correlate
Let error covariance of X7–X9 correlate
Path diagram
End of problem

The CTCU model is diagrammed as:

X10.76

X20.85

X30.92

X40.51

X50.65

X60.80

X70.23

X80.37

X90.51

behavior

motivate

attitude

0.29
0.60
0.88

0.92

0.85

0.91

0.23

0.19

0.28

0.24

0.23

0.38

0.10

–0.00

–0.04

0.79

0.39

The results are presented in Table C.2. Findings indicated that all three 
traits were statistically significantly correlated. More importantly, the peer 
method was the best for assessing any of the three traits, as indicated 
by the higher trait factor loadings and lower correlated uniqueness error 
terms. Students are probably not rating themselves well and teachers 
seemed a little better at rating student behavior and motivation than atti-
tude. The data also had an acceptable fit to the CTCU model (c2 = 13.43, p = 
.57, df = 15; RMSEA = .000; n = 300).
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The LISREL Program was run again to estimate a correlated trait (CT) 
only model with no correlated error terms. To accomplish this, you simply 
delete the following command lines:

Let Error Covariance of Var1–Var3 Correlate
Let Error Covariance of Var4–Var6 Correlate
Let Error Covariance of Var7–Var9 Correlate

The results yielded a nonpositive definite matrix among the latent vari-
ables (i.e., correlations were greater than 1.0.) Also, the modification indi-
ces suggested adding the very error covariance you deleted. So, the CT 
Model is rejected in favor of the CTCU Model.

behavior motivate attitude
behavior 1.00
motivate 1.07 1.00
attitude 0.95 1.10 1.00

W_A_R_N_I_N_G: is not positive definite

Table C.2

Correlated Uniqueness Model with Correlated Traits and Errors

Method Trait
Factor 

Loading Uniqueness R2

Correlated Uniqueness of 
Error Terms

Student Behavior   .49 .76 .24 1.0
Motivate   .39 .85 .15 .23 1.0
Attitude   .29 .92 .08 .19 .28 1.0

Teacher Behavior   .70 .51 .49 1.0
Motivate   .60 .65 .35 .24 1.0
Attitude   .45 .80 .20 .23 .38 1.0

Peer Behavior   .88 .23 .77 1.0
Motivate   .79 .37 .63 .10 1.0
Attitude   .70 .51 .49 .00 –.04 1.0

Trait correlations
Behavior 1.0
Motivate .92 1.0
Attitude .85   .91 1.0

Note:	 C2 = 13.43, p = .57, df = 15; RMSEA = .000; n = 300.
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The Modification Indices Suggest to Add an Error Covariance

Between and Decrease in Chi-Square New Estimate
X2 X1 19.8  0.22
X3 X1 12.6  0.17
X3 X2 25.0  0.26
X5 X4 22.3  0.18
X6 X4 17.3  0.16
X6 X5 64.2  0.34
X7 X5 32.9 –0.22
X7 X6 20.5 –0.16
X8 X4 23.6 –0.18
X8 X6 11.2 –0.14
X8 X7 49.7  0.27

Although the MTMM model achieved an acceptable model fit, the find-
ings were mixed as to which method worked best with the three traits 
(behavior, motivate, and attitude). The CTCU model in contrast more 
clearly indicated that peers did a better job of rating the traits. Students 
tend to know other students more on these traits both in and outside the 
classroom, thus providing a theoretical argument for the findings.

Chapter 15

1. Multiple Indicator and Multiple Cause Model

The following LISREL–SIMPLIS program would be created and run to 
determine the parameter estimates and model fit.

MIMIC Model of Job Satisfaction
Observed Variables peer self income shift age
Sample Size 530
Correlation Matrix
1.00
 .42  1.00
 .24   .35  1.00
 .13   .37   .25  1.00
 .33   .51   .66   .20  1.00
Latent Variable satisfac
Relationships
peer = satisfac
self = satisfac
satisfac = income shift age
Path diagram
End of problem
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Initial MIMIC Model Results

The MIMIC model results indicated an adequate fit with chi-square = 6.81, 
df = 2, and p = .033. The measurement equations indicated that job satis-
faction (satisfac) was adequately defined with self ratings being a better 
indicator of job satisfaction than peer ratings.

Measurement Equations

peer = 0.48*satisfac, Errorvar. = 0.77, R² = 0.23
                              (0.053)
                              14.49
self = 0.87*satisfac, Errorvar. = 0.25 , R² = 0.75
     (0.11)                    (0.078)
      8.10                    3.16
The structural equation indicated that 45% of job satisfaction was pre-
dicted by knowledge of income, what shift a person worked, and their 
age. However, the coefficient for income was not statistically significant 
(T = −.59). Consequently the model should be modified by dropping this 
variable and re-running the analysis.

Structural Equations

satisfac = – 0.032*income + 0.31*shift + 0.56*age, Errorvar.= 0.55, R² = 0.45
           (0.054)          (0.054)     (0.082)                     (0.11)
          –0.59               5.71        6.77                       5.14

MIMIC Modification

The MIMIC model modification resulted in little improvement with chi-
square = 6.11, df = 1, and p = .01. The measurement equations were not very 
different. Other measures would help to define the latent variable, job satis-
faction. The structural equation resulted in the same R-squared value, which 
indicates that income did not add to the prediction of job satisfaction. A parsi-
monious model was therefore achieved, but the 55% unexplained variance 
implies that other variables could be discovered to increase prediction.

Measurement Equations

peer = 0.49*satisfac, Errorvar. = 0.76, R² = 0.24
                                                       (0.053)
                                                       14.48
self = 0.87*satisfac, Errorvar. = 0.25, R² = 0.75
          (0.11)                                   (0.078)
           8.12                                     3.21
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Structural Equations

 satisfac = 0.31*shift + 0.54*age, Errorvar.= 0.55 , R² = 0.45
            (0.053)        (0.073)              (0.11)
             5.72           7.39                 5.14

3. Multilevel Model

The multilevel analysis of data in the PRELIS system file, income.psf, was 
used with the pull down multilevel menu to create and run 3 different 
PRELIS programs. Results are summarized in a table with the intra-class 
correlation (hand computed) for comparative purposes.

Model 1 is the baseline model (constant), followed by the added effects 
of gender, and the added effects of marital status (marital). The 3 different 
PRELIS programs should look as follows:

Model 1 (intercept only)

OPTIONS OLS=YES CONVERGE=0.001000 MAXITER=10 OUTPUT=STANDARD ;
 TITLE=income decomposition;
 SY=’C:\LISREL 8.8 Student Examples\MLEVELEX\INCOME.PSF’;
 ID3=region;
 ID2=state;
 RESPONSE=income;
 FIXED=constant;
 RANDOM2=constant;
 RANDOM3=constant;

Model 2 (intercept + gender)

OPTIONS OLS=YES CONVERGE=0.001000 MAXITER=10 OUTPUT=STANDARD ;
 TITLE=income decomposition;
 SY=’C:\LISREL 8.8 Student Examples\MLEVELEX\INCOME.PSF’;
 ID3=region;
 ID2=state;
 RESPONSE=income;
 FIXED=constant gender;
 RANDOM2=constant;
 RANDOM3=constant;

Model 3 (intercept + gender + marital)

OPTIONS OLS=YES CONVERGE=0.001000 MAXITER=10 OUTPUT=STANDARD ;
 TITLE=income decomposition;
 SY=’C:\LISREL 8.8 Student Examples\MLEVELEX\INCOME.PSF’;
 ID3=region;
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 ID2=state;
 RESPONSE=income;
 FIXED=constant gender marital;
 RANDOM2=constant;
 RANDOM3=constant;

The PRELIS program results for the three analyses are summarized in 
Table C.1. The baseline model (intercept only) provides the initial break-
down of level 3 and level 2 error variance. The multilevel model for the 
added effect of gender is run next. The chi-square difference between Model 
1 and Model 2 yields chi-square = 5.40, which is statistically significant at 
the .05 level of significance. Gender, therefore, does help explain variability 
in income. Finally, marital is added to the multilevel model, which yields a 
chi-square difference between Model 2 and Model 3 of chi-square = 1.18. 
The chi-square difference value is not statistically significant; therefore, 
marital status does not add any additional significant explanation of vari-
ability in income.

Table C.3

Summary Results for Multilevel Analysis of Income

Multilevel Model 
Fixed Factors

Model 1 
Constant

Model 2 Constant + 
Gender

Model 3 Constant + 
Gender + Marital

Intercept Only(B0) 10.096 (.099) 10.37 (.15) 10.24 (.19)
Gender (B1) –0.42 (.16) –0.43 (.16)
Marital (B2) .19 (.17)

Level 2 error 
variance (eij)

.37 .31 .30

Level 3 error 
variance (uij)

.02 .05 .06

ICC .051 (5%) .138 (14%) .166 (17%)
Deviance (–2LL) 11144.29 11138.89 11137.71
Df 3 4 5
χ2 Difference (df = 1) 5.40 1.18

Note:	 χ2 = 3.84, df = 1, p = .05.

Note: ICC1 = Φ
Φ Φ

3

3 2

3
3+
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Chapter 16

1. Interaction Model

An organizational psychologist was investigating whether work tension 
and collegiality were predictors of job satisfaction. However, research indi-
cated that work tension and collegiality interact, so a SEM Interaction Model 
was hypothesized and tested. [Note: You need to use a raw data file so that 
values for latent variables can be added.]

First open the PRELIS system file, jobs.psf, to view the 9 observed variables.

Second, create the LISREL–SIMPLIS program to create and save the 
latent variables in the PRELIS system file, jobs.psf:

Computing Latent Variable Scores
Observed Variables v1-v9
Raw Data from File jobs.psf
Latent Variables : job work colleg
Relationships:
v1=1*job
v2-v3= job
v4=1*work
v5-v6=work
v7=1*colleg
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v8-v9=colleg
PSFfile jobs.psf
End of problem

Note :  Remember to close the PRELIS system file, jobs.psf, and then open it 
again to see that the latent variables have been added.

Third, create the latent interaction variable by using the 
TRANSFORMATION, then COMPUTE on the pull down menu. Select 
ADD, enter name for new variable (interact), then drag variable names to 
the Compute window (interact=work*colleg).
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Click OK, and the latent interaction variable, interact, will automatically 
be added to the PRELIS system file, jobs.psf.

Finally, create and run a LISREL–SIMPLIS program to analyze the 
Interaction Model.

Latent Interaction Variable Model - No Intercept Term
Observed Variables: v1-v9 job work colleg interact
Raw Data from File jobs.psf
Sample Size = 200
Relationships:
job = work colleg interact
Path diagram
End of problem

The structural equation indicates that no interaction effect is present 
between work tension and collegiality. Rather, work tension and collegiality 
are predictors of job satisfaction as direct linear effects.

Structural Equations

 job = 0.98*work – 0.18*colleg + 0.036*interact, Errorvar.= 0.22 , R² = 0.80
      (0.065)    (0.079)      (0.038)                   (0.022)
       15.16      –2.29        0.96                    9.90

The latent interaction variable should be dropped and the LISREL–SIMPLIS 
program run again. The R-squared value does not change indicating that the 
interaction effect did not contribute to the prediction of job satisfaction.

Structural Equations

job = 0.97*work – 0.17*colleg, Errorvar. = 0.22 , R² = 0.80
      (0.064)      (0.078)               (0.022)
      15.20      –2.17                  9.92
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3. MONTE CARLO Methods

The SPSS program would input the population matrix values as follows:

MATRIX.
compute popr =
{1,  .50,  .30,  .90;
.50,  1,  .70,  .50;
.30,  .70,  1,  .50;
.90,  .50,  .50,  1}.
Print popr.
compute pi = 3.14159.
compute rown = nrow(popr).
compute n = 10000.
compute corr = sqrt(–2*ln(uniform(n,rown)))&*cos((2*pi)*uniform(n,rown)).
compute corr=corr*chol(popr).
save corr /outfile = pop.sav.
END MATRIX.

The SPSS output would look like this:
Run MATRIX procedure:
POPR
 1.000000000 .500000000 .300000000 .900000000
 .500000000 1.000000000 .700000000 .500000000
 .300000000 .700000000 1.000000000 .500000000
 .900000000 .500000000 .500000000 1.000000000
------ END MATRIX -----

You would now open the pop.sav file which would look like the following 
(Note: Our pop.sav file was in c:\program files\spssinc\spss16 folder).
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The SPSS correlation procedure was selected and ran:

The output from the SPSS correlation procedure yielded population corre-
lation values in Table C.4 similar to what we specified in the SPSS MATRIX 
program.

Table C.4

Correlations

COL1 COL2 COL3 COL4

COL1 Pearson Correlation 1.000 .489** .287** .899**

Sig. (1-tailed) .000 .000 .000
N 10000.000 10000 10000 10000

COL2 Pearson Correlation .489** 1.000 .696** .488**

Sig. (1-tailed) .000 .000 .000
N 10000 10000.000 10000 10000

COL3 Pearson Correlation .287** .696** 1.000 .491**

Sig. (1-tailed) .000 .000 .000
N 10000 10000 10000.000 10000

COL4 Pearson Correlation .899** .488** .491** 1.000
Sig. (1-tailed) .000 .000 .000
N 10000 10000 10000 10000.000

**	 Correlation is significant at the 0.01 level (1-tailed).
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Chapter 17

	 1.	The diagrammed structural equation model is shown as 
Figure 17.4.

Family

Encourag

Student

Aspire

err_13

err_12

Income 

FAED

MOED 

 Personal

School

 Cognate

Self

Motivate 

Admit

Occup 

Educ

err_7 

err_8 

err_9 

err_10 

err_11

err_1 

err_2 

err_3 

err_4 

err_5 

err_6 

Figure 17.4
Student characteristic model.

The measurement equations are as follows:
For the X variables using variable names

family income = function of Family Background + error
father’s education = function of Family Background + error
mother’s education = function of Family Background + error
personal encouragement = function of Encouragement + error
institutional characteristics = function of Encouragement + error
admission status = function of Encouragement + error.

The measurement equations for the Xs are

	 X1 = 1.0 x1 + d1

	   X2 = lx21 x1 + d2

	   X3 = lx31 x1 + d3

	 X4 = 1.0 x2 + d4
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	   X5 = lx52 x2 + d5

	    X6 = lx62 x2 + d6.

The matrix equations for the Xs are

X

X

X

X

X
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x

x
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For the Y variables using variable names:

cognitive abilities = function of Student Characteristics + error
interpersonal skills = function of Student Characteristics + error
motivation = function of Student Characteristics + error
occupational aspirations = function of Aspiration + error
educational aspirations = function of Aspiration + error.

The measurement equations for the Ys are

	 Y1 = 1.0 h1 + e1

	   Y2 = ly21 h1 + e2

	   Y3 = ly31 h1 + e3

	 Y4 = 1.0 h2 + e4

	   Y5 = ly52 h2 + e5.

The matrix equations for the Ys are

Y
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Y

Y

Y

Y
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The structural equations using variable names are

Students’ Characteristics = Family Background + Encouragement + Aspirations + error
Aspirations = Family Background + Encouragement + error.
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The structural equations are written as

	

η β η γ ξ γ ξ ζ

η γ ξ γ ξ ζ

1 12 2 11 1 12 2 1

2 21 1 22 2 2

= + + +

= + + .

In matrix form the structural equations are

	

η
η

β η
η

γ γ
γ

1

2
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2

11 120
0 0
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The matrix of the structural coefficients for the endogenous variables is

	
B =











0
0 0

12β

The matrix of the structural coefficients for the exogenous variables is

	
Γ =











γ γ
γ γ

11 12

21 22

The matrix of the factor loadings for the endogenous variables is
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y

y
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The matrix of the factor loadings for the exogenous variables is
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The covariance matrix for the exogenous latent variables is

	
Φ =











φ
φ φ

11

21 22
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The covariance matrix for the equation errors is

 	
ψ

ψ
ψ

=








11

220

The covariance matrix for the measurement errors of the indicators of the 
exogenous latent variables is
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The covariance matrix for the measurement errors of the indicators of the 
endogenous latent variables is
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


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The structural equation model can be interpreted from the direct and 
indirect effects to yield the total effects for the model. The direct effects 
for Aspirations are Family Background (g21) and Encouragement (g22). 
The direct effects for Students’ Characteristics are Family Background 
(g11), Encouragement (g12), and Aspirations (b12). The indirect effects for 
Students’ Characteristics is Family Background through Aspirations (g21 b12). 
Thus, the total effects are as follows:

Family Background -> Aspirations = g21

Encouragement -> Aspirations = g22

Family Background -> Students’ Characteristics = g11 + (g21) (b12)
Encouragement -> Students’ Characteristics = g12

Aspirations -> Students’ Characteristics = b12.
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Areas under the Normal Curve 

(table), 440
ARIMA, 274
Asymptotic covariance matrix, 28–29, 

35, 118
Asymptotic distribution-free (ADF) 

estimators, 60, 61, 63
Asymptotic variance-covariance 

matrix, 29, 62

B

Badness-of-fit statistic, 86, 154, 
203, 230

Beta (β) matrix, 374–375, 376, 379, 
380

Binary response variables, 61–62
Biserial correlations, 35
Bivariate correlations, 42
Bootstrap, 219, 234–240, 337

latent variable interaction model, 
340

PRELIS and LISREL program 
syntax, 237–240

PRELIS GUI, 234–237
Bootstrap estimator, 234
Browne-Cudeck criterion (BCC), 230

C

California Achievement Test, 184–185
Categorical variable interaction 

model, 328–331, 341
Categorical variable methodology 

(CVM), 62
Categorical variables, 19, 29

mixture models, 298–307
Causal assumptions, 48–49
Causal modeling, 143
Cause-effect relationships, 48–49, 

143
Chi-square, 85–86

badness-of-fit statistic, 86, 154, 
203

confirmatory factor models, 172
critical, 99
distribution for given probability 

(table), 443–444
estimation methods, 86
LISREL computation, 118–119
LISREL-SIMPLIS multiple sample 

analysis, 225
model-fit criteria, 74, 75
path model-fit index, 158
reporting, 91
residual values and, 75
sample size and, 41, 86, 99–100, 

211
Satorra-Bentler scaled robust 

statistic, 62, 119, 305–306
Chi-square difference test, 116

categorical-variable interaction 
model, 330

multiple group path model 
analyses, 258

Cholesky decomposition, 352, 
355–358

Class data, 29, 298
Comparative fit index (CFI), 42, 76, 

89, 116
Confidence intervals (CIs), 128
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Confirmatory factor analysis (CFA), 5, 
163–164

exploratory factor analysis versus, 
164

four-step approach and, 115
Confirmatory factor models, 163–164, 

184, See also Measurement 
models

example, 164–166
LISREL-SIMPLIS program, 174–176
measurement error, 165–166
misspecified model, 169–174
model estimation and, 169–170
model identification and, 167–169
model modification, 173–175
model specification and, 166–167
model testing, 170–173
multiple samples, 224
parameter estimation, 168–170
population model specification, 

360, 363–364
variables in, 4

Confirmatory models, 73
Constrained parameters, 57, 380
Construct validity coefficient, 277
Content validity, 182
Continuous variables, 19, 29, 298

interaction models, 330, 339
mixture models, 298–307
nonlinear relations, 327–328

Convergent validity, 114, 182, 191, 
277–278

Correction for attenuation, 39, 50, 137
Correlated error covariance, 303–304
Correlated measurement error, 190, 

197, 274, 345
Correlated trait-correlated uniqueness 

(CTCU) model, 282–286
Correlated uniqueness model, 

281–286
LISREL-SIMPLIS program, 

283–286
suggested reading, 291

Correlation coefficients, 4–5, 33–35, 
42–46, See also Pearson 
correlation coefficient

cause-effect relationships, 48–49
correction for attenuation, 39

curvilinear data and, 27
initial OLS estimates, 41
intraclass correlation, 319–320
level of measurement and, 34–36
matrix approach to computing, 

432–434
missing data and, 38
model estimation problems, 217
nonlinear data and, 36–37
nonpositive definite matrices, 

40–41
outliers and, 39
partial and part, See Partial and 

part correlations
regression coefficient and, 126
suppressor variables and, 44
troubleshooting tips, 50
types, 34–35

Correlation computation using 
variance and covariance, 47

Correlation matrix, 46–47, 425
confirmatory factor models and 

decomposition, 169–170
model estimation and, 60, 202
path models and decomposition of, 

151–152
Correlation versus covariance, 46–47
Covariance, path models, 144
Covariance matrix population data

LISREL matrix syntax, 355–359
PRELIS simulation, 346–352
SAS approach, 354–355
from specified model, 359–364
SPSS approach, 352–354

Covariance structure analysis, 189
Covariance structure modeling, 189
Covariance terms, 189–191

matrix notation, 378, 379–380
CP statistic, 135
Critical chi-square, 99
Critical N statistic, 41, 99
Critical value, 63, 64
Crossed research design, 307
Cross-validation, 42, 209, 219, 229–234

LISREL-SIMPLIS output, 231, 
232–234

Cross-validation index (CVI), 230, 
231–234
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Curvilinear data, 27, 36–37, 327, See 
also Nonlinear models

troubleshooting tips, 30

D

Data imputation, 38
Data preparation, 212–214

checklist, 214
Data screening, 29
Data transformation, 28, 36, 340
Definite covariance matrices, 40–41, 50
Degrees of freedom

chi-square significance and, 85–86
expected cross-validation index, 

230
MIMIC model, 294
model fit and, 75, 87, 89, 172, 184
model identification and, 58, 

210, 294
noncentrality parameter and, 

100, 102
parsimony NFI and, 90
partial and part correlation 

significance, 34
power and, 93, 108, 110, 452

Dependent variables, 3, 180–181
multiple regression and prediction 

and explanation, 127
Determinant, 427, 428, 430–431
Diagonal matrix, 431
Direct effects, path models, 144
Discrete variables, 19
Discriminant validity, 114, 182, 

191, 277
Divergent validity, 182
Division of matrices, 427
Dow-Jones Index, 3
Dynamic factor model, 274–277

exercises, 288
LISREL-SIMPLIS program, 275–276
suggested reading, 290

E

Effect size, 108, 128
Endogenous latent variables, 181
EQS, 8

Equivalent models, 75, 211
Error terms, path models, 145
Error term zeta (ζ), 375, 376, 378
Error variance, 182

correlated, 303–304
observed variable measurement 

error, 185
reliability coefficient, 183–184

Eta coefficient, 36
EXCEL, 258, 462
Exogenous latent variable, 181
Expectation maximization (EM), 

20, 21
Expected cross-validation index 

(ECVI), 230–231
Expected parameter change (EPC), 

65–66, 155, 173, 205
Explanation and multiple regression, 

127
Exploratory factor analysis (EFA), 

116, 164

F

Factor analysis, 5, 33–34, 163–164, 
See also Confirmatory factor 
models

Factorial validity, 182
Factor loadings, 165, 183, See also 

Confirmatory factor 
analysis

bootstrap estimates, 238–240
matrix notation, 375, 377–378, 379
population model specification, 

360
Factor model, 114, See also 

Confirmatory factor models; 
Measurement models

dynamic factor model, 274–277
second-order factor models, 

271–274
Factor pattern matrix approach, 356, 

358–359
F-distribution tables, 445–448
Fitted residuals, 64
Fitting functions, 60
Fixed parameters, 57, 150, 168, 201, 

380
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Four-step approach, 115–116, 
191–192

Free parameters, 57, 150, 168, 
201, 380

F test, 34, 63, 128–129, 133
Full information estimation, 152

G

G*Power 3 software, 95–96, 102
Gamma (Γ) matrix, 375, 376, 379
Generalized least squares (GLS) 

estimation, 60, 63, 86, 152
Goodness-of-fit index (GFI), 68, 76, 

86–87, 154, 205, See also 
Model-fit statistics

adjusted GFI (AGFI), 87, 89, 205
confirmatory factor models, 172
MIMIC model, 295, 297

GROUP command, 251, 255
Group mean differences between 

observed variables, 259–262

H

Heywood case, 40, 92
Heywood variables, 217
Hierarchical multilevel models, See 

Multilevel models
Hypothesis testing, 2, 93, 128

I

Identification problem, 56–57, 150, 
200–201, 215

troubleshooting tips, 68
Identity matrix, 427, 432
Implied model, 41
Import data option, 15, 77
Imputation of Missing Values, 21–27
Incremental fit index (IFI), 76
Independence model, 41, 75
Independent variables, 3, 180–181
Indeterminacy, 57, 59
Indicator variables, See Observed 

variables
Initial estimates, 40, 61, 92, See also 

Start values

Intelligence assessment, 3, 180–181
Interaction effects, 327–328

testing in two-stage least-squares 
estimate, 339

Interaction models, 7, 327–328
categorical variable approach, 

328–331, 341
continuous variable approach, 

330, 339
exercises, 366, 479–481
intercept only models, 328
intercept-slope models, 328
latent variable, 331–337, 339–341
LISREL matrix notation, 410–416
LISREL output, 416–421
LISREL program, 413–414
LISREL-SIMPLIS programs, 

328–331, 335, 479–481
main effects model holding slopes 

constant, 328–329
matrix specification, 414–416
multicollinearity, 340
path analysis and, 341
PRELIS output, 412–413
suggested reading, 368
two-stage least squares approach, 

337–341
types of interaction effects, 327–328

Intercept model, 317
Intercept only models, 318–319, 323, 

328, 477–478
Intercept-slope models, 328–329, 341–345
Intercept terms, 132, 138–139, 311, 335, 

405, 437
Interval variables, 19, 35
Intraclass correlation coefficient, 

319–320
Inverse of matrix, 427, 432

J

JKW model, 6
Just-identified model, 57, 131, 134–135

K

Kappa (κ), 405, 409
Kurtosis, 28, 36, 61
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L

Lambda X (Λx) matrix, 358, 360, 361, 
375, 379

Lambda Y (Λy) matrix, 356–357, 375, 
379–381

Latent dependent variables, 180–181
matrix notation, 380–381

Latent growth curve models, 341–345
exercises, 366–367
LISREL-SIMPLIS program, 343
model modification, 344–345
suggested reading, 368

Latent Growth Curve Structured 
Means Model, 345

Latent independent variables, 
180, 181

matrix notation, 381–382
Latent variable interaction model, 

331–337, See also Interaction 
models

bootstrap estimates, 340
latent interaction variable 

computation, 333–335
latent variable scores, 331–333, 341
LISREL matrix notation, 410–416
LISREL output, 416–421
LISREL program, 413–414
LISREL-SIMPLIS output, 335
matrix specification, 414–416
model modification, 336
PRELIS output, 412–413
problematic issues, 339–341
structural equation, 336

Latent variables, 2–3, 163, 180–181
factor analysis, 163–164, See also 

Confirmatory factor 
analysis

matrix notation, 374
observed variable selection, 183
origin and unit of measurement, 

199
predicted by observed variables 

(MIMIC models), 293–298
slope and intercept in latent 

growth curve models, 
342–345

standardization, 60

testing group mean differences, 
259–262

variance-covariance terms, 189–191
Leptokurtic data, 28
Likelihood ratio (LR) test, 108
Limited information estimation, 152
Linearity assumptions, 27, 327
Linear regression models, See 

Multiple regression models; 
Regression models

LISREL, 6, 8, 13–14, 327, See 
also LISREL-PRELIS; 
LISREL-SIMPLIS

bootstrapping, 237–240
chi-square computation, 118–119
data entry, 14–18
expected parameter change 

statistic, 65–66
historical development of, 6, 7
latent variable interaction model, 

413–414, 416–421
multilevel modeling, 308–313
multiple samples program, 

248–250
population covariance matrix, 

355–359
using LISREL 8.8 student version, 

8–10, 14
LISREL matrix notation, 373–379, 

382–384
matrix program output example, 

384–400
multiple-sample model, 404
path model, 400–403
structured means model, 

405–410
see also Matrix approach to SEM

LISREL-PRELIS, 13, See also PRELIS
data entry, 14–18
missing data example, 21–27
mixture models, 301–302
non-normal data handling, 28–29
ordinal variables in, 36
outlier detection, 27
two-stage least squares analysis, 

337
variables in, 298–299

LISREL-SIMPLIS, 6
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categorical variable interaction 
model, 328–331

confirmatory factor model 
program, 174–176

correlated traits-correlated 
uniqueness model, 283–286

cross-validation index output, 
232–234

data entry, 14–18
dynamic factor model, 275–276
expected cross-validation index 

output, 231
interaction models, 328–331, 335, 

479–481
latent growth curve program, 343
measurement model specification, 

186, 199
MIMIC model, 294–298, 475–477
mixture models, 302–306
mixture model using polyserial 

correlation matrix, 304–305
model-fit criteria program and 

output example, 77–85
multiple group path model 

analyses, 251–258
multiple regression analysis, 

130, 132
multiple sample analysis, 224–229, 

462–464
multitrait multimethod model, 

280–281, 470–475
path model program, 156–158
population confirmatory factor 

model, 363
population data simulation, 352
population model specification, 

359
robust Satorra-Bentler scaled 

chi-square, 306
second-order factor analysis, 

272–274, 468–470
SEM program, 207–208
standardized solutions, 48
structural model specification, 

187–188
structured means model, 260–262, 

465–468
variance-covariance terms, 189–191

Listwise deletion, 20, 38
Logarithmic transformation, 36
Longitudinal data analysis, 341, 366

M

Main effects model for group 
differences, 328–329

Mallow’s CP statistic, 135
Matching response pattern, 20, 21
Matrix approach to SEM

exercises, 422–423, 484–487
free, fixed, and constrained 

parameters, 380
latent variable interaction models, 

410–416
LISREL matrix command 

language, 382–384
LISREL program output example, 

384–400
matrix notation overview, 

373–379
multiple-sample model, 404
path model, 400–403
population model specification, 

361
SPSS program, 361
structural model equation, 

373–374
Matrix beta (β), 374–375, 376, 379, 

380
Matrix equation for structural model, 

373–374, 376
Matrix gamma (Γ), 375, 376, 379
Matrix of cofactors, 427, 429–430
Matrix of minors, 427, 428–429
Matrix operations, 425, 432

addition and subtraction, 426
determinant, 427, 428, 430–431
division, 427–432
identity matrix, 432
inverse, 432
matrix definition, 425–426
multiple regression, 434–437
multiplication, 426–427
order of matrix, 426
Pearson correlation coefficient 

computation, 432–434
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sums of squares and cross-
products, 433–434

transpose, 431
Matrix phi (Φ), 360, 361, 374, 378, 379
Matrix psi (Ψ), 375, 378, 379
Matrix sigma (Σ), See  Sigma matrix
Maximum likelihood (ML) 

estimation, 60, 61, 86, 152, 
153, 204, 217

non-normal data handling, 62–63
Mean differences between observed 

variables, 259–262
Mean substitution, 20, 38
Measurement error, 166, 182–184, 196

confirmatory factor model, 165–166
correction for attenuation, 39
correlated, 190, 197, 274, 345
matrix notation, 375, 379, 383
measurement models and, 185
parameter estimates and, 163
population model specification, 361
regression models and, 136–137
SEM and, 7
variance-covariance terms, 190

Measurement invariance, 116
Measurement models, 184–186, 

196, 217, 271, See also 
Confirmatory factor models

avoiding identification problems, 
58–59

dynamic factor model, 274–277
four-step approach, 191–192
LISREL matrix notation, 405
LISREL-SIMPLIS program, 186, 199
matrix notation, 375, 376–377, 

379–381
model fit, See Model fit
model modification and, 218, See 

also Model modification
multicollinearity, 340
multiple samples, 224
multitrait multimethod model, 

277–290
recommendations, 116
second-order factor models, 

271–274
theoretical foundation, 212
two-step approach, 114–115, 191

Measurement scale, 18–19
correlation coefficients, 34–36
troubleshooting tips, 30, 50

Measurement validity issues, 163, 
182–183

Mediating latent variables, 181
Meta-analysis, 212
Metropolitan Achievement Test, 

184–185
MIMIC model, See Multiple 

indicator-multiple cause 
(MIMIC) models

Missing data, 20–21
correlation coefficients and, 38
LISREL-PRELIS example, 21–27
missing at random (MAR), 38
missing completely at random 

(MCAR), 38
power and, 114
troubleshooting tips, 30, 50

Misspecified models, 56, 64–65, 
130, 213, See also Model 
specification

biased parameter estimates and, 
56, 130, 213

confirmatory factor models, 
169–174

model modification, 64–67, See also 
Model modification

Mixture models, 35, 49, 298–307
exercises, 321–322
LISREL-PRELIS program, 

301–302
LISREL-SIMPLIS programs, 

302–306
model estimation and testing, 

301–302
model modification, 303–306
model specification and 

identification, 299–301
robust statistics, 305–306
suggested reading, 325

Model comparison, 88–89, 108–110
Model estimation, 59–63, 202–203, 

210–211, 216–217
checklist, 217
confirmatory factor models, 

169–170
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messy data problems, 217–218
MIMIC model, 294–298
mixture models, 301–302
multitrait multimethod model, 

280–281
path models and, 151–154
regression model, 131–133
second-order factor models, 

272–274
structured means model, 

261–262
troubleshooting tips, 68

Model fit, 73, 85, 94, 217–218, 219
four-step approach, 115–116
ideal fit index, 117
model comparison, 88–89, 

108–110
Monte Carlo methods, 364
parameter significance, 111–113
specification search, See 

Specification search
structured means model, 261
two-step approach, 114–115

Model-fit criteria, 63, 74–77, 85–86, 
See also Model-fit statistics; 
specific indices

global fit measures, 75
LISREL-SIMPLIS example, 77–85
MIMIC model, 295, 297
R2, 127–129

Model-fit statistics, 63, 68, 76–77, 85, 
203–205, 211, 217–218, See also 
specific indices

confirmatory factor models, 172
fitting functions, 60
model comparison, 88–89
model-fit criteria, 74–77
parsimony, 89–91
path models and, 154, 158–161
problems of SEM, 209
reporting, 91
sample size and, 41–42, 113–114

Model generating approach, 73
Model identification, 56–59, 200–202, 

215–216
checklist, 216
confirmatory factor models, 

167–169

free, fixed, and constrained 
parameters, 57

methods for avoiding 
identification problems, 
58–59

MIMIC model, 294
mixture models, 299–301
multitrait multimethod model, 

279
order and rank conditions, 58
path models and, 150–151
recommendations, 210–211
regression model, 131
second-order factor models, 

271–272
structured means model, 259–260
troubleshooting tips, 68

Model modification, 64–67, 205–207, 
211, 218–219

checklist, 218–219
confirmatory factor models, 

173–175
latent growth curve model, 

344–345
latent variable interaction model, 

336
MIMIC model, 297
mixture model example, 303–306
path models and, 155–156
properly specified model, 66
regression analysis, 134–135

Model parsimony, 89–91, 115
Model specification, 55–56, 197–200, 

213, 215, See also Misspecified 
models; Specification search

checklist, 215
confirmatory factor models, 

166–167
MIMIC model, 294
mixture models, 299–301
multitrait multimethod model, 279
path models and, 147–150
population covariance matrix, 

359–364
regression model, 130, 135
second-order factor models, 

271–272
structured means model, 259–260
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Model testing, 63, 203–205, 217–218, 
See also Model-fit statistics; 
Parameter estimates

checklist, 218
confirmatory factor models, 

170–173
MIMIC model, 294–298
mixture models, 301–302
multitrait multimethod model, 

280–281
path models and, 154
regression model, 133–134
second-order factor models, 

272–274
structured means model, 261–262

Model validation, 218, 223, 241, 345, 
See also Cross-validation

bootstrapping, 234–240
checklist, 219
cross-validation, 42
multitrait multimethod model, 

277
replication using multiple samples, 

223–229, 245–250
sample size and, 42

Modification indices, 65, 94, 155, 205
confirmatory factor models, 173
mixture models, 303
model generation approach, 73
power values, 111–113

Monte Carlo Markov Chain (MCMC), 
20, 21

Monte Carlo methods, 335, 345–365
basic steps, 365
exercises, 368, 482–483
population covariance matrix from 

specified model, 359–364
population data from specified 

covariance matrix, 352–359, 
482–483

PRELIS population data 
simulation, 346–352

pseudo-random number 
generation, 346

resources, 365
suggested reading, 368–369

Mplus, 8, 113–114
Multicollinearity, 340

Multilevel models, 7, 307–320
deviance statistic, 320
exercises, 323, 477–478
interpretation, 318–319
intraclass correlation, 319–320
LISREL resources, 308–313
null model, 308
PRELIS program, 313–318, 477–478
suggested reading, 325
variance decomposition, 308

Multiple correlation analysis (MCA), 
127

Multiple correlation coefficient, 
126–127

Multiple-group models, 7, 250–258
chi-square difference test, 258
exercises, 264–265
interaction effects, 328
LISREL-SIMPLIS path model 

analyses, 251–258
separate group models, 251–254
similar group model, 255–258
suggested reading, 267

Multiple indicator-multiple cause 
(MIMIC) models, 183, 
293–298

exercises, 321, 475–477
goodness-of-fit criteria, 295, 297
LISREL-SIMPLIS program, 

294–298, 475–477
model estimation and testing, 

294–298
model modification, 297
model specification and 

identification, 294
structural equations, 298
suggested reading, 324

Multiple linear regression, See 
Multiple regression models

Multiple regression models, 125–129, 
137–138, See also Regression 
models

additive equation, 137–138
all-possible subset approach, 135
exercises, 289
LISREL-SIMPLIS program, 130, 

132, 138–139
Mallow’s CP statistic, 135
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matrix approach, 434–437
measurement error and, 136–137
model identification and, 131
model modification, 134–135
model specification and, 130, 135
model testing, 133–134
path analysis and, 147–149
path models and, 143
prediction and explanation 

applications, 127
R2 index of fit, 127–129
robustness, 136, 138

Multiple samples, 223–229, 245–250
exercises, 263–264, 462–465
LISREL matrix notation, 404
LISREL program, 248–250
LISREL-SIMPLIS program, 

224–229, 462–464
suggested reading, 267

Multiplication of matrices, 426
Multitrait multimethod model 

(MTMM), 277–290
correlated uniqueness model, 

281–286
exercises, 289–290, 470–475
LISREL-SIMPLIS programs, 

280–281, 470–475
model estimation and testing, 

280–281
model specification and 

identification, 279
suggested reading, 290

Mx, 8

N

Nested models, 73, 211, 307
comparative fit index, 89
model comparison, 108
multilevel models, 307–320, See also 

Multilevel models
parameter significance, 111–113

New option, 14–15
Nominal variables, 19, 35
Nomological validity, 114
Noncentrality index (NCI), 116
Noncentrality parameter (NCP), 75, 

77, 94, 100, 102, 172

Nonignorable data, 38
Non-linear data, 27, 30, 36–37

troubleshooting tips, 50
Nonlinear models, 327–328, 341, See 

also Interaction models
bootstrap estimates, 337, See also 

Bootstrap
continuous variable approach, 

330, 339
two-stage least squares approach, 

337–341
Non-normality, 28

interaction models and, 340
model estimation and, 62
pseudo-random number 

generation, 346
standard error estimation, 118
transformations, 28, 36
troubleshooting tips, 30

Nonpositive definite covariance 
matrices, 40–41, 50

Nonrecursive structural models, 59
Normal distribution assumptions, 28, 

61, 209, 217, 340
Normed fit index (NFI), 42, 76, 

88–89
parsimony NFI (PNFI), 89, 90
relative NFI (RNFI), 114–115

O

Observed variables, 3–4, 180
categorical and continuous, 

mixture models, 298–307
defining latent variables, 183
latent variable prediction (MIMIC 

models), 293–298
measurement error and, 163, 196, 

See also Measurement error
reference variables, 199
testing group mean differences, 

259
Open option, 15
Order condition, 58, 150, 168, 201
Order of a matrix, 426
Ordinal variables, 19, 29, 35, 61–62

in LISREL-PRELIS, 36, 298
mixture models, 35
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Ordinary least squares (OLS) 
estimation, 40–41, 59, 60

Origin of latent variable, 199
Outliers, 27, 92

correlation coefficients and, 39
troubleshooting tips, 30, 50

Output Options dialog box, 18
Over-identified model, 58, 211

P

Pairwise deletion, 20, 38
Parameter estimates, 63, 152–153, 

217–218, See also Model 
estimation

confirmatory factor models, 
168–170

detecting specification 
errors, 64

estimation methods, 152, 
210–211, See also specific 
methods

full and limited information, 
152–153

initial estimates, 40, 61, 92
measurement error and, 163
misspecified model and bias, 56, 

130, 213
model-fit criteria, 74
model identification and, 57, 150, 

201, 215
Monte Carlo approach, 346, 

352, 364
multiple group models, 250–258
multiple samples, 224, 245–250
outliers and, 92
parameter fit, 92–93
power values, 112–113
standard error estimation, 118
two-stage least squares approach, 

337
Parameter significance, 92, 94, 

111–113
Parsimony, 89–91

relative parsimony fit index, 115
Parsimony normed fit index (PNFI), 

89, 90
Part correlation, 43–44

Partial and part correlations, 34, 
42–46

significance testing, 34
standardized regression weights, 

137
Partial regression coefficients, 126
Path coefficients, 147–149
Path diagram, confirmatory factor 

model, 165
Path models, 5, 143–144

chi-square difference test, 258
chi-square test, 158
correlation matrix decomposition, 

151–152
drawing conventions, 144–146
example, 144–146
interaction hypotheses, 341
LISREL matrix notation, 400–403
LISREL-SIMPLIS multiple group 

analyses, 251–258
LISREL-SIMPLIS program, 156–158
model estimation and, 151–154
model-fit indices, 158–161
model identification and, 150–151
model modification, 155–156
model specification and, 147–150
model testing, 154
variables in, 3–4

Pattern matrix approach, 356, 358–359
Pearson correlation coefficient, 

4–5, 29, 33–34, 35, See also 
Correlation coefficients

cause-effect relationships, 48–49
correction for attenuation, 39
matrix approach to computing, 

432–434
missing data and, 38
nonlinear data and, 37
outliers and, 39

Pearson product-moment correlation 
coefficient, 35, See also 
Pearson correlation 
coefficient

path coefficients, 147–149
regression coefficient and, 126

Phi matrix (Φ), 360, 361, 374, 378, 379
Platykurtic data, 28
Polychoric correlations, 35, 62
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Polyserial correlations, 35, 62, 304–305
Population covariance matrix, 57, 

150, 168, 201, 215, 346, 352, 
361, See also Sigma matrix; 
Variance–covariance matrix

confirmatory factor models, 360, 
363–364

LISREL matrix syntax, 355–359
matrix operations, 361
PRELIS simulation, 346–352
SAS approach, 354–355
from specified model, 359–364
SPSS approach, 352–354, 482–483

Power, 93–99
G*Power 3 software, 95–96, 102
missing data and, 114
model comparison, 108–110
parameter estimates, 112–113
RMSEA and, 106–107
RMSEA and effect size, 108–110
SAS syntax, 95, 106, 111–113
SPSS syntax, 95

Prediction and multiple regression, 
127

Predictive validity assessment, 191
PRELIS, 49, 346, See also 

LISREL-PRELIS
bootstrapping, 234–240
latent variable interaction model, 

331–335, 412–413
model estimation and, 62
multilevel modeling, 313–318, 

477–478
population data simulation, 

346–352
system file, 17
two-stage least squares analysis, 

337–338
variables in, 19–20, 29, 62, 298–299

Probit data transformation, 28, 36
Properly specified model, 66
Pseudo-random number generation, 

346
Psi matrix (Ψ), 375, 378, 379

Q

Q, 158, 160

R

R2, 127–129, 132–137
correction for measurement error, 

136–137
path model-fit index, 159

Ramona, 8
Random sample, SPSS, 268
Rank comparison, 19
Rank condition, 58, 202
Ratio variables, 19, 35
Reciprocal transformation, 36
Recursive structural models, 59
Reference variables, 199, 296
Regression, 33–34
Regression imputation, 20
Regression models, 4, 125–129, See also 

Multiple regression models
LISREL-SIMPLIS program, 130, 

132, 138–139
model estimation and, 131–133
model identification and, 131
model modification, 134–135
model specification and, 130, 135
model testing, 133–134
saturated just-identified models, 

131, 134
theoretical framework, 134
variable measurement error, 

136–137
variables in, 3

Regression weight correction for 
attenuation, 137

Relative fit index (RFI), 76
Relative noncentrality index (RNI), 89
Relative normed fit index (RNFI), 

114–115
Relative parsimony fit index, 115
Relative parsimony ratio, 115
Reliability, 163, 182

correction for attenuation, 39, 50
Reliability coefficient, 183–184, 277

multitrait multimethod model, 277
Repeated measures ANOVA, 341–342

latent growth curve model, 
341–345

Replication, 219
multiple samples, 223–229, 245–250
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Reporting SEM research, 209
checklist, 211–212
data preparation, 212–214
model estimation checklist, 217
model-fit indices, 91
model identification checklist, 

216
model modification checklist, 

218–219
model specification checklist, 215
model testing checklist, 218
model validation checklist, 219
recommendations, 209–210

Residual matrix, 64, 87–88, 155, 
173, 205

chi-square value and, 75
Restriction of range, 19–20

troubleshooting tips, 30, 50
Root-mean-square error of 

approximation (RMSEA), 
76–77, 154, 203

confirmatory factor models, 172
effect size and power, 108–110
model-fit criteria, 74
reporting, 91
sample size and, 42
SAS syntax, 106

Root-mean-square residual index 
(RMR), 87

S

Sample matrix description, 212
Sample size, 41–42, 93, 114

chi-square and, 41, 86, 99–100, 
211

critical N statistic, 41, 99
minimum satisfactory, 42
model-fit indices and, 113–114
model validation and, 42
parameter fit and, 92
problems of SEM, 209
rule of thumb, 211
SAS syntax, 101–104
troubleshooting tips, 40–41

Sample variance-covariance matrix, 
See Variance-covariance 
matrix

SAS syntax
effect size, RMSEA, and power, 

110
population covariance matrix, 

354–355
power, 95
power for parameter modification 

indices, 111–113
RMSEA and power, 106
sample size, 101–104

Satorra-Bentler scaled chi-square, 62, 
119, 305–306

Saturated model, 41, 75, 131, 134
Scalar matrix multiplication, 427
Scatterplot, 27, 36
Second-order factor models, 271–274

exercises, 287, 468–470
LISREL-SIMPLIS program, 

272–274, 468–470
model estimation and testing, 

272–274
model specification and 

identification, 271–272
suggested reading, 290

Sepath, 8
SEPATH, 60
Sigma matrix (Σ), 57, 59–60, 75, 

150, 168, 191, 201, 215, 
361, 378–379, See also 
Population covariance 
matrix; Variance–
covariance matrix

Significance, See Statistical 
significance

SIMPLIS, 6, See also LISREL-SIMPLIS
Skewness, 28, 36
Slope and intercept parameters, latent 

growth model, 341–345
Specification error, 56, 113, 130

detection methods, 64
path models and, 155
recommended procedure, 67

Specification search, 64–67, 73–74, 
205–207, 211

confirmatory factor models, 173
troubleshooting tips, 68

Split-sample cross-validation, 
229–232

Y102005.indb   507 3/22/10   3:27:58 PM



508	 Subject Index

SPSS syntax
MATRIX procedure, 362
population covariance matrix, 

352–354, 482–483
power, 95
RMSEA and power, 107
Select Cases: Random Sample, 

268
special data file types, 212

Squared multiple correlation 
coefficient (R2), 127–129, 
132–137, 159

Square root transformation, 36
Standard error

alternative model identification 
and, 94

bootstrap estimates, 234
computation, 60, 63, 118
computation, Monte Carlo 

methods, 364
Standardization of latent 

variables, 60
Standardized partial regression 

coefficients, 147
Standardized partial regression 

weights, 137
Standardized regression coefficient 

(β), 126, 133–134
Standardized residual matrix, 

64–65, 155, 173, 202–203, 
205

Standardized root-mean-square 
residual index, 87, 91, 154

Standardized variables, 47–48
Standardized z scores, 64–65, 126
Stanford-Binet Intelligence Score, 180, 

181, 184
Start values, 61, See also Initial 

estimates
nonpositive definite matrices, 40
two-stage least squares approach, 

337
Statistical significance, 85, 94

chi-square test, 75, See also 
Chi-square

confirmatory factor model 
approach, 164

F test, 34, 63, 128–129, 133
hypothesis testing, 93
missing data and, 38
model-fit criteria, 74–75, See also 

Chi-square; Model fit; 
Model-fit criteria

model modification and, 155, 
173, 205

model testing, 48
model testing and, 217
parameter, 92, 94, 111–113
partial and part correlation, 34
path model fit, 158
R2, 128
r distribution table, 442
specification search, 64
t distribution table, 441

Structural equation matrices, 373–379, 
See also Matrix approach to 
SEM

Structural equation model 
development, 179, 195, 
See also Measurement 
models; Structural model

example, 195–197
four-step approach, 191–192
LISREL-SIMPLIS program, 

207–208
model estimation, 202–203
model identification, 200–202
model modification, 205–207
model specification, 197–200
model testing, 203–205
two-step approach, 191
variance and covariance terms, 

189–191, 200
Structural Equation Modeling 

(journal), 6
Structural equation modeling (SEM), 

2–4, 179
history of, 4–6
reasons for using, 6–7
reporting, See Reporting SEM 

research
sample size requirements, 211, 

See also Sample size
shortcomings, 209
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“10 commandments”, 210
Structural equation modeling (SEM), 

basic components, 55, 73, 
See also Model estimation; 
Model identification; 
Model modification; Model 
specification; Model testing

Structural equation modeling (SEM) 
software programs, 7–8, 
See also LISREL; LISREL-
SIMPLIS; PRELIS

LISREL 8.8 student version, 8
Structural model, 114, 186–188, 200, 

212, 217
LISREL-SIMPLIS program, 187–188
matrix equation, 373–374, 376
MIMIC, 298
model modification and, 218
multiple samples, 224
recommendations, 116

Structure coefficients, 187, 197
Structured means models, 259–262

exercises, 265–266, 465–468
LISREL matrix notation, 405–410
LISREL-SIMPLIS programs, 

260–262, 465–468
model estimation and testing, 

261–262
model fit, 261
model specification and 

identification, 259–260
suggested reading, 267

Subtraction of matrices, 426
Sums of squares and cross-products 

(SSCP) matrix, 433–434
Suppressor variables, 44

T

Tabu, 66, 73–74
Tau (τ), 361, 405
Tetrachoric correlations, 29, 35
TETRAD, 66
Theoretical models, 2, 143, 210, 213

identification problem, 57, 150, 
201, 215, See also Model 
identification

model fit, See Model-fit criteria
model specification and, 56, 213, 

See also Model specification
regression models and, 134
replication, 219, 223–229
validation, See Cross-validation; 

Model validation
Theta-delta (Θδ) matrix, 360–361, 375, 

378, 379
Theta-epsilon (Θε) matrix, 375, 378, 

379
Transposed matrix, 427, 431
Triangular matrix, 431
Troubleshooting tips, 30, 50, 68
True score correlation, 39
t rule, 58
t statistic, 74, 205

distribution for given probability 
(table), 441

Tucker-Lewis index (TLI), 76, 88, 
113

Two-stage least-squares (TSLS) 
estimates, 92, 337–341

LISREL-PRELIS program, 337
testing interaction effects, 339

Two-step model-building approach, 
114–115, 191

U

Under-identified model, 57
Unit of measurement, 199
Unstandardized coefficients, 

47–48
Unweighted least squares (ULS) 

estimation, 60, 86, 152

V

Validation of model, See Model 
validation

Validity issues in measurement, 
163, 182–183, 191, See also 
Measurement models

Variables, 2–3, See also specific types
standardized and unstandardized, 

47–48
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Variance-covariance matrix, 46–47, 
189, 191, 202, See also 
Population covariance 
matrix; Sigma matrix

in LISREL-PRELIS, 298–299
matrix approach to correlation 

coefficient computation, 
434

matrix notation, 374–375
model estimation and, 61, 202, 

210–211
nonpositive definite, 40–41

Variance-covariance terms, 189–191, 
200

Variance decomposition, 308

W

Wechsler Intelligence Scale for 
Children — Revised 
(WISC-R), 3, 180, 181, 184

Weighted-least squares (WLS) 
estimation, 60, 61, 63, 100

W path model-fit index, 160

X

X (independent variable), 180, 181
X and Y cause-effect relationships, 

48–49
X scores, 4

Y

Y (dependent variable), 180, 181
Y scores, 4

Z

Zeta error term (ζ), 375, 376, 378
z scores, 64–65, 126
z scores, 155

table, 440
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